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Abstract 

 

BACKGROUND: The process through which children learn about the world and develop 

perceptual, cognitive and social skills relies heavily on spatial and object exploration; specifically, 

manipulation of toys and tools in the environment. However, some children with motor impairment 

have difficulties with object manipulation due to issues with selective motor control that affects 

reaching or grasping. Robots controlled through simple human interfaces (e.g., joysticks and 

switches) can be a bridging tool for children with disabilities to access play and related 

development opportunities because robots can perform reaching, grasping, and manipulation 

functions to compensate for the children’s motor difficulties.  These interfaces, however, generally 

still require a certain degree of physical ability to access and operate. Human-robot interfaces 

utilizing usable biological signals could be a potential solution to enable environmental exploration 

and object manipulation via a robot for people with motor impairments.  

OBJECTIVE:  The main objective of this thesis was to develop a human-robot interface 

which integrated low-cost eye tracker and brain-computer interfaces (BCI) to directly control a 

robot.  The systems were adapted in order to interact in a physical play environment, i.e., without 

the need for a computer display. Alternatives to visual feedback were examined, such as auditory 

and haptic feedback, for their effectiveness in improving task performance. 

 METHODS: This dissertation work was divided into four phases involving experiments with 

adults and children with and without disabilities:  1) An eye gaze interface that mapped gaze 

direction into the physical environment was developed using homographic mapping. Participants 

used the system with different feedback conditions (i.e., visual, no-feedback, auditory, and 
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vibrotactile haptic feedback) to select targets on a computer display and in the physical 

environment. 2)  The eye gaze interface was then used in a physical task to sort cards using a 

teleoperated robot. First, the participant's desired target was determined using the eye gaze system. 

Then, a Forbidden Region Virtual Fixture (FRVF) was created towards the selected target to help 

the participant move the robot end effector towards it. The effects of no-feedback, auditory and 

vibrotactile haptic feedback for gaze fixations were examined. 3) Open BCI was used to implement 

a BCI based on event related desynchronization/synchronization (ERD/ERS). A motor imagery 

task was performed with feedback according to the detected movement intention, and the 

effectiveness of two feedback conditions was examined, the classic Graz training using visual 

feedback and kinesthetic haptic feedback using passive movement of the participant's hand. 4)  The 

eye gaze interface and BCI were combined and tested in a physical play task with a mobile robot. 

Vibrotactile haptic feedback was given for feedback about gaze fixation and kinesthetic haptic 

feedback was given as feedback for motor imagery.  The performance at selecting targets and 

moving towards them with and without the feedback was compared. 

RESULTS:  1) Gaze interaction was performed significantly faster during feedback conditions 

compared to no-feedback (p=0.019). However, no significant difference in performance between 

the feedback modalities (i.e., visual feedback, no-feedback, auditory feedback, and vibrotactile 

feedback) were found. 2) Feedback for the gaze fixation and guidance of the FRVF did not improve 

the performance of the robot control task for the adults without impairments, however, it did 

improve the speed and accuracy of the task for the child and adult with impairments.  3) The BCI 

task with the kinesthetic haptic feedback was significantly more accurate than the task with visual 

feedback only (p=0.01). No significant improvement was observed over 12 BCI runs in both 

feedback conditions, however, the participants reported that the task with the kinesthetic haptic 
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feedback had a lower workload compared with the visual feedback only. 4) Using the mobile robot 

control task using the integrated eye gaze and BCI human-robot interface, all the adults without 

impairments and the adult with cerebral palsy performed faster during the no-feedback condition, 

and two of them showed significance (p=0.01 for the two adults without impairments). All the 

participants reported that task with the haptic feedback required less task workload. 

CONCLUSION:  Feasibility of the eye gaze interface and BCI for the integrated human-robot 

interface were confirmed throughout this research series. Adding feedback to the human-robot 

interface could improve the performance of the robot operation and would enable people with 

physical impairments to access play and subsequent learning opportunities. 
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Chapter 1  

       Introduction 

 

The process by which children develop motor, perceptual, and cognitive skills relies 

significantly on their tactile experiences within the physical world and the way in which they 

explore objects (Gibson, 1988). Cognitive development spans elements such as thinking, learning, 

resolving, feeling, and knowing the environment, and the development of cognitive abilities can 

be facilitated by motor and perceptual experiences in day-to-day life (Bjorklund, 2005). For 

children who have severe physical impairments, one of the biggest concerns for cognitive 

development is the lack of opportunities for meaningful manipulation tasks, often in the context 

of play activities (Taylor, Imms, & Dodd, 2010).  

Play is an enjoyable and natural way in which children interact with their social and 

physical environment in order to discover the world by testing different objects and experiences, 

and it also stimulates creativity, learning, mastery, self-expression, and adaption (Ferland, 2003).  

Children who have physical disabilities may find it difficult to participate in certain play activities 

as a result of impairments they may have, such as limitations in movement, grasping, and reaching 

for objects. Furthermore, children who have some form of physical impairment tend to watch 

others play as opposed to participating themselves because their playmates more effectively or 

frequently handle play activities on behalf of the child with physical impairment (Blanche, 2008). 

This can impede their development across multiple areas such as motor, social, linguistic, and 

cognitive skills (Harkness & Bundy, 2001). 

Children can use robots to access play activities, controlled through a human-robot interface. 

Robots such as Lego robots (Ríos-Rincón, Adams, Magill-Evans, & Cook, 2016) and Play-ROB 

(Gernot Kronreif, Barbara Prazak, Martin Kornfeld, Andreas Hochgatterer, & Martin Furst, 2007) 

have enabled children with cognitive and physical impairments to manipulate objects for play. The 

human-robot interfaces for these robots were switches (Ríos-Rincón et al., 2016) and joysticks 

(Gernot Kronreif et al., 2007).  
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Simple button switches are common human-robot interfaces. They return a binary signal of 

“on” or “off” depending on if the switch is pressed or not. Switches can be placed in different 

anatomical locations to facilitate ease of access that may differ between individuals. Each switch 

controls one dimension of movement of the robot (e.g., forward or turn). 

Joysticks are another common human-robot interface. Most joysticks operate using continuous 

signals, for example, the farther the joystick moves away from the starting point, the faster the 

robot goes.  Also, they can control multiple dimensions of movement, (i.e., moving forward makes 

the robot move forward, and moving it left can make the robot go left).  Research has shown that 

such human-robot interfaces can be successfully used with assistive robots, with joysticks being 

most intuitive (Harwin, Ginige, & Jackson, 1988; Gernot Kronreif et al., 2007; Rios, 2014). 

However, these interfaces require a certain degree of physical ability to access and to operate. If 

users have no voluntary and repeatable muscle control, which makes it difficult to initiate accurate 

physical movements, it would be impossible for them to operate those interfaces. There are 

interfaces that do not require the ability to control body movement, such as those that use eye gaze 

data or brain signals, and in recent years, the cost of these interfaces has become feasible for use 

in hospitals or homes (Gibaldi, Vanegas, Bex, & Maiello, 2017; Martinez-Leon, Cano-Izquierdo, 

& Ibarrola, 2016).  

The ability to control eye movement is often retained when people lose physical bodily 

function (Rytterström, Borgestig, & Hemmingsson, 2016). Eye trackers are used to detect the 

user’s eye movement and determine the location where they are focusing. It is often used as an 

access pathway for people with physical impairments to control a computer or an augmentative 

and alternative communication device (Biswas & Langdon, 2011).  Because this is a pointing 

operation with eye movement, Fitts’ law can be applied (Vertegaal, 2008). Fitts’ law is a well-

known model for evaluating pointing tasks in human- computer interactions. It says that the 

amount of time required for a person to move a pointer to a target area is a function of the distance 

to the target divided by the size of the target (Santos, Santos, Jorge, & Abrantes, 2014). Thus, the 

smaller the target’s size, the longer it takes, implying a tradeoff between time of movement and 

size of target. This tradeoff was examined in this study by testing different target sizes of the gaze 

interactions.  
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In addition, robot control using eye gaze has been an increasingly studied topic. For example, 

Nguyen and Jo (2012) proposed an eye gaze-controlled powered wheelchair, maneuvered by 

selecting commands on a mounted display for navigation.  In Encarnação et al. (2017), children 

controlled a mobile robot by selecting robot commands on a computer display.  However, with 

these systems, participants had to look back and forth between the display and the environment, 

which requires changing the focus from one place to another.  The participants could have worn a 

head-mounted display to circumvent this study limitation, but some people do not tolerate wearing 

such displays (Koulieris, Bui, Banks, & Drettakis, 2017).      

 Brain-controlled access pathways, often referred to as a brain-computer interfaces (BCI), 

can detect brain activity associated with real or imagined movement. Sensory processing of motor 

behaviour shows a change of the brain signals in the alpha frequency band (8 to 13 Hz), named Event–

Related Desynchronization (ERD), and in the beta frequency band (13 to 26 Hz), named Event- 

Related Synchronization (ERS) (Pfurtscheller & Neuper, 2010).  Thus, BCI detect brain activities 

associated with a user’s movement intention and that information can be used to control a device. 

For example, a study of Marquez-Chin, Marquis, and Popovic (2016) demonstrated the use of 

BCI-based functional electrical stimulation therapy to initiate upper limb movement of people with 

physical impairments. The functional electrical stimulation was controlled based on the user’s 

movement intention detected from their brain signals.  

Combining a stationary eye tracker and a BCI have potential as an intuitive interface for 

robot control.  The stationary eye tracker could be placed in front of the play environment and 

enable a user to directly select a desired spatial target or destination for the robot.  The BCI could 

allow users to control a robot to move or stop using their movement intention, like a binary switch. 

Frisoli et al. (2012), used a head-mounted eye tracker and a g.tec BCI system (Guger Technologies 

OEG, Graz, Austria) to assist the movement of the upper limb in reaching exercises for 

neurorehabilitation. Participants with and without physical impairments were able to select a target 

location with eye gaze, and an exoskeleton facilitated the users’ arm movement towards the 

location based on their motor imagery.   

In order to perform reliable control of a robot in a physical play environment with a 

stationary eye tracker and BCI in functional robot tasks, certain issues need to be addressed.  With 

a stationary eye tracker, users generally have biofeedback to control a visual pointer on a computer 



4 

 

screen (hereafter “on-screen”). Biofeedback is a technique that teaches self-control of 

physiological functions by measuring and providing feedback information about those functions 

(Sigrist, Rauter, Riener, & Wolf, 2013). Having feedback about where the eye tracker is 

interpreting the gaze is crucial for successful gaze interaction (Majaranta, MacKenzie, Aula, & 

Räihä, 2006). However, for an application that does not involve a display (“off-screen” hereafter) 

such as selecting a target or destination for the robot in the physical play environment, visual 

feedback is difficult to provide.  Alternatives to visual feedback are needed.  

Auditory and haptic feedback have also been used as biofeedback strategies in eye gaze 

interactions.  Haptic feedback can be divided into two types: vibrotactile haptic feedback is related 

to cutaneous receptors situated in the skin, and kinesthetic haptic feedback is related to receptors 

located in the muscles, joints and tendons of our body (Sigrist et al., 2013).  A meta-analysis of 43 

studies by Burke et al. (2006) found that the presentation of auditory and vibrotactile haptic 

feedback significantly enhanced the performance of selecting letters/words by eye gaze on the 

computer screen.  

Likewise, BCI performance can be enhanced by biofeedback.  Reliable classification of 

brain activity into “movement” or “no movement/rest” signals is crucial but classification may 

vary depending on the person (McFarland & Wolpaw, 2011). BCI training generally reinforces 

BCI control by visual presentation of feedback about motor imagery performance displayed on-

screen. Different types of feedback modalities have been investigated.  For example, Gomez-

Rodriguez et al. (2010) examined the feasibility of kinesthetic representation of feedback in robot-

assisted physical therapy for stroke rehabilitation. The results revealed that passive movements 

initiated by kinesthetic haptic feedback using a robot in a BCI training protocol enhanced EEG 

patterns similar to those observed during motor imagery. The study of Frisoli et al. (2012) reported 

that a higher BCI classification accuracy was achieved when kinesthetic motion guidance was 

provided by the exoskeleton to the users during reaching exercises. 

Sensory information from perception and actions of our body are tightly coupled together 

and processed within our cognitive system (Gibson, 1988). Perception is an input from the 

environment, and action is an output from our body. This close link is called perception and action 

coupling. For example, accurate reaching movement for an object is guided by perceptual 

information specifying the relation between our body and the environment. In addition, our body 
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is able to integrate multiple sensory inputs coming from different perception modalities in an 

efficient way, using this information to select and control its adaptive behavior in many situations 

in our daily activities (Lalanne & Lorenceau, 2004), This ability, called cross-modal integration, 

can be seen in hand-eye coordination. Hand-eye coordination involves many different sensory 

inputs processed simultaneously in order to perform an optimal motion of reaching and grasping 

an object, for instance. At the cortical level, visual and spatial information is processed in the 

occipital area, and motor action and sensing of haptic information is processed in the region of the 

central sulcus where the boundary between frontal and parietal lobes is, however, our cognitive 

system can handle the integration of multiple sensory information for bodily actions. In the case 

of hand-eye coordination, it requires not only visual perception, but also sensory information from 

arm and finger for the object to be reached and grasped. In this study, examining sensory 

information in addition to visual perception in the eye gaze interface, or haptic biofeedback instead 

of the conventional visual information in the BCI system, could be important to explore and 

understand the human-robot interfaces.  

For eye gaze and BCI to be used for controlling a robot in a physical play environment, 

alternatives to a visual display are needed so users do not have to switch their visual attention 

between the display and the play environment.  Adding auditory and vibrotactile feedback are a 

promising modality for eye gaze, and replacing kinesthetic feedback is a promising modality for 

robot control with the BCI.  A combination of an eye tracker and BCI with alternatives to visual 

feedback could make it possible to intuitively control a robot in a physical play environment. 

Moreover, the use of low-cost interfaces could make the proposed system more affordable and 

accessible to more people who have difficulty accessing play.  

1.1 Objectives and Research Questions 

The final goal of this thesis was to develop a new human-robot interface that integrates eye 

gaze and BCI to allow users to directly control a robot in the physical environment, and to test the 

integrated human-robot interface in functional robot tasks. In addition, biofeedback modalities 

such as visual, auditory, and haptic feedback were added to the human-robot interfaces, and 

effectiveness of the different biofeedback modalities was examined.   
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This dissertation consists of four papers, presented in Chapters 3 through 6, to address the 

aforementioned research goals.  In Chapter 3, development of an eye tracking system is described. 

The system was developed to map eye gaze direction between the coordinate frame of a stationary 

eye tracker and the objects in a play task environment. The effects of different feedback for gaze 

interaction in on-screen and off-screen conditions were examined.  In Chapter 4, the eye gaze 

system was implemented in a functional robot task using a teleoperational robot platform based on 

a previous study. For off-screen robot control in the physical environment, feedback for BCI can 

be provided first, so they user can learn to generate sensory motor rhythms, and secondly, to aid 

in controlling the robot in a functional task. The former situation was examined and is described 

in Chapter 5, and the later situation is described in Chapter 6, where both eye gaze and BCI control 

were integrated to control a robot.  The following research questions were addressed in the 

chapters. 

1. How do speed and success of gaze interaction differ between on-screen and off-screen 

conditions?  

2. Which feedback modalities and target size make the gaze-based target selection faster and 

more successful? 

3. What is the feedback preference of the participants in both on- and off-screen gaze 

interactions? 

 

Chapter 4 regarding the eye gaze system in a functional robot task: 

1. Can auditory feedback or vibrotactile haptic feedback about gaze fixation location make 

target selection in a sorting task faster and more intuitive than without it? 

2. Can haptic guidance pathways, determined by the gaze-based target selection, improve 

movement efficiency and ease of the robot operation compared to without it? 

 

For Chapter 5 regarding BCI training: 

1. Which feedback modality (visual or kinesthetic haptic) results in better BCI classification 

accuracy? 

2. Can repeated runs of the BCI training with the feedback improve BCI classification 

accuracy over time? 
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3. How does brain activity differ in a motor imagery task with visual feedback versus haptic 

feedback? 

4. Which feedback modality leads to a lower workload for the participants? 

 

For Chapter 6, using the eye gaze and BCI system in a functional robot task:  

1. Can haptic feedback (vibrotactile haptic feedback for eye gaze to select targets and 

kinesthetic haptic feedback for motor imagery for driving a robot) from the integrated eye 

gaze and BCI-based human-robot interface make functional robot tasks faster?  

2. Can haptic feedback lead to a lower workload in the functional robot task compared to 

without it? 

 

1.2 List of Papers and Contributions 

 

Chapter 3: Effectiveness of Different Biofeedback Modalities for Improving 

On-screen and Off-screen Eye Gaze Interaction. 

In this study, by using a homogeneous transformation technique, eye gaze data were 

mapped between the gaze direction detected by a stationary eye tracker and the objects in the 

physical environment. The eye gaze system was tested with different feedback conditions (i.e., 

visual feedback, no-feedback, auditory feedback, and vibrotactile feedback) in a gaze interaction 

task in on-screen and off-screen conditions. For ten adult participants without impairments, their 

tasks with feedback modalities were accomplished statistically faster and more accurately than 

tasks performed without feedback in both screen conditions. The task in the off-screen condition 

was consistently slower than the task in on-screen condition. Three children without impairments, 

and two adults and one child with cerebral palsy also tried the system, and based on visual 

inspection, their performance on the tasks without feedback were slower than tasks with feedback 

modalities. Providing feedback appeared to help them to improve the speed of the gaze interaction 

task. There was no statistically significant difference in performance between the feedback 

modalities in the gaze interaction tasks, but participants had personal preferences, with the 
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vibrotactile haptic feedback being the most commonly preferred. Vibrotactile haptic feedback was 

implemented in the integrated system of Chapter 6. 

 

Chapter 4: Implementation of Eye Gaze with Biofeedback in a Human-Robot 

Interface 

In a previous study, haptic feedback was used for guidance to help users move a robot to 

target locations in a card sorting task (Sakamaki, Adams, Medina, et al., 2017). The guidance was 

created by software-generated forces at the user interface that generated a clear pathway from a 

pick-up location to a drop-off location, and prevented movements elsewhere. The position of the 

guidance was determined by computer vision, so the system never allowed the users to make 

mistakes. In the study of this chapter, the haptic guidance pathways were generated based on eye 

gaze so users could indicate their intended target by gaze, even towards mistaken targets, so the 

system could be used in testing situations. The system was tested with ten adults without 

impairments, two children without impairments, and one adult with cerebral palsy. The users 

received several feedback modalities (i.e., no-feedback, auditory feedback, and vibrotactile 

feedback) when selecting a target using their eye gaze (as in Chapter 3), and guidance was turned 

on and off to see if there was an improvement in task performance. The results indicated that 

neither the feedback for the target selection nor the guidance for the movement improved the task 

performance of adult participants without impairments.  However, visual analysis of the data 

indicated that the feedback increased the speed and accuracy of target selection and the guidance 

improved the movement efficiency for the adult participant with physical impairment and the child 

participants without impairments. 

 

Chapter 5: Effectiveness of Haptic Feedback for Brain-Computer Interface 

Training. 

In this chapter, the development of a BCI system that provided kinesthetic haptic feedback 

to users is described. The system passively moved their arm according to the detected movement 

intention.  The effectiveness of the feedback was examined in several sets of BCI training sessions 
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with ten adults without impairments, a child without impairments, and an adult with cerebral palsy. 

When learning to do motor imagery, it is recommended to perform repeated practice with feedback 

and rewards in order for the participants to acquire the skills required to control the BCI system. 

The Graz BCI training protocol, which is one of the most widely used BCI training protocols, 

detects the sensory motor rhythm induced by motor imagery and gives users a visual representation 

of how well they are performing the motor imagery. Instead of visual feedback in the BCI training, 

kinesthetic haptic feedback was tested to investigate whether it would be helpful in enhancing the 

brain activities associated with movement intention. BCI training using kinesthetic haptic feedback 

provided significantly more accurate classification than conventional visual feedback for ten adult 

participants without impairments. However, there was no significant improvement in how well the 

participants could perform the motor imagery with either the visual feedback or the haptic feedback 

over 12 runs of the BCI training. Responses to a NASA-TLX questionnaire revealed that the task 

with the haptic feedback had a lower workload than the task with the visual feedback. The child 

without impairments and the adult with physical impairment reported a higher workload than the 

adults without impairments. Kinesthetic haptic feedback for BCI was implemented in the 

integrated eye gaze and BCI system in a functional robotic task in Chapter 6.    

 

Chapter 6: Integration of an Eye Gaze Interface and BCI with Biofeedback for 

Human-Robot Interaction 

In this chapter, the eye gaze and brain signals were integrated as a human-robot interface to 

control a Lego robot, and the system was tested with five adults without impairments and an adult 

with cerebral palsy. The system provided vibrotactile haptic feedback about where participant’s 

gaze was being tracked by the stationary eye tracker, and kinesthetic haptic feedback about how 

well brain activity was being detected. The task was knocking down one of two piles of blocks; 

the users selected a target block with their eye gaze and moved the robot towards the pile of blocks 

with their motor imagery.  All adult participants without impairments achieved the robot control 

task with the haptic feedback faster than the task without feedback, with two of them showing 

significance, although time for the target selection in both conditions was about the same. Four out 

of five participants without impairments responded that the task had less workload in the haptic 
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feedback condition than the task without feedback. Also, visual analysis indicated that the 

individual with physical impairments performed the task faster and reported less workload with 

the haptic feedback condition.  
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Chapter 2 

 Literature Review 

 

This review begins with technologies that are used for play by children with physical 

impairments followed by a discussion about how assistive robots can be utilized for manipulative 

play with objects. The final part of this chapter includes the topic of human-robot interfaces that 

have been used by people with physical impairments for assistive robot control. 

2.1 Technologies for Children with Physical Impairments to 

Access Play 

Various technologies have been used as a means for children with disabilities to play. The 

review by Van den Heuvel, Lexis, Gelderblom, Jansens, and de Witte (2016) covered applications 

using Information and Communication Technology (ICT) and robots that support play for children 

with severe physical impairments. Three main groups of technology were identified, virtual reality 

(VR) systems, computer systems, and robotic systems. VR systems refer to applications that create 

simulated 3-dimensional environments on screen that make users feel as if they are immersed in a 

virtual environment. Computer systems referred to applications without the use of VR. Comparing 

VR systems with computer systems such as conventional video games, Van den Heuval et al., 

2016 reported that VR systems primarily aim to stimulate and improve the user’s motivation, body 

awareness, and orientation to space (Van den Heuvel et al., 2016). Some VR systems offer, not 

only visual feedback to the user, but also additional force/touch feedback from the control 

interface.  For example, force/touch feedback in tasks such as carrying, moving and handling a 

virtual object can be achieved via controllers or gloves with a built-in vibrating motor (Wille et 

al., 2009).  Van den Heuvel et al. (2016) noted an important difference between robots and VR 

systems or computer systems; robots can move in their physical environment, whereas the others 

are stationary systems. The capability of mobility of the robots presents an advantage over VR and 

computer systems, because limited mobility is a problem for children with severe physical 

disabilities. Use of a robot in manipulation tasks could give children access to play with physical 
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objects and opportunities to learn and develop their cognitive skills through the manipulation of 

the physical environment. 

2.2 Assistive Robots for Children with Physical Impairments to 

Access Play 

Assistive robots enable manipulative play with objects for children with physical impairments. 

Ríos-Rincón et al. (2016) examined the potential of a robotic system affecting playfulness of 

children by using a Lego Mindstorms robot with four children with cerebral palsy. With three 

button switches for control (i.e., forward, left turn, and right turn), children maneuvered the robot 

and moved physical objects. All four children showed significant improvement in playfulness in a 

nonconcurrent, multiple baseline research design. Another robotic system, PlayROB, assisted in 

manipulation of Lego bricks (Gernot Kronreif et al., 2007; Prazak, Kronreif, Hochgatterer, & 

Furst, 2004). The children were able to use the robot to successfully pick up Lego bricks selected 

from a pile and place them on the desired location on the play area, and authors suggested that the 

children were developing spatial orientation skills. A joystick, 5-button input device, sip-puff 

switch, and single-button switches were used as control interfaces. Thus, children could use a 

control method based on their functional impairments or preferences. In Harwin et al. (1988), an 

industrial SCARA robot was modified for children with severe physical disabilities to perform 

play tasks such as stacking and sorting bricks. This system was a semi-automated, vision-based 

system. A button switch was used only as conformation for the task to “start” or “stop” and for the 

robot to “move” or “not-move”.  

These assistive robot studies indicate that children with severe physical disabilities can 

experience physical manipulation through robot use and potentially learn in physical 

environments. The degree and type of disability of the participants varied depending on the 

individual, and operation of these robotic systems was not always possible (Kim Adams, Alvarez, 

& Ríos-Rincón, 2017), thus there is a need to improve the interfaces used to control the robots.    

2.3 Human-Robot Interfaces 

The human technology interface is an important component of assistive technologies. It 

should allow those with physical disabilities to access technology and to perform functional 

activities (Cook & Polgar, 2008). According to Tai, Blain, and Chau (2008), a human technology 
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interface should comprise two main elements: (1) the physical sensors or input devices through 

which some form of functional intent, such as a physiological change or movement, is transferred 

into an electrical signal, and (2) a unit that processes and analyzes the input signal before 

subsequently generating a control signal. The same human technology interfaces that are used to 

control other assistive devices, can be used to control robots. 

2.3.1 Button Switch Interface 

One of most commonly used human-robot interfaces for people with impairments is a 

button switch. The button switch is the simplest type of switch and is essentially considered as a 

binary (on or off) device. With typical switches, it returns the “on” state only while the switch is 

pressed and remains in the “off” state otherwise. Use of multiple button switches allows robots to 

perform two and three-dimensional movements. For people with physical impairments, the 

switches can be placed in different anatomical locations, and the switches can have various shapes 

and sizes depending on the user’s abilities. By using Lego Mindstorms, Ríos-Rincón et al. (2016) 

demonstrated that children could control the robot using three button switches for “forward”, “left 

turn”, and “right turn” by placing the switches beside anatomical sites that the children could easily 

control.  

2.3.2 Joystick Interface 

Another access method for people with disabilities is a joystick. There are two types of 

joysticks, proportional and discrete. A proportional joystick, commonly used with power 

wheelchairs (Cook & Polgar, 2014), returns continuous signals, which are adjustable in amplitude 

or level of the sent command. For instance, the farther the proportional joystick moves away from 

the starting point, the faster a wheelchair goes. On the other hand, discrete joysticks return discrete 

responses similar to an array of single button switches. These have only distinct directional 

command outputs. The “PlayROB” developed by G. Kronreif, B. Prazak, M. Kornfeld, A. 

Hochgatterer, and M. Furst (2007), aimed to assist children with severe disabilities for interaction 

with Lego bricks, was operated with four directional commands, plus a confirmation command, 

generated by a discrete joystick (and also a 5-button input device).  Both proportional and discrete 

joysticks are suitable as a human-robot interface because the direction of robot movements can be 

intuitively controlled by the user. However, the user is required to have some degree of dexterous 

motion to operate the joystick efficiently. 
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2.3.3 Gesture-based Interface 

Some studies have used gesture-based human-robot interfaces. A humanoid-type robot, 

COSMOBOT, developed by J. Brisben, D. Lockerd, and Lathan (2004), was designed for children 

with physical and cognitive impairments to motivate and actively engage children in their 

occupational therapy. The gesture-based interface, through wearable sensors on the body, allowed 

the robot to replicate the user’s movement. For example, the robot would raise its arms in response 

to the user raising his/her arms, thus, the children could interact with the robot while performing 

the therapy exercise. This study reported that the robot made an impact on the occupational therapy 

goals of children with cognitive impairments.  

Another example of a gesture-based human-robot interface is in a study conducted by 

Quintero, Tatsambon, Gridseth, and Jagersand (2015). The user could interact with a robot arm 

using gestures to perform pick-and-drop tasks. A seven-degrees of freedom (DOF) WAM robot 

was used as the robot arm, and Microsoft Kinect was used as a vision system to detect the user’s 

gestures and locations of objects. An object was selected among several choices in the environment 

by the user’s pointing gesture, and the robot arm grasped the selected object and dropped it onto a 

target location.  

A gesture-based human-robot interface could be an intuitive and effective access method 

for robot control. However, it might be difficult for people with severe physical disabilities to 

make the distinct movements required for the system to discriminate the different gestures.   

2.3.4 Eye Gaze Interface 

In recent years, much research has been devoted to development of eye gaze-based human-

robot interfaces. It is a common interface in assistive technology, for example, even though 

individuals may have little or no voluntary muscle control in their limbs, they have used an 

Augmentative and Alternative Communication (AAC) device with gaze input to communicate 

with others and interact with the world (Biswas & Langdon, 2011). Such devices generally provide 

an on-screen keyboard interface with text to speech output. Nguyen and Jo (2012) examined the 

control of a wheelchair by a wearable vision-based eye gaze interface equipped with 3-dimensional 

orientation sensors. The direction of the wheelchair was established by the user’s eye gaze by 

selecting options on the wearable interface display for navigation. Besides the field of assistive 
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technology, eye gaze technology has been utilized in research in psychology, marketing, and 

medicine (Ruhland et al., 2015).   

Vision-based eye tracking is widely used for eye gaze interfaces. Vision-based eye gaze 

interfaces often require illumination of the eye with infrared light, and this makes the pupil stand 

out in a video image. The reflection off the cornea is used to estimate the direction of gaze. Much 

research utilizing eye gaze interfaces has been conducted in recent years, due to the increase in the 

processing power of computers and improvements in camera resolution which enable the detection 

of the eye gaze faster and more accurately than before (Chennamma & Yuan, 2013).   

Arai and Yajima (2011) developed a feeding aid system using a robot arm integrated with an 

eye gaze interface. A small camera was mounted on the tip of the robot end-effector, and the view 

from the camera was displayed on a computer screen. The system enabled the user to select the 

desired food on the screen using eye gaze and the robot picked up the food and brought it closer 

so the user could eat it. In a study by Encarnação et al. (2017), a mobile robot was controlled by 

children by fixating their gaze on the robot commands on a computer display. Authors reported a 

positive impact on children with physical impairments to participate in academic activities.  

Some research has pointed out challenges using eye gaze-based assistive technology with a 

clinical population. Amantis et al. (2011) found that children with cerebral palsy took longer and 

had less accuracy in gaze performance compared to children without impairments. Dhas, Samuel, 

and Manigandan (2014) stated that gaze interaction applications were not suitable for children who 

had too many involuntary movements because an eye tracker may lose accuracy in determining 

eye gaze direction.  

The main problem for efficient gaze interaction is how to avoid unintended selections, called 

the Midas' touch problem (Møllenbach, Hansen, & Lillholm, 2013). One of the solutions for this 

problem is to employ dwelling, fixating the gaze for a prolonged period of time on the target 

option.  Adjusting the dwell time has been used to give the system more tolerance in movements, 

and help users to be more successful accomplishing the gaze interaction (Isomoto, Ando, Shizuki, 

& Takahashi, 2018; Moiz Penkar, Lutteroth, & Weber, 2012). Additionally, when using an eye 

gaze interface to access technologies, feedback about where the tracker is interpreting the gaze is 
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provided, such as a mouse pointer or cursor, for the selection of a graphic target options on a 

screen.   

2.3.5 Brain-Computer Interface (BCI) 

Recently, brain-controlled access pathways, often referred to as brain-computer interfaces 

(BCIs) or brain-machine interfaces (BMIs), have been proposed as a new means of device control, 

for assistive technology, including computers, augmentative communication and robots 

(McFarland & Wolpaw, 2011). BCIs are categorized into two methods: invasive and non-invasive.  

Examples of invasive methods are Electrocorticography (ECoG) and single-neuron recordings. 

ECoG records brain activity over the cortical surface of the brain, while single-neuron recordings 

detect activities within the cortex. Both techniques can record the activities over smaller regions 

of the brain than non-invasive methods, which provides higher spatial resolution, higher 

bandwidth, and higher signal to noise ratio (SNR). The drawback of the invasive methods is that 

surgical incision of the skull is required to implant electrodes, which results in problems in 

achieving and maintaining safe long-term use (Leuthardt, Schalk, Wolpaw, Ojemann, & Moran, 

2004).  

 Non-invasive methods do not require a craniotomy and are safer than the invasive methods. 

Magnetoencephalography (MEG), positron emission tomography (PET), functional magnetic 

resonance imaging (fMRI), and functional Near Infrared (fNIR) have shown success in the field 

of neuroscience. However, these techniques are still technically demanding and expensive. They 

require sophisticated equipment and can be operated only in special facilities (Ponce, Molina, 

Balderas, & Grammatikou, 2014).   

Electroencephalography (EEG), another non-invasive method, measures the potential 

voltage over the scalp through electrodes. The EEG signals reflect the collective activity over large 

populations of neurons located underneath the electrodes. Even though it does not have the same 

spatial resolution, EEG is economical and portable, so it is the most widely used (McFarland & 

Wolpaw, 2011). EEG-based BCIs mainly rely on detecting two types of brain activity. The first 

type is evoked potentials, known as P300 evoked potentials (P300) and Steady States Visually 

Evoked Responses (SSVEP), and the second type is brain activity changes in the spontaneous 

oscillatory activity, known as Slow Cortical Potentials (SCP) and Event Related 
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Desynchronization (ERD) / Event Related Synchronization (ERS).  The following sections 

describe each brain activity including the advantages and the disadvantages of each. 

P300 Evoked Event Potentials 

The P300 of visual/auditory evoked potentials is a positive waveform that appears 300ms 

after a stimulus is presented. This brain activity is generally measured from the midline centro-

parietal regions and analyzed in the time-domain. The best-known application of  P300 is the P300 

speller developed by Farwell and Donchin (1988), where the columns and rows of an alphabet 

matrix are repeatedly flashed visually to the user. A P300 is elicited when the user is presented 

with intensification of the row and column containing the desired letter, upon which the user is 

gazing. Thus, the presence of the P300 can be used to detect the user's choice.  The P300 speller 

achieved more than 70% classification accuracy in 5 out of 6 adult participants with ALS (Nijboer 

et al., 2008). In addition, 2 out of 3 adult participants with ALS achieved a comparable 

classification accuracy to participants without impairments (Sellers & Donchin, 2006). The letters 

in the P300 speller can be replaced with pictures or symbols (e.g., arrows or object selection 

buttons), so the P300 can be used as control interfaces for different purposes. Use of P300 does 

not require intensive training on the part of participants. However, visual/auditory stimuli to the 

user is always required.  

Steady State Visually Evoked Potentials (SSVEP) 

 SSVEP is a brain response to visual stimulus (e.g., flashing LED or a phase inversing 

checkerboard) (Daly et al., 2013). SSVEP responses in the occipital lobe appear as peaks at 

frequencies matching that of the frequency of the visual stimulus. SSVEP are options for people 

who have eye acuity but cannot move their eyes (Allison et al., 2008). Wang, Wang, Gao, Hong, 

and Gao (2006) demonstrated that with SSVEP-based BCIs for environmental control, 10 out of 

11 adult participants with SCI were able to use the BCI system. One drawback to SSVEP is that it 

may result in epileptic seizures due to photosensitivity. Another drawback is that control interfaces 

for SSVEP can contain only a limited number of selection choices. A major advantage of SSVEP 

is that it does not require intensive training sessions (Cruz, Haddad, Bastos-Filho, & Adams, 2019).  

Slow Cortical Potentials (SCP) 
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 SCPs are slow voltage changes spontaneously generated over the cortex.  They are time 

locked, response-specific events such as excitement, relaxation, or movement. Negative SCPs are 

associated with motions as well as motor imagery, and positive SCPs are related to response 

inhibition and relaxation. The duration of the SCP response is generally between 300ms and 

several seconds (Birbaumer et al., 1999).  SCPs can be evaluated with a simple time-domain 

waveform analysis. Birbaumer, Hinterberger, Kubler, and Neumann (2003) examined SCP-based 

BCIs used for spelling and controlling environmental devices and demonstrated that the devices 

achieved a classification accuracy of 70%. However, the authors commented that it required 

several training sessions to achieve the high classification accuracy.  Use of SCP training generally 

requires several weeks or even months which can be a major drawback for SPC-based BCIs (Ponce 

et al., 2014).  Another drawback is that the slow response time compared to ERD/ERS-based BCIs.   

Event Related Desynchronization (ERD)/ Event Related Synchronization (ERS)  

 Event Related Desynchronization (ERD) and Event Related Synchronization (ERS) 

responses can be voluntarily induced by the user (e.g., during imagination of kinematic body 

movements and actual body movements) (Ponce et al., 2014). Sensory processing of motor 

behaviour shows a decrease of spectral amplitudes of the alpha rhythm in the range from 8 to 13 

Hz, as originally reported by Berger (1931). This decrease of oscillatory activity  is known as ERD 

(Pfurtscheller & Aranibar, 1979). The opposite, namely the increase of spectral amplitudes of beta 

rhythm in the range from 13 to 26 Hz, is known as ERS (Pfurtscheller & Neuper, 2010). ERD/ERS 

can be observed on the contralateral hemisphere to the movement for both motor execution and 

motor imagery and can be analyzed by the bandpower at frequencies within the range of alpha and 

beta rhythms. This allows motor execution or motor imagery to translate to control signals for 

devices.  

ERD-based BCIs have been developed to test various devices, and tested by people who do 

not have disabilities.  Chatterjee, Aggarwal, Ramos, Acharya, and Thakor (2007) developed ERD-

based BCIs as input devices for real-time 2-dimensional cursor control and tested it with 3 adult 

participants without impairments. They achieved 87% classification accuracy when the 

participants made physical movements and 57% classification accuracy when the participants did 

motor imagery. A study by Tang et al. (2016) investigated whether self-induced variations of the 

ERD/ERS can be useful as control signals for an upper-limb exoskeleton. The classification 
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accuracy during motor imagery tasks (i.e., rest and move) with and without the exoskeleton was 

evaluated with four adults without impairments.  Their tests achieved a mean classification 

accuracy of 87.37% for the tasks with the exoskeleton and 84.29% for the tasks without it.  

Since the use of ERD/ERS can be a potential solution for individuals with little or no 

voluntary muscle control to access computers or other devices, much research related to 

ERD/ERS-based BCIs has been conducted to date. In Cincotti et al. (2008), 14 adult participants 

without impairments and 14 adult participants with spinal muscular atrophy or Duchenne muscular 

dystrophy successfully performed 2-dimensional cursor control with motor imagery. The average 

classification accuracy achieved was 80% for the participants without impairments and 62% for 

participants with impairments. López-Larraz, Montesano, Gil-Agudo, Minguez, and Gil-Agudo 

(2014) evaluated the ERD of 6 adult participants without impairments and 3 adult participants with 

SCI during upper limb movement. The classification accuracy of the BCI system was 75% for 

movements for the participants without impairments, and the classification rates of ERD for the 

participants with SCI were similar to the participants without impairments.  

In the study of Daly et al. (2014), ERD induced by motor imagery of adult participants 

with CP and adult participants without impairments were compared. For both groups, ERD was 

successfully detected, however, ERD levels for participants with CP were significantly lower than 

for participants without impairments. In another study, 14 adult participants with CP tried ERD-

based BCIs and SSVEP-based BCIs (Daly et al., 2013). They found that 6 of the 14 participants 

could control the ERD-based BCI at above significant levels of accuracy, and 3 of the 14 

participants could control the SSVEP-based BCI at above significant levels of accuracy (one user 

could control both methods at significant levels of accuracy). Daly et al. (2013) commented that 

the reason that results of the SSVEP-based BCI were less effective than the ERD-based BCI was 

that spasticity and the need of a neck rest by people with CP strongly hindered the ability to make 

good connections at the occipital electrodes.  

ERD has also been studied in the pediatric population. The frequency of sensorimotor 

rhythms in children is less than an adult’s sensorimotor rhythms and varies depending on the 

child’s ages (Berchicci et al., 2011). Lee et al. (2012) investigated the feasibility and test-retest 

reliability of the ERD/ERS in 5 child participants without impairments and 7 child participants 

with CP.  ERD/ERS during reach-and-grasp hand movements were repeatedly measured and 
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obtained excellent reliability with a level of significance (p < 0.005) for both participant groups. 

In addition, Lee et al. (2012) compared the cortical activation pattern during actual movement 

between participants without impairments and participants with CP. The results showed that the 

cortical activity pattern was primarily localized over the motor cortex in participants without 

impairments, whereas in participants with CP the cortical activation pattern was more diversified 

over the motor cortex, parietal cortex, and occipital areas.  

ERD/ERS is a promising method for robot control. Among the various EEG brain 

activities, only ERD/ERS and SCP correlate with motor execution and motor imagery. These 

responses are spontaneous and do not require external stimulus to elicit. According to a review 

paper from Moghimi, Kushki, Guerguerian, and Chau (2013), SCP was most frequently used in 

BCIs in the past decade. However, because of its slower response and longer training period, 

ERD/ERS-based BCIs superseded the SCP-based BCIs for computer and robot control today.  

In summary, some studies demonstrated successful implementation of the ERD/ERS-based 

BCI systems in robot control for people with physical impairments  (Daly et al., 2014; Dodd, 

Imms, & Taylor, 2010), though some studies found that the use of BCI for those population would 

be more challenging than for users without impairments (Berchicci et al., 2011).  This suggests 

that that careful implementation requires determining the frequencies and scalp locations of each 

person’s sensorimotor rhythms in order to measure reliable ERD/ERS from individuals with 

impairments.  Even though the ERD/ERS-based BCI may not be always effective for all the 

populations, it is a potential method for potential robot access pathways for people with 

impairments. 

2.3.6 Haptic Interface 

Robots can be haptics-enabled, which can provide several functions in a human-robot 

interface.  First, it can give the user the experience of physical object manipulation, which can 

assist in the acquisition of perceptual skills. Haptic interfaces generate kinesthetic touch sensations 

by conveying forces, vibrations, or motions to the user (Jafari, Adams, & Tavakoli, 2015; Krebs, 

Hogan, Aisen, & Volpe, 1998) and can therefore enhance exploration of the environment (Demain, 

Metcalf, Merrett, Zheng, & Cunningham, 2013). A haptic-enabled robotic system can operate in 

two modes, unilateral or teleoperation.  In unilateral manipulation a user directly holds a haptics-

enabled robot/interface and interacts with the environment.  In telemanipulation a user operates a 
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user-side robot/interface that controls another robot to interact with the environment (task-side 

robot) (Abbott, Marayong, & Okamura, 2007). Unilateral manipulation is intuitive as the user 

applies natural hand-eye coordination, whereas telemanipulation has the benefit of remote 

operation. Telemanipulation is the configuration that would be most beneficial to children with 

disabilities, as the user-side device can be mounted on their wheelchair or supported chair, and the 

task-side robot can be in the play environment. In a study by Becerra (2017), a haptic-enabled 

interface was used to teleoperate a task-side robot to explore properties of objects, such as size, 

shape, or texture. Comparing with the exploratory performance using the hands, adults without 

impairments, typically developing children, and an adult with physical impairments showed 

similar or better performance at identifying properties using the haptic interfaces. 

Another benefit of haptic-enabled interfaces is that the haptic feedback capability can assist 

in the operation of the interface for people with physical impairments by applying features like 

position/force scaling and movement adjustments at the task-side device.  A haptic telerobotics 

platform was tested by an adult with CP in a physical play environment (Atashzar et al., 2015). 

The haptic capabilities of the system allowed forces occurring at the task-side robot to be felt at 

the user-side robot, and the system also scaled up the user’s limited range of motion and made the 

user’s movements smoother. The involuntary component of the hand motion, which has a high-

frequency in comparison with the voluntary component of the hand motion, was filtered out. Plus, 

movements that passed through the filter were dampened by a factor that the user chose as 

comfortable. This platform enabled the individual with CP to accurately perform a sorting task 

requiring large-scale motions.   

Haptic interfaces can also to help with guidance by creating virtual fixtures (VFs), which 

are software-generated forces applied by the robotic interface (Abbott et al., 2007). Guidance VFs 

(GVFs) assist in guiding the robot along a desired pathway, while Forbidden Region VFs (FRVFs) 

help to keep the robot inside (or outside) a defined region. In preliminary work for this dissertation, 

a robotic system with FRVFs was developed and tested with 10 nondisabled participants and an 

individual with spastic cerebral palsy (Sakamaki, Adams, Gomez, et al., 2017). The system 

successfully restricted the users’ hand movements inside a defined region during robot operation 

so the users could rely on the VFs to move their hand along the defined region to reach the target. 
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A computer vision system was used for defining the location of the VFs in a play environment. 

This system was fast and robust enough to be used in real-time during a pick and place task. 

Another application of haptic interfaces is as biofeedback to enable users to learn how to 

modify physiological activity. Haptic feedback can help users to physically engage, pay attention, 

and reinforce actions (Menelas & Benaoudia, 2017). Vibrotactile haptic feedback has been utilized 

to improve navigation and orientation in order to reduce workload of visual and auditory systems, 

an example is vibration when touching the screen of a smartphone (Gleeson & Provancher, 2013). 

Kangas et al. (2014) conducted a study of combining gaze gestures with vibrotactile haptic 

feedback that gave confirmation of the different eye gaze gestures. The test with 12 adult 

participants revealed that gaze interaction with the vibrotactile haptic feedback was significantly 

faster and preferred over the no haptic feedback condition.  Pichiorri et al. (2011) found that motor 

imagery skill can be enhanced in BCI performance with biofeedback such as visual, auditory, or 

vibrotactile haptic feedback. In a study by Chatterjee et al. (2007), they implemented a BCI-based 

cursor position control, which was based on the intention of left or right arm movement.  Feedback 

was shown visually as well as transmitted haptically to the user’s upper limb. The results indicated 

that vibrotactile haptic feedback improved the performance of BCI operation more than visual 

feedback alone.  

Kinesthetic haptic guidance or feedback has also been utilized as biofeedback. In 

rehabilitation, kinesthetic guidance can be used to demonstrate and practice movements for people 

with physical impairments (Dodd et al., 2010; R Brewer, K McDowell, & Worthen-Chaudhari, 

2007). An ERD/ERS-based BCI-driven robot for upper limb rehabilitation was tested with 

hemiparetic stroke patients for restoration of motor control, and results indicated that kinesthetic 

haptic feedback based on their movement intention was effective in restoring some motor control 

(Kai Keng Ang et al., 2009).  Gomez-Rodriguez et al. (2010) examined the effectiveness of 

kinesthetic haptic feedback on brain activities associated with ERD/ERS. The authors examined 

brain activity during robot-assisted physical therapy with kinesthetic haptic feedback based on 

movement intention. The results revealed that passive movements made by the kinesthetic haptic 

feedback could induce brain patterns similar to those observed during motor imagery, and hence, 

improve the BCI classification accuracy.   
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2.4 Summary  

Through this literature review, numerous human technology interfaces for robot control 

were identified. However, most of the robotic systems only allow one human technology interface 

at a time. The human technology interface could be improved by combining different access 

options as possible to meet demands of people with different impairments (Van den Heuvel et al., 

2016). In addition, studies to access play using robots have only been done using interfaces that 

require some physical movement.  In this dissertation a human-robot interface combining eye gaze 

and brain signals was developed.   

An eye gaze interface only requires eye movement to access and operate, which could be 

an intuitive method for users to select the object of interest they wish to manipulate with a robot. 

However, in the eye gaze robotic applications above, the users had to look at a computer screen to 

fixate their gaze on the robot commands (Arai and Yajima (2011); this requires the user to shift 

their gaze between the screen and the robot play environment, which is distracting for child users, 

and can cause the eye tracker to decalibrate (i.e., lose track of where the eyes are). To directly 

interact with the physical environment by gaze, alternatives to the visual feedback are needed, and 

auditory and vibrotactile feedback are promising.  

A BCI has the potential to be an intuitive method for people with physical impairments to 

generate movement of a robot. Even though the performance accuracy of the BCI varied from 

study to study above, and BCI is one of the least accurate human-robot interfaces summarized in 

this chapter, the advantage is that it requires no physical movement. To enhance BCI performance, 

feedback about the signal strength is needed, as noted in the studies above.  Kinesthetic haptic 

feedback sounds promising to help users enhance their BCI signals and operate the robot 

accurately and efficiently in an off-screen situation. 

A human-robot interface combining eye gaze and brain signals could allow the user to 

select objects to manipulate and then control the robot by their motor imagery in the physical 

environment, without the need for a computer display. Feedback can help to make the interactions 

more accurate. This type of integrated interface could lead to improved control of robots in 

physical environment play activities for people with impairments.  
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Chapter 3 

Effectiveness of Different Biofeedback Modalities for 

Improving On-screen and Off-screen Eye Gaze 

Interaction 

 

3.1 Introduction 

The experience of object manipulation in the physical environment has a large influence 

on cognitive development in children (Gibson, 1988; Musselwhite, 1986). Cognitive development 

refers to the development of children in terms of thinking, resolving, learning, feeling, and 

knowing the environment (Bjorklund, 2005). Physical manipulation has been identified as a 

critical motor experience that enables children to learn skills, such as the  emergence of symbols, 

referential communication and the understanding of relations between objects (Piaget, 1962). For 

children who have complex physical disabilities that prevent them from reaching and grasping 

objects, one of the biggest concerns is lacking opportunities for meaningful manipulation tasks, 

often in the context of play activities (Taylor et al., 2010). This lack of opportunities may 

negatively affect the progressive development of their learning skills and mental growth 

(Bjorklund, 2005).  

Robots have been utilized by children who have physical impairments to access play 

activities (K. Adams, Rios, & Alvarez, 2017). Robot systems can behave like extended arms, 

allowing children to reach what they otherwise could not reach or probe what they otherwise could 

not probe. However, these technologies often still require a certain degree of physical ability to 

access and to operate, such as using switches or joysticks. Eye gaze has been used to control 

assistive technology for many years (Cook & Polgar, 2008), and recently, the cost of eye trackers 

has gone down, making it a feasible access method to control robots.  

The most common setup for eye gaze is to have the user fixate on graphic target options 

on a screen (called on-screen herein). The users generally rely on feedback about where the tracker 

is interpreting the gaze, such as a mouse pointer for the selection. For example, individuals with 
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severe physical impairment can generate synthesized speech for communication by selecting 

symbols on a screen (Biswas & Langdon, 2011).  Arai and Yajima (2011) developed a feeding aid 

system using a robot arm integrated with an eye gaze interface. The user gazed at the desired food 

on the screen and then the robot picked up the food to bring it closer to the user.  In Encarnação et 

al. (2017), children controlled the LEGO Mindstorms robot (Lego A/S, Billund, Denmark) with 

an eye gaze-tracking system that enabled children with physical impairment to participate in 

academic activities. Simple robot commands were displayed on a computer screen and users 

controlled the robot by fixating their gaze on the command. The system demonstrated positive 

impact on children with physical impairment, but Encarnação et al. (2017) pointed out that it 

required considerable effort for children to look at the screen to select the robot command and then 

look at the robot to check its effect. This forced the user to keep changing their visual attention 

during the tasks and added a layer of complexity.   

When using eye gaze to control robots in the physical environment, it would be better if 

the user did not have to look at a computer screen to select robot movements. Using head-mounted 

eye trackers is one way to accomplish this (Ryan, Duchowski, & Birchfield, 2008). For instance, 

eye gaze estimation using a head-mounted tracker helped to reveal how humans gather information 

from their environment and how they use that information in motor planning and motor execution 

(Land & Hayhoe, 2001). Galante and Menezes (2012) developed a head-mounted eye tracker 

enabling the system to estimate gaze position in the physical environment by mapping between 

the camera frame view and actual gaze direction using geometric calibration techniques.  However, 

these are expensive, and some people do not tolerate wearing them.   

A stationary eye gaze interface could be used without a computer screen to select objects 

in a physical environment if geometric calibration techniques are used (called off-screen herein).  

However, to use it, feedback about where the tracker is interpreting the gaze is crucial. For robot 

control in the physical-world, visual feedback of a mouse pointer on a screen is not possible, thus, 

other kinds of feedback are needed.   

The feasibility of alternative feedback modalities for gaze applications on-screen have been 

investigated (Burke et al., 2006; Majaranta et al., 2006; Pomper & Chait, 2017; J. Rantala et al., 

2017). Majaranta et al. (2006) explored a combination of auditory and visual feedback in eye 

typing.  The authors found that the visual auditory feedback significantly improved user text entry 
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speed and satisfaction compared to visual feedback alone.  Boyer, Portron, Bevilacqua, and 

Lorenceau (2017) investigated whether real-time auditory feedback of eye movement improved 

an on-screen target tracking task in the absence of visual feedback. Although large individual 

differences were observed, the auditory feedback did modify the oculomotor behaviour and 

improved task performance.  Kangas et al. (2014) compared off-screen gaze interaction using gaze 

gestures (looking right then left to activate a command) with vibrotactile feedback and no 

feedback. All 12 participants performed the gaze interaction faster and preferred the vibrotactile 

feedback over no feedback.  Auditory and/or vibrotactile feedback could be feasible ways for users 

to confirm their gaze interaction when using a robot in a physical environment for play.   

Some research has pointed out challenges using eye gaze-based assistive technology with 

a clinical population.  Amantis et al. (2011) found that children with cerebral palsy responded more 

slowly and less accurately in gaze performance compared to children without impairments. Dhas 

et al. (2014) found that gaze interaction applications were not suitable for children who had too 

many involuntary movements because the eye tracker lost accuracy in determining eye gaze 

direction.  The main challenge for efficient gaze interaction is how to distinguish between gaze 

intended to gather visual information versus gaze to activate a specific command.  This problem 

often results in unintended selections, which is called the Midas' touch problem (Møllenbach et 

al., 2013). One solution for this problem is to employ dwelling, requiring the user to fixate gaze 

for a prolonged period of time on the target option. A typical dwell time for eye typing using a 

screen based eye gaze system is approximately 0.5 to 1 seconds (Bednarik, Gowases, & Tukiainen, 

2009).  Adjusting the dwell time or the diameter of the target acceptance size may allow for more 

tolerance in movements, and help users to be more successful accomplishing the gaze interaction.     

On-screen gaze interaction is well established and researched, however, off-screen gaze 

interaction using dwell selection, such as selecting an object in a physical play task scenario for 

the robot to more towards, is novel in the field of assistive technology. Auditory and haptic 

feedback could help users to be more accurate at target selection, but appropriate settings for the 

device features need to be examined. In this study, we developed a gaze interaction system that 

maps eye gaze direction between the reference coordinate frame of a stationary eye tracker and 

coordinate frames of objects in on- and off-screen environments. The effect of different feedback 

modalities (i.e., visual feedback, no-feedback, auditory feedback, and vibrotactile feedback) about 
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where the eye tracker determined the eye gaze to be fixed in a target selection task, and the effect 

of different target sizes, were examined.    

The research questions addressed in the study were: 

(1) How do the speed and success of gaze interaction differ between on-screen and off-screen 

conditions?  

(2) Which feedback modalities and target size make the gaze-based target selection faster and 

more successful? 

(3) What is the feedback preference of the participants in the on- and off-screen gaze 

interaction?  

 

3.2 Methods 

3.2.1 Participants 

Ten university students without physical impairment, three males and seven females, aged 

from 22 to 38 (26 ±4.1), participated in the study (called A1-A10 herein).  The system was also 

tested by two adults with quadriplegic cerebral palsy (a 52 year old female and a 33 year old 

female, called B1 and B2, respectively), three children without impairments (a 10 year and 2 month 

old boy, a 7 year and 10 month old girl and a 6 year and 4 month old girl, called C1, C2 and C3, 

respectively), and a child who had right side spastic hemiplegic cerebral palsy (a 7 year and 4 

month old boy, D1).  Participants B1 and B2 have mixed high and low muscle tone and involuntary 

movements and perform self-mobility by using a powered wheelchair.  B1 is affected by 

strabismus and has difficulty focusing on objects with both eyes simultaneously, while B2 has no 

visual impairment. The participant D1 has no visual impairment, however, he was diagnosed with 

Attention Deficit Hyperactivity Disorder (ADHD) which may cause reduced gaze concentration 

(greater spread of vertical and horizontal eye movements) (Munoz, Armstrong, Hampton, & 

Moore, 2003). Ethical approval was received from the local Health Research Ethics Board Health 

Panel at the University of Alberta. 
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3.2.2 Design 

There were two experimental screen conditions in the study: a gaze interaction task with a 

computer screen, called on-screen condition, and a gaze interaction task with the physical 

environment, called off-screen condition. In each screen condition, different target size and 

feedback modalities were examined. 

3.2.3 Experimental Setup 

The system diagram of the on- and off-screen experimental set up is shown in Figures 3-1 

and 2. A Windows-based computer and a stationary eye tracker, Tobii eye tracker 4C (Tobii 

Technology, Danderyd, Sweden), and external devices for feedback modalities were the basic 

components for both the on- and off-screen conditions. A 19-Inch LCD monitor (42cm × 24cm) 

was added for the on-screen condition, and a computer vision system was added for the off-screen 

condition. The eye gaze acquisition was performed in MATLAB (MathWorks, Nadick, MA, 

USA).  The feedback system, computer vision system, and interconnecting of systems were 

programmed in LabVIEW (National Instruments, Austin, TX, USA). Details of each component 

are explained below. 

 

 

Figure 3- 1  Schematic diagram of the system in the on-screen experiment 
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Figure 3- 2  Schematic diagram of the system in the off-screen experiment 

 

Eye Gaze Acquisition System 

The Tobii eye tracker 4C was used as an eye tracking interface. The eye tracker was placed 

in front of the task environment and connected to a Windows PC with a sampling frequency rate 

of 90Hz, in order to monitor fixation of the gaze during the gaze interaction. The dwell time was 

set to 1.5 seconds in all the conditions.  A longer dwell time than typical was selected in this study 

to make sure participants had enough time to select the target during the off-screen condition, 

based on pilot testing of the system. When the participant fixated their gaze on the target for 1.5 

seconds, the system recognized it as the target that the participant desired to select. If the 

participant’s gaze came off the target before 1.5 seconds and then back on the target, counting of 

the dwell time started over again.  

Feedback System 

In the on-screen condition, the LCD monitor showed a standard arrow-shaped mouse 

pointer as the visual feedback. This pointer was controlled by the participant’s eye movement. 

There was also auditory and vibrotactile feedback used in both on- and off-screen conditions.  A 

USB stereo sound adapter was used to generate the output of a 100 Hz sine wave for these feedback 

modalities.  For the auditory feedback, the sine wave was outputted to earphones that the 

participants wore, and for the vibrotactile feedback, the wave was sent to an amplifier to drive a 

vibration motor (Bit Trade One, Kanagawa, Japan) on which the participants placed a fingertip 
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during the trials.  Both auditory and vibrotactile feedback were initiated when the participant’s 

gaze was within the set target acceptance size radius, and the amplitude of the feedback increased 

in proportion to the time the gaze was on the target as an indication of the target being selected.  

Computer Vision System 

The computer vision system used in the off-screen condition was a USB webcam (Dynex, 

Richfield, MN, USA) (See Figure 3-2).  The location and colour of each object in the task 

environment were detected by an object recognition program coded in LabVIEW. Since the Tobii 

eye tracker 4C was designed for gaze interaction in two dimensional space, the participant’s gaze 

was mapped into the two dimensional plane of the task environment.  The gaze mapping was done 

by the following steps: 

(1) A template on which four calibration points were printed was placed in the task 

environment. 

(2) The calibration template was captured with the webcam mounted above. Then, the centre 

point of each calibration point was computed by the object recognition program.   

(3) The participant fixated their gaze at each calibration point in turn. The gaze position 

detected by the eye tracker at each calibration point was collected. 

(4) Each gaze position was mapped to each calibration point on the task environment using a 

projective homogeneous transformation. 

A homography is a perspective transformation of a plane, that is, a reprojection of a plane 

from one space into a different space as shown in Figure 3-3.  For the homography, the relationship 

between two corresponding points can be written as (Szeliski, 2011): 

[
𝑥′
𝑦′

1

] = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] [
𝑥
𝑦
1

]      (3.1) 

Where  [𝑥 𝑦 1]𝑇  represents the gaze position obtained by the eye tracker when the 

participant is looking at a calibration point, [𝑥′ 𝑦′ 1]𝑇represents a calibration point in the task 

environment obtained by the computer vision system, and the 3 x 3 matrix represents a 

homogeneous transformation. 
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Figure 3- 3  Two corresponding points on different space are converted by a homography 

 

3.2.4 Procedures 

On-screen Condition 

There was a run of twelve trials for four different feedback conditions (i.e., visual feedback, 

no-feedback, auditory feedback, and vibrotactile feedback), and the order of runs was 

counterbalanced. The participant sat at a distance of 60 cm from the computer monitor. At the 

beginning of the on-screen condition, the Tobii gaze tracking utility software was used to calibrate 

the participant's eye gaze.  

For the experiment, four circles with a diameter of 3 cm were displayed (See Figure 3-4).  

The target was a blue circle, and the remaining stimuli were red circles.  The target location was 

randomized within the 4 circles, and the participants needed to fixate their gaze on the new target 

each time. A fixation cross was displayed at the center of the screen during each inter-trial interval. 

The target acceptance size was changed randomly in the 12 trials. The diameter of the target 

acceptance sizes tested for the adult participants without impairments were: 3 cm, 6 cm, and 9 cm. 

The diameter of the acceptance sizes used for the adult participants with physical impairments and 

the child participants with and without physical impairments were: 6 cm, 9 cm, and 12 cm.  The 



32 

 

sizes were larger because the 3 cm diameter was too difficult for these population groups to achieve 

success in selecting, according to their results in pre-experiments. 

 

 

Figure 3- 4  Four circular targets displayed on the LCD monitor for the on-screen experiment 

 

Off-screen Condition 

There was a run of twelve trials for three different feedback conditions (i.e., no-feedback, 

auditory feedback, and vibrotactile feedback), and the order of runs was counterbalanced. The 

target acceptance sizes, which were the same dimensions as in the on-screen condition (i.e., 3, 6, 

and 9 cm for adult participants without impairments and 6, 9 and 12 cm for the adult participants 

with physical impairments and the child participants with and without physical impairments), were 

changed randomly during each trial.  

The dimensions of the task environment were set to resemble the 19 inch LCD monitor 

used in the on-screen condition. The environment where the targets were placed was located 60 

cm away from the participants, and the eye tracker was placed in front of the targets as shown in 

Figure 3-5. At the beginning of the off-screen condition, the calibration procedure using the 

computer vision system was performed as described above.  For the experiment, an image of four 

printed circular objects with different colours (i.e., red, green, yellow, and blue) with a diameter 
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of 3 cm was placed in the task environment. The four different colours were used in this screen 

condition because the targets were fixed, and not able to change colour like they did in the on-

screen condition.  The participants were given verbal instructions from the computer on which 

coloured object they needed to fixate their gaze during the task. There was a cross at the center of 

the task environment for the participants to return their gaze between the target selections.  

 

 

Figure 3- 5  Four circular targets in the task environment for the off-screen experiment 

 

At the end of the session, the participants answered a questionnaire where they were asked 

to rank the feedback modalities according to their preference.  The participants were also asked if 

they had any comments.  

3.2.5 Measurements and Analysis 

The dependent measures were as follows:  

 Target selection time: To compare which condition was faster, the time from the task cue 
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until the target was selected by the gaze was measured in milliseconds.   

 Timeout error rate: To compare success at selecting targets, the timeout error rate was 

calculated, i.e., when the participant could not select the target within 10 seconds. The 

timeout error rate was the proportion of trials when the task timed out. 

 

To examine the target selection time of the 10 adult participants without impairments (A1-

A10), the Shapiro-Wilk normality test was performed first to check if the data were normally 

distributed.  If the data were normally distributed, a two-way repeated-measures analysis of 

variance (ANOVA) was applied with the following factors: factor 1 was the target acceptance size 

(3 levels: 3, 6, and 9 cm); and factor 2 was feedback modality (with 4 levels for the on-screen 

condition: visual feedback, no-feedback, auditory feedback, and vibrotactile feedback, and 3 levels 

for the off-screen condition: no-feedback, auditory feedback, and vibrotactile feedback). A 

probability of p < 0.05 was considered significant.  

For the adult participants with physical impairments (B1 and B2), child participants 

without impairments (C1, C2, and C3), and the child participant with physical impairments (D1), 

individual task performance was evaluated based on visual inspection and descriptive statistics 

because of the small, heterogeneous sample.  

To compare on- and off-screen conditions overall, an overall average target selection time 

was calculated per participant group by averaging the target selection times of all the feedback 

modalities and the acceptance sizes in both screen conditions. Also, the average timeout error rates 

in each experimental condition were calculated and compared between the participants for each 

target size and feedback. 

3.3 Results 

3.3.1 Target Selection Time 

Adult participants without impairments 

Results of the target selection time for the adult participants without impairments in the on- 

and off-screen experiments are shown in Figure 3-6 (a) and Figure 3-6 (b), respectively. Target 

acceptance size had a significant effect for both the on- and off-screen conditions (F [2, 18] = 

44.77, p = 0.001 for on-screen and F [2, 18] = 30.84, p = 0.001 for off-screen). Feedback modality 
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was also significant (F [3, 27] = 4.40, p = 0.012 for on-screen and F [2, 18] = 6.588, p = 0.019 for 

off-screen). The main effects were qualified by interactions between target acceptance size and 

feedback modality only for the on-screen condition, but the interaction did not reach significance 

for the off-screen condition (F [6, 54] = 5.186, p = 0.008 for on-screen and F [4, 36] = 2.80, p = 

0.091 for off-screen).  

According to the post hoc Tukey test for the paired comparison, the acceptance size of 3 

cm differed significantly from other acceptance sizes for both the on- and off-screen conditions. 

In both screen conditions, the no-feedback was significantly different from other feedback 

modalities. Lastly, the ANOVA showed a difference in the screen conditions where the target 

selection time in the off-screen condition was significantly longer than in the on-screen condition 

(F [1, 9] = 62.541, p = 0.0001). Note that the visual feedback modality was excluded for 

comparison because it was only presented for the task in the on-screen condition.  

 

Figure 3- 6  Target selection time with the different target acceptance size and feedback 

modalities for the ten adult participants without impairments for (a) the on-screen experiment, 

and (b) the off-screen experiment 
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Adult Participants with Physical Impairments 

The results of the on- and off-screen conditions for the two adults with physical 

impairments, B1 and B2, are shown in Figure 3-7 (a) and Figure 3-7 (b).  Visually inspecting the 

graphs, it appears there was a performance difference between feedback modalities in the 6 cm 

target acceptance size for B1 in the on-screen condition. The visual feedback and the no-feedback 

selection time appear longer than those for vibrotactile and the auditory feedback. However, not 

much difference was observed between feedback modalities in all the target acceptance sizes for 

B2. For the off-screen condition, the data for B1 appears to show that the target selection time 

increased as the target acceptance size got smaller. Also, the target selection time in the no-

feedback condition with the 6 cm target acceptance size appears to be longer than other feedback 

modalities. There seems to be no trend in the data for B2 in terms of the performance in each of 

the feedback modalities in both screen conditions.  The overall average target selection time for 

the off-screen condition was 43.4% longer than the on-screen condition for B1 and 24.3% longer 

for B2. 
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Figure 3- 7  Target selection time with the different target acceptance sizes and feedback 

modalities for the two adult participants with physical impairments for (a) the on-screen 

experiment, and (b) the off-screen experiment 

 

Child Participants without impairments 

Visually inspecting Figure 3-8 (a), participant C1 seems to have a trend that the longer 

selection time is with the auditory feedback in the on-screen conditions. However, it does not 

appear that the auditory feedback was clearly longer than other feedback modalities in the off-

screen condition (see Figure 3-8 (b)). The on-screen condition for C2 appeared not to have much 

difference in the target selection time among the feedback modalities.  On the other hand, no-

feedback was greater than the other feedback modalities for all the target acceptance sizes in the 

off-screen condition. Also, the target selection time appeared to increase as the acceptance size got 

smaller.  From the data for C3, the feedback that had the shortest selection time was the visual 

feedback in the on-screen condition. The no-feedback modality was longer with the target 

acceptance size of 6 cm in the both on- and off-screen conditions. In general, the target selection 

time in the off-screen condition took longer than in the on-screen condition, though this was not 
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statistically tested. The average target selection time increased by 12.1% for C1, 61.4% for C2, 

and 40.9% for C3 from the on-screen to the off-screen conditions. 

 

Figure 3- 8  The target selection time with the different target acceptance sizes and feedback 

modalities for the three child participants without impairments for (a) the on-screen experiment, 

and (b) the off-screen experiment 

 

Child Participant with Physical Impairments 

Figure 3-9 (a) and Figure 3-9 (b) indicate the target selection time for the on- and off-screen 

conditions of the child participant who had a physical impairment, D1.  Visually inspecting the 

graphs shows that no-feedback appears to have the longest target selection time in all the target 

size and all the screen conditions. The auditory feedback had the shortest selection times for the 

on-screen condition, but vibrotactile feedback had the shortest times for the off-screen condition.  

The target selection time increases as the target acceptance size gets smaller in both screen 

conditions. In terms of the difference in the screen conditions, the average target selection time in 

the off-screen condition was 0.6% longer than in the on-screen condition. However, the average 

target selection time for the smallest target acceptance size was 9.1 % longer.  
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Figure 3- 9  The target selection time with the different target acceptance sizes and feedback 

modalities for the child participant with physical impairments. (a) is for the on-screen 

experiment, and (b) is for the off-screen experiment 

 

3.3.2 Timeout Error Rate 

The timeout error rate for each participant group in the screen conditions is shown in Table 

3-1. The timeout error only occurred with the target acceptance size of S in both screen conditions 

for the adult participants without impairments. For the adult participants with physical 

impairments, a timeout error was rarely seen in all the conditions. The child participants without 

impairments performed well in the on-screen condition. Between 20 to 46% of timeout error rates 

were observed in the off-screen condition. The highest timeout error rate among all the participants 

occurred for the child participant with physical impairment, D1. The table also indicates that the 

no-feedback modality had the highest timeout error rates in both screen conditions. The auditory 

feedback had the lowest time out rate in the on-screen condition, and the vibrotactile feedback had 

the lowest time out rate in the off-screen condition, overall. In general, the time out error rate in 
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the off-screen condition was higher than the on-screen condition for all the participant groups, 

though this was not statistically tested. 
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Table 3- 1  Time-out error rate (%) for the different target acceptance size and feedback modality 

in each population group for on-screen and off-screen experiment. (n=10 for the adults without 

impairments, n=2 for the adults with physical impairment, n=3 for the children without 

impairments, and n=1 for the child with physical impairment) 

On-screen experiment 
 

Size Visual 

feedback 

No-feedback Auditory 

feedback 

Vibrotactile 

feedback 

Adult participants without 

impairments 

3 3.3 12.1 8.5 10.2 

6 0.0 0.0 0.0 0.0 

9 0.0 0.0 0.0 0.0 

Adult participants with  

physical impairments 

6 11.1 0.0 0.0 0.0 

9 0.0 0.0 0.0 0.0 

12 0.0 0.0 0.0 0.0 

Child participants without 

impairments 

6 0.0 14.3 0.0 0.0 

9 0.0 0.0 0.0 6.7 

12 0.0 7.2 0.0 7.1 

Child participant with  

physical impairments 

6 60.0 80.0 20.0 40.0 

9 20.0 80.0 0.0 20.0 

12 20.0 60.0 0.0 0.0 

Off-screen experiment  
 

Size No-feedback Auditory feedback Vibrotactile 

feedback 

Adult participants without 

impairments 

3 37.9 35.0 37.9 

6 0.0 0.0 0.0 

9 0.0 0.0 0.0 

Adult participants with  

physical impairments 

6 11.1 0.0 0.0 

9 0.0 0.0 0.0 

12 0.0 0.0 0.0 

Child participants without 

impairments 

6 46.7 20.0 0.0 

9 38.5 20.0 0.0 

12 26.7 20.0 0.0 

Child participant with  

physical impairments 

6 100.0 40.0 40.0 

9 60.0 20.0 0.0 

12 0.0 20.0 0.0 
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3.3.3 Questionnaire 

Table 3-2 shows the preference among the feedback modalities for all the participants. For 

the adult participants without impairments, visual feedback was the preferred modality for the on-

screen condition, and auditory feedback was the preferred modality for the off-screen condition. 

The no-feedback condition stands out as the least preferred feedback modality for all the screen 

conditions. The preferred feedback modality for the other participants was distributed quite evenly 

for the on-screen condition. However, in the off-screen condition, the most preferred modality was 

the auditory feedback. No-feedback was the least preferred feedback modality of all the 

participants for both conditions, except C1 and C3 for the on-screen. 

The participants who preferred the visual feedback commented that the visual feedback 

was most intuitive because they could easily see where their gaze was being tracked by the system. 

However, C1 and C3 who chose the visual feedback as the least preferred feedback pointed out 

that the visual feedback was distracting when the location of pointer did not exactly match with 

the actual location of their gaze.  The participants who ranked either the auditory feedback or the 

vibrotactile feedback as the most preferred modality liked how they knew how long to fixate their 

gaze on the target based on the intensity of the feedback provided. Another participant commented 

that the auditory and vibrotactile feedback modalities were intuitive but might take more time to 

get used to. Also, some participants commented that they preferred the auditory over the 

vibrotactile feedback because they liked the ramp-up sound that was given during the gaze fixation 

because it was more noticeable than the ramp-up vibration. One participant commented that an 

advantage of those feedback modalities was less eyestrain compared with the visual feedback. 
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Table 3- 2  The preferences of the participants for the feedback modalities in the on- and off-

screen conditions. (n=10 for the adult participants without impairments) 

 Most Prefered feedback modality Least prefered feedback modality 

On-screen Off-screen On-screen Off-scree 

A1-A10 Visual  (4/10) Auditory  (6/10) No-feedback (8/10) No-feedback (9/10) 

B1 Visual Auditory No-feedback No-feedback 

B2 Visual Auditory No-feedback No-feedback 

C1 Auditory Vibrotactile Visual No-feedback 

C2 Auditory Auditory No-feedback No-feedback 

C3 Vibrotactile Auditory Visual No-feedback 

D1 Vibrotactile Vibrotactile No-feedback No-feedback 

 

3.4 Discussion 

Overall, the participants without impairments were statistically slower and less successful 

selecting targets in off-screen interactions with the physical environment than in on-screen 

interactions.  The smaller the target acceptance size, the slower the participant to complete the 

target selection task in both the on- and off-screen conditions. The tasks performed with gaze 

fixation feedback modalities were accomplished statistically faster and more accurately than tasks 

performed without feedback, and similar results were observed in both screen conditions. 

However, the choice for which feedback modality to use going forward might be the user’s 

preference. From visual inspection of the data of the participants with physical impairments, we 

saw that some of them had difficulty performing the eye gaze in the tasks, this was because they 

could not keep their head position still during the gaze interaction.  But, providing feedback and 

increasing the target acceptance size appeared to help them to improve speed of the gaze 

interaction task.  

The longer target selection time and higher timeout rate in the off-screen condition is likely 

because the targets in the off-screen condition were placed on the surface in a horizontal plane.  A 

small difference of gaze movement in a vertical angle affected the accuracy of the gaze interaction 

with the task environment, especially for gazing at the target that was far from the participant. 

However, the timeout rarely happened with the larger target acceptance sizes in the on-screen as 

well as the off-screen condition if any feedback was provided.  

 Statistically significant differences in the target selection time were found only in the 3cm 

target acceptance size in both on- and off-screen conditions for the adults without impairments. 
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Interestingly, even though the target selection time in the smallest target acceptance size was quite 

different from the other two larger target acceptance sizes, performance with these two larger sizes 

was nearly the same. This is probably because the target selection time only increased when the 

degree of task difficulty exceeded what the user could handle. 

The post hoc test revealed that the selection time in the no-feedback condition was 

significantly longer than the other feedback modalities. Thus, any feedback provided to the 

participants helped them to perform the most difficult target selection task. No significant 

difference between the audio, the vibrotactile, and the visual feedback was found in either the on 

or off-screen conditions. Therefore, the three feedback modalities were similar in their 

effectiveness. Regarding the timeout error with respect to each feedback modality, no-feedback 

had the highest error rate in both screen conditions, while the auditory feedback was lowest in the 

on-screen condition, and vibrotactile feedback was lowest in the off-screen condition.  Other 

researchers have also found that it was not possible to quantitatively identify a clear “optimal” 

feedback, like Jussi Rantala et al. (2017), who found that feedback improved user’s performance 

in gaze interaction,  but all the modalities generally performed equally.  

Looking at the qualitative experience of the participants, according to the questionnaire, 

the visual feedback was the most preferred feedback in the on-screen condition, auditory feedback 

was the most preferred feedback in the off-screen condition, and the no-feedback condition was 

the least preferred among all the feedback modalities. Even though the visual feedback was most 

often ranked as the best for the on-screen condition in adults, two child participants ranked it as 

the least preferred feedback. The problem with the disparity between the location of the gaze-based 

mouse pointer and the location they were gazing probably lowered their preference, whereas the 

disparity didn't seem to affect the preference for the adults.  This type of disparity is one of the 

common issues for on-screen gaze applications (Zhang & Hornof, 2011). The comments about 

preferring the auditory over the vibrotactile feedback because auditory had the distinct ramp-up 

sound could be addressed for the vibrotactile feedback. The vibration amplitude is adjustable, so 

if the vibration amplitude was larger, more participants might have ranked it higher. Even though 

it was not most preferred, six out of sixteen participants did prefer it in the off-screen condition, 

and it could still have potential.  As found in the review of Burke et al. (2006) visual-auditory 

feedback was most effective when a single task is being performed under normal workload 
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conditions, which was the case in this study, but visual-haptic feedback was more effective for 

multiple tasks requiring high workload conditions, which would be the case when selecting targets 

to control a robot in future studies.  Overall, the auditory feedback or the vibrotactile feedback 

could be suitable for the gaze interaction in off-screen scenarios, but it may generally depend on 

an individual preference. 

3.5 Conclusion 

This study demonstrated that the gaze interaction in an off-screen condition could be 

performed with a stationary eye tracker using the homogeneous transformation technique. The 

participants required more time to interact and select the target object in the physical environment 

than the target in the on-screen condition. The participant’s performance in the target selection 

tasks varied depending on the age and the impairment with selection time generally being slower 

for younger children and physically impaired participants. However, they performed the target 

selection tasks in both conditions comparatively accurately and quickly if the size of the target was 

not too small for the participants to sustain their gaze on it. The results of the ten adult participants 

without impairments indicated that providing feedback to inform where gaze is fixated could make 

the gaze interaction performance statistically faster and more accurate in both screen conditions.  

However, none of the feedback modalities emerged as performing better than the others. With 

future development, this eye gaze system and feedback modalities will be integrated with an 

assistive robot platform, and used for play activities in the real physical world.  This will contribute 

towards the goal of enabling children with physical impairment opportunities to perform object 

manipulation and interaction with objects in the physical environment.  
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Chapter 4 

 Implementation of Eye Gaze with Biofeedback in a 

Human-Robot Interface 

 

4.1 Introduction 

The way in which children develop their skills of cognition and perception is highly 

dependent on exploring objects and exploring their physical surroundings (Gibson, 1988; 

Musselwhite, 1986). When we refer to a child’s cognitive development, we are referring to the 

ways they learn, feel, think, resolve problems, and know the environment (Bjorklund, 2005). 

Exploration of the environment through manipulating objects often occurs through play, which is 

essential to children's development (Besio, Dini, & Robins, 2007). When playing, a child receives 

information through sensory perception that helps them to become aware of the relationship they 

have with objects and other people surrounding them (Missiuna & Pollock, 1991). Playing helps 

the child to develop motor, social, cognitive, and language skills and helps them to learn, adapt, 

discover, master, create, and self-express (Ferland, 2003). 

A child who has physical impairment may encounter problems with reaching, grasping, 

and moving objects during play, which can result in developmental delays across different areas 

(Robins et al., 2012). If children cannot demonstrate their skills through independent play, they 

may be perceived as having a greater degree of cognitive impairment than in fact exists, (Harkness 

& Bundy, 2001). Children with physical impairment frequently end up watching play instead of 

joining in, as others will frequently handle the play objects on their behalf (Blanche, 2008). 

Children with physical impairment may be able to manipulate play objects by using robots 

such as the Lego robot (Rios, 2014) or the Play-ROB (Gernot Kronreif et al., 2007).  These robots 

were controlled by multiple single switches in the case of the Lego robot and by a joystick in the 

case of the Play-ROB.  Research has shown that such control mechanisms can be successfully used 

with such robots, with joysticks being the most intuitive (Harwin et al., 1988; Gernot Kronreif et 

al., 2007; Rios, 2014). However, children who have severe physical impairments may not be 

physically able to manipulate such interfaces.  
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Kinesthetic or other types of guidance through the user interface might help children to 

achieve control of the robot in spite of their disability. In a study by Atashzar et al. (2015),  a 

haptics-enabled human-robot platform was controlled in a teleoperational mode, where an adult 

with disabilities operated a user interface (similar to a joystick) that controlled a task-side robot to 

perform object manipulation. One feature of the haptic capabilities of the system was to allow 

forces occurring at the task-side robot to be felt at the user interface, which is important because it 

allows children to perceive properties of objects.  Interestingly, haptics can also be used to provide 

guidance to the user in order to better control the robot. A haptic system can limit the user’s hand 

motion into a defined region using a so-called Forbidden Region Virtual Fixture (FRVF), so that 

the interface can help the users traverse the non-forbidden regions of the environment more 

efficiently (Abbott et al., 2007).  

In one study, a computer vision system was used for defining appropriate locations of the 

FRVF based on visual information about the task environment, so the users could rely on the FRVF 

while they sorted objects into target destinations (Sakamaki, Adams, Gomez, et al., 2017). In a 

study of ten participants without impairments and one participant with physical impairments, the 

system successfully restricted the users’ hand movement to a defined region during robot operation 

in a sorting task. The FRVFs were generated by a computer vision system, which did not allow 

the user to make mistakes. Thus, this system is not suitable to be used for situations such as games 

to compete for a score or assessments to test skill levels, which require measuring user’s task 

errors. 

The use of signals to indicate the user’s intention can address this issue.  Detection of eye 

gaze fixation is commonly used for selecting an object of interest on a graphical computer 

interface. It is easier to set up than other access methods that can detect user intention, such as 

brain-computer interface methods, and has less influence from environmental noises (e.g., power 

line noise or electromagnetic noise), and requires almost no training.  

In general, visual feedback, such as a mouse pointer on a screen, is used to help the user to 

sustain eye movement on a target, because it informs the user how the system is interpreting the 

gaze. One of the technical difficulties of the gaze interaction application is to distinguish between 

spontaneous eye movements for gathering visual information and intentional eye movements for 

explicit selection, which is known as the Midas' touch problem (Møllenbach et al., 2013).  In order 
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to avoid unintentional selection, gaze fixation at the target of interest is needed for a prolonged 

period of time (the so-called dwell time). However, for a gaze interaction application that does not 

involve a display such as a target selection in the real-world, visual feedback like projected light, 

would make the system more complex. Auditory or vibrotactile feedback has been utilized for 

guidance of robot control (Rossa, Fong, Usmani, Sloboda, & Tavakoli, 2016). Those feedback 

modalities could be alternatives to visual feedback for gaze interaction.  

 In this study, auditory and vibrotactile feedback modalities for confirming target selection 

were implemented with a haptics-enabled robotic platform. With the implementation, the system 

allowed the user to select the target of interest in the physical environment by fixating their gaze 

on it, which in turn activated the FRVF guidance that assisted the user’s robot trajectory towards 

the chosen target.  A card sorting task using the system was performed by adults and children with 

and without physical impairments, and the task performance was examined to see if the feedback 

and guidance was helpful in completing the task. The research questions of this study were:  

1. Can auditory feedback or vibrotactile feedback about gaze fixation location make target 

selection in the sorting task faster and more intuitive than without it? 

2. Can the FRVF, determined by the gaze-based target selection, improve movement 

efficiency and ease of the robot operation compared to without it? 

 

4.2 Methods 

4.2.1 Participants 

The research participants were ten adults without impairments (A1-A10), three males and 

seven females aged from 22 to 38 years (26 ±4.1); a 10 year, 2 month old boy without impairments 

(C1); and a 6 year, 10 month old girl without impairments (C2). The system was also tested with 

a 52-year-old female with quadriplegic cerebral palsy (AD1) and a 7 year, 4 month-old boy with 

right side spastic hemiplegic cerebral palsy (CD1). Participant AD1 had great difficulty handling 

objects and has been classified as level IV in the Gross Motor Function Classification System 

Expanded and Revised (GMFCS-E&R) (Palisano, Rosenbaum, Bartlett, & Livingston, 2007) and 

level III in the Manual Ability Classification System (MACS) (Eliasson et al., 2006). AD1 was 

affected by strabismus and had difficulty focusing on objects with both eyes simultaneously. 
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Participant CD1 had difficulty in reaching out and taking hold of objects with the limb on his 

affected side. He was classified as level I in the GMFCS-E&R scale and level III in the MACS 

scale. CD1 has no visual impairment; however, he was diagnosed with attention-deficit 

hyperactivity disorder which may cause reduced gaze concentration (i.e., a greater spread of 

vertical and horizontal eye movements) (Munoz et al., 2003). Ethical approval was received from 

the local Health Research Ethics Board Health Panel at the University of Alberta. 

4.2.2 Task 

The participants were asked to perform a card sorting task by using the haptics-enabled 

robotic platform. The sorting task in this study was a variation of the dimensional change card-

sorting (DCCS) task, which is used to measure self-control and executive functioning in a playful 

scheme and is suitable for use with children from 3 to 7 years old (Kloo & Perner, 2005; Zelazo, 

2006).  The standard procedure of the DCCS task is that participants are instructed to sort cards, 

which differ along dimensions (e.g., shape and colour). In the test cards are sorted by the 

participants one way (e.g., by colour) in one set of trials and then they are asked to switch to 

another way (e.g., by shape) in the next set of trials. In this study, the figures on the cards varied 

according to three attributes: colour (red, blue, or green), shape (circles, square, or stars), and 

number of figures (one, two, or three). The participants were administered cards, one at a time, at 

a pickup point in the task environment, as shown in Figure 4-1. They were instructed to sort the 

card according to one of the attributes, randomly generated, into one of three target destinations 

by using the haptic user interface to control the task-side robot.  
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Figure 4- 1  Dimensional Change Card-Sorting (DCCS) set up. A pick-up point is located at the 

right side of the task environment. All the three-target point are located at the left side of the 

environment. 

 

4.2.3 Experimental Setup 

The system in this study consisted of two components: an eye gaze platform and a haptic 

robot platform as shown in Figure 4-2.  Each component is described below.  
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Figure 4- 2  Schematic diagram of the system in interaction with the user and the play 

environment 

 

Eye Gaze Platform 

The Tobii eye tracker 4C (Tobii Technology, Danderyd, Sweden) was used as an eye 

tracking interface. The eye tracker was placed 60 cm away from the participant and connected to 

a Windows PC in order to monitor fixation of the gaze during gaze interaction, with sampling 

frequency rate of 90Hz. The dwell time was set to 1.5 seconds to avoid unintentional selection. 

When the participant fixated their gaze on one of the three targets in the task environment for 1.5 

seconds, the system recognized it as the target that the participant desired to select. If the 

participant’s gaze came off the target before 1.5 seconds was up and then came back on the target, 

counting of the dwell time started over again.  

The eye gaze fixation feedback was given using a USB stereo sound adapter generating a 

100 Hz sine wave output.  For the auditory feedback, the sine wave was output as sound to 

earphones that the users wore, and for the vibrotactile feedback, the sine wave was sent to an 

amplifier to drive a vibration motor (Bit Trade One, Kanagawa, Japan).  The motor was attached 

to the user interface, so that the motor was in contact with the participant's hand when they were 

holding the interface. The auditory or vibrotactile feedback (depending on the condition) began 

when the participant’s gaze was within a specified radius from the center point of the target.  For 
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the adult participants without impairments, the radius was set to 3 cm, and for the adult participant 

with physical impairments and all the child participants, the radius was set to 4.5 cm. This radius 

was chosen based on a pre-test to minimize the error of the target selection. The intensity of the 

feedback increased in proportion to the time the gaze was on the object, as an indication for the 

progression of the dwell time. The gaze acquisition and the feedback of the eye gaze platform was 

programed in LabVIEW (National Instruments, Austin, TX, USA).  Gaze interaction with no 

feedback was also tested in the experiments (called no-feedback condition).  

Haptics-enabled Robotic Platform 

 The haptics-enabled robotic platform consisted of two PHANTOM Premium 1.5A haptic 

devices (3D Systems, Inc., Rock Hill, SC, USA) programed to be operated synchronously in 

teleoperation mode (i.e., with a user-side haptic interface and a task-side robot). An electromagnet 

was attached on the tip of the task-side robot that could be switched ON or OFF, so that the 

participant could pick up a metallic card with it. The position of the end-effector of the task-side 

robot was controlled and monitored from a program coded in MATLAB/Simulink (MathWorks, 

Nadick, MA, USA) and Quarc (Quanser Inc., Markham, ON, Canada).  

A USB webcam (Dynex, Richfield, MN, USA) was mounted over the task environment, 

which acquired the image data of the entire area of the environment. This image data was processed 

to obtain the position data of the targets and the card located in the task environment by using 

LabVIEW.  

Homogeneous Transformations 

Accurate position control of the haptic robots required the use of a homogeneous 

transformation that was calculated from three different separate position frames: the eye tracker 

frame, camera frame, and robot frame shown in Figure 4-3. The relationship between the position 

of the robot end-effector and a corresponding position of the eye gaze with respect to the fixed 

camera can be represented by a 4 x 4 homogeneous matrix T.   This can be written as 

𝑃 
𝐶 = 𝑇𝐸

𝐶 𝑃  𝐸       (4.1) 

𝑃 
𝑅 = 𝑇𝐶

𝑅 𝑃 
𝐶       (4.2) 
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where  𝑃 
𝐸   𝑃 

𝐶 , and 𝑃 
𝑅  denote three different augmented vector presentations of an arbitrarily 

chosen point represented in the eye tracker frame, camera frame, and robot frame, respectively. 

The 𝑇𝐸
𝐶   and 𝑇𝐶

𝑅  denote the transformation between the eye tracker and the camera frame, and the 

camera and the robot frame, respectively. Note that since the camera and the eye tracker could 

only acquire the points in 2-dimensional space, values on the y axis were set to a constant value 

that corresponded with the ground plane coordinates of the robot’s position.  

 

 

Figure 4- 3  Homogeneous transformations between point in the robot frame, the camera frame, 

and the eye tracker frame. 

 

Forbidden Region Virtual Fixture (FRVF) 

 A FRVF was generated to restrict the robot end-effector within a desired region depending 

on the target destination. The FRVF was designed to be an ellipsoid shape generated between the 

pickup point of the card (preset to fixed x, y, and z coordinates) to one of three destination target 

points (preset to one of three x, y, and z sets of coordinates) determined by participant’s gaze 

selection (See Figure 4-4). The ellipsoid-shaped FRVFs were obtained by rotating ellipses about 

the line joining the pickup point to the target destination point, and the parametric equations of an 

ellipsoid can be expressed as 
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𝑃𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 = {

x = a cos 𝜑 cos 𝜃
y = b cos 𝜑 sin 𝜃

𝑧 = sin 𝜑
    (4.3) 

for φ ∈ [0, 2π] and 𝜃 ∈ [0,π]. Here, a and b are equatorial semimajor axes of the ellipse along 

the x-axis and y-axis, respectively. There was no force applied to the haptic end-effector inside the 

FRVF, but there were forces applied if the participant tried to move outside of the ellipsoid region.  

The FRVF was implemented as a nonlinear spring attached between the current position 

of the robot’s end-effector (Pend effector) and a reference point (Preference) at each instant. The reference 

point was determined by the perpendicular projection of Pend effector onto the z-axis of the ellipsoid. 

At each instant, the distance between Pend effector and Preference was calculated and compared with the 

location of the surface of the ellipse. If the measured distance was greater than the surface, force 

(FVF) was applied to the robot based on the following formula: 

F𝑉𝐹 = {
𝑘 ∗ |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒|, 𝑖𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑒

0                      , 𝑒𝑙𝑠𝑒
  (4.4) 

𝑤ℎ𝑒𝑟𝑒:   𝑘 = 𝑠𝑝𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 −  𝑃𝑒𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 

The spring constant determined the amount of force applied; the larger the k value, the 

stiffer the boundaries of the ellipsoid. The k value was set to 1 N/m. The forces were scaled up in 

a liner relationship so that the participant would feel a small force when coming into contact with 

the boundaries of the ellipsoid and a greater force if pushing further against the boundaries. The 

direction of FVF was determined by the sign of the distance, i.e., toward the reference point in order 

to push the participant’s movements away from the boundaries. 
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Figure 4- 4  The ellipsoid shaped FRVF placed between the pickup point and one of the target 

points in the task environment 

 

4.2.4 Procedures 

 The task-side robot was placed behind the task environment, and the user interface was 

located beside the participant so they could easily reach it with the dominant hand. The position 

of the user interface was adjusted until the participant indicated they felt comfortable. Both the 

robot frame and the eye tracker frame were mapped to the camera frame of the task environment 

using the homogeneous transformation following a calibration procedure described below: 

 A template on which four calibration points were printed was placed in the task 

environment. 

 The participant sat in front of the task environment and fixated their gaze at each 

calibration point in turn. At the same time, the gaze position detected by the eye tracker 

at each calibration point was collected. 

 The end-effector of the robot was placed on the calibration points by the researcher, 

and each position of the task-side robot was collected. 

 The homogeneous transformation matrixes, as described above, were obtained from all 

the position data collected.  
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In the experiment, the researcher placed a card on the pick-up location and the participant 

was asked to sort the cards with the robots. The experimental protocol of the card sorting was 

the following: 

1) The participant held the user interface with the dominant hand. 

2) The system gave a verbal instruction to the participant about what attribute to sort on.   

3) The participant fixated their gaze at the desired target destination. When the system 

determined that the participant's gaze was on a target, a voice confirmation was given to 

the participant (e.g., "target A was selected"). 

4) The participant moved the robot end-effector from the start point to the card pickup 

location shown in Figure 4-4. 

5) When the robot end-effector reached the pickup point, the electromagnet attached on the 

tip was automatically activated, and the card was “picked up”.   

6) The FRVF was activated towards the target point selected in step #3. 

7) The participant moved the robot end effector along the FRVF to the target destination.  

8) When the robot end-effector reached the target destination point, the card was 

automatically released from the interface. 

 

 The participant performed 12 trials of the card sorting in four different task conditions: 

FRVF-off with no feedback, FRVF-on with no feedback, FRVF-on with auditory feedback, and 

FRVF-on with vibrotactile feedback. The order of the task conditions was randomly assigned. The 

FRVF-off condition was used as a baseline of the participant’s task performance without any 

assistance from the FRVF. Thus, in the FRVF-off condition the participant did not have to select 

the target destination by gaze to activate the FRVF (i.e., steps #3 and #6 above were not 

performed).  

4.2.5 Measurements and Analysis 

The following variables were measured and analyzed for each trial: 

 Target Selection Time (measured in milliseconds):  The time from when the system gave 

the verbal instruction about what characteristic to sort on until the target was selected by 

eye gaze. A trial timed out and moved to the next trial if a participant could not select the 
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target within 10 seconds.   

 Robot Travel Time (measured in milliseconds): The time from when the card was picked 

up until it was released on the target destination. 

 Robot Trajectory Length (measured in millimeters): The distance of the traveled path 

of the robot end-effector from the pickup point to the target destination point. 

 

The Correct Card Sorting Rate was calculated for each task condition as the percentage 

of the number of cards that were sorted correctly divided by the total number of cards sorted in 

that condition.   

At the end of the session, the participant ranked the feedback modalities according to their 

preferences. Also, the participant rated their agreement on a scale of one to five (1 = strongly 

disagree and 5 = strongly agree) on two statements regarding the system: (1) it was intuitive to use 

eye gaze to select a target, and (2) the tasks were easy to accomplish when the virtual fixture was 

used. In addition, the participants were asked if they had any comments to add. 

Statistical analysis was conducted on the data from the ten adult participants without 

impairments (A1-A10). The Shapiro-Wilk normality test was performed first to check if the data 

was normally distributed.  If the normal distribution of the data was confirmed, the target selection 

time was entered into an analysis of variance (ANOVA) with a factor of the feedback modality for 

the gaze fixation (3 levels: no-feedback, auditory feedback, and vibrotactile feedback). 

Additionally, the robot travel time, and the robot trajectory length were compared using an 

ANOVA with a factor of the task condition of the experiment (4 levels: FRVF-off, FRVF-on with 

no-feedback, FRVF-on with auditory feedback, and FRVF-on with vibrotactile feedback). In all 

cases, a probability of p < 0.05 was considered significant.  If the data were not normally 

distributed, a pair-wise permutation test was used.  Descriptive analyses of the data from the other 

participants were performed individually because of the heterogeneous sample. The Percentage 

of Difference for the target selection time, robot travel time, and robot trajectory length were 

calculated to express increase and decrease of the data from the baseline conditions (i.e., non-

feedback condition for the target selection time, and the FRVF-off condition for the robot travel 

time and the robot trajectory length). 



58 

 

4.3 Results 

4.3.1 Target Selection Time 

 A total of 36 trials (12 trials in each feedback modality) of the target selections were 

performed by each participant.  The data of 6 trials from AD1 and 5 trials from CD1 were excluded 

due to the timeout error in target selection. Comparisons of the target selection time for the 

different feedback modalities are shown in Figure 4-5. No statistically significant difference 

between group means was found for the ten adult participants without impairments (F[2,18]=0.23, 

p= 0.7927).  

Table 4-1 shows the percentage difference in the target selection time of the auditory and 

vibrotactile feedback from the no-feedback condition for the other participants.  

 

 

Figure 4- 5  Target selection time with the different feedback modalities for the ten adult 

participants without impairments (mean), and individual participants C1, C2, AD1, and CD1 
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Table 4- 1  Percent difference in the target selection time of the feedback modalities compared to 

the no-feedback condition for child participants and participants with disabilities 

 Percent difference (%) 

  Auditory Vibrotactile 

C1 -0.3 0.71 

C2 -4.51 7.04 

AD1 -17.56 -12.55 

CD1 -16.56 -14.4 

 

4.3.2 Robot Travel Time 

Figure 4-6 shows the average robot travel time of the 12 trials in each task condition for all 

the participants. From the figure, the time for the FRVF-off condition appears to be shorter than 

all the FRVF-on conditions for the ten adult participants without impairments, and performing the 

ANOVA for a statistical analysis, a significant difference was found (F[3,27]=3.619, p= 0.0256). 

The post hoc tukey's HSD test showed significant difference in the robot travel time between the 

FRVF-off and the FRVF-on with no-feedback condition. 

 Table 4-2 shows the percentage difference in the robot travel time of the FRVF-on 

conditions from the FRVF-off condition for the children without impairments and the child and 

adult with physical impairments.   
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Figure 4- 6  Robot travel time with the different task conditions for the ten adult participants 

without impairments (mean), and the participants C1, C2, AD1, and CD1 

 

Table 4- 2  Percentage of difference in the robot travel time of the FRVF-on conditions from the 

FRVF-off condition for the participants C1, C2, AD1, and CD1 

 Percent difference (%) 

  FRVF-on (no-feedback) FRVF-on (Auditory) FRVF-on (Vibrotactile) 

C1 29.48 29.18 27.66 

C2 -15.78 -15.66 -10.75 

AD1 -21.67 -14.06 -19.35 

CD1 -15.05 -18.45 -16.33 

 

4.3.3 Robot Trajectory Length 

Figure 4-7 illustrates the robot trajectories during the entire task of each condition for a 

participant whose robot trajectory length was closest to the average among the adult participants 

without impairments and the participants C1, C2, AD1 and CD1.  Figure 4-8 shows the average 

robot trajectory lengths for the 12 trials in each task condition. There was no significant difference 

in the robot trajectory length between the different task conditions for the ten adult participants 

without impairments (F=[3,27]=2.44, p= 0.0857).  

Table 4-3 shows the percentage of difference between the FRVF-on conditions with the 

different feedback modalities and the FRVF-off condition.  
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Figure 4- 7  Robot trajectories for one of the adult participants without impairments (A6), the 

participant C1, C2, AD1, and CD1 during: FVRVF-off, FRVF-on with no-feedback, FRVF-on 

with auditory feedback, and FRVF-on with vibrotactile feedback 
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Figure 4- 8  Robot trajectory length with different task conditions for the ten adult participants 

without impairments (mean) and individual participants C1, C2, AD1, and CD1. 

 

Table 4- 3  Percentage of difference in the robot trajectory length of the FRVF-on conditions 

from the FRVF-off condition for all the participants 

 Percent difference (%) 

  FRVF-on (no-feedback) FRVF-on (Auditory) FRVF-on (Vibrotactile) 

C1 6.63 9.67 1.33 

C2 -17.52 -31.25 -8.23 

AD1 -35.94 -33.47 -21.62 

CD1 -24.65 -25.79 -35.56 

 

 

4.3.4 Correct Card Sorting Rate 

The correct card sorting rates for all the participants are summarized in Table 4-4.  None 

of the ten adults without impairments made any mistakes in the card sorting in the experiments. 

Likewise, the adult participant with physical impairment AD1 and the child participant without 

impairments C1 made no mistakes. The child participants C2 and CD1, however, made some 

sorting mistakes during the runs with average correct card sorting rates of 67% and 70%, 

respectively.  
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Table 4- 4  Correct card sorting rate in the different task conditions for all the participants 

 Correct Card Sorting Rate (%)  
A1-A10 C1 C2 AD1 CD1 

FRVF-off 100 100 91.67 100 75 

FRVF-on w/ No-feedback 100 100 50 100 84.62 

FRVF-on w/ Auditory 100 100 66.67 100 66.67 

FRVF-on w/ Vibrotactile 100 100 58.33 100 54.55 

Average  100 100 67 100 70 

 

4.3.5 Questionnaire 

 Table 4-5 summarizes the preference of the feedback modalities and the responses to the 

questions regarding the intuitiveness of eye gaze for selecting targets and ease of use of the FRVFs 

for robot control.  Seven out of ten adult participants without impairments indicated that the 

vibrotactile feedback was the most preferred feedback modality for the gaze fixation.  Participants 

AD1, C1, and CD1 also preferred the vibrotactile feedback compared to the other feedback 

modalities, while C2 preferred the auditory feedback. Some participants commented that the 

vibrotactile feedback was preferred because the hand was already being used for operating the 

robot, so sensing the vibrotactile feedback at the interface was easier and more intuitive. Another 

participant commented that auditory feedback was sometimes distracting and made it more 

difficult to hear the task instructions.  

For the questions about the intuitiveness of the gaze-based target selection, the modal score 

for the adults without impairments was 4 out of 5. However, one adult without impairments and 

the adult with physical impairments, AD1, rated intuitiveness as 3. They commented that they did 

not like to have to take the extra step of gazing at the target in order to perform the card sorting. 

The ease of use of the FRVF was rated at least 4 out of 5 by all the participants. The comments 

from most of the participants indicated that the FRVF helped them to accomplish the sorting task 

by giving the correct direction to move their hands, however, a few participants mentioned that 

the FRVF sometimes disturbed their desired movement path.  
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Table 4- 5  Preference of the feedback and responses to statements regarding the robot operation 

tasks (1 = strongly disagree, 5 = strongly agree) 

  Most preferred 
feedback 

Least preferred 
feedback 

Intuitiveness of 
gaze-based 

target selection 

Easier with FRVF 

 
A1-A10 

Range NA  NA  3 to 5 4 to 5 

Mode Vibrotactile 
(7/10) 

No-feedback 
(10/10) 

4 5 

C1 Vibrotactile No-feedback 5 5 

C2 Auditory No-feedback 4 4 

AD1 Vibrotactile No-feedback 3 4 

CD1 Vibrotactile No-feedback 5 5 

 

4.4 Discussion 

 In this study, we developed a haptic robot platform which helps guide the user toward the 

desired target chosen with eye gaze fixation.  Different feedback modalities were tested, but no 

statistically significant difference in target selection time was observed in the results of the adult 

participants without impairments. This is likely because the 3 cm acceptance size for the gaze 

fixation was large enough for them to easily select the target. Visual analysis of the data in Figure 

4-5 and Table 4-1 indicated that the performance of the child participant without impairments C1 

was similar to the results of the adults without impairments, having no difficulty performing gaze 

fixation even with no feedback. C1 was 10 years old, and appeared to have mature eye gaze 

behaviour, like adult participants. The target selection time for the 6 year-old child participant 

without impairments, C2, differed among the feedback modalities and visual analysis indicates 

that the time for the vibrotactile feedback was longer than the no-feedback condition. C2 had 

trouble following instructions to stay still during the tasks, and the system needed to be recalibrated 

many times during the experiments. This may have caused the inaccuracy in the gaze fixation. 

Visual analysis of the performance of the target selection for the adult participant with physical 

impairments, AD1, and the child participant with physical impairment, CD1, showed they 

performed similarly. The no-feedback modality took more time to select the target, meaning that 

the feedback must have been helping them sustain their gaze on the target. The difference in target 

selection time between auditory feedback and vibrotactile feedback appears to be smaller 

compared to the difference between the no-feedback and other feedback modalities. For adult 
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participants without impairments, there were no significant differences in target selection time 

between auditory and vibrotactile feedback. Our findings are similar to findings of Jussi Rantala 

et al. (2017). He reported that feedback has been found to improve performance in gaze interaction, 

however, all the modalities generally perform equally.  

Most participants reported that they preferred the vibrotactile feedback. Consistent with 

this preference, they often commented that the auditory feedback sometimes made it difficult to 

hear task instructions and the vibrotactile feedback was more intuitive. C2 preferred the auditory 

feedback, and that was the feedback modality with which she performed the fastest. However, 

some participants preferred the vibrotactile feedback even though it did not result in their fastest 

target selection time. Apparently, task performance was not the only criteria for determining 

preference of the feedback modalities; personal preferences must also be considered. However, 

the time differences between the auditory and the vibrotactile feedback modalities were generally 

around a few hundred milliseconds in each target selection, thus, the performance difference 

between the two feedback modalities may not have been clearly distinguishable for many 

participants.  

For the performance of robot operation, a significant difference between the FRVF-on 

conditions and the FRVF-off condition was found for the adults without impairments, and the 

FRVF-on condition resulted in statistically longer travel times compared to the FRVF-off 

condition. This is contrary to our expectation, but likely caused because the participants tended to 

follow along the boundary of the FRVF and explore it when it was on, which was a detour from a 

straight line between the pickup point and the target point. The same tendency was also seen with 

the 10-year-old child participant without impairments, C1, during the trial. Visual analysis 

indicated that the difference in robot travel time for C1 was shorter when the FRVF was off, and 

one can see that he was being very efficient in his robot trajectories when the FRVF was off (See 

Figure 4-7).  On the other hand, the FRVF appears to have made the travel time shorter for the 

adult participant with physical impairment, AD1, the child participant with physical impairment, 

CD1, and the 6-year-old child participant without impairments C2. These results suggest that the 

FRVF was not required for participants without impairments to have efficient robot trajectories, 

since the FRVF actually behaved opposite to what we would expect, but the participants with 
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physical impairment and the youngest child participant did benefit somewhat from the FRVF as 

far as time of the robot trajectory.  

The robot trajectory length with FRVF-off was expected to be longer than the FRVF-on 

conditions because for the latter, the participant’s trajectory is constricted to prevent unnecessary 

robot travel. However, no significant difference was found for trajectory length in the results of 

the adult participants without impairments. From Table 4-3, the robot trajectory lengths of AD1 

and CD1 with the FRVF-off condition were more than 20% longer than the FRVF-on conditions. 

Visually inspecting the figures of the robot trajectories in Figure 4-7, the trajectory path was more 

spread out during the task with FRVF-off than in the FRVF-on conditions for participants AD1 

and CD1 compared with the trajectory of the average adult without impairments. The results of 

the 10 year-old child participant without impairments, C1, appeared to be similar to the results of 

the adults without impairments. He had well developed motor skills to perform the robot 

operations.  The trajectory of the 6 year-old child participant without impairments C2 appears to 

be more spread out, likely because she had less motor skill than the adult participants without 

impairments.  

Most participants rated the ease of the robot operation with the guidance of the FRVF at 

least 4 out of 5 on the questionnaire. The participants felt that the FRVF helped them to accomplish 

the tasks. The ratings of the adults without impairments and C1 indicated that the task was easier 

with the FRVF for them even though robot travel time was shorter and trajectory length was longer.  

It is interesting that they still felt that the FRVF was helpful even though it did not improve their 

task performance.  

The variation of the DCCS task was used in this study in order to have a task where the 

participants could make mistakes. The task should have been quite easy for most of the participants 

since they had the cognitive skills to understand the concept of object classification. Therefore, the 

100% correct card sorting rate achieved by the adult participants without impairments and the adult 

participant with physical impairments, AD1, is expected. Zelazo (2006) stated that the DCCS task 

was designed to assess executive function and suitable for use with children under 7 years old. 

Even though the modified version of the DCCS used in this study required participants to sort on 

a new dimension for each card in a set of trials (unlike the standard DCCS where individuals sort 

cards according to one dimension for each set of trials), the 100% correct rate made by the 10 year-
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old child participant without impairments, C1, was also expected. The 6 year-old child participant 

without impairments C2 and the 7 year-old child participant with physical impairments, CD1, are 

still in the skill acquisition phase, thus their lower performance is also expected. It is worth 

mentioning that C2 achieved 91.67% correct card sorting rate in the FRVF-off condition, but the 

correct card sorting rates decreased to 50-66% in the FRVF-on conditions.  A potential reason was 

that fixating her gaze on the target point to generate the FRVF before doing the card sorting may 

have increased the task complexity and affected her performance. 

 This study had some limitations yet to be mentioned. First, due to the small sample size of 

the participants with physical impairments, the findings in this study can serve only as preliminary 

data to guide further research. Second, there were timeout errors in 16.6% and 13.9% of the trials 

for the adult and the child with physical impairment, respectively.  This means that they were not 

always able to sustain their gaze within the radius of 4.5 cm on the target location for the full 1.5 

second dwell time to complete the selection before the timeout occurred (10 second timeout 

window).  Their impairments, specifically the spasticity and strabismus for AD1 and the attention-

deficit hyperactivity disorder for CD1, may have made it difficult for them to accurately fixate 

their gaze for target selection. Increasing the acceptance size could help make the target selection 

easier; however, this would result in fewer targets allowed in the environment. Instead of simply 

increasing the target acceptance size, applying machine learning techniques for the system to adapt 

to each individual's gaze behaviour could improve the success rate of the target selection for these 

populations. Third, a stationary eye tracker was used to capture the eye movements and map the 

gaze to the physical environment. In general, a stationary eye tracker is lower cost, however, but 

it may not be very for situations where the users are not able to stay still and fixate the head position 

within the range of the gaze detection. Replacing the stationary eye tracker with a head-mounted 

eye tracker would help attain stable gaze acquisition and give more freedom for users to perform 

the gaze interaction naturally during the tasks, as long as the users could tolerate wearing one. 

Lastly, the FRVF limited the range of user’s movement within a defined region, however, it did 

not provide a guidance force toward the target destination. With future development, guidance 

VFs could be added where the system detects the intended destination of the user and assists the 

user in moving the robot to the intended destination. 
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4.5 Conclusion 

The main contribution of this study was that if the users made a mistake on the card sorting 

task, the system was able to create a FRVF towards the target point the users chose by eye gaze 

fixation. This is an improvement over the system in Sakamaki, Adams, Gomez, et al. (2017), where 

the FRVF was created based on object recognition of the task environment by computer vision and 

the system never allowed the users to make mistakes. The system developed in this study can be 

used for situations such as games with scores or assessments to test cognitive skill levels where 

users may make mistakes. The results of the study indicate that feedback for the gaze fixation plays 

an important role helping users to select the target in the environment, especially for people who 

have difficulty with the gaze fixation. Also, the FRVF was able to restrict a user’s hand movement 

inside a defined region to improve the efficiency of the movement for an adult and a child with 

physical impairment to perform the card sorting task. From this perspective, the system allows the 

users with physical impairments to have more efficiency interacting with the physical 

environment. The system improvements made in this study can be useful and beneficial for the 

development of the system, and further development can support children's participation in play 

activities. 
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Chapter 5 

 Effectiveness of Haptic Feedback for Brain-Computer 

Interface Training 

 

5.1 Introduction 

Play represents a critical activity by which children explore their environment by 

manipulating objects within it (Besio et al., 2007). During play-based experiences, children’s 

awareness of the objects and people that exist within the environment increases (Missiuna & 

Pollock, 1991). Play can make a positive contribution to a child’s development of motor, social, 

linguistic, and cognitive skills, and it also stimulates creativity, learning, mastery, self-expression, 

and adaption (Ferland, 2003).  

Children who have physical disabilities may find it difficult to participate in certain play-

based activities as a result of impairments that affect movement, grasping, and reaching out for 

objects. This can impede their development across multiple areas (Robins et al., 2012). In some 

cases, the difficulties children encounter can lead to the perception that they are more 

developmentally delayed than they actually are because they are unable to demonstrate their full 

capabilities through independent play (Harkness & Bundy, 2001). Furthermore, children who have 

some form of physical impairment tend to watch others playing rather than participating 

themselves because their playmates more effectively or frequently handle the play objects 

(Blanche, 2008). 

Robots, such as Lego robots (Rios, 2014) and the Play-ROB (Gernot Kronreif et al., 2007), 

have helped children who have physical impairments to play with objects. Interfaces such as a 

joystick for the Play-ROB (Gernot Kronreif et al., 2007) and switches for the Lego robots (Rios, 

2014) can help children with impairments to control robots. However, the extent to which this is 

possible can vary according to the extent of the child’s physical impairment, and may not be 

useable by children who have significant physical impairments.  
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Recently, brain-controlled access pathways, often referred to as brain-computer interfaces 

(BCI), have been proposed as a new means of biological signals-based device control (McFarland 

& Wolpaw, 2011). BCI can translate an individual’s brain activity to use computer applications, 

and control devices such as robots or neuroprostheses (Collinger et al., 2013). 

Electroencephalography (EEG) is a non-invasive method to record the brain’s activity and can be 

detected by electrodes placed on the surface of the scalp (Nunez & Srinivasan, 2006). The brain 

response associated with real or imagined movement produces reliable changes in the sensorimotor 

rhythms of the EEG. Sensory processing of real or imagined movement shows a decrease of spectral 

amplitudes of alpha rhythm in the range from 8 to 13 Hz, as originally reported by Berger (1931). 

This decrease in oscillatory activity is known as Event-Related Desynchronization (ERD) 

(Pfurtscheller & Aranibar, 1979). The opposite, namely the increase of spectral amplitudes of beta 

rhythm in the range from 13 to 26 Hz, is termed Event-Related Synchronization (ERS) 

(Pfurtscheller & Neuper, 2010).  Thus, brain patterns can be detected, processed, and classified as 

performing motor imagery or resting, which can be used as commands to control technology.  

Several BCI research studies using ERD/ERS have involved participants with and without 

physical impairments, and in some studies they controlled technology with the signals (Cincotti et 

al., 2008; Daly et al., 2014; López-Larraz, Montesano, Gil-Agudo, & Minguez, 2014). These 

studies indicate that ERD/ERS is potentially a feasible channel for BCI applications for people 

with neurological impairments. For example, D. Huang, Lin, Fei, Chen, and Bai (2009) tested 

BCIs for 2-dimensional cursor control based on ERD during motor execution and motor 

imagery with 5 participants without impairments. Brain signals were detected and classified 

according to physical movement, motor imagery or rest using various machine learning methods. 

Linear Discriminant Analysis (LDA), Decision Tree, and Support Vector Machine (SVM) 

provided accuracy rates as high as 88% for the physical movements and 73% for the motor 

imagery.  In Cincotti et al. (2008), 14 participants without impairments and 14 participants with 

spinal muscular atrophy or Duchenne muscular dystrophy successfully performed 2-dimensional 

cursor control with motor imagery. The average classification accuracy achieved was 80% for 

participants without impairments and 62% for participants with impairments. A study by López-

Larraz, Montesano, Gil-Agudo, and Minguez (2014) evaluated the ERD/ERS of 6 participants 

without impairments and 3 participants with SCI during upper limb movement activities. The BCI 

system correctly detected 75% of the movements for participants without impairments, and the 
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detection rates for participants with SCI was similar to those of the participants without 

impairments.  

In these BCI studies, successful BCI classification accuracy was around 70% to 90%.  The 

sensorimotor rhythm is often unstable, weak, and difficult to detect. Even with the best 

classification algorithms, classification accuracy of the motor imagery tasks depends on how well 

an individual can voluntarily modulate their neural activity. Tan and Nijholt (2010) estimated that 

between 15% and 30% of the non-disabled population cannot produce the ERD/ERS to control a 

BCI on their first session interacting with BCI. It is recommended that BCI control employ 

repeated practice with feedback and rewards, and also intensive training in order for the 

participants to acquire the skill to control the BCI system (Graimann, Allison, & Pfurtscheller, 

2010).   

One of the most widely used and successfully employed BCI training protocols in the field of 

BCI research is the Graz training protocol (Jeunet, Jahanpour, & Lotte, 2016).  Following a cued 

stimulus such as visual signs or symbols indicating when a user should perform motor imagery or 

rest, the induced sensorimotor rhythms are detected and classified according to the probability that 

they are imagining movement or resting. The user receives visual feedback on a computer screen 

in order to improve the strength of their ERD/ERS brain response (Graimann et al., 2010).   

Our long-term goal is to enable children who have severe physical disabilities to use BCI to 

control a robot in a physical play environment. Instead of using visual representation of 

neurofeedback, which requires a visual display, other feedback methods will be needed. Haptic 

feedback has been trialled as biofeedback in BCI applications (Angulo-Sherman & Gutiérrez, 

2014). Haptic feedback can be tactile or kinesthetic sensations: tactile sensation is normally 

conveyed through the skin, such as by pressure or vibrations, while kinesthetic sensation refers to 

static and dynamic posture based on muscles and tendons that allow us to feel the pose of our body 

(Sigrist et al., 2013). Angulo-Sherman and Gutiérrez (2014) studied the effects of vibrotactile 

feedback by comparing it with visual and auditory feedback in a motor imagery task with up to 7 

runs of the BCI training.  Researchers did not find a significant difference between the feedback 

modalities and concluded that BCI performance varies among participants.  Passive movements 

can induce EEG patterns similar to those observed during motor imagery, so some studies have 

used kinesthetic feedback through a haptics-enabled robot to help induce sensorimotor rhythms 
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(K. K. Ang et al., 2011; Gomez-Rodriguez et al., 2010). Most BCI studies do only a single session, 

especially those focusing on system development. However, using kinesthetic haptic feedback 

over several sets of BCI training could yield benefits in terms of improving the strength of a user’s 

ERD/ERS brain response. 

In this paper, a BCI system and training protocol were designed that provided kinesthetic haptic 

feedback according to the detected movement intention.  Classification accuracy was compared to 

visual feedback in sets of BCI training sessions with ten adults without impairments, reported in 

Study 1, and one adult with cerebral palsy and one child without impairments, reported in Study 

2. The research questions of these studies were: 

1. Which feedback modality (visual or kinesthetic haptic) leads to better BCI 

classification accuracy? 

2. Can repeated runs of the BCI training with the feedback improve the BCI 

classification accuracy over time? 

3. How does brain activity differ between a motor imagery task with visual feedback 

and haptic feedback? 

4. Which feedback modality leads to a lower workload for the participants? 

 

Study 1 
 

5.2 Methods 

5.2.1 Participants 

Ten university students without physical disabilities, six males and four females, aged from 

22 to 38 years (28 ±4.3), participated in the study. The participants were all right-handed and had 

no prior BCI experience. Ethical approval was received from the local Health Research Ethics 

Board Health Panel at the University of Alberta. 
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5.2.2 Experimental Setup 

An EEG acquisition hardware device called OpenBCI (OpenBCI, Inc., Brooklyn, NY, 

USA), an open source BCI software called OpenViBE (Renard et al., 2010), and a graphical 

programming language called LabVIEW (National Instruments, Corp, Austin, TX, USA) were 

used for the BCI system. The system was composed of five modules: EEG data collection, signal 

pre-processing, feature extraction, classification, and feedback.  A 19 inch LCD monitor was used 

to display the visual feedback, and a Novint Falcon (Novint Technologies, Inc., Albuquerque, NM, 

USA) was used for kinesthetic haptic feedback.  A picture of the system is shown in Figure 5-1, 

and a schematic diagram of the system is shown in Figure 5-2. 

 

 

Figure 5- 1  Picture of the BCI training system 
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Figure5- 2  Schematic diagram of the BCI system 

 

EEG Data Collection 

The EEG was sampled with a 250 Hz sampling frequency, and an EEG cap with eight 

channel electrodes was placed on the surface of the participant’s scalp to collect their EEG signals. 

Channels Cz, Cp, F3, C3, P3, F4, C4 and P4, according to the 10-20 international system, were 

selected since they are over the pre-motor cortex area of the brain, which is responsible for the 

motor imagery and physical movement of the upper limbs. Channels T7 and T8 were used as 

reference and bias of the BCI system, respectively.  The OpenViBE only collected the EEG data 

while the participants were performing the BCI trials (i.e., motor imagery or rest) and excluded 

the data between the trials where the motor imagery tasks were not performed). 
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Signal Pre-processing 

The collected EEG data was preprocessed in real-time through a notch filter with cut-off 

frequencies between 58 and 62 Hz to reject power line noise. Then, the signal was band-pass 

filtered from 7 to 30 Hz to ensure the alpha and beta frequency bands were passed. 

Feature Extraction 

In order to retrieve the component signal that best represents the brain activity for the motor 

imagery task from the pre-processed signal, a Common Spatial Pattern (CSP) filter was applied in 

the feature extraction module (Pfurtscheller, Neuper, Guger, Harkam, Ramoser, Schlögl, et al., 

2000). CSP, a highly successful method for ERD/ERS detection, is a mathematical procedure used 

in signal processing for separating a multivariate signal into additive subcomponents which have 

maximum differences in variance between two windows (Koles, Lazar, & Zhou, 1990).  The 

filtered signals were then split into blocks of 1 second every 0.0625 seconds and the logarithmic 

band powers were computed. The feature vector extract of the CSP filter and the logarithmic band 

power was then sent to the classification module. 

Classification 

Linear Discriminant Analysis (LDA) was used for the BCI classification (i.e., MOVE or 

REST) because in the study of Sakamaki, Campo, Wiebe, Tavakoli, and Adams (2017), LDA and 

linear Support Vector Machine (SVM) achieved better BCI classification accuracy than the 

Multilayer Perceptron (MLP) with participants without impairments, and in another study, LDA 

yielded better BCI classification accuracy compared to the SVM and MLP with participants 

without impairments (Romero-Laiseca, Sakamaki, Adams, Bastos-Filho, & Frizera, 2019). After 

the data was classified using the LDA, the control loop was closed with the feedback, which is 

explained in the next section. 

Feedback 

Visual Feedback 

The visual feedback was provided to the users through the computer screen as visual 

stimuli. A bar indicator displayed on the computer screen presented the confidence values of the 

classification when the participants were performing the motor imagery task (i.e., thinking about 

moving the dominant hand from right to left across the midline, called MOVE, or thinking about 
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resting the dominant hand, called REST).  The confidence of the classification results for the motor 

imagery was presented as a value in the range of [0, 1]. Smaller confidence values corresponded 

to the classification of REST while larger confidence values corresponded to the classification of 

MOVE.  

Kinesthetic Haptic Feedback 

Kinesthetic haptic feedback, i.e., passive movement of the participant’s hand based on the 

sensorimotor rhythm brain response, was done using the Novint Falcon haptic robot interface. 

When the confidence value of the classifier exceeded 0.6, the haptic robot interface started to move 

the participant’s hand from the right to left endpoints of the robot workspace.  The force the 

participant put on the haptic robot interface was measured to confirm that the participant was not 

physically pushing the end-effecter of the interface, but was just moving it by their motor imagery. 

If more than 4N of interaction force was detected from the interface, it was assumed that the 

participant was performing an active movement rather than a passive movement and that EEG data 

were excluded from the analysis. Only 1.2 % of the total data needed to be excluded. 

5.2.3 Procedures 

Experiments 

There were six sessions for each feedback modality. To prevent confounding with practice 

effects, the order of the feedback conditions was counterbalanced across the participants.  The 

participants performed the sessions for the first feedback condition within two weeks and had at 

least a one-week resting period before doing the next feedback condition. Each session had one 

training BCI run (that is, training of the classifier) and two online BCI runs. Thus, each participant 

did 12 online BCI runs for each feedback condition. 

During the classifier training, the participants sat in front of a monitor and performed the 

motor imagery task according to a cue (i.e., MOVE or REST) displayed on the monitor. The cue 

was randomly repeated 15 times in each BCI run. The sequence of the cue was as follows: 1) 5 

seconds of a blank screen, 2) 2 seconds of a cross displayed on the screen, and 3) 6 seconds of the 

cue (either MOVE or REST) while the participant performed motor imagery about the task 

indicated by the cue. For visual feedback, the participant’s arms rested on a table in front of them.  

For kinesthetic haptic feedback, the same sequence of the cue was used, but the participants held 
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the end-effector of the haptic robot interface, and the kinesthetic haptic feedback was provided to 

the participants when the cue indicated ‘MOVE’. 

Likewise, during the online run, the participants performed the motor imagery tasks 

according to the cue displayed on the monitor. The sequence for the online run was similar to the 

training run. However, instead of 6 seconds of the cue, the cue was displayed for 1.25 seconds and 

then there were 8 seconds of feedback provided.  For visual feedback, the bar indicator 

representing the confidence value was provided. For kinesthetic haptic feedback, the haptic 

interface guided the participant’s hand from right to left according to the confidence value (see 

Figure 5-3).  

 

 

Figure 5- 3  Timing diagram of an online BCI run 

 

5.2.4 Measurements and Analysis 

The effectiveness and participant experience of the feedback for the BCI training were 

evaluated in the following ways. 
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BCI Classification Accuracy 

BCI classification accuracy was calculated for each online BCI run as the percentage of 

the number of correct predictions of the BCI classification prediction divided by the total number 

of classification predictions. Pairwise comparisons with a 95% confidence level were made to 

analyze the effect of the visual feedback and kinesthetic haptic feedback on the classification 

accuracy by using a paired-samples t-test when the normality assumption was met and the 

Wilcoxon signed-rank test when it was not.   

To determine if there was a significant improvement in classification accuracy across the 

runs, the BCI classification accuracy was entered into an analysis of variance (ANOVA) with a 

factor of runs (i.e., 1 to 12). Also, a simple linear regression modelling was used to examine the 

linear trends of the BCI training over time. 

Spectral Band Power 

To examine how brain activity differs between a motor imagery task with visual feedback 

and kinesthetic haptic feedback, power spectrum density, which represents the distribution of the 

EEG power in the frequency domain, was calculated and plotted for each individual.  The plots of 

the power spectrum density were then visually analyzed and categorized by types of spectral 

patterns.  In addition, the spectral power differences from REST to MOVE for all the EEG channels 

during the motor imagery task were compared, as in other studies (Daly et al., 2014; Pfurtscheller 

& Neuper, 2010).  The frequency bands selected were: the low-alpha band (8 to 10 Hz), the high-

alpha band (10 to 13 Hz), the low-beta band (13 to 16 Hz), and the high-beta band (16 to 26 Hz) 

(Yao et al., 2017). Pairwise comparisons with a 95% confidence level were made to analyze the 

effect of the feedback modalities on the BCI training by using a paired-samples t-test in each 

frequency band. 

NASA-TLX 

NASA-TLX (NASA-Task Load Index) is a commonly used method to evaluate subjective 

mental workload when using human technology interfaces (Miyake, 2015). It analyzes the 

workload in six different aspects: Mental Demand, Physical Demand, Temporal Demand, Own 

Performance, Effort, and Frustration Level (Hart & Staveland, 1988). The participants were asked 

to rate the workload of the system using scales from 0 to 20 on each workload aspect, on a printed 

form of the NASA-TLX after each feedback condition. Questions asked were as follows: 
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1. How mentally demanding was the task? (Mental Demand) 

2. How physically demanding was the task? (Physical Demand) 

3. How hurried or rushed was the pace of the task? (Temporal Demand) 

4. How successful were you in accomplishing what you were asked to do? (Own 

Performance) 

5. How hard did you have to work to accomplish your level of performance? (Effort) 

6. How insecure, discouraged, irritated, stressed, and annoyed were you? (Frustration 

Level) 

 

The scores of each aspect were averaged over the participants to determine the mental 

workload of the task for both of the feedback conditions.  Related comments were transcribed. 

5.3 Results 

5.3.1 BCI Classification Accuracy 

Table 5-1 shows the BCI classification accuracy in the online runs for the visual and 

kinesthetic haptic feedback for each participant. Comparing the accuracy between the visual and 

kinesthetic haptic feedback among participants individually, 7 out of 10 participants had better 

accuracy with the kinesthetic haptic feedback than the visual feedback (i.e., P1, P2, P3, P5, P6, P7, 

and P8), and for 5 of them, the accuracy was significantly higher. Participants P9 and P10 had 

higher accuracy with the visual feedback, but only P9 showed a significant difference between the 

two conditions.  The accuracy of P4 was nearly the same in both conditions. By testing group 

differences in the feedback conditions using t-tests, the BCI classification accuracy with the 

kinesthetic haptic feedback was significantly higher than the accuracy with the visual feedback 

(p=0.01). 
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Table 5- 1  BCI classification accuracy of the visual feedback and the kinesthetic haptic feedback 

of all the participants and results of the paired-samples t-test 

 Visual feedback Kinesthetic haptic 
feedback 

 

Subject M SD M SD P value 

P1 69.25 5.33 88.54* 6.65 0.01 

P2 56.56 15.68 78.63* 16.43 0.02 

P3 69.38 10.99 77.08 8.90 0.07 

P4 67.83 8.36 68.54 12.72 0.87 

P5 60.71 5.79 65.54 7.58 0.09 

P6 63.67 6.61 78.83* 5.82 0.01 

P7 53.58 5.06 60.33* 6.64 0.02 

P8 81.17 9.54 93.83* 2.46 0.01 

P9 90.28* 3.74 84.17 5.89 0.02 

P10 60.44 6.63 55.78 6.88 0.16 

Average 66.85 12.77 75.17* 13.99 0.01 

* Significant differences p < 0.05 and NA: Not Applicable 

 

Figure 5-4 shows the average BCI classification accuracy for all the participants on each 

BCI run for both feedback conditions. The ANOVA revealed that there was no significant 

difference in the BCI classification accuracy across the runs for either feedback modality (F[11, 

108]=0.19, p=0.99 for the visual feedback and F[11, 108]=0.31, p=0.98 for the kinesthetic haptic 

feedback).  The regression line of the average BCI classification accuracy with respect to the run 

showed a small positive slope linear relationship for both feedback conditions (0.29 for the visual 

feedback and 0.11 for the kinesthetic haptic feedback).  
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Figure 5- 4  Average BCI classification accuracy across the 12 runs for adult participants without 

impairments 

 

5.3.2 Spectral Band Power 

Figure 5-5 shows the power spectrum density of the C3 EEG channel for the run with the 

median BCI classification accuracy of each participant. Channel C3 was selected because it was 

on the contralateral side to the hand used during the task and it is believed to be involved in brain 

activity related to the motor imagery. From the figure, the participants show three types of 

responses: 1) a power decrease in the alpha frequency during MOVE (e.g., P3, P6, and P9), 2) a 

power increase in the beta frequency band during MOVE (e.g., P1, P2, P4, and P8), and 3) a small 

difference between REST and MOVE in both feedback conditions (e.g., P5, P7, and P10).  
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Figure 5- 5  Power spectrum density of the EEG channel C3 during MOVE (blue line) and REST 

(red line) for the two feedback conditions for the adults without impairments 

 

Figure 5-6 shows the spectral band power differences from REST to MOVE in the low-

alpha, high-alpha, low-beta, and high-beta frequency bands. From the figure, we can see that P3 

and P6 have clear negative spectral band power differences in all the frequency bands in both 

feedback conditions, while the rest of participants show both positive and negative spectral band 

power differences depending on the frequency band and feedback conditions. The results of the t-



83 

 

test are summarized in Table 5-2, and a significant difference was found in at least one of the 

power bands in 7 out of 10 of the participants (i.e., P1, P2, P4, P6, P7, P8, and P9).  

 

 

Figure 5- 6  Spectral band power differences from REST to MOVE of the visual feedback (top) 

and kinesthetic haptic feedback (bottom) for all of the adults without impairments 
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Table 5- 2  Results of the paired-samples t-test between the visual feedback and kinesthetic 

haptic feedback on each adult participant without impairments 

Subjects Low-α High- α Low-β High- β 

P1 0.01* 0.02* 0.05 0.01* 

P2 0.96 0.45 0.04* 0.58 

P3 0.98 0.95 0.75 0.23 

P4 0.20 0.90 0.06 0.01* 

P5 0.21 0.22 0.43 0.49 

P6 0.01* 0.24 0.36 0.08 

P7 0.03* 0.08 0.39 0.35 

P8 0.73 0.63 0.01* 0.01* 

P9 0.56 0.04* 0.81 0.12 

P10 0.34 0.54 0.77 0.88 

* Significant differences p < 0.05 

 

5.3.3 NASA-TLX 

Figure 5-7 shows the average scores of the six workload aspects evaluated by the 

participants. In all six workload aspects, the score of the workload with kinesthetic haptic feedback 

was lower than with visual feedback. One participant commented that she preferred kinesthetic 

haptic feedback because she could feel her arm moving from left to right, so she could easily focus 

on imagining that movement. Another participant said that the visual feedback was better because 

he could see in real time how calm he was becoming during the relaxation part because of the bar 

indicator on the display.  Some participants commented that the visual feedback gave them more 

fatigue and involved more possibilities of distraction, while the kinesthetic haptic feedback 

required less concentration during the task.  However, another participant commented that the 

kinesthetic haptic feedback was very distracting during the REST phase when the EEG signal was 

incorrectly classified and the haptic robot interface moved.  
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Figure 5- 7  Average scores of each aspect of NASA-TLX for the adult participant without 

impairments 

 

5.4 Discussion 

The BCI classification accuracy varied considerably between individuals. The participant who 

had high accuracy using visual feedback also had high accuracy using the kinesthetic haptic 

feedback.  However, there was a trend where the kinesthetic haptic feedback generally led to a 

higher accuracy than the visual feedback, and the average accuracy over all the participants was 

significantly higher for kinesthetic haptic feedback. Thus, BCI training with the kinesthetic haptic 

feedback may help to increase the BCI classification accuracy and effective compared to the 

traditional BCI training protocol where the only visual feedback is used. 

No significant improvement in the BCI classification accuracy across the runs was found 

in either feedback conditions over the 12 online runs. Even though a positive linear trend for the 

BCI classification accuracy was found for both feedback conditions, the slope values were not 

large. The literature about BCI training by Neuper and Pfurtscheller (2010) says that BCI 

performance should improve through sets of BCI training. However, the duration of sessions and 

the number of the sessions required was not thoroughly discussed.  The training given in previous 

BCI studies was from a few BCI runs in one day session to more than 50 runs over several months 

(Jeunet et al., 2016; Pfurtscheller, Neuper, Guger, Harkam, Ramoser, Schlogl, et al., 2000).  
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The three types of brain patterns that were seen in the power spectrum analysis of the 

participants relate to the ERD and ERS responses. The power decreases in the alpha band can be 

considered the ERD response, and the power increases in the beta band can be considered the ERS 

response. To classify the motor imagery task, it is essential to have a clear difference in the brain 

patterns between MOVE and REST. As seen in Table 5-1, the participants who were in the Type 

1 or 2 brain patterns, tended to perform motor imagery task with better BCI classification accuracy 

than the participants of Type 3. 

In the comparison of the spectral band power differences from REST to MOVE in the four 

different frequency bands, significant differences were observed in 7 out of 10 participants. 

Interestingly, 5 of them had a significantly higher BCI classification accuracy for the kinesthetic 

haptic feedback (i.e., P1, P2, P6, P7, and P8). This implies that spectral band power differences 

from REST to MOVE in the four frequency bands had a strong influence on the BCI classification 

accuracy. The premise in the study by Pfurtscheller and Neuper (2010) about the ERD/ERS 

response not only being related to active movement or motor imagery but also to passive 

movement, was beneficial in the BCI training in this study. From our results, it can be seen that 

the ERD and ERS were induced by the kinesthetic haptic feedback when there was passive 

movement. This leads to distinguishable brain patterns to detect the movement intention and 

resulted in a better BCI classification accuracy. 

Lastly, the motor imagery task with kinesthetic haptic feedback required less workload 

than the task with the visual feedback for the participants in this study. The kinesthetic haptic 

feedback had advantages like the reinforcing effect of the actual movement of their arm during 

motor imagery, and it had disadvantages like the distraction when signals were misclassified.  

However, the visual feedback tended to be quite fatiguing for the participants. Since a lower mental 

workload of the motor imagery task and higher BCI classification accuracy with the kinesthetic 

haptic feedback was found in this study, replacing the conventional visual feedback of the BCI 

training with kinesthetic haptic feedback could be a potential solution to improving the 

classification accuracy when using a BCI system for users in general. 
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Study 2 
 

In the second study, the BCI system was modified to a game-like task for children without 

impairments and an adult with physical impairments. Because the motor imagery-based BCI 

training protocol is generally said to be time-consuming and tedious (Atyabi, Fitzgibbon, & 

Powers, 2012), the system was modified in order to make it more motivating and playful. The 

experimental setup was identical to Study 1 with the exception that instead of the simple bar 

indicator, a car was displayed on the computer screen and moved during the motor imagery task 

for the visual and kinesthetic haptic feedback conditions (See Figure 5-8).  The measurements and 

data analysis were the same as the ones used in Study 1, however, the participants’ performance 

was evaluated based on descriptive statistics due to the low sample size. A picture of the system 

is shown in Figure 5-9. 

 

Figure 5- 8  The graphical user interface of the experiment for children and adult with physical 

impairments 
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Figure 5- 9  Picture of the BCI system for children and adult with physical impairments 

 

5.5 Methods 

5.5.1 Participants 

The system was tested by one 10 year, 2 month old child without impairments, C1 and a 48-

year-old female with quadriplegic cerebral palsy who has mixed high and low muscle tone and 

involuntary movements, AD1. She has been classified as Level IV in the Gross Motor Function 

Classification System Expanded and Revised (GMFCS-E&R) (Palisano, Rosenbaum, Bartlett, & 

Livingston, 2007), and Level III according to the Manual Ability Classification System (MACS) 

(Eliasson et al., 2006). This classification means that she performs self-mobility by using a 

powered wheelchair and has difficulty handling objects. Ethical approval was received from the 

local Health Research Ethics Board Health Panel at the University of Alberta. 

5.5.2 Procedures 

Experiments 

In this study, there were two sessions on different days. Each session lasted about one hour, 

including the system setup, one BCI classifier training and two online runs for each feedback 

condition. A total of only four online BCI runs for each modality were performed because in study 
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1 we found that providing 12 runs did not improve BCI classification accuracy for the adults 

without impairments. Two sessions were deemed to be not too much burden on the participants, 

but enough to explore the brain responses in this task. 

During the BCI classifier training, the participants sat in front of a monitor and performed 

the motor imagery task according to a traffic light displayed on the monitor.  The task cues were 

green light for MOVE, yellow light for READY, and red light for STOP. The cue was randomly 

repeated 6 times in each run. The sequence of the cue was as follows: 1) 5 seconds of all the lights 

off, 2) 2 seconds of the yellow light on, 3) 6 seconds of either the green light or the red light on. 

For the visual feedback condition, the participant’s hands rested on the table during the task. When 

the green light was on, the car began to drive from the right to the left. During this period, the 

participants were asked to imagine their arm moving from right to left.  When the red light was 

on, the car stayed still, and the participants were asked to imagine no movement. For the kinesthetic 

haptic feedback condition, the participants held the end effector of the haptic robot interface during 

the task. The task was the same as the visual feedback condition, however, the haptic robot 

interface passively moved the participant’s hand simultaneously with the movement of the car.  

For the online runs, the participants drove the car with their motor imagery.  The car only 

moved from right to left when the system detected the motor imagery with the same confidence 

levels used as in study 1. Otherwise, the procedure was the same as in Study 1.   

5.5.3 Measurements and Analysis 

The dependent measures (i.e., BCI classification accuracy, spectral band power, and NASA-

TLX), were the same as Study 1, however, the participant’s performance was evaluated 

individually based on descriptive statistics due to the low sample size. 

5.6 Results 

5.6.1 BCI Classification Accuracy 

Table 5-3 shows the average BCI classification accuracy of the online runs for the visual 

and kinesthetic haptic feedback for the child participant without impairments, C1, and the adult 

with physical impairment, AD1. Their mean BCI classification accuracies were higher with the 

kinesthetic haptic feedback than the visual feedback. However, it can be seen in Figure 5-10 that 
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the trend of their BCI classification accuracies declined slightly over the runs for both feedback 

conditions (For C1, the slope of the regression line decreased by -2.7 for the visual feedback and 

-2.25 for the kinesthetic haptic feedback, and for AD1 the slope decreased by -2.1 for the visual 

feedback and -4.2 for the kinesthetic haptic feedback). 

 

Table 5- 3  BCI classification accuracy of the visual feedback and the kinesthetic haptic feedback 

of both participants 

 Accuracy for 
visual feedback 

Accuracy for 
Kinesthetic haptic 

feedback 

Subject M SD M SD 

C1 57.25 8.73 64.63 8.63 

AD1 60.25 5.87 66.5 6.74 

 

 

 

 

Figure 5- 10  BCI classification accuracy across the 4 runs with each feedback modality for C1 

(left) and AD1 (right) 
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5.6.2 Spectral Band Power 

Figure 5-11 shows the power spectrum density in channel C3 for the run with the median 

BCI classification accuracy for both participants, and a peak frequency on the power spectrum 

density can be seen in both feedback conditions. The power spectrum density of C1 shows the 

spectrum patterns during MOVE and REST were quite similar. On the other hand, AD1 shows a 

clear peak frequency around 13.5 Hz, and the amplitude of the peak increased during the REST 

and decreased during the MOVE.   

 

Figure 5- 11  Power spectrum density of the EEG channel C3 during MOVE (blue line) and 

REST (red line) for C1 and AD1 

 

The spectral band power differences from REST to MOVE caused by motor imagery in 

the four different frequency bands for C1 and AD1 are shown in Figure 5-12.  For C1, the expected 

band power decreases for MOVE appeared in the high-alpha frequency band, and expected 

increases appeared in the low and high-beta frequency band, for both feedback conditions.  
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However, the amplitude of the power differences was quite small. For AD1, a distinct power 

decrease was detected in the low beta band in both feedback conditions, and small positive or 

negative power differences were observed in the other frequency bands.   

 

Figure 5- 12  Spectral band power of the visual feedback (Top) and kinesthetic haptic feedback 

(Bottom) for C1 and AD1 

 

5.6.3 NASA-TLX 

For C1 and AD1, the workload scores of the kinesthetic haptic feedback were equal or 

lower than the scores for visual feedback (see Figure 5-13).  Small score differences between the 

two feedback conditions were observed from C1, however, larger score differences on the mental 

demand, performance, effort, and frustration were reported by AD1. At the second session, AD1 

commented that she felt tired when she went home after the first session, though she did not realize 

how tired she was during the session. 
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Figure 5- 13  NASA-TLX score of each workload aspect for C1 (top) and AD1 (bottom) 

 

5.7 Discussion 

BCI training using kinesthetic haptic feedback provided significantly more accurate 

classification than conventional visual feedback for ten adult participants without impairments. 

Similar to the adults without impairments, the child participant and the adult who had disabilities 

appear to have had a higher BCI classification accuracy using the kinesthetic haptic feedback than 

using the visual feedback for all the runs. Thus, the kinesthetic haptic feedback was effective for 

improving the BCI classification accuracy during motor imagery for the child participant and the 

adult with physical impairments.  Though we expected improvements in accuracy over time, C1 

and AD1 actually showed a slight decrease in BCI classification accuracy over the 4 runs. The 

sample of study 2 may be too small to discuss the effect of the BCI training over time for those 
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population, however, as mentioned in Study 1, they may need more runs in order to see an 

improvement in BCI performance.  

The child participant did not show much difference in power spectrum density and spectral 

band power differences between REST and MOVE in either feedback condition. According to a 

study by Berchicci et al. (2011), the ERD response can be observed even in infants, and generally, 

the peak frequency of the ERD gradually increases until the age of about 5, so the EEG of the 10-

year-old boy should be close to that of adults. Thus, his power spectrum density would be 

categorized in the pattern of Type 3 in Study 1. On the other hand, AD1 showed a peak frequency 

of around 13.5Hz in her power spectrum density in both conditions. Because the boundary of the 

frequency range between alpha and beta band was set to be 13 Hz, this peak frequency was 

classified as the low-beta band in this study. As seen in Figure 5-11, AD1, the amplitude of the 

low-beta peak increased during REST and decreased during MOVE. From such a behaviour, this 

peak should be considered her ERD response. Even though her ERD appeared at a slightly higher 

frequency than the participants in Study 1, the system was still able to classify her brain activity 

of REST and MOVE.  There was more potential to acquire distorted EEG signals from AD1 

because she often made reactive movements when she realized that the system misclassified her 

movement intention during the task. These reactive movements caused muscular artifact in her 

EEG signals. However, by using the temporal and spatial filters to minimize the artifact and noise, 

her ERD was still detected with this BCI system. Thus, if classifiers are trained for each person 

individually, our proposed BCI system should be able to handle individual differences.  

The NASA-TLX scores of C1 and AD1 have a similar trend to the adult participants 

without impairments in Study 1 with the scores being higher for the visual feedback than the 

kinesthetic haptic feedback, though the scores are higher than those of the adult participants 

without impairments.  This could be because of having less tolerance to wearing the uncomfortable 

EEG cap, concentrating during the motor imagery task, or fixation of the body posture required 

during the task to avoid muscular artifact. The one-hour session may have been too long for C1 

and AD1, judging from the comment of AD1 about being tired. BCI tasks require focused 

attention, and the long BCI sessions often make participants feel tired (Atyabi et al., 2012). Lack 

of concentration and focus during the BCI trials can negatively affect a user’s BCI performance. 
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Therefore, a shorter session time, for example, no more than 30 minutes, would be ideal for BCI 

sessions with children and adults with disabilities.  

This study has limitations, which should be acknowledged. First, due to the small sample size, 

the data can serve only as preliminary data suggesting further research. Secondly, the participants 

in study 2 were asked to drive the car displayed on the screen with their motor imagery, whereas 

the participants in Study 1 controlled the value of the bar indicator. Although the BCI classification 

accuracy between the two studies may not be comparable in the strict sense, the data suggests that 

the BCI system in Study 2 seemed to work to have the same effect as the Study 1. Lastly, because 

of the nature of the game-like graphical user interface, the participants had the visual feedback at 

the same time as the kinesthetic haptic feedback during the task in the Study 2, whereas the 

participants in Study 1 only had the kinesthetic haptic feedback. The multimodal feedback may 

have resulted in higher BCI classification accuracy than the single mode feedback in Study 1 

(Angulo-Sherman & Gutiérrez, 2014). However, the results in Study 2 helped to explore the 

potential of using the proposed BCI system with a younger population and a population of people 

with physical impairments. 

5.8 Conclusion 

The use of kinesthetic haptic feedback with a BCI system resulted in a significantly higher 

BCI classification accuracy than using visual feedback in the study when the system was tested 

with adults without impairments. Visual analysis of the data from a child and an individual with 

impairments also indicated a higher BCI classification accuracy with the kinesthetic haptic 

feedback than the visual feedback. Due to the lower workload required while doing the kinesthetic 

haptic feedback, the kinesthetic haptic feedback could be a feasible method for the BCI training. 

However, no significant improvement of BCI performance was found, even after 12 online runs 

of the BCI training, in either haptic or visual feedback conditions. Providing training for several 

months could be beneficial to examine the potential for improvements in both feedback modalities. 

Also, there is need for the further research to explore using the kinesthetic haptic feedback for 

people with physical impairments. The proposed BCI system was limited to binary classification 

of the movement intention (e.g., REST and MOVE), however, for applications such as robot or 

device control, which is more complex and requires more commands, the use of only BCI signals 

may not be enough. Integrating BCI with other human-technology interfaces using biological 
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signals such as electromyography or eye gaze data could be studied in future research.  Different 

interfaces could be used for different tasks or signals could be combined for redundancy to enhance 

the accuracy of the classifier. 
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Chapter 6 

Integration of an Eye Gaze Interface and BCI with 

Biofeedback for Human-Robot Interaction 

 

6.1 Introduction 

The human-technology interface plays a fundamental role when controlling assistive 

technologies to perform functional activities. Robots can be used as a means for children with 

physical impairments to perform functional play activities, and “human-robot interfaces” are used 

to access them  (Cook & Polgar, 2008). 

A common human-robot interface for people with impairments is a single button switch. This 

is the simplest type of switch and is essentially considered as a binary (on or off) device. Switches 

can be placed at different anatomical locations and made in different configurations depending on 

the user’s abilities. A study by Rios-Rincon, Adams, Magill-Evans, and Cook (2016) successfully 

demonstrated robot control by four children with cerebral palsy using three single button switches 

for “forward”, “left turn”, and “right turn”. 

Another common human-robot interface for people with disabilities is a joystick. Joysticks are 

often used in the field of assistive technology, for example, to control power wheelchairs (Cook & 

Polgar, 2014).  Song and Kim (2013) developed a self-feeding robot for people with physical 

disabilities who have limited arm function. The system had two different types of input methods 

(i.e., switches and a joystick), but the results of a usability evaluation indicated that the joystick 

was the preferred access method. The JACO arm (Kinova Rehab, Montreal, QC, Canada), which 

is designed specifically for assisting people with limited or no upper limb mobility to achieve 

activities of their daily living, is sold with a joystick controller (Maheu, Frappier, Archambault, & 

Routhier, 2011). However, joysticks require a certain degree of physical ability to access and 

operate. To address this limitation, access pathways that do not require abilities to control body 

movement can be used.  
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As eye tracking has become more affordable and accessible to many people, this biological 

signal has been utilized for robot control applications. Eye tracking detects the user’s eye 

movement and determines the location on which the user is focusing (Zander, Gaertner, Kothe, & 

Vilimek, 2011). Arai and Yajima (2011) developed a feeding aid system using a robot arm 

controlled with an eye gaze interface. A small camera was mounted on the tip of the robot end-

effector, the view from which was displayed on a computer screen. The user gazed at the desired 

food on the screen and the robot brought the food close to their mouth so the users could reach it.  

In Encarnação et al. (2017), children controlled a mobile, car-like Lego robot with an eye gaze 

interface to participate in academic activities. Robot commands were displayed on a computer 

screen and children moved the robot by fixating their gaze on the desired movement command.  

Brain-controlled access pathways, often referred to as a brain-computer interfaces (BCI), have 

been emerging as a new type of biological signals-based device control in recent years (McFarland 

& Wolpaw, 2011). Electroencephalography (EEG) is a non-invasive method to record the brain's 

activity with electrodes placed on the surface of the scalp (Nunez & Srinivasan, 2006).  EEG can 

be used to detect the brain activity associated with real or imagined movement, which produces 

changes in the sensorimotor rhythms. Sensory processing or motor behaviour leads to a decrease of 

spectral amplitudes of alpha rhythm in the range from 8 to 13 Hz, known as Event-Related 

Desynchronization (ERD), and an increase of spectral amplitudes of beta rhythm in the range from 

13 to 26 Hz, known as Event-Related Synchronization (ERS) (Pfurtscheller & Neuper, 2010). The 

signals can be detected and classified as physical movement, motor imagery or rest using machine 

learning methods, and then used to control technology.  D. Huang et al. (2009) tested BCIs for 2-

dimensional cursor control based on ERD and ERS during motor execution and motor 

imagery with five participants without impairments. In Cincotti et al. (2008), 14 participants 

without impairments and 14 participants with spinal muscular atrophy or Duchenne muscular 

dystrophy successfully performed 2-dimensional cursor control and mobile robot control with their 

ERD response.  

Eye gaze and BCI have been integrated to control robots. For example, Frisoli et al. (2012) 

developed a gaze and ERD-based BCI driven controller for an exoskeleton for stroke rehabilitation 

to assist the movement of the upper limb in reaching.  An integrated system such as this could be 

a solution for children with severe physical impairments to control assistive robots for play: eye 
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tracking can be used to detect a desired target or destination, and the BCI could be used to move 

the robot towards the target or destination. 

In order to use such a system to control a robot in a physical environment, certain issues need 

to be addressed. With eye tracking, it is important for the user to receive feedback about where the 

tracker is interpreting the gaze in order to support successful gaze interaction. Users are typically   

required to look at a screen to select a robot command and then look at the robot to check the effect 

of the command. However, this forces the user to keep changing their visual attention during the 

robot control and adds another layer of complexity (Encarnação et al., 2017).  An alternative to 

visual feedback is needed, for instance, vibrotactile haptic feedback, which has been used to 

enhance the performance of on-screen gaze interaction (Burke et al., 2006) and off-screen 

interaction studied in Chapter 3. 

BCI using ERD/ERS has the advantage of not needing a stimulus as other BCI applications do 

(e.g., an array of options on a screen for the P300 or indicators flashing at frequencies for Steady-

State Visual Evoked Potentials); however, the classification accuracy is not 100%. Increasing the 

classification accuracy of the user’s movement intention with the BCI is a crucial challenge for 

reliable device control. Kinesthetic haptic feedback while imagining movements could help to 

improve the BCI classification accuracy. Chapter 5 investigated the effect on classification 

accuracy of an ERD/ERS-based BCI system with feedback in the form of passive movement of 

the hand provided by a haptic robot interface.  This approach was chosen based on the finding of 

Gomez-Rodriguez et al. (2010) that passive movements induced EEG patterns similar to those 

observed during motor imagery. The classification accuracy using the system with the haptic 

feedback was significantly higher than that using only motor imagery. Thus, kinesthetic haptic 

feedback may be effective in helping move a  robot towards a target more effectively. 

The main objective of this study was to develop and test an integrated eye gaze and BCI-based 

human-robot interface providing vibrotactile haptic feedback for eye gaze to select targets and 

kinesthetic haptic feedback for motor imagery for robot control.  The research questions were:   

1. Can haptic feedback (vibrotactile haptic feedback for eye gaze to select targets and 

kinesthetic haptic feedback for motor imagery for driving a robot) from the integrated eye 

gaze and BCI-based human-robot interface make functional robot tasks faster?  
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2. Can haptic feedback lead to a lower workload in the functional robot task compared to 

without it? 

 

6.2 Methods 

6.2.1 Participants 

The sample included five male adults without a disability (P1 – P5), aged from 22 to 38 

years (mean 28 ±7.8 years).  The system was also tested with a 52-year-old female with 

quadriplegic cerebral palsy (AD1) who had difficulty handling objects and has been classified as 

Level IV in the Gross Motor Function Classification System Expanded and Revised (GMFCS-

E&R) (Palisano et al., 2007), and Level III according to the Manual Ability Classification System 

(MACS) (Eliasson et al., 2006). Participant AD1 is also affected by strabismus and has difficulty 

focusing on objects with both eyes simultaneously. All the participants had prior eye tracking and 

BCI experience, from a previous study in Chapter 3 and Chapter 4. Ethical approval was received 

from the local Health Research Ethics Board at the University of Alberta. 

6.2.2 Experimental Setup 

The experimental setup of this study consisted of four components, an eye tracking system, 

a BCI system, a haptic feedback system, and a mobile robot as shown in Figure 6-1. A picture of 

the whole system is shown in Figure 6-2.  Details of each system are described below. 
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Figure 6- 1  Schematic diagram of the system in interaction with the user and the task 

environment. 

 

 

Figure 6- 2  Picture of the system with the human-robot interface and the task environment. 
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Eye Tracking System 

The Tobii eye tracker 4C (Tobii Technology, Danderyd, Sweden) was used as an eye 

tracking interface to detect the location of the participant’s eye gaze in the task environment. A 

USB camera (Dynex, Richfield, MN, USA) was mounted over the task environment, which 

acquired the image data of the entire environment. Since the eye tracker is designed to be used on 

a two-dimensional screen, the participant’s gaze was mapped into the two-dimensional plane of 

the task environment by using a projective homogeneous transformation, called a homography as 

shown in Figure 6-3. The 3 x 3 homogeneous transformation matrix was obtained by solving the 

following linear equation (Szeliski, 2011): 

[
𝑥′
𝑦′
1

] = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] [
𝑥
𝑦
1

]      (6.1) 

Where [𝑥 𝑦 1]𝑇 represents the gaze position data when the participant is looking a calibration 

point and [𝑥′ 𝑦′ 1]𝑇 represents a location of the calibration point captured by the USB camera. 

Objects in the task environment were detected by an object recognition program coded in 

LabVIEW, and the locations were obtained. When the participants want to select a target in the 

task environment, they need to fixate their gaze on the target for a dwell time that was set to 1.5 

seconds in all the conditions. A typical dwell time for the gaze fixation is 0.5 to 1 seconds 

(Bednarik et al., 2009), but 1.5 seconds was selected in this study to make sure participants had 

enough time to select the target, based on a pilot testing of the system. If the participant’s gaze 

came off the target before 1.5 seconds and then back on the target, counting of the dwell time 

started over again.  
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Figure 6- 3  Points in the eye tracker space and environment frames, which were related by a 

transformation. 

 

Brain-Computer Interface (BCI) System 

The BCI system included OpenBCI hardware (OpenBCI, Inc., Brooklyn, NY, USA) and 

OpenViBE software (Renard et al., 2010). OpenBCI was used to measure the participant’s EEG 

signals for robot operation. OpenViBE is an open source graphical programming software, which 

is suited to numerous BCI applications, such as a P300 speller or SSVEP-based BCI control, but 

for this study, it was employed with motor imagery. Eight EEG channels over the pre-motor cortex 

of the brain (i.e., Cz, Cp, F3, C3, P3, F4, C4 and P4 of the international 10-20 system), which is 

responsible for motor-related activities, were recorded at a sampling frequency of 250 Hz. The 

reference and bias channels were, respectively, T7 and T8.  After performing a 60 Hz notch filter 

for noise removal and a 7 to 30 Hz FIR band-pass filter to acquire the sensorimotor components of 

the EEG signals, a Common Spatial Pattern (CSP) filter was applied to the signals to extract the 

feature vector of the movement intentions. CSP is a mathematical procedure used in signal 

processing for separating a multivariate signal into additive subcomponents, which have maximum 

differences in variance across two windows (Koles et al., 1990). The logarithmic power of the 

feature vector extracted by the CSP filter was then employed as the input of a Linear Discriminant 
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Analysis (LDA) classifier to discriminate between the participant’s movement intentions of 

MOVE or REST. LDA was selected as the BCI classifier for this study as our preliminary 

experiments demonstrated that it could offer better BCI classification accuracy in comparison to 

other classification methods such as linear Support Vector Machine and Multilayer Perceptron 

(Romero-Laiseca et al., 2019). 

Haptic Feedback System 

There were two types of haptic feedback provided through the interface to the participants 

as biofeedback during the experiment. Vibrotactile haptic feedback was used to inform the 

participants about their gaze location and to help them sustain their gaze on the target. A 100 Hz 

sine wave was generated using a USB stereo sound adapter, which was then sent to an amplifier 

to drive a vibration motor (Bit Trade One, Kanagawa, Japan). The motor was attached to the user 

interface on a Novint Falcon haptic robot (Novint Technologies, Inc., Albuquerque, NM, USA) 

which allowed the motor to be in contact with the participant’s hand when they were holding the 

interface. When the participant’s gaze was within a radius of 4.5 cm from the center point of the 

target, the vibrotactile haptic feedback began. This radius was chosen based on a pre-test to 

minimize the error of the target selection. The intensity of the feedback increased proportionately 

with the length of time the participant's gaze was fixed on the object, to notify them of how the 

dwell time was progressing.  

The Novint Falcon haptic robot interface was used to move the participant’s hand, which 

was placed on top of the user interface, and this provided kinesthetic haptic feedback about the 

EEG signals. The movement of the robot was based on the confidence values of the BCI 

classification of the movement intentions. The confidence of the classification results for the 

movement was calculated in a 0 to 1 value range. When the confidence values were lower these 

matched the classification of REST, and when the confidence values were higher these matched 

to the classification of MOVE. If the confidence value of the BCI classifier was in excess of 0.6, 

the haptic robot interface started to facilitate the movement of the participant’s hand. The force 

exerted on the haptic robot interface by participants was measured to ensure that they were moving 

it by their EEG motor imagery, not physically pushing the end-effecter of the interface. If an 

interaction force over 4N was detected on the interface, the EEG data during that period was 

excluded. In this study, only 1.8 % of the data needed to be excluded. 
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Mobile Robot 

The mobile robot for the participant to control was a Lego Mindstorms NXT (LEGO 

System A/S, Billund, Denmark).  It connected with the PC wirelessly via Bluetooth and was 

controlled based on the participant’s eye gaze (target selection) and EEG signals (move towards 

the target). The Lego robot was placed between two piles of wooden blocks (see Figure 6-1 and 

Figure 6-2), and the task goal was to move the Lego robot to knock down one of the two piles of 

wooden blocks.   

6.3 Procedures 

6.3.1 Experiments 

The participant sat approximately 60 cm away from the eye tracker, which was placed in 

front of the task environment. The haptic robot interface was located beside the participant so that 

it could easily be reached with whichever hand was dominant, and the EEG electrode cap was 

placed on the participant's head.   

First, BCI classifier training was performed in order to design the classifier to discriminate 

the movement intention of the participant. In this experiment, a modified version of the Graz BCI 

training protocol was used, which is one of the most widely used training protocols for BCI studies 

(Jeunet et al., 2016). As BCI training based on motor imagery is regarded as tedious and time-

consuming, in order to make the training more motivating and sustain their attention, it was 

modified to a game-like scenario in Chapter 5. During the BCI training, a car displayed on the 

computer screen moved or stopped according to the traffic light on the screen (see Figure 6-4). 

The task cues for the traffic light were STOP, READY, and MOVE. The training was performed 

with two different task conditions: without and with the kinesthetic haptic feedback. For the task 

without the haptic feedback, the participant’s hands rested in their lap during the training. When 

the traffic light indicated MOVE, the car began to drive from the right to the left. During this 

period, the participants were instructed to imagine their arm moving from right to left.  When the 

traffic light indicated STOP the car did not move, and the participants were instructed to imagine 

no movement. For the task with the kinesthetic haptic feedback condition, the participants held the 

end effector of the Novint Falcon haptic robot interface during the training. The task was the same 

as the without the haptic feedback condition, however, the haptic robot interface facilitated the 

participant’s hand movement from right to left simultaneously with the movement of the car.  
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Figure 6- 4  Graphical user interface for the BCI training 

 

After the training, the participant’s eye gaze was mapped to the task environment using 

homography. A template on which four calibration points were printed was placed in the task 

environment, and the USB camera captured the template image and detected the position of the 

calibration points. The participant then fixated their gaze at each calibration point in turn, and the 

homogeneous transformation matrix was calculated using equation (1). This transformation matrix 

was used for mapping the eye tracker frame to the camera frame of the task environment. 

The task steps were as follows: 1) The researcher gave verbal instructions to the participant about 

which pile of the blocks to knock down; 2) The participant fixated their gaze at the target block. 

When the system determined that the participant's gaze was on a target for more than the 1.5 second 

dwell time, a voice confirmation was given to the participant (i.e., "left target was selected" or 

"right target was selected"); 3) The participant then performed motor imagery of their dominant 

hand to drive the Lego robot until the target block was knocked down.   

The task was done with and without feedback (both vibrotactile haptic and kinesthetic haptic 

feedback). For the task without the haptic feedback, the participant’s hands rested in their lap, and 

no feedback was provided selecting the target or moving the robot. For the task with the haptic 
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feedback, the participant held the haptic robot interface with the dominant hand, so that the 

participant could receive the vibrotactile haptic feedback during the target selection and the 

kinesthetic haptic feedback during the motor imagery. Ten trials were performed by each 

participant in each task condition.  To avoid bias from a learning effect, the order of the task 

condition was counterbalanced across the participants. The task timed out when the participant 

could not select a target and knock down the blocks within 20 seconds.  This occurred in 19 % of 

the trials.  

6.3.2 Measurements and Analysis 

The following items were measured and analyzed in with and without the haptic feedback 

conditions:  

 BCI classification accuracy: The classification accuracy of MOVE and REST based on 

EEG signals acquired in the BCI training was calculated using 5-fold cross-validation.  

 Overall task completion time (measured in milliseconds): The time from the task cue 

until the robot knocked down the blocks.  The task in this study was further divided into 

two parts: time to select the target using eye gaze (Target selection time) and time to 

knock over the blocks with the robot (Robot driving time). 

 NASA-TLX score: The NASA Task Load Index (NASA-TLX) was used to analyze 

subjective mental workload in six different aspects: Mental Demand, Physical Demand, 

Temporal Demand, Own Performance, Effort, and Frustration Level. The participants were 

asked to rate the workload of the system using scales of 0 to 20 on each workload aspect, 

and the total score of the workload was also obtained. 

 

For the overall task completion time, the target selection time, and robot driving time 

within subject paired comparisons with a 95% confidence level were made to analyze the effect of 

the haptic feedback on the robot control task by using a paired-samples t-test when the normality 

assumption was met and the Wilcoxon signed-rank test when it was not. Descriptive statistics were 

used for BCI classification accuracy and NASA-TLX. Participant's related comments were 

transcribed.  
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6.4 Results 

6.4.1 BCI Classification Accuracy during Training 

Table 6-1 shows the BCI classification accuracy of the LDA classifier for each participant 

during the BCI training. Four participants, P1, P2, P5, and AD1 showed higher classification 

accuracy with the kinesthetic haptic feedback while two participants, P3 and P4, showed higher 

classification accuracy without it. The average classification accuracy with the kinesthetic haptic 

feedback for participants without impairments (70.18%) was similar to the average accuracy 

without the haptic feedback (69.37%). For AD1, the classification accuracy without the haptic 

feedback was lower than the average for the participants without impairments, and her accuracy 

with the kinesthetic haptic feedback was the second highest among all the participants. 

 

Table 6- 1  BCI classification accuracy for all the participants 

Subject Accuracy without 
haptic feedback (%) 

Accuracy with 
kinesthetic haptic 

feedback (%) 

P1 58.46 72.04 

P2 70.62 78.95 

P3 75.30 57.79 

P4 80.20 65.49 

P5 66.36 72.56 

AD1 60.34 78.14 

 

6.4.2 Task Completion Time 

Figure 6-5 shows the overall task completion time of all the six participants. All the 

participants achieved the task with the haptic feedback (i.e., vibrotactile and kinesthetic) faster 

than without it. Two participants, P2 and P5, completed the task with the haptic feedback 

significantly faster than without it (p=0.01 for P2 and p=0.01 for P5). The overall task completion 

time for the adult participant with physical impairments, AD1 was the longest time among all the 

participants for both of the task conditions.   
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Figure 6- 5  Task completion time with the different task conditions for all the participants 

 

For the target selection time, no significant difference between the two conditions was 

found for any participant. Four participants, P1, P2, P4, and P5, selected the target faster when the 

vibrotactile haptic feedback was provided, while two participants, P3 and AD1, selected the target 

faster without the haptic feedback as shown in Figure 6-6 (left), but the differences were very 

small. The average target selection time for the participants without impairments was 6.87 ± (2.63) 

seconds for the task without the haptic feedback and 6.64 ± (0.94) seconds for the task with the 

vibrotactile haptic feedback.  

Regarding the robot driving time, all the participants had a faster time reaching the target 

when the kinesthetic haptic feedback was on. Participants P2 and P5 had a significantly shorter 

time for the robot to reach the target when the kinesthetic haptic feedback was provided (p=0.01 

for P2 and p=0.01 for P5). AD1 had the longest time to drive the robot among all the participants 

(see Figure 6-6 (right)) but achieved the task faster with the kinesthetic haptic feedback than 

without it.  The average robot driving time for the participants without impairments was 9.07 ± 

(4.38) seconds for the task without the haptic feedback and 7.09 ± (3.64) seconds for the task with 

the kinesthetic haptic feedback. 
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Figure 6- 6  Target selection time (left) and the robot driving time (right) with the different 

conditions for all the participants 

 

6.4.3 NASA-TLX 

Each participant’s total score on all the six aspects of the NASA-TLX (120 points 

maximum) is summarized in Figure 6-7. The average score for the task without the haptic feedback 

was 57.67 points and for the task with the haptic feedback, it was 48.67 points. The workload of 

the task with the haptic feedback was rated lower by all participants except P3. The score 

differences between the two task conditions for P1, P3, P4, and AD1 were relatively smaller than 

the score differences for P2 and P5. Participants commented that it was easy to use the human-

robot interface with the haptic feedback because the vibrotactile feedback helped them know when 

their gaze was located on the target and the kinesthetic haptic feedback helped them know how 

well they were performing motor imagery. On the other hand, some participants commented that 

the haptic feedback was stressful when it did not behave exactly as they intended. P3 commented 

that it was hard to concentrate on driving the robot when his hand and the haptic robotic interface 

came into his field of vision.  
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Figure 6- 7  Total score of the NASA-TLX ask with the different task conditions for all the 

participants 

 

6.5 Discussion 

The overall target selection and robot control task using the proposed human-robot interface 

was performed faster with the haptic feedback than without it by all the adult participants without 

impairments, with two of them showing significance. More participants demonstrated a faster 

target selection time using eye gaze with the vibrotactile haptic feedback than without it; thus, the 

feedback could have played a role in helping the participants to fixate their gaze. However, the 

difference in the target selection time between the two conditions was not significant, likely 

because there were only two targets and the radius of 4.5 cm for the gaze target acceptance size 

was relatively large. There was no concern about the target acceptance area overlapping with other 

targets, but if there were more targets in the task environment, the acceptance size would have to 

be smaller to avoid selecting the wrong target. In that case, vibrotactile haptic feedback might have 

been helpful to attain the smaller targets, based on the results of Chapter 3.  For the adult participant 

with physical impairments, AD1, her strabismus may have caused the inaccuracy in her gaze 

interaction. However, her results indicated that the 4.5 cm target acceptance size and the feedback 

allowed her to perform the target selection using the gaze fixation in a comparable way to the 

participants without impairments.    
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Regarding driving the robot with motor imagery, it is to be noted that some confounding brain 

activation may have been elicited in supporting the arm against gravity while the participants were 

holding the end-effector of the Novint Falcon. Therefore, the brain activities collected in the 

kinesthetic haptic feedback condition may not be purely brain activities associated with arm 

movement from right to left following the Novint end-effector. Despite this, all the participants 

were able to drive the robot and knock down the target blocks faster in the task with the kinesthetic 

haptic feedback, although the difference was only statistically significant for two participants.  This 

was expected based on the study by Gomez-Rodriguez et al. (2010) who found the sensorimotor 

rhythm could be induced by passive movement.  In their study participants performed a motor 

imagery-based BCI task with significantly higher classification accuracy than visual feedback.  

Almost all of the participants reported that the task with the haptic feedback required a lesser 

workload than the task without the haptic feedback. The larger score differences in the NASA-

TLX for P2, P5, and AD1 between the two task conditions compared to the difference for P1, P3, 

and P4 could be related to task completion time: P2 and P5 were significantly faster, and AD1 was 

somewhat faster, with the feedback. Only P3 rated the task with the haptic feedback as requiring 

a greater workload than that without feedback. His difficulty concentrating when he could see his 

hand move could be addressed by blocking the view of his hand during the task or locating the 

haptic feedback robot interface out of his sightline.      

6.6 Conclusion 

In this study, an integrated eye gaze and BCI-based human-robot interface using haptic 

feedback was developed, and the effectiveness of the haptic feedback in a simple mobile robot 

control task was evaluated. Haptic feedback improved the performance in the overall task. The 

difference in time between with and without feedback for target selection with eye gaze was small, 

however, the difference in time for driving the robot using motor imagery was larger, with two 

participants showing significance. It will be an interesting technical challenge to overcome the low 

accuracy of gaze interaction in a real environment or BCI classification accuracy to achieve 

reliable robot operation (compensating for movement, signal noise, artifact). However, the haptic-

based biofeedback could improve the control over the participant’s physiological activity, and thus 

enhance their performance in robot control tasks. It is also worth mentioning that the positive effect 

of our proposed human-robot interface with feedback was useful not only for most participants 
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without impairments but also for the adult participant with physical impairments, but the results 

might be different with other participants.  Natural physiological functions were used to 

accomplish the steps of the task, i.e., selecting targets with eye gaze, and moving via imagery of 

movement, and they were integrated into one system. 
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Chapter 7 

General Discussion and Conclusion 

 

Chapters 3 through 7 of this dissertation describe the development of a haptics-enabled 

human-robot interface. This human-robot interface enables a user to 1) select a target object or 

destination in the physical environment based on their eye gaze, and 2) move a robot towards the 

target on the basis of their movement imagery as captured via a BCI. In addition, this human-robot 

interface provided two types of haptic biofeedback to the user in order to improve the accuracy of 

the operation: 1) vibrotactile haptic feedback, which helps users to sustain their eye gaze on an 

object, and 2) kinesthetic haptic feedback, which facilitates the passive movement of their hand, 

based on the generated movement intention. 

7.1 Eye Gaze Interface 

To capture eye gaze, instead of using a head-mounted eye tracker to control the robot, the 

method typically used in physical-world gaze application research, we used an inexpensive 

stationary eye tracker. To use the stationary eye tracker, which is designed for on-screen gaze 

application, two features were implemented. First, a homogeneous transformation was used to map 

between the gaze direction detected by the eye tracker and the objects in the physical environment. 

Second, we added feedback if the system was detecting that the user’s gaze was on a target object 

in the environment. The tests of the system showed that target selection in the physical 

environment was significantly slower than on-screen for adult participants without impairments, 

and slower for the children without impairments and adults with physical impairments, based on 

the descriptive analysis. Thus, when considering the final goal of the system, off-screen robot 

control for play for children with disabilities, we will have to take into account that off-screen 

tasks will be more difficult to perform than on-screen tasks.   

In Chapter 3, the adult participants without impairments were able to accomplish the task in 

the physical environment without errors, while the children without impairments and adults with 

physical impairments showed some errors when the target was small. Part of the problem was that 

they had difficulty keeping their heads still during the gaze interaction trials. In particular, the adult 
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with physical impairments, who is affected by strabismus, tended to move her head from side to 

side in an attempt to compensate for her vision problem during the trials. The child participant 

with physical impairments, who was diagnosed with ADHD, had great difficulty in keeping his 

head still and had a greater spread of vertical and horizontal eye movements than the participants 

without impairments. These behaviours may have had an impact, resulting in the higher timeout 

error rate of the adult and child with physical impairments than the participants without 

impairments. Prior to the experiment, when the system mapped the user’s eye gaze into the task 

environment the eye gaze data were accurately calibrated, however, the occasional movements of 

their heads resulted in a loss of the calibration accuracy. Some studies have used a chin rest to 

stabilize the user's head to improve the accuracy of eye tracking (Santini & Rucci, 2007; Zhiwei, 

Qiang, & Bennett, 2006), however, the use of a chin rest would take away the user’s natural gaze 

interaction with the objects in physical environment. A common feature in head-mounted eye 

trackers is a 3-dimentional accelerometer or inertial measurement unit (IMU), to detect the head 

position and compensate for the head movement during the gaze interaction; this helps to 

accurately determine from the camera view of the environment which object in the physical 

environment is being gazed upon (Linn et al., 2014). A similar technique could also be 

implemented in the system with stationary eye tracker to improve the accuracy of eye tracking 

(Al-Rahayfeh & Faezipour, 2015).    

Visual feedback such as a cursor or pointer is commonly used to improve eye gaze interaction 

accuracy in on-screen applications.  In this dissertation, we examined feedback that could be 

alternatives to visual feedback, so that it can be used in off- screen gaze applications. Similar to 

how Kangas et al. (2014) found better performance using visual feedback in on-screen applications 

compared to no feedback, auditory feedback and vibrotactile haptic feedback about gaze fixation 

made the gaze interaction performance statistically faster and more accurate compared with no-

feedback in the off-screen applications in this dissertation. As far as spatial accuracy of the gaze 

interaction in the physical environment in Chapter 3, the smaller the target object size, the slower 

the users were to complete the target selection. These results were consistent with the Fitts' law 

expressing a tradeoff between time of movement and size of target indicating a notion of 

complexity for the pointing target task. The smallest target size that all of the participants tested in 

the gaze interaction in physical environment was 6 cm in diameter. With the no-feedback 

condition, all the target selection trials were successfully completed by the adults without 
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impairments. On the other hand, there were timeout errors for the child and adult with physical 

impairments, but the timeout error rate decreased when the feedback was on. No significant 

difference was found in participant performance between the two feedbacks modalities. Similar 

results can be found in a study of Jussi Rantala et al. (2017), who reported that the performance of 

the on-screen gaze interaction among the different feedback modalities was equal. However, our 

results showed that the users themselves had personal preferences, with the vibrotactile haptic 

feedback being the most common. The results of Chapter 3 also imply that the participants were 

able to perform the cross-modal integration between the visual perception and auditory/vibrotactile 

information (seeing the environment and hearing/feeling feedback) during the gaze fixation in 

order to achieve target selection success. According to the results of the user’s preference, the 

vibrotactile haptic feedback for the target selection was applied to the integrated system in Chapter 

6.  

In the eye gaze studies, the user was required to fixate their eye gaze for a prolonged period of 

time on the target to select it. This dwell selection time is one of the most common selection 

methods for on-screen gaze applications. A longer dwell time gives the users enough time to make 

sure they are selecting the correct target and avoid false selections. However, the longer dwell time 

requires more time to complete the target selection. A different approach for target selection could 

be utilized for the prediction of the user’s gaze data using machine learning techniques 

(Castellanos, Gomez, & Adams, 2017; C.-M. Huang, Andrist, Sauppé, & Mutlu, 2015).  For 

example, C.-M. Huang et al. (2015) investigated a way to quantify how eye gaze patterns may 

indicate a person's intention using a Support Vector Machine algorithm. The authors demonstrated 

76% accuracy in predicting the user’s target of interest, even a few hundred milliseconds before 

the user fixated their gaze on it. This approach could possibly make the gaze interaction faster, 

however, the study also reported that the user did not look only at the target of interest when the 

user wanted to select a target. Several gaze behaviours prevented the correct prediction. For 

example, saccades, rapid eye movements to quickly scan an area of interest, are random 

movements and difficult to differentiate from intended gaze behaviours. Thus, the machine 

learning prediction could result in selecting the wrong target, and thus is not reliable for use for 

robot control yet, especially for children who may not tolerate the errors well.  
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7.2 Brain-Computer Interface 

Subsequently, we examined the feasibility of ERD/ERS-based BCI for robot control. In 

typical use, users can improve the ability of BCI control by monitoring visual feedback about how 

well they are performing the motor imagery displayed on a screen (Alimardani, Nishio, & Ishiguro, 

2014). In many robot applications using BCI, users were often required to look at a computer 

screen where the video image of the robot and visual feedback about their brain activity was 

displayed (Pfurtscheller & Neuper, 2010), or they were required to directly look at the robot 

without having any feedback about the brain activity, except to see the consequences of the robot 

action (Cincotti et al., 2008).  

In Chapter 5, we explored a method for users to directly interact with a robot using the 

BCI, and receive kinesthetic haptic feedback that facilitated their arm movement according to the 

detected movement intention.  In this way, the users could feel the feedback about their motor 

imagery associated with body movement and operate a robot without needing visual feedback. 

Motor imagery-based kinesthetic guidance was studied by Gomez-Rodriguez et al. (2010) who 

reported that a passive movement facilitated by kinesthetic guidance in robot assisted rehabilitation 

exercises induced the brain activities similar to those observed during motor imagery. However, 

in that study the kinesthetic guidance was provided in addition to visual feedback as cross-modal 

integration. In the BCI test conducted in Chapter 5, BCI training using only kinesthetic haptic 

feedback was compared with the Graz BCI training protocol, which provides only visual feedback 

displayed on a screen. The classification accuracy with kinesthetic haptic feedback was 

significantly higher than the accuracy with the visual feedback implying that the participants may 

have perceived the sensory input that their own arm was moving which may have elicited the brain 

activity associated with motor imagery. The motor action and sensing of haptic information are 

processed within the central sulcus region, while visual and spatial information is processed in the 

occipital area located at the back of the brain. The fact that motor action and haptic sensation are 

processed in the same cortical region, resulting in enhancing perception and action coupling, could 

help explain the better classification accuracy with the kinesthetic haptic feedback than the visual 

feedback. Kinesthetic haptic feedback could be a substitute for visual feedback for BCI tasks in 

situations where visual feedback is not feasible, and more studies around the cortical activity would 

help to illuminate the underlying mechanisms.  



118 

 

We also investigated whether repeated runs of the BCI training with feedback could improve 

the BCI classification accuracy over time. No significant improvement in the classification 

accuracy across 12 BCI runs was found in the visual feedback or the kinesthetic haptic feedback 

conditions, though a small positive linear trend for the BCI classification accuracy was observed 

for both feedback conditions. In BCI research, users have undergone repeated training sessions 

from a few days to several months in order to familiarize them with BCI control (Jeunet et al., 

2016; Pfurtscheller, Neuper, Guger, Harkam, Ramoser, Schlogl, et al., 2000).  The 12 BCI runs in 

this study may not have been enough to see a significant improvement in terms of the accuracy. 

Longer-term BCI training needs to be examined in future projects.    

Three types of brain patterns were seen from the participants: 1) a power decrease in the alpha 

frequency band (8Hz to 13 Hz) during MOVE, 2) a power increase in the beta frequency band (13 

Hz to 26 Hz) during MOVE, and 3) a small power difference between MOVE and REST. Brain 

patterns vary depending on the person and cannot be generalized, but in this study the participants 

who had clear power differences in the brain patterns (i.e. Type 1 and Type 2) had higher BCI 

classification accuracy than those with Type 3; Classification accuracy ranged from 63.67 to 

90.28% for visual feedback, and 77.08 to 78.83% for kinesthetic feedback for Type 1 responders, 

it ranged from 56.56 to 81.17% for visual feedback, and 68.54 to 93.83% for kinesthetic feedback 

for Type 2 responders, whereas it only ranged from 53.58 to 60.71% for visual feedback, and 55.78 

to 65.54% for kinesthetic feedback for Type 3 responders.  

For the adult with physical impairments, unique brain activities were observed. The peak 

frequency of her response in both feedback conditions was at 13.5 Hz, which is within the range 

of beta frequency band, however, the power decreased during MOVE. From such a behaviour, this 

should be considered an ERD response, i.e., Type 1.  This peak ERD response frequency was 

higher than that of all other participants without impairments, however, her brain pattern was 

repetitive, and as long as the BCI classifier is uniquely designed for each individual, reliable BCI 

performance can be achieved even with people who have unique brain patterns.  Her average BCI 

classification accuracy was 66.5% for kinesthetic and 60.3% for visual feedback, and the highest 

was 72% for kinesthetic and 63% for visual.   

Even though the participants had different visual perception set ups for the tasks in Chapter 

5 and 6, the results of both studies indicated that the kinesthetic haptic feedback was effective for 
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improving the BCI accuracy.  In Chapter 5, when the kinesthetic haptic feedback was tested during 

BCI training, a blank screen was presented to the participants, so they had no visual feedback 

during the motor imagery tasks. On the other hand, for the task of Chapter 6, when the feedback 

was provided while using motor imagery to move the robot, the participants could see the 

consequences of the robot though no visual feedback on a screen was not provided. The kinesthetic 

haptic feedback resulted in significantly higher BCI classification accuracy than visual feedback, 

based on paired-samples t-test, in the case of Chapter 5 or higher BCI classification accuracy than 

no feedback, based on descriptive analysis, in the case of Chapter 6.  

7.3 The Different Tasks and Robotic Systems 

The eye tracking system and the BCI system were implemented in two different functional 

tasks, using different robotic systems. In Chapter 4, a teleoperation system was used in an object 

sorting task. In this system, eye gaze was used to determine the user’s intended target, which 

generated the location of force guidance of the robot interface to help the users to traverse the 

correct path towards the target. This implementation was an improvement over the system in 

Sakamaki, Adams, Gomez, et al. (2017), where the force was created based on object recognition 

using computer vision and the system never allowed the users to make mistakes. The system in 

Chapter 4 allows the participants to select the target of their own choice using their gaze. The 

results showed that the auditory or vibrotactile feedback improved the performance of the gaze 

interaction. The force guidance did not improve the movement efficiency of adults without 

impairments; however, it did improve the movement efficiency for the adult and child with 

physical impairments. This implies that the force guidance was helpful for the users who had some 

limitations to their movements, but for users without impairments, the force was not necessary to 

perform efficient robot operation. 

In Chapter 6, a mobile robot was used to knock over blocks.  The eye gaze and BCI systems 

were combined to make an integrated human-robot interface. The eye tracker was used for 

detecting a target or destination of the robot in the environment, and the BCI was used for driving 

the robot towards the target. The interface also provided vibrotactile haptic feedback to help the 

users to fixate the gaze on a target object, and kinesthetic haptic feedback passively moving the 

hand in the same direction of the robot motion through the interface. A study of Frisoli et al. (2012), 

who developed an eye gaze and BCI driven controller of an exoskeleton for stroke rehabilitation 
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in reaching exercises, took a similar approach but a head mounted eye tracker was used for target 

selection in physical environment and the exoskeleton facilitated the user’s arm movement towards 

the target based on the movement intention. In that system, the user’s arm was moved as the 

exoskeleton moved. Therefore, the system worked as kinesthetic feedback, which was closing a 

loop between the user’s brain and the movement. The feedback from the exoskeleton assisted the 

user’s arm movement, however, no feedback was provided for assisting the gaze interaction. 

7.4 Eye Gaze and BCI Integrated Human-Robot Interface  

Some eye gaze and BCI integrated interfaces have been studied in previous research, but 

many of them were designed for on-screen applications.  Those integrated interfaces were for the   

control of devices such as a robot and a drone in the physical environment; however, they did not 

provide feedback to help the user to improve the control performance (Hwang et al., 2015; Kim, 

Kim, & Jo, 2014). The interface in Chapter 6 consisted of the eye tracking and the BCI system, 

where each system has a different role in robotic operation, and worked sequentially.  

In Chapter 6, we examined the effectiveness of the feedback (i.e., vibrotactile haptic 

feedback for the target selection and kinesthetic haptic feedback for driving robot) for performing 

the functional robot task. The task with the haptic feedback was accomplished faster than without 

feedback for all the participants, with two participants showing a significant difference. For the 

target selection using eye gaze part of the task, no significant difference in time between the two 

feedback conditions was found. This result was expected because the target acceptance size for the 

gaze selection, a radius of 4.5 cm, was expected to be reasonably large enough for all the 

participants to select a target without timeout errors, according to the results of the Chapter 3. If 

more targets were placed in the task environment, the target acceptance size would need to be 

smaller in order to avoid false selections. In this case, the vibrotactile feedback would likely have 

had more impact on the performance of the target selection. For the portion of the task of driving 

the robot with motor imagery, the kinesthetic haptic feedback helped all the participants drive the 

robot and knock down the target blocks faster than without the feedback.  

7.5 Mental Workload 

Additionally, the NASA-TLX was used to measure the mental workload of the task and 

evaluate the systems in Chapter 5 and Chapter 6. All the participants, except one participant in 
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Chapter 6, reported that the task with the haptic feedback had less workload than the task without 

the haptic feedback. A higher workload overall was reported by the participants with physical 

impairments than the adult participants without impairments in both conditions, however, the score 

difference between the two feedback conditions was larger for the participants with impairments 

than the participants without impairments. Thus, the haptic feedback could be helpful in reducing 

workload while performing the tasks for the both participant groups, but more effective for 

participants with impairments. 

7.6 Limitations 

There were limitations in this study and improvements of these interfaces are needed that 

should be addressed for future studies. First of all, due to the small sample size of the participants 

with physical impairments, the findings in these studies can serve only as preliminary data guiding 

further research.  

Secondly, reliable and constant robot operation was difficult for the participant who had 

involuntary movement and difficulty keeping her body still during the tasks. For the gaze 

interaction, because the user’s eye movement was captured by the stationary eye tracker, 

successful gaze interaction was only made when she could fixate the head position within the range 

of the eye detection. For the BCI, the muscle activities of the body movement led to artifacts and 

noise in the EEG signals that affected the accuracy of the BCI classification. If such noise interferes 

with the EEG signals, it is difficult to detect the brain activities related to movement intention 

correctly, regardless of which filters and classification methods are used. In conventional EEG 

research, such noise and artifacts are removed offline, often manually, however, for the application 

of robot control, the EEG signal conditioning needs to be done on-line and the system requires 

processing the signals in real-time. Despite using temporal and spatial filters, those noise and 

artifacts tended to remain in the EEG, and it resulted in the lower BCI classification accuracy.  

Lastly, the BCI tasks require the ability to maintain focused attention during the trial, and 

the long BCI sessions often made users feel tired. The lack of concentration and focus during the 

BCI trials can negatively affect a user’s BCI performance. Therefore, it is crucial to find a way to 

maintain the participants’ concentration and focus during the trials for BCI use. To address this, in 

the second study of Chapter 5 with the child and the adult with physical impairments, in order to 
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make the BCI task more motivating and sustain their attention, the system was modified to a game-

like activity. The session was generally one hour long, including the system setup and experiments; 

however, this session time may have been be too long for the child and the adult with physical 

impairments, according to the comments from the participants. It usually takes 20 minutes to put 

the EEG cap on a participant, and each session (i.e., classifier training or online run) takes about 2 

and a half minutes. Therefore, one classifier training and two online runs can be conducted in a 30 

minutes session. No more than 30 minutes per session would be a better session length for this 

population group.  

7.7 Future Directions 

It will be necessary to validate the proposed system with more children with physical 

impairments, our target population, to understand how the system could be effective and beneficial 

in their robot operations.   

To better attain reliable and constant robot operation, some technical innovations should 

be implemented. For the eye gaze system to better handle head position movements, an 

accelerometer or inertial measurement unit (IMU) could be used to detect the head position and 

compensate for the head movement for the eye gaze position (Al-Rahayfeh & Faezipour, 2015; 

Linn et al., 2014). In addition, it is not reasonable to ask people with involuntary movement to stay 

still to avoid the BCI artifacts during robot control, thus, possible countermeasures are needed.  

For example, the control sequence of the BCI system could be modified such that when an artifact 

is detected, the system ceases to classify the signal and the robot ceases to move until the EEG 

signals are stable again. In our system, EEG signals were processed with the CSP spatial filter and 

classified with the LDA algorithm, which are said to be a gold standard method used in the BCI 

(Lotte et al., 2018). Different classification algorithms, for example, adaptive classification or 

Riemannian geometry classification method which are more robust to external disturbance, could 

be used to overcome the issue of the noise and artifact during on-line use(Gaur, Pachori, Wang, & 

Prasad, 2018; Lotte et al., 2018).  

For some people who have severe physical impairments, the kinesthetic haptic feedback for 

motor imagery may not be feasible due to arm stiffness preventing them from holding the interface. 

Alternatives to the kinesthetic haptic feedback should be explored for such cases, such as 
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vibrotactile haptic feedback. There is some research examining vibrotactile feedback for motor 

imagery-based BCI tasks. For example, Chatterjee et al. (2007) studied the effects of vibrotactile 

feedback provided to either user’s left or right arm for the BCI classification between left and right 

hand motor imagery and found that the vibrotactile feedback improved the accuracy of the BCI 

classification over the no feedback condition.  Our interface required the classification between 

MOVE and REST, thus, further research is needed to fully understand the effects of the vibrotactile 

haptic feedback in order for it to be applied with our system. 

7.8 Conclusions 

This dissertation demonstrated that the stationary eye tracker, the BCI, and combination of 

the two interfaces allowed users to directly interact with an object or robot in the physical 

environment, without the need for a computer display. In addition, biofeedback modalities, such 

as auditory, vibrotactile, and kinesthetic haptic feedback, added to those interfaces improved the 

participant's control over the gaze and brain activity, and thus enhance their performance of robot 

operations.  For the eye gaze interaction, auditory or vibrotactile haptic feedback for the gaze 

fixation helped in target selection in the physical environment, especially for people who had 

physically impairments. For the BCI, use of kinesthetic haptic feedback improved the BCI 

classification accuracy compared to the visual feedback on a computer display. As the final system 

of the project, the eye gaze and BCI-based human-robot interface were integrated. The participants 

with and without physical impairments successfully demonstrated robot control with the integrated 

interface, and also showed the improvement of the task performance and reported less mental 

workload when the haptic feedback was provided. 

It is also important to mention that the integrated human-robot interface in this study was 

developed with a low-cost consumer eye tracker, BCI, and haptic robot interface.  Typical 

equipment used for eye gaze and BCI research for robot control are generally high quality 

expensive systems, however, those are not affordable for many people who may need the systems. 

This equipment would generally cost at least ten times as much as the total cost of our system. The 

eye tracker, BCI, and haptic robot interface, were only several hundred dollars each to purchase. 

Our proposed interface should be substantially more affordable than the equipment reported in 

those studies. The development of this proposed system could be a step towards the practical use 

of the eye gaze and BCI integrated interface in homes and in hospitals.  
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