
University of Alberta

ON RANDOM FIELD CAPTCHA GENERATION

by

Fraser Newton

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Statistics

Department of Mathematical and Statistical Sciences

c© Fraser Newton

Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or

sell such copies for private, scholarly, or scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as

herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in

any material form whatsoever without the author’s prior written permission.

To Maureen.

Abstract

In this thesis, we develop a novel method of generating CAPTCHAs, which

are used to protect online resources from abuse by computer agents. We view

CAPTCHA generation as random field simulation and construct a CAPTCHA

by evolving an initial state via resimulating pixels until the image becomes

readable. We empirically demonstrate that this CAPTCHA is easy for humans

to read but difficult for computer programs to crack.

We describe how to develop variants of this CAPTCHA; in particular, we

implement and assess the utility of a grey-level variant. We establish a method

of maximizing the effectiveness of a CAPTCHA variant, and perform analysis

to determine which properties of the CAPTCHA most effectively differentiate

humans and computer programs.

We extend the random field used in the CAPTCHA application to multiple

dimensions in the context of graph theory, and describe the generic method of

applying the random field to suitable problems.

Acknowledgements

First, I would like to thank my supervisor, Michael Kouritzin, for his con-

tributions to as well as his encouragement of this work. I am also grateful

to Biao Wu, who always took the time to discuss the random field described

within and never hesitated to answer my many questions. In addition, I thank

Byron Schmuland, Keumhee Carrière Chough, and Thomas Hillen for their

thoughtful comments and questions on this work.

I thank the anonymous volunteers who partook in the readability study

at http://www.knwcaptcha.org. Their feedback and the results collected

through this study formed an early and integral foundation of this work.

I gratefully acknowledge the support of NSERC through the CGS-M, with-

out which I would not have been able to pursue my interest in probability and

statistics.

Finally, I thank my friends and family for believing that I could.

http://www.knwcaptcha.org

Table of Contents

1 Introduction 1

2 On Random Field CAPTCHA Generation 4

2.A Introduction . 4

2.B Notation, Background, and Probability

Computation . 12

2.C The KNW-CAPTCHA . 15

2.C.1 Parameter Estimation 15

2.C.2 KNW-CAPTCHA Generation 18

2.D Results . 21

2.D.1 KNW-CAPTCHAE Experiments 22

2.D.2 KNW-CAPTCHAH Experiments 24

2.D.3 OCR Attacks on Hardened KNW-CAPTCHAs 28

2.D.4 Comparison . 28

2.E Security Discussion . 30

2.E.1 Variants . 34

2.F Conclusion and Future Work 38

3 On Grey Levels in Random CAPTCHA Generation 40

3.A Introduction . 40

3.B Method of Generating the KNW-CAPTCHA 42

3.B.1 Method of Simulating a Random Field 42

3.B.2 Parameter Estimation 45

3.B.3 Generating a KNW-CAPTCHA 48

3.C Procedure . 50

3.D Results . 54

3.E Analysis . 56

3.F KNW-CAPTCHAH . 60

3.G Conclusion . 61

4 The KNW Random Field 62

4.A Introduction . 62

4.B Notation and Background . 63

4.B.1 Problem Setup . 63

4.B.2 Method for Computing Conditional Probabilities . . . 66

4.B.3 Algorithm for Simulating Random Fields 72

4.C Examples . 73

5 Conclusion 76

Bibliography 78

List of Tables

2.1 95% Confidence Interval of Computer and Human p̂w 24

2.2 KNW-CAPTCHAH Human and Computer Performance 28

2.3 95% Confidence Interval of Optimistic Computer and Human

Performance . 29

2.4 Segmentation Performance . 34

3.1 Optimization results with wt = 1.00, wh = 1.00 54

3.2 Optimization results with wt = 0.50, wh = 1.00 55

3.3 Optimization results with wt = 1.00, wh = 0.50 55

3.4 Optimization results with wt = 0.25, wh = 1.00 56

3.5 Optimization results with wt = 1.00, wh = 0.25 56

3.6 Optimization results with wt = 0.00, wh = 1.00 57

3.7 Optimization results with wt = 1.00, wh = 0.00 57

3.8 Tesseract Responses on Black and White KNW-CAPTCHAE . 58

3.9 Human Responses on Black and White KNW-CAPTCHAE . . 58

3.10 Tesseract Responses on Grey-level KNW-CAPTCHAE 59

3.11 Human Responses on Grey-level KNW-CAPTCHAE 59

3.12 Human Readability of KNW-CAPTCHAH 60

List of Figures

2.1 A few CAPTCHA Examples 8

2.2 Human and Computer Success on Various CAPTCHAs 11

2.3 Simulation Example . 12

2.4 KNW-CAPTCHA examples 22

2.5 Authorize CAPTCHA Example [1] 30

2.6 Variants of the KNW-CAPTCHA 36

3.1 Examples of EZ-Gimpy CAPTCHAs using grey levels [2]. . . . 41

3.2 Examples of grey-level character images. 47

3.3 Examples of excluded grey-level character images. 47

3.4 Examples of grey-level KNW-CAPTCHAs. 49

4.1 Graph Construction Example 73

4.2 Known and Unknown Vertices Example 75

Nomenclature

βh,t Site-site covariances, page 13

X State space, page 43

Xv State space at vertex v, page 65

XA Product of state spaces in A, page 43

∂ℓ(s) ℓ-neighborhood, page 12

∂v() Parents of vertex v in a directed graph, page 65

Π Probability measure, page 13

πh Site marginals, page 13

ρ(s, t) Euclidean distance, page 12

Θ Space of CAPTCHA generation parameters, page 51

θ CAPTCHA generation parameters, page 51

Ah Known sites in the neighbourhood of h, page 43

D = (V,A) Directed graph, page 64

f(θ) Cost function of CAPTCHA, page 52

G = (V,E) Undirected graph, page 63

H Unknown part of S, page 42

h(θ) Probability of human recognizing CAPTCHA, page 52

HC Known part of S, page 42

NG(v) Neighbourhood of vertex v, page 63

S Sites, page 12

t(θ) Probability of OCR program recognizing CAPTCHA, page 52

X Random field, page 43

pmf Probability mass function, page 13

Chapter 1

Introduction

In this work, I present three papers prepared during my Masters of Science

program at the University of Alberta. “On Random Field CAPTCHA Gener-

ation” Kouritzin et al. [3], accepted with mandatory minor revisions to IEEE

Transactions on Image Processing on 2012-07-05, is reproduced in Chapter 2

and describes the problem of automatically differentiating computer programs

from humans for the purposes of protecting online resources and its solution,

CAPTCHAs. CAPTCHAs are typically scrambled or deformed word images

which a user must correctly identify in order to access a resource such as web-

mail or an online survey. We discuss the desired properties of CAPTCHAs,

review prior solutions and their vulnerabilities, and introduce our own novel

method of generating black and white CAPTCHAs via pixel-by-pixel simula-

tion. Our method views CAPTCHA generation as random field generation,

where each pixel corresponds to a discrete random variable, and the struc-

ture of the CAPTCHA is captured by the marginal probabilities and pairwise

covariances between pixels; these parameters are estimated from randomly

constructed instances of a given CAPTCHA. We empirically determine that

1

our KNW-CAPTCHA is both highly readable to humans and difficult for

computer programs to defeat, and empirically compare our own method to

implementations by Google, YAHOO, and eBay. Furthermore, we describe

how to implement diverse variants of our CAPTCHA in a straightforward

manner and a method of selecting the best variant given a desired balance of

readability and attack resistance.

An abridged and slightly modified1 “On Grey Levels in Random CAPT-

CHA Generation” Newton et al. [4], published in Proceedings of SPIE Visual

Information Processing XX, is given in Chapter 3 and builds off the work es-

tablished in [3]. In particular, we examine the effectiveness of a grey-level

variant of the KNW-CAPTCHA, where we define CAPTCHA effectiveness as

a function of its human readability and attack resistance. We detail exactly

how to incorporate the grey level into the parameter estimation, provide a cost

function which incorporates human readability and attack resistance as well

as a method of estimating it, and empirically determine the optimal CAPT-

CHA parameters for given balances between human readability and attack

resistance. Finally, we perform logistic regression on the human and computer

responses to the CAPTCHA challenges in order to determine the relationship

and significance of the CAPTCHA parameters, as well as to identify which

parameters are likely to aid in the effective differentiation of human and com-

puter agents.

“The KNW Random Field” [5], a manuscript in final preparation which

will be submitted to Computation Statistics & Data Analysis, is reproduced

in part in Chapter 4. We provide a version of the algorithm applied in [3] and

1The analysis in Section 3.E has been revised and extended to include evaluation of effect
size.

2

[4] generalized from two dimensions to multiple dimensions; specifically, we set

up the problem as a graph, where vertices would correspond to pixels in the

previous applications and edges between vertices correspond to the pairwise

covariances. We prove that the resulting random field has the desired marginal

probabilities and covariances and provide explanatory examples.

3

Chapter 2

On Random Field CAPTCHA

Generation1

2.A Introduction

A CAPTCHA is a “Completely Automated Public Turing test to tell Com-

puters and Humans Apart” von Ahn et al. [6], widely used to protect online

resources from abuse by automated agents. Von Ahn et al. [7] suggests that

hard artificial intelligence (AI) problems form the test basis and defines a

(α, β, η)-CAPTCHA as a test that 1) can be solved by at least α propor-

tion of humans (e.g., the English-reading adult portion) with a probability of

success greater than β; 2) if a computer program can solve it with probabil-

ity greater than η in fixed time, then the program can be used to solve the

hard AI problem (see [7] for details). A common CAPTCHA is an image of

(usually alphanumeric) characters that are easy to identify by English-reading

1A version of this chapter has been submitted for publication. IEEE Transactions on

Image Processing.

4

humans yet translate into the hard AI problem of optical character recogni-

tion (OCR). Segmentation of characters within a word image is error prone [8],

and continues to be difficult for contemporary OCR algorithms [9]. Therefore,

segmentation should be hard to ensure an OCR-based CAPTCHA is resistant

to computer programs.

Herein, we introduce a general method for generating “KNW-CAPTCHAs”,

with the view that random CAPTCHA creation is really random field simu-

lation. We simulate random fields with given pixel marginal probabilities and

pixel-pixel correlations, which are estimated from a priori samples with ran-

dom variations in the fonts and placement of letters. This can be thought of

as a form of lossy compression: while the complete information is the joint

distribution, we store only the marginal probabilities and covariances, from

which a (possibly different) joint distribution can be reconstructed. How-

ever, we simulate directly from the marginal probabilities and covariances. A

KNW-CAPTCHA is initialized as a random field, and the CAPTCHA is then

generated via partial Gibbs re-sampling in order to provide enough informa-

tion to make the test word human-recognizable, yet ensure that OCR remains

hard. In contrast to other methods which apply deformations to an initial word

image, the KNW-CAPTCHA is a partial evolution from OCR-disruptive noise

towards a random word image.

For an effective (α, β, η)-CAPTCHA, β should be high and η should be

low. The target population for our KNW-CAPTCHAs is English-readers with

better than 20/60 vision (though we have little control over the participants

in our readability studies). We establish high β via a readability study and

endorse low η via experiments with modern OCR programs.

We begin with an overview of past and present text-based CAPTCHAs.

5

(While there are many alternatives to text-based CAPTCHAs, such as the

image-based IMAGINATION [10], which requires users to annotate images,

text-based CAPTCHAs continue to be the de facto standard in industry.)

The early, now broken PayPal and the Microsoft CAPTCHAs discussed in

[11] and [9], respectively, both relied on background noise and random charac-

ter strings to resist automated attacks but did not employ character crowding,

significant distortion, nor sophisticated random field techniques. The back-

ground noise (random arcs in [9] - see Figure 2.1) was trivial to remove due to

its distinctiveness.

Mori et al. [2] successfully attack both EZ-Gimpy and Gimpy CAPTCHAs.

EZ-Gimpy uses word images, and employs clutter and character distortion to

defend against attacks. However, it does not employ character crowding. The

authors of [2] make use of character shape contexts in order to obtain many

candidate letter locations and exploit EZ-Gimpy’s use of words. Gimpy’s

clutter is two distorted overlapping word images (chosen from a dictionary of

411). In a CAPTCHA challenge, five pairs of overlapping words are presented.

In [2], the authors determine the opening and closing bigrams of each word

and use this knowledge to prune the space of possible words. Further pruning

is accomplished using word-sized shape contexts. Moy et al. [12] break EZ-

Gimpy and Gimpy-r. Gimpy-r presents the user with four random, distorted

character images from an alphabet of 19 letters against a cluttered background.

It does not, however, use character crowding nor random field techniques to

impede segmentation. The authors of [12] are able to remove the background

clutter and segment the challenge into four character recognition problems,

which are solved by determining which template character image requires the

least distortion to match the observed character image. (Performance is further

6

improved using additional steps.)

Pessimal Print (see Figure 2.1b), introduced in Coates et al. [13], simulates

low-quality print images that challenge OCR. The CAPTCHA generation ran-

domly selects a word, a font, and a set of image degradation parameters to

thicken, crowd, fragment, and add noise to character images. 685 word images

were generated; all were readable to the ten human volunteers, while almost

all were unrecognizable to the Expervision TR, ABBYY FineReader, and IRIS

Reader OCR programs. Furthermore, OCR performance was very sensitive to

changes in the parameters.

Chew et al.’s [14] BaffleText CAPTCHA relies on a human’s Gestalt per-

ception, i.e., the ability to assemble the whole given fragments of an image.

BaffleText generates pronounceable non-English random character strings, dis-

played in a randomly selected font and masked by random circles, squares, and

ellipses using one of the pixel-wise boolean operations “or”, “not and”, or “ex-

clusive or”. Character strings are generated using a trigram Markov model

to solve the small dictionary problem that can plague English word-based

CAPTCHAs; random masks are used over simple additive pixel noise in or-

der to exercise humans’ Gestalt perception. Human readability results were

collected from 33 volunteers on 1212 BaffleText images, with 79% success.

Attack resistance is established by subjecting BaffleText images to the attack

described in [2]. The attack succeeded on only 11% of the BaffleText images,

lower than both Pessimal Print and EZ-Gimpy. The ScatterType CAPTCHA

(see Figure 2.1c), introduced in Baird et al. [15], also relies on Gestalt per-

ception. Pseudo-words are generated using an n-gram Markov model; then

each character in the word is cut vertically and horizontally and the resulting

fragments are displaced randomly.

7

(a) Microsoft (broken) [9] (b) Pessimal Print [13]

(c) ScatterType [15]

(d) Windows Live

(e) Google
(f) Yahoo!

Figure 2.1: A few CAPTCHA Examples

Finally, we examine some popular CAPTCHAs in use today. The CAPT-

CHAs used by Google, Yahoo!, and Windows Live (see Figure 2.1) all share

similar properties: a lack of background noise, distortion of character or word

images, and extreme crowding of adjacent characters. Segmentation resistance

is largely accomplished by character crowding, notably lacking from earlier,

now broken CAPTCHAs such as the captchaservice.org CAPTCHAs in [16],

the PayPal CAPTCHA in [11], the Microsoft CAPTCHA in [9], EZ-Gimpy in

[2], and Gimpy-r in [12]. However, this extreme crowding also makes human-

recognition a challenge. For example, is it obvious what the character string

in the Google CAPTCHA is?

In contrast with the methods covered above, we view CAPTCHA gen-

eration as correlated random field simulation. Like Pessimal Print [13], our

images provide partial, noisy information. We also leverage Gestalt perception

to maintain a human-readable image, as in [14] and [15]. However, our use

8

of randomness is far more fundamental and thereby far harder for computers

to deal with than prior methods. We observe that the human readability of

random CAPTCHA images is captured by the site, i.e. pixel, marginal prob-

abilities and the site-to-nearby-site covariances; the actual joint distribution

of the sites is not so important. Our method begins with a correlated random

image that is evolved randomly a site at a time via Gibbs sampling until the

random test word is human-readable. Our method of calculating each site’s

conditional probability mass function given the nearby sites that are either

known or already simulated gives us exactly what is required for Gibbs sam-

pling. The initial image can be a simple white background, any correlated

random field, or, for strong segmentation resistance, a CAPTCHA generated

by the ScatterType algorithm [15] with a different base word. Both the leg-

ibility and segmentation-resistance of our KNW-CAPTCHA depends on the

number of iterations used in the Gibbs sampling step. The upshot is that

we generate flexible, random CAPTCHAs automatically and efficiently and

explain exactly how we do it.

In this work, we investigate two variants of the KNW-CAPTCHA: the

KNW-CAPTCHAE, an easy variant generated without any background noise,

and the KNW-CAPTCHAH, which is generated using character fragments as

the background noise. The KNW-CAPTCHAE is used to investigate how the

generation parameters (especially the number of Gibbs iterations, NG) affect

the attack resistance of the resulting CAPTCHA. Figure 2.2a shows both the

attack resistance and human readability of the KNW-CAPTCHAE for vari-

ous values of NG, where computer success is the proportion of CAPTCHAs

where either of the OCR programs Tesseract or ABBYY FineReader suc-

cessfully recognized it, and human success is the proportion of CAPTCHAs

9

where a human successfully recognized it. The KNW-CAPTCHAH would be

used in practice as the background noise provides additional security but the

CAPTCHA remains highly readable to humans. Figure 2.2b compares the hu-

man readability and attack resistance of the KNW-CAPTCHAH with several

CAPTCHAs deployed by major corporations. As the correct answers for the

comparison CAPTCHAs are unknown, we use optimistic solving accuracy (see

Section 2.D.4) to determine human success; similarly, an OCR program is con-

sidered correct if it matches any of the human responses. These graphs clearly

illustrate that both the KNW-CAPTCHAE and KNW-CAPTCHAH are highly

readable and difficult to attack; even the KNW-CAPTCHAE appears to have

resistance to OCR comparable to or surpassing CAPTCHAs currently used

by Google, YAHOO, and eBay. There were no computer successes against

the KNW-CAPTCHAH, yet it obtained over 94% human success. (None of

the other CAPTCHAs went unrecognized by OCR; only the eBay CAPTCHA

bested the KNW-CAPTCHAH in human success, but it also appears to be

trivially broken.)

Our notation and random field algorithm are given in Section 2.B. Section

2.C details our CAPTCHA generation, and Section 2.D contains our results.

We discuss alternative implementations of the KNW-CAPTCHA in Section

2.E.1. The mathematics behind the methodology in this paper will be pub-

lished separately (see [5], [17]).

10

0.01 0.02 0.03 0.04 0.05

0.
99

0
0.

99
2

0.
99

4
0.

99
6

Computer Success

H
um

an
 S

uc
ce

ss
NG = 200
NG = 400
NG = 600
NG = 800
NG = 1000

(a) KNW-CAPTCHAE with various NG

0.00 0.10 0.20 0.30

0.
85

0.
90

0.
95

Computer Success

H
um

an
 S

uc
ce

ss

KNW
Google
YAHOO
eBay

(b) KNW-CAPTCHAH, Google, YAHOO, and
eBay

Figure 2.2: Human and Computer Success on Various CAPTCHAs

11

Figure 2.3: Simulation Example

2.B Notation, Background, and Probability

Computation

We begin by giving the required mathematical background and the equation

for the conditional probability of a pixel given the nearby pixels based on corre-

lations and marginal probabilities. Our goal is to randomly turn a pixel on/off

given an estimated set of parameters (the marginal probabilities and site-site

covariances) and the values of nearby pixels. The parameters capture the fun-

damental properties of the challenge word and, as pixels are re-simulated, the

random image approaches the desired image. Figure 2.3 illustrates this setup,

where the grey node represents the pixel being simulated and the nodes with

solid outlines represent the nearby already-simulated pixels.

We consider a rectangular image of M ×N pixels at the sites S = {(i, j) :

1 ≤ i ≤ M, 1 ≤ j ≤ N}, let ρ(s, t) =
√

(i2 − i1)2 + (j2 − j1)2 be the Euclidean

distance between s = (i1, j1) and t = (i2, j2), and define the neighborhoods of

s = (i, j) ∈ S with radius ℓ ∈ R as the ℓ-neighborhood

∂ℓ(s) = {(u, v) ∈ S : 0 < ρ((i, j), (u, v)) ≤ ℓ}.

Definition 2.B.1. A point s = (i, j) ∈ A is ℓ-connected within set A ⊂ S if

∂ℓ(s) ∩ A is not empty. A is ℓ-connected if for every proper subset B ⊂ A,

12

∂ℓ(B) ∩ A is not empty.

We assume the desired site marginals {πh} satisfy πh(1) = 1 − πh(−1) ∈

(0, 1), h ∈ S and {βh,t : t ∈ ∂ℓ(h), h ∈ S} are site-site covariances. Assume the

numbers on the RHS of equation (2.1) (to follow) are in [0, 1] (conditions for

this to be true are given in [17]). Then, there is a probability measure Π on

{−1, 1}MN , where −1 corresponds to white and 1 corresponds to black, such

that for each h ∈ S

Π(Xh = c) = πh(c), ∀ c ∈ {−1, 1}, cov(Xh, Xt) = βh,t, ∀ t ∈ ∂l(h),

i.e., with correct marginals and covariances, and

Π(Xh = xh|X∂ℓ(h) = x∂ℓ(h)) = πh(xh) +

∑

t∈∂ℓ(h)

xhβh,txt

1
4
2|∂ℓ(h)|+1Π(X∂ℓ(h) = x∂ℓ(h))

(2.1)

for each xh ∈ {−1, 1} and x∂ℓ(h) ∈ {−1, 1}|∂ℓ(h)|, where | · | denotes the cardi-

nality of a set.

Now, we explain how we use the marginals and covariances to determine the

conditional probabilities (2.1) for simulating a KNW-CAPTCHA. Suppose we

have determined the site probability mass functions (pmf’s) {πh}h∈S and the

covariances {βh,t : h, t ∈ S and ρ(h, t) ≤ ℓ} of sites within distance ℓ of each

other for random instances of the challenge word. (This is dealt with below.)

Then, we start with a random field designed to bait computers into the wrong

conclusions. Finally, we resample using {πh} and {βh,t} together with (2.1)

until the challenge word is just human-readable yet there is such correlated

noise that automated agents are unable to recognize the text.

We resample using Gibbs-like sampling, where we condition only on a large

13

area around a site instead of all sites. The algorithm will randomly select a

site h ∈ S to resample using (2.1) to ensure we keep the desired pmf’s and

covariances. The joint probability Π(X∂ℓ(h) = x∂ℓ(h)) in the denominator on

the RHS of (2.1) can be computed easily in real time by caching and re-using

results. Let {t1, . . . , t|∂ℓ(h)|} be the sites in ∂ℓ(h) and Bk = {t1, ..., tk} for

k = 1, . . . , |∂ℓ(h)| and B0 = ∅. Then, we compute Π(X∂ℓ(h) = x∂ℓ(h)) using the

multiplication rule

Π(X∂ℓ(h) = x∂ℓ(h)) =

|∂ℓ(h)|
∏

i=1

Π(Xti = xti |XBi−1
= xBi−1

). (2.2)

Π(Xti = xti |XBi−1
= xBi−1

), i = 1, . . . , |∂ℓ(h)| can be computed directly using

(2.1).

Next, based on the conditional probabilities computed using (2.1), we use

the following straightforward simulation algorithm to simulate h with the ap-

propriate marginals and covariances.

1. Compute Π(Xh = cu|X∂ℓ(h) = x∂ℓ(h)) for 1 ≤ u ≤ d, using (2.1).

2. Generate a [0, 1]-uniform random variable U . If

w−1
∑

u=1

Π(Xh = cu|X∂ℓ(h) = x∂ℓ(h)) ≤ U <
w
∑

u=1

Π(Xh = cu|X∂ℓ(h) = x∂ℓ(h))

for some 1 ≤ w ≤ d, then we set Xh = cw, i.e., the realization of Xh is

cw.

14

2.C The KNW-CAPTCHA

We now present how to estimate the required parameters for a particular

KNW-CAPTCHA and use those parameters to generate a novel random

CAPTCHA in Sections 2.C.1 and 2.C.2, respectively.

2.C.1 Parameter Estimation

We begin by generating the data for the estimation process that consists of

many independent instances of a particular word, where each instance varies

randomly in many ways. The parameters learned from this data will represent

the challenge word; by learning the parameters (site probabilities and site-

to-nearby-site covariances) from this data, we can construct the conditional

probabilities of the previous section and, thereby, do the Gibbs resampling

portion of our CAPTCHA creation.

The algorithm for generating the data consists of selecting a word to serve

as the KNW-CAPTCHA’s correct response and then generating a number of

random images representing this word by varying fonts and placement of char-

acters in the word. The word images will be constructed by joining individual

character images. Herein, we select a random word uniformly over a fixed

dictionary of common English words with a length of at least three characters.

For each letter in the English alphabet and for each of 18 fonts, we generate

character images denoted {f1,1, . . . , f1,26, . . . , f18,1, . . . , f18,26}, i.e., fi,j is the

character image of the jth letter in the ith font. To ensure that forming a

word image by joining random character images results in consistent horizontal

placement of individual character images, we work with character images that,

for a given letter, all have the same width. To accomplish this, we generate

15

trimmed or scaled character images for each letter as appropriate. Let N f
j

denote the maximum width of the bounding boxes over the character images

{f1,j , . . . , f18,j}, where a bounding box is the smallest rectangle that encloses

the character. For i = 1, . . . , 18, j = 1, . . . , 26,

• if j is one of the letters {i,j,l,r,t}, generate a new character image f ′
i,j by

centering and trimming fi,j so that its width is N f
j by removing columns

outside the bounding box;

• otherwise, generate a new character image f ′
i,j by scaling fi,j so that f

′
i,j ’s

bounding box has a width of N f
j and removing all columns outside the

bounding box.

The letters {i,j,l,r,t} were chosen for trimming instead of scaling since scaling

some of their images results in very tall bounding boxes due to their highly

variable character widths.

We then generate K images of the chosen character string with pixel state

space {−1, 1} = {white, black}, and nc is the number of characters in the

character string using the following algorithm.

1. The horizontal distance between each adjacent character’s bounding box

is chosen using a random number selected uniformly over {1, 2, 3}. This

is fixed for all K images.

2. The vertical displacements of characters are determined using the values

{v0, v1, v2, . . . } of a reflecting random walk, moving upward or downward

one with probability 1
2
; upon hitting the boundary {−25, 25}, it reflects.

The random walk is initialized randomly over {−10, ..., 10}. The ith

character image, where i ∈ {1, 2, . . . , nc}, will be placed vertically by

16

centering it according to the vertical center of its bounding box, and

then shifting it up or down according to the value v(i−1)×6 of the random

walk. This produces (n = 6, p = 1
2
)-binomial shifts before reflection.

This is also fixed for all K images.

3. For 1, ..., K

(a) For each letter in the string, a random character image is chosen

uniformly over {f ′
1,i, . . . , f

′
18,i}, where i corresponds to the given

letter.

(b) The string image is generated by positioning each character image

according to the above horizontal distance and vertical displacement

parameters.

The data generation algorithm is motivated by the following: the horizon-

tal distance is varied randomly to introduce crowding between some adjacent

characters and make the horizontal positions of characters unpredictable, both

of which make segmentation more difficult; the vertical displacement is varied

to ensure the vertical location of the word is unpredictable, but a random

walk is used to introduce dependence between adjacent characters and aid

the reader in following the flow of the word; and the font is chosen randomly

for each character to ensure the estimated parameters represent an “average”

character, rather than a particular font, so that feature detection or pattern

recognition becomes difficult. Still, it must be remembered that the main

sources of defense against automated attacks come from the original corre-

lated random field and the pixel by pixel randomness in simulating the word

so we do not rely just on character crowding as other methods do, but rather

17

use it as one more layer of protection.

Returning to estimation, we let s(i), t(i) denote the value of pixels s and

t in the ith image (of K generated images) and use the unbiased covariance

estimator

βs,t =
1

K − 1

K
∑

i=1

(xs(i) − x̄s)(xt(i) − x̄t) for 0 < ρ(s, t) ≤ ℓ,

where x̄s =
1
K

∑K
i=1 xs(i) is the empirical mean colour of the pixel at site s. We

estimate the marginal probabilities as

πs(xs) =
1

K

K
∑

i=1

1x
s(i)

=xs
, where 1x

s(i)
=xs

=















1 if xs(i) = xs

0 otherwise.

2.C.2 KNW-CAPTCHA Generation

We now present the KNW-CAPTCHA generation details, which consists of

generating background noise and then simulating the character string, using

modified Gibbs sampling with the parameters obtained in Section 2.C.1, on

top of the background noise.

Introducing background noise is a common technique when generating

CAPTCHAs since it introduces red herring character shapes that must be

removed or ignored by a computer program. Our view is that the best red

herrings are actual character pieces. Background noise also makes segmenta-

tion more difficult since, for example, vertical projection will not detect gaps

between adjacent characters bridged by appropriate background noise, and

connected components will view two adjacent characters as one if they are

connected by background noise (see e.g. Figures 2.1a, 2.6c).

18

We generate background noise via the ScatterType algorithm in [15]. While

the original intent of the ScatterType algorithm was to produce CAPTCHAs

that were human-readable but difficult to crack, our goal is the reverse: pro-

duce ScatterType CAPTCHAs that are clearly unreadable to humans yet

“readable” to computers, i.e., the character shapes produced will serve as

effective red herrings. By being obviously human-unreadable, the background

noise will be visually distinct from the actual character string, serving as a

form of stenography. Still, the character pieces are often erroneously detected

by computer programs as part of the actual character string. The unreadable

background noise is generated using the following algorithm.

1. Choose a five-letter character string uniformly, with replacement, over

the English alphabet.

2. Apply the ScatterType algorithm using a fixed font and the following

parameters:

Cutting Fraction 0.50 Expansion Fraction 0.60
Horizontal Scatter Mean 0.00 Vertical Scatter Mean 0.00
Scatter Standard Error 0.05 Character Separation 0.20

For our purposes, it is sufficient to say that this algorithm cuts each character

into large chunks (roughly quadrants), scatters each chunk, and separates each

adjacent character by roughly the width of a character. The reader is referred

to [15] for a description of the ScatterType algorithm.

Finally, we are ready to generate the KNW-CAPTCHA. We apply Gibbs-

like sampling, where we consider background noise as the initial state and use

(2.1) to calculate the conditional probabilities of sites in order to re-simulate

19

them. The challenge is to choose and re-simulate the correct sites so that

the KNW-CAPTCHA is human-readable but resistant to crack attempts. We

consider such a KNW-CAPTCHA to be a “minimally-readable CAPTCHA”.

The KNW-CAPTCHA is generated using the following algorithm. See

Figure 2.4 for examples.

1. Select a character string, generate a data sample of size K = 30 × nc,

where nc is the number of characters in the string, and estimate the

parameters as described in 2.C.1.

2. Set R, the sites to re-simulate, as follows:

(a) Sp = {s ∈ {1, . . . ,M}×{1, . . . , N} : πxs
(1) > 0}, i.e., the sites that

have a non-zero probability of being black.

(b) S4
p = {s ∈ {1, . . . ,M} × {1, . . . , N} : s ∈ ∂4(p) for some p ∈ Sp},

i.e., the sites that are within a distance of ℓ = 4 from a site that

has a non-zero probability of being black.

(c) To choose R, select NG × nc sites, where NG ∈ N is constant for

all characters, randomly and without replacement from S such that

the probability of selecting a site from S4
p is ten times greater than

selecting a site from S \ S4
p .

2

3. Generate the random ScatterType-based noise as described above. Select

400 sites in the same manner as choosing R, and re-simulate each of those

2Sites within and near the defining “shape” of a letter are likely to be re-simulated,
while others are not, ensuring the background noise is preserved while the character string
is sufficiently human-readable. We consider this a Gibbs-like sampler since the goal is not
to reach the joint distribution of the KNW-CAPTCHA but to effectively blend the encoded
word with the background noise.

20

sites using only the marginal probabilities (i.e., assuming independence).

Take this to be the background noise.

4. Apply the modified Gibbs sampling:

(a) Take the initial state to be the background noise.

(b) Re-sample each site in R according to Section 2.B.3

This process generates a matrix of black and white pixels saved as a PNM

file; in practice, we must use an image format supported by modern web

browsers as the CAPTCHAs will typically be deployed on websites. We use

ImageMagick [18] to convert the PNM file to a 72 DPI JPEG file, which is

used in the following OCR and human readability experiments.

2.D Results

In the following, we describe how we measure the properties of the KNW-

CAPTCHA and provide results. In Section 2.D.1, we attack a weak variant

of the KNW-CAPTCHA with computer programs to establish a lower-bound

to the KNW-CAPTCHAs’ attack resistance; in Sections 2.D.2 and 2.D.4, we

measure the human readability of the hardened KNW-CAPTCHA; finally,

in Section 2.D.3, we measure the attack resistance together with the human

readability of the hardened KNW-CAPTCHAs.

3Depending on the parameters estimated and the background noise used, we may en-
counter conditional probabilities outside the bounds of [0, 1]. In this paper, we are more
concerned with the practical outcome of the algorithm over perfect mathematical sensibil-
ity; for this reason, if a probability is encountered outside these bounds, we instead use
the marginal probability as a fallback. Please see [17] for a detailed exploration of the
constraints on the parameters.

21

(a) A KNW-CAPTCHAE.

(b) A KNW-CAPTCHAH, with outline.

Figure 2.4: KNW-CAPTCHA examples

We use KNW-CAPTCHAE to refer to the easy KNW-CAPTCHA variant

(Figure 2.4a). This variant is generated with no background noise and no

vertical displacement of individual characters, and is designed to be as easy as

possible to attack while maintaining the fundamental properties of the KNW-

CAPTCHA. The hardened variant, KNW-CAPTCHAH, generated with both

background noise and random vertical displacement, is deployed in practice.

See Figure 2.4b.

2.D.1 KNW-CAPTCHAE Experiments

Recall that in a (α, β, η)-CAPTCHA, we want η to be low. We now show our

η is low by establishing that modern OCR programs are unable to recognize

the encoded words. In particular, we use KNW-CAPTCHAE and design each

experiment to give the attacks the best chance of success. The resistance to

attacks in these easy cases is a lower bound for the hardened KNW-CAPTCHA

used in practice. However, our results below show even the KNW-CAPTCHAE

is basically unbreakable with contemporary OCR programs.

In order to understand the effect ofNG, the proportion of sites to resimulate

22

in our modified Gibbs sampling, we perform the following experiments over a

number of values of NG and expect NG to be related to how readable by both

computer programs and humans the resulting image is.

We use two OCR programs: Tesseract and ABBYY FineReader. Tesseract

is available at http://code.google.com/p/tesseract-ocr/ (retrieved 2010-

09-14). To our knowledge, Tesseract is the best available open-source OCR. An

overview of the implementation of Tesseract is given in Smith [19]. ABBYY

FineReader is a proprietary OCR program used in, for example, [13].

We proceed in the spirit of giving the OCR programs a “fighting chance”

by using KNW-CAPTCHAE. In essence, we make the KNW-CAPTCHA as

easy as possible to recognize (while maintaining its fundamental construction).

This tactic will provide the most evidence that η is low, i.e., that the KNW-

CAPTCHA is difficult to crack. Word accuracy is calculated based on the

number of words recognized, and all word comparisons are done ignoring case.

For a particular word, the experiment is as follows.

1. Generate a KNW-CAPTCHAE for the word wordK with no background

noise and no vertical displacement.

2. Run the OCR program to obtain wordO.

3. Compare wordK and wordO.

We vary NG and obtain the results over nT trials under each given value of

NG. Under a given NG, we model each attempt to recognize the word as i.i.d.

(pw)-Bernoulli random variables, where pw is the probability of recognizing the

word. We use the maximum likelihood estimator p̂w and provide the 95% con-

fidence interval. We perform the experiment for nT words, selected without

23

http://code.google.com/p/tesseract-ocr/

replacement randomly from our dictionary. In order to validate the human

readability of the KNW-CAPTCHAE, we also collect human results via Ama-

zon Mechanical Turk (AMT) [20] (see Section 2.D.2 for details). Results are

summarized in Table 2.1, and an example of a KNW-CAPTCHAE is provided

in Figure 2.4a. Based on these results, it appears that both OCR programs

have great difficulty recognizing the KNW-CAPTCHAEs. In fact, the com-

puter performance on the unhardened KNW-CAPTCHAE with NG = 200 is

similar to the results on the Google CAPTCHA (Table 2.3), which was the

most difficult for OCR to recognize of Google, YAHOO, and eBay. In addition,

human performance on the KNW-CAPTCHAE is very high; taken together,

this experiment strongly indicates that η is low while β is high, as desired.

As expected, both OCR and human performance generally increase as NG

increases, which indicates that NG will serve an important role in balancing

readability and security.

NG nT ABBYY Tesseract Human
200 1000 0.012± 0.007 0.000± 0.000 0.990± 0.006
400 1000 0.015± 0.008 0.000± 0.000 0.991± 0.006
600 1000 0.007± 0.005 0.002± 0.003 0.991± 0.006
800 1000 0.032± 0.011 0.015± 0.008 0.996± 0.004
1000 1000 0.034± 0.011 0.020± 0.009 0.993± 0.005

Table 2.1: 95% Confidence Interval of Computer and Human p̂w

2.D.2 KNW-CAPTCHAH Experiments

In the (α, β, η)-CAPTCHA context, our β is high. The KNW-CAPTCHA

should be applied to literate English-reading adults with normal eyesight. (In

practice, alternative CAPTCHAs, such as an audio CAPTCHA, should be

24

provided others.) Our task is to estimate β and the time to complete the

challenge empirically.

The following experiments use a set of 300 KNW-CAPTCHAH images gen-

erated with NG = 800 based on the results of the previous sections along with

visual inspection in order to balance attack resistance with readability.

Online Readability Study

To collect these results, we set up the website http://www.knwcaptcha.org.

Volunteers participating in this online study were anonymous. No incentive

was provided. The procedure was as follows.

1. The visitor is presented with information on how the experiment is con-

ducted and how the data will be used. If the user does not accept, the

experiment is terminated.

2. In order to familiarize the visitor with the process, he or she is pre-

sented with an example of a KNW-CAPTCHAH along with the correct

response. The example shows a KNW-CAPTCHAH with the encoded

word outlined, and is designed to show the visitor how to recognize the

encoded word in noise. See Figure 2.4b.

3. The visitor is shown a set of 25 KNW-CAPTCHAHs. A visitor is never

shown the same word more than once. Beside each KNW-CAPTCHAH,

the visitor enters a response, and submits the entire data set upon com-

pletion.

A human’s response to a KNW-CAPTCHAH is marked as correct if it

matches the encoded word, ignoring case, and incorrect otherwise. In the

25

http://www.knwcaptcha.org

analysis, we model the trials as i.i.d. (β)-Bernoulli random variables. The

experiment yields nT responses from humans y1, . . . , ynT
, where

yi = 1ith response was correct.

As before, we use the maximum likelihood estimator β̂ to estimate β. The

time to solve each challenge is calculated using the time elapsed from when the

user is first presented with the CAPTCHAs to the submission of the responses.

The results are summarized in Table 2.2. Humans succeeded at solving a high

proportion of KNW-CAPTCHAHs quickly, helping to establish that β is high

and our CAPTCHAs are not onerous.

Amazon Mechanical Turk

In addition to collecting responses from volunteers at knwcaptcha.org, we

used Amazon Mechanical Turk (AMT) [20]. AMT is an online service which

allows requesters to submit tasks which will be completed by a pool of workers.

The use of AMT for collecting human feedback in research has been established

in several works. In Kittur et al. [21], the authors found that high quality

responses are achievable when using an appropriate experimental design; for

example, in order to be resistant to workers gaming the task, it is important

that the task be as much effort to complete incorrectly as correctly. In Sorokin

et al. [22], the authors successfully use AMT for the purpose of image anno-

tation. In Bursztein et al. [1], a number of popular CAPTCHA schemes are

evaluated in terms of human readability based on the amount of agreement

between three workers on a CAPTCHA image containing an unknown word.

(For further discussion of [1], please see Section 2.D.4.) Our task of evaluat-

26

knwcaptcha.org

ing the responses to a known CAPTCHA is relatively straightforward and an

appropriate fit for AMT.

Our AMT task design is similar to that of knwcaptcha.org. Each task

submitted to AMT consisted of a KNW-CAPTCHAH image and a response

field. A batch of tasks is preceded by brief instructions and an example, as on

knwcaptcha.org. No qualification pre-tests are administered, nor are work-

ers penalized (via, for example, lack of payment) for wrong answers. AMT

provides more diverse, international respondents than could be obtained by

recruiting local volunteers as in Section 2.D.2. While no demographic infor-

mation is collected, a comprehensive survey of the AMT worker population

conducted by Ross et al. [23] found a large population of international, young,

educated workers. Furthermore, [1] examines the effect of demographics on

CAPTCHA solving ability; of particular interest to us is that native English

speakers are able to solve English or pseudo-English CAPTCHAs far faster,

which indicates that the KNW-CAPTCHAH is biased against non-native En-

glish speakers.

The responses collected are summarized in Table 2.2. As before, we model

the trials as i.i.d. (β)-Bernoulli random variables, and solving time is calcu-

lated as in Section 2.D.2. While there is a drop in accuracy when compared

with the results in Section 2.D.2, this is likely explained by the different demo-

graphics of the respondents, particularly native language, as well as the lack

of incentives for correct responses. Unsurprisingly, the AMT workers, who are

incentivized to complete tasks quickly, solve the CAPTCHAs faster than their

volunteer counterparts.

27

knwcaptcha.org
knwcaptcha.org

2.D.3 OCR Attacks on Hardened KNW-CAPTCHAs

Next, we confirm that the KNW-CAPTCHAH is an effective separator of hu-

mans and computer programs by providing an “apples to apples” comparison

of OCR performance against human performance. To obtain these results, we

ran Tesseract and ABBYY FineReader on the KNW-CAPTCHAHs for which

we have human responses and determined accuracy as before. The results are

in Table 2.2.

As is clear from Table 2.2, neither OCR program is able to recognize any of

the KNW-CAPTCHAHs, while humans perform remarkably well on them. In

fact, the OCR programs seldom recognized any of the characters present in the

word. These results, taken together with the results in Section 2.D.1, provide

strong evidence that the KNW-CAPTCHAH defends automated attacks well

while also remaining quickly and easily solvable by humans. In particular,

we see that the human time to solve the KNW-CAPTCHAH is low so our

CAPTCHAs are not onerous.

NG nT 95% Confidence Interval Time to Solve
knwcaptcha.org 800 300 0.960± 0.022 6.41s

AMT 800 3319 0.910± 0.010 4.98s
Tesseract 800 300 0.000± 0.000 N/A
ABBYY 800 300 0.000± 0.000 N/A

Table 2.2: KNW-CAPTCHAH Human and Computer Performance

2.D.4 Comparison

We now compare the KNW-CAPTCHAH to other popular CAPTCHAs by

replicating the procedure used in the excellent CAPTCHA readability study

in Bursztein et al. [1].

28

In [1], responses are collected from three distinct AMT workers for each

CAPTCHA image. Since the correct answer for each CAPTCHA is unknown,

they instead compute “optimistic solving accuracy”: for a particular CAPT-

CHA image, if all three responses agree then all three responses assumed to be

correct; if two agree, then two responses are assumed to be correct; otherwise,

one response is assumed to be correct. In addition, we collect responses from

ABBYY and Tesseract as before; in this case, an OCR program is considered

correct if it matches any of the three human responses. See Table 2.3 for

optimistic computer and human solving accuracy, where nC is the number of

CAPTCHAs used, and nH is the number of human responses collected.

nC ABBYY Tesseract nH β̂
KNW-CAPTCHAH 300 0.00± 0.00 0.00± 0.00 900 0.94± 0.02

Google 300 0.00± 0.00 0.01± 0.01 900 0.81± 0.03
YAHOO 300 0.01± 0.01 0.02± 0.01 900 0.93± 0.02
eBay 300 0.05± 0.02 0.29± 0.05 900 0.97± 0.01

Table 2.3: 95% Confidence Interval of Optimistic Computer and Human Per-
formance

The KNW-CAPTCHAH compares favourably with the Google, YAHOO,

and eBay CAPTCHAs: it is the only CAPTCHA that was unrecognized by

either OCR program, and only the eBay CAPTCHA was more human read-

able (though the eBay CAPTCHA also appears trivially broken). The Google

CAPTCHA was seldomly recognized by OCR, but at significant human read-

ability cost.

The optimistic human solving accuracy on the KNW-CAPTCHAH also

compares favourably to many popular CAPTCHA schemes used in [1], includ-

ing reCAPTCHA (0.75), Google (0.86), and Yahoo (0.88). A few CAPTCHA

schemes achieved higher accuracy, like the Authorize CAPTCHA (0.98). How-

29

Figure 2.5: Authorize CAPTCHA Example [1]

ever, this study did not assess attack resistance; the Authorize CAPTCHA

example in Figure 2.5 is straightforward to segment, for example. The reader

is referred to [1] for details.

2.E Security Discussion

Removal of noise is typically the first step of a CAPTCHA attack, and is often

straightforward due to the noise’s distinctness from the character images, as in

the PayPal CAPTCHA [11] and Gimpy-r [12]. Dictionary knowledge facilitates

specific pattern discovery in many text-based CAPTCHAs, as in the bigram-

based attack against Gimpy [2]. Font knowledge can be used to determine

the most likely character for a particular character image, as in [12]. Finally,

segmentation of word images was often a critical step in order to individually

attack and recognize characters, as in [11] and [12]. We now examine how the

KNW-CAPTCHAH resists like-minded attacks.

The KNW-CAPTCHAH uses ScatterType background noise comprised of

character fragments difficult to differentiate from the encoded CAPTCHA

characters, in contrast to the Microsoft CAPTCHA [9], which relied on random

arcs. However, the background still retains distinct qualities; in particular, it

does not appear as “noisy” as the encoded characters; which works in our favor

for untargeted attacks. If an attack were to target this feature, the amount

of degradation done to the initial state could be varied (see Section 2.E.1 for

more details).

30

The KNW-CAPTCHAH also uses a fixed English word dictionary for hu-

man readability. However, this does enable attackers to use dictionary knowl-

edge to improve attack effectiveness. If this proves a weakness, there are three

straightforward alternatives: increase the dictionary size (reCAPTCHA uses

100,000 words [24]); use pseudo-words as in [15]; or use random character

strings.

It will prove very difficult for attackers to leverage font knowledge against

the KNW-CAPTCHAH. The KNW-CAPTCHA algorithm learns the param-

eters to simulate a character image from many fonts; no one particular font is

used, and the set of fonts used can be changed easily. Instead, each character

image in the KNW-CAPTCHA is randomly simulated, leading to a partial,

noisy image such that no two realizations are the same nor do they match

any of the fonts. This contrasts particular font distortions, as in Gimpy-r,

which yielded to distortion estimation techniques [12], or to particular font

noise obscurations, as in the Pessimal Print CAPTCHA [13].

Segmentation resistance is critical for CAPTCHA design since a trained

computer program can outperform humans at recognizing distorted, cluttered

single character images [25]. Segmentation continues to be error-prone for

OCR, but several CAPTCHAs have been broken via segmentation attacks

(see Section 2.A). As several modern CAPTCHAs, the KNW-CAPTCHAH

uses character crowding (in addition to random images). The KNW-CAPT-

CHAH crowds using adjustable random spacing, as in [15], which typically

leads to some adjacent character images overlapping.

To illustrate, we implement and execute a vertical projection segmentation

attack on the easier KNW-CAPTCHAE. The vertical projection attack, at its

simplest, calculates the total number of “on”, or black, pixels in each column

31

in an image. The image is then segmented at columns where there are few

or no black pixels. This method is very fast since only one pass of the image

is required, making it a useful tool for attempting to crack large numbers of

CAPTCHAs. We implement a more sophisticated variant of the vertical pro-

jection attack to identify segmentation candidates as described by Tsujimoto

et al. [26], which is designed to segment touching characters as in KNW-

CAPTCHAs. (Casey et al. [8] provides an excellent overview of segmentation

methods.)

Tsujimoto et al. [26] define their algorithm for finding segmentation can-

didates as follows.

1. For each adjacent pair of columns, perform an AND operation and de-

termine the number of black pixels in the resulting column (i.e., the

number of pixels that were black in both columns); this number is called

the break cost.

2. Smooth the break costs obtained in the previous step.

3. Identify break candidates as local minima in the smoothed break costs.

Herein, we smooth using a moving average.

We use the following experimental procedure for measuring the segmenta-

tion performance.

1. Generate an easy KNW-CAPTCHA for a character string consisting of

two random (i.e., chosen uniformly over the English alphabet), lower case

letters, with no background noise (i.e., the modified Gibbs sampling is

initialized with a white image).

32

2. Find the global smoothed break point minimum within the boundaries

(i.e., in the horizontal region between the first and last black pixels) of

the generated KNW-CAPTCHA using the above sophisticated vertical

projection segmentation attack. In the case of a tie, select the point

randomly amongst the global minima. Use this as the point of segmen-

tation.

3. If the bounding boxes of the two characters overlap, and the segmenta-

tion point is within two pixels of the middle of the overlapping region,

then consider the segmentation correct. If the bounding boxes do not

overlap, then consider the segmentation point correct if it lies anywhere

in the region between the bounding boxes.

The determination of whether the segmentation point is correct is slightly

modified from the work done by Hoffman et al. [27], which sought to isolate

measures of segmentation performance from recognition engines. Since we are

attempting to evaluate only segmentation resistance at this point, rather than

recognition resistance, ours was an appropriate technique to adopt.

We estimate ps, the probability of successful segmentation, using the max-

imum likelihood estimator p̂s. The results are summarized in Table 2.4. The

segmentation performance is low despite targeting character crowding and pre-

senting simplified two character images without scatter noise. Furthermore,

the segmentation performance does not vary significantly with NG indicating

the vertical projection algorithm has difficulty with the basic construction of

the KNW-CAPTCHA.

Collectively, the security mechanisms in the KNW-CAPTCHAH will prove

difficult to circumvent. However, should it be successfully attacked, other

33

NG nT 95% Confidence Interval of p̂s
600 1000 0.094± 0.018
800 1000 0.092± 0.018
1000 1000 0.088± 0.018

Table 2.4: Segmentation Performance

variants may take its place.

2.E.1 Variants

The mechanism described in Section 2.C is more general than the particular

example we study in this work: it can easily be extended to counter new

attacks. For example, if an attacker is able to remove the background noise,

one can use striped correlated noise (see Figure 2.6c); if a dictionary-based

attack succeeds, one can use pseudo-words; if a segmentation attack succeeds,

one can increase character crowding or decrease NG (see Figure 2.6a). In

fact, one could deploy several variants simultaneously, effectively reducing the

reward for successfully attacking any particular variant. We now provide a

high-level view of potentially useful variants; furthermore, we will discuss how

a variant can be selected by a user of the KNW-CAPTCHA.

The algorithm given in Section 2.C consists of the following steps.

1. Sample generation: many random instances of a character string image

are generated.

2. Parameter estimation: simulation parameters are estimated from image

samples.

3. Initial state: an initial state for the KNW-CAPTCHA is generated.

34

4. Simulation: re-simulate random pixels of the KNW-CAPTCHA until

word appears.

This is a template method pattern [28], meaning that we have given a high-

level description of the algorithm while allowing variants to define the details

of how each step is accomplished.

Within, we studied two variants, the KNW-CAPTCHAE and the KNW-

CAPTCHAH. The KNW-CAPTCHAE was deliberately designed to be vul-

nerable to attack by eschewing random vertical displacement in the sample

generation step, and background noise. In contrast, the KNW-CAPTCHAH

does use random vertical displacement and the initial state is generated us-

ing a ScatterType CAPTCHA. These two relatively simple differences produce

significantly different CAPTCHAs, yet the overall algorithm remains the same.

Now we introduce several variants to illustrate the flexibility of the KNW-

CAPTCHA algorithm.

Low NG We use a less cluttered initial state and alter the simulation step by

using a lower NG, NG = 100 say. The intent is quite different from the

KNW-CAPTCHAH: instead of relying on background noise to defend

against attack, we are relying on using only partially-formed character

shapes to ensure segmentation is difficult. See Figure 2.6a.

Clustered Correlated Noise Instead of the ScatterType character

fragments, we generate the initial state using the simulation algorithm

detailed in Section 2.B, with pair-wise covariances set to the Euclidean

distance from the pixel being simulated with ℓ = 2. The effect is an

initial state with clustered random shapes. See Figure 2.6b.

35

(a) Low NG (b) Clustered Correlated Noise

(c) Striped Correlated Noise (d) Simulated Characters

Figure 2.6: Variants of the KNW-CAPTCHA

Striped Correlated Noise We generate the initial state using one pass of

the simulation algorithm with ℓ = 2. Let the pixel p being simulated

have the coordinates (x, y), and let pixel pi have the coordinates (xi, yi).

For each pixel pi in the neighbourhood of p, set the pair-wise covariance

to 0 if x < xi and y < yi, or if x > xi and y > yi; otherwise set the

pair-wise covariance according to the Euclidean distance between p and

pi. This generates striped correlated noise. See Figure 2.6c.

Simulated Characters generate the initial state using the KNW-CAPT-

CHAE algorithm with a lower NG and a random character string. This

produces a background noise that is distinct to humans but difficult to

eliminate automatically due to the similarity in form to the CAPTCHA

word. A random character string is used instead of a word to prevent

confusion between the background noise and the CAPTCHA word. See

Figure 2.6d.

36

Variant Selection

While it is clear that it is easy to generate varied CAPTCHAs using the

methods laid out in this work by modifying parameters or the steps in the

CAPTCHA algorithm, we have not yet discussed how these variants can be

compared and selected. In the following, we will present an idea of how to

accomplish this automatically.

Any comparison should naturally take into account both attack resistance

and human readability. However, different users of CAPTCHAs will place

different on each quality and a CAPTCHA should be able to balance the two

qualities. More precisely, let f(θ) = w×a(θ)−(1−w)×h(θ), where θ is the set

of parameters determining the variant of KNW-CAPTCHA generated, a(θ) is

the probability of an attack succeeding on an instance of the variant, h(θ) is

the probability of a human being able to read an instance of the variant, and

w ∈ [0, 1] is a weight balancing the two qualities. Then f(·) is a cost function,

and the goal of a CAPTCHA should be to minimize it. The role of w is to allow

the user of a CAPTCHA to balance attack resistance and readability. a(θ) and

h(θ) are unknowable and can only be estimated. One method of estimating

a(θ) would be to attempt to attack the many instances of the CAPTCHA with

several OCR engines and consider it a success if any of them succeed (similar

to how the reCAPTCHA project determines if a word image should be used

as a CAPTCHA challenge [24]), i.e., â(θ) = 1
n

∑n
i=1 yi where yi = 1 if any of

the OCR engines recognize the word, and yi = 0 otherwise. h(θ) could be

estimated in a similar fashion, using human readability experiments. Then,

selecting the appropriate CAPTCHA variant becomes a matter of minimizing

the cost function over the evaluated variants, i.e., θ∗ = minθ∈Θ f̂(θ).

37

2.F Conclusion and Future Work

We developed and implemented a new method of generating random CAPT-

CHAs, called KNW-CAPTCHAs, using random field simulation that outper-

forms popular CAPTCHAs in use today. First, we estimated the marginal

probabilities of sites and site-to-site covariances of the KNW-CAPTCHA based

on randomly generated samples; second, we used an efficient algorithm to

simulate a new KNW-CAPTCHA based on these parameters in a Gibbs-like

manner.

Furthermore, we established that the KNW-CAPTCHA is an effective

separator of computer programs and humans. We provided evidence that

the KNW-CAPTCHA is difficult for computer programs to crack through an

analysis of its resistance to segmentation attacks and OCR attacks. We also

established that the KNW-CAPTCHA is very readable to humans.

Finally, we discussed targeted attacks against the KNW-CAPTCHA and

several implementation variants, as well as how to select a variant automati-

cally based on empirical results.

There are several methods of further hardening the KNW-CAPTCHA,

which we explored in part in Section 2.E.1. Characteristics of the generated

CAPTCHA can be varied within the CAPTCHA. For example: the number of

sites to re-simulate per character could increase with each character in a KNW-

CAPTCHA; the colors used for the background noise and the CAPTCHA

could change from left to right; or the amount of noise could be increased

or decreased vertically. The intent of these changes would be to effectively

add another dimension to the problem, further confusing an attacker without

compromising readability.

38

Finally, in this work we used only black and white when generating sam-

ples; however, this method can be readily extended to generate CAPTCHAs

with one or many grey levels. As above, the intent would be to increase the

dimensionality of the problem for the attacker without decreasing readability;

for example, grey levels could be used to make distinguishing between the

background and the letters themselves more difficult, or to make the shapes of

the characters themselves less obvious. The main challenge would be to adjust

the random sample generation and parameter estimation methods used in this

paper in such a way that maintains or improves readability.

39

Chapter 3

On Grey Levels in Random

CAPTCHA Generation1

3.A Introduction

Herein, we extend the KNW-CAPTCHA to grey levels. Where we previously

generated KNW-CAPTCHAs with only black and white, we now add a third

level that will fall in between. The main goal of this work is to determine

if adding a grey level to the KNW-CAPTCHA results in a more effective

CAPTCHA, where effectiveness is a measure of both the attack resistance and

human readability of the generated CAPTCHA. We hypothesize that adding

grey levels to the KNW-CAPTCHAs will increase attack resistance by adding

yet another dimension to the problem of OCR (i.e., how grey level should be

interpreted), while providing more clues to a human reader about the character

form and inter-character separation. The addition of grey levels requires sig-

1A version of this chapter has been published. Proceedings of SPIE Visual Information

Processing XX, vol. 8056, 2011, pp. 80 560U–80 560U–12.

40

(a) (b)

Figure 3.1: Examples of EZ-Gimpy CAPTCHAs using grey levels [2].

nificant modification to the KNW-CAPTCHA-generation procedure described

in [3]. In particular, the sample word image samples used in parameter estima-

tion require grey levels; this is accomplished by overlapping random character

pairs, where the presence of black and grey is determined by the regions of

overlap. Furthermore, the generation of background noise using ScatterType

is also extended to include grey levels. Parameter estimation and the simula-

tion of the KNW-CAPTCHA using Gibbs-like sampling follows in much the

same way as in [3].

Use of grey levels or colours in CAPTCHAs are well established in practice;

for example, see Figure 3.1. However, we were unable to locate any research

on quantifying the impact of the use of multiple colours or grey levels on the

effectiveness of the CAPTCHA, which is what we set out to do in this work.

The main goals of this paper are to empirically assess the effectiveness of

the KNW-CAPTCHA and determine if black and white or grey-level KNW-

CAPTCHAs are the most effective, and to give a sensible approach to selecting

KNW-CAPTCHA parameters to balance false positives with false negatives.

Furthermore, we aim to provide a detailed analysis of the impact of the pa-

rameters in the KNW-CAPTCHA-generation process, including their relation

to attack resistance and human readability.

The remainder of this work is laid out as follows. Section 3.B details the

changes to the work in [3] required to introduce grey levels to the KNW-CAPT-

41

CHA; Section 3.C explains our procedure for optimizing the effectiveness of the

KNW-CAPTCHA, as measured by a flexible cost function; Section 3.D gives

the results of the optimization procedure; a detailed analysis of the results are

given in Section 3.E; human readability and attack resistance of the hardened

grey-level KNW-CAPTCHA, which would be used in practice, is given in

Section 3.F; finally, Section 3.G contains our conclusion and discussion of

further work.

3.B Method of Generating the KNW-CAPT-

CHA

3.B.1 Method of Simulating a Random Field

We provide the required definitions in order to make sense of our simulation

formula, equation (3.1) below. In this setting, the random field we want to

simulate is a rectangular M × N image, made up of sites S = {(i, j) : 1 ≤

i ≤ M, 1 ≤ j ≤ N}. We divide the image into an unknown part H ⊂ S and

known part HC
⊜ S \H.

We enumerate the sites S column by column: s1 = (1, 1), s2 = (2, 1), . . . ,

sMN = (M,N). Now, we let L be the number of sites in H and enumerate the

sites in H column by column, i.e.,

hi = smi
∀i ∈ {1, 2, ..., L},

where

mi = min{j > mi−1 : sj ∈ H} and m0 = 0.

42

The sites in H will be simulated in the above order.

Next, define the ℓ-neighborhood of site (i, j) ∈ S

∂ℓ((i, j)) = {(u, v) ∈ S : 0 < ρ((i, j), (u, v)) ≤ ℓ},

where ρ((i, j), (u, v)) =
√

(i− u)2 + (j − v)2. Then, for each k, we let

Ahk
⊜ ∂ℓ(hk)

⋂

(

{h1, h2, ..., hk−1}
⋃

HC
)

,

i.e., Ahk
is the set of sites that are in the neighbourhood of hk and were already

known or have already been simulated.

Having established the prerequisite definitions, the following equation gives

us exactly how to compute the conditional probability of a site given its neigh-

bouring sites. Let X = {−1, 0, 1} = {white, grey, black} be the state space

of each site in S, and XA ⊜
∏

s∈A X for A ⊂ S X ⊜ XS. We construct the

random field X = (Xs)s∈S on the canonical space X and let XA denote the

projection of X onto XA.

Assume the numbers on the RHS of equation (3.1) (to follow) are in [0, 1].

(The conditions for this to be true are given in [17].) Then, there is a not

necessarily unique probability measure Π on X such that

Π(Xh = c) = πh(c), ∀h ∈ H, c ∈ X,

and

cov(Xh, Xt) = βh,t, ∀ t ∈ ∂l(h),

43

i.e., with correct marginals and covariances, and

Π(Xhi
= xhi

|XAhi
= xAhi

) =

πhi
(xhi

) +

∑

ti∈Ahi

(xhi
− µ̄)βhi,ti(xti − µ̄)

d|Ahi
|+1(σ̄2)2Π(XAhi

= xAhi
|XHC = xHC)

(3.1)

for each xhi
∈ X and xAhi

∈ XAhi
(1 ≤ i ≤ n), where d = |X|, µ̄ =

1

d

∑

c∈X

c,

σ̄2 =
1

d

∑

c∈X

(c− µ̄)2 and | · | is the cardinality of a set.

Simulation of a particular site hk follows immediately from equation (3.1)

as follows.

1. Compute the value of Π(Xhk
= c|XAhk

= xAhk
) for c ∈ X

2. Generate a [0, 1]-uniform random number U to select which value to use

for site hk. In particular, if

w−1
∑

u=1

Π(Xhk
= cu|XAhk

= xAhk
) ≤ U <

w
∑

u=1

Π(Xhk
= cu|XAhk

= xAhk
)

for some 1 ≤ w ≤ d, then we set Xhk
= cw, i.e., the realization of Xhk

is

colour cw ∈ {−1, 0, 1}.

The procedure laid out in Section 3.B.3 requires simulating sites efficiently

in a Gibbs-like manner. For the sake of brevity, it is sufficient to say that

simulating a site s involves extracting a reduced image consisting of the site s

and its neighbourhood. Working with this reduced image, every site is consid-

ered to be a neighbour of every other site; this allows for fast computation of

the joint probability in the denominator of (3.1) using the multiplication rule.

The reader is referred to [3] for the details of this method.

44

3.B.2 Parameter Estimation

In order to apply (3.1) to generating KNW-CAPTCHAs, we must first esti-

mate the required parameters πh(c) ∀h ∈ H and βh,s ∀h ∈ H, s ∈ S. The

procedure is largely the same as in [3], so we will give a brief description and

highlight the differences. For a particular KNW-CAPTCHA and word, we

estimate the parameters from a sample of K automatically generated word

images. Each word image is constructed by assembling a series of character

images. In order to ensure consistent placement of characters, we again work

with trimmed images of {i,j,l,r,t} and scaled images of other characters in or-

der to ensure all images of a particular character have the same width. In this

context, trimming the character images means extra white space around the

character is removed so all images of a particular character have a common

width. For a given character string, we generate K M×N images representing

that string. A particular image is constructed in the following way.

1. The horizontal distance between adjacent characters is randomly selected

from {1, 2, 3}.

2. The vertical distance between adjacent characters is determined by a

reflecting one dimensional random walk.

3. Each character image for the string is randomly selected over the avail-

able grey-level images of that character. (The grey-level images are de-

scribed below.)

4. The character images are concatenated into one image according to the

random horizontal and vertical placements determined above.

45

Let sik denote the kth site in the ith word image in this sample. As in [3],

we use the unbiased estimators

βk,t =
1

K − 1

K
∑

i=1

(xsi
k
− x̄sk)(xsit

− x̄st),

where x̄sk = 1
K

∑K
i=1 xsi

k
is the empirical mean, for all k, t = 1, ...,MN and

πsk(xsk) =
1

K

K
∑

i=1

1x
si
k
=xsk

,

where

1x
si
k
=xsk

=















1 if xsi
k
= xsk

0 otherwise.

Next, we establish exactly how the grey-level images are constructed from

a set of black and white character images. Given two black and white images

of the same character, we create a third grey-level image. Let xi
sk

denote the

kth pixel of the ith black and white image and let xsk denote the kth pixel of

the grey-level image. Set

xsk =































1 if xi
sk

= 1 and xj
sk

= 1

−1 if xi
sk

= −1 and xj
sk

= −1

0 otherwise

,

i.e., the new grey-level image will be black where the black and white images

are both black, white where both are white, and grey otherwise. See Figure

3.2 for an example.

46

(a) “a” (b) “w”

Figure 3.2: Examples of grey-level character images.

(a) (b)

Figure 3.3: Examples of excluded grey-level character images.

Remark 3.B.1. An interesting feature of this process is that we are now

working with character images that do not map easily to any particular font,

which should have the effect of making feature detection or pattern matching

much more difficult.

Remark 3.B.2. We automatically exclude certain grey-level images which

may be easily recognized by OCR. For a given grey-level image, set all grey

pixels to black; if this new image is recognized by the OCR program Tesseract,

available at http://code.google.com/p/tesseract-ocr/, exclude the grey-

level image from the database. Repeat this procedure with all grey pixels set to

white. The intent of excluding these images is to help ensure the introduction

of grey levels is not trivially bypassed by setting the grey pixels black or white.

See Figure 3.3 for examples.

It is clear from Figure 3.2 that the amount of overlap between the two black

and white images will certainly have an effect on both readability and attack

47

http://code.google.com/p/tesseract-ocr/

resistance. In the following, the amount of overlap for a particular grey-level

image is calculated as
∑

sk∈S 1xsk=1
∑

sk∈S 1xsk 6=−1
, i.e., amount of black/amount not white.

The effect of overlap will be analyzed in Section 3.E.

3.B.3 Generating a KNW-CAPTCHA

Now that we have estimated the parameters, we describe how to generate a

KNW-CAPTCHA for a particular challenge. Again, the procedure is largely

the same as in [3], so we give a summary of the approach and highlight the

differences. Generating a KNW-CAPTCHA begins with initializing the image

with background noise using an implementation of the ScatterType CAPT-

CHA. Background noise is introduced in order to further complicate attacks

on the KNW-CAPTCHA by serving as red herring character shapes. From

this initial state, we simulate the random field from the parameters estimated

in Section 3.B.2. Simulation is accomplished site-by-site for a given number of

sites via the Gibbs-like sampling described in 3.B.1. Two passes of the Gibbs-

like sampling are used; the first pass is done with a lag of 0, i.e., all sites are

considered independent; the second pass is done with a lag of 4. The first pass

is used to help ensure that the site-site correlations introduced in the second

pass are between sites representing the actual characters instead of between a

character site and a site representing the background noise.

As in [3], we use ScatterType to generate the background noise. In essence,

for each character in a string, ScatterType cuts the character image randomly

and scatters the resulting character pieces randomly; these scattered character

images are then concatenated into a single word image [15]. In this work, we

now use the grey-level character image database generated in 3.B.2; in fact, we

48

(a) KNW-CAPTCHAE (b) KNW-CAPTCHAH

Figure 3.4: Examples of grey-level KNW-CAPTCHAs.

also use grey-level character images that fall into the same target overlap range

as our KNW-CAPTCHA. This is intended to ensure that the background noise

and simulated character images are not obviously different, and so it is difficult

to remove the background noise heuristically.

In the remainder of this paper, we will work with two variants of the

KNW-CAPTCHA. The KNW-CAPTCHAE, an easy variant, is generated

without background noise or vertical displacement of the characters; the KNW-

CAPTCHAH, a hardened variant, is generated with both background noise

and vertical displacement. The KNW-CAPTCHAE is used in cases when

we are attempting to measure the relative attack resistance of the generated

CAPTCHAs; in our experience, OCR always fails to recognize KNW-CAPT-

CHAHs, and would provide no information about the relative attack resistance.

While the failure rate on the KNW-CAPTCHAEs is still high, it still provides

useful results. The KNW-CAPTCHAH should be used in practice since it

is more resistant to attacks See Sections 3.D and 3.E for results using KNW-

CAPTCHAEs, and see Section 3.F for readability and attack resistance results

of KNW-CAPTCHAHs. See Figure 3.4 for examples of both.

49

3.C Procedure

We now present our procedure for determining which method of generating

KNW-CAPTCHAs is the most effective. In essence, we want to determine if

grey-levels provide us with a way of generating more effective KNW-CAPT-

CHAs. We conjecture that grey will both increase attack resistance and im-

prove human readability. As stated previously, we work with KNW-CAPT-

CHAEs in order to capture the relative effectiveness of the CAPTCHAs; we

will present results for KNW-CAPTCHAHs in Section 3.F.

Before proceeding, we must define “effective”. How effectiveness of the

CAPTCHA is defined will depend on the goals of the user: are false positives

or false negatives worse, or are they equally weighted? (Here, a false positive

is claiming a human is a computer program; a false negative is claiming a

computer program is a human.) The ideal but unrealistic result is to always

deny access to computers, but always allow access to humans. In reality,

there will be mistakes; furthermore, there will be a penalty associated with

mistakenly allowing a program access (it can abuse whatever resource is being

provided) as well as a penalty associated with mistakenly denying access to

a human (the site becomes less usable, human visitors can become frustrated

and less likely to visit or use the site).

Consider the following diverse examples of CAPTCHA usage. First, a

CAPTCHA can be shown after 3 unsuccessful attempts at entering a password,

which helps prevent brute force attacks. Second, on an online auction site,

preventing bots from accessing the site and automatically bidding may be

more important than occasionally denying access to a human since a bot can

bid faster and more accurately than humans and could ruin the original intent

50

of the site. Third, a CAPTCHA protecting a low-traffic niche forum might

favour allowing humans over denying bots since it would be a low-reward target

for a spam bot. We adopt a flexible definition of effective to account for the

varying needs.

As previously mentioned, we will work with KNW-CAPTCHAEs, i.e., not

hardened (no additional noise, no vertical displacement of characters). For

each trial, we generate a KNW-CAPTCHAE for a random character pair

according to a set of randomized parameters. Let NI be the number of

sites re-simulated during the first pass of the Gibbs-like sampling, NG be the

number of sites re-simulated during the second pass of the Gibbs-like sam-

pling, g ∈ [0, 1] be the grey colour used (lower is darker), and [omin, omax) be

the acceptable overlap range for the grey character images used. For each

black and white KNW-CAPTCHAE, NI and NG will be selected randomly

from {300, 400, 500}. For each grey-level KNW-CAPTCHAE, NI and NG

will be selected randomly from {300, 400, 500}, g will be selected randomly

from {0.25, 0.5, 0.75}, and omin will be selected randomly from {0, 0.5} and set

omax = omin + 0.5.

Remark 3.C.1. In the following, we refer to a CAPTCHA’s settings as pa-

rameters and denote them with θ, while the space of possible parameters is

denoted by Θ; our goal is to optimize the parameters, i.e., find the θ∗ ∈ Θ

which results in the best CAPTCHA. In statistics, the term parameter is of-

ten used for quantities which vary over a continuum and will be estimated; in

this case, we are using it to refer to the set of inputs which control how the

CAPTCHA is constructed and are chosen from a discrete set.

We work with KNW-CAPTCHAE here since we want to be able to select

51

the best “base” CAPTCHA, then harden it; in addition, it is unlikely that

Tesseract would recognize any of the KNW-CAPTCHAHs, which would make

the results useless. We work with random character pairs to generate the min-

imal, interesting CAPTCHA: single characters do not exercise segmentation-

based resistance (which is mainly accomplished through character crowding);

words introduce other aspects such as linguistic analysis on the part of Tesser-

act (see Smith [19] for an overview of Tesseract), as well as being more easily

recognizable for humans; however, random character pairs exercise segmen-

tation resistance while also not being easier to recognize due to linguistic

analysis. We work with a reduced parameter space based partly on prior work

in [3] as well as visual inspection of the generated KNW-CAPTCHAs. The

selected parameter ranges were determined to yield generally readable KNW-

CAPTCHA’s without being trivial or impossible to crack (i.e., the generated

KNW-CAPTCHAs are interesting).

Selecting the most effective KNW-CAPTCHA is now a matter of minimiz-

ing a cost function. We use the cost function

f(θ) = wt · t(θ)− wh · h(θ),

where θ are the parameters, t(θ) is the probability of a KNW-CAPTCHA

generated by parameters θ being recognized by the Tesseract OCR program,

and h(θ) is the probability of that KNW-CAPTCHA being recognized by

a human, and wt, wh ∈ [0, 1] are weights to adjust the relative importance of

false positives and false negatives. For example, setting wt = 1, wh = 0.5 would

make denying access to a computer program twice as important as successfully

allowing access to a human. Our goal is to find the θ that minimizes the cost

52

function, i.e., we would like t(θ), the probability of the KNW-CAPTCHA

being cracked, to be low, and we would like h(θ) to be high.

Of course, we don’t know the true functions t(θ) and h(θ), so we work with

the estimates of the functions t̂(θ) and ĥ(θ), respectively. First, we estimate

t(θ). For a particular set of parameters θ, model the experimental trials as in-

dependent and identically distributed (i.i.d.) t(θ)-Bernoulli random variables.

Let

yi =















1 if Tesseract’s ith response was correct

0 otherwise

,

where the response correctness is determined using a case-insensitive compar-

ison. For a particular set of parameters θ, the experiment yields nT results,

{y1, y2, . . . , ynT
}. We use parameter-by-parameter maximum likelihood esti-

mator t̂(θ) for t(θ), i.e.,

t̂(θ) =
1

nT

nT
∑

i=1

yi.

We determine ĥ(θ) in exactly the same manner.

Remark 3.C.2. We use the MLE for each unique set of parameters to avoid

making any assumptions about the shape of f(θ) during the optimization

process.

Now we optimize the estimated cost function

f̂(θ) = wt · t̂(θ)− wh · ĥ(θ),

i.e., we want to find θ∗, the set of parameters which minimizes f̂(θ). For each

unique set of parameters θ ∈ Θ, where Θ is the parameter space, determine

53

f̂(θ) and choose the parameters which minimize it, i.e.,

θ∗ = argminθ∈Θ f̂(θ)

3.D Results

We now present the results of the procedure laid out in Section 3.C. We give

the most effective black and white KNW-CAPTCHAE and the most effective

grey-level KNW-CAPTCHAE for the following cost functions: wt = 1, wh = 1,

where human success and attack failure are considered equally important (Ta-

ble 3.1); wt = 0.5, wh = 1, where human success is considered more important

than attack failure (Table 3.2); and wt = 1, wh = 0.5, where attack failure is

considered more important than human success (Table 3.3). Similarly, we also

include results for wt = 0.25, wh = 1 (Table 3.4), wt = 1, wh = 0.25 (Table

3.5), wt = 0, wh = 1 (Table 3.6), wt = 1, wh = 0 (Table 3.7); the final two

sets of weights are the edge cases that we only care about human readability

and only care about attack resistance, respectively. These cost functions all

balance the trade-offs of security and human usability differently.

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 400, NG = 400 0.0082 0.9714 -0.9633

Grey-level NI = 500, NG =
400, g = 0.75,
omin = 0.50, omax =
1.00

0.0000 0.9860 -0.9860

Table 3.1: Optimization results with wt = 1.00, wh = 1.00

Section 3.E contains a detailed analysis of results; however, it is immedi-

ately clear that the cost function offers a flexible way of selecting a CAPTCHA-

54

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 500, NG = 400 0.0298 0.9915 -0.9766

Grey-level NI = 500, NG =
400, g = 0.75,
omin = 0.50, omax =
1.00

0.0000 0.9860 -0.9860

Table 3.2: Optimization results with wt = 0.50, wh = 1.00

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 400, NG = 400 0.0082 0.9714 -0.4776

Grey-level NI = 500, NG =
400, g = 0.75,
omin = 0.50, omax =
1.00

0.0000 0.9860 -0.4930

Table 3.3: Optimization results with wt = 1.00, wh = 0.50

generation method, and that the exact choice of wt, wh affects the recom-

mended CAPTCHA; in particular, there does not appear to be a universally

better KNW-CAPTCHAE (i.e., one which maximizes attack resistance and

human readability simultaneously). Also, in most cases, the recommended

CAPTCHA was the grey-level KNW-CAPTCHAE; in fact, the sole exception

is the edge case wt = 0, wh = 1, which would not normally be deployed in

practice. Furthermore, the grey-level KNW-CAPTCHAE was recommended

over the black and white KNW-CAPTCHAE in the case that wt = 1, wt = 1;

indeed, in this case, the grey-level version outperformed the black and white

version in both readability and attack resistance.

55

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 500, NG = 400 0.0298 0.9915 -0.9840

Grey-level NI = 500, NG =
300, g = 0.50,
omin = 0.50, omax =
1.00

0.0058 0.9884 -0.9870

Table 3.4: Optimization results with wt = 0.25, wh = 1.00

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 400, NG = 300 0.0040 0.9622 -0.2366

Grey-level NI = 500, NG =
400, g = 0.75,
omin = 0.50, omax =
1.00

0.0000 0.9860 -0.2465

Table 3.5: Optimization results with wt = 1.00, wh = 0.25

3.E Analysis

In the following, we set out to understand how the parameters controlling

the generation of the KNW-CAPTCHAE impact both the human readability

and attack resistance of the resulting CAPTCHA. The following analysis uses

logistic regression. Let

yi =















1 if ith response was correct

0 otherwise

,

and we model yi as independent Bernoulli trials and assume that the log odds

of the ith response being correct is a linear combination of functions of our ith

CAPTCHA’s parameter settings, e.g.,

β0 + β11NI=400 + β21NI=500 + β31NG=400 + β31NG=500

56

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 500, NG = 500 0.0824 0.9945 -0.9945

Grey-level NI = 500, NG =
300, g = 0.50,
omin = 0.50, omax =
1.00

0.0058 0.9884 -0.9884

Table 3.6: Optimization results with wt = 0.00, wh = 1.00

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 400, NG = 300 0.0040 0.9622 0.0040

Grey-level NI = 300, NG =
400, g = 0.50,
omin = 0.00, omax =
0.50

0.0000 0.8361 0.0000

Table 3.7: Optimization results with wt = 1.00, wh = 0.00

for a black and white KNW-CAPTCHAE where {βj}
5
j=1 are the coefficients

which will be estimated via logistic regression. We will interpret the effect of a

covariate based on the 95% confidence interval of the odds ratio. Specifically,

odds is defined as p
1−p

, where p is the probability of the response being correct,

and odds ratio is defined as

p1/(1− p1)

p2/(1− p2)

where p1 and p2 are the probabilities of the response being correct under two

different sets of CAPTCHA parameter values. For example, if p1 corresponds

to high-NG CAPTCHAs and p2 corresponds to low-NG CAPTCHAs (with

other covariates held constant) and the odds ratio is greater than 1, then high

NG would be said to increase the probability of a correct response. Examining

the confidence interval of the odds ratio allows us to evaluate both the mag-

nitude and the significance of the effect. We will perform the analysis on the

responses from both Tesseract and humans.

57

Covariate 95% Confidence Interval for Odds Ratio
1NI=400 [0.56, 2.16]
1NI=500 [1.54, 6.38]
1NG=400 [0.74, 3.81]
1NG=500 [2.86, 10.06]

Table 3.8: Tesseract Responses on Black and White KNW-CAPTCHAE

Covariate 95% Confidence Interval for Odds Ratio
1NI=400 [0.61, 1.67]
1NI=500 [1.13, 5.85]
1NG=400 [0.84, 2.77]
1NG=500 [1.06, 2.58]

Table 3.9: Human Responses on Black and White KNW-CAPTCHAE

In general, as is clear from Tables 3.8, 3.9, 3.10, and 3.11, increasing NI and

NG increases the probability that both Tesseract and humans will recognize

a given KNW-CAPTCHAE. However, the magnitude of the effect appears to

be much greater for Tesseract, so these parameters should be kept as low as

reasonably possible when correctly rejecting computer agents is important.

Interestingly, increasing g (i.e., using a lighter shade of grey) appears to

decrease the probability of Tesseract recognizing the grey-level KNW-CAPT-

CHAE, yet does not have a significant effect on human readability, as can

be seen in Tables 3.10 and 3.11, respectively. In particular, the lighter grey

g = 0.75 significantly decreases Tesseract’s ability to recognize CAPTCHAs,

but does not have a significant affect on humans. This indicates that adjusting

the grey level parameter should allow us to design KNW-CAPTCHAs with

higher attack resistance without significantly impacting human readability.

As seen in Tables 3.10 and 3.11, it appears that the choice of overlap

range significantly impacts human readability (i.e., the more overlap between

58

Covariate 95% Confidence Interval for Odds Ratio
1NI=400 [0.48, 32.13]
1NI=500 [0.85, 55.73]
1NG=400 [1.59, 17.18]
1NG=500 [1.93, 12.96]
1g=0.5 [0.32, 1.91]
1g=0.75 [0.05, 0.40]

1[omin,omax)=[0.5,1.0) N/A

Table 3.10: Tesseract Responses on Grey-level KNW-CAPTCHAE

Covariate 95% Confidence Interval for Odds Ratio
1NI=400 [0.99, 1.90]
1NI=500 [1.46, 3.23]
1NG=400 [0.98, 1.91]
1NG=500 [0.92, 1.58]
1g=0.5 [0.81, 2.03]
1g=0.75 [0.62, 1.44]

1[omin,omax)=[0.5,1.0) [2.69, 4.66]

Table 3.11: Human Responses on Grey-level KNW-CAPTCHAE

characters, the higher the readability); we were unable to perform this same

analysis for Tesseract since the OCR program failed to recognize any of the

CAPTCHAs with low overlap. However, this alone is a strong indicator that

Tesseract performs poorly on low-overlap CAPTCHAs, and while humans are

also negatively impacted, adjusting the acceptable overlap range may also

serve to further differentiate between computer programs and humans.

In summary, it appears that grey-level KNW-CAPTCHAs introduce two

new parameters, the grey level and the acceptable overlap range, that allow

for greater flexibility and power when compared with the black and white

KNW-CAPTCHA.

59

3.F KNW-CAPTCHAH

Next, we present the attack resistance and readability results of the grey-level

KNW-CAPTCHAH. We generate the KNW-CAPTCHAH using the parame-

ters for the most effective grey-level KNW-CAPTCHAE on the cost function

with wt = 1, wh = 1. We present these results in order to compare the KNW-

CAPTCHAH effectiveness with that of the black and white KNW-CAPTCHAH

presented in [3]. Results are given in Table 3.12.

Parameters t̂(θ) ĥ(θ)
NI = 500, NG = 400, g = 0.75, omin = 0.50, omax = 1.00 0.0000 0.8639

Table 3.12: Human Readability of KNW-CAPTCHAH

As expected, Tesseract is unable to recognize any of the generated KNW-

CAPTCHAHs. Surprisingly, however, the human readability is significantly

lower than the results on the black and white KNW-CAPTCHAH (which ob-

tained a ĥ(θ) of 0.96). It appears that the introduction of background noise

is more likely to interfere with the readability when working with the grey-

level KNW-CAPTCHAs; this may be due to the increased complexity of the

background noise (i.e., the introduction of grey levels into the ScatterType

CAPTCHA) when compared with the black and white KNW-CAPTCHAHs.

However, we expect that the readability of the grey-level KNW-CAPTCHAH

can be increased significantly by adjusting the acceptable overlap range, NG,

and NI . For now, those wishing to favour human readability over attack re-

sistance may prefer to deploy the KNW-CAPTCHAE.

60

3.G Conclusion

• KNW-CAPTCHAs are effective distinguishers of humans over computer

programs.

• Adding a grey level to a KNW-CAPTCHA can increase the CAPTCHA’s

power.

• The actual grey level as well as the amount of grey compared to black

are two of the most significant parameters to KNW-CAPTCHA power.

• Adding grey-level background noise makes both human readability and

computer recognizability harder over black and white.

• Even grey-level KNW-CAPTCHAs are easy to implement in real time

using the given algorithm and they provide effective protection.

61

Chapter 4

The KNW Random Field

4.A Introduction

We now propose a new class of discrete correlated random fields which in-

corporate given probability mass functions (pmfs) for all vertices and given

pairwise covariances. Proposition 4.B.1 on which our fields are based estab-

lishes a method to embed desired covariances and marginal probabilities into

a random field while maintaining simulation ease. Indeed, Proposition 4.B.1

is a simple means to construct some conditional probabilities consistent with

given marginal probabilities and covariances in such a way that sampling the

missing portion of a random field sequentially is very feasible. More precisely,

when simulating a new vertex, we compute this conditional probability of its

state conditioned on the known portion and the previously-simulated vertices,

and can construct a random field in one pass based on this algorithm.

62

4.B Notation and Background

Our goal is to simulate a random field so that desired properties (in our case,

marginal probabilities and pair-wise covariances) are maintained. Specifically,

we will give a method for computing conditional probabilities so that these

properties are maintained. We begin by describing how the problem is con-

structed in Section 4.B.1; then, we will describe exactly how to compute the

probabilities in Section 4.B.2; finally, illustrative examples are given in Section

4.C.

4.B.1 Problem Setup

Suppose we are given a desired probability mass function (pmf) for each ran-

dom variable and a set of desired pairwise covariances for some set of pairs of

the random variables. Our goal is to simulate the random variables so that

the desired properties are met.

Definitions

We will be working with undirected and directed graphs in the following. We

begin by providing the required definitions and notation.

A graph G = (V,E) is a set of vertices V and edges between those vertices

E, where (u, v) ∈ E if there is an edge between vertices u and v; in this case,

u and v are called neighbors. A graph is called connected if there is a path

between every pair of vertices. The open neighborhood NG(v) of vertex v ∈ V

is the set of vertices u 6= v such that there is an edge between u and v, i.e.,

(u, v) ∈ E. We denote the open neighborhood of v by NG(v) and the closed

neighborhood NG(v) ∪ {v} by NG[v]. For a set of vertices B, we define the

63

open neighborhood of B as NG(B) = ∪v∈BNG(v)\B and closed neighborhood

NG[B] = NG(B) ∪ B. For convenience, we set NG(∅) = V .

An edge in an undirected graph does not have direction associated with it,

while an edge in a directed graph (an arc) does. In the following, we will denote

undirected graphs with G = (V,E) and directed graphs with D = (V,A).

Setup

We begin by constructing a undirected graph G = (V,E), where V is the set

of vertices and E is the set of edges between vertices; there is a vertex for

every given random variable and an edge between vertices if there is a given

covariance for the corresponding pair of random variables. If the graph G is

not connected (a graph is connected if there is a path between every pair of

vertices along the given edges), we cannot continue.

Next, we construct a connected directed acyclic graph D = (V,A) from G

by traversing G and adding vertices and edges based on the order of traversal.

More precisely, we use the following algorithm.

1. Initialise V0 = ∅, A0 = ∅, and let N = |V | be the number of vertices in

G.

2. For i = 1, . . . , N

(a) Select an arbitrary vertex from NG(Vi−1) and denote it as vi. Note

that NG(Vi−1) 6= ∅ since G is connected.

(b) Set Vi = Vi−1 ∪ {vi}.

(c) Let Avi = {(vi, u) : (vi, u) ∈ E} be the set of arcs from vi for every

undirected edge involving vi in G.

64

(d) Set Ai = Ai−1 ∪ Avi .

3. Set A = AN . Then D = (V,A) is a connected directed acyclic graph

with the same vertices as G and a directed edge for each undirected edge

in G.

Remark 4.B.1. The algorithm adds all vertices from G to D since it iterates

N times and always adds a vertex from NG(Vi−1), i.e., it never adds the same

vertex twice. This also ensures that the resulting graph is acyclic.

Remark 4.B.2. Each vertex in D will have a set of parents (u is called a

parent of v if there is a directed edge from u to v), which we will denote by

pa(v). The first vertex added to V , v1, has no parents; all other vertices have

at least one parent.

Remark 4.B.3. The order of the vertices {v1, . . . , vN} is a topological sort

since if i < j and (vi, vj) ∈ A, there is an arc from vi to vj.

For each vertex v ∈ V , let Xv be a finite space of states at vertex v. For

nonempty B ⊂ V , denote the space of configurations xB = (xv)v∈B on B by

XB =
∏

v∈B Xv. We abbreviate XV by X , i.e., X =
∏

v∈V Xv. Finally, we

denote our given discrete random variables by X = (Xv)v∈V indexed by V . In

addition, we denote the desired pmf for each Xv, v ∈ V by πv and the desired

covariances between Xu and Xv, (u, v) ∈ E by βu,v.

Let Π denote a probability measure or distribution on X . If for every

x ∈ X , Π(x) > 0, i.e., Π is a strictly positive probability measure on X , then

Π is called a random field. We also call the random vector X = (Xv)v∈V on

the probability space (X ,Π) a random field. For a nonempty B ⊂ V , define

65

the projection map from X onto XB as follows:

XB : x → xB,

where x ∈ X and xB ∈ XB.

4.B.2 Method for Computing Conditional Probabilities

Now, we work exclusively with the directed acyclic graph D = (V,A) with N

vertices and topological sort {vi}
N
i=1 and we are ready to assign conditional

probabilities.

We place the additional constraint on the distribution Π of X that

Π(X = x) =
∏

v∈V

Π(Xv = xv|Xpa(v) = xpa(v)). (4.1)

With this constraint, we are now working with a Bayesian network. Further-

more, we can find the probability of any set of vertices B ⊂ V . Let j be the

maximal element of {i : 1 ≤ i ≤ N, vi ∈ B}, i.e., vj is the element of B which

is last in the topological sort; then, by the multiplication rule and (4.1),

Π(XB = xB) =
∑

xvk
:1≤k≤j,vk /∈B

P (Xvj = xvj , Xvj−1
= xvj−1

, . . . , Xv1 = xv1)

=
∑

xvk
:1≤k≤j,vk /∈B

j
∏

i=1

P (Xvi = xvi |Xvi−1
= xvi−1

, . . . , Xv1 = xv1)

=
∑

xvk
:1≤k≤j,vk /∈B

j
∏

i=1

P (Xvi = xvi |Xpa(vi) = xpa(vi)). (4.2)

Herein, we simulate random fields with given marginal probabilities for

66

vertices and given covariances between vertices. Our algorithm constructs X

with the given marginal probabilities {πvi(xvi) : xvi ∈ Xvi}
N
i=1 and the given

covariances between nearby vertices {βvi,u : u ∈ pa(vi)} for 1 ≤ i ≤ N .

(It is assumed a priori that these marginal conditions hold within V . It is

also assumed that βvi,u = βu,vi for u ∈ pa(vi) (1 ≤ i ≤ N) since βvi,u will

denote covariance between Xvi and Xu.) We assign conditional probabilities

Π(Xvi = xvi |Xpa(vi) = xpa(vi)) such that we maintain the desired covariances

and marginal probabilities.

Proposition 4.B.1. Assume that D = (V,A) is a connected directed acyclic

graph with N vertices and that X = (Xv)v∈V are discrete random variables

indexed by V . Suppose further that {vi}
N
i=1 is a topological sort of the vertices

V , and {π̃v(xv) : xv ∈ Xv, v ∈ V } and {π̂v(xv) : xv ∈ Xv, v ∈ V } are two

sets of auxiliary pmfs. Assume that {πv(xv) : xv ∈ Xv, v ∈ V } are pmfs and

{βu,v : (u, v) ∈ A or (v, u) ∈ A} are numbers such that the right hand side

of (4.3) is in [0,1]. Form the conditional probabilities recusively, starting with

i = 1, as

Π(Xvi = xvi |Xpa(vi) = xpa(vi)) = πvi(xvi) +
g(vi)

Π(Xpa(vi) = xpa(vi))

×
∑

u∈pa(vi)

βu,vig(u)h(u, vi) (4.3)

for each xvi ∈ Xvi and xpa(vi) ∈ Xpa(vi) (1 ≤ i ≤ N), where µπ̃v
=

∑

xv∈Xv

π̃v(xv)xv,

σ2
π̃v

=
∑

xv∈Xv

π̃v(xv)(xv−µπ̃v
)2, g(v) =

π̃v(xv)(xv−µπ̃v)

σ2
π̃v

, h(u, v) =
∏

w∈pa(v)\{u}

π̂w(xw),

and Π(Xpa(vi) = xpa(vi)) is computed according to (4.2). Then, the random field

67

X, defined by

Π(X = x) =
N
∏

i=1

Π(Xvi = xvi |Xpa(vi) = xpa(vi))

has marginal probabilities {πv} and covariances cov(Xu, Xv) = βu,v for all

u ∈ pa(v).

Remark 4.B.4. Proposition 4.B.1 allows us to fully specify the Bayesian

network, i.e., we are able to compute Π(Xv = xv|Xpa(v) = xpa(v)) ∀v ∈ V, xv ∈

Xv, xpa(v) ∈ Xpa(v).

Remark 4.B.5. In Proposition 4.B.1, we assumed that πv(xv) > 0 : ∀xv ∈ Xv

for each v ∈ S. Note that Xv can be different for each v ∈ V . For given v, if

there exists a xv ∈ Xv such that πv(xv) = 0, we may deem it uninteresting and

replace Xv with Xv \ {xv}. Therefore the positive probability mass function

assumption of πv is also a convention.

Remark 4.B.6. A random field generated by Proposition 4.B.1 is a correlated

random field. Indeed, one value of this proposition is the assertion that there

are correlated random fields that match a given collection of marginal proba-

bilities and covariances. We call the random fields generated by Proposition

4.B.1 the KNW Random Fields for ease of future reference.

Remark 4.B.7. If Xv = X and d = |X|, π̂v(xv) = π̃v(xv) =
1
d
, xv ∈ X for all

v ∈ V where d is the cardinality of X, then (4.3) takes the following simple

form

Π(Xvi = xvi |Xpa(vi) = xpa(vi)) = πvi(xvi)

+
∑

u∈pa(vi)

(xvi − µ̄)βvi,u(xu − µ̄)

d| pa(vi)|+1(σ̄2)2Π(Xpa(vi) = xpa(vi))

(4.4)

68

where µ̄ =
1

d

∑

xv∈X

xv, σ̄
2 =

1

d

∑

xv∈X

(xv − µ̄)2 (v ∈ V) and | pa(vi)| is the cardi-

nality of pa(vi). Formula (4.4) is used in [3] for CAPTCHA generation.

Proof. It is clear by (4.3) that for i = 1, Xv1 has probability distribution πv1(·),

since pa(v1) = ∅.

We next prove that for 2 ≤ i ≤ N , Xvi has probability distribution πvi(·),

and for any u ∈ pa(vi), cov(Xvi , Xu) = βvi,u. To ease notation, we suppress

the subscript i. For xv ∈ Xv, by (4.3), one has that

Π(Xv = xv) =
∑

xpa(v)∈Xpa(v)

Π(Xv = xv|Xpa(v) = xpa(v))Π(Xpa(v) = xpa(v))

= πv(xv) + g(v)
∑

u∈pa(v)

∑

xpa(v)∈Xpa(v)

h(u, v)βv,ug(u)

= πv(xv) + g(v)
∑

u∈pa(v)

βv,u

∑

xpa(v)\{u}∈Xpa(v)\{u}

h(u, v)
∑

xu∈Xu

g(u)

= πv(xv), (4.5)

since for fixed u ∈ pa(v),

∑

xu∈Xu

g(u) =
∑

xu∈Xu

π̃u(xu)(xu − µπ̃u
)

σ2
π̃u

=
1

σ2
π̃u

(µπ̃u
− µπ̃u

) = 0.

Now fix u ∈ pa(v), we prove cov(Xv, Xu) = βv,u. We compute the joint

probability mass function of Xv and Xu. For xv ∈ Xv, xu ∈ Xu, we have that

69

by (4.3) again

Π(Xv = xv,Xu = xu)

=
∑

xpa(v)\{u}∈Xpa(v)\{u}

Π(Xv = xv|Xu = xu, Xpa(v)\{u} = xpa(v)\{u})

× Π(Xu = xu, Xpa(v)\{u} = xpa(v)\{u})

=πv(xv)
∑

xpa(v)\{u}∈Xpa(v)\{u}

Π(Xu = xu, Xpa(v)\{u} = xpa(v)\{u})

+ g(v)
∑

xpa(v)\{u}∈Xpa(v)\{u}

∑

u∈pa(v)

h(u, v)βv,ug(u)

since Π(Xu = xu, Xpa(v)\{u} = xpa(v)\{u}) = Π(Xpa(v) = xpa(v)) for u ∈ pa(v).

Therefore,

Π(Xv = xv,Xu = xu)

=πv(xv)πu(xu) + g(v)

×
∑

xpa(v)\{u}∈Xpa(v)\{u}

[

h(u, v)βv,ug(u) +
∑

w∈pa(v)\{u}

h(u, v)βv,ug(u)

]

=πv(xv)πu(xu) + g(v)βv,ug(u)
∏

w∈pa(v)\{u}

(

∑

xw∈Xw

π̂w(xw)

)

+ g(v)
∑

w∈pa(v)\{u}

∑

xpa(v)\{u}∈Xpa(v)\{u}

h(u, v)βv,ug(u)

=πv(xv)πu(xu) + g(v)βv,ug(u)

+ g(v)
∑

w∈pa(v)\{u}

h(w, v)βv,w

∑

xpa(v)\{u,w}∈Xpa(v)\{u,w}

∑

xw∈Xw

g(w)

=πv(xv)πu(xu) + g(v)βv,ug(u).

70

Therefore, since

cov(Xv, Xu) = cov(Xv − µπ̃v
, Xu − µπ̃u

)

= E[(Xv − µπ̃v
)(Xu − µπ̃u

)]− E[Xv − µπ̃v
][Xu − µπ̃u

]

and

E[(Xv − µπ̃v
)(Xu − µπ̃u

)] =
∑

xv∈Xv

∑

xu∈Xu

[

(xv − µπ̃v
)(xu − µπ̃u

)

×Π(Xv = xv, Xu = xu)
]

=
∑

xv∈Xv

∑

xu∈Xu

[

(xv − µπ̃v
)(xu − µπ̃u

)

×[πv(xv)πu(xu) + g(v)βv,ug(u)]
]

=
∑

xv∈Xv

∑

xu∈Xu

(xv − µπ̃v
)(xu − µπ̃u

)πv(xv)πu(xu)

+
∑

xv∈Xv

∑

xu∈Xu

(xv − µπ̃v
)(xu − µπ̃u

)g(v)βv,ug(u)

= E[Xv − µπ̃v
][Xu − µπ̃u

]

+βv,u

∑

xv∈Xv

(xv − µπ̃v
)g(v)

∑

xu∈Xu

(xu − µπ̃u
)g(u)

= E[Xv − µπ̃v
][Xu − µπ̃u

] + βv,u, (4.6)

cov(Xv, Xu) = βv,u (4.7)

71

4.B.3 Algorithm for Simulating Random Fields

Now, simulating the random field becomes a simple matter of computing the

required probabilities and generating uniform random numbers to select a

value for each vertex. For v ∈ V , dv ∈ N is the cardinality of Xv, we denote

Xv = {x1
v, ..., x

dv
v }.

Do for i = 1, . . . , N :

1. Based on (4.1), compute

Π(Xvi−1
= xvi−1

,..., Xv1 = xv1)

=
i−1
∏

k=1

Π(Xvk = xvk |Xvk−1
= xvk−1

, ..., Xv1 = xv1)

=
i−1
∏

k=1

Π(Xvk = xvk |Xpa(vk) = xpa(vk))

for all chosen combinations of xv1 , ..., xvi−1
. Here we choose xv1 , ..., xvi−1

as follows: for each 1 ≤ k ≤ i − 1, if vk ∈ pa(vi), we use the simulated

xvk ; otherwise, we enumerate xvk ∈ Xvk .

2. Take marginal to get Π(Xpa(vi) = xpa(vi)):

Π(Xpa(vi) = xpa(vi)) =
∑

vk /∈pa(vi),1≤k≤i−1

Π(Xvi−1
= xvi−1

, ..., Xv1 = xv1).

3. Based on Π(Xpa(vi) = xpa(vi)), compute Π(Xvi = xj
vi

∣

∣Xpa(vi) = xpa(vi))

for 1 ≤ j ≤ dvi , using (4.3).

4. Generate a [0, 1]-uniform random variable U . For the given U , there

72

1

2 3

4

5

(a) Undirected Graph G

v1

v2 v3

v4

v5

(b) Directed Graph D

Figure 4.1: Graph Construction Example

exists unique 1 ≤ j ≤ dvi such that

j−1
∑

u=1

Π(Xvi = xu
vi

∣

∣Xpa(vi) = xpa(vi)) ≤ U <

j
∑

u=1

Π(Xvi = xu
vi

∣

∣Xpa(vi) = xpa(vi)).

Then set Xvi = xj
vi
. For notational convenience, we suppress superscript

j and use xvi to indicate the simulated value xj
vi
of Xvi .

4.C Examples

Example 4.C.1. Suppose we have random variables and pairwise covariances

such that our undirected graph G = (V,E) is as given in Figure 4.1a. Then,

our procedure for constructing the directed graph, D = (V,A), could result in

the graph shown in Figure 4.1b.

Let the common space of states for each vertex be X = {−1, 0, 1}. To

construct a probability measure Π on X = {−1, 0, 1}5, we use Proposition

4.B.1 to compute the conditional probabilities Π(Xvi = xvi |Xpa(vi) = xpa(vi))

for 1 ≤ i ≤ 5. To compute, for example, Π(Xv4 = xv4|Xpa(v4) = xpa(v4)),

we have to compute Π(Xpa(v4) = xpa(v4)) as a prerequisite, using Proposition

73

4.B.1. So we have

Π(Xpa(v4) = xpa(v4)) = Π(Xv3 = xv3 , Xv1 = xv1)

=
∑

xv2∈{−1,0,1}

Π(Xv3 = xv3 , Xv2 = xv2 , Xv1 = xv1)

=
∑

xv2∈{−1,0,1}

[

Π(Xv3 = xv3 |Xv2 = xv2)

×Π(Xv2 = xv2 |Xv1 = xv1)Π(Xv1 = xv1)
]

.

Example 4.C.2. Suppose we are given an image (i.e., a two dimensional grid

of pixels) of size M ×N . We can construct an undirected graph representing

this image using a vertex for each pixel, labeled with the pixel’s coordinates

in the image (e.g., (1, 2)). Furthermore, for each pair of pixels which are

considered nearby according to the Euclidean distance between them, we can

add an edge between the corresponding vertices. Given a set of sample images,

we can estimate both the marginal probabilities for each vertex and pairwise

covariances for each edge, and can then simulate new images.

Example 4.C.3. Suppose we are given an undirected graph G = (V,E) where

the vertices are divided into a known part HC and an unknown part H, (i.e.,

V is partitioned into H and HC). In this case, our goal is to simulate H while

using the information contained in HC . For example, we want to restore a

portion of an image given some known set of pixels. We want to order the

vertices so that V = {v1, v2, . . . , vk, vk+1, . . . , vn}, where HC = {v1, v2, . . . , vk}

and H = {vk+1, . . . , vn}. This allows us to start simulating immediately from

vk+1 since all preceding vertices are already known. To order the vertices in

this way, we begin by working with GHC , the subgraph induced byHC ; we then

74

v1

v2 v3

v4

v5

(a) G

v1

v2 v3

(b) GHC

v1

v2 v3

v4

v5

(c) D

Figure 4.2: Known and Unknown Vertices Example

divide GHC into its N connected components G1
HC , G

2
HC , . . . , G

N
HC , and apply

the algorithm in Section 4.B.1 for each connected component to obtain directed

subgraphs Di = (V i, Ai) for i = 1, . . . , N , where V i = {vi1, . . . , v
i
ni
}. Finally,

we apply the algorithm in Section 4.B.1 to G with one slight difference: instead

of initializing V0 = ∅, A0 = ∅, we initialize V0 = ∪N
i=1V

i and A0 = ∪N
i=1A

i so

that V0 = {v11, . . . , v
1
n1
, v21, . . . , v

N
nN

}. Then, we’ve ordered the vertices so that

HC = {v1, v2, . . . , vk} and H = {vk+1, . . . , vn}, as desired, and we can begin

simulating from vk+1.

For example, consider Figure 4.2a which shows G with vertices from HC

with dashed outlines and vertices from H with solid outlines. The subgraph

GHC is shown in Figure 4.2b, and in this case there are two connected compo-

nents G1
HC = {v1, v2} and G2

HC = {v3}. Figure 4.2c shows the final directed

graph D = (V,A).

75

Chapter 5

Conclusion

In this thesis, I presented three papers prepared during my Masters of Science

program at the University of Alberta. In these papers, we developed, imple-

mented, and empirically tested the KNW-CAPTCHA, a novel mechanism for

generating CAPTCHAs via random field simulation. We established that the

KNW-CAPTCHA is highly readable to humans via a volunteer study as well

as results collected via Amazon Mechanical Turk, and we established that it

is resistant to automated attacks via multiple OCR programs and a targeted

segmentation attack.

Furthermore, we established the general flexibility of our method by de-

scribing it in the context of a template design pattern, and described the

straightforward process of developing and implementing variants. We per-

formed an in-depth analysis of one such variant, the grey-level KNW-CAPT-

CHA, and empirically optimized a cost function over several possible param-

eter sets; we determined that the addition of a grey level provided a useful

mechanism for further separating human and computer agents.

Finally, we laid out the algorithm for simulating these correlated random

76

fields in detail, generalized from prior applications in two dimensions to mul-

tiple dimensions in the context of graph theory.

Future work in this area would focus on two fronts: further development of

the KNW-CAPTCHA variants and the method of selecting them; and further

applications of the random field given in Chapter 4. For example, in Chapter

3, estimation of the attack resistance if based on the performance of OCR

programs. However, OCR programs do not properly capture the threat of a

targeted attack, which may exploit particular weaknesses in a CAPTCHA de-

sign. Indeed, one could extend the estimation of attack resistance to resisting

all attacks from a catalog of programs consisting of both OCR programs and

targeted attacks (where targeted attacks are possibly submitted by other re-

searchers in this area). Selecting a CAPTCHA for deployment could become

an automated process which dynamically adjusts to the best known attacks.

The KNW random field lends itself to other applications where the val-

ues are discrete and marginal probabilities and pairwise covariances capture

the meaningful structure of a problem, including image restoration and OCR.

For example, one could invert the CAPTCHA simulation problem and in-

stead implement a CAPTCHA recognition algorithm based on calculating the

probabilities of an image under different parameters, where the parameters

represent different letters or words; i.e., one would want to select the param-

eters which maximize the likelihood of the data, as in maximum likelihood

estimation. Indeed, one could implement such an attack in included it in the

catalog of attack algorithms for automatic CAPTCHA selection.

77

Bibliography

[1] E. Bursztein, S. Bethard, C. Fabry, J. Mitchell, and D. Jurafsky, “How
good are humans at solving captchas? a large scale evaluation,” in Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy, ser. SP
’10, IEEE. Washington, DC, USA: IEEE Computer Society, 2010, pp.
399–413.

[2] G. Mori and J. Malik, “Recognizing objects in adversarial clutter: Break-
ing a visual CAPTCHA,” IEEE Conference on Computer Vision and
Pattern Recognition, vol. 1, pp. 134–141, 2003.

[3] M. Kouritzin, F. Newton, and B. Wu, “On Random Field CAPTCHA
Generation,” Accepted with Mandatory Minor Revisions to IEEE Trans-
actions on Image Processing.

[4] F. Newton and M. Kouritzin, “On grey levels in random captcha gener-
ation,” in Proceedings of SPIE Visual Information Processing XX, vol.
8056, 2011, pp. 80 560U–80 560U–12.

[5] M. Kouritzin, F. Newton, and B. Wu, “The KNW Random Field,” In
Final Preparation.

[6] M. Blum, L. Von Ahn, J. Langford, and N. Hopper, “The CAPTCHA
Project, ”Completely Automatic Public Turing Test to tell Comput-
ers and Humans Apart”,” Dept. of Computer Science, Carnegie-Mellon
Univ., http://www. captcha. net.

[7] L. von Ahn, M. Blum, N. Hopper, and J. Langford, “CAPTCHA: Us-
ing hard AI problems for security,” in Proceedings of Eurocrypt, 2003.
Springer-Verlag, 2003, pp. 294–311.

[8] R. Casey and E. Lecolinet, “A survey of methods and strategies in char-
acter segmentation,” IEEE transactions on pattern analysis and machine
intelligence, vol. 18, no. 7, pp. 690–706, 1996.

78

[9] J. Yan and A. El Ahmad, “A Low-cost Attack on a Microsoft CAPT-
CHA,” in Proc. 15th ACM Conf. Computer and Communications Security
(CCS 08). ACM Press, 2008, pp. 543–554.

[10] R. Datta, J. Li, and J. Wang, “Imagination: A robust image-based capt-
cha generation system,” in Proceedings of the 13th annual ACM interna-
tional conference on Multimedia. ACM, 2005, pp. 331–334.

[11] K. Kluever, “Breaking the PayPal HIP: A Comparison of classifiers,”
Rochester Institute of Technology Document and Pattern Recognition
Lab, https://ritdml.rit.edu/handle/1850/7813, 2008.

[12] G. Moy, N. Jones, C. Harkless, and R. Potter, “Distortion estimation
techniques in solving visual captchas,” Conference on Computer Vision
and Pattern Recognition, vol. 2, pp. 23–28, 2004.

[13] A. Coates, H. Baird, and R. Faternan, “Pessimal print: a reverse turing
test,” in Document Analysis and Recognition, 2001. Proceedings. Sixth
International Conference on. IEEE, 2001, pp. 1154–1158.

[14] M. Chew and H. Baird, “Baffletext: a human interactive proof,” in In Pro-
ceedings of SPIE-IS&T Electronic Imaging, Document Recognition and
Retrieval, January 2003, pp. 305–316.

[15] H. Baird and T. Riopka, “ScatterType: A reading CAPTCHA resistant
to segmentation attack,” in Proc. SPIE, vol. 5676, no. 1. Citeseer, 2005,
pp. 197–201.

[16] J. Yan and A. El Ahmad, “Breaking Visual CAPTCHAs with Naive Pat-
tern Recognition Algorithms,” in Proc. of the 23rd Annual Computer Se-
curity Applications Conference (ACSAC’07). IEEE computer society,
Florida, USA, Dec 2007, pp. 279–291.

[17] M. Kouritzin, F. Newton, and B. Wu, “Properties of the KNW Random
Field,” In Preparation.

[18] ImageMagick Studio LLC. ImageMagick. http://www.imagemagick.org/.

[19] R. Smith, “An overview of the Tesseract OCR engine,” in Int. Conf. on
Document Analysis and Recognition (ICDAR), vol. 2, Curitiba, Brazil,
2007, pp. 629–633.

[20] “Amazon mechanical turk,” http://www.mturk.com/.

[21] A. Kittur, E. Chi, and B. Suh, “Crowdsourcing user studies with mechan-
ical turk,” in Proceeding of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems. ACM, 2008, pp. 453–456.

79

https://ritdml.rit.edu/handle/1850/7813
http://www.imagemagick.org/
http://www.mturk.com/

[22] A. Sorokin and D. Forsyth, “Utility data annotation with amazon me-
chanical turk,” in First IEEE Workshop on Internet Vision, CVPR, 2008,
pp. 1–8.

[23] J. Ross, L. Irani, M. Silberman, A. Zaldivar, and B. Tomlinson, “Who
are the crowdworkers?: shifting demographics in mechanical turk,” in
Proceedings of the 28th of the international conference extended abstracts
on Human factors in computing systems. New York, NY, USA: ACM,
2010, pp. 2863–2872.

[24] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum, “re-
CAPTCHA: Human-Based Character Recognition via Web Security Mea-
sures,” Science, vol. 321, no. 5895, pp. 1465–1468, September, 2008.

[25] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski, “Computers
beat humans at single character recognition in reading based human inter-
action proofs (HIPs),” in Proceedings of the Second Conference on Email
and Anti-Spam. Citeseer, 2005, pp. 21–22.

[26] S. Tsujimoto and H. Asada, “Major components of a complete text read-
ing system,” Proceedings of the IEEE, vol. 80, no. 7, pp. 1133–1149, 1992.

[27] R. Hoffman and J. McCullough, “Segmentation methods for recognition of
machine-printed characters,” IBM Journal of Research and Development,
vol. 15, no. 2, pp. 153–165, 1971.

[28] E. Gamma, R. Helm, R. Johnson, J. Vlissides et al., Design patterns.
Addison-Wesley Reading, MA, 2002, vol. 1.

80

	Introduction
	On Random Field CAPTCHA Generation
	Introduction
	Notation, Background, and Probability Computation
	The KNW-CAPTCHA
	Parameter Estimation
	KNW-CAPTCHA Generation

	Results
	KNW-CAPTCHAE Experiments
	KNW-CAPTCHAH Experiments
	OCR Attacks on Hardened KNW-CAPTCHAs
	Comparison

	Security Discussion
	Variants

	Conclusion and Future Work

	On Grey Levels in Random CAPTCHA Generation
	Introduction
	Method of Generating the KNW-CAPTCHA
	Method of Simulating a Random Field
	Parameter Estimation
	Generating a KNW-CAPTCHA

	Procedure
	Results
	Analysis
	KNW-CAPTCHAH
	Conclusion

	The KNW Random Field
	Introduction
	Notation and Background
	Problem Setup
	Method for Computing Conditional Probabilities
	Algorithm for Simulating Random Fields

	Examples

	Conclusion
	Bibliography

