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Abstract

Gliomas, tumours arising from the glial cells of the nervous system, are

some of the most difficult tumours to treat. In particular, glioblastoma are

a particularly aggressive glioma subtype carrying a life expectancy of only 14

months. Typically, treatment combines surgery, radiation and chemotherapy

where a key component of treatment planning is determining an appropriate

treatment region over which to administer radiation therapy. Because gliomas

are diffuse, only the main tumour mass shows up using imaging, while many

undetectable cancer cells infiltrate the surrounding brain tissue. To account for

this, treatment regions typically extend the visible tumour mass by a uniform

2 cm margin. We propose that a mathematical model for glioma cell density

could help by modelling the spread of cancer cells and contribute to treatment

plans that target the largest densities of these undetectable cells.

In this thesis, we focus on the Painter-Hillen model for glioma spread,

which uses anisotropic diffusion, allowing the rate of spread of the cells to

vary with direction. This is meant to simulate the biological phenomenon

where cancer cells spread preferentially along the fibrous white matter tracts

within the brain, resulting in tumours having irregular shapes and projections.

We establish the utility of this model by implementing it using data from

ten patients, in both two and three dimensions. For comparison, a previous
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isotropic glioma model, the Swanson model, is used, as it has been applied

successfully in a clinical setting. The results of our simulations indicate that

the inclusion of anisotropy offers an advantage over the previous model.

Finally, we develop two extensions to the Painter-Hillen model. In Chap-

ter 6, we explore the derivation of a “mass effect” model, using a multiphase

model framework. The mass effect model includes the forces induced by the

growing mass, introducing a mechanical component to the model. This ef-

fect becomes important where a tumour is growing in close proximity to the

skull, where the growth in this direction will be impeded by the pressure gen-

erated by the increased density. In Chapter 7, we discuss an extension of the

Painter-Hillen model, using a transport model framework. The generalization

considered allows the turning rate to vary with the direction that a cell is

travelling in relation to the underlying structure, since a cell travelling along

a fibre will turn less frequently than one travelling perpendicularly. Both of

these model extensions have potential for further exploration.
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“First thing we’d climb a tree,

and maybe then we’d talk,

or sit silently,

and listen to our thoughts.

With illusions of someday,

cast in a golden light,

no dress rehearsal,

this is our life.”

- Gordon Downie
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Chapter 1

Introduction

Cancer is a growing problem of our modern world, as average life expectan-

cies grow. As a result, the need for new solutions and improved treatment

methods is ever increasing. With the vast number of genetic and environmen-

tal causes, as well as the different organs that can be affected, it has become

generally accepted that cancer is not one disease. In fact, it is recognized

that there are more than 100 distinct types of disease. Additionally, different

types of tumours can even be found within the same organ among different

patients [1]. Unfortunately, this heterogeneity makes treatment difficult. Can-

cer treatments typically include a combination of surgery, radiotherapy, and

chemotherapy. While improvements are being made in the treatment of some

cancers, the prognosis for others remains poor. For example, stage lV breast

cancer has a five year survival rate of 22 % [2], the most common type of

prostate cancer has a five year survival of nearly 100 % [3], while glioblas-

toma (an aggressive brain cancer), on which we focus here, carries a five year

survival rate of only 6 % [4].

With such a grim outlook, there remains much room for improvement in

1



Chapter 1. Introduction

the treatment of gliomas. Many scientists focus on understanding the genetic

alterations that cause these tumours to grow, and this certainly offers the

potential for developing new therapeutic targets. However, in this work, we

focus more on the mesoscopic (cell-level) properties of glioma cells. We will

extend the work of Painter and Hillen [5], where a mathematical model was

derived describing how a glioma mass grows, based on the characteristics of the

individual cells and their movement. The main idea behind the Painter-Hillen

model [5] is that the cells use the fibre structure of the brain to advise their

movement, and this information is incorporated into a mathematical model

to mimic how the cells move. The purpose of such a model is to predict the

cancer cell density at each location within a patient’s brain. This information

can give clinicians an additional tool in treatment planning for radiotherapy.

Gliomas are known to be very diffuse in nature, with some cells spreading

far from the primary tumour mass. Standard imaging modalities such as

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are

only able to detect the bulk tumour mass, however it is known that the cancer

cells have invaded well beyond this boundary. As such, clinicians treat outside

the tumour, usually in a uniform 2 cm extension beyond what is radiologically

visible. The goal of the Painter-Hillen model [5] then is to indicate where more

invasion has occured, and where less invasion has occurred, so that the tissue

containing the highest concentration of cancer cells more intensively, while the

potential damage to healthy tissue can be reduced.

Many attempts at modelling glioma have been made, and the models are

becoming more detailed with every iteration. The pioneering paper for this

field of modelling was Swanson et al. [6]. They developed a model for glioma

spread based on a diffusion model, incorporating the spatial homogeneity of

the brain in the form of grey and white matter. Subsequent modelling attempts

2



Chapter 1. Introduction

have been made by groups such as Jbabdi et al. [7], Clatz et al. [8], Konukoglu

et al. [9], Hogea et al. [10], Bondiau et al. [11], Mosayebi et al. [12], Painter and

Hillen [5], and Engwer et al. [13]. These models have worked to incorporate

more and more of the biological details, and will be discussed in more depth

later in this Chapter. As a whole, the aim of all of these modelling attempts is

to develop models to be clinically useful and to improve treatment outcomes.

The main focus of this thesis will be the application of the Painter-Hillen

model to real patient data. We will use it to simulate tumours using data from

patients, and compare the simulated tumours to the actual tumour boundaries.

We will compare these results to those of simulations from the Swanson model,

showing that the Painter-Hillen model offers improvement. The Painter-Hillen

model will then be used to show how treatment regions can be determined,

and to demonstrate expected regrowth following treatment.

As an aside to this exploration, we develop a generalization of the Painter-

Hillen model using a similar transport equation framework. This model is

based on the idea that cells moving in the brain do not turn with a constant

rate, but rather with a rate that depends on the direction they are travelling

relative to the fibres of the brain. While this particular model will not be

applied further in this thesis, it offers the potential for future development.

Additionally, we will derive a second extension to the original Painter-Hillen

model incorporating mechanical properties of the tissue. While the Painter-

Hillen model extends earlier models by incorporating information about the

brain’s fibre network, it does not account for pressure generated by the growing

tumour mass. In the final chapters, we consider how this effect may be included

using a continuum mechanical framework. This work as a whole is highly

interdisciplinary, with collaborators from computer science, radiation oncology,

and physics.

3



Chapter 1. Introduction

In the remainder of this chapter, we will discuss some of the biological

ideas behind mathematical models of glioma in more detail. Specifically, in

Section 1.1.1 we will describe both the origin and treatment of gliomas. In

Sections 1.1.2 and 1.1.3 we will introduce the idea of anisotropic diffusion and

the mathematical objects we use to quantify it. We will then outline some

important imaging modalities that play an important role in the diagnosis

and treatment of gliomas in Sections 1.1.4 and 1.1.5. Finally, in Sections 1.2.1-

1.2.3 we will describe the current treatment protocol for gliomas as well as the

current field of established work in the mathematical modelling of gliomas.

1.1 Biological Background

1.1.1 Gliomas

In order to understand the terminology describing the various tumours that

can arise in the brain and nervous system, it is important to first be familiar

with the different cells from which these neoplasms arise [14]. In this work,

we focus on gliomas, and typically we will focus on an aggressive subtype of

glioma, Glioblastoma Multiforme, or GBM. Gliomas are so named because

they arise from the glial cells of the central nervous system. Glial cells are

those cells that surround the nerve cells, providing the support necessary for

proper functioning. There are three types of glial cell of particular importance:

astrocytes, oligodendrocytes, and ependymal cells [14].

Astrocytes are the most numerous of the glial cells, and provide essential

nutrients and support to the nerve cells, as well as maintaining the extracel-

lular environment [15]. Following anaplastic transformation, astrocytes may

develop into either astrocytomas, or to primary GBMs. In the case where low
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grade astrocytomas develop, these will typically progress to (secondary) GBMs

eventually [14]. Secondary GBMs tend to occur in those under 45, and make

up only about 10 % of all GBMs. The other 90 % occur as primary tumours,

without progressing slowly from lower grade lesions [16]. Oligodendrocytes

make up the myelin sheath surrounding the axons of the neurons, serving to

both protect the axon, and improve the signal transmission. Oligodendrocytes

may develop into oligodendrogliomas [15]. Finally, ependymal cells form the

lining of the regions of the central nervous system (CNS) that contain cere-

brospinal fluid (CSF). These cells, when mutated, can lead to ependyomas, or

subependyomas [15].

GBMs are the most aggressive, most deadly, and most difficult to treat of

the different types of gliomas. Figure 2.1 shows both a macroscopic (left) and

microscopic (right) view of a GBM from a 57-year old woman. The yellow areas

in the macroscopic view represent necrotic tissue, whereas the grey areas are

active tumour tissue. The microscopic view displays the heterogeneous nature

of these tumours, even on a fine spatial scale.

In determining a treatment plan for such tumours, histological grading is

a valuable tool used by diagnosticians [17]. A tumour’s grade classification

reveals how malignant the cells are, and roughly correlates to the prognosis.

This process is usually done by taking a tissue sample and observing the

microscopic properties of the cells.

Cancer cells are classified as grades I through IV, with IV denoting the

most invasive, and most frequently lethal neoplasms [17]. A grade I tumour

is defined as having “low proliferative potential”, and is often cured through

surgical removal alone [17]. Grade II refers to tumours that show low pro-

liferative activity, however are more infiltrative than grade I. These tumours

will tend to recur, and some will progress to grades III or IV malignancies.
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Figure 1.1: Glioblastoma. Macroscopic (left) and microscopic (right) images
of a GBM from a 57-year old woman. These images are taken from Figure 3 in
Kleihues et al. [14], where we have taken two of the original four panels. The
yellow tissue in the macroscopic image shows necrosis, while the grey tissue is
active tumour tissue. The microscopic image shows the heterogeneity of this
type of tumour even on a very fine spatial scale. It can be seen that some cells
maintain a certain degree of differentiation, while others do not.

Grade III tumours show a higher degree of malignancy than grade II, display-

ing “nuclear atypia and brisk mitotic activity” [17]. These tumours would

receive more aggressive treatment, typically incorporating radiotherapy and

chemotherapy in addition to surgical resection. Grade IV refers to the highest

degree of malignancy, and the most lethal disease. These cells are “cytologi-

cally malignant, mitotically active, necrosis-prone” and generally result in the

highest rate of recurrence [17]. The various types of gliomas, as well as their

respective grades are displayed in Table 1.1. Note that oligoastrocytic tumours

are “mixed” tumours, containing abnormal cells of both astrocytic and oligo-

dendrocytic origin [16]. Of particular interest here will be the highest grade,

rapidly growing tumours of astrocytic origin: glioblastoma, giant cell glioblas-

toma and gliosarcoma. Giant cell glioblastoma is a variant of GBM containing

giant cells, having many nuclei each [18]. It displays similar characteristic

to standard GBM, however does tend to occur in younger patients, having a
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median age of onset of 51 years compared to the standard 61 years. It is rela-

tively rare, accounting for between 2 % and 5 % of all GBMs [18]. Gliosarcoma

is also a relatively rare subtype of GBM containing cells of glial origin, but

also arising from the connective tissue (sarcoma) [19]. It too displays similar

characteristics of growth and survival to a standard GBM [19].

Astrocytic Tumours Grade
Subependymal giant cell astrocytoma 1
Pilocytic astrocytoma 1
Pilomyxoid astrocytoma 2
Diffuse astrocytoma 2
Pleomorphic xanthoastrocytoma 2
Anaplastic astrocytoma 3
Glioblastoma 4
Giant cell glioblastoma 4
Gliosarcoma 4
Oligodendroglial Tumours Grade
Oligodendroglioma 2
Anaplastic Oligodendroglioma 3
Oligoastrocytic Tumours Grade
Oligoastrocytoma 2
Anaplastic Oligoastrocytoma 3
Ependymal Tumours Grade
Subependymoma 1
Myxopapillary ependymoma 1
Ependymoma 2
Anaplastic ependymoma 3

Table 1.1: Summary of glioma types and their respective histological grade.
Modified from Louis et al. [17].

A discussion of gliomas wouldn’t be complete without acknowledging the

heterogeneity of the cell types within a particular tumour. In the discussion

of the mathematical models, we will refer only to “glioma cells”, or “cancer

cells”, however this is an oversimplification. Not all glioma cells are created
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equal, with the recent discovery of glioma stem cells giving researchers valu-

able information about a particularly important cell subtype. Cancer Stem

Cells, or CSCs exhibit characteristics common to normal tissue stem cells.

In particular, they are capable of regenerating a tumour [20]. In addition,

they are of great importance therapeutically as it is the CSCs that exhibit

the greatest resistance to therapy, and pose the biggest challenge to clinicians

treating cancer [20].

1.1.2 Anisotropic Diffusion

Mathematical modelling using Partial Differential Equations (PDE’s) uses re-

lationships between the rates of change in time and space to describe a vari-

able, in this case, cancer cell density. In developing these relationships, it is

important to understand the underlying biological mechanisms.

First and foremost, as with any cancer cells, cell division plays an important

role [1, 21]. This means that even without cell motility, a tumour will grow in

size as the number of cells increases. The second mechanism that we consider

in depth, is what we refer to as anisotropic diffusion. The mathematics behind

this phenomena will be discussed in detail in the next section, hence we focus

here on the biological implications.

The process of diffusion refers to a series of random movements of molecules

in a fluid, resulting in a net expansion that will be approximately uniform [22].

This is referred to as isotropic spread. For example, diffusion is the dominant

mechanism behind the spreading of a drop of food colouring in water. It

is inherently slow, and depends on the microscopic movements of the water

molecules. While the path of each individual particle will certainly not be

uniform, the average of the motion of all the particles will resemble uniform

8
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spread.

Of course, this type of spread is probably too simplistic for the spread

of cancer cells in a heterogeneous medium such as the human brain. The

brain is made up of two main types of matter: white matter, and grey matter.

White matter has a fibrous structure, consisting of the myelinated axons along

which nerve cells send signals and relatively few cell bodies. Conversely, grey

matter consists of the glial cells and nerve cell bodies, with a relatively low

concentration of both myelinated and unmyelinated axons. This difference in

composition causes white matter to appear white, and grey matter to appear

grey or yellow/pink [23, 24]. There is a growing body of evidence to indicate

that cancer cells will actually use the fibrous white matter tracts to migrate,

leading to spread that is decidedly not uniform [15, 25, 26]. Figure 1.2 shows

a diagram of this invasion. While this figure shows glioma cells travelling not

only along the white matter tracts, but also along the blood vessels, for our

purposes we focus on the former mechanism. It is this mechanism of spread

that can be approximated using Diffusion Tensor Imaging (DTI), as will be

discussed in the next subsection.

The tendency of cancer cells to follow white matter tracts results in an

apparent increased rate of spread along the direction aligned with the tract.

Mathematically, we model this by assigning a higher rate of spread in this

direction than in the perpendicular directions. The relative difference in rates

depends on where the cell is located within the brain, and can actually be

measured, as is discussed in the next subsection. A simple example is illus-

trated in Figure 1.3. Notice in particular that while isotropic spread leads to

a radially symmetric distribution, for anisotropic spread, an ellipsoid shape

results.
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Figure 1.2: Cell Motility. Representation of how glioma cells move along white
matter fibres in the brain. Image is modified from Gritsenko et al. [26] where
it appears as Figure 2.
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Figure 1.3: Isotropic and Anisotropic Diffusion. Isotropic (left) and anisotropic
(right) spread as simulated using Equation 1.1 in MatLab. The blue regions
represent low particle density, while the yellow areas represent high particle
density. The simulation was started in the centre of the distribution. The key
thing to notice is that for isotropic spread, the particles distribute themselves
radially symmetrically. For anisotropic spread, the particles spread out in an
ellipse shape, with more spread occurring along the y axis, which was assigned
a higher rate of spread.

11



Chapter 1. Introduction

1.1.3 Diffusion Tensors

In order to implement anisotropic diffusion in a mathematical model, we need

to have some information about the actual rates of spread within the brain.

Fortunately, the invention of Diffusion Tensor Imaging, or DTI, helps us to

estimate these biological parameters.

To understand DTI, it is first important to understand the diffusion tensor.

The brain is a three-dimensional object, and so at each location within the

brain, we must define the rates of spread in three dimensions. A scalar quantity

could do this if the rates in all directions were equal (isotropic). However, in

order to define a direction-dependent (anisotropic) rate of spread, we use a

second-order tensor, or a matrix. The entries in a diffusion tensor represent

the relative rates of spread in different directions.

The easiest way to interpret a tensor is through the principal directions,

and corresponding principal values. These are mathematically equivalent to

the eigenvectors and eigenvalues of a matrix. We can use two geometrical

representations of the diffusion tensor to better visualize the information con-

tained therein. We first consider these objects in the context of the standard

Fickian diffusion equation [5, 27, 28]

ut = ∇ · (D∇u) , (1.1)

where u represents some quantity, i.e., cell density in the context of cancer

spread, and D ∈ Rn×n is a given symmetric and positive definite matrix. This

equation has the fundamental solution

u(x, t) = C exp

(
− 1

4t
xTD−1x

)
,
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where C is a normalization coefficient, assuming the random walkers were

released at time t = 0 from x = 0. Then u(x, t) gives the probability of

finding a random walker at location x at time t. Considering vectors v ∈ Rn,

the level sets of vTD−1v thus give sets of equal probability in the shape of an

ellipsoid, referred to as the diffusion ellipsoid [5, 28]. The diffusion ellipsoid

associated with positive real number c is given by the set

Ec := {v ∈ R3 : vTD−1θ = c}. (1.2)

Because these ellipsoids will be geometrically similar for any value of c,

it is often chosen to be 1 for convenience [28]. For tensors in their diagonal

form, the ellipsoid can be represented via the principal values {λ1, λ2, λ3} of

the tensor:

E1 =

{
v ∈ R3 :

(
v1√
λ1

)2

+

(
v2√
λ2

)2

+

(
v3√
λ3

)2

= 1

}
.

We see that for this case, the diffusion ellipsoid will have semiaxes aligned

with the principal directions, whose lengths will be proportional to the square

roots of the eigenvalues [27, 28]. In fact, this is true for all diffusion ellipsoids,

not just those arising from diagonal tensors [22, 27].

The diffusion tensor can also be visualized via the diffusion peanut.

The diffusion peanut is obtained by plotting the apparent diffusion coefficient

(ADC), given by the map [5, 29]

θ 7→ ADCθ := θTDθ. (1.3)

Peanuts will have their axis aligned in the direction of highest diffusivity, and
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will be pinched in directions having lower diffusivity [5]. As an example, we

consider two diagonal diffusion tensors, D1 and D2, given by

D1 =


5 0 0

0 3 0

0 0 1

 , D2 =


8 0 0

0 1 0

0 0 0.2

 . (1.4)

The resulting ellipsoids and peanuts, as determined via Equations 1.2 and

1.3 respectively, are shown in Figure 1.4. Note that D1 produces an oblate

ellipsoid and peanut that is pinched in one direction, while D2 produces a

prolate ellipsoid and a peanut pinched in two directions. Note that for the

special case of an isotropic tensor, i.e., three equal principal values, both the

diffusion ellipsoid and the diffusion peanut will be spherical.

1.1.4 Magnetic Resonance Imaging

To understand the physical process of DTI, we first discuss Magnetic Reso-

nance Imaging, or MRI. This imaging modality is based upon applying strong

magnetic fields to a tissue in order to obtain a magnetic signal. It offers a

safety advantage over techniques such as X-ray computed tomography (CT)

scanning, in that no ionizing radiation is used. CT imaging uses radiation of a

high enough energy to ionize the atoms in the tissue, creating the possibility of

chemical changes to the cells and/or DNA of the patient. While there are risks

associated with applying a strong magnetic field to a patient as well, MRI is

generally considered to be safer than CT, and is capable of obtaining clearer

images [30]. In our discussion of MRI, we will often refer to the three planes

of the body: transverse (or axial), sagittal, and coronal. These three planes

are shown in Figure 1.5.
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Figure 1.4: Diffusion Ellipsoids and Peanuts. The diffusion ellipsoid (left) and
diffusion peanut (right) corresponding to D1 (top), and D2 (bottom). Note
that D1 produces a oblate ellipsoid while D2 produces an prolate ellipsoid.
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Figure 1.5: Axial, Sagittal and Coronal Planes. The three different planes
of the body: Transverse (or Axial), Sagittal and Coronal. Image taken from
Wikipedia [31].
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An MRI machine is a large piece of equipment consisting of a large tube,

called the bore, running through the main magnet. A table extends out from

the bore, on which a patient will lie and subsequently be slid inside the bore

[32]. MRI machines induce huge magnetic fields, on the order of 0.5–3.0 Tesla.

A Tesla is a unit of magnetic field strength equal to 10 000 Gauss. For refer-

ence, the earth’s magnetic field is around 0.5 Gauss, or 5× 10−5 Tesla [32]. In

order to induce this huge magnetic field, typically superconducting magnets

are used. A coil is wrapped around a cylinder (or bore) and electricity is run

through the coil. Due to the natural resistance of the coil, obtaining large

magnetic fields through this method alone is extremely expensive. To remedy

this, the coil is submerged in liquid helium at about –269 degrees celsius. This

reduces the resistance in the coil to almost 0, allowing for larger magnetic fields

to be created with less electricity [32]. This main magnet serves to create a

uniform, magnetic field along the axis of the cylinder, which by convention is

taken to be along the z axis: [30, 33]

Bz = B0,

where B = (Bx, By, Bz).

An example of an MRI machine is shown in Figure 1.6. Visible in this

image are the table that the patient lies on, the bore through which the table

slides for imaging, and the casing containing the superconducting magnet, as

well as the radio frequency coils and gradiant magnets (discussed below).

The principle behind MRI is the magnetic moment of hydrogen atoms. The

body contains many hydrogen atoms, for example in water and fat molecules

[33], making this element an ideal imaging target. Each hydrogen nucleus

has its own magnetic moment, because it is spinning and positively charged
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Figure 1.6: MRI Machine. Image of a Philips MRI machine. Visible in the
image are the table which the patient lies on, the bore through which the table
moves for imaging, and the casing containing the magnets. Image taken from
[34].
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[30]. Due to the random arrangement of these atoms in normal tissue, these

tiny magnetic fields usually cancel each other out on average. When an ex-

ternal magnetic field is introduced, however, the magnetic moments of the

nuclei will rotate, or precess, about an axis parallel to the magnetic field [30].

The frequency is termed the Larmor frequency, ω, and is proportional to the

magnitude of the external magnetic field strength:

ω = γB,

where γ is the nuclear magnetogyric ratio, and has a value of 2.67 × 108

Trad/s for the hydrogen nucleus [30, 33]. While their axes of precession will

be aligned with the direction of the magnetic field, the nuclei could be rotating

counterclockwise about the magnetic field direction (spin-up), or clockwise

(spin-down). While the magnetic moments of a spin-up and spin-down pair will

cancel, the numbers of each will not be exactly equal, creating a net magnetic

moment, represented by the net magnetization vector M . The reason for

this is energy. Both spin-up and spin-down states are quantum mechanically

stable, however the spin-down state requires slightly more energy to achieve,

thus more nuclei will end up in the spin-up state than the spin-down [30].

The term “resonance” then refers to the fact that the precessing hydrogen

nuclei will only absorb energy in the same frequency as the Larmor frequency.

For the magnitudes of magnetic fields used in MRI, this frequency falls within

the radio frequency (RF) range of the electromagnetic spectrum [30]. When

this energy is absorbed, the effect is that the net magnetization vector M

will move towards the xy plane. This is due to the absorption of energy

causing nuclei to switch to the spin-down state from spin-up [30]. The phases

of the precessing nuclei will also sync up, creating a component of the net
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Figure 1.7: Net Magnetization Vector. Figure showing the net magnetization
vector M , as well as its components.

magnetization vector in the xy plane that will precess about the z axis at the

Larmor frequency. This vector as well as the two relevant components are

shown in Figure 1.7.

Ultimately, MRI images are created by measuring the signal in the trans-

verse plane to the applied external magnetic field. The signal is measured by

RF coils, which also consist of wires wrapped around the central bore. RF

coils consist of receiver coils, which receive the signal, and transmission coils,

which transmit the RF pulse necessary for tilting the M vector. Images are

obtained by measuring the signals emitted following the administration of the

RF pulse.

Signals can be measured transversely (Mxy), or longitudinally (Mz), pro-

ducing different types of images [30]. These are described as follows:

T1-Relaxation
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We first consider the measurement of the Mz component of the net mag-

netic moment of a tissue. We assume that initially, M = Mz, since the preces-

sions will be out of phase and so Mxy = 0 initially. Because applying an RF

pulse causes the orientation of the M vector to change, the tissue will return

to its equilibrium following the administration of the pulse. In doing so, the

M vector will return to its original position [30]. Assuming that a 90 degree

RF pulse is administered (i.e. so that Mz=0 immediately following the pulse),

the magnitude of the Mz component will follow an exponential function:

Mz = M0

[
1− exp

(
− 1

T1

)]
.

Upon fitting this function to the Mz relaxation, termed longitudinal relaxation,

a characteristic T1 value can be obtained. This T1 value will be different for

different tissues [30].

T2-Relaxation

T2-relaxation, or transverse relaxation, is caused by a slightly different

phenomenon. Following the administration of the RF pulse, all nuclei spins

will be in phase, and Mxy will be at a maximum. As time passes, each nuclei

will return to their own phase dictated by their local environment, and the

vector sum of their magnetic moments will return to 0 [30]. This magnitude

can be modelled by a decaying exponential:

Mxy = M0

[
exp

(
− t

T2

)]
.

Again, different tissues will possess different characteristic T2 values, allow-

ing for distinction between them. While these signals can be measured, the

question remains: How do we match a signal to a specific location within a
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patient?

Spatial localization is achieved via the application of gradient magnetic

fields. In addition to the RF coils, there are gradient magnets that serve to

create a non-uniform magnetic field. These are much weaker than the main

magnet, having strengths varying between 180-270 Gauss, or 18-27 mT [32].

MRI machines have three sets of these gradient coils, one in the x, one in

the y and one in the z direction. As such, these gradients can be applied in

any direction [30]. For example, if a linear gradient field is applied in the x

direction, the magnetic field will be

Bz(x) = Bz0 +Gxx,

with corresponding Larmor frequency

ωx = ω0 + γGxx,

with ω0 the Larmor frequency associated with the superconducting magnet

field [33]. It is important to note that the direction of the magnetic field

remains in the z direction, with only the magnitude following a gradient. Ap-

plying a gradient magnetic field in the z-direction will cause each location in

z to precess with a different frequency. Applying an RF pulse in a small range

of frequencies (the bandwidth) will then select an axial slice of appropriate

thickness since only the nuclei precessing with the associated frequencies will

experience resonance. As such, the slice selection gradient is applied at the

same time as the RF pulse [30]. The signal is further localized to the x or y

direction using frequency encoding. Another gradient is applied in either the

x or y direction, applied at the time of signal measurement (after the slice
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selection gradient) [30]. The final direction is localized using phase encoding.

This involves applying a gradient perpendicular to that used for both slice

selection and frequency encoding, applied after the RF pulse but before the

frequency encoding gradient [30]. The result is that when the signal is mea-

sured, it may be broken down using a two-dimensional Fourier Analysis into

components corresponding to particular phases and frequencies, each of which

can be mapped back to a specific location. When the signal strengths are

plotted at the appropriate locations, an MRI image is obtained.

1.1.5 Diffusion Tensor Imaging

While an understanding of anisotropic diffusion tensors is a crucial element

in the modelling of brain tumour spread, it is also important to be able to

estimate the values of these parameters within the brain. Fortunately, the

technology used in obtaining MRI images can be extended to measure the

rates of diffusion of water molecules within the brain. This method is referred

to as Diffusion Tensor Imaging, or DTI [35].

DTI works by measuring the diffusion of water molecules in the brain [36].

This diffusion is a naturally occurring phenomenon, and is unaffected by the

magnetic field employed in MRI [37]. In the case of fibrous structures such

as white matter tracts in the brain, the movement of water molecules along

the fibres is relatively unimpeded, while movement perpendicular to the fibres

is much more difficult. As such, DTI can be used to determine the presence

of white matter tracts [35, 36]. Since the hydrogen nuclei upon which the

magnetic fields of MRI work are contained within the diffusing water molecules,

the same technology can be used to obtain images. Typically for DTI imaging,

a baseline image is obtained without a magnetic gradient, so that a signal loss
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may be measured relative to this baseline image. When a magnetic gradient

pulse is applied in a particular direction, the phase of precession for the nuclei

vary with respect to that direction. When the reverse gradient pulse is applied

a short time later, a nuclei that hasn’t moved will return to its original phase.

Nuclei that have diffused, however, will be slightly out of phase, resulting

in a signal loss in that direction [35, 38]. The strength of these pulses are

characterized by a coefficient b, describing the size of the magnetic field of the

pulse [37].

DTI only measures diffusion in the direction of the applied gradient, thus

in order to determine the full three-dimensional diffusion tensor, gradients

must be applied in at least six directions, corresponding to the six degrees

of freedom of the symmetric tensor [36, 38]. It is generally better to apply

a gradient in more directions, to obtain a sharper image [38]. DTI offers the

ability to obtain information that was not available before the mid-1990’s, and

in a manner that is non-invasive [36].

The attentive reader may notice that DTI actually measures the diffusion

of water molecules. We are, of course, interested in modelling the spread of

cancer cells. There have been several methods proposed for converting the

water diffusion tensors to cancer cell diffusion tensors, and the process that

we use will be described in detail in the next chapter. For now, suffice to say

that we choose a scaling that preserves the dominant diffusion direction (the

principal direction associated with the largest principal value), as well as the

relative anisotropy. These assumptions are based on the fact that for both

water and cancer cell diffusion tensors, we expect the dominant direction of

diffusion to align with the underlying fibre structure of the brain.

Before concluding our discussion of anisotropic diffusion tensors, let us

define an index that will play a big role in the implementation of our model in
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later chapters. It is useful to be able to quantify the degree of anisotropy of a

given tensor using a single index, referred to in general as a diffusion anisotropy

index. While there are different options available for such an index, here we

will use the Fractional Anisotropy, or FA [39]. This is the most common

choice. It ranges between 0, corresponding to fully isotropic diffusion, and 1,

fully anisotropic diffusion [39]. The formulas for FA2 in two dimensions and

FA3 three dimensions are

FA2 =

√
2[(λ1 −Dav)2 + (λ2 −Dav)2]

λ2
1 + λ2

2

, (1.5)

FA3 =

√
3[(λ1 −Dav)2 + (λ2 −Dav)2 + (λ3 −Dav)2]

2(λ2
1 + λ2

2 + λ2
3)

, (1.6)

where λ1, λ2 and λ3 are the principal values of a given tensor D, in descending

order, and Dav =Tr{D}/2 for the 2D case, and Dav =Tr{D}/3 for the 3D case

[39]. Note that for the isotropic case, Dav = λ1 = λ2 = λ3 and FA=0. For

the fully anisotropic case, FA=1 , the diffusion tensor is singular and only one

eigenvalue is non-zero. Other diffusion anisotropy indices include the scaled

relative anisotropy (sRA), the volume fraction (VF), or volume ratio (VR),

and the lattice Index (LIN) [39]. It has been shown however, that all of these

diffusion anisotropy indices give qualitatively similar results when comparing

different tensors [39].

Figure 1.8 shows a sample FA variation for an axial brain slice, as well as

standard T1-weighted and T2-weighted MRI scans. The dominant diffusive

direction, and principal values are also displayed.

We are fortunate enough to have access to the DTI data of actual patients;

many of the previous models have been developed without the use of such data.
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Figure 1.8: DTI vs. MRI. A summary of DTI compared to standard MRI
imaging. Taken from [35], where it appears as Figure 4. A spatial map is
shown of (from top left) a T2-weighted image, the mean diffusivity, the FA,
the principal direction (with direction indicated by colour), the three principal
values, in descending order, and a T1-weighted MRI image.
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In these instances, researchers typically use what is referred to as Atlas data.

This is data that is made publicly available, and is usually not specific to one

patient. Often, it is built up as the average of many scans from many patients.

While patient specific data is considered much better for model validation, it

is often difficult to gain access to. Atlas data provides a reasonable alternative

in these circumstances.

1.2 Current Landscape

1.2.1 Standard Treatment Protocol

Current treatment for gliomas is patient specific, and depends on the individual

characteristics of their tumour. The preferred first approach would be surgical

resection, where as much of the bulk of the tumour is removed as is possible

and safe. In many cases, due to the delicate nature of brain tissue, as well

as proximity to critical structures, surgical resection is virtually impossible.

In these cases, only a biopsy is taken for diagnostic and grading purposes

[40]. When brain surgery is possible, it typically takes one of two forms:

craniotomy, or intraoperative brain mapping. A craniotomy involves removing

a piece of the skull in order to access the brain for surgery. The bone piece

is replaced following surgery [41]. Intraoperative brain mapping is a type

of brain surgery where the patient is awake, allowing the neurosurgeon to

electrically stimulate certain regions of the brain and determine their exact

function. This is often done for glioma that may be considered inoperable due

to their proximity to critical brain structures, as well as in cases where the

tumour boundaries are not well defined. This technique is used in an attempt

to maintain brain function following surgery [41]. In addition to improving
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survival prognosis, surgery is also often useful in relieving patient symptoms,

since removing tumour tissue reduces the intracranial pressure [41].

In addition to surgery, or in some cases instead of, patients will often

receive adjuvant therapy. Adjuvant therapy includes both radiotherapy and

chemotherapy. Three types of radiation therapy are typically employed to

treat these tumours: internal radiation with the GliaSite radiation therapy

system, external beam radiation therapy, and stereotactic radiosurgery [41].

Internal radiation is delivered to the hole left following the surgical removal of

a tumour via catheter in the form of liquid radiation. In this type of therapy,

a radioactive liquid is delivered for several days, and then the catheter is

removed [41]. External beam radiotherapy is the modality which this thesis

will primarily focus on. It involves the delivery of radiation to the brain from

outside of the body via a linear accelerator. A patient would typically receive

treatment once per day, five days per week [41]. External beam radiotherapy

can be administered to the tumour as well as the surrounding region, or to the

entire brain. Additionally, the level of radiation delivered to different regions

can be tailored [42]. A discussion of how these treatment regions are defined

will be included in the following section. Stereotactic radiosurgery involves a

more precise delivery of higher doses of radiation to the tumour, while sparing

the surrounding tissue. This is achieved by delivering the radiation from many

different directions, resulting in a higher total dose [41].

It is also standard for glioma patients to receive chemotherapy, usually

temozolomide [43]. Bevacizumab, an antiangiogenic agent has also recently

been approved for use in glioma therapy [43]. These chemotherapeutic agents

are typically administered following surgery and radiotherapy [41].
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1.2.2 The Role of Mathematics

The main challenge in treating gliomas is the fact that a significant portion of

the tumour is “invisible” from a clinician’s perspective. If it were possible to

better determine where the cancer cells had invaded the most, then treatment

could be better targeted to areas where the greatest number of malignant cells

could be killed. As mentioned earlier, modelling the “cancer cell” density is an

oversimplification, as a tumour is really a heterogeneous mass containing dif-

ferent cell subtypes, however, for the time being we do not consider individual

subpopulations and focus only on the density of cancer cells.

As a result of the microscopic invasion by cancer cells of the surrounding

brain tissue, the treatment region typically involves a uniform 2cm extension of

the visible glioma mass [12]. This process is shown in Figure 1.9. In the figure,

several regions that are typically used for radiation treatment are outlined.

The GTV, or Gross Tumour Volume corresponds to the visible tumour mass

as it appears on a scan. The CTV, or Clinical Target Volume is a uniform

1.5 cm extension. The PTV or Planning Target Volume accounts for any

uncertainties in the delivery of the prescribed dose, extending 0.5 cm further

than the CTV, for a total of 2 cm. While using a uniform extension of the

GTV is a good starting point, the anisotropic nature of glioma spread means

that cancer cells will have invaded further in some directions than in others,

meaning that it may be more beneficial in terms of both survival and quality

of life to treat further in some directions, and not as far in others. This is

where mathematical models offer the potential to help.

Through simulating the growth of a tumour, we can predict cell density

levels in regions that cannot be seen on a scan. As such, an accurate math-

ematical model can help clinicians to determine a better therapeutic region
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Figure 1.9: GTV, CTV and PTV. The various treatment volumes for a glioma
patient. The GTV, or Gross Tumour Volume, indicates the bulk of the tumour
as can be seen on a scan. The CTV, or Clinical Target Volume represents the
uniform 2cm extension that is typically chosen for treatment, and the PTV, or
Planning Target Volume is a slight extension of this allowing for uncertainties
in delivering the radiation dose. This image is modified from Burnet et al.
[42], where is appears as Figure 4.
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than what could be estimated based on scans alone. There are several groups

who have had success with using mathematical models in a clinical setting.

In particular, Swanson’s group at the Mayo Clinic in Phoenix, Arizona has

developed several methods for applying mathematical models for diagnosis

and treatment. In Wang et al. [44], in 2009, the group looked at quantitative

measures for proliferation and invasion rates for individual patients, and how to

connect these to a prognosis. A therapeutic response index was also proposed,

using their model to simulate regrowth without treatment, and comparing the

results to the actual growth after treatment. This allows for the effectiveness

of a given treatment to be quantified. In 2010, in Rockne et al. [45], Swanson’s

group used these results coupled with a model for cell-killing by radiation to

predict response to external beam radiotherapy on a patient-specific basis,

with a high degree of accuracy. Clinicians can then use this information to

help design treatment plans for individual patients. This work was further

developed in Neal et al. in 2013 [46].

In a different vein, Anderson and Chaplain [47] developed both a discrete

and a continuous model for angiogenesis. The process of angiogenesis describes

the formation of new blood vessels, and while this process is a normal part

of embryogenesis or wound healing, tumours produce chemical signals that

induce angiogenesis for their own benefit [47]. This irregular network of ves-

sels surrounding a tumour can make treatment more challenging as it can be

difficult to predict the chemotherapeutic dose that the tumour receives. Mc-

Dougall et al. [48], along with Anderson and Chaplain, coupled the original

angiogenesis model with models for fluid flow in order to predict the amount

of fluid that would reach a tumour.

In this work, we describe a model based on cell growth and anisotropic dif-

fusion. Of course, in a real biological system, there is far more than these two
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factors at play. Additional properties such as cell adhesion and vasculature

could affect the tumour growth, however we focus only on the most significant

mechanisms here. The goal of biological modelling using mathematics is to

capture the most important aspects of the biology, without producing a con-

voluted, complicated model. Usually these models are built up from simple

models, with new aspects being added at each model iteration [49]. This will

be discussed in the established work section.

1.2.3 Established Work

In describing the previous work, we will make several distinctions between the

models. The first distinction will be whether or not the model uses diffusion

tensors (anisotropic), or just a coefficient (isotropic). In addition to the dif-

fusion rates, the diffusion operator itself is important. Most of the models

below use a standard “Fickian” diffusion, based on Fick’s first law. We briefly

mentioned this in the discussion of diffusion tensors, where Fickian diffusion

obeys the following PDE:

ut +∇ · J = 0,

with J the classical Fickian diffusion J = −D∇u [49], driven by the gradient of

the density function (u(x, t)). For the classic Fick’s law, D is a scalar diffusion

coefficient. The diffusion model of this form then follows

ut = ∇ · (D∇u). (1.7)

Fick’s law can also be extended for anisotropic diffusion. If D is a sym-

metric positive-definite tensor of diffusion coefficients, then the flux is still
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J = −D∇u, and the diffusion model is

ut = ∇ · (D∇u) =
n∑
i=1

n∑
j=1

∂

∂xi

(
Dij

∂u

∂xj

)
. (1.8)

Alternatively, we will talk about a “Fully Anisotropic” diffusion operator,

so named because it contains the classic Fickian diffusion operator as well as

an additional advection term. This operator will be derived from a transport

equation model in Chapter 2, and obeys the following PDE:

ut = ∇∇ : (Du) =
n∑
i=1

n∑
j=1

∂

∂xi

∂

∂xj
(Diju), (1.9)

where n is the dimension of the model (2 or 3), and : is used to denote the

contraction of two tensors. This will be defined more precisely in Chapter 2.

The big difference between these two operators is that while only one derivative

is applied to D in Fickian diffusion as in Equation (1.8), in fully anisotropic

diffusion, both derivatives are applied to D. In fact, the Fickian diffusion

operator is contained in the fully anisotropic diffusion operator, as well as an

additional advection term. Specifically, Equation (1.9) can be expanded via

the product rule to

ut = ∇ · (D∇u) +∇ · ((∇TD)u).

Most of the models for glioma spread include, in addition to diffusion and

advection, cell division in the form of a growth term. The growth term is

usually of one of the following three types [5, 6, 50]:

Exponential: ut +∇ · J = ru,
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where r is the growth rate, or a logistic growth as given by

Logistic: ut +∇ · J = ru
(

1− u

K

)
,

or

Gompertz: ut +∇ · J = r ln

(
K

u

)
u,

where K gives the carrying capacity for both logistic and Gompertz growth.

The first diffusion model for brain tumour spread was developed in 2000

by Swanson et al. [6]. This model was groundbreaking as it was the first effort

that had been made to use mathematical models to predict glioma growth.

While this model included both cell growth and diffusion, it incorporated

a spatially varying diffusion coefficient with no anisotropy, and was termed

the Proliferation-Infiltration (P.I.) model. The growth was modelled using an

exponential function. This work made the distinction between white and grey

matter, setting the diffusion coefficient to be 5 times higher in the white matter

vs. the grey matter, as per available data [6]. The PDE used in the Swanson

P.I. model is

ut = ∇ · (D∇u) + ru, (1.10)

whereD is the diffusion coefficient, r is the growth rate and u(x, t) is the cancer

cell density. Initially, this work was only theoretical, however Swanson’s group

went on to lead the way in applying mathematical models to glioma treatment

planning. They have made great strides in terms of applying their models in

a personalized medicine framework, incorporating diffusion, growth and even

treatment simulations [6, 44–46, 49, 51–54] . Because of this work, much of

the foundation has been laid when it comes to translating the mathematical

modelling of glioma into actual clinical treatment plans [53, 54].
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Swanson’s work was extended in Jbabdi et al. [7], where they incorporated

anisotropy into the glioma growth model, replacing the diffusion coefficient

with a tensor. This work represented a significant step forward, incorporating

anisotropy into the original PI model. The anisotropic glioma growth model

was used to simulate brain tumour spread using a DTI scan of a healthy

individual, and the results were compared to the shapes of real segmented

tumours. A parameter was also introduced to scale the water diffusion tensors,

in an attempt to better simulate the spread of cancer cells.

Glioma modelling was moved along further in 2005 by Clatz et al. [8], who

developed the first derivation of a mass effect. They modelled growth and infil-

tration using the P.I. model with the addition of diffusion tensors as per Jbabdi

et al. [7]. The mass effect equation was derived via a momentum equation,

considering all of the sources of momentum and requiring their conservation.

Clatz et al. simulated tumour growth using atlas data, and the validity of their

model was established by comparing the simulation result to the actual growth

of a patient’s tumour over a period of six months.

Hogea et al. [10] proposed another model in 2008, that included both

growth and infiltration, as well as a mass effect. Here, the cell density is

modelled using a reaction-diffusion-advection equation, given by

ut = ∇ · (D∇u)−∇ · (uv) + r(u), (1.11)

where once again, u(x, t) represents the space and time-dependent cancer cell

density. The first term on the right hand side is the standard Fickian diffusion

operator with a diffusion tensor, the second is the advection (drift) term,

and the last is the reaction, or growth term. They then go on to solve a

set of continuum mechanics equations to determine the velocity profile, in a
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manner similar to the work of [8]. The major contribution of this work was

the method for fitting the parameters, which involved deriving and solving a

PDE constrained optimization problem.

The work of Clatz et al. [8] was carried further by the same research group

in 2008, in the paper of Bondiau et al. [11]. They too simulated glioma spread

using a combination of growth, proliferation (with anisotropic tensors) and

mass effect. Here, they introduce parameters that allow for the mechanical as-

pects of growth, as well as the diffusion to be tuned to a specific patient. Once

again, they simulate their model using atlas data, and test its performance by

comparing it to the growth of a real glioma over a six month period.

While previous models had focused on modelling cell density, Konukog̃lu

et al. [55] developed in 2006 the first model that focussed instead on invasion

margins. Instead of trying to model the time evolution of the tumour, they

tried to extrapolate the invisible cell profile from the visible tumour mass. This

is done by matching travelling wave solutions of the classic Fisher-Kolmogorov

equation to the tumour mass data. Konukog̃lu et al. extended this work in

2010, incorporating real patient DTI data, and validating their model for two

real patients.

This idea was taken a step further by Mosayebi et al. in 2012 [12], where

they proposed a model for the tumour boundary that assumed that the brain

fibres induce a Riemannian metric on the brain domain. They then proposed

using a geodesic distance on this space to define the Clinical Target Volume, as

opposed to the standard Euclidean distance currently used in clinical practice.

This group was able to test their model using patient data from 11 patients,

something that few of the other groups had access to.

The model that will be considered in this work in detail is that of Painter

and Hillen [5] of 2013. We will discuss both the development and theory
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behind the model (Chapter 2), and then apply it to real patient data (Chap-

ters 3-5). The Painter-Hillen model again uses anisotropic diffusion tensors to

model glioma spread, however it is the only model to use the “fully anisotropic”

Fokker–Planck diffusion operator discussed above in Equation 1.9. The deriva-

tion of this model also leads to a natural method for scaling of the DTI data,

introducing a parameter that can be tuned to a specific patient. Specifically,

the Painter-Hillen model is given by the PDE

ut = ∇∇ : (Dcu) + ru(1− u), (1.12)

where r is the growth rate and Dc is the anisotropic diffusion tensor. The :

operator represents a double tensor contraction, and is expanded in Equation

(1.9). The details of the Painter-Hillen model will be discussed in the chapters

that follow.

The most recent model for glioma spread was developed by Engwer et

al. [13] in 2014. It is an extension of the Painter-Hillen model, including

explicitly the adhesion mechanisms connecting the glioma cells to the white

matter tracts. The model derivation results in a model that is slightly different

from the Painter-Hillen model, an advection-reaction-diffusion equation similar

to Equation 1.11, as compared to the more standard reaction-diffusion models.

The source of the advection though is different from that of Hogea et al. [10].

In their model, the mass effect induced the advection, where in Engwer et al.

[13], it is the adhesion dynamics that induce the advective effect.

Mosayebi et al. [12] provide a table summarizing the previous models. We

reproduce that table here, as well as adding several other models that are rele-

vant, or have been developed since their paper was published. This information

is shown in Table 1.2

37



Chapter 1. Introduction

Paper Model Tensor Source of tensor Comparison

Swanson et al. (2000) D IT N/A N/A
Jbabdi et al. (2005) D DT Healthy case Visual
Clatz et al. (2005) DM DT Atlas 1 Patient
Konukoglu et al. (2006) D DT Atlas Synthetic
Hogea et al. (2007) DM DT Atlas 1 Patient
Bondiau (2008) DM DT Atlas 1 Patient
Konukoglu et al. (2010) D DT Real tensors 2 Patients
Mosayebi (2012) D DT Real tensors 11 Patients
Painter and Hillen (2013) D DT Real tensors 1 Patient
Engwer et al. (2014) D DT Atlas 1 Patient
This Thesis D DT Real tensors 10 Patients

Table 1.2: Table modified from [12] summarizing previous models and con-
tributions. We have added several other relevant models, most of which
have been developed since their paper was published. For model catego-
rization, D=Diffusion, DM=Diffusion and Mass Effect, IT= Isotropic Tensor,
DT=Diffusion Tensor.

While there have been many people working on glioma models over the last

decade or more, there has been very limited use of patient data or attempts

at validation. While the most basic P.I. model has since been implemented

in a clinical setting, this is not true for most of the other models. Table 1.2

also shows that Mosayebi et al. compared their model to a significant number

of patients. In this thesis, we will establish the utility of the Painter-Hillen

model [5], by comparing it to the P.I. model using simulations on real patient

data. The ultimate goal will be to implement the Painter-Hillen model in a

clinical setting, in a manner similar to the P.I. model.

Additionally, we will describe a method for incorporating a “mass effect”

into the fully anisotropic Painter-Hillen model. The mass effect refers to the

fact that we will incorporate the deformation of the brain into the model.

We will see that the mechanical deformation of the brain is quite important
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when a tumour is growing near the skull boundary. While there have been

many different implementations of such an effect in glioma models, there is

not yet a well-established way to include the mechanics. Here, we will present

a simple, straight-forward incorporation of the mass effect built up from the

fundamentals of continuum mechanics.

1.3 Outline

In the next chapter, we will rigorously develop the mathematics behind the

anisotropic diffusion model for glioma spread. The technique of Hillen et al.

[56] for computing the second moment of von Mises Fisher distributions will

also be summarized. We will then establish the existence and uniqueness of

solutions of the Painter-Hillen model using existing theory of partial differential

equations (PDEs).

The numerical solution of fully anisotropic diffusion equations is not straight-

forward, hence in Chapter 3, we discuss the numerical methods used in simu-

lating the Painter-Hillen model. We then show the results of these numerics

for simple domains in one, two and three dimensions. The use of a simple

domain serves to highlight the model behaviour in a controlled environment,

so that we can observe how the cancer cell distribution tends to spread along

synthetic “fibres” in the absence of the more complicated brain domains.

In Chapter 4, we discuss the patient data that is used here, as well as

address the challenges encountered in applying the model to real patient data.

These include data preprocessing such as segmentation and skull-stripping,

initial conditions, boundary conditions, stopping criteria, parameter fitting,

and a metric for model performance.

The main results are showcased in Chapter 5, where we actually apply the
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Painter-Hillen model to data from ten patients. We first discuss in more detail

the P.I. model of Swanson et al. [6], and discuss the results of applying this

model to our patient set. We will then apply the anisotropic Painter-Hillen

model to the same ten patients, and compare the results quantitatively using

the metric discussed in Chapter 4. The result is that the Painter-Hillen model

offers an improvement over the original P.I. model. We also introduce the idea

of estimating missing DTI data by taking advantage of the symmetry of the

brain, and perform simulations on this new data for a subset of the original

patient set. After establishing the validity of the Painter-Hillen model, we

showcase how it may be applied in a clinical setting.

In Chapter 6, we develop the mass effect model theory, starting with the

fundamentals of continuum mechanics. The mass effect takes into account

the mechanical response of the brain tissue to the pressure generated by the

growing tumour. This is done by introducing the ideas of mass conserva-

tion and momentum conservation, and combining them into a coupled PDE

system modelling both cancer cells and the healthy brain tissue surrounding

them. We also consider simulations of the mass effect model in one dimension,

demonstrating the deformation effect.

In Chapter 7 we derive an alternative model with a slightly different bio-

logical motivation. In this model, the cells’ turning rate will depend on the

underlying biological structure. This is motivated by the idea that a cell

travelling in line with a fibre will turn less frequently than one moving per-

pendicularly. After performing a similar derivation to that done in Chapter

2, an interesting alternative model is derived, with its own biological inter-

pretation. This model can be seen as a generalization of the Painter-Hillen

model, and we verify that the original Painter-Hillen model is recovered upon

considering a constant turning rate. While the model derived in Chapter 7
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will not be developed further in this thesis, it offers the potential for further

exploration/simulation.

Finally, in Chapter 8 we will draw conclusions from all of this, as well

as discuss the model shortcomings and future work. Based on the results of

this thesis, the Painter-Hillen model will open doors for future validation and

inspire new developments in glioma treatment design.

1.4 Chapter Summary

Gliomas are tumours arising from the glial cells of the nervous system. The

most aggressive type of glioma, grade IV astrocytoma, or glioblastoma multi-

forme, is a very aggressive tumour carrying a poor prognosis, with an expected

survival of only 14 months from diagnosis. Glioma cells are characterized by

a tendency to spread into the brain tissue, and as a result, the boundaries of

these tumours are diffuse, with a large degree of spread beyond what can be

imaged. This diffuse nature of glioma spread, coupled with the delicate nature

of brain tissue, makes treatment of gliomas a challenge. As such, clinicians

typically define a treatment region that includes the bulk tumour mass that

is visible on a scan, as well as a uniform 2cm extension to this region to ac-

count for the invisible spread. We propose that a mathematical model could

help define a more accurate extension based on an individual patient’s brain

structure.

It has been shown that cancer cells in the brain have a preferential move-

ment direction aligned with the white matter tracts. White matter is made

up of bundles of nerves, and as such is fibrous in nature. When cancer cells

move along these fibres, their pattern of spread leads to tumour shapes that

often show projections in certain directions. This directed movement can be
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modelled through the use of anisotropic diffusion, where the rate of spread is

allowed to vary with direction. These different rates of spread are encoded

into a diffusion model through the use of a diffusion tensor.

The advent of Diffusion Tensor Imaging, or DTI, has allowed clinicians

to measure the rates of diffusion in each direction, at each location within a

patient’s brain. DTI technology therefore allows us to apply an anisotropic

diffusion model to simulate the spread of glioma cells along the white matter

tracts. Such a model was derived by Painter and Hillen [5], and we will focus

on this model specifically, which we refer to as the Painter-Hillen model.

There have been many attempts at glioma modelling, in particular, Swan-

son et al. [6, 44–46, 49, 51–54] have had success in applying glioma models

in a clinical setting. The ultimate goal of this work will be to implement the

Painter-Hillen model clinically, inspired by the success of Swanson et al.
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A Model for Brain Tumour

Spread Using Anisotropic

Diffusion

In this work, we will be applying the fully anisotropic diffusion model of Painter

and Hillen [5] to patient data, and comparing it to the Swanson P.I. model

[6]. The fully anisotropic diffusion model was developed rigorously from the

underlying biological fundamentals, see References [5, 57–60]. In this Chapter,

we will explain the derivation, highlighting the key features of this particular

model. Additionally, we will describe the scaling technique of Painter and

Hillen [5] for obtaining the cancer cell diffusion tensors from the measured

water diffusion tensors. As such, Sections 2.1 and 2.2 serve as review with no

new results. Section 2.3 however, does contain a new computation.
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2.1 Transport Model

In many biological systems, organisms move with some spatial awareness of

their surroundings. As such, a suitable model for such spread must incorpo-

rate environmental information. One can attempt to describe an individual

organism’s migration path, or consider the density of organisms on a macro-

scopic scale. It turns out that these two types of approaches are not entirely

independent, and are in fact, closely linked.

In our case, we are considering how cancer cells migrate in a heterogenous

environment containing white matter tracts. As mentioned above, the white

matter tracts actually play an important role in how the cells travel through

the environment. We refer to this as contact guidance, which describes how

the cells respond to directional information in the environment [60].

We will begin the derivation of the Painter-Hillen model by formulating a

transport model describing how each individual cell will move. This is based on

a correlated random walk [58] involving ‘runs’ and ‘turns’. A run is defined as

an organism moving through space with a constant velocity, with a turn being

a change in that velocity. Three parameters describe this type of movement:

(1) the mean speed, (2) the mean turning rate, and (3) the turning angle

distribution [58]. We can go on to formulate an integro-differential equation

to describe this movement.

We begin by defining p(t,x,v) to be the density of cells at time t, location x

and travelling with velocity v. We have that t > 0, x ∈ Rn and v ∈ V ⊂ Rn.

In the case of the brain, we will ultimately be considering n = 3, but will

also consider the intermediate cases of n = 1, 2. We then derive an equation

describing how that density can change. Our transport equation model is thus
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given by [58]

pt(t,x,v) + v · ∇p(t,x,v) = Lp(t,x,v). (2.1)

The second term on the left hand side describes the cells’ movement through

space, as this is just simple transport with velocity v. The term on the right

hand side however, describes the cells’ turning, hence we refer to Lp(t,x,v)

as the turning operator. In our case, it is defined as [5, 28, 60]

Lp(t,x,v) = −µp(t,x,v) + µ

∫
V

q(t,x,v,v′)p(t,x,v′)dv′. (2.2)

The first term describes cells turning out of current velocity v, while the second

term describes cells turning into velocity v from all other velocities v′. The

turning rate is given by µ and is for the time being assumed to be constant.

The last term is a kernel term, and q(t,x,v,v′) is called the turning kernel, or

turning distribution. We describe q(t,x,v,v′) as being the probability density

that a cell at time t and spatial location x, moving with velocity v′ will

turn into velocity v. It is through this distribution that we can incorporate

information about the cell’s environment. Since q(t,x,v,v′) is a distribution,

we must define it so that [5]:

1. q(t,x,v,v′) ≥ 0, and

2.
∫
V
q(t,x,v,v′) dv = 1.

Before proceeding, we make several assumptions that will in turn sim-

plify the subsequent mathematical derivations. The first assumption is that

the cells’ new direction will be independent of the old direction. Biologically

speaking, this means that as a cancer cell approaches a white matter tract,

it doesn’t matter from what direction it was coming. The only direction that

matters is that of the white matter tract. Mathematically speaking, this means
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Figure 2.1: Scalings. Figure relating the different scalings and limit equations.
Taken from [58] where it appears as Figure 1.

that q(t,x,v,v′) ≈ q(t,x,v). Additionally, we will assume that the fibre net-

work is fixed in time, so that q(t,x,v) ≈ q(x,v). Finally, we will assume

that the distribution is symmetric, so that a cell has the same probability of

turning “up” or “down” a fibre, i.e. q(x,v) = q(x,−v) [5].

2.1.1 Parabolic Scaling

There are at least three principal ways in which we may perform scaling of

transport equations. These are:

(i) parabolic,

(ii) hyperbolic, and

(iii) moment closure.
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It turns out that the parabolic scaling is the most important of the three in

our case, although the other two scalings can also lead to the parabolic limit

[58]. The motivation for this scaling comes from the space and time scales

of the problem at hand. In the case of a brain tumour, a typical mesoscopic

spatial scale would be on the order of 10µm, whereas a typical macroscopic

spatial scale would be on the order of 1 cm. In terms of time, cells would

move on the order of seconds, while macroscopically, a tumour grows on the

order of months. In order to go from the mesoscopic scale to the macroscopic

scale spatially, we need to define X = εx where x is the mesoscopic spatial

variable, X is the macroscopic spatial variable, and ε = 10−3. The change in

the time scales is much larger however, thus we would define τ = ε2t, where t

is the mesoscopic time variable and τ is the macroscopic time scale.

Now we have motivated the proper scaling to use for this problem, but

before we proceed, we will make a few simplifying assumptions. These are:

(A1) The speed will remain constant, and we will vary only direction, i.e.

V ⊂ sSn−1, where s is the speed.

(A2) The turning distribution will not change with time, and the probabil-

ity of turning into new velocity v is independent of old velocity v′ as

discussed above, so q(t,x,v,v′) = q(x,v).

(A3) The turning distribution is symmetric, with q(x,v) = q(x,−v).

The assumption that the speed is constant is not necessary, but will greatly

simplify the analysis. The extension to non-constant speed is possible, but for

our purposes not necessary. The assumption that the turning distribution is

independent of time is perhaps too simple, as this is equivalent to assuming

that the fibre structure is fixed in time. We know that as the tumour grows,
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the brain around it may be deformed, causing q to change. We will address

this issue in Chapter 7, and for now consider this assumption to be valid. The

assumption that q is independent of v′ however is reasonable, as we are simply

neglecting inertia.

As we stated above, the parabolic scaling computation begins with an

appropriate rescaling of both time and space, i.e.,[60]

X = εx, and τ = ε2t. (2.3)

If we apply these scalings to Equation (2.1), we obtain the scaled transport

equation

ε2pτ (τ,X,v) + εv · ∇p(τ,X,v) = Lp(τ,X,v). (2.4)

Note that the gradient is now taken with respect to X. We will then take an

asymptotic expansion of p(τ,X,v) in ε, recalling that ε� 1 [60]:

p(τ,X,v) = p0(τ,X,v) + εp1(τ,X,v) + ε2p2(τ,X,v) +O(ε3). (2.5)

The next step is to substitute Equation (2.5) into Equation (2.4) and match

orders of ε, however, before we proceed, we will study several properties of the

turning operator, which will be needed in this analysis. Let us first define the

macroscopic cell density by integrating over all velocities [59]:

p̄(τ,X) =

∫
V

p(τ,X,v)dv. (2.6)
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Then, since our turning distribution is independent of the old velocity (v′),

we can rewrite the turning operator as

Lp(τ,X,v) = µ (q(X,v)p̄(τ,X)− p(τ,X,v)) .

We first need to determine the kernel of L, so that we know where we can

invert our operator. An arbitrary function φ(τ,X,v) is in the kernel of L if

Lφ(v) = 0

⇐⇒ µ
(
q(X,v)φ̄− φ(v)

)
= 0

⇐⇒ q(X,v)φ̄ = φ(v).

Since φ̄ does not depend on v, we have that the kernel of L is simply

the span of q, or 〈q(X, ·)〉. For short, we denote this 〈q〉. We will therefore

define our space to be a weighted L2 space, with weighting q−1, denoted by

L2
q−1(V ). The weighting appears in the inner product, so that the product of

two functions g(v) and f(v) is given by [28, 60]

〈f(v), g(v)〉L2
q−1

=

∫
V

f(v)g(v)
dv

q(X,v)
.

Now we may compute the pseudoinverse on the complement of the kernel,

i.e., on 〈q〉⊥. We compute the inverse by starting with a function ψ ∈ 〈q〉⊥ as

in [60], and solving for the corresponding φ ∈ 〈q〉⊥ with

Lφ(v) = ψ(v).
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Substituting this in, we obtain

µ
(
q(X,v)φ̄− φ(v)

)
= ψ(v). (2.7)

Since φ ∈ 〈q〉⊥, we have that

〈φ, q〉 = 0

⇐⇒
∫
V

φ(v)q(X,v)
dv

q(X,v)
= 0

⇐⇒
∫
V

φ(v) dv = 0

⇐⇒ φ̄ = 0.

Substituting this result into Equation (2.7), we get

−µφ(v) = ψ(v),

giving

φ(v) = − 1

µ
ψ(v). (2.8)

Thus the pseudoinverse of the turning operator is defined as multiplication by

−1/µ [60]. Now that we have defined some properties of our function space as

well as our operator, we can proceed with matching the coefficients for orders

of ε from the left and right hand sides of Equation (2.4). Substituting Equation

(2.5) into Equation (2.4), we have:

ε0 :

Lp0(τ, x,v) = 0

⇒ µ(q(X,v)p̄0(τ,X)− p0(τ,X,v)) = 0

⇒ p0(τ,X,v) = q(X,v)p̄0(τ,X), (2.9)
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where

p̄0(τ,X) =

∫
V

p0(τ,X,v)dv.

Then for ε1, we have [60]

ε1 :

(∇ · v)p0 = Lp1. (2.10)

In order to solve for p1, we use the pseudoinverse of L defined above. To

apply this, we first need to verify that (∇ · v)p0 ∈ 〈q〉⊥. This condition is

equivalent to 〈(∇ · v)p0, q〉 = 0 in L2
q−1(V ), so we compute

∫
V

(∇ · v)p0(τ,X,v)����q(X,v)
dv

����q(X,v)
= ∇ ·

∫
V

vq(X,v)dvp̄0(τ,X),

where we have substituted for p0 using Equation (2.9). We therefore have

that the left hand side of Equation (2.10) is in 〈q〉⊥ whenever the turning

distribution obeys the condition [60]

Eq =

∫
V

vq(X,v) dv = 0.

Since we are assuming q to be symmetric, this condition will be satisfied.

We can therefore solve Equation (2.10) for p1 by inverting L as per Equation

2.8:

p1(τ,X,v) = − 1

µ
∇ · vp0(τ,X,v). (2.11)

Now we will see that matching coefficients of ε2, and substituting in the

earlier results will give a closed PDE for the macroscopic cell density p̄0:

ε2 :

p0,τ (τ,Xv) + v · ∇p1(τ,X,v) = Lp2(τ,X,v).
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Integrating both sides over V gives

∫
V

p0,τ (τ,X,v) dv +

∫
V

v · ∇p1(τ,X,v) dv =

∫
V

Lp2(τ,X,v) dv. (2.12)

Now we evaluate each integral:

∫
V

Lp2(τ,X,v) dv = µ

(∫
V

q(X,v)p̄2(τ,X) dv −
∫
V

p2(τ,X,v) dv

)

= µ

p̄2(τ,X)

∫
V

q(X,v) dv︸ ︷︷ ︸
=1

−p̄2(τ,X)


= 0.

Substituting Equation (2.9) for p0 into the first term on the left hand side

of Equation 7.14, we also have

∫
V

p0,τ (τ,X,v) dv =

∫
V

p̄0,τ (τ,X)q(X,v) dv

= p̄0,τ .

Finally, substituting Equation (2.10) for p1 into the second term on the left

hand side of Equation 7.14 we have

∫
V

v · ∇p1(τ,X,v) dv = − 1

µ

∫
V

v · ∇(∇ · v)p0(τ,X,v) dv

= − 1

µ

∫
V

(v · ∇)(∇ · v)(p̄0(τ,X)q(X,v)) dv

= − 1

µ
∂i∂j

(∫
V

vivjq(X,v) dv

)
p̄0(τ,X),
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where we have used repeated indices to indicate summation. Putting these all

back into Equation (7.14), we obtain a closed form PDE [60]:

p̄0,τ (τ,X) = ∇∇ : (D(X)p̄0(τ,X)),

where the macroscopic diffusion tensor D(X) is proportional to the variance-

covariance matrix of the turning distribution q [5, 60]:

D(X) =
1

µ

∫
V

vvT q(X,v) dv. (2.13)

The : operator indicates a double contraction of the tensor (D(x)p̄0(τ,X)).

For example, T : U = TijUij, where repeated indices represent a sum [61].

Then, taking ∇∇ = ∂i∂j we have that

∇∇ : (D(X)p̄0) = ∂i∂j(Dij(X)p0(τ,X)).

To simplify notation, we let x = X define the macroscopic spatial variable,

t = τ define the macroscopic temporal variable, and u(x, t) = p̄0(τ,X) define

the macroscopic cell density. Additionally, we will letDc(x) = D(X) define the

cancer cell diffusion tensor. Then the diffusion of the cancer cells is described

by the PDE

ut = ∇∇ : (Dc(x)u(x, t)), (2.14)

which uses the Painter-Hillen fully anisotropic diffusion operator [5].

2.1.2 Boundary Conditions

In order to completely define our model, we must specify the appropriate

boundary conditions. In this case, we will not be allowing cells to diffuse
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through the skull, hence we will employ homogeneous Neumann boundary

conditions. Mathematically, we represent this as

η · ∇(D(x)u) = 0 on ∂Ω, (2.15)

where η is the outward unit normal to the boundary ∂Ω. This condition

ensures that the flux over the boundary will be 0, since cells cannot pass

through the skull.

2.2 Defining the Turning Distribution

Choosing an appropriate turning distribution q(X,v) is an important compo-

nent of the modelling process, and there are a number of ways to choose this

distribution. We discussed the diffusion ellipsoid and the diffusion peanut in

Chapter 1, both of which offer potential methods for defining this distribution.

Both correspond to a unique diffusion tensor, as is proven here.

Theorem 2.1. Assume D ∈ Rn×n is a symmetric and positive definite matrix.

Then for a given constant c, the associated diffusion ellipsoid of Equation (1.2)

and the diffusion peanut of Equation (1.3) are unique.

Proof. We begin by showing that the peanut uniquely defines an associated

symmetric tensor. Given f(θ) = θTDθ, assume that we have two symmetric

tensors D1 and D2, with D1 6= D2. Assume that they define the same peanut,

i.e.

θTD1θ = θTD2θ ∀θ ∈ Sn−1.

Then by linearity

θT (D1 −D2)θ = 0.
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Now defining C = D1 −D2, and employing the summation convention for

repeated indices

θiCijθj = 0 ∀i, j ≤ n,

where n is the dimension of the tensor. Then

θiθjCij = 0,

and in general, θi 6= 0, θj 6= 0, therefore since C is symmetric by the symmetry

of D1 and D2, we have that Cij = 0 for all i, j ≤ n. Therefore C = 0, and

D1 = D2. For the diffusion ellipsoid, consider two ellipsoids E1 and E2 defined

from tensors D1 and D2 respectively, i.e.

E1 = {θTD−1
1 θ = 1}, E2 = {θTD−1

2 θ = 1}.

Now we will assume that E1 = E2 = E and show that we must then have

D1 = D2. If E1 = E2, then

θTD−1
1 θ = θTD−1

2 θ, ∀θ ∈ E.

By the same argument as for the peanut, we have

D−1
1 = D−1

2 .

Thus both the diffusion peanut and diffusion ellipse uniquely define an

associated symmetric diffusion tensor.

For our model, we are considering a cancer cell sitting at a given location,
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and need to define the probabilities of this cell travelling in any given direction.

Naturally, if it is sitting on a fibre, we want to define the turning distribution

such that it is most likely to travel either “up” the fibre or “down” the fibre.

We do this by selecting a von Mises distribution to be our turning distribution

in two dimensions, and a von Mises-Fisher, or simply Fisher distribution in

three dimensions. The von Mises and Fisher distributions are the result of

wrapping a normal distribution around either a circle, or a sphere, respectively

[56]. The result is that there will be a peak in a specified direction. Since DTI

allows us to measure the dominant direction of diffusion at each spot within

the brain, we will select our turning distribution so that the peak occurs in this

direction. In our case, if φ1 is the eigenvector corresponding to the dominant

eigenvalue, then we do not distinguish between φ1 and −φ1. This is because

when a cell approaches a fibre, we assume that it has equal probability of

travelling ‘up’ the fibre as travelling ’down’ the fibre. As such, we will use a

von Mises distribution having a peak at φ1 and also at −φ1. This is referred

to as the bimodal von Mises distribution, or bimodal Fisher distribution [56].

An example of a unimodal von Mises distribution is shown in Figure 2.2 (a),

having a peak in direction (1, 0)T . A bimodal von Mises distribution is shown

in Figure 2.2 (b), with peaks at ±(1, 0)T .

If we are considering the two-dimensional case, then we represent a given

direction by a unit vector n ∈ S1. We will represent the direction of the peak

by γ ∈ S1, where γ will be the dominant eigenvector obtained via DTI in unit

vector form. The unimodal von Mises distribution is therefore given by

q(n) =
1

2πI0(k)
ekn·γ , (2.16)

where I0(k) is the modified Bessel function of first kind of order 0, and k is what
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Figure 2.2: von Mises Distribution. (a) An example of a unimodal von Mises
distribution with γ = (1, 0)T . (b) An example of a bimodal von Mises distri-
bution with peaks at ±(1, 0)T .

we call the concentration parameter. The factor in front of the exponential

ensures normalization. The concentration parameter controls the width of the

peak, and thus the strength of the directional dependence. As such, k will be

proportional to the fractional anisotropy mentioned in Chapter 1, Equations

(1.5) and (1.6). For example, in a region near a white matter tract, the

fractional anisotropy will be high, and thus the concentration parameter will

be high, resulting in a sharp narrow peak. In isotropic regions where k ≈ 0,

the turning distribution will resemble a uniform distribution and movement

will be random with no directional influence. The constant of proportionality

will be referred to as κ, the anisotropy parameter. We therefore define k(x) =

κFA(x), where FA(x) is the fractional anisotropy defined in Equations (1.5)

and (1.6). We will discuss κ in more detail in Chapter 5. The value of κ will

be considered fixed for a given patient, and spatial dependence of k will be

introduced through the FA value. Note that as k → 0, we obtain the uniform

distribution. Both γ(x) and k(x) will depend on space, since both will be
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Figure 2.3: Fisher Distribution. The Fisher distribution with γ = (1
2
, 1

2
,
√

2
2

)
for increasing values of the concentration parameter k (left to right).

obtained from the spatially varying DTI data.

In order to obtain the bimodal version, we take a linear combination of

distributions with peaks at ±γ. To preserve normalization, a factor of 1
2

is

also introduced. The bimodal distribution is therefore given by

qB(n) =
1

4πI0(k)

(
ekn·γ + e−kn·γ

)
.

The three-dimensional Fisher distribution1 has the same form, however the

normalization coefficient is slightly different:

q(n) =
k

4π sinh(k)
ekn·γ (2.17)

with corresponding bimodal form

qB(n) =
k

8π sinh(k)

(
ekn·γ + e−kn·γ

)
.

Figure 2.3 shows the Fisher distribution with γ = (1
2
, 1

2
,
√

2
2

) for increasing

values of k. This is taken from [56] where it appears as Figure 2.

1Not to be confused with the statistical F-distribution.
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2.3 Computing the Second Moment of the von

Mises Distribution 2

As seen in Equation (2.13), in order to compute the cancer cell diffusion tensor,

we must compute the second moment of the turning distribution. It turns

out that this is not entirely trivial to do, and traditionally involves explicitly

computing increasingly complicated integrals. Here we will use the technique

of Hillen et al. [56], which instead takes advantage of the divergence theorem

to simplify computations in higher dimensions. We will compute the second

moment of both the unimodal von Mises and Fisher distributions, and extend

this result to the bimodal cases for both two and three dimensions. It is the

bimodal result that will be of interest for our modelling. Additionally, we

will show that the second moments will tend to the isotropic tensors as the

concentration parameter k tends to 0, as would be expected.

Before beginning with the computations, we will define some properties of

Bessel functions and modified Bessel functions which we will make use of. We

denote by Jn(x) the Bessel functions of first kind, and define [56]

In(x) := (−i)−nJn(ix) (2.18)

to be the modified Bessel functions of first kind. We also have an explicit

definition of the modified Bessel functions [56]:

In(k) =
1

2π

∫ 2π

0

cos(nφ)ek cos(φ)dφ. (2.19)

2The material in this subsection is based on a paper that has been submitted for publi-
cation. The explicit form of the three-dimensional variance-covariance matrix of the three-
dimensional Fisher distribution, as shown in Theorem 2.4, is a new result.
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Additionally, the Bessel functions satisfy the following recursive relation

[56]
d

dx
(xnJn(x)) = xnJn−1(x). (2.20)

Finally, for n ≥ 0, we have [56]

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x). (2.21)

These relations will be useful in computing the resulting integrals in the two-

dimensional case.

2.3.1 Two-Dimensional Case

We first consider the two-dimensional case. Traditionally, these computations

would be done by explicitly computing the integrals component wise. While

possible, this method is tedious. We instead use the method of Hillen et al.

[56] which uses the divergence theorem.

We begin by computing the first moment, or the expectation of the von

Mises distribution given in Equation (2.16). We will make use of this cal-

culation in the computation of the second moment. We will call this the

expectation E[q], defined as

E[q] =

∫
S1

nq(n)dn.

Then applying Equation (2.16), we have

E[q] =
1

2πI0(k)

∫ 2π

0

nek cos θdθ,

where θ is the angle between n and γ. Then we could integrate this component
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wise to determine the expectation vector, but instead we introduce a test vector

a [56]:

a · E[q] =
1

2πI0(k)
a ·
∫ 2π

0

nek cos θdθ.

Bringing the test vector inside the integral and replacing cos θ by the corre-

sponding dot product, we have

a · E[q] =
1

2πI0(k)

∫ 2π

0

n ·
(
aek cosn·γ) dθ.

Applying the divergence theorem to this integral, it becomes

a · E[q] =
1

2πI0(k)

∫
B1(0)

∂

∂v

(
aek cosv·γ) dv

=
1

2πI0(k)

∫
B1(0)

kaiγie
kv·γdv

=
1

2πI0(k)
a · kγ

∫ 1

0

∫ 2π

0

erk cos θrdrdθ,

where B1(0) is the unit ball centred at the origin. Applying the definition of

Bessel functions in Equation (2.19) with n = 0, this is simply

a · E[q] = a
1

2πI0(k)
· kγ

∫ 1

0

2πrI0(rk)dr

= a · 1

I0(k)
kγ

∫ 1

0

rI0(rk)dr. (2.22)

To solve this integral, we make use of some of the recursive properties of

Bessel and modified Bessel functions outlined above. We first use Equation

(2.18) to rewrite our integrand [56]:

rI0(rk) =
irkJ0(irk)

ik
=

1

ik
(irkJ0(irk)) .
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We then make use of Equation (2.20) to get

1

ik
(irkJ0(irk)) =

1

ik

d

dx
(xJ1(x))|x=irk.

We rewrite this in terms of the r derivative, so that we may apply the funda-

mental theorem of calculus. We thus have

1

ik

d

dx
(xJ1(x))|x=irk =

1

ik

d

dr
(rJ1(irk)).

Substituting this result back into our integral in Equation (2.22), and using

the fundamental theorem of calculus to solve, we get [56]

∫ 1

0

rI0(rk)dr =
1

ik

∫ 1

0

d

dr
(rJ1(irk))dr =

1

ik
(J1(ik)− 0 · J1(0)) =

1

ik
J1(ik).

(2.23)

Finally, by the definition of the modified Bessel function, Equation (2.18),

we have
1

ik
J1(ik) =

1

ik
iI1(k) =

I1(k)

k
. (2.24)

Substituting this back in, we obtain [56]

a · E[q] = a · 1

I0(k)
kγ

I1(k)

k
,

⇒ E[q] =
I1(k)

I0(k)
γ, (2.25)

since a was an arbitrary test vector.

Now we will compute the second moment of the von Mises distribution.
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The variance-covariance matrix of a turning distribution q is defined as [56]

Var[q] =

∫
Sn−1

(n− E[q])(n− E[q])T q(n)dn

=

∫
Sn−1

nnT q(n)dn− 2E[q]

∫
S1

nT q(n)dn︸ ︷︷ ︸
=E[q]T

+E[q]E[q]T
∫

Sn−1

q(n)dn︸ ︷︷ ︸
=1

=

∫
Sn−1

nnT q(n)− E[q]E[q]T . (2.26)

Since the variance of q is a second-order tensor (matrix), it is appropriate to

use two test vectors a and b, and to work with the double contraction obtained

using these two test vectors. We thus proceed in a similar fashion as for the

computation of the expectation, and since E[q] is known, we work to compute

aT
∫

S1

nnT q(n)dnb =
1

2πI0(k)

∫
S1

ainibjnje
knlγldn

=
1

2πI0(k)

∫
S1

ni
(
aibjnje

knlγl
)
dn

at which point we once again apply the divergence theorem. Transforming this

to an integral over B1(0) and applying the product rule gives

aT
∫

S1

nnT q(n)dnb =
1

2πI0(k)

∫
B1(0)

∂

∂vi

(
aibjvje

kvlγl
)
dv

=
1

2πI0(k)

[∫
B1(0)

aibie
kv·γdv +

∫
B1(0)

ai(v · b)kγiekv·γdv
]

=
1

2πI0(k)

a · b
∫

B1(0)

ekv·γdv︸ ︷︷ ︸
I

+ ka · γb ·
∫

B1(0)

vekv·γdv︸ ︷︷ ︸
II

 .
(2.27)

At this point we will consider the two integrals above separately. Starting
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with I, writing it explicitly in polar coordinates, we have

∫
B1(0)

ekv·γdv =

∫ 1

0

∫
S1

erkn·γrdrdn

The integral over S1 is simply the total mass of the von Mises distribution

with k = rk, times the normalization coefficient 2πI0(rk), hence [56]

∫ 1

0

∫
S1

erkn·γrdrdn =

∫ 1

0

2πrI0(rk)dr

= 2π
I1(k)

k
,

where we made use of a calculation already performed in the expectation

computation, using the properties of Bessel functions, see Equations (2.23)

and (2.24). Now we turn our attention to the second integral, II. Writing it

out explicitly using polar coordinates, we have

∫
B1(0)

ekv·γdv =

∫ 1

0

∫
S1

rnerkn·γrdrdn

=

∫ 1

0

r2

∫
S1

nerkn·γdndr.

The integral over the unit circle is simply 2πI0(rk) times the expectation

of the von Mises distribution with k = rk. Then

∫ 1

0

r2

∫
S1

nerkn·γdndr = 2πγ

∫ 1

0

r2I1(rk)dr, (2.28)

as is given by Equation (2.25). In order to compute this last integral, we will

use the Bessel function properties. Rewriting the integrand:

r2I1(rk) = − 1

ik2
J1(irk),
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from the definition of the modified Bessel functions, and using Equation (2.20),

we have

− 1

ik2
J1(irk) = − 1

ik2

d

dx
(x2J2(x)|x=irk.

Since i, k are constants,

− 1

ik2

d

dx
(x2J2(x)|x=irk = −1

k

d

dr
(r2J2(irk)).

Substituting this back into Equation (2.28) and applying the fundamental

theorem of calculus, we have [56]

∫
B1(0)

vekv·γdv = −2πγ

∫ 1

0

1

k

d

dr
(r2J2(irk))dr

= −2πγJ2(ik)

= 2πγ
I2(k)

k
.

Now substituting our solved integrals back into Equation (2.27), we have

aT
∫

S1

nnT q(n) dnb =
1

2πI0(k)

[
(a · b)2πI1(k)

k
+ (ka · γ)2πγ

I2(k)

k

]
= a

(
1

k

I1(k)

I0(k)
I2 + γγT

I2(k)

I0(k)

)
b,

where I2 is the two-dimensional identity matrix. Then, because a and b were

arbitrary test vectors, we have [56]

∫
S1

nnT q(n)dn =
1

k

I1(k)

I0(k)
I2 + γγT

I2(k)

I0(k)
. (2.29)
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We can then apply Equation (2.21) with n = 1, to get

∫
S1

nnT q(n)dn =
1

2
I2 +

I2(k)

I0(k)

(
γγT − 1

2

)
.

We substitute this formula into Equation (2.26), along with the expectation

given in Equation (2.25) to get [56]

Var[q] =

∫
S1

nnT q(n)dn− E[q]E[q]T

=
1

2
I2 +

I2(k)

I0(k)

(
γγT − 1

2
I2

)
−
(
I1(k)

I0(k)

)2

γγT

=
1

2

(
1− I2(k)

I0(k)

)
I2 +

(
I2(k)

I0(k)
−
(
I1(k)

I0(k)

)2
)
γγT .

Then, we summarize these results in the following Lemma.

Lemma 2.2. [56] Let γ ∈ S1 be a given unit vector, and consider the two-

dimensional von Mises distribution given by

q(n) =
1

2πI0(k)
ekn·γ , n ∈ S1.

Then the expectation and variance of q are:

E[q] =
I1(k)

I0(k)
γ,

Var[q] =
1

2

(
1− I2(k)

I0(k)

)
I2 +

(
I2(k)

I0(k)
−
(
I1(k)

I0(k)

)2
)
γγT .
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Bimodal Distibribution

Of particular interest in our models are the moment calculations for the bi-

modal von Mises distribution, i.e.

qB(n) =
1

4πI0(k)

(
ekn·γ + e−kn·γ

)
.

Since this distribution is symmetric, we have E[qB] = 0. This can be easily

seen by applying Equation (2.25) to the two individual distributions. We then

have

E[qB] =
I1(k)

I0(k)
(γ − γ) = 0. (2.30)

For the second moment, since E[qB] = 0, Equation (2.26) gives

Var[qB] =

∫
S1

nnT qB(n)dn,

which is given in Equation (2.29) by

∫
S1

nnT qB(n)dn =
1

2

(
1− I2(k)

I0(k)

)
I2 +

I2(k)

I0(k)
γγT ,

thus we have [56]

Var[qB] =
1

2

(
1− I2(k)

I0(k)

)
I2 +

I2(k)

I0(k)
γγT . (2.31)

We again summarize these results in a corollary.

Corollary 2.3. [56] Let γ ∈ S1 be a given unit vector, and consider the two-

dimensional bimodal von Mises distribution given by

q(n) =
1

4πI0(k)

(
ekn·γ + e−kn·γ

)
, n ∈ S1.
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Then the expectation and variance of q are:

E[q] = 0,

Var[q] =
1

2

(
1− I2(k)

I0(k)

)
I2 +

I2(k)

I0(k)
γγT . (2.32)

2.3.2 Three-Dimensional Case

We next consider the three-dimensional case. The variance for this case was

previously unknown, hence this computation represents a new result. We will

thus compute the expectation and the variance-covariance matrix of the Fisher

distribution, defined in Equation (2.17). We begin as in two dimensions, by

computing the expectation. Introducing an arbitrary test vector a, we have

[56]

a · E[q] = a ·
∫

S2

nq(n)dn

=

∫
S2

ni(aiq(n))dn

=

∫
B1(0)

∂

∂vi

(
ai

k

4π sinh k
ekγlvl

)
dv

where we have applied the divergence theorem, and explicitly written in the

formula for the Fisher distribution. Taking the derivative, and explicitly writ-

ing the resulting integral, we have

a · E[q] = ai

∫
B1(0)

k2γi
4π sinh k

ekγ·vdv

= a · γk
∫

B1(0)

k

4π sinh k
ekγ·vdv

= a · γ
∫ 1

0

r2k2

4π sinh k

∫
S2

erkγ·ndndr.
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The inner integral is simply 4π sinh kr
rk

times the total mass of the Fisher

distribution with k = kr, so this reduces to

= a · γ k

sinh k

∫ 1

0

r sinh krdr

= a · γ k

sinh k

[
r

k
cosh kr − 1

k2
sinh kr

∣∣∣∣1
0

= a · γ k

sinh k

[
cosh k

k
− sinh k

k2

]
= a · γ

(
coth k − 1

k

)
,

where integration by parts was used to solve the integral. Then, since a was

an arbitrary test vector, the expectation is given by [56]

E[q] =

(
coth k − 1

k

)
γ. (2.33)

In order to compute the variance via Equation (2.26), we must compute

the second moment of the Fisher distribution. We do this in a similar fashion

to the two-dimensional case, beginning with two arbitrary test vectors a and b

[56]. Then

aT
∫

S2

nnT q(n) dnb =

∫
S2

aininjbjq(n)dn

=

∫
S2

ni(ainjbjq(n))dn.

Applying the divergence theorem, substituting in the Fisher distribution,
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and expanding out the product rule, we have [56]

∫
S2

ni(ainjbjq(n))dn =

∫
B1(0)

∂

∂vi

(
aivjbj

k

4π sinh k
ekγlvl

)
dv

=

∫
B1(0)

aibi
k

sinh k
ekγ·vdv +

∫
B1(0)

ai(v · b)
k2γi

4π sinh k
ekγ·vdv

= a · b
∫

B1(0)

k

sinh k
ekγ·vdv︸ ︷︷ ︸

I

+a · γb ·
∫

B1(0)

k2

4π sinh k
vekγ·vdv︸ ︷︷ ︸

II

.

(2.34)

We will once again consider these two integrals separately. Beginning with

I, we have ∫
B1(0)

k

sinh k
ekγ·vdv =

1

k
coth k − 1

k2
, (2.35)

which we computed in our calculation of the expectation. Now for II, we have

∫
B1(0)

vekγ·vdv =

∫ 1

0

∫
S2

rnerkγ·nr2dndr.

The inner integral is simply 4π sinh kr
rk

times the expectation of the Fisher

distribution with k = rk, hence this is equal to

∫
B1(0)

vekγ·vdv =

∫ 1

0

4π sinh rk

rk

(
coth rk − 1

rk

)
r3drγ

= 4π

[∫ 1

0

r2

k
cosh rkdr −

∫ 1

0

r

k2
sinh rkdr

]
γ.
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Using integration by parts to evaluate the integrals, we have

∫
B1(0)

vekγ·vdv

=
4π

k4

{[
(k2r2 + 2) sinh(kr)− 2kr cosh(kr)

∣∣1
0
− [kr cosh(kr)− sinh(kr)|10

}
γ

= 4π

[(
sinh k

k2
− 2 cosh k

k3
+

2 sinh k

k4

)
−
(

cosh k

k3
− sinh k

k4

)]
γ

= 4π

(
sinh k

k2
− 3 cosh k

k3
+

3 sinh k

k4

)
γ.

Then ∫
B1(0)

k2

4π sinh k
vekγ·vdv =

(
1− 3

k
coth k +

3

k2

)
γ. (2.36)

Now substituting Equations (2.35) and (2.36) into Equation (2.34), we

obtain [56]

aT
∫

S2

nnT q(n)dnb = aTb

(
coth k

k
− 1

k2

)
+ aTγγTb

(
1− 3 coth k

k
+

3

k2

)
.

We then conclude

∫
S2

nnT q(n)dn =

(
coth k

k
− 1

k2

)
I3 +

(
1− 3 coth k

k
+

3

k2

)
γγT . (2.37)

In order to conclude the variance computation, we must combine this result,

along with the expectation with Equation (2.26). Doing so gives [56]

Var[q] =

(
coth k

k
− 1

k2

)
I3 +

(
1− 3 coth k

k
+

3

k2

)
γγT +

(
coth k − 1

k

)2

γγT

=

(
coth k

k
− 1

k2

)
I3 +

(
1− coth k

k
+

2

k2
− coth2 k

)
γγT . (2.38)

We summarize these results in the following theorem.
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Theorem 2.4. [56] Let γ ∈ S2 be a given unit vector, and consider the three-

dimensional Fisher distribution given by

q(n) =
k

4π sinh k
ekn·γ , n ∈ S2.

Then the expectation and variance of q are:

E[q] =

(
coth k − 1

k

)
γ,

Var[q] =

(
coth k

k
− 1

k2

)
I3 +

(
1− coth k

k
+

2

k2
− coth2 k

)
γγT .

The computations for two and three dimensions were very similar, with the

main difference being the integrals that are evaluated, which depend on the

particular normalization coefficients. This is the major advantage of this tech-

nique; while the traditional method for calculating moments becomes much

increasingly tedious in higher dimensions, this method using the divergence

theorem generalizes easily to higher dimensions.

Bimodal Distibribution

Again, for our modelling purposes, it is the bimodal distribution that is of

interest. As in the two-dimensional case, the expectation is simply 0, since the

distribution is symmetric. As such, Equation (2.26) tells us that the variance

should be given by Equation (2.37). This is summarized in the following

corollary [56].
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Corollary 2.5. [56] Let γ ∈ S2 be a given unit vector, and consider the three-

dimensional bimodal Fisher distribution given by

q(n) =
1

4πI0(k)

(
ekn·γ + e−kn·γ

)
, n ∈ S1.

Then the expectation and variance of q are:

E[qB] = 0,

Var[qB] =

(
coth k

k
− 1

k2

)
I3 +

(
1− 3 coth k

k
+

3

k2

)
γγT . (2.39)

2.3.3 Limiting Behaviour

As k → 0+, both the von Mises and Fisher (unimodal and bimodal) distribu-

tions tend to a uniform distribution. As such, we would expect that as k → 0+,

the expectation of each should go to 0, and the variance-covariance matrices

should be purely isotropic, i.e., the coefficients of the dyadic tensors should go

to 0, leaving only the coefficients of the identity matrices. In this section, we

consider the limits of the coefficients in both two and three dimensions, and

show that the isotropic tensors result.

Two dimensions

In two dimensions, the limits are very straight forward, and we can plug in

k = 0 directly, with no issues. We have that

lim
k→0+

I2(k)

I0(k)
= lim

k→0+

I1(k)

I0(k)
= 0,

hence E[q] = 0, E[qB] = 0 (trivially), and Var[q] = Var[qB] = 1
2
I2.
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Three dimensions

The situation in three dimensions is not so straight forward. Simply setting

k = 0 in the coefficients causes undefined values, thus the limits must be taken

carefully. Let us first define the following coefficients as functions of k:

a(k) = coth k − 1

k
,

b(k) =
coth k

k
− 1

k2
,

c(k) = 1− coth k

k
+

2

k2
− coth2 k,

d(k) = 1− 3 coth k

k
+

3

k2
.

Then we have for the unimodal case

E[q] = a(k)γ,

Var[q] = b(k)I3 + c(k)γγT ,

and for the bimodal case

E[qB] = 0,

Var[qB] = b(k)I3 + d(k)γγT .

We can compute the limits analytically for each of these coefficients. Be-

ginning with a(k), we have

lim
k→0+

a(k) = lim
k→0+

coth k − 1

k
,

which we rewrite into an indeterminate form and apply successive l’Hôpital’s
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rules to:

lim
k→0+

k − tanh k

k tanh k
= lim

k→0+

1− sech2k

tanh k + ksech2k

= lim
k→0+

2sech2k tanh k

sech2 + (1− 2sechk)sech2k

= 0.

We compute the limit of b(k) in a similar fashion; rewriting it into an

indeterminate form, and repeatedly applying l’Hôpital’s rule:

lim
k→0+

b(k) = lim
k→0+

coth k

k
− 1

k2

= lim
k→0+

k − tanh k

k2 tanh k

= lim
k→0+

1− sech2k

2k tanh k + k2sech2k

= lim
k→0+

2sech2k tanh k

2ksech2k + 2 tanh k − 2k2sech2k tanh k + 2ksech2k

= lim
k→0+

−4sech2k tanh2 k = 2sech4k

6sech2k − 12ksech2k tanh k − 2k2(sech4k − 2sech2k tanh2 k)

=
1

3
.

To compute the limit of c(k) and d(k), we can make use of the limits that

we’ve already computed. To compute c(k), we have

lim
k→0+

c(k) = lim
k→0+

1− coth k

k
+

2

k2
− coth2 k

= lim
k→0+

1−
(

coth k

k
− 1

k2

)
︸ ︷︷ ︸

b(k)

+
1

k2
− coth2 k

= lim
k→0+

2

3
+

(
1

k
+ coth k

)(
1

k
− coth k

)
,
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where we have used the fact that the limit of b(k) is 1/3, and factored using

difference of two squares. Then rewriting we have

lim
k→0+

2

3
+

(
1

k
+ coth k

)(
1

k
− coth k

)
= lim

k→0+

2

3
− (1− k coth k)b(k)

= lim
k→0+

2

3
− 1

3

(
1 +

k

sinh k

)
=

2

3
− 2

3
= 0.

Finally, taking the limit of d(k), we have

lim
k→0+

d(k) = lim
k→0+

1− 3 coth k

k
+

3

k2

= lim
k→0+

1− 3

(
coth k

k
− 1

k2

)
= 1− 3 lim

k→0+
c(k)

= 1− 3

(
1

3

)
= 0.

These results can be confirmed numerically by plotting the coefficients as

functions of k. The result of this is shown in Figure 2.4. We can see that the

numerical limits match with those computed analytically.

2.4 Classification of the PDE Model

Because q(x, ·) is a regular probability distribution, its variance-covariance ma-

trix will be symmetric positive-definite. We thus conclude that Dc as given by

Equation (2.13) is positive definite [5]. Mathematically speaking, this means

that

xTDcx = Dijxixj > 0,
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Figure 2.4: Limiting Behaviour. (a) Plot of the coefficients a(k), b(k), c(k) and
d(k) vs. k. Note that for k → 0, a, c, d→ 0, while b→ 1/3.

for all x ∈ Rn, x 6= 0, where we have used repeated indices to indicate

summation. A natural consequence of this is that when θ ∈ Sn−1, there will

be a lower bound for the quadratic form, i.e.,

θTDcθ = Dijθiθj ≥ k > 0, (2.40)

for all θ ∈ Sn−1. We can use this result to show that Equation (2.14) is a

parabolic PDE. We follow the definition of Evans [62] for classifying a second

order linear PDE as parabolic. Following the notation of Evans, we consider
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a PDE of the following form [62]
ut(t,x) + Lu(t,x) = f(x) in UT

u(t,x) = 0 on ∂U × [0, T ]

u(0,x) = g(x) on U × {t = 0},

where UT is the domain, and f(x) and g(x) are prescribed functions. Then L

represents a second-order partial differential operator that takes the form [62]

Lu(t,x) = −
n∑

i,j=1

aij(x, t)uxixj +
n∑
i=1

bi(x, t)uxi + c(x, t)u. (2.41)

Then a parabolic PDE is defined as follows:

Definition 2.6. (Evans [62]) We say that the partial differential operator

∂
∂t

+ L is (uniformly) parabolic if there exists a constant C > 0 such that

n∑
i,j=1

aij(x, t)ξiξj ≥ C|ξ|2, (2.42)

for all (x, t) ∈ UT , ξ ∈ Rn.

In the case of the fully anisotropic diffusion operator of Equation (2.14),

Lu is defined as

Lu(t,x) = −∇∇ : (Dc(x)u(t,x)) = ∂i∂j

(
Dc(x)iju(t,x)

)
.

Expanding out the full three-dimensional operator, and recalling that Dc is
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symmetric, we can define the coefficients of Equation (2.41) as follows:

a =


D11 D12 D13

D12 D22 D23

D13 D23 D33

 = Dc,

b =


2D11x1

+ 2D13x3
+ 2D12x2

2D12x1
+ 2D23x3

+ 2D22x2

2D13x1
+ 2D33x3

+ 2D23x2

 ,

and

c = D11x1x1
+D22x2x2

+D33x3x3
+ 2D13x1x3

+ 2D23x2x3
+ 2D12x1x2

.

Now dividing both side of Equation (2.42) by |ξ|2, we have

ξ̄Taξ̄ ≥ C,

where ξ̄ = ξ/|ξ| is a unit vector. Now since a = Dc, this is exactly equivalent

to Equation (2.40), and so the condition in Equation (2.42) is satisfied for

C = k, and the operator ∂t + ∇∇ : Dc(x) is parabolic. A nice consequence

of this is that the classical existence and uniqueness theorems for parabolic

PDE’s apply [5, 62], For these results, see Robinson [63].

2.5 Chapter Summary

In this chapter, we reviewed the details of the derivation of the Painter-Hillen

model of [5]. We began by setting up a transport equation modelling the

movement of individual cells, parameterized by space x, time t and velocity
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v. The movement depends on the turning rate µ, as well as the turning

distribution q(x,v). The turning distribution defines the probability that a

cell at location x will turn into velocity v. We wanted to incorporate the

fact that cells move along the white matter tracts into the model, hence we

used a bimodal von Mises distribution (in two dimensions) or a bimodal Fisher

distribution (in three dimensions), having a peak in the direction of the fibre

tract.

While the transport equation models cell movement on an individual basis,

we were ultimately interested in a model for the macroscopic cell density. To

obtain the macroscopic model, a parabolic scaling was performed due to the

difference in spatial and temporal scales at the cellular level as compared to

the macroscopic scale. The result was that the macroscopic PDE describing

glioma spread is given by

ut = ∇∇ : (Dc(x)u(x, t)),

where

Dc(x) =
1

µ

∫
V

vvT q(x,v) dv

is the macroscopic cancer cell diffusion tensor, computed as the second moment

of the turning distribution.

To fully determine the diffusion tensor for the Painter-Hillen model, we

calculated the second moment of the turning distribution. While a formula

exists for the two-dimensional von Mises case, we were not able to find the

formula for the second moment of the three-dimensional Fisher distribution.

As such, we employed a novel moment calculation technique that uses the

divergence theorem to simplify the integrals. We therefore obtained a formula
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for the diffusion tensor in three dimensions, analogous to the result in two

dimensions. We confirmed the validity of this result by exploring the limiting

behaviour as the distribution tends towards a uniform distribution. The result

was that as we tended towards a uniform distribution, the diffusion tensor

tended towards an isotropic tensor, as expected.

Finally, we confirmed that the resulting operator is parabolic, so that the

classical existence and uniqueness results apply.
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Chapter 3

Simulations on a Simplified

Domain

To get a better understanding of the solutions to the Painter-Hillen model

of Equation (1.12) when applied to real patient data, we will first apply it

to a simple domain. Additionally, we will use these results to validate the

model and the code. We will begin with the simple one-dimensional case and

work up to the three-dimensional case. A simplified artificial domain is used

in both two and three dimensions to demonstrate how the model behaves

when a white matter tract is encountered. In Chapters 4 and 5, we will use

the numerical methods and boundary conditions derived in this chapter and

apply the Painter-Hillen model to more complicated real brain domains.

3.1 One-dimensional Simulations

We begin with the one-dimensional case. For this particular case, anisotropy

does not exist, as there is only one direction of spread. There will therefore
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be no diffusion tensor, instead just a scalar diffusion coefficient. We use this

example to introduce the numerical method, and to explore the numerical and

analytical steady-state behaviour.

While the diffusion coefficient does not vary directionally, we do allow it

to vary spatially. We therefore begin with the PDE


ut = (D(x)u)xx in [0, L]× R+,

u(x, 0) = g(x) on [0, L]× {t = 0},
∂(Du)
∂x

= 0 at x = 0, L,

(3.1)

where u represents the cell density, D(x) ∈ C2 is the diffusion coefficient and

the domain is defined as x ∈ [0, L] × R+. The initial condition is prescribed

by g(x). Note that we have applied the fully anisotropic diffusion operator of

Painter and Hillen [5], derived in Chapter 2. We have chosen homogeneous

Neumann boundary conditions to simulate cells being unable to pass through

the skull (boundary). Making the substitution φ(x, t) = D(x)u(x, t) reduces

the system to a straight-forward diffusion equation
φt = D(x)φxx in [0, L]× R+,

φ(x, 0) = D(x)g(x) on [0, L]× {t = 0},

∂φ
∂x

= 0 at x = 0, L.

(3.2)

We will transform solutions of Equation (3.2) by dividing by D(x) to obtain

solutions of Equation (3.1). We also note that while Equation (3.2) has steady

state solutions φ(x) = C, where C is a constant, Equation (3.1) has steady

state solutions u(x) = C/D(x). We used a simple finite differencing scheme

with a forward Euler time stepping, and a centred difference in space, i.e.,

84



Chapter 3. Simulations on a Simplified Domain

simulating Equation (3.2):

φn+1
i − φi
τ

=
Di(φ

n
i+1 − 2φni + φni−1)

h2
, (3.3)

where τ is the time step and h is the spatial step. The numerical solution is

given by φni , with time level indicated by the superscripts n and n + 1, while

the spatial level is indicated by the subscripts i, i+ 1 and i− 1. The discrete

diffusion coefficient is given by Di = D(xi), with D(x) defined as

D(x) =



0.5 if 0 ≤ x ≤ 0.1,

20e(−((x−0.2)2)) + 0.5− 20e−0.01 if 0.1 < x < 0.3,

0.5 if 0.3 ≤ x ≤ 0.7,

−20e(−((x−0.8)2)) + 0.5 + 20e−0.01 if 0.7 < x < 0.9,

0.5 if 0.9 ≤ x ≤ 1,

which describes enhanced diffusion when 0.1 ≤ x ≤ 0.3, and reduced diffusion

when 0.7 ≤ x ≤ 0.9. The spatial dependence of D(x) is shown in Figure 3.1.

Finally, the initial condition was chosen to be a straight line, i.e.,

g(x) =
1

2
x.

The plot on the top of Figure 3.2 shows the solutions to Equation (3.1) for

different numbers of iterations, after applying the scheme in Equation (3.3)

and the initial condition stated above. It appears that solutions are tending

towards a steady state, as is confirmed in the plot on the bottom of Figure

3.2. This plot shows the agreement of the long term numerical behaviour with

the analytical steady state. Recall that Equation (3.1) has steady states of
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Figure 3.1: 1D Diffusion Coefficient. The spatially dependent diffusion coef-
ficient D(x). It is chosen to display enhanced diffusion when 0.1 ≤ x ≤ 0.3,
and reduced diffusion when 0.7 ≤ x ≤ 0.9.

the form C/D(x), as can be seen in the plot.

We see from the simulations that the long-term numerical behaviour matches

with the theoretical steady state. We also see that the highest values of the

steady state solution correspond to the smallest values of the diffusion coeffi-

cient. This initially may seem counterintuitive, but in fact makes sense. Where

the diffusion coefficient is high, all of the cells diffuse away more quickly than

they diffuse into this region, resulting in the local minimum observed in the

plot.

3.1.1 Stability of Numerical Method

In order to simulate Equation (3.2), we used an explicit finite difference scheme,

with forward time and centred space. Here we derive a necessary condition for

stability. To do this, we will use the method of von Neumann stability analysis.
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Figure 3.2: 1D Solutions. (a) Plot of solutions to Equation (3.1), for 0, 100,
2000, 10000 and 50000 iterations. (b) Plot of the long term numerical be-
haviour (50000 iterations) with the theoretical steady state solution.
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We follow the explanation as in [64], though the method can be found in many

sources. Recall that we are using the discretization shown in Equation (3.3).

We begin by substituting in a single Fourier mode φnj = ξneikjh, where k is the

wave number and jh = x. For stability, we require that the ratio |ξn+1/ξn| < 1.

We note here that n represents the time level. Plugging this mode into the

above scheme and simplifying, we get

ξn+1

ξn
= 1− 2

D(x)τ

h2
+ 2

D(x)τ

h2
i sin(kh),

where we have used the fact that eikh − e−ikh = 2i sin(kh). We therefore see

that, because | sin(kh)| ≤ 1, we have

∣∣∣∣ξn+1

ξn

∣∣∣∣ =

∣∣∣∣1− 2
D(x)τ

h2
+ 2

D(x)τ

h2
i sin(kh)

∣∣∣∣ ≤ (1− 2
D(x)τ

h2

)2

+

(
2
D(x)τ

h2

)2

.

A necessary condition for stability is that ξn+1/ξn < 1. We thus have a

condition on stability:

2D(x)k

h2
< 1⇐⇒ D(x)

τ

h2
<

1

2
.

We thus must keep this condition in mind for our simulations. We omit the

stability analysis for higher dimensions, but assume a similar condition exists.

3.2 Two-dimensional Simulations

While the one-dimensional simulations give us valuable information about the

relationship between steady states and diffusion rates, it has little applicability

in the case of brain tumours, and ultimately we will need to look at higher

dimensional simulations. We now consider a two-dimensional simulation and
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a diffusion coefficient that is both spatially dependent and anisotropic, corre-

sponding to the situation that we would expect to find within the brain. We

will also now add a logistic growth term, intended to simulate cell division.

This growth term takes the form

ut = ru(1− u),

where r defines the growth rate. Logistic growth behaves like exponential

growth when the cell density is small, but will tend to 0 as the cell density

approaches a carrying capacity (1 in this case). This growth will be included

in the numerical methods described in the following sections.

To begin with, we will consider a simplified domain containing a vertical

fibre and a horizontal fibre and see how the solution distribution varies due

to the presence of these fibres. The purpose of looking at these solutions is so

that we may observe the behaviour of the Painter-Hillen model without the

complication of a brain domain.

3.2.1 Numerical Methods

Because the diffusion tensors are symmetric, as can be seen from the calcula-

tion of the second moment of the bimodal von Mises distribution in Chapter 2,

we may define the tensor with three parameters: α, γ and β. These correspond

to the three degrees of freedom in the two-dimensional, spatially dependent

diffusion tensor. The two-dimensional Painter-Hillen model given in Equation

(1.12), with logistic growth added, can then be written as

ut = ∇∇ :

 α(x) β(x)

β(x) γ(x)

u+ ru(1− u), (3.4)
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which expands to

ut = (α(x)u)x1x1 + (β(x)u)x1x2 + (β(x)u)x2x1 + (γ(x)u)x2x2 + ru(1− u).

Following the natural substitution that was done in the one-dimensional case,

let

v1 = α(x)u,

v2 = 2β(x)u,

v3 = γ(x)u.

We can compute the following numerical second derivatives:

(v1)nx1x1
=

(v1)ni+1,j−2(v1)ni,j+(v1)ni−1,j

h2
1

, (3.5)

(v2)nx1x2
= (v2)nx2x1

=
(v2)ni+1,j+1−(v2)ni−1,j+1−(v2)ni+1,j−1+(v2)ni−1,j−1

4h1h2
, (3.6)

(v3)nx2x2
=

(v3)ni,j+1−2(v3)ni,j+(v3)ni,j−1

h2
2

, (3.7)

where h1 is the x1 spatial step, h2 is the x2 spatial step and n indicates the

time level. The i subscripts indicate the x1 direction, while the j subscripts

indicate the x2 direction. We then use a forward Euler time-stepping scheme,

and obtain the following finite difference scheme:

un+1
i,j = k

(
(v1)nx1x1

+ (v2)nx1x2
+ (v3)nx2x2

+ runi,j(1− uni,j))
)

+ uni,j, (3.8)

where k gives the time step and the second derivatives are given by Equations

(3.5)-(3.7) for spatial level (i, j).
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Boundary Conditions

We stated in the introduction of the model, that we would be using no-flux

boundary conditions. For this particular model, this is equivalent to

n · (∇ · (D(x)u)) = 0,

where n is the outward unit normal from the boundary. Because this condition

is difficult to implement numerically, we instead take a different approach to

ensure that our numerical scheme conserves mass (in the absence of growth).

We begin by writing out the full numerical discretization described above:

un+1
i,j − uni,j

k
=

(v1)ni+1,j − 2(v1)ni,j + (v1)ni−1,j

h2
1

+
(v2)ni+1,j+1 − (v2)ni+1,j−1 − (v2)ni−1,j+1 + (v2)i−1,j−1

4h1h2

+
(v3)ni,j+1 − 2(v3)ni,j + (v3)ni,j−1

h2
1

. (3.9)

Taking the double sum over the domain of the left hand side, this gives

1

k

[
M∑
i=1

N∑
j=1

un+1
i,j −

M∑
i=1

N∑
j=1

uni,j

]
=

1

k
[(Total mass at time n+ 1)− (Total mass at time n)] . (3.10)

Note that for this section we are assuming a rectangular domain where x

goes between x1 and xM , and y goes between y1 and yN . In order to ensure

conservation of mass, the mass at time n + 1 must equal the mass at time n,

and so the quantity on the left hand side of Equation (3.10) must be equal to

0. To ensure this, we will take the same double sum over the discretization on
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the right hand side of Equation (3.9) and force the resulting expression to be

0. We therefore want to force the following condition:

0 =
1

h2
1

M∑
i=1

N∑
j=1

(
(v1)ni+1,j − 2(v1)ni,j + (v1)ni−1,j

)
+

1

4h1h2

M∑
i=1

N∑
j=1

(
(v2)ni+1,j+1 − (v2)ni+1,j−1 − (v2)ni−1,j+1 + (v2)ni−1,j−1

)
+

1

h2
2

M∑
i=1

N∑
j=1

(
(v3)ni,j+1 − 2(v3)ni,j + (v3)ni,j−1

)
.

Since we are now working only with time level n, we drop the time label.

Reindexing, we obtain

0 =
1

h2
1

N∑
j=1

[
M+1∑
i=2

(v1)i,j − 2
M∑
i=1

(v1)i,j +
M−1∑
i=0

(v1)i,j

]

+
1

4h1h2

N∑
j=1

[
M+1∑
i=2

(v2)i,j+1 −
M+1∑
i=2

(v2)i,j−1 −
M−1∑
i=0

(v2)i,j+1 +
M−1∑
i=0

(v2)i,j−1

]

+
1

h2
2

N∑
j=1

[
M+1∑
i=2

(v3)i,j − 2
M∑
i=1

(v3)i,j +
M−1∑
i=0

(v3)i,j

]
.

We therefore have a number of telescoping sums. Removing all overlapping

terms that are subtracted off, we are left with an expression involving boundary

terms:

0 =
1

h2
1

N∑
j=1

[(v1)M+1,j − (v1)M,j + (v1)0,j − (v1)1,j]

+
1

4h1h2

N∑
j=1

[(v2)M,j+1 + (v2)M+1,j+1 − (v2)0,j+1 − (v2)1,j+1

+(v2)0,j−1 + (v2)1,j−1 − (v2)M,j−1 − (v2)M+1,j−1]
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+
1

h2
2

M∑
i=1

[(v3)i,N+1 − (v3)i,N + (v3)i,0 − (v3)i,1].

There are a number of ways to choose the vis to ensure that this condition

is met, however, we will choose the simplest set of boundary conditions:

(v1)M+1,j = (v1)M,j,

(v1)0,j = (v1)1,j, for 1 ≤ j ≤ N,

(v3)i,N+1 = (v3)i,N ,

(v3)i,0 = (v3)i,1, for 1 ≤ i ≤M,

(v2)1,j = −(v2)0,j,

(v2)M+1,j = −(v2)M,j, for 1 ≤ j ≤ N. (3.11)

These conditions fully define the needed boundary points for the second

derivatives with respect to x1 and x2 (v1 and v3), but only partially define

the conditions on the mixed second derivative (v2). A sample (3 × 3) square

domain is shown in Figure 3.3, along with the associated boundary points.

Because of the numerical stencils used in calculating the derivatives, v1 need

only be defined on the white boundary points to the left and right of the

domain. Similarly, v3 need only be defined on the white boundary points

above and below the domain. For the mixed second derivative, however, v2

must be defined on all of the white points, and the blue corner points. The

condition above defines v2 only on the white boundary points to the left and

right of the domain, however we notice that the summation over the second

derivative discretization has an equivalent representation:
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1

4h1h2

N∑
j=1

[
M+1∑
i=2

(v2)i,j+1 −
M+1∑
i=2

(v2)i,j−1 −
M−1∑
i=0

(v2)i,j+1 +
M−1∑
i=0

(v2)i,j−1

]
=

1

4h1h2

M∑
i=1

[
N+1∑
j=2

(v2)i+1,j −
N+1∑
j=2

(v2)i−1,j −
N−1∑
j=0

(v2)i+1,j +
N−1∑
j=0

(v2)i−1,j

]
,

which gives conditions on v2 for the white boundary points above and below

the domain:

(v2)i,0 = −(v2)i,1,

(v2)i,N+1 = −(v2)i,N for 1 ≤ i ≤M. (3.12)

Finally, v2 for the corner points can be defined to satisfy the above condi-

tions as

(v2)M+1,N+1 = −(v2)M,N+1 = −(v2)M+1,N = (v2)M,N ,

(v2)M+1,0 = −(v2)M,0 = −(v2)M+1,1 = (v2)M,1,

(v2)0,0 = −(v2)0,1 = −(v2)1,0 = (v2)1,1,

(v2)0,N+1 = −(v2)0,N = −(v2)1,N+1 = (v2)1,N .

(3.13)

It turns out that we do not need explicit boundary conditions on u itself,

as all derivatives are computed using v1, v2 and v3, hence the set of conditions

given for v1, v2 and v3 is sufficient.

3.2.2 Simulations on a Simplified Domain

Now we will solve this system numerically using the explicit finite difference

scheme just described. We will solve it on what we will refer to as a “simplified
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Figure 3.3: Boundary Conditions. Grid representing a simple 3 × 3 grid and
accompanying ghost points to satisfy the boundary conditions outlined in this
section. The points of the domain are shown in black, while the ghost points
are shown in white and blue. A distinction is made between “edge” points
(white) and “corner” points (blue).

domain”, meaning that it is not the full brain data, but rather artificially

defined DTI data. We will define this data to approximate a vertical fibre and

a horizontal fibre, crossing in the middle of a square domain of size (100×100).

We will then initialize a Gaussian distribution and observe how the cell density

interacts with this domain as it diffuses according to Equation (1.9). To set

up the artificial domain, we will approximately follow the procedure outlined

in Painter and Hillen [5], which we will extend to three dimensions in the next

section.

To begin, we will initialize an artificial DTI dataset following Equation (24)

from Painter and Hillen [5]:

α(x, y) = 0.5− d1(x, y) + d2(x, y),

β(x, y) = 0,

γ(x, y) = 0.5 + d1(x, y)− d2(x, y),
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where

d1(x, y) = 0.25e−0.05(x−50)2 , and d2(x, y) = 0.25e0.5(y−50)2 .

Recall that α is the (1,1) component of the two-dimensional diffusion ten-

sor, γ is the (2,2) component, and β defines the off-diagonals of the symmetric

tensor, as per Equation (3.4). This serves to create a thin fibre in the x direc-

tion, and a wider fibre in the y direction. Once the artificial DTI dataset is

constructed, it is scaled according to the procedure described in Chapter 2 to

obtain Dc for three different values of the anisotropy parameter: κ=0, κ =10

and κ =50. The artificial DTI data, as well as the results of these scalings

are shown in Figure 3.4. We can see in this image that when observing the α

parameter, it is high along the horizontal fibre and low along the vertical fibre.

Since the diffusion tensor we are using is diagonal, α represents the principal

value associated with the vector [1, 0]T . Similarly, γ represents the principal

value associated with the vector [0, 1]T , and hence is high along the vertical

fibre, and low along the horizontal fibre. We also note that as κ increases from

0 to 50, the bands get darker, indicating a stronger directional tendency.

For the initial condition, we define

g(x, y) = 0.1e−((x−35)2+(y−35)2),

so that we have a sharp Gaussian centered at the point (35,35). This is meant

to simulate a small tumour beginning to grow. A growth rate of r = 0.3 is

used, while the diffusion tensors are scaled by setting 1
µ2 = 0.5.

Simulation results are shown for t = 0 (the initial condition), t = 8. t = 16,

t = 24 and t = 32 in Figure 3.5. The resulting simulations are greatly affected
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α γ

DTI

κ = 0

κ = 10

κ = 50

Figure 3.4: 2D Fibre Domain. Plot of the diagonal components, α (left)
and γ (right), for the two-dimensional diffusion tensor. The first row shows
the artificially defined DTI data, with subsequent rows showing the result of
scaling the DTI data according to the procedure in Chapter 2 for varying values
of the anisotropy parameter. The second row corresponds to κ = 0 (isotropic),
the third row corresponds to κ = 10, and the bottom row to κ = 50. The
colour indicates the value of α (left) and γ (right), with yellow=high and
blue=low. Notice that the directional tendency increases with increasing κ.
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by the anisotropy parameter. The higher the value of κ, the more the cells

diffuse along the white matter fibres. The top row of Figure 3.5 shows the

results after different numbers of iterations, for κ = 0. For this case, the

spread is isotropic and the resulting distribution is radially symmetric. The

cells spread over the fibres without even noticing their presence. The second

row of Figure 3.5 shows the results after different numbers of iterations for

κ = 10. For this case, we can see that the cell density distribution begins to

expand along the fibres. This effect is seen even more strongly in the bottom

row, where κ = 50. We also see that the cells tend to collect along the fibres,

particularly for higher values of κ. This is because the rate of spread along

the fibres is much higher than the rate of spread perpendicularly, making it

difficult for cells to move off of a fibre. We will see in Chapters 4 and 5 that

κ will play an important role in the simulation of real patients’ gliomas.

3.3 Three-dimensional Simulations

It is most realistic to consider simulations in three dimensions since the brain

is a three-dimensional object. Many of the ideas from two dimensions extend

in a natural way when another dimension is added.

3.3.1 Numerical Methods

We begin again with the model Equation (1.9). Again, we have that the

three-dimensional diffusion tensor is symmetric, thus we define 6 individual

quantities: D11(x), D12(x), D13(x), D22(x), D23(x), and D33(x). Writing
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t = 0 t = 8 t = 16 t = 24 t = 32

κ = 0

κ = 10

κ = 50

Figure 3.5: 2D Simple Domain Results. The results of simulating Equation
(3.4) for varying values of the anisotropy parameter, and varying time points.
The first row corresponds to κ = 0, the second to κ = 10, and the third to
κ=50. The columns correspond to time points of t = 0, 8, 16, 24 and 32,
respectively. The colour corresponds to cell density, with yellow=high and
dark blue=low. Notice that for increasing κ, cells have a stronger tendency to
follow the fibres. They also have a tendency to collect on the fibres for higher
κ, as movement in the perpendicular directions is greatly reduced.
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this out, we have

ut = ∇∇ :



D11(x) D12(x) D13(x)

D12(x) D22(x) D23(x)

D13(x) D23(x) D33(x)

u
+ ru(1− u), (3.14)

and this can be expanded to

ut = (D11(x)u)xx + (D12(x)u)xy + (D13(x)u)xz + (D12(x)u)yx + (D22(x)u)yy

+ (D23(x)u)yz + (D13(x)u)zx + (D23(x)u)zy + (D33(x)u)zz + ru(1− u).

(3.15)

As we did in two dimensions, we will make the following substitutions:

v1 = D11u,

v2 = D22u,

v3 = D33u,

v4 = 2D12u,

v5 = 2D13u,

v6 = 2D23u.

We compute the following numerical second derivatives

(v1)nxx =
(v1)ni+1,j,l−2(v1)ni,j,l+(v1)ni−1,j,l

h2
1

, (3.16)

(v2)nyy =
(v2)ni,j+1,l−2(v2)ni,j,l+(v2)ni,j−1,l

h2
2

, (3.17)

(v3)nzz =
(v3)ni,j,l+1−2(v3)ni,j,l+(v3)ni,j,l−1

h2
3

, (3.18)

(v4)nyx = (v4)nxy =
(v4)ni+1,j+1,l−(v4)ni−1,j+1,l−(v4)ni+1,j−1,l+(v4)ni−1,j−1,l

4h1h2
, (3.19)
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(v5)nzx = (v5)nxz =
(v5)ni+1,j,l+1−(v5)ni−1,j,l+1−(v5)ni+1,j,l−1+(v5)ni−1,j,l−1

4h1h3
, (3.20)

(v6)nzy = (v6)nyz =
(v6)ni,j+1,l+1−(v6)ni,j+1,l−1−(v6)ni,j−1,l+1+(v6)ni,j−1,l−1

4h2h3
, (3.21)

(3.22)

where h1 is the spatial step for x, h2 is the spatial step for y and h3 is the

spatial step for z. The i subscripts correspond to x, the j subscripts to y, and

the l subscripts to z. Using a forward Euler scheme in time, we then have the

following scheme for u:

un+1
i,j,l

= k
(
(v1)nxx + (v2)nyy + (v3)nzz + (v4)nxy + (v5)nxz + (v6)nyz) + runi,j(1− uni,j)

)
+uni,j,l

where k is the time step and the second derivatives are computed as in Equa-

tions (3.16)-(3.22) for spatial level (i, j).

Boundary Conditions

In three dimensions, we again have no-flux boundary conditions, as we wish to

prevent cells from diffusing through the skull in order to have a realistic bio-

logical model. Note however that in this chapter we consider only rectangular

domains. We will use a similar process to derive the boundary conditions to

that which was used to derive the two-dimensional conditions, ensuring that

mass in conserved. We begin by once again writing out the full numerical

discretization described above (without the growth term):

un+1
i,j,l − uni,j,l

k
=

(v1)ni+1,j,l − 2(v1)ni,j,l + (v1)ni−1,j,l

h2
1
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+
(v2)ni,j+1,l − 2(v2)ni,j,l + (v2)ni,j−1,l

h2
2

+
(v3)ni,j,l+1 − 2(v3)ni,j,l + (v3)ni,j,l−1

h2
3

+
(v4)ni+1,j+1,l − (v4)ni−1,j+1,l − (v4)ni+1,j−1,l + (v4)ni−1,j−1,l

4h1h2

+
(v5)ni+1,j,l+1 − (v5)ni−1,j,l+1 − (v5)ni+1,j,l−1 + (v5)ni−1,j,l−1

4h1h3

+
(v6)ni,j+1,l+1 − (v6)ni,j+1,l−1 − (v6)ni,j−1,l+1 + (v6)ni,j−1,l−1

4h2h3

. (3.23)

Taking the triple sum over the domain of the left hand side, this will give

1

k

[
M∑
i=1

N∑
j=1

P∑
l=1

un+1
i,j,l −

M∑
i=1

N∑
j=1

P∑
l=1

uni,j,l

]
=

1

k
[(Total mass at time n+ 1)− (Total mass at time n)] . (3.24)

For this section we are assuming a cube domain where we still have x

between x1 and xM , and y between y1 and yN , however now we have a third

dimension z between z1 and zP . In order to ensure conservation of mass, the

mass at time n + 1 must equal the mass at time n, and so the quantity on

the left hand side of Equation (3.24) must be equal to 0. To ensure this, we

take the same triple sum over the discretization on the right hand side and

force the resulting expression to be 0. We therefore want to force the following

condition:

0 =
1

h2
1

M∑
i=1

N∑
j=1

P∑
l=1

(
(v1)ni+1,j,l − 2(v1)ni,j,l + (v1)ni−1,j,l

)
+

1

h2
2

M∑
i=1

N∑
j=1

P∑
l=1

(
(v2)ni,j+1,l − 2(v2)ni,j,l + (v2)ni,j−1,l

)
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+
1

h2
3

M∑
i=1

N∑
j=1

P∑
l=1

(
(v3)ni,j,l+1 − 2(v3)ni,j,l + (v3)ni,j,l−1

)
+

1

4h1h2

M∑
i=1

N∑
j=1

P∑
l=1

(
(v4)ni+1,j+1,l − (v4)ni−1,j+1,l − (v4)ni+1,j−1,l + (v4)ni−1,j−1,l

)
+

1

4h1h3

M∑
i=1

N∑
j=1

P∑
l=1

(
(v5)ni+1,j,l+1 − (v5)ni−1,j,l+1 − (v5)ni+1,j,l−1 + (v5)ni−1,j,l−1

)
+

1

4h2h3

M∑
i=1

N∑
j=1

P∑
l=1

(
(v6)ni,j+1,l+1 − (v6)ni,j+1,l−1 − (v6)ni,j−1,l+1 + (v6)ni,j−1,l−1

)
.

Since we are now working only with time level n, we drop the time label.

Reindexing, we obtain

0 =
1

h2
1

N∑
j=1

P∑
l=1

[
M+1∑
i=2

(v1)i,j,l − 2
M∑
i=1

(v1)i,j,l +
M−1∑
i=0

(v1)i,j,l

]

+
1

h2
2

M∑
i=1

P∑
l=1

[
N+1∑
j=2

(v2)i,j,l − 2
N∑
j=1

(v2)i,j,l +
N−1∑
j=0

(v2)i,j,l

]

+
1

h2
3

M∑
i=1

N∑
j=1

[
P+1∑
l=2

(v3)i,j,l − 2
P∑
l=1

(v3)i,j,l +
P−1∑
l=0

(v3)i,j,l

]

+
1

4h1h2

P∑
l=1

N∑
j=1

[
M+1∑
i=2

(v4)i,j+1,l −
M−1∑
i=0

(v4)i,j+1,l −
M+1∑
i=2

(v4)i,j−1,l +
M−1∑
i=0

(v4)i,j−1,l

]

+
1

4h1h3

M∑
i=1

N∑
j=1

[
P+1∑
l=2

(v5)i+1,j,l −
P−1∑
l=0

(v5)i+1,j,l −
P+1∑
l=2

(v5)i−1,j,l +
P−1∑
l=0

(v5)i−1,j,l

]

+
1

4h2h3

M∑
i=1

P∑
l=1

[
N+1∑
j=2

(v6)i,j,l+1 −
N−1∑
j=0

(v6)i,j,l+1 −
N+1∑
j=2

(v6)i,j,l−1 +
N−1∑
j=0

(v6)i,j,l−1

]
.

Once again, we have a number of telescoping sums, with only certain
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boundary terms left over. The resulting condition is

0 =
1

h2
1

N∑
j=1

P∑
l=1

[(v1)M+1,j,l − (v1)M,j,l + (v1)0,j,l − (v1)1,j,l]

+
1

h2
2

M∑
i=1

P∑
l=1

[(v2)i,N+1,l − (v2)i,N,l + (v2)i,0,l − (v2)i,1,l]

+
1

h2
3

M∑
i=1

N∑
j=1

[(v3)i,j,P+1 − (v3)i,j,P + (v3)i,j,0 − (v3)i,j,1]

+
1

4h1h2

P∑
l=1

N∑
j=1

[(v4)M+1,j+1,l + (v4)M,j+1,l − (v4)0,j+1,l − (v4)1,j+1,l

− (v4)M+1,j−1,l − (v4)M,j−1,l + (v4)0,j−1,l + (v4)1,j−1,l]

+
1

4h1h3

M∑
i=1

N∑
j=1

[(v5)i+1,j,P+1 + (v5)i+1,j,P − (v5)i+1,j,0 − (v5)i+1,j,1

− (v5)i−1,j,P+1 − (v5)i−1,j,P + (v5)i−1,j,0 + (v5)i−1,j,1]

+
1

4h2h3

M∑
i=1

P∑
l=1

[(v6)i,N+1,l+1 + (v6)i,N,l+1 − (v6)i,0,l+1 − (v6)i,1,l+1

− (v6)i,N+1,l−1 − (v6)i,N,l−1 + (v6)i,0,l−1 + (v6)i,1,l−1].

As in two dimensions, there is not a unique method for choosing the bound-

ary conditions so that conservation of mass is satisfied, however we will choose

the conditions that are the simplest, and that make the most sense. Recall

that for the mixed second derivatives, we obtain two sets of conditions which

can be seen by rewriting the sums, as was done in two dimensions. We will

omit this step here. We therefore obtain conditions on v1:
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(v1)0,j,l = (v1)i,j,l,

(v1)M+1,j,l = (v1)M,j,l, for 1 ≤ j ≤ N, 1 ≤ l ≤ P, (3.25)

and on v2:

(v2)0,j,l = (v2)i,j,l,

(v2)M+1,j,l = (v2)M,j,l, for 1 ≤ j ≤ N, 1 ≤ l ≤ P, (3.26)

and on v3:

(v3)0,j,l = (v3)i,j,l,

(v3)M+1,j,l = (v3)M,j,l, for 1 ≤ j ≤ N, 1 ≤ l ≤ P. (3.27)

The conditions on v4 are given by:

(v4)M+1,j,l = −(v4)M,j,l,

(v4)0,j,l = −(v4)1,j,l, for 1 ≤ j ≤ N, 1 ≤ l ≤ P,

(v4)i,N+1,l = −(v4)i,N,l,

(v4)i,0,l = −(v4)i,1,l, for 1 ≤ i ≤M, 1 ≤ l ≤ P, (3.28)

with edge conditions

(v4)M+1,N+1,l = (v4)M,N,l,

(v4)M+1,0,l = (v4)M,1,l,

(v4)0,0,l = (v4)1,1,l,
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(v4)0,M+1,l = (v4)1,M,l, for 1 ≤ l ≤ P. (3.29)

The conditions on v5 are

(v5)i,j,P+1 = −(v5)i,j,P ,

(v5)i,j,0 = −(v5)i,j,1, for 1 ≤ i ≤M, 1 ≤ j ≤ N

(v5)M+1,j,l = −(v5)M,j,l,

(v5)0,j,l = −(v5)1,j,l, for 1 ≤ j ≤ N, 1 ≤ l ≤ P, (3.30)

with edge conditions

(v5)M+1,j,P+1 = (v5)M,j,P ,

(v5)M+1,j,0 = (v5)M,j,1,

(v5)0,j,0 = (v5)1,j,1,

(v5)0,j,P+1 = (v5)1,j,P , for 1 ≤ j ≤ N. (3.31)

Finally, the conditions on v6 are given by

(v6)i,j,P+1 = −(v6)i,j,P ,

(v6)i,j,0 = −(v6)i,j,1, for 1 ≤ i ≤M, 1 ≤ j ≤ N

(v6)i,N+1,l = −(v6)i,N,l,

(v6)i,0,l = −(v6)i,1,l, for 1 ≤ i ≤M, 1 ≤ l ≤ P, (3.32)
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with edge conditions

(v6)i,N+1,P+1 = (v6)i,N,P ,

(v6)i,N+1,0 = (v6)i,N,1,

(v6)i,0,0 = (v6)i,1,1,

(v6)i,0,P+1 = (v6)i,1,P , for 1 ≤ i ≤M. (3.33)

3.3.2 Simulations on a Simplified Domain

Now we will implement the numerical method just described on a three-

dimensional simplified domain. We will follow the method of the two dimen-

sional domain, creating an artificial fibre in each dimension: x, y and z, and

using a cube domain of dimension (100 × 100 × 100). The purpose of these

simulations is to show the behaviour of the model on a basic domain before

implementing it on a more complicated brain domain. Extending the method

of Painter and Hillen [5], we define the artificial DTI data as

D11(x, y, y) = 0.5 + d2(y, z)− d3(x, z)− d1(x, y),

D12(x, y, z) = 0,

D22(x, y, z) = 0.5 + d3(x, z)− d1(x, y)− d2(y, z),

D23(x, y, z) = 0,

D33(x, y, z) = 0.5 + d1(x, y)− d3(x, z)− d2(y, z),

D13(x, y, z) = 0,

where

107



Chapter 3. Simulations on a Simplified Domain

d1(x, y) = 0.25e(−0.05((x−50)2+(y−50)2)),

d2(y, z) = 0.25e(−0.5((y−50)2+(z−50)2)),

d3(x, z) = 0.25e(−0.05((x−50)2+(z−50)2)).

This artificial DTI data is then scaled as per the method described in

Chapter 2 to determine Dc. We use the same three values of κ: 0, 10 and

50. The original DTI data are plotted as isosurfaces of D11, D22 and D33 on

the top of Figure 3.6, to demonstrate the artificial fibre domain. The results

of the scalings for κ = 0, 10 and 50 are shown on the bottom, in the first,

second and third columns of Figure 3.6, respectively. The first row is a slice

through the centre (z = 50) of the three-dimensional D11, showing the fibres

in the x- and y-directions. The value of D11 is high in the fibre parallel to

the x-direction, since this is the principal value corresponding to the vector

[1, 0, 0]T . The second row shows a slice through the centre of D22 (z = 0),

again showing the fibres in the x- and y-directions. This component, however

is high in the fibre aligned with the y-direction, since it represents the principal

value corresponding to the vector [0, 1, 0]T . Finally, the third row shows a slice

through the middle (y = 50) of D33. This shows the fibres in the x- and z-

directions, having a high value in the fibre aligned with the z-direction, as this

is the principal value associated with the vector [0, 0, 1]T .

We define a three-dimensional Gaussian as the initial condition, this time

centred at (40,40,40). Then

g(x, y, z) = e−((x−40)2+(x−40)2+(x−40)2).
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κ = 0 κ = 10 κ = 50

D11

D22

D33

Figure 3.6: 3D Fibre Domain. The DTI fibre structure plotted as level sets of
D11, D22 and D33 (top). Slices through the middle of D11 (z=50), D22 (z=50)
andD33 (y=50) in rows one, two and three respectively (bottom). The columns
correspond to different values of the anisotropy parameter: κ = 0 (left), κ = 10
(middle) and κ = 50 (right).
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A growth rate of r = 0.06 is used, and the diffusion tensors are scaled by

setting s
µ2 =0.1. Once again, we look at the results of for three different time

points for three values of the anisotropy parameter: κ = 0, κ = 10 and κ = 50.

The results of these simulations are shown in Figure 3.7.

t = 0 t = 150 t = 300

κ = 0

κ = 10

κ = 50

Figure 3.7: 3D Simple Domain Results. Results for the three-dimensional
simulations. The fibre structure is shown in pink, and a level set of u = 0.16
is shown of the solution to Equation 3.14 is shown in green. The first row
corresponds to κ = 0, the second row to κ = 10 and the third row to κ = 50.
The first column shows the initial condition, the second column shows the
time point t = 150, and the last column shows results for t = 300. It can be
seen that for higher κ values, the distribution spreads along the fibre when it
is encountered. Additionally, the distribution spreads very slowly across the
fibre due to the relatively low rate of spread in this direction.

The resulting distributions grow isotropically outside of the fibres, resulting

in spherical shapes. Level sets for u = 0.16 are shown in Figure 3.7 for three
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xy plane xz plane yz plane

κ = 0

κ = 10

κ=50

Figure 3.8: 3D Simple Domain Results Slices. Results for the three-
dimensional simulations. To better show the anisotropic spread, slices through
the middle of the domain are shown in the xy plane (column 1), the xz plane
(column 2) and the yz plane (column 3). Results are shown for κ = 0 (row
1), κ = 10 (row 2) and κ = 50 (row 3). By looking at the two dimensional
slices, the spread along the fibres can be seen more easily. Additionally, it can
be observed that cells that spread onto the fibres tend to remain there as the
rate of spread in the perpendicular directions in relatively low.
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different values of κ. We observe that for κ = 0, the growing cell distribu-

tion ignores the fibres, growing isotropically everywhere and giving spherical

distributions. For κ = 10, the cell distribution spreads out along the fibres

when it encounters them. This effect is seen even more strongly for κ = 50.

Additionally, the cell distribution cannot spread easily through the fibre as the

relative rate of diffusion in this direction is very low. As was mentioned follow-

ing the two-dimensional simulations, the anisotropy parameter κ will play an

important role in fitting the model to patient data. To better see these results,

Figure 3.8 shows two dimensional slices through the cell density distribution.

Slices are shown in the xy plane (column 1), the xz plane (column 2) and the

yz plane (column 3). From this view, the anisotropic spread is more clearly

visible.

3.4 Chapter Summary

In this chapter, we saw how solutions to the Painter-Hillen model of Equation

(1.12) actually evolved with time when using a simple, easy-to-control domain.

We began by considering a simple one-dimensional case. This case is not the

most interesting, as there is no anisotropy in one dimension. Starting with this

case allowed us to test the numerical method, as well as get an idea about the

steady state behaviour. It was also straight forward to analyze the stability of

the numerical method in one dimension.

The results were more interesting in two dimensions, as we introduced

anisotropy in this case. We set up a rectangular domain containing two arti-

ficial “fibres” crossing in the centre, and defined an initial condition meant to

represent a growing tumour. We then observed how solutions behaved when

they encountered the fibres. We saw that the solutions showed greater spread
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along the fibres, as the model was derived to do. This case also showed how so-

lutions behaved for different values of κ. Since a higher value of κ corresponds

to a stronger directional tendency for the cells, the higher κ values showed

even more spread along the fibre directions than did the lower κ values. This

is more difficult to see in the full three-dimensional model, as everywhere not

on the fibres, the spread is isotropic, hence a large portion of the isosurface is

spherical. At the point where the sphere meets the fibres, however, the effect

of the anisotropy was seen. The use of the anisotropic operator introduced

a new challenge when it came to mass conservation. Standard techniques for

implementing no-flux boundary conditions were not sufficient for this case,

and so we explicitly derived the appropriate conditions. While the process

was tedious, the resulting conditions were easy to implement numerically.

Finally, we considered how solutions behaved for the full three-dimensional

model. The numerics for the two-dimensional case extend quite naturally to

three dimensions, including the derivation of the boundary conditions. While

the computations became a bit more tedious, the resulting conditions were

analogous to the two-dimensional boundary conditions. We set up a par-

allelepiped domain, this time containing three fibres crossing, one in each

direction. When observing how the solutions behaved when the fibres were

encountered, the results were consistent with the two-dimensional case. Solu-

tions showed a higher degree of spread along the fibre directions, with higher

values of κ corresponding to higher degrees of spread.
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Chapter 4

Implementation on a Real Brain

In this Chapter, we will bring together the background motivation from Chap-

ter 1, the model from Chapter 2 and the numerical method developed in

Chapter 3. Instead of the artificial domain developed in Chapter 3, we will

implement the model using real patient DTI data, and real brain domains.

The patient data was made available to us by Dr. Albert Murtha. Working

with patient data comes with its own set of logistical challenges, and in this

chapter we will discuss how to deal with these challenges, before performing

the simulations in Chapter 5.

We begin by discussing the pre-processing of the DTI data in Section 4.1.

This process translates the data measured via DTI into a useable form for

inputting into the Painter-Hillen model. We then, in Section 4.2 define a met-

ric for model performance, establishing a manner for comparing simulation

results to the existing tumours. We go on in Section 4.3 to review the formu-

las from Chapter 2 for computing the cancer cell diffusion tensors from the

measured DTI data, as well as describe the process for extracting the two-

dimensional tensors from the measured three-dimensional tensors. Next we
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consider biologically realistic values for parameters such as the growth rate

and relative size for the diffusion tensors in Sections 4.4 and 4.5. Finally, we

describe how to implement an appropriate stopping condition in Section 4.6,

and how the boundary conditions are applied on a brain domain as opposed

to the rectangular domain of Chapter 3 in Section 4.7.

4.1 Data Processing

When dealing with real patient data, there is some pre-processing that must

be done before the model can be applied. The data cannot be simply extracted

from the imaging machines and plugged directly into the model. Before we re-

ceived the patient data, it had already undergone several data processing steps

for registration, skull stripping and tumour segmentation. This processing was

all done by Russ Greiner’s lab in computer science [65, 66].

The first issue with using patient brain data, is that there may not be

consistency between image positioning. This means that scans cannot be

compared directly, as a patient’s head positioning may be slightly different

for different scans. As such, the images must be aligned by comparing similar

structures on different images and rotating or translating them so that they

match up properly. This process is called registration. While more compli-

cated non-linear registrations like that described in Cobzas et al. [67] can be

employed, in this particular case these more sophisticated techniques did not

offer an improvement over more simple linear registration methods. Hence,

the data was registered using a linear method [12].

The second pre-processing step that was done to the data was skull strip-

ping. The original scans contain both the brain and the skull, however brain

tumours do not spread into the skull. When simulating the Painter-Hillen
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model, the boundary should be the edge of the brain, and the domain should

not include the skull. To manually delineate where this boundary should be

is not an easy task. Our computer science colleagues developed an automated

algorithm that removes the skull, creating a perfect domain for model simu-

lations [65, 66]. This algorithm uses a similar technique as for segmentation,

which is described in the following paragraphs.

The final, and perhaps most crucial part of the data processing is the

tumour segmentation. Segmentation refers to the delineation of a tumour

boundary using an MRI image. This process is often done manually by a clin-

ician. However, this can introduce a bias and a human error into the process.

Additionally, these results are not reproducible. Russ Greiner’s group has de-

veloped an automated tumour segmentation tool based on MRI histograms.

This technique looks at the intensity of various pixels within an MRI image

and generates a histogram, showing the number of pixels in the image having

a designated intensity. This is done because absolute intensity levels can vary

from image to image, depending on many factors, including the specific ma-

chine, and the parameters used during image acquisition [68]. The technique

used in [65] and [66] uses thresholding, where inflection points of the MRI

histogram are used to define specific threshold intensity values for a particu-

lar image. These different thresholds coupled with several different imaging

modalities (i.e., T1-MRI, T2-MRI) are then used to separate out particular

structures or regions of interest within the brain. This is also the method used

to separate the skull from the brain tissue in skull stripping. The thresholding

technique for both skull-stripping and segmentation is demonstrated in Figure

4.1 [65].

All of the patient data that we received has been segmented and hence

includes the tumour boundaries. It is these segmented tumour boundaries
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that we use as the standard to compare the Painter-Hillen results to. Since

we will be simulating cell density, we will thus be comparing a level set of

the simulated density function to the actual segmented boundary. Based on

the images used to delineate the boundaries, it has been estimated that the

segmented boundary corresponds to a cell density of 0.16 [51], and hence this

is the value we use for comparison in the following Chapter.

Figure 4.1: Segmentation and Skull Stripping. A demonstration of the skull
stripping algorithm, as well as the tumour segmentation algorithm. Taken
from [65], where it appears as Figure 4.The thresholding technique creates a
high contrast between certain anatomical regions on the scans, allowing for
them to be separated from the rest of the scan.

4.2 Metric of Model Performance

In the Chapter 5, we compare the performance of the Painter-Hillen model to

the performance of the Swanson P.I. model. In order to do this in an objective,

quantitative way, it is necessary to determine an appropriate metric for model

performance. There are two main things we considered in choosing a metric:

1. Information available: Since we have no information about the cell

density of the actual tumours, we cannot compare cell density values to

evaluate the model fit. The only information we have about the real
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tumours is their boundaries, hence we are limited to metrics comparing

boundaries.

2. Ease of implementation: some metrics are significantly faster and

more efficient to evaluate than others. A simple, easy to implement

metric is preferred over something more complicated.

Konukoglu et al. [9] proposed a method for comparing similarity between

two cell density functions by comparing successive contours. This method

could be adapted to compare single contours as well. For example, let A =

{x|u(x, t) ≥ u0}, where u0 is the threshold of detection in the medical im-

age (0.16 in our case) and B = {x-values contained within the automatic

segmentation image}. Then we can compute the error defined by

ε(t) =
1

2
[dist(A,B) + dist(B,A)] , (4.1)

dist(A,B) =
1

#A

∑
a∈A

distmin(a,B),

where distmin(a,B) is the minimum distance in the Euclidean sense between

the point a and the set B, and #A denotes the cardinality of the set A [9].

While a model fit could be evaluated by computing this error value, it is a

bit complicated to actually calculate. As such, we also consider an alternative

method.

Inspired by the validation of Mosayebi et al. [12], we will use the Jaccard

Index to evaluate the fit of the Painter-Hillen and Swanson P.I. model simu-

lations. This is a measure of similarity between finite sample sets. Taking A

and B to be as defined above, we compute the Jaccard Index J(A,B) as [12]

J(A,B) =
|A ∩B|
|A ∪B|

. (4.2)
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The result is that when the union of the two sets is small relative to the

intersection, the ratio approaches 1. When the union is large relative to the

intersection, the ratio approaches 0. As such, in order to obtain the best model

fit, we aim to get the Jaccard Index as large as possible, with a maximum value

of 1. Figure 4.2 shows an example of two sets with a low Jaccard Index (left),

and two sets with a high Jaccard Index (right).

Figure 4.2: Jaccard Index. Figure showing two sets having (a) Jaccard Index
= 0.100 (b) Jaccard Index=0.634.

The Jaccard Index offers a couple of advantages over other metrics, such

as the error function described in Equation (4.1). The first advantage is that

it penalizes both undergrowth and overgrowth, so that in order to get a truly

good model fit, the sets must match up everywhere. The second advantage

is its simplicity. Not only is it simple to understand, but implementation is

straightforward and is not computationally expensive. As such, we will use it

as our metric of choice going forward.
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4.3 Obtaining the Cancer Cell Diffusion Ten-

sors

Before we proceed with the two-dimensional simulations, we first comment on

how to obtain the two-dimensional tensors when the data is in three dimen-

sions. The data obtained from DTI is in the form of two-dimensional axial

slices that are discretized in a uniform mesh, with a three-dimensional diffusion

tensor given at each mesh point. A typical axial slice is shown in Figure 1.5 in

our discussion of MRI in Chapter 1. For the case of three-dimensional simula-

tions of Section 5.3, we will use a series of these slices to obtain the movement

information in all three dimensions. In the case of the two-dimensional sim-

ulations of Section 5.2 however, we need only the information in the plane of

consideration.

Mathematically speaking, we are looking for the diffusion tensor D2 such

that

uTD2u = vTD3v,

where u =

 a

b

, v =


a

b

0

, and D3 is the three-dimensional tensor given

by the DTI data. Writing this out, we have

(
a b 0

)
d11 d12 d13

d21 d22 d23

d31 d32 d33




a

b

0

 =
(
a b

) c11 c12

c21 c22

 a

b

 ,

where the dij are the components of D3 and the cij are the components of D2.

Recall that DTI tensors are always symmetric, since in measuring the diffusion,
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the rate is computed along a given line and no distinction is made between the

two directions along that line. Taking advantage of this symmetry, we have

that dij = dji and cij = cji. The resulting equation is therefore:

a2d11 + 2abd12 + b2d22 = a2c11 + 2abc12 + b2c22

⇐⇒ a2(d11 − c11) + 2ab(d12 − c12) + b2(d22 − c22) = 0, (4.3)

and so we have that

D2 =

 d11 d12

d21 d22


in order for Equarion (4.3) to be true for general a and b, i.e., D2 is the

projection of D3 onto the first two coordinates.

Calculating Cancer Cell Tensors from DTI Data

To calibrate the Painter-Hillen model of Equation (1.12) to realistic parameter

values, we consider the general arguments from Chapter 2 in the context of

specific patient data. DTI measures diffusion tensors through the diffusion of

water molecules in the brain, whereas the diffusion tensor used in the Painter-

Hillen model of Equation (1.12) represents the diffusion of cancer cells. The

tensors resulting from the DTI measurements roughly correspond to the loca-

tion of the white matter tracts, meaning that there will be a lot of similarities

between the water diffusion tensors and the cancer cell diffusion tensors. In

particular (as seen in Chapter 2), the dominant direction of diffusion for the

water molecules, given by the principal direction of the DTI tensor, will be

the dominant direction of diffusion for the cancer cell diffusion tensor. In ad-

dition, if a particular DTI tensor has a higher FA value than a second DTI
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tensor, then the corresponding cancer cell diffusion tensors will share the same

relationship. The parabolic scaling derivation of Chapter 2 revealed that the

cancer cell diffusion tensors can be computed as the second moment of the

turning distribution associated with the DTI tensor, as per Equation (2.13).

It was discussed in Chapter 2 that there are several ways of choosing a

turning distribution, each having their merits. In this thesis, we will use a

bimodal von Mises distribution approach in two dimensions, and the equivalent

bimodal Fisher distribution approach in three dimensions. We saw in Chapter

2 that for these distributions, the moments can be calculated, however it is

not always a trivial process. In Chapter 2, we made use of a novel divergence

theorem approach and computed the second moments of the bimodal von

Mises distribution and the bimodal Fisher distribution. The resulting formula

in two dimensions is as given in Equation (2.32), and the resulting formula in

three dimensions is as given in Equation (2.39). These formulas both depend

on both a concentration parameter k(x) and a vector γ(x). It is through these

two quantities that the DTI data is incorporated into the cancer cell diffusion

tensors.

Recall that the concentration parameter k(x) controls the width of the

distribution, with a higher value of k resulting in a narrower, sharper peak. We

want areas with stronger directional tendencies, or higher fractional anisotropy,

or FA values (recall Equations (1.5) and (1.6)), to be associated with narrower

distributions, hence we choose k proportional to the fractional anisotropy, i.e.

k(x) = κFA(x). (4.4)

Biologically speaking, this means that when a cell encounters a fibre, it will

have a stronger tendency to turn into the fibre direction.
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We have thus introduced an anisotropy parameter κ as one of the param-

eters that can be used to fit the Painter-Hillen model of Equation (1.12) to

patient data. Note that when κ = 0 the distribution becomes uniform, and

the spread becomes isotropic. This might be suitable for particularly spherical

tumour shapes.

4.4 Initial Condition

and Growth/Diffusion Rates

The formula for the initial condition is given by

u0(x) = e
−

“
(x−x0)·(x−x0)

ε

”
, (4.5)

where ε = 0.0001 cm2 controls the standard deviation of the distribution, and

x0 = (x0, y0) in two dimensions, and x0 = (x0, y0, z0) in three dimensions.

This represents the initial point where the tumour originated, and has units

of cm so that u0(x) is a dimensionless cell density with carrying capacity of 1.

The initial distributions are then scaled so that the maximum value of the

cell density is 1, representing a cell or small group of cells where the tumour

started to grow. A sample initial condition for Patient 1 can be seen in Figure

4.3. In this particular case, x0 = (13.52, 11.95).

For the growth rate and the diffusion rates, it is important to use values

that reflect reality. For the growth rate r, this is straight forward as we use

r = 0.012/ day in two dimensions, taken from [6]. In three dimensions, we

use a slightly higher value to maintain a comparable growth/diffusion balance.

The same paper gives a biologically realistic value for the diffusion coefficient

within the brain of dref = 0.0013 cm2/day for isotropic spread. Because the
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Figure 4.3: Sample Initial Condition. A sample initial condition u0(x) for
Patient 1 as defined by Equation (4.5). A sharp Gaussian distribution is used,
centered at x0, simulating a cell or small group of cells where the tumour
originated. In this particular example, x0 = (13.52, 11.95).
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Painter-Hillen model uses not only a spatially variant diffusion coefficient, but

diffusion tensors having different rates of diffusion in different directions, the

tensors are scaled so that the average rate of diffusion is equal to dref. We

first define what is meant by “average”. For each tensor, the average rate of

diffusion is given by the mean of the eigenvalues. Hence, for a particular tensor

Dc(x):

davg(x) =
Tr(Dc(x))

N
,

where Tr(Dc) js the trace of the tensor, and N is the dimension. Note that

davg is a scalar value. Because these tensors also vary spatially, they are also

averaged spatially, and scaled by choosing 1
µ

in Equation (2.13) such that

1

|Ω|

∫
Ω

Tr(Dc(x))

N
dx = dref,

where Ω is the brain domain.

We have thus outlined the procedure for computing both the two and three

dimensional diffusion tensors. As an example, some of the tensor coefficients

are plotted in Figures 4.4 and 4.5. These coefficients are plotted for Patient 1.

For the two-dimensional simulations, the axial slice of consideration is cho-

sen to be that with the largest section of the tumour present, intended to

approximate a slice through the centre of the tumour. Figure 4.4 shows the

two diagonal components of the two-dimensional tensor, with the images on

the left showing the spatial distribution of α(x) as defined in Equation (3.4).

Recall that this value will be high when the dominant direction of diffusion

is horizontal. The images on the right show the spatial distribution of γ(x),

which is higher where the dominant direction of diffusion is vertical. The top

row shows the results for a κ value of 2, while the bottom row shows the results
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for κ = 20. A clear difference between the two rows can be seen, where the

fibres are more strongly defined for the higher κ value.

Figure 4.5 shows similar plots for Patient 1 in three dimensions. Again,

slices are shown through the same axial slice of consideration, but now the

three diagonal components of the three-dimensional diffusion tensor are shown:

D11, D22 and D33, respectively. These quantities correspond roughly to fibres

in the x direction, fibres in the y direction and fibres in the z direction. The

first row shows the results for κ = 2, while the second row shows the results

for κ = 20. Again, the fibres are much more distinct for the higher κ value.

This shows that defining the concentration parameter k(x) depends both on

the structure of the brain, incorporated through the fractional anisotropy, and

through the patient-specific anisotropy parameter κ. This parameter indicates

how strong the cancer cell’s tendency is to follow the underlying structure.

4.5 Parameter Estimation

For the Painter-Hillen model of Equation (1.12), there are either 3 (in two

dimensions) or 4 (in three dimensions) parameters that can be used to fit the

model. These are:

κ: The anisotropy parameter that we will selectively tune for each specific

patient, see Equation (4.4). This parameter controls the width of the

peaks in the von Mises distributions, and consequently how sensitive

the cells are to the underlying structure. Varying κ can dramatically

change the shape of the resulting cancer cell distribution. We assume

κ is spatially consistent for each patient, and should be thought of as

a characteristic of the cancer cells. (In future model iterations, κ could
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Figure 4.4: α and γ on a Brain Domain. Plots showing the spatial distribution
of the diagonal elements of the two-dimensional diffusion tensors for Patient
1. The axial slice of consideration is chosen as the slice containing the largest
portion of the tumour. The left column shows α(x) as defined in Equation
(3.4), and the right column shows γ(x). The top row shows the results for
κ = 2, while the bottom row shows the results for κ = 20. Note that the fibres
are far more pronounced for higher values of κ.
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Figure 4.5: D11, D22 and D33 on a Brain Domain. Plots showing the spatial
distribution of the diagonal elements of the three-dimensional diffusion tensors
for Patient 1. These plots are shown for the same axial slice of consideration
as for the two-dimensional case. The first column shows D11, roughly cor-
responding to fibres in the x-direction, while the middle column shows D22,
roughly corresponding to fibres in the y-direciton, and the last column shows
D33, roughly corresponding to fibres in the z-direction. The first row shows
results for κ = 2, while the second row shows results for κ = 20. Note that
the fibres are more pronounced for the higher value of κ.
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Model two dimensions three dimensions

Painter-Hillen κ, x0, y0 κ, x0, y0, z0

Swanson P.I. x0, y0 x0, y0, z0

Table 4.1: Table showing the parameters that must be fit for each model in
both two and three dimensions.

vary spatially within a specific patient.)

(x0, y0): The coordinates of the initial position for the initial distribution in

two dimensions. In other words, the sharp Gaussian function is centred

at (x0, y0).

(x0, y0, z0): The coordinates of the initial position for the initial distribution

in three dimensions. We expect z0 to be near the slice containing the

maximum tumour area.

We will also be fitting the Swanson P.I. model of Equation (1.10), as will

be discussed in more detail in Chapter 5. Then depending on the model used,

as well as the dimension of the simulation, there could be anywhere from 2

to 4 parameters to fit. The parameters that must be fit are summarized in

Table 4.1.

This fitting is currently done in a combination manual-automatic manner.

The most probable initial condition is selected by observing the tumour seg-

mentation, and then an exhaustive search is done in the region surrounding

this point. The anisotropy parameter is chosen in a similar manner, with

an initial guess based on the shape of the tumour, followed by an exhaustive

search surrounding that value. Future development will work towards further

automating this process.

For example, consider fitting the Swanson P.I. model in two dimensions.

We choose this as an example because it contains only two parameters that
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need to be fit (the two coordinates of the initial condition), and thus can

provide a useful visual plot of the Jaccard Index of Equation (4.2) over the

parameter space. The model is initialized at each spatial location in the chosen

region, and the Jaccard Index is assigned to that location. Figure 4.6 shows

the results of such a plot for Patient 1. The parameters that give the maximum

Jaccard Index are then selected as the initial condition.

In general, when determining parameter values for model fitting, the idea of

likelihood is central. The likelihood provides a method for determining the set

of model parameters most likely to result in a particular observed distribution

[69]. More specifically, the process of evaluating the model for a wide variety of

parameter values, followed by the computation of the Jaccard index, relates to

the idea of Approximate Bayesian computation (ABC). ABC doesn’t actually

involve the evaluation of a likelihood function, and as such is very useful in

the complex models arising in the different areas of mathematical biology [70].

4.6 Stopping Criteria

When running the simulations, it is not known what the final time should

be, as we do not know how long each tumour took to grow. As such, the

Jaccard Index of Equation (4.2) is used to determine an appropriate stopping

criterion. As the simulated tumours begin to grow, they will first be smaller

than the actual tumour, meaning that as they grow larger, the Jaccard Index

will increase. At some point, this index is maximized, and after this point, the

simulated tumour will outgrow the actual tumour, causing the Jaccard Index

to decrease. It is at this point of optimal Jaccard Index that the simulation is

stopped. See Figure 4.7 to see how this works for Patient 1. Notice that there

is some transient behaviour for small times, before the diffusion and growth
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Figure 4.6: Sample Parameter Space. Figure showing the Jaccard Index plot-
ted over the parameter space for the Swanson P.I. model. Patient 1 is shown
as an example. The optimum value occurs at (x0, y0)=(13.6,11.9), hence this
is selected as the initial condition. This is marked on the plot as a black dot.
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find an appropriate balance.

4.7 Implementing Homogeneous Neumann

Boundary Conditions

In Chapter 3, we discussed how to implement the boundary conditions to

ensure that the numerical scheme conserves mass. Recall that we use no-

flux boundary conditions, so that cancer cells can not diffuse through the

skull. The skull has been removed from the patient data that will be used,

via the segmentation procedure outlined above. It is not necessary to repeat

the whole derivation of the previous chapter, however a few extra conditions

are required for a convex brain domain vs. a rectangular domain. Figure 3.3

showed the different possible points on the boundary of a rectangular domain,

and explained how to deal with them. We illustrate the use of a real brain

domain in Figure 4.8, where we again have the black interior points, the white

boundary points and the blue corner points. Corner points are defined as

being diagonally adjacent to one internal point, while white boundary points

are in contact via the numerical stencil with exactly one interior point. Using

a convex brain domain introduces a new class of points, as is shown in Figure

4.8. These points are shown in red, and consist of boundary points that are

in contact with more than one interior point in the context of the numerical

stencil.

Both the white and blue boundary points are handled in the same manner

as they were in Equations (3.11)-(3.13) for two dimensions, and Equations

(3.25)-(3.33) in three dimensions. For the red points, mass conservation is

achieved by averaging the value of the given quantity on the interior points
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Figure 4.7: Stopping Criteria. (i) Figure showing how the Jaccard Index of
Equation (4.2) changes with the number of iterations. As an example, the
Painter-Hillen model is applied in two dimensions for Patient 1. As more
iterations are run, the Jaccard Index increases, however, after some maximum
is reached, it will begin to decrease again as the simulated tumour outgrows
the actual tumour. This is shown in the image in the first row, first column
as J(t). The other three images show plots of the simulated tumour boundary
(white) and the actual tumour boundary (black) for t = 250, t = 323 and
t = 500, plotted over the fractional anisotropy. In the second column of the
first row, this plot corresponds to t = 250, where J(t) is increasing and when
the simulated tumour is smaller than the actual tumour. In the first column
of the second row, the plot shows the optimal value of the Jaccard Index
at t = 323 and indicates where the algorithm should stop. The final plot
corresponds t = 500, where J(t) is decreasing and when the simulated tumour
has outgrown the actual tumour. These results are for a sample model run
on a sample patient, but are qualitatively consistent across all models and
patients.
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Figure 4.8: Boundary Conditions for Convex Domain. Grid showing the dif-
ferent categories of boundary points encountered with a convex brain domain.
The blue points and white points were present in the rectangular domain of
Chapter 3, while the red points are new to the brain domain. The points
of the domain itself are shown in black, while the ghost points are shown in
white, blue and red. The white points are the “edge” points of the rectangular
domain of Chapter 3, while the blue points are the “corner” points from the
same example. The red points represent a new class of ghost points that are
only present for a convex domain.
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with respect to the correct stencil. In two dimensions, (v1) and (v3) can

be defined as in the rectangular domain case, since each red point will only

be horizontally adjacent to one interior point, and vertically adjacent to one

interior point. For example, consider the circled red point in Figure 4.8. In

this case, the boundary conditions are given as follows:

(v1)i,j = (v1)i+1,j,

(v3)i,j = (v3)i,j−1,

(v2)i,j = −((v2)i+1,j + (v2)i,j−1)/2.

For the other red points, the conditions are defined analogously. In three

dimensions we again have the same types of points as before, however now we

allow for a boundary point that is in contact with more than one interior point

with respect to the numerical stencil. For a sample three-dimensional “red”

point, the boundary conditions are given by:

(v1)i,j,l = (v1)i+1,j,l,

(v2)i,j,l = (v3)i,j−1,l,

(v3)i,j,l = (v3)i,j1,l+1,

(v4)i,j,l = −((v2)i+1,j,l + (v2)i,j−1,l)/2,

(v5)i,j,l = −((v2)i+1,j,l + (v2)i,j,l+1)/2,

(v6)i,j,l = −((v2)i,j,l+1 + (v2)i,j−1,l)/2.

The other cases are once again determined analogously. Note that these

conditions assume that each “red” boundary point is in contact with at most

two interior points with respect to each stencil. In practice, for the patient
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data, this is a reasonable assumption.

4.8 Chapter Summary

In this chapter, we described in detail the challenges associated with applying

the Painter-Hillen model to real patient data, and outlined our methods for

dealing with these challenges.

The first challenge when dealing with real patient data, particularly when

medical imaging machines are involved, is translating this data into a useable

format. The first issue to deal with was aligning images taken from the same

patient, by matching up specific identifiable regions. This is referred to as

registration. The next step involved removing the skull from the images so

that the “boundary” used in the simulations was actually the boundary of

the brain tissue, and not the patient’s head. The final step was to obtain

a segmentation of the tumour boundary based on the patient scans. The

segmentation will then be used to evaluate the fit of model simulations for

the Painter-Hillen model of Equation (1.12) and the Swanson P.I. model of

Equation 1.10. All of this work was done by colleagues in computer science

[65, 66].

The next issue was defining a method for evaluating the performance of

both the Painter-Hillen and Swanson P.I. models. Ideally, the metric should

provide an objective, quantitative manner of comparison. While there are

many metrics to choose from, we are limited by the fact that we do not have

any information about the actual cell density, hence can only compare tumour

boundaries. As such, we chose the Jaccard Index as our metric of choice, as

per Mosayebi et al. [12]. The Jaccard Index offers a simple, easy to implement

method for computing the similarity between two sets by comparing the size
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of their intersect to the size of their union.

While the idea of converting the DTI data into the proper tensors for cancer

cell spread was introduced in Chapter 2, we reviewed it here in the context

of patient data. It is also important to consider the orders of magnitude

for the tensor components, as well as the growth rate. In addition to these

fixed parameters, there were certain patient-specific parameters to determine.

Namely, the starting point for the initial condition, as well as the anisotropy

parameter κ. The method for choosing these parameter values was discussed.

Finally, we discussed how to determine the appropriate stopping condition,

as well as the proper boundary conditions. To determine the appropriate

stopping time for each simulation, we discussed how to optimize the Jaccard

Index over time in order to find the best possible match between the segmented

and simulated tumours. As for the boundary conditions, a careful analysis of

irregular convex domains enabled us to maintain a mass conserving numerical

scheme. The ideas developed in this chapter will be applied in Chapter 5 when

both the Painter-Hillen model and the Swanson P.I. model are applied to real

patient data.
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Model Comparison Using

Patient Data

Thus far, we have discussed the derivation of the Painter-Hillen model of

Equation (1.12), as well as the numerical method for implementing it, and the

details of applying it to patient data. In this chapter, we present the results

of using the Painter-Hillen model on 10 real patients from the Cross Cancer

Institute. While we have more data available (54 patients total) for further

model validations, here we consider the results using 10 randomly selected

patients. This is due to computational limitations, and our belief that the 10

patients presented here give a good cross-section of tumour types and sizes.

Figure 5.1 shows two-dimensional cross sections through the centre of each

patient’s tumour, with the slice containing the largest portion of the tumour

shown. These images show the shapes and sizes of each tumour that we are

attempting to simulate.

It is clear from these images why an anisotropic model would be useful.

In examining MRI images of patients’ tumours, it is difficult if not impossible
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Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

Figure 5.1: 10 Patient Segmentations. Segmentations through the largest two-
dimensional slice of each patient’s glioma. The underlying colours correspond
to the fractional anisotropy (FA), with the tumour boundary as determined
via automatic segmentation shown in black.

to estimate cell density, and often only the tumour boundary is delineated.

Furthermore, on images of these type (T2-images), it is estimated that a de-

tection threshold of approximately 0.16 exists [51], with any lower cancer cell

densities being invisible on scans. If the model is able to accurately repro-

duce the tumour boundary, then we expect that the cell densities predicted

everywhere are close to reality as well. This would allow clinicians to use our

model output in determining an appropriate treatment region, with the goal

of killing the most cancer cells possible.

To evaluate the Painter-Hillen model of Equation (1.12) in an objective,

quantitative sense, we compare the simulation results to those of the Swanson

model of Equation (1.10) discussed in the introduction [6]. This model is also

referred to colloquially as the proliferation-invasion (P.I.) model, and has been

used extensively in clinical settings to assist in treatment planning [6, 44–

46, 49, 51–54]. It is for this reason that we choose it as a benchmark for

comparison of the Painter-Hillen model performance. If we can improve upon
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its performance, then we could potentially improve upon current treatment

standards.

The goal of simulating both the Painter-Hillen model and the P.I. model

is to reproduce the tumour boundary as determined from the automated seg-

mentation procedure. It should be noted that there is no guarantee that this

is a completely accurate tumour boundary, however it is reasonable to assume

that it provides a good estimate for comparison. Since both models simulate

the cell density, and not the tumour boundary, we will use the 0.16 level set

in each case to compare to the segmented boundary.

5.1 Swanson Model Implementation

While we introduced the Swanson model in Chapter 1, here we outline its

implementation in more detail. The model is given by the PDE

u(x, t)t = ∇ · (D(x)∇u(x, t)) + ru(x, t), (5.1)

where r is once again the growth rate, and the spatially dependent scalar

diffusion coefficient is defined as

D(x) =

Dg if x ∈ grey matter,

Dw if x ∈ white matter.

We use u(x, t) to represent the cancer cell density, as before. Because of

the increased diffusivity in the white matter, Swanson takes Dw = 5Dg [6].

Note also that this model uses an exponential growth, while the Painter-Hillen

model uses a logistic growth. It will be seen in the cell density plots that this
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growth will make a difference in the tumour composition. Recall also that

while D is spatially dependent, it is piecewise constant and has no directional

dependence. In order for the numerical scheme to make sense, we assume a

smooth interpolation between Dg and Dw so that the function is continuous.

There remains the question of how to separate the brain into white matter

and grey matter. In [6], an online database is used that distinguishes between

grey and white matter, however since we are applying this model to patient

data, we will need to make the distinction for each patient individually. This

will be done using a threshold FA value, with the assumption that white matter

will have an FA value > 0.25, while grey matter will have an FA value ≤ 0.25.

This value is consistent with that used in fibre tracking, see for example [71]

or [72]. The results of such a division are shown in figure 5.2 for a sample

three-dimensional axial slice for Patient 1.

Figure 5.2: Defining the White Matter. (a) Plot showing the FA on a scale
from 0 (dark blue) to 1 (yellow) for Patient 1. Note that anything with a
value above 0.25 will be classified as white matter. (b) Plot showing the
corresponding distinction between grey and white matter. The white matter
appears white, while the grey matter appears grey.

The main difference between the Swanson P.I. model and the Painter-
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Hillen model is the inclusion of the anisotropic diffusion tensors. While the

Swanson P.I. model includes a spatially varying diffusion coefficient, it is scalar

in nature and does not vary with direction. The Painter-Hillen model includes

a spatially varying diffusion tensor, so that the rate of spread varies not only

in space, but with direction. This allows cells to spread faster along a fibre

than in the perpendicular direction. Additionally, the Painter-Hillen model

includes the fully anisotropic diffusion operator of Equation (2.14), discussed

in detail in Chapter 2, while the Swanson P.I. model uses a more standard

diffusion operator where only one spatial derivative is applied to the diffusion

coefficient. The final difference lies in the growth function. The Painter-

Hillen model uses a logistic growth, that behaves like exponential growth at

low density values, but tends to 0 as the density approaches 1. The Swanson

model uses an exponential growth. We believe the logistic growth to be more

realistic, as there is a limiting density within the brain.

5.1.1 Two-dimensional Numerical Scheme

To numerically implement this model, we begin by expanding Equation (5.1)

into a diffusion term and an advection term:

u(x, t)t = ∇D(x) · ∇u(x, t) +D(x)∇2u+ ru(x, t), (5.2)

where∇2 represents the standard Laplacian. To explain the numerical method,

we assume that D(x) is differentiable, an assumption that will be relaxed later.

In two dimensions, 5.2 expands to

ut(x, t) = Dxux +Dyuy︸ ︷︷ ︸
Advective terms

+D(x)(uxx + uyy)︸ ︷︷ ︸
Diffusive terms

+ru(x, t).
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For the advective terms, we will use a first-order upwind scheme to promote

positivity. Consider first just the Dxux term. The same technique is used for

the Dyuy term. First, we compute Dx at each location i, j using a centred

difference scheme:
∂Dn

i,j

∂x
≈
Dn
i+1,j −Dn

i−1,j

2h1

, (5.3)

where h1 is the spatial step in the x-direction. This Dx value then denotes the

velocity for the advection, hence the u partial derivative is computed based on

the sign of Dx. Then [73]

∂uni,j
∂x
≈


uni,j−uni−1,j

h1
if Dx ≤ 0

uni+1,j−uni,j
h1

if Dx > 0

. (5.4)

The Dyuy term is computed numerically the same way. For the diffusive terms,

a standard centred difference scheme is used for the second derivatives. The

numerical scheme is therefore [74]

uni,j + 1 = k[Dx
n
i,jux

n
i,j +Dy

n
i,juy

n
i,j

+Di,j

(
uni+1,j − 2uni,j + uni−1,j

h2
1

+
uni,j+1 − 2uni,j + uni,j−1

h2
2

)
+ rui,j] + uni,j,

where Dx
n
i,j, ux

n
i,j, Dy

n
i,j and uy

n
i,j are computed as described in Equations (5.3)

and (5.4). If D(x) is discontinuous, as for Equation (5.1), we use the same

discretization.

Boundary Conditions

Because this model uses a more traditional diffusion operator, the boundary

conditions are more straight-forward than they were for the Painter-Hillen
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model. Assuming that the model is applied to domain Ω, the boundary con-

ditions are defined on ∂Ω. Writing the Swanson model using the flux J , we

have

u(x, t)t = −∇ · J ,

where J is the standard Fickian flux,

J = −D∇u.

Writing the boundary condition in terms of the normal vector η, we want

the projection of the flux in the direction of the normal to be 0, or

η · J = 0, on ∂Ω.

Assuming that in general D 6= 0, this condition is equivalent to

η · ∇u = 0, on ∂Ω (5.5)

5.1.2 Three-dimensional Numerical Scheme

In three dimensions, we assume again that D(x) is differentiable and we write

Equation (5.2) as

ut(x, t) = Dxux +Dyuy +Dzuz︸ ︷︷ ︸
Advective terms

+D(x)(uxx + uyy + uzz)︸ ︷︷ ︸
Diffusive terms

+ru(x, t).

The two-dimensional methods generalize naturally for three dimensions.

Consider first just the Dxux term again. The same technique is used for the

Dyuy term and the Dzuz. We compute Dx at each location i, j as we did in
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two-dimensions:
∂Dn

i,j,l

∂x
≈
Dn
i+1,j,l −Dn

i−1,j,l

2h1

.

Then [73]

∂uni,j,l
∂x

≈


uni,j,l−u

n
i−1,j,l

h1
if Dx ≤ 0,

uni+1,j,l−u
n
i,j,l

h1
if Dx > 0.

The Dyuy and Dzuz terms are computed numerically the same way. For the

diffusive terms, a standard centred difference scheme is used for the second

derivatives. The numerical scheme is therefore

uni,j,l + 1 = k[Dx
n
i,j,lux

n
i,j,l +Dy

n
i,j,luy

n
i,j,l +Dz

n
i,j,luz

n
i,j,l

+Di,j,l(
uni+1,j,l − 2uni,j,l + uni−1,j,l

h2
1

+
uni,j+1,l − 2uni,j,l + uni,j−1,l

h2
2

+
uni,j,l+1 − 2uni,j,l + uni,j,l−1

h2
2

) + rui,j,l] + uni,j,l.

The description of the two-dimensional case for the boundary conditions

generalizes easily to three dimensions, with Equation (5.5) holding.

5.2 Two-Dimensional Results

Here we show the simulation results of the Painter-Hillen model of Equation

(1.12) simulations, as well as the Swanson P.I. model of Equation (5.1). Each

figure corresponds to the results for one patient, with the Painter-Hillen sim-

ulation on the left, and the Swanson P.I. model simulation on the right. The

automatically segmented tumour boundary is plotted in black, while the model

predicted boundary is shown in white. The top row of each figure shows these

boundaries overlaid on the FA plot to give an idea about the brain architecture
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of that particular patient, and the bottom row shows the cell density function.

A discussion of these results will follow.

Patient 1

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.3: 2D Patient 1. Two-dimensional simulation results for Patient 1.
The result on the left is the result for the Painter-Hillen model, while the
result on the right is from the Swanson P.I. model. The black line denotes
the segmented tumour, and the white line corresponds to the model-predicted
boundary.
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Patient 2

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.4: 2D Patient 2. Two-dimensional simulation results for Patient
2. Left: Painter-Hillen model, right: Swanson P.I. model. Black con-
tour=segmented tumour, white contour=model-predicted boundary..

Patient 3

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.5: 2D Patient 3. Two-dimensional simulation results for Patient
3. Left: Painter-Hillen model, right: Swanson P.I. model. Black con-
tour=segmented tumour, white contour=model-predicted boundary.
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Patient 4

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.6: 2D Patient 4. Two-dimensional simulation results for Patient
4. Left: Painter-Hillen model, right: Swanson P.I. model. Black con-
tour=segmented tumour, white contour=model-predicted boundary.

Patient 5

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.7: 2D Patient 5. Two-dimensional simulation results for Patient
5. Left: Painter-Hillen model, right: Swanson P.I. model. Black con-
tour=segmented tumour, white contour=model-predicted boundary.
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Patient 6

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.8: 2D Patient 6. Two-dimensional simulation results for Patient
6. Left: Painter-Hillen model, right: Swanson P.I. model. Black con-
tour=segmented tumour, white contour=model-predicted boundary.

Patient 7

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.9: 2D Patient 7. Two-dimensional simulation results for Patient
7. Left: Painter-Hillen model, right: Swanson P.I. model. Black con-
tour=segmented tumour, white contour=model-predicted boundary.
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Patient 8

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.10: 2D Patient 8. Two-dimensional simulation results for Patient
8. Left: Painter-Hillen model, right: Swanson P.I. model. Black con-
tour=segmented tumour, white contour=model-predicted boundary.

Patient 9

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.11: 2D Patient 9. Two-dimensional simulation results for Patient
9. Left: Painter-Hillen model, right: Swanson P.I. model. Black con-
tour=segmented tumour, white contour=model-predicted boundary.
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Patient 10

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.12: 2D Patient 10. Two-dimensional simulation results for Patient
10. Left: Painter-Hillen model, right: Swanson P.I. model. Black con-
tour=segmented tumour, white contour=model-predicted boundary.

5.2.1 Summary of Two-dimensional Results

Here we summarize the results of the two-dimensional simulations, shown in

Table 5.1. The Jaccard Index for each model and for each patient is shown, as

well as the value of the anisotropy parameter, κ, for the anisotropic Painter-

Hillen model.

5.2.2 Interpretation of Two-dimensional Results

The first thing that we notice about the two-dimensional results is that the

Painter-Hillen shows an improvement in fit over the Swanson P.I. model in nine

out of ten cases. This is encouraging, since the Painter-Hillen model includes

more of the underlying biological mechanisms. One thing that we notice,

however is that the optimal value of the anisotropy parameter κ tends to be
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Patient Painter-Hillen κ Swanson

1 0.8811 0 0.8803
2 0.7809 3 0.7786
3 0.6467 1 0.5639
4 0.8633 1 0.8377
5 0.6424 0 0.6582
6 0.6263 5 0.6072
7 0.9241 0.5 0.9057
8 0.9075 0.5 0.8819
9 0.7994 0.5 0.7689
10 0.8406 2.5 0.7581

Table 5.1: 2D Results. Table showing the Jaccard Indices for 10 patients for
the Painter-Hillen model and the Swanson P.I. model in two dimensions. The
corresponding κ value that maximized the Jaccard Index for the Painter-Hillen
model is also shown.

low, indicating a weak dependency of the tumour growth on the underlying

structure. This issue will be discussed further in the discussion following the

three-dimensional results, where a potential fix is suggested and implemented.

Looking at the cell density plots in Figures 5.3 through 5.12, we notice

the difference in the distributions. Because the Swanson model implements an

exponential growth, the tumours tend to have very dense cores with densities

that drop off rather rapidly. Additionally, the range in density values is much

higher, with the centres of the tumours simulated using the Swanson P.I. model

attaining very high density values. This phenomenon is not observed with the

Painter-Hillen model due to the use of a logistic growth function.

Considering certain patients specifically, we can see that the Painter-Hillen

offers a qualitative advantage over the Swanson P.I. model in certain cases

as well. Looking for example at Patient 2, as seen in Figure 5.4, it can be

seen that the contour for the Painter-Hillen model more closely follows the

segmented tumour boundary, while the Swanson P.I. model misses a large
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portion in the upper right hand corner. Patient 3 was a particularly difficult

patient to fit, due to the irregular shape of the tumour, as seen in Figure 5.5.

While neither model obtained a great fit, the Painter-Hillen model offered a

significant advantage over the Swanson P.I. model, displaying the power of

the anisotropy. We will see later, in Section 5.4 that it is actually possible

to achieve an even better fit for this patient using the anisotropy of the other

brain hemisphere.

Patients 5 and 6 represent a failure of both models, as seen in Figure 5.7 and

5.8. Since the fitting was done in a completely objective, quantitative manner,

the best fit was obtained by growing a tumour out from the boundary, which

does not match the segmented tumour shapes. A large part of the reason for

this is due to the absence of mechanical effects in both the Painter-Hillen and

the Swanson model. If a real tumour were growing near the skull, there would

be a build-up of pressure, causing it to progress more slowly in that direction.

This idea will be addressed in Chapter 6. It should also be noted that for

tumours having a very isotropic shape, both models were able to replicate

them with a high degree of accuracy. We will attempt to improve upon the

results for the patients having the lowest five Jaccard Indices, i.e. Patients 2,

3, 5, 6, and 9 in Section 5.4.

In the above simulations, and in those that follow, we have used a single

value for r and a single value for D. Changing these values, and in particular

the balance between growth and diffusion, i.e., r/D, could provide better model

fits. For example, Gu et al. [52] considered estimating these parameters on

a patient-specific basis using multiple time points. Because we are already

estimating a number of parameters, we have currently only considered fixed

values for r and D. However, incorporating a more patient-specific estimation

of these parameters should be considered in the future.
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5.3 Three-dimensional Results

In this section, we show the results of applying both the Painter-Hillen model

of Equation (1.12) and the Swanson P.I. model of Equation (5.1) in three di-

mensions to the same ten patients as for the two-dimensional case. This should

be a more realistic situation, since the brain exists in three dimensions, and

not as a collection of two-dimensional slices. In general, however, we expect

the fits to be poorer, since it is more difficult to fit the full three-dimensional

model. In the following figures, the first row shows the 0.16 isosurface of the

cancer cell density u(x, t), meant to represent the tumour boundary as it would

appear in a scan [51]. This value is used as it has been estimated that this is

the approximate cell density threshold that appears in the MRI scans. The

first column shows the best fit of the Painter-Hillen model, while the second

column shows the best fit of the Swanson model. The last column shows the

tumour as it was automatically segmented from the scans. The second row

shows a two-dimensional slice through the largest part of the tumour, to show

specifically how close the fit is. As in the two-dimensional results, the white

line corresponds to the simulated tumour boundary (0.16 level set of u(x, t)),

while the black line shows the tumour segmentation. The first column shows

this image for the Painter-Hillen model, while the second column shows the

same for the Swanson model. The last image shows the fractional anisotropy

in the slice in which the simulated Painter-Hillen tumour was initiated.
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Patient 1

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.13: 3D Patient 1. Simulation results for Patient 1 in three dimensions.
The first column shows the results for the Painter-Hillen model, the second
column for the Swanson P.I. model. The third column shows the tumour
segmentation in the first row, and the initial condition overlaid onto the FA
in the second row.

Patient 2

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.14: 3D Patient 2. Simulation results for Patient 2 in three dimensions.
The first column shows the results for the Painter-Hillen model, the second
column for the Swanson P.I. model. The third column shows the tumour
segmentation in the first row, and the initial condition overlaid onto the FA
in the second row.
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Patient 3

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.15: 3D Patient 3. Simulation results for Patient 3 in three dimensions.
The first column shows the results for the Painter-Hillen model, the second
column for the Swanson P.I. model. The third column shows the tumour
segmentation in the first row, and the initial condition overlaid onto the FA
in the second row.

Patient 4

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.16: 3D Patient 4. Simulation results for Patient 4 in three dimensions.
The first column shows the results for the Painter-Hillen model, the second
column for the Swanson P.I. model. The third column shows the tumour
segmentation in the first row, and the initial condition overlaid onto the FA
in the second row.
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Patient 5

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.17: 3D Patient 5. Simulation results for Patient 5 in three dimensions.
The first column shows the results for the Painter-Hillen model, the second
column for the Swanson P.I. model. The third column shows the tumour
segmentation in the first row, and the initial condition overlaid onto the FA
in the second row.

Patient 6

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.18: 3D Patient 6. Simulation results for Patient 6 in three dimensions.
The first column shows the results for the Painter-Hillen model, the second
column for the Swanson P.I. model. The third column shows the tumour
segmentation in the first row, and the initial condition overlaid onto the FA
in the second row.
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Patient 7

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.19: 3D Patient 7. Simulation results for Patient 7 in three dimensions.
The first column shows the results for the Painter-Hillen model, the second
column for the Swanson P.I. model. The third column shows the tumour
segmentation in the first row, and the initial condition overlaid onto the FA
in the second row.

Patient 8

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.20: 3D Patient 8. Simulation results for Patient 8 in three dimensions.
The first column shows the results for the Painter-Hillen model, the second
column for the Swanson P.I. model. The third column shows the tumour
segmentation in the first row, and the initial condition overlaid onto the FA
in the second row.
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Patient 9

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.21: 3D Patient 9. Simulation results for Patient 9 in three dimensions.
The first column shows the results for the Painter-Hillen model, the second
column for the Swanson P.I. model. The third column shows the tumour
segmentation in the first row, and the initial condition overlaid onto the FA
in the second row.

Patient 10

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.22: 3D Patient 10. Simulation results for Patient 10 in three dimen-
sions. The first column shows the results for the Painter-Hillen model, the
second column for the Swanson P.I. model. The third column shows the tu-
mour segmentation in the first row, and the initial condition overlaid onto the
FA in the second row.
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5.3.1 Summary of Three-dimensional Results

The results of the three-dimensional simulations are summarized in Table

5.2. The Jaccard Index for the best fit for each patient for both the Painter-

Hillen and the Swanson P.I. model are shown. Additionally, the value of the

anisotropy parameter κ that achieved the best fit for the Painter-Hillen model

is shown.

Patient Anisotropic κ Swanson

1 0.6506 0.5 0.7002
2 0.6063 5.5 0.5669
3 0.4888 8 0.4357
4 0.6887 1 0.6332
5 0.6663 4.5 0.6453
6 0.4912 1 0.4794
7 0.6664 4 0.6149
8 0.6368 0 0.5930
9 0.6275 0.5 0.5719
10 0.7399 2.5 0.7156

Table 5.2: 3D Results. Table showing the Jaccard Indices for each of 10
patients for both the Painter-Hillen model and the Swanson P.I. model in
three dimensions. The corresponding κ value that maximized the Jaccard
Index for the Painter-Hillen is also shown.

We can draw two conclusions from these results, the first is that the Painter-

Hillen model does now reliably perform better than the Swanson P.I. model.

The second is that frequently, a κ value close to 0 optimizes the fit, meaning

that the anisotropic model does best when it is tuned to isotropic spread!

Fortunately, there is a good explanation for this phenomenon. Looking back to

figure 5.1, we observe that the fibre networks within the tumours are displaced

or destroyed, leaving behind tissue that is in many cases almost isotropic.

Running the model using this DTI data then does not give much advantage

over an isotropic method, which is not surprising. This issue will be addressed
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and remedied in the section following the 3-D results.

5.3.2 Interpretation of Three-dimensional Results

The first thing of note for the three-dimensional results is that the Painter-

Hillen model was able to achieve an improved fit in nine out of ten cases over

the Swanson P.I. model. Because the Painter-Hillen model includes more of the

biological details, this is as we would expect. These results then indicate that

the Painter-Hillen model could potentially offer an improvement in therapeutic

outcomes if implemented clinically.

Looking deeper at these results, we can see that generally the anisotropy

parameter was higher than in two dimensions, giving tumour shapes that are

more dependent on the brain architecture. Overall, however, we notice that

the fits are quantitatively poorer than they were in two dimensions. This is due

to the difficulty in fitting the full three-dimensional model, as this amounts to

simultaneously fitting many axial slices. With that said, many of the Jaccard

Indices achieved an impressive level of accuracy.

Looking specifically at Patient 2, i.e. Figure 5.14, we can see that both

model fits are significantly smoother than the segmented tumour. This is due

to the fact that segmentations are done on individual two-dimensional slices

and then recombined to form the three-dimensional tumour. As such, the

simulation results for both the Painter-Hillen model and the Swanson model

offer an advantage over the segmentation. Looking at the slices through the

middle of the tumour for Patient 2, shown in the second row of Figure 5.14, we

can see that while there is not a dramatic improvement in Jaccard Index with

the Painter-Hillen model, qualitatively the model does a better job at capturing

the tumour shape. Also of note for all of the patients is the difference in cell
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density ranges. Due to the exponential growth of the Swanson model, the

resultant tumours possess very dense cores that drop off in density rapidly. The

exponential growth also generates very high density values, vs. the Painter-

Hillen model that will not grow at densities greater than 1.

The anisotropy of the Painter-Hillen model offers a large improvement in

fit for Patient 3, as can be seen in Figure 5.15. Because the cells are able to

follow the fibres of the brain, some of the elongation of the tumour is captured.

An interesting artifact is seen in the tumour of Patient 5. While the majority

of the tumour appears almost spherical, the central slice is very elongated, and

juts out from the rest of the tumour segmentation, as can be seen in the first

row of Figure 5.17. It appears then that an error occurred in the automated

segmentation algorithm.

We encounter a failure of the model with Patient 6, as we did in two

dimensions. We can see in the third column of the second row of Figure 5.18

that the initial condition is not actually contained within the brain, which is

obviously not realistic. This occurred due to the objective nature of the model

fit, as this was the configuration that gave the highest Jaccard Index. The

main problem is that both the Painter-Hillen model and the Swanson model

will show an overgrowth at the boundary. In reality, a growing tumour would

experience a “push-back”, or pressure buildup as it compressed the tissue next

to the skull, slowing its progression in this direction. Neither of these models

contain this effect, and this “mass effect” will be addressed in Chapter 6.

5.4 Reflected-DTI

We saw above that there is an issue with using patient data. The problem is

that most patients who receive DTI and MRI scans already have a tumour,
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Figure 5.23: Sample Tumour-Free Slices. A sampling of axial slices that do
not contain a tumour from the 10 patient dataset. Fractional anisotropy is
plotted in order to show the symmetry.

thus it is impossible to obtain an appropriate set of DTI data that accurately

describes the initial anisotropic tumour growth. Looking back at Figure 5.1,

we can see that within the tumour segmentations (black), there is not a lot of

variation in the fractional anisotropy. This is because, as the tumours grew,

they changed the brain structures, pushing nerve fibres out of the way, or

destroying them altogether. If we then use this DTI data to simulate tumours,

we cannot expect to achieve realistic results. This brain looks completely

different than it did at the time the tumour started growing. As a remedy for

this, we want to estimate the missing data. While we could use Atlas data, we

would rather use the symmetry of the brain when it is healthy. As an example,

Figure 5.23 shows a sampling of axial slices that do not contain a tumour The

slices come from the same 10 patients studies before, where we have chosen

slices well above or well below the tumour. The fractional anisotropy is plotted

in order to show the symmetry displayed.

Because of the symmetry, we reflect the DTI data from the healthy side

across the brain’s centreline, into the tumour segmentation. Doing so will allow

our simulations to run on a more realistic domain more closely resembling what

the brain looked like at the time that the tumour began growing. There were
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some simulations above that achieved very good fits even with the original

DTI data. We select the 5 patients with the lowest Jaccard Indices from Table

5.1 and try to improve them by implementing the reflected DTI technique.

This will thus be done for Patients 2, 3, 5, 6 and 9. The patients whose model

fits had a high Jaccard Index had tumours that were often quite regular or

spherical in shape, hence little benefit would be obtained by reflecting the DTI

data in these cases. The resulting fractional anisotropy after these reflections

is shown in Figure 5.24 along with the original tumour segmentations of Figure

5.1. The top row shows the tumour segmentations over the original fractional

anisotropy, while the bottom row shows the tumour segmentations over the

reflected fractional anisotropy data.

Patient 2 Patient 3 Patient 5 Patient 6 Patient 9

Patient 2
(ref)

Patient 3
(ref)

Patient 5
(ref)

Patient 6
(ref)

Patient 9
(ref)

Figure 5.24: Reflected Segmentations. Top: Segmentations through the largest
two-dimensional slice of each patient’s glioma plotted over top of the original
fractional anisotropy. Bottom: The same segmentations shown plotted on
top of the fractional anisotropy that has been reflected from the other brain
hemisphere.
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5.4.1 Two-dimensional Reflected DTI Results

We present here the results for the two-dimensional simulations for each of the

five patients described above. The simulations are now run using the reflected

data in an attempt to obtain a better fit. As before, the results of the Painter-

Hillen model are shown on the left while the results of the Swanson P.I. model

are shown on the right.

Patient 2

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.25: 2D Patient 2 Reflected DTI. Two-dimensional simulation results
for Patient 2 using reflected DTI data. The result on the left is the result for
the Painter-Hillen model, while the result on the right is from the Swanson
P.I. model.
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Patient 3

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.26: 2D Patient 3 Reflected DTI. Two-dimensional simulation results
for Patient 3 using reflected DTI data. The result on the left is the result for
the Painter-Hillen model, while the result on the right is from the Swanson
P.I. model.

Patient 5

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.27: 2D Patient 5 Reflected DTI. Two-dimensional simulation results
for Patient 5 using reflected DTI data. The result on the left is the result for
the Painter-Hillen model, while the result on the right is from the Swanson
P.I. model.
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Patient 6

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.28: 2D Patient 6 Reflected DTI. Two-dimensional simulation results
for Patient 6 using reflected DTI data. The result on the left is the result for
the Painter-Hillen model, while the result on the right is from the Swanson
P.I. model.

Patient 9

Painter-Hillen Swanson P.I.

FA plot

Cell density

Figure 5.29: 2D Patient 9 Reflected DTI. Two-dimensional simulation results
for Patient 9 using reflected DTI data. The result on the left is the result for
the Painter-Hillen model, while the result on the right is from the Swanson
P.I. model.
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5.4.2 Summary of Two-dimensional Reflected DTI Re-

sults

Here we present a summary of all of the two-dimensional results, including

those from the original DTI data for comparison. These results are shown

in Table 5.3. The Jaccard Indices for both the Painter-Hillen model and the

Swanson model are presented, for both the original DTI data and the reflected

DTI data. Additionally, the anisotropy parameters κ that provided the opti-

mal fit for the Painter-Hillen model are included.

Patient Painter-Hillen κ P.-H. + Ref. κ Swanson S. + Ref.

1 0.8811 0 - - 0.8803 -
2 0.7809 3 0.7886 6 0.7786 0.8284
3 0.6467 1 0.7194 9.5 0.5639 0.6356
4 0.8633 1 - - 0.8377 -
5 0.6426 0 0.6156 0 0.6582 0.6301
6 0.6269 5 0.5571 6.5 0.6072 0.5437
7 0.9241 0.5 - - 0.9057 -
8 0.9075 0.5 - - 0.8819 -
9 0.7990 0.5 0.8209 6.5 0.7689 0.7869
10 0.8406 2.5 - - 0.7581 -

Table 5.3: 2D Reflected Domain Results. Table showing the Jaccard Indices
for 10 patients for the Painter-Hillen model and the Swanson P.I. model in two
dimensions. The corresponding κ value that maximized the Jaccard Index for
the Painter-Hillen model is also shown. Additionally, results for a subset of
five patients using the reflected DTI method are shown.

5.4.3 Interpretation of Two-dimensional Reflected DTI

Results

Application of the reflected DTI technique improved the results for three out

of the five patients for which it was attempted. It should be noted that the

two for which it did not lead to an improvement were the same two patients
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for which the models failed originally, i.e. Patients 5 and 6. For Patient 2,

as can be seen in Figure 5.25, the increase in the Jaccard Index was almost

negligible, however the qualitative fit seen in Figure 5.25 is better than that

of Figure 5.4, which does not use reflection.

Patient 3 is perhaps the most successful application of this technique, and

was also one of the most challenging patients to fit initially. It is interesting to

look at the FA plot in the top row of Figure 5.26, and to see how the tumour

segmentation matches up to the fibre directions. One can almost visualize

how the tumour grew along the fibres. Comparing this to the cell density plot

in the bottom row of Figure 5.26, the tumour cells seem to collect along the

fibres in the same manner as was seen in the simplified domain simulations of

Chapter 3. Quantitatively speaking, the improvement in Jaccard Index was

dramatic, as can be seen in Table 5.3.

Finally, for Patient 9, a slight improvement in Jaccard Index was seen

when the reflected DTI technique was implemented. Again, the qualitative

improvement in this case was significant, as can be seen by comparing Figures

5.11 and 5.29. Overall, these results seem to indicate that for more challenging,

more anisotropic tumour shapes, filling in the DTI data by reflecting it over the

brain’s centreline seems to offer the potential for improved model performance.

5.4.4 Three-dimensional Reflected DTI Results

In this section, we show the results of applying the Painter-Hillen model of

Equation (1.12) in three dimensions, using the reflected-DTI data. The top

row shows the u = 0.16 isosurface of the cell density, with the first column

corresponding to the Painter-Hillen simulations, and the centre column corre-

sponding to the Swanson P.I. simulations. The third column shows the tumour
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segmentation in three dimensions. The second row shows the slice containing

the maximum tumour volume through the centre of the three-dimensional

simulation. The colours correspond to cell density, with yellow=high and

blue=low. The white contour shows the model-predicted boundary, while the

black contour shows the tumour segmentation.

Patient 2

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.30: 3D Patient 2 Reflected DTI. Three-dimensional simulation results
for Patient 2 using reflected DTI data. The first column shows the results for
the Painter-Hillen model, the second column for the Swanson P.I. model. The
third column of the first row shows the automatic tumour segmentation.
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Patient 3

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.31: 3D Patient 3 Reflected DTI. Three-dimensional simulation results
for Patient 3 using reflected DTI data. The first column shows the results for
the Painter-Hillen model, the second column for the Swanson P.I. model. The
third column of the first row shows the automatic tumour segmentation.

Patient 5

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.32: 3D Patient 5 Reflected DTI. Three-dimensional simulation results
for Patient 5 using reflected DTI data. The first column shows the results for
the Painter-Hillen model, the second column for the Swanson P.I. model. The
third column of the first row shows the automatic tumour segmentation.
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Patient 6

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.33: 3D Patient 6 Reflected DTI. Three-dimensional simulation results
for Patient 6 using reflected DTI data. The first column shows the results for
the Painter-Hillen model, the second column for the Swanson P.I. model. The
third column of the first row shows the automatic tumour segmentation.

Patient 9

Painter-Hillen Swanson P.I.
MRI

segmentation

0.16
isosurface

largest 2D
slice

Figure 5.34: 3D Patient 9 Reflected DTI. Three-dimensional simulation results
for Patient 9 using reflected DTI data. The first column shows the results for
the Painter-Hillen model, the second column for the Swanson P.I. model. The
third column of the first row shows the automatic tumour segmentation.
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5.4.5 Summary of Three-dimensional Reflected DTI Re-

sults

Patient Painter-Hillen κ P.-H. + Ref. κ Swanson S. + Ref.

1 0.6506 0.5 - - 0.7002 -
2 0.6063 5.5 0.6146 1 0.5669 0.5837
3 0.4888 8 0.4900 7 0.4357 0.4658
4 0.6887 1 - - 0.6332 -
5 0.6643 4 0.6567 1 0.6453 0.6516
6 0.4912 1 0.4576 0 0.4794 0.4220
7 0.6664 4 - - 0.6149 -
8 0.6368 0 - - 0.5930 -
9 0.6275 0.5 0.6371 2 0.5719 0.6206
10 0.7399 2.5 - - 0.7156 -

Table 5.4: 3D Reflected Domain Results. Table showing the Jaccard Indices
for 10 patients for the Painter-Hillen model and the Swanson P.I. model in
three dimensions. The corresponding κ value that maximized the Jaccard
Index for the Painter-Hillen model is also shown. Additionally, results for a
subset of five patients using the reflected DTI method are shown.

5.4.6 Interpretation of Three-dimensional Reflected DTI

Results

For the three-dimensional case, we are able to further improve the fits in

three out of the five cases. Overall, there does not seem to be as much of an

advantage to using the reflected-DTI technique in three dimensions. This is

likely due to the fact that in two dimensions, when a fibre is pushed out of

the plane of consideration, it is gone completely. In three dimensions, when

a fibre is moved, it is still contained within the domain. Therefore, while the

result may be distorted due to the movement of fibres, the tendency of the

fibre direction is still included.

Once again, Patients 5 and 6 proved a challenge when it came to fitting the

174



Chapter 5. Model Comparison Using Patient Data

model. The results seem to indicate that in order to fit the model to patients

whose tumours are in close proximity to the skull, a mass effect will need to

be included.

For Patients 2, 3 and 9, however, an advantage was gained by using the

reflected DTI data to fit the model. This can be seen not only quantitatively

in Table 5.4.5, but also qualitatively, as is seen in Figures 5.30, 5.31 and 5.34.

In particular, the Painter-Hillen model seems to do a good job of capturing the

overall shape of the tumour in Figure 5.31, even though the Jaccard score is

low. It is a very irregularly shaped tumour, and as such it is very challenging

to get a good model fit for Patient 3.

5.5 Treatment Regions

The goal of the Painter-Hillen model is to simulate glioma invasion in a manner

that will be useful to clinicians during treatment planning. In this section we

outline how the Painter-Hillen model may be used to delineate planning target

volumes for radiation therapy.

As was mentioned in Chapter 1, typical radiation treatment for glioma

involves treating the visible tumour as well as an extension to account for mi-

croscopic disease spread. Clinically, these are referred to as the Gross Tumour

Volume (GTV) and the Clinical Target Volume (CTV), respectively [42]. The

GTV is defined as the mass that “can be seen, palpated or imaged” [42]. The

CTV is harder to define, as it is where there is assumed to be microscopic

spread that cannot be seen or imaged. In particular, for glioma patients, this

region is typically taken to be a uniform extension of the GTV. Addition-

ally, clinicians define a Planning Target Volume, or PTV, which consists of a

slight extension of the GTV to accommodate inconsistencies between imaging
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Figure 5.35: GTV, CTV and PTV. Left: Outline of the different treatment
volumes. Taken from [75]. Right: An example of a GTV, CTV and PTV for
a glioblastoma patient, delineated using a CT scan. GTV outlines the visible
tumour, CTV accounts for invisible spread, and PTV allows for uncertainties
in the delivery of the dosage. Modified from [42].

modalities and limitations of the machines that deliver the prescribed dose.

The PTV is mainly used to ensure that the prescribed radiation is actually de-

livered to the CTV as desired [42]. These three volumes may of course receive

different doses, as they are expected to contain different cancer cell concen-

trations. An example of these three volumes for a given glioblastoma patient

is shown in Figure 5.35. Additionally, radiotherapy planning must take into

account critical biological structures, avoiding delivering too high of a dose

where possible [42]. For example, in the abdomen, clinicians may try to avoid

the lungs where they are not involved. In the brain, this may mean avoiding

critical brain structures. These tissues are referred to as organs at risk (OR’s)

[42].

Defining the CTV for a glioma patient is not a trivial task, and is done

in a naive, non-patient-specific manner with the goal of targeting as much

microscopic spread as possible. Without being able to see this spread via

imaging, or what would be a very invasive biopsy, clinicians use post mortem

176



Chapter 5. Model Comparison Using Patient Data

data from previous patients to estimate the maximum spread of the cells [42].

While this is a valid method, having a model that is capable of simulating

microscopic spread can better advise clinicians about where they might expect

to find malignant cells. In particular, we use a level set of the cancer cell

density function to define a revised CTV. We then compare this region to

the traditional uniform extension that would typically be used. While, for

tumours with a low κ value that exhibit mostly isotropic spread (i.e. Patient

8), these regions will be similar, for patients with a more anisotropic tumour

(i.e. Patient 2), there may be large discrepancies.

Figure 5.36 outlines the GTV in black, the traditional CTV in white, and

the modified CTV in red for Patients 2 and 8. The modified CTV was drawn

using a level set of the Painter-Hillen simulation results, while the traditional

CTV is simply a 2 cm extension of the segmented tumour. The appropriate

level set was chosen so that the regions contained the same area. Patient 8

was chosen because the Painter-Hillen model obtained a very good fit for this

case, and the anisotropy parameter κ was 0.5, which corresponds to nearly

isotropic spread. The purpose of including this patient is to demonstrate that

for this case, the two CTV regions are nearly identical. For Patient 2, however,

there is a big difference between the classical CTV in white, and the modified,

model-determined CTV in red. Note that the reflected-DTI results were used

to determine this treatment region.

5.6 Chapter Summary

In this chapter, we showed simulation results for ten patients from the Cross

Cancer Institute for both the Swanson P.I. model of Equation 5.1 and the

Painter-Hillen model of Equation 1.12. We thus began by describing the
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Figure 5.36: Treatment Region Recommendations. The GTV in black, tradi-
tional CTV in white and modified CTV in red are shown for Patients 8 (left)
and 2 (right) in two dimensions. We see that for some patients whose tumours
display more isotropic spread, there is little difference between the traditional
and modified CTV’s, however some patients show a large discrepancy between
the two.

Swanson P.I. model in more detail, and described how to implement it nu-

merically. We then showed the Jaccard Index values for both models in both

two and three dimensions, for all ten patients. The results were that in both

two and three dimensions, the Painter-Hillen model outperformed the Swanson

P.I. model in nine out of ten cases. Additionally, we showed the cell density

plots along with the automatic tumour segmentations, so that we could also

comment on the qualitative nature of the model fits.

While the results of the simulations seemed to indicate that the Painter-

Hillen model offered an advantage over the Swanson P.I. model, many of the

fits featured anisotropy parameter κ values that were low, indicating that

there wasn’t a huge advantage over the isotropic model. The reason for this

was that the DTI data was altered within the tumour segmentations, with

many of the fibre tracts missing as they had been pushed out of the way by

the growing tumour, or destroyed completely. To remedy this, we proposed to

take advantage of the symmetry present in a healthy brain, reflecting the DTI
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data from the other brain hemisphere to approximate the missing data.

We considered the results of simulating both the Swanson P.I. model and

the Painter-Hillen model on the reflected data for a subset of five patients,

in both two and three dimensions. To choose this subset, we took the low-

est five Jaccard Indices, to see if the reflected-DTI technique could improve

upon the fits. In the two-dimensional case, this process improved the Jac-

card index for three out of the five patients. In some cases, the advantage

was substantial, particularly where the tumours had an elongated shape. In

three dimensions, the advantage wasn’t so substantial, with the reflected-DTI

technique improving the Jaccard Index in once again three out of the five pa-

tients. The improvement , however, was more slight than what was seen in

the two-dimensional case. We postulated that this was due to the fact that

in two dimensions, when the fibres were pushed out of the way, they were no

longer present in the plane of consideration. In three dimensions, while the

fibre network may have been distorted, the displaced fibres remained within

the domain.

The results of this chapter indicated that the Painter-Hillen model, in

conjunction with the reflected-DTI technique, offers the potential to improve

upon current standards of treatment for glioma patients. As such, we outlined

how a model for the cell density could be useful for clinicians in designing

patient treatment plans.
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Chapter 6

The Mass Effect

In the model thus far, there is no feedback effect as the mass grows, deforming

the brain around it. The absence of this effect is especially obvious when the

simulated tumours get close to the skull. In reality, we would expect that as the

tissue becomes compressed between the tumour and the skull, a force would

be induced, and this force would push back on the tumour, hindering further

growth. This can be seen in the real tumour segmentations, as rarely do the

actual tumours grow right up against the skull. By contrast, the simulated

tumours tend to overestimate the cell densities close to the boundary.

To remedy this, we will incorporate a “Mass Effect” into the model. We

will model two cell populations: the healthy host cells, and the cancer cells,

and derive a mass balance equation for each constituent. These mass balance

equations play the same role as our original model (Chapter 3), but will now

include an advection term that is induced by the forces within the brain.

The biggest challenge in modelling this effect is determining the appropriate

velocity fields, which is done via the appropriate momentum equations.
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6.1 Scientific Background

The mass effect as it applies to brain tumour modelling has been studied in

some detail, with many different models being explored by various research

groups. Each of these models is based on the mechanics of the tissues, incor-

porating the growing tumour mass as a stress or a pressure. Here we provide

a brief summary of some of the more important modelling strategies that have

been employed.

The first group’s work that we discuss here will also form the basis for the

mass effect model derived here. Preziosi and collaborators [76–81] have worked

extensively on mechanical models for tumour growth. They have focussed pri-

marily on multiphase models, which is what will be implemented in this thesis.

Multiphase models treat a tissue as a mixture of multiple “constituents”, in-

cluding cancer cells, healthy cells, extracellular network, or extracellular fluid.

A modeller can break the tissue into as many constituents as they wish, in-

corporating the individual characteristics of each. The general framework for

deriving a multiphase model begins by deriving a mass balance equation for

each constituent, followed by a corresponding momentum equation to close

the system. This process will be explored in far more detail in the remainder

of this chapter, or can be seen in an assortment of papers from Preziosi et al.

including Byrne et al. 2002 [76], Ambrosi and Preziosi 2002 [77], Preziosi and

Tosin 2008 [78], and Preziosi and Vitale 2010 [79].

The second group’s whose work that we discuss here is that of Lowengrub

and collaborators [82–84]. They have investigated detailed models for tumour

growth that include aspects of the tumour microenvironment such as oxygen

levels, nutrient levels and mechanical response of the tissue, as well as the

effect of these quantities on the resulting tumour [82]. This is done through a
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system of equations modelling the cancer cells themselves, as well as growth

factors and nutrient distributions. The mechanical aspect was incorporated

by modelling pressure directly and applying Darcy’s law [82]. The results of

such an investigation have implications for therapeutic interventions, such as

interrupting the nutrient supply to a tumour. They went on to extend this

modelling, incorporating cell-cell adhesion into the model in the form of a

Helmholtz free energy term. They also generalized the Darcy’s law framework

for the cell velocities [83, 84].

Another group that has worked on mechanical aspects of tumour growth is

Clatz et al. [8]. They used atlas data to set up a brain domain, incorporating

diffusion tensors for the spread of the cancer cells. They modelled tumour

growth as an exponential function, with growth ceasing when a density of 1

is reached. The mass effect was included via a classical constitutive equation

framework, by deriving the strain and expressing the stress as a function of

strain. Overall, this work served to incorporate growth, diffusion, and me-

chanical deformation into a tumour growth model, and serves as a good basis

for future models that combine all of these components.

6.2 Introduction to Continuum Mechanics

Before deriving the system, we discuss some introductory ideas from continuum

mechanics that are crucial for making sense of the system. In particular, we

focus on how to think of matter as a continuum, as well as the idea of stress

in three dimensions.
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6.2.1 Matter as a Continuum

We have made reference to the fact that we will be using continuum mechanics

to model the mass effect, however, matter is certainly not a continuum. At

a small scale, it is made up of many individual molecules, and subsequently,

atoms. At the appropriate scales however, it can be reasonably assumed that

matter approximates a continuum. Consider, for example, water. If you were

to look at water on a molecular level, you would see that it is made up of

many individual particles. Most people however will never consider water on

this scale, and instead we think of it on a much larger scale. At these larger

scales, water behaves much like a continuum.

To make this more precise, consider an example from [80]. We will use

this example to discuss more precisely how to define density as a continuum.

Define M0 to be the amount of mass contained in some volume U0. Let the

volume of U0 be V0, and let P be some point contained within this volume.

In order to define the density at the point P , let {U0, U1, U2, . . . , Un, . . .} be a

sequence of subvolumes converging on P with

Un ⊂ Un−1, P ∈ Un, (n = 0, 1, 2, . . .).

Define the volume of Ui to be Vi, and the amount of mass contained in Ui to

be Mi. Then if

lim
n→∞

Mn

Vn
, as Vn → 0,

exists, then we define the density of the mass distribution at this point P to

be this limiting value. See figure 6.1.

There is a slight problem with this definition, however. Because we are

applying a mathematical concept to a real-world situation, there are certain
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Figure 6.1: Subvolume Sequence. Figure showing the first few volumes in a
sequence of subvolumes converging on a point P .

allowances that must be made. When taking Vn → 0, eventually there will

be a subvolume so small that it is actually contained within a molecule, or

subsequently an atom. This will result in oscillations in the density value such

that no limiting value can be said to exist in a mathematical sense. As such,

the limit is taken with the following caveat, taken directly from [80]:

“We consider the ratio Mn/Vn. Let Un become smaller and smaller but always

remain so large that it contains a large number of particles in it.”

Volume Ratio

In formulating the multiphase modelling system, we will be referring to volume

ratios. These quantities describe the fraction of the volume that is taken up

by a given constituent. In this thesis, we will be considering the following

constituents:

• φh(x, t) : volume ratio of the healthy host cells,

• φc(x, t) : volume ratio of the cancer cells, and

• φm(x, t) : volume ratio of the extra-cellular network (ECN) (i.e. extra-
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cellular matrix (ECM) + blood vessels).

Note that extracellular liquid, φ`(x, t) is also present, however we do not

explicitly model it. It is assumed that it is present though to facilitate cell

growth. Then

φh + φc + φm ≤ 1.

Note that in determining the volume ratios, a similar limiting phenomenon

occurs as in our density example. Preziosi and Vitale provide a nice graphical

representation of this in [80] where it appears at Figure 1.1. We include it here

as Figure 6.2. You can see in this figure the constant limiting value before the

volume becomes too small, and the volume ratio oscillates.

Figure 6.2: Constituent Density Limit. Plot of the volume ratio of the con-
stituent as a function of sample volume size. There is a constant limiting value
that occurs before the sample size becomes too small and no longer contains
enough particles, and the ratio oscillates.

186



Chapter 6. The Mass Effect

6.2.2 Stress Tensors

The momentum equations of the next section make use of stress tensors, an

important concept in continuum mechanics that allow us to describe the stress

experienced in three dimensions at a point within the brain. Before getting to

the three-dimensional case, we consider examples in one and two dimensions,

summarized from [85].

As a first example of stress within the body, consider a tendon. Tendons

are made up of fibrous connective tissue, and serve to connect muscles to

bone. These tendons are capable of withstanding stress, with larger tendons

being able to withstand larger amounts of stress. We therefore define as a first

example of stress

σ = F/A,

where σ is defined to be the stress in the tendon, F is the force, and A is the

cross-sectional area. In the simple case of a tendon experiencing a force in

only one direction, a scalar quantity suffices to define stress. In the context

of biomechanics, stress quantifies the interaction of tissue in one part of the

body with tissue in another part of the body.

A next example to consider (also from [85]) involves the stress that acts

on a surface. For this example, we look at a volume S within a larger volume

B. We consider an infinitesimal surface element ∆S on the surface of S, and

express the force exerted on ∆S by the material in B as ∆~F . Note that this

force is now a vector. We then define

d~F

dS
= lim

∆S→0

∆~F

∆S
,
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and

~T =
d~F

dS

is the stress vector.

Generalizing the examples above, we extend our definition to include the

stress acting in all directions at a particular location within the brain. To

fully describe stress in three dimensions, it is necessary to use a rank-2 tensor.

We define this tensor by considering a volume element in the form of a cube,

analogous to the surface element in the previous example. We will assume

the cube is aligned with the standard coordinate axes as in Figure 6.3, which

is taken from [86]. We will then define ∆Si to be the surface normal to the

positive xi axis. Now, let the stress vector (as defined above) acting on ∆S1 be

T 1. Resolving this vector into three components with respect to the standard

basis, we can obtain T 1 = (σxx, τxy, τxz). The same can be done for ∆S2 and

∆S3, giving T 2 and T 3. Assembling these three stress vectors into a matrix

gives the stress tensor for a given point:

T =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 .

A comment about notation: Components of the stresses that are normal

to the surfaces ∆Si are called normal stresses (σxx, σyy, σzz), while the other

components (τxixj with i 6= j) are called shear stresses [61].
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Figure 6.3: 3D Stress Tensor. Figure showing the volume element used to
define the stress tensors, in alignment with the standard coordinate axes.
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6.3 The Multiphase Framework

We introduced earlier that we will be modelling φh, φc, and φm, or the healthy

host cells, cancer cells and ECN, respectively. We will also consider the extra-

cellular fluid as φ`, with

φ` = 1− φt − φh − φc.

We will however not explicitly model this quantity, but must assume that

it is present to foster cell growth. To simplify notation, we will instead use

c = φc to represent the cancer cell density, h = φh for the healthy cells, and

m = φm for the ECN.

To describe the time evolution of these densities, we use a system involving

a mass conservation equation and a momentum equation for each constituent.

The mass conservation equations describe the evolution of the populations in

time, while the momentum equations help to determine the advective velocites.

We begin by deriving the system of equations. The ideas that are used here

are primarily taken from Preziosi et al. [76–80].

6.3.1 Mass Conservation

To derive the mass balance equations, we consider a fixed volume V with

boundary ∂V , and let n be an external normal to the boundary. Consider first

only cancer cells c(x, t), as the process is very similar for the other constituents.

We begin by writing down an equation for total mass in the volume V . This

is given by [80]

M =

∫
V

ρc dV,

190



Chapter 6. The Mass Effect

where ρ is the density of the cancer cells. Now consider the possible manners

in which the mass within this volume can change. There are only two ways

in which this can happen: (i) flux through the boundary, or (ii) creation or

deletion of cells (birth or death). In the form of an equation, this means [80]

dM

dt
= −

∫
∂V

ρcvc · ndΣ︸ ︷︷ ︸
Flux

+

∫
V

ρΓcdV︸ ︷︷ ︸
Birth/Death

, (6.1)

where vc gives the cell velocity, and Γc gives the net growth rate of the cells.

The first term on the right hand side of Equation (6.1) models the decrease in

cell mass via flux over the boundary. The second term models the change in

cell population via cell division and cell death. The first term lends itself very

well to the divergence theorem, which upon application gives [80]

∫
V

[
∂

∂t
(ρc) +∇ · (ρcvc)− ρΓc

]
dV = 0, (6.2)

where we are now requiring dM/dt = 0 to ensure mass conservation. Because

we have not specified the volume V , the relation in Equation (6.2) must hold

for all arbitrary volumes V . This can only be true if the integrand itself is 0,

hence we have [80]
∂

∂t
(ρc) +∇ · (ρcvc)− ρΓc = 0.

Under the assumption that ρ is constant, and equal to the density of water,

we arrive at the mass-balance equation for cancer cells: [80]

∂c

∂t
+∇ · (cvc) = Γc. (6.3)

We can then easily write down a mass balance for the healthy host cells, as
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the derivation is exactly the same:

∂h

∂t
+∇ · (hvh) = Γh. (6.4)

For the ECN, the derivation is the same, except we assume that it is non-

remodelling, i.e. that there is no net growth/death. This gives the following

mass balance:
∂m

∂t
+∇ · (mvm) = 0.

6.3.2 Momentum Conservation

While the mass balance equations tell us how to update the volume fractions

in time, we still need to determine the velocity fields for each constituent.

Determining these velocities is not trivial, and is the most crucial part of

modelling the mass effect. The velocities are found by determining the ap-

propriate momentum balance for each constituent, which is where the stress

tensors, discussed previously, come into the model.

In order to determine the momentum balance equations, we will follow a

similar process as for the mass conservation equations. We will once again

consider only the cancer cells c(x, t) initially, then extend the results to the

other two constituents. First, as per [80], we determine the expression for total

momentum within an arbitrary test volume V :

Total Momentum =

∫
V

ρcvcdV.

Now we consider how this momentum can change. Again, as per [80], this

momentum can change in any of the following ways:

1. momentum flux of cells through the boundary,
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2. contact forces with other cells through the boundary, n the direction of

n, the unit normal to the boundary

3. contact forces due to the interaction of cells with other constituents, i.e.

friction,

4. momentum change due to mass exchange among constituents, and

5. body forces, i.e. gravity, chemotaxis.

We can then formulate momentum conservation as an integral equation as

we did for the mass conservation case. The resulting equation is [80]

d

dt

∫
V

ρcvcdV = −
∫
∂V

ρcvc(vc · n)dΣ︸ ︷︷ ︸
1

+

∫
∂V

cTT
c ndΣ︸ ︷︷ ︸

2

+

∫
V

mcdV︸ ︷︷ ︸
3

+

∫
V

ρΓcvcdV︸ ︷︷ ︸
4

+

∫
V

ρcbcdV︸ ︷︷ ︸
5

,

where Tc is the stress tensor for cancer cells, and mc is the interaction force for

cancer cells. The body force is given by bc. As before, we use the divergence

theorem on terms 1 and 2 on the right hand side in order to write all of the

integrals over V . We then combine all the terms into a single integral, where

the time derivative becomes a partial derivative when it is brought inside the

integral. This gives [80]

∫
V

[
∂

∂t
(ρcvc) +∇ · (ρcvc ⊗ vc − cTc)− ρcbc −mc − ρΓcvc

]
dV = 0.

Because the volume of integration (V ) is arbitrary, the integrand must
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vanish, giving [80]

∂

∂t
(ρcvc) +∇ · (ρcvc ⊗ vc) = ∇ · (cTc) + ρcbc +mc + ρΓcvc.

Using Equation (6.3) to simplify, we obtain [80]

ρc

(
∂vc
∂t

+ vc · ∇vc
)

= ∇ · (cTc) + ρcbc +mc. (6.5)

The term on the left hand side is referred to as the total time derivative,

or inertial term. Because of the large discrepancy between the time scales of

tumour growth vs. tissue deformation , this term can be neglected. The time

scale of tumour growth is days or months, while the time scale of tissue defor-

mation, or inertia, is only seconds. The tissue deformations can be assumed

to be at quasi-steady state in terms of the time scale of tumour growth. As

such, Equation (6.5) reduces to [80]

∇ · (cTc) + ρcbc +mc = 0.

Finally, we can neglect the body force term bc, as these forces do not play a

large role in the tissue deformation. The final momentum equation for cancer

cells is therefore [80]

∇ · (cTc) +mc = 0. (6.6)

Similarly, the derivation of the momentum equations for healthy host cells

and for ECN would be the same, thus giving

∇ · (hTh) +mh = 0, (6.7)
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and

∇ · (mTm) +mm = 0,

respectively.

6.3.3 Closing the System

In order to fully define the momentum equations that we have just derived, we

must specify both an interaction force (mi) and a stress tensor (Ti) for each

constituent. Before doing this, we will make an assumption that will simplify

the model.

Assumption 1: It is assumed that the ECN is rigid. Then

m(x, t) = m(x),

i.e. vm = 0 for all x. We thus do not need to consider the momentum equation

for m as the velocity field is known. This is equivalent to treating the brain like

a rigid porous medium [78]. It also means that we need not worry about the

mass conservation equation, as we are assuming that the ECN does not change

with time. We are thus now only considering the equations for the healthy

host cells and for the cancer cells. It is still necessary to assume that the ECN

is present, however, so that all of the interaction forces balance appropriately.

We then proceed with the modelling by determining the interaction force and

stress tensor for both the healthy cells and the cancer cells.

The Interaction Forces

In order to determine the interaction forces, we employ a classic assumption

of multiphase flows [78, 81].
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Assumption 2: Assume that the interaction force acting on the cells is taken

to be proportional to their velocity:

mi = −K−1
i vi,

where the Ki are passive anisotropy tensors that translate a stress into a net

displacement according to the tissue structure. The tensor Ki is referred to as

a motility tensor.

Employing Assumption 2 and substituting it back into the momentum

Equations (6.6) and (6.7), we obtain [78]

vc = Kc∇ · (cTc), (6.8)

vh = Kh∇ · (hTh). (6.9)

Now we have a definition for the velocity fields in terms of two tensors: Ki

and Ti. There are a few ways to choose Ki. The simplest choice is to choose

Ki proportional the identity matrix. This causes the stress to be distributed

isotropically, and translates a stress directly into a net displacement. Alterna-

tively, we can incorporate the tissue architecture into the stress distribution.

If we use tensors with the same eigenvectors as the DTI data, then this allows

the forces to be distributed along the fibres, which is more realistic than the

isotropic distribution. For simplicity, and for a first approximation, here we

will use Ki proportional to the identity. The constant of proportionality will

be discussed in a later section.
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The Stress Tensors

Similarly, there are a number of ways to specify the stress tensors. We will

use the technique of Preziosi et al. [77, 78], taking the stress to be a function

Σ of the cell densities:

Tc(x, t) = −Σc(c+ h)I, (6.10)

Th(x, t) = −Σh(c+ h)I, (6.11)

where I is the identity tensor, so that the stress at a given location is dependent

on the total cell density at that location. Of course, this raises the question of

how to choose the functions Σc and Σh. Choosing Σc and Σh will be addressed

in the following section where the model is fully specified. We now combine

Equations (6.3), (6.4), (6.8), (6.9), (6.10) and (6.11). Additionally, we specify

the growth functions. Since h(x, t) represents the healthy cells, we expect

that in general they would have no net growth, hence we set Γh = 0. For the

cancer cells, we employ a logistic growth (in the entire cell population), as well

as include the anisotropic diffusion term. The result is a system of coupled

PDE’s for the cancer cells c(x, t) and the healthy cells h(x, t):

∂c

∂t
−∇ · (cKc∇(cΣc(c+ h))) = ∇∇ : (Dcc) + rcc(1− (c+ h)), (6.12)

∂h

∂t
−∇ · (hKh∇(hΣh(c+ h))) = 0. (6.13)

6.4 Numerical Methods

To get an idea of how the model evolves with time, it is useful to simulate

it numerically in one dimension. We use a conservative flux discretization

scheme, using operator splitting and employing one scheme for the advective
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term, and another for the diffusive term. These schemes are as outlined in

Hundsdorfer’s lecture notes [87]. For an advection equation having the form

ut + (a(x, t)u)x = 0, (6.14)

we can discretize in space via [87]

w′i(t) =
1

h

(
fi− 1

2
(t, w(t))− fi+ 1

2
(t, w(t))

)
,

where i = 1, . . . ,m, and the fluxes fi− 1
2

and fi+ 1
2

are defined by

fi− 1
2
(t, w) = a+(xi− 1

2
, t) [wi−1 + ψ(θi−1)(wi − wi−1)]

+ a−(xi− 1
2
, t)

[
wi + ψ

(
1

θi

)
(wi−1 − wi)

]
,

and

fi+ 1
2
(t, w) = a+(xi+ 1

2
, t) [wi + ψ(θi)(wi+1 − wi)]

+ a−(xi+ 1
2
, t)

[
wi+1 + ψ

(
1

θi+1

)
(wi − wi+1)

]
,

Notationally, Hunsdorfer [87] uses wi(t) to refer to the approximate value

of u(x, t) at xi. The scheme can be adjusted and tuned via the flux limiter

function ψ(θ), however we will take ψ ≡ 0 for simplicity, giving a first order

upwind scheme [87]. An in depth discussion of various flux limiter functions

and their respective merits can be found in [74]. For the diffusion equation,

we consider then standard divergence form

ut = (d(x, t)ux)x, (6.15)
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and employ the following discretization courtesy of Hundsdorfer [87]:

w′i(t) =
1

h2
(d(xi− 1

2
, t)(wi−1(t)− wi(t))− d(xi+ 1

2
)(wi(t)− wi+1(t))).

Of particular importance is the fact that these schemes allow for both a and

d to depend on both space and time, as is the case here. In order to simulate the

models derived in this chapter then, we must derive the appropriate advective

velocities and diffusion coefficients corresponding to the forms of Equations

(6.15) and (6.14).

6.5 Specifying the Model

Now, we will consider two separate models based on how the stress-tensors, and

subsequently the velocities are defined. The first model is a more classic choice,

following the Preziosi derivations. We call this the Non-Aggressive Model,

and it will be discussed in Section 6.5.1. Simulations of this model, however,

did not behave as would be expected of a growing tumour system. This will be

seen in Section 6.5.2. As such, in Section 6.5.3 we have derived an alternative

model that better corresponds to the reality of a growing tumour, based on the

derivative of the cancer cell density. As such, we call this the Aggressive-

Invasion Model. In both cases, the resulting PDE’s are similar in type

to Burger’s equation, hence we assume existence and uniqueness, however

further analysis beyond the scope of this thesis would be required to verify

this. Simulations of the aggressive-invasion model are shown in Section 6.5.4.
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6.5.1 Non-Aggressive Model

To define the non-aggressive model, we specify the functions Σc and Σh. These

functions should describe how the cells respond to the growing mass. The non-

aggressive model assumes that the two different cell types respond in the same

way to the increasing pressure. Because it is assumed that the tissue has a

“natural” state, under which the cells are relaxed, we define a threshold density

φ0 representing the relaxed state. The stress then increases as the total cell

density exceeds φ0. We therefore define

Σc(c+ h) = Σh(c+ h) = E(c+ h− φ0),

where the factor E is Young’s modulus for the brain, which quantifies how the

tissue responds to stress. The resulting model is then given by

∂c

∂t
−KE∇ · (c∇(c(c+ h− φ0))) = ∇∇ : (Dcc) + rcc(1− (c+ h)), (6.16)

∂h

∂t
−KE∇ · (h∇(h(c+ h− φ0))) = 0. (6.17)

Note that we are assuming Kh = Kc = K to be constant in space, hence both

K and E are brought outside of the derivative.

The numerical methods discussed above can be applied to simulate the

non-aggressive model. Considering the model (6.16)-(6.17) in one dimension

we get

∂c

∂t
−KE ∂

∂x

(
c
∂

∂x
(c2 + ch− cφ0)

)
=

∂2

∂x2
(dcc) + rcc(1− (c+ h)), (6.18)

∂h

∂t
−KE ∂

∂x

(
h
∂

∂x
(h2 + ch− hφ0)

)
= 0, (6.19)
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where dc is the diffusion coefficient. Expanding Equations (6.23) and (6.24)

into divergence form gives

∂c

∂t
− ∂

∂x

((
KEc

∂h

∂x
+
∂dc
∂x

)
c

)
=

∂

∂x

(
(dc +KEc(2c+ h− φ0))

∂c

∂x

)
+ rcc(1− (c+ h)),

∂h

∂t
− ∂

∂x

((
KEh

∂c

∂x

)
h

)
=

∂

∂x

(
(KEh(c+ 2h− φ0))

∂h

∂x

)
and so we have that

ac = −KEc∂h
∂x

+
∂dc
∂x

,

ah = −KEh∂c
∂x
,

dc = dc +KEc(2c+ h− φ0),

dh = KEh(c+ 2h− φ0).

The coefficients ac and ah define the advective velocities for cancer cells and

healthy cells, respectively, needed for the advective scheme discussed in Section

6.4, as per Equation (6.14). The diffusion coefficients dc and dh correspond to

the diffusion of cancer cells and healthy cells, respectively, and are input into

the numerical scheme as per Equation (6.15). The growth term is implemented

in the same manner as for the Painter-Hillen model as in Equation (3.8),

using a simple Euler scheme. No-flux boundary conditions are implemented
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by setting

c(0) = c(1),

c(m+ 1) = c(m),

h(0) = h(1),

h(m+ 1) = h(m).

Recall that both c and h are discretized in x from i = 1, . . . ,m. The boundary

points are thus given by i = 0 and i = m+ 1.

6.5.2 Non-Aggressive Model Results

For the non-aggressive model given in Equations (6.16) and (6.17), we show

results for t = 0, t = 160, t = 320, t = 480, t = 640 and t = 800. Parameter

values were chosen as rc = 0.12, dc = 0.0013, KE = 0.001. These quantities

roughly correspond to realistic values for the brain, however they would have

to be more carefully tuned if applied to patient data. We chose φ0 = 0.7,

meaning that any increase in density over this value creates a pressure driving

the invasion. If the total density were to dip below this value, there would

be a force in the opposite direction as the tissue would try to fill this region

in. The results of these simulations are shown in Figure 6.4. The red line

corresponds to the cancer cells, the blue line corresponds to the healthy cells,

and the green line corresponds to the total (c + h). The initial condition was

chosen to represent a tumour sitting inside healthy tissue.

There are two immediate observations in these simulations. The first is the

formation of the shocks at the invasion front. This occurs because the speed of
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Figure 6.4: Non-Aggressive Model Results. Results of simulating the non-
aggressive model in one dimension. Results are shown for t = 0, t = 160,
t = 320, t = 480, t = 640 and t = 800. The red line corresponds to the
cancer cells, the blue line corresponds to the healthy cells, and the green line
corresponds to the total (c+ h). The initial condition was chosen to represent
a tumour sitting inside healthy tissue.
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the higher density tissue is higher than that of the lower density tissue, so the

density builds up here, increasing more and more and eventually resulting in

instability. This issue was remedied in the aggressive-invasion model through

the use of a diffusion perturbation. Additionally, in the non-aggressive model,

the cancer population seems unable to properly invade into the healthy tissue.

This was also remedied in the aggressive-invasion model by increasing the

aggressiveness of the cancer population.

6.5.3 Aggressive-Invasion Model

It turns out that simulations of the non-aggressive model don’t exactly cor-

respond to the reality of an invading tumour, as was outlined above. There

was both the issue of shock-formation, and of the cancer population not being

aggressive enough to invade the healthy tissue. Ideally, we would like to see

the cancer cells invading and “pushing” the healthy tissue out of the way. In

order to achieve this, we will generalize the function Σ(c+h) to Σ(c, h) so that

the stress response can depend on the two populations independently. Since

cancer is so much more aggressive than healthy tissue, using stress functions

that depend on the populations independently gives more flexibility so that

the increased aggression of the cancer cells can be included. Additionally, we

will incorporate the effect when the total cell density exceeds φ0 through the

constant of proportionality for K. As such, we define the tensors Kc and Kh

from Equations (6.8) and (6.9) as

Kh = Kc = KE(c+ h− φ0)I, (6.20)

where the scalar constant E once again corresponds to Young’s modulus for

the brain, and K remains as a constant. We now define the functions Σc(c, h)
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and Σh(c, h) of Equations (6.10) and (6.11), this time independently. The

dominating pushing effect of a growing brain tumour is produced by the rel-

ative size of the tumour population. Hence for the stress magnitude Σi, we

assume that it is proportional to the relative proportion of constituent i with

respect to constituent c, i.e.

Σc(c, h) =
c

c
= 1,

Σh(c, h) =
h

c
,

so that they represent the relative size with respect to the cancer cells. Effec-

tively, we have given the cancer cells a more aggressive nature. The resulting

model (in one dimension) is given by

∂c

∂t
− ∂

∂x

(
cKc

∂c

∂x

)
=

∂2

∂x2
(dcc) + rcc(1− (c+ h)), (6.21)

∂h

∂t
− ∂

∂x

(
hKh

∂c

∂x

)
= 0, (6.22)

where Kc and Kh are as given in Equation (6.20). Running simulations of this

model, we observe the formation of shocks near the healthy/tumour transition

region. This is related to the fact that the advection term in Equation (6.22)

is a cross diffusion term. To remedy the occurrence of shocks, we introduce a

small diffusion perturbation to the velocities in Equations (6.8) and (6.9) to

diffuse the shocks. The final model then is given by

∂c

∂t
− ∂

∂x

(
c

(
Kc

∂c

∂x
+ ε

(
∂c

∂x
+
∂h

∂x

)))
=

∂2

∂x2
(dcc)+rcc(1− (c+h)), (6.23)
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∂h

∂t
− ∂

∂x

(
h

(
Kh

∂c

∂x
+ ε

(
∂c

∂x
+
∂h

∂x

)))
= 0, (6.24)

where ε is a small parameter that can be used to tune the model. We can

simulate the aggressive-invasion model using the numerics discussed above, by

first rewriting Equations (6.21) and (6.22) in divergence form

∂c

∂t
− ∂

∂x

((
KE(c+ h− φ0)

∂c

∂x
+
∂dc
∂x

+ ε

(
∂c

∂x
+
∂h

∂x

))
c

)
=

∂

∂x

(
dc
∂c

∂x

)
+ rcc(1− (c+ h)),

∂h

∂x
− ∂

∂x

((
KE(c+ h− φ0)

∂c

∂x
+ ε

(
∂c

∂x
+
∂h

∂x

))
h

)
= 0,

and so we have

ac = −KE(c+ h− φ0)
∂c

∂x
− ∂dc
∂x
− ε
(
∂c

∂x
+
∂h

∂x

)
ah = −KE(c+ h− φ0)

∂c

∂x
− ε
(
∂c

∂x
+
∂h

∂x

)
dc = dc,

dh = 0.

The coefficients ac and ah define the advective velocities for cancer cells and

healthy cells, respectively, needed for the advective scheme discussed in Section

6.4, as per Equation (6.14). The diffusion coefficients dc and dh correspond to

the diffusion of cancer cells and healthy cells, respectively, and are input into

the numerical scheme as per Equation (6.15). Once again, no-flux boundary
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conditions are implemented via

c(0) = c(1),

c(m+ 1) = c(m),

h(0) = h(1),

h(m+ 1) = h(m).

6.5.4 Aggressive-Invasion Model Results

Simulations for the aggressive-invasion model of Equations (6.21) and (6.22)

are shown for time points t = 0, t = 2400, t = 4800, t = 7200, t = 9600 and

t = 12000. The time scales for this model are longer since there is no shock

formation and blow up. Parameter values were chosen as rc = 0.12, dc =

0.0053, KE = 0.007, φ0 = 0.7 and ε = 0.005. The results of these simulations

are shown in Figure 6.5. The red line corresponds to the cancer cells, the blue

line corresponds to the healthy cells, and the green line corresponds to the

total (c + h). The initial condition was chosen to represent a tumour sitting

inside healthy tissue.

It can be seen in these simulations that the cancer population is growing

and filling the space in the centre. Additionally, it is invading to the left and

right, and moving the healthy tissue out of the way. Applying this model

in two dimensions then would allow for a build-up of tissue between a tu-

mour mass and the boundary, inducing the pressure that is seen in the real

patient segmentations. This model thus warrants further investigation in the

modelling of gliomas.
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Figure 6.5: Aggressive-Invasion Results. Results of simulating the aggressive-
invasion model in one dimension. Results are shown for t = 0, t = 2400,
t = 4800, t = 7200, t = 9600 and t = 12000. The red line corresponds to the
cancer cells, the blue line corresponds to the healthy cells, and the green line
corresponds to the total (c+ h). The initial condition was chosen to represent
a tumour sitting inside healthy tissue.
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6.6 Chapter Summary

In this chapter, we began an investigation of the mass effect that is seen in

tumour growth within the brain. Because the skull provides a fixed boundary,

any increase in mass within the brain from a growing tumour causes an increase

in pressure. This increase in pressure can then affect how the tumour proceeds

to grow, in a feedback effect.

Before deriving a mechanical model for tumour growth, a basic understand-

ing of continuum mechanics was necessary. This included an understanding of

how to think of matter as a continuum, and how to think about the density

“at a point”. Stress was also an important concept to understand, and we

introduced this through the use of a simple one-dimensional example before

discussing three-dimensional stress tensors.

We derived a system of equations for both the cancer cells and the healthy

cells through the use of a multiphase model, following the work of Preziosi et

al. [80]. This began with a consideration of conservation of mass and momen-

tum for the system, and the system was closed by deriving the corresponding

constitutive equations. When the initial, more classically derived model did

not display the behaviour we would expect, we derived a modified model based

on the aggressiveness of the cancer population. The models differed in how

the stress tensors, and subsequently the velocities were defined. For the non-

aggressive model, the cancer and healthy cells were equally weighted with

equal velocities. This model did not show the invasive behaviour characteris-

tic of a growing tumour, hence we defined the aggressive-invasion model. In

this model, the stress tensors were defined so that the cancer cells displayed a

more aggressive tendency, and the velocities for the cancer cells and healthy

cells differed.
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Finally, we showed simulation results for both the non-aggressive model

of Equations (6.23) and (6.24) and the modified aggressive-invasion model of

Equations (6.21) and (6.22). While the non-aggressive model did not behave as

expected, the aggressive-invasion model demonstrated the expected behaviour

of a tumour invading the healthy tissue surrounding it. This model there-

fore offered the potential for application using patient data in higher dimen-

sions, and could represent a further improvement to the existing Painter-Hillen

model.
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Model with

Direction-dependent Turning

Rate

7.1 Transport Model Set-up

This section is an aside to the development of the Painter-Hillen model, and

will not be used for simulations. However, it derives from an interesting funda-

mental idea, and has slightly different biological implications, thus we discuss

its derivation with the intention of future development.

In the discussion of the mesoscopic model of Chapter 2, we assumed that

the turning rate µ has a constant value. This is a reasonable assumption for

our purposes, however it is interesting to consider the case where the rate

µ depends on the direction that a cell is travelling. For example, it would

seem reasonable that a cell that is travelling on a fibre is less likely to change

its direction than a cell that is travelling perpendicular to a fibre. In this
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Chapter then, we consider the case where µ depends on the cell orientation,

i.e. µ = µ(v).

To derive this model, we perform a similar derivation to what was done

in Chapter 2, but now we allow µ to depend on velocity. We show that this

derivation is consistent with the previous case, since allowing µ to be constant

produces the same results as in Chapter 2.

Following the procedure described in Chapter 2 for the case of a constant

turning rate, we begin with the same transport equation (Equation (2.1)):

pt(t,x,v) + v · ∇p(t,x,v) = Lp(t,x,v).

Recall that the terms on the left hand side describe simple transport of

the cells with advective velocity v, while the term on the right is the turning

operator. We now define L in a slightly different manner than the definition

in Equation (2.2). The turning operator is now given by

Lp(t,x,v) = −µ(v)p(t,x,v) +

∫
V

µ(v′)q(t,x,v,v′)p(t,x,v′)dv′,

where the first term describes cells turning out of velocity v with turning

rate µ(v), and the second term is a kernel term describing cells turning into

velocity v from all other directions v′. Since the turning rate depends on

the direction that a particle is travelling, it appears inside the integral. The

turning distribution, or turning kernel is given by q(t,x,v,v′), which defines

the probability that a cell at time t, spatial location x and travelling with

velocity v′ will turn into velocity v. As was done in Chapter 2, we will make

some assumptions on the turning kernel:

(A1) The turning distribution is fixed in time, and the probability of turning
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into velocity v is independent of a cell’s previous velocity, i.e.,

q(t,x,v,v′) ≈ q(x,v).

(A2) q is a probability density, so it integrates to 1:

∫
V

q(x,v)dv = 1, and it

is non-negative: q(x,v) ≥ 0.

(A3) We do not distinguish between travelling “up” a fibre vs. “down” a

fibre, hence q is symmetric: q(x,v) = q(x,−v).

It turns out that it is not just the direction v the cell is moving in that is

important, but also the relation of this direction to the underlying structure

q. For example, if a cell is travelling in a direction that is very different

from the fibre direction, it should have a higher turning rate, whereas if it is

travelling in a direction that is aligned with the fibre, it should experience a

lower turning rate. As such, the turning rate will depend on both v and q, i.e.,

µ = µ(v, q(x,v)). We have now, however, added an implicit x-dependence to

the turning rate, and must be careful how this is handled in the analysis.

Before doing the scaling, we will assume that changes in q are small with

respect to changes in x, and consider the scaling on subdomains where the

changes in q are very small. We now define these assumptions more rigourously.

We will consider a neighbourhood U(x), and look at a ball of radius δ,

Bδ(x) ⊂ U(x) such that whenever y ∈ Bδ(x), i.e., whenever |x− y| < δ, then

|q(x,v)− q(y,v)| < ε̃. The assumption then is that ε̃� δ, and consequently

that |Dq(y,v)| � 1 and |Hq(y,v))| � 1, where Dq is a vector containing the

partial derivatives (gradient) with respect to x, and Hq is the Hessian matrix

of q with respect to x. Note that we are using ε̃ to distinguish it from the ε

that appeared in the parabolic scaling of Chapter 2, and that we will use later
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in this Chapter. Now, substituting y = x+ h with |h| < δ, we have

µ(v, q(x,v)) = µ(v, q(y − h,v)),

and Taylor expanding q gives

µ(v, q(y − h,v)) = µ(v, q(y,v)− hDq(y,v) +
1

2
hTHq(y,v)h+ h.o.t.).

Now expanding µ, we have

µ(v, q(y−h,v)) = µ(v, q(y,v))+

(
−hDq +

1

2
hTHqh

)
dµ

dq
(v, q(y,v))+h.o.t.,

but we have already assumed that |Dq(y)| � 1 and |Hq(y))| � 1, hence we

obtain the approximation

µ(v, q(x,v)) ≈ µ(v, q(y,v)) ∀y ∈ Bδ(x). (7.1)

This means that when the stated assumptions are satisfied, µ is approx-

imately constant in x on small subsets of the domain. Let yi be a set of

representative points in the domain Ω, and U(yi) be a collection of open, con-

vex neighbourhoods such that q(x,v) ≈ q(yi,v) ∀x ∈ Ui(yi) where
⋃
i Ui ⊇ Ω.

We state this formally as another assumption:

(A4) Changes in q are small in relation to changes in x, so that q may be

assumed constant on the appropriate subdomains, i,e.

µ(v, q(x,v)) ≈ µ(v, q(yi,v)) ∀x ∈ Ui(yi), with Ω ⊆
⋃
i

Ui.
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7.2 Parabolic Scaling

Now that we have defined the subdomains over which we will perform the

scaling, we will consider the transport equation

pt(t,x,v) + v · ∇p(t,x,v)

= −µ(v, q)p(t,x,v) + q(x,v)

∫
V

µ(v′, q(x,v′))p(t,x,v′)dv′, (7.2)

on a given Ui. Note that since q(x,v) did not depend on v′, we brought it out

of the integral. Now we let x̃ denote the vector distance from the point yi, i.e.

x̃ = x− yi, and scale space via

X = εx̃.

Note that whenever yi +X ∈ Ui(yi), then also yi + εX ∈ Ui(yi) since the

Ui are convex. The scaling factor ε is as defined in Chapter 2, and used in the

same manner as in Equation (2.3). It is not to be confused with ε̃ mentioned

earlier in this chapter. Then, since the biological scales are the same as in

Chapter 2, we again perform a parabolic scaling and scale time by a factor of

ε2, i.e.

τ = ε2t.

Applying these scalings to Equation (7.2), we obtain

ε2pτ (τ,X,v) + εv · ∇p(τ,X,v)

= −µ(v, q)p(τ,X,v) + q(x,v)

∫
V

µ(v′, q)p(τ,X,v′)dv′, (7.3)

where the gradient is applied with respect to X. Now we take an asymptotic
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expansion of p(τ,X,v):

p(τ,X,v) = p0(τ,X,v) + εp1(τ,X,v) + ε2p2(τ,X,v) +O(ε3). (7.4)

We can derive a closed form expression for the leading-order term p0(τ,X,v)

for this expansion, summarized in the following theorem.

Theorem 7.1. Let the assumptions (A1)-(A4) be satisfied. Given the trans-

port equation of Equation (7.2) then the leading-order term p0(τ,X,v) of Equa-

tion (7.4) satisfies

p0(τ,X,v) =
q(X,v)

µ(v, q)
p̄0µ(τ,X),

and p̄0µ(τ,X) satisfies the non-homogeneous and non-isotropic parabolic equa-

tion

c(X)(p̄0µ)τ (τ,X) = ∇∇ : (D(X)p̄0µ(τ,X)),

where c(X) is the mean runtime along the fibres given by

c(X) =

∫
V

q(X,v)

µ(v, q)
dv,

and D(X) is the variance-covariance matrix of the mean distance travelled,

given by

D(X) =

∫
V

(τ(X,v)v)(τ(X,v)v)T q(X,v)dv,

with τ(X,v) = 1/(µ(v, q)) the mean runtime in direction v.

Proof. Upon substituting the Hilbert expansion of Equation (7.4) into Equa-

tion (7.3), we match coefficients of orders of ε, as was done in Chapter 2.

Before this order matching, we establish some properties of the turning op-

erator that will be necessary to solve the resulting equations. The first step
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is to compute the kernel of L in order to determine the space on which the

operator can be inverted. A function φ(v) is in kerL if it satisfies

Lφ(v) = 0

⇔ −µ(v, q)φ(v)+q(X,v)

∫
V

µ(v, q)φ(v)dv = 0

⇔ µ(v, q)φ(v) =q(X,v)

∫
V

µ(v, q)φ(v)dv. (7.5)

For convenience, we define

φ̄µ :=

∫
V

µ(v, q)φ(τ,X,v)dv, (7.6)

which has a useful biological interpretation. To see this, define µ̄φ to be the

mean turning rate over the entire population, i.e.

µ̄φ :=

∫
V
µ(v, q)φ(v)dv

φ̄
=
φ̄µ
φ̄
,

where φ̄ is the total mass of φ as was defined in Equation (2.6). Then

φ̄µ = µ̄φ︸︷︷︸
mean turning

rate

· φ̄︸︷︷︸
total
mass

,

and thus φ̄µ represents the mean number of cells turning per unit of time.

Using this definition, we rewrite Equation (7.5) as

µ(v, q)φ(v) = q(X,v)φ̄µ,

and finally

φ(v) = φ̄µ
q(X,v)

µ(v, q(X,v))
.
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Because φ̄µ is independent of v, the kernel of L is given as the span of

q(X,v)/µ(v, q(X,v)):

kerL =

〈
q(X, ·)

µ(·, q(X, ·))

〉
.

Notice that the spatial coordinate X appears as a parameter in the kernel of L.

i.e., the kernel might change from point to point, however we use assumption

(A4) such that kerL is approximately constant on each subdomain Ui(yi). We

define a weighted L2 space, denoted L2
µ

q2
(V ), upon which we define a norm:

||φ(v)||L2
µ

q2

=

∫
V

|φ(v)|2µ
2(v, q)

q(X,v)
dv.

Finally, we define the pseudo inverse on the complement of the kernel. We

can therefor invert L on
〈

q(X,·)
µ(·,q(X,·))

〉⊥
. To derive the inverse, let φ ∈

〈
q
µ

〉⊥
,

ψ ∈
〈
q
µ

〉⊥
be such that

Lφ = ψ

⇔ −µ(v, q)φ(v)+q(X,v)φ̄µ = ψ. (7.7)

Computing φ̄µ:

φ̄µ =

∫
V

µ(v, q)φ(v)dv

=

∫
V

φ(v)
q(X,v)

µ(v, q)

µ2(v, q)

q(X,v)
dv

=

〈
φ(v),

q(X,v)

µ(v, q)

〉
L2
µ2
q

,
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but since φ ∈
〈
q
µ

〉⊥
, this inner product is 0 by orthogonality. Thus φ̄µ = 0.

Substituting this back into Equation (7.7), we obtain

−µ(v, q)φ(v) = ψ

⇔ φ(v) = − 1

µ(v, q)
ψ,

and so (
L| q

µ2
⊥

)−1

= − 1

µ(v, q)
. (7.8)

Substituting the Hilbert expansion in Equation (7.4) into the scaled trans-

port equation in Equation (7.3), we proceed with matching orders of ε, as was

done in Chapter 2:

ε0 :

0 = Lp0

⇔ −µ(v, q)p0(τ,X,v) + q(X,v)p̄0µ(τ,X)

⇔ p0(τ,X,v) =
q(X,v)

µ(v, q)
p̄0µ(τ,X), (7.9)

where p̄0µ is defined as in Equation (7.6). Proceeding with ε1:

ε1 : v · ∇p0(τ,X,v) = Lp1(τ,X,v). (7.10)

In order to isolate and solve for p1, we must invert the turning operator

L. We established above that this can only be done on
〈
q
µ

〉⊥
, hence we first

must verify that the left hand side of Equation (7.13) is in the correct space.
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To do so, we compute the inner product

〈
v · ∇p0(τ,X,v),

q

µ

〉
=

∫
V

v · p0(τ,X,v)
����q(X,v)

����µ(v, q)

µ(v, q)�2

����q(X,v)
dv

=

∫
V

v · ∇p0(τ,X,v)µ(v, q)dv.

Substituting in the formula for p0 given in Equation (7.9), we have

〈
v · ∇p0(τ,X,v),

q

µ

〉
=

∫
V

v · ∇
(
p̄0µ(τ,X)

q(X,v)

µ(v, q)

)
µ(v, q)dv. (7.11)

Now we apply the assumption that was made on q as per Equation (7.1).

We first apply a product rule to the gradient operator:

∇
(
p̄0µ(τ,X)

q(X,v)

µ(v, q)

)
= ∇

(
p̄0µ(τ,X)q(X,v)

) 1

µ(v, q)
+ p̄0µ(τ,X)q(X,v)∇

(
1

µ(v, q)

)
,

but

∇
(

1

µ(v, q)

)
= − 1

µ(v, q)2
∇µ(v, q)

= − 1

µ(v, q)2

∂µ

∂q
∇q. (7.12)

Since we assumed in (A4) that on each subdomain upon which we are

applying the scaling, |Dq| � 1, the quantity on the right hand side of Equation

(7.12) will be approximately 0. Hence

∇
(
p̄0µ(τ,X)

q(X,v)

µ(v, q)

)
≈ ∇

(
p̄0µ(τ,X)q(X,v)

) 1

µ(v, q)
,
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and Equation (7.11) simplifies to

〈
v · ∇p0,

q

µ

〉
≈
∫
V

v · ∇
(
p̄0µ(τ,X)q(X,v)

)
dv.

Since p̄0µ is independent of v, it can be brought outside the integral, and

since v doesn’t depend on X, we can rewrite the gradient as a divergence:

〈
v · ∇p0,

q

µ

〉
= ∇ ·

∫
V

vq(X,v)dvp̄0µ(τ,X).

We assumed in (A3) that q is symmetric, hence

Eq =

∫
V

vq(X,v)dv = 0

⇒
〈
v · ∇p0,

q

µ

〉
= 0,

and v · ∇p0 is in the appropriate space,
〈
q
µ

〉⊥
, to invert the turning operator.

Therefore

p1(τ,X) = − 1

µ(v, q)
(v · ∇p0(τ,X)), (7.13)

where we have applied the inverse operator of Equation (7.8). Now for ε2:

ε2 :

(p0)τ (τ,X,v) + v · p1(τ,X,v) = Lp2(τ,X,v).

We integrate the whole equation over V :

∫
V

(p0)τ (τ,X,v)dv +

∫
V

v · p1(τ,X,v)dv =

∫
V

Lp2(τ,X,v)dv, (7.14)

and consider each integral individually. Beginning with the term on the right
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hand side:

Lp2(τ,X,v) = −
∫
V

µ(v, q)p2(τ,X,v)dv +

∫
V

q(X,v)p̄2µ(τ,X)dv

= −p̄2µ + p̄2µ

∫
V

q(X,v)dv︸ ︷︷ ︸
=1

= 0, (7.15)

where we have used Assumption (A3). Now we turn our attention to the first

integral on the left hand side of Equation (7.14). Substituting in Equation

(7.9) for p0, we have

∫
V

(p0)τ (τ,X,v)dv =

∫
V

q(X,v)

µ(v, q)
(p̄0µ)τ (τ,X)dv

= (p̄0µ)τ (τ,X)

∫
V

q(X,v)

µ(v, q)
dv

= c(X)(p̄0µ)τ (τ,X), (7.16)

where

c(X) :=

∫
V

q(X,v)

µ(v, q)
dv.

Just as p̄0µ had a biological interpretation as the mean number of cells

turning per unit time, c(X) has a meaning in a biological context too. If we

define

τ(X,v) :=
1

µ(v, q(X,v))
, (7.17)

to be the mean runtime in direction v, then

c(X) =

∫
V

τ(X,v)q(X,v)dv,
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is the mean runtime along the fibres. Finally, we compute the second integral

from the left hand side of Equation (7.14). Applying the definitions for p0 and

p1 from Equations (7.9) and (7.13), we have

∫
V

v · ∇p1dv =

∫
V

v · ∇
(
− 1

µ(v, q)
(∇ · v)p0(τ,X,v)

)
dv

= ∇ ·
∫
V

v

(
− 1

µ(v, q)
v · ∇

(
p̄0µ(τ,X)

q(X,v)

µ(v, q)

))
dv

= ∇∇ :

∫
V

vvT
(
− q(X,v)

µ2(v, q)

)
dvp̄0µ

= −∇∇ :
(
D(X)p̄0µ

)
, (7.18)

where

D(X) =

∫
V

vvT
(
q(X,v)

µ2(v, q)

)
dv

=

∫
V

vvT τ 2(X,v)q(X,v)dv

=

∫
V

(τ(X,v)v)(τ(X,v)v)T q(X,v)dv.

Recall that τ is as defined in Equation (7.17), and since τ(X,v) is the mean

runtime in direction v, τ(X,v)v is the mean distance travelled in direction v.

Defining then a new quantity

χ(X,v) := τ(X,v)v,

we can rewrite the tensor D(X):

D(X) =

∫
V

χ(X,v)χ(X,v)T q(X,v)dv,

and we can see that the tensor D(X) is the variance-covariance matrix of the
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mean distance travelled. Now combining Equations (7.14), (7.15), (7.16) and

(7.18), we obtain a closed form PDE for p̄0µ

c(X)︸ ︷︷ ︸
mean

runtime
along
fibres

(p̄0µ)τ (τ,X) = ∇∇ : ( D(X)︸ ︷︷ ︸
variance in

distance
travelled

· p̄0µ(τ,X)︸ ︷︷ ︸
mean number

of cells
turning per
unit time

at X

).

Simplifying notation, we will again use t and x, recalling that these are

now the macroscopic time and spatial variables, respectively. Also, recalling

that p0 is the first approximation to the mesoscopic density p(τ,X,v) in the

Hilbert expansion of Equation (7.4), we will simplify notation and let pµ(t, x) =

p̄0µ(τ,X) be the number of cells turning per unit time at time t and spatial

location x. The resulting PDE then is

c(x)(pµ)t(t,x) = ∇∇ : (D(x)pµ(t,x)) . (7.19)

7.2.1 Limiting Case: Constant Turning Rate

Since this model should be considered a generalization of the Painter-Hillen

model derived in Chapter 2, we expect that if we set µ to be constant every-

where, we will recover the model in Equation (2.14). Here we verify that this

is the case.
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First, let µ(v, q) = µ constant. Then

pµ = µp̄,

c(x) =
1

µ

∫
V

q(x,v)dv =
1

µ
,

τ =
1

µ
⇒ χ =

v

µ
,

D(x) =
1

µ2

∫
V

vvT q(x,v)dv.

Then the left hand side of Equation (7.19) reduces to

c(x)(pµ)t =
1

µ
µp̄t = p̄t,

and the right hand side of Equation (7.19) reduces to

∇∇ : (D(x)pµ(t,x)) =
1

µ2
µ∇∇ :

(∫
V

vvT q(x,v)p̄

)
= ∇∇ : (Dc(x)p̄),

where Dc(x) is the tensor defined in Equation (2.13). Thus we see that for the

case where the turning rate is constant, we recover the results of Chapter 2.

7.3 Chapter Summary

While this chapter should be seen as a tangential exploration to the main

narrative of this thesis, the derivation of this model offers the potential for

further development. The motivation for this model stemmed from the fact

that within a population of cells, the turning rate may not be constant. If a cell

is travelling along a fibre, it is likely to change its direction far less frequently
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than a cell that is travelling through isotropic brain material. As such, we

postulated that the turning rate should depend both on a cell’s velocity v,

and the underlying brain structure at its current location q(x,v).

In order to perform the appropriate scaling calculation, it was necessary to

make an assumption on the turning distribution q(x,v). Namely, we assumed

that changes in q were small relative to changes in x. To achieve this, we

split the domain into many small subdomains upon which we could assume

that q was approximately constant in x. Upon this division of the domain, a

parabolic scaling could be applied on each subdomain.

We began by formulating a new transport equation that incorporated a

generalization of the constant turning rate. This was given by

pt(t,x,v) + v · ∇p(t,x,v) = Lp(t,x,v),

with turning operator

Lp(t,x,v) = −µ(v, q)p(t,x,v) +

∫
V

µ(v′, q(x,v′))q(t,x,v,v′)p(t,x,v′)dv′.

After applying a parabolic scaling to this transport equation (i.e. X = εx,

τ = ε2t), we arrived at a new PDE model for macroscopic behaviour:

c(x)(pµ)t(t,x) = ∇∇ : (D(x)pµ(t,x)) ,

where pµ represents the mean number of cells turning at time t and location x,

c(x) gives the mean runtime along fibres, and D(x) is the variance-covariance

matrix in distance travelled with respect to the turning distribution q.

At this point, we made note that when µ is constant, this PDE reduced to

the Painter-Hillen anisotropic diffusion model of Equation (2.14), as expected.
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Conclusions

8.1 Discussion

Developing novel cancer therapies is at the forefront of medical science, inspir-

ing scientists across many disciplines, from molecular biology to mathemat-

ics. Innovations can come from unexpected places, with mathematical models

offering the potential to help clinicians in designing treatment plans on an

individualized basis. Swanson et al. [6, 44–46, 49, 51–54] has had a good deal

of success by implementing mathematical models for glioma spread clinically,

however the potential for improvement always exists. In this thesis, we review

the derivation of the Painter-Hillen [5] model of Equation (1.12), describing

all of the underlying fundamentals, with the goal of demonstrating its utility.

Perhaps the most important component of the derivation of the Painter-Hillen

model is the choice for the turning distribution. We make use of a von Mises

distribution (two dimensions) and a Fisher distribution (three dimensions) to

include the tissue architecture into the diffusion model. The use of this dis-

tribution introduces a patient-specific parameter, the anisotropy parameter κ,
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that allows the Painter-Hillen model to be specifically tuned to each patient.

To demonstrate the applicability of the Painter-Hillen model, we compare

it directly to the Swanson P.I. model [6] by applying both models to real

patient data from the Cross Cancer Institute, provided by Dr. Albert Murtha.

The purpose of this comparison is to demonstrate that the inclusion of a fully

anisotropic diffusion operator, coupled with diffusion tensors specific to each

patient, gives an improved model fit over the isotropic P.I. model. The Painter-

Hillen model offers an improved fit in almost every case. Upon observing

these results, it can be noted that white matter tracts are not present in the

scans in the region occupied by the tumour mass, as the growing mass either

pushes them out of the way or destroys them. Taking this into account, we

implement a “reflected DTI” technique to fill in data that is missing, using this

technique to try to improve some of the poorer model fits. This process offers

a further improvement to both of the models for certain patients. The benefits

of improving the accuracy of the Swanson P.I. model for glioma spread can

potentially be implemented into patient therapy. If the Swanson P.I. model is

extended to include anisotropy, the hope is that the improved performance of

the model will translate into an improvement in patient outcomes.

Mathematical modelling often consists of many successive iterations, with

each iteration offering a slight improvement over the last version. This is what

we do here with the Painter-Hillen model. In mathematical biology, successive

iterations of a model typically include more and more of the biological details.

For example, in this case, the Painter-Hillen model is built from the Swan-

son model through the inclusion of anisotropic diffusion tensors. Additionally,

the growth term is modified in an attempt to simulate more realistic tumour

growth. Often it is not clear if a new iteration of a model will offer an improve-

ment, as more complicated models are not always better, however the results
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of this thesis seem to indicate that the inclusion of the tissue architecture,

through anisotropic diffusion, leads to better model fits.

We also propose a framework for the next iteration of this model, which

will include a mass effect, as was discussed in Chapter 6. Including mechanical

responses of the tissue should reduce the overgrowth at the skull that is seen in

some of the simulations. It is our hope that after full development of the mass

effect model in two and three dimensions, a further improvement in model fit

will be seen.

8.2 Mathematical Challenges

In deriving the models contained in this thesis, as well as implementing them,

there are a number of mathematical challenges that are encountered. The first

challenge that is encountered is the computations of the moments of the von

Mises and Fisher distributions. We were not able to find existing formulas

for some of these quantities in the literature, and computing them explicitly

is not trivial. Applying the divergence theorem allows for straightforward

computation, giving us the appropriate formulas for the cancer cell diffusion

tensors.

The numerical method for simulating the Painter-Hillen model comes with

its own set of challenges, particularly due to the irregular nature of the brain

domain. The combination of the fully anisotropic diffusion operator and the

irregular boundary makes mass conservation difficult. A careful derivation is

required, by taking the double sum (in two dimensions) and triple sum (in

three dimensions) over the finite difference scheme. While the computation is

a challenge, the resulting conditions are fairly simple to implement.

In Chapter 6, we discuss the derivation of the mass effect. While much
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of the theory was existing, it is a challenge to derive a specific model that

displays the behaviour we are looking for. Many different stress functions and

parameter values were tested before finding a combination that behaved in a

realistic manner.

Finally, in Chapter 7 we derive a generalization to the Painter-Hillen model

involving a direction-dependent turning rate. There are multiple challenges

associated with this derivation, beginning with determining the necessary as-

sumptions on the turning distribution q. We make the assumption that the

underlying structure of q changes slowly over space such that an appropriate

scaling method can be carried out. As compared with the method in Chapter

2, we consider the weighted L2 space L2
µ

q2
(V ). The resulting PDE is not a

diffusion model for p0(t,x), but for p0µ(t,x), i.e., the 0th order approximation

to the number of cells turning per unit of time.

8.3 Limitations and Extensions

The work contained herein offers a step forward in mathematical modelling

of cancer, however there is much more that can be done. The next step of

this research will be to automate the model fitting, so that a clinician can

automatically fit the Painter-Hillen model for a specific patient, and use this

information when designing a treatment plan. The ultimate goal of this work

will be for it to be implemented in a clinical setting, following the work of

Swanson et al. [6, 44–46, 49, 51–54].

The mass effect model warrants further development. In Chapter 6, we

introduce the mass effect model in one dimension, demonstrating both a more

classical multiphase model, and a novel cancer-driven invasion model. Ulti-

mately, the mass effect should be implemented in two and three dimensions
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using patient data, working towards a better overall data fit. Additionally,

there is the potential for updating the DTI-data in response to the increasing

pressure as the tumour grows. Using the reflected-DTI as an initial configu-

ration for the DTI-data, the fibres can be advected with the same velocities

derived for the cells. This development should be viewed as the next iteration

of the Painter-Hillen model.

In Chapter 7, we consider an extension of the Painter-Hillen model where

we allow the turning rate to depend on both the cell’s orientation and the un-

derlying fibre structure. Here, we consider only the derivation of this model,

however further investigation is needed. Considering specific examples of turn-

ing distributions and turning rate functions will allow for deeper understanding

of the solutions, and exploration of the underlying biological meaning.

Ultimately, the landscape of cancer research is always changing, with sur-

vival times growing longer as new therapies are developed all the time. While

many like to think of scientists working towards an all-encompassing “cure”

for cancer, the reality is that therapeutic innovations march forward incremen-

tally in the work of many researchers around the world. It is our hope that

the work contained in this thesis will represent an incremental step forward in

the treatment of gliomas.
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