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Abstract

3D reconstruction is an important topic in both computer vision and computer

graphics. Many techniques have been proposed for objects with Lambertian

reflectance. It assumes that the reflected light from the object surface is uni-

formly distributed in all directions. However, light interacts with real-world

objects in complex manners, e.g . refraction, scattering and specular reflection.

By ignoring these effects, traditional methods, when applied directly, produce

large errors. For example, due to light refraction, a transparent surface ap-

pears differently when observed from different viewpoints. Thus the traditional

color/texture correspondence-based methods cannot be used. This disserta-

tion presents novel hardware setups and software designs for 3D reconstruction

in the presence of light refraction.

I start with capturing the light transport characteristics, i.e. the environ-

ment matte, of objects that are either refractive or reflective, or both. The

proposed approach can locate the contributing light sources at the pixel level

and render photo-realistic images of the object under novel illumination back-

ground.

Then I propose to exploit the light transport for reconstructing 3D shape

of transparent and refractive objects. In particular, a novel imaging setup is

built to capture the light rays before and after refraction. By introducing a

novel normal consistency constraint that encodes the light refraction effect, I

design an optimization procedure, which jointly reconstructs the 3D positions

and normals of the object, as well as the refractive index.
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I also present a new method to recovering 3D dynamic fluid surfaces by

leveraging light refraction. Two cameras are used to capture the distortion

of a random pattern through the wavy fluid surface. After estimating the

correspondence between the captured image and the original pattern, I develop

a refraction-based optimization framework for recovering the 3D shape and the

refractive index of the fluid surface.

Finally, I consider the imaging scenario of viewing an underwater scene

through a water surface. By explicitly accounting for light refraction at the

water surface, I present a novel approach for simultaneously recovering the 3D

shape of both wavy water surface and the moving underwater scene.
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Preface

All methods presented in this thesis are published at the top venues in com-

puter vision.

The work [54] of Chapter 3 is published as: Y. Qian, M. Gong, and Y.-

H. Yang. Frequency-based environment matting by compressive sensing. In

Proceedings of the IEEE International Conference on Computer Vision, pages

3532–3540, 2015.

The work [53] of Chapter 4 is published as: Y. Qian, M. Gong, and Y.-

H. Yang. 3d reconstruction of transparent objects with position-normal con-

sistency. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4369–4377, 2016.

The work [55] of Chapter 5 is published as: Y. Qian, M. Gong, and Y.-

H. Yang. Stereo-based 3D reconstruction of dynamic fluid surfaces by global

optimization. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1269-1278, 2017.

The work [56] of Chapter 6 is published as: Y. Qian, Y. Zheng, M. Gong,

and Y.-H. Yang. Simultaneous 3D reconstruction for water surface and un-

derwater scene. In Proceedings of European Conference on Computer Vision,

2018.

This thesis is a concatenation of the above four papers.
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Chapter 1

Introduction

1.1 Motivation

Although an image is a 2D array, we live in a 3D world [73]. 3D reconstruction

refers to the process of inferring 3D shape of objects or scenes from 2D images,

i.e. determining the 3D coordinates of surface points. As a core problem in

both computer vision and computer graphics, 3D reconstruction has wide ap-

plications, e.g . digital heritage [40], medical diagnosis [79], object recognition

[51].

Many techniques have been proposed for capturing the shape of opaque

objects using either active [58], [59] or passive [15], [23] manners. However,

existing methods usually assume that the object surface is Lambertian, by

which the same amount of light is reflected from the surface in all directions.

Such an assumption is violated for transparent objects, which, nevertheless, are

commonly encountered in daily life, e.g . glasses, crystals, liquids. Transparent

objects interact with light in complex manners including specular reflection,

refraction and absorption. Therefore, 3D modeling methods tailored for Lam-

bertian surfaces fail when they are used to recover the 3D shape of transparent

objects.

Perceiving transparent objects is difficult, even for us — we often bump

into clean glass doors, for example. Technically, the problem is challenging

due to several reasons. Firstly, transparent surfaces do not have their own

colors but acquire their appearance from surrounding backgrounds. Hence,

traditional Lambertian-based 3D modeling methods, which rely on color con-

1



Figure 1.1: A transparent prism observed at two different viewpoints. No-
tice that the same surface point of the prism has different colors at the
two viewpoints, making the color appearance being an unreliable cue for
correspondence-based 3D reconstruction of transparent objects.

sistency across different views, cannot work for such view-dependent surfaces;

see Fig. 1.1. Secondly, tracing the light path involved in light refraction in

transparent surface reconstruction is non-trivial because of the non-linearity

inherent in refraction. Even worse is that light refraction depends not only

on the 3D shape but also on the medium’s property, i.e. refractive index,

which is usually unknown. Third, if the surface of interest is dynamic (e.g .

water waves), the problem becomes harder because real-time data capture is

required.

While 3D reconstruction of transparent surfaces has not been fully devel-

oped, there is much interest in using them if they are available. For example,

if glasses and crystals are used in a cartoon, their real 3D models are essential

to create a high-quality computer animation. On the other hand, the problem

of accurately reconstructing 3D water surface have drawn much attention due

to applications in oceanography and remote sensing.

Motivated by the limitations of existing methods and the demands for real-

world applications, this dissertation focuses on 3D reconstruction of transpar-

ent surfaces, including static objects made of crystal or glass and dynamic fluid

surfaces. I start by capturing the light transport characteristics of transparent

objects. Then, instead of relying on the unreliable color appearance, I use the

light transport as a key cue for 3D reconstruction. Specifically, compared to

reflection, refraction is indeed an unique property for transparent surfaces and

2



conveys important information of the 3D shape (For instance, according to

Snell’s law, light refraction paths are determined by surface normals). Hence,

here the problem of shape recovery is tackled based on light refraction.

In the following sections, I present the background of the problems consid-

ered in this dissertation, as well as the contribution of my proposed methods.

1.2 Background and Contributions

1.2.1 Environment Matting

Environment matting is a technique introduced to render photo-realistic im-

ages of objects that are either refractive or reflective, or both. It focuses

on modeling the object’s light transport characteristics, i.e. the environment

matte, and allows the object to be seamlessly composited into a new back-

ground. Typically, to obtain an environment matte, the object needs to be

photographed in front of a series of pre-designed backdrops. How the object

refracts and reflects light can then be inferred from the recorded images.

The concept of environment matting is first introduced in [82]. Since then,

several methods [13], [19], [48], [71], [81] have been proposed to either simplify

the data acquisition process or to improve the accuracy of the environment

matte. The main task of environment matting is to decompose a many-to-

one mapping, by which many background pixels are combined into one fore-

ground pixel. Most existing methods decompose the mapping in the spatial

domain, where a foreground pixel can be composited in an infinite number

of ways. To handle the ambiguities, these methods use additional constraints

and time-consuming non-linear optimization to estimate the mapping, whose

physical correctness cannot be verified. A frequency-based approach is later

proposed and is capable of finding the accurate contributing sources efficiently

[81]. However, it requires a large number of captured images. On the other

hand, extracting matte data from a single photo is possible if the object is

perfectly specular transparent [13]. A recent spatial-domain method [19] also

has low data acquisition requirement at the expense of high computational

cost. Both of these two methods cannot provide high-accuracy environment
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mattes. Hence, there is a need for an effective algorithm that can accurately

and quickly extract the matte data from a small number of images.

Motivated by the above observations, in this thesis (Chapter 3), I present a

novel environment matting approach with the following objectives. First, my

approach can accurately find the contributing sources at the pixel level. Sec-

ond, my approach leverages on the recently developed theory of Compressive

Sensing (CS) to reduce the complexity of data acquisition. Finally, I incor-

porate additional phase information into the frequency-based model, which

further reduces the number of images required and significantly accelerates

the process of environment matte extraction.

1.2.2 3D Reconstruction of Static Transparent Objects

Previous approaches of 3D transparent object reconstruction can be roughly

classified into three groups [32], [33]: reflection-based, refraction-based, and

intrusive methods. The first group attempts to reconstruct the objects by uti-

lizing the specular highlights on the object surface [41], [44]. By analyzing only

the surface reflection properties, such approaches can reconstruct transparent

objects with complex and inhomogeneous interior. However, unlike opaque

objects, only a small amount of light is reflected from the transparent object’s

surface. To measure the weak reflection, precise controlling and adjusting the

light positions are usually required. The second group exploits the refraction

characteristics of transparent objects. Many methods simplify the problem by

considering only one-refraction events, either assuming that the surface facing

away from the camera is planar [62] or that the object is thin [70]. As well,

the refractive index is required to be known for surface normal estimation.

Although the problem of two-refraction events has been investigated theoreti-

cally [38], the setup requires high precision movements of both the object and

the light source, making the approach hard to use and the results difficult, if

not impossible, to reproduce. Finally, intrusive methods either rely on special

devices (e.g . diffuse coating [24]) or by immersing the object in special liquids

[27], [30], [66], which are often impractical and may even damage the objects.

Hence, there is a need for a practical approach that can accurately reconstruct
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transparent objects using a portable setup.

This thesis (Chapter 4) presents a new refraction-based approach for recon-

structing homogeneous transparent objects, through which light is refracted

twice. As is commonly done, inter-reflections within the object are assumed

to be negligible. By introducing a novel normal consistency constraint, an op-

timization procedure is designed, which jointly reconstructs the 3D positions

and normals at two refraction locations. The refractive index of the object can

also be reliably estimated by minimizing a new reconstruction error metric.

Further, my acquisition setup is simple and inexpensive, which consists of two

cameras and one monitor, all of which do not require precise positioning.

1.2.3 3D Reconstruction of Dynamic Fluid Surfaces

In computer vision, the problem is usually solved via shape from refraction.

Typically, a known background is placed beneath the fluid surface and 3D

reconstruction is performed by analyzing pixel-point correspondences. That

is, for each pixel, the corresponding location of the light source in the back-

ground is acquired. However, shape from pixel-point correspondence is known

to have ambiguities: the 3D surface point can lie at any position along the

camera ray that goes through the pixel. Recent methods resolve the ambi-

guities along two directions. Some methods [70], [74], [77], instead of using

pixel-point correspondences, acquire ray-ray correspondences, i.e. the incident

ray emitted from the background and the exit ray going to the camera, us-

ing special devices (e.g . Bokode [74], light field probes [70]). Alternatively, a

number of methods [17], [45] propose to employ stereo/multiple cameras to

capture the fluid surface, which basically utilize a cross-view normal consis-

tency constraint: the normals computed using the pixel-point correspondences

acquired from different views should be consistent. Nevertheless, for the above

two groups, a common limitation is that they result in reliable normals only

but not in depths. The final 3D points of the fluid surface are then obtained by

normal integration. To get the boundary condition for integration, they either

assume that the surface is flat at the boundary [17], [74] or the boundary is

estimated using the noisy depths [45], [70].
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To cope with the above limitations, this thesis (Chapter 5) presents an

optimization-based approach to reconstruct a dynamic, homogeneous and trans-

parent fluid surface, from which specular reflection is assumed to be negligible.

My approach is based on pixel-point correspondences. By assuming that light

is redirected only once through the fluid surface, I first use two perspective

cameras to capture the distortion of a random pattern through the wavy sur-

face. Hence, my acquisition system is easy to implement and requires no special

optics. Compared to a conventional stereo-based method [45], the proposed

approach can obtain both accurate, consistent depths and normals without the

error-prone surface integration step. Specifically, rather than doing a point-

by-point reconstruction, I formulate an optimization function, which exploits

not only the cross-view normal consistency but also the single-view normal

consistency constraints. By doing so, I jointly reconstruct both the depths

and the normals. My method addresses the fundamental limitation of existing

methods on surface integration without accurate boundary conditions. Be-

sides, a new reconstruction error metric is designed to search the refractive

index of liquid with very encouraging results.

1.2.4 Simultaneous 3D Reconstruction of Water Sur-
face and Underwater Scene

As discussed in Section 1.2.3, existing methods for recovering dynamic water

surfaces typically assume that the underwater scene is a known flat pattern,

for which a checkerboard is commonly used [17], [45]. Meanwhile, most previ-

ous works reconstruct the underwater scene by assuming the interface between

the scene and the imaging sensor is flat [3], [11], [21]. Therefore, the prob-

lems of reconstructing underwater scene and of reconstructing water surface

are usually tackled separately in computer vision. Recently, Zhang et al . [76]

make the first attempt to solve the two problems simultaneously using depth

from defocus. Nevertheless, their approach assumes that the underwater scene

is stationary and an image of the underwater scene with a flat water surface

is available. Because of the assumptions of the flat water surface or the flat

underwater scene, none of the above mentioned methods can be directly ap-
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plied to solve the problem of jointly recovering the wavy water surface and the

natural underwater dynamic scene. Indeed, the lack of any existing solution

to the above problem forms the motivation of my work.

In this thesis (Chapter 6), I propose to employ multiple viewpoints to

tackle such a problem. In particular, I construct a portable camera array

to capture the images of the underwater scene distorted by the wavy water

surface. My physical setup does not require any precise positioning and thus is

easy to use. Following the conventional multi-view reconstruction framework

for on-land objects, I first estimate the correspondences across different views.

Then, based on the inter-view correspondences, I impose a normal consistency

constraint across all camera views. Suppose that the light is refracted only

once while passing through the water surface. I present a refraction-based

optimization scheme that works in a frame-by-frame1 fashion, and can handle

the dynamic nature of both the water surface and the underwater scene. More

specifically, my approach is able to return the 3D positions and the normals

of a dynamic water surface, and the 3D points of a moving underwater scene

simultaneously. Encouraging experimental results on both synthetic and real

data are obtained.

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews pre-

vious works on light transport acquisition (i.e . environment matting) and 3D

reconstruction for transparent objects. The four tasks discussed in Section 1.2

are introduced in Chapter 3, 4, 5, 6, respectively. For each problem, I first

present the proposed approach, followed by the experimental results. Chapter

7 concludes the thesis and discusses future directions.

1In Chapter 6, a frame refers to the pictures captured from all cameras at the same time
point.
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Chapter 2

Related Work

2.1 Environment Matting

Zongker et al . [82] first formulate the problem and decompose the many-to-one

mapping by assuming a foreground pixel is only contributed by a single rect-

angle area of the background. Chuang et al . [13] later propose two extensions:

i) by sweeping different oriented Gaussian strips across the background to ac-

commodate for sources that are not axis-aligned rectangles; ii) by extracting

the environment mattes of colorless and pure specular objects using only one

image. Wexler et al . [71] present a probabilistic model based method, which

does not rely on predefined backdrops but requires enough sample images. It

only works for thin transparent objects that do not introduce large optical

distortion to the background. Inspired by image-based relighting, Peers and

Dutr [48] use a set of wavelet basis images to obtain a visually pleasing result

using a large number of sample images.

Inspired by the fact that a signal has a unique decomposition in the fre-

quency domain, Zhu and Yang [81] propose a frequency-based approach which

can find the accurate contributing sources, allowing the decomposition ambigu-

ity to be alleviated. My proposed approach is built upon their frequency-based

model, but uses CS to dramatically reduce the number of images required.

Note that using CS-based data acquisition for environment matting has

been recently proposed by Duan et al . [19], [20]. My work differs from theirs

in three main aspects: 1) Rather than solving the problem in the spatial do-

main, I work in the frequency domain, which helps to accurately locate the
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contributing sources; 2) The sparsity assumptions in CS are different. Their

method assumes that the light transport vector is sparse and directly recon-

structs it in the spatial domain, whereas I assume a foreground pixel is con-

tributed by a sparse number of frequencies, not locations; 3) To reduce the

computational cost, the hierarchical recovery scheme they proposed limits the

contributions to a foreground pixel by only square blocks in the background.

Hence, their composited results appear blurry and blocky. In contrast, my re-

sults are sharper and clearer because my approach can locate the contributing

sources at the pixel level efficiently.

Compressive Sensing. Compressive sensing [9], [18] is an emerging field

that provides a framework for reconstructing a sparse signal with far fewer

measurements than the dimension of the signal. Instead of capturing the

original N -dimensional signal x directly, to recover x, CS seeks to use M < N

linear measurements y = Ax, where A is an M × N measurement matrix,

and x is an s-sparse signal, i.e. x contains at most s � N nonzero elements.

In CS, if the measurement matrix A satisfies the restricted isometry property

(RIP) [8], then x can be stably recovered by solving the nonlinear optimization

problem: min ‖x‖1, s.t. y = Ax with only M = O(s log(N/s)) measurements.

CS has facilitated the solving of many computer vision and graphics prob-

lems, either by helping in reformulating the problem using the sparsity con-

straint, e.g . face recognition [72], background subtraction [10], or by reducing

the complexity of data acquisition, e.g . light transport acquisition [49], dual

photography [61]. As mentioned before, CS is also incorporated into environ-

ment matting in the spatial domain [19]. Huang et al . [29] propose a CS-based

solution for recovering data with both sparsity and dynamic group clustering

priors. Note that the group clustering prior is also applicable to environment

matting and has been utilized in [19] since the background pixels contributed

to an object pixel appear in groups.
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2.2 3D Reconstruction of Static Transparent

Objects

Shape from reflection based methods utilize the specular property of the

transparent surface. Such methods bypass the complex interactions of light

with the object as it travels through the object by acquiring the linear re-

flectance field. Hence, inhomogeneous transparent objects can be reconstructed.

Tarini et al . [65] acquire light reflections of mirror object against a number

of known background patterns and then alternately optimize the depths and

normals from reflective distortions. Morris and Kutulakos [44] reconstruct

complex inhomogeneous objects by capturing exterior specular highlights on

the object surface. Their approach requires delicate movements of light sources

and imprecise movements often introduce errors to the results. Yeung et al .

[75] introduce a low-cost solution by analyzing specular highlights, which can

only obtain the normal map of an object. Recently, Liu et al . [41] apply a

frequency-based approach to establish accurate reflective correspondences, but

only sparse 3D points are obtained. A common issue of the above reflection-

based approaches is that the reflection field is often corrupted by the indirect

light transport within the object and various constraints are proposed to tackle

it.

Refraction-based reconstruction methods rely on the refracted light,

which is stronger than the reflected light for truly transparent objects and

conveys unique characteristics of the objects.

Ben-Ezra and Nayar [6] develop a structure-from-motion based method for

reconstructing the full 3D model of a transparent object, where the object is

assumed to have a known parametric form. Wetzstein et al . [70] acquire the

correspondences between the incident and exit rays, i.e. ray-ray correspon-

dences, from a single image using light field probes and compute refraction

positions through triangulation. However, their method assumes that the in-

cident light is redirected once and thus, can only work for thin objects. Simi-

larly, several methods [43], [62], [67] simplify the problem by focusing on only

one-refraction events. In particular, they either assume that part of the sur-
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face information (e.g . normal) is known or that one of the refraction surfaces

is known.

Kutulakos and Steger [38] categorize the refraction-based approaches based

on the number of reflections or refractions involved, and discuss the feasibility

of reconstruction of different cases. They show that at least three views are

required to reconstruct a solid object where light is redirected twice. My

approach presented in Chapter 4 also handles two-refraction cases, but differs

from theirs in the following aspects: i) Their approach triangulates individual

light paths separately to reconstruct the corresponding surface points, whereas

I use an optimization procedure to solve all points in conjunction; ii) my

approach reconstructs both refraction surfaces, whereas theirs only deals with

a single surface; iii) I simultaneously recover both the 3D positions and normals

of the refraction surface, whereas their approach computes the surface normals

based on Snell’s law in post-processing, which may not be consistent with the

local shape; iv) I use only two cameras for data acquisition, while they use five,

leading to more data to be captured; and v) precise object rotation and monitor

translation are required in their setup and hence, applying their technique can

be difficult. In contrast, my approach does not require precise positioning of

the monitor, while the object is fixed during acquisition.

2.3 3D Reconstruction of Dynamic Fluid Sur-

faces

The following two subsections presents previous methods for recovering 3D

dynamic fluid surfaces (e.g . water waves) when the underwater scene is a

known flat pattern and when the underwater scene is a natural non-flat scene,

respectively.

2.3.1 Known Flat Underwater Scene

The single-view based method was first introduced by Murase [47] in com-

puter vision, where surface normals are recovered by capturing video with an

orthographic camera of a flat background through wavy water. To eliminate
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the ambiguity in pixel-point correspondences, earlier efforts focus on propos-

ing additional constraints, e.g . statistical appearance assumption of a fluid

sequence [47], known average fluid height [34]. Recently, Shan et al . [62] im-

prove Murase’s method by solving all surface points at the same time under

orthographic projection. However, their implementation requires a long expo-

sure time (about 0.5 seconds) for each frame and thus is applicable to static

objects only. By modeling the surface as a cubic B-spline, Liu et al . [42]

introduce a parametric solution for reconstructing both mirror objects and

transparent surfaces using pixel-point correspondences.

Ray-ray correspondence based methods are developed to avoid the ambi-

guity of pixel-point correspondences under a single-view setup. By placing a

color screen at the focal length of a big lens, Zhang and Cox [77] associate

each 2D source point of the background with a ray direction under ortho-

graphic projections. The incident rays are then easily obtained after getting

pixel-point correspondences. Ye et al . [74] establish a similar setup by using

a perspective camera. Wetzstein et al . [70] acquire ray-ray correspondences

with light field probes [69]. Specifically, they replace the big lens with a lenslet

array. A color pattern is then placed under the array, which encodes positional

and angular correspondences using different color channels. All the above ray-

ray correspondence based methods rely on special optics, which introduces

many practical issues, e.g . calibrating the ray directions of background points

[35] and making the setup waterproof [74]. In addition, as reported in their

papers [70], [74], the surface positions obtained by intersecting the incident

and exit rays are less accurate than that of the normals obtained by Snell’s

law. Furthermore, a surface integration algorithm is required to obtain the 3D

shape from the normal information.

Another group of methods utilize multiple viewpoints to tackle the prob-

lem. Morris and Kutulakos [45] first propose using a stereo camera system to

capture a dynamic fluid surface. By placing a checkerboard underneath the

fluid surface, their approach can estimate both depths and normals based on

pixel-point correspondences. Following their stereo setup, my approach pre-

sented in Chapter 5 not only inherits the advantage of easy implementation
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(e.g . no special devices required and can work under perspective projection)

but also provides the following novel improvements: (1) In addition to cross-

view normal consistency, my approach exploits a novel single-view normal

consistency which takes local surface geometry into account; (2) Unlike their

method which solves for each individual point independently, ours employs a

global optimization scheme to recover all surface points simultaneously which

results in higher accuracy in both depth and normal; (3) Since they compute

depths and normals in separate steps, the surface obtained by mesh fitting

based on the depth map and the one estimated via normal integration do not

guarantee consistency. Typically, their normals are more accurate than the

corresponding depths. Thus an additional surface integration from normals

is required. In comparison, I simultaneously reconstruct depths and normals,

which are both accurate and, most importantly, are consistent with each other;

(4) I define a new error metric to recover the unknown refractive index without

requiring to compute the complex inverses of pixel-point correspondences as in

their method. It is noteworthy that the refraction stereo formulation has been

extended to using a camera array [17], where the fluid surface is reconstructed

by specular carving. However, the major limitations of [45] discussed above

remain unsolved.

2.3.2 Unknown Non-Flat Underwater Scene

There are existing methods targeting at obtaining the 3D structure of under-

water objects under a wavy surface. Alterman et al . [2] present a stochastic

method for stereo triangulation through wavy water. However, their method

can produce only a likelihood function of the object’s 3D location. The dy-

namic water surface is also not estimated. More recently, Zhang et al . [76]

treat such a task in monocular view and recover both the water surface and

the underwater scene using a co-analysis of refractive distortion and defocus.

Their method is limited in practical use. Firstly, to recover the shape of an

underwater scene, an undistorted image captured through a flat water surface

is required. However, such an image is very hard to obtain in real life, if not

impossible. Secondly, the image plane of their camera has to be parallel with
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the flat water surface in their implementation, which is impractical to achieve.

In contrast, my camera array-based setup presented in Chapter 6 can be posi-

tioned casually and is easy to implement. Thirdly, for the water surface, their

method can return the normal information of each surface point only. The

final shape is then obtained using surface integration, which is known to be

prone to error in the absence of accurate boundary conditions. In compari-

son, my approach bypasses surface integration by jointly estimating the 3D

positions and the normals of the water surface. Besides, the methods in [2]

and [76] assume a still underwater scene, while both the water surface and

the underwater scene can be dynamic in this thesis (Chapter 6). Hence, my

proposed approach is applicable to a more general scenario.
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Chapter 3

Frequency-Based Environment
Matting

Extracting environment mattes using existing approaches often requires either

thousands of captured images or a long processing time, or both. In this chap-

ter, I present a novel approach to capturing and extracting the matte of a real

scene effectively and efficiently. Grown out of the traditional frequency-based

signal analysis, my approach can accurately locate contributing sources. By

exploiting the recently developed compressive sensing theory, I simplify the

data acquisition process of frequency-based environment matting. Incorpo-

rating phase information in a frequency signal into data acquisition further

accelerates the matte extraction procedure. Compared with the state-of-the-

art method, the proposed approach achieves superior performance on both

synthetic and real data, while consuming only a fraction of the processing

time.

3.1 Prerequisites

3.1.1 Problem Formulation

An environment matte describes how light is transferred from the environment

through a transparent or reflective object to the camera. Figure 3.1 shows a

typical data acquisition setup for environment matting, which consists of a

camera and a monitor serving as light source. Following [19], [48], [81], the
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Figure 3.1: A physical setup for capturing environment mattes.

problem is usually modeled as

C = F + ρWB, (3.1)

where C is the intensity of a pixel in the composited image, and F the fore-

ground object’s color under the ambient illumination. B is an n2 × 1 vector

representing the background image, and W the 1 × n2 light transport vector

describing the amount of contribution of light emitted from each background

pixel to an object pixel, with the constraints ‖W‖1 = 1,Wi ≥ 0. ρ is the

light attenuation index which defines how light is attenuated by the object. In

this way, each object pixel C is a combination of the foreground color F and

the weighted contribution of the light emitted from the backdrop B. Hence,

the problem becomes: given a number of captured images of an object against

some known backdrops, how to extract the environment mattes: F, ρ and W?

Previous methods have shown that obtaining F and ρ under controlled

environment is relatively easy [81], [82]. In particular, F can be obtained by

displaying a pure black background because C = F when there is no back-

ground contribution. ρ can be obtained by projecting a solid color background,

where all entries in B have the same value b. Consider ‖W‖1 = 1, Eq.(3.1)

becomes C = F +ρb, allowing ρ to be calculated after F is determined. Figure

3.2 gives some example outputs.

Thus the main task of environment matting is to recover the light trans-

port vector W for each pixel. It is worth noting that I am only interested in

the foreground object pixels, which are specified using a binary mask. The
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(a) Object Image (b) Binary Mask (c) Foreground F (d) Attenuation In-
dex ρ

Figure 3.2: (a) shows a transparent cylinder captured against a solid gray
background. (b) shows the binary segmentation result. (c) shows the fore-
ground color F of the object. The image looks black because B = 0 (i.e. the
monitor displays a black pattern and thus the illumination is turned off in the
scene). (d) shows the estimated attenuation index ρ.

mask is obtained by capturing the scene with and without the object in front

of 20 coarse-to-fine backdrops [82]. A pixel is considered an object pixel if the

corresponding pixel colors of the object image and the reference image differ

by more than a threshold in any of the 20 pairs. Two subsequent morpho-

logical operations, an opening followed by a closing operation with a 5 × 5

box structural element, are used to further refine the mask. A segmentation

example is shown in Figure 3.2(b).

Frequency Analysis Model. In an effort to alleviate the ambiguity prob-

lem, Zhu and Yang [81] propose to estimate the matte in the frequency domain.

The key idea is to utilize the following desirable properties of the Discrete

Fourier Transform (DFT):

1. Suppose a signal s3 is a weighted combination of two other signals s1

and s2, i.e. s3 = w1s1 + w2s2. Denote the frequency of s1 and s2 as f1

and f2, respectively, then s3 is a signal with both f1 and f2;

2. Denote the complex vector S3 as the DFT of s3, I have mag(S3(f1)) > 0,

mag(S3(f2)) > 0 and mag(S3(f1))
mag(S3(f2))

= w1

w2
, where mag(·) denotes the complex

magnitude of a complex number;

As shown in Figure 3.3, by letting different pixels emit different frequency

signals in the backdrop, I apply the DFT to the observed signal of each ob-
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Figure 3.3: The object pixel C is contributed by two background pixels B(i)
and B(j). By letting background pixels emit different frequency signals (e.g .,
use pixel id as frequency value), the contributing sources can be obtained by
analyzing the recorded signal in the frequency domain.

ject pixel and find the peaks of the frequency magnitude, which correspond to

the contributing sources in the backdrop. The weights of these sources, i.e.

the vector W, can then be computed using the aforementioned property 2.

However, for a backdrop with n2 pixels (n ≈ 103 for a conventional monitor),

assigning each pixel a unique frequency requires at least 2 × n2 images to be

captured so that the frequency information can be recovered based on the

Nyquist-Shannon Sampling Theorem. Capturing so many images is impracti-

cal and time-consuming.

To reduce the number of captured images, Zhu and Yang [81] split the data

acquisition into two stages. Row-based patterns are first captured, where pixels

in a row have the same frequency, then column-based patterns are captured,

where pixels in a column share the same frequency. The final contributing

sources can be jointly determined by row-based and column-based searching.

While the number of images needed is reduced from 2×n2 to 4×n, thousands

of images are still needed to extract the matte at pixel level using a typical

monitor.
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3.2 Proposed Approach

In this section, I first present the sparsity of contributing sources under the

frequency-based formulation. Then a CS-based reconstruction method is in-

troduced to simplify the data acquisition process. Finally, I present a novel

background design with phase incorporated to reduce the computational cost

of L1 minimization in CS.

3.2.1 Sparsity under Frequency-based Formulation

Unlike the previous work [19] that assumes the sparsity of the light trans-

port vector W in Eq.(3.1), here I show the sparsity of contributing sources

in my frequency-based pattern configuration. In particular, when row-based

or column-based backdrops are displayed, an object pixel is only contributed

by a few rows or columns. Hence, the corresponding DFT contains a small

number of frequencies.

To quantitatively justify the sparsity of contributing frequencies in the

recorded signal, I capture several objects under row-based and column-based

frequency patterns. For row-based patterns, the intensity of each row in the

temporal sequence is designed as

B(f, t) = ξ
(

cos
(
2πf

t

N

)
+ 1
)
, (3.2)

where 1 ≤ f ≤ n is the row index of the background image, which also

represents the frequency value at the fth row. ξ is set to 127.5 such that the

range of pixel values is in [0, 255]. N represents the inverse of the sampling

period, and I have N ≥ 2fmax according to the Nyquist-Shannon Sampling

Theorem. In practice, I set N = 2fmax + o and o ∈ [10, 15] is an offset term. t

is the time index (frame id) within the set {0, 1, · · · , N−1}. The column-based

pattern follows the same fashion.

After recording the object images under two kinds of backdrops, I apply

the DFT to the received signals at each foreground pixel. For a single pixel

under the row-based pattern, if the complex number at frequency f of the

DFT is non-zero (the corresponding magnitude is non-zero), it means that the
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Figure 3.4: The Gini indices of the four objects used in this chapter. The
resolution of the row-based and column-based pattern is set to 512× 512 here
for practical data acquisition.

received signal contains that frequency. Thus I conclude that the fth row in

the background contributes to the pixel. Hence, the complex magnitudes of

the DFT can be used to measure the sparsity of frequencies of each object

pixel. I compute the Gini indices [31] (a widely-used sparsity metric in signal

processing, with a higher value implying a sparser signal) of the magnitude

vectors for all object pixels under both row-based and column-based patterns,

and average them as the sparsity of rows and columns, respectively. As shown

in Figure 3.4, the test objects have consistently high sparsity for both rows and

columns. In the following subsections, I use the row-based pattern to illustrate

my approach, since the column-based pattern is analyzed in the same fashion.

3.2.2 Reconstruction via Compressive Sensing

The existing frequency-based approach requires at least 4n (4096 when n =

1024) captured images for both row and column-based patterns. In contrast,

the proposed CS-based approach utilizes the sparsity in frequencies to reduce

the number of images required. To derive my CS-based method, I first con-

sider the conventional DFT method for reconstructing frequency information.

Given the recorded signal C and the computed ambient illumination F of a

foreground pixel, I have C−F = DX, where X is an N -dimensional complex

vector representing the frequency information of an object pixel and note that

during searching non-zero frequencies, I am only interested in the sub-vector

X(1 : fmax). D is the inverse of the N ×N discrete Fourier transform matrix.
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Since each object pixel is contributed by only a few rows, i.e. frequencies, the

CS theory can be used to reconstruct the sparse frequency information X by

taking only M < N measurements.

In practice, by randomly generating an M -dimensional permutation Ω of

the set {0, 1, · · · , N − 1} and displaying M backdrops pre-computed using

Eq.(3.2) with frame ids from Ω, I solve the following L1 minimization problem

to reconstruct the frequency information X:

min ‖X‖1, s.t. C− F = D(Ω, :)X, (3.3)

where C is an M -dimensional vector representing the recorded temporal signal

of a foreground pixel, and D(Ω, :) is the measurement matrix extracted from

D by including only the rows with indices in Ω.

Besides sparsity, previous works [13], [19], [71] have shown the background

regions that contribute to a foreground pixel can be clustered into several main

groups. Since the signal frequencies correlate with pixel locations, such a group

prior also exists in my frequency-based formulation. That is, most non-zero

elements in X are neighbors and can be clustered into several local groups,

which can help to improve the accuracy of L1 minimization in Eq.(3.3). In

practice, I apply the DGS tool [29] that can automatically handle the group

clustering prior during optimization.

After X is obtained, a simple thresholding operation is performed to locate

the contributing rows, i.e. the frequencies with non-zero magnitude. The

threshold is set as max(mag(X))/2 in my implementation. Together with the

contributing columns located in the same manner, the locations of contributing

sources are thereby determined. The weight of the source at row r and column

c is calculated as

W(ind(r, c)) = W̄row(r)W̄col(c), (3.4)

where ind(·, ·) returns the 1D index of the pixel located at the rth row and cth

column in the background. Wrow and Wcol are computed from the frequency

information X of row-based and column-based acquisitions, respectively, and

are normalized before plugging into Eq.(3.4). Figure 3.7(c) is an example

21



using the proposed CS-based frequency reconstruction, where M = 160 and

N = 2085 are used for both row-based and column-based acquisitions.

3.2.3 Augment with Phase Information

The CS-based frequency search lowers the data acquisition requirement, but

at the cost of a more expensive reconstruction process. Since the details of

composition results depend on the resolution of the background pattern n,

n needs to be large enough. When n = 1024, then the maximal frequency

fmax = 1024 in the row-based and column-based patterns. Hence, the un-

known vector X has a dimension of N ≥ 2fmax = 2048. Solving such a large

constrained minimization problem for all foreground pixels is time-consuming,

e.g . extracting the environment matte of the object in Figure 3.7(c) takes over

26 minutes.

Background Pattern Design

To accelerate the process of solving L1 minimization, I develop a new method

that incorporates additional phase information to reduce the complexity of

minimizing the L1 norm. The core idea is to use both frequency and phase to

identify the contributing sources. That is, for row-based patterns, I split the

image into k horizontal regions. While different rows within the same region

all have different frequencies, the corresponding rows in different regions have

the same frequency but different phase values. This is achieved by assigning

pixels in the fth row of the pth region the intensity of

B(f, t, ϕp) = ξ
(

cos
(
2πf

t

N
+ ϕp

)
+ 1
)
, (3.5)

where 1 ≤ f ≤ n
k

is the row index in the pth region, which also represents

the corresponding frequency value. ϕp is a pre-designed phase value for the

pth (1 ≤ p ≤ k) region. The other notations are the same with the ones

in Eq.(3.2). How to properly assign ϕp is discussed in Section 3.2.3. Figure

3.5 shows several example images of a goblet captured against my phase-

augmented frequency-based patterns.
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Figure 3.5: A transparent goblet captured against four example patterns gen-
erated using Eq.(3.5) by setting N = 1060, k = 2, ϕ1 = 220◦, ϕ2 = 320◦. The
top row shows two row-based patterns, whereas the bottom row shows two
column-based patterns. The two columns show the captured images at the
time instance t = 5 and t = 15, respectively.
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Adding to the background with k phases reduces the maximum frequency

requirement from n to n
k
, which subsequently reduces the dimension of X by

k times and the computational cost of the L1 minimization in Eq.(3.3). On

the other hand, to determine the contributing sources, I need both frequency

search and phase search. In practice, given the recorded temporal signal at a

foreground pixel, I first determine the frequencies of the contributing sources

by optimizing Eq.(3.3). Then, for a contributing frequency f , I compute its

phase value to locate the region from which the frequency originates. Com-

bining the phase and the frequency information gives us the row index in the

background image.

Phase Acquisition and Inference

According to the theory of the DFT, given a set of phase candidates, the

complex number X(f) is a weighted combination of different phase data:

X(f) =
k∑
p=1

αp (cosϕp + j sinϕp) = R + jI, (3.6)

where R and I are, respectively, the known real and imaginary part of X(f).

If the frequency f comes from the pth region, I should have αp > 0 and vice

versa. Therefore, if I know the coefficients α’s, the contributing sources can be

easily located. Considering the real and imaginary parts of Eq.(3.6) separately,

I have two equalities. Hence, when k = 2, the two coefficients, α1 and α2, can

be directly solved. When k > 2, additional equalities are required to compute

the k coefficients.

To address the problem, I capture more frequency-based patterns under

different phase settings. It is noteworthy that, regardless of the setting of

the phase candidates {ϕ1, · · · , ϕk}, the complex number X(f) is non-zero as

long as the fth row in some regions makes contribution to the object pixel.

Furthermore, the coefficients α’s are independent of the phase setting since

they represent the amount of light from different regions. Therefore, to obtain

k equalities for solving the k coefficients, I have to capture row-based patterns

generated from Eq.(3.5) using k
2

different phase settings. It is worth noting
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that, due to the needs for additional phase setting, once k > 2, increasing k

no longer reduces the number of background images needed. Nevertheless, the

benefit of reducing the dimension of X remains.

Denote each phase setting as {ϕqp : 1 ≤ p ≤ k}, where p is the region index

and 1 ≤ q ≤ k
2

the phase setting index. For each phase setting, by captur-

ing the corresponding row-based patterns, I solve the optimization problem

Eq.(3.3) to recover the frequencies. Then for each frequency, I have k
2

complex

numbers: X1(f) = R1+jI1, · · · ,X k
2 (f) = R

k
2 +jI

k
2 , and they satisfy Eq.(3.6).

Considering the real and imaginary parts separately, I have:

cosϕ1
1 cosϕ1

2 · · · cosϕ1
k

...
...

. . .
...

cosϕ
k
2
1 cosϕ

k
2
2 · · · cosϕ

k
2
k

sinϕ1
1 sinϕ1

2 · · · sinϕ1
k

...
...

. . .
...

sinϕ
k
2
1 sinϕ

k
2
2 · · · sinϕ

k
2
k


×


α1

α2
...
αk

 =



R1

...

R
k
2

I1

...

I
k
2


. (3.7)

For each frequency f , the corresponding coefficients {α1(f), · · · , αk(f)}

can be obtained by solving the above linear system. I say that the fth row in

the pth region (i.e. the row indexed at r = f + n
k
(p − 1) in the background)

makes contribution to the foreground pixel iff αp(f) > 0. The weight of the

rth row is W̄row(r) = αp(f)∑
p,f αp(f)

.

In practice, because of measurement noise, the rth row is considered as a

contributing row only if W̄row(r) > T , where T = max(W̄row(r))/2 is used

in all my implementation. By splitting the column-based pattern along the

column direction and following the same phase settings, the column weights

can be obtained in the same fashion, then the light transport vector W is

computed using Eq.(3.4).

Construction of Phase Settings

Denote the linear system Eq.(3.7) as Qα = ε, which could be indeterminate

when Q is singular because of inappropriate phase settings. In addition, if

similar degrees are used for neighboring phases, phase inference using Eq.(3.7)

could locate undesired regions because of measurement noise.
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To construct valid phase settings, three rules need to be followed: 1) The

constructed Q is non-singular; 2) To make each region distinguishable by

phase, there are no duplicated degrees in each phase setting; 3) The difference

in phase values of adjacent regions should be large enough (| cosϕp−cosϕp+1| >

0.5 is used in my implementation). Note that the phase values are in the

range [0, 360). In my implementation, I randomly generate phase settings

from {0, 20, · · · , 340} until the three rules are satisfied.

Considering α ≥ 0, solving Qα = ε is a classical Non-negative Least Squares

(NLS) problem [39]. Here I propose to apply L1 regularization to solve the

linear system, which is more robust to noise than NLS. In particular, I compute

the coefficients α’s by solving

min ‖α‖1, s.t. Qα = ε, α ≥ 0. (3.8)

3.3 Experiments

The proposed approach is tested using both synthetic and real transparent ob-

jects. The resolution of the background pattern is set to n = 1024 in all tests.

Note that my CS-based data acquisition uses non-adaptive background pat-

terns, which are generated and stored in advance. To prevent the interference

caused by the bleeding effect of the monitor or other unknown light sources

[81], the frequency range used is shifted up by 10Hz, i.e. 11 ≤ f ≤ 10 + n
k
. L1

minimization is solved using the DGS tool [29] with group priors for Eq.(3.3)

and without group priors for Eq.(3.8). Since the environment matte extrac-

tion process at each foreground pixel is independent, my parallel algorithm

is implemented in MATLAB R2014b and accelerated on an 4-core PC with

3.4GHz Intel Core i7 CPU and 24GB RAM.

3.3.1 Synthetic Object

I start with quantitatively evaluate my approach using a complex synthetic

model, the Stanford dragon, with my frequency-based backdrops texture mapped
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to the background. The data acquisition process is simulated using POV-Ray

[50] and hence is free from measurement noise or lens imperfection. An image

of the dragon in front of a checkerboard background is also rendered, which

serves as the ground truth for measuring the mean square errors (MSE) of

composited results.

Effectiveness of CS-based Phase-augmented Acquisition. I first eval-

uate the efficiency of the proposed data acquisition approach, which is usually

quantified using the measurement cost, i.e. the ratio between the number of

measurements and the number of unknowns. Here for each foreground pixel, I

need to compute W̄row and W̄col, which have a total of 2n unknowns. Denot-

ing the total number of images used for both row and column based patterns

as m, the measurement cost is defined as σ = m/2n.

As discussed in Section 3.1, the conventional frequency-based environment

matting approach [81] requires 4n images. Hence, it has a measurement cost

of 2. In my approach, with the additional phase search step, I only need to

capture 2n images to reconstruct the frequency information using the DFT

(e.g . in row-based acquisition, I have k/2 phase settings and for each phase

setting I need to capture 2n/k images, thus n images are required). The

measurement cost is therefore reduced to 1. Using CS-based acquisition can

further lower the measurement cost dramatically without noticeably affecting

the accuracy of the composited results. Figure 3.6(a) shows that the MSE

remains to be low (< 0.01) when σ is set to about 0.1.

Figure 3.6(a) also shows the impact of the phase number k. As expected,

without using phase (k = 1), a higher measurement cost is needed to achieve

the same MSE than setting k = 2. Further increasing k results in more images

needed to achieve a similar MSE. This is because using more phase regions

corresponds to a fewer number of rows (columns) within the region. Since a

foreground pixel is contributed by a fixed number of rows (columns), which

often come from the same phase region, the frequency information becomes

less sparse, which requires more samples for reconstruction according to the

theory of CS.
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Figure 3.6: The impact of phase region number k and measurement costs on
both accuracy of the composited result (a) and matte extraction time (b).
Note that log scale is used for both axes in (a).

Figure 3.6(b) further illustrates the impact of phases on the time of en-

vironment matte extraction. By splitting the pattern into more regions, the

number of unknown frequencies decreases in Eq.(3.3), which accelerates the

process of L1 minimization, and thus speedups the whole process.

In summary, augmenting phase information can reduce the number of re-

quired images and accelerate the process of L1 minimization. The phase region

number k offers a tradeoff between the process of data acquisition and matte

extraction. If the goal is to minimize the measurement cost while maintaining

the accuracy of the composited results, k = 2 is the optimal setting. If the

computational resource is limited, then a large k value should be used, which

helps to reduce the cost of CS-based reconstruction.

Comparisons with the CS in Spatial Domain. Finally, I compare my

composited results with the latest CS-based environment matting method [19],

which solves the problem in the spatial domain. The method of [19] is im-

plemented by us based on their paper. To accelerate matte extraction, their

method splits background pattern into square blocks and assumes a foreground

pixel is contributed by these blocks. Thus their results appear blurry and

blocky. As shown in Figure 3.7, my approach achieves superior performance

in terms of both MSE and matte extraction time.
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(a) Ground Truth (b) Duan et al .

(c) Ours without Phase (d) Ours with Phase
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Figure 3.7: Comparison using synthetic data with ground truth (a). The result
of [19] (b) is computed by capturing 40 images in the coarse level and 300
images in the fine level. It is blocky because of their square block assumption.
My CS-based approach (c & d) uses 320 images and shows better performance
in terms of both accuracy and matte extraction time. The red and blue boxes
show zoom in views.
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(a) Photograph (b) 200 images by CS

(c) 400 images by CS (d) 800 images by CS (e) 2120 images by DFT

Figure 3.8: CS-based data acquisition on the Goblet object (under phase re-
gion k = 2). As the number of images increases, the result of CS-based
approach improves. With 400 images, the result is visually comparable to the
conventional DFT, which requires 2120 images.
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Figure 3.9: Effectiveness of using phase for accelerating matte extraction for
two real objects: Goblet and Saxophone. Both results show that setting k = 4
can lower the computation cost by several manifolds, especially when a large
number of captured images (m) is used. The benefit of further increasing k to
8 is limited.

3.3.2 Real Transparent Objects

Five objects, Goblet, Saxophone, Pie Pan, Trophy, and Cylinder, are used

for testing the proposed approach on real captured data. Here I use an LG

IPS monitor to display backdrops and a Point Grey Blackfly monochromatic

camera to capture the scene. To automate the capture process, the patterns

are displayed at 2fps, while the scene is captured in video mode at 6fps. As

a result, three images are captured for each pattern and the middle one is

used. This removes the needs for synchronizing between the monitor and the

camera.

I first evaluate the effectiveness of CS-based data acquisition by comparing

with the conventional DFT method. As shown in Figure 3.8, my approach

achieves comparable results, while requiring only a fraction of sample images.

The impact of the region number k is evaluated next. Figure 3.9 shows that,

given the same number of captured images, the matte extraction process is

accelerated as the region number k increases. Moreover, as illustrated in Table

3.1, setting a smaller k value (e.g . k = 2) requires fewer images while maintains

similar visual performance. Hence, the tests on real data further confirms that

k offers a tradeoff between the data acquisition process and matte extraction.

Table 3.1 compares my approach with the spatial domain method in [19]. It
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shows that the proposed approach produces more realistic composited results

while consuming only a fraction of processing time regardless of the setting of

the region number. In the third scene, a goblet is laid on a glossy pie pan.

The former object is highly refractive, whereas the latter reflects lights from a

fairly broad area of the background. As a result, the contrast and sharpness

of the two zoomed-in areas are noticeably different. My approach properly

handles both areas, whereas Duan et al . gives blurry output due to the block

assumption.

Table 3.2 further highlights the features of different environmental mat-

ting approaches. Although the state-of-the-art methods [13], [48] can handle

multiple-region mapping and produce high quality visual effects, they require

thousands of images. In addition, the time-consuming non-linear optimization

in [13] depends on a number of parameters that can greatly affect the quality

of mattes, while the adaptive data acquisition process in [48] takes hours and

requires synchronization between the monitor and the camera. These limit

their practical applications. For approaches with low data acquisition require-

ment, they require block assumption [19], [82] and thus cannot obtain visually

pleasing results.

My approach locates contributing sources of the background at the pixel

level and enjoys the following features: 1) Fast data acquisition and matte ex-

traction process; 2) No camera/monitor synchronization or calibration needed;

3) Easy reproducibility with only two parameters, both of which are fixed in

my experiments. These make my approach easy to use and can greatly facili-

tate follow-up applications, e.g . 3D reconstruction [38].

Note that I choose to use monochromatic camera in my experiment be-

cause the artifacts of Bayer mosaic can be eliminated. This helps to extract

wavelength-dependent mattes, resulting proper handling of dispersion effects.

As shown in Figure 3.10, by displaying patterns of different prime colors and

performing environment matte extraction separately, I can render the disper-

sion effect of the object.
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Photograph Duan et al . k = 2 k = 4 k = 8
# Img. (time) 340 (2.8) 400 (3.3) 600 (5) 800 (6.7)

G
ob

le
t

Composite
Runtime 128.6 19.1 16.4 14.4

S
ax

op
h
on

e

Composite
Runtime 145.5 15.4 14.1 14.4

P
ie

P
an

Composite
Runtime 212.7 24.0 21.5 20.4

C
y
li
n
d
er

Composite
# imgs 340 400 600 800

Runtime 235.4 55.5 50.4 48.7

Table 3.1: Comparison with the method in [19] on real data. Note that cap-
turing more images will not improve the results of [19] due to the hierarchical
sampling scheme being used. My results are more visually appealing, while
consuming less processing time. Since the scenes are captured at 2fps in the
video mode, the number of minutes needed for acquisition are computed as
#imgs/120.
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(a) Photograph (b) Composite

Figure 3.10: Handling dispersion. By processing the different color channels
separately, my approach is able to render the rainbow phenomenon of the
trophy. The greenish fringe around the checkerboard is due to chromatic lens
aberration, which is not corrected in the experiment.
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Chapter 4

Reconstructing Static
Transparent Objects

Estimating the shape of transparent and refractive objects is one of the few

open problems in 3D reconstruction. Different from opaque objects, light

refraction is an important and unique property for transparent objects (e.g .

glass, crystal). Based on Snell’s law, the path of light refraction is determined

by the normals of a transparent surface and thus conveys the cue for shape

recovery of transparent objects. This observation motivates the work of this

chapter.

Under the assumption that the light rays refract only twice when trav-

eling through the object, I present the a novel approach to simultaneously

reconstructing the 3D positions and normals of the object’s surface at both

refraction locations. Grown out of the environment matting methods in the

last chapter, I first present a novel physical setup to capture the light paths.

The acquisition setup requires only two cameras and one monitor, which serves

as the light source. After acquiring the ray-ray correspondences between each

camera and the monitor, I solve an optimization function that enforces a new

position-normal consistency constraint. That is, the 3D positions of surface

points shall agree with the normals required to refract the rays under Snell’s

law. Experimental results using both synthetic and real data demonstrate the

robustness and accuracy of the proposed approach.
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Monitor Arm 

Figure 4.1: My data acquisition setup, where two cameras roughly face each
other. Camera 1 is capturing data in this photo. Once Camera 1 is done, the
monitor is moved to the other side of the object to serve as the light source
for Camera 2.

4.1 Acquisition Setup and Procedure

My approach requires the acquisition of ray-ray correspondences before and

after refraction. That is, for each observed ray refracted by the transparent

object, I like to know the corresponding incident ray. As shown in Fig. 4.1,

I use an LED monitor as the light source. Through displaying predesigned

patterns on the monitor, the location of the emitting source for each captured

ray can be found at pixel level accuracy. Adjusting the monitor location and

repeating the process gives us two positions of the incident ray and hence, the

ray direction can be determined. The same procedure is performed for the

second camera, which observes the object in the opposite side of the first one.

Fig. 4.2 further illustrates the acquisition process in 2D. Two cameras are

placed on the opposite sides of the object with their positions fixed during

acquisition. For simplicity, I here refer the object surfaces on these two sides

as the front and back surfaces, respectively. I first use Camera 1 to capture

the front surface with the monitor positioned at plane m1. The environment

matting (EM) algorithm presented in Chapter 3 is applied to locate the con-
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tributing sources pi on the monitor at pixel accuracy, which is achieved by

projecting a set of frequency-based patterns. The monitor is then moved to

plane m′1 and the EM method is repeated. Connecting point pi and p′i gives

us the incident ray direction
#  »

dini for the light source. The corresponding exit

ray direction
#    »

douti is obtained from the intrinsic camera matrix, which is cali-

brated beforehand. I then capture the back surface using Camera 2 in a similar

fashion with the monitor positioned at plane m2 and m′2.

Please note that precise monitor movement is not required in my setup.

The monitor can be moved by any distance and its position can be easily

calibrated by displaying a checkerboard patten [78]. It is noteworthy that

instead of determining the incident ray using two monitor locations, light field

probes [69] can also be used. However, I choose the monitor approach for two

reasons: i) The light source locations can be determined at pixel-level accuracy

and, ii) by displaying pattens with a primary color, my approach is robust to

dispersion effects, whereas approaches relying on color-calibration are not.

So far, I have obtained the ray-ray correspondences w.r.t. the front and

back surfaces using two cameras. In the subsections below, I present a novel

reconstruction scheme that solves the following problem: Given the dense ray-

ray correspondences (p,
#  »

din) ⇔ (c,
#    »

dout) of two cameras, how to compute the

3D positions and normals of the front and back surface points?

4.2 Position-Normal Consistency

The seminal work [38] has shown that three or more views are required to

reconstruct a single surface where the light path is redirected twice. Here I

show that, by assuming the object surface is piecewise smooth, I can solve both

the front and back surfaces using data captured from only two cameras. The

key idea is that, for each reconstructed 3D surface point, its normal estimated

based on its neighboring points should agree with the normal required for

generating the observed light refraction effect.

I first explain how to measure position-normal consistency error for a given

shape hypothesis. Here the object shape is represented using depth maps of
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Figure 4.2: My acquisition setup using a pair of cameras and one monitor
as light source. Note that the monitor is moved to different positions during
acquisition.

the front and back surfaces, where the depth of a surface point is measured

as its distance to the camera center along the camera’s optical axis. Taking

Camera 1 for example, as shown in Fig. 4.2, given a ray-ray correspondence

(pi,
#  »

dini ) ⇔ (c1,
#    »

douti ) from Camera 1, the locations at which the incident ray

(pi,
#  »

dini ) and the exit ray (c1,
#    »

douti ) meet the object are denoted as bi and fi,

respectively. fi can be computed from the corresponding depth map and how

to compute bi is discussed in Sec. 4.2.2. Connecting bi and fi gives us a

hypothesis path that the ray travels through while inside the object. Hence,

based on Snell’s law, I can compute the normal at fi, which is referred to as

the Snell normal. Furthermore, using the 3D locations of nearby points of fi, I

can also estimate the normal of fi using Principal Component Analysis (PCA)

[57], which is referred to as the PCA normal. Ideally, the PCA normal and

the Snell normal for the same point are the same. Hence, for the ith ray-ray

correspondence, its position-normal consistency error is measured as:

Epnc(i) = 1− P (i) · S(i), (4.1)

where P (i) (or S(i)) computes the PCA (or Snell) normal at the 3D location

where the exit ray (c,
#    »

douti ) leaves the object. Note that the same definition

also applied to ray-ray correspondences found by Camera 2.

In addition, based on the assumption that the object surface is piecewise
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smooth, I also want to minimize the depth variation in each depth map D.

Hence, the second error term is defined as:

Eso(D) =
∑
s∈D

∑
t∈N (s)

(D(s)−D(t))2, (4.2)

where N (s) denotes the local neighborhood of pixel s in a given depth map

D.

Combining both terms and summing over both front and back surfaces

gives us the objective function:

min
Df ,Db

(∑
i∈Ω

Epnc(i) + λ
(
Eso(Df ) + Eso(Db)

))
, (4.3)

where Df and Db are the depth maps for the front and the back surfaces,

respectively, and Ω is the set containing all the ray-ray correspondences found

by both cameras. Hence, Eq.(4.3) optimizes all the points in both depth

maps at the same time using all available correspondence information. λ is a

parameter balancing Epnc and Eso.

Finally, here I provide an explanation to my new acquisition setup for

transparent objects. As shown in Fig. 4.1, the two cameras used in our setup

are facing each other: one observes the front surface, and the other the back

surface. Compared to the conventional stereo setup for Lambertian opaque

objects, the two cameras in my setup do not share a common field of view.

There are mainly three reasons for such a specific design. Firstly, different from

opaque objects, light interacts not only with the front surface but also with the

back surface for a transparent object. Secondly, take Camera 1 for example,

given the ray-ray correspondence (pi,
#  »

dini )⇔ (c1,
#    »

douti ), there are two unknowns

to be solved — point fi and point bi — along the red light path shown in Fig.

4.2. However, there is only one normal consistency constraint if Camera 1 is

used only. To make the problem solvable, one more constraint is required,

which motivates using another camera to observe the back surface. Thirdly,

to compute the PCA normal used in the normal consistency term Eq.(4.1)

for both the front and back surfaces, the local neighborhood is needed to be

searched for each surface point. By capturing the front and back surfaces
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using two cameras respectively, the pixel neighborhood relationship of the two

cameras provides an easy access to the local neighborhood for each 3D surface

point.

In the following subsections, I present how to compute the PCA and the

Snell normals under the depth map hypotheses Df and Db. I use the front

surface observed by Camera 1 to illustrate my approach, and the back surface

is processed in the same fashion.

4.2.1 Normals from Positions by PCA

Given the positions of 3D points, previous work [57] has shown that the normal

of each point can be estimated by performing a PCA operation, i.e., analyz-

ing the eigenvalues and eigenvectors of a covariance matrix assembled from

neighboring points of the query point. Specifically, the covariance matrix C is

constructed as follows:

C =
1

|N (i)|
∑
j∈N (i)

(fj − fi)(fj − fi)T . (4.4)

In my implementation, I use a 5 × 5 neighborhood of each pixel. The PCA

normal is therefore the eigenvector of C with the minimal eigenvalue.

4.2.2 Normals by Snell’s Law

As shown in Fig. 4.2, to obtain the Snell normal of fi, the refractive index of

the object, the interior ray path
#   »

bifi and the exit ray
#    »

fic1 =
#    »

douti are required.

Here the refractive index is assumed to be known (how to handle objects with

unknown refractive index will be discussed in Sec. 4.3). Since the front point

position fi is given, the interior ray direction
#   »

bifi can be obtained by locating

the corresponding back point bi. Note that bi is observed by Camera 2 and

on the line (pi,
#  »

dini ). Hence, the problem of estimating the Snell normal of

fi is reduced to the problem of locating the first-order intersection between

the back surface and the line (pi,
#  »

dini ). A similar problem has been studied

in image-based rendering, where the closest intersection between a ray and a

disparity map needs to be computed. Here I apply the solution proposed in
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[25], which converts the 3D intersection calculation problem into a problem of

finding the zero crossing of a distance function.

After getting bi, Snell’s law is applied to estimate the Snell normal S1(i) for

fi. Denote η1 and η2 as the refractive index of air and the object, respectively,

I have η1 sin θ1 = η2 sin θ2, where θ1 and θ2 are the angles between the normal

and each of the light paths, as shown in Fig. 4.2. Let ∆θ = θ1 − θ2 =

cos−1(
#    »

fic1 ·
#   »

bifi), I have:

θ1 = tan−1

(
η sin ∆θ

η cos ∆θ − 1

)
, (4.5)

where η = η2/η1 is the relative index of refraction. The Snell normal is ob-

tained by rotating
#    »

fic1 by angle θ1 on the plane spanned by
#    »

fic1 and
#   »

bifi, that

is:

S1(i) = R(θ1,
#    »

fic1 ×
#   »

bifi)
#    »

fic1, (4.6)

where R(θ, #»v ) is the Rodrigues rotation matrix defined by θ and the rotation

axis #»v .

4.3 Optimize Depth Maps and Refractive In-

dex

The aforementioned procedure returns the position-normal consistent model

under a given refractive index hypothesis. For objects with unknown refractive

indices, additional work needs to be done to estimate the proper index values.

Similar to previous approaches [45], [62], my strategy here is to enumerate

different refractive index values, evaluate the resulting models, and pick the

best solution. However, unlike [45], [62], where the objective function to be

optimized is directly used for evaluating the model quality, here a different

reconstruction error metric is used.

As shown in Fig. 4.2, a given point bi on the object surface may be involved

in the ray-ray correspondence (pi,
#  »

dini ) ⇔ (c1,
#    »

douti ) from Camera 1 and the

correspondence (pj,
#  »

dinj ) ⇔ (c2,
#    »

doutj ) from Camera 2. In the first ray path, bi

is the location where the incident ray enters the object, whereas in the second

ray path, bi is the location where the exit ray leaves. Two Snell normals can
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be computed from the two ray paths. Since the two Snell normals should be

the same under the ground-truth model and the true refractive index value,

their difference is a good measure of the reconstruction result. Hence, I define

the reconstruction error for model D as:

RE(D) =
∑
s∈Ψ

(1− Sb(s) · Sf (s)) , (4.7)

where Sf (s) and Sb(s) refer to the Snell normals computed using rays entering

and exiting location s, respectively. Ψ is a set containing all locations on

object surface that are involved in two ray-ray correspondences. It is worth

noting that Eq.(4.3) only uses Snell normals computed using exit rays. Hence,

Eq.(4.7) evaluate different errors as the objective function does.

Following [62], a coarse-to-fine optimization scheme is used for searching

both the optimal refractive index and the optimal depth maps. In my im-

plementation, I first downsample the obtained correspondences to 1/4 of the

original resolution, enumerate the refractive index in the range of [1.2, 2.0] with

increments of 0.05, and compute the optimal shape under each index value by

minimizing Eq.(4.3). The relative index with the minimal reconstruction error

as defined in Eq.(4.7) is then selected to compute the final model using the

full resolution ray-ray correspondences.

Optimizing Eq.(4.3) is difficult because of the complex operations involved

in the PCA and Snell normal computations. To avoid trivial local minima,

I place a checkerboard in front of the front surface and the back surface,

respectively. By calibrating the checkerboards, the depth searching ranges

for Df and Db are obtained. Now Eq.(4.3) becomes a bounded constrained

problem. I use the L-BFGS-B method [80] to solve Eq.(4.3) with numerical

differentiation applied.

4.4 Experiments

The presented algorithm is tested on both synthetic and real data. The factor

λ is fixed at 50 units in the synthetic data and 0.005 mm in the real experi-

ments. Since the PCA and Snell normal calculations for different pixels can
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Figure 4.3: Reconstruction errors as a function of Gaussian noise level on
the synthetic sphere under different refractive indices. 50 trials are performed
under each setting.

be independently performed, they are computed in parallel. I implemented

my parallel algorithm in MATLAB R2014b. Running on an 4-core PC with

3.4GHz Intel Core i7 CPU and 24GB RAM, the processing time needed for

the models shown below varies between 1-2 hours.

4.4.1 Synthetic Object

I start with validating my approach on a synthetic sphere, where the ray-

ray correspondences are generated by a ray-tracer. Specifically, the sphere is

centered at (0, 0, 2) with radius = 0.2. Two cameras are placed at (0, 0, 0) and

(0, 0, 4). One observes the front surface and the other the back surface. By

tracing along the poly-linear light paths, I can mathematically compute both

the ground-truth positions and normals of the front and back surface points.

To evaluate the accuracy and robustness of my approach under different

levels of data acquisition noise, I add zero-mean Gaussian noise to the obtained

ray-ray correspondences. That is, for a given observed ray (c,
#    »

dout), the corre-

sponding light source locations under two monitor settings, p and p′, are both

corrupted with noise of standard deviation σ (σ ≤ 10 pixels). The cameras

are assumed to be calibrated, i.e., their locations, orientations and internal

parameters are not corrupted. I evaluate the reconstruction accuracy using

three measures: the root mean square error (RMSE) between the ground-
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(a) Ground-truth point cloud
(b) Ground-truth depth maps

(c) Point cloud without noise (d) Depth maps without noise

(e) Point cloud with noise σ = 2 (f) Depth maps with noise σ = 2

(g) Point cloud with noise σ = 5 (h) Depth maps with noise σ = 5

(i) Point cloud with noise σ = 8 (j) Depth maps with noise σ = 8

Figure 4.4: Visual comparison between the ground truth and my results for
the synthetic sphere under different noise levels. (a),(c),(e),(g) and (i) show
the 3D point clouds colored with the PCA normals seen from three different
viewpoints. Both the front and back points are plotted in the same coordinate
system. The point clouds are colored with the corresponding PCA normal
map. (b),(d),(f),(h) and (j) show the depth maps of the front and back sur-
faces.
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Figure 4.5: Refractive index estimation for the synthetic sphere. Blue curves
plot the reconstruction error Eq.(4.7) as a function of hypothesized refractive
index. Red curves plot the corresponding objective function Eq.(4.3). Ground-
truth indices are shown with vertical lines.

truth depths and the estimated ones, the average angular difference (AAD)

between the true normals and the reconstructed PCA normals, and the AAD

between the true and the computed Snell normals. As shown in Fig. 4.3, my

approach achieves high accuracy on both position and normal estimation and

is robust to varying noise level. Fig. 4.4 visually compares the ground truth

and the reconstructed results.

In addition to simultaneously reconstructing the 3D positions and normals,

my approach can estimate the refractive index of the object. Here I evaluate

the stability of refractive index estimation. By assigning different relative

indices η, I capture the ray-ray correspondences using the ray-tracer. Then

Gaussian noise with σ = 5 is added. Fig. 4.5 shows the variation of recon-

struction error Eq.(4.7) with hypothesized refractive index. It shows that the

index that corresponds to the minimum of the reconstruction error is close to

the true index. This means that the proposed error term Eq.(4.7) can effec-

tively estimate the refractive index. In comparison, directly using the objective

function Eq.(4.3) cannot estimate the refractive index well.

4.4.2 Real Refractive Objects

Three transparent objects, a Swarovski ornament, a glass ball and a green

bird, are used for evaluating the proposed approach on real captured data.

The “ornament” and “ball” objects have apparent dispersion effects. To prop-

erly handle that, I use two Point Grey Blackfly monochromatic cameras so

that artifacts of the Bayer mosaic can be avoided. An LG IPS monitor is used
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to display frequency-based patterns using a single color channel [54] with a

resolution of 1024× 1024. Calibration between the two cameras is challenging

because they are facing each other (see Fig. 4.1). To address this difficulty, I

place an additional camera between them and conduct pairwise camera cali-

brations. After calibration, the third camera is removed.

As shown in Table 4.1, the ornament and the glass ball each have many

planar facets on its surfaces, resulting in complex light-object interaction and

normal discontinuities. Fig. 4.6 shows my reconstruction results including the

point clouds and depth maps, which are visually encouraging for both objects.

More importantly, since my approach jointly optimizes the 3D positions and

normals, the reconstructed normals are reconciled with the estimated point

clouds.

Following [27], [38], to quantitatively assess the reconstruction accuracy,

I manually label several facets shown in Table 4.1. For each facet, I fit a

plane using the RANSAC algorithm [22]. Two measures are used to evalu-

ate each facet: the AAD between the reconstructed normals and the fitted

plane normal, as well as the mean distance error from the estimated 3D points

to the plane. The quantitative measurements in Table 4.1 imply that the

reconstructed normals and positions within each planar facet are consistent.

This suggests that my approach can accurately reconstruct the piecewise pla-

nar structure without any prior knowledge of the shapes or parametric form

assumptions.

Fig. 4.7 shows the reconstruction results of the bird. The model contains

three largely separated parts. To avoid the inter-reflections between the three

parts, I use tapes to block lights from the two smaller birds on the side when

capturing the data. My results successfully captures the front and back shape

of the bird in the center. Note that since the bird only transmit green light,

approaches relying on light field probes won’t work.

Fig. 4.8 shows the reconstruction error Eq.(4.7) under different hypothe-

sized refractive indices. The estimated refractive index for “ornament” is 1.65,

which agrees with the available report [64] stating that the refractive index of

Swarovski crystal is between 1.5 and 1.7.
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(a) Point cloud of the “ornament” object
(b) Depth maps of the “orna-
ment” object

(c) Point cloud of the “ball” object
(d) Depth maps of the “ball” ob-
ject

Figure 4.6: Reconstruction results of the “ornament” (top) and “ball” (bot-
tom) objects; please refer to Table 4.1 for the photos. (a) and (c) show the
3D point clouds colored with the PCA normals seen from three different view-
points. Both the front and the back points are plotted in the same coordinate.
(b) and (d) show the depth maps of the front and the back surfaces. Note
that some holes exist on the surface because no ray-ray correspondences are
obtained for those regions.

Table 4.2 shows the running time of the proposed approach on the three

real objects.
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(a) Point cloud of the “bird” object

(b) (c) (d) (e)

Figure 4.7: Reconstruction results of the “bird” object. (a) shows the point
cloud colored with the PCA normals seen from three viewpoints. (b) and (c)
show the depth map of the front and the back surfaces. (d) shows the top
view of the object. Because the positions of the three birds overlap, multiple
refractions may happen between the camera and the light source. To avoid
that, I cover the two smaller birds with tapes as shown in (e) and only recon-
struct the larger bird for illustration. Note that the obtained back surface of
the head of the larger bird is incomplete because the correspondences are not
available in those complex regions.
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Figure 4.8: Refractive index estimation for the “ornament” (a), “ball” (b) and
“bird” (c) object. Blue curves plot the proposed reconstruction error term as a
function of hypothesized refractive index. Green curves plot the corresponding
objective function. The minimum of the blue curve is marked in red.
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Chapter 5

Reconstructing Dynamic Fluid
Surfaces

Chapter 4 presents a refraction-based method for recovering the 3D shape of

static transparent objects. In this chapter, I discuss the problem of recon-

structing dynamic transparent surfaces (i.e. fluid surfaces), which is also an

open and challenging problem in computer vision.

Unlike previous approaches that reconstruct each surface point indepen-

dently and often return noisy depth maps, I propose a novel optimization-

based approach that recovers both depths and normals of all 3D points si-

multaneously. Using the traditional refraction stereo setup, I capture the

wavy appearance of a pre-generated random pattern, and then estimate the

correspondences between the captured images and the known background by

tracking the pattern. Assuming that the light is refracted only once through

the fluid interface, I minimize an objective function that incorporates both

the cross-view normal consistency constraint and the single-view normal con-

sistency constraints. The key idea is that the normals required for light refrac-

tion based on Snell’s law from one view should agree with not only the ones

from the second view, but also the ones estimated from local 3D geometry.

Moreover, an effective reconstruction error metric is designed for estimating

the refractive index of the fluid. I report experimental results on both syn-

thetic and real data demonstrating that the proposed approach is accurate

and shows superiority over the conventional stereo-based method.
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Camera 1 
Camera 2 

Camera 3 

Pattern 

(a)

 

Liquid  

Air 

𝐎1 𝐎2 𝐈1 
𝐈2 (𝑥𝑗 , 𝑦𝑗) 

Reference Plane 

𝐏1(𝑖) 𝐏2(𝑗) 

𝐒𝑖 

𝐫𝑖 

𝐞𝑖 

𝐫𝑗 

𝐞𝑗  
𝐧(𝑖) 

(𝑥′𝑖 , 𝑦′𝑖) (𝑥𝑖 , 𝑦𝑖) 

(b)

Figure 5.1: Acquisition setup (a) and the corresponding refraction stereo ge-
ometry (b). Note that Camera 3 in the left figure is for accuracy assessment
only and not used during 3D reconstruction.

5.1 Correspondence Acquisition and Match-

ing

My approach computes the 3D shape of a transparent fluid surface based on

how it refracts light. Specifically, for each pixel, the position of the correspond-

ing background point is required, i.e. pixel-point correspondence. As shown

in Fig. 5.1(a), I place a pre-generated pattern at the bottom of a tank, and

capture the scene from two different viewpoints with Camera 1 and Camera

2, respectively. For each camera, I first capture the pattern without water as

a reference image B. The cameras are synchronized for capturing dynamic

surfaces after adding water. Note that an additional camera (Camera 3) is

used for accuracy evaluation using an image-based rendering method in my

real experiments, which is discussed in Sec. 5.4.2.

Fig. 5.1(b) illustrates the acquisition setup in 2D. Consider two perspective

cameras centered at O1 and O2 observing a refractive surface against a flat

background. Taking Camera 1 for example, for each pixel (xi, yi) in Camera

1, light originating from the corresponding point P1(i) on the reference plane

gets refracted at surface point Si. Let I1(xi, yi, t) be the tth captured frame of

the refraction distorted pattern. Here, the goal is to estimate the light source

point P1(i) for each pixel (xi, yi). I first apply the coarse-to-fine variational
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framework [7] to compute the optical flow (ui, vi) between I1 and B1. Then the

forward projection (x′i, y
′
i) of point P1(i) is easily computed as (xi+ui, yi+vi).

Suppose the relative poses between the cameras and the reference plane are

calibrated beforehand and fixed during acquisition, the 3D coordinates of P1(i)

is estimated by intersecting ray O1P1(i) with the reference plane.

The choice of the displayed pattern is critical for accurate correspondence

matching and subsequent 3D reconstruction. Traditional methods [17], [45]

use a checkerboard pattern and track the feature corners. Correspondences

of non-corner pixels are obtained by interpolation. However, these methods

assume that the first frame of the liquid surface is nearly flat, which is usu-

ally impractical, so that a reliable initial correspondence field can be obtained.

In contrast, inspired from the successful applications of random patterns in

single-shot structured light [23], I choose a binary random pattern generated

from Bernoulli distributions [68] as shown in Fig. 5.11. Different from a regu-

lar checkerboard, a Bernoulli random pattern contains fewer repetitive struc-

tures, which helps to reduce ambiguities while searching correspondences in a

local window. Besides, the binary random pattern extends the advantage of a

checkerboard in handling light absorption, dispersion, chromatic abberations,

etc, compared to color-based ones [14], [70].

The correspondence matching for Camera 2 works analogously. The same

procedure is applied to different frames. So far, I have obtained the pixel-

point correspondences of a liquid motion sequence from two cameras. Next,

I present a novel reconstruction framework that solves the following problem:

Given the pixel-point correspondence function P1() and P2() of each frame

from two views, how to recover the depths and the normals of the dynamic

surface, as well as the refractive index?

5.2 Stereo-Based Reconstruction

My approach formulates an optimization framework which enforces two forms

of normal consistency constraints. Specifically, for each 3D point, the normals

estimated based on light refraction from two different viewpoints should be
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consistent. On the other hand, they are also required to agree with the normal

estimated based on single-view local shape geometry.

5.2.1 Normal Definitions

Here I first explain the definitions of the different types of normals mentioned

above. Similar to color-based stereo matching, I set Camera 1 as the primary

camera and the fluid surface is represented by a depth1 map D in the scope of

Camera 1. As shown in Fig. 5.1(b), for the ith surface point Si associated with

pixel (xi, yi) of Camera 1, let di be its hypothesized depth. The 3D coordinates

of Si can then be computed by first assuming that the camera’s parameters are

known. Given the pixel-point correspondence P1(i), I get the ray direction ri

by connecting P1(i) and Si. Then, the normal of Si can be computed based on

Snell’s law, given the incident and exiting rays ri and ei, respectively. I refer

to this normal as the LeftSnell normal, denoted by n1(i). Snell’s law states

that the normal n1(i), the incident ray ri and the exiting ray ei are co-planar,

and thus n1(i) can be represented as a linear combination of ri and ei. That

is, n1(i) = (ηlri − ηaei)/‖ηlri − ηaei‖, where ηl and ηa denote the refractive

index of liquid and air, respectively. I set ηa = 1 in my experiments and here

the medium’s refractive index ηl is assumed to be known. How to deal with

fluid surface with an unknown refractive index is discussed in Sec. 5.3.

On the other hand, by connecting Si and O2, I get ray ej and the forward

projection (xj, yj). Similarly, since the correspondence source function P2(j)

is acquired beforehand, I can also compute another normal of Si by Snell’s law

given light rays rj and ej. I refer to this normal as the RightSnell normal,

denoted by n2(i). In a similar vein, n2(i) is estimated by n2(i) = (ηlrj −

ηaej)/‖ηlrj − ηaej‖.

In addition, the normal of a 3D point can be computed from its local shape

geometry. That is, from the 3D locations of the neighboring points of Si, I can

fit a tangent plane. Then the normal of Si is approximated by the normal of the

tangent plane. In particular, I estimate this normal by Principal Component

1In this thesis, depth is defined as the distance between a 3D point and the camera center
along the z axis.
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Analysis (PCA) [57], which is referred to as the PCA normal and denoted

by np(i). The basic idea is to analyze the eigenvectors and eigenvalues of a

covariance matrix constructed from nearby points of the query point. More

specifically, the covariance matrix M at the point Si is defined as:

M =
1

|N (i)|
∑
k∈N (i)

(Sk − Si)(Sk − Si)
>, (5.1)

where N (i) denotes the local neighborhood of pixel i and |N (i)| the size of

N (i). The PCA normal np(i) is thus the eigenvector of M with minimal

eigenvalue.

5.2.2 Objective Function

To this end, I obtain three different normal estimations computed from differ-

ent sources for each surface point Si. Ideally, the three estimates should be

the same. Therefore, the difference between each pair of normals can be used

to defined a normal consistency error. That is:

E12(i) = 1− n1(i) · n2(i), (5.2)

E1p(i) = 1− n1(i) · np(i), (5.3)

E2p(i) = 1− n2(i) · np(i), (5.4)

where E12 measures the cross-view normal consistency error, which is the one

used in [45]. E1p and E2p are my new single-view normal consistency errors.

Furthermore, assuming that the fluid surface is piecewise smooth, I define

the depth smoothness term at the ith point as:

Eso(i) =
∑
k∈G(i)

(di − dk)2, (5.5)

where G(i) is the neighborhood pixel set containing the bottom and the right

pixel of pixel i in my implementation.

Summing the above error terms and considering all the surface points, I

obtain the following minimization problem:

min
di∈D

∑
i∈Ω1

(αE1p(i) + βE2p(i) + γE12(i) + λEso(i)) , (5.6)
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where Ω1 denotes the pixel set containing all the surface points in the region

of interest. Hence, Eq.(5.6) couples both cross-view and single-view normal

consistency constraints to optimize for the depths of all points simultaneously,

whereas previous methods [17], [45] consider the cross-view error term E12

only and solve for each point independently. α, β, γ and λ are the parameters

balancing different terms.

Note that Eq.(5.6) is defined w.r.t. a single frame. It is possible to solve the

depth maps of all points from all frames by including them in Eq.(5.6) at the

same time, which yield a large system that is computationally expensive. In

contrast, I solve each frame independently and use the result of the last frame

to initialize the current frame, which not only drastically reduces the running

time and memory consumption but also maintains temporal coherence.

In addition, because of the complex operations involved computing the

three normals, it is difficult to analytically derive the derivatives of Eq.(5.6).

To tackle that, the previous method [45] employs the gold-section search [52]

for pixelwise 1D optimization, which is computationally intensive when the

number of unknowns is large and thus, the method is not applicable to my

global objective function. Instead, in my implementation, I use the L-BFGS-B

[80] method to optimize Eq.(5.6) using numerical differentiation.

5.3 Optimizing Depths and Refractive Index

As mentioned in Sec. 5.2.1, computing the LeftSnell and RightSenll normals

both require the refractive index of the fluid. Given different refractive index

hypotheses, solving Eq.(5.6) returns different depth maps. Hence, additional

steps are required to get the desired 3D model when the index is unknown.

Following previous methods [45], [62] and similar to the strategy used in Chap-

ter 4, here I use a brute-force search approach. That is, I enumerate possible

index hypotheses, evaluate the corresponding models based on a novel recon-

struction error metric and pick the index with the minimal residual error.

The main idea of my proposed reconstruction error metric is based on the

consistency of two optical flow fields estimated using different methods. On
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Figure 5.2: Ray tracing geometrically to estimate the shape-based optical flow
field.

the one hand, as introduced in Sec. 5.1, for the ith pixel in Camera 1, I

can compute the displacement vector (ui, vi) between the fluid image I1 and

the reference image B1 using image-based cues [7]. On the other hand, since

the 3D shape of the fluid surface is reconstructed, the flow field can also be

obtained using shape-based cues. As shown in Fig. 5.2, for the ith pixel

(xi, yi), I trace along each camera ray e′i and locate its intersection with the

fluid surface. The refracted ray r′i is then obtained by Snell’s law. Finally, the

pixel coordinates (x′i, y
′
i) are obtained by projecting back to the camera center

along the direction v′i, and the shape-based displacement vector is computed

as (u′i, v
′
i) = (x′i−xi, y′i−yi). Ideally, the image-based flow (IBF) vector (ui, vi)

and the shape-based flow (SBF) vector (u′i, v
′
i) should be the same. A similar

analysis can be applied to Camera 2. Hence, I design a novel error metric as

follows:

EPE(k) =
√

(uk − u′k)2 + (vk − v′k)2, k ∈ Ω1 ∪ Ω2, (5.7)

which is based on the popular endpoint error (EPE) used in evaluating optical

flow results [4]. Ωc denotes the pixel set of the cth camera.

It is noteworthy that the proposed error metric Eq.(5.7) is different from

the one used in [45]. Their error metric requires to compute the inverses of

the correspondence functions P1() and P2(), which unfortunately may not be

generally invertible when multiple pixels receive contributions from the same

point. In contrast, my metric does not have such a problem.

In practice, a coarse-to-fine optimization procedure is implemented to search
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for both the optimal depth map and the best refractive index. I first down-

sample the acquired correspondence functions P1() and P2() to 1/4 of the

original resolution. Then, for each index hypothesis in a given range, I opti-

mize Eq.(5.6) and evaluate the produced depths based on Eq.(5.7) under the

coarse resolution. The index value that gives the smallest reconstruction er-

ror is selected. The final shape is reconstructed using the full correspondence

functions and the optimal index.

5.4 Experiments

The proposed approach is evaluated on both synthetic and captured data. The

parameter settings α = β = 1, γ = 1000, λ = 100 (unit) are used in synthetic

data and α = β = 1, γ = 20, λ = 0.005 (mm) are used in real experiments.

During the coarse-to-fine minimization, the maximum iteration numbers of

L-BFGS-B optimization are fixed to 200 and 20 for the downsampled and full

resolutions, respectively, for the first frame. The iteration numbers are reduced

by half for the remaining frames. I use the 5×5 and 3×3 local neighborhoods

N () in Eq.(5.1) at the low and full resolution, respectively. Consider comput-

ing the normals n1,n2,np for different points can be performed independently.

I implement my algorithm employing parallelization in MATLAB R2016a on

an 8-core PC with 3.2GHz Intel Core i7 CPU and 24GB RAM.

5.4.1 Synthetic Data

I first validate my approach on a synthetic sinusoidal wave: z(x, y, t) = 2 +

0.1 cos(π(t+ 50)
√

(x− 1)2 + (y − 0.5)2/80). In practice, the two cameras are

placed at (0, 0, 0) and (0.05, 0, 0), respectively. The reference plane is at z =

2.5. By mapping a Bernoulli pattern on the reference plane, I start with

rendering the reference image B without the fluid. Then the distorted image

with the wavy surface is simulated using a ray-tracer as illustrated in Fig. 5.2.

The correspondence functions are obtained by performing the correspondence

matching algorithm in Sec. 5.1.

The proposed approach is evaluated using the following two measures: the
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(a) Index ηl =
1.33

(b) Index ηl =
1.33

(c) Index ηl =
1.55

(d) Index ηl =
1.55

(e) Legend

Figure 5.3: Different error measures as a function of frame id for synthetic
wave. (a) and (b) shows the error plots when the refractive index ηl = 1.33 is
used in wave simulation. (c) and (d) shows the error curves when ηl = 1.55 is
used in wave simulation.

root mean square error (RMSE) between the ground-truth depths and the

computed ones, and the average angular error (AAE) between the true normals

and the recovered LeftSnell normals. Here the LeftSnell normals, which can

be generated by both the existing method [45] and my approach, are used for

fair comparisons.

To validate the effectiveness of the proposed constraints, I first evaluate the

algorithm by removing different terms from Eq.(5.6). The objective function

used in each case is listed in Fig. 5.3(e). Case 1 includes the cross-view

term E12 only and corresponds to that used in the previous method [45].

Adding a spatial smoothness term (Case 2) can effectively reduces the errors

and hence, the smoothness term is used for all other comparisons with [45].

Case 3 is equivalent to a single-view solution, where only the correspondence

information from Camera 1 is used. Case 4 uses E1p and E2p, whereas my

approach incorporates all three normal consistency constraints Eq.(5.2,5.3,5.4)

in the objective function Eq.(5.6) and yields the smallest errors. Moreover,

Fig. 5.3 also shows the robustness and temporal coherence of my approach

over time.

Besides, Fig. 5.4 shows the evaluation results based on the PCA and Right-

Snell normals, and the results are similar the ones of the LeftSnell normals

shown in Fig. 5.3.

Fig. 5.5 compares the conventional stereo-based method [45] with ours.

For fair comparisons, the pixel-point correspondences generated using my ap-

proach are used. The results show that, with added smoothness constraint,
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(a) Index ηl =
1.33

(b) Index ηl =
1.33

(c) Index ηl =
1.55

(d) Index ηl =
1.55

(e) Legend

Figure 5.4: Evaluations on the PCA and RightSnell normals for synthetic
wave. (a) and (b) show the error plots when the refractive index ηl = 1.33 is
used in wave simulation. (c) and (d) show the error curves when ηl = 1.55 is
used in wave simulation. Note that, for better visualization, the 10-base log
scale is used for the vertical axes in (a) and (c).

(a) [45]+Smoothness (b) Ours (c) Ground Truth

Figure 5.5: Visual comparisons between the method in [45] and ours for an
example frame when ηl = 1.33 is used for simulation. From top to bottom, it
shows the LeftSnell normal map, the depth map and the point cloud colored
with LeftSnell normals. Please see the supplemental videos [63] for the full
video sequence as well as the captured images.
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(b) Frame 9

0

0.5

1

1.5

2

2.5

3

3.5

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85

A
ve

ra
ge

 E
P

E 

Hypothesized Refractive Index

True Index: 1.33 True Index: 1.55 True Index: 1.7

(c) Frame 18
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(d) Frame 27

0

0.5

1

1.5

2

2.5

3

3.5

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85

A
ve

ra
ge

 E
P

E 
Hypothesized Refractive Index

True Index: 1.33 True Index: 1.55 True Index: 1.7

(e) Frame 36
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(f) Frame 45
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Figure 5.6: Average EPE Eq.(5.7) as a function of refractive index hypotheses
using several example frames of synthetic data. The vertical dashed lines
indicate the true indices.

their estimated normal maps are similar to ours. However, their estimated

depths are noisy whereas ours are smooth. More importantly, my approach

simultaneously recovers the depths and the normals, which are both accurate

and consistent with each other.

In addition to obtaining the 3D fluid surfaces, my approach can recover

the refractive index of the fluid. Here I test the reliability of refractive index

estimation. By setting different refractive indices in simulation, I render the

distorted images with the fluid using my ray-tracer. As shown in Fig. 5.6, for

each ground-truth index setting, I reconstruct the 3D shape and compute the
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Figure 5.7: Point clouds of adjacent frames of Wave 1 (top), Wave 2 (middle),
Wave 3 (bottom). It shows that my results are visually temporal coherent. In
this chapter, a point cloud is plotted based on its corresponding depth map
and colored with LeftSnell normals.

average EPE Eq.(5.7) under each index hypothesis in the range of [1.25, 1.85]

with increments of 0.05. The EPE curve exhibits a minimum that is close

to the true refractive index, which demonstrates that the new error metric

Eq.(5.7) can effectively estimate the refractive index.

5.4.2 Real Dynamic Water Surfaces

In order to capture real fluid surfaces, I set up a system as shown in Fig.

5.1(a). Three synchronized Point Grey Flea2 cameras are used for capturing

video at 30fps at a resolution of 516 × 388. Cameras 1 and 2 are used for

3D reconstruction and refractive index estimation, whereas Camera 3 is used

for accuracy assessment only. I print my binary random patterns on A4-sized

papers using a commodity printer. The pattern is then laminated to be wa-

terproof. The refraction effect caused by the thin laminated plastic layer is

negligible. The pattern is attached to the bottom of the tank. Another feasible

but more expensive solution is to use a waterproof tablet for displaying pat-

terns. Before adding water, I calibrate the relative poses between the cameras

and the pattern using a checkerboard [78].

In Fig. 5.7, three captured water waves are shown and the full sequences

can be found in the supplemental videos [63]. Both Wave 1 and Wave 2

are generated by randomly perturbing the water surface at one end of the
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(a) IBF (B3) (b) SBF (B3)
[45]

(c) My
SBF (B3)

(d) Captured
Image I3

(e) Composite

Figure 5.8: View synthesis using an example frame of Wave 1 (top) and Wave
2 (bottom). The shading effects caused by reflection/caustics (red box) and
motion blur effects (green box) can be observed in captured images (d). In (e),
I compose the reconstructed 3D surface onto new scenes using the ray-tracing
method as depicted in Fig. 5.2.

tank and both exhibit large water fluctuations and fast evolutions. However,

two different Bernoulli random patterns with different block sizes are used for

evaluating the robustness of the proposed algorithm against pattern changes;

see Fig. 5.8. Wave 3 is a small rippled case generated by dripping water

drops near one side of the pattern. My approach can faithfully recover the

propagating annular structures produced by the water drops.

Novel View Synthesis. To evaluate reconstruction quality, I first use the

reconstructed surface shape to synthesize the view at Camera 3 and visually

compare it with the image observed by the camera. In particular, I first com-

pute the IBF field at Camera 3 using the observed image I3 and the reference

image B3 as discussed in Sec. 5.1. I then compute the SBF field of Camera 3

from the reconstructed 3D surface using the ray-tracing method as discussed

in Sec. 5.3 and shown in Fig. 5.2. I can now warp B3 using either the IBF

or the SBF to obtain the synthesized image IBF (B3) and SBF (B3), respec-

tively2. By comparing the captured image I3 with IBF (B3) and SBF (B3), I

can qualitatively evaluate the accuracy of pixel-point correspondences and the

quality of 3D reconstruction, respectively.

As shown in Fig. 5.8, my approach can faithfully synthesize the obser-

2Here I use the italic form IBF () and SBF () to denote the functions that compute the
synthesized image using IBF and SBF, respectively.

65



Case 1 2 3 4 Ours
Mean 18.90 5.96 0.68 0.86 0.50
Stdev. 6.48 2.01 0.36 0.48 0.17

Figure 5.9: Quantitative evaluation on results generated under different con-
straints using Wave 1. The top figure plots average EPE as a function of
frame ID. For better visualization, the 10-base log scale is used for the vertical
axis. The bottom table shows the corresponding mean and standard deviation
(stdev.) of EPE among all frames.

vations at Camera 3, whereas the results of [45] look quite different. The

comparison also shows that: 1) the water surface may reflect environment

light and may generate caustics, which cause intensity differences between the

synthesize view and the captured image; and 2) the water surface moves very

fast, which causes motion blur in captured images and is not generated in

synthesized view.

Effectiveness of Constraints. My next experiment aims to quantita-

tively verify whether or not the novel single-view consistency constraints can

help to improve reconstruction accuracy on real data. Since ground truth sur-

faces are difficult to obtain for real waves, I here use the EPE measure Eq.(5.7)

between the IBF and SBF computed at Camera 3 as explained above. If the

IBF is properly estimated and the surface shape is accurately reconstructed,

the two flow fields should be consistent.

As shown in Fig. 5.9, the presented approach achieves the smallest average

EPE, which suggests that the 3D shape reconstructed from two views (Camera

1 and 2) is the most consistent with the pixel-point correspondences acquired

from the additional view (Camera 3).

In addition, directly comparing the intensities of the captured image I3

and the synthesized image SBF (B3) is problematic, due to the caustic and

motion blur effects in I3. To circumvent such an issue, I binarize both the
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Case 1 2 3 4 Ours
Mean 0.428 0.329 0.061 0.074 0.047
Stdev. 0.070 0.067 0.026 0.035 0.014

Figure 5.10: Quantitative evaluation on results generated under different con-
straints using Wave 1. The top figure plots MAE between binarized I3 and
binarized SBF (B3) as a function of frame ID. The bottom table shows the cor-
responding mean and standard deviation (stdev.) of MAE among all frames.
Note that, here the evaluation results based on MAE are consistent with the
ones based on average EPE as shown in Fig. 5.9.

images and evaluate the algorithm based on the mean absolute error (MAE)

of the corresponding binarzied versions, as shown in Fig. 5.10.

Comparisons with [45]. Fig. 5.11 visually compares my approach and

the traditional method [45] on my real waves. Because of the global formu-

lation, my depths and normals are both consistent with the observed image

distortions. My normals also reconcile with the obtained point clouds. In

comparison, their normal map looks similar to ours but their depth map is

noisy, which is consistent with the reported results in their paper.

Refractive Index Estimation. Following the previous work [45], I com-

pute the average EPE Eq.(5.7) among 10 frames under different hypothesized

refractive indices in the range of [1.25, 1.41] with increments of 0.02. The min-

ima of both curves in Fig. 5.12 are each close to the refractive index of water,

i.e. 1.33.

Table 5.1 shows the processing time on the three captured waves.
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(a) Captured
Image I1

(b) Point Cloud
[45]

(c) My Point
Cloud

(d) Depth Map
[45]

(e) My Depth
Map

Figure 5.11: Visual comparisons between the method of [45] and ours for
an example frame of Wave 1 (top) and Wave 2 (bottom). Note that here I
also impose a smoothness term in the algorithm of [45], i.e. Case 2, for fair
comparisons.
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Figure 5.12: Average EPE Eq.(5.7) as a function of refractive index hypotheses
for real data. The vertical dashed line indicate the refractive index of water,
i.e. 1.33.

Water Wave Wave 1 Wave 2 Wave 3

# of Frames 100 100 50
# of Correspondences Per Frame 101904 101904 101904

Refraction Index Estimation (in hours) 2.1 2.2 2.2

Reconstruction (in minutes per frame)
First Frame 11.3 11.6 11.0

Other Frames 5.8 5.9 5.8

Table 5.1: Running time for the three real wave sequences.
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Chapter 6

Jointly Reconstructing Water
Surface and Underwater Scene

Chapter 5 presents a new method for reconstructing the 3D dynamic fluid

surfaces under the assumption of the corresponding underwater scene is a

known flat pattern. However, considering many underwater scenes are natural

and thus non-flat in real life, this chapter aims to remove such an assumption

by simultaneously recovering the 3D shape of both the wavy water surface and

the moving underwater scene.

Specifically, a portable camera array system is constructed, which captures

the scene from multiple viewpoints above the water. The correspondences

across these cameras are estimated using an optical flow method and are used

to infer the shape of the water surface and the underwater scene. I assume

that there is only one refraction occurring at the water interface. Under this

assumption, two estimates of the water surface normals should agree: one

from Snell’s law of light refraction and another from local surface structure.

The experimental results using both synthetic and real data demonstrate the

effectiveness of the presented approach.

6.1 Multi-View Acquisition Setup

As shown in Fig. 6.1(a), to capture the underwater scene, I build a small-scale,

3×3 camera array (highlighted in the red box) placed above the water surface.

The cameras are synchronized and capture video sequences. For clarity, in the
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(a) (b)

Figure 6.1: Acquisition setup using a camera array (a) and the corresponding
imaging model illustrated in 2D (b). The evaluation camera in (a) is for
accuracy evaluation only and is not used for 3D shape recovery.

following, I refer to the central camera in the array as the reference view,

and the other cameras as the side views. Similar to the traditional multi-

view triangulation-based framework for land-based 3D reconstruction, the 3D

shapes of both the water surface and the underwater scene are represented

in the reference view. Notice that an additional camera, referred to as the

evaluation camera, is also used to capture the underwater scene at a novel

view, which is for accuracy assessment in my real experiments and is presented

in detail in Sec. 6.3.2.

Fig. 6.1(b) further illustrates the imaging model in 2D. I set Camera 1

as the reference camera and Camera k ∈ Π as the side cameras, where Π is

{2, 3, · · · }. For each pixel (x1
i , y

1
i ) in Camera 1, the corresponding camera ray

e1
i gets refracted at the water surface point Si. Then the refracted ray r1

i

intersects with the underwater scene at point Pi. The underwater scene point

Pi is also observed by the side cameras through the same water surface but at

different interface locations.

My approach builds upon the correspondences across multiple views. Specif-

ically, I compute the optical flow field between the reference camera and each

of the side cameras. Take side Camera 2 for example, for each pixel (x1
i , y

1
i )
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of Camera 1, I estimate the corresponding projection (x2
i , y

2
i ) of Pi in Camera

2, by applying the variational optical flow estimation method [7]. Suppose

that the intrinsic and extrinsic parameters of the camera array are calibrated

beforehand and fixed during capturing, I can easily compute the correspond-

ing camera ray e2
i of ray e1

i . The same procedure of finding correspondences

applies to the other side views and each single frame is processed analogously.

After the above step, I obtain a sequence of the inter-view correspondences

of the underwater scene. Below, I present a new reconstruction approach

that solves the following problem: Given the dense correspondences of camera

rays {e1 ⇔ ek, k ∈ Π} of each frame, how to recover the point set P of the

underwater scene, as well as the depths and the normals of the dynamic water

surface?

6.2 Multi-View Reconstruction Approach

I tackle the problem using an optimization-based scheme that imposes a nor-

mal consistency constraint. Several prior works [45], [55], including the works

of Chapter 4 and 5, have used such a constraint for water surface reconstruc-

tion. Here I show that, based on the similar form of normal consistency, I

can simultaneously reconstruct dynamic water and underwater surfaces using

multi-view data captured from a camera array. The key insight is that, at each

water surface point, the normal estimated using its neighboring points should

agree with the normal obtained based on the law of light refraction.

6.2.1 Normal Consistency at Reference View

As mentioned in Sec. 6.1, I represent the water surface by a depth map D

and the underwater scene by a 3D point set P, both in the reference view. In

particular, as shown in Fig. 6.1(b), for each pixel in Camera 1, I have four

unknowns: the depth Di of point Si and the 3D coordinates of point Pi.

Given the camera ray e1
i , I can compute the 3D coordinates of Si when a

depth hypothesis Di is assumed. At the same time, connecting the hypoth-

esized point Pi and point Si gives us the refracted ray direction r1
i . Then,
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the normal of Si can be computed based on Snell’s law, which is called the

Snell normal in this chapter and denoted by a1
i . Here superscript 1 in a1

i

indicates that a1
i is estimated using ray e1

i of Camera 1. Consider the nor-

mal a1
i , the camera ray e1

i and the refracted ray r1
i are co-planar as stated in

Snell’s law. Hence, I can express a1
i as a linear combination of e1

i and r1
i , i.e.

a1
i = Ψ(ηae

1
i − ηfr1

i ), where ηa and ηf are the refractive index of air and fluid,

respectively. I fix ηa = 1 and ηf = 1.33 in my experiments. Ψ() is a function

defining the operation of vector normalization.

On the other hand, the normal of a 3D point can be obtained by analyzing

the structure of its nearby points [57]. Specifically, suppose that the water

surface is spatially smooth, at each point Si, I fit a local polynomial surface

from its neighborhood and then estimate its normal based on the fitted sur-

face. In practice, for a 3D point (x, y, z), I assume its z component can be

represented by a quadratic function of the other two components:

z(x, y) = w1x
2 + w2y

2 + w3xy + w4x+ w5y + w6, (6.1)

where w1, w2 . . . , w6 are unknown parameters. Stacking all quadratic equations

of the set Ni of the neighboring points of Si yields:

A(Ni)w(Ni) = z(Ni)⇔


x2

1 y2
1 x1y1 x1 y1 1

· · ·
x2
m y2

m xmym xm ym 1
· · ·

×

w1

w2
...
w6

 =


z1
...
zm
...

 , (6.2)

where A(Ni) is a |Ni| × 6 matrix calculated from Ni, and |Ni| the size of

Ni. z(Ni) is a |Ni| dimensional vector. After getting the parameter vector

w(Ni), the normal of point (x, y, z) in this quadratic surface is estimated as the

normalized cross product of two vectors: [1, 0, ∂
∂x
z(x, y)] and [0, 1, ∂

∂y
z(x, y)].

Plugging in the 3D coordinates of Si, I obtain its normal b1
i , which is referred

to as the Quadratic normal in this chapter.

So far, given the camera ray set e1 of Camera 1, I obtain two types of

normals at each water surface point, which should be consistent if the hy-

pothesized depth D and point set P are correct. I thus define the normal

consistency error as:

E1
i (D,P, e

1
i ) = ‖a1

i − b1
i ‖2

2 (6.3)
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at ray e1
i . Next, I show how to measure the normal consistency term at the

side views using their camera ray sets {ek, k ∈ Π}, the point set S estimated

from the depth hypothesis D, and the hypothesized point set P.

6.2.2 Normal Consistency at Side Views

I take side Camera 2 for illustration and the other side views are analyzed in

a similar fashion. As shown in Fig. 6.1(b), point Pi is observed by Camera 2

through the water surface point Ti. Similarly, I have the Snell normal a2
i and

the Quadratic normal b2
i at Ti.

To compute the Snell normal a2
i via Snell’s law, the camera ray e2

i and the

refracted ray r2
i are required. e2

i is acquired beforehand in Sec. 6.1. Consider-

ing the point hypothesis Pi is given, r2
i can be obtained if the location of Ti is

known. Hence, the problem of estimating normal a2
i is reduced to the problem

of locating the first-order intersection between ray e2
i and the water surface

point set S. A similar problem has been studied in ray tracing [1]. In practice,

I first generate a triangular mesh for S by creating a Delaunay triangulation

of 2D pixels of Camera 1. I then apply the Bounding Volume Hierarchy-based

ray tracing algorithm [36] to locate the triangle that e2
i intersects. Using the

neighboring points of that intersecting triangle, I fit a local quadratic surface

as described in Sec. 6.2.1, and the final 3D coordinates of Ti is obtained

by the standard ray-polynomial intersection procedure. Meanwhile, the fitted

quadratic surface gives us the Quadratic normal b2
i of point Ti.

In summary, given each ray eki of each side Camera k, I obtain two normals

aki and bki . The congruity between them results in the normal consistency

error:

Ek
i (D,P, eki ) = ‖aki − bki ‖2

2, k ∈ Π. (6.4)

6.2.3 Solution Method

Here I first discuss the feasibility of recovering both the water surface and the

underwater scene using normal consistency at multiple views. Combining the

error terms Eq.(6.3) at the reference view and Eq.(6.4) at the side views, I
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have:

Ek
i (D,P, eki ) = 0, for each i ∈ Ω and k ∈ Φ, (6.5)

where Ω is the set of all pixels of Camera 1, and Φ = {1}∪Π the set of camera

indices. Let ī = |Ω| and k̄ = |Φ| be the size of Ω and Φ, respectively. Assume

that each camera ray e1
i can find a valid correspondence in all side views, I get

a total of ī× k̄ equations. Additionally, recall that I have 4 unknowns at each

pixel of Camera 1, so I have ī × 4 unknowns. Hence, to make the problem

solvable, I should have ī × k̄ ≥ ī × 4, which means that at least 4 cameras

are required. In reality, some camera rays (e.g . those at corner pixels) of the

reference view cannot locate a reliable correspondence in all side views because

of occlusion or of the field of view. I essentially need more than four cameras.

Directly solving Eq.(6.5) is impractical due to the complex operations in-

volved in computing the Snell and Quadratic normals. Therefore, I cast the

reconstruction problem as minimizing the following objective function:

min
D,P

∑
i∈Ω

∑
k∈Φ

Ek
i (D,P, eki ) + λ

∑
i∈Ω

Fi(D, e
1
i ), (6.6)

where the first term enforces the proposed normal consistency constraint. The

second term ensures the spatial smoothness of the water surface. In particular,

I set

Fi(D, e
1
i ) = ‖A(Ni)w(Ni)− z(Ni)‖2

2, (6.7)

which measures the local quadratic surface fitting error using the neighbor-

hoodNi of the water surface point Si. Adding such a polynomial regularization

term helps to increase the robustness of my multi-view formulation, as demon-

strated in my experiments in Sec. 6.3.1. Please also note that this smoothness

term is only defined w.r.t Camera 1 since I represent my 3D shape in that

view. λ is a parameter balancing the two terms.

While it may be tempting to enforce the spatial smoothness of underwater

surface points P computed for different pixels as well, it is not imposed in

my approach for the following reason. As shown in Fig. 6.2, when the light

paths are refracted at the water surface, the neighborhood relationship among

underwater scene points can be different from the neighborhood relationship

74



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Camera 1 

Air Water 

Underwater Scene 

Discontinuity 

Figure 6.2: Discontinuity of underwater scene points. As indicated by the
purple arrow, the red points are interlaced with the green points, although the
red and green rays are each emitted from contiguous pixels.

among observed pixels in Camera 1. Hence, I cannot simply enforce that

the 3D underwater surface points computed for adjacent camera rays are also

adjacent.

Optimization

Computing the normal consistency errors in Eq.(6.6) involves some non-invertible

operations such as vector normalization, making the analytic derivatives dif-

ficult to derive. To handle such a problem, I use the L-BFGS method [80]

with numerical differentiation for optimization. However, calculating numeri-

cal derivatives is computationally expensive especially for a large-scale prob-

lem. I elaborately optimize my implementation by sharing common intermedi-

ate variables in derivative computation at different pixels. In addition, solving

Eq.(6.6) is unfortunately a non-convex problem; hence, there is a chance of

getting trapped by local minima. Here I adopt a coarse-to-fine optimization

procedure commonly used in refractive surface reconstruction [53], [55], [62].

Specifically, I first downsample the correspondences acquired in Sec. 6.1 to 1/8

of the original resolution. I then use the results under the coarse resolution to

initialize the optimization at the final scale.

Notice that the input of Eq.(6.6) is the multi-view data of a single time

instance. Although it is possible to process all frames in a sequence simultane-

ously by concatenating them into Eq.(6.6), a large system with high compu-

tational complexity will be produced accordingly. In contrast, I process each
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frame independently and initialize the current frame using the results of the

last one. Such a single-shot method effectively reduces the computational cost

in terms of running time and memory consumption and, more importantly,

can handle moving underwater scenes.

It is also noteworthy that, even when the underwater scene is strictly static,

my recovered point set P could be different for different frames. This is because

each point Pi can be interpreted as the intersection between the refracted ray

r1
i and the underwater scene, as shown in Fig. 6.1(b). When the water surface

is flowing, because Si relocates, the refracted ray direction is altered, and

thus the intersection Pi is changed. My frame-by-frame formulation naturally

handles such a varying representation of point set P.

6.3 Experiments

The proposed approach is tested on both synthetic and real-captured data.

Here I provide some implementation details. While computing the Quadratic

normals at both the reference and side views, I set the neighborhood size to

5× 5. The parameter λ is fixed at 2 units in the synthetic data and 0.1 mm in

the real experiments. During the coarse-to-fine optimization of Eq.(6.6), the

maximum number of L-BFGS iterations at the coarse scale is fixed to 2000

and 200 for synthetic data and real scenes, respectively, and is set to 20 at the

full resolution in both cases. The linear least squares system Eq.(6.2) is solved

via normal equations using Eigen [26]. As the Snell and Quadratic normal

computations at different pixels are independent, I implement my algorithm

in C++, with parallelizable steps optimized using OpenMP [16], on an 8-core

PC with 3.2GHz Intel Core i7 CPU and 32GB RAM.

6.3.1 Synthetic Data

I use the ray tracing method [36] to generate synthetic data for evaluation. In

particular, two scenes are simulated: a static Stanford Bunny observed through

a sinusoidal wave: z(x, y, t) = 2 + 0.1 cos(π(t+ 50)
√

(x− 1)2 + (y − 0.5)2/80),

and a moving Stanford Dragon seen through a different water surface: z(x, y, t) =
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Table 6.1: Reconstruction errors of the synthetic Bunny scene and the Dragon
scene. Here, for each scene, I list the average errors by considering all frames.

Scene RMSE of D (units) MAD of a1 (◦) MAD of b1 (◦) MED of P (units)
Bunny 0.006 0.76 0.77 0.01
Dragon 0.002 0.36 0.37 0.01

2−0.1 cos(π(t+60)
√

(x+ 0.05)2 + (y + 0.05)2/75). The Dragon object moves

along a line with a uniform speed of 0.01 units per frame. Because of the dif-

ferent sizes of the two objects, I place the Bunny and Dragon objects on top of

a flat backdrop positioned at z = 3.5 and z = 3.8, respectively. The synthetic

scenes are captured using a 3×3 camera array. The reference camera is placed

at the origin and the baseline between adjacent cameras in the array system

is set to 0.3 and 0.2 for the Bunny and Dragon scene, respectively.

I start with quantitatively evaluating the proposed approach. Since my

approach can return the depths and the normals of the water surface, and

the 3D point set of the underwater scene, I employ the following measures for

accuracy assessment: the root mean square error (RMSE) between the ground

truth (GT) depths and the estimated depths D, the mean angular difference

(MAD) between the GT normals and the recovered Snell normals a1, the

MAD between the true normals and the computed Quadratic normals b1, and

the mean Euclidean distance (MED) between the reconstructed point set P

of the underwater scene and the GT one. Table 6.1 shows my reconstruction

accuracy by averaging over all frames. It is noteworthy that the average MAD

of the Snell normals and that of the Quadratic normals are quite similar for

both scenes, which coincides with my normal consistency constraint.

Fig. 6.3 visually shows the reconstruction results of several example frames.

The complete sequences can be found in the supplementary materials [63].

Compared to the GT, my approach accurately recovers both the dynamic wa-

ter surfaces and the underwater scenes. I can also observe that, while the

underwater scene in the Bunny case is statically positioned in the simula-

tion, different point clouds are obtained at different frames (see the red boxes

in Fig. 6.3(c)), echoing my varying representation P of underwater points.

Besides, with the frame-by-frame reconstruction scheme, my approach suc-
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(a) Water Depth

(b) Water Surface

(c) Underwater Point Set

Figure 6.3: Visual comparisons with GT on two example frames of the Bunny
scene (left two columns) and the Dragon scene (right two columns). In each
subfigure, I show the GT and my result in the top and bottom row, respectively.
(a) shows the GT water surface depth and the estimated one. (b) shows the
GT water surface colored with the GT normal map, and the computed one
colored with the Quadratic normals. The Snell normals are not shown here
because they are similar to the Quadratic normals. (c) shows the GT point
set of the underwater scene and the recovered one, where each point is colored
with its z-axis coordinate. The red boxes highlight an obvious different region
of the underwater point clouds of two different frames; see text for details.
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Figure 6.4: Different error measures as a function of the balancing parameter
λ.
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Figure 6.5: Different error measures as a function of the number of cameras
used.

cessfully captures the movement of the underwater Dragon object. In short,

accurate results are obtained for the two scenes generated using different water

fluctuations, different underwater objects (static or moving), and data acqui-

sition settings, which demonstrate the robustness of my approach.

I then adjust the weight λ in Eq.(6.6) to validate the effect of the polynomial

smoothness term Eq.(6.7). Here I use the Dragon scene for illustration. As

shown in Fig. 6.4, when λ = 0, the method depends on the normal consistency

prior only. Explicitly applying a smoothness term with a proper setting λ = 2

performs favorably against other choices w.r.t. all error metrics. Fig. 6.5

further shows my reconstruction accuracy under different number of cameras

used. Using a larger number of cameras gives a higher accuracy.

Here I also compare my approach with a baseline method that assumes a

flat water surface, in which the underwater scene points are obtained by inter-

secting the refracted rays. Take the synthetic Dragon for example, by fixing

the depth of the flat water surface to 1.9, 2.0, 2.1, the MED of the recovered

underwater points are, respectively, 0.61, 0.61, 0.62, which are more than an

order of magnitude higher than my MED 0.01 shown in Table 6.1.
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6.3.2 Real Data

To capture real scenes from multiple viewpoints, I build a camera array sys-

tem as shown in Fig. 6.1(a). Ten PointGrey Flea2 cameras are mounted on

three metal frames to observe the bottom of a glass tank containing water.

The cameras are connected to a PC via two PCI-E Firewire adapters, which

enables us to use the software provided by PointGrey for synchronization. I

use 9 cameras highlighted by the red box in Fig. 6.1(a) for multi-view 3D

reconstruction, whereas the 10th camera, i.e. the evaluation camera, is used

for accuracy evaluation only. I calibrate the intrinsic and extrinsic parame-

ters of the cameras using a checkerboard [78]. The baseline between adjacent

cameras is about 75mm and the distance between the camera array and the

bottom of the tank is about 55cm. All the cameras capture video at 30fps with

a resolution of 516× 388. Flat textured backdrops are glued to the bottom of

the tank, which is for facilitating optical flow estimation.

In order to verify my approach on real data, I first capture a simple scene:

a flat textured plane placed at the bottom of the tank, which is referred to as

Scene 1. The water surface is perturbed by continuously dripping water drops

near one corner of the pattern. As shown in Fig. 6.6(a), my approach not

only faithfully recovers the quarter-annular ripples propagated from the corner

with the dripping water, but also accurately returns the 3D underwater plane

without any prior knowledge of the flat structure. For accuracy assessment,

I also fit a plane for the reconstructed underwater point set of each frame

using RANSAC [22]. The MED between the reconstructed points and the

fitted plane is 0.44mm by averaging over all frames. It is noteworthy that no

post-processing steps like smoothing are performed here.

Two non-flat underwater scenes are then used to test my approach: (i) a

toy tiger that is moved by strong water turbulence, and (ii) a moving hand in

a textured glove. I refer to the two scenes as Scene 2 and Scene 3, respectively.

In both cases, to generate water waves, I randomly disturb the water surface

at one end of the tank. Fig. 6.6(b,c) shows several example results on Scene 2

and Scene 3, and the full videos can be found in the supplemental materials.
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(a) Scene 1

(b) Scene 2

(c) Scene 3

Figure 6.6: Reconstruction results of four example frames of my captured
scenes. In each subfigure, I show the captured image of the reference camera
(top), the point cloud of the water surface colored with the Quadratic normals
(middle), the point cloud of the underwater scene colored with the z-axis
coordinates (bottom). Note that the motion blur (green box) in the captured
image may affect the reconstruction result (red box).
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Figure 6.7: 2D illustration of forward projection through the water surface.

My approach successfully recovers the 3D shapes of the tiger object and the

moving hand, as well as the fast evolving water surfaces.

Novel View Synthesis. Since obtaining GT shapes in my problem is diffi-

cult, I leverage the application of novel view synthesis to examine reconstruc-

tion quality. In particular, as shown in Fig. 6.1(a), I observe the scene at an

additional calibrated view, i.e. the evaluation camera. At each frame, given

the 3D point set of the underwater scene, I project each scene point to the

image plane of the evaluation camera through the recovered water surface.

Here such a forward projection is non-linear because of the light bending at

the water surface. As shown in Fig. 6.7, for each underwater scene point Pi,

given the recovered point set S of the water surface and the camera center O

of the evaluation camera, I aim to estimate the projection (xi, yi). Such a for-

ward projection is non-linear because of light refraction at the water surface.

Nevertheless, the projection (xi, yi) can be easily obtained if the corresponding

interface point X is known.

Previous works [5], [37], [46] in underwater camera calibration propose an

iterative procedure to locate X when the interface can be parametrized (e.g.

it is flat or cylindrical). Here I present a modification of the method in [37]

to locate X for each underwater point Pi. Algorithm 1 shows my modified

algorithm for this task, which differs from the previous method in [37] in two
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Algorithm 1 Iterative Forward Projection for Point Pi

Input: point set S of the water surface, underwater scene point Pi, the intrin-
sic and extrinsic parameters of the evaluation camera, threshold ε = 10−6

and T = 200
Output: projection (xi, yi)

1: initialize X as the intersection between the water point set S and ray
#      »

OPi

2: repeat
3: compute ray direction g :=

#    »

OX
4: estimate the normal n of X by fitting a local quadratic surface
5: compute ray direction h using Snell’s law, given g and n
6: shoot a ray from Pi along direction −h, and this ray intersects with the

water surface at X′

7: if the distance ‖X−X′‖2
2 < ε then

8: go to Step 13
9: else

10: X := (X + X′)/2
11: end if
12: until the number of iterations is greater than T
13: project X to the image plane of the evaluation camera

aspects. Firstly, since the interface is assumed to be cylindrical in [37], they

use the standard ray-cylinder intersection procedure to intersect a ray with

the interface. In comparison, my reconstructed water surface cannot be simply

parametrized using a cylinder. I instead apply the ray tracing-based method

presented in Section 6.2.2. Secondly, to estimate the normal of an interface

point, their method again utilizes the cylindrical parametrization, whereas my

modification is based on the local quadratic surface fitting as discussed in

Section 6.2.1.

Specifically, I start with connecting point Pi with the evaluation camera

center O and initializing X as the intersection between the water surface S

and ray
#      »

OPi. I then compute ray g by connecting X and O, and estimate the

normal n of X. By Snell’s law, the refracted ray h is computed as:

h = ηg +

(
−ηn · g −

√
1− η2

(
1− (n · g)2))n, (6.8)

where η is the ratio of the refractive indices of air and water. I set η = 1
1.33

in

my implementation. I then shoot a ray from the underwater point Pi along

the negative direction of h and estimate the intersection X′ between the shot
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Figure 6.8: View synthesis on two example frames (top and bottom) of Scene 3.
From left to right, it shows the images captured using the evaluation camera,
the synthesized images and the absolute difference maps between them. The
effects of specular reflection (red box) and motion blur (green box) can be
observed in the captured images. These effects cannot be synthesized, leading
to higher differences in the corresponding areas.

ray and the water surface. If the distance between X and X′ is larger than a

threshold ε, I compute the average point (X+X′)/2 as the new value of X and

iterate until their distance is small enough. Finally, I project X to the image

plane of the evaluation camera using the conventional linear projection model

[28]. Then, the final synthesized image at the evaluation camera is obtained

using bilinear interpolation.

Fig. 6.8 shows that the synthesized images and the captured ones look

quite similar, which validates the accuracy of my approach. Take Scene 2 and

Scene 3 for example, the average peak signal-to-noise ratio by comparing the

synthesized images to the captured images is 30dB and 31dB, respectively.

Running Time. For my real-captured data, each scene contains 100 frames

and each frame has 119,808 water surface points and 119,808 underwater scene

points. It takes about 5.5 hours to process each whole sequence, as shown in

Table 6.2.
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Table 6.2: Average running time of the three real scenes.
Scene Scene 1 Scene 2 Scene 3

Optical Flow Estimation (minutes per frame) 0.74 0.74 0.77
3D Reconstruction (minutes per frame) 2.55 2.50 2.52
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Chapter 7

Conclusion and Future Work

This thesis presents several new methods for 3D reconstruction in the presence

of light refraction. I start by studying the problem of environment matting for

reflective and refractive objects. Then, I present a class of 3D reconstruction

methods for static transparent objects, dynamic fluid surfaces, and natural

underwater scenes.

7.1 Summary

In Chapter 3, I present a novel frequency-based environment matting ap-

proach, which mainly addresses two major limitations of existing approaches.

First, by leveraging CS, I simplify the data acquisition process of the conven-

tional frequency-based environment matting [81]. Second, by augmenting with

phase information, I further reduce the measurement cost and accelerate the

expensive signal reconstruction process in CS, while accurately locating the

contributing sources at the pixel level.

In Chapter 4, I present a refraction-based approach for reconstructing

transparent objects. I first develop a simple acquisition setup that uses a

pair of cameras and one monitor. Compared to existing methods, my sys-

tem is non-intrusive, and requires no special devices or precise light source

movement. By introducing a novel position-normal consistency constraint, I

propose an optimization framework which can simultaneously reconstruct the

3D positions and normals of both the front and back surfaces. Note that many

existing methods can only reconstruct either the depth or the normal of a sin-
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gle surface. In addition, I show that it is possible to estimate the refractive

index of transparent objects using only two views.

In Chapter 5, I revisit the problem of dynamic refraction stereo [45] by

presenting a new global optimization-based framework. I first formulate an

objective function which couples both the conventional cross-view normal con-

sistency constraint and the new single-view normal consistency priors that take

local surface geometry into consideration. By solving all surface points at the

same time, I obtain accurate and consistent depths and normals. Most impor-

tantly, my approach successfully avoids the fundamental limitation of previ-

ous methods that require using surface integration without accurate boundary

conditions. Furthermore, I develop a novel error metric which can reliably

estimate the refractive index of liquid in a computer vision fashion. It is

also noteworthy that my reconstructed fluid surfaces are highly accurate for

the application of novel view synthesis, which cannot be achieved in existing

methods.

In Chapter 6, I present a novel approach for a 3D reconstruction problem:

recovering underwater scenes through dynamic water surfaces. My approach

exploits multiple viewpoints by constructing a portable camera array. After

acquiring the correspondences across different views, the unknown water sur-

face and underwater scene can be estimated through minimizing an objective

function under a normal consistency constraint. My approach is validated

using both synthetic and real data. To my best knowledge, this is the first ap-

proach that can handle both dynamic water surfaces and dynamic underwater

scenes, whereas the previous work [76] uses a single view and cannot handle

moving underwater scenes.

7.2 Limitations and Future Work

7.2.1 Environment Matting

The proposed approach in Chapter 3 addresses some limitations of the previ-

ous environment matting method [81]. Nevertheless, one limitation remains

unsolved in my approach. That is, for acceleration purpose, I assume that the
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unknown light transportation matrix W can be decomposed into the element-

wise product of a row vector and a column vector, i.e. Eq.(3.4). While this

assumption has limited impacts on the algorithm’s capability in handling con-

tributions from broad areas of the background (e.g . “Pie Pan”) or contribu-

tions from a large number of scattered sources, it may introduce visual arti-

facts when a foreground pixel has two non-adjacent dominating contributing

regions. For example, the foreground highlighted by the red box in Figure

3.10 mainly receives lights from two regions in the background, one coming

from refraction and the other from reflection. Under the above assumption,

my approach may either locate additional but incorrect contributing sources

or lose the weaker one. Thus the composited result may appear different from

the photograph. In the future, I plan to address this ambiguity problem using

additional diagonal patterns [13].

The environment matting problem is addressed in Chapter 3 using the

proposed CS-based framework in the frequency domain. I argue that the

proposed framework is also applicable to other many-to-one decomposition

problems, e.g . dual photograph [60], where many projector pixels are merged

into one camera pixel. CS has been utilized to reduce the complexity of data

acquisition in dual photography [61], whereas the process of reconstructing the

light reflection functions is very slow (almost 3 hours on a 24-node cluster for

rendering a 256× 256 image). Hence, I plan to apply my new frequency-based

framework to tackle the dual photography problem in the near future.

7.2.2 Static Transparent Object Reconstruction

For static transparent object reconstruction, the approach presented in Chap-

ter 4 works under the following assumptions: i) the object is solid and homoge-

neous, ii) the light path between the source and the camera goes through two

refractions, and iii) the object surface is smooth enough so that surface nor-

mals can be reliably estimated using available sample points. Note that these

assumptions are commonly used by refraction-based methods [38], [67]. More-

over, my acquisition is simple and inexpensive, but at the cost of capturing

thousands of images since the ray-light source correspondences are required at
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each of the four monitor positions. As discussed above, replacing the monitor

with light field probes [69] helps to reduce the number of images needed, but at

the expense of loosing sampling density and not being able to handle colored

objects. It is also noteworthy that the radiometric cues proposed in [12] may

be incorporated to eliminate the monitor movements.

Essentially, my approach searches for a smooth surface that can best ex-

plain the observed ray-ray correspondences in terms of position-normal con-

sistency. It implicitly assumes that there is only one feasible explanation for

the observed correspondences. This assumption may not hold when the object

is thin, in which case the refraction effects are mostly affected by the object

thickness, rather than its shape. Hence, even though the reconstructed shape

satisfies the position-normal consistency, it may not depict the real object

shape. Fig. 7.1 shows such a failure case.

Although only two cameras are used in my experiments, the proposed

optimization procedure Eq.(4.3) can be extended to more than two views so

that different cameras can fully cover the transparent objects. How to compute

the PCA and Snell normals under such settings certainly deserves further

investigation.

7.2.3 Dynamic Fluid Surface Reconstruction

The approaches presented in Chapter 5 and Chapter 6 work under several

assumptions that are also commonly used in state-of-the-art works in shape

from refraction. Firstly, I assume that the medium (i.e . water in my case) is

transparent and homogeneous, and thus light is refracted exactly once from

water to air. Secondly, the water surface is assumed to be locally smooth, so

that the normal of each surface point can be reliably estimated based on the

local neighborhood. Thirdly, the optical flow method is applied to estimate the

pixel-point correspondences when the underwater scene is flat, and to estimate

the multi-view correspondences when the underwater scene is non-flat. To

faithfully acquire the correspondence data, the underwater scene (either flat

or non-flat) is assumed to be textured. The above assumptions may be violated

in real-world scenarios. For example, water phenomena like bubbles, breaking
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Figure 7.1: Results of a failure case for a piece of myopia glass. Both front
and back points are plotted in the same coordinate system. Since small nor-
mal perturbations on thin objects do not result in large ray correspondence
changes, the estimated shape is quite noisy. Nevertheless, a slice through the
center of the point cloud seen from the top (f) suggests that my approach
properly models the thickness variation of the glasses.
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waves, light scattering, may lead to multiple light bending events along a

given light path. In the future, I plan to tackle the fluid surface reconstruction

problem in these challenging scenarios.

Although promising reconstruction performance is demonstrated in Chap-

ter 6, my approach is just a preliminary attempt to solving such a challenging

problem. The obtained results are not perfect, especially at the boundary

regions of the surfaces, as shown in Fig. 6.6. That is because those regions

are covered by fewer views compared to other regions. To cope with this is-

sue, I plan to build a larger camera array or use a light-field camera for video

capture. In addition, occlusion is a known limitation in a multi-view setup

because correspondence matching in occluded areas is not reliable. I plan to

accommodate occlusion in my model in the near future.
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