
Approximating Minimum Sum Coloring with Bundles

by

Seyed Parsa Darbouy

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Seyed Parsa Darbouy, 2024



Abstract

This study introduces a new problem called the Minimum Sum Color-

ing with Bundles. We are given an undirected graph G = (V,E) and

(not necessarily disjoint) bundles V1, V2, . . . , Vp ✓ V with associated weights

w1, . . . , wp � 0. The goal is to give a proper coloring of G using positive in-

tegers to minimize the weighted average/total completion time of all bundles,

where the completion time of a bundle is the maximum integer assigned to one

of its nodes. This is a common generalization of the classic Minimum Sum

Coloring problem, i.e. when all bundles are singleton nodes, and the classic

Chromatic Number problem, i.e. the only bundle is all of V .

We provide the first constant-factor approximation in perfect graphs and,

more generally, graphs whose chromatic number is within a constant factor of

the maximum clique size in any induced subgraph.

Next, we extend our results to get constant-factor approximations for a

general model where the bundles are disjoint (i.e. can be thought of as jobs

brought by the corresponding client) and we are only permitted to color/schedule

a bounded number of jobs from each bundle at any given time. Specifically,

we get constant-factor approximations for this model for interval graphs and

generalizations.

ii



Preface

This dissertation is an original work by the author, Seyed Parsa Darbouy.

This research project has been published in the Scandinavian Symposium and

Workshops on Algorithm Theory (SWAT). The published paper was coau-

thored with Zachary Friggstad; P. Darbouy developed the technical aspects of

the paper.

iii



”Computer science is no more about computers than astronomy is about

telescopes.”

– Edsger Dijkstra

iv



Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Zachary

Friggstad, for his unwavering support, insightful guidance, and constant en-

couragement throughout my journey. His expertise and dedication have been

instrumental in shaping this research and my development as a scholar.

My sincere thanks extend to the members of my thesis committee for their

valuable time, constructive feedback, and thoughtful questions. Their insights

have significantly enhanced the quality of this dissertation.

I am eternally grateful for the love and support of my family. Their endless

patience, unwavering belief in me, and countless sacrifices have made this

achievement possible.

v



Contents

1 Introduction 1

1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Approximation Algorithms . . . . . . . . . . . . . . . . 7
1.2.2 Linear Programming . . . . . . . . . . . . . . . . . . . 7
1.2.3 Chordal Graphs . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Interval Graphs . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 Perfect Graphs . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Approximating MSCB in Perfect Graphs 12

2.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Rounding Algorithm . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 MSCB with Task Concurrencies 24

3.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 MSCB-TC in Perfect Graphs - A Barrier . . . . . . . . . . . 28

4 Conclusion 30

References 31

vi



List of Tables

1.1 Best Known Results of Approximation Algorithms for MSC in
Special Graph Classes. . . . . . . . . . . . . . . . . . . . . . . 10

vii



List of Figures

2.1 An example of the reduction from an instance of the Maxi-
mum Independent Set problem to a collection of intervals
using t = 2. It is straightforward to verify a subset of nodes is
independent if and only if each point on the underlying line is
spanned by at most t intervals in the union of their bundles. . 14

3.1 Tightness of Lemma 2 for Interval Graphs. . . . . . . . . . . . 26

viii



Chapter 1

Introduction

Scheduling problems form a broad and extensively researched class of combi-

natorial optimization problems. They center around the allocation of limited

resources to a set of tasks or jobs over time, subject to various constraints,

with the goal of optimizing a defined objective. Scheduling problems typically

involve several core components:

Resources, which can represent machines in a manufacturing environment,

processors in a computing system, runways at an airport, personnel, or other

limited assets; tasks or jobs, which are units of work with characteristics such

as processing times, deadlines, release dates (when they become available),

and possible precedence relationships; and constraints that define the rules

and restrictions governing feasible schedules, such as resource capacity limita-

tions, precedence relationships between tasks, and deadlines or due dates. The

objective function quantifies the quality of a schedule, with common objectives

including minimizing the makespan (total completion time), minimizing aver-

age job completion times, minimizing tardiness (how late jobs finish relative

to their due dates), or maximizing the number of completed tasks.

Scheduling problems exhibit an enormous variety based on the types of

resources, task characteristics, constraints, and the objective function. Many

classic scheduling problems are NP-hard, making the search for optimal so-

lutions computationally intractable for large instances. This intractability

motivates the development of approximation algorithms.

Graph coloring is a fundamental problem in combinatorial optimization

1



with far-reaching applications. It involves assigning colors to the vertices of a

graph such that no two adjacent vertices share the same color. This assignment

is called proper coloring.

Given a graph G = (V,E), where V is the set of vertices and E is the

set of edges, a proper k�coloring assigns one of k colors to each vertex in V .

Adjacent vertices (connected by an edge) must receive di↵erent colors. The

chromatic number of a graph G, denoted by �(G), is the smallest number of

colors needed for a proper coloring.

Graph coloring has direct connections to various scheduling problems. Con-

sider tasks that need to be scheduled on shared resources, where certain pairs

of tasks conflict and cannot be scheduled simultaneously. We can construct a

graph where vertices represent tasks, and edges represent conflicts. A proper

coloring of this graph then corresponds to a valid schedule where no conflicting

tasks overlap in time.

In a scheduling problem, a common objective is to minimize the sum of

completion times of tasks, ensuring no constraint violations. As we said earlier

a task can be represented by a vertex and edges represent conflicts between

resources. To schedule these tasks we can use graph coloring to give each of

them a number that represents a color. The objective, then, becomes mini-

mizing the sum of these assigned color values. This is known as the Minimum

Sum Coloring (MSC) problem. This is a well-studied problem lying at the

intersection of scheduling theory and graph coloring.

Formally, In MSC, we are given an undirected graph G = (V,E) on n

nodes. The goal is to find a proper coloring � : V ! {1, 2, . . .} of nodes of

V , i.e. �(u) 6= �(v) for all uv 2 E, with minimum total color
P

v2V �(v).

While di↵erent than standard graph coloring where the goal is to simply

minimize the number of distinct colors of the coloring, it is essentially just as

hard to approximate. That is, unless P = NP, there is no n1��-approximation

for any constant � > 0 [2]. However, in certain cases, it is possible to get im-

proved approximations. For example, if it is possible to e�ciently compute a

maximum independent set in G and any of its induced subgraphs then greed-

ily coloring by computing a maximum independent set I, coloring I with the

2



next unused integer, and then removing I from G yields a 4-approximation

[2]. There is a large body of work on getting improved constant-factor approx-

imation in more structured special cases or obtaining constant-factor approxi-

mations in other graph classes, see the related works section below for further

discussion.

This work introduces two generalized versions of the Minimum Sum Col-

oring problem (MSC) that address task bundling. Unlike MSC, where tasks

are considered individually, clients can now submit groups of tasks (bundles)

and prioritize the completion time of all tasks within each bundle. The first

version is as follows.

Definition 1. In the Minimum Sum Coloring with Bundles problem

(MSCB), we are given an undirected graph G = (V,E) and collection of

bundles V1, . . . , Vp ✓ V with associated weights w1, . . . , wp � 0. The goal is to

find a proper coloring � : V ! {1, 2, . . . , |V |} of V in a way that minimizes the

total weighted makespan of all bundles. That is, the coloring should minimize
Pp

i=1 wi ·maxv2Vi �(v).

By allowing bundles with multiple tasks, MSCB encompasses both MSC

and finding the chromatic number. MSC is a single-tasks bundles version and

finding the chromatic number is the single bundle with all tasks. Therefore,

MSCB is a more general problem.

The second general version introduces the concept of limited concurrent

processing within bundles. For example, imagine clients with specific band-

width or resource constraints, preventing them from delivering or receiving

more than a certain number of tasks at a time. As in this case, clients have

their own specific limits, and the tasks in di↵erent bundles cannot overlap as

they come from di↵erent clients, i.e. bundles constitute a partition V1, . . . , Vp

of V . We consider the following generalization of MSCB

Definition 2. In the Minimum Sum Coloring with Bundles and Task

Concurrency problem (MSCB-TC), we are given a graph G = (V,E) and

a partition V1, . . . , Vp of V with associated weights w1, . . . , wp � 0. Further,

for each 1  i  p we are given a bound di � 1 on the number of jobs from

3



bundle i that may be processed at any moment. The goal is still to find a proper

coloring � that minimizes the total weighted completion time of all bundles,

but we further require |{v 2 Vi|�(v) = t}|  di for each 1  i  p and each

time step/color t.

1.1 Results

Interval graphs (check definition in 1.2.4) hold particular interest for scheduling

problems due to their ability to naturally represent tasks with defined start

and end times. Each vertex in an interval graph maps to a single task, and an

edge connecting two vertices signifies that these tasks cannot be scheduled to

overlap. This simple graph model captures the core constraint of scheduling –

tasks cannot be done simultaneously if they conflict. This natural fit between

interval graphs and scheduling problems motivated us to base our initial work

on them. We further extended our research to encompass perfect graphs (check

definition in 1.2.5).

Our first main result is a constant-factor approximation for MSCB in

interval graphs which can be applied more generally to perfect graphs.

Theorem 1. MSCB on perfect graphs admits a polynomial-time 10.874-

approximation.

Our presentation will first focus on proving Theorem 1 in the case of interval

graphs. The linear programming (LP) relaxation we use in this case is simpler

than in the general case of perfect graphs. After presenting the algorithm for

interval graphs, we discuss the few necessary changes to extend it to perfect

graphs in general.

Our techniques extend further to classes of graphs for which the chromatic

number is approximately equal to the maximum clique number and these quan-

tities can be approximated in polynomial time. Namely, we get the following

extension. Recall a graph class G is hereditary if for any G 2 G we have

G[U ] 2 G as well for all induced subgraphs of G.

4



Corollary 1. Let G be any hereditary graph class with the following proper-

ties: (a) the maximum clique size is within a constant factor of the chromatic

number of any G 2 G, (b) given vertex weights wv, v 2 V for a graph G 2 G,
there is a constant-factor approximation algorithm for the maximum-weight

clique of G, and (c) there is a constant-factor approximation for coloring any

G 2 G with the minimum number of colors. Then there is a constant-factor

approximation for MSCB for graphs in G.

For example, we get O(1)-approximations for the following graph classes:

• Unit disc graphs: when vertices are associated with discs of radius 1

in the plane and edges indicate when two discs intersect. The classic

algorithm in [6] for computing a maximum-size clique easily generalizes

to compute a maximum-weight clique in polynomial time. It is possible

to color any unit disc graph with maximum clique size K using fewer

than 3 ·K colors in polynomial time [27].

• Circular-arc graphs: when vertices are associated with arcs of a circle

and edges indicate when two such arcs intersect. A maximum weight

clique can be found in polynomial time, e.g. [4]. One can e�ciently

2 · K-color a circular arc graph with maximum clique size K by first

coloring the arcs spanning one particular point with at most K colors.

After removing these arcs, we are left with an interval graph which can

also be colored with K additional colors since interval graphs are perfect.

To the best of our knowledge, MSCB-TC has not been previously stud-

ied even in special cases. We obtain constant-factor approximations for this

problem, though in more restricted settings. Recall that a graph G is chordal

if every cycle of length � 4 has a chord. That is, if v1, v2, . . . , v`, v1 is a cycle

of length ` � 4 then we also have vivj 2 E for some 1  i, j  ` where i, j

are not consecutive indices around the cycle, i.e. 1  i  j � 1 and if i = 1

then j 6= `. Interval graphs, an important class of graphs in scheduling, are

chordal.

5



Theorem 2. MSCB-TC in chordal graphs admits a polynomial-time 16.31-

approximation.

The key property of chordal graphs that drives our algorithm is that they

admit perfect elimination orderings. That is, it is possible to compute an

ordering v1, v2, . . . , vn of all nodes V such that the left-neighborhood N`(vi) :=

{vj : j < i and vivj 2 E} is a clique for all 1  i  n. In fact, a graph

is chordal if and only if it admits such an ordering and this ordering can be

computed in linear time [14]. Our techniques extend more generally to other

classes of graphs.

Corollary 2. Let G be a hereditary graph class with the same properties as

in Corollary 1. Further, for any G 2 G suppose we can compute an order-

ing v1, . . . , vn of its nodes in polynomial time such that the left-neighborhood

N`(vi) can be covered by a constant number of cliques in polynomial time.

MSCB-TC has a constant-factor approximation when restricted to inputs

whose graphs lie in G.

For example, such an ordering exists for unit disk graphs (with each left-

neighborhood being covered by  3 cliques) [27]. Such an ordering can be

also found for circular arc graphs with each left-neighborhood being covered

by  2 cliques, i.e. consider the coloring algorithm mentioned above: if one

orders the arcs spanning the selected point and then orders the remaining arcs

according to a perfect elimination ordering in the resulting interval graph.

The algorithm from Theorem 2 requires one additional structural result

about coloring than the algorithm from Theorem 1, namely Lemma 2 in Sec-

tion 3. Unfortunately this structural result fails to hold in perfect graphs,

which is why Theorem 2 is only for chordal graphs. Still, we are able to

recover the following.

Theorem 3. There is an O(
p
n)-approximation for MSCB-TC in perfect

graphs.

While the ratio is quite large, it is at least better than the lower bound

in general graphs of n1�� for any constant � > 0, which is inherited from the

same hardness for MSC [2].

6



1.2 Preliminaries

This section establishes the fundamental concepts and principles necessary to

understand the methodologies and strategies explored throughout the remain-

der of the thesis.

1.2.1 Approximation Algorithms

Many real-world optimization problems are computationally intractable, mean-

ing they cannot be solved to optimality within a reasonable time frame. This

intractability often stems from the inherent di�culty of these problems, clas-

sified as NP-hard. Approximation algorithms o↵er a powerful approach to

tackle these challenges by finding near-optimal solutions within polynomial

time.

An approximation algorithm for an optimization problem has a provable

approximation ratio (or performance guarantee). Let OPT (I) represent the

cost (or value) of an optimal solution for an instance I of the problem, and

let A(I) represent the cost (or value) of the solution produced by the ap-

proximation algorithm A. For a minimization problem, algorithm A has an

approximation ratio of ↵ if for all instances I, A(I)  ↵ ·OPT (I). Conversely,

for a maximization problem, the inequality is reversed: A(I) � (1/↵)·OPT (I).

The value ↵ is typically greater than or equal to 1, and the closer ↵ is to 1,

the better the approximation provided by the algorithm.

A classic example of an approximation algorithm is the Vertex Cover prob-

lem, where the goal is to find the smallest set of vertices in a graph such that

every edge has at least one endpoint in the set. There is a 2-approximation

algorithm for this problem. While not optimal, it finds a solution within twice

the size of the smallest possible vertex cover in polynomial time.

1.2.2 Linear Programming

Linear Programming (LP) is a powerful optimization technique central to the

design and analysis of approximation algorithms. It involves optimizing a

linear objective function subject to a set of linear constraints.

7



minimize : cTx
subject to : Ax � b

x � 0

Here c denotes the vector of objective function coe�cients, x represents

the vector of decision variables, b is the vector containing the right-hand side

constants of the constraints, and A is the matrix that holds the constraint

coe�cients.

A feasible solution to a linear program is an assignment of values to the

decision variables (x) that satisfies all constraints of the problem. The values

in x must adhere to the system of linear inequalities defined by Ax � b. This

means any potential solution must fall within the boundaries specified by the

constraints. Additionally, each element of the vector x must be greater than

or equal to zero.

Solving linear programs with integer constraints (Integer Linear Program-

ming, ILP) can be computationally expensive. A common approach to tackle

ILP problems is to use LP relaxation, where the integer constraints are relaxed,

allowing the variables to take on continuous values. This relaxed problem is

solvable using algorithms like the simplex method or ellipsoid method. The

time complexity of the simplex method is not polynomial; in practice, how-

ever, the simplex method is very fast in most cases. LPs can be solved in

polynomial time using the ellipsoid method [15]. It provides a lower bound

(for minimization) or upper bound (for maximization) on the optimal objec-

tive value of the original ILP problem. The solution to the relaxed problem

can then be used to guide approximation algorithms.

1.2.3 Chordal Graphs

A chordal graph, in the realm of graph theory, is defined as a graph where

every cycle of four or more vertices contains a chord. A chord is an edge

that connects two non-consecutive vertices within the cycle but is not itself

part of the cycle. Chordal graphs possess various interesting properties and

have numerous subclasses, including interval graphs, split graphs, and Strongly

chordal graphs, each with their own specific characteristics and applications.

8



1.2.4 Interval Graphs

An interval graph, denoted by G = (V,E), is an undirected graph where each

vertex v 2 V corresponds to a closed interval Iv on the real line. Two vertices,

u, and v, are connected by an edge (u, v) 2 E if and only if their corresponding

intervals Iu and Iv intersect.

1.2.5 Perfect Graphs

A graph G is perfect if the maximum clique size in G[U ] equals the chromatic

number of G[U ] for any U ✓ V where G[U ] = (U, {uv 2 E : u, v 2 U}) denotes
the subgraph of G induced by U . Examples of perfect graphs include bipartite

graphs, line graphs of bipartite graphs, interval graphs, comparability graphs,

split graphs, permutation graphs, and chordal graphs as well as the edge-

complements of these graphs. For a broader discussion of perfect graphs and

other graph classes that we mentioned, we refer the reader to Golumbic’s book

[14].

1.3 Related Work

MSCB has been studied in certain special cases. The most notable example is

Coflow Scheduling, which is equivalent to MSCB when the input graph

is the line graph1 of a bipartite graph (i.e. at any given time step a matching

of the edges/jobs is scheduled). This problem was first introduced in [28]

where a 22.34-approximation was given. Later, 4-approximations were given

for Coflow Scheduling and generalizations with release times for the jobs

[1], [11], [30].

In a matroid setting (see [26] for a full definition), the jobs are given as

items in the ground set X of a matroid rather than as vertices in a graph and

bundles are subsets of items in X. The set of jobs scheduled at any given

time must form an independent set of the matroid. A 2-approximation for the

problem of minimizing the total weighted completion time of all bundles was

1Recall the line graph of G = (V,E) is the graph L(G) = (E,F ) where two edges e, f 2 E
are considered adjacent in L(G) if they share a common endpoint.

9



MSC

Graph Class upper bounds lower bounds
General graphs O(n/ log3 n) [2], [9] O(n1�✏) [2], [10]
Perfect graphs 3.591 [12] APX [3]
Chordal graphs 1.796 [8] APX [25]
Interval graphs 1.796 [12] APX [25]
Bipartite graphs 27/26 [24] APX [3]
Partial k-trees 1 [22]
Planar graphs PTAS [18] NP-complete [18]
Trees 1 [23]
Line graphs 1.8298 [19] NP-complete [2]
Line graphs of trees 1
[k+1]-claw free graphs O(k) NP-complete [2]
Intersection of k-sets O(k) [2] NP-complete [2]
Unit disc graphs 2 [5] NP-complete [5]

Table 1.1: Best Known Results of Approximation Algorithms for MSC in
Special Graph Classes.

given in [21].

MSC itself is much more well studied. As mentioned earlier, a 4-approximation

is known in settings where the maximum independent set of the graph (and

any induced subgraph) can be computed in polynomial time [2]. Special

attention has been given to particular graph classes, in particular a 1.796-

approximation is known in interval graphs [17] which was recently extended to

an algorithm with the same approximation guarantee for chordal graphs [7].

In the more general setting of perfect graphs, a 3.591-approximation is known

[12]. A broader summary of approximation algorithms for MSC in special

graph classes can be found in the survey article by Halldórsson and Kortsarz

[16]. The following table from the survey presents results for MSC applied to

special graph classes.

In the table provided, n denotes the number of vertices. Also, APX sig-

nifies that it is NP-hard to approximate within some constant factor greater

than 1. While we do not define the special graph classes in this table, you can

find their definitions in [16].

10



1.4 Organization

After discussing some challenges in adapting previous MSC and Coflow

Scheduling algorithms to MSCB, Section 2 presents our algorithm for

MSCB and the proofs of Theorem 1 and Corollary 1. Section 3 extends these

techniques to MSCB-TC and proves Theorem 2 and Corollary 2. We also

discuss why our MSCB-TC algorithm does not extend to perfect graphs in

general, point out that we can at least get an O(
p
n)-approximation in perfect

graphs for MSCB-TC, and leave further improvements for future work.

11



Chapter 2

Approximating MSCB in

Perfect Graphs

As mentioned in Chapter 1, MSC is a well-studied problem with several ap-

proximation algorithms. One simple approach employs a greedy strategy. We

iteratively identify the largest set of vertices that can be assigned the same

color, color them, and remove them from the remaining graph. This process

repeats until no such sets remain. This greedy approach can be formalized by

finding the maximum independent set in the graph [16]. This greedy algorithm

can be applied to any graph class where maximum independent sets can be

computed e�ciently. This achieves a 4-approximation for MSC [2].

One more complicated strategy is to find 2k-colorable subgraphs, where k is

iteratively increased from 0. This strategy achieves a constant approximation

ratio for any graph class where their maximum k-colorable subgraphs can be

computed. Interval graphs are an example where this computation is feasible

[17]. We can improve the approximation ratio of this strategy by employing

a geometric base other than 2, introducing a random geometric o↵set (2k+↵),

and randomly permuting the order of colors in a 2k coloring.

2.1 Challenges

While MSCB is a common generalization of MSC and Coflow Schedul-

ing, it turns out most techniques used to address these problems fail. For

example, the 4-approximation for MSC from iteratively finding a maximum

12



independent set in the graph of unscheduled tasks in each time step. But for

the classic problem of computing the chromatic number of a graph, i.e. the

special case of MSCB where all nodes are in a single bundle, this can be as

bad as an ⌦(log n)-approximation even if the underlying graph is a tree.

We point this out to show that the greedy 4-approximation for unweighted

MSC does not extend to our setting which includes, as a special case, com-

puting the chromatic number of a graph. While this seems to be well known in

the community, we are unaware of a particular reference for such an example

so we provide a simple construction here for completeness.

Let T0 be the trivial tree with a single node. Inductively for i � 1 let Ti

be constructed by attaching 2 leaf nodes to each node of Ti�1. So the number

of nodes in Ti is 3i.

The only maximum independent set in Ti is the set of all leaves in Ti (which

clearly forms an independent set). To see this, let I be an independent set

that includes an internal vertex of Ti (i.e. a node of Ti�1). Neither leaf that

was attached to v to form Ti is in I because I is an independent set. But then

we get a larger independent set by removing v from I and adding in the two

associated leaves.

The greedy algorithm to compute a maximum independent set in Ti will

first pick all of its leaves. Removing them leaves tree Ti�1. So by induction,

with the base case i = 0 clearly requiring a single iteration to color, the number

of iterations will be i+1. Since i+1 is logarithmic in the size of Ti (i.e. n := 3i)

and since the chromatic number of Ti, i � 1 is 2 (as is true for any tree with at

least one edge), this is an ⌦(log n)-approximation for the chromatic number

of a tree. Therefore, it is not an O(1)-approximation for MSCB.

Another strategy that is used to get refined approximations for MSC is

to compute maximum t-colorable subgraphs of G for a geometric sequence of

values for t as in [7], [17]. For MSCB, one could consider an algorithm that

for a geometric sequence of values t will compute a maximum-size subset of

bundles P ✓ {1, 2, . . . , p} such that all nodes in these bundles, i.e. [j2PVj

can be scheduled without conflict in t steps. That is, we do not just compute

a maximum-size t-colorable induced subgraph of G itself, rather we are con-

13



B

A

C D1

2

3

4

A
A
B
B

A
A
C
C

B
B
C
C

C
C
D
D

Figure 2.1: An example of the reduction from an instance of the Maximum
Independent Set problem to a collection of intervals using t = 2. It is
straightforward to verify a subset of nodes is independent if and only if each
point on the underlying line is spanned by at most t intervals in the union of
their bundles.

cerned with how many clients can have their bundles completed within t steps.

This would lead to an O(1)-approximation for MSCB.

Unfortunately, even in the special case where G is an interval graph, this

seems impossible to approximate well.

Lemma 1. Let G = (V,E) be an interval graph and V1, V2, . . . , Vp a partition

of V . For any t  |V | and any constant � > 0, there is no O(|V |1/3��)-

approximation algorithm for computing the maximum size P ✓ {1, 2, . . . , p}
such that [j2PVj can be scheduled within t steps unless P = NP.

Proof. We reduce from the Maximum Independent Set problem. Let H =

(U, F ) be an undirected graph. Order F arbitrarily as e1, e2, . . . , e|F |. We build

an interval graph over the line [1, 2 · |F |]. Namely, for each v 2 U and each

ei having v as an endpoint, add t copies of the interval [2 · i � 1, 2 · i]. Let

Uv denote all intervals created from v 2 U this way. Note, there are exactly

2 · t intervals of the form [2 · i � 1, 2 · i] for each 1  i  |F |, one for each

endpoint of ei. Let G be the resulting interval graph whose nodes/intervals

are partitioned as {Uv : v 2 U}. Figure 2.1 illustrates this reduction.

Let I be a subset of bundles. It is straightforward to verify the intervals

in [Uv2IUv can be t-colored (i.e. can be scheduled within t time steps) if and

only if {v 2 U : Uv 2 I} is an independent set in H.

Finally, recall for any constant � > 0, there is no |U |1��-approximation for

the maximum independent set problem unless P = NP [31]. Since t  n, then

G has 2 · |F | · t  O(|U |3) vertices, as required. Thus, an ↵ = o(|V |1/3��/3)-

14



approximation for the largest number of parts that can be scheduled in t time

steps would yield a o(|U |1��)-approximation for the maximum independent set

problem in H. Replacing � by 3� (again a constant) yields the result.

Since MSC techniques seem to fail for MSCB, one could look to tech-

niques successfully used for approximating Coflow Scheduling. Recall

Coflow Scheduling is the special case of MSCB when the graph G is the

line graph L(H) of an undirected graph. A property of Coflow Schedul-

ing that is commonly leveraged to design approximation algorithms is that

for each edge e in H (i.e. a job), all other edges that conflict with e share one

of two endpoints with e. Interval graphs, however, do not have this property.

For example, the algorithm in [1] solves a time-indexed LP relaxation and

uses the familiar trick of greedy scheduling jobs according to their fractional

completion time. Their analysis relies on the fact that there are only 2 “rea-

sons” an edge may not be scheduled at a time step (i.e. one of the two end-

points already has an edge at that time step). Also, in [11] a hypergraph

matching result by Haxell [20] is used to demonstrate that a good schedule

of jobs exists. However, the way this matching result is used in [11] crucially

relies on the fact that the formed hyperedges only have 3 nodes, which comes

from the fact that each edge of H has only two endpoints.

2.2 Algorithm

Despite these challenges, we are still able to design a constant-factor ap-

proximation for MSCB in perfect graphs. Our techniques can be seen as

a workaround to the problem highlighted in Lemma 1, though we also need

to use LPs to do so. That is, we use an LP-relaxation to fractionally schedule

the jobs. For a geometrically-increasing sequence of values t, we consider the

jobs that are completed to an extent of at least 1/2 by time t in the fractional

solution. The LP constraints will witness that the size of the largest clique

among these jobs is O(t). The fact the graph is perfect then allows us to color

these jobs with O(t) colors, i.e. to schedule them all within O(t) time steps.

For simplicity of presentation, we suppose G = (V,E) is an interval graph

15



with n = |V | nodes and that V = {V1, V2, . . . , Vp}. This allows us to write

a polynomial-size LP relaxation. The straightforward extension to perfect

graphs (albeit with an exponential-size LP) will be discussed at the end of this

chapter. Thus, we suppose each vertex v 2 V is associated with an interval

[sv, tv] ✓ R. It is a folklore result that we may further assume, without loss of

generality, that each endpoint of each interval lies in the set {1, 2, . . . , 2 · n}.
For each 1  i  2 · n the set Ci := {v 2 V : i 2 [sv, tv]} is easily seen to be a

clique in G. It is also known that every clique of G is a subset of Ci for some

1  i  2 · n [14].

Like some previous work in MSC [7] and Coflow Scheduling [1], [11],

we consider a time-indexed LP relaxation for MSCB. For each v 2 V and

1  t  n we let xv,t be a variable indicating v should be colored t and for

each 1  k  p we let fk be a variable that is intended to be the largest

color used to color nodes in Vk (i.e. when all jobs for bundle k are completed).

Throughout this section, we adhere to the following indexing conventions: k

will be used for bundles, t for time steps/colors, i for points on the underlying

line {1, 2, . . . , 2·n} in the interval graph, and j for indexing geometric groupings

of jobs defined in the algorithm.

minimize :
Pp

k=1 wk · fk
subject to : fk �

Pn
t=1 t · xv,t 8 1  k  p, v 2 VkP

v2Ci
xv,t  1 8 1  t  n, 8 1  i  2 · nPn

t=1 xv,t = 1 8 v 2 V
x, f � 0

(LP-MSCB)

The first constraint says that bundle k is considered finished only after

each v 2 Vk is completed, and the second constraint ensures that at most one

vertex from any clique in the interval graph can be processed at a time. The

third ensures each job is completed at some point. Clearly, the optimum value

of (LP-MSCB) is at most the optimum value of the MSCB instance since

the natural integer solution corresponding to the optimal MSCB solution is

feasible for this LP.

16



2.3 Rounding Algorithm

Leveraging the solution from the LP relaxation (LP-MSCB) as a heuristic

o↵ers valuable insight. However, the relaxed LP solution does not directly

indicate the optimal processing order for tasks. To address this, we introduce a

geometric grouping inspired by the concept of maximum k-colorable subgraphs

discussed earlier in this chapter. This approach ensures that for any given time

t, all tasks that are “at least half done” according to the LP solution can be

completed within the next 2 · t time steps.

After computing an optimal solution to LP-MSCB, for each job v 2 V we

let ⌧v denote the smallest time t such that
P

t0t xv,t0 � 1/2, i.e. when the LP

solution has completed v to an extent of at least 1/2. Notice by minimality of

⌧v we also have
P

t0�t xv,t0 = 1�
P

t0<t xv,t0 > 1� 1/2 = 1/2.

For a bundle k, we then let f̂k := maxv2Vk
⌧v be the minimum time when

all jobs in Vk are completed to an extent of at least 1/2 by the LP solution.

As we show below, it is not hard to see
P

k wk · f̂k is within a constant factor

of the optimal LP solution.

We then employ geometric grouping of the jobs v 2 V . That is, for each

time t in a geometric sequence we form a group with all jobs v having ⌧v 
t. Using properties of the LP solution and interval graphs, we show we can

properly color all jobs in each such group with 2 · t colors. Concatenating

these schedules for the various groups in this geometric sequence completes

the algorithm.

To optimize our final ratio, we carefully choose the geometric growth rate

and also pick an initial random geometric o↵set, as has been done in many

previous works in minimum-latency problems, e.g. [17]. We could also try

a di↵erent parameter than 1/2 as the choice of threshold for the defining

values ⌧v, but it turns out that 1/2 is the optimal value for our approach.

Also, readers with experience in MSC algorithms may wonder about another

optimization. Namely, with MSC once one has colored a geometric group one

may get a slight improvement in the approximation guarantee by optimally

ordering the colors so that larger color classes are finished earlier. However,

17



this optimization does not work in our setting since we are concerned with

the completion times of bundles and reordering color classes within a group’s

coloring may not a↵ect the completion time of a bundle.

We let q > 1 be a constant. It turns out the optimal setting for q in

our algorithm is just e, the base of the natural logarithm. We leave q as an

unspecified constant for now and only set it at the point in the analysis where

it is apparent that this was the best choice of constant. The precise description

of our rounding technique is presented in Algorithm 1.

Algorithm 1: MSCB Scheduling

Compute an optimal solution (x, f) to (LP-MSCB).
Set ⌧v to the smallest integer such that

P
t⌧v

xv,t � 1/2 for each v 2 V .
Sample ↵ ⇠ [0, 1) uniformly.
Let Uj = {v 2 V : bqj�1+↵c < ⌧v  bqj+↵c} for 0  j  logq n.
for each Uj in increasing order of j do

Schedule all jobs in Uj within the next 2 · bqj+↵c unused time steps. {See
Claim 1}

2.4 Analysis

Recall the sets Uj described in Algorithm 1.

Claim 1. For each j, the jobs in Uj can be scheduled without any conflicts

using at most 2 · qj+↵ time steps.

Proof. We claim the size of the largest clique contained in Uj is at most 2·qj+↵.

If so, then we can properly color all of Uj using at most 2 · qj+↵ colors because

interval graphs are perfect.

First, consider any v 2 Uj and say v 2 Vk. Then ⌧(v)  f̂k  qj+↵, so

X

tqj+↵

xv,t �
X

t⌧(v)

xv,t �
1

2
.

Now consider any point i 2 {1, 2, . . . , 2 · n} on the interval, our goal is to

show |Uj \ Ci|  2 · qj+↵. Letting Xi,j :=
P

v2Uj\Ci

P
tqj+↵ xv,t, summing the

above bound over v 2 |Uj \ Ci| shows Xi,j � |Uj \ Ci|/2.

18



On the other hand, by the LP constraints we also have

Xi,j =
X

tqj+↵

X

v2Uj\Ci

xv,t 
X

tqj+↵

X

v2Ci

xv,t 
X

tqj+↵

1 = qj+↵.

From these two bounds on Xi,j we have |Uj\Ci|/2  Xi,j  qj+↵ so |Uj\Ci| 
2 · qj+↵.

Finally, consider any clique C ✓ Uj. Any clique of G is contained in a

clique of the form Ci so C ✓ Uj \Ci. Thus, we have |C|  |Uj \Ci|  2 · qj+↵,

that is the bound holds for all cliques C ✓ Uj.

Next, we show each bundle k finishes within time O(f̂k). Fix any such

bundle k and pick any vk 2 Vk with ⌧vk = f̂k. For any value ↵ sampled

by the algorithm, the completion time of bundle k is upper bounded by the

completion time of all jobs in the bundle Uj that contains vk. This is because

no job of Vk will be placed in a bundle Uj0 having j0 > j and because we

concatenated the schedules for the various buckets in increasing order of j.

Since 0  ↵  1 then there is some integer jk such that vk 2 Ujk�1 or

k 2 Ujk , depending on the value of ↵. The breaking point between these two

events occurs at ↵ = logq f̂k � (jk � 1). Letting T↵ be the quantity 2 · qj+↵ for

the group j 2 {jk � 1, jk} that vk is assigned to for a given ↵, we have:

T↵ 
(
2 · qjk�1+↵ k 2 Ujk�1

2 · qjk+↵ k 2 Ujk

Since we concatenate the schedules for the groups Uj in increasing order of

index j and each group Uj is completed by time 2 · qj+↵ (Claim 1), then for

any j each job in Uj will be completed by time
Pj

j0=1 2 · qj0+↵  2·q
q�1 · qj+↵.

Therefore we have

E↵⇠[0,1)[T↵] =

Z 1

0

T↵ d↵

=
2 · q
q � 1

·
 Z logq f̂k�(jk�1)

0

qjk+↵ d↵ +

Z 1

logq f̂k�(jk�1)

qjk�1+↵ d↵

!

=
2 · q
q � 1

·
 
qjk+↵

ln q

����
logq f̂k�(jk�1)

0

+
qjk�1+↵

ln q

����
1

logq f̂k�(jk�1)

!

=
2 · q
ln q

· ⌧vk =
2 · q
ln q

· f̂k

19



At this point, we see the optimal choice of q is e ⇡ 2.717, the base of the

natural logarithm. Setting q to e yields

E↵⇠[0,1)[T↵] =
2 · q
ln q

· f̂k = 2 · e · f̂k

We complete the proof by bounding fk by O(f̂k). Recalling
P

t�⌧vk
xvk,t �

1/2, we see

fk �
X

t

t · xvk,t �
X

t�⌧vk

t · xvk,t � ⌧v ·
X

t�⌧vk

xvk,t �
⌧vk
2

=
f̂k
2

To put this all together, by Claim 1 the completion time of a bundle k is at

most T↵. In expectation over the random choice of ↵, this is at most 2 · e · f̂k.
Finally, from the bound directly above we see the expected completion time of

a bundle is then at most 4 · e · fk. Thus, the expected total completion time of

all bundles is at most 4 ·e  10.874 times the optimum value of (LP-MSCB).

2.5 Extensions

Perfect Graphs

The only change to the LP is that the second collection of constraints is re-

placed by the following more general constraints:

X

v2C

xv,t  1 8 t, 8 cliques C of G (2.1)

In general, there are exponentially many cliques (and even exponentially-many

maximal cliques) in a perfect graph. Still, these constraints can be separated

in polynomial time for perfect graphs (Theorem 67.6 in [29]) meaning the LP

can still be solved optimally in polynomial time using the Ellipsoid method

[15].

The rest of the proof carries through essentially without modification: the

size of a maximum clique in Uj is still bounded to be at most 2 · qj+↵. That

is, let C ✓ Uj be a clique. Since each v 2 Uj has ⌧v  bqj+↵c then

X

v2C

X

tqj+↵

xv,t �
X

v2C

1

2
= |C|/2.

20



On the other hand, by the more general clique constraints (2.1) we have

X

tqj+↵

X

v2C

xv,t 
X

tqj+↵

1  qj+↵.

Since G is perfect, then by definition Uj can be colored using at most 2 · qj+↵

colors and such a coloring can be done in polynomial time (Corollary 67.2c[29]).

The rest of the analysis is unchanged, thus the full form of Theorem 1 is proven.

Derandomizing

It is simple to e�ciently derandomize our approach. We simply list all break

points ↵ of the form logq f̂k � (jk � 1) over all bundles k and try all ↵ between

these break points. Our algorithm is deterministic once ↵ is given and these

break points are the only values of ↵ where the behavior of the algorithm

changes. Taking the best solution found over all such ↵ is surely no worse

than the expected cost of the returned solution when choosing ↵ randomly

Chromatic Number Upper-bounded by � times the maximum clique

size

As established in Corollary 1, specific graph classes exhibit a chromatic number

upper-bounded by a factor of � times the maximum clique size. Recalling our

prior demonstration in Claim 1, the maximum clique size within a graph Uj

is bounded to at most 2 · qj+↵. Perfect graphs necessitate this exact number

of colors for coloring Uj. In contrast, in these specific graph classes, at most

� times more colors are needed for Uj. Thus, a maximum of 2 · � · qj+↵

colors su�ce. The rest of the analysis is similar to 2.4. Consequently, the

approximation factor increases by a factor of � to become � · 10.874.

Extensions to Other Graph Classes

For Corollary 1, the assumptions mean we can approximately separate the

clique constraints
P

v2C xv,t  1 in polynomial time ultimately leading to an

e�cient algorithm that finds an LP solution with cost at most OPT where

all constraints hold except perhaps these new clique constraints. Instead, we

21



would have
P

v2C xv,t  c where c is the approximation factor of computing a

maximum-weight clique in G.

Using the approximate separation oracle for the maximum-weight clique

problem, we can obtain a solution to the relaxed linear program (LP) with

a cost that does not exceed OPT, while only approximately satisfying the

clique constraints. This use of the approximate separation oracle has been

extensively demonstrated in the literature. For example, refer to Lemma 30

in [13].

The approximate relationship between maximum cliques and the chromatic

number of graphs satisfying the assumptions of Corollary 1 allow us to conclude

Uj can be colored with at most c0 · qj+↵ colors where c0 is also a constant.

Carrying this term through the rest of the analysis shows the algorithm is an

O(1)-approximation.

Release Time

Many real-world job scheduling scenarios involve jobs that have dependencies

or are not available for processing until a specific time. This section addresses

how our algorithm incorporates release times for jobs.

Let rv be the release time of job v 2 V . With this new property, we add

a new constraint to our LP-MSCB. This constraint makes sure that no job

can be processed before its release time.

xv,t = 0 8 v 2 V, 0  t < r

In Algorithm 1, each job v was assigned to Uj if bqj�1+↵c < ⌧v  bqj+↵c,
This approach could potentially schedule a job before its release. This can

occur when a job v has ej�1+↵ < rv and ⌧v  ej+↵. The worst case scenario

happens when rv = ej+↵ and the algorithm schedules it at time step 2·ej�1+↵+1

(remembering the maximum clique size is bounded by 2 ·ej+↵). Then, we have

a problem when

2 · ej�1+↵ + 1 < ej+↵

22



Solving this inequality reveals that only when j  1.331 can a job poten-

tially be scheduled before its release time. Since j must be an integer, the only

problematic case is j = 1.

Therefore, we propose a simple modification: we simply ignore j = 1 and

schedule all jobs from j � 2. This exclusion is negligible. If the algorithm

could schedule a set of bundles with small j values, then ignoring only j = 1

will not cause the approximation factor to exceed 10.874. In other cases, the

impact on the factor will be negligible.

23



Chapter 3

MSCB with Task Concurrencies

Recall in MSCB-TC, the bundles form a partition V1, . . . , Vp of P and for

each bundle k we have a bound dk on the number of jobs in Vk that can

be scheduled at any single time. This models settings where clients can only

deliver/retrieve a bounded number of their jobs at any single time. Also, recall

that we assume G is a chordal graph.

The new algorithm starts with (LP-MSCB) except the cliques Ci used

to define the constraints are the polynomially-many maximal cliques of G [14]

(which can be enumerated in polynomial time) and two additional classes of

constraints are added. First, for any bundle 1  k  p and any time t we add

the constraints
X

v2Vk

xv,t  dk.

That is, at any given time a maximum of dk jobs for bundle k can be processed.

We call these concurrency constraints. Next, For any bundle 1  k  p we

add the constraints

fk � d|Vk|/dke

which enforces the trivial lower bound that d|Vk|/dke time steps are required to

finish bundle k even if we processed dk of its jobs per step. Note, without this

bound the LP could cheat in the following way: if dk = 1 and Vk = {v1, . . . , vm}
we could set xvi,t = 1/m for all 1  i  m and 1  t  m which would permit

us to set fk = (m + 1)/2 whereas an integer solution would clearly require

fk � m.

24



For the rest of this section, by “schedule” we mean a proper coloring of G

with the additional constraint that for any bundle k and any time t we have

at most dk jobs in Vk being colored with t.

We need to make some minor modifications to the algorithm. First, we

now define f̂k := max{d|Vk|/dke,maxv2Vk
⌧v}. Next, we change Uj to be

Uj = {k : bqj�1+↵c < f̂k  bqj+↵c}.

Finally, when we color Uj, we will ensure that the new concurrency constraints

are satisfied with this coloring. The following structural result enables us to

do this while limiting the loss in the final approximation guarantee. Here, we

are letting �(G) denote the chromatic number of G.

Lemma 2. Let G = (V,E) be a chordal graph whose vertices are partitioned

as V1, . . . , Vp. Further, for each 1  k  p let dk � 1 be an integer. In

polynomial time, we can compute a proper coloring of G using at most �(G)+

maxk
l
|Vk|
dk

m
� 1 colors such that for each 1  k  p, no color appears more

than dk times among nodes in Vk.

Proof. Recall that a graph is a chordal graph if and only if it has a perfect

elimination ordering, i.e. an ordering v1, v2, . . . , vn such that for each 1  j 
n, the left-neighborhood N`(vj) = {i < j : vivj 2 E} of each node is a clique

and that this ordering can be computed in linear time [14].

To compute the coloring we need, process the nodes vi in this order. When

coloring vi, we simply avoid using a color already assigned to a node in N`(vi)

or already assigned to dk nodes in the same part Vk as vi. This can be done if

we allow �(G) + maxk
l
|Vk|
dk

m
� 1 colors.

We briefly remark that Lemma 2 is tight even for interval graphs where dk =

1 for all Vk. Consider the case where V1 consists ofm jobs whose corresponding

intervals are [1, 2], [3, 4], [5, 6], . . . , [2m� 1, 2m] and V2, . . . , Vp each consists of

a single job whose corresponding interval is [1, 2m]. Figure 3.1 depicts this

interval graph. The chromatic number is exactly p but no two jobs can receive

the same color since the only non-intersecting pairs of intervals have their

25



Figure 3.1: Tightness of Lemma 2 for Interval Graphs.

corresponding jobs in the same bundle V1. Therefore, |V1|+ |V2|+ . . .+ |Vp| =
p+m� 1 colors are required.

Towards coloring Uj, we define Vj = {k : Vk \ Uj} 6= ; to be all bundles

having some job in Uj and then we let Sj = maxk2Vj d|Vk \ Uj|/dke. Since

d|Vk \ Uj|/dke is a lower bound on the time required to finish all jobs Vk \ Uj

due to the task concurrency constraint for bundle k, we have that Sj is another

lower bound for the time needed to complete all jobs in the set Uj. The new

LP constraints help assert this lower bound as well.

Lemma 3. For each group j, Sj  qj+↵.

Proof. This is demonstrated by leveraging the additional constraint incorpo-

rated into our LP. For every k 2 Vj, we know that |Vk|
dk

 f̂k. Furthermore,

based on the new definition of Uj it is clear that f̂k  qj+↵. Consequently, |Vk|
dk

is less than equal to qj+↵, implying |Vk \ Uj|  qj+↵ · dk. Therefore, it follows
that Sj  qj+↵.

As with the MSCB approximation, the maximum clique size in Uj is at

most 2 · qj+↵. Further, we have just shown |Vk \Uj|  qj+↵ · dk for any k 2 Vj.

So Lemma 2 means there is a proper coloring of Uj using at most 3 ·qj+↵ colors

such that no bundle in Vk has more than dk jobs colored with the same color.

The rest of the analysis is similar to the analysis of the algorithm for

MSCB except the approximation ratio has changed since we used 3 · q↵+j

26



colors instead of 2 · q↵+j colors to color each Uj. Thus, it is a 6 · e  16.31-

approximation.

Corollary 2 essentially follows by how Corollary 1 followed from Theorem 1

but using a more general form of Lemma 2. Namely, if there is an ordering of

the nodes v1, v2, . . . , vn such that the left-neighborhood N`(vi) = {vj : vivj 2
E, j < i} of any node vi can be covered with R = O(1) cliques then we can

find a proper coloring of G using at most R · �(G) + maxkb|Vk|/dkc colors by

picking the lowest available color not appearing in the left-neighborhood of vi

that is also not used dk times in the part Vk with vi.

3.1 Extensions

Chromatic Number Upper-bounded by � times the maximum clique

size

In Section 2.5, we demonstrated the applicability of our MSCB algorithm to

graphs where the chromatic number is bounded by the maximum clique size

times a constant �. Here, we extend this analysis to explore the MSCB-TC

algorithm’s performance for this specific graph class.

Corollary 2 essentially follows by how Corollary 1 followed from Theorem

1 but using a more general form of Lemma 2. Recall from Section 3 that

the MSCB-TC algorithm requires a perfect elimination ordering for vertex

coloring. We employ the same strategy for these graphs, but with a new

ordering criterion. Specifically, if an ordering v1, v2, . . . , vn exists such that for

any vertex vi, its left neighborhood N`(vi) = {vj : vivj 2 E, j < i} can be

covered by at most � cliques, then the MSCB-TC algorithm is applicable.

Similar to chordal graphs, when coloring vertex vi we avoid colors assigned to

vertices in N`(vi) or to dk vertices already in the same part Vk as vi. This is

achievable if we allow a maximum of � · �(G) + maxk
l
|Vk|
dk

m
� 1 colors.

The analysis from Section 3 is directly applicable here. We can establish

that � · �(G) is upper bounded by � · 2 · qj+↵ and
l
|Vk|
dk

m
is upper bounded by

qj+↵. Consequently, coloring any set Uj requires at most (2 ·�+1) ·qj+↵ colors.

27



This translates to a constant-factor approximation ratio of (4 · � + 2) · e.

Release Time with Task Concurrency Limit

Building on the concept of release times introduced in Section 2.5, this section

explores how it interacts with the task concurrency limit.

We incorporate the same release time constraint from Section 2.5 into the

analysis here. However, one key di↵erence exists: bundles here are partitions.

This means all jobs within a bundle are assigned to Uj if bqj�1+↵c < f̂k 
bqj+↵c.

As in the previous section, the potential issue arises when a job v in Vk

has a release time rv greater than ej�1+↵ and its f̂k  ej+↵. The remaining

analysis for this scenario remains identical to Section 2.5.

3.2 MSCB-TC in Perfect Graphs - A Barrier

Lemma 2 fails to hold in perfect graphs even within any constant factor. That

is, it may require ⇥(
p
n) · max{�(G),maxk |Vk|/dk} colors to even if dk = 1

for all k. Consider the following simple example on n = N2 nodes for some

integer N . The graph GN = (V,E) is partitioned into sets V1, . . . , VN and

each Vk has exactly N nodes. We have an edge between any pair of nodes in

di↵erent parts, but each part is an independent set.

It is easy to see such graphs are perfect. More generally, a graph that

is partitioned into b nonempty independent sets and has all possible edges

between these parts has chromatic number b and maximum clique size b (pick

one node from each part). Since any induced subgraph of our graph GN is of

this form, then GN is also perfect.

But any coloring satisfying task concurrency limits of dk = 1 for all parts

must in fact use n colors. Two nodes in di↵erent parts cannot receive the same

color because they are connected by an edge and two nodes in the same part

cannot receive the same color because the task concurrency limit is 1. Yet,

�(G) = N =
p
n and the maximum size of a part is also N =

p
n.

Still, this is the worst case. The following variation of Lemma 2 leads to

28



an O(
p
n)-approximation for MSCB-TC in perfect graphs.

Lemma 4. Let G = (V,E) be a graph whose vertices are partitioned as

V1, . . . , Vp. Further, for each 1  k  p let dk � 1 be an integer. There

is a proper coloring of G using at most
p
n · max

n
�(G),maxk

l
|Vk|
dk

mo
colors

such that for each 1  k  p, no color appears more than dk times among

nodes in Vk. Such a coloring can be computed in polynomial time if G can be

optimally colored in polynomial time.

Proof. If maxkd|Vk|/dke �
p
n, then the trivial n-coloring (i.e. all nodes get

di↵erent colors) su�ces. Otherwise, consider a proper coloring � : V !
{1, 2, . . . ,�(G)} of G. Order the nodes vk1 , v

k
2 , . . . , v

k
|Vk| arbitrarily in each part

Vk.

Recolor a vertex vki with the pair (�(vki ), bi/dkc). Clearly, this is a proper

coloring since the first components of the new colors of nodes will di↵er on any

edge ofG. Further, at most dk nodes in Vk will have the same second part of the

pair describing their color. The number of colors used is �(G)·maxkd|Vk|/dke 
�(G) ·

p
n, as required.

Finally, this can be done in polynomial time if we can compute a coloring

of G with �(G) colors in polynomial time.

Using this in place of Lemma 2 yields anO(
p
n)-approximation forMSCB-

TC in perfect graphs. This proves Theorem 3.

29



Chapter 4

Conclusion

We have given the first constant-factor approximations for MSCB in a large

variety of graph classes including perfect graphs and unit-disc graphs. Our

techniques extend to give the first constant-factor approximations for MSCB-

TC in certain graphs like chordal graphs, interval graphs, and unit-disc graphs.

It would be interesting to see what other graph classes admit constant-

factor approximations for MSCB and, perhaps, also for MSCB-TC. Per-

haps it is possible to design a constant-factor approximation for MSCB-TC

in perfect graphs. Another interesting direction would be to get a purely com-

binatorial constant-factor approximation for MSCB in certain graph classes,

i.e. one that avoids solving a linear program. Such algorithms exist for MSC

in many cases, e.g. [2], [17]. One barrier is that it seems hard to approximate

the maximum number of bundles that can be completed in a given number

of time steps even in simple graph classes like interval graphs (Lemma 1).

Perhaps a bicriteria approximation could be designed to circumvent this hard-

ness, it would immediately lead to an O(1)-approximation through standard

minimum latency arguments.

30



References

[1] S. Ahmadi, S. Khuller, M. Purohit, and S. Yang, “On scheduling coflows
- (extended abstract),” in Proceedings of 19th Conference on Integer
Programming and Combinatorial Optimization (IPCO), 2017, pp. 13–
24.

[2] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir,
“On chromatic sums and distributed resource allocation,” Information
and Computation, vol. 140, no. 2, pp. 183–202, 1998.

[3] A. Bar-Noy and G. Kortsarz, “The minimum color-sum of bipartite
graphs,” Journal of Algorithms, vol. 28, no. 2, pp. 339–365, 1998.

[4] B. K. Bhattacharya and D. Kaller, “An O(m+n log n) algorithm for the
maximum-clique problem in circular-arc graphs,” Journal of Algorithms,
vol. 25, no. 2, pp. 336–358, 1997.

[5] A. Borodin, I. Ivan, Y. Ye, and B. Zimny, “On sum coloring and sum
multi-coloring for restricted families of graphs,” Theoretical Computer
Science, vol. 418, no. 2, pp. 183–202, 2012.

[6] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,”
Discrete Mathematics, vol. 86, no. 1, pp. 165–177, 1990. doi: https:
//doi.org/10.1016/0012-365X(90)90358-O.

[7] I. DeHaan and Z. Friggstad, “Approximate minimum sum colorings and
maximum k-colorable subgraphs of chordal graphs,” in Algorithms and
Data Structures Symposium (WADS), 2023, pp. 326–339.

[8] I. DeHaan and Z. Friggstad, “Approximate minimum sum colorings and
maximum k-colorable subgraphs of chordal graphs,” ASpringer, Cham,
vol. 14079, 2023.

[9] U. Feige, “Approximating maximum clique by removing subgraphs,”
SIAM Journal on Discrete Mathematics, vol. 18, no. 2, pp. 219–225,
2004.

[10] U. Feige and J. Kilian, “Zero knowledge and the chromatic number,”
Journal of Computer and System Sciences, vol. 57, no. 2, pp. 187–199,
1998.

31

https://doi.org/https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/https://doi.org/10.1016/0012-365X(90)90358-O


[11] T. Fukunaga, “Integrality gap of time-indexed linear programming re-
laxation for coflow scheduling,” in In Proceedings of Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques(APPROX), vol. 245, 2022, 36:1–36:13.

[12] R. Gandhi, M. M. Halldórsson, G. Kortsarz, and H. Shachnai, “Improved
bounds for sum multicoloring and scheduling dependent jobs with min-
sum criteria,” in Approximation and Online Algorithms, 2005, pp. 68–
82.

[13] A. Ganesh, B. Maggs, and D. Panigrahi, “Universal algorithms for clus-
tering problems,” ACM Transactions on Algorithms, vol. 19, no. 15,
pp. 1–46, 2023.

[14] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Aca-
demic Press, 1980.

[15] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and
Combinatorial Optimization. Springer Berlin, Heidelberg, 1993.

[16] M. M. Halldórsson and G. Kortsarz, “Algorithms for chromatic sums,
multicoloring, and scheduling dependent jobs,” in Handbook of Approxi-
mation Algorithms and Metaheuristics, Second Edition, Volume 1: Metholo-
gies and Traditional Applications, Chapman and Hall/CRC, 2018, pp. 671–
684.

[17] M. M. Halldórsson, G. Kortsarz, and H. Shachnai, “Sum coloring interval
and k-claw free graphs with application to scheduling dependent jobs,”
Algorithmica, vol. 37, pp. 187–209, 2003.

[18] M. Halldórsson and G. Kortsarz, “Tools for multicoloring with appli-
cations to planar graphs and partial k-trees,” Journal of Algorithms,
vol. 42, no. 2, pp. 334–366, 2002.

[19] M. Halldórsson, G. Kortsarz, and M. Sviridenko, “Sum edge coloring of
multigraphs via configuration lp,” ACM Trans. Algorithms, vol. 7, no. 2,
pp. 1–21, 2011.

[20] P. E. Haxell, “A condition for matchability in hypergraphs,” Graphs and
Combinatorics, vol. 11, pp. 245–248, 1995.

[21] S. Im, B. Moseley, K. Pruhs, and M. Purohit, “Matroid Coflow Schedul-
ing,” in 46th International Colloquium on Automata, Languages, and
Programming (ICALP), vol. 132, 2019, 145:1–145:13.

[22] K. Jansen, “The optimum cost chromatic partition problem,” in Proceed-
ings of Third Italian Conference on Algorithms and Complexity (CIAC
’97), vol. 40, pp. 25–36, 1997.

[23] E. Kubicka, “The chromatic sum and e�cient tree algorithms,” Ph.D.
dissertation, Western Michigan University, 1989.

32



[24] M. Malafiejski, K. Giaro, R. Janczewski, and M. Kubale, “Sum coloring
of bipartite graphs with bounded degree,” Algorithmica, vol. 40, pp. 235–
244, 2004.

[25] D. Marx, “A short proof of the np-completeness of minimum sum interval
coloring,” Operations Research Letters, vol. 33, no. 5, p. 382, 2005.

[26] J. Oxley, Matroid Theory. Oxford University Press, 2006.

[27] M. J. P. Peeters, “On coloring j-unit sphere graphs,” Tilburg University,
School of Economics and Management, Research Memorandum FEW
512, 1991.

[28] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted com-
pletion time of coflows in datacenter networks,” in Proceedings of the
27th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2015, pp. 294–303.

[29] A. Schrijver, Combinatorial Optimization - Polyhedra and E�ciency.
Springer, 2003.

[30] M. Shafiee and J. Ghaderi, “An improved bound for minimizing the
total weighted completion time of coflows in datacenters,” IEEE/ACM
Transactions on Networking, vol. 26, no. 4, pp. 1674–1687, 2018.

[31] D. Zuckerman, “Linear degree extractors and the inapproximability of
max clique and chromatic number,” in Proc. of ACM Symposium on
Theory of Computing (STOC 2006), 2006, pp. 681–690.

33


	Introduction
	Results
	Preliminaries
	Approximation Algorithms
	Linear Programming
	Chordal Graphs
	Interval Graphs
	Perfect Graphs

	Related Work
	Organization

	Approximating MSCB in Perfect Graphs
	Challenges
	Algorithm
	Rounding Algorithm
	Analysis
	Extensions

	MSCB with Task Concurrencies
	Extensions
	MSCB-TC in Perfect Graphs - A Barrier

	Conclusion
	References

