The man of science has learned to believe in justificationhbpdaith, but by verification.

— Thomas Henry Huxley, 1866.
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Abstract

Inexpensive yet versatile limited-capability processamable computing to be embedded in many
kinds of devices and situations. Most applications are Empprpose-programmed reactive systems
that interact with the environment through sensors andatmts. Because the processors are lim-
ited state-machines, and in principle can be fully specifiedy are amenable to rigorous formal
verification. Low cost wired and wireless connection schepermit the easy aggregation of these
processors into networks with both static and dynamic togiek. The resulting networks will often
have unexpected behavior or emergent properties. Thisstises step towards formally reasoning
about such networks. Our contribution is a simple domage#jz programming environment that
generates both the model for performing verification via edladhecking, and extracts executable

code that runs on the Arduino computing platform.
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Chapter 1

Introduction and Overview

The availability of low-cost versatile processors has éthithe embedding of small amounts of
computing power into virtually every device. Although tegeocessors are limited in terms of the
traditional measures of CPU speed and memory size, theyahaowerful capability to interact with
the outside world through sensors and actuators. As a refdhigir flexibility, small computational
devices have replaced electro-mechanical constructiomsny products.

These processors also tend to perform specific tasks asfjgarowerall reactive system, taking
input events from the environment and generating outputtsue the environment. As a result, they
tend to be simple state-machines, although not necesgadtyrammed that way. The processors
are limited in the amount of state they can maintain (oftetleur8 kB of memory), and the speed
at which they can react to the environment (16 MHz clock, \8ibit computations). Thus they are
amenable to current model-checking techniques.

It is relatively simple to network these processors usingagety of methods, ranging from
simple bit passing over digital input/outputs, to seriatprols over wires, to packets over wireless.
The networks can have a static or a dynamic topology, depgrati the application. Network links
and individual processors can fail, and possibly recovhusicollections of simple processors can
be aggregated to form more complex computations, possiltily umexpected emergent behavior,
that is difficult to reason about. This is an obvious situaiio which to try verification. Thus this

thesis asks:

Can the verification that is possible for single process@staled up to include small

networks of such processors?

For verification to work it must be possible to formalize thpesifications of the system. But
most problems are not well understood initially, and speaifons often need to be co-developed
with the creation of executable prototypes that enableldpees and users to try the system out to
see if it does what they intend. That is, systems for verificagjo hand-in-hand with systems for

creating code. Thus we also ask:

What development framework enables both code generatibo@de verification?



How well do the code and verification model match?

We were originally motivated by a bigger questidtow can we specify and build trustworthy
sensor networks?The PicOS operating system [9] used in sensor networks at/tinersity of
Alberta is based on a state and events model for processissisthas a natural fit into the model-
checking tools for specification and verification. Althougbt pure state machines, is might be
possible to do a simple transformation of a PicOS-baseaygtito a model to be verified. In
addition, PicOS is small and light-weight, easily compretible by one person, thus possible to
model. We began our work by exploring if it was feasible to mloahd reason about PicOS and
processes running under it. This was unsuccessful, asdlesgace of a naive PicOS model is
too big. But performing the modeling process gave us insigtat potential simplifications that
preserved much of the PicOS functionality.

When even PicOS proved to be too big to model in full detaildeeided to abstract even further,
resulting in a simpler computation model that was feasiblericode directly using the NuSMV
model-checking tools. This model was also directly implatable on Arduino micro-controllers,
thus providing us with a live test-bed.

Because the translation into both NuSMV and executable isosteaight-forward, this led to us
developing a domain-specific language (DSL) which can brestaded into a model to verify or into
code to run. We call this combination of DSL, model-checkiaigd executable code by the name
ArduinOS .

When then validated the ArduinOS approach by specifyingeldping, and verifying a se-
guence of increasingly complex programs: blinking lighken passing, ring-orientation, and clus-

ter head.

1.1 Structure and Main Results

The structure and main results of this thesis are as follows:

Chapter 2 (Background) presents the research background, explaining the relegaaarch
areas of the problem discussed in this thesis, and focust#segmower points and pitfalls of each
research, and how this thesis can contribute to the field.

Chapter 3 (PicOS Feasibility Study) describes in detail our initial modeling study of PicOS in
NuSMYV in an attempt to answer the question whether PicOSnsadl nough operating system and
application environment to model. It points out the genehalracteristics of PicOS application and
NuSMV model checker, and reveals the complexities of forveaification of even a simple PicOS
application.

Our study on model checking of PicOS (explained in Chaptee®als that the structure of
PicOS applications makes them appropriate and easy to beletbith some extent. PicOS applica-

tions are a combination of finite state machines (FSMs) deéfasewhich can be activated one at a



time on a node. Therefore, each processor node actuallpaetsnulti threaded component where
threads are individual FSMs. The operating system undeylgicOS applications follows a clear
event driven strategy for coordinating the program execudind scheduling of FSMs. Using these
event based and behavioral notions for designing appicstiPicOS becomes capable of covering
wide range of algorithm, interesting to model check. In &ddi its state based construction has
the same structure as model-checking languages like Nugiiizh makes the modeling procedure
easier.

The disappointment of the feasibility study was that we cénmdel-check real PicOS applica-
tions — even the simplest PicOS systems are too large. Mangriacontribute to the large model.
For example, the choice of event dispatch and process sligailgorithm will affect how many
alternative paths exist in the model. For instance, if a Bevents trigger at the same time, PicOS
may give them the same priority. If a process is waiting foz ofithem it can select one of the events
randomly, or it may select the one that its “wait for eventfrooand came first. Another complexity
we face is that PicOS uses wireless communication, so hagd#hevorld issues of packet losses,
conflicts in receiving packets at the same time, and the reougnt for policies for sending big
packets containing sender identifiers and related valugs.alone creates a big complex model.

As a result, a fully faithful model of PicOS, even on a machiith 64 GB of memory, was
impossible.

Chapter 4 (Framework) presents our model-driven approach for analysis, desigd,imple-
mentation of our verification framework. It explains why dralv the essence of PicOS was distilled
into an even simpler Arduino-based OS (ArduinOS), and hoestricted language and computa-
tional model (DSL) is applied as the source of ArduinOS ahbt verifiable application. We made

the following key assumptions:
1. All processes would be pure finite-state machines.
2. Within a processor, processes communicate via events.

3. Processes are responsible for coordinating their s¢ingdthere is no operating system in-

volved.
4. Processors are asynchronous, and can run at differesdspe

5. Processors communicate over a network composed of ishannels consisting of lines (con-

tinuous channels) between digital input and output.

Itis possible to model this simplified world directly usifgetNuSMV model-checking tools.
Under these assumptions we created a new programming emartt in which the Arduino

platform replaces the programmable sensor nodes of Pic@iS.simpler Arduino-based OS (Ar-

duinOS) eliminates the complicated packet sending prdscaad replaces them with simple com-

munication channels.



We also further simplified the PicOS FSM programming modelating a domain specific lan-
guage (DSL) and computational model that covers many ofgheesstate-based process definitions
and event driven coordinating strategies in lower layeiflsis DSL is translatable to both Arduino
programs and their corresponding model for formal veriftoat

Chapter 5 (Experiments) presents a sequence of increasingly complex case stuflids o
duinOS. The case studies are mainly focused on the basiarésatovered by the modeling frame-
work in order to reveal the accuracy of framework in modetimg sensor networks fundamentals.

Chapter 6 (Conclusion and Future Work) presents a summary of the thesis and the results.
The degree to which the primary objective was achieved, hadhortcomings of the thesis are

discussed. Finally, suggestions for further research agem



Chapter 2

Background and Related Work

This thesis combines three major areas; behavioral eveseidbarogramming, formal verification,
and sensor network applications. Each of these fields hasfisdeatures that make it challenging
to study. However, our combination does not involve any desgerstanding of each area, and we
assume that the reader has a passing familiarity with adkthreas.

In this chapter, we provide a deeper introduction to the odthve used in the remainder of
this thesis, and then provide a brief review of some studégopmed in the context of behavioral
programming and sensor networks and their formal verificati Note that sensor networks are
only a motivation, we will use them as a rich source of exasypleerefore, we will not include a

comprehensive survey in that context.

2.1 Background
2.1.1 Formal Verification Methods

The process of building high quality systems involves twomssyles of question:

Validation - did we build the right system?

Verification - did we build the system right?

Getting the specifications right for a system is in many casadifficult as determining that the
system is correctly implemented. Furthermore, speciboatand implementation interact. A small
change in one can make a big difference in the complexity®@bther. So one can never expect to
fully specify a system prior to actually building it.

Thus one of the goals of applied formal methods is to integtia¢ activities of specification,
implementation, testing, and verification so that inforimatan be mechanically exchanged among
them. Automating the exchange removes a major source afeaused by hand crafted translation.

The motivation behind our work was integrating sensor netvimplementation with verifica-

tion so that the implementation meets the specification vBuch verification approach to apply?



e Theorem-proving. The relationship between a specificaiahan implementation is regarded
as a theorem in logic, to be proved within the context of a poadculus, where the imple-

mentation provides axioms and assumptions that the proodicav upon.

e Model checking. The specification is in the form of a logicnfada, the truth of which is

determined with respect to a semantic model provided by @teimentation.

e Equivalence checking. The equivalence of a specificatiaheamimplementation is checked,

e.g. equivalence of functions, equivalence of finite-statimmata, etc.

e Language containment. The language representing an inepkation is shown to be con-

tained in the language representing a specification.

In general, is it easier to perform specification, impleraéah, and verification if they all have
the same conceptual model. For example, pure functiongkanes lend themselves to conventional
equational-style proofs; finite-state-machines are cptuedly matched to model checking. Because
PicOS uses a FSM style for implementation, it was clear threskould start with model-checking

as our verification technique.

2.1.2 Model Checking

According to the definition [5, 12], “Model checking is an antated technique that, given a finite-
state model of a system and a formal property, systematic#icks whether this property holds for
(a given state in) that model.

A model checker takes a model and some property specificaom then explores all possible
execution paths of the system in a relatively efficient matmdetermine whether the properties are
satisfied along each path. If a property is satisfied in alktkecution paths the model checker will
confirm that the property holds. If not, the model checkel pribvide (where possible) a counter
example execution path showing how the system could reatdt@ that violates the property. In
the case of a concrete counter example, the user can sirthégbath shown by the counterexample
and obtain useful debugging information [5].

The process of system verification using model checkingistesf the following phases, which

are performed numerous times as the model is refined:

1. Modeling: the system being implemented is modeled as t@fitate machine using, in our
case, the NuSMV model description language. Since thisénain error-prone step if done
by hand, the system model should be validated to check iftiiédsone desired by checking
some observable and expected properties. This is true &étka model is extracted from

another source, like code.

2. Specifying : formalize the properties to be verified usingur case, the LTL, CTL property

specification language.



3. Checking: run the model checker to check whether the ptpppecifications are satisfied by
the system model. The model checker indicates if the prgjpettue for all possible states,

or it is violated by some execution path (the counterexajmple

4. Analysis: deal with the outcomes of the model checker.r@lage three possible outcomes

from the checking phase:

e If a given property is satisfied, it is important to verify thiais not vacuously true.

e If a property is violated and a counterexample is providednmgdel checker, the user
should analyze the counter example by simulating (if pdspstb determine if the model

or the property is at fault.

e The model checking does not terminate successfully duectodd memory or time.
In this case a major revue of the model is necessary in ordexdace the size of the
explored state space by reducing the number of bits of stalbeimodel, or by restricting

the possible transitions in the model.

2.1.3 A Brief Review Of Temporal Logic

Usually in the normal operational semantics of machinegalkeabout explicit sequences of states,
indexed by time. As a system runs, it passes through a segudrstates, where the next state
S(t+ 1) at timet + 1 depends on the current stafi¢t). This means that any assertion about the
state of the system also has to mention the time at which #isisrion is being made.

The purpose of a temporal logic is to enable one to talk abdmibehavior of a system over
time without having to explicitly mention the time variabl&€he temporal logic lets you push the
indexing details behind the scenes, but at some loss of ssipeepower. The two most common

temporal logics used for finite state systems are CTL and LTL.

CTL - Computation Tree Logic

CTL is a temporal logic that lets one talk about the futurertifermore, it is a branching time logic
that lets one talk about possible futures.

CTL formulas consist of the usual atomic propositional tofgirmulas, plus temporal connec-
tives. The propositional logic formulas are expressiormiathe state of the system. The temporal
connectives are expressions about paths into the futuréthatate of the system can follow.

Temporal connectives are pairs of symbols. They talk abdattwan happen from the current
state. The “current” state is the one being described indhadila. The future is infinite, i.e. the
computation doesn't halt, although it can stay in the samute $orever. The first member of the pair

constituting the temporal connective is one of the letters:

A - meaning on all paths from the “current” state, read as ‘ltiaély”



B - meaning on at least one path from the “current” state, redg@ssibly”
The second member of the pair is one of the followings:

X - meaning the next state

G - meaning all future states, read as “globally”

F - meaning some future state

U - meaning until

The system staté' is described by a collection of state variables, each veriafith a finite
collection of values. Suppose that the system is in some Stathe future ofS is all the possible
paths that the system can follow beginning withThe future ofS, by definition, includes (0 time
into the future).

The temporal connectives are described below, using thet syntax of the NuSMV model
checker. Letp be a CTL formula. The simplest such formulais just a projpmsél formula involv-

ing values of the state variables.

¢ is TRUE iff it is satisfied by the current stafe
AX ( ¢)is TRUE iff ¢ is TRUE for every immediate successor to stéite

AG (¢ ) is TRUE iff ¢ is TRUE for every successor to state includingS. That is,¢ is
TRUE for all states on all paths into the future frain

AF ( ¢ ) is TRUE iff on all paths into the future frorfi, there is a state whetgholds.

A[ ¢ U@ ]is TRUE iff all paths starting in statg satisfy¢ until the reach a state in which
holds.

EX (¢)is TRUE iff ¢ is TRUE for at least one immediate successor to state

EG (¢ ) if TRUE iff there is a path fron®' into the future for whichp holds for every state on
the path, including.

EF (¢) is TRUE iff there exists a path into the future fro$ron which there is a state where
¢ holds.

E [ ¢ U 0]is TRUE iff there exists a path starting in stafighat satisfies until reaching a
state in whichv holds.

The following equivalences hold for CTL formulas:



'AF ¢ <— EG!¢
lEF ¢ <— AG! ¢
FAX ¢ <= EX!¢
¢ <= A[TRUEU¢]
EF¢ < E[TRUEU¢]
AG ¢ < ¢ &AXAG ¢
EG¢p «<— ¢ &EXEG¢
AF ¢ <— ¢ | AXAF ¢
EF¢ <— ¢| EXEF¢
AloUbO] < 0] (¢ &AXA[pUO])
E[oUO] < 0| (0 &EXE[pUO])
A[oUO] < ' (E[1U (190 &!6)]] EG9)
Here is an example of things we might want to say about Mutxalusion using CTL. Sup-
pose we are talking about two processes P1, P2 that shareTdata we would like to ensure the

following kinds of properties for our mutual exclusion pwobl:
Safety:the protocol allows only one process to be in its criticatieecat any time.
AG ! ( Critical[P1] &[P2])

Livenesswhenever any process wants to enter its critical sectiomilieventually be permitted to

do so.

AG ( Entering[P1} > AF Critical[P1] ) & ( Entering[P2} > AF Critical[P2] )
Non-blocking:a process can always request to enter its critical section.

AG (Idle[P1]- > EX Entering[P1] )& ( Idle[P2]- > EX Entering[P2])
No strict sequencingorocesses need not enter their critical section in stripisace.

EF ( Critical[P1]& E[ Critical[P1] U ( !Critical[P1]& E[ !Critical[P2] U Critical[P1] ]
)1)

Note: Critical, Entering, Idle look like predicates, butedust shorthand for a propositional function

of the current state that reflects this situation.

LTL - Linear Temporal Logic

LTL is a temporal logic that lets us talk about the future amel past. It is linear, in that it lets us
talk about each possible path into the future, but withouisatering branching. That is we cannot
talk about branching within the context of a specificatiore-tvave only the path we are following.
Similar to CTL, LTL formulas consist of the usual atomic posfiional logic formulas, plus
temporal connectives. The propositional logic formulasepressions about the state of the system.
The temporal connectives are expressions about pathshiatmture that the state of the system is

following.



LTL is CTL without the A and E connectives, except that yowass an A (all paths) connective
in front of the LTL specification. LTL connectives talk abauthat can happen from the current state.
The “current” state is the one being described in the formilae future is a single infinite path
without branching. As for CTL the computation does not hathough it can stay in the same state
forever.

The LTL connectives are
X - meaning the next state
G - meaning all future states, read as “globally”
F - meaning some future state
U - meaning until

The temporal connectives are described below. Supposththaystem is in some state The

future of S, by definition, includess. Consider all the possible paths startingsin

¢ is TRUE iff it is satisfied by the current state

X ( ¢ ) is TRUE iff for all paths fromS ¢ holds for the immediate successor to stéte
G (¢) is TRUE iff for all paths fromS ¢ holds on all states on the path.

F (¢ ) is TRUE iff for all paths fromS, there is a state on the path wherbolds.

(¢ U ) is TRUE iff for all paths fromS ¢ holds until state occurs in which theta holds.

CTL and LTL are not equivalent. There are things we might wargay using in one that we

cannot say in the other. For example

FG(p) - along every path from initial state there is a state from which p will hold

forever. This cannot be expressed in CTL.

AG(EF p) - for every path from the initial state there existéeast one future state in

which p holds. This cannot be expressed in LTL.

2.1.4 Using NuSMV To Model Randomness

The behavior of a FSM is driven by its current state and thaiptesevents that can arrive and be
recognized by that state. The system model indicates tliesdiens by using non-deterministic
assignment to generate the forks in the execution path. fAhese potential paths are explored,
with no memory of any previous states.

This poses a problem for systems where random choices are. iveahy systems require ran-

dom coin tosses in order to break symmetries that would déesgystem to lock up and not make
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progress. For example, collision resolution in an Ethematext-actor selection in a token passing
protocol.

But a random event cannot be modeled by a non-deterministice because the random event
is part of a sequence of events that must be consistent wjikdfie probability distribution. That
distribution will in part dictate the expected behaviorloé symmetry-breaking process. For exam-
ple, when using two fair coins to elect a leader in a pair, #peeted number of simultaneous tosses
before the two coins differ is 2. The model checker knows imgtlabout the expected distribution,
and so will explore the infinite path on which the two coins & come up the same. But the
probability of this path is zero, so it should be removed fitbm set of explored paths. So then the
guestion becomes how large a finite prefix of this path shoeledplored in the checking process?

There is no single answer to this. The goal is to track thefpasinough transitions to be able to
detect a failure to break symmetry. Then to use that infaonab prevent any further exploration
along that path.

Here is an example of modeling randomness in an implementatithe Hoover-Rudnicki token
passing protocol [20]. Since the expected length of pathréalosymmetry is 1.5 stebsve only
need to keep a history of 2 sets of random choices. If therigstof each node match, then we use

a TRANS constraint in NuSMV to prevent any further explaratalong that path.

-- inplenmentation of the Hoover-Rudni cki token passing protocol
-- between two nodes.

MODULE mai n

VAR
NO : node(NL. node);
N1 : node(NO. node);

-- To nodel randomtosses, we need to rule out sequences of tosses

-- that have expected value of 0. Wth a 3-sided coin, the
expect ed

-- nunber of pairs of tosses before they differ is less than 2,
SO0

-- we only need to keep a history of two tosses in order to node
t he

-- use of randommess to break symretry. this specification rules
out

-- all transition historys in which the nodes nake identica
t osses.

TRANS next (NO. hi story) != next(NL. history);

-- this is the property we want to verify:
-- synchroni zation al ways occurs at sone point in the future, and
-- once synchroni zed, they follow this sequence

SPEC AF ( NO.history = NL. history | (
A [ NO.nbde = W& N1.node = R U (

1since the probability of not being different ig'3, the expected path length to being differens j@ = Zzozl 2n/3™
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A [ NO.nbde = W& N1.node = P U (
A NO.nbde = R & N1.node = P U (
A [ NO.nmobde = R & N1.nmode = WU (
A [ NO.nmode = P & N1.nmode = WU (
A NO.nmode = P & N1.nmode = R U (
NO. nrode = W& N1.node = R) ]

) ]

) ]

) ]

) ]

) ]

) )

MODULE node(i n_node)

VAR
-- the node of the node, as in the protocol
nmode: {R, W P};

-- the coin toss history, 2-bits per toss, oldest on left,
-- 00 - undefined

-- 01 - W

-- 10 - P

-- 11 - R

history : word[4];
ASSI GN

init(node) := {W P, R};
init(history) := 0b4_0000;

next (nbde) : = case
nmode = in_node: {W P, R};

node = W& in_node = P. R
node = W& in_node = R W
node = P & in_node = W P;
nmode = P & in_nbde = R W
nmode = R & in_node = W P;
nmode = R & in_node = P. R,
esac;

-- record the toss just made
next (hi story) case
next ( node) W: history << 2 | 0b4_01;

next ( node) P : history << 2 | 0b4_10;
next ( node) R : history << 2 | 0b4_11;
esac;

Listing 2.1: Token Passing With Randomness

2.1.5 Using NuSMV To Model Process Scheduling

When concurrent processes are present in a system, thdveaigssahe question of how they will

be scheduled to interact. When exploring the correctneascohcurrent algorithm, the scheduling

discipline must be considered. Do all processes in the mmodéke a transition at each step? Do
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processes on different processors operate synchronobDslg® the scheduler have to be fair? Is it

allowed to starve a process? Although processes and ayafistheduling concerns are built into

NuSMYV, one has to consider the scheduling that will actuadigur in our particular systems. An

algorithm that is correct under one scheduling disciplirsymot be correct under another.

Here is an example of how we add scheduling to the token mpa&jorithm just described. The

scheduler ensures that either both processes run simaitsiyeor if one process runs alone, then

the next time the other process or both will run.

i mpl enent ati on of the Hoover - Rudni cki
bet ween two nodes,
MODULE mai n

VAR

-- when true process 0, 1 will
run_0: bool ean;

run_1: bool ean;

NO :
N1 :

node(run_0, NL1.node);
node(run_1, NO. node);

schedul e node 0, 1,
schedule : {S0, S1, S01};

-- schedul e history, previous step

shistory : {S0, S1, S01};
ASSI GN

init(schedule) := S01;

init(shistory) := S01;

init(run_0) := TRUE

init(run_1) := TRUE

initialize nodes

-- or start themin the sane state and see if they converge

init(NO.node) := {R W PF};
init(Nl.node) := {R, W P};
-- init(NO.nmode) = R
-- init(NL. node) := R
-- record current schedul e
next (shi story) := schedul e;

a bad schedul e,
next (schedul e)

-- .= {S0, S1, S01};
-- a synchronous schedul e,
next (schedul e) := S01;

a round-robin-i sh schedul e

next (schedul e) := case
shistory = SO : {S1, S01};
shistory = S1 : {SO, S01};
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shistory = SO01 : {S0, Si};
esac;

-- run the appropriate process
next (run_0) :=

(next (schedule) = S0) | (next(schedule) = S01);
next(run_1) :=
(next (schedule) = S1) | (next(schedule) = SO01);

-- this forces the coin toss history to be different
-- this will break symmetry
TRANS next (NO. hi story) != next(NL. history);

-- synchroni zation al ways occurs at sone point in the future,
-- once synchroni zed, they follow this sequence
SPEC AF (

A [ NO.nmbde = W& N1.node = R U (
A [ NO.nmobde = W& Nl.nmode = P U (
A NO.mobde = R & N1.nmode = P U (
A [ NO.nmobde = R & N1.nmode = WU (
A [ NO.nbde = P & N1.node = WU (
A NO.nmbde = P & N1.node = R U (
NO. nrode = W& N1.nmode = R) ]

) ]

) ]

) ]

) ]

) 1

)

MODULE node(run, in_node)
VAR
nmode: {R, W P};
-- length depends on expected nunber of tosses
history : word[4];
ASSI GN
init(history) := 0b4_0000;

next (node) := case
-- transition if running
run : case
node = in_node: {W P, R};

node = W& in_node = P. R
node = W& in node = R W
node = P & in_node = W P;
node = P & in_node = R W
node = R & in_node = W P;
node = R & in_node = P. R
esac;

-- otherw se no change in state
TRUE: node;
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esac,

next (hi story) := case
-- history update if running
run : case

next (nobde) = W: history << 2 | 0b4_01;
next (node) = P : history << 2 | 0b4_10;
next (node) = R: history << 2 | 0Ob4_11;
esac;

-- otherw se no change in history
TRUE: hi story;
esac;

Listing 2.2: Token Passing With Scheduling

2.2 Related Work

Research with related goals to ours can be categorize in o groups. The first group contains
the studies that focus on behavioral programming framesviiv&t are verifiable by formal methods
and applicable for event driven applications. The secondgof studies contains the research on
verification of specific languages or infrastructures fomBmeactive systems or sensor network

applications.

2.2.1 Behavioral Event Collaborative State Based Programing

Behavioral programming [18] is a general framework for deping applications consisting of in-

dependent components working together to provide a behavio

e Each individual component is specified in terms of its indidal behavior under different
scenarios for interacting with the world through eventspiiimcipal, this individual behavior

is simple enough that it should be easily verifiable.

e The components collaborate with each other by exchangirsgages over a network. The
possible connections between components are establisireglaupublish/subscribe protocol,
in which the publisher is the node that sends out the eventsabdcribers are the nodes
waiting to react to that specific event. The result is a netvafrcommunicating processors
that has some desired behavior. Because it involves camiprocesses and processors, this

resulting behavior is more difficult to specify, and unexpgedehavior can emerge.

The activities of specification, verification, implemeiat and testing all interact. In particular,
the language chosen for one of these can seriously impattaisiility of the other. For example,
implementation in a general procedural language (like @)aake it very difficult to specify the de-
sired behavior of the system. As a general rule, the mostitapttask is matching the programming

language to the verification tools. For a broad selectiorooffutations, especially reactive systems
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involving embedded computation, the most suitable contfmutanodel and programming language
is that of finite-state machines (FSMs). FSMs are easy toifypaoad can naturally be translated
into implementation code. Extracting models for verifioatis similarly simple, although there are
potential difficulties with scheduling processes and usamgiom numbers.

Where FSMs are not suitable is where there is additiona# steit cannot easily be abstracted
away — for example, the workflow for processing an order isva@p$ FSM, while maintaining a
list of items on an order and computing their total is not.

The PicOS sensor network environment uses this philosdgiyn addition augments the state
machines with additional global variables (of small siz&icOS provides an execution context
(thread) for each FSM, an event dispatching mechanism, actieduler to decide which process

makes its next transition. Thus PicOS is a more complex lalgeve the simple behavioral model.

2.2.2 Formal Behavioral Programming

Emphasizing the behavioral and scenario-based requiteamatysis and system specifications,
Harel et al. proposed the behavioral programming framewwofiacilitate software development
[17, 18], specially scenario-based development of reastystems. They introduced behavioral ap-
plication for software consisting of independent condswalled behavior threads (b-threads) each
of which describes a scenario. In other words, they defindddads as the backbones of the soft-
ware to be developed. Each b-thread should be designedritnotiing and coordinating a specific
behavior of the system, and it may involve a set of objectsystesn components. Therefore, the
software is a combination of b-threads.

B-threads of a system run in parallel to each other, and getes/in synchronization points, i.e.,
each b-thread runs their normal flow until they requires bByoization, then the thread waits until
all other running b-threads reach synchronization pomtieir own flow. At synchronization points
an enhanced publisher/subscriber pattern is set up. E#utedad specifies three sets of events: 1)
requested events that are the ones requested to be triggerethe b-thread wants the event to be
triggered, so one of the requested events may be triggeithe inext step); 2) wait-for events that
are not requested to be triggered but can notify the b-thifeaxturred; 3) blocked events that are
forbidden to be triggered. After all the b-threads reaclir thynchronization point and present their
requested, wait-for and blocked events, an event whichgisegted by at least of the b-threads but
is not blocked by any of them will be chosen (perhaps arhigieand notifies all threads requesting
or waiting for it. The notified b-threads then start runnihgit normal flow until they reach another
synchronization point and present a new sets of events aisd¢le@ested, wait-for or blocked ones.
Accordingly, b-threads coordinate the behavior of thevgalfe by generating a flow of events and
being notified by triggered events.

Harel et al. also provided a Java library called BPJ whichsisis the implementation for the

protocol idioms and coordination mechanism of b-threadetien and synchronization. They fol-
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low a bottom-up approach in providing scenario based prograg, as they started from a general-
purpose language (Java) and then added programming tbel8RJ library) to code behavioral
elements of the system. Therefore, they aimed at providimgpgramming context for facilitating
behavioral and scenario-based programming. Their studybased on Java platform and JVM
thread execution, which limits its extensibility to sensatwork applications that use a simpler
operating system and coordinating mechanisms than JVM.eidexythe notion of behavioral pro-
gramming was proposed for software developmentin gerandlBPJ was just a demonstration of
its viability.

The event-based coordination of modules in behavioralqamging makes it ideal for being
used on event collaborative applications in small reactixgems, e.g. applications for each node
of a sensor network. For instance Shimony et al. used the saordination approach as b-thread
coordination to extend PicOS and present a new set of caatidimconstructs aiming at improving
the high-level characteristics of PicOS WSN programs [24].

Beside the applicability of the behavioral approach in tieacsystems, the verification and
model checking of the scenario based applications develbpé¢his method is an interesting field
of research, and also makes it interesting for our thesisoggh. Following the proposal of be-
havioral programming in [17], Harel et al. provided a metblody for model checking-assisted
development of behavioral programs; they also presenteddehthecker (BPmc) for supporting
the methodology and verification of behavioral programdtemiin Java using BPJ [16]. BPmc is
actually embedded in BPJ, and therefore bypasses the needrisforming the system implemen-
tation to a model understandable by the model checker.

The algorithm used by BPmc for model checking executes thcipating b-threads and ex-
plores all the state space to find the state in which the ptpeviolated. The tool keeps track of
the visited states, using Apache Javaflow package. Whettevéool reaches a previously visited
state it backtracks the execution path, by restoring the s@ved by Javaflow, and tries to explore
other states. Anytime the tool wants to go forward in an etienyath and proceed to the next
state, it selects an event to trigger, and that may resulbtifymg some b-threads and branching an
unvisited state space. Using this strategy, BPmc explbeestates using breadth-first or depth-first
searches.

Addressing the viability of using model checking technigjfmr having trustworthy behavioral
reactive software, our thesis pursues the same goals dmbleribehavioral programming frame-
work. However, we focus on employing the proposed evengdasordinating approach specifi-
cally for reactive systems, and design software executabkensor network-like devices. Accord-
ingly, our approach will not suffer from the limitations dfe research provided in [16] that is limited
by Java-based assumptions, such as Java thread schethulragl data, etc. For instance, while the
proposed BPmc tool is based on Java platform and followhiitsatl scheduling strategies, we pro-

vide a more flexible framework for programming these keragél functionalities and provide the
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potential of scheduling alternatives based on the needeerlying logics. Besides, not depending
on Java based assumptions; we provide the possibility efstaring between behavioral threads.

Another notable study that emphasizes the system beh&wioratomic constructs to the com-
position of components, is the research done by Bliudze[@t 8]. They proposed the BIP language
(behavior, interaction, priority) as a framework for desitgg component based systems [7]. In their
viewpoint, components of a system can be specified by théaker, and are combined and com-
municating based on their connectors and priority rulesBIl language, the backbones of any
system structure consists of 1) atomic components, a senoponents of which behavior has been
specified as a set of transitions; 2) connectors, which ard f@ specifying interactions between
atomic components; 3) priority rules, which are used to doate the interaction based on the
state of the integrated atomic components, and restrictdederminism of the interactions. Ac-
cordingly, BIP allows construction of complex structuresni atomic components, and also allows
using strongly synchronized interactions between compisne

BIP focuses on creating a system that is correct-by-coctibny and satisfying the expected
behavioral requirements of the system. Addressing thisercontext of component based systems,
Sifakis et al. provided a formalized semantic for assengbtiomponents by glue operators, and
proposed a expressiveness comparison for it [8]. In thediss, they considered a composition of
components, where each component can be specified by itgibetits states and transitions), and
the components are represented in some semantic domaims rébérs to any BPI operator (con-
nectors and rules) and should only restrict the behaviotsadiguments (the atomic components)
without adding new one. Sifakis et al. proposed a definitibglee where operators are character-
ized as sets of rules specifying the transition relationamposite components from the transition
relations of their constituents [8]. Therefore they coesiglue operators only as behavior trans-
formers and examine their role in composition of componantsbuilding a system that is correct
by construction.

A closer look at the BIP language reveals that its notion arstructing heterogeneous systems
is the same as our approach toward structuring applicatifios instance, assuming the atomic
components of BIP language as individual nodes of the nétathe executable threads in a node,
their connectors are actually the channels through whiemtides/processes can communicate and
send or receive events, and the priority rules are the coatidn rules for handling the triggered
events. Therefore, creating the behavior-based compsitetite goal in both studies.

We also follow the notion of “correct-by-construction” gemnted in their studies, but with a
structural difference: they prove the correctness of campbcompositions assuming a single com-
ponent has obtained the correct behavior and the compoaentued properly. Whereas in our
thesis, we assume that the lower level infrastructure &ysrch as hardware and the event and sig-
naling protocols, work correctly (the hardware verificataf the sensor nodes is not the concern of

this thesis). Then we examine the behavior of every singtier{and their inner threads) in a layer
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on the top of the hardware layer, and further we prove theectmess of the network protocols and
communications between nodes as another layer on top ofrthke s10de one. Accordingly, we

model and verify our applications layer by layer.

2.2.3 \Verification Of Sensor Networks

Sensor networks and the trustworthiness of their apptinatare the main motivation of this thesis,
however, we will only use them as a rich source of examplesahdecessarily the final environ-
ment for applying our approach.

Sensor networks consist of individual nodes that work iraglently and can communicate so
that the network as a whole achieves some intended goal.ofSeesvork nodes are small in size
and power: a small microprocessor running at a few MHz witmast 1 MB of memory. This
limited memory is shared between the deployed programshaenddta required or obtained by the
node; therefore, only simple programs can be run on the reewin essence, since the sensor
network programs are relatively simple and the deviceses®icted with respect to several points,
applying formal verification methods is feasible for prayithe correctness of their applications.
Additional difficulty is added to the computation due to Uraigle communication, and incorrectly
implemented processors. Failures are the norm, not thgBaoein sensor networks. Thus sensor
networks are a rich source of interesting problems.

In the context of sensor networks, the use of formal methoddatively sparse, and it is strongly
competitive with simulation techniques. One reason isttigxie are no off-the-shelf verification tool
that implements formal method verification for sensor nek@6], whereas there are accepted sim-
ulation tools such as NS2 [1] or the TOSSIM emulator [22, 2Bjol are applicable in verification
of some sensor network application in TinyOS [21] platforAlthough these tools are useful in
providing an observable sample execution of the applinatieey all suffer from the simulation lim-
itations and cannot provide a proof of correctness for th@iegtion. On the other hand, although
some studies have focused on applying formal methods faflyireg sensor network applications,
the variety of properties aimed to be verified has made theaflooovered by these studies so broad
and sparse, for instance some studies specifically aimestification of MAC layer protocols, such
as [10], while others assumed the MAC layer works propertyaimed at other aspects of a network
application. In the following we provide some examples dfiedent approaches to this problem

Among studies aiming the formal verification methods forify@ng sensor network applica-
tions, some provided formal specifications of applicatiopnerder to make them mathematically
provable during design [15]. Our research is similar to the group of studies in the sense that we
also need to detect all verifiable and specifiable propeofitise applications first, and specify our
programs based on what is feasible to model. Accordinglypdehbased approach is provided in
which the model and its constraints in abstracting the pitagsecontrol what can be included in the

applications.

19



Another group of studies focused on specific sensor netwaphaation programming language,
SystemC [2], and attempted to apply formal verification mdthfor verifying its applications. For
instance, Cimatti et al. provided a model checking apprdachverifying SystemC applications
[11]. They provided a translation procedure to extract aisatjal program out of a SystemcC appli-
cation and change it to corresponding models in which thestlts are coordinated by a scheduler.
This was similar to the approach we followed at the beginmihgur thesis when trying to see if
modeling PicOS applications are feasible or not. We modele@S and orchestrated its processes
by a simulated PicOS scheduler. However, the huge low les®laorking details were needed to
be considered while modeling PicOS network applicationgckwhesulted to unrealistic complex
models.

Another important field in the context of sensor network &t thf probabilistic algorithms and
their analysis. The behavior of sensor network is probstiglisince the nodes are randomly dis-
tributed in the environment, and they achieve probalilisghavior due to the collision avoidance
mechanism for the wireless communications and the memeiggarocesses [13]. For verifying
such networks, the application of simulation techniquesiaadequate since on the one hand the
number of nodes in the network is extremely large, and ontiverdvand experiments have to be re-
peated sufficiently often to gain a considerable high piecig6]. Therefore, providing a thorough
verification is infeasible in these networks.

Addressing this problem, Demaille et al. employed AppraadeProbabilistic Model Checking
(APMC) [19] in order to approximately compute the probdbithat a model verify a specification
[13]. In their research they modeled simplified sensor netvio which the goal is to detect the
occurrence of an event on a grid of arbitrary size and to teabe event by sending a signal to some
specific nodes. They also examined some properties on th@reiodel using the approximate
probabilistic model checking technique to see if the modékBes the specifications such as the
probability that the event occurred in a grid will be deteotéthout error is greater thah99.

In our thesis, we also assume the different branchings tlagteucur in the execution path of
an application. However, if the branches result to an umBaidomness situation, we just ignore
that unfair path and aim to verify the application in a faivieonment. In other words, we aim
to prove that the probability that the model verify the inted specification is 100 percent in fair

environments.
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Chapter 3

Feasibility Study - Modeling PicOS
Applications In NuSMV

This chapter asks if the PicOS sensor-network operatirtgisyand applications are simple enough
to be modeled and checked with the NuSMV model checker. Weigedhe fundamentals of our
modeling approach and explain why we need to migrate to A@8iin order to make any progress
(Chapter 4). The main take-away from the rather intense atrafudetail in this chapter is that it is
astonishingly difficult to model even a relatively simplestgm like a PicOS application.

This chapter is organized as follows. In Section 3.1 we exptar modeling source and des-
tination environments, we introduce the characteristfd3icOS operating system, the state-based
structure of its applications, and the properties intémgsio be verified in this context. We also
introduce NuSMV model checking framework as the reasonystesn, and explain its limitations
for modeling specific features. Furthermore, we includeram@hensive example of a PicOS appli-
cation containing all semantics to be modeled in NuSMV. Wesent the state diagram and PicOS
representation of the application and provide the cornedipg NuSMV model as an example of the
goal model to be achieved by the end of this chapter.

In Section 3.2 we analyze the PicOS properties and pointheuvisible and implicit require-
ments to be modeled, using two main examples. Accordingdyniodeling assumptions, specifying
the fundamental properties and constraining the PicOSifumatities will be pointed out and create
the basis of our modeling schema.

In Section 3.3 a high level logical architecture of the sysie provided. In Section 3.4 the
component-based design of the modeling schema and theimgpdkdments are introduced and their
responsibilities in covering the fundamental PicOS logits explained. Having the big picture of
what the modeling approach is and its outcome, we specifintideling procedure in more details in
Appendix A. We present the process of extracting model oatRitOS application through detailed
design of each modeling element and its implementation i8¥M. We provide the applicability of
our modeling approach in validating the PicOS kernel maated, also verification of simple PicOS

applications respectively in Sections 3.5 and 3.6.
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Finally, we conclude our PicOS modeling experiment in ®#c8.7 and discuss the reasons
why PicOS applications are not small enough to be feasihljieé using our detailed approach of
modeling the operating system.

After reading this chapter, you should understand the ch@riatics of PicOS operating system
and applications, and see why PicOS is not a small enoughbiseasvork framework to be model

checked.

3.1 Context Identification

The model of an object can be affected by two factors: 1) tlopgnties of the main object, 2)
the constraints of the modeling environment. For us thismaghe properties and logic of PicOS
applications, and the constraints that are forced by NuSMis section we briefly introduce these

factors.

3.1.1 PicOS

PicOS is a small operating system for organizing multiplevaes of embedded reactive appli-
cations [3]. PicOS is written in C for a microcontroller wilimited on-chip RAM (e.g., 4 kB).
Although small, PicOS provides a flavor of multitasking avérg-driven inter-process communi-
cation [4]. PicOS inherits its programming paradigm from 3RPH (a.k.a. SIDE) [14], which
is a specification and simulation environment for low-les@inmunication protocols and reactive
systems [25]. Being related to SIDE, PicOS applicationstmaamulated in a SIDE-based realistic
virtual environment called VUE2 (Virtual Underlay Emulati Engine), and the virtual behavior of
the applications can be observed in this environment. gigbction we focus on introducing how
PicOS applications are developed and provide a general ofeilve task coordination and CPU
allocation routines performed by the operating systemeviitjanizing the execution of the tasks

PicOS applications consist of multiple nodes operatinguiismeously. Each node is a single
processor. A PicOS application on a node consists of sonks,taalled processes, with at most
one task active at a time. Each node has its own CPU schedhatedécides which task (a.k.a.
process) should be performed next. In order to multitaskntide’s CPU is multiplexed among the
processes at the granularity of state-transitions. WhieQGPU is allocated to a process, the task
owns the CPU and no other process can get the CPU until theroeleases the CPU.

Each process is described by its code and data in a FSM bgtedldte code is imperative-style
C organized in a state-machine-based way, with additicgrappocess data composed of basic types
such as Boolean and Integer. As a FSM, each process can hétyglemdefined entries. An entry
is a state in the FSM and can contain rules for triggering ssga invoke other processes), waiting
for some events to be triggered by other processes, setiéngates in which they want to be woken

up after an eventis triggered, and releasing the CPU.

1For more details regarding PicOS operating system andaapiplns refer to [3] and [4].
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When(Event[2])

Delay(100)
When(Event[1])

When(Event[3])

When(Event[1])

Delay(50)

Sameas When(Event[2])

Figure 3.1: Comprehensive PicOS Command Example

In the context of PicOS applications each process can bedioftfie three main states: waiting,
ready (or runnable), and running. When a process is instautit goes to state ready, meaning it is
waiting for its turn to get the CPU. When it gets the CPU, ihgiés to the running state (which is
actually one of the defined entries in its PicOS FSM definjtaord perform all the imperative state-
ments coded for that state (changing the data, triggeriegtsy jumping to other running entries,
set events to wait for) and releases the CPU at the end. Bgsiatgthe CPU, the process goes to
the waiting state (waiting for events). If any of the intéieg events happens while the process is
in waiting state, the kernel changes the process’ stateattyrgunnable) and the process becomes
waiting to be scheduled for the CPU again.

A PicOS application is programmed by specifying an oveitallesmachine, and then writing
the code to be run in each of the running states. In the statgatin representation of a PicOS
application, we only specify running states (defined esjras states and assume that wait and
ready states are kernel level states which are not affetitim@ctual behavior of the system. The
reason is that demonstrating all transitions to wait andyesates makes the state diagram less
readable. Besides, what we actually are interested abebithavior of the application is resided in
its running states.

Figure 3.1 and Listing 3.1 present the state machine of desip@cessed application and its cor-

responding PicOS implementation respectively. This exam@monstrates how a single-processed
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application is modeled in PicOS. The actual behavior of thdenis actually programmed in its
FSMs, except for root which is only responsible for instatitig the other FSMs in the application.
This demonstrated application contains a fabricated pahich has four states and contains var-
ious control statements, e.g. when, delay, proceed, anéasanin fact, we made and used this

process to illustrate the modeling of a relatively complecess.

| }

#i ncl ude "sysio. h"
#defi ne EVENT1 (&el)
#defi ne EVENT2 (&e2)
#defi ne EVENT3 (&e3)
byte el, e2, e3

Fsm si npl eProcess() {
entry Sl:
when( EVENT1, S2);
when( EVENT2, S1);
when( EVENT3, S3);
del ay(100, S3);
rel ease;

entry S2:
when( EVENT2, $4);
when( EVENT1, S1);
del ay(50, $4);
rel ease;

entry S3:
proceed(S2);

entry S4:
sanmeas(S3) ;

fsmroot() {
entry ROOT_INT:
runf sm si npl ePr ocess;
rel ease;

Listing 3.1: PicOS Code For Comprehensive Example

After a process performs all the programmed behaviors daftitsently running entry, it can just
releasethe CPU and go to sleep (i.e. wait state) either if it is waitfor some events or not, it
can directly jump to another entry by using teemeagommand (and move to a new entry without
releasing the CPU), it cgmroceedo another entry (releasing the CPU and giving other prasstbe
chance to run, but staying ready to run whenever schedugeit lexecute). Accordingly, wherever
we have a transition labeled asen(EVENTWwe expect the application to transmit to wait state,
and stay there till it feels EVENT,; then it transmits to realgte and stays there till the process
is scheduled for allocating the CPU and going to the intendeding state. Wherevaroceed

transition is used, the process releases the CPU but goeady state (instead of wait) and waits
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to be scheduled to run and transmit to the intended runnetg;stherefore, it releases the CPU
and gives the other ready processes the chance to get ther@RWagress. Theameadransition
however makes the direct change from one running state tth@none, without meeting wait or
ready state.

Each node hasmot FSM that starts automatically after reset, and is respta&ib creating all
other processes. Other FSMs can be instantiated by the radher FSMs and put their Process
Control Blocks (PCB) in the PCB Table (PCBT) of the node. Neacgsses stay idle (in their ready
state) until the CPU scheduler lets them execute. When apsaeleases the CPU, the scheduler
walks the PCBT to find the first ready process and tells it to fithe scheduler does not find any
ready process (all processes are waiting for some evemnigaorupts), it keeps iterating over PCBT.
Whenever a ready process is told to wake up, it knows in whitthyét should wake up and run.
The PCBT is the shared memory space between all processdscimthere is a structure for saving
the information about each of the processes, such as thenttate of the process, the event it is
waiting for, the state in which the process should be wokeif ap interesting event is triggered,

etc. The main loop of a PicOS application, at the high lewshs follows:

1. The PicOS kernel assigns an identifier to each proceseiaffiist entry to the application,

where they instantiated.
2. PCBT contains a root process.
3. Atfirst, the kernel has the CPU, and schedules the firsigsmom execute (root process).

4. Root runs and instantiates other processes, and theimmation will be added to PCBT as

ready to run.

5. The kernel gets the CPU, notifies all processes aboutijgeeted events and received inter-
rupts form other nodes (if any) and changes the state of the waiting for those event/in-
terrupts to ready. Then it goes over processes in PCBT, dretiates the first ready to run

process it finds. If no ready process is in PCBT, it keepstiteyaover PCBT.

6. The scheduled process gets the CPU, wakes up in the ajgteaunning state (start state at
the first entry) and the specified state (if notified becausmavent). It runs the code for the

state transition, sets a list of interesting events to vaajtdnd finally releases the CPU.
7. (Repeat step 5-6)

Consequently, we can assume that the behavior of a noded#éut result of the current states
of the processes. Therefore, how the processes trangitsoine state to another, and the sequence
of these transitions will make the execution scenarios efapplication. So, aiming at verifying
the behavior of the application, all factors affecting thgansitions should be considered. The way

events and interrupts are triggered and handled by prosebsealgorithm that the scheduler uses
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to iterate over PCBT and select the next process to run, angdly processes take and release CPU
affect the behavior of the PicOS application and the way d@usth be modeled. Accordingly, all

these parameters should be considered while modeling RappIi®ations.

3.1.2 NuSMV

NuSMV is a symbolic model checker that allows for repres@mtaof synchronous and asyn-
chronous finite state systems. It also allows for the amalgSispecifications expressed in Com-
putation Tree Logic (CTL) and Linear Temporal Logic (LTL).

In order to use NuSMV for modeling and verifying the systems need to model an abstraction
of the systems. Then we should provide the CTL or LTL spedifica that express what we expect
the systems to do. By applying graph traversal techniqua§NW analyzes the specifications to
see if the model can satisfy them or not. If a specificatioralse, NuSMV provides a counter
example that shows an execution path in which the model ¢druid the specification.

The similar notions for finite state machines which existicS and NuSMV makes this model
checker a good choice for achieving our goal. For exampleM RSPicOS can be assigned to a
module in NuSMV. However, some NuSMV properties make modgihe applications (especially
PicOS ones) more challenging. For instance, we cannot haveylabal variable in a NuSMV
program. This means that a module cannot access any eXyatafihed variable unless the symbol
of the variable is passed to the module while instantiating herefore, a module in NuSMV can
only access the variables which are passed to it as inputnedeas or those which are defined in the
body of the module. On the other hand, in a NuSMV model, anyuteodhich has access to the
fully qualified name of a variable (and not just the modulé tres defined the variable) can assign
values to the variable. However, every variable can be asdigust in a single module. This means
that a variable is readable by anyone who can access it, isuviitable by just one of the modules
that have access to it. Accordingly, even if we have the acimethe variable and can read its value,
we may not be able to assign values to it since the assigmstatdor that variable has been already
written in another module. Moreover, this is not a syntaisscie, but it is a semantic one.

For example, assume that we write a setter module named $8tX 18 responsible for assigning
a new value to variable x. If we want to use this setter modut@o sample modules, namely p0 and
pl, which try to set x as 0 and 1 respectively, the code wouldseghown in Listing 3.2. However,
the assign statement is coded just in one module, since timrenwve have two instances of setX
(one for p0O and one for pl), the model checker does not cantidecode as valid since it would
have to decide how to arbitrate inconsistent writes to aaldei Accordingly, assigning a value to a

variable should be done in a singleton, that is, a singleints of a single module.

MODULE mai n
VAR
x : 0..10;

pO : sanpl e(x, 0);

26



10

12

pl : sanple(x,1);

MODULE set X(x, newVal ue)
ASSI GN
next (x) := newVal ue

MODULE sanpl e(x, val ue)
VAR
Setter : setX(x, value);

Listing 3.2: Non-Functional Shared Variable in NuSMV

Another limitation of NuSMV in modeling applications (egpaly PicOS applications) is that it
doesn’t support arrays of modules. This means that if we d&icOS FSMs as modules, we cannot
have PCBT as an array of FSMs. Therefore, modeling PCBT aterable list of FSMs becomes
more challenging.

Another feature of NuSMV that can affect our models is thataabign statements that are
defined in its modules occur simultaneously in each cloclaling with this feature is challenging in
modeling PicOS applications in which at most one proces$®eann in a node at a time. Moreover,
all of the modifications should be managed to make sure theeseg of the tasks in the main
application is preserved in the model. For example, a peogiesuld become ready only after some
interesting event is triggered.

All these constraints considered, we aim to provide a madedchema for translating PicOS
applications to corresponding NuSMV models. For instatftte NuSMV model of the application
presented in Figure 3.1 and Listing 3.1, is as illustratedlisting 3.3. According to the state-
machine notion of NuSMV, the model is the combination of abkes that may change their value
at each step and change the state of the system respectiarigfore, the behavior of the model is
resulted by the decisions made for each variable at each step

As presented in Listing 3.3, the extracted model containmoltiple modules (i.e. modeling
elements) each of which are responsible for modeling a @éedbshavioral aspect of the application,
either in the defined entry level or in fundamental kernel @mmork layers. Details of what each
modeling element is responsible for, and how its functiipadan be extracted from the PicOS
application are explained in following sections. HoweWsfore jumping into detailed modeling
procedure, we present a high level behavioral analysis @®®isystems and the logical layered

architecture to be modeled.

MODULE mai n
VAR
interrupt : word[5];
NODE1 : nodel(interrupt);
ASSI GN
init(interrupt) := 0b5_0;

MODULE nodel(interrupt)
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VAR

id: 0..100;
event: word[10];
pcb : pcb(id, event);
s : shared(pcb , event, interrupt);
sch : scheduler(id, pch);
MODULE schedul er(currentl D, pch)
ASSI GN
init(currentiD) := O;
next(currentID) :=
case
next ( pch. | ock) current | D;
pcb.lock : O;
TRUE : (currentlD+1l) nod 1;
esac;

MODULE pcb (id, event)
DEFI NE
| ock := RED.lock | GREEN. | ock
VAR
sampl e : sanpl eProcess(0, id, event);
MODULE shared(pcb , event, interrupt)
VAR
i nternal wor d[ 5] ;
ASSI GN
init(internal) := 0b5_0;
next (internal) :=
case
next (pch. sanple.state) = S1 : 0b5_01;
TRUE : 0b5_0;
esac;
event := interrupt::internal
MODULE si npl eProcess(pid, id, event)
DEFI NE
lock := state=sl | state=s2 | state=s3
VAR
pevent wor d[ 10] ;
pstate : array 1..10 of {sl1, s2, s3, s4};
state : {sl1, s2, s3, s4, wait, ready};
nextstate: {sl,s2,s3, s4};
tinmer 0..1000;
tstate : {sl,s2,s3, s4};
ASSI GN
init(state) := ready;
init(nextstate) := si
i nit(pevent) := 0bl0_O;
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init(tiner) :=0 ;
next (pevent) : =

case
state=wait & ((event & pevent) != 0b10 0| tinmer=1) =0
b10_0;
state = s1 : 0bl10 111
state = s2 : 0bl10_11;
TRUE : pevent;
esac;
next (pstate[1]) :=
case
state = s1 : s2
state = s2 : s1;
TRUE : pstate[1];
esac;
next (pstate[2]) :=
case
state = sl1 : s1;
state = s2 : s4;
TRUE : pstate[?2];
esac;
next (pstate[3]) :=
case

state = sl1 : s3
TRUE : pstate[3];
esac;
next(tiner) :=
case
state
0;
state = s
state = s
timer I'=
TRUE : ti
esac;
next (tstate) :=
case
state sl : s3
state s2 . s4;
TRUE : tstate;
esac;
next (nextstate) :=
case
state=wait & (event & pevent & 0b10_1)!=0b10 0 : pstate
[1];
state=wait & (event & pevent & 0b10_10)!= Ob1l0_0: pstate
[2];
state=wai t & event & pevent & 0b10 100)!= 0bl0_0: pstate
[3];

state = wait & tinmer=1 : tstate;

wait & ( (event & pevent) !'= 0bl10 0 | tiner=1)

1 100;

2 50;

0 : timer - 1,
ner ;

state s3 . s2;
TRUE : nextstate;
esac;

next (state) :=
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case
state = wait & ( (event & pevent) != 0b10 0 | tiner=1)
ready;
state=ready & pid=id : nextstate;
state=sl : wait;
state=s2 : wait;
state=s3 : ready;
state=s4 : s3;
TRUE : state;
esac;

Listing 3.3: NuSMV Model of Comprehensive PicOS Example

3.2 Analysis

In order to provide a modeling schema to abstract a set oficgtigins, we should know about
(1) the features of the source applications that are iniageto be abstracted and model checked
afterwards, (2) the constraints of the modeling environntleat prevent us from modeling those
properties.

Our ultimate goal is to provide a comprehensive abstractiéticOS applications. The resulting
model should simulate the behavior of the original appiicaexecuted on PicOS node. In other
words, the observable results or status changes of thecapipi must be reflected in the model
execution. Therefore, the model should include all the prigs that are essential to the process of
PicOS application execution.

The execution of a PicOS application on a destination nose dépends on the underlying
behavior of the operation system. The application soureeofily contains the highest-level logic
of the procedure, such as the processes of a node, the steyesan have, etc. However, there are
many rules defined in PicOS that control the workflow of theligafion. For example the kernel
is responsible for scheduling processes to be executedntiéreprocess communication through
events, raising and handling events andfetc.

The behavior of a PicOS application is resulted from theblésiequirements of the application
as defined in the PicOS program, or comes from the kernel oPib®S operating system. For
instance, when a node is programmed to turn on/off a LED oogm®izing an event, this blinking
is directly resulted from the programmed application andlwavisibly recognized. However, there
are also PicOS kernel behaviors affecting on the way evemt$e recognized by processes, or the
priority of the events in being handled.

Figure 3.2 illustrates the state diagram of a PicOS singléerapplication including two pro-
cesses. This application is a two-LED blinker in which theQlsbblink alternatively. Each of the

processes controls one LED and communicates to the otheegsdor synchronization. Receiving

2Even beneath the operating system layer, the the hardwgiertmy affect the execution of the program, however, we
do not consider those since the verification of hardwareyste the domain of this thesis.
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Figure 3.2: One Node 2 Process Blinker

an event from the other process, a process turns on its LERféedone second turns-off the LED
and triggers an event awaited by the other process. TheapRitiOS code of this application is
presented in Listing 3.4. In this example, all the varialilargyes, state transitions, and reactions
to triggered events are considered as visible requirentkatshould be considered while model-
ing such application. However, the way the events are pided for each process, the underlying
structure for controlling for which events each processaging at any time, and also scheduling
the processes to run only one at a time are the kernel bekavioch are not visible from the PicOS
defined FSMs.

#i ncl ude "sysio. h"

#define LED GREEN 1

#define LED RED 2

#def i ne RED_EVENT ( &r ed)
#def i ne GREEN _EVENT ( &green)

byte red, green;
fsm RED() {

entry RED START:
sanmeas( RED ON);

entry RED ON:
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}

fsm GREEN() {

}

fsmroot() {

diag("red %", 1);

| eds(LED_RED, 1);

del ay(1024, RED OFF);
rel ease;

entry RED OFF:
diag("red %", 0);
| eds(LED RED, 0);
trigger ( GREEN_EVENT) ;
when( RED_EVENT, RED ON);
rel ease;

entry CGREEN_START:
when( GREEN_EVENT, GREEN ON);
rel ease;

entry GREEN ON:
di ag("green %", 1);
| eds(LED GREEN, 1);
del ay(1024, GREEN_OFF);
rel ease;

entry CGREEN OFF:
di ag("green %", 0);
| eds(LED_GREEN, 0);
trigger ( RED_EVENT);
when( GREEN_EVENT, GREEN_ON);
rel ease;

entry ROOT_INT:
runf sm RED;
runf sm GREEN,
rel ease;

Listing 3.4: PicOS For One Node 2 Process Blinker

On the other hands, Figure 3.3 illustrates the same ping plmiger between two nodes. This

example is about a multi-node blinker application. Thisleyagion is similar to the application used

in the previous example except that the processes are glated separate nodes. Therefore, the

processes should use inter-node communication insteadrafnode communication for synchro-

nization. We do not provide the PicOS representation ofdpjglication here. The reason is that,

the inter-node communications in PicOS applications nextdild about message passing between

the nodes (e.g. the structure of the packets) which is togt®nto be interesting for our discus-

sion. However, ignoring the complexities in implementihgit PicOS programs, we also aim to

model the multi-node applications to be able to check tmérided behavior. Same as the previous
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Figure 3.3: 2-Node 1-Process Blinker

example, the way inter-node communications are handleddh applications are not visible from
application program (application logical layer) but arquiged. For instance if there is no proto-
col for passing messages between nodes, the processamwaitian event which could only be
triggered by another node can never proceed and providaniended visible behavior.

The visible requirements are resulted directly from thegppronmed applications, whereas the
kernel behavior may be differently simulated in SIDE-baB&xDS simulators. Since our observa-
tions are based on behavior presented by such emulatorgedeto base our model on only one of
the possible ways of emulatiods Therefore, except for detecting the visible and kernebbars
to be modeled, we should clarify how the underlying opetpipstem (here the emulator) should
coordinate the application.

All these considered, we need to make some assumptions &dB& properties to be modeled
before designing the modeling schema. It is worth noting, tsianplifying assumptions are made
to omit the non-deterministic behaviors of the system adigde an easy to justify basis for PicOS
applications. Based on these assumptions, we will know teeintended model should do and we
can also validate our model accordingly; therefore, we aald la trustable modeling schema that

can be used for verifying complex examples.

30ur goal is to see if modeling PicOS applications are feasilold we can verify them. Therefore, covering all possible
coordination alternatives of an application is beyond malg
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3.2.1 Modeling Assumptions

Our ultimate goal was to provide a modeling schema that @arsform as wide variety of PicOS
applications as possible. However, for many reasons ittigaossible to model all properties of a
PicOS application precisely. For example, NuSMV simplygloet support a notion of time (even
in discrete steps), or complex operations on data types.ehluglthis is possible but results in a
model that is too complex to be model checked. On the othed,ithere is no single behavior of
PicOS. For instance, the process scheduler that is redperisr selecting the process to run may
work using a Round Robin strategy or a priority queue basethemrder of defined processes in
the program, or the exact time a triggered event can be eghliy other processes. Therefore, we
needed to select a subset of the PicOS context, in order te thakmodeling possible while keeping
the original behavior of the application.

We made some assumptions regarding modeling PicOS apptisafThese assumptions either
limit the PicOS applications to those ones that can be mddmlespecify the notable differences
between the PicOS applications and their correspondingetsfodAs a result, we aim to provide
a modeling schema for the PicOS applications that can gdlisfassumptions either originally or
after some modifications.

Following is the list of the assumption we made for PicOS mppibns that can be modeled

using our schema:

e The PicOS application should not have any syntactic or sémarrors. It means that the
application should be compilable without any error. Thisywee can use a very simple
translator from PicOS to NuSMV models.

e Asour focusis on modeling the execution sequence of stateare interested in the elements
which influence the execution of states, not the elementsiwdnie related to manipulation of
data. In other words, we model execution-control elemamth ss events, interrupts, when,
delay, proceed, trigger, and sameas, while we ignore data@pulation elements. As a re-
sult, execution-control elements should not generallyeldependency to data-manipulation
elements. For example, we cannot have a delay statemenewintes value is decided by a
PicOS function. However, some simple data-manipulati@meints such as arithmetic op-
erations and conditional statements can be used, but we tdguacantee to support them.
Therefore, we should only use them with considering how tad@hthem.

e The root module of every node should have exactly one stat¢hioh other processes are
instantiated. The root module should not have any statenthat than process instantiation
ones.

e The root module can instantiate up to 100 processes.

e We assume that the later a process is instantiated in a Pipf8ation, the more priority it

4t is worth noting that, some of the assumptions are basedeanliserved behavior of PicOS SMURPH-based emulator.
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will have.

e No other module except the root module should have procssantiation statements. As a
result, all the processes are instantiated by the root neosthen a node starts and no other
process is instantiated after that.

e Each state should explicitly issue the release stateméneand of the state unless it issues
sameas or proceed statements.

e There should not be more than one delay statement in a state.

e There should not be more than one when statement with same ieve state. (Just to add
that we can have multiple when statements with differenh&ver even the combination of a
delay statements with multiples when statements)

e When a sameas or proceed statement is used in a state, ncathess, proceed, delay, and
when statement should be issued.

e Processes in a node can communicate with each other jussdingswhen and trigger state-
ments. In fact, the only dependencies between processeaddeare through events. In
addition, global variables can be defined and manipulatqutbgesses.

e There can be up to 5 different event types in a process.

e Processes in different nodes can communicate with eachjoidy waiting for packets and
sending packets. In fact, the content of the packets is npoitant and the packets are just
used as interrupts.

e There can be up to 5 differentinterrupt types in a processhwtein be used for either commu-
nication between processes in different nodes or recexanigus signals from the hardware.

e We cannot model time in the same way as PicOS. Therefore, ei¢hesexecution steps of
NuSMYV as our time. Therefore, the modeled time is discretepgp®sed to continuous time
in PicOS.

e We assume that every state is atomic and runs in one step.

e Interrupts and internal events can only be triggered onam@éstep and are received by the
running state in the beginning of its execution.

e A delay statement can have a time value up to 1000, correspgptal 1000 steps event tran-

sitions.

Many of these assumptions are parameters, and can be adassteeeded. Others are deeply

threaded through the model.

3.3 Architecture Model

Having all modeling requirements and limitations explaretthe previous phase, we need to think of
the architecture and design of the model systematicallg.Brbad range of functional and nonfunc-

tional requirements that are intended to be satisfied by tigefing schema is the reason the design
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phase is the most crucial step of the modeling procedureinstance, the modeling schema covers
a subset of the PicOS properties limited by modeling assiomgttherefore, we should consider
extensibility of the schema for future extensions if needadddition, the obtained models should
be understandable for someone who wants to model check digegmn specification; therefore, it
is needed to be compatible with the PicOS logical layeredesgmtation, e.g., with equivalent parts
for network, processes, and etc.

We need to consider different abstraction layers in moddficOS applications. There are two

fundamental reasons for that:

1. The broad domain of PicOS logic requires a structured frtodmver all the needed proper-
ties. On the one hand, in verifying a single-node PicOS appén, all rules regarding CPU
allocation for each instance of a FSM, interaction betwdenRSMs, and event handling,
need low-level modeling considerations based on PicOSeke@m the other hand, the model
needs to be extended to verify multi-node PicOS applicationvhich we have inter-node
communications for sending and receiving network packets.

2. The logic needs to be decomposed and encapsulated invahesponents so that the vis-
ibility of them can be limited. Not every property of the ajgption units is public to all
other components. For example, the behavior of a processt igigible by other processes
in the node and the processes can only communicate throeghvént interfaces; however,
each node should know about all of its processes. Moredwinterior design of node is not

accessible by other nodes in the network and their commtioiiceghannels are interrupts.

The underlying code for PicOS applications should be deas®gin cohesive components, and
the required communication channels between componeatgdshave specific interfaces. Each
component can access its own properties and those that baughssed to it through the interfaces.
These components and interfaces, altogether, build tiétecture of our modeling system.

As the first step in presenting the architectural model ofroadeling schema, we decompose
the functionalities of the applications, and demonstrdtsyared logical architecture of the system.
Figure 3.4 illustrates two major levels of the applicatioNsdelayer andNetworklayer. The node
layer itself could be decomposed irkernellayer andapplicationlayer of a single node application.

Node layer contains every piece that is needed for a single application. Within node layer,
the user defined application consisting of the PicOS command. wait(event, state), delay(time,
state), and the underlying coordinative kernel behavioukhbe modeled. A user-defined program,
a.k.aapplication layer, is the highest layer of abstrawtie have in our model. Atthis level, the only
concern is to have a well written program (or model) that aesuall the underlying layers work
properly, e.g., assuming that scheduler tells the prosegken to “run” from a lower level, each
process can receive the “run” message from scheduler arargeactivated if ready. Therefore,
on this layer, our concern is to translate the PicOS commamnste transitions and facilitate the

communication between the application and kernel layers.
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Kernel layer, on the other hand, contains the operatingesystiles and all the structure needed
for managing processes of a single node, e.g., schedulioggses to execute, handling timer prop-
erties and triggering time event, providing a channel fanownicating with upper layer (applica-
tion layer) and other nodes (network layer).

Network layer is used in multi-node applications and is oesible for defining the network
topology and the inter-node communications. Thereforenttwork graph of the system should be
build in this layer; the nodes should be instantiated as taplgvertices, and the communication

channels between nodes should be organized as edges irafte gr

3.4 Component-based Design

Knowing about the logical decomposition of the applicatipresented in Figure 3.4, we can select
the major model components of the system, so that (1) eadteafdmponents is responsible for a
set of cohesive functionalities, and (2) their combinatian cover the whole network and node level
properties. Figure 3.5 demonstrates the components that@nded in the model. Each component
is responsible for providing a set of functionalities anders some parts of the proposed logical ar-
chitecture. The fundamental modeling elements of the egschema and their functionalities are
discussed in the following subsections. We introduce a$¢hmodeling elements with a top down
approach, starting from process that includes the majac lofjthe application layer, continuing
with inner logic of node layer that resides in the node, salexdand PCB elements, to the lowest
level logics in network to manage inter-node links and mgsgassing.

This component based design suffices to show the modelingagipand demonstrates its po-
tential in covering behavioral aspects of PicOS kernel gpdieations. Therefore, we only present

the functionality provided by each component to presenbifeicture to the reader. The detailed
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design and implementation guidelines for extracting NuSMddels from PicOS applications are

presented in Appendix A.

Process

A process is the building block of any PicOS applicationsleégsentially a user defined FSM. Each
application consists of a number of processes that definieghavior of the node. In our modeling
schema, we opted for processes not only to include the higt beehaviors that directly come from
the PicOS commands, such as state transitions for proceksiaameas, but also to partially cover
the low level behavior that comes from the internal logicte PicOS kernel, such as updating its
state to ready whenever an interesting event is triggerddlashing the list of events for which
the process is waiting. In other words, our process unitgigeoan abstraction of the FSM coded
for the application and cover some basic behavior that ic@®ikernel responsibility. Referring
to the layered logical architecture illustrated in Figurg the process element covers the most of
the application layer and part of the Kernel layer. Our medgbrocess provides the following

functionalities:

1. Process is responsible for saving its state: ready, waihe of the active states defined in the
related FSM; and for changing its state according to thesrule

2. Whenever in the wait state, a process should have a listasfte that it is waiting for, and
change its state to ready if one of the events occurs.

3. Process is capable of recognizing what events have @cturr

4. Process is responsible for keeping a timer for trackimg tand triggering time event accord-
ing to the rules.

5. For each event that the process is waiting for, in the viafesit should know at which state
it should wake up if the event occurs.

6. Process should know if it is the one scheduled to have thér@Rt, and it should be activated

if it is its turn.

PCB

PCB (Process Control Block) is a structure for keeping aliances of processes defined for a single
node. It models the PCBT in the PicOS kernel and containseflgocesses. In a PicOS application
that can be modeled with our schema, PCB can also act as the&3db of PicOS application in
which just the instantiation of all processes occurs. ThB E@ta structure facilitates the usage of

process data for other elements in the model:

e |t provides a single point of access to the processes. If Ement in the model, such as the
scheduler or sharedVariables, needs to know about any girteesses or any data residing
in a process, it can use the PCB as an interface to accessoitespes. Any element that has

access to the PCB, has access to all the processes that asgldefihe node.
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e It contains a list of processes from which the scheduler el@tsthe next one to run.

e It controls the execution of processes by informing the dakex about which process is run-
ning, and by informing processes about whose turn it is totlyetCPU. Each time one of
the processes is running, the scheduler is informed sottlkahistart over and iterate from
the beginning of the list of processes. Whenever the schedilbcates the CPU to one of
a process, the process id is be announced to all the proceedhsit the others stop running

and only that process runs.

Scheduler

The scheduler is the controller core of every node sincecidés which process of the node can use
the CPU at any time. According to our modeling assumptioest{n 3.2.1) the scheduler should
start iterating from the beginning of the process list (P¢Bdch time a process stops running. An
example of a scheduling scenario with 3 processes is asv&llo
step 1:scheduler tells p1 to work,

if pl is ready, it gets the CPU and runs, after its turn endsaGép 1.
step 2: scheduler tells p2 to work,

if p2 is ready, it gets the CPU and runs, after its turn endsaGép 1.
step 3:scheduler tells p3 to work,

if p3 is ready, it gets the CPU and runs, after its turn endsaGdp 1.

else GoTo step 1
In our modeling schema, this is the strategy that the scleedresponsible to perform. However,
the strategy used by scheduler may vary in different vessahnPicOS kernels. Therefore, for
model checking the behavior of the application using déferschedulers, the implementation of
the scheduler module in the model should match the one thiahising on the destination nodes.
Accordingly, by modifying the strategy of the scheduleg ithema can be used for those different
versions of PicOS too.

Note that one of fundamental responsibilities of the Pic€t&duler is to make sure that no two
processes are running at the same time. This responsibiligrtially modeled in each process by
comparing the identifier of the current running processrénttd) with the process id (See Section
A.1in Appendix A). Accordingly, part of scheduler respdnikiies is scattered in other parts of our

model.

SharedVariables

As it was explained in Section 3.1.2, for each defined vagiablthe model we can assign value
to it only in one module. In other words, we can have the regadiccess to a variable in more
than one module, but the writing access on that variablesisicéed to one of the modules. On the

other hand, in modeling PicOS applications, there may bees@riables shared between processes,
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e.g. event/interrupt variable, and we need to change the\aflthe shared variables based on the
processes status, e.g. each process wants to trigger d etibgents if it is in some specific active
state. For example, we want to trigger the first event if tlagesobf pO (an instance of a process)
is sl or the state of p1 (another instance of a process) isnsRwa want to trigger the second
event if the state of pl is s2. The value that should be assigméhe variable event depends on
different internal variables of processes; but we canndewie assignment conditions in each of
the processes individually, since there should be only omdute assigning values for each variable.
Therefore, this challenge of “where should the values bigiasd to the variable” exists for every
variable which is shared between multiple modules or irctaf modules; here the shared variable
is event which is shared among instances of processes.

To solve this problem, we defined the sharedVariable modhaiei$ responsible for organizing

modifications of the variables that are shared between psesee.g. event.

Node

Node is the complete executable application of a single nibdbould contain all logic in an actual

PicOS node, both the application layer and kernel level. fidde is the structure that combined all
of the kernel and process modules into one model. Each nad#dshe capable of communicating
with other nodes in a multi-node application. Followinghe fist of responsibilities required to be

facilitated by node element:

e Node element is responsible for instantiating unique msta of scheduler, PCB and share-
Variable elements.
e To facilitate inter-node communication, node should havéngerface, say an interrupt vari-

able, to be able to use as a broadcasting channel in netwalkdemmunications.

Network

Network contains a set of nodes that can communicate with etiter using interrupts. In other
words, interrupts are the communication channels betweedes:1 Therefore, if we have a set of
nodes using an interrupt for communication, every node hlaat access to that interrupt can be
assumed to be connected to the network of those nodes. The isan consider interrupts to be
a shared variable between a set of connected nodes. Sotdheijpt can be changed based on the
internal logic of the nodes sharing it, every change to theriopt can be seen by nodes, and every
node in the network which is sharing that interrupt can rémtihe changes in interrupts. This also
means that interrupts can be used for broadcasting messagedes which are in range, i.e. nodes
which share that interrupt.

Accordingly, we need our network to instantiate the nodes@mnect them using interrupts.

In addition, since interrupts are assumed as shared vesidlgitween nodes, we need to organize
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interrupt modifications in the network. Following is thet ki functionalities for which the network

element is responsible:

e As the structure knowing about all inner nodes, network &horeate the graph of the nodes
in the multi-node applications.

e To facilitate inter-node communication, network shouldpde an interface to nodes, say an
interrupt variable. Organizing the interrupts, as the stiarariable among all nodes in the

application is the network’s responsibility.

3.5 Testing The Modeling Schema

After modeling any system (e.g. creating the componentsdas the proposed architecture and
applying the corresponding modeling guidelines providedppendix A), the next inevitable step
is to confirm the correctness of the model, and check if theehzda right abstraction of the
original system. The reason is that we cannot prove any#iogt the main object (here the PicOS
application) in model checking procedure unless we knowttteabehavior of the model is the same
as the behavior of the main system. Therefore, since thesfotour modeling is on abstracting
the scheduling of processes and their state transitioredl@s PicOS logic, we should check if the
execution sequence of states in our model is the same as ¢lcat®mn sequence of states in the
PicOS application.

In order to check the correctness of our model, and see if mdeting guidelines can result
to a model compatible with the PicOS application, we shotddt svith a PicOS application that
we exactly know how it behaves regarding the sequence afsshating executed and the schedule
of the processes of any node in the application. Then, weldhadel this application using our
proposed modeling guidelines. Therefore, we will have aehtitht is desired to work the same as
the main application. To check if the model meets our expiects, we should write the expected
behaviors as specifications. If our model is correct, it &thahow that the specifications are true.
Otherwise, if the model checker provides a false answerrigrod the specifications, it means that
the procedure of modeling of the application should be eal/since one of the followings might

have happened:

We have had wrong expectation from the PicOS application.

The expected behavior has not been expressed correctlpadcuion.

We had not followed the guidelines properly and that PicO8ieation has not been modeled

as desired.

The provided guidelines are faulty.
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Among the above mentioned items, we are mainly interestéueifiourth one since our goal is
to verify the proposed modeling guidelines. Therefore, éf fimd any case of faultiness about the
guidelines, we should go back to our modeling procedure tbtfie source of faultiness and revise
our guidelines.

Note that applying this approach, we may not provide a thgihoerification of our model. The
reason is that checking all possible ways of state tramsitamnd process scheduling for the model
and the application is tedious and beyond the available fioméhis project.

To provide an example of how this approach can be employedHecking the correctness,
here we explore a simple single-node application in PicO&jehit according the main application
and the provided guidelines, and then check the model dagsamse specifications based on the
behaviors we know can be revealed by the PicOS applicationake sure if the model and the
PicOS application are compatible to each other.

Figure 3.7 and Listing 3.5 show the state diagram of a singlge application and its PicOS
representation. This application is a simple one that éosita process with three running states,
namely START, S1 and S2. The process starts running in stT&8RE goes to S1, and then cycles
in states S2 and S1 in a forever loop. The point in this cydBryat, for performing the transitions
which are labeled with proceed, CPU is released while thege®remains ready to start running
in the destination state; whereas for performing the ttenms which are labeled with sameas, the

process directly jumps to the destination state withowasihg the CPU in between.

#i ncl ude "sysio. h"

fsmtest1() {

entry START:

di ag("1");
proceed(S1);

entry Sl:
di ag("2");
sanmeas(S2) ;

entry S2:
diag("3");
proceed(S1);
}

fsmroot () {
entry INT:
runfsmtesti;
rel ease;

Listing 3.5: PicOS Code For 1-Node 1-Process Validatior Tes

Based on the intended PicOS application and by followingtiogided guidelines for modeling

the application, we create the model which is the abstnactfahe application in NuSMV. Listing
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Figure 3.7: 1-Node 1-Process Validation Test

3.6 shows the created model of the PicOS application. Hawiegnodel, the next step is to check

the compatibility of the application and the model with resfgo some known features of the PicOS

11

13

15

application.

MODULE mai n
VAR
interrupt : word[5];

NODE1 : nodel(interrupt);

ASSI GN
interrupt := 0b5_0;

MODULE nodel(interrupt)
VAR
id: 0..100;
event: word[10];
pcb : pcb(id, event);
s : shared(pcb , event,
sch: schedul er(id, pch);

MODULE schedul er(currentl D ,
ASSI GN

init(currentlD)

next (current| D)

0;

interrupt);

pch)
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case
next (pch.lock) : currentlD

pcb.lock : O;
TRUE : (currentID+1l) nod 1
esac;

MODULE pcb (id, event)
DEFI NE
| ock := Test. | ock;
VAR
Test : test(0, id, event);

MODULE shared(pcb , event, interrupt)

VAR
internal : word[5];
ASSI GN
internal := 0b5_O0;
event := interrupt::internal

MODULE test(pid, id, event)
DEFI NE
lock := state=S1 | state=S2 | state=START
VAR
pevent : word[10];
pstate : array 1..10 of {START, Sl1, S2};
state : {START, S1, S2, wait, ready};
nextstate: {START, S1, S2};
timer @ 0..1000;
tstate : {START, S1, S2};
ASSI GN
init(state) := ready;
init(nextstate) := START;
pevent := 0bl0_O0;

timer :=0 ;
next (nextstate) :=
case
state = START : S1i;
state = S2 : S1;
TRUE : nextstate;
esac;
next (state) :=
case
state = wait & ( (event & pevent) != 0b10 0 | tiner=1)
ready;

state=ready & pid=id : nextstate;
st at e=START : ready;
state=Sl1 : S2;
state=S2 : ready;
TRUE : state;
esac;

Listing 3.6: NuSMV Model For 1-Node 1-Process ValidatiorsiTe
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Based on what is illustrated in Figure 3.7 and Listing 3.5 hvese five behavioral features about
the execution sequence of the states in the application.rg¥efade sure about the correctness of the
expectations by testing the PicOS application. Then, weentte specifications for these behavioral
expectations for which we want to check our model. Followiage the list of the expectations and

their specifications.

e The process never goes to sleep (wait state).
SPEC !|EF(NODE1.pcb.Test.state = wait);

e Ifthe processis in state S1, it will always go to state S2 resn without releasing the CPU.
SPEC AG(NODE1.pcb.Test.state = S1 — AX(NODFE1.pcb.Test.state = S2));

e Ifthe process is in state START or S2, it releases the CPU andrbes ready immediately.
SPEC AG((NODE1.pch.Test.state = START | NODE1.pcb.Test.state = S2) —
AX(NODE1.pch.Test.state = ready));

e The process will eventually reach a situation after whiststate will never change to START
again.
LTLSPEC F(G(NODE1.pcb.Test.state! = START));

e The state of the process will eventually become state Sla#iadthat it will cycle in states
S2 and S1.
LTLSPEC F(NODE1.pcb.Test.state = S1 & F(NODE1.pch.Test.state = S2 &
F(NODE1.pcb.Test.state = S1)))

If our model is compatible with the main PicOS applicatidrg tnodel checker will show that all
the above mentioned specifications are true. If not, we shgaithrough the features, specification,
modeling steps and guidelines to see what causes the intibitifya

This example is just a very simple one which could show theembness of our modeling ap-
proach for this single process application. However, ineoitd enhance our confident about the
correctness of our modeling guidelines in modeling any kih®icOS application, we need to do
the same steps for more complex applications with more ge@seand examine various specifica-
tions on the models.

We designed a set of test applications and specificationsisedithem to verify our guidelines
based on our modeling assumptions. We checked the corsistémodel and intended PicOS

kernel behavior by trying the following problerhs

e At most one process should be running at a time.

5For each of these problems many test cases were designetenied against specifications. The more test applications
and specifications we examine, the more we become confident #ie correctness of our modeling schema. However, we
decided not to include the detailed test cases for eachgmobince it would take too many pages.
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e The priority of the processes for being scheduled are acogtd their order in PCB; the later

a process is instantiated in a PicOS application, the higherity it will have.

e Processes in a node can communicate with each other jussbings“when” and “trigger”

statements.
e All processes waiting for an event should be notified wheretrent is triggered.
e The execution of each running state should take only one step

e Each Process should stay locked (running) only for one stdgss its running state contains
the sameas statement (resulting to a jump to another rurstéig and keeping the lock for

one more step).

e When multiple events and/or interrupts occur at the same,téach process handles at most
one of them. If the process is not waiting for those eventgribres them all, if it is waiting

for one or more of them, it picks the one with the lowest cqroesling bit®.

3.6 Applying The Schema For PicOS Application Analysis

In the previous section, we defined different specificatfionshecking the correctness of our model
and making sure that when we model a PicOS application, théehand the main application
behave the same way. In this section we want to benefit frontahectness of our models, by
using our model in verifying PicOS applications.

Employing our modeling approach for PicOS systems verifioais somehow the opposite of
what we did for checking the correctness of modeling guigsli For verifying the modeling guide-
lines in the previous section, we had PicOS applicationsvemavanted to prove that the derived
models are compatible to the main applications. But in taigien, we assume that our modeling
guidelines are correct and behave the same as the modeléchéipps, and we want to employ it
to check if a PicOS application meets some desired featunesto For this purpose, we create the
NuSMV model of the application and model check the model efRitOS system. Since modeled
behavior is the same as the original PicOS behavior, the®maplication is correct if and only if
the specifications (i.e. the expected behaviors) are ellua true for the model.

In order to show how we can employ our modeling solution faify@g PicOS applications,
we explore a sample PicOS application in this section. Oopdanis adopted from an example in
PicOS documentation [3]. The sample is a single node Pic@&cation which has two processes
named One and Two. The processes want to play a ping-pong g@msignals in which One
triggers an event awaited by Two ant Two replies by trigggen event awaited by One, and so on.

The state diagram of the application is illustrated in FegBi8.

6ln NuSMV model each event and interrupt is assigned a bit hail priority is decided based on to which bit of the
events they have been assigned.
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Figure 3.8: Example With Error

Listing 3.7 contains the implementation of the the appi@atn PicOS language. In this ap-
plication, each of the processes has three entries nameB IS TAOOK and GOTIT. Receiving the
expected event, a process wakes up in GOTIT entry, trighers\tent awaited by the other process
and then proceeds to LOOK entry. In the LOOK entry, the preeests for the expected event to

go again to GOTIT entry. These steps are taken by both of #tessto play the game.

#i ncl ude ?sysio. h?
#def i ne EVENT1 (&red)
#defi ne EVENT2 (&green)
byte red, green;

fsmone() {

entry ONE_START:
sanmeas(ONE_GOTI T) ;
entry ONE_LOCK:
when (EVENT1, ONE_GOTIT);
rel ease;
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entry ONE_GOTIT:
trigger (EVENT2);

proceed( ONE_ LOCK);

}

fsmtwo() {
entry TWO _START:

sanmeas( TWO_ LOCK) ;
entry TWO_ LOOX:
when (EVENT2, TWO GOTIT);

rel ease;

entry TWO GOTIT:

trigger (EVENT1);
proceed (TWO_ LOOK);

}

fsmroot() {
entry INT:
runfsm one;
runfsmtwo;
r el ease;

Listing 3.7: PicOS For Example With Error

In order to examine this application to see if it has the @esproperties, we should first model
the application in NuSMV. The model of the application actiog to our guidelines is presented in

Listing 3.8. Having the NuSMV model, now we can write speeifions for the properties we want
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to check.
MODULE mai n
VAR
i nterrupt wor d[ 5] ;
NODE1 : nodel(interrupt);
ASSI| GN
interrupt := 0b5_0;

MODULE nodel(interrupt)

VAR

id: 0..100;

event: word[10];

pcb : pcb(id, event);

s : shared(pcb , event, interrupt);

sch: schedul er(id, pch);

MODULE schedul er(currentl D, pch)

ASSI GN

init(currentiD) := O;

next(currentID) :=

case
next ( pch. | ock) current | D;
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pcb.lock : O;
TRUE : (currentlD+1l) nod 2;
esac;

MODULE pcb (id, event)
DEFI NE
lock := ONE.lock | TWO. | ock

VAR
TWO : two(O0, id, event);
ONE : one(1l, id, event);

MODULE shared(pcb , event, interrupt)
VAR
internal : word[5];
ASSI GN

init(internal)
next (i nternal)
case
next (pch. ONE. st at e)
next (pch. TWO st at e)

0b5_0:;

GOTI T : 0b5_10;
GOTI T : 0b5_1;

TRUE : 0b5_0;
esac;
event := interrupt::internal

MODULE one(pid, id, event)
DEFI NE
lock := state=GOTI T | state=LOOK | stat e=START;

VAR
pevent : word[10];
pstate : array 1..10 of {START, GOTIT, LOOK};
state : {START, GOTIT, LOOK, wait, ready};
nextstate: {START, GOTIT, LOOK};
tinmer : 0..1000;
tstate : {START, GOTIT, LOOK};

ASSI GN
init(state) := ready;
init(nextstate) := START;
i nit(pevent) := 0bl0_O;
timer :=0 ;
next (pevent) : =
case
state = wait & (event & pevent) !'= 0bl10 O | tiner=1)
b10_O;
state = LOOK : 0b10_1;
TRUE : pevent;
esac;
next (pstate[1]) :=
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case
state = LOOK : GOTIT;
TRUE : pstate[1];
esac;
next (nextstate) :=
case
state=wait & (event & pevent & 0b10_1)!= 0bl0 0 : pstate
[1];
state = GOTI T : LOCK;
TRUE : nextstate;
esac;
next (state) :=
case
state = wait & ( (event & pevent) != 0b10_0 | tiner=1)
ready;
state=ready & pid=id : nextstate;
state=LOOK : wait;
state=COTI T : ready;
stat e=START : CGOTIT;
TRUE : state;
esac;

MODULE two(pid, id, event)
DEFI NE
lock := state=GOTI T | state=LOOK | stat e=START;

VAR
pevent : word[10];
pstate : array 1..10 of {START, GOTIT, LOOK};
state : {START, GOTIT, LOOK, wait, ready};
nextstate: {START, GOTIT, LOOK};
tinmer : 0..1000;
tstate : {START, GOTI T, LOOK};

ASSI GN
init(state) := ready;
init(nextstate) := START;
i nit(pevent) := 0bl0_O;

timer :=0 ;
next (pevent) : =
case

state =wai t & (event & pevent)!= 0b10 O | tiner=1) : 0bl0 O

state = LOOK : 0b10_10;
TRUE : pevent;
esac;
next (pstate[2]) :=
case
state = LOCK : GOTIT;
TRUE : pstate[?2];
esac;
next (nextstate) :=
case
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state = wait&event &event &0b10 10)!= 0b10 0 : pstate[2];
state = GOTI T : LOOK;
TRUE : nextstate;

esac;

next (state) :=

case

state = wait & (event & pevent) !'= 0bl10 O | tiner=1)
ready;

state=ready & pid=id : nextstate;
state=LOOX : wait;
state=COTI T : ready;
stat e=START : LOOK;
TRUE : state;
esac;

Listing 3.8: NuSMV For Example With Error

One of the interesting properties for this application isheck whether a deadlock may occur
or not. We can write a specification for this property as folo
SPEC |EF(pcb.ON E.state = wait & peb. TW O.state = wait)

This result of executing this specification on the model glilbw whether there is a state in this
application in which both processes are in wait states arlfitite specification is evaluated to true,
our application may trap in a deadlock situation since whath processes are waiting for the other
process, no further events will be triggered and no chantieeistates of the processes will happen.
If it is evaluated to false, no deadlock will occur in the @palion and the processes will play the
ping-pong game as long as the application is running.

Running this specification, the NuSMV returns false valuécWindicates that a deadlock situa-
tion may happen when executing our application. In additioe NuSMV returns a counter example
which shows how the specified state is reached from thelistage. Using the counter example, we
can find out by which scenario the application goes to theldekdituation. The counter example

for our specification is presented in Figure Listing 3.9.

-> State: 1.1 <-

interrupt = Oud5_0

NODELl.id = 0

NODEL. event = Qudl10 O

NCDEL. pcbh. TWO. pevent = 0ud10_0
NCDEL. pcb. TWD. pstate[ 1] = START
NODEL. pcbh. TWO. pstate[ 2] = START
NODEL. pcbh. TWD. st at e = ready
NCDEL. pcb. TWD. next st ate = START
NCDEL. pch. TWO. tiner = 0

NODEL. pcbh. TWO. t st ate = START
NODEL. pcbh. ONE. pevent = 0ud10_0
NODEL. pcbh. ONE. pstate[ 1] = START
NODEL. pcbh. ONE. pstate[ 2] = START
NCDEL. pcb. ONE. st at e = ready
NCDEL. pcb. ONE. next st ate = START
NODEL. pch. ONE. tiner = 0
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NODEL. pch. ONE. t state = START
NODEL. s. i nternal = Qud5_0
NCDEL. pcb. | ock = FALSE

NODEL. pcb. TWO. | ock = FALSE
NODEL. pcb. ONE. | ock = FALSE

-> State: 1.2 <-

NCDEL. pcbh. TWO. st at e = START
NODEL. pcb. | ock = TRUE

NODEL. pcbh. TWO. | ock = TRUE

-> State: 1.3 <-

NODEL. pch. TWO. state = LOOK

-> State: 1.4 <-

NODEL. pcbh. TWO. pevent = 0ud10_2
NODEL. pcbh. TWO. pstate[2] = GOTIT
NODEL. pcbh. TWD. state = wait
NCDEL. pcb. | ock = FALSE

NODEL. pcb. TWO. | ock = FALSE

-> State: 1.5 <-

NODEL.id = 1

-> State: 1.6 <-

NCDEL. pcbh. ONE. st at e = START
NODEL. pcbh. | ock = TRUE

NODEL. pch. ONE. | ock = TRUE

-> State: 1.7 <-

NODEL. event = Qud10 2

NODEL. pch. ONE. state = GOTI T
NODEL. s. i nternal = Qud5_2

-> State: 1.8 <-

NODEL. i d 0

NODEL. event = Qud10 O

NODEL. pcbh. TWO. pevent = 0ud10_0
NODEL. pcbh. TWD. st at e = ready
NCDEL. pcb. TWD. next state = GOTI T
NCDE1. pcb. ONE. st at e = ready
NODEL. pcbh. ONE. next state = LOXXK
NODEL. s. i nternal = Qud5_0
NODEL. pcb. | ock = FALSE

NODEL. pch. ONE. | ock = FALSE
-> State: 1.9 <-

NCDEL. event = 0udl10_1
NODEL. pcbh. TWO. state = GOTI T
NODEL. s. i nternal = Qud5_1
NODEL. pcb. | ock = TRUE
NODEL. pcbh. TWO. | ock = TRUE
-> State: 1.10 <-
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NCDE1. event = 0udl10_0

NCDEL. pcbh. TWD. st at e = ready
NODEL. pcbh. TWO. next state = LOXK
NODEL. s.internal = Oud5_0
NCDE1. pcb. | ock = FALSE

NODEL. pcbh. TWO. | ock = FALSE

-> State: 1.11 <-

NODEL. pcbh. TWO. state = LOOK
NODEL. pcb. | ock = TRUE
NODEL. pch. TWO. | ock = TRUE

-> State: 1.12 <-

NCDEL. pcbh. TWO. pevent = 0Qud10_2
NCDEL. pcb. TWD. state = wait
NCODEL. pcbh. | ock = FALSE

NODEL. pcbh. TWO. | ock = FALSE

-> State: 1.13 <-
NODEl.id = 1

-> State: 1.14 <-

NODEL. pch. ONE. state = LOOK
NODEL. pcb. 1 ock = TRUE
NODEL. pcbh. ONE. | ock = TRUE

-> State: 1.15 <-

NODELl.id = 0

NODEL. pch. ONE. pevent = 0ud10_1
NCDEL. pcb. ONE. pstate[1] = GOTI T
NCDE1. pcb. ONE. state = wait
NODEL. pcb. | ock = FALSE

NODEL. pch. ONE. | ock = FALSE

Listing 3.9: Counter Example For Example With Error

This deadlock is actually due to the behavior of proceeastahts. When a process issues a
proceed statement, it gives the other processes the chapce-empt the current process. There-
fore, based on the priorities of the running processes, tineeigt process may not get the CPU
immediately. In our case, when process One issues the ptatatement in GOTIT entry to go to
LOOK entry, process Two jumps in and gets the CPU. As a rdsoih of the processes will end up
in LOOK entry which results in deadlock.

A solution for this problemis to use sameas statementsadsiEproceed statements. By chang-
ing the proceed statements to sameas statements, we wéllehaew program which can then be
modeled in NuSMV. Running the same specification on the newahaeve get true answer which
means no deadlock will happen in the new application.

In this example, we selected a simple application and exagndmly one specification on it. As
you may notice, discovering the deadlock in this applicatiad not actually require this amount

of work since the application has only one execution pathwaactan find the deadlock just by
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execution the PicOS application. However, the goal of tkangple was to show how the model
checking process can be done on a PicOS application. For eoanplex applications which may

have many execution paths, it is hard or even impracticalmotihe application and trace different
paths manually. Therefore, using the approach we providéus project can facilitate the process

of examining various properties on PicOS applications.

3.7 PicOS Modeling Failure In Real Networks

The example provided in the previous section showed thaefirglschema can be used for mod-
eling PicOS applications which follows our modeling asstions, and can also verify behavioral

specifications on the model. However, our further attemptaadeling real sensor network PicOS
applications (e.qg. clustering algorithms [6]) revealeat tihe modeling schema fails in representing
an appropriate abstraction of the PicOS networks propditlytive intended behavior.

The original PicOS application, deployed on target netwpdannot be modeled properly, and
the model cannot be an appropriate representation of thiicafipn. That is mainly because of
our modeling assumptions and the different protocols Pic®& for inter-node communications
and specifically handling message conflicts. For instamca,rietwork of PicOS nodes, the nodes
broadcast their messages (same as the bit-wise interrgtomsidered for nodes) through radio
signals; accordingly, each node is capable of distingngslactual messages from noise signals.
Besides, the occurrences of message conflicts can be deteuiehandled in some way, such as
considering the conflicted messages as noises or selectipgoe of them to be received. These
are functionalities handled by physical and very low levet\work layers which are not considered
in our modeling schema.

If a network application is needed to be actually verified,single nodes applications should
contain the lower level networking logics, such as the caxphessage passing protocols, packets
prioritizing, and conflict handling strategies and all atlmver level networking algorithm. The
reason is that our modeling schema is capable of modelinicapipns for single nodes and can
provide some bits for inter-node communications. Howevgiincluding such networking details,
the size of the application to be modeled and the NuSMV mdselfiwould increase drastically,
the PicOS application would not be neat and understandalyimare, and the NuSMV model’'s
decision tree needs a huge memory to be checked againstpesaificaition.

We figured the infeasibility of PicOS modeling while tryimgrnodel check the clustering algo-
rithm [6] for a small network, three nodes connected as agtea Every single node should have
broad cast its state using either of the two main messagesayi)qg if it thinks it is a clusterHead
of a system, or 2) saying if the node is joined to another elusind the identifier of the head of
its cluster. Even though the algorithm implemented was ootgicated and the target network
was simple the model got too complicated and infeasible tdehoheck. The complexity of the

application was resulted from the message passing pret@@enhding appropriate packets, and ana-
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lyzing the received messages), transmitting long pacKebi$ was needed, 1 bit for distinguishing
the type of message, 2 bits for the ID of the source node, 2fditthe ID of the clusterHead to
which the node is joined), and scheduling the nodes for lmastihg in a conflict free environment
in asynchronous network (using coin flips when more than oessage was intended to be trans-
mitted over the channels, and also distinguishing messaijlespecific patterns starts and ends to
make sure those who are listening are not receiving exacbauof bits (7 bits) for each message
transmitted).

Accordingly, even for a small network of nodes running siengligorithms, the PicOS model is
too large to be modeled and infeasible to be model checkedlill Itesult to complicated applica-
tions and huge models, which even deciding about the rigdtiBpation reflecting their interesting
behavior is too hard. Consequently, in order to apply our@ggh for model checking sensor net-
work applications we need a more basic infrastructure fplaléng the applications, e.g. nodes,
which we can program based on what can be modeled in NuSM\@itdla framework for its ver-
ification. Therefore, the result would be an infrastructesgfiable at each step of its construction,
and could be extensible if the target extension could be hedde the reasoning environment. This

approach is pursued in this thesis and the framework is gealin the next chapter.
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Chapter 4

Framework

Our PicOS study reveals that we cannot model check real Papplcation with all communication
protocols and operating system details. The variety of iptespaths while executing processes
(based on the order of triggered events and messages orithigypof them in being handled) on
the one hand, and the broad range of lower level system b@hiavinter-node communications
(handling packet losses and conflict on communication chlahon the other hand, made even the
simplest PicOS systems too large to model check.

The challenge then becomes distilling the essence of a FiigG®System into a form that can
be feasibly model checked, and still has a useful actualemphtation with hardware. This led to

a simpler framework based on the following assumptions:

e All processes are pure finite-state machines.

Within a processor, processes execute independently,canohanicate via events.

Processes are responsible for their own scheduling byetrigg and handling events, and

there is no specific kernel level operating system logic f@rfizing.
e Nodes (i.e. processors) can execute asynchronously, andicat different speeds.

Nodes can communicate over the network composed of binayres consisting of lines

(continuous channels) between digital input and output.

Just like PicOS runs on real hardware, we want our simplifiedehto also be executable on
networks of small processing nodes, not the least so thatameobserve the actual behavior of
applications.

To achieve this goal, we selected Arduino microcontroltbeg are flexible enough to be pro-
grammed for network-based applications in a PicOS FSM piragring model. Arduino is an open-
source electronics prototyping platform that is able taseghe environment by receiving input bits
and can affect its surroundings by sending output bits. Tittki&ho boards include microcontrollers
that can be programmed using C++. They are roughly as polasfine nodes used to construct a

PicOS-based sensor network.
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Although radios are available for ArduinOS, we decided takweith a much simpler network:
physical wires between digital inputs and outputs. ThispdgmArduino-based system eliminates
the complicated packet sending protocols and replaces wWitnsimple communication channels
that look like 1-bit shared variables.

In PicOS, the state transitions are programmed in C and li&eknlormal C code. Converting
them into NuSMV models requires reasonably powerful coddyais. We thus decided to further
restrict the PicOS FSM programming language so that extigachodels was easier. We created
a domain-specific language (DSL) that enables one to wriatedriven finite-state processes that
communicate via events. Our major goal was to have a DSL shmanslatable to both Arduino
programs and their corresponding model for formal verificatThis has the advantage of ensuring
that both the executable code and the NuSMV model are censistVe call this combination of
DSL, model-checking, and executable code by the name A@fsiifnamework.

We now present more details about the ArduinOS framewoekDX8L and the translation pro-

cedures for extracting Arduino and NuSMV model of the or&jiprogram.

4.1 ArduniOS Architectural Model

In the ArduinOS platform, PicOS properties have been siiieplithroughout all existing architec-
tural layers. In this section, we explore the architectdr@rduinOS to see how the functionalities
of each PicOS layer have been distilled in the new framework.

Recalling from Section 3.3, we defined the PicOS architeahaluding two main layers of node
and network, where the node layer itself could be assumed@separate layers of Application
and kernel layers. While simplifying PicOS to create Ardd we kept the same functionality
modularization and hierarchy, while decreasing the lefdiails.

The application layer of the architecture contains the iappbn programmed in a finite state
machine style, almost identical to a PicOS application.

The kernel is heavily simplified. Since there is no actualrafieg system on Arduino devices,
the kernel layer logic must be implemented as some apmitdéiyer modules. That is, in Ar-
duinOS there is no specific boundary between the applicédiger and the kernel layer. We have
specific standard modules that take care of event handligm@tess triggering, with the following

characteristics:

e Processes have slots in a process control block in the aragnich they are instantiated.

e The scheduler iterates through the list of processes aratiatds them for execution one at a

time.

e When a process is waiting for a set of events, the first evaattightriggered will set the

corresponding next state for the process.
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e If some events occur simultaneously, their handling piyas based on the order in the per-

process waiting list.

The network layer contains all detail about internode comigations. In the PicOS architecture,
this layer is responsible for handling all message conflgasket passing, radio packets encoding

and etc. In the ArduinOS platform we simplify this layer it@hared-variable style:

e Nodes communicate over the network composed of binary eiamonsisting of 1-bit lines

(continuous channels) between digital input and output.
e Multi-bit messages are transmitted over parallel 1-bincteds.
e There are no interrupts that notify a processor about a ehamie input channels, changes

must be detected by polling.

4.2 ArduinOS Domain Specific Language

Our goal is to define a simple PicOS style programming langdagwriting applications for Ar-
duino devices. The goal is to generate executable Arduingram along with their equivalent

NuSMV models. We want our DSL to have the following propestie

e It should have an event-based notion.

The applications should be stateful.
e It should provide the possibility of waiting for events amidgering them.
e Like PicOS, the application elements should include preegsstates, and events.

e |t should only support those basic data types (integer, hitsl booleans) that have corre-

sponding models in NuSMV.
e Recursion and any nested method invocations that requieek t© execute are forbidden.
e It should be extensible for multi-node applications.
e It should have basic procedural control notions like cdonddl statements and while loops.

e |t should be able to generate executable code and checkallelsithat are mutually consis-

tent.

In general, it is quite difficult to translate arbitrary coidéo a NuSMV model, especially that
is feasible to check. We cannot model dynamically sizedabédess such as a string, stack or list,
they must have a fixed size. Only limited nesting of methotsdalpossible. All data structures

have to be expressed at the bit level, with every additioitaditentially doubling the state space
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of the model. However, it is possible to convert a highly niestd and stylized subset of C into a
model provided that we only work with data and controls tret be easily handled by a NuSMV
model. Based on this approach, the ArduinOS DSL is propasétttude a PicOS-style subset of
C of which applications are possible to be modeled thorguighNuSMV.

Recalling the example provided in Figure 3.2, Listing 4.4gants the intended ArduinOS repre-
sentation of the same behavior. The ArduinOS code is nea¢asylto understand. Comparing the
PicOS representation of the example (Listing 3.4) and itsesponding DSL program, it is easily
obvious that ArduinOS DSL is based on the same programmytg sf PicOS and reuses some
statements such as wait (a.k.a. when), delay and triggesidethat, it is simpler to understand
since the events and outputs are defined explicitly and thmutaiare single bits that their value can
be easily observed by connecting LEDs to the output portsréffamed some keywords to make
them easier to understand, e.g. ugetbinstead osameasand changedhento wait but kept their
semantic meanings; and also omitted some keywords anddunatities to make the language sim-
pler, e.g. proceed keyword is not included in ArduinOS. Ef@re, here we only focus on minimal
required set of functionalities to model while guarantgehmat anything programmed in ArduinOS

can be modeled in NuSMV using our proposed framework.

Node nodel{

out put o_red;
out put o_green;

event RED_EVENT,;
event CGREEN_EVENT;

process P_I NI T{
state SO0{
o_red =0;
o_green =0;
}
}

process RED {
state RED START{
got o( RED_ON) ;

state RED O\
ored = 1;
del ay(1024, RED OFF);

}
state RED OFF{

o red = 0;

trigger ( GREEN_EVENT) ;

wai t (RED_EVENT, RED _ON);
}

}

process GREEN {
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}

}

process root () {

}

st at e GREEN_START{

wai t (GREEN_EVENT, GREEN_ON);
}
state GREEN O\

o_green =1;

del ay(1024, GREEN_OFF);
}
stat e GREEN_OFF{

o_green =0;

trigger ( RED_EVENT);

wai t (GREEN_EVENT, GREEN_ON);
}

state ROOT_I NI T{
process P_INT,
process RED,
process GREEN;

}

Listing 4.1: ArduinOS For 1-Node 2-Process Blinker

Listing 4.2 and 4.3 present another example revealing alineensions of ArduinOS DSL Sim-

plicity. This application provides similar behavior as &g 3.3 but instead of being interrupt driven,

it uses the polling strategy. The reason is that, each messagmunicated in ArduinOS are through

bit-channels, and in order to be received, the destinataleshould be waiting for it, meaning that

the node should check its input channel continuously tofsaeyithing interesting has come. This

approach makes modeling easier in the sense that nodes khatthey are waiting for. Besides,

because of using bits as messages, we will not have to caonlse&leomplexities about packet struc-

tures?.

Node nodel{

out put o_I ed;

i nput i _chan_0;
i nput o_chan_0;

process P_I NI T{

}

process RED {

state SO0{
o_|led =0;
o_chan_0=0;

}

1PicOS multi-node applications were hard to implement stheestructure of the packets should have been set separately

and also make the corresponding NuSMV model drasticallypticated.
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state START{
got o(ON);
}

state ON{
o led = 1;
del ay(1024, OFF);
}
state OFF
o led = 0;
o_chan_0 =1;
del ay(1024, WAI T_FOR_| NPUT) ;
}
state WAI T_FOR | NPUT{
if (i_chan_0 ==0){
del ay(1024, WAI T_FOR_| NPUT);
}
el se{
o_chan_0 =0;
del ay(1024, ON);
}
}
}

process root () {
state ROOT_I NI T{
process P_INT,;
process RED,
}
}
}

Listing 4.2: ArduinOS Code For 2-Node 2-Process BlinkerdBld)

Node node2{
out put o_I ed;

i nput i _chan_0;
i nput o_chan_0;

process P_I N T{
state SO0{
o_led =0;
o_chan_0=0;
}
}

process GREEN {
state START{
got o( WAI T_FOR | NPUT) ;
}

state ON{

o led = 1;

del ay(1024, OFF);
}
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state OFF
o led = 0;
o_chan_0 =1;
del ay(1024, WAI T_FCR_| NPUT) ;
}
state WAl T_FOR_I NPUT{
if (i_chan_0 ==0){
del ay(1024, WAI T_FOR_| NPUT);
}

el se{
o_chan_0 =0;
del ay(1024, ON);
}
}
}

process root () {
state ROOT_I NI T{
process P_INT,;
process GREEN;

}
}

Listing 4.3: ArduiOS Code for 2-Node 1-Process Blinker (H&])

4.2.1 Stateful Node Specification Language

Processesuild the core of an AdruinOS application. A processor caretenumber of processes
each of which can have its own variables, and states. Thesdtat programmer defines in the body
of a process are called tlaetive state®f that process. In addition to the active states, the psoces
has two additional implied higher-level states used foesciting:readyandwait.

In the ready state, the process is ready to run and is waidibg fctivated and change its state to
one of the active states and performing the transition actefined in that state. If the process is in
its wait state, it is waiting for one or more events to happethat it can become ready. Accordingly,
each process acts like a state machine that starts at the gede, then become activated if it gets
the CPU, and may go to wait or ready state based on the spdoifjedin the related active state.
When the application starts, all of the processes are iryrstate, and can change their state to the
first defined state in their definition, which is thert state

Statesspecify the behavior of a process. Each state is a small cageent that specifies the
nature of the transition that the process will make. Thesgybal per-node variables as well as per-
process variables, which are available to all the statejsisbthe states in the process respectively.
Each state also has its own local variables which are iiziédlevery time the state is entered —
thus they are not persistent over state transitions, argrtake the model smaller.

The code fragment is composed of simple assignment statenifeelse, and while. The result

of a state transition is to change the values of persisteighlas and to set up the process to handle
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the events that will cause its next transition. Special afi@ns are used for this:

e wait(e, s)puts the process into the waiting state. When the event eadbe process changes

its state to ready, and then whenever the CPU is allocatdebtprbcess it can go to state s.
e delay(ms, sis similar, but the event being waited for is the timer exypiri
e trigger(e)causes event e to be signaled.
e goto(s)causes the process to directly jump to state s.

Eventsare the communication channels between processes. Ewaniré defined at the be-
ginning of the node specification can be triggered by anygsscunning in an active state. Timer
events are triggered behind the scenes on the expiratiotimea There is a timer for each process

that can trigger the time event for just that process, witlodlier processes being notified.

4.2.2 Type System

Our DSL has base types from NuSMV, suchiratsfor integers andooleanfor logical values. In
order to facilitate the definition of a sequence of variaptes DSL also supports arrays of bits to
be used for programming bit strings. Methods have a methuoel tyhich indicates the number and
types of its input arguments (a.k.a. parameters) and isiéype. Therefore, the methods can be
distinguished by only using their names as their signatOre method invocation, the number and
type of the input arguments must match the number of typeeppitameters in the definition of the

method.

4.2.3 Operational Interpretation of a DSL program

A program written in our DSL needs to be translated into amacArduino program in order to
execute.

Each process has a start state, which is the first state ttefirsed in the process body. When
execution of the application starts, all the processessa@yrto be activated at their start states. The
scheduler iterates over processes and decides which gingtess to activate next. An activated
process performs all the statements specified in the stalig bets the values for variables, sets the
events that the process should wait for, and/or triggersesmrants. It then goes to the wait state and
releases the processor.

Processes are always listening to the event triggers, sovtfenever an event is triggered by a
process, all the ones that are waiting for that event chamgedtate from wait to ready. Whenever
a process becomes ready it no longer cares about new evedtsinagply waits for its CPU turn to

be activated.
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{} groups a set of lines
[] indicates an array type of boolean or integer
(1) indicates a higher priority expression, (2) shows adfshethod arguments,
or (3) includes number of bits an int variable has.
/x x/ indicates a comment
end of the line
separates method parameters
indicates the include lines
is equal to,
! is not equal to
+, —, %,/ binary mathematical operators for numerical expressions
&&, || binary logical operators AND, OR
! unary logical operator NOT

—~
~—

R

Table 4.1: ArduinOS DSL Punctuation and operators

4.2.4 Lexical Elements

The basic tokens of the DSL are the following.

Keywords The keywords of this language are: node, event, input, aufsacess, root, state,
trigger, wait, delay, goto, return, int, boolean, if, elahjle, true, false.

Identifiers provide names for program elements: node, process, stat#, enethod, or variable.
An identifier is a case sensitive word that starts with an wswtere or letter and can be followed by
any number of letters, underscores and digits. Identifianaot collide with keywords.

Literals are constant values of integer or Boolean type. An intet@aliis either 0 or a sequence
of digits 0 to 9 not starting with 0; a boolean literal is truefalse. Each bit in bit strings can also
be 0 or 1 like a regular boolean variable.

Punctuation and Operatorsare used to form statements and expressions. Operatorgutegi
integers and booleans. Table 4.1 shows the list of punctuatnd operators that may occur in a
program written our DSL language.

White Space and Commentsre the usual lexical elements, with the usual non-nesfifig*d

comments.

425 Grammar

Here is the grammar of the DSL expressed in the usual BNF form:
— — means the left hand side non-terminal can be replaced byghehand side set.
— Non-terminals are printed in bold typewriter font. e Expression

— Terminals are shown inside ", e.g., “node”.

— X 7 means zero or one occurrence of X.

— X * means zero, one or more occurrences of X.
— | indicates alternatives.

— () groups multiple syntactical elements.
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NodeDefinition

IncludeHeader
EventDeclaration
I/ODeclaration
VarDeclaration
ProcessDeclaration
RootProcessDeclaration
MethodDeclaration

StateDeclaration
Type

Statement

Expression

Identifier

I

—

—

(IncludeHeader)x “node” Identifier “{”

(EventDeclaration| I/ODeclaration | VarDeclaration)x
(ProcessDeclaratiof+ RootProcessDeclaratiorfMethodDeclarations “ }”

“#” “include” Identifier *;”

“event” Identifier *;”

(“input” | “output”) Identifier (“[* Expressiort']”)¢,";"

Type Identifier *;"

“process’ldentifier “{” (VarDeclaration)x (StateDeclaration)x “ }”

“process” “root” “{” “state” “ROOT_INIT” “ {" (“process”Identifier ;") =“}" “ }”
Type Identifier “(” ( Type Identifier (“,” Type Identifier )« )7 “)”

“{” (VarDeclaration)x (Statemen)« “return” Expression®;” “ }"

“state” Identifier “{" (VVarDeclaration)x (Statemen}x “ }"

“int”* [" Expressiorf]”

“boolean” “[" Expressiori]”

“boolean”

| “int”

| Identifier

“{” ( Statement)* “ }”

“if”* (" Expression“)” Statement“else” Statement

“if”* (" Expression“)” Statement

“while” * (" Expression“)” Statement

| Identifier “=" Expression“;”
| Identifier “[* Expression“]”“
| “trigger” “ (" Identifier “)”
“wait” “ (" Identifier “,” Identifier “)”

“delay” “ (" Expression®,” ldentifier “)”

| “goto” “ (" Identifier “)”

Expression(“+" | “=" |“/" | “x") Expression

| Expression(“&&” | “||" [ “<” | “>" | “=="|"“l =") Expression
| Expression®“[” Expression“]”

| INTEGER_LITERAL)

“true”

| “false”

| Identifier

“I” Expression

“(" Expression“)”

(IDENTIFIER)

=" Expression“;”

Table 4.2: ArduinOS DSL Grammar
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4.2.6 Program Construction Constraints

The usual rules, such as about type consistencies in stateraed expressions, are the same as
the ones used in C/C++ languages. There are some additiomalid specific rules, regarding the
specification of nodes, processes, states, and also thiaiatssin scope and usage and declaration
of variables and methods. In this section we provide theseailo specific semantic rules while

organizing them in cohesive groups.

Include files

— In order to reuse the code written in other node specificatithe related files can be included at
the beginning of a node specification. Accordingly, all tieele elements defined for the included
source files will be assumed to be defined also in the desimatide specification. For example,
if B.node includes A.node, it is recognized such that allélements defined in A are copied in B.
Besides, all semantic rules regarding restrictions on ngitfiie elements will be applied on resulting

B, e.g., no two elements can have the same name.

Process Declaration

— Processes must have distinct names.

— If the node has no processes, it does nothing.

State Declaration

— States of a process must have distinct names.
— If the process has no states, it does nothing.
— A single transition consists of executing the statemerdisided in the state block, including the

ones after a wait or delay method.

Built-in Functions

— All the event arguments used in methods trigger and wait imeistefined in the node.

— All the states used in built-in methods delay and wait musidfened in the process.

— Invoking trigger(e) means the flag for event e is raised andésgnizable by all the processes
that are waiting for that event.

— Invoking wait(e, s) means event e is added to the list of ev#h@ process is waiting for, and if
that event occurs, the process becomes ready to be wokerstgieas.

— Invoking delay(ms, s) means the built-in time event is adietthe list of events the process is
waiting for, after ms milliseconds the time event would bgdgered, the process becomes ready to
be woken up at state s.

— If the process recognizes one of the events it is waitingtfgnes to ready state and does not care

about the occurrence of other events.
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Event Declaration and Usage

— All the events being triggered or waited for by processesstrbe defined at the beginning of
node specification.
— Events must have distinct names.

— Timer events are pre-defined and implicit in the node speti@n.

Variable Scope

— Variables can only be defined at the beginning of the relategss, e.g., in all of the node variables
should be defined after events.

— Variables defined in the node can be seen by all processegh@indtates) and methods.

— Variables that are accessible in each scope must haveadiséimes.

— Variables are read-only in methods but can accept valudeibady of processes’ states.

Method Declaration and Usage

— Methods can only be declared at the end of the node spedaificati
— Methods declared in the node can be seen by all processeth@nstates) and methods.
— Methods must have distinct names.
— Return type of the methods can only be int or boolean. Soriayand Boolean arrays cannot be
returned as a result value of a method. In other words, wevdhe methods just to return a basic
type as their resulting value.
— Method overloading, several methods with the same namdfferaht parameters list or different
return types, is not allowed.
— Method invocation is not allowed inside a method. In otherdsoin the body of a method, we
can just use the inline statements and cannot invoke anyosiéthuse their functionalities. This
also means that our DSL does not support recursive methods.
— Methods can have the access to the variables defined in tledmoebd them, but not for assigning
values to them.
— There is just one return expression right at the end of théoaedeclaration.
— The compiler sees the methods as inline statement, a.ka@oma herefore, it is like the body of
the method is moved to the place where it is invoked.

We now describe the step-by-step translations that ocoan & DSL program to NuSMV and
to executable Arduino code. The main difference in processaused by the granularity of a C
program compared to a NuSMV model. they are both based oa stathines, but the source
program execution is procedural while NuSMV model updategsavariables at the same time
and has no notion of sequential execution of the lines of c@tethe other hand, the state model
notion and the event triggering and process notificatiomatalirectly defined in Arduino, but the

sequential execution is the same for both languages.
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4.3 Translating into NuSMV Models

Much of our experience in the previous PicOS modeling egercan be reused. For each node
program the NuSMV model must contain the node pcb, schedilareVariables and all processes
defined in the program. Therefore, while modeling Arduin@8lzations we use almost the same
modeling guidelines provided in Appendix A. However, siice PicOS modeling guidelines are
scattered and hard to follow, we presented an easy to follaine of the general process of ex-
tracting the NuSMV model from the ArduinOS program, see Aqujie B. Besides, the ArduinOS
modeling procedures contains slightly changed based ohis/recluded in ArduinOS DSL:

e In ArduinOS DSL we are allowed to use “if” and “while” statemnts, whereas in PicOS we
did not include those in our modeling guidelines. Theseegtants affect on the control flow
of the program and cannot be translated to only a singlexstgpble assignment rule. For
instance, the body of a while loop may executed more than andeherefore the translator
should simulate these steps and possible control flows iNt#&MV model. Accordingly, a
process may stay in a running state for more than one stepea$i@ PicOS modeling we

assumed that each running state is executed in a single step.

e In ArduinOS we assumed that the inter-node communicati@gassible through uni-directional.
Therefore, the interrupt-based communications are ndadiec! in ArduinOS modeling. In-
stead, for each connection between a pair of nodes (u,v)utvirairectional channels are
required, and accordingly each node needs a pair of inpiptidbpins for each of its connec-

tions to other nodes.

At last, note that the translation process is provided ingxmix B, however, it excludes network
element modeling. The reason is that The network elemembasjuivalent in the node program
and its logic resides in the connections between nodes.hkr etords, the information about the
network of the nodes is actually provided by wiring up the éind nodes together. The hardware
connections need to be specified and be modeled separhiglyspect will be discussed in Section
4.5.

Listing 4.4 presents the generated code for the ArduinOSplaprovided in Listing 4.2. The
NuSMV model also includes two nodes connecting through aesitional channél The goal of
presenting the NuSMV model of this application is to provadeexample of modeling network
graphs and representing how input and output ports shoutddakeled in each Node element in the

model.

sl MODULE mai n
VAR

2we did not provide the NuSMV representation of the secona rsinkce it was mostly similar to the first one.
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13

15

17

19

21

23

25

27

29

31

33

35

3

39

41

43

45

47

49

51

53

i nterrupt

NO o led : {0,
NO_o chan_0 : {
NO_i _chan_0 : {

N1_o | ed:
N1_o chan_0 : {
N1_i_chan_0 : {

NO
N1 :

ASSI GN
i nterrupt
NO_i _chan_O :
N1_i _chan_O

MODULE node_NO(i nt
VAR
currentld :
event wor d[ 2] ;
pcb :
shared :
o_chan_0,
schedul er

MODULE node_NO_PCB(currentld

DEFI NE
| ock
VAR
p_init
o_chan_0,
p_red:
o_chan_0,

= p_init.|

o_|
o_|

MODULE node_NO_Shar edVari abl e(pcb
o_Il ed)

o_chan_0,
VAR
i nt er nal

ASSI GN
init(internal)
application

event

init(o_chan_0)
init(o_led):= 0;

next (o_chan_0)

node_NO( NO_
node NI1(N1_

node_NO_PCB(currentld
node_NO_Shar edVari abl e( pcb
o_led);

node NO_Schedul er(currentld ,

node NO_process_p_init(O,

node_NO_process_p_red(1,

.= 0b1_O; --

i nterrupt

word[ 1] ;

1}
01
01

1};
1};

{o, 1};

0, 1};
0, 1};

i _chan_0, NO_o_chan_O,
i _chan_0, Nl1_o_chan_O,

NO_o | ed);
N1 _o | ed);

0b1_0;

N1_o chan_O;
NO_o_chan_QO;

erruBt, i _chan_0, o_chan_0, o_led)

0..3;

event, i _chan_0, o_chan_O,

event, interrupt,

o_led);
i _chan_0,

pch);

event, i_chan_0, o_chan_0, o_led)

ock | p_red.lock

currentld, event, i_chan_O,
ed);
currentld,

event, i _chan_O,

ed);

SharedVariable------------------
event, interrupt,i_chan_O0,

word[ 1] ;

no event is issued in the

i nt er nal

0;
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67

s

83

85

87

89

91

93

95

97

99

103

case
pcb.p_red.state
pcb.p_red.state
TRUE : o_chan_Q0;
esac;

OFF:. 1;
WAIT FOR INPUT & i _chan_0 =1: O;

next (o_| ed)
case

pcb.p_red.state = O\ 1;
pcb.p_red.state = OFF: 0;
TRUE : o_|l ed;
esac;
------------------ Scheduler------------------
MODULE node_NO_Schedul er(currentld , pcb)
ASSI GN
init(currentld) := 0;
next (currentld) :=
case
next (pch. | ock) currentld

TRUE : (currentld + 1) nod 2; --only two nodes are in pcb
esac;
------------------ pinit------------------
MODULE node_NO_process_p_init(pid, currentld, event, i_chan_O,
o_chan_0, o_led)
DEFI NE
lock := state !'= wait & state != ready;
VAR
pevent wor d[ 2] ;
pstate : array 0..2 of {s_init};
state : {s_init, wait, ready};
nextstate : {s_init};
timer 0..10;
tstate : {s_init};
ASSI GN
init(state) := ready;
init(pevent) := 0b2_0;
init(timer) := 0;
next (timer) := 0;
next (pevent) := 0b2_0;
next (state) :=
case
state = wait & ((event & pevent) !'= 0b2 0 | tinmer = 1) r eady
state = ready & pid = currentld : nextstate;
state = s_init wai t ;
TRUE : state;
esac;
------------------ pred------------------
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107

109

111

113

117

1

=

9

121

123

127

129

133

139

141

143

149

151

153

155

MODULE node NO_process p_logic(pid, currentld, event, orientation
,i_chan_0, o_chan_0, o_led)

DEFI NE
lock := state !'= wait & state != ready;
VAR
pevent wor d[ 2] ;
pstate : array 0..2 of {START, ON, OFF, WAIT_FOR | NPUT};
state : {START, ON, OFF, WAIT_FOR I NPUT, wait, ready};
nextstate : {START, O\, OFF, WAI T_FOR I NPUT};
timer 0..1024;
tstate : {START, ON, OFF, WAI T_FOR_| NPUT};
ASSI GN
init(state) := ready;
init(nextstate) := decide;
i nit(pevent) := 0b2_0;
init(tinmer) := 0;

next (tinmer) :=;

case
state
timer
state
state
state
state
TRUE :

esac;

wait & ((event & pevent) !=0b2 0 | timer = 1) : O;
0 : tiner - 1;

ON : 1024,

OFF: 1024,

WAI T_FOR_INPUT & i_chan_0=0 : 1024;

WAI T_FOR_INPUT & i_chan_0=1 : 1024,

timer;

next (tstate) :=

case
state
state
state
state
TRUE :

esac;

ON : OFF;

OFF: WAI T_FOR_| NPUT;

WAI T FOR INPUT & i _chan_0=0 : WAI T_FOR | NPUT;
WAIT FOR INPUT & i _chan 0=1 : ON
t st at e;

next (pevent) :=0b2_0;
next (nextstate) :=

case
state
state
state
TRUE :
esac;

wait & (event & pevent & Ob2_01) !
wait & (event & pevent & 0b2_10) !
wait & tiner = 1 : tstate;
next st at e;

0b2 0 : pstate[1];
0b2_0 : pstate[2];

next (state) :=

case
state
state
state
state

= wait & ((event & pevent) !'=0b2 0| tiner = 1) : ready
=ready & pid = currentld : nextstate

= START : ON

= ON: wait;
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state = OFF : wait;
state = WVAIT_FOR INPUT : wait;
TRUE : st at e;

esac;

-- Simlar text for Node 2 onitted for brevity ...

[

w

©

13

15

17

19

21

23

25

27

29

Listing 4.4: NuSMV Model For 2-Node 1-Process Blinker

4.4 Translating into Aurduino Code

Translating a program written in the DSL to an executableuiird program is straightforward.
Since the code for a state transition is essentially C cdtthat is really required is to provide a
library of functions that provide the functionality of theteduler and event manager, and imple-
mentations for the primitives like wait(), trigger(), ef€his is not particularly challenging, and the
only thing that should be considered while translating theéunOS into executable Arduino is to
include the PicOS-based underlying structure for perfogwiernel behaviors. For instance, when
an event is triggered all processes waiting for the eventilshioe able to recognize it and update
their status accordingly. We omit the translations defadls) here and explain them in Appendix C.

Listing 4.5 presents the generated code for the ArduinO8pleaprovided in Listing 4.2.

template <class T, int N>

cl ass nyVector {
T elenents [N ;
int capacity;
int currentl ndex;

public:

nmyVector (){
capacity = N
current | ndex =0;

}

void add(T val ue) {
el ement s[ current | ndex] = val ue;
current | ndex++;

void clear(){
for (int i=0; i<currentlndex ; i++) {
el ements[i] = NULL;
}

current | ndex =0;

}

int size(){
return currentl ndex;

}

T get(int x) {
return el ements[x];

}
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}s

cl ass Process {
public:
int timer ;
int tinmeState;
nyVector <int, MAX_EVENTS> waitingStates
nyVector <int, MAX_EVENTS> waitingEvents
i nt next St at e;
int state;
virtual void run(int & chan 0, int & chan 0O, int & led) =

Process() {
timer =0 ;
state =ready;

}

1

class P_INIT : public Process {
public:
enum activeState { s_init };
activeState activestate;

P INT()
Process(){
nextState = s_init;

}

void run(int & chan_0, int & chan_0, int &o_|ed){
if (state==ready) {
activestate = (activeState) nextState;
state = active;

}

el se return;

switch (activestate) {
case s_init:

o_led =0;
o_chan_0=0;
br eak;

def aul t

}

state = wait;

}s

class RED : public Process {

public:
enum activeState { START, ON, OFF, WAI T_FOR_I NPUT };
activeState activestate;
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ss|  RED()
: Process(){
87 next St at e = START;

}

void run(int & chan 0, int & chan_0, int & |ed){
9 i f (state==ready) {

activestate = (activeState) nextState;

% state = active;

}

95 el se return;

89

o7 deci deCase:
switch (activestate) {

9 case START:
activestate = ON,
101 got o deci deCase;
br eak;
103 case ON
o led = 1;
105 timer =1024;
ti meSt at e=OFF;
107 br eak;
case OFF:
109 o red = 0;
o_chan_0 =1;
111 timer =1024;
ti meStat e=WAI T_FOR | NPUT;
113 br eak;
case WAI T_FOR I NPUT:
115 if (l _Chan_O ==O){
ti mer=1024;
17 ti meState=WAI T_FOR | NPUT) ;
}
119 el se{
o_chan_0 =0;
121 timer =1024;
ti meSt at e=ON;
123 }
br eak;
125 def aul t
127 }
state = wait;
129 }
131 } )

133 myVect or <Process*, MAX PROCESSES> pchb;

wsvoi d trigger (int event)({
for (int i=0;i<pch.size();i++){
137 for (int e=0;e<pcb.get(i)->waitingEvents.size();e++){
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i f(pcbh.get(i)->waitingEvents.get(e) == event){

139 pcb. get(i)->nextState = pch.get(i)->waitingStates.get(e);
pcb. get (i)->waitingEvents. clear();
141 pcb. get(i)->waitingStates.clear();
pcb. get (i)->timer =0;
143 pcb.get(i)->state = ready;
}
145 }
}
1/17}

| voi d gl obal Ti nertick(){

del ay(100); // added to nake the behavi our observabl e
w|  for (int i=0;i<pchb.size();i++){

i f(pcb.get(i)->tinmer !'= 0){

153 pcb.get(i)->tinmer = pcb.get(i)->tinmer - 1;
i f(pcbh.get(i)->timer == 0){
155 pcb. get(i)->nextState = pch.get(i)->tineState;
pcb. get (i)->waiti ngEvents. clear();
157 pcb. get(i)->waitingStates.clear();
pcb. get(i)->state = ready;
159 }
}
161 }
}

voi d setup(){

5| pi nMode( QUTPUT_PI NO, OUTPUT) ;
pi nMbde( OQUTPUT_PI N1, OUTPUT) ;
pi nMbde( | NPUT_PI NO, | NPUT) ;
‘ //the PCB el enent

1| pcb.add(new p_init());
pcb. add( new RED());

173}
s voi d 1 oop(){

for (int i=0;i<pch.size();i++){
177 /lread frominputs

i _chan_0 = digital Read(| NPUT_PI NO) ;

pcb. get(i)->run(i _chan_0, o_chan_0, o _|ed);

/I updat e the outputs
183 digital Wite(OUTPUT_PINO, o_led);
digital Wite(OUTPUT_PI N1, o_chan_0);

gl obal Tinertick(); /'l ticks every process

Listing 4.5: C++ Code For Arduino Executable (Node 1)
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4.5 Covering the gap between real world application and Ar-
duinOS NuSMV model

Every program written in our DSL includes the logic for a $engode behavior. This is used to
generate the code for a single node. On the other hand, th&MufSodel needs to contain the
model for all the nodes in the network. It needs to know hownitb@es are connected to each other,
if the nodes move in the network, and etc. so that it can cHehk icomplete distributed application
can satisfy requirements on that specific topology. Theeefall network related information that
cannot be assumed locally by each node must be added to tHd\Wo®del. Following are some
issues that should be considered before performing the insbéeking procedure on the NuSMV

model.

Network topology

Information about the network topology is neither prograsalim the DSL program nor in anywhere
else. This should directly be resulted from the deployméapplication on a set of nodes, and how
the nodes are connected. Therefore, in order to have a cte\SMYV of the network application,
we need to somehow feed the information to the model. A useilita with NuSMV modeling
can simply modify the main module of the model and build thievoek graph model. However, in
order to have a more user friendly interface, the DSL couleXtended to define the structure of the
network and saying what application should be deployed oh eade, and therefore the translator
should be able to integrate those information into the tamgedel. In either way, the followings
should be presented to the NuSMV model. Assuming the neta® graplG(V, E) whereV is

the list of nodes and in the list of channels:

e Forallv € V, vshould be initialized. The list of nodes in the networkd #imeir corresponding
node definitions (.node file) should be set. The applicatipioaded on each target node

should be known while initializing the node in the NuSMV mbde

e Foralle = (v,u) € E a pair of input and output channels are needed for each ofdties)

so that vinput = uoutput and unput = v_.output.

e Depending on the applications defined for each node, if thdem@eds to know about its
input or output degree in the network, this information dbddue passed to the node while
initialization. The degree of the node in the network is dilferesulted from the structure of
the network and cannot be locally realized by each nodegsarités passed to the node from

the beginning.
Unique identifier

In some algorithms, each node in the network needs to havigaaiidentifier. Since each node does

not have any notion about the uniqueness of the ID, it is demsd as network-layer information
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and should be set while initializing the network. Therefovkile initiating the nodes in the network,

for nodes requiring an ID, a unique number should be passt toode.

Dynamic Network Topology

In real networks, the network topology may change over tifRer instance, a node runs out of
battery and is deleted from the network, some links get diseoted over time, and then reconnect.

In ArduinOS framework, we can also include topology chantgesome extent. We assumed
that even before the execution we know how the topology iagyto change and we know exactly
when this change is happening. In that case, we can exterdus¥MV model so that we can check
our algorithms for dynamic topologies too.

Dynamism of network is a time-based property of the apgbeat In order to model such a
property, a counter must be modeled so that it increaseschtst@p, and sequences the change in
topology.

In order to model the time-based topology changes in NuSki&/,following steps should be
done while defining the network. In this regard, we assum@nitial network topology is the graph
G(V, E), and it wants to change @ (V’, E’) atith step:

e Forallv € (VUV’), vshould be initialized.
e Foralle = (v,u) € (E'U E') the link should be modeled as follows:
— If e € E ande € E’, we have vinput = uoutput ( and unput = v_.output ), and we call

it a regular link.

— If e € E ande ¢ FE’, we should have a conditional assignment for the inputs aoifth
counte < i v_input = woutput unless snput = null (and so for Linput channel). We

call such link a deleted link.

— If e ¢ E ande € E’, we should have a conditional assignment for the inputs abifth
counte < i v_input = null unless vinput = uoutput (and so for Llinput channel). We

call such link an added link.

e If the input or output degree is needed to be passed to nhodesamsimply consider degree

of the node in the grapt’ (VU V', EU E'").

4.6 ArduinOS Framework Model

Figure 4.1 shows the conceptual model of the framework. Tgleen a layer is, the closer it is to

the communication interface with the user:

e The programming interface can be any text editor for creatie node definitions (.node

files).
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Programming Interface (Editors)

=

Logics (Scheduling rules + Kernel Behavior)

== .

Translator Front-end

Network
Topology
Model |

Builder Abstract Syntax Tree builder I

—_——

Translator Back-end

| SMV Model builder J [ Arduino Executable builder I

\/ ‘—\\/ Base Layer Y\/

[ Arduino tool chain (libc) }

NuSMV

Underlying Architectural and Physical Layer J

Figure 4.1: ArduinOS Framework Conceptual Architecture

e The networking topologies vary depending on the deploymoémihe application on differ-
ent sets of nodes. The topology is set on hardware basis anNuBMV model should
respectively be modified. Accordingly, at the highest lethe¢ user familiar with the NuSMV

modeling should be capable of setting the network struafitiee nodes in the modél

e The kernel logic layer, containing scheduling rules andkéirael level logic for coordinating
the applications, resides under the direct user interfad,is logically placed at the top of

the translator layer.

e The translator front end layer acts like an Abstract SynteeTbuilder in a compiler. This
layer focuses on extracting element from DSL applicationcstire, and finding the control-

ling procedures, such as loops and conditional statemiardapplication processes.

e The translator back end builds the target NuSMV and Arduiragmams based on the ex-
tracted elements and their controlling logic. These furdlities are performed by two com-
ponents in this layer NuSMV modeler and Arduino Executabiéler. The former is respon-
sible for building the NuSMV model (where the NuSMV model isdified by the user to
contain the network topology) and presents it to the modetkér, and the latter builds the

executable program for Arduino devices.

3In order to facilitate this setting procedure for users weld@lso provide a graphical interface for managing the sode
and their links.
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e The base layer (the lowest layer) consists of two individwethponents which are only used
by the framework for model checking and behavior observihthe application and is not

actually part of the proposed framework.

— The NuSMV model checker for examining the behavior of thdiapfion. This compo-
nent receives the NuSMV translation of the ArduinOS appiliceand checks the cor-
rectness of some specifications. The specifications shaufddto the model checker

based on the intended behavior and properties of each applic

— The Arduino toolchain is used to compile and upload the Ard@ixecutable program.

We, of course, are making a big assumption that all the bitspaeces above are actually

properly specified and implemented in ArduinOS application
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Chapter 5

Experiments

In this chapter we provide an initial ArduinOS evaluatiorotigh a sequence of increasingly com-

plex case studies:

1. Talking nodes, which illustrates the inter-node comroatidon in a network to send and re-

ceive a one-bit token.

2. Self-stabilizing ring orientation, that obtains an agnent among the processors for a consis-

tent notion of left and right.

3. Distributed clustering, that partitions that nodes oédaork into clusters each of which hav-

ing a leader (cluster head) and therefore provides a hig@caicorganization for the network.

Validating the correctness of the framework for each of éhegperiments involves examining
the ArduinOS to Arduino Executable translation, obsentheyactual execution of the application,
examining the ArduinOS to NuSMV translation, and modeleattieg the resulted NuSMV model.

In the reminder of this chapter we explore each of these ¢ade&és and analyze them using our
modeling framework. For each case, we introduce the profg@int out some assumptions about
the modeled network, explain the algorithm, and then sdeiftramework can model the algorithm

so that it satisfies the specifications.

5.1 Talking Blinkers

A fundamental feature of a network is the possible commuivingrotocols between nodes. Ev-
ery two adjacent nodes must be able to mutually send/receassages to/from each other. In
this section we address the problem of simple inter-nodenwanication, also known as talking
blinkers, where two nodes exchange messages over a linke tNat the communication channels
in ArduinOS are different from the interrupt based ones usdeicOS modeling. Therefore, this
case study can be considered as another test for the fratnesgarding the new communication

protocol, and can be assumed as a complementary to Sedion 3.
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5.1.1 Problem Definition

If two nodes can talk to each other, it means that they can aflytrteceive each other's messages,
react to the received messages, and send messages bachtioetheode. Accordingly, other than
the communication protocol, the behavior of each node amé#ction to the messages should work
correctly. This case study, as the most basic one, aims aisrtatking and expressing the intended
behavior based on their communication.

Since we want to demonstrate the fact that two nodes can sesdages back and forth on a
link the reaction of a node to a message should be modeledassenvable property. Accordingly,
we decided to change the problem to two talking nodes whiictk fh turn. In order to have such
behavior, other basic properties of the framework are regub work properly, for instance, event
handling, process scheduling, state transitions, etc.

All things considered, the properties that should be satidfiy any solution to this problem are

as follows:

e The nodes should blink one at a time, that is, changing thesodtputs so that if connected

to LEDs their states changes from off to on periodically.

e There should be no conflict in sending messages, so thatlatieaEonly one of the nodes is

sending a message, and the other one is receiving.

e A message should be sent back and forth, so that once a nadfeasemessage, it should wait

till the other one receives it and sends it back.

Accordingly, here the main goal is to send a message (andamdymessage) back and forth
between two nodes, and observe their behavior as blinkeys yéhen a node received a message it

blinks).

5.1.2 Talking Blinkers Assumptions For ArduinOS

This case study is actually an experiment for testing theectmess of ArduinOS fundamentals,
and examining the framework performance based on PicO&dkessumptions. Therefore, the as-
sumptions needed for designing the communication algoréhe mainly the ones considered while
building the modeling framework. Other than the PicOS-Hasssumptions, we consider the fol-

lowings while designing the communication protocol for AmOS.

e For the sake of modeling simplicity, each bidirectional miel is implemented using two

single directional channel.
e If a channelis high, it means there is message transmittirthat channel.

e The output of a node is connected to the input port of the ather and any changes in an

output can be instantly recognized by the other one.
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e There should be no message loss in the protocol.

5.1.3 Talking Blinkers Algorithm

In order to make the talking procedure complex enough to tezésting to model check, and also
cover all functionalities needed for this program, we deditb modularize the design into three

main processes as follows:

e p_poll_tick process, which is the driver of the whole system. It altjusimulates the local
clock of the node. It triggers an eventpell_tick, and then notifies the other processes that

are waiting for that event.

e p_blink process, which is responsible for setting the outpéithe node, so that the behavior
of a blinker could be observed. For this program, we decidddve a two-LED blinker, both
being off at the beginning. Whenever the blink process iffindtone of the LEDs turns on
and the other turns off. Therefore, thédfink needs to be a process having an initial state (off,
off) and two main states (on, off) and (off, on), and it traiitsrbetween states by recognizing
a blink event. In other words, at each state, the processittgdor an event, say _blink,

and whenever the event is recognized it can change its state.

e p_tick process, which is activated after eacpdl_tick event is recognized and includes the
main protocol for inter-node communication. Initially, ®@of the nodes is sending and the

other one should start listening. The procedure runningath bodes are the same.

— The procedure starts at Listening state. Node A checks ifrgmyt messages have been
received (if the input channel is high). While the input is/Jave wait for a clock tick
(e_poll_tick) and continue listening. If it is high, it means that thther node (node B)
is trying to send a message, so A's output should be low attitinat and its state can

change to Receiving state.

— Entering the Receiving state, the node notifies an evehlili&) to activate the blinker
process, that will later result to a state transition iblimk process. Then the node waits
for a bit to make sure the message has been received thoyoagththen transmits to

Sending state.

— In Sending state, the node checks it if the input messagedes dompletely received
or not. If it figures out the other one is still sending the naggs it keeps waiting till the
input goes low. If the input is low, it starts sending its owessage by setting high the
output. Then the state of the node will be changed to Compéeiding.

— In CompleteSending the node simply finishes the sendingegiure by setting low the

output and going back to Listening state, in which it waitéoeive a message.
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In summary, the node listens to the arriving message, reséie message (and blink) and waits
till the transmission finishes, sends the message back totttex node and then starts listening
again. Therefore, the network behavior should be: A sendsssage, B receives it and blinks, then
B sends a message, A receives it and blinks, and the mesdsafe passed back and forth between
nodes. This algorithm is similar to the example providedistihg 4.1 in the sense that two nodes
talk and blink their LEDs, but itis a little more advanced dras more possible states since we have
two LEDs for each node and the resulted blinks are coordindiféerently.

The mentioned communication protocol should be implenteimeArduinOS, and its corre-
sponding Arduino executable and NuSMV model should be etg¢dhby employing the proposed

framework.

5.1.4 Verifying Talking Blinkers ArduinOS Application

The intended behavior of the communication protocol isigitforward, the two nodes in the net-
work should blink their LEDs and change their status alteriya Knowing that the nodes react to
received messages and change their LEDsS’ mode accordimglgxpect the two nodes executing

this protocol will go through the cycle of modes:
(XX, XX), (RX, XX), (RX, RX), (XG, RX), (XG, XG), (RX, XG), (RX, RX), ...

where (XX, XX) demonstrates the ordered pair of (nodel-LEid&le2-LEDs); X means the LED
is off, R means the red LED is on, and G shows that the green ISEID.i

Accordingly, the program should start execution from ttegestvhere all LEDs are off. One of
the nodes starts sending the message and the other oneitdibEDs in response and change its
status to RX (now the system status is RX for one node and X¥fother one). Then the received
message should be sent back and result to LEDs blinking édiirst node, and changing the system
status to (RX, RX). The remainder of the execution is the samntiee sense that the nodes receive
messages and blink.

In order to verify the application, we check if the mentiormatle of nodes is the only pos-
sible execution path. If not, one of the followings causeat:thl) the original algorithm is not
programmed correctly in ArduinOS, which means the Arduirgp$lication should be fixed and
then its corresponding NuSMV model should be checked agtiaspecification; 2) the model is
not representing the application properly, which meandrdmmework has failed modeling the Ar-
duinOS program and it should be revised. Among these pdiisfiwe are interested in the second
one since validating the framework is what we focused onimdase study.

We used CTL to specify the execution cycle and checked theehmuthe specification. We
need the following specifications in order to specify thecestion path starting from (XX, XX) and

eventually continuing in the above mentioned cyclic path

1We do not present the CTL predicates for the specificationesthey can easily be interpreted from the explained
specification rules explained in Chapter 2.1.3
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e The first three states runs properly: the status of the LEPstfie corresponding output pins)
are (XX, XX) at the beginning and they stay at that state ungbes to (RX,XX) and then
keep that state until it changes to (RX, RX).

e The cycle is followed properly: if the status of system is (RXX) it should eventually
changes to (XG, RX), (XG, XG), (RX, XG) in order and then chasgack to (RX, RX).

The combination of the two above mentioned specificatiorsantees the single intended ex-
ecution path. The first part guarantees that the first thiegessif the expected execution path are
followed properly. It means that the program starts whelreEDs are off, and the first change it
realizes is the first node’s red light turning on, and thenriixet change would result to both nodes
having only one red LED on. The second part guarantees tleeigar of cycle starting from (RX,
RX) and finishing to the same state. It specifies that if we gehé¢ state (RX, RX) we will con-
tinue the execution by changing states to (XG, RX), (XG, X@®X, XG) and (RX, RX) again. If
the model verifies that, it means that the cycle is followenticmously or (RX, RX) can never be
reached. However, according to the first part of the spetificave know that the state (RX, RX) is

reachable. Therefore, the execution of the program in tokeayould be proven.

5.2 Self-stabilizing Ring Orientation

Ring orientation is a well-known and studied problem in tlatext of distributed ring topology
networks. A global orientation of a ring topology makes s@mablems easier. For instance, when
a message needs to be transmitted through the whole netiherkumber of messages needed to
be transmitted decreases if the network is oriented. Simegtoblem is crucial in the context of
sensor network, and also because of its interesting olsleris@havior, in this section we address

the orientation problem to implement in ArduinOS and camess evaluation.

5.2.1 Problem Definition

In general terms, the orientation problem is to obtain aarded network regardless of the initial
configuration of the nodes orientations. A network is calktoted if for every edge in the network,
exactly one of the nodes at the ends of it is oriented towatldtige.

The orientation problem in a ring topology is simply definediading a unicycle orientation for
the ring network. Assuming a network of N nodes in a ring togglnetwork, there are precisely two
ways to orient the ring: 1) all edges are left oriented whig$uit to a clockwise ring orientation, or
2) all edges in the network are right oriented and result toumter-clockwise network orientation.

In a ring topology of sensor networks, where the nodes havglatmal view of the topology
and its orientation, the strategy to solve the orientatiablem is tricky. The algorithm should be
distributed and should be the same for all the nodes in theankt Therefore, the nodes should

work independently and should decide to which side they rbastriented based on the received
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messages from their neighbors. Accordingly, any algoriffoiving the orientation problem for a

set of independently executable nodes should satisfy fleniog properties:

e The algorithm should be self-stabilizing, meaning thatrdtess of the start state, it should

eventually enter and remain a set of well-defined stablestatlled the target set.

e Regardless of the nodes’ initial orientation in the ringdimgy, the ring should be able to
orient clockwise (or counterclockwise), meaning that atles in the ring network should

face left (or right)

e If the coin-flips in picking a random state for node statesuafair, there may be some nodes
facing each other, and the algorithm does not progress beaafuspecific unfair chain of

randomly selected states.

5.2.2 Ring Orientation Assumptions For ArduinOS

Distributed ring orientation algorithms should perfornsed on the state of a node and its com-
munication with other nodes. Therefore, all assumptioganging the communication and token
passing mentioned in the previous sections should also msd=red for designing a ring orienta-
tion program. There are some additional orientation spegifideling assumptions that should be

encountered while modeling the algorithms for ArduinOS.

e The algorithm running on all nodes should be the same, witHistinguishing property be-

tween nodes.

The nodes should be connected in a ring topology, each nadiegisvo neighbors.

The nodes may run asynchronously, and the token passingamieaiused for node commu-

nication should handle that.

The initial orientation of each node (right or left) is arbitly chosen.

The sequence of coin tosses for links may occur unfairly eehvironment and make the
algorithm stick in specific states. Therefore the deadloekslted from unfair coin tosses

should be ignored while evaluating the algorithm.

5.2.3 Ring Orientation Algorithm

The algorithm used for network orientation is adapted frbm algorithm proposed by Hoover et
al. [20]. This is a uniform distributed algorithm in whichaanode starts in a random orientation
status and operates independently from other nodes andedezbout its orientation based on the
inputs received from its input ports. In this section, a higgyre of the algorithm will be described

and its corresponding ArduinOS implementation will be preasd.
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15

Input
Next Mode W P R
W|lWR) R W
Current Mode P P W W
R P R W

Table 5.1: Token Passing Protocol

The idea of the algorithm is that, each node decides abong¢xsstate and its orientation based
on its current state and what it received from other nodeghébeginning, each node faces to its
right or left?, and starts waiting for a token (the initial state of the nisd&). If the node realizes the
node on the other side of the channel is also waiting for artpkeandomly changes its status to W
or R in order to make some change to the status of the systemeanldin progress. This is one of
the situations where the randomness, and the fairness efthi@nment, affects the progress of the
application. If both nodes stays at W again and again thaagtign would get stuck. Accordingly,
each node waits till receives a token from the side it is fg¢m then it turns to the other side and
tries to pass the token to the node at the new orientation.

The token passing protocol employed in this algorithm issiitated in Table 5.1 obtained from
[20].

In order to implement this notion in a state-based progranAfduinOS, we assume separate
states based on the node’s orientation (left or right) astbken-passing status on that orientation
(W, P or R). Therefore, six main states are needed for impiimgthe logic of the algorithm. In
order to make the coordination easier, we decided to addhanstate “decide” which is responsible
for deciding about the next state of the node based on itstegdaientation and token-passing
status. For example, if the node’s orientation is “left” anib waiting to receive a token from its
left (its token-passing status is W), then after a tick thden@s supposed to be naotified in state
Wileft (simply resulted from W state and the node orientgtidristing 5.1 presents the ArduinOS

representation of this algorithm.

node NO {
int orientation ;

i nput i _right;
out put o_right;

input i _left;
out put o_left;

process p_init {
state s_init {
orientation = randon{left, right};
oleft =W
oright =W

2The nodes are deployed in a ring topology and have one rigtrtred and one left channel each.
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}
}

/1 process to generate a polling tick to cause inputs to be
sampl ed
process p_poll tick {
state s _0 {
trigger(e_poll _tick);
delay(1, s_0);
}
}

process |ogic {
state deci de{
if(orientation== left & o_left ==
wai t(e_poll _tick, Weft);
if(orientation==right & o_right ==
wai t(e_poll _tick, Wight);
if(orientation==left & o_left == P)
wai t(e_poll _tick, Pleft);
if(orientation==right & o_right == P)
wai t(e_poll tick, Pright);
if(orientation==left & o left == R
wai t(e_poll _tick, R eft);
if(orientation==right & o_right == R)
wai t(e_poll _tick, Rright);
}

state Weft{
if (i_left == o_left=random{( WR);
else if(i_left == P) o_left=R
got o(deci de) ;
}

state Wi ght{
if (i_right == o_right=randomWR);
else if(i_right == P) o_right=R
got o(deci de) ;

}

state Pleft{
if (i _left == P) o _left=W
else if(i_left == R o_left=wW
got o(deci de) ;
}

state Pright{
if (i_right == P) o_right=W
else if(i_right == R o_right=W
got o(deci de) ;

}

state Rl eft{
if (i_left == W {

orientation = right;
o_right=P

}
else if(i_left == R o_left=wW
got o(deci de) ;
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}
state Rright{
if (i_right == W{
orientation = left;
o_|left=p;
}
else if(i_right == R o_right=W
got o(deci de) ;
}
}

process root () {
state ROOT_INT {
process p_init;
process p_poll _tick;
process | ogic;
}
}
}

Listing 5.1: ArduinOS Code For Token Passing

5.2.4 Verifying Ring Orientation ArduinOS Application

The intended behavior of the Ring Orientation protocol istient all the nodes in the network to
one direction, either left or right. The target network feriication of this algorithm contains nodes
in a ring shape, where for every node A and B in the network, iA the right side of B iff B is on
its left side. The number of nodes in the network can be two arembut as the number of nodes
in the network grows the time needed for the network to beilstall and oriented increases. We
base our experiment on the smallest network which couldteedsting to check, a network of three
nodes connected as a triangle.

In order to verify the correctness of the application, weligglpan specification combining the
following two behavior presented as follows. The specifasatisfying both parts of the intended
behavior guarantees that the application is self-stabgizand will result to properly oriented net-

work.
e Ignore the execution paths which get stuck because of urdairtosses.

e In a fair environment, the network can eventually be oridmtsgardless of its start state, i.e.

eventually all nodes will face to right, or they will all fate left.

The first part guarantees that the execution is done in arffigir@ament. Note that if two nodes
in the network are facing to each other and they are both Wdtr B), they need to flip a coin to
select their next value from W and R until they get differeatess (one become W and the other
become R). Even if flipped fairly they might get the same valiooth Ws or both Rs), but this lack

of progress cannot continue indefinitely. The expected rarrabcoin tosses for a pair of fair coins
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before they differ is 2. Therefore, we expect the coins teldifferent values after two tosses, unless
the coins are not tossed fairly and we should ignore thag statcordingly, if the history of coin
tosses shows that the tossing results have been the sanwdtfordales we do not continue executing
that path, and therefore, that state should not be considere¢he orienting network specification
check (see Section 2.1.4).

The second part assumes the environment is fair (obtainettfre first part of the specification)
and guarantees that regardless of start orientation ofdtles) they will be all agree on the orien-
tation and eventually result an oriented network. If our NiYXSmodel satisfies this specification it
should be a correct representation of the application acr@@ses our confidence in the correctness
of our proposed framework.

We checked the NuSMV model with the above mentioned spetiditaand it was verified for
the triangle network, ring network of three nodes. It too& thodel checker about 34 hours to
complete on this small network of 3 nodes. We also checkedipécation for a ring of four nodes

but the time needed to check the specification increases sh that we stopped the execution.

5.3 Distributed Clustering

Obtaining a hierarchical organization of a network is a ®ddand well-known problem in the
context of distributed networks. Clustering a network ngepartitioning its nodes into clusters,
so that each cluster has one clusterhead (leader) and lyossibe ordinary nodes. Clustering
can be used for hierarchical routing and also for building araintaining cluster-based network

architectures.

5.3.1 Problem Definition

Sensor networks can be modeled as graph of nodes. Each nibderiatwork is assigned a unique
identifier (ID). A link between two nodes illustrates a baltional channel through which nodes
can mutually receive the others’ messages. Accordingligeife is a link between nodesandu we
simply call them neighbors or adjacent nodes. The topoldgysimple network is shown in Figure
5.1.

Clustering a network is simply partitioning its nodes intore groups. Each group (cluster)
needs a clusterhead (leader) and some ordinary memberschbiee of the clusterhead can be
based on any weighted criteria. For the sake of simpliaityhis case study, we use the IDs of the
node as the weighted criteria, so that the smaller the IDeofitite, the better that node for the role of
clusterhead. Therefore, in each neighborhood, the nodeswitller ID can be a clusterhead, and its
neighbors affiliate with it only if they have no other neighing clusterhead with smaller ID. Figure
5.2 illustrates a correct clustering for the network of Fag6.1. In this picture, the clusterheads are

shown as squared nodes.
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Figure 5.1: Example Network

Figure 5.2: Clustered Network (Heads in Squares)

Figure 5.3: Distributed Clustering Example

In order to properly partition the network, the clusterimgasithms should satisfy the following

properties:

e Each node should be either a clusterhead or an ordinary neldading to a cluster of a

clusterhead is in its neighborhood.
e Each ordinary node has at least one clusterhead as neighbor.

e Each ordinary node affiliates with the neighboring clustadhwith the bigger weight (here

smaller ID).

e No two clusterheads can be neighbors if their weights argumi

The first property guarantees that all nodes in the netwovk haen partitioned into clusters.
The second property is necessary to ensure that each ordiode has access to at least one clus-
terhead to affiliate with. The third property is actually #rer representation of the rule that the
node with smaller ID will be opted as the clusterhead. Fnétle forth property guarantees that the
network is covered by a well scattered set of clusterhedds [6

Using the unique IDs as the base of clusterhead selectiefashproperty will be automatically
satisfied. If both of the two neighboring nodes are clustedkethis means that they have equal IDs,
but that is not true since IDs are unique. Therefore, the mattebigger ID could be an ordinary
node for the other one, or it may affiliate to another clustarh

Before presenting the modeled clustering algorithm, adipg the other properties based on

the model, we first point out the assumptions we made in degjghe algorithm.
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5.3.2 Clustering Assumptions For ArduinOS

Aiming at analysis of clustering algorithm, in this casedstuve mainly focus on implementing a
simple model of a clustering. In this experiment, we try tddan Arduino environmentthat covers
all necessary fundamentals for a clustering algorithminpke enough to be modeled, and also is
feasible to be model checked. Accordingly, we make somengsons and build the clustering

model based on them. The modeling assumptions for clugtprisblem are as follows:

e The algorithm should be uniformly distributed, meaningtthth nodes in the network are

executing the same code.

e The communication between nodes are possible by sendingeaaiying messages through

links.

e Each node has a local understanding of the topology, so tthetly knows its ID and the
number of input ports it has to receive messages, withoutskigpwhich node is in its neigh-
borhood.

e There should be no message loss or conflicts in transmissions

e Any transmission sent on a channel can be received by ottherogithe channel in the next

step.

e The network topology, the way nodes are connected to eaeh, agHixed but the links can be
activated or deactivated. It means that all the existingiture network connections should be
set before running the algorithm, but they may be added ateiklto the network sometime

during the algorithm execution.

All these considered, we designed a uniformly distribuigddthm that works for static topolo-
gies, where the number of nodes are fixed and the mobilityerhtban be modeled by deactivating
some links and activating some others. More detail aboult@ithm is described in the remainder

of this section.

5.3.3 Clustering Algorithm

In this section we describe a distributed algorithm thaegiany network, sets up a clustering that
satisfies the properties listed in previous sections. Asag mentioned previously, we assume that
each node knows about its ID, and its connection ports, ddfteamething has been sent though
the channel connected to that port, the node could receatetie next step.

While designing the clustering algorithm for ArduinOS, weate the code for a single node.
The assumptions about how the network links are handle@isdahcern of network layer modeling

in NuSMV, which should be programmed manually based on wkawork topology is intended
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to be checked and how the links and nodes are making the gfaple aetwork. The algorithm
implementation for a simple network is provided in Listin@ 5

The algorithm is executed at each node so that the node deitsdewn role (clusterhead or
ordinary node) based on its own ID and the messages receietdits neighbors. As a result of
partitioning the network into clusters, each node in thevoelt knows to which cluster it belongs.
Therefore, each node should know the ID of the clusterhe&dwihich it affiliates. Accordingly,
the node of which ID is equal to the ID of the clusterhead iddlagler of its cluster.

As it was mentioned previously, each node can be either @€tidsad or an OrdinaryNode that
knows to what the ID of its clusterhead is. In order to designgtate based version of the clustering
algorithm, we assume that ClusterHead and OrdinaryNodéharenain states (roles) a node can
have, and the state transitions can occur based on theedaarssages from neighbors.

Initially, each node assumes it has the smallest ID in thghit®irhood and therefore it is the
clusterhead of its group. Therefore, for all of the nodehmrietwork, the clusterhead variable is
actually the ID of the node.

After initialization, at each step the node should checkfills input ports to see what messages
the neighbors have sent and how it affect the role of the nokere are two types of messages used

in this algorithm:

e CH(v), used by node v, to send out its ID, and make its neighbwsare that it is currently

assuming itself as a ClusterHead, and its ID is v.

¢ linked(v) used by node v, to send out its ID, and make its neigh aware that it is currently
affiliates with one of its neighbors, so that if others assitrigetheir clusterhead they should

change their role.
Organized by the role a node can have, we have two main proegds follows:

e If the node is in ClusterHead state, at each step it shouldkcak of its input ports to see
if any CH message has been arrived from a node with smallehaD its or not. Therefore,
the node goes over all inputs, if there is any CH messageealritichecks if the sender ID is
smaller than its own ID. If yes, the node should change its t@lOrdinaryNode and send out

a linked(ID) message.

¢ If the node is in OrdinaryNode state, at each step it shoudatklall of its input ports to see
if the clusterhead with which it affiliated has joined to ametcluster or not. Therefore, the
node goes over all inputs, if there is any linked messageeatrit checks if the sender’s ID is
the same as the node’s clusterheadlD. If yes, it means thaitdtie to which we have joined
is not a clusterhead anymore and our role should be changéldisterHead, and a CH(ID)

message should be sent out.
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Step 4: @ @ l.le'_al @ o @
n=2k n=2k+1

Figure 5.4: Worst Case Scenario of Clustering Algorithmdétein Squares)

The number of steps a fixed n-node network needs to be cldséeictreach a stabilized state
where all nodes have their final roles is O(n). The worst-sas@ario of the algorithm is when we
have a chain of nodes and the nodes are ordered ascendirhdraeeir IDs, Figure 5.4. In that
case, all of the nodes assume themselves as ClusterHead thatnext step except the first node,
they all find a smaller node in the neighborhood and join igytgo to OrdinaryNode state), Figure
5.4. At that state, only the second smallest node is linketi¢cappropriate clusterHead, and the
other ones has received the linked message from their asstlosterhead, so they need to change
back to ClusterHead role. The scenario goes on the same aadtastep only one of the nodes gets
to its final role. Therefore, the number of needed steps i3.0(n

Regarding the number of state transitions needed and thplegity of the algorithm isO(n?)
in the worst-case scenario. Assuming the same example sindwigure 5.4, at each step the state
of all of the nodes except one changes. That will resultdtate transmissions for thith node, and
a total of@ state transitions.

Although the algorithm is not the most optimized clusterhgorithm it guarantees partitioning
the network into appropriate clustétsWe chose this algorithm since it needed only small messages
to be transferred through channels and is also easier temgait on a Arduino based environments.

Listing 5.2 presents the ArduinOS representation of trgs@thm.

node NO {

int clusterHead ;
int degree; //this should be set based on the topol ogy

i nput i _nsgType[degree]; //an array of size degree
i nput i _nsgCont ent[ degree];

SFor algorithms will less message transmission complexity[6].
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out put o_nsgType;
out put o_nsgCont ent;

process p_init {
state s_init {
cl ust er Head = myNodel D
o_msgType=CH
o_msgCont ent = myNodel D,
}
}

/'l process to generate a polling tick to cause inputs to be
sanpl ed
process p_poll tick {
state s_0 {
trigger(e_poll _tick);
delay(1, s_0);
}
}

process |ogic {
int counter;
state deci de{

i f(clusterHead = myNodel D) {
o_nmsgType=CH
o_msgCont ent = myNodel D,
wai t(e_poll _tick, CH);

}

el se{
o_mnsgType=l i nked;
o_msgCont ent = myNodel D,
wai t (e_poll _tick, Iinked);

}
}
state CH{
counter = 0;
whi |l e( counter < degree){
i f(i_nsgType[counter] = CHrsg & i _nmsgContent[counter]<
cl ust er Head) {
clusterHead = i _msgContent[counter];
}
counter = counter+1
}
got o( deci de) ;
}

state |inked{
counter = O;
whi |l e( counter < degree){
i f(i_nmsgType[counter] = linkMsg & i _nsgContent[counter]=
cl ust er Head) {
cl ust erHead = myNodel D
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counter = counter+1
}
got o(deci de) ;
}
}

process root () {
state ROOT_INT {
process p_init;
process p_poll _tick;
process | ogic;
}
}
}

Listing 5.2: ArduinOS Code For Clustering Algorithm

5.3.4 \Verifying Clustering ArduinOS Application

The target network for verification of this algorithm can &any arbitrary topology, and the result
of partitioning the network and the role of including nodesigs depending on what topology is
used. Therefore, there is no specific rule to check the cimress of clustering, like what we did
for verifying the Ring Orientation algorithm in Section 5.2urthermore, the execution path is so
complicated and can be too long that is not feasible to bekelieas we did for the talking blinkers
in Section 5.1. Instead we know how the clusters will be $itaddl eventually. Therefore, we can
check if the expected final state is reachable and if the nkelgs that state.

For example, assume the example illustrated in Figure ®1Bj$ example the final status of the
nodes should be as followd/(y .cluster Head = Y means the ID of the head of the cluster to which

node X is affiliated is Y. If X=Y it means X is the leader of itaster.):

Ni.clusterhead = 1 & Ny.clusterhead = 1 & Nj.clusterhead =1 &
Ns.clusterhead = 3 & Ny.clusterhead = 3 & Ng.clusterhead = 3 &
Nry.clusterhead = 7 & Ng.clusterhead =7

We checked such specifications for multiple networks wittiotes topologies and different num-
ber of nodes. Since the execution path does not contain amget@rminism branches, its model

checking is performed in a reasonable time, much fasterdhaexperiment in Section 5.2.
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Chapter 6

Conclusion

6.1 Summary Of Research Results

This thesis covers the applicability of model checking téghes to the area of stateful processors
aggregated into simple networks through low cost wired ammdl@ss connection schemes. In this
sense a development framework was proposed which enallesbde generation and program
verification in such networks. Based on the fundamentafiabie properties of applications in this
area, a simple domain-specific programming environmentdeagned to generate both the model
for performing verification via model checking and extrageutable code that runs on the Arduino
computing platform. Accordingly, this thesis is a step todgareasoning about networks of reactive
systems.

Originally motivated by the problem of “how to build a trugiwthy sensor network” we chose
PicOS as a sensor network platform that provides a naturiatditmodel checking tools for spec-
ification and verification of its applications and has a smakrating system for coordinating the
applications. We utilized its state-based event-drivepragach to extract a modeling schema for
representing PicOS applications as NuSMV models, and eukeitlem against intended specifica-
tions thereafter. However, the unknown underlying logithef PicOS kernel on the one hand, and
the logic residing in the physical and lower levels of PicG&ides on the other hand, made our
NuSMV models not completely accurate with respect to thgioal systems.

Accordingly, we decided to build a platform from bottom updaonly include those properties
that are already modeled according to our PicOS experimdnt®ther words, a model driven
approach was applied that allowed no property to be includdte new platform unless it was
satisfiable by the NuSMV model, and therefore the resultatbela subset of PicOS with distilled
functionalities and behavioral properties guaranteedet@drrect by construction. We named it
ArduinOS since it was adapted from PicOS and its applicatioould be deployed on Arduino
devices.

We evaluated the correctness of our ArduinOS developmantdwork on three increasingly

complex case studies. The examples covered the basic coicatian protocol between two nodes,
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the ring orientation algorithm, and a distributed netwdtstering algorithm. Employing the pro-
posed framework in verification of ArduinOS applicationgaaled that the performance of the sys-
tem is a function of the size of the NuSMV model for the targsilaecation (e.g the number of bits
employed in the NuSMV model in general), the topology of teénork in which the applications
should be deployed and model checked (e.g. what nodes dmeéucand how they are connected),
and the complexity of state transition logic and flows in tbarse program (e.g. the number of
“if” and “while” statements used in the application). Thesuéis achieved from the experiments
supported the correctness of ArduinOS framework both feeliping the Arduino executable pro-
grams and generating an appropriate NuSMV abstractiondigiying its behavioral specifications.

Our approach toward verification of state-based systembeap any distributed context in
which nodes run independently from each other. Althoughamuroach was motivated by verifica-
tion of sensor network application, it can be applicableddfication of (distributed) systems and
their programming frameworks in general, at least thoseoris of simple programmable nodes
with small operating systems. However, it is not at all cié#ris can be scaled to distributed appli-
cations deployed on more complex operating system. Fanost the same approach can be used
in verification of some web based applications in which ¢liemdes are communicating with each
other and with a server, and can be coordinated based orr selegin servicing them, but only if
they have the complexity of simple FSMs with limited message

We proposed ArduinOS framework based on PicOS-like sysgentisat ArduinOS applications
are subsets of PicOS ones. In other words, every applictitains programmable in ArduinOS can
also be programmed in PicOS. We even designed ArduinOS D&lsalsset of the PicOS language;
therefore, the applications in both frameworks are defirseal get of finite state machines. All these
considered, ArduinOS is a simplified version of PicOS in vahige functionalities are limited and
the rules are more constraining. Consequently, the apigiicawritten in ArduinOS DSL can easily
be translated into PicOS programs and deployed on PicOSsnéttevever, it is worth noting that,
even after translating the application from ArduinOS DSIPtoOS, in order to keep the verifiabil-
ity of the application, we should force the simplified netkiog constraints of ArduinOS onto the
PicOS system. For instance, the communications betwed?i¢S nodes should be limited to one-
bit uni-directional channels and any other constructiopaifkets should not be allowed. Therefore,
digital ports in ArduinOS then transfer over to digital o PicOS, with the fact that the ports
are implemented by packet messaging hidden from the agiplicaAccordingly, ArduinOS frame-
work and its verifiable applications also tell us about hovedfiable PicOS framework should be
designed. It indicates what the minimal collection of pntigs included in PicOS should be.

On the other hand, examining a variety of ArduinOS applaratiand observing their behavioral
outcomes, we recognized the shortcomings of some of thePwmiDcepts and design decisions.
Much of our model complexity resulted from transferring®@® ideas that are seldom if ever used

in practice over to ArduinOS. Therefore, ArduinOS framekvoould implicitly tell us how PicOS
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version 2 should go to fix its pitfalls.

e In ArduinOS we limited the root process to instantiate amadtshe other threads, and did not
allow the processes to be instantiated in other places;emisdPicOS does not specify any
limitations in this regard. Starting the threads all frorotrelemet not only makes the pro-
grams more structured and understandable, but also eritbatése PCB structure is constant

(not dynamic) and makes the scheduling procedures morat.obu

e Assuming state transitions to be atomic, means that ther@ figoblem regarding the concur-
rency of threads since no shared variables would be modifiaddre than one thread at a

time and only one thread can have the access to it at a time.

e Currently, it is possible that more than one process in age@mr be waiting for the same
event. If the event is triggered then all of them will be netifi However, it is also possible
that the incoming event is actually used by only one of the@sses. The others that are
notified and then run (after waiting for being scheduled)izeahat the event cannot provide
any useful information for them at that specific time. In @terds, only one of the processes
is consuming and the others just wake up to nothing. Thenma sede in practice very few
cases of where more than one process actually needs to waisfecific event. Accordingly,
this property of PicOS may not actually be helpful in pragtiand only one process should
be the target of an event. PicOS can currently solve the enoloff many processes waiting
by defining specific events for each process, and thus prewadiistinction between targeted
events (to a specific process) and broadcast events (toakgses). Given the modeling and
execution cost of broadcast events to multiple processeksit fow benefit, PicOS version 2

could eliminate this problem thoroughly.

6.2 Suggestions For Further Research

An obvious next step for this study is to perform a comprelvensvaluation of the development
framework. We are reasonably convinced of the correctrféhs onodeling approach and ArduinOS
framework was evaluated during the tests and case studiesmped previously in this thesis. How-
ever, the cost of the modeling procedure and time requirechfwel checking such applications is
still too big. Some optimization can certainly be appliecidracting the NuSMV model. For in-
stance, there is no code analysis performed in the way wedantile” and “if” statements, thus
causing more branching than necessary.

Another future activity is enhancing the framework to poeva user friendly interface that can
take the topology of the network, and the type applicatiomimg on each of its nodes, and inject
the network NuSMV representation into the target modelsTinctionality is currently performed

by hand by a NuSMV expert who knows about the network topaldiggequires knowledge about
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the inner logic of each node in the network, and is more tharbezexpected for a regular ArduinOS
programmer.

In developing ArduinOS we only included those propertied the could already model accord-
ing to our PicOS experiment. However, we could re-examimedtiginal assumptions and build
ArduinOS independently to allow pluggable features, witle @r more potentially easier to model

domains.
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Appendix A

Guidelines For Extracting NuSMV
Model Of A PicOS Application

In this section, we provide a modeling guideline that willused for extracting a NuSMV model

from a PicOs application. We introduce all the modeling elats, explained in Section 3.3, and
provide their structure and including logics with a top doapproach; starting from process that
includes the major logic of the application layer, contiruivith inner logic of the node layer that

resides in node, scheduler and PCB elements, to the lowettidgics in network to manage inter

node links and message passing.

Each subsection aims to explore an element by providingah@sfing information:

1. Detailed design of the element; introducing the variabieluded in the element specification
that are needed for performing the objectives, and the patesithat should be passed to the
element while defining it. These properties are the port®toraunicate with other elements
and/or read from their variablés

2. Implementation guidelines including guidelines for apudg the value of each variable based

on the targeted PicOS kernel behavior and the user defindidapm.

A.1 Process

Modeling processes is one of the most crucial and comples pathe modeling schema, and it is
also the part that is affected by our modeling assumptiomgtbst. For example, considering time
as a discrete variable or assuming that every state runseirstep may make our model different
from what we expect from a PicOS application. Although bailif(erent from the real world is

the inevitable result of every modeling procedure, providan abstraction with the most possible
similar behavior to its original is important for model ckéw. Accordingly, based on the assump-
tions, we designed the process units that facilitate mdaetking only those specification that are

consistent with these assumptions.

LAccording to NuSMV language specification, whenever an eldnsay element A, needs to have the access to element
B, A should include B or B should be passed to A as one of its neogarameters while defining A.
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Processes are designed as NuSMV modules, and not as NUSM¥sses which are special
constructions, now deprecated, for handling certain tygfesxecution schedules in a NuSMV
model. All NuSMV modules go one step forward at each NuSM\¢tkJaneaning that the value of
all variables may change at each step; whereas just one dfINyocesses are activated at each
step and only the variables defined in that process may chtaegevalues. Although we want to
handle the processes scheduled to run one at a time, we doamotevlimit the variables of the
units to be changed only if the process is activated. For gl@mhen a event is triggered, we want
all the waiting processes to recognize the occurrence oév¥kat and each process that has been
waiting for that event should change its state from wait e Therefore, we decided not to use
NuSMV process types since it would not let us to perform ehandling as desired. Using NuSMV
modules, however, needs considering many possible condifor assigning a value to a variable,
based on if the related process is running or not, e.qg. iftliésprocess’ turn and it is ready, its state
can change to one of the active states, specifically the istatdich it should be woken up after

realizing the occurred event.

Detailed Design

Modeling the behavior of a process is not possible withoudetiog the elements of a process. In
the following, the process variables and parameters of lwhjanbols are repeatedly used while

explaining our model are introduced.

e pid is the process identifier and is a unique number. The valu@ad$static, and it is set in
the PCB that is responsible for instantiating the proceardss passed to the process as an
input parameter.

e currentld is the identifier of the process which is scheduled to get tR&J @t the time,
i.e. the currently running process id. This variable is dafiin the node and modified by
the scheduler of the node. All instantiated processes reegceive currentld as an input
parameter, i.e. currentld should be passed to all procesanices while defining them in
PCB. By comparing the value of currentld with pid, a process enderstand if it is its turn
to run or not.

e eventis a shared variable between all process instances of ahatie passed to each process
as an input parameter of the module. Event contains thenr#ton about the events (and
interrupts) that are triggered by other processes of the sade (or other nodes). According
to the limitation of NuSMV in operating on arrays, we decidedhave events as a set of
bits, a.k.a. word, of which size depends on the number of esedts and interrupts in the
application. When a bit of the word is 1 it means that eventies triggered.

e stateis a process variable which shows the current state of theepso The domain of state
variable should contain ready and wait (which are genenr@foprocesses) and the active

states (which are the defined states in the FSM of the PicO®afipn, such as s1, s2, etc.).
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At each time the process can be in one of these states, ite.csta have one of the values
ready, wait, or an active state. If the process is one of thieesstates, we say that process is
“running”

nextstateis a process variable which shows the next active state inhthie process should
be notified when it gets the CPU. In other words, whenever thegss takes the CPU, its
state will be what nextstate is showing. Therefore, theevalinextstate should be one of the
active states and its domain is the same as the domain ofest@telding ready and wait.
peventis a variable for keeping the list of events for which the gsxis waiting at each time
it is in wait state. In PicOS applications, before a procegsases the CPU and goes to wait
state, it can set some events as “interesting” ones. If arliaxfe events are triggered, the
process should be invoked and its state should be changeddsy,ii.e. whenever the process
gets the CPU it can run in the active state shown by nextskais.set of events is recorded in
pevent. In our model we defined pevent as a ten-bit word, wiieans the maximum number
of possible events that a process can wait for is ten. Thedditee pevent word should be
the same as event word, since for each event/interrupt dfirthe program we need a bit in
pevent. Therefore, the maximum number of the events a ps@agswait for is the number of
the defined events/interrupts.

pstateis a variable which shows the state in which a process shaugdken up if an inter-
esting event (which is identified in pevent) is triggeredPlaOS applications, when a process
wants to wait for some events, it should set the state in wihishinterested to be woken up
if each of those events is triggered, e.g. wait(el, s1) méavent el occurs, the next active
state in which the process should be woken up is state s1. s€hisf states is recorded in
pstate. Since for every event for which the process may amaigctive state should be set, the
size of pstate should be the same as the size of pevent. Iticagdhe value of each member
of pstate can be one of the active states; therefore, pdtatddsbe defined as an array of
active states, e.g. array 1..5{f1, s2, s3, st

timer is a variable which shows the amount of time which is leftaitime event be triggered.
In PicOS applications, other than events that are set inrigyvprocesses can wait for a time
event, e.g. delay(tl, s1) means after t1 milliseconds iptioeess is still in wait state, a time
event will be triggered for the process and it become readytt state s1. This means that
the process sets a time value, and when it goes to the wagt gtattimer counts backward
until it reaches the value 0, meaning that it is time for theetievent to be triggered. Note that
each process can wait for no more than one timer event at aatii¢he value of the timer
variable shows how many clock ticks are left until that tirvera triggers.

tstate is a process variable which shows the state in which a pratesdd be woken up if
the timer event is triggered. Same as pstates for peveate tshould be set for time event,

containing the state in which the process wants to be wokeaftep recognizing the time
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event. For the same reason we explained for pstate, tstatddshe one of the active states

of the process, but since we only can wait for one timer eveattine, tstate is a variable of

type active events (not an array of them).

e lock is a process variable which shows if a process is running br fioe value of lock is

true if and only if the process is in one of the active statey @ate except wait and ready).

This variable is used by other parts of our model to ensureahany time only one of the

processes of the node owns the CPU.

Implementation Guidelines

1. Initializing process variables

In the first step of building a process, its variables showddritialized as a new FSM in

PicOS is being created. Recalling from the modeling assiam@teach FSM in the PicOS

application is in the ready state when the application stamning. Therefore, we need to

initialize the variables so that our model seems like a rgmdgess that is not waiting for any

kind of events and can start running from the start state e¥writ gets the CPU. The initial

value of each of the variables and parameters of procesbavidksigned as follows:

e Variables timer, state, pevent, nextstate, pstate anté tsteould be defined inside the

VAR block of NuSMV model. Their initial value should demorete a new ready pro-

cess:

init(timer) :=0; which means the process is not waiting foy ime event.

init(state) := ready; which means as soon as it is the prot@ssto run it can start
running.

init(pevent) :=0610.0; which means the process is not waiting for any timer event.
init(nextstate) := s1; which means as soon as the processtge€CPU it wakes up
at state s1; where sl is the start state of the process,é.érghstate defined in the
process.

init(tstate) := s1, and init(pstate[i]) := s1; where sl is #gtart state, and i can be
integers from 1 to the size of pstate. Hence that tstate aatiepsill be ignored at
the beginning since timer and pevent variables show thatitbeess is not waiting
for any event; process is not waiting for anything, so theealf the tstate and pstate
is not actually matter. However, since we want to have a sistdrt point for the
model checker we initialize them to the start state. ReoathfNuSMV constraints,
we cannot use pstate[i] where i is a variable itself; thexaféor initializing pstate
we should actually initialize each element of it individyak.g. init(pstate[1]) :=

s1; init(pstate[2]) := s1; etc.

e Variable lock needs to be updated based on the state of tkegmotherefore, lock can
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initialize itself based on the value of the other initiatizeariables at first step. We
decided to define lock in the DEFINE block of NuSMV model, gribere is only one
rule that is used for evaluating its value, and that is basetti® value of state, i.e., lock
is true if state is one of the active states; lock := staté=stdte=s2 state=s3 state=s4;

e Parameters pid, currentld, event are the input paramétatrate begin passed to process
element, they should be initialized in the element thatainates process, i.e. PCB.

Therefore, initializing those parameters is not the precasncern.

2. Non-Time Event Handling

Sometimes we want the processes to wake up in a specific stesieewer a specific event

is triggered. In PicOS programming, this can be done byraalli when(EVENT, STATE)
command in an entry of the FSM before it releases the CPU. ddriemand means that this
process is interested in EVENT, and after the process gaesitstate, if EVENT is triggered,
the process will wake up in state STATE. Through this commesawh process can set several
events as interesting ones, and for each of these eventsiteénswhich it wants to be woken

up should be set. To model tiehencommand, we used pevent and pstate variables which
are respectively responsible for recording the intergstivents of a process and the states in

which it wants to be woken up if any of those events is beirggered.

next (pevent) :=

;| case
state = waité&((event & pevent) !'= 0b10 0 | tiner=1) =0
b10_O;
4 state = s1 : 0b10 111;
state = s2 : 0bl1l0_10;
6 TRUE : pevent;
esac;

next (pstate[1]) :=

0| case
state = s1 : s2;
12 TRUE : pstate[1];
esac;

14

next (pstate[2]) :=

16 case
state = s1 : s1;
18 state = s2 . s4;
TRUE : pstate[2];

20 esac,

»|next (pstate[3]) :=

case
2 state = sl : s3;

TRUE : pstate[3];
26 esac,
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Listing A.1: Non-Time Event Handling Example

Listing A.1 shows how we modeled when(EVENT, STATE) stateta®f a PicOS application

using pevent and pstate. Followings are the list of progettiat are considered in this model:

e Each process can be waiting for several events in each S@atexample, the line state
=s1: 0bl1Q111 shows that if the process is in state s1, pevent shoulethessl11,
which means it wants to wait for the first, second and thirchexdt also means that we
should set thevake upstates for these three events. Since pstate is an arragtfmgs
relative states for the first, second and third event, welshoodify pstate[1], pstate[2]
and pstate[3].

According to this explanation, the commands that we modal#tese steps are when(el,s2),
when(e2,s1), when(e3,s3) that have been written in codg ensy of this process, and
el, e2, and e3 are the first, second and third events.

e A process can set a specific event as an interesting one fag than one entry. For
instance, in a single process we can have when(el,STATE)tmdl and s2 entries.
The same thing is modeled in Listing A.1 where we have the canthwhen(e2,s1) in
sl entry, and we have the command when(e2,s4) in s2 entry.

e Whenever any of the events that the process is waiting faiggered, we update the
value of nextstate by using the related state, and then etin@tyevent. The first part is
done by logics for setting nextstate, but the second pagtiihg pevent) is modeled by
resetting pevent. Since the events for which the procesaitiny could be from the list
of pevents or a timer event, we need to flush pevent if eithérede events is triggered.
In other words, pevent should be flushed if the intersectfahelist of triggered events
(event variable) with the list of interesting events (pewveariable) is not empty, or if
timer eventis about to be triggered (timer = 1). Listing Ahbws how we modeled this
behavior using state = wait&((event & pevent) = 0bQ@0timer=1) = 0b1Q0;

e Based on which interesting event is triggered, the valuestdtp affects the nextstate
of the process. This feature is handled while modifying sete. Here we based our
model on the point that if the first event occurs, the valuesxtstate should be the same
as pstate[1], if the second event occurs, the value of ragtshould be the same as

pstate[2] and so on.

Based on these points, for modeling when (E, S) in an entgy (8TATE) of a process in

PicOS application, we should:

e Add a line to the logic of pevent changing, e.g. state=STAT#Eb1Q 1 if E is the

first event, or state=STATE : Ob11D if E is the second event and so on (if we have
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10

several when statements, we can have something like sédeSTTATE : Ob10L1 if the
interesting event are the first and second one).

e Add a line to the logic of the corresponding pstate, e.g. &al@sSTATE : S to pstate[1]
if E is the first event, or add state=: S to pstate[2] if i is tbeand event and so on.

e Keep the generic parts such as the rules for flushing the pévesame.

Time Event Handling

Sometimes we want the processes to wake up in a specific statieewer a timer event is
triggered. It is the same as what we explained for peventhbut we are waiting for a
time event. In PicOS, time event can be set using the commelag(€LOCKS, STATE),
which means we want our process to stay idle for CLOCKS stitpsraleasing the CPU and
then wake up at STATE; moreover, the process should not walsmoner except if another
interesting events is triggered. Since the way a timer eigehandled in PicOS is slightly
different from the way the other events are handled, we alsdated time event differently.

Here we employed timer and tstate variables.

Listing A.2 shows how we modeled delay (CLOCK, STATE) statais of a PicOS applica-

tion using timer and tstate variables. Followings are thiedf properties that are considered

in this model:
next (timer) :=
case
state = wait & ( (event & pevent) != 0b10_0 | tiner=1)
0;
state = s1 : 100;
state = s2 : 50;
timer '=0: timer - 1;
TRUE : tiner;
esac;
next (tstate) :=
case
state = sl1 : s3
state = s2 . s4;
TRUE : tstate;
esac;

Listing A.2: Time Event Handling Example

e Each process can wait for no more than one time event in eaeh #fmeans that if there
are several delay statements in a single entry of a proees®rje of them is considered.
In this situation, we should consider the last delay statgm&his means we just aim
to model the last delay statement of each entry. As an exaaipteodeling the delay
command, state=s1:100 shows that if no other interestiagtes triggered, the process
will become ready after 100 clocks. It also means that we Istert the state we want to

be woken up after the timer event. Therefore, state = s1 :@8sthat when the process
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releases the CPU after being in state s1, it wants to wait fon@event and when that
event is triggered it want to be woken up at state s3. Accgrthirthis explanation, the
command that we modeled in these steps is delay(100,s8hdlsebeen written in s1
entry of this process.

e A process can be programmed to wait for time event in more tmanentry and the
amount of time that the process should wait for time eventeaset to a different value
in each of those entries. The same thing is modeled in Ligtir@gwhere we have the
command delay(100,s3) in s1 entry, and have the commany(86la4) in s2 entry.

e Each time an event that the process is waiting for comes,rtieeps will become ready.
Therefore, the process should no more wait for any time eedg woken up. So, same
as flushing pevent, we should reset the value of timer andgehiis value to O (state =
ready : 0).

e In each step, if the value of timer is not zero, we should desgets value by 1. This
means that at each step a clock passes so the process siaaild waiting for the time

event one clock less (timer != 0 : timer - 1).

Based on these points, for modeling delay(C, S) statemeantiantry (e.g. STATE) of a

process in PicOS:

e Add aline to the logic of timer changing, e.g. add state=SHAT where C is an integer
stating the number of clocks which the process should wiieteiving the timer event.

e Add a line to the logic of tstate, e.g. add state=STATE : S.

e Keep the generic parts such as the rules for flushing the timgecreasing its value the

same.

Note that our model may not exactly behave the same as PicBatmn in this case, and
the main reason is that here we assumed our time to be disghéth is not the same as the
real world. Besides, the amount of time it takes our modeldadiggm the state transitions
and triggering the events is always one clock; whereas,ahee sactivities may need several
clocks in a real PicOS application. Therefore, the sequefhegents which are triggered in

our model may be different from what happens in the real Pia@8ication.

. Deciding Next Running State

Nextstate of a process shows the next running state in whielptocess should be woken
up. The value of this variable can be affected in two differgays: the states which are set
in pstate or tstate, and the PicOS command proceed. In tlosvfoy we explain how these

factors can affect nextstate of the process and how we mioeepected behavior.

e A process can wait for time event or any other event whichtiggés pevent variable. If

any of these interesting events is triggered, the procesddhe woken up in a defined
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running state which is set as their tstate or pstates. Towreive should always check
to see if the incoming events are one of those interestingtsvéf the intersection of
triggered events and the interesting ones contains theviestt, we should set the wake-
up state (nextstate) as pstate[1], else if it the interspédsithe second event, the wake-up
state should be set as pstate[2], and so on. Besides, if ihe ohthe timer is equal to
1, it means that in the next step the timer event will be trigdeso the wake up state
should be tstate. This checking is modeled as it is shown stirlg A.3 (state =wait
& (event & pevent & 0b101) != 0b1QO0 : pstate[1];). Note that the order in which we
check these conditions should be the same as the prioriteahtents. Here we assumed
that the priority of first event is more than the second oné, smon, and all of them
have higher priorities than the time event.

e The command proceed(STATE) can affect the state in whiclptbeess should be wo-
ken up next time it gets the CPU. This means that the procesgdshelease the CPU
and its state should be set as ready without waiting for ang &f events. Then when-
ever the process can take the CPU, it wakes up at STATE. Tdrergfroceed command
should set the next running state as STATE. For example itmgif\.3, state = s3 : s2
shows that at the end of s3 entry of a process in PicOS we hacegu(s2) command.
Note that this is just part of modeling of proceed. The renngjletails in this regard is

included in state transitions procedures.

next (nextstate) :=

;| case

state=wait & (event & pevent & Ob10_1)!=0b10_0: pstate[l];
4 state=wai t & (event & pevent & 0bl10 _10)!=0b10 _0: pstate[2];
state=wai t & event & pevent & 0b10_100)!=0b10 _0: pstate[3];
6 state=wait & tiner=1 : tstate;

state=s3 : s2;

8 TRUE : nextstate;

esac;

Listing A.3: Deciding Next Running State Example

5. State Transition
Transitions between the states of a process result in thavimetof a node. Based on the
entries that are defined in the process, the sequence ofgpered events, and the commands
used in coding those entries (such as when, delay, procaeas), the transitions between
states can vary. In this regard, we considered the followimiymodeled the state transitions

based on them as it is shown in Listing A.4.

e When the process is in wait state, and it is waiting for somengs/(time event or other
types of events) which are triggered, then the state of thegss should be set to ready
(state = wait & ( (event & pevent) != 0b10 | timer=1) : ready). The reason is that the
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process has been waiting for an event and now the event hasredcso the process
should not remain in wait state anymore. Now it should be yd#ldvhen it gets the
CPU and it can be executed.

e When the process is ready, and it is its turn to be run, ite sfabuld be set as nextstate
which has been set as the desired state for process for beikevup in (state=ready
& pid=id : nextstate;). Here pid=id is the case that shows this process’ turn to run.
More detail about this behavior is explained in the follogvgection.

e Whenever the command release has been called at the enda®$8 Pntry, we should
change the state of the process from that entry to wait. Theraelease means change
the value to wait (state=gIstate=s2 : wait;).

e Whenever the command proceed(STATE) has been called ahthefea PicOS entry,
we should change the state of the process from that entryattyrgstate=s3 : ready).
This is because proceed means to release the CPU, but stiytilethe process’ turn
comes and it can takes the CPU and run.

e Whenever the command sameas(STATE) has been called atdh&f enPicOS entry,
we should change the state of the process from that entryAdES{state=s4 : s3). The

reason is that sameas command means to jump to the STATEathhtekn set.

ilnext(state) :=
case
3 state=wait & ((event & pevent)!=0b10 0 | tiner=1) : ready;
state=ready & pid=id : nextstate;
5 state=sl : wait;
state=s2 : wait;
7 state=s3 : ready;
state=s4 : s3
9 TRUE : state,
esac;

Listing A.4: State Transition Example

6. Running one process at a time
In PicOS applications, only one of the processes of a nodéad@the CPU at any time. This
means that no more than one process of a node can be activatdthaeously. In our model,

we control this behavior by using id and pid in each process.

As we explained, each process has a pid, and all of the prexeas see the id of the current
process. So, the only thing that should be performed in eamteps is to compare pid and id.

This is how this comparison can help us achieve this goal:

e In each process, if pid = id, the process is the same as thentynrocess and it can be
woken up and change its state to the desired running statis ifgady at that time. This

also means that the process changes its state to one of thiagstates and the lock
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value of the process is changed to true. Note that if the psoisenot ready, nothing
happens even though we have pid=id.

e In each process, if pid = id, the process and the currentiyping process are not the
same. Therefore, the process is not allowed to wake up evaigthit may be ready. In

this situation, the process should stay idle till id charey®s pid becomes equal to id.

Listing A.4 shows where we use this comparison in one of thalitmns of changing the
state of the process. As pid is a uniqgue numbers, and id ckangange of existing pids,
at any time we have pid=id for just one of the processed, antiave pid!=id for all other

ones. Therefore, only one process that is ready can takeRhkadd start running at any
time. Accordingly, we can say that at any time at most onegs®ds running, and it is the

behavior we wanted to model.

A.2 PCB (Process Control Block)

Detailed Design

The PCB is modeled as a singleton module in NuSMV and has tlesving variables:

e Process instancesre instantiated and kept in PCB. Each process, as a vafmbRCB,
needs a name to be known with inside PCB. While instantiatizch process, PCB should
pass a unique number to it as its process identifier. The P&Brjitiates the processes, and
will not change any of their values at all.

e Every parameter that is needed for instantiating a prosgsassed to it by the PCB; therefore,
PCB should know about those variables too. For exaneplentandcurrentld parameters are
required for computations in some processes; however thasmmeters are defined outside
of each process and are needed to be passed to them somelamhiéhe that goal, PCB acts
as a facade for the processes, it receives those paraméi Heing initiated, and pass them
to its including processes while defining them. As a resultept for process id which PCB
selects for each process, all the other parameters thag¢queed for instantiating a process
should be passed to PCB while defining it.

e lock is a PCB variable which indicates if any of its processes an@ing or not. The value
of lock is true if and only if one of its process is in one of itdige states and it is false if all
of the including processes are in ready or wait state. Thisbk is used by the scheduler
element so that it can decide what strategy to use for setetitie next process to run. For
example, if PCB lock is going to be true it means that one optloegesses are running in the

next step and the scheduler should not select any othergsdzeun.
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Implementation Guidelines

1.

N

Instantiating Processes

As it was explained before, the PCB is basically responéibslmstantiating all processes that
are defined in the application. Each process can be inseahtig receiving three parameters,
the assigned identifier (pid), the current running procdestifier (currentld), and the set of
triggered events (event). Among these parameters, theofiestis considered as a unique
number for the process and the others are the same for a#gses of the node. We modeled
PCB as a module that receives two parameters, id and evenseGoently, having these two
pieces of information, we can instantiate as many processexeded for the node just by

assigning unique process identifier (pid) to each process.

It is also notable that although PCB is a list of processegnnot be modeled as an array of
processes. The reason is that each process is modeled asikemmoduSMYV, and therefore
an array of processes can be seen as an array of modules, aductding to the NuSMV

limitations the type array of module is not supported by NUW6M

An example of a PCB model is shown in Listing A.5. In this exdn®CB contains four
process instances, three instances of a process1 and amcastf process2. Note that we can
have as many instances of a process that is needed, as loegyasavthem unique identifiers.
Besides, all instantiated processes can be from the sarmeeotywe can have instances of

different types of defined processes.

MODULE pcb (id, event)
DEFI NE
lock := p0.lock | pl.lock | p2.lock | p3.lock;
VAR
pO : processl(0, id, event);
pl : processl(1l, id, event);
p2 : processl(2, id, event);
p3 : process2(3, id, event);

Listing A.5: Process Instantiation Example

. Defining PCB Lock

One of PCB responsibilities is to provide information to theside elements, specifically
scheduler, and inform them if any of the processes are rgnoimot. It is important to
keep track of the states of the involving processes in PCRveder, from the scheduler’s
viewpoint, we just care if any of the processes is runnindlafahem are idle (not running).
In other words, we just want to know if a procesdasked(its lock is true) or not. If any
of the processes is running (is locked), we do not care whiehad them is running, but the
only thing that matters is that the CPU is assigned to one efptiocesses, and not to the
scheduler. Accordingly, the lock variable should be defiimettie PCB to facilitate accessing

to the information about the processes running statesalteshows if any of the processes
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is running or all of them are idle. In other words, the valuéoak is true if and only if one of
the processes is running, and its value is false if and ordly df the processes are in ready or
wait states (but not in any of the active states). Theretbeeyalue of PCB lock is based on
the value of involving processes’ locks, and it should beated at any time of the execution.
All these considered, the PCB lock should be defined in thelNEmlock of the NuSMV

model using the following rule:

lock = \/ ¢ po g p-lock

In the formula p stands for a process, p.lock means the lodkbla of process p. The rule
means lock is the result of the logical OR operator betweeitdtk variables of all processes
in the pch. Therefore, lock is false if and only if all of preses’ locks are false (all processes

are idle), and it is true if one of processes locks is truedgss is running).

In order to implement the rule in NuSMV, we need to perform@ operator on all of the
process locks, which means that if PCB contains four proasspl, p2, p3, p4, the PCB

lock is defined as follows:
lock = pl.lock | p2.lock | p3.lock | p4.lock;

Note that although this lock could be defined in the schedul@mny other module that has
the access to the processes, we decided to define the it in iRGBitwas the closest to the

processes, and it was not needed to make process lock®wisidhy other module.

A.3 Scheduler

Detailed Design

The data needed by scheduler depends on the strategy itlenmapting. Since our selected strategy
is a regular iteration on processes (it resets every timevgonecess is begin scheduled) and setting
the current running process id, we only need the informadioout the processes and the variable
that shows the current running process id. Like the othemefgs in our model, scheduler is also
a NuSMV module, with one instance of it for each node of the ehobh our schema, the selected

design for scheduler module contains the following data:

e currentld is the identifier of the process that is currently running,a. current process id.
This variable is needed to be set by the scheduler, howenee & is one of the key variables
in the model and other elements repeatedly need to have tessato read it., we decided
to define the variable outside of scheduler, and pass thablario scheduler as a parameter.
Therefore, scheduler gets the raw variable of currentldaresponsible for initializing it and

setting its value at each step.
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e pcb is another parameter which needs to be passed to schedilerdefining it. pcb is an
instance of PCB element and contains the list of all procesisd can also be considered as an
array of processes over which the scheduler iterates. 8tdratbeds to know about the value
of lock variable in pcb and select the next Currentld basethah e.g., if PCB lock is going
to be true it means that one of the processes are running inetktestep and the scheduler

should not select any new one to run.

Implementation Guidelines

According to PicOS documents, scheduler should walk thidR@BT to see which one of its pro-
cesses is ready to be run. As the scheduler finds a ready prdcsslects it as the next running
process, which means CPU will be given to that process. Wiegrseheduler gets the CPU again,
it starts from the beginning of PCBT and searches for theriiasty process.

In order to model this behavior of the scheduler, we emplgy&u as the array of processes,
Currentld as the index of the current process in pcb, anditiedf pcb which shows if any process
is running or not. In this part of our model, we just explaimhto iterate over the processes of the
pch, but checking if a process is ready or not is done in psocesiule.

Iterating over processes of pcb is the same as changing the @&Currentld, indicating the
process which will be checked to see if it is ready or not. dwiihg is the list of what we expect
from our scheduler in iterating over pcb and changing theréhikd, and how we modeled it in

NuSMV. The complete model covering all these expectatisisgiown in Listing A.6.

MODULE schedul er(currentld , pch)
ASSI GN
init(currentld)
next (currentld)
case
next (pcb. 1 ock) : currentld;
pcb.lock : O;
TRUE : (currentld+1l) nod 4;
esac;

0;

Listing A.6: Scheduler model Example

e Currentld should not be changed when any of the processesiéng. The reason is that,
when a process is running, it means the process owns the CiRblt éitme. So, the scheduler
does not own the CPU and it is not capable of changing the Gulidrat that moment.

We modeled this feature using the pcb lock which shows if ditlyeprocesses are running or
not. If the next value of the lock is true, it means that duriegt clock the CPU is still owned
by one of the processes, so scheduler cannot change then@di{reext(p.lock) : Currentld;).

e Whenever Scheduler takes the CPU after any of the processd®efil running, it should start

iterating over pcb from the beginning of the list. This metra if none of the processes are
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running in the next step, and if scheduler owns the CPU in éx¢ step, we need to choose a
new value for Currentld and that value should be 0.

We modeled this feature by using the current and next valiygsbdock. The actual condition
that results in resetting the Currentld is that a processising in current step (p.lock = true)
but it will finish running and release the CPU in the next stepXt(p.lock) = true). Therefore,
the combination of these two conditions should result irttésy the Currentld and starting
iteration from the beginning of the list ('next(p.lock) &qck : 0;).

e If Currentld is not pointing to a ready process, scheduleughcontinue iteration by increas-
ing the value of Currentld. As we explained before, whenévercurrent Currentld is equal
to pid of a process which is ready to be run, the process getSBU and runs, and if the pro-
cess is not ready it does nothing. Therefore, we should eh&ugrentld to give the chance
of accessing CPU to other processes. This means that if ridine processes is running (and
none will run till next step), the process that is pointed hyrrf@€ntld has not been ready yet.
Therefore, we should go to the next Currentld in the listXt(@lock) & !p.lock : (Currentld

+1) mod numberOfProcesses;).

A.4 SharedVariables

Detailed Design

We defined the sharedVariable module that is responsiblerfianizing modifications of the vari-
ables that are shared between processes, e.g., event. dpertps that should be accessible to
SharedVariable module to make the required functionalitysible to be done plus the required

variables or parameters in SharedVariable module arel lestdollows:

e eventis the shared variable between processes that should begethaad assigned, there-
fore, at the first place the module needs to have the accebattoHowever, since event is
repeatedly needed by other elements of the model, we demdkfine it outside the Shared-
Variables and just pass it to the SharedVariables moduleding assigned.

e pcbwhich contains a list of all processes is needed as a passaugir to SharedVariables.
We need the reading access to processes in order to to reaalties of their local variables
and decide about the value that should be assigned to thedstemiable, i.e. event.

e interrupt builds part of the event variable, defined in node and nethewids, but it needs to
be setin a lower level. Triggering interrupts is an intedacommunication concern, as event
triggering is a intra node concern. Therefore, interruts be passed to SharedVariables
module just to be used in connecting it to the internal evant$ building the whole event

variable.

In our model, an event is any kind of incoming signal which agaiss or node may be interested

in. Events can be triggered by processes of a node, or it caedeéved as interrupts that comes
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from an external nodes or other devices in the environmeute that although event results from the

concatenation of interrupts and internal events, we asshat¢he shared module which is defined
for a process is just responsible for modifying the inteeants. Therefore, interrupts are handled
with the same approach but from outside of a node. So, atetd,linterrupts just needed to be

passed to the sharedVariable module as input parameters.

Another point which worth noting is that, in our modeling eata, we assumed that the only
shared variable is event variable, however our model caxteméed in this regard and we can add
more shared variables. The only necessary step for thisggteis to pass the shared variables as
parameters of sharedVariables module when instantiatimgd then define the related conditions

for deciding about the values that should be assigned to.them

Implementation Guidelines

1. Internal events
Within a single node, processes may wait for a specific ebattdan be triggered by another
process of that node. We refer to those events as internais\gnce they affect the internal
behavior of the node, and cannot be seen by other nodes ietivenk. Therefore, the context

of internal events is a single node.

The number of internal events can vary from node to node,Useciadepends on the number
of possible events that are defined in a node and can be teidggrthe internal processes. In
our models, as it was specified in the modeling assumptioeagsssumed that the number of
possible internal events is five. So, we defined internal ageabiit word, which means we

allocated five bits for internal events.

The way we decide about how to change the internal eventspiganizing their changes,
directly comes from the idea of defining sharedVariablesutobr shared variable modifi-
cations. Here we have internals as the shared variables alhof the processes in the node
can trigger internal events. Since each process may tragdifierent type of event depending
on the state in which the process is running, we should setdhe of internals, based on

these different conditions.

Listing A.7 shows examples of the conditions that shoulddresiered in assigning a value

to internal events.

1l MODULE shared(pch , event, interrupt)
VAR
3 internal : word[2];
ASSI GN
init(internal) := 0b5_O0;
next (i nternal)

o

7 case
next (pcb. p0.state) = sl : 0b5_1;
9 next (pcb. pl.state) = s2 : 0b5 11;
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Detailed Design

TRUE : 0b5_0;
esac;
event :=interrupt::internal;

Listing A.7: SharedVariables Model Example

For instance, next(pcb.p0.state) = s1 : (bShows that process pO0 triggers the first event
when the process is in state s1, or next(pcb.pl.state) = §5.1D shows that process pl
triggers both the first and the second events when the preesstate s2. Besides, TRUE :
0b5.00 shows that if none of the conditions is held it means thagvemt is triggered, so the
value of internal should be 0. Note that, these conditiomsatsao be based on the value of
some variables other than states. For example, assumbéhatg a variable named x which is
defined in a p0, and we want the first event to be triggered éplyis in state s1 and the value
of x is equal to “blah”, therefore we can model this as a caaeghys next(pcb.p0.state)=s1
& next(pch.p0.x) = blah : Oh%. Accordingly, the conditions deciding the value of int&rn
events depend on the internal logic of the processes of @3 application. The guideline

for extracting these conditions out of the PicOS applicaisoas follows:

Assume p is a process and s is one of its states, if somewhitae $ncoding block event e is
triggered, the sharedVariable element of the model willhagxt(pcb.p.state) = s : Ob®1;

where e is assumed as the first bit of the event variable.

. Interrupts

Sometimes the processes are waiting for events which majgigeted by processes of other
nodes. We refer to these kinds of events as interrupts whieelmainly based on the multi-

node context of PicOS applications.

Interrupts are shared between nodes of a network. So modiftycan be done outside of the
nodes (see Section A.6). Therefore, here we have interaspas input parameter for shared
module. Accordingly, the only thing that should be done isaaienate the value of interrupt

and internal events to build the main event.

Node

According to the node responsibilities explained in thev@haode element can be a combination of
smaller elements and parameters. It can be designed as aWuofldule that receives the shared
variables between nodes (i.e. interrupts) as a parametiepass it to its elements which want to
use it (shared). Since scheduler of a node is responsibt®furolling the activities of the node, it
needs to access to other elements of the node (such as pay)stiderefore these variables should

be defined in the node module. Following is the list all datedss in node element:

118



IS

e Currentld , which is the identifier of the process that is currently riagn or the current
process id. The domain of this variable shows the maximumbsurof processes in the node,
but its value shows the index of the running process in pcle Veiable defined in the node
to be passed to pcb and its processes, but scheduler is thergleesponsible for setting its
value.

e event which involves the shared variables between nodes or psese Event is the result
of the concatenation of interrupts and internal events.eNloat here we modeled event as a
ten-bit word (five bits for interrupts and five bits for intatrevents), however this size can be
modified based on the PicOS application we are modeling. Theimportant thing in this
regard is that size of event should be equal to the size ofrupies plus the size of internal
events.

e pch, which contains a list of all processes and can be consigerad array of processes over
which the scheduler iterates. This element needs currantddevent as parameters in order
to pass them to its involving processes while instantiattiregn.

e sharedVariables which is the shared variable controller and organizegmiaieevent mod-
ifications. This element needs pcb to access the internelblas of its processes (such as
their states), event to modify the bits which are relatedhternal events, and interrupt to
concatenate it with internal events and result the maintsven

e interrupts, which is a parameter passed to the node element while bestantiated by the
network element. This parameter builds part of the evenalle and is needed to be passed
to sharedVariable element which is responsible for orgagievents. Since interrupts are

shared between nodes of the network they should be definesiadified in network layer.

Implementation Guidelines

Node element is responsible for building the structure efdbtual node, containing an instance
of PCB, sharedVariables and scheduler. In addition, nodeldhbe capable of receiving inter-

rupts. The former is possible by defining the variables arsdipg the required parameters to them;
whereas the latter can be handled by getting the interrugb asput parameter. Accordingly, node

is just a structure of its inner elements which can be iratas shown in Listing A.8.

VAR
id: 0..3;
event: word[5];
p : pcb(id, event);
s : sharedVariables(p , event);
sch: scheduler(id, p)

Listing A.8: Node Model Example

e currentld should be defined as a variable of node, so thahibegassed to the scheduler for

being initialized and modified, and to PCB for being used bypibcesses. The domain of the
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currentld shows the number of processes in the node, i.sizbef pcb.

e events should be defined as a NuSMV word, a set of bits, of wéimh is the sum of the
internal events and interrupts defined in the applicaticaretive assume that 5 bits are defined
for internal events and 5 bits for interrupts, therefore,elients should be word of size 10.

e pchis an instance of PCB element which needs currentld amt®as the input parameters.
There should be only one instance of pcb in a node.

e sharedVariable is an instance of sharedVariables elemkichweeds pcb, event and inter-
rupts as the input parameters. There should be only onetestaf sharedVariable in a node.

e scheduler is an instance of scheduler element which neddsmt currentld as the input

parameters. There should be only one instance of schedudenade.

A.6 Network

Detailed Design

Considering the target responsibilities for the netwoea@int, the network module needs to include

the following variables:

1. Node Instancesare initiated and kept in network. Each node, as a variabtetfork, needs
a name to be known with, and the variables shared betweers niogleinterrupts, should be
passed to all of the them while instantiating them.

2. Interrupts, which is a parameter passed to the node element while bestanitiated by the
network element. Since interrupts are shared between raddbs network they should be
defined and modified in network layer. Interrupts is a wordoé 8, where n is the maximum

number of message types that can be transferred betwees (mue bit for each message

type).
Implementation Guidelines

1. Instantiating Nodes
A network cannot be built without defining its nodes and thanaztions (communication
channels) between them. Therefore, the first respongibilinetwork it to define interrupts
as communication channels and instantiate nodes by pas$srigterrupt as their input pa-
rameters. Note that we pass interrupts to nodes since tleay as part of their events in their

shared modules.

Listing A.9 shows a simple network containing two nodes \Wmtice connected using an inter-
rupt. Here we defined interrupts as a five-bit word, means wéiaadle a set of five different
interrupts in this model. However, the size of interrupt t@nchanged if needed. The only

important thing in this regard is that changing this size raffgct the size of the event which
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is defined in each of the nodes; since the size of event sheutdbal to the size of the node’s

incoming interrupt plus the size of its internal events.

MODULE mai n
;| VAR
interrupt : word[5];
4 NODE1 : nodel(interrupt);
NODE2 : node2(interrupt);
s| ASSI GN
init(interrupt) := 0b5_0;
8 next (interrupt) :=
case
10 next ( NODEL1. pcb. p0O.state) = OFF : 0b5_10;
next ( NODE2. pcb. pl.state) = OFF : 0b5_1;
12 TRUE : 0b5_0;
esac;

Listing A.9: Network Model Example

2. Organizing Interrupt Modification
As it is shown in Listing A.9 , interrupt is a variable whichskared between two nodes and
may change based on the value of each node internal varidtiiesefore, assigning values to
interrupts cannot be done in any of the nodes, but it shoultbioe in another module which
has the access to all the nodes, i.e. the network. Accordiogé of the responsibilities of the
network module is to organize interrupt modifications andidie about the new values that

should be assigned to the interrupt.

The way we handle changing the interrupt is the same as whaplained for organizing
changes for events. The only difference is that here theedhaariable is interrupt, and the
components which share the variable are the nodes of theretivherefore, similar to what
we had in shared module, since each node may trigger a diffgnee of interrupt depending
on in the state of its processes or its other variables, weldlset the value of interrupt based

on these different possible situations.

Listing A.9 shows examples of the conditions which shoulddesidered in assigning a value
to the interrupt variable. For instance, next(NODE1.p@lsfate) = s1 : 0b3.0 shows that if
the p0 process of NODEL1 is running in state s1 the value ofrinpés should be 0h30, which
means the second type of interrupt would be triggered fasfahe nodes that are connected
to this channel, or next(NODE2.pch.pl.state) = s2 : Qk&hows that if the pl process of
NODE?Z is running in state s2 the value of interrupts shoul@He 1, which means the first
type of interrupt would be triggered for all of the nodes taet¢ connected to this channel.
Besides, TRUE : 0h®; shows that if none of the above mentioned conditions id, ek

value of interrupt should be 0, which means no interrupt tagpkned.
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Appendix B

Translating ArduinOS Programs
Into NuSMV Models

Much of our experience in the previous PicOS modeling esercan be reused. For each applica-
tion, the corresponding NuSMV model must contain node, pcheduler, shareVariables and all
processes defined in the program. The network element, leswe®s no equivalent in the node
program, since its logic resides in the connections betweeles. In other words, the information
about the network of the nodes is actually provided by witipghe Arduino nodes together. The
hardware connections need to be specified and be modeladtdpa

We now outline the general process of building the NuSMV nhodéof the source program of

an ArduinOS representation (.node file).

1. ANuSMV module is defined for each of the elements in the &dayer: node, PCB, Sched-
uler, and SharedVariable. A module is also created for eagbegs in the program. The
required parameters for each module will be described iméxé steps.

2. Module node definition

(a) For each i/o pin defined in the program, a variable shoelgdssed to node module as
an input parameter, and the node passes it to all of its ilaprents while instantiating
them. If there is no i/o pin defined in the program, then theenmdule has no input
parameter, and also does not have any way to communicateoigr nodes in the
environment.

(b) Setthe signature of the node element by generating a aatha set of parameters. The
name of the node element will be “nade@deName” where nodeName is the name of
the node in the source program. Secondly, its input parasist®uld be set as all the

input or output pins that are defined in the source file.
MODULE nodenodeName(inputChannelName*, outputChannelName*)

(c) Define the variables of the node module in its VAR blocka®ivs:

e currentld is an integer showing the current running prod@sstifier. Therefore,
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its domain is from 0 to N-1 where N is the number of processstmittiated in the
“root” method of the source file, e.g. currentld : 0..3.

e eventis a word of size N bits, where N is the number of everfiaek in the node
of the source file, e.g. event : word[2];. Note that the evanésnumbered as their
order of being defined. For example, if two events are defindtieé application,
the first bit of the event word stands for event el (@12, and the second bit stands
for event e2 (Ob210).

e For each variable defined in the node scope of the progranmijablais defined in
VAR block of node element and is passed to node inner elemientpcb, shared-
Variable, schedulet. Note that theoutputvariables will be set by sharedVariable
module, since they are shared between all processes of a node

e PCB should be instantiated using the signature of the PCBufe@hd should pass
the needed parameters to it. We called the PCB instance &8 gmd passed
currentld, event, all the variables defined in the node, dhdedined input pins
to the nodenodeNamePCB module, which is the PCB element of the model for
nodenodeName.
pcb : nodenodeNamePCB (currentld, event, nodeVariable*, inputChannelNamne*

e Scheduler should be instantiated using the signature o¢heduler module and
the needed parameters should be passed to it. We calledhieeBer instance as
“scheduler” and passed currentld and pch as the parameteestiodenodeNameScheduler
module, which is the scheduler element of the model for noalgeName.
scheduler : nodemodeNameScheduler(currentld, pcb);

e SharedVariables should be instantiated using the sigmatuthe sharedVariables
module and the needed parameters should be passed to itll¥dtlha SharedVari-
ables instance as “sharedVariables” and pcb, event, alldhiables defined in the
node, and all defined input and output pins as the paramettits hodenodeNameSharedVariables
module, which is the sharedVariables element of the modehdolenodeName.
We are passing variables of the source node program and fimedi®utputs to
sharedVariable since this element is actually responéilrlsetting values to the
outputs.
sharedVariables : nodeodeNameSharedVariables(pcb, event, nodeVariable*, out-

putChannelName*, inputChannelName®*);
3. Scheduler module definition

(a) For each variable defined in the node scope of the programarjable should be passed
to PCB module as input parameter, and pcb should also pasdatdll of its inner

processes, while instantiating them.

1pch element should also pass these parameters to to allimfiéselements,processes, while instantiating them.
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(b) Setthe signature of the Scheduler element. The name aitidule will be “nodenodeNameScheduler”
where nodeName is the name of the node in the source progreempdrameters that

should be passed to the module are currentld and pchb.
MODULE nodenodeNameScheduler(currentld, pcb)

Listing B.1 shows the completed model of the scheduler et¢ffioe a node containing 3
processes. Note that in Arduino the scheduler iterate awsegses in order and sched-
ules them one by one, whereas in PicOS every time a new prebestd be scheduled

the scheduler starts iterating over pcb from its beginning.

1| MODULE node_NO_Schedul er(currentld , pcb)
ASSI GN
init(currentld)
next (currentld)
case
next (pcb.lock) : currentld
TRUE : (currentld + 1) nod 3;
esac;

0;

w

o

~

Listing B.1: ArduinOS Scheduler model Example

(c) Assign a value to currentld in order to simulate itenatiwer processes included in pcb.
In the ASSIGN block of the scheduler, we should initialize tfalue of currentld, and
decide about its next value at each step. Since currentigingtto simulate a pointer to
a process in the processes list of pcb, for initializing itskeuld set it as pointing to the
first process in the list, init(currentld) := 0;.

The next value of currentld should be set somehow that aatiber through all pro-
cesses is simulated, however, while any of the processesisng, the value of cur-
rentld should not be changed at all; note that when a prosessning we assume that
the scheduler does not have access to the CPU, so it shoulikradile to change the
currentld at all. Moreover, if a process is running, we sbauit till it releases the CPU
and then give CPU to another process. Accordingly, the naltevof currentld is the
same as the previous one if pcb.lock is true in the next stening that a process is
taking the CPU and become active, so we should wait till teegss releases the CPU.
Also, the next value of currentld is the id of the process i libt so that the Round
Robin-like strategy could be simulated, (currentld + 1) nhydvhere N is the number
of processes existing in the pcb element.

Note that the scheduler currently uses a Round Robin-liagegty, but it can be modified
to other strategies. In order to model check an applicatsmgudifferent strategies, e.g.

FIFO or FILO, for selecting next running process the schedsthould be modified so

2In the current strategy, there is no need to pass the i/o pitigetscheduler module, however if another strategy is going
to be used the input variables can be passed to the schestutbgt it can read their values and set the currentld valsedba
on the value read from the input pins.
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that setting the next value of currentld simulates thatiipestrategy.
4. SharedVariable module definition

(a) For each variable defined in the node scope of the progaathalso for each i/o pin
defined in the program, a variable should be passed to Shatiefi¥és module as in-
put parameter. SharedVariable is responsible for settingralue for the shared node
variables and output pins.

(b) Set the signature of the SharedVariables element., Birsime should be selected and a
set of needed parameters should be set as input argumentsrtte of the SharedVari-
ables element will be “nodeodeNameSharedVariables” where nodeName is the name
of the node in the source program. Secondly, its input patensishould be set as pcb,
event, all the variables defined in the node and are accedsjtéll the processes, and
all input and output pins that are defined in the source file.

MODULE nodenodeNameSharedVariables(pcb, event, nodeVariable*, outputChan-
nelName*, inputChannelName®);

(c) Assign values to the variables that are defined in nodpesob the program and are
actually shared between the processes. Rules regardingesteralue of each of the
shared variables should be put in ASSIGN block of the module.

e Set event variable. The event variable should be initidliaad modified in the
sharedVariables module. We expect event to show all thgerey internal events;
therefore, at the beginning of the execution of the prograsshould initialize it
to zero, which means that no event has been triggered. The ghlould be set
based on the size of the event variable, which has been définsable module,
e.g. event: word[2] in node means there are 2 events defirtbd program and the
event variable is a two-bit word; therefore, it should beiatized by init(event) :=
0b2.0;

e Set node variables, that are the variables shared betweeagses of a model and
could be modified based on the status of the processes. Tadables should be
defined in the node scope and modified inside sharedVariaindsile.

e Set input/output pins. for each input or output port defimethe ArduinOS appli-
cation, a variable should be considered in the model. That vgriables should be
set equal to one the other output variables. Thereforelérthie model, the outputs
can be assumed as variables shared between the processexlef and should be

modified based on the programmed logic.
5. PCB module definition

(a) Foreach variable defined in the node scope of the prograariable should be passed to

PCB module as input parameter, and pcb should also pasdlittfata inner processes,
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while instantiating them.
(b) Set the signature of the PCB element. First, a name sHmukklected and a set of
needed parameters should be set as input arguments. theohtdmad®CB element will
be “nodenodeNamePCB” where nodeName is the name of the node in the source pro-
gram. Secondly, its input parameters should be set as ¢ldyement, all the variables
defined in the node and are accessible by all the processgsllanput pins that are
defined in the source file.
MODULE nodenodeNamePCB (currentld, event, nodeVariable*, inputChannelNamne*
(c) Define the variables of the PCB module in its DEFINE and \&cks as follows:

e Instantiate all the processes defined in root method of thgram. PCB is actually
simulating the process list that is defined in the root of thegpam. For every
process in root method, an instance of a process should beedéfi pcb VAR
block. Since the ordering of the processes affects the éwecscheduling, we
instantiate the processes in the same order they have bieedie root method.
For each process declared in the program we should have essretement (mod-
ule) defined in the model (the definition of the process madluldl be explained
in the next steps; at this level we just assume that we havaditiles defined, and
we instantiate the processes based on this assumption.)

Each process should be instantiated using the signatueaafiresponding module,
and a unique identifier and all input parameters of the pclulshbe passed to
it. We name each process instance as “pracessile i is the identifier chosen
for the process and should be a unique number from 0 to N-1renNeis the
number of processes defined in root/pcb. Accordingly, in robidentifiers chosen
for processes starts from 0, and will be incremented for @aobess. Other than
identifier, the pcb parameters including currentld, evalitthe variables defined
in the node, and all defined input pins should be passed tortbdtile. The name
of the module for each process will be set as nnddeNameProcessName, where
nodeName is the name of the node defined in the source file rand$3Name is the
name of the process given to it when it was being declareddisthurce program.
According to our defined naming rules, for each prodehst is being defined we
have the following statement in the VAR block of the PCB madul

process : nodenodeName&ProcessName (i, currentld, event, nodeVariable*, in-
putChannelName*);

e Define lock variable for PCB. The pcb lock variable which skafvany of the
processes are running or all of them are idle should be defin¢ide DEFINE
block. The pcb lock is true if at least one of the processedamieed (the lock

variable of the process is true, meaning that the procesmisng). Therefore the
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lock can be defined as a rule in DEFINE block so that it is thalted logical OR
between all process locks. lock := procdskck | process2.lock | process3.lock;
where procesg, proces2, and proces8 are the name of the processes instantiate
in PCB.

6. Process modules definition
Define process modules and rule variable assignments bast @rogrammed logic. For
each process declared in the program we should have a prleessnt (module) defined in
the model. Each state defined in the process may affect onallne wf process and node
variables. Accordingly, all the variable modifications slibbe coordinated based on the
commands provided in the states of the process. To achietgfittst the process variables
should be defined and initialized based on our modeling agsom Then the logic in the
state transition should be translated to value assignniemnpsocess variables (represented in

the defined process module) and node variables (repredargrdredVariable module).

(a) Define all process variables needed according to the Imgdechema and initialize
them.

e Define process lock so that it is true if the process is in orgh@frunning states,
the process is not in wait or ready state, lock := state |= &atate != ready;

e Define pevents as a n-bit word where n is the maximum numbeveaite and
interrupts defined in the program. Respectively, pstatelshze defined as an array
of size n of which elements can have one of the active stateseden the program.
The process is not waiting for any events at the very begmoirnthe execution,
therefore, pevent should be set as 0 (no events), and the ghpstates does not
matter since the process is not waiting for any event and doesare about the
value stored in pstate.

e State variable, representing the current state of eactepsots defined and the list
of its possible values consists of “wait”, “ready” and alfided active states in the
program. The state variable should initially be set as “y&athce all processes are
ready to get the CPU and be activated.

e nextState variable, representing the next running statéhinh the process should
be woken up, should be defined with the domain of all definedastates. Ini-
tially, nextState represents the start state of the proedsich according to our
assumptions is the first active state defined in the process.

e Timer should be defined as an integer, from 0 to the maximurdetwdelay time
programmed. It represents the number of steps a procesklshait for a time
event. The state in which the process should be woken up tdrkégiate, of which

domain includes defined active states. Initially, timer iar@ the value of tstate
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does not matter since the process is not waiting for any tiveate

(b) For each active state defined in the program, find the tiondieffective on the value
of each process and node variable, and calculate the omedimdition for value assign-
ment for the variables. All the commands coded in each steteld be executed in only
one step in NuSMV model, so that it seems all the variable fioadions have happened
simultaneously. Therefore, the problem will be changeddinglating a procedural piece
of code, possibly consisting of conditional and loop staets, into functional assign-

ments for each variable.

i. Detect the unit blocks of code. Each block is defined as afbhes in a state
definition which can be compressed as a value assignmerst fardeariables. If
the state definition does not contain any loops and all itestants are regular
commands or conditional statements, the correspondintkb@uld contain the
whole body of state.

However, if the state contains a loop the state needs to benmgjsased to be-
foreLoop, loop, and afterLoop states to model the corredipgncontrol flows.
Since NuSMV does not have any notion of loops, the loop is edrd to a se-
ries of inner state transitions. To achieve this, state £wbontains a while loop in
its body should be considered as three individual statesf8reLoop, Soop, and
S_afterLoop states, so thatl&foreLoop passes the execution flow tdo8p (like

a goto(Sloop) statement in DSL), and_Bop conditionally passes the flow to the
beginning of Sloop or SafterLoop. The same approach should be followed recur-
sively for all states until there is no loop in any of the bledktates). Then each
state can be assumed as a unit block which is translatablari@ble assignment
conditions. Figure B.1 shows the intermediate interpi@tadf such case. As it is
shown, in the interpreted version instead of S we have tlotecastates; therefore
the possible values for state, pstate and tstate shoulddsgagrespectively.

ii. Find the updated value for each variable, and the coomtii paths resulting to the
new values. Each variable may be modified in the block andeits value may be
set to constants, its own old value, the value of other vegbr a combination
of these. For instance, at some point we may have A + B + 2 where A and
B are variables which might have been updated several timései same block.
Therefore, the new value of A depends on the value of A itsedfthe value of B,
and all execution paths that may affect the value of thesevamiables also affect
the A's new value, and should all be considered as part ofitiondl assignment
statements for A. Accordingly, we need an algorithm for asting the right values
considering the original order of statements in the procadurogram.

Detect all possible execution paths of the block. Each nsphtement (assign-
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state state S beforelLoop{
/I some conput ati ons 2 /I some conput ations
counter = 0; counter = 0;
whil e( counter < 5){ 4 got o(S_Loop);
i f(x==y){ [/some condition }
count er =5; s state S Loop{
} i f(counter < 5){
/I some ot her conputations s i f(x==y){ [//some condition
counter = counter+1 count er =degr ee;
} 10 }
/I some conputations /I some ot her conputations
a=0 12 counter = counter+1
} goto(S_Loop);
14 }
el se{
16 goto(S_afterLoop);
}
18 }
state S afterLoop{
2 /I some conput ati ons
a=0
22 }
Listing B.2: Original While Loop Listing B.3: Interpreted While Loop

Figure B.1: Handling While Loops Example

ment statements, wait, delay, changes in status of the ggpogodifies the value
of at least one variable, and conditional statements arertks that branches the
execution paths. Assuming that, we can build a tree stracepresenting the exe-

cution paths of the block:

A. Each node keeps the value of all process and node varjandsf any of them
has been modified in any branches, the node keeps only its/éihad.

B. Each edge has a label, representing the conditionahsgaieof that branch, is
an expression based on the value of some variables at tifiptiie execution

path.

While building the tree, if the value of a variable in any oétleaves is different
from its value in the root of the tree, it means that varialde been modified in
the block. Therefore the path (sequence of branching lafrels root to that leaf

represents the condition of the target NuSMV variable assint statements, and

the corresponding value of the variable is the one showduEiteaf.

iii. Given the condition-value pairs for each variable, @signment statements are

placed into the corresponding module. The process vasadsignments (pevent,
pstate, timer, timeState) should be done in the body of thegas module, whereas

the assignment statements for variables shared betweeasses (node variables,
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input and output variables, events) should be put in shamgade module of the

node.
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Appendix C

Translating ArduinOS Programs
Into Arduino Executable Programs

Recall that the defined ArduinOS DSL was designed so thatmiéetlie domain of programs can be
written in ArduinOS acceptable format. In fact, Arduinodaage, which is actually based on C++,
is more capable than our DSL, and our defined language is jsisbset of what can be written in
C++, or the language used by Arduino devices. Besides, Cs-thesame procedural line-by-line
execution of the program as our language; therefore, tiseme need for complex in-line function
extractions in the translation procedure.

Although the logic programmed in our defined language cailyels translated to C++, in
order to cover the expected underlying kernel layer logies should design a fixed structure for
the intended code in Arduino language. By kernel layer Ipgige mean all the node does for
scheduling the processes, e.g. iterating through thentiatad processes, triggering and handling
events, keeping track of the time for those processes wditina time event, and etc. Since the
underlying kernel logic of the program has been assumedatine s PicOS kernel layer, we need
to design a structure covering the same notions of PCB, Bsp@yents, and process states. In
the remainder of this section we provide the structure useflrduino programs and explain the
steps needed for translating a program written in ArduinG&% b the structured C++ one that is
acceptable by Arduino devices.

Our applications, programmed in the DSL, have been writeesetd on PicOS approach in man-
aging processes. Therefore the structure of the destin@tia- program should be compatible with
PicOS kernel design. According to PicOS logics, and als@dasn assumptions about how the
program should work, the node needs to have a list of prose=smeh of which contains a partial
behavior of the node. In order to keep our element namingdheesetween the NuSMV model,
PicOS application and the C++ Arduino programs, we call istedf processes as PCB (Process
Control Block) since it is the element facilitating managernand controlling the processes. Ac-
cordingly, the node mainly has a pcb and some variables, am#arate over processes of PCB and

run them one at a time.
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Each element in PCB should be of type Process, and shoulchbalile, i.e. should have a run
method that contains the application layer logics definethleyuser. Process is an abstract class
that provides a virtual (a.k.a. abstract) method called E@ch class that is a subclass of Process
has to implement the run method based on what behavior istamxpress. Each Process instance
may be in wait, ready or active state. While waiting, the pggcmay be waiting for a list of events,
and after occurrence of any of the interesting events it eeted to wake up at a specific event,
Therefore for each interesting event there should be aa &atevent in which it wants to wake
up; if the event occurs, the related state should be set asetttState in which the process will be
activated. Besides, each process has its timer that is dymitle the node timer, and can trigger the

timeEvent. Listing C.1 shows the Process structure.

cl ass Process {
public:
int timer ;
int tinmeState;
nyVector <int, MAX EVENTS> waiti ngStates;
nyVector <int, MAX EVENTS> waiti ngEvents;
i nt next St at e;
int state;
virtual void run(int &rientation, int & right, int & _left,
int & right, int & left) =0;
Process(){
timer =0 ;
state =ready;
}
1

Listing C.1: Arduino Abstract Process Class

Other than inherited properties, the subclasses of Prgbessdd have an activeState. The activeState
can be one of the states defined in the original applicatio tlae transaction between these active
states should be programmed in the run method. In the runadgetine process should check if it is
ready to be activated or not and if any of the interesting &/bad been occurred; if yes it goes to
one the possible active states and performs the programemedior of that state, then it releases the
CPU and goes to wait state again. The generic structure ai@et process has been illustrated in
Listing C.2. When the process is running in any of the actiages, it may want to invoke methods
for triggering an event and announcing it to other processesodify variables to set new values

to them or wait for events

class p_concreate : public Process {
public:
enum activeState { s1, s2, s3 };
activeState activestate;

p_concreate()

1Details on how each of these functionalities can be perfdrarel translated from the original program will be provided
later in this section
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Process(){
nextState = s_init;

}

void run(int &odeVariable, int &ode_input, int & ode_out put)
i f (state==ready) {
activestate = (activeState) nextState;
state = active;
}
el se return;
switch (activestate) {
case sl:
//do sone conputation, wait for events, or trigger sone
br eak;
case s2:
/...
br eak;
case sl:
/...
br eak;
defaul t

}

state = wait;

Listing C.2: Arduino Concrete Process Class

Knowing about the concept of each element and method, hefeaus on the step-by-step trans-

lation procedure of an application in ArduinOS format to a+tQgrogram. However, instead of

translating each command of the source code to the relaggcsin the C++, we provide the tem-

plate in which the program should be written and how to fill teplate based on the source file.

This approach will be more straight forward for manual masétaction and it is also more under-

standable. Following is the list of all the steps necessaryiilding the C++ program out of the

AduinOS application.

1. Create Abstract class Process. The original applicéitime definition of a set of processes,
which are defined and then instantiated in the root methodiceSive want to model the
processes we extract all of common properties between tieegses and what they need to
execute. Therefore, we need a fixed structure to keep the@smon properties, and we call
it as Process. Process is an abstract class, meaning thanwethave an object of its kind,
but it can be the superclass of other classes. We define thuaMmiun method for process,
i.e., it has no body but it is forced to be implemented in abdasses of Process. Besides,
Process contains all properties common between runnabtegses on a node which are as

followings:
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e timer is an integer variable of which value shows the numifesteps remaining for
a time event being triggered for the process. If the timeriggér than zero it means
that the process is waiting for a time event. At each step ofing the program, the
timer decreases if it is bigger than zero, and when it reazbesand the process is still
waiting for the time event, the process will become readwyto r

e timeState is the variable storing the next state the pratessld wake up if it realizes a
time event being triggered.

e waitingEvents is the list of all events for which the proceswaiting. If a process is
in wait state it may be waiting for some events to happen. ¥f @fnthose interesting
events happens, the process becomes ready to run and ibtiéap waiting for events
anymore. All the interesting events for which the processgaiging should be added to
waitingEvents and whenever the process becomes readingients will be cleared,
meaning that the process is not waiting for any event anymore

e waitingStates is the list of all states in which the processta to wake up if any of
the interesting events trigger. When a process sets an asemt interesting one and
adds it to the waitingEvents, it should also select one oddtiveStates and add it to
waitingStates, so that the node know in which state the gsosleould be invoked if one
of the interesting events occur.

e nextState is the state in which the process will be activadegtime the process realizes
the occurrence of an interesting event or the time evertipkl set the nextState value
according to the waitingStates or timeState value, depgnain the type of the event

that has been realized.

e state is an integer showing if the process is waiting, readyn, or active at any time.

All these considered, the application needs to have Pratassas it is defined in Listing C.1.
. Define pcb as a list of all process instances in the noderdier ¢o keep track of all processes
running in the node, we need to have a list of them stored asfothe variables of the node.
In that case, we can iterate over the processes, scheduoiddhbeing executed, call their run

method, and notify them about an event being triggered, tmd e
vector<Process* pcb;

. Define the trigger method that receives an event as théamglis capable of triggering events
and announcing its occurrence to all the processes in the.@de of the actions that each
process may perform is to trigger an event; therefore, ¢tigdnould be a method invocable
by all processes defined in the program. On the other handtiraeyan event is triggered
we want all the processes to be informed about that and chaol iof them is expecting the
event. As one of the interesting events occurs, the proses® should be changed from wait

to ready. These are the functionalities that we expect thgdr method to provide; receiving
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an event, it should go over all the processes in pch and chéwok évent is interesting for the
process or not, if yes it should make the process ready,satktState to the waitingState
index that points to the related state to the event that gmtmed, flush its waitingEvents and
waitingStates, and reset the timer so that the process isaitihg for any other events. The

implementation of trigger method is the same for all proggamd it is shown in Listing C.3.

void trigger (int event){
for (int i=0;i<pch.size();i++){
for (int i=0;i<pcb[i]->waitingEvents.size();i++){
i f(pcb[i]->waitingEvents[i] == event){

pcb[i]->nextState = pcb[i]->waitingStates[i];
pcb[i]->waitingEvents.clear();
pcb[i]->waitingStates.clear();
pcb[i]->tiner =0;
pcb[i]->state = ready;

Listing C.3: Arduino Trigger Method

. Define the globalTimertick method responsible for modifyprocesses’ timers. Pcb pro-

cesses may be waiting for a time event which means they skaitdor a specific amount of
time till they can be woken up by a time event. Besides, thenaif time for all the processes
of a node should be the same, and close to what we considenadtiNuSMV model, i.e.
each tick of the clock is one step in state transitions of #wgables. Accordingly, a global
time counter is needed to synchronize all the timers of thegsses and modify their values.
Therefore, the responsibility of globalTimertick is to geeo all processes in the pch, and if
they have a timer bigger than zero (i.e. they are waiting foma event) it should decrease
their timer value by one, meaning that they are one step ictosealizing the timer event.
Moreover, if the value of a process’ timer reaches zero itmadhat the process can realize
the timer event now and become ready; therefore, the metimddmake the process ready,
set its nextState to timeState, and flush its waitingEvevagjngStates and reset the timer so
that the process is not waiting for any other events. Theemphtation of globalTimertick

method is the same for all programs and it is shown in Listirgy C

voi d gl obal Tinertick(){
for (int i=0;i<pch.size();i++){
if(pcb[i]->tinmer = 0){

pcb[i]->tinmer = pcb[i]->timer - 1;

i f(pcb[i]->tinmer == 0){
pch[i]->nextState = pcb[i]->tineState;
pcb[i]->waitingEvents.clear();
pcb[i]->waitingStates.clear();
pcb[i]->state = ready;

}

}
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}
4}

Listing C.4: Arduino Timer Tick Method

5. Implement the basis of application in the main method efGh+ program.

(a) Setup Arduino and set the physical pins as the input atpibpins used in the program.

(b)

(©

The resulted C++ program should be executable on Arduinesytherefore, we need
to invoke some initiating methods for setting up the envinent for an Arduino applica-
tion, this can be possible by invokingit() method. Moreover, we may want to observe
the behavior of the Arduino device by connecting some LED#stpins, or make some
channels for them to communicate with other nodes in the ortwThe physical pins
should be set as input/output pins at the beginning of thgrpr. As a thumb rule
we can consider the number of input/output variables defiméte original program to
find out how many pins we need in the C++ code, e.g., for eaaht inip defined in the
.nodefile we need a pin to be set as INPUT, and respectively for evetyut bit defined
we need a pin to be set as OUTPUT. Besides, the list of prossbseild be set before
the main looping execution. Therefore, for each processéeéfive need to instantiate
a new object and add it to the PCB. Note that, later in the @nogior scheduling the
processes we should iterate over the PCB and select thenoeegs to run; therefore, in
order to have the same scheduling in all models, the ordenoaisses in the pcb should
be the same as their order in the original ArduinOS program.

Define node variables and the input/output interfaces.elach variable defined in the
node scope of the .node file, we need to define a variable in lgpprtie translation is
straight forward in this case and the variable definitionsladirectly copied from the
original program. We need input and output intermediatéebsito keep the variables
read from input ports or are intended to be written on the wigprts. Before activating
any process, the input variables are read from input charfpgis), their value will not
be changed until the next update. After the execution of anggss is done, since the
output variables may be changes by processes during tregugan, their new values
should be written to the output channels. Accordingly, feerg bit of input (output)
one bit variable is needed as a node variable. For the sakenplicty, we can assume
that for each connection we can combine all bits of inputdpots) to only one input
(output) variable, meaning that instead of receiving (g&g)dparallel bits we can have
one multi-bit packet. In that case, some bit modificatioresrageded for assigning the
composed variable to parallel ports (pins).

Continues loop execution of the processes should beeimgahted. The loop method is
actually a forever loop which is executed over and over agiaite the node is plugged.

At each call, all processes in the application should bedidee for execution. Accord-
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ingly, it contains the main process scheduler.

The scheduler should go over the processes in the PCB, dridecalin method for each

process. Since every process in the node may need the reéaspees, the value of the

input variable should be updated before running each psodesspectively, each pro-
cess may affect the value of the output variables; therefbesoutput ports are needed
to be updated based on the new values of output variablesoréiogly, the scheduler

iterates through the processes, and for each process lfegpta input node variable,

2) runs the process, and 3) updates the output pins basedmrt oade variables.

6. Define an individual class for each process defined in tbgrpm. The defined classes for
a process should be a subclass of Process class, and shadchbd according to its corre-
sponding name in the originatlodefile. Then the internal structure of that process should be

translated as follows:

(a) Define the list of all possible states the process caragetdefine the variable keeping
that state for the process, activestate. This can be pedsilalefining an enum including
all running states defined in the originabdefile.

(b) Set the start state of the process in its constructor. Cldms needs to have a public
constructor that first calls the constructor of its supexigProcess) and then sets the
start state of the process. The start state is the initialevaf the nextState variable.
Assuming the first state defined in the process as the stéet e value of nextState
should be set to the first running state defined in each process

(c) Implement the run method for the process, containingrtba behavior of the process.
The interface of run method is inherited from Process. Tépestiure of the method is the
same as the one defined in Process class and depends on tiseaimppoutputs a node
has, and it also should have the access to all variables débn¢he node. In order to
implement theun method for each process the following steps should be cdetple

i. Activate the process if it is ready to run. The first stepsxe®ution of each process
is to check if the process is ready (runnable) or not. If theepss is ready;, it should
change its state to active (running) and update the valuaéood its activestate
according to the expected nextState. Otherwise, if thega®is not ready it means
that it is still waiting for some events to occur; therefottee method should be
terminated.

ii. Transform the state-based structure of the programargwitch statement on pro-
cess active state. Therefore, instead of having states wehave cases. At first,
a switch statement should be defined based on process sativeShen, for each
state in the process a case should be created in the switeimstat and the whole
body of the state definition followed by a “break” statemembild be copied to

the corresponding case. Therefore, caSecontains the exact body of the staté s
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definition from the original program. Next the following pteshould be done to
translate some DSL specific statements into the C++ Ardwiesigable ones.

e Foreach command wait(EVENT, STATE) in the .node prograradt) EVENT
to the list of events that the process is waiting for waitingis.add(EVENT);
and 2) add STATE to the list of states in which the processlghmiwoken up
if the corresponding event occures, waitingStates.adil{EY;

e For each command delay(TIME, STATE) in the .node progranset}imer to
TIME so that the process waits for at most that amount tiltiesecution (timer
=TIME); and 2) set the timeState to the STATE in which the psscshould be
woken up after the timer goes off (timeState = STATE).

e Ifthere are any command goto(STATE) in any routines, puballasay LSWITCH,
at the beginning of the switch-case statement, then, idsttgoto(STATE) up-
date the active state to the STATE (activestate = (actite SETATE) and then
force the routine to jump to the beginning of the switch-csisgement (goto
L_SWITCH).

e Set the process state to wait at the end of all cases. Befdiegeeach case by
breaking its normal flow, the process state should be set it wiaich means

the process is releasing the CPU.
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