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Abstract

This thesis describes the implementation and evaluation of an accurate real-time
voiceband signal classifier for use on T1 trunks in the telephone network. The classifier
is implemented using a standard PC, with a T1 and DSP card. The classifier is trained
to recognize a total of 12 signal classes. These include 4 data modem classes, 4 facsim-
ile classes, random binary, FSK signalling, ringback, and a class containing 12 DTMF
tones. The signal data is first segmented and then classified using both linear and quad-
ratic discriminant functions. A total of 11 feature variables are used by the discriminant
functions including the first 10 values of the normalized ACS, and the normalized sec-
ond-order central moment. A third hybrid discriminant function was also evaluated
that based its decisions on the results of the LDFs and the QDFs. The measured classi-
fication accuracy for all classes approaches 100%, for either the linear and hybrid dis-
criminant functions and a segment size of 2052 samples. The classifier was evaluated
experimentally at four field trials. During the field trials many different T1s were mon-
itored, with a variety of different signal mixes and traffic patterns. From the resulting
experimental databases, busy hour and pie chart graphs were generated which showed

the classification of the traffic into the 12 different classes.
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Chapter 1

1.0 Introduction

This chapter briefly outlines the problem of signal classification in the Public
Switched Telephone Network (PSTN). The main motivations and potential benefits of

this research work are also given.

1.1 Signal Classification in the PSTN

Historically, telephone companies (telcos) have dealt with mainly voice calls
within the PSTN. Thus networks have been designed to best handle the statistical pat-
terns of voice calls. Increasingly, however, the PSTN is being used to transport much
more than just voice calls as shown in Figure 1. Most businesses and many homes now
have fax machines for transmitting scanned and encoded images. With the explosive
growth of the Internet, many computer users access electronic services and “surf the
web” via data modem (modulator/demodulator) connections through the PSTN. With
the increasing usage of modems and fax machines, the original network design parame-
ters are no longer valid. If telcos could distinguish and measure the usage patterns of
these different signal types, they would be in a better position to provision their net-

work to efficiently and profitably handle the changing mixture of network traffic.

Voice?
Data?
Fax?

Customer Customer

Premise P STN Premise

Figure 1: PSTN traffic.



1.2 Potential Benefits of Signal Classification

The ability to characterize traffic on the PSTN should benefit both telcos and
customers. If telcos could classify the traffic, they could modify their billing rates to
better reflect demand. They could also encourage customers to purchase special lines
for their specific needs. For example, if telcos are certain that customers are using
voice lines for mainly Internet usage, they could encourage the customers to purchase
much faster Internet access services such as ADSL (Asymmetric Digital Subscriber
Line). This would divert Internet traffic off of the PSTN, which is advantageous to the
telcos, and customers would be getting services that would be better suited to their spe-
cific needs. Telcos could also apply different compression algorithms to different sig-
nal types if they can distinguish between voice and different classes of non-voice
traffic. For example, if a signal is classified as voice, then the telcos could consider
applying aggressive lossy compression algorithms; however, if the signal is data then

only lossless compression algorithms would be acceptable.

1.3 Presently Available Signal Classifiers

Commercial signal classifiers have already been available for several years,
however these units tend to have several drawbacks. First, the equipment is bulky and
expensive. Second, some classifiers only differentiate between voice and non-voice
traffic. Third, some classifiers need to monitor the entire call to catch the initial setup
information communicated between two modems. Finally, the accuracy of the equip-
ment has been found wanting by one of the telco sponsors of TRLabs (Telecommunica-
tions Research Laboratories). New attempts to approach the voiceband signal
classification problem led to the M.Sc. work of Jeremy Sewall.

The proposed classifier is based on algorithms developed by Jeremy Sewall dur-
ing his work as a masters student at TRLabs and the University of Alberta. Figure 2
shows the basic structure of the algorithms developed by Sewall. These algorithms
involve computing 11 feature variables, namely the first 10 autocorrelation sequence
lags and the second order-central moment, and then using discriminant analysis to

make a decision as to which signal class a finite segment of observed data most likely
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belongs. The algorithms are very simple, accurate, and easily computed for up to 24
simultaneous digital voice channels using a modest 40 MHz Digital Signal Processor

(DSP) [31].

: > 2nd order , >

I central moment | -

| ' . Decision > Séf;zl
Data _| , ' Maker
[nput | [

| Low order |

| % Autocorrelation F——

| Lags |

| I

L e e e el J

Figure 2: Classification algorithm structure.

1.4 Research Summary

This thesis re-examines and improves the algorithms developed by Sewall, and
evaluates them experimentally in a field trial using a prototype classifier. A testbed
classifier was developed on a Personal Computer (PC) under the MS-DOS Operating
System (OS). The classifier was taken on several field trials to verify its performance
for real signals in a real PSTN. The experience of the field trials caused us to add new
signal classes to the ones proposed by Sewall. The data gathered by the field trials
allowed us to retrain the classifier to improve its accuracy, and to help us better under-
stand the limitations of the classifier. As well as the classifier studies, off-line numeri-
cal work was done to evaluate the ability of Quadratic Discriminant functions and
Adaptive Logic Networks (ALNSs) to classify the signal types. Also, the feature varia-
bles were analyzed to determine which subset of variables would yield the most accu-

rate classifications for each method used.

1.5 Thesis Organization

This thesis contains eight chapters. The next chapter provides additional back-



ground information followed by a brief description of the research infrastructure. This
will be followed with a discussion on the implementation and evaluation of the classi-
fier, and finally the results from both field trials and off-line simulations. This is fol-
lowed by a chapter that gives a list of recommendations. Our concluding remarks

include directions for potential future research.



Chapter 2

2.0 Background

This chapter reviews research previously conducted by Nevio Benvenuto and
Jeremy Sewall, which is the prior work most relevant to this thesis. This chapter will
also briefly review technical and theoretical background information that is required in

later chapters.

2.1 Previous Work on Voiceband Signal Classification

The signal classification problem is not a new problem and considerable previ-
ous research has been done in this area. Some researchers have simply looked at distin-
guishing between speech and non-speech. Others have looked at classifying different
types of voiceband data. The methods employed, in many cases, are very similar
including the use of feature variables which are then passed on to some type of decision
maker. Popular feature variables include zero crossings and short-time energies, both
of which provide information of the signal’s power spectrum. I[f signals have different
power spectra they should be easier to classify. One straightforward method would be
to compute the spectrum of a signal, and then use a template matching method to clas-
sify it into one of the candidate classes. This process is computationally intensive and
complicated if many different signals need to be classified in parallel. For a more com-
plete discussion of the previous research work done please refer to [2].

Commercial classifiers are presently available from: CTel (Compression Tele-
communications Corporation, Germantown, MD), Tellabs (Lisle, IL), AT&T, and MPR
Teltech (Burnaby, BC) [2]. The CTel classifier (NET-MONITOR System 2432) classi-
fies calls into three general categories: voice, data, and facsimile. DSP’s are used to
perform traffic classification, tone detection, demodulation, and spectral analysis. The
Tellabs Digital Channel Occupancy Analyser (DCOA) provides features very similar to
the CTel classifier. Using the DCOA, traffic analysis for 10 channels requires 1.1 sec-
onds. The AT&T Voice/Data Call Classifier classifies calls into voice or voiceband

data. The voiceband data category is subclassified into high, medium, and low bit rate
5



connections. The MPR Teltech classifier is called a Service Discrimination Unit
(SDU). The SDU is capable of monitoring up to 16 channels, out of 24, on a T1 in real-
time. It uses four Motorola DSP56001 DSPs (24 MHz clock), and is controlled by two
Motorola 68HCI1! processors.

The Tellabs DCOA was tested by a TRLabs telco sponsor, and was found to
have an accuracy of only approximately 72% [2]. The other systems have not been
tested, nor have their accuracies been reported by the manufacturer. Also, many of the
classifiers rely on knowledge of the call boundaries. In these cases the classifier most
likely relies on call set-up information present at the start of modem and facsimile calls.
Also, many of the units are quite large and expensive.

The next section will look at the relevant research work of Benvenuto, followed

by the work of Sewall.

2.1.1 Benvenuto’s Classification Methods

Benvenuto considered the problem of distinguishing between speech and data
[1]. different voiceband data signals [3], and different modem types and bit rates [4]. In
(1] Benvenuto was able to correctly classify between speech and voiceband data with a
misclassification rate of about 1% using an observation signal segment size of 32 ms.

This was accomplished by calculating two discriminant variables, the autocorrelation at
lag 2 (k.{(2) ), and the central second-order moment (ﬁ2 ), of the envelope of a com-

plex low-pass signal. A block diagram of this classifier is shown in Figure 3. The clas-

sification method is to first take the input signal samples and to derive a complex

sequence, Y(n),by first performing quadrature and in-phase demodulation using a

Sampled
Input Complex | 7 (2
Sional Demodulator y(2) B
: Decision Signal
Algorithm—%
gontim Class
ﬁ?_ p—i>

Figure 3: Block diagram of a Benvenuto classifier.
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mid-passband carrier at 2 KHz and then low pass filtering. The mixing frequency of 2
KHz was chosen as an approximation to the unknown actual carrier frequency. This
results in a discrete time complex baseband signal. The discrete time autocorrelation at
lag k and at time n, using a window consisting of N consecutive samples, is given by
equation (1).

N
R = 5 3 Y+ (D) (Eq 1)

i=1

Note that this is the biased estimate of the autocorrelation sequence because the sum-

mation is divided by the total number of terms, N, not the total number of non-zero
terms, N — |k, available at time N [5]. The normalized central second-order moment is

given by

N, = —=-1, (Eq 2)
where m and m, are defined in equation (3) and equation (4) respectively.

N
l .
my = 53 (@) (Eq 3)

i=1

N
l T
my = 5 2 (DI (Eq4)

i=1
The normalized central second-order moment is in fact simply the variance of the sig-

nal normalized by the square of the mean value of the signal. This can be shown by

first looking at the variance of a random signal [6]

ol = B X)-Ex0?, (Eq 5)

and substituting m, for E(X2 } ,m for E(X) , and finally dividing by mf (the signal

mean squared). Next, the signal amplitude |y(n)| is compared against a minimum

threshold, ¥, . If [Y(n)| >y, . then the next step is to compute the signal energy over



a small window containing L samples. If [y (n)| <y, then the window of samples is
discarded and the next window is checked. This continues until a satisfactory window
of N2 L consecutive samples is accumulated. These calculations will provide the dis-
criminant variables needed by the decision maker.

Benvenuto found that when kd (2) >0 and ﬁ2 <0.3, the signal was most

likely data, otherwise it should be classified as speech. This provides a simple means of
discriminating between speech and data, as illustrated in Figure 4. Using this technique
Benvenuto was able to achieve a very high classification accuracy using 32 ms win-

dows.

Benvenuto's work was the siarting point for the algorithms developed by

Sewall, which will be discussed in the next section.
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Figure 4: Scatter plot for one VBD signal and one speech signal [2].

2.1.2 Sewall’s Classification Algorithms

Sewall’s improved algorithms were able to distinguish between a greater
number of signal types, including speech and several types of voiceband data, with
often near-perfect accuracy. The main changes to Benvenuto’s method were (1) to ana-
lyze the passband signal directly rather than an approximately demodulated baseband
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signal, (2) to use an unbiased estimate of the Autocorrelation Sequence (ACS), and (3)
to use up to ten low-order lags of the ACS as discriminant variables.

Sewall found little advantage in performing complex demodulation in order to
classify a baseband signal. Instead his algorithm performed full-wave rectification on
the passband signal, where rectification can be accomplished by simply stripping the
sign bit from the Pulse Code Modulated (PCM) sample. This simplified operation
results in a non-zero value for the normalized central second-order moment, which still

retains useful information about the signal. This simplification does not change the

equation for 1, , but the definitions for m, and m, must change as noted in equations

(6) and (7), where d (1) denotes the real-valued, full wave rectified, passband signal

segment under test.

N
m o= 4 3 a0 (Eq 6)
i=1
I N ,
my = 5 2,d0)’ (Eq7)

The estimate of the ACS needs to be rewritten as shown in equation (8). Note that this
is the unbiased estimator for the ACS [5]. The unbiased estimator will simply divide
by the number of nonzero terms, N - |k|, rather than the total number of samples, N.

N -k
1 . .

i=1

R, (k) =

So why did Sewall consider the ACS in his search for effective signal features?
Benvenuto had already shown that the central-second order moment is useful when dis-
criminating between speech and non-speech [1]. In addition, the ACS had been shown
to be useful when discriminating between voice and many different types of voiceband
data [2]. The spectral characteristics of a stochastic signal, which are very helpful for
distinguishing different signal types, are obtained by computing the Fourier transform

of the autocorrelation function [6]. This means that the information that is present in
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Figure 5: Power spectral densities of three voiceband signals [2].

the Power Spectral Density (PSD) function of a signal is also available in the ACS.
Figure 5 shows the PSD characteristics of three different voiceband signals sampled
at 8000 Hz. The plot shows that the three signals have very different spectral character-
istics. Figure 6 shows the first 20 values of the ACS for the same signals. Clearly the
ACS are quite different for each signal, and the differences are most evident in the
lower order lags. For lags much greater than 12 the ACS values for most voiceband
signals tend to converge to zero. Hence Sewall decided to consider only the first ten
values of the ACS (one to ten) as discriminant variables. By ignoring all but the first
ten values of the ACS, only an estimate of the PSD is exploited by the classifier. But
we will show later that the loss in information does not reduce the achievable classifier
accuracy.
Using the central second-order moment and lag values of one to ten, Sewall’s

method can distinguish between the classes shown in Table 1.
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Figure 6: Autocorrelations of three voiceband signals [2].
Table 1: VBD, FAX, and speech subclassification classes.
Group No Signals included

I

V.22 and V.22bis forward channels

(28]

V.22 and V.22bis reverse channels

V.34 at speeds greater than 14.4 Kbps

V.29 at all speeds

V.32, V.32bis, and V.17 at speeds greater than 2400 bps

V.27ter at 4800 bps

V.27ter at 2400 bps

Speech

V]| 9]l | | ] w

Random PCM samples
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Sewall used both linear and pseudo-quadratic discriminant functions to classify the sig-
nals based on the 11 feature variables. Sewall used the term “pseudo-quadratic” when
referring to the method used by SPSS software version 6.1 when the “Separate-groups”
covariance matrix option is selected. This option produces decision rules that operate
on the values of the discriminant functions, not the original variables. For this reason
pseudo-quadratic discrimination is not equivalent to true quadratic discrimination

[71[8] but it has similar performance. The relevant theory will be reviewed later.

2.2 Public Switched Telephone Network (PSTN)

Many aspects of the PSTN will be briefly reviewed and discussed in this sec-

tion. Figure 7 illustrates the signal path through the PSTN from one subscriber to
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Figure 7: Customer to customer model.

another. An outgoing analogue signal originates at a telephone set at a subscriber’s
premise and is carried to the Central Office (CO) by a two-wire subscriber loop. Both
the transmitted and received signals are superimposed together in the loop medium.
Once at the CO, a so-called hybrid coupler separates the signal into the transmitted and
received signals. This results in a four wire connection: one pair for the transmitted
signal and one for the received signal. After the coupler, the transmitted signal is
passed through an anti-aliasing filter (not shown) and then converted to digital form by
an Analogue-to-Digital (A/D) converter. In practice the transmit-direction A/D and

receive-direction D/A (Digital-to-Analogue) converters are implemented together in a
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so-called CODEC (Coder/Decoder) integrated circuit. Once at the destination end, the
signal is converted into an analogue signal and the hybrid coupler does the four to two-
wire conversion. The signal is then carried on another subscriber loop to the final des-
tination. Two good reference books that discuss all aspects of the PSTN are [9] and

(10].

2.2.1 Subscriber Loop

The subscriber loop is a twisted pair of copper wires that makes the electrical
connection between the customer premise and the CO. All types of signals such as
voice, data, and fax are carried on this one twisted pair. The subscriber loop introduces
a variety of distortions on the signals, including frequency-dependent attenuation dis-

tortion and envelope delay distortion.

2.2.2 Central Office

Once the analogue signal reaches the CO, the Hybrid coupler separates the
transmitted and received components, thus converting the signal from two to four-wire
form. After this is done the transmitted signal is filtered down to the 300 Hz to 3400 Hz
standard voiceband and then converted to a digital signal. For the PSTN the sampling
rate is 8000 samples/second. After the signal is sampled each value is encoded as an 8-
bit byte using either the p-law or A-law PCM non-linear encoding methods. These
encoding methods use non-linear amplitude compression, called companding, to ensure
a roughly equal Signal-to-Noise Ratio (SNR), despite quantizing noise, at all signal
amplitudes. A-law companding is used in European countries, while p -law compand-
ing is used in North America. For a complete u -law encoding/decoding table refer to
Appendix B.

Each 8-bit PCM codeword comprises a 4-bit quantization code field. a 3-bit
segment code field, and a sign bit. The quantization code makes up the lower order
bits, and the segment code makes up the upper order bits. The sign bit (MSB) is set to 1
for negative and O for positive. Thus 00000000, and 10000000, are both considered to
be 0. Before each encoded sample is transmitted through the network, all bits are actu-
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ally inverted [10]. The decoding circuitry must therefore first invert all bits again
before decoding each received p-law encoded sample. Once the analogue signal is
converted to digital form, no signal loss will occur during transport through the net-
work until the signal is converted back and transmitted to the destination (assuming no
bit errors). The digitizing process will of course add noise due to quantization, how-
ever this noise source is usually very small when compared to other potential line
impairments over analogue connections.

After the PCM samples are encoded, the signal is switched through the PSTN 10
the destination. Once at the destination, the signal is converted back to analogue form
and the hybrid coupler does the 4 to 2-wire conversion. The signal then goes over

another subscriber loop to reach the destination.

2.2.3 Line Impairments

Line impairments can be introduced in the analogue parts of the network,
including the subscriber loops and the hybrid couplers. A practical complication with
the subscriber loop is that each one has different characteristics. For example, each
loop will be of different length, and thus have different attenuation properties. Hybrid
couplers need to interface electrically with each of these subscriber loops, and the
resulting impedance mismatches can in turn be the source of many impairments.

Sewall demonstrated that the classification algorithms are capable of high accu-
racy even in the presence of severe line impairments [2]. For completeness some of the

typical line impairments will briefly be discussed next.

2.2.3.1 Echo Delay

There are two types of echo delay: talker echo and listener echo. Talker echo
occurs when a person is talking on the phone and hears their voice after a finite delay.
This is most noticeable when talking to somebody over the long distance network. Lis-
tener echo is when the person will hear the same thing, but after a finite delay. Again
this is most common in long distance phone calls. The reason for this is the impedance

mismatch between the hybrid coupler and the subscriber loop, which causes the signal
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to be partially reflected. It is most noticeable in long distance calls because of the time

delay incurred when the signal goes from the source to the destination.

2.2.3.2 Attenuation Distortion

Attenuation distortion is introduced while the signal is travelling down the sub-
scriber loop. It is the result of the uneven amplitude-frequency response of the copper
pair. This results in higher frequency signal components being attenuated more then
lower frequency components [9]. Aitenuation distortion would not be as much of a

problem if all frequency components were to be subjected to the same loss.

2.2.3.3 Phase Distortion

Phase distortion is caused by the finite transmission delay a signal will experi-
ence in the system. It is not a problem if all of the spectral components are delayed by
the same amount, but when different frequency components have a different delay, the
phase structure of the received signal will be distorted. This distortion is measured by a
parameter called envelope delay distortion.

The above sections have described how a call is carried through the network.
The next section will briefly introduce how a call is initially set up and taken down.
Signalling in the network can both help and hinder the problem of designing a signal

classifier, as we shall see later.

2.2.4 Signalling

Signalling in telephone networks can be broken into two categories: supervisory
and information bearing as shown in Figure 8. Examples of supervisory signals are
request for service (going off-hook), ready to receive address (dial tone), call alerting
(ringing), and call termination (going on-hook). Basically, supervisory signals convey
status or control of network elements. Information-bearing signals convey information
such as called party address, calling party address, and toll charges. Both of these sig-
nalling categories can be further sub-divided into in-channel and common channel sig-

nalling. In-channel signalling uses the same medium that the call would use to carry
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Figure 8: Signalling in telephone networks.

the signalling information. Common channel signalling uses entirely separate

resources designed to carry only signalling information.

2.2.4.1 In-Channel Signalling

In-channel signalling can be further broken down into in-band and out-of-band
signalling. In-band uses the same band of frequencies that is used to transmit voice,
whereas out-of-band uses frequencies that are outside the voice band. An example of
in-band signalling are dial tone, busy tone and DTMF tones. An example of out-of-
band signalling occurs when a handset goes off-hook. This results in the flow of direct
current in the line.

Robbed bit signalling is another example of in-band signalling in multiplexed
digital trunks. It was used commonly in the PSTN before common channel signalling
was widely implemented, however it is reportedly still used in certain older installa-
tions. Robbed bit signalling steals the least significant bit in the sixth and twelfth frame
of a Superframe on a T1 line [21] [19]. The information from the robbed bits can be
exploited to determine off-hook and on-hook conditions [22]. This would be extremely

helpful in determining call boundaries; however, as mentioned earlier, it is not widely
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used and is being phased out by common channel signalling.

2.2.4.2 Common Channel Signalling

Common channel signalling uses dedicated digital channels to convey signal-
ling information over a parallel network. Figure 9 shows how a call is set-up and
released using SS7 (CCITT Signaling System No. 7) signalling. Note that the only por-
tion of the call set-up signalling is carried in the voice-band. This includes the ringback
signal and the actual conversation or voice-band data. The call setup sequence does not
actually tie up any voiceband transmission circuits until the called party handset starts
ringing. If the called party was on the phone (and did not have call waiting) the calling
party would receive a busy signal. This busy signal would not go through the voice cir-
cuit. Instead of tying up resources, SS7 signalling will connect a source of busy signal
to the calling party at the originating switch. On some long distance circuits, network
in-band resources are not actually reserved until the called party actually answers their
phone. In this case the ringback signal would again be generated locally at the calling
party’s switch.

Originating Terminating Originating
Switch Switch Switch
SS7 Signalling Voice-Band
[nitial Address Message

Address Complete Message
-—

Ringback

Answer Message

Conversation/Voice-band data

Release Message

Release Complete

Figure 9: SS7 call set-up and release message sequence.
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2.2.5 Traffic Analysis

It is important to understand traffic characteristics to properly provision a net-
work to ensure that acceptable levels of service are provided to all customers. Empiri-
cal traffic data is essential to developing accurate mathematical models. A brief
description of the models and network parameters used to provision the PSTN will now
be discussed.

The total traffic actually attempting to access a network is called the offered
traffic, and the traffic actually transported by the network is called the carried traffic.
These two values will not necessarily be the same because of the possibility of call
blocking. Blocking occurs when a call cannot be completed because of inadequate net-
work resources at that particular time. This outcome is usually relayed to the customer
in the form of a fast busy tone. It is desirable to deploy network resources in such a
way as to decrease the probability that a call will be blocked. The holding times and
busy hour are important network characteristics that are used by telephone companies
to predict congested conditions that might lead to call blocking.

The holding time of a call is defined to be the length of time that a call occupies
a two-way voiceband traffic path [9]. For speech traffic the average holding time value
has been determined to be around 2.5 minutes [10]. The busy hour refers to the traffic
volume over one continuous hour for which the traffic volume is the greatest. To meas-
ure the busy hour one would need to measure the carried traffic on a representative
sample of voice circuits of a particular switch over a period of time.

It is important to realize that these traffic characteristics can be very different
for different signal types. For example, Internet connections using modems have aver-
age holding times of considerably more then 2.5 minutes. Figure 10 shows the average
holding time of Internet calls, and Figure 11 shows the average number of overflows
(blocked calls) per line [11]. An overflow occurs when a call cannot connect to the des-
tination and the caller receives a busy tone. Both graphs show a strong dependence on
the time of day. The average holding time during the entire day is 30 minutes, and dur-
ing the daytime is 18 minutes. This is considerably more than the 2.5 minutes average

for speech calls.
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Figure 10: Average holding time per Internet call [11).

Average number of overflows per line

6
Peak hours
gs« T
%4
)
w
= 3¢
v
-
5']1
zo.' . RSN N . AR .
E EEEEEEEEEE E
ﬂﬂﬂﬂﬂﬂﬂ.ﬂ.ﬂ.ﬂ.ﬂ-ﬂ-
. 2838888888888
: NN T 0P S ANANT S DS
: - Time of day

Figure 11: Average number of overflows per line [11].

The growing number of Internet users will increase the offered traffic to the network.
thus network resources need to be increased appropriately if blocking is to be kept the
same as for a speech-only network. The busy part of the day, for the data calls, occurs
later in the evenings from 8 - 10 pm, whereas the busy hour for voice calls is typically
from 10 - 11 am for a typical working day [9]. Network resources need to be re-allo-
cated to account for these two busy hours. The data for both graphs were gathered from

two telcos, who monitored 11 different Internet Service Providers (ISP) [1 1].
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2.3 Discriminant Analysis

Discriminant analysis is a statistical technique which allows one to study the
differences between two or more groups of objects with respect to several characteristic
or feature variables simultaneously [12]. Discriminant analysis is used widely in many
different areas of research such as the social sciences, medicine, and economics. Sim-
ply put, discriminant analysis permits the automatic classification of items belonging to
one group into distinct groups or classes based on the values of the feature variables.
To use the technique, one needs to first determine the individual classes, feature varia-

bles, and finally the discrimination method.

2.3.1 Discriminant Groups or Classes

The classes into which unknown data observations must be allocated need to be
mutually exclusive, meaning that an observation cannot belong to more than one class
[12]. Discriminant variables must be chosen appropriately to resolve effectively
between two or more desired classes. Also, as the number of classes increases. the

number of computations required to resolve the classes usually increases.

2.3.2 Discriminant Variables

The discriminant feature variables, henceforth called variables, are used to
resolve the classes. It is important to include the most effective variables to maximize
the classification accuracy. For example, discriminant variables should be chosen so no
variable is a linear combination of the other {12]. Intuitively this makes sense since
including a functionally dependent variable does not add any more information. One
example of a feature variable could be a threshold value. One of two classes could be
chosen depending on whether a feature variable value is above or below a certain
threshold value. In practice we will see that six variables leads to maximum classifica-

tion accuracy for our problems.

2.3.3 Discrimination Method

Given a set of variable inputs, the decision maker outputs the class that the cur-
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rent data item should be allocated to. This section will discuss the different decision
makers evaluated in this thesis. First, we give definitions of some important statistical

parameters.

The sample mean % of a data set with N data observations x; of a variable x is

given by equation (9) [15].
¢ 1
t = ‘,(, E (Eq9)

The variance for variable x is given by equation (10) [15].

Var(x) = St ==l (Eq 10)

An equivalent and more common way to evaluate the variance is shown in equation

(1) [15].

N , ,
z X - Nx~

Var(r) t' = lz—lNT (qul)

LJ

The variance gives a normalized measure of how much the observation data is scattered

about the mean. The covariance is shown in equation (12) [8].

N
z Xy —XyN
Cov(x,y) =R ==L __ (Eq 12)

N-1

The covariance gives a measure of how statistically correlated two data sets are. If the
two variables, x and y, are statistically independent, then the Cov(x,y) = 0 [15]. Note
that the Cov(x,x) is just the variance of x, i.e. Var(x) [15]. The covariance matrix of a

random vector v is denoted by Cov([v] and is defined by [14]:
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i Var(v) Cov(v[,vz) . Cov (v, vm)—
Cov[v] = Cov (v,, vi)  Var(v,) ... Cov (v, v,) (Eq 13)
Cov(vm,vl) Cov(vm, v,) ... Var(v,)

An important property of the covariance matrix is its symmetry about the main diago-
nal.

The following variables will be used to describe the linear and quadratic discri-
minant functions. Assume that there are p feature variables and g classes. Further
assume that:

* xis acolumn vector of length p containing the values of the one or more variables
for this observation.

* W, is acolumn vector of length p containing the means of the variables calculated

from the observations in class i.
* R, is the covariance matrix calculated from the observations in class i.
. Rp is the pooled covariance matrix.
* =, is the prior probability than an observation is in class i.
The pooled covariance is obtained by taking the element-wise average of the separate

group covariance matrices, R;.

2.3.3.1 Linear Discriminant Functions

Linear discriminant functions (LDF) are used to determine which class an
observation belongs to by minimizing the squared distance, also called the Mahalano-
bis distance, to the mean value of the expected observations for each class. The

squared distance is given by:

4 (x) = (x=p)E' (x-n), (Eq 14)

-1 .. ]
where R f denotes the matrix inverse of R e and where (x- ) denotes the transpose

of (x—u,) [13]. Expanding terms and simplifying gives:
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2 R | =]
d (x) = —Z[piRp =W R |+ xR (Eq 15)

The linear term inside the square brackets is called the linear discriminant function
(LDF) for class i. The larger the linear discriminant function, the smaller the squared
distance. An observation is classified into the class that results in the largest value for
the linear discriminant function, which also results in the smallest squared distance.

The bracketed part in equation (15) can be rewritten as follows:

g;(x) = Ax+B, (Eq 16)
y =l

A = WR (Eq I7)
— l ' —l

B = ‘5“:’Rp M, (Eq 18)

The coefficients A and B are sometimes called the Fisher linear discriminant function
coefficients [7]. Using the LDF to do classification is statistically optimal under the

assumptions that the individual group covariance matrices, R;, are all equal, and that the

feature variables all have a multivariate normal distribution [18]. If this assumption is
not true, then the consequence of using the LDF anyway will be sub-optimal classifica-
tion accuracy [12]. In practice, using the LDF while violating the conditions slightly

still leads to acceptably accurate classifications for many problems.

2.3.3.2 Quadratic Discriminant Functions

Quadratic Discriminant Functions (QDF) do not require that the individual

group covariance matrixes, R;, be equal. The squared distance from the observation to

the mean is given by [13]:
4; (x) = (x-m)'R (x=m) +In|R}. (Eq 19)
Expanding terms results in the following equation:
d; (x) = (2)WR; 4+ xR x+m R 'm, + In|R) . (Eq 20)
The last two terms of the equation can be computed and combined into one constant for
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each class i. The first two terms are a function of the p-element observation vector x,
and thus they must be calculated for each observation x. The QDF method is useful in
classification if the separate group covariance matrices are very different. The price
paid is increased computational complexity. Note that using the QDF yields statisti-
cally optimal classifications only if the feature variables have a multivariate normal dis-

tribution [18].

2.3.3.3 Linear and Quadratic Decision Rules

To classify a new observation into a class, the linear or quadratic discriminant
function first needs to be evaluated for each class. Then a decision rule is used to pro-

duce the class decision. The decision rule that applies for LDFs is shown in equation
(21) [17], for all distinct class indices / and j in the possible range 1,2,3,...,i.

w;(x) = g(x) -g;(x) > lnth— Inm, (Eq21)

Prior probabilities T, and m, are the probabilities of obtaining observations from

classes j and /, respectively. If the prior probabilities are all equal, then an observation

x is classified into the class / which has the largest value of u ;- For QDFs equation

(21) 1s still valid; however, the values from equation (20) must first be negated before

evaluating equation (21).

2.3.3.4 Pseudo-Quadratic Discriminant Functions

The term pseudo-quadratic was coined by Sewall in [2] to describe the quad-
ratic discriminant functions used by SPSS. Since SPSS uses the discriminant function
values to classify observations, and not the original variable values, the classifications
do not follow a statistically optimal rule [7]. However, the decisions obtained using the
functions and their covariance matrices are often not too different from those obtained
using covariance matrices for the original variables [7]. For a complete description of

this method please refer to [7] and [8].
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2.3.3.5 Adaptive Logic Networks

Adaptive Logic Networks (ALNs) are classification methods produced by a
general classification software package developed by Dendronic Decisions Limited of
Edmonton, Alberta, Canada. The technique combines aspects of both linear and quad-
ratic discrimination techniques. Linear discrimination can be viewed as placing hyper-
plane decision boundaries to optimally partition clusters of observations in the N-
dimensional feature variable space. Quadratic discrimination, on the other hand. uses
ellipsoids to form the decision boundaries. ALNs use piecewise linear methods to
develop yet more flexible boundaries between classes. The computation of these
boundaries is determined by several user-defined variables during a proprietary training
phase [16]. The first step in classifying a new observation is to determine which linear
segment in each variables’s domain needs to be evaluated. This is done efficiently with
the help of a decision tree. Once the relevant linear segment has been determined. it is

a matter of evaluating an equation for each group.

2.4 Signal Types

The classification algorithms developed by Sewall are able to classify between
many different signal types that are present in the PSTN. Those signal types will be
briefly described along with others that we added to make the set of classes more com-

plete.

2.4.1 Speech

Speech is a very complex signal type. The characteristics of speech change
depending on the sex, age, regional accent, mood, etc. of an individual. The standard
voiceband on the telephone network, as noted earlier, ranges from 300 Hz - 3400 Hz
[9]. Speech signal power is concentrated typically in the lower parts of the voiceband,
whereas for modulated data the signal power is typically uniformly distributed about a
mid-band carrier frequency. An additional complication in speech is the presence of
silent intervals, which vary in frequency and duration depending upon many factors,

such as the age and sex of the talkers, and the nature of the call.
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24.2 V.17

The V.17 recommendation defines voiceband data signals that are intended for
high-speed facsimile applications [23]. The majority of fax machines currently in serv-
ice use the older V.29 standard. V.17 is commonly available in new fax machines, and
most fax modems available for PCs. This standard will gain in popularity as it operates
at a maximum bit rate of 14 400 bps (bits per second), whereas the older V.29 standard
operates at a maximum bit rate of 9 600 bits/s. The basic properties of the V.17 stand-
ard are shown in Table 2. Note that four possible operating modes are specified. The
three slower “fall-back™ modes are intended for use over degraded connections. The
carrier frequency is 1800 Hz, with Quadrature Amplitude Modulation (QAM) at 2400
symbols per second, using half duplex transmission. All bit rates use trellis coding
(TC) at all data rates to gain additional protection against bit errors in the received sig-

nal.

Table 2: V.17 properties.

Bit Rates Constellation
(bps) Size
14 400 128 point - TC
12 000 64 point - TC
9600 32 point - TC
7200 16 point - TC

24.3 V.22

This recommendation allows for data rates of up to 1200 bps with full duplex
operation. Given the affordability of high-speed modems, this standard was, for the
most part, obsolete until the advent of point-of-sale terminals. Point-of-sale terminals
are used at retail locations to process purchases made by debit and credit cards. Interac
Direct Payment (IDP) transactions alone in Canada topped one billion in 1997 (not
including credit card purchases) [32]. The point-of-sale terminals utilize lower bit rate

modem protocols such as V.22 and V.22bis. Thus, instead of disappearing from use,
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these protocols are increasingly used on the PSTN and hence this class cannot be
ignored by any useful classifier. V.22 transmits data at 600 baud using Differential
Phase Shift Keying (DPSK) as the modulation method. Two carrier frequencies of
1200 and 2400 Hz are used, one for transmitting and one for receiving. Table 3 shows

the two different possible modes of operation.

Table 3: V.22 properties.

Bit Rates Constellation
(bps) Size
1200 4 Point
600 2 Point

2.4.4 V.22bis

This recommendation, originally intended to replace V.22, allows for data rates
of up to 2400 bps using QAM and a symbol rate of 600 baud at each data rate. The
transmitted and received signals are separated by using two carrier frequencies: one at
1200 Hz, and one at 2400 Hz. As mentioned above, this recommendation is commonly

used to complete IDP or credit card transactions over the PSTN at retail stores.

Table 4: V.22bis properties.

Bit Rates Constellation
(bps) Size
2400 4 Point
1200 2 Point

2.4.5 V.2Tter

This recommendation was developed for facsimile applications. It supports
data rates of 2400 bps and 4800 bps using DPSK modulation at both data rates. The
carrier frequency is 1800 Hz for both the transmit and receive signals. Most facsimile
machines use the faster V.29 standard; however, V.27ter is usually available as a fall-

back mode in the event that the communicating facsimile machines are unable to con-
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nect using the faster V.29 standard.

Table 5: V.27ter properties.

Bit Rates Constellation Symbol
(bps) Size Rate
4800 8 point 1200 baud
2400 4 point 1600 baud

24.6 V.29

The V.29 recommendation is a facsimile standard which supports data rates of
up to 9600 bps. The carrier frequency is 1700 Hz, and the symbol rate is 2400 baud.
This standard supports both full and half duplex modes of operation, while using com-
bined amplitude and phase modulation. This standard is, at present, the most com-

monly used facsimile standard.

Table 6: V.29 properties.

Bit Rate Constellation
(bps) Size
9 600 16 Point
7200 8 Point
4 800 4 Point

24.7 V.32

V.32 allows for data rates at up to 9600 bps, in full duplex mode, using a symbol
rate of 2400 baud. The carrier frequency is 1800 Hz for both signal directions, and
echo cancellation techniques must be incorporated to separate the transmitted and
received signals. V.32 uses QAM and trellis coding techniques as well as a 16-point
constellation. The 16-point constellation is an alternative to trellis coding, used only

for 9600 bps connections. The properties for V.32 are summarized in Table 7.
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Table 7: V.32 properties.

Bit Rate Constellation
(bps) Size
32 Point - tc
9 600 or
16 Point
4 800 4 Point

2.4.8 V.32bis

The V.32bis recommendation improves upon the V.32 recommendation by sup-
porting bit rates of up to 14400 bps in full duplex mode. V.32bis uses a symbol rate of
2400 baud, and a carrier frequency of 1800 Hz. QAM modulation is used at all bit rates
and trellis coding techniques are used at all but the 4800 bps data rate. V.32bis must
also incorporate echo cancellation techniques to separate the transmitted and received

signals.

Table 8: V.32bis properties.

Bit Rate Constellation
(bps) Size

14 400 128 Point - tc
12 000 64 Point - tc

9 600 32 Point - tc
7 200 16 Point - tc
4 800 4 Point

2.4.9 V.32 terbo

V.32 terbo is not an ITU (International Telecommunication Union) standard:
rather, it is a proprietary modem protocol developed by AT&T. V.32 terbo increased
the maximum bit rate to 19200 bps from the previous maximum of 14400 bps attaina-

ble using the V.32bis standard. At the time that was a feature that could be sold to cus-
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tomers, resulting in many modem manufacturers supporting this protocol.
Unfortunately, information regarding the symbol rate, carrier frequency, modulation,
and coding methods does not appear to be in the public domain as it is a proprietary
protocol. We believe that since this is an extension of the V.32bis standard, it is most
likely using many of the same parameters as V.32bis. This protocol did not gain in pop-
ularity once the V.34 recommendation was passed by the ITU, which allowed for data
rates of up to 33600 bps. It should be noted that many modems are still capable of con-
necting using V.32 terbo: however, such connections are unlikely if the modems also

support the superior V.34 standard.

2.4.10 V.34

The V.34 recommendation is by far the most complex voiceband data standard.
Trellis coding and QAM are used for all bit rates, which vary from 2400 bps up to
33600 bps. V.34 supports both full and half-duplex modes of operation. The carrier
frequency and baud rates are both variable depending upon line conditions as measured

during an elaborate initial training sequence. The constellations are all subsets of a

Table 9: V.34 carrier frequencies and supported baud and bit rates.

Symbol Low Carrier | High Carrier Bit Rates
Rate (Hz) (Hz) (bps)
2400 1600 1800 2400- 21800
2743 1646 1829 4 800 - 26 600
2800 1680 1867 4 800 - 26 400
3000 1800 2000 4 800 - 29 000
3200 1829 1920 4 800 - 31400
3429 1959 1959 4 800 - 33 800

1664-point superconstellation. In practice, connecting at 33600 bps requires rarely
occurring ideal line conditions. From personal experience, even the 28 800 bps data
rate is difficult to negotiate. Most newer modems support the V.34 standard since, as

well as high bit-rate modes, the recommendation also provides an extensive series of

30



fall-back modes down to 2400 bps that can be used in increasingly impaired line condi-

tions. For details on the V.34 standard please refer to [27].

24.11 V.90

The ITU adopted the V.90 standard on February 6, 1998 [33]. This standard
incorporates two competing standards in use prior to the official V.90 agreement. The
V.90 standard supports download speeds at up to 56000 bps, and upload speeds at up to
33600 bps [28] [29]. V.90 obtains the higher download bit rate by using techniques that
ensure greater control over the digital PCM codes that are transmitted in the down-
stream direction. This greater control is achieved after the downstream transmitter
recovers the sampling timing and then uses that timing to ensure that precise analogue
voltages are presented to its local CODEC'’s coder circuit. The end result is that the
downstream transmitter gains access to the downstream path as if it were a digital pipe
at 56 kbps. Pulse amplitude modulation (PAM) is used as the analogue modulation
method over the two subscriber loops. The entire upload path still uses the older V.34
standard. Thus, within the PSTN, one direction of a V.90 call will look like a V.34
modem, and the other direction will look like a purely digital 56 Kbps data connection.

For a detailed explanation of V.90 refer to [28] and [29].

2.4.12 Ringback

Ringback is a return signal to the calling subscriber telling them that the dialed
party’s set is being rung [9]. The actual signal sent to the calling subscriber’s handset is
a 20 Hz signal at a level of 86 Vrms for ringer excitation [10]. In North America the
signal is applied repeatedly for two seconds and then removed for four seconds [30].
Ringback is useful for identifying the call boundaries of monitored voice channels:
however, when calls are transferred from one person to another (typically when calling
large companies), the ringback signal may again be generated. In this circumstance the
call did not end, and a new call begin, even though the ringback signal was again briefly
present. Caution must therefore clearly be exercised when using ringback to identify

the start of calls.
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2.4.13 FSK Signalling

Frequency Shift Keying (FSK) signalling appears within facsimile calls. It is
used initially to negotiate connection parameters and, then at the end of the transmis-
sion, to signal the end of the connection. It is also used between transmitted pages to
indicate the end of one page and the start of a new page. FSK signalling is thus used to

convey control information between the two modems.

2.4.14 DTMF Tones

Dual Tone Multi Frequency (DTMF) tones are used to communicate the dialed
number from a telephone handset to the CO. Each digit is encoded using two frequen-
cies, a row and a column frequency. The row and column frequencies are shown in
Figure 12 [30]. The twelve signals in the first three columns are commonly found on
all telephone handsets. The signals in the last column, labelled “ABCD”, have appar-
ently been used in private (e.g. military) networks [30]. The DTMF tones must be
present for at least 40 ms and must have a 40 ms gap between tones to ensure accurate

decoding [30].

1209 Hz 1336 Hz 1477 Hz 1633Hz

NN

697 Hz — | | A§C DEF A
770 Hz ——= | GHI| [JKL] [MNO] 1 57
4 5 6 | !

852 Hz ——s | PRS | [TUV] [WXY] 1 7
7 8 9 Lo

94| Hz ——p | * 0 # |, D,
[} I

Figure 12: DTMF tone frequencies.

32



2.4.15 Binary Traffic Types

The binary class was created to encompass the many different types of digital
traffic commonly found on the PSTN that appear to an observer to be random bit
streams. For example, companies may lease channelized T1s from telcos for strictly
digital data transmission. The protocols used could be proprietary, or they could follow
a standard such as frame relay. In either case this would be considered to be binary
traffic if the bit streams appear sufficiently random. Another example of signals that
belong to this class is the in-band signalling carried by T1s. In North America. signal-
ling is generally carried by a separate parallel packet switched network and not by
voice circuits. In some circumstances, however, this separate signalling network is not
available, such as at remote base stations in wireless networks. In these cases, one
reserved channel in a T1 could be used to carry this signalling information. Another

class of binary traffic is the V.90 downlink mentioned in the previous section.

25 T1

T1 is a physical layer digital communications standard that supports the trans-
mission of digitized voice and data at a rate of 1.544 million bits per second (Mbps)
[20]. T1 was first introduced in the 1960s and was initially used by telephone compa-
nies who wished to reduce the number of telephone cables in large metropolitan areas
by multiplexing many voice channels onto each T1 connection. In Europe the corre-
sponding trunk standard is the E1, which has a 2.048 Mbps data rate. Digital trunks,
such as the T and E!, permit many calls to be muitiplexed together on one physical
connection. Within switches and COs, such trunks form a convenient and efficient unit
for handling connections. The following discussion briefly describes the organization
of a T1, the different framing formats, and different coding techniques. For a more in

depth discussion of T1 please refer to [19] and [20].

2.5.1 T1 organization

A channelized T1 line has 24 separate time slots for voice channels that are

multiplexed onto a single line using Time Division Multiplexing (TDM). Each channel
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Figure 13: The T1 superframe.

provides 64 thousand bits per second (Kbps) to transmit an analogue signal that is sam-
pled at 8000 samples per second, with 8 bits per sample. In North America, these sam-
ples are the PCM p-law encoded. Each 64 Kbps channel is also commonly referred to
as a Digital Signal-Level Zero (DS-0). In addition to 24 time multiplexed DS-0’s,
framing bits are inserted into the bit stream at a rate of 8 Kbps. The framing bits are
used at the receiver to allow the DS-0’s and other signalling information to be recov-
ered. The resulting signal has a total bit rate of 1.544 Mbps. A channelized T1 is also
commonly referred to as a Digital Signal-Level One (DS-1).

2.5.2 T1 Framing Formats

Two framing formats are used on T1 lines: the SuperFrame (SF) and the
Extended SuperFrame (ESF) formats. A SF is a data structure involving [2 consecu-
tive frames, with each frame containing one sample from each of the 24 channels. The
frames are organized using the so-called D4 framing pattern that is present in the fram-
ing pattern [19]. The D4 framing pattern contains control bits, when combined. form a
twelve bit control word for each 12-frame SF. The odd bits in the control word, called
the terminal frame or FT bits, mark frame and superframe boundaries. The even bits in
the control word, called signalling frame or FS bits, identify the frames carrying signal-
ling information. To enable the sharing of signalling bits by all frames, D4 framing
uses “‘robbed bit” signalling. In this technique, the least significant bit in all DS-0s in
the sixth and twelfth frames is reserved for signalling information (and the correspond-
ing data bits are discarded). A new superframe is recovered from a T1 every 1.5 ms.

The ESF frame format is very similar to the SF format except that the ESF for-
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mat is composed of 24 frames, each containing a sample from each of the 24 channels.
The ESF was introduced to permit the testing of a line without requiring it to be taken
out of service. The control word contains a total of 24 bits. Six bits in the control word
are reserved for a Cyclic Redundancy Check (CRC) code, twelve bits are reserved for
use by the transmitting and receiving equipment at either end of the link, and six bits
are used to manage signalling and framing. The remainder are used for the evaluation

of the circuit performance. A new ESF is recovered every 3 ms.

2.5.3 T1 Line Coding Techniques

The logical 1s and Os are transmitted electrically using Alternate Mark Inver-
sion (AMI) signalling. In AMI a | is coded by a pulse, and a O with the absence of a
pulse. Subsequent ls are encoded using alternating positive and negative pulses. See
Figure 14. The AMI format is considered bipolar because of the positive and negative
pulses. It is critical that the signal maintain a certain amount of ones density so that
equipment along the line has something to frame on to regenerate the signal. To
accomplish this, a coding technique known as Bipolar with 8-Zero Substitution (B8ZS)
is widely used. This coding format ensures that 8 consecutive zeros are never transmit-
ted down the line by inserting logical Is into the bitstream. This gives equipment a
pulse to frame on to, even while transmitting long streams of logical 0s. Our classifier

will be shielded from the details of line coding by a standard T interface circuit.
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2.5.4 Fractional T1

Fractional T1 was introduced to allow customers to lease a fixed part of a T
circuit. This saves money as the customer does not need to pay for leasing an entire T1
line. This service allowed customers to purchase T1 bandwidth in 64 Kbps (DS-0)
increments. As far as a signal classifier is concerned, a leased fractional T1 data service

will appear like several (often adjacent) DS-0 channels carrying binary traffic.

2.6 Higher Bit Rate Trunks

Modern telephone networks make extensive use of higher bit rate trunks than
Tls and Els. In fact, trunk signals are organized into synchronous digital hierarchies.
with multiple trunk tributaries at the same nominal bit rate being multiplexed into even
higher bit rate trunks. Thus a DS-2 trunk consists of four multiplexed DS-1's, and a
DS-3 consists of seven multiplexed DS-2s (or 28 DS-15s).

A T3 line is capable of carrying 28 T1s, or 672 DS-0s. The total bit rate of a T3
is 44.736 Mbps. The term, T3, is actually the unofficial name used for the official term.
DS-3. T3s would typically be used as long distance trunks by telcos, large companies
and larger ISPs. Tables 10, 11, and 12 list the various digital hierarchies used in North
America, Japan, and Europe [9]. Note that “Level 4™ hierarchy was never accepted as a

standard although proprietary schemes were developed.

Table 10: Higher-level PCM multiplex comparison for North America.

Level | Level 2 Level 3 Level 4
(DS-1) | (DS-2) | (DS-3) | (DS-4)
No. voice 24 96 672 4022
channels
Bit rate 1544 |  6312| 44.736 | 274.176
(Mbps)
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Table 11: Higher-level PCM multiplex comparison for Japan.

Level 1 Level 2 Level 3 Level 4 Level 5
No. voice 24 96 480 1440 5760
channels
Bit rate 1.544 6.312 | 32.064 | 97.728 | 400.352
(Mbps)

Table 12: Higher-level PCM multiplex comparison for Europe.

Level | Level 2 Level 3 Level 4 Level 5
(E-1) (E-2) (E-3) (E-4) (E-5)
No. voice 30 120 480 1920 7680
channels
Bit rate
2.048 8.448 34.368 | 139.264 560.0
(Mbps)

In addition to the synchronous digital hierarchies described, there exists a more
recent hierarchy of fully synchronous signals that were developed for digital signal
transmission over optical fibre. These signals belong to the very similar Synchronous
Optical Network (SONET) and Synchronous Digital Hierarchy (SDH) standards. In
North America it is common to package DS-3 signals into 51.84 Mbps OC-| signals in
the SONET hierarchy. Multiple OC-1s are then synchronously multiplexed into the
622.08 Mbps OC-12 and 2.49 Gbps OC-48 SONET connections that form the back-
bone of the present long-distance network.

With respect to our signal classifier, we restricted our investigations to T1
trunks as they are expected to remain a major unit of transmission in telephone
exchanges and wireless base station networks. Access to T1 signals is widely available

on switching equipment patch panels using inexpensive bantam jack cables.
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Chapter 3

3.0 Research Infrastructure

The bulk of our research was completed at the Edmonton laboratory of TRLabs.
Field trials were conducted in cooperation with TELUS Corporation (a TRLabs Indus-
trial Sponsor) at their maintenance engineering lab and at the main toll building in
downtown Edmonton. Additional field trials were conducted at base stations in
Edmonton and Calgary in the wireless network of TELUS Mobility. Various different
hardware and software tools were utilized to build and improve the prototype voice-

band signal classifier. All of these items will be discussed in the following sections.

3.1 Voiceband Signal Classifier Prototype Specifications

The prototype voiceband signal classifier is simply a PC with specialized off-
the-shelf hardware and custom software running under the MS-DOS operating system.
The PC platform was chosen because it is affordable and commonly available, with
many third party vendors developing both hardware and software that is compatible

with the PC architecture.

3.1.1 PC Hardware Specifications

The PC host system has a generic 486 PCI (Peripheral Component Intercon-
nect)/ISA (Industry Standard Architecture) bus motherboard with a 486 DX4 CPU
(Central Processing Unit) clocked at 100 MHz. Refer to Appendix C for detailed spec-
ifications. This computer is considered inadequate for most current consumer and engi-
neering applications; however, it has proven to be powerful enough to serve as an initial
prototype platform running under MS-DOS. The specialized hardware that plugs into
the [SA bus includes a T1 interface card and a DSP card.

3.1.2 T1 Interface Card

The T1 interface card was purchased from GL Communications Inc. (Gaithers-
burg, MD). It is a super-T1 (rev. 1) card that plugs into the 8 MHz ISA bus of a PC.
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This card frames on an incoming T1 signal and extracts data from all 24 channels. The
data is then stored in a memory area that is shared between the T1 card and the PC, thus
allowing the PC to read the T1 data. The T! card is able to accommodate various fram-
ing and line coding formats, making it very versatile. It is also capable of generating a
hardware interrupt to the PC to signal the arrival of new data. For example, if the fram-
ing format is SF, interrupts are generated every 1.5 ms (12 PCM codes per voice chan-
nel). If the framing format is ESF, then interrupts will be generated every 3.0 ms (24
PCM codes per voice channel). The T1 card comes with various software packages
that are useful for testing and accessing the features of the card. Sample code was also
provided by GL Communications, which was used as a framework to develop custom

software to properly initialize and control the T1 card.

3.1.3 DSP Card

The DSP card is a Tiger 30 card from DSP Research Incorporated (Sunnyvale,
CA) with a Texas Instruments TMS320C30 40 MHz floating point DSP chip on board.
The card also plugs into the ISA bus of a PC. The DSP is used to compute the feature
variables and evaluate the linear and quadratic discriminant functions. Incoming T1
data is passed to the DSP card from the PC via on-board external PC-DSP shared mem-
ory. This card is also capable of generating and acknowledging interrupts to and from
the PC, which is very useful in real-time applications. The DSP card also comes with
specific software library functions for initializing and controlling the DSP, as well as an
optimizing C compiler for the TMS320C30. Detailed specifications for the
TMS320C30 DSP are provided in Appendix C.

3.2 Software

Various different software packages were utilized. This section has been broken
down into two sections: the software development tools, and the application software

packages.
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3.2.1 Software Development Tools

Borland C++, version 4.5 for Windows 3.1, was used to develop applications on
the PC to run under MS-DOS. Borland TASM version 4.0 was also used to compile
code written in assembly language. The Borland compiler accepts code written in
ANSI (American National Standards Institute) C. It also includes library functions that

are useful for MS-DOS applications.

The library functions of the database package CodeBase® version 6.0, by
Sequiter Software Inc. (Edmonton, AB), were used to generate the database file that
stores the classification vectors. CodeBase supports many different database formats,
and is available in both C and C++ versions. We opted to use the dBase format because
of its simplicity and wide support among other database products.

All of the code that runs on the DSP was developed using the Texas Instruments
TMS320C3X/4X ANSI C compiler and linker, version 4.6. This compiler includes
optimizing features that improve the run-time performance for the specific DSP proces-
sor. Several library functions provided by DSP Research were used to interface our
software with the DSP card and processor.

Library functions (LIBALN 1.1) and sample source code provided by Den-
dronic Decisions Limited were used to perform off-line classification studies using the
ALN classification method. To recompile the source code and to use the library func-

tions we used Microsoft’s Visual C++, a Windows 95 32-bit C++ compiler.

3.2.2 Applications

SPSS® version 6.1.2 for Windows 3.11 is a statistical software package that was
used to perform discriminant analysis. SPSS was used to compute both linear and

pseudo-quadratic discrimination functions given training data sets.

MATLAB® (Matrix Laboratory) version 4.2 is a mathematical package that
incorporates numerical analysis, matrix computation, signal processing, and graphics.
MATLAB was used extensively to perform classification simulations, and to compute

quadratic discrimination functions from training data.
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3.3 Test Equipment

The Electrodata Ez-tester model TTS 3-EZ was borrowed from TELUS to test
the T1 interface at TRLabs. This hand-held unit is capable of generating a T1 signal in
various formats using different test patterns as data. The test set verified that the T1
card was accurately locking onto the T1 signal, and extracting data from all 24 chan-
nels. It also verified that the customized software was actually transferring data from
the T1 line to the DSP card. The test set was also generally useful for testing the real-

time capabilities and limitations of the prototype.

3.4 Computer Resources

The computing resources include the prototype voiceband signal classifier and
various UNIX (Uniplexed Information and Computing System) workstations. The
UNIX workstations were used to perform intensive simulations, mainly using MAT-

LAB.

3.5 Sample Data Files

A multilingual speech database was obtained from The Center for Spoken Lan-
guage Understanding (CSLU) (Beaverton, OR). This database contains telephone
speech samples from over 2000 speakers representing 22 different languages. Both flu-
ent continuous speech and fixed vocabulary utterances are included, which vary in
length from 3 seconds to | minute. This database was useful for our project because it

contains extensive telephone speech recordings of languages other than English.
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Chapter 4

4.0 Prototype Voiceband Signal Classifier Implementation

The classifier is implemented using a standard PC, running MS-DOS, a Tl
interface card, and a DSP card, as shown in Figure 15. MS-DOS was chosen because it
has predictable and reliable real-time behaviour. Although MS-DOS is not normally
considered a real time OS, it has been proven to be adequate for this particular applica-
tion. MS-DOS allows the programmer to directly control hardware devices without the
need for a device driver running in a protected mode. Device driver development
requires extensive knowledge of details of the underlying hardware, which is some-
times difficult to obtain from third party vendors. Device driver development can
greatly prolong development time. Since MS-DOS is not a multitasking OS. the single
thread of execution has predictable interrupt response behaviour, making it easier to
construct a real-time system. Also, many of the library functions and utility programs
that came with the T1 and DSP card work exclusively under MS-DOS.

All of the above reasons made MS-DOS an easy choice. However, develop-
ment under MS-DOS does have its disadvantages. For example, developing a Graphi-
cal User Interface (GUI) is difficult under MS-DOS because it is not a Windows-type
OS. Some modern GUI conveniences were provided, however, such as pull-down
menus and mouse-activated operation. As a result of the limitations of MS-DOS, a
Windows NT implementation is being developed as part of an on-going follow-up
project.

The T1 card is required to frame on an incoming T1 signal and to extract 8-bit
PCM data for each of the 24 voice channels. The DSP card is used to compute the fea-
ture variables, to evaluate the LDFs and QDFs, and finally to send classification vectors
to the PC. The PC passes 8-bit PCM data from the T1 card to the DSP card and proc-
esses the classification vectors returned by the DSP. Processing the classification vec-
tors involves storing the classification vectors into a database, as well as possibly
updating a real-time display. The PC is also capable of performing off-line busy hour
and pie chart queries from existing database files.
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4.1 Overall System Architecture

Figure 15 shows the overall system architecture of the voiceband signal classi-
fier. Data from each of the 24 channels of a T! are extracted using the T! interface
card. Once enough samples are gathered for each channel (12 for SF, 24 for ESF) the
Tl card generates an interrupt to the PC. The PC ISR (Interrupt Service Routine)
acknowledges the interrupt by copying data from the PC-T1 shared memory to a FIFO
(First-In First-Out) buffer that is shared between the PC and DSP. The PC then gener-
ates an interrupt to the DSP card. The DSP ISR responds by copying the data from the
FIFO buffer into an internal circular buffer. A circular buffer is required to provide
elastic data storage during the discriminant function computation. If a circular buffer is
not used then incoming data will be lost while the DSP is busy computing the classifi-
cation decisions for the previous batch of data. Data is then copied from the circular

buffer to compute the feature variables. Data samples will temporarily back up in the

Personal Computer
486 DX4, 100 MHz

Tl
Interface

Digital Signal Processor
TMS320C30, 40 MHz

Circular
Buffer

User
Interface

(1.5, 3.0 ms)

Keyboard/Mouse
Video

Discriminant
Function

Buffer

Circular
Buffer

(256 to 32 ms)

Figure 15: Voiceband signal classifier system architecture.
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circular buffer when the DSP is busy evaluating the discriminant functions. Once the
LDF and QDF have been evaluated, a class is selected for each of the 24 channels. The
classes assigned to each channel are called classification vectors. The classification
vectors are then copied into another shared PC-DSP FIFO buffer and then the DSP gen-
erates an interrupt to the PC to let the PC know that new vectors are available. The PC
then copies the classification vectors into a circular buffer, again to ensure that no data
loss will occur when the PC is temporarily unable to attend to the data. The GUI then
extracts the classification vectors from the circular buffer and displays the results on the
video monitor (if a real-time display is being viewed by the user), and stores them into

a database.

4.1.1 PC Implementation

A prototype of the GUI software was first developed by a group of students at
the University of Alberta as a group term project for a software engineering course
(CMPE 313). They built a working interface that could read in a standard dBASE IV
file and then display the classification vectors on a real-time graph. As the classifier
generates classification vectors, they are displayed on the graph in the form of bars
which are updated in real-time. They also added busy hour and pie chart query fea-
tures. The busy hour graph is used to display the busy hour for a given 24 hour period,
and the pie chart graph displays the breakdown of the data according to class. Exten-
sive modifications were then required to extend the prototype to provide additional
functionality, to communicate with the actual DSP and T! cards, and finally to operate
in real time with no data loss. Figure 16 shows an actual screen-shot of the GUL Five
pull down menus are provided so that the user can easily change options using a mouse.
Keyboard input is only required when changing numerical value settings (e.g. power
threshold).

Figure 17 shows an actual screen shot of the real-time display. The real-time
display presents the recent classification decisions for all 24 channels of a T1 with time
advancing to the right. A maximum of two classification methods can be displayed for

each channel (represented by the coloured bars). In this case, the lower bar, for each
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channel, represents the linear filtered results (discussed later), and the upper bar repre-
sents the hybrid filtered results. This particular real-time display shows the classifica-
tion results of a data file generated for the 1998 TRLabs Technology Forum. For a

complete description of all pull-down menu options please refer to Appendix A.

Figure 17: Signal classifier real-time display.
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4.1.2 DSP Implementation

The code for the DSP was also developed by a second group of students in the
same software engineering course. The code they developed ran under MS-DOS and
read in PCM data from a file and displayed the numerical classification vectors on the
screen. The prototype code had to be debugged and then ported to the actual DSP hard-
ware. Once the DSP implementation was tested, further optimizations were required to
ensure that all 24 channels could be processed in parallel and in real time. Figure 18

shows a functional view of the algorithms implemented on the DSP.

Power

) Idle?
Estimate
Full Central

PCM Wave 2nd Order %
Rectifier Moment 5 ‘-g s -53
N —
= &8 o
= S >z
— Q g o,
Low-order Lag 2 5 © S
Autocorrelation g ©

Estimator -

—

Figure 18: Functional view of DSP algorithm.

PCM data is received from the PC by the DSP and then p -law decoded. Next the fea-
ture variables are calculated; namely, the power, the central second-order moment (nor-
malized w.r.t. power), and the first 10 values (normalized w.r.t. power) of the ACS.
Before the central second-order moment is calculated, the signal passes through a full-
wave rectifier. Once enough samples have been processed, the feature variables are
normalized and the LDFs and QDFs are evaluated. The central second-order moment
is first evaluated using equations (2), (6), and (7), and the ACS lags are evaluated by
using equation (8); normalization involves dividing by the average power in the partic-

ular segment. If the power in the particular signal segment is less than the programmed
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threshold, then the channel is considered idle and the classification decisions of the

LDF and QDF are vetoed.

4.2 File Formats

Two file formats are worth mentioning at this point: the format of pre-recorded
telephone calls and the format of the database generated by the prototype voiceband

signal classifier.

4.2.1 Recorded Data File Format

Data files recorded by Sewall were stored in binary MAT-file format (generated
by using the “save” command in MATLAB). This data can be read by opening the file
as a binary file, skipping past a 30-byte MATLAB header, and finally reading the PCM
M -law encoded data as a packed sequence of unsigned bytes (8 bits). These data files
can also be read back into MATLAB directly by using the “load” command.

Data files that I recorded can be read in the same manner as described for
Sewall; however, my new data files cannot be read back directly into MATLAB using
the “load” command as these files do not have the correct MATLAB header informa-
tion.

Data files from the multilingual speech database, obtained from CSLU, are
stored in what CSLU calls a binary NIST .wav format. This format is not the same as
the Windows .wav file format. The NIST .wav format incorporates a 1024-byte header
followed by unsigned 8 bit PCM p -law encoded data.

The prototype voiceband signal classifier can read the data files recorded by
both Sewall and Sarda, but unfortunately not those from CSLU. A list and description

of all recorded telephone files is located in Appendix D.

4.2.2 Database File Format

The prototype voiceband signal classifier is capable of reading and writing data-
base files in dBASE IV file format. This format was chosen because it is an open stand-

ard, and is supported by many commercial database and spreadsheet programs. The
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classifiers adds entries into the database only when the classification vectors change for

a given channel and classification method. The classifier also adds entries into the data-

base during a synchronization phase, in which entries are made for every channel and

classification method. This synchronization phase is performed once every 15 minutes,

and is necessary to speed up future database queries. The information stored for each

database entry is as follows:

Channel:

Classification Vector:

Number of Vectors:

Segment Size:

Classification Method:

Variables Used:

Starting Date:

Starting Time:

Starting Seconds:

Synchronization Point:

The channel for which the entry applies. Valid
values range from 0 to 23.

The classification vector returned by the DSP.
Valid values range from 0 to 23, with O represent-
ing silence.

The number of classification vectors returned for
this entry.

The segment size used for the classification.

The classification method used. Valid entries are
LR (linear raw), QR (quadratic raw), HR (hybrid
raw), LF (linear filtered), QF (quadratic filtered),
or HF (hybrid filtered).

Which variables were used by the discriminant
functions in the classification? Presently, the only
valid entry is “ALL", meaning that all variables
are used in the classification.

The starting date for the entry, in the format
MMDDYYYY.

The starting time for the entry in 24 hour format,
without a *:” between the hour and minutes (e.g.
HHMM).

The starting seconds (0 to 59).

Was this entry made as part of a synchronization
phase (1 for TRUE and O for FALSE)?
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4.3 Real Time Issues

The GUI running on the PC is able to keep up, in real time, with the processing
of the classification vectors generated by the DSP. The circular buffer used to store the
incoming classification vectors is generally only needed when the advancing horizontal
bars on the real-time graph (described later) reach the right edge of the screen. When
this happens, the entire graph shifts leftwards to the midpoint, where the bars resume
their advance to the right. The circular buffer is also required when many database
updates are scheduled together in a burst. This is not likely to occur in a real system
(except during a synchronization phase) because, over the 24 channels, the signal

classes do not generally change simultaneously.

4.3.1 Real Time Limitations

The algorithms running on the DSP are able to process data in real time for a
segment size of 1020 samples or greater. If a segment size of 252 or 516 is selected, the
DSP cannot keep up with the incoming data and starts losing data. This limit is post-
poned if fewer than 24 channels are monitored and if the LDFs and QDFs are not both
being evaluated. The main reason of this limitation has to do with the frequency at
which the LDF and QDF are calculated. For the 1020 segment size, the LDFs and

QDFs are only calculated about 8 times per second, but for the 252 and 516 segment

Table 13: Frequency of the classification vectors depending on the segment size.

Segment Size
No. of Equivalent Frequency of Classification Vectors
Samples Time

252 31.5ms 31.75Hz

516 64.5 ms 15.50 Hz

1 020 127.5 ms 7.84 Hz
2052 256.5 ms 3.99Hz
4 092 511.5 ms 1.96 Hz
8 196 1.0s 1.00 Hz
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Table 13: Frequency of the classification vectors depending on the segment size.

Segment Size
No. of Equivalent Frequency of Classification Vectors
Samples Time
16 380 20s 0.50 Hz
32772 4.1s 0.24 Hz
65 532 82s 0.12Hz

sizes the LDFs and QDFs are calculated about 16 and 32 times per second, respectively.
These additional computations cannot be completed in real time for all 24 channels.
This can be seen in figures 19, 20, and 21. These plots show how the buffer count, in
the DSP circular buffer, changes during different stages in the classification process.
To ensure no data loss, the discriminant function calculation and the backed-up feature
variable calculations must be completed before then next LDF and QDF calculation
(shown by the vertical dashed lines). If this does not occur, the buffer count will con-
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Figure 20: Buffer count using a 516 segment size.

tinue to increase until it exceeds full capacity resulting in a loss of data. For example,
for the 1020-sample segment size, the ramping up and down of the buffer count occurs
just before the next LDF and QDF calculation. The cycle continues with the beginning
of each discriminant function calculation beginning with a buffer count of zero. For the
516 segment size there is enough time to complete the LDF and QDF calculation, but
not enough real time for the feature variable catch up stage, resulting in an increase of
the buffer count and finally in the loss of data. This is also true when the segment size
is 252, the only difference being that there is not even enough time to compute the LDF

and QDF calculation before the next classification decision time arrives.
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Figure 21: Buffer count using a 252 segment size.

In conclusion, the DSP is only able to classify data in real time if the segment
size is greater than 1020 samples, and the LDF and QDF are being evaluated. The dis-
criminant functions were evaluated using 23 classes and 11 feature variables for the

LDF, and 6 classes and 11 feature variables for the QDF.

4.3.2 Computational Analysis

There are three stages in the classification process: the DSP ISR for incoming
T1 data buffers, the feature variable calculation, and the discriminant function evalua-
tion. Each of these stages differs in its computational requirements, as discussed below.
All of our timing values were determined experimentally using counters inserted in var-
ious sections of the code.

The ISR stage does not burden the DSP as much compared with the other stages
of the classification process. The ISR simply copies data from the shared PC-DSP
FIFO buffer into the DSP circular buffer. This takes about 7% of the DSP’s time (i.e.
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2.8 MIPs) between superframe interrupts (1.5 ms). The ISR is executed by the DSP
with a higher priority than other routines; however, ISR handling is delayed if a critical
section of code is being processed. A critical section occurs when a group of instruc-
tions must be processed without being interrupted. In the classifier the only critical sec-
tion in the DSP code contains the instructions which update the pointers and flags
associated with the circular buffer. This is a critical section because, if this section is
interrupted, the interrupting code could corrupt the circular buffer data structure.

The feature variable computation stage is computed once new data arrives. The
data is processed 12 samples at a time for each channel (one superframe), and takes
about 68% of the DSP’s time (i.e. 27.2 MIPS) between superframe interrupts. It is
important that this stage be computed efficiently because it directly affects how quickly
the buffer gets cleared before the next discriminant function evaluation stage (feature
variable catch-up).

The evaluation of the discriminant functions imposes a sudden load at the end
of each segment. From the above figures it can be seen that the buffer count swells to a
maximum value of 36 during this stage. Since the buffer count increments once every
1.5 ms, this count corresponds to an approximate time of 54 ms.

The actual number of multiply and accumulates required for the LDF and QDF,
for N classes and J feature variables, are given by equations (22) and (23) respectively,

and are derived from equations (16) and (20).

Computations for LDF = N (J + ) Multiply and Accumulates (Eq 22)

Computations for QDF = N( J2 +2J+ 2) Multiply and Accumulates (Eq 23)

By reducing the number of classes, N, and the number of feature variables, J, the
number of computations required reduce thus making real time classification at seg-
ment sizes of less than 1020 samples possible.

One can obtain an approximate limit on the computational load of the discrimi-
nant function evaluation (assuming 23 classes and 11 feature variables) as follows. The
DSP just barely keeps up at the 1020 segment size. The upper limit on discriminant
function calculation is thus (40 MIPS)*(100%-7%-68%) = 10 MIPS. Clearly this load
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is inversely proportional to the segment size. Therefore we have,

(8000

—_— < 2
lon)M_ 10 MIPS,, (Eq 24)

where M is a constant of proportionality. Thus the load of the discriminant function
evaluation is upper bounded by:
( 8000

Seament Size ) (1272 : Eq2
Segment Size)(127 ) MIPS (Eq 25)

If the number of feature variables were now reduced from 11 to 6, the computa-
tional load on the DSP is reduced (it will be shown later that using six variables results
in a higher classification accuracies for both the LDFs and QDFs). The computations
required to complete the feature variable calculation stage and discriminant function
evaluation stage are both reduced by approximately 45% and 60%, respectively. Note
that the computations saved for the feature variable calculation stage is only valid if the
same 6 variables are used for both the LDFs and QDFs. With these computational sav-
ings it is likely that the classifier can handle a segment size of 516 samples without los-
ing any data samples. Additional computational savings are likely needed to handle a

segment size of 252 samples.
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Chapter 5

5.0 Prototype Voiceband Signal Classifier Evaluation

After building and testing the prototype voiceband signal classifier at TRLabs,
field trials were necessary to test and evaluate the classifier in the PSTN. This was
accomplished by holding a first field trial at the TELUS Maintenance Engineering Lab-
oratory, and additional field trials at the TELUS toll building and at the Bonnie Doon
TELUS Mobility base station.

5.1 TELUS Maintenance Engineering Lab

The intent of the first field trial was to essentially “get our feet wet” and to per-
form initial system-level verification with access to the PSTN in a lab environment.
Using signal data collected during the first field trial, the discriminant functions were
re-trained in preparation for further field trials with live traffic. Also, software defects
were discovered and fixed, and additional functionality was built into the GUL

The TELUS maintenance engineering lab contained all of the equipment which
was necessary to monitor the network in the 4-wire digital section, as seen in Figure 22.
A standard 2-wire analogue subscriber loop linked the 9th floor lab with the PSTN.

The analogue signal first went through a hybrid coupler to separate each direction of the

signal. It was then PCM W -law encoded by a first channel bank and finally multiplexed
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| I  Point) | |
] ] (] (]

Figure 22: Equipment setup at the TELUS Maintenance Engineering Lab.
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onto channel | of a TI. This T was an input into a second channel bank. The second

T1 extracted the data from each channel of the T1, PCM p -law decoded the data, and
then finally combined both directions of the signal for transmission onto another ana-
logue subscriber loop. The roles of each channel bank are reversed for signals trans-
mitted from the lab. This setup models the setup of a typical CO, which is where the
classifier is intended to operate.

The programming and setup of all equipment were completed by TELUS main-
tenance staff. They hooked up the telephone handset to transmit and receive data on
the channel 1 of both T1 lines; one T1 for each direction. Both Tls were wired to a
DSX-1 patch panel with two ports, labelled ‘A’ and ‘B’. It is from this panel that the
classifier monitored the traffic. A ringing signal detector (not shown in Figure 22) was
also added to generate a ringing signal to the telephone handset to allow it to receive
incoming calls. A list of the equipment and all services used at the maintenance engi-
neering lab is provided in Appendix C.

To generate samples of the various signal classes, we used an Apple Powerbook
150 computer and a USR Sportster modem. This allowed all but the “Binary” and
“Voice” signal classes to be generated locally using the modem. All data modem signal
samples were generated by dialling into local ISPs, and all fax samples were generated
by dialing local fax machines. Faxes were also received from local fax machines and
long distance faxback services. Different data rates were obtained by forcing the
modem connection bit rate using the AT Command Set. A list of the AT commands
used is given in Table 14. The speech samples were generated by having various indi-
viduals call the TELUS lab and read text from a book or newspaper. A few duplex con-
versations were also recorded. A complete listing and description of all data files

recorded is given in Appendix D.

Table 14: AT commands used for the USR 33.6 modem [35] [37].

Command Description
+++ Escapes to on-line-command mode
AT&NI - AT&N16 Sets connect speed from 300 bps to 33 600 bps
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Table 14: AT commands used for the USR 33.6 modem [35] [37].

Command Description
ATI6 & ATI1I Returns diagnostic information for current connection
ATS33=0 - ATS33=63 Disable/Enable symbol rates for V.34 protocol

5.2 TELUS Downtown Toll Building

The goal of the second field trial was to test the system in the PSTN and to
gather call statistics on real T lines. The T1 lines included both long distance inter-
city trunks as well as local trunks originating from different neighbourhoods in and
around the city of Edmonton.

The TELUS Toll Building was an ideal place to test the classifier with real, live
traffic. The toll building routes traffic that originates from different sources. For exam-
ple. long distance trunks from cities such as Toronto, Vancouver and Calgary are avail-
able, along with many different local trunks. This field trial lasted for about 3 weeks,
which gave us plenty of time to monitor many different types of trunks. Since the traf-
fic being monitored was live traffic, no recordings of individual calls were made.
Instead the classification vectors were captured and stored into a database. A detailed
description of all database files is provided in Appendix D. Figure 23 shows how the

classifier was set up at the toll building.

DSX-1 Patch Panel Bantam Cabl
am Cable
Monitor OQ OO Q00O l l

Tx|OOO0O00000
Rx|OOOO0O0OO0O0
1 23

Port No. 2 4 5678

Digital Communications To T1 card
Test Set

Figure 23: TELUS Toll Building setup.

A connection was made from the “Monitor” port on a DSX-1 patch panel using a stand-
ard bantam cable. A Digital Communications Test Set was connected in parallel with
the classifier. This test set was used to verify the electrical connection and framing

functionality to the DSX-1 patch panel. It was also useful for independently verifying
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the type of traffic being carried on the T1 because it had the ability to select and audibly
play the signal on any channel. The test set was strictly used as a research tool to verify
the rough operation of the classifier on individual T1 channels. A list of all equipment

used at this location is provided in Appendix C.

5.3 TELUS Mobility Bonnie Doon Base Station

The goal of the third and fourth field trials was to test the system with mostly
wireless traffic, and to evaluate filtering techniques that we developed to improve the
accuracy of the classifier. TELUS Mobility was also interested in determining the
amount of fax and data traffic that was being carried by their analogue wireless net-
work. These field trials took place at the Bonnie Doon TELUS Mobility base station.
This base station routed and switched traffic that originated from all base stations in
northern Alberta. These include base stations serving oil and gas facilities as well as
local communities. This diversity resulted in Tls that had very different traffic pat-
terns. The classifier setup was almost identical to the setup at the TELUS Toll Build-
ing.

The third field trial lasted for five days in October 1998. During this field trial
two T1s were monitored: one T1 terminated in Quigley, Alberta, and the other T1 ter-
minated in Worsley, Alberta. Each Tl was monitored for approximately two days.
While monitoring the Worsley T1, the local base station experienced a power bump,
resulting in the database being corrupted for this T1. A software defect was also dis-
covered during this field trial which limited the speech filter window to 5 seconds. This
defect was noted and fixed before the fourth field trial.

The fourth field trial lasted for ten days in November 1998 and involved moni-
tering a T1 to Peace River, Alberta. This T1 was monitored for the ten days consecu-
tively without any intervention, which demonstrated the stability of the classifier.

During this field trial the filters (described later) appeared to be working as desired.
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Chapter 6

6.0 Evaluation of the Signal Classifier

This chapter describes the results of off-line simulations and on-site field trials
involving various versions of the prototype classifier. This chapter is organized into
sections which show results obtained before the first field trial at the TELUS mainte-
nance lab, after the first field trial, after the second field trial at the Edmonton toll build-

ing, and finally after the third and fourth field trials at the Bonnie Doon base station.

6.1 Sewall’s Results

Sewall’s algorithms classified a signal into one of nine possible signal classes
as, shown in Table 1. The training data for these algorithms included both recorded and
simulated calls covering each of the nine classes. A complete list and description of all
the recorded and simulated data files is provided in Appendix D. For comparison pur-
poses, Tables 15 and 16 show the percent classification accuracies using Sewall’s eval-
uation data. The *“Predicted Class” is the class assigned to the segmented data, and the
“Actual Class” is the class that the segmented data really belongs to. This method of
presenting the classification accuracies will be consistently used throughout this sec-
tion. Each table will also note the discrimination method, and the segment size, N,
used to generate the classification accuracies. The segment size represents the number
of continuous samples taken from the data stream for each classification vector. Please

note that all feature variables are used in all tables unless stated otherwise.
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Table 15: Sewall percent classification accuracy (N=2052, LDF).

Predicted Class
Class l 2 3 4 5 6 7 8 9
1 100.00 - - - - - - - -
2 - 100.00 - - - - - - -
3 - - 100.00 - - - - - -
_é 4 . . - 9827|1713 | - ; . .
% 5 - - - 13.74 | 86.26 | - - ; -
2
2 6 - - - - - 99.83 [ 0.17 -
7 . - - - - - | 10000 - -
8 - - 2.65 0.24 - - - 95.42 1.69
9 - - - . - - - - | 10000
Table 16: Sewall percent classification accuracy (N=2052, QDF).
Class 1 2 3 4 5 6 7 8 9
l 100.00 - - - . - -
2 - 100.00 - - - - N - -
3 - - 99.92 - - - - 0.08 -
4 - - 100.00 - - - - -
5 - - - - 100.00 - - - -
6 - - - - - 100.00 | - . ]
7 - - - - - - 100.00 - -
8 - - - - - - - 99.76 | 0.24
9 - - . . . - - - | 100.00

When using QDFs the overall classification accuracy is almost 100%, but when using
LDFs, the classification accuracy, over all classes, is only 97.75%. The majority the
classification errors, when using LDFs, is due to classes 4, 5, and 8. The reasons for
relatively high misclassifications in these classes will be discussed later. Using QDFs
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consistently result in a higher classification accuracy, but compared with LDFs the
QDFs are more computationaly expensive. A segment size of 2052 was chosen
because it appears to be a good compromise between classification accuracy and preci-
sion. Again, this will be discussed in the later sections. Both tables were generated
using approximately half of the available signal data as the training set, and the remain-
ing half as the test set. A training set is used to compute the discriminant functions
(i.e., the coefficients for the LDFs and QDFs). A test set is then used to measure the
classification accuracy of the discriminant functions. Allocation of data into the train-
ing and test sets was determined using a random number generator. The data was first
partitioned into 2052 segments, and then the random number generator determined
which segment would be included in the training and test sets. The exact number of

2052 segments used for both the training and test set is shown in Table 17.

Table 17: Train and test set counts for Sewall’s data.

Class Training Test Set Total
Set Count Count Segments

l 179 1214 2393
2 728 696 1424
3 1125 1223 2348
4 897 982 1879
5 2225 2162 4387
6 608 575 1183
7 471 499 970
8 395 415 810
9 491 483 974

6.2 Results of First Field Trial

After building a fully functional prototype classifier, a first field trial was
arranged at the TELUS Maintenance Engineering Lab. The classifier, in general, per-

formed very well with signals of known classes recorded at the lab. Samples of real
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signals covering all but one of Sewall’s nine classes were collected. Attempts were
made to connect at all different combinations of bit rates, baud (one symbol per second)
rates, and carrier frequencies that are specified by each modem standard. The only sig-
nal class that was not generated was the random 64 kbps binary. Even though voice
samples were generated and collected, they were not actually used later on after the
arrival of the multilingual speech database from CSLU.

The real-time display on the GUI allowed for immediate verification of the clas-
sified signal class. From visual inspection, the classifier appeared to perform very well.
Certain classes did have accuracy problems, and these classes were noted for further
study. The next section describes the initial results, and the corresponding improve-

ments that were made to the classifier.

6.2.1 Initial Results

The data collected at the Maintenance Engineering Lab needed to be processed
to remove unwanted information from the data files. For example, all data calls have an
initial negotiation phase which needs to be omitted from the signal training sets. We
decided that the classifier would not be trained to recognize training tones as one or
more separate classes. This was done to minimize the number of classes and to avoid
having to deal with the complexity of the relatively brief training signal intervals. Fig-
ure 24 illustrates the typical call structure for voice, data, and facsimile calls. For voice
calls, only the portions of the call that contained clear speech samples were processed,
with silence thus largely removed. For data calls the initial negotiation phase needed to
be removed, and for facsimile calls the initial negotiation phase and the FSK signalling
information was removed. This processing was necessary to ensure that the training
and test sets contain only known samples of the signals that are to be classified. The
initial results, before re-training the classifier using the processed data, are shown in

Table 8.
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Figure 24: Typical call structure for (a) voice, (b) data, and (c) facsimile calls.

Table 18: Percent classification accuracy using Sewall’s data to train and Sarda’s to test (N=2052,

LDF).

Class l 2 3 4 5 6 7 8 9
1 100.00 - - - - - - R -
2 - 81.11 - 18.89 - - - - -
3 - - 71.19 1341 | 15.36 | 0.01 0.02 | 0.0l -
4 - - - 91.66 | 8.34 - - - -
5 - - - 230 | 97.70 - - - -
6 - - - - 0.12 | 99.81 | 0.07 - -
7 - - - - - 440 | 9559 | 0.01 -
8 - - - - - - - - -
9 - - - - - - - - -
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This table was generated using Sewall’s data to train the classifier, while testing on the
data collected at the field trial. No values are shown for class 9 because this signal type
(binary) was not generated at the lab, and no numbers are shown for class 8 (voice)
because only a relatively small sample was taken and this sample was dropped from
consideration shortly after the arrival of the Multilingual Speech Database CD-ROM.
Overall, the classifier performed well (above 90% averaged over all classes), with the
exception of classes 2 and 3. Table 19 shows the classification accuracy using the QDF

with the same training and test sets.

Table 19: Percent classification accuracy using Sewall’s data to train and Sarda’s to test (N=2052,

QDF).

Class 1 2 3 4 5 6 7 8 9
1 91.56 - - - - - - 8.44 -
2 - - - - 100.00
3 - - 46.05 | 1.35 - - - 52.60
4 - - - 8494 | 1.63 - - 13.43
5 - - - - 88.00 - - 12.00
6 - - - 1.1§ | 72.76 - 26.09 -
7 - - - - - 96.77 | 0.70 253 -
8 . - - - - - -

9 . - - - - - - -

Surprisingly the classifier performed rather poorly when using QDF. Signals of class 2
are classified as speech (class 8), and class 7 are assigned to class 6. Also, class 3
(V.34) was frequently misclassified as speech. This result was very surprising because
Sewall generally found that the QDFs gave higher accuracies than LDFs. From these
initial results it appeared that there was no benefit to using QDFs over LDFs to classify
the signals.

So far the training set has been completely composed of Sewall’s data, and the
test set has been composed of data collected at the field trial. The next few resuits use a
combination of Sewall’s data and the data collected at the field trial as the training and

testing sets.



Table 20: Percent classification accuracy using Sewall’s and Sarda’s data to train and test (N=2052,

LDF).

Class 1 2 3 4 5 6 7 8 9
1 100.00 - - - - - - - -
2 ; 100.00 | - - - - . - -
3 - - 8830 [ 11.54 | 0.13 - 0.01 0.02 -
4 - - 0.31 | 89.61 | 10.08 - - - -
5 - - - 4.69 | 9529 | 0.02 - -
6 . ] ; - - 19902 | 098 | -
7 0.01 - - - - 1.09 | 98.90 - -
8 - 0.24 8.03 - - - - 91.24 0.49
9 - - - - . - - - | 100.00

After re-training the classifier a number of improvements are quite evident as shown in
Table 20. The classification accuracies for classes 2, 3, and 7 have greatly increased.
Accuracies for classes 4, 5, and 6 did go down, but only very marginally. Classes 4 and
5 appear to be difficult for the classifier to separate. The majority of misclassifications
for class 4 are incorrect assignments to class 5 (10.08%). This is a problem that Sewall
observed [2] (but to a lesser extent), as shown in Table 15. The only major difference
between these two signals is that class 4 (V.29 fax) is half-duplex QAM with a 1700 Hz
carrier, while class 5 (V.32 modem) is full-duplex QAM with an 1800 Hz carrier [2].
These similar carriers and bit rates imply similar PSDs. This hunch is confirmed by the
plots in Figure 25. The quadratic results are much better after re-training the classifier
as shown in Table 21. Clearly QDF accuracies are quite sensitive to the training condi-
tions. The problem classes noted for the linear case do not appear to be a problem in

the quadratic case.
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Plot of a V.32 signal at 9600 bps with fc =1800 Hz, and fs=2400 baud.
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Plot of a V.29 signal at 3600 bps with fc =1700 Hz, and fs=2400 baud.
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Figure 25: PSD plots for a V.32 signal and a V.29 signal.

Table 21: Percent classification accuracy using Sewall’s and Sarda’s data to train and test (N=2052,

QDF).

Class l 2 3 4 h] 6 7 8 9
! 100.00 | - . - - - - . -

2 - | 10000 | - ; - ] ] ] .

3 - - 19897 09 | - - - 0.07 -

4 ; . 002 | 9884 | 1.14 | - - . -
5 ; ; 002 | - |9998| - - . -

6 - - - - ] 018 [9982 | - - -
7 ] - - . - | 028 [99.68 | 0.04 -
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Table 21: Percent classification accuracy using Sewall’s and Sarda’s data to train and test (N=2052,

QDPF).
Class | 1 2 3 4 5 6 7 8 9
3 ] - - i - } - {10000 | -
9 - - - - - . - - | 100,00

6.2.2 Results after Increasing the Number of Classes

After analyzing the structure of the three general groups of calls (voice, data,
and fax), it was determined that adding new classes would be useful. In facsimile calls.
FSK signalling is used by the connecting modems to exchange control information.
FSK signalling is also used to communicate information at the page breaks in a fax call.
A classifier that has an FSK class can thus determine the number of pages sent for each
fax call. Another complication is that both V.32bis and V.17 belong to the same class.
V.32bis is a data modem standard that connects at a maximum bit rate of 14.4 kbps.
V.17 is a fax standard, also with a maximum connect speed of 14.4 kbps. However,
using FSK signalling the two signal types can be separated because FSK signalling
would not be present in a V.32bis connection.

Another new class was ringback. Ringback is the faked ringing signal that is
heard by the calling party to signal that the called party’s handset is being rung. To
train and test the classifier, recordings of the ringback signal were made by calling var-
ious local numbers. Ringback is, in most cases, carried back over the PSTN using the
same channel resources that would carry the information of the ensuing call. For some
long distance calls, the ringback signal might not actually be present over the bulk of
the connection in the PSTN so that resources are not tied up unnecessarily before the
called party picks up the handset. Instead the ringback signal would be generated at the
local switch. Only when the conversation portion of the call begins would PSTN chan-
nel resources be required to carry the call. In all cases monitored during field trials,
both local calls and long-distance calls, the ringback signal was in fact present.

Finally, the DTMF signalling tones were added producing 12 new classes.
Samples of the DTMF tones were generated by simply pressing and holding each of the
12 buttons on the handset. When a calling party dials up a call, the DTMF digits are
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not usually carried by the PSTN in-band beyond the local CO. Instead, the digits are
intercepted by digit collection circuits and translated into messages carried separately
by the packet-switched SS7 signalling network to route the call. However, it is still
common to use the digits on a handset once a call has been setup. For example, many
companies have menu-driven messaging systems requiring the input of DTMF digits
from the calling party. In these situations the DTMF digits will be carried in-band by
the PSTN. For simplicity and privacy reasons, all of the 12 DTMF classes were com-
bined and reported as one class in the prototype voiceband signal classifier.

In addition to the three new classes, the recent appearance of a new modem
standard required some changes to the classifier. In early 1998 the ITU finally released
the V.90 standard. This standard allows for bit rates of up to 56 kbps from a digital
source of data (e.g. an ISP) to a customer connected via a conventional analogue local
loop (i.e. the downlink) [28][29]. The uplink uses the 33.6 kbps V.34 standard which
falls into the existing class 3 category. Within the network, a V.90 downlink appears to
be a purely random binary data stream (class 9).

The enlarged new list of classes is shown in Table 22. Note that V.32 terbo does
not belong to any class, because specific information regarding this protocol could not
be obtained (it is proprietary) and a recording using this protocol was never made. The
classification accuracies using the expanded signal classes are listed in Tables 23 and

24 below for both LDFs and QDFs.

Table 22: Expanded list of signal classes.

Group No. Signals Included

l V.22 and V.22bis forward channels

({8

V.22 and V.22bis reverse channels

V.34 & V.90 uplink

V.29 all speeds

V.32, V.32bis, and V.17 at speeds greater than 2400 bps
V.27ter at 4800 bps

V.27ter at 2400 bps

Nl wnw AW
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Table 22: Expanded list of signal classes.

Group No. Signals Included
8 Speech
9 Random PCM samples & V.90 downlink
10 FSK signalling
11 Ringback
12 DTMF tones for 0, [, 2, ..., 9, *, #

Table 23: Percent classification accuracy using Sewall’s and Sarda’s data to train and test (N=2052,

LDF).

Class| 1 2 3 4 5 6 7 8 9 10 11 12

I [90.64] - - -1 -1 -1-7- - - - 936

2 10000 - | - - -] - - -

3 | - - [87.70[12.14] 014 | - Jon | - . - oo | -

+ | - - o7 (8922|061 - | - | - - - .

s | - - - [s9feast] - | - | - - - - ;

6 | - B - -] - Jes9ef 101 - ) ; ]

7 | - ; - | - | - [ros]esos] - ] ;

8 | - [o02s|s599] - | - [ - - [8902] 050 - |249] 1.72

9 | - - -t -1 -1 -1 -1 - [0000] - ; B

10 | - - A 100.00] - )

| - - -1 -1 -1 -1~ - - foooo| -

2 | - - - - - - - - - - [100.00

Overall the classification accuracy over all classes remains about the same, except for
class 1. By adding three additional classes the LDF accuracy for class 1 has dropped by
9.36% to 90.65%, with all of the misclassifications being assigned into class 12. For
the quadratic case, accuracy over all classes remained at the same high levels, even

with classes 1 and 12.

69



Table 24: Percent classification accuracy using Sewall’s and Sarda’s data to train and test,
(N=2052, QDF).

Class| 1 2 3 4 5 6 7 8 9 10 11 12
1 [100.00] - -1 -1 -71- 3 : B - 5
2 - Jwooo| - [ -] - -T- ; ; R ) }
3 - - l99a6l078| - | - | - Jooe [ - - 3 }
4 - - [002osss| 1s0] - | - } B A ) }
5 - - |0.04|002[9994] - | - ; - B ) )
6 - ; -1 - Toa7]e9sa] - R } - ; )
7 ) } - | - | - |o40]99.s9] 001 | - - - .
8 - - -1 -1 -1 - hoooo| - R ] }
9 - ; N I - |10000] - ) .
10 ] N e - - [100.00] - .
T - -0 - -] - - - - [100.00] -
12 | - B -l - - - 22 ] . - [97.78

6.2.3 Problem Classes

As noted earlier, Sewall observed a high misclassification rate between classes
4 and 5. This weakness re-appeared in the accuracy resuits after re-training the classi-
fier with the new data. However, the classification accuracy of class 3 (V.34) fell from
100% to 87.7%. V.34 requires that the connecting modems be able to negotiate at vari-
ous possible symbol rates, data rates, and carrier frequencies (refer to Table 9). These
different combinations were tested at the first field trial by forcing the modem, using
the AT command set, to negotiate unusual connection parameter combinations. A list-
ing of the various baud rates, bit rates, and carrier frequencies recorded is listed in
Appendix D. If the modems are not forced then, according to our measurements, land
line to land line connections will tend to default to a symbol rate of 3429 baud and a
carrier frequency of 1959 Hz. This carrier frequency is at the centre of the passband to
accommodate the broadest possible passband spectrum at the high symbol rate of 3429

baud. Figure 26 shows PSD plots of three different V.34 signals. When connecting at
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the default carrier frequency f, and symbol rate f .- the entire available spectrum is effi-

ciently filled with signal power. In the 1600 Hz and 2000 Hz plots the available pass-

band is not filled as aggressively because the symbol rate has been reduced from 3429

Hz to 2400 Hz and 3000 Hz, respectively.
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After noting the difficulties encountered when classifying uncommon V.34 connection
modes, new experiments were done using only the common V.34 calls to train and test

the classifier. Table 25 shows the results using only the common V.34 signal settings
(f. = 1959 Hz, f, = 3429 baud) to train and test the classifier. Class 3 (V.34) accu-
racy has increased from 87.7% to almost 100%. This raises a difficult decision: can

unusual V.34 modes be ignored? During the first field trial we noticed that the connect-

ing modems will choose the default carrier and symbol rate. with the data rate varying

Table 25: Percent classification accuracy using Sewall’s and Sarda’s data to train and test (N=2052,

LDF, Std V.34).
Class| | 2 3 4 5 6 7 8 9 i0 11 12
I ]90.36] - - -1 1T -71- - - - 1 96d
2 | - fwooo| - | -] - -1 -1T- . - . -
3 | - |oo01]9990] - [004| - [o002]001] - - Joo| -
4 | - - - 882773 - | - | - . - . ;
5 | - - - 1675[93.23] 002 - | - - . . -
6 | - - - - | - 9894 106 - ; . : ]
7 | - - - - | - [1i16loss3] - - . - | 001
8 | - [026]334]os1] - | - | - [9049] 103 | - | 231 2.06
9 | - - -0 - - -1 - - oo - - -
o | - - e - 100.00] - -
i | - - - -0 - - -] - - - |100.00] -
2 | - - - - -0 - -] - - - - |100.00

depending (apparently) on line conditions. By issuing the appropriate AT commands
our V.34 modem could be forced to connect at an unusual different symbol and carrier
frequency, even with good line conditions. These other modes would presumably be
used automatically if the training sequence found that the available passband was sub-
standard. Even if unusual signal settings are present, the classification accuracy after

training using only the common V.34 modes is still above 87%.

6.2.4 Multilingual Speech Database

To increase the number of speech samples used in the training and testing sets,
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we used the Multilingual Speech Database obtained from CSLU. Ten files were
selected from the English speech data files. Out of the ten, five speakers were male and
five were female. Each speaker recites many items such as their location, sex, age, etc.
Each speaker is also asked to speak about something for 1 minute. These “story” files
were of suitably long duration, roughly 1 minute, and contained a fair number of good
speech samples (not silence). All files used from this database are listed in Appendix
D. Only the English speech files (files with the “EN”" prefix) were used to train and test

the classifier (other languages are considered later).

Table 26: Percent classification accuracy using Sewall’s and Sarda’s data to train and test (N=2052,
LDF, Std V.34, Incl. EN).

Class| 1 2 3 4 1 5]6|7 8 9 10 11 12
l 89.44 - - - - - - - - - - 10.56
2 - |100.00 - - - - - - - - -
3 - - 9990 - |0.04 - 10.03]0.01 - - 0.02 -

4 - - 85.63(14.37| - ; - - - - -

5 - - - |11.56(88.40] 0.04 | - ; ; - - -

6 . - - - 198.90{ 1.10

7 - - - 1.20 198.79| - - - - 0.01
8 025 [ 197]1.35 - - - |91.63| 0.49 - 1.72 | 2.59
9 - - - - - -l - - |100.00 - - -
10 | - - S - [100.00] - -
| - - - -t -] -] - - |10000] -
12 | - - - - - -] -] - - - |100.00

As shown in Table 26, the classification rates using LDFs range from 85% - 100%.
Again classes 4 and 5 appear to be hard to separate. Other difficulties include confu-
sion between class 1 (V.22bis forward) and class 12 (DTMF tones). Speech was also
misclassified into classes 2, 3, 4, 9, 11, and 12. Using QDFs the accuracies are even
better. Classes 4 and 5 are much more reliably resolved, and class | signals are no
longer misclassified into class 12. Also, by using QDFs the accuracy for speech has
increased from 91.63% to 100%. The classification accuracy for class 12 (DTMF

tones) has unfortunately fallen from 100% to 95.03%. Most of these were caused by
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Table 27: Percent classification accuracy using Sewall’s and Sarda’s data to train and test (N=2052,

QDF, Std V.34, Incl. EN).

Class| 1 2 3 4 5 6 7 8 9 10 11 12
I [100.00] - 1 -1 -1 -1- N _ ) 3 3
2 - fwooo] - | - [ - -1+ - R . - ;
3 - - 09990 - [ - [ - | - Jow]| - ; - -
4 ] ) - {98s8of120f - | - - .

5 - - - |002{9996] - | - Too2]| - - . -
6 - . - | - [0.04[9996] - - ; : - ;
7 - - - | - | - fo12{998s] 003 | - - - -
8 - - - - | - [ - | - Tiwooo| - - - -
9 - - N - {10000 - - -
0 | - - A - - 10000 - -
T - - B e - . - [100.00{ -
12 | - - - - -] -] - Teer] - - - 195.03

misclassifications of DTMF digits *4™ and “8" into class 8 (speech).

Table 28 shows the results obtained using the ALN algorithms. Overall these
accuracies are better than the LDF results and are comparable to the QDF results. The
parameters used by the ALN software to generate these results are outlined in Appen-

dix E.

Table 28: Percent classification accuracy using Sewall’s and Sarda’s data to train and test (N=2052,
ALN, Std V.34, Incl. EN).

Class| 1 2 3 4 5 6 7 8 9 10} 1l 12
U [9996[004| - | - | - | - | - | - ] N ; )
2 | - [99.86] 009 00s| - | - | - | - B 3 ) ;
3 [002(001{9991[{002] - [o002] - [oo01] 001 | - - -
4 - [ -] - fe875|1as]| - | - | - - ; ; )
5 | - | -1 - [o13]99s8s[o02] - [ - - ; ) -
6 | - -1 -1-1- [9996]00s] - ; - - ;
70 - - -t -] -1 - 19999 - [oo1 | - | - -
8 | - [025]{025| - | - [025]1.85(9506] 1.11 |062] 049 | 0.12
9 | - -1 -1-1-1-T-1T~- Toooo| - - -




Table 28: Percent classification accuracy using Sewall’s and Sarda’s data to train and test (N=2052,
ALN, Std V.34, Incl. EN).

Class| 1 2 3 4 5 6 7 8 9 10 | 11 12
ol -1 -1 -7 -7T-1T-1-1-To02]%973 - -
- f -1 -1-1-71T-1T-=-7T->= - - {10000 -

2l - -7 -1-1-T-1T-71- - - - |100.00

6.2.5 Effects of Varying Segment Sizes

Thus far all off-line classification experiments have been done using a fixed
segment size of 2052 samples, which is equivalent to almost four classification vectors
per second (4 Hz). Changing the segment size changes the number of classifications
vectors calculated per second. Table 29 shows the average accuracies, taken over all
classes, of using linear, quadratic, and ALN discrimination methods with varying seg-
ment sizes.

Table 29: Accuracy for varying segment sizes and discrimination methods.

Linear (%) Quadratic (%) ALN (%)

Clas
s |2052(1020] 516 | 252 J2052|1020| 516 | 252 |2052{1020( 516 | 252
4 Hz|8 Hz|16 Hz|32 Hz|4 Hz |8 Hz|16 Hz|32 Hz|4 Hz|8 Hz|16 Hz|32 Hz

I [89.44180.48] 72.31 | 62.31 | 100.0{100.0| 100.0 | 100.0 |99.96{99.91] 99.93 [ 99.96

2 [100.0(100.0{ 99.73 | 97.67 }100.0{100.0| 100.0 | 99.89 |99.86(99.80| 100.0 | 99.93

99.90199.88| 99.76 | 95.83 }99.90{99.891 99.85 | 96.27 [99.91(99.90( 99.85 | 97.57

85.63(83.27| 82.20 | 73.96 |98.80|96.78 | 98.19 | 87.95 ]98.75{98.61| 98.11 | 91.81

88.40183.44| 81.77 | 76.46 199.96(98.88 | 98.38 | 90.38 §99.85/99.49| 99.08 | 93.40

98.79195.80f 90.56 | 83.62 §99.85/98.75| 96.81 | 92.79 §99.99199.95| 99.96 | 99.56
91.63|87.45( 81.99 | 78.73 1100.0{99.57| 99.64 | 98.68 |95.06(98.17| 97.96 | 97.50

3

4

5

6 [98.90{96.46( 91.29 | 81.38 [99.96|99.82| 99.60 | 96.53 199.96(99.95| 99.76 | 98.60
7

8

9

100.0(100.0{ 99.79 | 98.70 §100.0{ 100.0} 100.0 | 100.0 §100.0|98.83] 99.89 | 99.77
10 |100.0|100.0} 100.0 | 99.98 [100.0(99.80| 190.0 | 99.73 §99.7899.60| 99.95 | 99.83

11 |100.0{100.0| 100.0 | 100.0 }100.0]|100.0{ 99.45 | 99.87 §100.0{78.70| 99.17 | 99.61

12 |100.0}100.0| 100.0 | 100.0 §95.03|100.0| 100.0 | 100.0 |100.0{100.0| 100.0 | 99.89

Total |96.06193.90{ 91.62 | 87.39 [99.46(99.46] 99.33 | 96.84 [99.43]97.74] 99.47 | 98.12
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Generally, as the segment size increases, the classification accuracy also increases. A
larger segment size allows more information about the signal to be considered by the
classifier before generating a classification vector. For LDFs, the accuracy averaged
over all classes ranges from 96% to 87% for segment sizes falling from 2052 to 252
samples. The largest drops in accuracy occur in classes 1, 4, 5, 6, 7, and 8. The classi-
fication accuracy for QDFs falls from 99% to 97%, with largest drops appearing in
classes 4, 5, and 8. Using the ALN method the classification accuracy only falls from
99% to 97%, with the largest drops occurring in classes 4 and 5. Overall the QDF and
ALN methods did not differ significantly in average accuracy (~2%). However, when
using the LDF method the accuracy fell 10% as the segment size was shortened from
205210 252.

Additional simulations were conducted by further increasing the segment length
to determine if the classification accuracy would improve to 99% over all classes while
using LDFs. The data used to generate the classification accuracy values for the 2052
sample (4 Hz) segment length were used to generate the data to be used for the 4092
sample (2 Hz) segment length. This was done by taking the values of each correspond-
ing feature variable and then simply averaging them. The data for the | Hz and 1/2 Hz
were then obtained similarly.

Table 30: Accuracy using larger segment sizes and LDFs.

Linear (%)
Class

05Hz{ 1Hz | 2Hz

1 99.40 | 99.26 | 97.49

18]

100.0 | 100.0 | 100.0

99.94 | 99.88 | 99.94

91.45 | 90.53 | 89.00

99.44 | 94.62 | 92.29

99.84 | 99.92 | 99.66

99.57 | 99.43 | 99.48

100.0 | 99.48 | 96.44

Ol 0] N N} B} & W

100.0 | 100.0 | 100.0
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Linear (%)
Class
O5Hz| 1Hz | 2Hz
10 100.0 | 100.0 | 100.0
11 100.0 | 100.0 | 100.0
12 100.0 | 100.0 | 100.0
Total | 99.14 | 98.51 | 97.85

Table 30: Accuracy using larger segment sizes and LDFs.

Using a segment length of 16416 samples (~ 1/2 Hz) the classification accuracy over all
classes improves from 96.06% (using a 2052 segment size) to 99.41%. The classes

which showed the most improvements were classes 1, 5, and 8.

6.2.6 Effects of Classifying Non-English Speech

Three languages other than English were investigated. Ten “story” files from
the multilingual speech database were selected from the available: Japanese, French,
and German files. The exact files used in this simulation are listed in Appendix D. The
test set was composed of the processed data (with silent intervals removed) from these
three languages. Our goal here is to observe how our classifier (trained with only Eng-
lish speech) performs when classifying non-English speech. The results are shown in

Table 31.

Table 31: Accuracies For non-English speech files (N=2052, LDF).

Class English (%) | Japanese (%) | French (%) | German (%)
1 . - - -
2 0.25 - - 0.14
3 1.97 092 0.91 0.54
4 1.35 0.31 0.34 0.27
5 - - - -
6 - - - -
7 - - 1.03 -
8 91.63 91.72 89.00 94.73
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Table 31: Accuracies For non-English speech files (N=2052, LDF).

Class English (%) | Japanese (%) | French (%) | German (%)
9 0.49 - 0.11 .
10 - -
11 1.72 6.75 73 3.38
12 2.59 0.31 091 0.95

For English speech the classification accuracy for recognizing speech was 91.63%,
which is very close to the non-English speech results. French was recognized as speech
with an accuracy just below 89%, while German was recognized with 95% accuracy.

The accuracy for Japanese was intermediate between French and German.

6.2.7 Effects of Changing the Feature Variables

All of the simulations performed thus far have been done using all of the feature
variables, namely, the first 10 values of the ACS and the normalized central second-
order moment. These variables were chosen by Sewall because the first 10 values of
the ACS appeared to him to capture much of the relevant signal information present in
the PSD, and the normalized central second-order moment was shown to be useful
when separating speech from various voiceband data types [2]. By using these varia-
bles, the overall accuracy of the classifier appears quite high; however, for maximum
accuracy a classifier may not necessarily require all of these variables. As we will
report below, using subsets of discriminant variables from the 11 available can actually
increase the accuracy. It is important to choose the combination of feature variables
that are best, in a statistical sense, at separating all of the classes. Such a combination
tends to include feature variables that are effective at separating easily confused
classes. Problems with even two easily confused classes can quickly degrade the accu-
racy of a classifier. Also, the optimum subset of variables is not necessarily the same
for each classification method.

By reducing the number of variables, the number of computations required by
both the LDF and QDF is reduced. For N classes and J feature variables the number of
computations required by LDFs and QDFs is given by Equations (22) and (23), respec-
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tively. Using these equations, the number of basic computations (multiply and accumu-

lates) saved by reducing the number of feature variables, J, from J, to J, can be

derived as shown in Equations (26) and (27).

Computations saved for LDF = N (J,=J)),J,>J, (Eq 26)

Computations saved for QDF = N(Ji —Jf) +2N(J,-J)),J,>J, (Eq 27)

Figure 27 shows how the number of computations increases for increasing numbers of
feature variables. As expected, when using LDFs, the change follows a linear curve;
when using QDFs, the increase in the number of computations is quadratic. Conse-
quently, if there is not enough real-time to perform classification using a desired seg-
ment size, the number of variables can always be reduced. This will reducc the number
of computations, but may produce a drop in classification accuracy. Clearly it is impor-

tant to determine which subset of variables provides the best overall accuracy.
Computations Vs. Number Of Varables Using LDFs.
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Figure 27: Computations using different numbers of feature variables (23 classes).
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6.2.7.1 Optimum Feature Variable Sets

Using the data that Sewall collected, off-line classification experiments were
conducted to determine optimal sets of variables. This involved determining both the
number of feature variables to use and, specifically, which ones to select. Various sim-
ulations were initially done by hand-picking subsets of variables. The variables were
selected partly based on the rankings generated by the “stepwise mode” option in
SPSS. This mode allows forward selection and backward elimination of the variables
at each step in the selection process [36]. This results in a table that ranks the variables
according to their effectiveness in separating the classes. Sewall performed these tests
and generated ranking tables when discriminating between all classes, speech and non-
speech classes, and all non-speech classes. Variable selection was also based on using
variables that were best at separating the problem classes.

As mentioned above, various simulations were done while hand-picking varia-
bles. N2 was selected because it ranked the highest when discriminating between
speech and non-speech. Rd2, Rd4, and RdS were selected because they were ranked
the highest when classifying between various non-speech signals. Rd8 was selected
because it was ranked very high when classifying between classes 4 and 5 (which are
hard to separate). Finally, Rd1 was also selected because it had an above average rank-
ing in two of the three simulations. Also, from the plots of the ACS of various signals.
it is apparent that the ACS lags have the greatest magnitudes (and thus greater “signal-
to-noise” ratios) in the low order lags. Using this combination of discriminants with
Sewall’s data resulted in an average classification accuracy of 97.85%. This is a
slightly higher accuracy than when using all variables (96.02%).

But is this the optimum subset of variables? Would the accuracy increase if
even more different variables were selected? If more than six, but fewer than 11, varia-
bles are used, would the accuracy increase? These questions are difficult to answer
because of the number of different combinations of discriminants that can be used. The
total number of combinations for n elements in the set, and & elements in the subset is

given by equation (28) [14].
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n!

cmk) = oo

(Eq 28)

Using 11 variables and subsets of sizes ranging from | to 11 results in 2047 possible
combinations. Since SPSS has a command line interface, a script was written to auto-
mate the running of the simulations for all possible combinations. The results are sum-

marized in Table 32.

Table 32: Maximum accuracy using different numbers of variables (N=2052, LDF).

Number of Variables Used
Variables
1 2 3 4 (516171819 ]10]1!l
Rdl X X X X X X X X
Rd2 X X X X X X X X X
Rd3 X X
Rd4 X X X X X X X X X
RdS X X X X X X X X
Rd6 X X X X X
Rd7 X
Rd8 X X X X X X X X X X
Rd9 X X X X
RdI0 X X X X
N2 X X X X X X
Pc (%) |73.86|92.43/95.77(96.90|97.41{97.85(97.84{97.40(97.02|96.76]96.02

Using only Rd4 resulted in a surprisingly high classification rate (73.86%) over all
classes. The greatest accuracy was achieved using six variables (Rd1, Rd2, Rd4, Rd5,
Rd8, and N2). This happens to be the same combination of variables that was hand-
picked from the previous discussion! Using more than six variables did not improve
the accuracy; in fact, using more variables increasingly reduced the overall accuracy.
This is a fortunate result as reducing the number of variables from 11 to 6 reduces the
number of computations required by LDFs by 55%.

Table 32 shows the results of using different combinations of variables using
pseudo quadratic discriminant functions. Again, using only six variables results in the

best accuracy (100%); however these six are not the same as determined for LDFs.
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When using the pseudo quadratic method, the discriminants that provide the best
results are Rdl, Rd2, Rd3, RdS, Rd6, and Rd7. Actually, when using 6 to 9 variables,
many different combinations yielded essentially the same average classification accura-
cies, within our ability to measure accuracy. The table below shows only one combina-

tion when using 6 to 9 variables, with the remaining summarized in Appendix F.

Table 33: Accuracy using different combinations of variables (N=2052, Pseudo QDF).

Number of Variables Used
Variables
| 2 3| 4 6 | 7| 89 |10]1l
Rdl X X X X X X X X
Rd2 X X X X X X X X X X
Rd3 X X X X X X X X
Rd4 X X X X X
RdS X X X X X X X X
Rdé6 X X X X X X X X X
Rd7 X X X X X X
Rd8 X X X
Rd9 X X X
Rd10 X X X X
N2 X X
Pc (%) [76.55(96.17199.73199.96/99.99]100.0{100.0]100.0{99.99{99.99(99.62

When using pseudo quadratic discriminant functions, the variable ranking is different
than when using LDFs. Simulations were carried out using the data Sewall collected
and the resulting ranking is summarized below. The variable ranking when using LDFs
can be found in [2].

Table 34: Discriminant variable rankings (V=2048, Pseudo QDF).

l Rd2 Rd4 Rd4 Rd2 Rd2
2 Rd3 Rd8 Rdl Rd4 Rdl
3 Rd7 Rd5 Rd5 Rd5 Rd4
4 Rdl Rd7 Rd8 Rd7 Rd5
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Table 34: Discriminant variable rankings (N=2048, Pseudo QDF).

Rank L‘Z‘nlﬁa M;*;:::ﬁf:‘s F-ratio | Rao’s V U‘\‘fa’ifiﬁlc':’d
5 Rd4 Rd9 Rd7 Rd1 Rd3
6 RdS Rd6 Rd9 Rdé Rd6
7 Rd6 Rd10 Rd6 Rd3 Rd8
8 Rd8 Rdl Rd10 Rd9 Rd7
9 N2 N2 N2 Rd8& Rd9
10 Rd9 Rd3 Rd3 N2 N2
H Rd10 Rd2 Rd2 Rdl0 Rd10

Using these optimum variable subsets, simulations were done using QDFs. The accu-
racies were identical to the pseudo quadratic accuracies when using 6 variables. Addi-
tional simulations were done using some of the 7 and 8 variable combinations, again
yielding the same results.

For both the linear and pseudo quadratic methods, the results when using the
optimum subset of variables does not result in a great improvement over using all vari-
ables. Also, different combinations of six or more variables produced comparable
accuracies. For example, all variable combinations above 4 resulted in a 99% accuracy
when using pseudo quadratic discriminant functions. For LDFs the accuracy varied
from 95.77% to 97.85% when using 3 or more variables. To further explore this effect
the accuracy range, when using different numbers of variables, was investigated and is
summarized in Figures 28 and 29.

For LDFs the upper limit is above 92% when using the best set of 2 or more fea-
ture variables. The lower range increases as the number of variables increases. This
suggests that, when using relatively few variables, it is especially important to select
them properly or the accuracy could be considerably reduced. When using 9 or more
feature variables, the lower limit is above 90%, so the particular choice of variables is

not as important.
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Range of Accuracies for Different Numbers of Variables Using LDFs.
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Figure 28: Range of accuracies for different numbers of variables using LDFs.

Range of Accuracies for Different Numbers of Variables Using Pseudo QDFs.
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Figure 29: Range of accuracies for different numbers of variables using pseudo QDFs.
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The results when using pseudo quadratic discriminant functions are similar to those
when using LDFs. The fewer the number of discriminants that are used, the more the
accuracy varies; however, any more than 6 variables results in less than a 1% deviation.
This suggests that any arbitrary combination of 6 or more variables will results in an
accuracy of greater than 99%. By reducing the number of variables from 11 to 6, the
number of computations is reduced significantly by 66%. Since there is no added value
in using more than 6 variables, why waste scarce real-time resources by including any
more variables.

Using the optimal variable selections for linear and pseudo quadratic discrimi-
nant functions, simulations were conducted with the data collected at the first field trial.
The results are summarized in the tables below for both 9 and 12 classes, and both

LDFs and QDFs.

Table 35: Percent classification accuracy using variables Rdl, 2, 4, 5, 8, and N2 (N=2052, LDF, std

V.34).
Class l 2 3 4 5 6 7 8 9
1 10000 | - - - . ; . - -
2 - 8755 | - 12.45 - . - - -
3 - - 99.74 | 0.0l 0.01 0.03 0.02 0.03 0.16
4 - - - 91.78 | 8.22 - - - -
5 - - - 8.06% | 91.94 - - - -
6 - - - - 0.02 | 99.71 | 0.27 - -
7 - - - - - 0.37 | 99.62 - 0.01
8 - - 334 0.77 - - - 95.89 -
9 - - - - - - - - 100.00

The accuracy over all classes using the optimum set of variables is 96.2%, compared
with 96.02% when using all variables. For QDFs the overall accuracy is 99.71% when
using the optimum variable set, compared to 99.70% when using all variables. Again,
reducing the number of variables does not significantly change the overall accuracy of
the classifier, but the number of computations is considerably reduced when using

fewer feature variables.
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Table 36: Percent classification accuracy using variables Rdl, 2, 3, 5, 6, and 7 (N=2052, QDF, std

V.34).

Class 1 2 3 4 5 6 7 8 9
! 10000 | - - - . - - - -
2 - 100.00 | - - - . - - -
3 - - | 9990 - . . - 0.10 -
4 ; - - | 9834 | 166 | - - - -
5 . - - | o1 [9989] - - - -
6 - - - - | 046 | 9954 - - -
7 . ; - . - | 022 199721 006 -
3 ] ] . ) ] - - | 10000 | -
9 ] . . ] ] ; . . 100.00

The next two tables show the results when the number of classes is expanded
from 9 classes to 12 classes (counting the 12 DTMF signals as one class). Using LDFs
the overall accuracy is reduced to 94.56% (from 96.2%), and the accuracies using
QDFs is also reduced from 99.71% to 99.68%. In both cases note that the addition of

14 classes reduced the accuracy by less than 2%.

Table 37: Percent classification accuracy using variables Rdl, 2, 4, 5, 8, and N2 (N=2052, LDF, std

V.34).
Class| 1 2 3 4 5 6 7 8 9 10 i1 12
(7697 - [ - T -1 -1 -1-71- - - - 2303
2 | - [s667] - (1333 - T - [ - - - - . -
30 - | - ]99.73] - Joo2fo002]003fo0oi[o17 ] - ooz | -
4 | - | - | - [s052]948] - [ - T - - - - .
5 | - | - | - [1019[89.63[002] - | - - - - 1016
6 | - | - 1| -] - [oo06]9969(025[ - - - - -
70 - -] - | -1 - loazfeosel - [oo1 | - - -
8 | - | - f2221099| - | - | - Jeauforz| - 185 271
9 | -1 -1-1-1-1-1=-T71F+ Tooo| - - -
o | - [ --1-1-1-7T-71- - 10000 - -
um | -1 -1-1-1-1T-71T-7- - - |10000] -
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Table 37: Percent classification accuracy using variables Rd1, 2, 4, 5, 8, and N2 (N=2052, LDF, std
V.34).

Class| 1 6 7 8 9 10 I 12
2| -1 -1 -1T-T7T-1T-71-1T-1 -1 -1 - Tioooo

8]
W
&
[

Table 38: Percent classification accuracy using variables Rdl, 2, 3, 5, 6, and 7 (N=2048, QDF, std

V.34).

Class| 1 2 3 4 5 6 7 8 9 10 | 11 12
I |100.00] - - -1 -1 -1 -1- ) ; - ;
2 - Jwooo| - | - -] -1 -1 - - ] R
3 - - (9990 - | - | - - Joiwo| - - - .
4 - - 1002(9857| 41| - | - | - - - . -
5 - - - 0169982 - | - loo2]| - - - -
6 - - - | - lo2799.71]002] - - - - -
7 - - -1 - | - [033]99.59]0.08] - . - -
8 - - foast - | - - | - (995 - - - -
9 - - -0 - -0 - -] - hoooo| - - -
0o | - - - -0 -1 -1 -1 - - {10000] - -
tl - - -0 - - - - ] - - f98.77] -
12 | - - - -0 -1 - -] - . - [100.00

6.2.8 Performance Measures

The classification accuracies presented thus far have assumed a significantly
high signal power within the given segment window. If a mixture of signals (including
silence) is present within a segment window, then signal power can drop significantly.
Also, in real signals, transitions from one signal type to another do not necessarily
occur conveniently at segment window boundaries. Figure 30 shows an example of the
call structure of three separate calls: speech, data and facsimile. The vertical lines that
run through each bar indicate the boundaries between adjacent segment windows.
Within the speech call, a segment window could include only ringback, ringback and
silence, ringback and speech, speech and silence, or finally speech alone. For the data
call, a segment window could include only ringback, ringback and silence, ringback

and the negotiation phase, the negotiation phase, data and the negotiation phase, data
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Figure 30: Segment window effects on calls with different structures.

alone, or data with silence. For the facsimile call, a segment window could include
only ringback, ringback and silence, ringback and FSK signalling, FSK signalling
alone, FSK signalling and data, or data alone. Given that it is inevitable that the classi-
fier will be called upon to classify mixtures of signals, several important questions
arise: How will mixtures of different signals affect the accuracy of the classifier? How
accurately can the actual signal transitions be tracked? Can incorrect classification
decisions be produced? If so, what can be done to control the problem?

In an early attempt to answer some of these questions, a demo file was created
and passed to the classifier. This file was created using equal-duration data samples
from all signal classes, which were then joined together in round robin format (e.g.
class 1, class 2, class 3, ..., class 11, class 12). This sequence was then repeated, each

time reducing the duration of each signal class by a factor of two.
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(a) Class Duration = 2.496 s, Total Duration = 29.952 s.

I I A

(b) Class Duration = 1.28 s, Total Duration = 15.36 s.

(e) Class Duration = 192 ms, Total Duration = 2.304 s.

(f) Class Duration = 128 ms, Total Duration = 1.536 s.

(g) Class Duration = 64 ms, Total Duration = 768 ms.

I l
(h) Class Duration = 31.5 ms, Total Duration = 378 ms.
Figure 31: Classification results using different class durations (N=2052).

The results of this simulation, using a 2052 segment size, are shown in Figure 31
(please note that each bar has a different time scale). By the class duration we mean the
amount of time that each signal type is present during the particular simulation. By the
total duration we mean the total length of the demo file. The different colours represent
the different classes (12 in total). The tick marks below the bars represent the classifi-
cation segment boundaries. Tick marks were not shown for (a), (b), or (c); however.
the number of classification vectors for these bars are 116. 59, and 29, respectively.
The distinction between each class can be clearly made for class durations as small as
640 ms. Interestingly, a mixture of all signal classes gets classified as speech (as shown
in Figure 31 (h)). For this simulation the segment size was 256.5 ms, or 2052 samples.
As a rule of thumb, the classifier’s segment length should be no greater than half the

smallest class duration. Even if the class duration is greater than 513 ms, misclassifica-
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tions can still occur between signal transitions. Referring to Figure 31a, the class dura-
tion is 2.5 s, but one misclassification still occurs at the transition from class 6 to class
7. Around this transition, a mixture of both signal types is present within the 2052 seg-
ment window. In this instance the signal is classified into class 4; however. in general,
the resulting class is unpredictable. If a smaller segment size is used, the signal transi-
tions can be more precisely tracked. This can be seen in Figure 32, which shows the

classification results using a segment size of 127.5 ms (1020 samples).

(d) Class Duration = 64 ms, Total Duration = 768 ms.

Figure 32: Classification results using different class durations (N=1020).

With a class duration of 320 ms and 192 ms, the different classes can still be seen. Even
at 128 ms the only class that has disappeared is FSK signalling (dark blue). Even
smaller class durations result in too many mixtures of different signals within one seg-
ment window.

Figure 33 shows the classification results using an even smaller segment size of
31.5 ms (252 samples). For class durations greater than twice the segment size, or 63
ms, each signal class is present. Note that by reducing the segment size, the number of
misclassifications has also increased. even when a strong signal is present during the

entire segment window.
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(a) Class Duration = 128 ms, Total Duration = 1.536 s.

(b) Class Duration = 64 ms, Total Duration = 768 ms. I

(c) Class Duration = 31.5 ms, Total Duration = 378 ms.

(d) Class Duration = 15 ms, Total Duration = 180 ms.
Figure 33: Classification results using different class durations (N=252).

Another limitation when attempting to classify real signals is that the segment
boundaries are asynchronous with respect to signal transition times. The “phase” of the
segment windows could effect the classification results. Figure 34(a) shows the actual
signal class sequence in the simulated signal. while Figure 34(b) shows the correspond-
ing classification results. In Figure 34(a) the high level represents class 3 (V.34). and
the low level represents silence. This test signal was generated as follows: the V.34 was
turned on for exactly 8160 samples and then turned off for 8160 samples. repeatedly
each time increasing the off segment by 102 samples. This caused the signal bounda-
ries to advance with respect to the classifier’s segment boundaries by 102 samples each
time. This resulted in the segment window not falling completely on the signal pulse at

every interval.
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Figure 34: Comparison of ideal and actual classification results.
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(a) Simulated signal.

|-

(a) Classified signal.

Figure 35: Misclassifications resulting from a mixture of V.34 and silence.

For example, in Figure 35 the vertical dashed lines represent classifier segment bound-
aries. The first pulse is perfectly aligned on segment window boundaries thus produc-
ing correct classifications. The second pulse is not aligned on segment boundaries.
This results in the signal being misclassified at both boundaries (shown as the spikes up
to a third class type). The classification results are not always incorrect near signal
transitions, but they can be unpredictable. One strategy for minimizing the time that
the classifier’s decisions are erroneous is to use the smallest segment size consistent

with reasonably high levels of accuracy for constant signals.

6.3 Results of the Second Field Trial

The second field trial took place at the TELUS Toll Building in downtown
Edmonton, and lasted approximately three weeks. For this field trial. the classifier was
trained using a mixture of data acquired during the first field trial and (where required)
data collected by Sewall. The LDFs were trained to handle all 12 classes. including the
three additional signal classes; FSK, ringback, and DTMF tones (really 12 separate
classes). The QDFs were only trained to handle the classes with which the LDFs had
problems, namely, classes 1, 3, 4, 5, 8, and 12. Training for the QDFs for all classes

would have been ideal; however, this was not an option due to real-time limitations in
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the DSP.

The classifier performed quite well over the three weeks. Attempts were made
to monitor Tls that were heavily loaded with various different mixes of signal types.
Long distance T1s to Calgary, Vancouver, and Toronto were monitored as well as Tls
originating from local neighbourhoods in Edmonton and nearby surrounding areas.
Each T1 was monitored for at least 24 hours; some were monitored over an entire
weekend. The classification results for the LDFs and QDFs of all 24 channels of the T1
were stored into the classifier’s database. All parameters (e.g. power threshold, QDFs
and LDFs) for each T1 remained the same except for the segment size. Appendix D

contains a complete listing of all T1s monitored along with the appropriate parameters.

6.3.1 Busy Hour and Pie Chart Graphs

Busy hour and pie chart graphs can easily be generated by the classifier from the
stored data gathered during the field trials. A few selected graphs are presented in this
section (each graph shown was generated using the “Print Screen™ key while in an MS-
DOS window under Windows 3.11). ‘The data displayed in this section represent the
results of the LDFs only since the QDF results apply for only a subset of all the signal
classes. Please note that the vertical scale for each busy hour graph is different depend-
ing on the load for that particular T1 on that day.

Figures 36 and 37 show the traffic patterns for a T1 selected at random for a Sat-
urday. Classes 3 and 5 (both data modem classes) account for 64% of the traffic on this
T1. Class 3 (V.34) is, at present. widely used by dial-up users to connect to ISPs to
access the Internet. Class 5 could either be data calls (V.32, V.32bis) or fast facsimile
(V.17). At present the faster facsimile standard is not commonly used so the traffic that
our classifier observed was probably exclusively data modem. Class 4 (common 9600
bps fax) accounted for only 3% of the traffic and was restricted to between 9 in the
morning to midnight. Speech (Class 8) only accounted for 24% of the traffic. This
number can be misleading as it does not account for the silent intervals commonly scat-
tered within speech calls. To our surprise, a noticeable amount of class 1 (V.22 F) was

present, mainly between the hours of 11 in the morning to as late as 10 in the evening.
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Figure 36: Busy hour graph for a T1 on Saturday April 25, 1998.

This is surprising as the maximum bit rate supported by the older V.22bis standard is
only 2400 bps. Why would anybody be using this old standard when new standards
such as V.34 support bit rates of up to 33600 bps? When these calls were seen on the
real-time display during the field trial, they lasted for only a very short time. One pos-
sible explanation for these calls is that they are credit/debit card calls made from point-
of-sale terminals which continue to use this old standard (possibly to achieve greater
data transfer reliability and/or to minimize the delay due to the training sequence). Two
classes that appeared more often than we expected were classes 11 (ringback) and 12
(DTMF tones). Ringback of course is present at the start of most calls, but to account
tor 4% of the total traffic may seem surprising. However, if one assumes that voice
calls last on average 3.0 minutes and that ringing lasts on average 6 seconds. the 4%
figure looks reasonable. Standard North American ringback is on for 2 seconds and off
for 4 seconds, after which the cycle is repeated [30]. In fact, during the actual field
trial, misclassifications into ringback were occasionally observed for voice calls. The

amount of DTMF tone traffic (1%) present looks a little high. However, DTMF tones
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Figure 37: Pie chart graph for a T1 on Saturday April 25, 1998,

will appear for so-called “digital subscriber loops™, where dialed digits are sent back to
a remote CO. Usually, DTMF tones entered by users to route their calls are intercepted
and translated into messages carried by the SS7 signalling network. Tones entered after
a call has been set up will, however, still appear on the PSTN. Such tones are used
today in several situations: e.g. controlling voice mail and answering machines, tele-
phone banking, and automated call handling systems.

Figure 38 shows the busy hour graph for Mothers Day 1998 (Sunday, March
10). The T1 monitored was a long distance trunk between Edmonton and Calgary. As
expected, most of the traffic was speech along with some V.29 facsimile and V.34
modem traffic. The busy hour for this particular day was between 10 and 1 in the

evening (most probably son’s who just remembered to call their mother’s).
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Figure 38: Busy hour graph for a long distance T1 on Mother’s Day 1998.
6.4 Results of the Third and Fourth Field Trials

The third and fourth field trials took place at the Bonnie Doon TELUS Mobility
base station in Edmonton. This base station carries analogue cellular traffic from the
local cell area, and is also the central hub site for all base stations in the TELUS Mobil-
ity’s northern Alberta network. The third field trial lasted for one week during which
the classifier monitored two Tls. One T1 was for Quigley. Alberta and the second T1
was for Worsley, Alberta. Unfortunately, likely due to a power bump, the classifier
crashed and data from the Worsley T1 was lost. The fourth field trial lasted for a total
of ten days during which the classifier monitored one T1 for Peace River, Alberta. The
classifier ran for a total of 10 days uninterrupted, resulting in a 900 MB database file.

Some of the results are discussed in the next section.

6.4.1 Busy Hour and Pie Chart Graphs

Figure 39 shows a busy hour graph for a T1 to Quigley, Alberta which is a small

town in northern Alberta. Many of the base stations installed in northern Alberta serv-
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Figure 39: Busy hour graph for a T1 to Quigley, Alberta.

ice demand generated by the oil and gas industries. One interesting feature of this
graph is the steady amount of class 9 (Random Binary) traffic that is present throughout
the entire day. This was actually due to the in-band control information carried on one
DS-0 by this particular T!. In land line connections, the control information is usually
carried by a separate SS7 signalling network (packet switched). This line. however,
was leased by TELUS Mobility from TELUS. and therefore carried its own signalling
channel. Perhaps this Tl carried an ISDN (Integrated Services Digital Network)
23B+D configuration [9]. There is a noticeable amount of V.27ter facsimile calls. This
tratfic may be accurately classified because, in many cases, the connecting modems in a
wireless network might be expected to have problems establishing a connection at the
faster bit rates. Actually, we observed a call where a modem attempted to connect
using the faster V.29 standard. After two unsuccessful attempts. presumably at 9600 at
7200 bps, the bit rate tell to 4800 bps. Experiments conducted at TRLabs. with a wire-
less modem, allowed for faxes to be sent at bit rates of up to 14400 bps. As the speed

increased problems, such as missing lines and dropping connections, were increasingly
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observed. Another bit of interesting information extracted from Figure 39 is the
amount of V.22F traffic at 11 in the evening. Upon further investigation, it was deter-
mined that this traffic was due to a single call that continued until about 1:30 in the
morning on the next day. Perhaps this call was an older data logger sending back a
batch of production data for an oil or gas field. Alternatively, the low bit rate could
have been due to a transmission for a location near the outer limits of a wireless cell.

Figure 40 shows a busy hour graph for a Peace River T1 monitored during the
fourth field trial.

Figure 40: Busy hour graph for a T1 to Peace River, Alberta.

This T1, again, has a control channel in the first DS-0. This caused the steady black
stripe at the bottom of the plot corresponding to | Erlang of traffic. Aside from that. the
majority of traffic is simply speech. This line was monitored for ten straight days, with
the other plots looking similar to the one above.

6.5 Classifier Improvements

Although the classifier performed quite well, further improvements were possi-
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ble after the experience of the field trials. These improvements include the use of filters
to help “ride out” possible misclassifications during a call. These misclassifications
include silent intervals within voice calls or simply misclassifications due to signal
transitions. Also, thus far the results of the QDFs could not be used because the QDFs
were only trained on a subset of the total number of classes. If the signal did not belong
to one of these expected classes, then the QDF results are meaningless. We therefore
investigated ways of combining the LDF decisions with the QDF decisions to get a

hybrid method that would have the strengths of both methods.

6.5.1 Improvements From Using Filters

By using simple filtering methods, many of the potential misclassifications can
be removed from all types of calls. For example, Figure 41 shows an example of what

actual speech and V.29 facsimile calls looked like without filtering. The misclassifica-
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(a) Unfiltered Speech.
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(b) Unfiltered V.29 Fax.

Figure 41: Voice unfiltered and filtered (1020 segment size).

tions in the speech call are partly because of the silent intervals. and partly because of
mixtures of the silence with speech in the same segment. The misclassifications in the
facsimile call are mainly confusions between classes 4 and 5. which were known to dif-
ficult classes to separate. Note that the dark blue (FSK signalling). is expected in fac-
simile calls.

The type of filter to use strongly depends on the characteristics of the traffic that
the classifier is attempting to classify. Fortunately, many of the calls placed on the
PSTN have a predictable call structure. For example, data calls have a negotiation
phase. followed by the data using an unchanging modulation method. Facsimile calls
also have a negotiation phase, but the data transmission is intermixed with FSK signal-
ling. Finally, voice calls have a mixwre of speech with silent intervals. It is also

known that once a call has ended, a finite amount of time passes before another call
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begins on the same DS-0. The start of new calls can, in most cases, be determined by
the presence of ringback. It is important that any filter not affect the call boundaries by
merging together subsequent calls. Another important concern in filter design is that
real transitions in signal class not be moved around in time. Instead of attempting to
exploit high-level knowledge of call structure, we decided to evaluate a simple and rel-
atively low-level majority filter technique.

Such a filter simply looks at a user specified window size and. for each channel,
counts the number of classification decisions (before filtering) going into each signal

class.

New Unfiltered

aeE —p ..
Decisions

Filter Majority
Window Vote

New Filtered
Decisions

Figure 42: Majority rules filter.

It there is no clear majority class, then the filter backs off and passes the previous fil-
tered decision. One advantage of this filter is that signal boundaries are still maintained
(within one sample) between adjacent long stretches of different signals. The filter’s
simplicity ensures that it requires the minimum of computation.

An example of this filter on an actual voice call is shown in Figure 43.
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(a) Unfiltered.

(b) 1.25 s window.

(c) 2.5 s window.

(d) 5.0 s window.

(e) 10.0 s window.

Figure 43: Voice unfiltered and filtered (N=1020).

The unfiltered signal has misclassifications into various classes including, notably,
classes 3, 4. and 5. The speech call also contains brief intervals of silence. Figures 43
(b). (c). (d). and (e) show the results of filtering the data using four progressively larger
window sizes. By using a 1.25 second filter window the vast majority of the misclassi-
fications are removed. There are still. however. a couple of misclassifications into class
3. and also a few of the silent intervals were not bridged. After increasing the filter
window to 2.5 seconds. all of the misclassifications have been cleaned up: however.
one large silent interval remains. Using a filter setting of 5.0 seconds removes all of the
silent intervals.

In Figure 43 (a) filter setting greater than 5.0 seconds does not appear to result
in any improvements. This is usually the case because the silent intervals that we
observed were not long (less than 1.25 seconds). In other calls observed at the field tri-
als, silent intervals in the 20 - 30 second range were observed. Such a situation might
arise if a caller is placed on hold. Perhaps a larger filter window would help bridge the
larger silent intervals. This would, unfortunately, increase the danger of bridging sepa-
rate calls. During the field trials, a busy T! clearly had subsequent calls with little
intervening silence. The smallest observed time between calls was approximately 5
seconds. Thus, using a filter window of greater than 10 seconds risks bridging adjacent

calls on a busy T1.
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(a) Unfiltered.

(b) 750 ms.

(¢) 1.5s.

(d)3.0s.
Figure 44: V.29 facsimile call, unfiltered and filtered.

Figure 44(a) shows an actual V.29 fax call. The dark blue is the FSK signalling
present in all fax calls. The unfiltered bar shows many misclassifications into class 5.
which is not unexpected as classes 4 (V.29) and 5 are two easily confused classes. By
applying a very short 750 ms filter, the vast majority of the misclassifications are fil-

tered away. All misclassifications are filtered away by a 3.0 second filter.

(a) Unfiltered.

(b) 750 ms.

{c) 1.5s.

(d)5.0s.

(e)7.5s.
Figure 45: V.29 facsimile call, unfiltered and filtered.

Figure 45 shows a very clean V.29 fax call. In this particular case filtering does
not actually improve the overall accuracy; however, using a filter setting below 1.5 sec-
onds does not appear to do any harm. Using a filter setting of 5.0 seconds reduces the
duration of the FSK signalling. Finally, at a filter setting of 7.5 seconds, the FSK sig-
nalling is completely filtered away. By using an even larger filter window on facsimile
calls, the FSK signalling gets filtered away. It would be undesirable to lose the FSK

signalling since, apart from affecting class statistics, it would also corrupt interesting
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fax page count statistics that might otherwise be collected by the classifier.

From these experiments it appears that speech calls and non-speech calls might
best have different filter settings. For speech a larger filter window is desired to filter
away as many silent intervals as possible. However, using an overly long filter window
on non-speech calls, actual signals are lost. Perhaps an adaptive, multiple-window fil-
ter is required here. For example, if the present call has a majority of speech in the fil-
ter window, then the filter can be made to change the window size to the speech
window filter setting for the next filter output. If the filter determines that the majority
is non-speech, then it could be made to change back to the non-speech window filter
setting. This two-window setting approach is implemented in the final version of the
classifier.

The maximum filter window that can be used without filtering out actual signal
transitions depends on the signal that is present for the shortest period of time. FSK
signalling and ringback are clearly not present in an actual call for a long period of time
compared with, say, facsimile or modem calls. DTMF tones are only actually present
for a fraction of a second, possibly only 50 ms for automatic dialers. Manually acti-
vated DTMF signals will of course be several times longer. Even if a small 1.5 second
filter window is selected, the DTMF tone would have to be present for at least 750 ms
or else the filter would remove it. Another method would be to disable filtering when
DTMF tones can reasonably be expected. The problem with this method is that the
classifier would have to be very certain that any DTMF detected were in fact not mis-
classifications. Unfortunately, class 1 (V.22F), and class 8 (speech) are two classes that
have been seen to be sometimes misclassified as DTMF tones.

The problem of recognizing DTMF digits in the presence of other signals was
not completely solved in this project. Certainly adaptive filter techniques should be
investigated further. As a last resort, one could consider the use of the widely available

and inexpensive DTMF digit-collecting integrated circuits.

6.5.1.1 Comparisons of Filtered and Unfiltered Data

Figure 46 shows a pie chart graph for a Tl which terminates in Quigley,
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Figure 46: Pie chart for a T1 for Quigley.

, Alberta before filtering.

Alberta. The results show the breakdown of the un-filtered data. Figure 47 shows the
filtered results from the same T1. The filter settings used for this T1 was 5.0 seconds
for speech. and 1.0 seconds for non-speech. With filtering the data classes 12 (DTMF
tones). 3 (V.34), and 7 (V.27rer 24) have disappeared from the pie chart. Also. the
amount of ringback has been reduced from 7% to 5%, and the amount of V.29 has been
reduced from 9% to 8%. The classes that have increased are speech (25% to 28%), and

binary (45% to 49%). The other classes have been essentially unaffected.
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Figure 47: Pie chart for a T1 for Quigley, Alberta after filtering.

6.5.2 Hybrid Discriminant Function

Thus far, all of the busy hour and pie chart graphs have shown the results of the
results using LDFs. Over all classes the LDFs are reasonably accurate. but simulations
have shown that the QDFs are even more accurate. This is especially true when LDFs
attempt to classity a signal that belongs to one of the problem classes (e.g. classes 4 and
5). One solution is to train the QDFs over all classes and then simply to use only those
classification results. completely ignoring the LDF results. Unfortunately, the real-time
performance limits of our 40 MHz DSP restricted the number of classes the QDFs
could be trained on. One compromise would be to only train the QDFs on classes that
pose problems to LDFs. Perhaps what is needed is a hybrid method that combines, in
some effective way, the decisions of the LDFs and QDFs. But this creates a problem:
when should the classifier only use the LDF results, and when should it be allowed to
use the QDFs? Since the QDFs are not trained on all signal classes, the results of the
LDFs must be considered first because the signal could belong to a class that the QDFs
do not recognize. If the signal can be placed by the LDF with high confidence into a set
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of classes handled by the QDFs, then using the quadratic result is desired. One method
to determine the set of class candidates is to look at the actual numerical values gener-
ated by the LDFs. For example, currently the classifier evaluates the LDFs and assigns
the signal to the class with the largest value (assuming prior probabilities are equal). If
instead the classifier looked at the top two or three values, and if these classes were all
recognized by the QDF, then the QDF result could be used to make the final classifica-

tion instead of the linear result (see Figure 48). Of course, this method assumes that the

Compute Feature
Variables.

'

Compute
LDFs & QDFs.

'

Use LDF values to identify a
small set of most likely candidate
classes.

Are QDFs trained
for all the candi-
date classes?

Yes

Pick highest scoring Pick highest scoring
class according to the class according to the
LDFs. QDFs.

Figure 48: Hybrid decision rule.

LDF will be reliable enough to include the ultimately selected class in a set of candidate
classes. To verify this, the top two signal classes of the LDF were recorded and are
summarized in Tables 39 and 40 for the problem classes. The “>12” class refers to the
signal classes from 13 to 23 inclusive.
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Table 39: First choice selection (%) using LDFs (N=2052).

Class 2 3 4 5 6 7 8 9 10 11 12 | >12
1 |89.44| - - - - - - - - - - 10.56 | -
2 100.00{ - - - - - - - - - - -

3 - [99.90{ - ]0.04| - [0.03]0.01 - - 0.02 - -
4 - - |85.63[14.37| - - - - - - - -
5 - - |11.56(88.40; 0.04 | - - - - - - -
6 - - - - 19890 110} - - - - - -
7 - - - - 1 1.20|98.79| - - - - 0.01
8 025 | 197|135 - - - 191.63( 0.49 - 1.72 - 2.59
9 - - - - - - - {l00.00] - - - -
10 - - - - - - - - |100.00 - - -
11 - - - - - - - - - |100.00| - -
12 - - - - - - - - 100.00; -
>12 - - - - - - - - - - - 100.0

Class 1 has a classification accuracy of 89.44%, with 10.56% being classified as class

12 accounting for 100% of class 1. The second choice for class | has classes | and 12,

accounting for 99.1% of the classifications. This suggests that if the actual signal

belongs to class 1, then most of the time the top two selections of the LDFS will be 1

and 12.
Table 40: Second choice selection (%) using LDFs (N=2052).

Class| 1 213 4 |5 6 7 8 |9 10| IL |12 |>12
1 1049 | - - - - - - - -] - - 188.62] 0.89
2 - - - |57.86] - - - - -l - - 12.15]39.99
3 - - - [44.48/55.45]| 0.02 - 002 [ - [0.02{0.01 | - -
4 - - - (14378563 - - - -] - - - -
5 - - - |88.40{11.58} 0.02 - - -] - - - -
6 - - - [ 1.53]835]|1.1089.02| - -] - - - -
7 - - - 1010 - 198.79] L.10 - - |- - |001] -
8 - - 153071 197}062 | - - 3.08 |049] - |3399| - |6.78
9 - - | 1.03] - |63.64| - - - -1 - - - 13533
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Table 40: Second choice selection (%) using LDFs (N=2052).

Class| 1 2134|516 7 8 | 910 11| 12 [>12

0 | - -1 -1 -1 -7T-Twooo] - [ -[-1-1-1-
1 - B - wooo| - | -] - [ -] -
12 hooool - | - - -1 - - A

This argument also holds true for easily confused classes 4 and 5. In our experiment
classes 4 and 5 account for 100% of the first and second choices. Class 8, however, is
misclassified into many different classes with no one clear majority. Also, class 8
(speech) is selected as a second choice only 3.08% of the time. This would suggest that
using the hybrid method will not improve the accuracy for speech calls unless the
QDFs are trained for virtually all of the classes. Even after doing this, the accuracy for
a hybrid method that considers only the top two ranked classes cannot increase by more
than 3.08%.

Using the proposed hybrid method with two LDF classes for signals of classes
1,4, 5, and 12, the accuracy improved significantly as shown in Table 41. The classifi-
cation accuracy of class 1 jumped nearly 10% to 99.93, and the accuracy for classes 4
and 5 have improved to 98.80% and 99.95%. respectively. The classification accuracy
of the remaining classes remains unchanged at high levels. Over all classes, the aver-

age accuracy has improved to 98.99% from 96.06%.

Table 41: Percent classification accuracy using the hybrid method (N=2052, Std V.34, Incl. EN).

Class| 1 2 3 4 5 6 7 8 9 10 11 12 | >12
[ [99.93] - - - T -1 -1 -1 -1 - - - (oo7 | -
2 | - Jwooool - | - [ - -1 -1- - ] . ] -
3| - - 9990 - [oo04] - [o0.03]001 - Joo2 | - -
4 | - - - [9880]120] - | -1 - | - - - - -
s | - - {002(9994[004| - | - | - - - - -
6 | - - - -] - esgof o] - | - - - - -
7 | - - - - | - T120]e879] - | - - - - | 001
8 | - (025 [197({123]oua2| - | - [o1e3foa9 | - [ 172 - | 259
9 - -1 -1-1-1-71-71"- Tooo| - - - -
o | - -t -0 -1 -1 -1 -1 - Toooo| - - -
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Table 41: Percent classification accuracy using the hybrid method (N=2052, Std V.34, Incl. EN).

Class| 1 2 3 4 5 6 7 8 9 10 I1 12 | >12
| - - - - T -1 -1 -71- - - [100.00 - -
2| - - -0 -1 -0 -7 - - - - [100.00] -
>12 | - - - - - - - - - - - - |100.00

The above results were generated using all variables to train the QDFs. Using
the six optimum variables (as determined from a previous section) reduces the number
of computations without reducing accuracy. These results are summarized below in

Table 42. Clearly the accuracy has remained the same.

Table 42: Percent classification accuracy using the hybrid method and variables Rd1, 2, 3, 5, 6, and
7 (N=2052, Std V.34, Inci. EN).

Class| 1 2 3 4 5 6 7 8 9 10 11 12 | >I12
I [99.93[ - - - - -1 -1T- - - - Joo7 | -
2 | - quoooof - [ - | - -] -7- - - - - -
3] - - [99.90{0.04| - [ - [o003001] - - o002 - .
4 | - - - lossofiat| - | - | - - - - - .
5 | - - - |o16[99.80[ 004 | - | - - - - - -
6 | - - - | - - [e890] o] - . - - - -
7 | - . - - | - [r120]s8.80] - - - - - -
8 | - |o2sfr9r|ia3for2| - | - [ore3fos9| - [ 172 - |25
9 | - - -1 -1 -1 -1-1- Toooo| - - - -
o | - - A D e - |100.00f - - .
n | - - - -0 -1 -1 -1 - - - |1o000[ - -
12 | - - B - - - {100.00] -
>12 | - - - - -] -1 -1 - - - - - |100.00

6.5.3 Speech and Voiceband Data Classifier

The hybrid classifier described in the previous section improved the classifica-
tion accuracy of classes 1, 4, 5, and 12; however, the accuracy of speech is still rela-
tively low (91.63%). Benvenuto found that by using only two feature variables,
namely the autocorrelation at lag 2 and the central second-order moment, speech and

voiceband data could be accurately distinguished from each other. Using these same
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feature variables, an experiment was conducted using only two classes, speech and
non-speech. The non-speech class was generated by grouping together all of the non-
speech classes (1 to 7 and 9 to 23). The resulting classification accuracies are given in

Tables 43 and 44. This two-stage method was actually introduced by Sewall in [2].

Table 43: Percent classification accuracy using only two classes (N=2052, LDF, Std V.34, Incl. EN).

Class Non-Speech Speech

Non-Speech 99.88 0.12

Speech 5.42 94.58

Table 44: Percent classification accuracy using only two classes (N=2052, QDF, Std V.34, Incl. EN).

Class Non-Speech Speech

Non-Speech 98.51 1.49

Speech 0.25 99.75

Using LDFs the classification accuracy of speech has improved from 91.63% to
94.58%, and by using QDFs the classification accuracy of speech has improved to
99.75%. In both cases, the accuracy for recognizing non-speech remains high at
99.88% tor LDFs, and 98.51% for QDFs. At first this seemed like a favourable result,
however, the majority of misclassifications of non-speech into speech were from
classes 9 (random binary) and 11 (ringback). This reduced the classification accuracy
for these two classes substantially. To try and improve the accuracy for these two
classes, an experiment was done using 4 classes: non-speech (classes 1 to 7, 10, and 12
to 23), speech, random binary, and ringback. SPSS was then used to determine which
feature variables are best at separating these four classes. Using only four variables
(Rdl, 3, 5, and N2), the classification accuracy for classes 9 and 11 were increased to
100.0% and 97.53%, respectively as shown in Table 45. This result is very useful as
the accuracy for speech has also increased to 99.26% without affecting the classifica-

tion accuracy of other classes significantly.
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Table 45:

Percent classification accuracy using only four classes (N=2052, Std V.34, Incl. EN).
Non-Speech Random
Class (Classes 1-7, 10, | Speech Bin Ringback
& 12-23) ary
Non-Speech 99.99 0.01 - -
Speech 0.74 99.26 - -
Ra.ndom - - 100.0 -
Binary
Ringback - 2.47 - 97.53

This suggests that perhaps a two stage classifier is required. If this classifier

returns a non-speech result then the data could be further processed using the previ-

ously discussed hybrid classifier. If speech, random binary, or ringback is detected at

the first stage, then no further processing is required. The classification accuracies,

using this approach is summarized in Table 42.

Table 46: Percent classification accuracy using a two-stage classifier (N=2052, QDF, Std V.34, Incl.

EN).

Class| 1 2 3456|7181 9 0| 11 |12 |[>12
I [99.93] - - - - - - - - - - 0.07 -
2 - [toooo] - | - L - | - | - | - - - - - -
3 - - [99931004| - | - |003] - - - - - R
4 - - - 19859141} - | - | - . . - - -
5 - - - 10.16 {99.80[ 0.04 | - | - - - - R R
6 - - -] - | - [9896[to4| - - - - - -
7 - - - - | - |099]99.0f - . - - - {001
8 - - 1074 - | -} - | - [99.26] - - - - -
9 - - - -1 -1 -1-1 - [10000] - - . R
10 - - - - - - - - - [100.00 - - -
i | - - O R R A BT - 9753 - -
12 [ - - - - - - - - - - - |100.00 -

>12 - - -l -t - -] - - - - - - ]100.00
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Using this method, the second stage of the LDFs would only need to classify between

20 classes (down from 23), and the QDFs would only need to classify 4 classes (down

from 6).
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Chapter 7

7.0 Recommendations

The intent of this chapter is to provide design recommendations for future
voiceband signal classifiers based upon the results of the previous chapters. These will
include hardware and software recommendations along with the associated settings to

be used by the classification algorithm.

7.1 Computer Hardware, OS, and GUI

The prototype Voiceband Signal Classifier, designed and built for this thesis,
was a generic PC with a 486 DX4 100 MHz CPU, a 40 MIPS floating-point DSP card,
and a T1 interface card. The PC was used to run the GUI software, and the DSP was
used to compute the classification vectors. The DSP was necessary because the host
CPU was not fast enough to compute the classification vectors as well as running the
GUTI software. The OS chosen for the classifier was MS-DOS 6.22. Although this is
not a real-time OS, it proved to be satisfactory for this application. The prototype
proved to be very stable over all four field trials.

During the project many faster CPUs became available. At the time of writing,
Pentium II 450 Mhz CPUs were available in muitiple processor motherboards. By
using such fast processors, the need for a separate DSP card becomes questionable as
the CPU is fast enough to run the GUI as well as compute the classification vectors.
This is an advantage as the DSP card is relatively expensive, and it adds complexity to
the system.

[n fact, a DSP-less Windows NT 4.0 system is already under development by
Mr. Xiangqian Xu, a TRLabs M.Eng. student, using a Pentium II 266 MHz CPU, a sin-
gle processor motherboard, and a similar T1 interface card. This system is able to clas-
sify, in real-time, all 24 channels of a T1 with many CPU cycles to spare. Xu estimates
that the current Windows NT system can handle up to four T1 lines if the real-time dis-
play is not active (assuming no other applications are running). By using Windows NT,
a GUI was developed which will be much easier to extend than the MS-DOS GUL
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Also, using Windows NT will permit the classifier application to interact with other
Windows-based applications, which should make it easier to extend the classifier with
new features. One example of this is using standard text editors to view the logfile, or
importing the classification vectors directly into standard spreadsheet programs for
processing the data and for plotting graphs. After further testing and field trials it is
anticipated that the Windows NT system will match the reliability of the MS-DOS pro-
totype and will supersede it as the research development platform.

The two systems described above have only been designed to handle one Tl
line. Typically a CO or base station has multiple T1 lines. For example, the Bonnie
Doon TELUS Mobility base station terminated over 500 T! lines, and the TELUS Toll
Building had even more. In this situation it would be desirable to monitor more than
justone T1 line at a time. One solution would be to scan through multiple T1s using an
external multiplexer with the output going to the existing prototype. Another solution
would be to use a multiple processor DSP card to perform the classification calculation
in parallel for many Tls, perhaps as many as 28 Tls (that is enough for one 44.736
Mbps T3 trunk). A Tl card which switches under software control among up to 8 sep-

arate T inputs is currently sold by GL Communications Inc. (Multi T1).

7.2 Training Data and Signal Classes

The data used to train and test the classifier included the recordings made at the
first field trial, and the recordings made by Sewall in [2]. Signal samples for unusual
class 3 (V.34) operating modes were not used in the training of the coefficients. The
V.34 standard allows for various baud rates, bit rates, and carrier frequencies. These
different modes had quite variable PSDs that caused some difficulty to the classifier. At
the first field trial it was observed that when using land line connections, the modems
appear to default to a symbol rate of 3529 baud and a carrier frequency of 1959 Hz.
The only time that any other modes were observed was if the modem was forced by
using the AT command set. This conclusion might hold true for land lines; however, it
might not hold true for wireless connections. A data file recorded by VisionSmart (a

TRLabs small business associate) using a wireless modem fooled the classifier into
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calling it a V.29 facsimile signal. All that was known about this signal was that it was a
data connection (not a facsimile call), and that the bit rate reported from the application
program was 14400 bps. Interestingly, although the LDF decisions were V.29, the QDF
decisions were V.34. One possible explanation is that the signal was in fact a V.34 sig-
nal using an unusual symbol rate and carrier frequency. This is quite possible as the
characteristics of wireless voice channels can be quite variable, thus using the V.34
connection would be beneficial since the parameters (carrier frequency, baud rate, and
bit rate) can be negotiated to adapt to the channel’s limitations. We therefore believe
that the non-standard V.34 connection modes cannot be ignored when using the classi-
fier for wireless channels. Additional classes may be required.

The results presented in this thesis were for signals that were separated into 12
classes. Using all 12 classes is recommended if the traffic mix is not already known. If
the classifier is to be used in only a specific application, where only certain classes are
known to be present, then the number of classes could be reduced. An example of such
an application would be a classifier simply distinguishing between speech and modem
data; e.g. for lines leading to an ISP. Also, customers may not be interested in DTMF
tones. By removing the DTMF tones, 12 fewer classes are required and almost one half
of the computations can be saved. Such optimizations, however, are probably not
advisable for a research platform.

The LDFs were trained to recognize all 23 classes, while the QDFs were trained
to recognize only 6 classes. This was necessary to meet the real-time requirements of
the DSP card. The 6 QDF classes included classes 1, 3, 4, 5, 8, and 12. These were
chosen because they were observed to cause problems for the LDFs. The QDFs should
definitely be trained to at least recognize classes 1, 4, 5, and 12 because using QDFs,
the accuracy for these classes can be readily raised to close to 100%. If real-time con-
straints limit the number of QDF-trained classes to two, then selecting classes 4 and 5
would be best as these classes are more likely to appear then classes 1 and 12. If real-
time constraints allow additional classes to be handled by the QDFs, then selecting
classes into which speech is frequently misclassified would be desirable. Two such

classes are ringback and DTMF tones. With a sufficiently fast processor, the QDFs
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might be trained to recognize all classes. This would eliminate the need to use LDFs

and any multistage hybrid methods.

7.3 Classification Methods

The classification methods evaluated for this thesis included LDFs, QDFs,
Pseudo QDFs, and ALNs. A new hybrid method was also developed which combined
the strengths of the LDFs and QDFs. The LDFs, QDFs, and the hybrid method were
implemented in the prototype classifier. There does not appear to be any advantage to
using pseudo QDFs instead of QDFs as, in all cases observed, the QDFs classified sig-
nals at least as accurately as the pseudo QDFs. Implementing ALNs in the prototype
classifier might improve the classification accuracy as ALNs did perform better over
certain classes than QDFs. Perhaps a new hybrid method could be derived from all
three of the LDFs, QDFs, and ALNs?

Our hybrid method was developed originally because real-time limitations in
the DSP did not allow for the QDFs to be employed in real-time for all signal classes.
In a faster system, if enough real-time is available, then using the QDFs over all classes
would be preferred since the QDF results are more accurate then the LDF results. This
would certainly improve the classification accuracy of speech, which appears to be a

priority for many potential users of voiceband signal classifiers.

7.4 Classifier Settings
7.4.1 Segment Size

Using segment sizes below 1020 samples noticeably reduced the overall accu-
racy of the prototype classifier. Segment sizes of 1020 samples and greater did appear
to clean up many misclassifications. The disadvantage of using a very large segment
size is that the actual signal transitions may not be accurately tracked. Also, using a
larger segment size increases the possibility of having signal mixtures within the seg-
ment window. Using a 2052 segment size appears to be a good compromise between
high accuracy and precision. This size implies approximately four classification vec-

tors every second, which is fast enough to track the signal transitions in most signal
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classes. This segment size is still too large to accurately collect DTMF digits at their
maximum arrival rate (12.5 digits/sec); however it is more than accurate enough to
track signal transitions among the other classes.

The prototype classifier was designed to use the filter coefficients that assumed
a 2052 segment size. These coefficients can be used regardless of the segment size
actually selected by the user through the GUI because all of the variables are normal-
ized with respect to size. To verify this, a simulation was conducted using 2052 seg-
ment size training data for an LDF classifier, and then using the 252, 516, 1020, and
2052 segment sizes in test sets to measure the resulting classification accuracies. The
same experiment was repeated for a training segment size of 1020. The results are

summarized in Table 47.

Table 47: Classification accuracy using different training sets.

2052 Training Set 1020 Training Set
Accuracy (%)
2052 | 1020 | S16 | 252 {2052 ] 1020 | 516 | 252
Measured 96.06 | 94.35 | 91.45 | 86.73 | 95.38 | 93.90 | 91.35 | 87.31
Accuracy

The measured classification accuracy shows no significant improvement regardless of
the segment size used in the training set. We conclude that only one set of coefficients
(say for the 2052 segment size) needs to be stored in the classifier, regardless of the seg-

ment size selected by the user.

7.4.2 Averaging Filter Settings

We found filters to be effective at improving the accuracy of the classifier on
real signals. Without filtering, many misclassifications were observed within speech
calls. Fewer misclassifications were observed in data or facsimile calls, but they were
still present. If average filtering is to be most effective at improving classifier accuracy,
then a different filter window must be used for speech and non-speech. This is neces-
sary to help bridge the sometimes long silent intervals unique to speech calls. For data
calls, a large filter window would actually remove important signal structures, such as
FSK signalling in facsimile calls and ringback. Filter settings below 3 seconds did not
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appear to remove these signals and should be safe for non-speech calls. Using a filter
of below 1.5 seconds for non-speech is not recommended because of the relatively
common problem of misclassifying classes 4 and 5. For speech calls, the upper limit on
the size of the filter is determined by the duration between the end of a call and the start
of a new call on the same DS-0. From the field trials this time was observed to be
approximately 5 seconds, so using a maximum filter window of less than 10 seconds
should not bridge the gaps between most speech calls. In many analogue wireless calls,
silent intervals did not appear due to the significantly high levels of background noise.
This might also be true in some land line connections, but it is difficult to distinguish
land line speech calls from wireless speech calls. To be safe, a 10 second filter should

be used for all speech calls.

7.4.3 Power Threshold

The power threshold used in the field trials was P,, = 816 (60 dB lower than the

maximum). This value was used by Sewall and was carried forward as a default value
into the prototype classifier. The power threshold setting is only applicable to voice
calls because, in data calls, there is usually plenty of power in the signal. During the
field trials, we adjusted the power threshold in an attempt to reduce the silent intervals.
By increasing the threshold, the number of silent intervals in voice calls did in fact
increase, and by decreasing the value the number of silent intervals did in fact decrease.
The danger in overly reducing the power threshold is that the resulting low signal-to-
noise ratio would lead to misclassifications. The danger in overly increasing the power
threshold is that silent intervals become longer and, as a result, more difficult to filter
out. This was noted at the field trials by simply adjusting the default value of the power
threshold, and observing how it effected the classification results of voice calls by using
the real-time display. Since no significant improvements were observed, at the field tri-
als, when increasing or decreasing the default value of the power threshold, we recom-

mend that the default value of 816 be used.
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7.4.4 Feature Variables

The LDFs and QDFs were trained using all 11 of the variables; however, we
showed later that using all 11 variables does not maximize classifier accuracy. Using
the optimum sets of variables for both the LDFs and QDFs does not improve the accu-
racy significantly; however, the number of computations required is reduced. The opti-
mum variables to use for LDFs are Rdl, Rd2, Rd4, RdS, Rd8, and N2. The optimum
variables to use for QDFs are Rdl. Rd2. Rd3. Rd5. Rd6. and Rd7. If the same set of
variables must be shared by the LDFs and QDFs, then we recommend that the optimum
set for the LDFs be used by both methods. Any six variables used for QDFs yields
almost identical classification accuracies (see Figure 29), whereas any six variables
used for LDFs results in classification accuracies that vary by up to 12% (see Figure

28).

7.4.5 Database

The prototype classifier saves the classification vectors into a dBase-formatted
database. This format is compatible with many different commercial database pack-
ages. One important practical issue is the growth in the size of the database file gener-
ated while the classifier monitors a T1 line. The database size depends on how many
different classification results are stored, the segment size selected, the filter window,
the amount of traffic carried by the T1, the specific mix of traffic, and the duration of
the classifier run. The largest database file collected was for a T1 to Peace River carry-
ing wireless calls. For this trial the unfiltered and filtered classification vectors for the
linear, quadratic, and hybrid discrimination methods were all stored. The segment size
used was 2052 samples, and the T1 was monitored for 10 days. The size of the result-
ing database was almost 900 MB. Other Tls monitored storing only the linear and
quadratic results for one day resulted in a database size of 200 MB. We found it useful
to store the results of ali methods so that all of the information could be retrieved at a
later date. If hard disk space is limited, then only the filtered results could be recorded.
This would considerably reduce the database size, as entries are only made when a sig-

nal on a given DS-0 changes. A typical size for a database resulting from storing only
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filtered hybrid vectors over one week would be 200 MB. A classifier could conceiva-
bly be allowed to run unattended for months at a time given several Gbytes of storage

capacity.

7.4.6 Prior Probabilities

In all of the field trials and off-line simulations, the prior probabilities were
assumed to be equal over all signal classes. If all classes are not equally probable then
these prior probabilities can be changed, which should increase the accuracy of the
classifier. One problem in doing this is to determine those prior probabilities. From the
experience of the field trials, the type of traffic carried by each T1 varied considerably.
One way around this is to change the prior probabilities adaptively to reflect the traffic
on the T1 that is being monitored. This too might cause problems as the type of traffic
carried often changes depending on the time of day. Since the classifier is already very
accurate by assuming that all classes are equally probable, we do not believe that there
would be very much to gain by using complex methods to tune the prior probabilities to
conform with estimates of the expected signal mix. One possible exception is if a user
is certain that some signal classes will never be encountered on a particular T1 trunk.
Such signal classes could then be safely assigned a prior probability of 0 to effectively
remove them from the classifier’s possible decisions, and thereby increase the accuracy

of the classifier on the remaining classes.
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Chapter 8

8.0 Conclusions

In this thesis we designed, implemented, and experimentally verified an accu-
rate real-time voiceband signal classifier. The classifier was designed and implemented
using an inexpensive PC enhanced with T1 and DSP cards. The parts cost of the classi-
fier was approximately $8250 CAD. A GUI was developed which runs on the PC, with
classification algorithms implemented in the DSP. The classification vectors generated
by the DSP card are displayed graphically on the screen in a real-time display window,
and are stored simultaneously into a database to allow off-line database queries. The
robustness of the prototype was demonstrated by using it in actual field trials conducted
in cooperation with TELUS and TELUS Mobility. Further development work is con-
tinuing as part of a collaboration with VisionSmart Inc.

The classifier is trained to recognize a total of 23 classes. These classes include
4 data modem signals, 4 facsimile standards, speech, random binary, FSK signalling,
ringback, and a class that contains the twelve common DTMF tones. These classes
were selected because each class has a sufficiently unique PSD, and because these sig-
nals are known to be present on the PSTN.

Different discrimination methods were evaluated including LDFs, QDFs,
ALNs, and Pseudo QDFs. A hybrid method was also evaluated using the LDFs and
QDFs in combination. The measured classification accuracy approached 100% for
most signal classes using the LDFs. By using a hybrid approach, the accuracy for all
classes nearly reached 100%. The accuracies of our best configuration are given in

Table 48.
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Table 48: Percent classification accuracy using a two-stage classifier (N=2052, Std V.34, Incl. EN).

Class| 1 2 3 4 5 6 7 8 9 10 11 12 | >12
I [9993] - - -1 -1 -71-7-° - - - 007 | -
2 | - fwooo] -] -] -1 -1 -1~ . - ; . ;
3 - [9993]004] - | - [o0o03] - - - - - -
4 | - - - l9gsof 14| - | - T - - - - - -
5 - - |o.16[99.80{004] - | - - - ] - -
6 | - - - - | - |9896[1.04] - - ; - -

7 - - | -] - Jo99]990| - - . - - | 001
8 - lo7a] - - | - ]99.26 . -

9 - - - - - - - Twooo] - - .

o | - - B 100.00[ - -
n | - - - - - - - T - 9153 - .
2| - - -0 -] - - |- - - lio0.00] -
>12 | - - N - - - - |100.00

8.1 Summary of Achievements and Results

The specific achievements and results of the research work completed as part of

this M.Sc. include:

L.

S

Demonstrating that all 24 channels of a T1 can be accurately classified in real-time
using a classifier constructed using only off-the-shelf PC-based hardware. Software
was written for the DSP to compute the classification vectors, in real-time, based on
algorithms developed by Sewall. Software was also written for the GUI which con-
trolled the classification parameters, displayed the classification results on a real-
time display, and stored the classification results into a database for off-line queries
such as busy hour and pie chart graphs.

The algorithms developed by Sewall were implemented, modified, improved, and
experimentally verified using real signal data. Additional hybrid classification tech-
niques were also designed and implemented to further increase the accuracy of the
classifier for certain signal classes. Simple averaging filters were also implemented
and then shown to eliminate most misclassifications in real signals without effecting
the structure of a call.

Data was collected for all signal classes (excluding random binary) at the first field
trial, which resulted in the addition of three new signal classes: FSK signalling, ring-

122



back, and DTMF tones. The data was in addition to the roughly 2.5 hours of data
previously recorded by Sewall.

4. The stability of the classifier was demonstrated at the field trials while monitoring
and storing the classification results of real T1 lines. The classifier ran unattended
for 24 hour periods, for several days, and for a period of ten straight days. The T1
lines monitored included local and long distance trunks, as well as both land line and
wireless Tls. Data from these field trials were used to generate busy hour and pie
chart graphs.

5. The accuracy of the classifier was difficult to determine in the context of live traffic.
Off-line experiments suggest accuracies that approach 100% for all signal classes.
Practical considerations (e.g. finite segment length, modem and fax training signals,
silent intervals in voice calls, etc.) limit the achievable accuracy of the classifier.
Also, the classifier can only correctly classify signals that it is trained to recognize.
Attempts were made to generate a broad range of signal classes that would cover
most signals that the classifier would see on the PSTN. Clearly situations are likely
to arise in which the classifier will attempt to classify a signal that it is not trained to
recognize (e.g. proprietary protocols, new standards, etc.), and this will degrade the
classifiers accuracy.

6. Different discrimination methods were investigated including LDFs, QDFs, pseudo
QDFs, and ALNs. Only the LDF and QDF methods were used in the classifier. A
third hybrid method was also used which combined the strengths of the LDFs and
QDFs.

7. An optimum set of feature variables to be used for LDFs, QDFs, and pseudo QDFs
was proposed based on off-line experiments done using both the data Sewall col-
lected and new data collected as part of this M.Sc. thesis. The optimum number of
feature variables to use was found experimentally to be six for both LDFs and
QDFs. Using only these optimal variables does not increase the accuracy of the
classifier significantly, however, it does reduce the computations required from the
DSP.

8. A two-stage classifier was proposed, which helped increase the unfiltered classifica-
tion accuracy of speech from 91% to 99%.

8.2 Classifier Interest

The favourable attention that the classifier has received by TRLabs telco spon-
sors suggests that the classifier is a useful tool. A recent ruling by the Canadian Radio-
television and Telecommunications Commission (CRTC) may increase interest in the

classifier. The ruling allows ISPs to provide long-distance phone services, but they are
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required to share their resulting revenues with the telcos. A voiceband signal classifier,
such as the one developed in this thesis, would allow telcos to monitor and enforce the

ruling.

8.3 Future Research Work

Many follow-up research projects are possible based on the research reported in
this M.Sc. thesis.

At the time of writing a, DSP-less Windows NT classifier was under develop-
ment by another student. This prototype needs to be tested on field trials to ensure its
correctness. Further development of classifier technology should probably be con-
ducted with this new platform because of the greater flexibility of the Windows GUL

A SS7 signalling interface could be added to the classifier. The advantage of an
SS7 link would be that call boundaries could be easily determined. If the call bounda-
ries are known, then the problems with silent intervals in voice calls could easily be
resolved. The classifier is currently unable to recognize the signals that are used in the
negotiation phase in modem and fax calls. This results in the classifier misclassifying
these signals into other classes. If the call boundaries were to be known then these mis-
classifications could be avoided. The addition of an SS7 interface would likely be quite
involved due to the complexity of the protocol.

An alternative to the SS7 interface is to use a higher level of filtering that
exploits call structure. Such filtering could exploit knowledge of the different possible
call types and their structure to better estimate the call boundaries. This method would
likely be as accurate as the SS7 signalling method for non-voice calls. For voice calls
only an estimate of the end of a call is possible. Such a method would have to be cau-
tious about relying on the presence of ringback to identify the start of calls, since ring-
back is not always used.

While the classifier has been implemented using a PC, it could possibly be
implemented in an Application Specific Integrated Circuit (ASIC) such as a large field-
programmable gate-array (FPGA). Such an ASIC might be useful to be able to build a
scaled up classifier that could handle higher bit rate trunks, such as T3s.
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Appendix A

A.1 Prototype Voiceband Signal Classifier Features

* Real-time display for all 24 channels, with the ability to display a maximum
of two algorithms per channel in the form of advancing horizontal bars

* Busy hour and pie chart queries on stored database files

* Load, save, and append of data into a dBASE IV formatted database file

* Select input from either a T1 or a stored data file

* TI traming on SF or ESF format

* DSP options include setable power threshold, segment size, and variable
selection for LDF and QDF

* Important events and errors logged into a text log file

Figure 49 shows a screen shot of the signal classifier GUL. The user can select
from one of the five pull-down menus shown. The next few sections describe the
options available in each pull-down menu. Menu options preceded by an **" describe

options that have not been implemented.

Figure 49: Signal classifier GUI.
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Figure 50 shows the options available through the “File” pull-down menu.

New DB:

Load DB:

Save DB:

Close DB:

*Query DB:

*Logfile:

*Self Test:

Quit:

Figure 50: GUI “File” pull-down menu options.

Initialize a new database file.

Prepare the classifier to open a previously stored database file.
Save the current database to a file. If a database with the same
filename exists, the user will be prompted to overwrite. append.

or cancel.

Close an opened database. [f the database has not vet been
saved the user will be warned.

Feature to allow the user to query the contents of a database
file.

Feature to allow the user to view the contents of the ASCII text
logfile without having to exit the GUI.

Feature to allow the user to execute a self test. This would sim-
ply verify that the T1 and DSP cards are present. It would also
test the T1 line.

Exit the program. If a database is opened and not yet saved, the
user will be warned.
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Figure 51 shows the options available through the “Options” pull-down menu.

Yoice Filter

Hysteresis

Figure 51: GUI “‘options” pull-down menu options.

Segment Size: Allows the user to change to one of many pre-selected segment
sizes. A segment size of less than 1024 samples will result in
data loss if all 24 channels are active.

*Algorithms: Allows the user enable or disable the LDF and QDF computa-
tion.

*DB Save Options: Allows the user to select which classifications vectors to store
into a database. This is useful if disk space is limited.

Var. Select (L): Allows the user to select which set of variables are to be used
in the LDFs.

Var. Select (Q): Allows the user to select which set of variables are to be used
in the QDFs.

Channel Select; Allows the user to select which channels are to be active.

When using a T1 line all 24 channels should be active.
Threshold: Allows the user to change the power threshold value.

Data Filter: Allows the user to set the window size for the data filter.
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¢ Voice Filter: Allows the user to set the window size for the voice filter.

¢ *Hysteresis: Was suppose to be used to build inertia into the system to ride
out silent intervals. This functionality is now covered by the
filter settings.

* *[mpairments: Feature to allow the user to simulate line impairments.
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Figure 52 shows the options available through the “Options™ pull-down menu.

INPUT OISPLAY HELP

7L Lina
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Oar 2
Ourno 3
Stored File
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.,
N
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e T

5!

T1 Line:

Demo 1:

Demo 2:

Demo 3:

Stored File:

Figure 52: GUI “input” pull-down menu options.

Selects the input data to be the physically connected T1 line.
Selects a file named “demol.mat™ as the input file.

Selects a file named “demo2.mat” as the input file.

Selects a file named “demo3.mat”™ as the input file.

Allows the user to specify the name of a file to use as input
data. The file must exist in the current directory. and must have

a "mat” extension. The filename must also conform to the MS-

DOS 8.3 specification (e.g. no more than 8 characters for the
name and 3 for the extension).



Figure 53 shows the options available through the “Display” pull-down menu.

Figure 53: GUI “display” pull-down menu options.

* Busy Hour Display: Allows the user to display a busy hour graph for the opened

¢ Pie Chart:

¢ Real Time Graph

database. The user will first be prompted for the date. If no
records exist for the given date the user will be notified. Other-
wise, the busy hour graph for the requested 24-hour period will
be displayed with the busy hour outlined in red.

Allows the user to display a pie chart for the opened database.
Again the user will be prompted for the date, and if no records
exist for the given date the user will be notified. Otherwise. the
pie chart for the requested 24-hour period displays the percent-
age of data for each class.

Displays a real time graph for the selected input. If T1 is

selected as the input then all 24 channels would normally be
selected.
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Figure 54 shows the options available through the “Help” pull-down menu

*Qverview:

*Tutorial:

*Manual:

About:

Figure 54: GUI “help” pull-down menu options.

Give the user an overview of the features.
Give the user a brief tutorial.
Allow the user to browse the on-line user manual.

Display the current version of the classifier.
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Figure 55 shows the typical appearance of a real-time display.

olsMLAY HELP

Figure 55: GUI real-time display.

The real-time display shows all 24 channels on the vertical axis. with time advancing to

the right on the horizontal axis.
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Table 49: Mu-law PCM encoding/decoding table.

Appendix B

Input Segment | Quantization | Decimal
. . Decoder
Amplitude | Step Size Code Code Code Amplitude
Range S Q Value P
0-1 1 000 0000 0 0
1-3 2 000 000! ! 2
3-5 2 000 0oto 2 4
29-31 2 000 111 15 30
31-35 4 001 0000 16 33
91-95 4 001 11t 31 93
95-103 8 010 0000 32 99
215-223 8 010 1T 47 219
223-239 16 01t 0000 48 231
463-479 16 011 1111 63 471
479-511 32 100 0000 64 495
959-991 32 100 1111 79 975
991-1055 64 101 0000 80 1023
1951-2015 64 101 1111 95 1983
2015-2143 128 110 0000 96 2079
3935-4063 128 110 111 111 3999
4063-4319 256 111 0000 12 4191
7903-8159 256 111 111t 127 8031
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Appendix C

C.1 PC Specifications

The specifications for the PC are shown below:

AMD 486 DX4/100 MHz CPU

ISA/PCI generic motherboard

32 MB RAM

2.1 GB EIDE hard drive

ATTPCIPCto TV VGA video card (for demonstration purposes)
12x EIDE CD-ROM Drive

3 1/2” floppy drive

14 monitor

Fujitsu keyboard and MS-mouse

MS-DOS 6.22 and Windows 3.11 for Workgroups
Borland C++ V4.5 for Windows

CodeBase V6.0

ALN library functions (LIBALN) V1.1

SPSS V6.1.2 for Windows

C.2 TMS320C30 DSP Specifications

40 MHz clock

Floating point processor

50-ns, single-cycle instruction execution time

40 MFLOPS

20 MIPS

Two 1K x 32-bit, single-cycle, dual-access, on-chip, RAM blocks
64x32-bit instruction cache

Parallel ALU and multiplier instructions in a single cycle
Block repeat capability

Zero-overhead loops with single-cycle branches
TMS320C3X/4X ANSI C compiler and linker V4.6

C.3 TELUS Maintenance Engineering Lab

C.3.1 Test Equipment

Newbridge 3600 mainstreet bandwidth manager channel bank
Newbridge LGS module (90-1228-02/D)
Newbridge E&M 2/4W module (90-1203-01)
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Apple Powerbook 150
* System 7.5.5

MacComCenter fax/data software (1994)

* FreePPP 1.0.5

Newbridge LGE module (90-1229-01)
HP 4935A transmission test set tone generator
Tellabs 8103 ringing tone generator

USR sportster voice 33.6 fax modem with speakerphone and personal

voice mail

C.3.2 Internet Service Providers

Table 50: Internet service provider information.

Phone Max Bit Rate
ISP Number Type of Call (bps)
University of Alberta 403-492-3214 Local 28 800
TRLabs Edmonton 403-424-5691 Local 14 400
Corporate Computers Inc. (CCI) | 403-450-0705 Local 33600
C.3.3 Faxback Services
Table 51: Fax services information.
Fax Services Phone Class of Call Max Bit Rate
Number (bps)
Hewlett-Packard Faxback | 800-333-1917 | Long Distance 14 400
Intel Faxback 800-628-2283 | Long Distance 14 400
TRLabs Edmonton 403-441-3600 Local 9 600
Author’s Home Computer | 403-458-3874 Local 14 400

C.4 TELUS Toll Building

* T-Com Digital Communications Test Set

* Model 440B/T-ACE
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Appendix D

D.1 Description of Files Recorded by Sewall

Note that the “?”" marks in the “Time” column indicate that the exact length of
the call was not recorded in the original table.

Table 52: Description of recorded data files by Sewall [2].

FAX/ Time
File Name | Data/ | Standard | bps Org. Dest. (s) Description
Voice ’
v32bis d V.32bis | 14,400 local 492-3214 | 20 | SupraFAXmodem:; called UofA modem pool: negoti-
ation
v32bis.2 d V.32bis | 14,400 " " 20 | SupraFAXmodem: called UofA modem pool: no neg.
v32 d V.32 9,600 " " 20 |including negotiation
v32.2 d V.32 9.600 . " 20 [ no negotiation
datal d V.22bis | 2,400 " " 25 | including negotiation
data2 d V.22bis | 2,400 . " 25 | no negotiation
data3 d V.32bis | 12.000 " * 25 |including negotiation
datad d 9,600 " " 25 |including negotiation
datas d 12,000 * * 25 [ no negotiation
data6 d 9.600 * " 25 |including negotiation
data7 d 9.600 - " 25 | no negotiation
datalQ d 14,400 * 492-3214 | 45 | Called UofA: incl. negotiation: modem option N8
forces bps
datalt d 12,000 " " 60 | " N7
datal2 d 9.600 " " 60 | N6
datal3 d 9.600 " 492-0096 | 60 |".".N6
datal4 d 4.800 N " 60 | N4
datals d V.32bis | 2,400 local 492-0096 | 60 |[":".N3
datal6 d 2,400 " 492-0024 | 60 | ;" N3: retrain?
datal? d 1.200 * 492-0096 | 60 |™; N2
datal8 d 1,200 " 492-0024 | 60 | N2
datal9 d 300 " 492-0096 | 60 | NI
data20 d V.34 | 24,000/ * 444-7685 [ 90 [ called WorldGate; incl. negotiation: speed not forced
26,400 (NO)
data21 d " 28,800/
28,800
data22 d . 26,400/ " " o {™™NI3
26,400
data23 d " 24,000/ " " "N
24,000
data24 d " 21,600/ " " *ot N
21.600
data25 d " 19,200/ ” " * ™ "NIO
19.200
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Table 52: Description of recorded data files by Sewall 2].

FAX/ Time
File Name Da}a/ Standard | bps Org. Dest. (s) Description
Voice
data26 d 16,800/ LUN9
16,800
drunl d V.34 |28,800/] TRLabs Uof A 30 | no setup; &NO
28,800 492-3214
drun2 d
drun3 d
drund d
drun5 d
druné d V.34 | 14,400/ * &N8
14,400
drun7 d V.22bis | 2,400 492-0024
drun8 d
drun9 d
druni0 d
drunl! d
druni2 d V.32bis | 14,400 TRLabs
drunl3 d
drunl4 d
druni$ d
drunl6é d
drunl? d 12,000 * &N7
druni8 d
drunl9 d 9,600 *, &N6
drun20 d
drun2l d
drun22 d
drun23 d
drun24 d 7.200 * &NS
drun25 d
drun26 d 4.800 * &N4
drun27 d
drun28 d
fax1 f V.17 14,400 local 441-3600 | ? | fax to main office; setup included; two pages plus
cover
fax2 f V.17 | 12.000 ?
fax3 f V.17 9,600 ?
fax4 f V.17 7.200 ?
fax$5 f V.27ter | 4.800 ?
fax6 f V.2Tter | 2.400 * 7 | " no cover page; error after p. |; partof p. 2
fax9 f V.29 7.200 local 492-1811 | 7 | fax out: setup included: two pages plus cover
fax10 f V.27ter | 4,800 local ?
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Table 52: Description of recorded data files by Sewall [2].

FAX/ Time
File Name [ Data/ | Standard [ bps Org. Dest. (T) Description
Voice )
fax1l f V2Tter | 2,400 locat ? | errored
fax12 f V.29 9,600 local ?
fax13 f V.29 9.600 local ? | errored
fax14 f V.29 9,600 local ?
faxis f V.29 9.600 local ?
fax16 f V.29 9.600 local 7
fax17 f V29 7.200 local 0
fax21 f V.29 7.200 local 604-721- ?
0852
fax22 V2Tter | 4,800 local ’
fax23 f ? 2,400 local 7 |errored fax
fax24 f 7 ? 441-3600 local 7 | fax received: errored
fax26 f ? ? local 7 | fax received: errored
voicel v 498-8397 local 70 | Male/Female conversation
voice_1 _6_ v remote local ? | Pre-recorded message (my voice); two sentences read
14_17_8 by others
voice_1_6_ v . i
14_40_23
voice_| _6_ v 7| Pre-recorded message: person mimicing modem
14_44_36
voice_1_6_ v ?
14_45_13
voice_1 _6_ v 7 | Pre-recorded message: person whistling
14_46_2
voice_| _6_ v - 7 | Pre-recorded message; person saying nothing
14_47_48
voice_1_6_ v - 7
14_49_27
voice_1_6_ v . 7
15_21_1§8
voice_1_6_ v - ?
15.2_18
voice_l_6_ v 7
15_38_52
voice_l_6_ v - - 3 |-
I5_44_14
voice_[_6_ v - - 2
15_4_27
voice_1_6_ v - - 7
15_54_39
voice_[_6_ v - - ?
15_5_35
voice_1_6_ v - - ?
1554
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Table 52: Description of recorded data files by Sewall [2].

FAX/ Time
File Name | Dat/ | Standard | bps Org. Dest. s) Description
Voice s
voice_l_6_ v - - k)
17_11_41
voice_1_6_ v - - B
17_54_22
voice_1_6_ v ?
18_55_44
voice_I_7_ v - - "
10_33_11
voice_1_7_ v - . )
13_17_54
voice_I_7_ v 7
14_49_38
voice_1_7_ v - ?
14_57_46
voice_1_7_ v - - 7
18._6_59
voice_1_7_ v - i
20323
voice_1_7_ v ?
7_21_34
voice_1_7_ v - 7
7.57_37
voice_1_8_ v ?
14_51_6
voice_1_8_ v ?
16_58_8
voice_I_8_ v - . b}
18_25_20
voice_1_8_ v - ?
8_17_1
voice_1_9_ v - . 7
14_26_10
siml d v.22 1200 - - 10 [ simuiated call: recorded at alpha point in 4-wire con-
nection
sim2 d V.22 1200 - - 30 |*:beta
sim3 d V.22bis | 2400 . - 10 | :alpha
sim4 d V.22bis | 2400 - - 30 |";beta
sim$S f V2Tter | 4800 - - 10 }*:alpha
sim6 £ V.2Tter | 2400 - - 10 |*:alpha: fallback mode
sim7 f V.29 9600 - - 10 |*:alpha
sim8 f V.29 7200 - - 10 | :alpha: faitback mode
sim9 d V32 9600 - - 10 {*;alpha
simlQ d V.32bis | 14,400 - - 10 |*:alpha
simi1 f V.17 | 14,400 - - 10 |[*: alpha : identical simulation to V.32bis : correct?
siml2 d V.22 1200 - - 30 |*:beta
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Table 52: Description of recorded data files by Sewall [2].

FAX/

File Name | Daw/ | Standard | bps Org. Dest. Tl(:n;: Description
Voice
sim13 d V.22bis | 2400 - - 30 |*:beta

sim_I_a_1 d V22 1200 - - 15 |impairment model 1. alpha monitoring point
sim_l_a_2 d V.22bis | 2400 - - 25 | impairment model 1. alpha monitoring point
sim_I_a_3 f V.2Tter | 4800 - - 25 |impairment model 1, alpha monitoring point
sim_l_a_d f V.2Tter | 2400 - - 15 | impairment model 1, alpha monitoring point
sim_1_a_§ f V.29 9,600 - - 25 | impairment model |, alpha monitoring point
sim_1_a_6 f V.29 7.200 25 | impairment model 1. alpha monitoring point
sim_1_a_7 d V32 9.600 - 25 | impairment model 1. alpha monitoring point
sim_1_a_8 d V.32bis | 14.400 25 | impairment model 1, alpha monitoring point
sim_l_a_9 f v.i7 14,400 - 25 | impairment model [, alpha monitoring point
sim_1_b_10 d V.22 1200 - 15 | impairment model 1. beta monitoring point

sim_1_b_11 d V.22bis | 2400 25 | impairment model 1, beta monitoring point

sim_2_a_l d v.a22 1200 25 | impairment model 2. alpha monitoring point
sim_2_a_2 d V.22bis | 2400 25 |impairment model 2. alpha monitoring point
sim_2_a_3 f V.2Tter | 4800 - 15 | impairment model 2. alpha monitoring point
sim_2_a_4 f V.2Tter | 2400 25 |impairment model 2. alpha monitonng point
sim_2_a_5 f V.29 9.600 - 25 | impairment model 2. alpha monitoring point
sim_2_a_6 f V.29 7.200 - 25 |impairment model 2. alpha momtoning point
sim_2_a_7 d V.32 9,600 . 25 | impairment modet 2, alpha monitoring point
sim_2_a_8 d V.32bis | 14,400 - 25 | impairment model 2, alpha monitoring point
sim_2_a_9 f V.17 14,400 - 25 | impairment modet 2. alpha monitoring point
sim_2_b_10 d V.22 1200 25 | impairment model 2, beta monitoring point

sim_2_b_11 d V.22bis | 2400 - 25 | impairment model 2, beta monitoring point

sim_3_a_| d v.22 1200 - 15 | impairment model 3. alpha monitoring point
sim_3_a_2 d V.22bis | 2400 - 25 |impairment model 3, alpha monitoring point
sim_3_a_3 r V2Tter | 4800 - 15 | impairment model 3. alpha monitoring point
sim_3_a_4 f V2Ter | 2400 - 25 | impairment model 3. alpha monitoring point
sim_3_a_5 f V.29 9.600 - 25 | impairment model 3, alpha monitoring point
sim_3_a_6 f V.29 7.200 - 25 |impairment model 3. alpha monitoring point
sim_3_a_7 d V.32 9.600 - 25 | impairment model 3. alpha monitoring point
sim_3_a_8 d V.32bis | 14,400 - - 25 | impairment model 3, alpha monitoring point
sim_3_a_9 f V.i7 14,400 - - 15 | impairment model 3. alpha monitoring point
sim_3_b_10} d v 1200 - - 25 |impairment model 3. beta monitoring point

sim_3_b_I1 d V.22bis | 2400 - 25 | impairment model 3, beta monitoring point

sim_4_a_| d v.22 1200 - - 25 ) impairment model 4. alpha monitoring point
sim_4_a_2 d V.22bis | 2400 - 35 (impairment mode! 4, alpha monitoring point
sim_4_a_3 f V.2Tter | 4800 - - 25 | impairment model 4. alpha monitoring point
sim_4_a_4 f V2Tter | 2400 - - 15 | impairment model 4, alpha monitoring point
sim_4_a_5 f V.29 9.600 - - 25 | impairment model 4, alpha monitoring point
sim_4_a_6 f V.29 7.200 - - 25 | impairment model 4. alpha monitoring point
sim_4_a_7 d V.32 9,600 - - 25 |impairment model 4, alpha mcnitoring point
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Table 52: Description of recorded data files by Sewall [2].

FAX/

File Name | Data/ | Standard | bps Org. Dest. T:T;' Description
Voice

sim_4_a_8 d V.32bis | 14,400 - - 25 | impairment mode! 4. alpha monitoring point
sim_4_a_9 f V.17 14.400 - - 25 | impairment model 4. alpha monitoring point
sim_4_b_10 d v 1200 - - 25 | impairment model 4, beta monitoring point
sim_4_b_11 d V.22bis | 2400 - - 25 | impairment mode! 4, beta monitoring point
sim_5_a_l d V.22 1200 - - 25 | impairment model 5, alpha monitoring point
sim_5_a_2 d V.22bis | 2400 - - 25 | impairment model 5, alpha monitoring point
sim_5_a_3 f V2Tter | 4800 - - 35} impairment mode! S, alpha monitoring point
sim_5_a_4 f V2Tter | 2400 - 25 | impairment model S, alpha monitoring point
sim_5_a_5 f V.29 9.600 - - 15 | impairment mode! 5, alpha monitoring point
sim_5_a_6 f V.29 7.200 - 25 | impairment model 5, alpha monitoring point
sim_5_a_7 d V.32 9,600 - 25 | impairment model 5. alpha monitoring point
sim_5_a_¥ d V.32bis | 14.400 25 | impairment model 5, alpha monitoring point
sim_5_a_9 f V.17 14,400 - - 25 | impairment model 5. alpha monitoring point
sim_S_b_10 d v 1200 - 25 | impairment model S. beta monitoring point
sim_S_b_11 d V.22bis | 2400 - - 35 | impairment model S. beta monitoring point

dlibt - - 6 | information signal from file v32bis; ic. no neg, no

retrain

dlib2 - - - 20 |information signal from file v32bis.2

dlib3 - - 8 | information signal from file v32

dlib4 - - - 20 |information signal from file v32.2

dlib5 - - - 13 | information signal from file datal

dlib6 - - - 15 | information signal from file data2

dlib7 - - - - 9 | information signal from file data3

dlib8 - - - - - 9 | information signai from file datad

dlib9 - . - - 15 | information signal from file data$S

dlib10 - - - 15 | information signal from file data6

dlibl1 - - - 25 | information signal from file data7

dlibl4 - - - - 24 | information signal from file datalQ

dlibls - - - - 41 | information signal from file datal t

dlibl6 - - - - - 44 | information signal from file datal2

dlib17 - - - - - 42 | information signal from file datal3

dlibi8 - - - - - 38 | information signal from file datal4

dlib19 - - - - - 46 | information signal from file datal§

dlib20 - - - - - 51 | information signal from file datal6

dlib21 - - - - - 41 | information signal from file datal7

diib22 - - - - - 46 | information signal from file datal8

dlib23 - - - - - 45 | information signal from file datat9

dlib24 - - - - - 62 | information signal from file data20

dlib25 - - - - - 50 |information signal from file data2l

dlib26 - - - - - 62 | information signal from file data22
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Table 52: Description of recorded data files by Sewall [2].

FAX/ Time .
File Name DaFn/ Standard | bps Org. Dest. s) Description
Voice

dlib27 - - - - - 62 | information signal from file data23
dlib28 - - - - 62 | information signal from file data24
dlib29 - - - - - 62 | information signal from file data25
dlib30 - - - - - 62 | information signal from file data26
dlib31 - - - - 25 |information signal from file fax!
dlib32 - - - 25 | information signal from file fax2
dlib33 - - - 38 |information signal from file fax3
dlib34 - - - - 50 | information signal from file fax4
dlib35 - 75 | information signal from file faxs
dlib36 - . - 75 | information signal from file fax6
dlib37 - - 38 |information signal from file fax9
dlib38 - - - 50 [ information signal from file fax10
dlib39 - - - - 25 |information signal from file fax!]
dlib40 - - 30 | information signal from file fax12
dlib41 - - - 7 | information signal from ftile fax13
dlib42 - 30 | information signal from file faxi4
dlib43 . - 30 |information signal from file fax15
dlib44 - - 30 | information signal from file fax16
dlib45 - - 38 [information signal from file fax17
dlib46 - 36 | information signal from file fax21
dlib47 56 | information signal from file fax22
dlib48 - 27 | information signal from file fax23
dlib49 - - 14 | information signal from tile fax24
dlib50 - - - - 15 | information signal from file fax26
rand | rand. - 125 | andom PCM sample stream
rand2 rand. - - - 125 | random PCM sample stream

D.2 Description of Data Files Recorded by Sarda

Table 53: Description of data files excluding V.34.

File Connect Call Call Monitor | Length | Signal
Name | Rate (bps) | Origination | Destination Port (sec) Type
*tr_b 14400 TELUS Lab TRLabs Rx 106 V.32
cci_nlal 300 TELUS Lab CClI Tx 139 Bell 103
cci_nlbl 300 TELUS Lab Cd Rx 90 Bell 103
cci_n2al 1200 TELUS Lab CCl Tx 106 V22F
cci_n2bl 1200 TELUS Lab CCl1 Rx 155 V22 R
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Table 53: Description of data files excluding V.34.

File Connect Call Call Monitor | Length | Signal
Name | Rate (bps) | Origination | Destination Port (sec) Type
tr_2_a 1200 TELUS Lab TRLabs Tx 57 V.22 F
tr_2_b 1200 TELUS Lab TRLabs Rx 57 V.22 R
tr_3_a 2400 TELUS Lab TRLabs Tx 57 V.22bis F
tr_3_b 2400 TELUS Lab TRLabs Rx 65 V.22bis R
tr_4_a 4800 TELUS Lab TRLabs Tx 57 V.32
tr_4_b 4800 TELUS Lab TRLabs Rx 57 V.32
tr_5_a 7200 TELUS Lab TRLabs Tx 57 V.32
r_5_b 7200 TELUS Lab TRLabs Rx 57 V.32
tr_6_a 9600 TELUS Lab TRLabs Tx 57 V.32
tr_6_b 9600 TELUS Lab TRLabs Rx 57 V.32
tr_7_a 12000 TELUS Lab TRLabs Tx 57 V.32
r_7_b 12000 TELUS Lab TRLabs Rx 57 V.32

tr_ni_al 300 TELUS Lab TRLabs Tx 123 Bell 103
tr_nl_bl 300 TELUS Lab TRLabs Rx 139 Bell 103
tr_n3_al 2400 TELUS Lab TRLabs Tx 131 V.22bis F
tr_n3_bl 2400 TELUS Lab TRLabs Rx 90 V.22bis R
u_n2_al 1200 TELUS Lab UofA Tx ? V22F

u_n2_bl 1200 TELUS Lab UofA Rx ? V.22 R

u_n3_al 2400 TELUS Lab UofA Tx 139 V.22bis F
u_n3_bl 2400 TELUS Lab UofA Rx 155 V.22bis R
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All data files listed in Table 54 belong to the V.34 class and originated from the
TELUS Lab. A **?” mark in the symbol rate and carrier frequency columns indicate
that these values were not specifically recorded; however, they were probably 3429
baud and 1959 Hz, respectively. These values represent the default rates that the con-
necting modems appear to negotiate on land lines.

Table 54: V.34 data files.

. Connect | Symbol | Carrier )
File y Call Monitor | Length
Name Speed Rate Freq. Destination Port (sec)
(bps) (sym/s) (Hz)
*cei_b 26400 ? 7 CCl Rx 106
cei_10_a 19200 ? 7 CCI Tx 57
cci_l0_b 19200 ? i CCl Rx 57
cci_ll_a 21600 ? ? cC1 Tx 57
cci_ll_b 21600 ? ? CCl Rx 57
cci_l12_a 24000 ? ? CCl Tx 57
cci_l2_b 24000 ? 2 CC1 Rx 57
cci_l3_a 26400 ? ? CCl Tx 57
cei_i3_b 26400 ) ? CCl Rx 57
cci_d_a 4800 ? ? CCl Tx 57
cci_d4_b 4800 ? ? CCI Rx 57
cci_5_a 7200 ? 7 CClI Tx 57
cci_5_b 7200 i ? CClI Rx 65
cci_6_a 9600 ? ? cCl Tx 57
cci_6_b 9600 ? ? CCl Rx 57
cci_7_a 12000 7 ? CCl Tx 57
cci_7_b 12000 ? ? CCI Rx 57
cci_8_a 14400 ? ? CCl Tx 57
cci_8_ b 14400 ? ? CCI1 Rx 57
cci_9_a 16800 ? ? CCl Tx 57
cci_9_b 16800 ? ? CCl Rx 57
cci_a_l 26400 3429 1959 CCl Tx 65
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Table 54: V.34 data files.

File | Connect | Symbol | Carrier | )y | \vtoniior | Length
Name Speed Rate Freq. Destination Port (sec)
(bps) | (sym/s) | (Hz)
cci_a_l0 21600 2400 1800 CClI Tx 180
cci_a_ll 4800 2400 1800 CCI Tx 123
cei_a_12 14400 2400 1800 CCI Tx 131
cci_a_13 26400 3000 2000 CC1 Tx 123
cci_a_l4 4800 3000 2000 CCl1 Tx 155
cei_a_l5 14400 3000 2000 CCI Tx 90
cci_a_16 24000 2800 1867 CCl Tx 196
cei_a_17 4800 2800 1867 CCI Tx 139
cci_a_18 14400 2800 1867 CCI Tx 147
cci_a_19 26400 3429 1959 CcI Tx 123
cei_a_2 26400 3200 1920 CcCl Tx 65
cci_a_20 9600 3200 1920 CCl Tx 114
cci_a_21 9600 3000 2000 CCI Tx 123
cci_a_22 9600 2400 1800 CClI Tx 131
cei_a_3 26400 3000 2000 CCl Tx 65
cei_a_4 24000 2800 1867 CCI Tx 147
cci_a_5 21600 2400 1800 CCI Tx 106
cci_a_6 21600 3429 1959 cc Tx 82
cei_a_7 4800 3429 1959 CC1 Tx 14
cei_a_8 7200 3429 1959 CCI Tx 106
cci_a_9 9600 3429 1959 CCI Tx 82
cei_b_l 26400 3429 1959 CcCl Rx 65
cci_b_10 21600 2400 1600 CCl Rx 188
cci_b_11 4800 2400 1600 CCI Rx 114
cci_b_12 14400 2400 1600 CCI Rx 131
cci_b_13 24000 3000 1800 CcCl1 Rx 172
cci_b_l4 4800 3000 1800 CC1 Rx 139
cci_b_15 14400 3000 1800 CCI Rx 204
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Table 54: V.34 data files.

File | Connect | Symbol | Camier | | \ponitor | Length
Name Speed Rate Freq. Destination Port (sec)
(bps) | (sym/s) | (Hz)
cci_b_16 24000 2800 1680 CcCI1 Rx 131
cei_b_17 4800 2800 1680 CcCl1 Rx 237
cci_b_18 14400 2800 1680 CCI Rx 131
cci_b_19 26400 3429 1959 cC1 Rx 123
cei_b_2 26400 3200 1829 CCI Rx 65
cci_b_20 9600 3200 1829 CCI Rx 139
cci_b_21 9600 3000 1800 Cc1 Rx 82
cei_b_22 9600 2400 1600 CcI1 Rx 114
cei_b_3 24000 3000 1800 CCI Rx 65
cci_b_4 24000 2800 1680 CCI Rx 98
cei_b_5 21600 2400 1600 CC1 Rx 114
cci_b_6 21600 3429 1959 CCI Rx 106
cei_b_7 4800 3429 1959 CCI Rx 14
cci_b_8 7200 3429 1959 CcCI Rx 74
cci_b_9 9600 3429 1959 CCI Rx 98
d_I_ab 19200 7 7 Author’s Home Tx/Rx
d_nd_ab 4800 ? ? Author’s Home Tx/Rx
d_n6_ab 9600 ? 7 Author’s Home Tx/Rx
d_n7_ab 12000 ? ? Author’s Home Tx/Rx
d_n8_ab 14400 ? ? Author’s Home Tx/Rx
d_n9_ab 16800 ? ? Author’s Home Tx/Rx
u_ab 21600 ? ? UofA Tx/Rx
u_nliQ_ab 19200 ? ? UofA Tx/Rx
u_nll_ab 21600 K ? UofA Tx/Rx
u_nd_ab 4800 7 ? UofA Tx/Rx
u_nS_ab 7200 ? ? UofA Tx/Rx
u_n6_ab 9600 ? ? UofA Tx/Rx
u_n7_ab 12000 ? ? UofA Tx/Rx
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Table 54: V.34 data files.

. Connect | Symbol | Carrier .
File nnect | Sy Call Monitor | Length
Name Speed Rate Freq. Destination Port (sec)
(bps) (sym/s) | (Hz)
u_n8_ab 14400 ? ? UofA Tx/Rx
u_n9_ab 16800 ? ? UofA Tx/Rx
Table 55: Description of facsimile files recorded.
File Connect Calil Call Mon. | Length | No. | Correct
Name Speed Orig. Dest. Port | (sec) | Pages | Result
Author’s
deep_1 2400 TELUS Lab Rx 556 4 V.27 24
Home
deep_2 | 4800 | AUROTS e USLab | Rx 311 + | varas
Home
Author’s
deep_3 9600 TELUS Lab Rx 441 9 V.29
Home
deep_t | 14400 | AUROTS el UsLab | Rx 319 9 V.32
Home
deep_5 | 14400 | TELUSLab | Author's | 74 ) V.32
Home
Author’s
deep_6 14400 TELUS Lab Tx 155 5 V.32
Home
fax_n3aa ERROR ERROR ERROR - ERROR | ERROR | ERROR
fax_n3ab ERROR ERROR ERROR - ERROR | ERROR | ERROR
fax_n3_a ERROR ERROR ERROR - ERROR | ERROR | ERROR
. Author’s
fax_nd_a 4800 TELUS Lab Tx 188 3 V.27 48
Home
fax_nS_a | 7200 | TELUSLab | Author's Tx 139 3 V.29
Home
. Author’s
fax_n6_a 9600 TELUS Lab Tx 123 3 V.29
Home
fax_n7_a 12000 TELUS Lab TRLabs Tx 106 3 V.32
fax_n8_a 14400 TELUS Lab TRLabs Tx 98 3 V.32
hp_1 14400 HP Fax TELUS Lab Rx 229 6 V.32
hp_10 14400 HP Fax TELUS Lab Rx 131 3 V.32
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Table 55: Description of facsimile files recorded.

File Connect Call Call Mon. | Length | No. | Correct
Name Speed Orig. Dest. Port | (sec) Pages | Result
hp_11 14400 HP Fax TELUS Lab Rx 474 10 V.32
hp_12 4800 HP Fax TELUS Lab Rx 343 3 V.27 48

hp_2 ERROR ERROR ERROR - ERROR | ERROR | ERROR

hp_3 9600 HP Fax TELUS Lab Rx 302 6 V.29

hp_4 4800 HP Fax TELUS Lab Rx 417 3 V.27 48

hp_5 2400 HP Fax TELUS Lab Rx 923 2 V2724

hp_6 2400 HP Fax TELUS Lab Rx 768 1 V2724
hp_7 2400 HP Fax TELUS Lab Rx 556 2 V2724

hp_8 4800 HP Fax TELUS Lab Rx 343 3 V.27 48

hp_9 9600 HP Fax TELUS Lab Rx 188 3 V.29

hp_n3_al 2400 HP Fax TELUS Lab Tx 466 2 V.27 24
hp_nd_al 4800 HP Fax TELUS Lab Tx 294 2 V.27 48
hp_n6_al 9600 HP Fax TELUS Lab Tx 523 10 V.29
hp_n8_bl 9600 HP Fax TELUS Lab Tx 498 6 V.29
intel_1 9600 Intel Fax TELUS Lab Rx 760 15 V.29
intel_2 14400 Intel Fax TELUS Lab Rx 131 3 V.32
intel_3 4300 Intel Fax TELUS Lab Rx 311 3 V.27 48
intel_4 2400 Intel Fax TELUS Lab Rx 580 3 V2724
intel_5 4800 Intel Fax TELUS Lab Rx 204 2 V.27 48
tr_1 2400 TRLabs TELUS Lab Rx 139 2 V2724

tr_2 4800 TRLabs TELUS Lab Rx 98 2 V.27 48

tr_3 4800 TRLabs TELUS Lab Rx 188 4 V2748

tr_4 4800 TRLabs TELUS Lab Rx 188 4 V2748

tr_S5 14400 TRLabs TELUS Lab Rx 180 10 V.32
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Table 56: Description of other files recorded.

File Cz.l” Call Mon. Correct Result
Name Orig. Dest. Port
c_mess TRLabs St. Albert Tx DTMF digits: 9,8.5.7,1,0.0,0.0.0
DTMF_1 TRLabs St. Albert Tx DTMF digits: 0, 1,2,3,4,5,6,7.8.9. *, 0. #
dt 0 TRLabs St. Albert Tx DTMF digit: 0
de_l TRLabs St. Albert Tx DTMF digit: |
dr 2 TRLabs St. Albert Tx DTMF digit: 2
de_3 TRLabs St. Albert Tx DTMEF digit: 3
de_4 TRLabs St. Albert Tx DTMEF digit: 4
de_5 TRLabs St. Albert Tx DTMF digit: 5
de_6 TRLabs St. Albert Tx DTMF digit: 6
de_7 TRLabs St. Albert Tx DTMF digit: 7
dt_8 TRLabs St. Albert Tx DTMF digit: 8
dt_9 TRLabs St. Albert Tx DTMEF digit: 9
dt_pound TRLabs St. Albert Tx DTMF digit: pound
dt_star TRLabs St. Albent Tx DTMF digit: star
mimic_} TRLabs St. Albert Tx Tape Recording of 14.4 V.32 modem
mimic_2 TRLabs St. Albent Tx Tape Recording of 26.4 V.34 modem
ringl | TELUS Lab (;1?3:3:35) Rx | Ringback
ring2 | TELUS Lab (;fSAisz:;) Rx | Ringback
ring3 | TELUS Lab (;?vtgiﬁ) Rx | Ringback
ringd | TELUS Lab (‘\‘;ez:égz) Rx | Ringback
ring5 | TELUS Lab (sze‘gm) Rx | Ringback
voice_l TRLabs TELUS Lab Rx Male Speech, Early 30's, Cantonese
voice_2 TRLabs TELUS Lab Rx Male Speech, 24, French
voice_3 TRLabs TELUS Lab Rx Male Speech, Early 30’s, Mandarin
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Table 56: Description of other files recorded.

File Call Call Mon. Correct Result
Name Orig. Dest. Port
. Riverbend Female, Early 20’s, English
voice_4 (437-6373) TELUS Lab Rx
. Riverbend Female, Late 40's, Fiji Hindi
voice_5 (437-6373) TELUS Lab Rx

voice_6 TRLabs TELUS Lab Rx Female, Early 30's, English

voice_7 TRLabs TELUS Lab Rx Male - Male, Late 20's, English Conversation

voice_8 TRLabs TELUS Lab Rx Male - Male, Late 20's, English Conversation

D.3 Description of Database files Recorded by Sarda

The files listed in Table 57 were recorded during the second field trial at the
TELUS Toll Building. These files do not contain the actual PCM p -law encoded sam-
ples. instead they contain the classification vectors returned by the DSP.

Table 57: Description of database files recorded at the Telus Toll Building.

Filename Start Stop Segment | Monitor
. . . ) Comments
(.dbf) Time/Date | Time/Date Size Point
Bay 2954
April 20 April 21 EDTN 05T,
2 9]
04.20_98 16:08 08:42 1020 11th floor
Port No. 3A
Bay 2954
April 21 April 21 EDTN 05T,
day2_| 10:03 10:38 L 020 1th floor
Port No. 3A
. . Bay 2953
2 2
0422 98 Al"lrflz;l Alpl"'382" 1020 EDTN 07T
: . Port No. 12A
. . Bay 2954
04.23_98 Al";'sgz Agsrf:‘? 2052 EDTNOST
: : Port No. 3A
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Table 57: Description of database files recorded at the Telus Toll Building.

Filename Start Stop Segment Monitor
. . . . Comments
(.dbf) Time/Date | Time/Date Size Point
Bay 2954 Digital Switch
. . Stratacom
. n n .
Binaryl April 23 April 23 1020 623-650
Point No. 2B
Bay 2954
April 23 April 24 EDTN 05T,
2. 2
0424 98 11:43 13:28 1020 11th floor
Port No. 4
. . Bay 2953
2. 2
04_27 98 | April2d Apnil 27 1 020 EDTN 07T
14:33 8:41 .
Point 9B
. . Bay 2953
2 2
04_28 98 | AP April 28 1092 | EDTNOTT
9:04 9:06 .
Point 9B
. . Bay 2221 Long Distance, Toronto
2 p)
04_29_98 A[p(;fggs Agf‘sl 6“9 1020 225.252
) ’ Point 19B
. . Bay 2221 Long Distance. Toronto
i
043098 | AP A0 819 225.252
’ ) Point 19B
Bay 2955 Tratfic going to Leduc
STAL ISTOI,
April 30 May | 533-546,
050198 | 1036 10:39 1020\ | Epc ssTol,
547-560
Point 16B
Bay 2955 Traffic going to Leduc
STAL ISTOI,
May | May 4 5 533-546,
050498 11 14 2052 | | EpcasTol.
547-560
Point 16B
) Bay 2221 Long distance Vancou-
05_05_98 “1"1‘"‘% ] “1’[1‘%05 16 380 281-308 | ver
’ ) Point 23A
Bay 2221 Long distance Vancou-
05_06_98 “{'{"5’75 “{';3(’)36 2052 281-308 | ver
’ ’ Point 23A




Table 57: Description of database files recorded at the Telus Toll Building.

Filename Start Stop Segment Monitor
. . . . Comments
(.dbf) Time/Date | Time/Date Size Point
Bay 2953
May 6 May 7 EDTN 071,
050798 | 1518 13:06 +092 501-550
Point IB
Bay 2954 Local
LEND 8T3,
May 7 May 8 ’ 201-224,
050898 1 335 9:46 10201 | END 93,
225
Point 8B
Bay 2952 Long distance Calgary
May 8 May 11
05_11_98 1:12 10:19 8 196 601

Point No. 17

The files listed in Table 58 were recorded during the third and fourth field trials

at the Bonnie Doon TELUS Mobility base station in Edmonton. These files do not con-

tain the actual PCM (1 -law encoded samples, instead they contain the classification

vectors returned by the DSP.

Table 58: Description of database files recorded at the TELUS Mobility base station.

Filename Start Stop Segment | Monitor
. . . . Comments
(.dbf) Time/Date | Time/Date Size Point
Bay DSX 1-6 | - Tl to Quigley. Alberta
Oct 19 Oct 21 Rack 2 - Speech Filter: 3 sec.
2
10_21.98 10:22 9:33 20521 Point No. 17 | - Non-Speech Filter: |

(left side) sec.

- T1 to Peace River,
Bay DSX 14 | Alberta
no9s | Nov 520 Nl‘;‘f'430 2052 Row 3A | - Speech Filter: 10 sec.
’ ) Point No. 5 | - Non-Speech Filter: 1
sec.

155



Tables 59 to 62 list the files used from the Multilingual Speech Database
obtained from CSLU. All filenames are suffixed with “story.wav”. Each file is

approximately 1 minute in length.

Table 59: Japanese data files used from the CSLU multilingual speech database.

Filename Gender
JA-10 Female
JA-30 Male
JA-58 Female
JA-70 Male
JA-91 Female
JA-104 Male
JA-155 Female
JA-199 Male
JA-220 Female
JA-233 Male

Table 60: English data files used from the CSLU multilingual speech database.

Filename Gender
EN-16 Female
EN-21 Male
EN-38 Female
EN-44 Male
EN-51 Female
EN-60 Male
EN-80 Female
EN-77 Male
EN-96 Female
EN-101 Male
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Table 61: French data files used from the CSLU multilingual speech database.

Filename Gender
FR-6 Female
FR-19 Male
FR-35 Female
FR-46 Male
FR-50 Female
FR-81 Male
FR-91 Female
FR-104 Male
FR-114 Female
FR-126 Male

Table 62: German data files used from the CSLU muitilingual speech database.

Filename Gender
GE-10 Male
GE-224 Female
GE-242 Male
GE-278 Female
GE-290 Male
GE-314 Female
GE-397 Male
GE-426 Female
GE-462 Male
GE-357 Female
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Appendix E

Parameters used for experiments using the ALN method:

* Minweight: -10 000
* Maxweight: 10 000
* Input Epsilon: 0.001
* Ouput Epsilon: 0.2
* lJitter: True

* Learn Rate: 0.3

* Min Rmse: 0.001

* Epochs: 14

* Random Seed: 238

The train file should be named *1_all.txt”, and the test file should be named
*2_all.txt”. Each file should be formatted so that the feature and class variables are all
on one row separated by tab characters. The class needs to be the last column in each
row. Also, any row that begins with a ;" character is ignored. All parameters are read
in as command line arguments. To get the syntax simply type in the name of the exe-

cutable file and the syntax will be displayed on the screen.
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Appendix F

This appendix lists all combinations of variables that give the maximum classi-
fication accuracy using pseudo quadratic discriminant functions for 6, 7, 8, and 9 varia-
bles. Only these are listed because multiple combinations of variables provide the

maximum classification accuracy.

Table 63: Maximum classification accuracy using 6 variables (N=2052, Pseudo QDF).

Number of Variables Used

Variables

Rdl X X
Rd2 X X
Rd3 X X
Rd4

Rd5 X X
Rdé6 X X
Rd7 X

Rd8 X
Rd9

Rd10

N2
Pc (%) 100.0 100.0

Table 64: Maximum classification accuracy using 7 variables (N=2052, Pseudo QDF).

Number of Variables Used
Variables

7 7 7 7
Rdl X X X X
Rd2 X X X X
Rd3 X X X X
Rd4
Rd5 X X X X
Rd6 X X X X
Rd7 X X X
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Table 64: Maximum classification accuracy using 7 variables (N=2052, Pseudo QDF).

Number of Variables Used

Variables
7 7 7 7
Rd8 X X
Rd9
Rd10 X
N2 X X
Pc (%) 100.0 | 100.0 | 100.0 | 100.0

Table 65: Maximum classification accuracy using 8 variables (N=2052, Pseudo QDF).

Number of Variables Used

Variabies
8 8 8
Rdl X X X X
Rd2 X X X X
Rd3 X X X X
Rd4
RdS X X X X
Rd6 X X X X
Rd7 X X X
Rd8 X X X
Rd9
Rd10 X X X
N2 X X X
Pc (%) | 100.0 | 100.0 | 100.0 | 100.0

Table 66: Maximum classification accuracy using 9 variables (N=2052, Pseudo QDF).

Number of Variables Used
Variables

9191919191999 ]9
Rdl X X X X X X X X X X X X
Rd2 X X X X X X X X X X X X
Rd3 X X X X X X X X X
Rd4 X X X X X X X X X X
RdS X X X X X X X X X
Rd6 X X X X X X X X X
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Table 66: Maximum classification accuracy using 9 variables (N=2052, Pseudo QDF).

Number of Variables Used
Variables

9 91919 (919419109 9

Rd7 X X X X X X X X X X
Rd8 X X X X X X X X X X X
Rd9 X X X X X X X X
Rd10 X X X X X X X X X X X
N2 X X X X X X X
Pc (%) [99.99199.99199.99|99.99(99.99(99.99/99.99(99.99(99.99]99.99[99 99]99 9
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