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Abstract

This thesis targets output tracking problem for payload position and quadrotor yaw

in an slung load system (SLS). In spite of its relatively extensive literature, full SLS

control is still a challenging problem since its dimension, nonlinearity, and multiple

sources of disturbances are not easy to handle using available nonlinear control

tools. Based on the inherent property of SLS having a flat output, in this thesis, we

tried to solve the robust output tracking using tools from differential geometry and

reinforcement learning (RL).

We first construct a control-affine model for SLS which is novel in that it is

written in pendulum coordinates and considers disturbances in pendulum dynamics.

Our payload is modelled as a single pendulum attached to the center of mass (CoM)

of the unmanned aerial vehicle (UAV) with a spherical joint. Based on this model,

we use dynamic extension algorithm (DEA) to reformulate SLS dynamics so that

the derived system is feedback linearizable and yet complies with our original output

tracking problem. Static state feedback linearization of the augmented system then

provides linear time-invariant (LTI) tracking error dynamics in the linearizing state

coordinates. These dynamics are exponentially stable on a well-defined and practical

region of state space for constant disturbances. Moreover, we provide a Maple

symbolic script which can be used to apply DEA to general nonlinear control-affine

systems.

Finally, we employ ideas from RL to further robustify our proposed DEA-based

control scheme against disturbances and to fill its weaknesses in model dependency.

We cover all required definitions and algorithms and highlight what distinguishes the

proposed approach from conventional RL-based control. Closed-loop performance
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is validated in simulation and compared with a state-of-the-art method from the

literature.
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Chapter 1

Introduction

Unmanned aerial vehicle (UAV) is a space vehicle that flies without a crew, can

be remotely controlled, or can fly autonomously. Over the past three decades,

the popularity of UAVs has kept growing at an unprecedented rate. There are

currently over 1000 UAV models under development in over 50 countries, serving as

indispensable assistants for human operators in a wide variety of military and civil

applications [4].

There are three primary types of UAVs: fixed-wing (e.g., airplane), rotary-wing

(e.g., helicopter), and multi-rotor (e.g., quadcopter). The multirotor class has drawn

particular attention because of its mechanical simplicity and multiple flight en-

velopes (hover, vertical take-off, and landing, as well as multi-directional flight).

Multirotor applications range from their extensive use in photography and survey-

ing to applications like forest fire monitoring. One application that has received

interest and attention in both industry and academia and is the focus of this thesis

is the use of quadrotors for payload delivery.

Quadrotors can transport loads by attaching them to their rigid bodies or using

mechanical or electromagnetic grippers [5, 6]. Approaches like these simplify load

attachments and detachments at the cost of reduced maneuverability and load size.

Also, regardless of whether the attached load unbalances the UAV or not, when

grasping a load, more thrust is required, resulting in higher energy consumption. An

alternative approach is an slung load system (SLS), in which the load is suspended

from the bottom of the drone by cable(s). A CH-47 Chinook helicopter is a typical

example of this type of transportation. What distinguishes SLS from two other

approaches is that the separation of the UAV from the payload improves safety and

loading capabilities. Moreover, multi-UAV SLSs can also be used to increase lifting

capacity and full control of the load pose [7].

However, motion control, even for a single quadrotor carrying a suspended pay-

load, poses multiple challenges. Firstly, dynamics are highly nonlinear and under-
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actuated (8-DOF, 4 inputs). Secondly, in cases where the tension in the cable is

extremely small or in which the mass of the cable is comparable to that of the sus-

pended load, the mass distribution of the cable must be considered in the dynamics.

Nonetheless, if the mass of the cable is continuously distributed, configuration space

of infinite dimension would result with partial differential equation (PDE) repre-

senting dynamics [8], which in turn complicates the control design. Lastly, there

is the coupling between the payload and the vehicle, which can cause dangerous

oscillations as described in [9] for full-sized helicopters. A review of the SLS output

tracking literature is covered here, along with a comparison to what we will present

in this thesis.

1.1 Literature Review

Several criteria could be used to partition the SLS literature.

In terms of modelling, the majority of scholars are focused on using ordinary

differential equation (ODE)s to describe SLS dynamics; on the contrary, we can

mention the work of [10] where PDEs are used to model the rope flexibility, and

[11–13] where authors utilized a chain of serially-connected links with spherical joints

to describe the system dynamics. The model adopted in this work is commonly used

in the literature and consists of a single pendulum attached to the center of mass

(CoM) of the UAV with a spherical joint. The payload is taken as a point mass.

This model is accurate when tension in the cable is high and flexibility is negligible.

Euler-Lagrange formulas are used to construct the dynamic laws for the pendulum

subsystem as well as symbolic mathematics tools in order to derive the equations

that resulted.

SLS literature can also be portioned based on controlled output: UAV position

[14–17] or payload position [2, 11]. Most literature focuses on UAV position control,

but direct control of payload position is more challenging and improves tracking

accuracy and transient response. Our proposed method controls payload position

and UAV yaw.

Control methods can also be classified on the basis of their control structure. A

full design is based on the entire SLS dynamics consisting of the coupled UAV and

pendulum subsystems [15]. An inner-outer loop design is performed on individual

subsystems [7, 14, 16, 18]. The analysis of inner-outer loop designs often ignores

coupling between the loops. The proposed method in this thesis is a full design and

benefits from a complete closed-loop stability analysis.

In terms of robust design, in contrast to a large number of published papers, the

literature is remarkably sparse. SLS uncertainties include parametric uncertainties

[15, 19] (e.g., unknown payload mass, cable length), external disturbances [16, 20, 21]
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(wind and drag forces), and unmodeled dynamics [22, 23] (e.g., pendulum pivot offset

from UAV CoM).

Here we describe in more detail how the proposed method compares with some

existing SLS control approaches in terms of modelling, control structure, stability

results, and considered uncertainties.

A design that considers UAV position as the controlled output is in [15]. Trans-

porting the payload from point to point while reducing swing along the trajectory

is the objective of the paper. To control the position, the design method uses an

Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC) to

increase robustness against parametric uncertainty and unmodeled dynamics. Also,

a proportional controller is applied to control the heading angle. To manage the

complexity of solving resulted equations, designs are performed using dynamics re-

stricted to longitudinal and lateral planes. The downside, however, is that only sta-

bility (as opposed to asymptotic stability) is proved, also the results are restricted

to individual channels and no overall proof is provided. In terms of uncertainty,

only parametric uncertainties are considered in simulations.

In [14] an inner-outer loop design is employed to control the UAV position.

The vehicle translational movements and payload swing are stabilized by nonlinear

controllers while a state-dependent differential Riccati equation-based controller is

utilized to stabilize rotational dynamics. Two outer loop designs are proven to be

asymptotically stable. However, the effect of loop coupling is ignored and, as in [15],

to prove stability, a decoupled outer loop is assumed with lateral and longitudinal

subsystems. Neither disturbance nor uncertainty is considered.

Work in [16] applies backstepping with integral action and obtains uniform global

asymptotic stability for the UAV position tracking error dynamics. As the pendulum

position is not directly tracked, an input-shaping technique is employed to minimize

pendulum oscillations. The authors did a thorough job in the sense that the pro-

posed design not only considers external disturbances and the effect of air drag (at

low speed) but also excludes singularities that are available in Euler-Lagrange-based

modelling. It has the disadvantage, however, that the inner-outer loop structure is

adopted without investigating the effect of loop coupling on stability.

The article [2] proposes a three-loop control structure whose inner loop tracks

the attitude of the UAV. Heading angle and load attitudes are controlled by the

middle loop. Lastly, the outermost loop tracks load position. It differs from the

previously mentioned papers in that attitude dynamics are modelled using a rotation

matrix, and load swing is represented using a 3-dimensional vector. Despite not

being minimal, this representation is singularity-free. Regarding control design, it

is shown that the entire tracking error dynamics are almost globally exponentially

attractive. Exponential stability is proved only locally and the corresponding region
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is difficult to determine a priori as it is a function of the system’s response. Also,

there is no consideration of disturbance or uncertainty.

The work in [20] controls the load position and takes advantage of assumptions

that the load is point mass and the cable is massless. Authors have utilized the

uncertainty and disturbance estimator (UDE)-based design to withstand the effect

of external wind and cruising drag (caused by the inertial velocity of the object).

Using the reduction theorem and an added attitude tracking controller in an inner-

outer loop design, they were able to ensure the stability of the overall design without

requiring a Lyapunov function extension. However, it has the disadvantage of being

almost globally asymptotically stable only near the hovering state.

A reinforcement learning (RL)-based controller is proposed in [24]. Similar to [2],

the paper uses a singularity-free representation of SLS dynamics and assumes that

the cable is taut. However, the design is more like a classical Lyoponouv-based inner-

outer loop control in which the gain tuning is left to an RL agent. A deterministic

policy gradient agent in an actor-critic structure is rewarded based on how fast

the tracking is achieved. The simulation section shows that the proposed design

is competitive with energy-based and backstepping designs in terms of minimum

cable swing, fast convergence, and disturbance rejection, but the downside is that

it is only intended for stabilization, and not tracking.

The focus of this work is to use RL algorithms along with inherent properties of

SLS to propose a control structure which is both robust and sample efficient.

1.2 Thesis Overview

Next chapter presents our model of SLS dynamics. In that chapter, we utilize

the quadrotor’s equations of motion along with pendulum dynamics to provide our

overall SLS model in presence of external disturbances.

Our control design consists of two chapters. In the first chapter, we assume we

have access to perfect knowledge of the SLS model (no uncertainty), and then design

a dynamic extension algorithm (DEA)-based controller to achieve output tracking.

Next, we assume uncertainties in the model and use algorithms from RL to robustify

our DEA-based controller. Simulations at the end of each sub-chapters are provided

to showcase the applicability of proposed controllers.

1.3 Contribution

There are three main contributions to this thesis:

1. Applying dynamic state feedback linearization on SLS1.

1We remark that [2] proves differential flatness of the SLS model. Hence, the SLS is necessarily
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2. Providing a maple script to apply DEA on any control-affine system.

3. Implementation of an RL-based linearzing controller on SLS.

We believe that the above contributions are the main ones, although others

could be mentioned (e.g., modelling force disturbances on pendulum dynamics, ex-

tensive hyperparameter analysis, and Matlab implementations of the proposed RL

algorithm using ComputeCanada servers).

dynamically state feedback linearizable. However, this feedback control is not considered in [2].
The proposed method is the only known work which derives this linearizing control.
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Chapter 2

Modelling

This chapter focuses on the modelling used for the simulations and theory. In

mathematical terms, the objective of this chapter is to provide a model for the

quadrotor with suspended load in a control-affine form

ẋ = f(x) +

m∑
i=1

gi(x)ui +

p∑
i=1

qi(x)di

yi = hi(x), 1 ≤ i ≤ m

(2.1)

with vector fields f, gi :M→ Rn and output functions hi :M→ R defined on an

open subsetM⊆ Rn. In (2.1), x ∈M is the state, and u = [u1, . . . , um]
⊤ ∈ U ⊂ Rm

is the control input, and d = [d1, . . . , dp]
⊤ ∈ Rp is a bounded disturbance input.

To achieve this, we first present the quadrotor model, then derive a dynamic

model for the pendulum subsystem using Euler-Lagrange principles and the rela-

tionship between the quadrotor and load positions. The modelling chapter concludes

by combining unmanned aerial vehicle (UAV) and pendulum models to obtain an

affine form (2.1) for the slung load system (SLS) system that will be used in the

following chapters for control design.

2.1 Quadrotor Dynamics

In this subsection, we consider a quadrotor with a cross configuration and choose a

commonly used nonlinear rigid body model for the UAV and follow the presentation

in [25]. Nonetheless, a plus configuration gives the same rotational and translational

kinematics with only the torque definitions differing.

Quadrotor models are typically described using two frames: the body frame B
and the navigation frame N . Frame N is assumed inertial, centred at a point on

Earth, such as the takeoff point and has orthonormal basis vectors n1, n2, n3. The

origin of frame B is the UAV’s center of mass (CoM) and its basis vectors b1, b2, b3.
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Figure 2.1: Model of quadrotor based on [25]

As shown in Figure 2.1, the frame basis vectors are chosen based on the right-hand

rule, with the third axis of each frame pointing downward.

For defining the positive direction of the b1 axis, there are two possible defini-

tions: a cross configuration where the b1 axis is between motor 1 and 3, and the

plus configuration where b1 points toward motor 1. The right-hand rule defines roll,

pitch, and yaw directions. Accordingly, when viewing the quad from above, the roll

will be defined as a positive rotation towards motor 1, the pitch will be positive with

the nose pointing up, and the yaw is rotation in the clockwise direction. To trans-

form vectors between frames (2.2) describes the orientation of B with respect to N .

We use roll-pitch-yaw (ϕ-θ-ψ) or ZYX Euler angles (see Figure 2.1) to parametrize

R:

Rnb (η) = R3(ψ)R2(θ)R1(ϕ) =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cψcϕ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ

 (2.2)

where the rotation matrix R ∈ SO(3) = {R ∈ R3×3 : RRT = I, det(R) = 1}, η =

[ϕ, θ, ψ]T , cx = cos(x), and sx = sin(x). The inverse of the rotation matrix is used

to convert vectors from the navigation frame to the body frame. The Newton-Euler
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formulation is used to get the equations that describe the quadrotor’s translational

and rotational dynamics.

˙̄p
n
= v̄n (2.3a)

mq ˙̄v
n
= −Rnb ūn3 + n3gmq + dq (2.3b)

Ṙnb = Rnb S(ω
b) (2.3c)

Jω̇b = −S(ωb)Jωb + τ b (2.3d)

where p̄ ∈ R3 is the position of the UAV, v̄ ∈ R3 is the linear velocity, g ∈ R is

the gravitational acceleration, mq is the mass of the UAV, R is defined in (2.2),

n3 ∈ R3 is the third basis vector of N , ū ∈ R+ is the total thrust from four

motors, ωb ∈ R3 is the angular velocity, J = diag([J1, J2, J3]) is the inertia matrix,

τ b = [τ1, τ2, τ3]
T ∈ R3 is the torque due to all propeller thrusts expressed in B,

dq ∈ R3 is the disturbance vector due to external wind and/or drag forces, and

finally the skew operator S(·) : R3 → so(3) is

S(x) =

 0 −x3 x2

x3 0 −x1
−x2 x1 0

 , where x =

x1x2
x3


and so(3) = {M ∈ R3×3 :MT = −M}.

As shown in Figure 2.1, we assume each propeller generates thrust, fi ∈ R3, i =

1, 2, 3, 4 in the −b3 direction, and we denote the total thrust due to all propellers

by the scalar input ū ≥ 0, i.e., the total thrust vector is F = −ūb3 = −Rnb ūn3 and

∥F∥ = ū. Although not required for the control design, inputs ū, τ can be mapped to

the physical input to the UAV which are pulse width modulation (PWM) signals to

the electronic speed controller (ESC) and denoted by Wi, i = 1, 2, 3, 4. Controlling

individual propeller speeds creates an input torque τ . Following the usual thrust

modelling assumptions [25, 26], there is a one-to-one relation between (ū, τ) and the

physical inputs Wi, i = 1, 2, 3, 4. For a UAV in “cross” configuration we have

ū
τ

 =


Ku Ku Ku Ku

−cΘKuℓ cΘKuℓ cΘKuℓ −cΘKuℓ

sΘKuℓ −sΘKuℓ sΘKuℓ −sΘKuℓ

−Kτ −Kτ Kτ Kτ




W̃ 2

1

W̃ 2
2

W̃ 2
3

W̃ 2
4

 (2.4)

where Ku is a thrust constant so that the ith rotor has a thrust vector fi =

−KuW̃
2
i b3, ℓ is arm length, Kτ is a counter torque constant, W̃i is a normalized

PWM signal defined by W̃i = (Wi −Wmin)/(Wmax −Wmin) where Wmin and Wmax
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are the minimum and maximum values of Wi, respectively, and Θ is the angle the

arm makes with the b1 axis. Therefore, the input W̃i ∈ [0, 1] is normalized. Thrust

model (2.4) clearly shows that ū and τ are bounded. Relation (2.4) can be thought

of as a “mixer” and can be found in standard autopilot firmware such as PX4 [27].

As is customary, design is performed for u

u = [ū, τ⊤]⊤ (2.5)

Looking at quadrotor dynamical equations (2.3) the translational dynamics are

described by (2.3a) and (2.3b), while the rotational dynamics by (2.3c) and (2.3d).

For the rotational dynamics, the Euler rates can be found in terms of the angular

velocity ω by expanding and simplifying (2.3c)

η̇ =W (η)ωb (2.6)

with

W (η) =

1 sϕtθ cϕtθ

0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ


where tθ = tan θ. It can be seen in (2.6) that there is a singularity at θ = ±90◦;

therefore, this state will need to be specially handled when using this parameteri-

zation.

We use the model (2.6) (and not (2.3c)) since it results in a minimal model (with

a minimum number of states), which is required for a feedback linearization design

(see Chapter 3).

2.2 Pendulum Dynamics

The pendulum dynamics form a coupled subsystem whose configuration space is

R3 × S2 for the pendulum position p and pendulum orientation parameterized by

angles α, β. The angle of the pendulum relative to n1 is α, and β is the angle relative

to n2 (see Figure 2.2). Hence, we take the configuration variable q = [pT , α, β]⊤.

We define the position of the pendulum relative to the navigation frame as

p = p̄+Rx(α)Ry(β)[0, 0, L]
T = p̄+ L[sβ ,−sαcβ , cαcβ ]T (2.7)

where L denotes the cable length, and the position of the pendulum relative to

the origin of N is denoted by p ∈ R3. For simplicity, the mass of the pendulum mp is

assumed concentrated at its endpoint and the rod is assumed massless. In (2.7) we

can think of rotating a frame attached to the pendulum P which is initially aligned

9



mp

β
L

p

b1

b3

b2

α

n1

n2

n3

B

N

Figure 2.2: SLS system. The suspended load is modelled as a spherical pendulum
attached to the UAV CoM.
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with N , then rotating about n2 by an angle β and then followed by a rotation about

n1 by an angle α. Hence, the rotation between N and P is

Rnp = Rx(α)Ry(β) (2.8)

where Rnp maps points expressed in P to N . Note that since the rotations are per-

formed relative to the fixed frameN , we perform successive rotations by premultiply-

ing in (2.8). In particular, Rnp maps [0, 0, L]T expressed in P into L[sβ ,−sαcβ , cαcβ ]⊤

in frame N .

We make the common assumption that the pendulum pivots about the UAV

CoM and therefore does not exert torque on the UAV. This implies the rotational

dynamics of the UAV (2.3c) (and hence (2.6)) and (2.3d) are decoupled from the

pendulum dynamics.

Therefore, the kinetic energy of the system is

K(q, q̇) =
1

2
(mq

∥∥ ˙̄p∥∥2 +mp∥ṗ∥2) (2.9)

And the potential energy of the system is given by

V (q) = −n3mqgp̄− n3mpg(p̄+ Lcαcβ) (2.10)

We combine (2.9) and (2.10) and replace p̄ with p from (2.7), and define the La-

grangian

L(q, q̇) = K(q, q̇)− V (q) (2.11)

Where q = [pT , α, β]⊤

Substituting L into the Euler-Lagrange equations

d

dt

∂L

∂q̇j
− ∂L

∂qj
= τ̄j , 1 ≤ j ≤ 5 (2.12)

where τ̄j are generalized external torques, we obtain the standard 2nd order me-

chanical system form

M(q)q̈ + C(q, q̇)q̇ +G(q) =
mp

m
([(−ūRn3)⊤, 0, 0]⊤ + [d⊤q , 0, 0]

⊤) (2.13)

Where M is a positive definite mass matrix

M(q) =


(mq +mp)I3

0 −Lmqcβ

Lmqcβcα −Lmqsβsα

Lmqsαcβ Lmqsβcα

∗
L2mqc

2
β 0

0 L2mq


(2.14)
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In which the submatrix denoted by * can be determined by symmetry. Cq̇ models

the centrifugal and Coriolis effects, and its (k, j) element can be obtained from

Ckj =
5∑
i=1

(
∂Mkj

∂qi
+
∂Mki

∂qj
+
∂Mij

∂qk

)
q̇i

Where Mkj is the (k, j) element of M . This yields

C(q, q̇) = −Lmq

 0

0 −sββ̇
cαsββ̇ + cβsαα̇ sβcαα̇+ cβsαβ̇

sβsαβ̇ − cβcαα̇ sβsαα̇− cβcαβ̇

Lsβcββ̇ Lsβcβα̇

−Lcβsβα̇ 0


G is the gravity vector

G(q) = −g
[
0 0 (mq +mp) Lmqcβsα Lmqsβcα

]⊤
Pendulum dynamics can then be obtained from (2.13). The drift vector field

components are

−M−1(C(q, q̇)q +G(q)) =



− sβ(γ
2
αc

2
β+γ

2
β)Lmq

mq+mp

sαcβ(γ
2
αc

2
β+γ

2
β)Lmq

mq+mp

g − cαcβ(γ
2
αc

2
β+γ

2
β)Lmq

mq+mp

2γαγβtβ

−γ2αcβsβ


(2.15)

and the input vector field components are

M−1B =



−w1+w2s2β
mq+mp

(w3+w4)cβ
mq+mp

(w5−w6)cαcβ
mq+mp

w7
Lmqcβ
w8+w9
Lmq


(2.16)
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where
w1 = cβsβ

((
cαcθ − sαsθsψ

)
cϕ + cψsαsϕ

)
w2 = cϕsθcψ + sϕsψ

w3 = cβ

((
c2αsθsψ + cαcθsα − sψsθ

)
cϕ + cψsϕs

2
α

)
w4 = sβsα

(
cϕsθcψ + sϕsψ

)
w5 = cβ((sαsθsψ − cαcθ)cϕ − cψsαsϕ)

w6 = sβ(cϕsθcψ + sϕsψ)

w7 = cψcαsϕ − cϕ(sθcαsψ + sαcθ)

w8 = cϕ

(
sβ
(
sαsθsψ − cαcθ

)
+ cβcψsθ

)
w9 = sϕ

(
cβsψ − cψsαsβ

)
2.3 SLS Dynamics

Pendulum dynamics (2.15)-(2.16) can be combined with quadrotor rotational dy-

namics (2.3d) and (2.6) to obtain a control-affine model with m = 4 inputs of (2.5)

and n = 16 states. By doing that we obtain

ẋ =



v

γα

γβ

W (η)ω

− sβ(γ
2
αc

2
β+γ

2
β)Lmq

mq+mp

sαcβ(γ
2
αc

2
β+γ

2
β)Lmq

mq+mp

g − cαcβ(γ
2
αc

2
β+γ

2
β)Lmq

mq+mp

2γαγβtβ

−γ2αcβsβ

−J−1S(ω)Jω



+



08×1 08×3

ḡ(x) 05×3

03×1 J−1



u+



08×1

wp(x)[d
⊤
q , 0, 0]

⊤

03×1



(2.17)

where x = [p⊤, α, β, η⊤, v⊤, γα, γβ , ω
⊤]⊤ ∈ R16, and we have defined v = ṗ, γβ =

β̇, γα = α̇. The vector wp ∈ R5×5 is given below and its derivation is in the ap-

pendix A. Finally ḡ =M−1B as given in (2.16).

We remark that due to parametrization of the orientation of the UAV and pen-

dulum, (2.17) includes singularities when cβ = cθ = 0 and hence we define the

domainM of x as a subset of R16 containing 0 and excluding these points.
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M = {x ∈ R16 | θ ̸= ±90◦, β ̸= ±90◦} (2.18)

From a practical point of view, it is unlikely these singularities are of concern as

they involve extreme motion not normally encountered during the safe operation of

the SLS. Further, cβ = 0 (or cα = 0) is impossible without the pendulum colliding

with the UAV.

Our control objective is to achieve asymptotic tracking of a general smooth

reference output yd for pendulum position and yaw angle. Hence, the output is

taken as

y = h(x) = [p⊤, ψ]⊤ (2.19)

The disturbance coefficient term wp is as follows:

wp =



L′mp−qc2β+mqL

mqpqL
L
′
mp−qcβsαsβ
mqpqL

−L′mp−qcβcαsβ
mqpqL

0 − cβ
mqL

∗ −L′mp−qs2αc
2
β+mqp(L−1)

mqpqL

L′mp−qsαcαc2β
mqpqL

cα
Lmqcβ

− sαsβ
mqL

∗ ∗ −L′mp−qc2αc
2
β+mqp(L−1)

mqpqL
sα

Lmqcβ

cαsβ
mqL

∗ L′mp−qcα
L2cβmpq

L′mp−qsα
L2cβmpq

mqp

L2c2βmpq
0

−L′mp−qcβ
L2mpq

−L′mp−qsβsα
L2mpq

L′mp−qsβcα
L2mpq

∗ mqp

mpqL2


(2.20)

Where we have defined mqp = mq +mp, mpq = mq ×mp, mqpq = mqp×mq, and

L′mp−q = (L− 1)mp −mq to save the space here.

Evaluation of (2.20) at α = β = 0 is given by

wp0 =



L−1
mqL

0 0 0 − 1
mqL

0 L−1
mqL

0 1
mqL

0

0 0 1
mq+mp

0 0

0
(L−1)mp−mq

L2mqmp
0

mq+mp

L2mqmp
0

−mpL+mq+mp

L2mqmp
0 0 0

mq+mp

L2mqmp


(2.21)

Where we have used wp0 as an abbreviation for wp|α=β=0.

(2.21) shows that the disturbance on SLS, as modeled in (2.17), is not of a

vanishing type.
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Chapter 3

Control Using Dynamic Exten-

sion Algorithm

This chapter describes how the slung load system (SLS) kinematics derived in Sec-

tion 2.3 are used to derive a dynamic extension algorithm (DEA)-based control law

for the tracking task. That is, given a smooth bounded desired trajectory for out-

put (2.19), denoted by yd(t), derive a feedback control law for inputs (2.5) to ensure

asymptotic convergence of the tracking errors, i.e.,

∥∥y(t)− yd(t)∥∥→ 0, t→∞ (3.1)

Two types of controllers are designed in this thesis and both are based on the

idea of feedback linearization (FL) [28, 29] depicted in Figure 3.1. As is shown in

the figure, this control design is based on finding an appropriate set of coordinates

z = h(x) such that the dynamics of the system in the new coordinate are linear.

Control design then is a straightforward task using theorems from linear control.

We start this chapter by investigating whether the SLS system as modelled in the

previous chapter is statically feedback linearizable. This is followed by presenting

the essential component of this chapter; DEA. Using DEA, we develop our first

controller assuming a perfect knowledge of the system model is available and then

in Section 3.3.1, we robustify the proposed controller using the ‘’integral of error”

technique to reject external disturbances locally. in Section 3.5, we compare our

results with one of the state-of-the-art controllers from SLS literature.

The control design of this chapter is further robustified in Chapter 4, where we

have utilized ideas from reinforcement learning (RL). The motivation for designing

such a controller is to reject disturbances on a larger domain as well as parametric

uncertainties.
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Nonlinear Plant

Change of coordinates

Linear feedback

Figure 3.1: Control structure of feedback linearization design in which a change of
coordinates converts the nonlinear control task into a linear design.

3.1 Feedback linearizability of the Slung Load System

To simplify the analysis we take the disturbance dq = 03 in (2.17). Later when

designing the control law in Section 3.3.2 we reintroduce the disturbance.

Consider the system (2.1); the Lie derivative of a function λ :M→ R along the

vector field f is defined by Lfλ(x) = ∂λ
∂xf(x). We make use of a vector of indices

r = [r1, . . . rm] such that ri is the largest integer satisfying LgjL
k
fhi(x) = 0, 1 ≤

i, j ≤ m, k < ri − 1,1 about some x0 ∈ M. The existence of these indices does not

imply the system has a well-defined relative degree about x0 as this requires the

decoupling matrix

A(x) =


Lg1L

r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

... . . .
...

Lg1L
rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)

 (3.2)

to be nonsingular at x0.

We know that for the multiple-input multiple-output (MIMO) system (2.1) to

be statically feedback linearizable, the above matrix must be nonsingular (see [30]

page 220). For the SLS model (2.17), (2.19) we compute r = [2, 2, 2, 2] and

A(x) =


a11(x) 0 0 0

a21(x) 0 0 0

a31(x) 0 0 0

0 0
sϕ
J2cθ

cϕ
J3cθ

 (3.3)

1We only discuss square systems here, i.e., number of inputs and outputs are the same.
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where a11, a21, a31 are functions of state. On the region where

a31(x) = −
[sβ ,−sαcβ , cαcβ ] ·Rn3

m+mp
̸= 0 (3.4)

we obtain rank(A(x)) = 2. Clearly, relative degree does not exist at any point inM.

This implies the SLS cannot be input-output state feedback linearized with output

(2.19). However, using the DEA we will construct an extended dynamics with full

relative degree (i.e.,
∑m

i=1 ri for the extended dynamics equals the dimension of the

extended state).

Following [31] we outline the DEA for (2.1).

3.2 Dynamic Extension Algorithm

Following we review the DEA steps [30] and superscript variables with ⟨i⟩ to keep

track of the algorithm iteration.

We begin with Step 1 and assume the decoupling matrix A⟨0⟩ = A given by (3.2)

has constant rank less than m about x0 ∈M where r⟨0⟩ = [r1, . . . , rm]. This implies

there exist one or more rows of A⟨0⟩ which can be expressed as a linear combination

of the others. Let ai, 1 ≤ i ≤ m denote the rows of A⟨0⟩. We reorder (if necessary)

the rows of A⟨0⟩ such that its first k− 1 rows are independent at x0. The remaining

m−k+1 rows are dependent and hence aj for some j ≥ k can be written as a linear

combination of the first k − 1 rows. That is, there exists k − 1 smooth functions

c1(x), . . . , ck−1(x) such that aj(x) =
∑k−1

i=1 ci(x)ai(x). Hence, there exists integers

(i0, j0), 1 ≤ i0 ≤ k − 1 such that ci0 is not identically zero and for Step i we have

a
⟨i−1⟩
i0j0

(x
⟨i−1⟩
0 ) = L

g
⟨i−1⟩
j0

L
r
⟨i−1⟩
i0

−1

f⟨i−1⟩ hi0(x
⟨i−1⟩
0 ) ̸= 0

where quantities with ⟨i−1⟩ come from the previous step. That is, f ⟨i−1⟩(x⟨i−1⟩),

g
⟨i−1⟩
j (x⟨i−1⟩), 1 ≤ j ≤ m denote the system vector fields from the previous step with

g
⟨0⟩
j = gj and f ⟨0⟩ = f from the original dynamics (2.1). State x⟨i−1⟩ corresponds

to the system from the previous step and x⟨0⟩ = x (see (3.6) for i > 1). At Step i

we define the dynamic state feedback v⟨i⟩ using

v
⟨i⟩
j = v

⟨i−1⟩
j , 1 ≤ j ≤ m, j ̸= j0

v
⟨i−1⟩
j0

=
1

a
⟨i−1⟩
i0j0

(k⟨i⟩ + s⟨i⟩ξi −
m∑
j=1
j ̸=j0

a
⟨i−1⟩
i0j

v
⟨i−1⟩
j )

ξ̇i = v
⟨i⟩
j0

(3.5)

where v⟨0⟩ = u is the input for (2.1), ξi ∈ R is a controller state, and k⟨i⟩ and s⟨i⟩ are
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any smooth functions such that k⟨i⟩(x
⟨i−1⟩
0 ) = 0 and s⟨i⟩(x

⟨i−1⟩
0 ) = 1. At Step i we

create a new state vector x⟨i⟩ by concatenating the state of the previous iteration

x⟨i−1⟩ with controller state ξi:

x⟨i⟩ = [x⊤⟨i−1⟩, ξi]
⊤ ∈M× Ri, i ≥ 1 (3.6)

Applying (3.5) to (2.1) defines new system vector fields f ⟨i⟩(x⟨i⟩), g
⟨i⟩
j (x⟨i⟩), 1 ≤

j ≤ m defined on an extended state space M × Ri and with new input v⟨i⟩ =

[v
⟨i⟩
1 , . . . , v

⟨i⟩
m ]⊤. That is,

ẋ⟨i⟩ = f ⟨i⟩(x⟨i⟩) +
m∑
j=1

g
⟨i⟩
j (x⟨i⟩)v

⟨i⟩
j

where, for i > 0, f ⟨i⟩, and g⟨i⟩ are given by

f ⟨i⟩ = [(f ⟨i−1⟩ +
k⟨i⟩ + ξis

⟨i⟩

a
⟨i−1⟩
i0j0

g
⟨i−1⟩
j0

)⊤, 0]⊤

g
⟨i⟩
j0

= [01×(n+i−1), 1]
⊤

g
⟨i⟩
j = [(g

⟨i−1⟩
j −

g
⟨i−1⟩
j0

a
⟨i−1⟩
i0j

a
⟨i−1⟩
i0j0

)⊤, 0]⊤, 1 ≤ j ≤ m, j ̸= j0

The DEA iteration proceeds to Step i + 1 if A⟨i⟩ has constant rank less than m at

[x⊤0 , 01×i]
⊤. If rank of A⟨i⟩ is m, the extended dynamics has a well-defined relative

degree r<i> and the algorithm terminates.

Achieving a well-defined vector relative degree, one can then follow the same

control structure as in Fig.3.1, and control the system using linear design tools.

Fig. 3.2 illustrates DEA-based control design assuming the algorithm is terminated

at step ⟨i⟩.

Extended Plant

Change of coordinates

Linear feedback

Figure 3.2: DEA Control structure: Nonlinear control affine system is dynamically
controlled using state feedback x, extended dynamics (ξ), and reference signal yd.
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3.3 Dynamic Full State Feedback Linearization of the

Slung Load System

In this section, we apply the DEA to the SLS model (2.17), (2.19). We show

that after four iterations the algorithm converges to extended dynamics with a full

relative degree of 20 which is the dimension of the extended state. In Section 3.3.1

we augment the state with the integral of load position and apply a static state

feedback linearization to achieve the output tracking control objective.

We pick the point x0 = 0 for practical reasons as we require extended dynamics

with a well-defined relative degree in hover. The region on which relative degree is

defined includes x0 and allows for trajectory tracking is discussed further in Sec-

tion 3.3.3.

Due to the structure of the decoupling matrix (3.2) for the SLS system, we

obtain a unique (i0, j0) = (3, 1) at each DEA step. In order to simplify the extended

system dynamics, the functions k and s are chosen as

k⟨i⟩(x⟨i−1⟩) = −Lr
⟨i−1⟩
3

f⟨i−1⟩h3(x
⟨i−1⟩), s⟨i⟩(x⟨i−1⟩) = 1 (3.7)

We remark this choice is important as other choices lead to very large expressions

for the extended dynamics which cannot be computed using symbolic math tools in

a reasonable amount of time. Using (3.7) we obtain

f ⟨i⟩ = [(f ⟨i−1⟩ +
k⟨i⟩ + ξis

⟨i⟩

a
⟨i−1⟩
31

g
⟨i−1⟩
1 )⊤, 0]⊤

g
⟨i⟩
1 = [01×(15+i), 1]

⊤

g
⟨i⟩
j = [g

⟨i−1⟩⊤
j , 0]⊤, for j = 2, 3, 4

(3.8)

for i = 1, 2, 3, 4, where f ⟨0⟩(x) = f(x) and g⟨0⟩(x) = g(x) are from (2.17), and a
⟨i−1⟩
31

is the (3, 1) entry of A⟨i−1⟩.

As we see from the decoupling matrices

A⟨i⟩(x⟨i⟩) =


tβ
cα

0 0 0

−tα 0 0 0

1 0 0 0

0 0
sϕ
J2cθ

cϕ
J3cθ

 , i = 1, 2, 3

The structure of A⟨i⟩ is consistent with r⟨i⟩ = [i+2, i+2, i+2, 2], 1 ≤ i ≤ 3. At each

iteration, we delay the appearance of the thrust input by defining a new controller

state. Therefore, it takes another time derivative of the output for the thrust to
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appear when using the extended state and extended dynamics.

Using (3.5) we obtain the dynamic state feedback

v
⟨i⟩
j = v

⟨i−1⟩
j = τj , for j = 2, 3, 4

v
⟨i−1⟩
1 =

1

a
⟨i−1⟩
31

(ξi − L
r
⟨i−1⟩
3

f⟨i−1⟩h3)

ξ̇i = v
⟨i⟩
1

(3.9)

where i = 1, 2, 3, 4. Hence, we observe that only the thrust component of the input

is modified.

At Step 4, due to the appearance of τ in the time derivatives of y1, y2, we obtain

A⟨4⟩ =



a
⟨4⟩
11 a

⟨4⟩
12 a

⟨4⟩
13 0

a
⟨4⟩
21 a

⟨4⟩
22 a

⟨4⟩
23 0

1 0 0 0

0 0 a
⟨4⟩
43 a

⟨4⟩
44


(3.10)

with rank(A⟨4⟩(x)) = 4 on a subset of M (see (2.18)), we call this set M⟨4⟩ and

define it as follows

M⟨4⟩ = {M× R4 ⊂ R20 | rank(A⟨4⟩) = 4} (3.11)

M⟨4⟩ is described in detail in Section 3.3.3.

Since r⟨4⟩ = [6, 6, 6, 2], Step 4 achieves full relative degree of 20 which is the

dimension of x⟨4⟩.

3.3.1 Static State Feedback Linearization for Robust Output

Tracking

In this section, we apply static state feedback linearization to the extended dynamics

computed in the previous subsection. Also to improve robustness we augment the

extended state with the integral of pendulum position. For convenience we define the

input of the extended dynamics as ν̄ = [v
⟨4⟩
1 , τ⊤]⊤, f̄ = f ⟨4⟩,M̄ =M⟨4⟩×R4 ⊂ R20,

r̄ = r⟨4⟩, and Ā = A⟨4⟩.

First, we define tracking error coordinates

z̃ = [

∫ t

0
(h1 − yd1)dτ, h1 − yd1, Lf̄h1 − ẏd1, . . . ,

L5
f̄h1 − y

(5)
d1 , . . . ,

∫ t

0
(h3 − yd3)dτ, . . . ,

L5
f̄h3 − y

(5)
d3 , h4 − yd4, Lf̄h4 − ẏd4]

⊤

(3.12)
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We have z̃ ∈ R23, where 16 components come from the original system dynamics

(2.17), four components are added as controller states in the DEA, and three from

integral augmentation of the pendulum position.

We can write the error dynamics in z̃-coordinates as

˙̃z = Acz̃ +Bc(b+ Āν̄) (3.13)

where

Ac = diag(A1, A2, A3, A4)

Bc =
[
e7 e14 e21 e23

]
b = [L6

f̄h1, L
6
f̄h2, L

6
f̄h3, L

2
f̄h4]

⊤

ei ∈ R23 denotes the unit vector in the ith direction, and for i = 1, 2, 3 we have

Ai =

06×1 I6

0 01×6

 ∈ R7×7, and A4 =

0 1

0 0


Applying the static state linearizing control

ν̄ = Ā−1(Kz̃ − b+ y
(r̄)
d ) (3.14)

with y
(r̄)
d = [y

(6)
d1 , y

(6)
d2 , y

(6)
d3 , y

(2)
d4 ]

⊤ to (3.13) gives

˙̃z = (Ac +BcK)z̃ (3.15)

where K ∈ R4×23 is a control gain chosen such that Ac + BcK is Hurwitz and

suitable tracking error transient performance is obtained.

Designed controller (3.15) for the SLS is depicted in Figure 3.3
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SLS

Figure 3.3: output tracking controller designed for the SLS using DEA algorithm

Here we prove that the proposed design can achieve perfect tracking for constant

disturbances (e.g., a small neighborhood of α and β) due to the integral augmenta-

tion of the state.
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3.3.2 Convergence Proof for Constant Disturbances

Here we reintroduce the disturbance term dq from (2.17) but assume its coefficient wp

is a constant. Also, for simplicity, we neglect the effect of disturbance on pendulum

angles (this is the case for long cables (L ≫ 1), see (2.21)). We show that in this

case, the tracking error y−yd converges exponentially to zero for Hurwitz Ac+BcK.

To begin with, it can be easily shown that2 (3.15) in terms of coonstant wp is

˙̃z = (Ac +BcK)z̃ + Edq (3.16)

Where

E =
[
L−1
Lmq

e3
L−1
Lmq

e10
1

mq+mq
e17

]
For the sake of presentation, we take the practical case of a block diagonal K which

implies (3.16) consists of 4 decoupled subsystems. Three are the position errors

and are 7-dimensional which forced with input dqi, i = 1, 2, 3. The fourth yaw

subsystem is 2-dimensional and unforced. Hence, it converges exponentially to zero.

Therefore, we focus on the first 3 subsystems. We partition their state z̃i into two

parts: z̃ai = [hi−ydi, . . . , L5
f̄
hi−y(5)di ]

⊤ ∈ R6, z̃bi =
∫ t
0 (hi−ydi)dτ , and z̃i = [z̃⊤ai, z̃bi]

⊤,

i = 1, 2, 3. The ith subsystem error dynamics is ˙̃zai
˙̃zbi

 =

A1 +B1K1i B1K2i

C1 0

z̃ai
z̃bi

+

e2
0

wp0(i, i)dq (3.17)

whereA1 ∈ R6×6, B1 ∈ R6×1 are in Brunovky Controller Form, e2 = [0, 1, 0, . . . , 0]⊤ ∈
R6, K1i ∈ R1×6, K2i ∈ R, and C1 =

[
1 01×5

]
. Letting Λi = A1+B1K1i we compute

Λi B1K2i

C1 0

−1

=

Āi ⋆

⋆ ⋆


where Āi = Λ−1

i (I6 −B1(C1Λ
−1
i B1)

−1C1Λ
−1
i ). Hence, the equilibrium of yi − ydi is

[
C1 0

]Āi ⋆

⋆ ⋆

e2
0

 = 0

since C1Āi = 0 from

C1Āi = C1Λ
−1
i − C1Λ

−1
i B1(C1Λ

−1
i B1)

−1C1Λ
−1
i = 0

2To see this, consider (2.21) and note that based on the definition of z̃ in (3.12), disturbances
only show up in the velocity channels.
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Note that as long as (3.17) is exponentially stable it can be shown that Λi and

C1Λ
−1
i B1 are invertible.

3.3.3 Domain of the Output Tracking Controller

In this section we determine the domain of the linearizing control law (3.14). Since

the z̃-coordinates (3.12) are defined using the Lie derivatives of h along f̄ , some

of singular points of the control law are inherited from those in f . These points

include θ = ±90◦, β = ±90◦ which are seen in the original dynamics (2.17) and

which arise due to the Euler angles. The points α = ±90◦ are singularities that

appear in f̄ due to the dynamic extension. The expression for f̄ is omitted as is

it too large. The control is also singular at points where the Jacobian matrix of

z̃-coordinates is singular. These points are the same as those where the distribution

rank condition in [32] does not hold. Equivalently, we can obtain these points from

where the decoupling matrix Ā is singular. These points are

ϕ = ±90◦ (3.18a)

[sβ ,−sαcβ , cαcβ ] ·Rn3 = 0 (3.18b)

ξ1 = g −
cαcβ(γ

2
αc

2
β + γ2β)Lm

m+mp
(3.18c)

ξ1 = g (3.18d)

We remark that the geometric interpretation of the left hand side (LHS) of (3.18b)

(which from (3.4) is a scaling of a31) is the inner product of the direction vector

of the pendulum [sβ ,−sαcβ , cαcβ ] and the direction of the unmanned aerial vehicle

(UAV) thrust vector with both vectors expressed in N . Thus, a physical singularity

appears when the direction of the pendulum is perpendicular to the thrust vector.

In Step 1 of the DEA we define a controller state ξ1 = L2
fh3(x) + a31(x)ū (see (3.9)

for i = 1). Hence, condition (3.18c) is equivalent to ū = 0. The condition (3.18d)

occurs when the downwards linear acceleration of the pendulum p̈3 = g. This is

another physical singularity which appears in many UAV motion controllers, e.g.,

[33]. Hence, we remark that the domain of the controller is a suitable subset of M̄
which excludes the above-mentioned points. This domain is practically sensible in

that singularities only occur in conditions that would not be typical of safe operation.

3.4 Dynamic Extension Algorithm in Symbolic Math

Symbolic math software Maple [34] was used to implement the DEA for a general

control-affine system (2.1). The code is available at [1] and was inspired by work

in [35]. However, the approach in [35] did not implement the DEA correctly for a
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number of reasons. First, it only performed one DEA step. Second, the method

for computing indices i0, j0 was incorrect. For example, the first and fourth inputs

were extended simultaneously in Step 1 when applied to (2.17)-(2.19). Unlike the

work of [35] where depreciated packages were used (e.g., linalg) our code uses only

currently supported packages (e.g., LinearAlgebra and their data structures). We

use the CodeGeneration package to optimize the control law expressions for Matlab

simulation. This is important as it allows us to generate an expression for the

control in less than a minute on a standard CPU (Intel i9-10900K, 3.70GHz). As

the approach [35] did not perform this optimization, it would yield large expressions

which could not be used for simulation.

Another feature of our work is that it allows user input at each DEA step so

that functions k and s in (3.5) can be adjusted incrementally. This is important as

we have observed that for certain common choices (e.g., k(x) = 0 and s(x) = 1)),

controller expressions are so large that Maple cannot provide a result in a reasonable

amount of time. Lastly, our simulations are performed from Maple using Matlab

by code generating the simulation files in Maple. Matlab commands are run using

Maple’s Matlab package. The developed code ensures an efficient control design and

error-free control law expressions. Four example systems are provided (including

the SLS) to demonstrate the toolbox capability. Fig 3.4 shows the first page of

the developed script, as it is shown the toolbox is already tested on four different

nonlinear systems. Also, Fig 3.5- 3.7 illustrate the selection page for functions k

and s in (3.5), intermediary dynamics where users can either continue with their

selection or pick different functions, and the third iteration of the DEA on SLS

system respectively.

Figure 3.4: First page of the developed Maple script [1]. Although four sample
systems are shown here, users can insert any control-affine model.
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Figure 3.5: Function selection in designed maple script [1].

Figure 3.6: Intermediary dynamics resulted from applying the developed script [1]
to the SLS.
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Figure 3.7: Third step of applying the developed script [1] to the SLS.
.

3.5 Simulations

In this section, we validate the proposed control law in simulation and compare its

performance with an existing method [2]. We consider simulations for stabilization

and tracking of the pendulum position and the yaw angle. The system parameters

used in the model and controller are in Table 3.1.

Table 3.1: System parameters.

mq 1.6 kg
mp 0.16 kg
L 1m
J1 0.03 kg ·m2

J2 0.03 kg ·m2

J3 0.05 kg ·m2

We consider three different cases: stabilization (with and without disturbance)

and tracking (without disturbance).

It should be noted that for these simulations, the evaluation of the control law

expression takes (at max) 0.6ms on an Intel i9-10900K CPU running at 3.70GHz.

Position Stabilization with no Disturbance

We consider the problem of stabilizing x = 0 and choose reference output yd = 0. We

initialize the system with p(0) ̸= 0 and all other states zero (i.e., the SLS is at rest).

Since the error dynamics (3.15) are linear time-invariant (LTI), it is straightforward

to design the transient performance for y. Using linear system theory we design
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K for a 10%-settling time of 3 s and an overshoot of 15%. Fig. 3.8(a) shows the

response for p in red where the performance specifications are met as expected. To

compare the performance with the proposed design, we consider the same problem

using the geometric controller (GC) in [2]. We remark that the GC is a 3-level nested

controller and guarantees almost-global exponential attractiveness [36, Def. 1], but

exponential stability occurs in a limited region. As well, the error dynamics are

nonlinear and this makes gain tuning difficult and non-systematic. Hence, the GC

gains were chosen by trial-and-error to yield a response that is as close as possible to

the desired transient specifications. The trajectories for p are in blue in Fig. 3.8(a).

Since for the proposed design x = 0 is exponentially stable (ES), when the initial

position is closer to the origin and controller gains are unchanged, we obtain a lower

bound on ∥p∥. Hence, when we initialize p(0) closer to the 0 we expect a smaller

transient. This is confirmed in simulation in Fig. 3.8(b). However, since ES is

not guaranteed with the GC, the transient performance for y is severely degraded

for smaller p(0). We observe that although ψ(0) = 0, the UAV performs two full

yaw rotations before it converges. As well, the transient performance in position

is very oscillatory. The poor transient performance of the GC is attributed to its

nonlinear error dynamics whose equilibrium is locally ES. Using [2, Eqns. (39), (45)],

for the simulated initial conditions and controller gains, an estimated ES region of

attraction (ROA) was computed which shows that ES is only locally ensured and

a complex function of controller gain. In particular, the ES ROA does not include

α = β = 0 which implies ES is not ensured for the simulated conditions. This should

be compared to the proposed controller whose ES ROA includes α = β = 0.
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(a) Initial position further from origin:
∥∥p(0)∥∥ = 5.83m.

(b) Initial position closer to origin:
∥∥p(0)∥∥ = 2.45m.

Figure 3.8: Position trajectories for the proposed design (FL), and the design in [2]
(GC). The same gains are used for both simulations.
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Position tracking with no Disturbance

We consider the desired position

yd(t) =


−1.5 sin(πt/4) + 1

0.75 sin(πt/2)

2 sin(πt/4)− 3

0.01t

 (3.19)

Fig. 3.9 shows the tracking error trajectories. We observe the convergence of all

components in a reasonable time. The corresponding inputs are given in Fig. 3.10.

The trajectories for p, α, β, η are given in Fig 3.11. A 3D position graph of pendulum

position after transients decay is given in Figure 3.12 to help visualize the motion.

Figure 3.9: Error trajectories for the tracking task.
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Figure 3.10: Inputs for the tracking task.

Figure 3.11: Configuration variables for the tracking task.
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Figure 3.12: Position trajectories for the tracking task.

Position Stabilization with Constant Disturbance

We consider hover as the desired position (yd = 04) and disturbance vector dq =

[1,−1.5,−.2]⊤ N. Given the ES error dynamics and the integral augmentation tech-

nique, we expect convergence which is shown in Fig. 3.13. The inputs are in Fig. 3.14

and p, α, β, η are in Fig. 3.15. As we can see in this figure, pendulum angles α and β

converge to 0, however, quadrotor angles ϕ and θ converge to nonzero values which

is the expected case to reject the external disturbance.

time (s) time (s)

time (s) time (s)

Figure 3.13: Hover stabilization error in presence of constant disturbance.
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Figure 3.14: Inputs ū, τ for the hover stabilization task in presence of constant
disturbance.

time (s) time (s)

time (s) time (s)

time (s) time (s)
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Figure 3.15: Configuration variables for the hover stabilization task in presence of
constant disturbance.
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Chapter 4

Reinforcement Learning Control

Our goal in this chapter is to control the slung load system (SLS) using designs from

reinforcement learning (RL). The purpose of designing such a controller is to reject

larger disturbances and parametric uncertainties. We first introduce the necessary

elements and algorithms and then formulate our problem within the RL framework.

This chapter is concluded by simulating the proposed design on the SLS.

4.1 Reinforcement Learning

The goal of RL is to identify how to map states to actions so that a predefined

reward signal is maximized. There are no instructions given to the learner about

which actions to take; instead, by trying different actions, one must discover which

yields the most cumulative reward.

As stated in [37], learning by reinforcement differs from learning by supervision,

which is mostly studied in current machine learning research. In supervised learning,

a knowledgeable external supervisor provides labeled examples as a training set.

Although this is a fundamental form of learning, it is insufficient for learning from

interaction. The reason is that in dynamic problems, it is impossible to find examples

of desired behavior that are both correct and representative of all states in which

the agent has to act.

Unsupervised learning, which involves discovering structure in unlabeled data

collections, is also different from RL. As a result of RL’s lack of reliance on examples

of correct behavior, one might mistake it for unsupervised learning. However, RL

maximizes a reward signal rather than seeking a hidden structure. RL can certainly

benefit from uncovering structure in an agent’s experiences, but it does not solve the

problem of maximizing reward signals on its own. The trade-off between exploration

and exploitation is a challenge unique to reinforcement learning [37]. In order to

obtain the reward, the agent must exploit its previous experience, but it must also

33



explore new possibilities in order to make better future choices.

Fig. 4.1 attempts to provide a comprehensive representation of available machine

learning tasks and their associated categories.

Machine  
Learning

Supervised 
Learning

Unsupervised 
Learning

ClassificationDimensionality 
Reduction

Clustering

Reinforcement  
Learning

Regression

Meaningful 
Compression

Big data 
Visualization

Recommender 
Systems

Targetted 
Marketing

Customer 
Segmentation

Real-time decisions

Robot Navigation

Learning Tasks

Skill Acquisition

Game AI

Population 
Growth 

prediction
Estimating 
life expectancy

Market 
Forecasting

Weather 
Forecasting

Advertising Popularity 
Prediction

Diagnostics

Customer RetentionImage 
Classification

Identity Fraud 
Detection

Structure 
Discovery

Feature 
Elicitation

Figure 4.1: Different machine learning tasks and their associated categories [3].

4.1.1 Reinforcement Learning Preliminaries

Closed-loop system in the RL framework is shown in Fig. 4.2. We follow the notation

of [37]. The RL agent and the environment interact during a sequence of discrete

time steps t = 0, 1, 2, . . . as shown in the figure. At each time instant t the RL agent

receives information about the environment’s state St ∈ S and based on that, selects

an action At ∈ A(s). One-time step later, as a result of the action performed in St,

the RL agent receives a reward Rt+1 ∈ R, and finds itself in a new state St+1
1.

Here we assume our problem is of the form of a finite Markov Decision Process

(MDP). In this case, the random variables Rt and St have well defined discrete

probability distributions dependent only on the preceding state and action. That

is, for particular values of these random variables, s′ ∈ S and r ∈ R, there is

a probability of those values occurring at time t, given particular values of the

preceding state and action:

p(s′, r|s, a) = Pr{St = s′, Rt = r | St−1 = s,At−1 = a} (4.1)

1Capital letters for state, reward, and actions emphasizes stochasticity in the environment and
agent.
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for all s′, s ∈ S, r ∈ R and a ∈ A(s).
The definition of a policy π is mapping from states to probabilities of each

action being taken. The goal of the RL agent is to find a policy that maximizes

the total expected reward. We define value functions as follows: The state–value

function vπ(s) of a state s under a policy π is the expected accumulated reward

when starting in s and following policy π. State-action value function on the other

hand, is the expected return starting from s, taking the action a, and thereafter

following policy π. We use the discounted version of these value functions here2:

vπ(s) = Eπ

 ∞∑
t=0

γtrt | s0 = s

 (4.2a)

qπ(s, a) = Eπ

 ∞∑
t=0

γtrt | s0 = s, a0 = a

 (4.2b)

where γ < 1 is the discounting factor.

From control system point of view, the agent is referred to as a controller, En-

vironment refers to the open-loop system or plant with all disturbances and reward

is provided by the reference output. Also, the policy is equivalent to the control law

of a controlled system.

RL AGENT

ENVIRONMENT

Reward ௧

State ௧

action ୲

௧ାଵ

௧ାଵ

Figure 4.2: The agent–environment interaction in a Markov decision process.

Solving an RL problem means finding a solution with a large vπ. For finite

2We used discounted returns here for two reasons: first, as stated in [37], page 254, discounting
does not affect policy ordering, and second, in discounted settings, more tools and algorithms have
been developed (particularly for the proximal policy optimization (PPO) algorithm that we use
later).
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MDPs, policy π, with corresponding vπ, is defined to be better than or equal to

policy π′, with corresponding vπ′ , if vπ(s) ≥ vπ′(s) for all s ∈ S. In this case we

say π ≥ π′. Policies π∗ better than or equal to all other policies are called optimal.

Optimal policies may not be unique and share the same value function called the

optimal value function

v∗(s) = max
π

vπ(s)

When the environment dynamics (4.1) are unknown, it is difficult to find the

optimal policy and optimal value function. In such cases, a model-free approach

is a method of finding the optimal policy without knowing how the environment

dynamics are changing. A partial model-free approach is used in this thesis.

Also, in this work, we have used a parametric approach to represent a policy,

π(a|s; θ) = Pr{At = a | St = s, θt = θ} (4.3)

where θ ∈ Rd is the policy’s parameter vector. Many reasons are cited in the

literature to justify why policy gradient methods can generally be more effective,

including [37–39]: By storing policy parameters, these methods can learn specific

probabilities for taking actions. Also, by learning appropriate levels of exploration,

they can approach deterministic policies asymptotically. Continuous action spaces

are naturally handled by them, and most importantly, parameterized policy methods

have a solid theoretical advantage over action-value methods in the form of the policy

gradient theorem, which gives an exact formula for how performance is affected by

the policy parameter that does not involve derivatives of the state distribution.

As stated in [37] the remarkable performances of popular RL applications (e.g.,

AlphaGo, TD-Gammon) owe much of their performance to nonlinear function ap-

proximation by multi-layer artificial neural network (ANN)s. For this reason, we

have also utilized ANN here, in fact the term deep RL is to indicate that ANN is

used as the function approximator in our RL algorithm.

Following, we will introduce actor-critic structure, policy gradient theorem and

PPO algorithm that we later use in Section 4.2 as a solution to our RL problem.

4.1.2 Neural Actor-Critic

The feedforward ANNs used in this thesis are defined here. The notation is based

on [40]. As shown in Fig. 4.3a an actor ANN is used to approximate the policy (4.3)

while a critic is used to estimate the cost function (4.2a). Without loss of generality,

we assume two hidden layers are used in both networks3. Observations, states, and

actions are specified in Section 4.2.

3Later in simulations, we sweep over different hyperparameters, including the number of layers
and nodes of the actor-critic network and report the effect of each.
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Actor network

As it is customary for the case of continuous actions [37], we consider the following

form for the parameterized policy (4.3)

π(a|s; θ) = 1√
2πcσ

exp−(a− µ(s, θ))⊤(a− µ(s, θ))
2(σ(s, θ))2

(4.4)

where µ and σ here are the mean and standard deviation of the normal distribution

and πc ≈ 3.14.

Note that standard deviations must be nonnegative and mean values must fall

within the range of the possible actions. Therefore the output layer that returns

the standard deviations must be a softplus or ReLU layer to enforce nonnegativity,

while the output layer that returns the mean values must be a scaling layer to scale

the mean values to the output range [41]. Apart from this and without loss of

generality, we assume both µ(s, θ) and σ(s, θ) are generated using the same network

structure as shown in Fig. 4.3a and only formulate µ here.

Naming activation functions for the ith layer as g
(i)
a (superscript a refer to the

actor network) we have

h(1)a (s) = g(1)a

(
θ(1)⊤s+ θ

(1)
b

)
(4.5a)

h(2)a

(
h(1)a (s)

)
= g(2)a

(
θ(2)⊤h(1)a (s) + θ

(2)
b

)
(4.5b)

µ(s) = θ(3)⊤h(2)a

(
h(1)a (s)

)
+ θ

(3)
b (4.5c)

where the first and second layers’ outputs are denoted by h
(1)
a and h

(2)
a , respectively,

each with dimension Na, as a design parameter. Thus, we have θ(1) ∈ RNa×n, θ(2) ∈
RNa×Na , θ(3) ∈ Rm×Na where n is the number of observations and m is the number

of actions to be specified later. The biases are denoted by θ
(k)
b , k = 1, 2, 3 with

their dimension determined from (4.5a)-(4.5c). Parameter θ consists of θ(k) and

θ
(k)
b , k = 1, 2, 3. As mentioned above θ(3) and θ

(3)
b are to map actions into an

appropriate output range.

It should also be mentioned that the standard deviation σ is sometimes taken as

a small constant. A widely used expression for σ is σ = exp(−ω) where ω is usually

chosen on [0.5, 5] ([42]- [43]). However, here we assume σ is tuned during training

as in soft actor-critic methods ([44]).
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Critic network

The critic ANN is shown in Fig. 4.3b. The network approximates vπθ by v̂ζ which

is evaluated using

h(1)c (s) = g(1)c (ζ(1)⊤s+ ζ
(1)
b ) (4.6a)

h(2)c (h(1)c (s)) = g(2)c (ζ(2)⊤h(1)c (s) + ζ
(2)
b ) (4.6b)

v̂ζ(s) = ζ(3)
⊤
h(2)c

(
h(1)(s)

)
+ ζ

(3)
b (4.6c)

where ζ(1) ∈ RNc×n, ζ(2) ∈ RNc×Nc , ζ(3) ∈ R1×Nc . Parameter ζ consists of ζ(k)

and ζ
(k)
b , k = 1, 2, 3.

4.1.3 Policy Gradient Theorem

We treat the SLS output tracking problem as an episodic task4, therefore, the perfor-

mance measure is defined as the value of the start state of each episode. We follow

the same notation as in [37] and assume every episode starts in some particular

(non-random) state s0. Then, the performance is defined as

J(θ) = vπθ(s0) (4.7)

Where vπθ is the true value function for πθ, the policy determined by θ. Considering

definition (4.7), and based on the policy gradient theorem (see [37] page 326 for

proof), the gradient of Jπθ with respect to θ satisfies

∇θJ(θ) ∝
∑
s

µ(s)
∑
a

qπθ(s, a)∇πθ(a|s; θ) (4.8)

where distribution µ is the on-policy distribution under πθ and gradients are column

vectors of partial derivatives with respect to the components of θ. In the episodic

case, the constant of proportionality is the average length of an episode (which is

unknown). Note that proportionality of the sample gradients is all we need because

any constant of proportionality can be absorbed into the step size α (see below)

which is otherwise arbitrary.

Hence, the gradient ascent update to maximize Jπθ is

θk+1 = θk + α∇θJπθk = θk + α
∑
a,s

qπθ(a, s)∇θπ(a|s; θk) (4.9)

where α > 0 is the update step size, qπθ(a, s) is given by (4.2b) and π(a|s; θ) is

obtained by (4.4).

4Strictly speaking, SLS output tracking is not an episodic task; however, taking a sufficiently
large episode length T allows us to approximate a continuing task.
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4.1.4 Proximal Policy Optimization

PPO is a model-free, online, and on-policy reinforcement learning method. It is

currently considered a state-of-the-art algorithm in the RL community [45] that

offers relatively simple implementation and promising results in practice [46]. PPO

algorithm is a type of policy gradient training that alternates between sampling

data through environmental interaction and optimizing a clipped surrogate objective

function using stochastic gradient descent [45]. In order to accelerate the learning

process, PPO updates parameters over multiple epochs of mini-batch data, and to

improve training stability it limits the size of the policy change at each step.

PPO is a simplified version of trust region policy optimization (TRPO). TRPO

is computationally more expensive than PPO, but TRPO tends to be more robust

than PPO if the environment dynamics are deterministic and the observation is low

dimensional.

A PPO agent, in brief, follows these steps:

• Estimates a probability distribution (4.4) for each action in the action space

and randomly selects actions based on that distribution.

• Interacts with the environment for multiple steps using the current policy and

then uses a mini-batch experience to update the actor and critic elements

(4.5c), (4.6c) using the policy gradient theorem (4.9).

This thesis uses the actor-critic PPO based on the implementation in [41].

Actor-Critic PPO Training Algorithm

1. Initialize the actor π(a|s; θ) (developed in 4.1.2) with some random parameter

values θ.

2. Initialize the critic v̂ζ(s) (developed in 4.1.2) with random parameter values

ζ.

3. Generate N experiences by following the current policy. Let the experience

sequence be

st, at, rt+1, st+1, . . . , st+N−1, at+N−1, rt+N , st+N

where t is the starting time-step of the current set of N experiences. At the

beginning of the training episode, t = 1, and for each subsequent set of N

experiences in the same training episode, t ← t + N . For each experience

sequence that does not contain a terminal state, N is equal to the hyper-

parameter Experience-Horizon. Otherwise, N is less than Experience-Horizon

and st+N is the terminal state.
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4. For each episode step within the set N , t = t + 1, t + 2, . . . , t + N , compute

the return (Gt) and generalized advantage function (Dt) [47] using

Dt =
t+N−1∑
k=t

(γλ)k−tδk (4.10)

δk = rk + bγv̂ζ(sk) (4.11)

Here, b is θ if st+N is a terminal state and 1 otherwise. λ is a smoothing factor5

and resembles the trace-decay parameter in the TD(λ) algorithms [37]. And

Gt = Dt + v̂ζ(st) (4.12)

5. Learn from mini-batches of experiences over K epochs. For each learning

epoch:

5.1. Sample a random mini-batch data set of size M from the current set

of experiences N . Each element of the mini-batch data set contains a

current experience and the corresponding return and advantage function

values.

5.2. Update the critic parameters by minimizing the loss Jcritic across all sam-

pled mini-batch data.

Jcritic (ζ) =
1

M

M∑
i=1

(Gi − v̂ζ(si))2 (4.13)

Therefore, Jcritic can be updated given the critic structure (see Sec-

tion 4.1.2) and ANN updates techniques (e.g., Backpropagation).

5.3. Normalize the advantage valuesDi based on the unnormalized advantages

in the current mini-batch.

D̂i ←
Di −mean (D1, D2, . . . , DM )

std (D1, D2, . . . , DM )
(4.14)

5.4. Update the actor parameters by minimizing the actor loss function Jactor

across all sampled mini-batch data.

Jactor(θ) =
1

M

M∑
i=1

(
min

(
kt(θ) · D̂i, σ

(
kt(θ)

)
· D̂i

)
+ wHi (θ, si)

)
(4.15)

5Also known as GAE parameter
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Where

kt(θ) =
π(at|st; θ)
π(at|st; θold)

(4.16)

describes the ratio of policies corresponding to parameters θ and θold

where θold is the parameter from previous epoch of the optimization.

And σ : R→ R is the saturation function

σ(ξ) =


1 + ε ξ > 1 + ε

ξ 1− ε ≤ ξ ≤ 1 + ε

1− ε ξ < 1− ε
(4.17)

where the clip ratio ε > 0 is a small value.

Last term wHi(θ) represents the entropy loss function and is described

below. This function is added to further encourage exploration.

Assuming 1− ε ≤ kt(θ) ≤ 1 + ε, (4.15) simplifies to:

Jactor(θ) =
1

M

M∑
i=1

(
kt(θ) · D̂i + wHi (θ, si)

)
with gradient of

∇θJactor(θ) =
1

M

M∑
i=1

(
D̂i · ∇θkt(θ) + w∇θHi (θ, si)

)
(4.18)

Where we have used the fact that advantage function (4.10) (and hence

it’s normalized version) is independent of θ. First term in (4.18) demon-

strates that PPO is a member of the policy gradient methods (described

in Section 4.1.3). Finally, we have the following update rule for actor

parameters

θk+1 = θk +
α

M

M∑
i=1

(
D̂i ·
∇θπ(at|st; θ)
π(at|st; θold)

+ w∇θHi (θ, si)

)
(4.19)

6. Repeat steps 3. through 5. until the training episode reaches a terminal state.

To promote agent exploration, we added the entropy loss function wHi (θi, si)

to the actor loss (4.15), where w is the entropy loss weight and Hi (θi, si) is the

entropy:

Hi (θ, Si) =
1

2

4∑
k=1

ln
(
2πc · e · σ2k,i

)
(4.20)

where σk,i is the standard deviation (see Section 4.1.2) for action k when in state si

and πc ≈ 3.14.
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It should be noted that for the PPO algorithm described above, parameters

N, γ, λ, K, M, ε, and w are hyperparameters to be tuned.

4.2 SLS Output Tracking as an RL Problem

Our goal in this section is to formulate the output tracking problem (3.1) in the RL

framework. The main difference between our approach and conventional RL-based

control is that we construct the reward function and observation sets based on the

intrinsic linearizability property of the extended SLS.

Due to the main concern of this section being the robustness of the controller,

we assume the real system drift vector f and input matrix g (and hence extended

f ⟨4⟩ and g⟨4⟩) are not accessible6, and we only have access to the nominal plant

described by (2.17). So we use the superscript p to refer to actual system (e.g., with

fp, gp) and n to refer to the nominal system (e.g., fn, gn, as given in (2.17)).

We recall from Chapter 3 and (3.13) that the extended SLS model described

by dynamics (3.8) (for i = 4), inputs ν̄ = [v
⟨4⟩
1 , τ⊤]⊤ and outputs (2.19) is fully7

feedback-linearizable and thus its output derivative can be written as:

y(r̄)n = bn + Ānν̄n (4.21)

where r̄ = [6, 6, 6, 2], and by ν̄n we mean linearizing controller for the nominal plant.

A critical assumption must be made here as in [48–51] before we proceed with

the controller design.

Assumption 1. Extended SLS plant (f
⟨4⟩
p , g

⟨4⟩
p ) and model (f

⟨4⟩
n , g

⟨4⟩
n ) have the same

vector relative degree r̄ = [6, 6, 6, 2] onM⟨4⟩ (see 3.11).

In light of this assumption, there exist linearizing controllers for the plant and

the model, which can be described by8:

v̄p(x, vr) = βp(x) + αp(x)vr (4.22a)

v̄n(x, vr) = βn(x) + αn(x)vr (4.22b)

6This might seem in contrast to the construction of the extended system where based on (3.9)
we need f and g to construct auxiliary inputs, however, as stated in [30]-page 258, we know that
for different successful selections of k(x) and s(x) the algorithm always consists of the same number
of iterations. Therefore, we assume in this section that functions k(x) and s(x) are independent of

true f and g and hence v
⟨i⟩
1 for i = 1, 2, 3 are accessible and do not require the knowledge of fp or

gp.
7By full feedback linearization we mean the extended system has no zero dynamics.
8With slight abuse of notation, from this point, we use x, u, v, f , g, A, b to refer to the quantities

for the extended system (e.g., f ← f ⟨4⟩).
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Comparing (4.22b) with (3.14) we can infer

βn = −A−1b (4.23a)

αn = A−1 (4.23b)

vr = Kz̃ + y
(r̄)
d (4.23c)

While the terms in v̄p are unknown, they can always be written by

βp(x) = βn(x) + ∆β(x) (4.24)

αp(x) = αn(x) + ∆α(x) (4.25)

where ∆β and ∆α arise due to uncertainties in the SLS model (2.17). An

estimate for v̄p in (4.22a) can then be derived by

v̄p(x, vr, θ) =
(
βn(x) + βθ1(x)

)
+
(
αn(x) + αθ2(x)

)
vr (4.26)

where βθ1 :M⟨4⟩ → R4 is a parameterized estimate for ∆β, and αθ2 :M⟨4⟩ → R4×4

is a parameterized estimate for ∆α. The parameters θ1 =
(
θ11, θ

2
1, . . . , θ

K1
1

)
∈ RK1

and θ2 =
(
θ12, θ

2
2, . . . , θ

K2
2

)
∈ RK2 are to be learned and combined into the total set

of learned parameters 9θ = (θ1, θ2) ∈ RK1+K2 . The learned component is directly

added to the controller derived from our nominal model, allowing us to integrate

prior knowledge of the plant that the controller designer has.

By injecting (4.26) to SLS we obtain

y(r̄)p = bp(x) + Āp(x)v̄p(x, vr, θ)︸ ︷︷ ︸
W (x,vr,θ)

(4.27)

In order to linearize the plant, we have to to find θ∗ such that W (x, vr, θ
∗) ≈ vr for

each x ∈ M⟨4⟩ and v̄ ∈ R4. Thus, we define the point-wise loss ℓ : M⟨4⟩ × R4 ×
RK1+K2 → R+ by

ℓ(x, vr, θ) =
∥∥vr −W (x, vr, θ)

∥∥2
2
, (4.28)

In fact, ℓ measures the degree to which the learned controller v̄p(x, vr, θ) in (4.26)

linearizes the plant at state x when vr is applied to the linear reference model.

Now, we are ready to formulate our linearization problem in the RL framework:

9Parameter θ here is independent of the actor parameter θ we used in (4.4).
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min
θ∈Θ

Ex0∼X,vrk∼Vr

 N∑
k=1

ℓ
(
xk, vrk , θk

)
subject to: xk+1 = xk + Fk (xk, uk) , x0 = x0

v̄pk = v̄p
(
xk, vrk , θk

)
(4.29)

Where Fk is the discrete-time implementation of the SLS extended drift vector in

(3.8) (with i = 4), and v̄p is in (4.26). We sample initial conditions x0 from X, where

X models our preference for having an accurate linearizing controller at different

points in the SLS state-space. We also sample the virtual input vrk from Vr at each

time-step according to our desired trajectory (e.g., the fig-8 trajectory).

From RL prospective, ℓ in (4.29) is the reward function which we seek to minimize

its expected sum over time. Vector [x⊤k , v
⊤
rk
]⊤ forms our observations10 at each

time-step, and v̄pk is the input vector which at each step consists of the linearizing

feedback for the nominal model (developed in Section 3.3.1) and a learning part

generated by the PPO algorithm described in Section 4.1.4.

The challenging part when solving (4.29) is that we can’t evaluate W (and

hence ℓ) since terms bp and Āp in (4.27) are unknown. Alternatively, we can run

experiments on the plant (either in simulations or using SLS hardware) and use

numerical derivation techniques to obtain y
(r̄)
p from the plant output.

Also, as stated in [48], (4.29) is a non-convex problem, so it is highly probable

for the solution to be of the type local optimal. However, it is proved in [52] that if

the true linearizing controller follows the form

βθ1(x) =

K1∑
k=1

θk1βk(x) αθ2(x) =

K2∑
k=1

θk2αk(x) (4.30)

where {βk}K1
k=1 and {αk}K2

k=1 are nonlinear continuous functions, then the cost func-

tion in (4.29) becomes quadratic in parameters and therefore a convex problem.

In addition, if {βk}K1
k=1 and {αk}K2

k=1 are linearly independent then (4.29) will be

strongly convex. Obviously, in such a case it is reliable to use our iterative PPO

technique to find its globally optimal solution. An example is provided in [49] where

the norm of the tracking error for a double-pendulum controlled by the control struc-

ture (4.26) converges to zero. However, we were not able to verify whether the given

form (4.30) holds for the uncertain SLS system11.

10The key difference between the observation vector and extended SLS states (which are composed
of SLS states and ū and its derivatives up to order three) is that the observation vector also consists
of vr.

11To analyze this, we first calculated the symbolic linearizing control law as a function of all
parameters (including pendulum and quadrotor masses and cable length) and then created un-
certainty on each parameter (e.g., by inserting Lp = Ln + ∆L), but due to the large numbers of
symbolic expressions, we could not verify whether α and β follows the form of (4.30) or whether
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Figure 4.4 illustrates the overall structure of the RL-based linearizing controller.

+Linear Feedback
Controller

RL-based Feedback
Linearizing Controller

DEA-based Nominal Feedback
Linearizing Controller

Extended SLS plant 

Feedback Linearized System

Figure 4.4: RL-based linearizing controller for the SLS that consists of a learning
part running by PPO and a nominal part which is built using partial knowledge of
the true model.

4.3 Simulations

The purpose of this section is to train the PPO agent described in Section 4.1.4 using

actions, states and rewards defined in Section 4.2. For the sake of exact analysis,

we assume we have access to the true plant (i.e., fp and gp) and use true bp and

Āp to calculate y
(r̄)
p in (4.27) from generated v̄p(x, vr, θ), and then to evaluate the

reward ℓ in (4.29), however, we hide this knowledge and use nominal fm and gm

when constructing the linearizing feedback v̄n in (4.22b).

Our first step is to determine the best set of hyperparameters by sweeping over

feasible values of each parameter while keeping others fixed. We then select the best

set and after a training phase, validate our agent against different uncertainties and

disturbances.

It is worth noting that this thesis uses the RL toolbox from [41] to perform

simulations; this is contrary to the fact that most people use Python for RL simu-

lations. We used MATLAB because it enabled us to employ advanced integration

techniques using the Simulink environment and also because the first part of this

thesis (Section 3.1) was already done in MATLAB.

In addition, we implemented our training algorithms using computing services

provided by the Digital Research Alliance of Canada12. This was crucial because

some implementations were not possible with existing computers (especially hyper-

parameter tuning).

bases are linearly independent
12Previously called ComputeCanada

46



4.3.1 Hyperparameter Tuning

This subsection aims to provide the best set of hyperparameters for the PPO al-

gorithm of Section 4.1.4 which achieves the lowest possible expected return for the

RL problem formulated in (4.29). Hyperparameters and the corresponding value

sets are given in the table 4.1. As this section’s goal is to identify the setting which

results in the lowest cost within a smaller number of samples, we let our agent freely

explore the action space and never stop the training unless it reaches the target

number of episodes. Additionally, we terminate each episode once positions and

velocities pass a certain threshold to prevent instability during training.

For this training phase, we assume the pendulum mass mp (see (2.17)) in true

SLS model and its nominal counterpart are different. Specifically, we assume the

nominal feedback linearizing controller (4.22b) is built using inexact knowledge of

the pendulum mass so that the nominal mp is 0.8 of its true value.

Table 4.1: Hyperparameters used in the proposed PPO algorithm

Hyperparameter Value Set

Discount factor (γ) [0.7, 0.8, 0.9, 0.92, 0.998]

Mini-batch size (M ) [10, 20, 40, 64, 100]

Advantage Normalization Method (D̂) [none, current,moving]

Number of Learning Epochs (K) [1, 3, 5, 7, 10]

Actor & Critic Learning Rates (subset1)(αa,c) [10−5, 10−4, 10−3, 10−2]

Actor & Critic Learning Rates (subset2)(αa,c) [0.05, 0.08, 0.1, 0.3, 0.5, 0.8, 1]

GAE parameter (λ) [0.3, 0.5, 0.7, 0.97, 0.99]

Critic Number of Nodes (Nc) [30, 64, 100, 128, 200]

Actor Number of Nodes (Na) [30, 64, 100, 128, 200]

Critic Number of Layers [2, 3, 4, 5]

Actor Number of Layers [2, 3, 4, 5]

Clip ratio (ε) [0.1, 0.3, 0.5, 0.7, 0.9]

Entropy loss weight(w) [10−3, 5× 10−3, 10−2, 0.05, 0.1]

Experience-Horizon (N ) [200, 300, 400, 500, 600]

Figures 4.5- 4.7 shows the performance of the PPO agent when the corresponding

hyperparameter is changing and others are fixed in terms of the cumulative cost of

(4.29). The value set for each hyperparameter is selected based on their feasible

values (e.g., λ and αa,c must always be less than one) and what is recommended in

the literature. Fluctuations in the figures are because our agent is set to explore

the action space (minimum exploitation). By analyzing these figures, we select
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hyperparameters:

γ = 0.998, M = 20, normalization= current,K = 5, αa = 10−3, αc = 10−4

Na = 100, Nc = 100, La = Lc = 3, ε = 0.5, λ = 0.99, w = 0.005, N = 500
(4.31)

4.3.2 Training

Picking the best value for hyperparameters in (4.31), we are now ready for our final

training phase. For the construction of the nominal linearizing controller (4.22b),

we assume that the nominal quadrotor mass (mq) is 0.8 if its actual value. The

training result is shown in Fig. 4.8; we removed the first 32000 episodes of the

graph as it resulted in no reward/learning. Also, we stopped the training when the

average reward passed 25000 (which is the average episode reward for 200 consecutive

episodes).

Fig. 4.9 illustrates the average number of steps our agent takes in each episode.

As shown in the figure, as learning progresses, our agent stays longer in each episode,

which means by the end of the learning process, the agent is able to finish episodes

without ever failing13.

4.3.3 Validation

For the validation phase, we use the trained agent of Section 4.3.2 with different

initial conditions and desired trajectory. Fig. 4.10 shows episode reward (ℓ in (4.29),

with no average) for the validation phase for 100 episodes each starting with random

initial conditions.

Parameter Uncertainty

Fig 4.11 shows the 3D position of our RL agent along with the desired trajectory

when the quadrotor mass is 0.8 of its true value. As we can see from Fig. 4.12,

bounded tracking error is achieved despite the parameter uncertainty. If we remove

the learning part and only use the nominal linearizing controller of Chapter 3 (um

in 3.10), the result is unstable at t = 10−5 second14.

13To see this, note that in our Simulink environment, we limit the length of each learning episode
to 800 steps. Our agent is free to perform all these steps unless positions and velocities deviate
from their desired counterparts by a certain threshold.

14When integrating with ode45.
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External Disturbance

Fig. 4.13 shows position errors in case of both constant disturbance and quadro-

tor mass parameter uncertainty. We can see that the RL-based control has more

robustness compared to the nominal linearizing control with integral action15.

Sample Efficiency

Here we compare our RL problem formulated in (4.29) with a conventional RL

formulation for the SLS output tracking task (3.1).

We consider the following RL formulation:

min
θ∈Θ

Ex0∼X,vk∼V

 N∑
k=1

∥∥y(t)− yd(t)∥∥22


subject to: xk+1 = xk + Fk (xk, uk) , x0 = x0

uk = uk(xk)

(4.32)

Compared to (4.29), (4.32) is not based on feedback linearizability of the SLS in

that the cost function does not reflect the degree to which the input u linearizes

the plant and input u itself does not incorporate the nominal linearizing controller

um (4.22b) anymore. Fig. 4.14 shows the average reward for the above formulation

when we have the same parametric uncertainty as in Fig. 4.8; however, learning has

not occurred in Fig. 4.14 for the same agent settings and number of episodes.

15Control using the nominal linearizing control with dq = [1,−1.5,−1]⊤ and complete knowledge
of all parameters will result in instability.
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(c) Advantage Normalization Method (D̂)
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Figure 4.5: Heyeprparameter tuning for the proposed RL algorithm (Set1), when
pendulum mass is 0.8 of its true value.
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(b) Critic Number of Nodes (Nc)
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(c) Actor Number of Layers (La)
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Figure 4.6: Heyeprparameter tuning for the proposed RL algorithm (Set2), when
pendulum mass is 0.8 of its true value.
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Figure 4.7: Heyeprparameter tuning for the proposed RL algorithm (Set3), when
pendulum mass is 0.8 of its true value.
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Figure 4.8: Training results (average reward) with hyperparameter set (4.31) when
quadrotor mass is 0.8 of its true value.
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Figure 4.9: Training results (average steps) with hyperparameter set (4.31) when
quadrotor mass is 0.8 of its true value.

0 20 40 60 80 100
Episode Number

2.8

3

3.2

3.4

3.6

3.8

Ep
is

od
e 

R
ew

ar
d

104

Figure 4.10: Validation result (episode rewards) with hyperparameter set (4.31)
when quadrotor mass is 0.8 of its true value.
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Figure 4.11: Validation result (3D positions) with hyperparameter set (4.31) when
quadrotor mass is 0.8 of its true value.
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Figure 4.12: Validation result (positions errors) with hyperparameter set (4.31)
when quadrotor mass is 0.8 of its true value.
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Figure 4.13: Validation result (positions errors) for constant disturbance vector
dq = [1,−1.5,−1]⊤ N, when quadrotor mass is 0.8 of its true value.
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Figure 4.14: Validation result (sample efficiency) for the case of conventional RL
when quadrotor mass is 0.8 of its true value.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This work presented two output tracking controllers for an slung load system (SLS)

using dynamic state feedback linearization and reinforcement learning (RL).

In the first design section, assuming perfect knowledge of the SLS model is

available, four iterations of the dynamic extension algorithm (DEA) were used to

derive the control law. Hence, the dynamic state feedback introduces an additional

4 controller states. These states are related to unmanned aerial vehicle (UAV)

thrust and its time derivatives up to order 3. The DEA constructs an extended

dynamics with a full relative degree and hence static state feedback linearizable

with an auxiliary control. Extended states augmented with integral of pendulum

position and static state feedback linearization achieve asymptotic output tracking

in the presence of local force disturbances.

The tracking error dynamics are linear time-invariant (LTI) exponentially stable

(ES). Linearity is an important property of the design as it facilitates gain selection

and stability analysis. Simulations confirm the design’s ES property and ease of

gain tuning. Performance is compared with an existing design [2]. The proposed

design is implemented using symbolic math software which can be applied to generic

nonlinear control-affine systems and is available at [1].

Moreover, an RL-based control algorithm is provided which uses proximal policy

optimization (PPO) to iterate the learning steps and is built upon the DEA con-

troller in the sense that its reward function measures the degree to which actions

contribute to feedback linearization. An exhaustive hyperparameter analysis is done

and simulations are provided to demonstrate the applicability of the proposed learn-

ing method.
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5.2 Future Work

There are a number of ways in which each chapter presented in this thesis can be

extended.

Our model can be further extended to include the effect of drag forces and the

offset of the pendulum pivot from the UAV center of mass (CoM). To compensate for

these disturbances, the first control section (without learning) can be extended by

adding a disturbance observer. Adding control objectives that minimize pendulum

oscillations and/or schemes that prevent states from approaching singular points

can also improve that chapter.

Also, there are several ways in which the last design section can be enriched.

While the proposed learning algorithm here is offline, approaches similar to [49]

can be used for online implementation, however, we believe safety should be taken

into account when designing such online learning schemes. Furthermore, we can use

other state-of-the-art RL agents (e.g. deep deterministic policy gradient (DDPG),

twin delayed DDPG (TD3)) to see whether better learning can be accomplished in

terms of sample efficiency and average rewards.

Finally, experimental validation and software in the loop (SITL) implementation

of the proposed controllers are also possible avenues for future work.
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asanne, Lausanne, Switzerland, 2007.

[27] L. Meier, “PX4 autopilot,” http://pixhawk.org/ [accessed 01 Jan 2018],
Institute for Visual Computing, Swiss Federal Institute of Technology Zurich,
2018. [Online]. Available: http://pixhawk.org/

[28] B. Jakubczyk et al., “On linearization of control systems,” 1980.

[29] R. W. Brockett, “Feedback invariants for nonlinear systems,” IFAC Proceedings
Volumes, vol. 11, no. 1, pp. 1115–1120, 1978.

[30] A. Isidori, “Nonlinear control systems. communications and control engineer-
ing,” Springer. 3rd edition., 1995.

[31] H. Nijmeijer and W. Respondek, “Dynamic input-output decoupling of nonlin-
ear control systems,” IEEE Transactions on Automatic Control, vol. 33, no. 11,
pp. 1065–1070, 1988.

[32] H. Nijmeijer and J. Schumacher, “The regular local noninteracting control prob-
lem for nonlinear control systems,” SIAM J. Control Optim., vol. 24, no. 6, pp.
1232–1245, 1986.

[33] A. Moeini, A. F. Lynch, and Q. Zhao, “A backstepping disturbance observer
control for multirotor UAVs: theory and experiment,” Int. J. Control, pp. 1–15,
2021, online access.

[34] Maplesoft, a division of Waterloo Maple Inc., “Maple,” Waterloo, Ontario.
[Online]. Available: https://hadoop.apache.org

[35] G. Fischer, “Nonlincon: symbolic analysis and design package for nonlinear con-
trol systems,” Master’s thesis, Eindhoven University of Technology, Eindhoven,
1994.

[36] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a
quadrotor UAV on SE(3),” in Proc. IEEE Int. Conf. on Desision and Control,
Atlanta, GA, 2010, pp. 5420–5425.

[37] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
Press, 2018.

[38] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey of actor-
critic reinforcement learning: Standard and natural policy gradients,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 42, no. 6, pp. 1291–1307, 2012.

60

http://pixhawk.org/
http://pixhawk.org/
https://hadoop.apache.org


[39] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation,” Advances in neu-
ral information processing systems, vol. 12, 1999.

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016.

[41] MATLAB, “9.12.0.1956245 (r2022a) update 2,” Natick, Massachusetts, 2022.

[42] J. Achiam, “Spinning up in deep reinforcement learning.(2018),” URL
https://spinningup. openai. com, 2018.

[43] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann,
“Stable baselines3,” 2019.

[44] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in In-
ternational conference on machine learning. PMLR, 2018, pp. 1861–1870.

[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[46] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez,
Z. Wang, S. Eslami et al., “Emergence of locomotion behaviours in rich envi-
ronments,” arXiv preprint arXiv:1707.02286, 2017.

[47] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,” arXiv
preprint arXiv:1506.02438, 2015.

[48] T. Westenbroek, D. Fridovich-Keil, E. Mazumdar, S. Arora, V. Prabhu, S. S.
Sastry, and C. J. Tomlin, “Feedback linearization for uncertain systems via
reinforcement learning,” in Proc. IEEE Int. Conf. on Robotics and Automation.
IEEE, 2020, pp. 1364–1371.

[49] T. Westenbroek, E. Mazumdar, D. Fridovich-Keil, V. Prabhu, C. J. Tomlin,
and S. S. Sastry, “Adaptive control for linearizable systems using on-policy
reinforcement learning,” in Proc. IEEE Int. Conf. on Desision and Control.
IEEE, 2020, pp. 118–125.

[50] M. Estrada, “Toward the control of non-linear, non-minimum phase systems via
feedback linearization and reinforcement learning,” Ph.D. dissertation, Univer-
sity of California Berkeley, CA, USA, 2021.

[51] M. Estrada, S. Li, and X. Cai, “Feedback linearization of car dynamics for
racing via reinforcement learning,” arXiv preprint arXiv:2110.10441, 2021.

[52] T. Westenbroek, D. Fridovich-Keil, E. Mazumdar, S. Arora, V. Prabhu, S. S.
Sastry, and C. J. Tomlin, “Feedback linearization for unknown systems via
reinforcement learning,” arXiv preprint arXiv:1910.13272, 2019.

***********************************************************

61



Appendix A

Pendulum Disturbance

Here we construct the expression for wp in (2.17) based on the the disturbance acting

on the quadrotor in (2.3b) .

If we rewrite the Euler-Lagrange equations (2.13) using quadrotor positions and

load angles q̄ = [p̄⊤, α, β]⊤ then dq (from (2.3b)) shows up (see [16])

M̄(q̄)¨̄q + C̄(q̄, ˙̄q) ˙̄q + Ḡ(q̄) = B̄ū+ [dq, 0, 0]
⊤ (A.1)

Where M̄ , C̄, Ḡ, and B̄ can be obtained the same way as M , C, G, and B by

solving (2.12) for q̄ instead of q. Using (A.1) and similar to (2.15) we can obtain

the disturbed state dynamics this time in q̄ coordinates. Let’s for simplicity only

consider the disturbance terms and ignore other terms (i.e., M̄−1(C̄ ˙̄q + Ḡ) and

M̄−1B̄u)

¨̄qD = M̄−1[dq, 0, 0]
⊤ (A.2)

Where superscript “D” means we are only looking for the term caused by distur-

bance. Now, if we replace q̄ with q in (A.2) using (2.7) we obtain

q̈D = M̄−1[dq, 0, 0]
⊤ + L[β̈cβ ,−α̈cαcβ + β̈sαsβ ,−α̈sαcβ − β̈cαsβ , 0, 0]D)⊤ (A.3)

Where the term in bracket is obtained from the last two rows in (A.2). Let’s rename

rows in M̄−1 as (m̄1, m̄2, . . . , m̄5), then we can rewrite (A.3) as

q̈D =



m̄1 + m̄5cβ

m̄2 − m̄4cαcβ − m̄5sαsβ

m̄3 − m̄4sαcβ − m̄5cαsβ

m̄4

m̄5


︸ ︷︷ ︸

wp(x)

dq0
0

 (A.4)
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Therefore wp in (2.17) is the matrix coefficient above.
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