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Abstract

This thesis deals with optimal grade transition policies for an EVA polymerization 

process. The grade transition problem has been studied by many authors. However, 

very few, if any, of these strategies have been implemented because the solutions 

overlook some practical problems faced by manufacturing facillities. This research 

was carried out in several stages, each of which complemented to assist in the final 

objective of achieving optimal grade transitions. First and foremost, the computing 

infrastructure at the plant was upgraded to ensure that all pertinent data was archived. 

This was necessary to make sure that the model developed as part of this research 

project could be validated with real plant data. The data archiving facility was also 

needed for the design and development of a data-based soft sensor.

The most significant contributions were made in the development of a first principles 

model for the high pressure stirred autoclave polymerization plant. The model was 

built using a commercial software package in close collaboration with plant personnel
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to ensure it was practical, usable and sustainable. This model was used to develop 

optimal grade transition policies which were implemented on the actual plant.

A melt index soft sensor has been developed, implemented and has been in operation 

at the plant since January 2006. The soft sensor gives an indication of the change in 

melt index nine (9) minutes before the online instrument. The optimal grade 

transition strategies have been implemented for two specific grade changes. One of 

the cases has shown the ability to reduce the off-specification product by over fifty 

(50) percent in a successful plant trial. An economic analysis of this was done and it 

was conservatively estimated that implementing grade transition policy for one 

production line alone would increase the plant’s annual revenue by over one hundred 

and sixty thousand dollars. The plant comprises five production lines and therefore 

the potential annual savings are enormous.

The developed mechanistic model is widely applicable and can be used for many 

other simulation and control studies, while the multivariate data based model 

developed is more applicable for online predictive control and specific optimal grade 

changes.
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Engineers participate in the activities which make the resources o f nature available 

in a form beneficial to man and provide systems which will perform optimally and

economically. 

L. M. K. Boelter, 1957

( ' h . x , ' 1’

Introduction

Advanced control techniques have been relatively under-utilized in polymer 

manufacturing compared to other large scale process industries. This is due to the 

complex operating characteristics and inherent nonlinearity of the process which 

makes well developed linear control theory difficult to apply. Polymer materials have 

been playing an increasingly important role in all aspects of modem life. As a result, 

efficient production of a polymer with tailored properties has become important to 

manufacturing plants. Polymer manufacturing processes fall into different 

classifications, mostly based mostly on the type of reactors, chemical reactions and 

the properties of the products which can be produced.

Natural polymers have always existed; these include DNA, RNA, proteins and 

polysaccharides. Properties of polymers have attracted attention as early as the 

1820’s. One of the earliest documented studies was by Thomas Hancook who

1
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discovered that when high shear forces are applied to natural rubber its viscosity 

reduces (Young and Lovell 1991).

Low Density Polyethylene (LDPE1) was an unexpected discovery in the early 1930s 

by ICI. Fawcett and Gibson of ICI were granted a patent for its discovery in 1936. At 

that point there was no specified market for the polymer (Meyers 2005). However, its 

electrical insulation properties coupled with attractive mechanical properties made it 

very attractive for cable insulation. The original LDPE reactors were based on a high 

pressure CSTR (autoclave) design. These rectors have been developed extensively 

and the main reactors used currently are autoclaves and tubular (plug flow) reactors. 

This research is focused on the modeling and control aspects of optimal grade 

transition strategies for a particular polymerization reactor. The major aspects 

covered here include the infrastructure required for collection and dissemination of 

plant data, first principles and data based modeling of a high pressure autoclave 

polymerization process and the generation of optimal grade transition strategies. The 

reactor examined is a high pressure polymerization reactor based on an ICI license. 

These reactors operate in the temperature range of 150 to 300 °C and pressures 

ranging from 1200 to 1700 bars. Care is taken not to exceed the 300 °C boundary 

because at high temperature combined with high pressure a violent uncontrollable 

reaction can occur. This results in the breakdown of ethylene molecules to carbon, 

and is called a reactor decomposition. This reactor has the capability of producing 

LDPE grades with melt indices ranging from 0.3 to 2000 and copolymer EVA grades 

ranging from 0 to 28% vinyl acetate content. The grades considered here were only 

EVA grades ranging from 16 to 28%. At the core of this process is the free radical 

polymerization of ethylene and vinyl acetate to form EVA. The properties of the final 

product depend on the plant’s operating conditions such as reactor temperatures, 

reactor pressure and flow rates of components to the reactor. By changing reactor 

conditions, we can tailor the properties of the polymer.

There has been a significant amount of research into the physical properties and 

reaction mechanisms of LDPE, and on computer simulations on and efficient control

1 LDPE will be used as a general term to represent homopolymers and EVA copolymers.

2
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of the LDPE polymerization production process. However, it should be noted that not 

much of the research has involved actual industrial data or has been actually applied 

to operating facilities. Another important factor is the use of two main forms of 

reactors (tubular and autoclave). The majority of the research and advanced modeling 

has been done on tubular reactors. This research was performed in close collaboration 

with industry. Thus the solutions developed are well suited for implementation and 

sustainability at an operating facility.

1.1 Present State of the LDPE Market

LDPE applications have become very widespread. Table 1-1 gives a summary of 

some of the current main commercial applications of LDPE. Polyethylene is the most 

common polymer worldwide and has received the most attention by academics in the 

polymer literature.

Application Use

Film 65%

Extrusion coating 10%

Other extrusion 8%

Injection moulding 7%

Blow moulding 4%

Others 6%

Table 1-1 -  LDPE End Use Applications (Ek 2002)

Figure 1-1 shows the past and predicted LDPE growth. It is clear that the LDPE 

market has maintained sustained growth and it is predicted to continue doing so.

3
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Figure 1-1 -  Market growth for LDPE produced in low and high pressure processes

(Meyers 2005)

In 1990, polyethylene production was estimated at approximately 25 million tonnes 

per year: 65% of this was low density made in high pressure reactors and 35% was 

high density homopolymer and linear-low density polyethylene manufactured in low 

pressure reactors (Kiparissides et al. 1993).

The main raw material used in the production of LDPE is ethylene. Ethylene prices 

have been very volatile over the last decade (Figure 1-2). This price has been 

dependent on many factors which include ethylene supply and demand, polymer 

supply and demand and the political stability of the regions where certain key 

producers are located. This volatility makes profit margins very difficult to predict. 

Therefore, manufactures must to operate at the lowest possible operating cost to 

guarantee certain profit margins.

4
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Figure 1-2 -  Ethylene Prices and Volatility (Source: Platts 2005 and GlobalView

Software)

1.2 Motivation

A polymer manufacturing plant usually includes many elements which are similar to 

other manufacturing plants such as refineries. However, one characteristic which sets 

most polymer plants apart is the frequent requirement to produce different products. 

There are now certain polymers which are classed as commodity polymers; these 

usually have large production requirements. Another classification is speciality 

polymers; which usually have small production requirements. Thus, commodity 

polymers are typically produced in high throughput facilities that are not required to 

produce products with different quality specifications very regularly. However, the 

facility considered here like many other polymer plants produces a mix of commodity 

and specialised polymers based on the customer needs. This requirement forces the 

plant to run frequently varying production campaigns. The period during the change 

in product from one grade specification to another is known as the grade change.

5
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Grade
Transition

Plant 
Shutdown 
4 20 .9%

Other
0 .4% Cooler

Cooking
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Figure 1-3 - A T  Plastics Downgrade Distribution -  2005

The product produced during this period usually cannot be sold at the usual profit 

margins. Figure 1-3 shows the distribution of the downgrade product at the AT 

Plastics 5R plant for 2005. The downgrade due to grade changes accounted for 36% 

of the total downgrade and was the largest contributor. Table 1-2 gives a description 

of the classifications used for the analysis of the downgrade distribution.
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DOWNGRADE REASON DESCRIPTION

Off specification product produced due to a 

grade change (includes plant shutdown 

downgrade if shutdown was required to make 

the grade change)

Off specification product produced due to 

plant shutdown or start-up 

Off specification product produced due to heat 

exchanger de-fouling (does not include gel)

Off specification product produced due to an 

unclassified reason.

Off specification product produced due to the 

product gel count out of specification 

Off specification product produced due to melt 

index out of specification (usually caused by 

poor controller performance)

Table 1-2 -  Downgrade descriptions

Therefore, the financial impact of more efficient (optimal) grade transitions is clear. 

This research was focused on this problem and methods for creating optimal grade 

transitions.

This problem has been addressed by many authors using different perspectives. The 

main method used has involved the use of a detailed first principles model to build a 

dynamic simulation which was used as the basis for optimization. This has become 

more feasible as dynamic modeling in commercial packages had matured (Chen 

2002).

Other authors have used commercial packages for dynamic simulations; 

Chatzidoukas et al. 2003 used gPROMS for grade transition optimization in a gas- 

phase olefin polymerization fluidized bed reactor. Aspen Dynamics was used by 

Khare et al. 2002 for dynamic simulation and grade transition optimization of slurry
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high-density polyethylene (HDPE) process. There have been many authors who have 

published results on the implementation of optimal control trajectories (Chen and 

Huang 1981; MacGregor et al. 1984; Kravaris et al. 1989; Ponnuswamy et al. 1987; 

Kozub and Macgregor 1992; McAuley and Macgregor 1993; Ohshima and Tanigaki 

2000; Kiparissides et al. 2002; Chatzidoukas, Perkins et al. 2003). These were all 

simulation based implementation and they were not specific to the autoclave process. 

The paper published by Cervantes et al. 2002 discussed the use of dynamic 

optimization of a large scale plant model to find the optimal grade transition 

strategies for a tubular LDPE plant. They created a detailed model of the plant; using 

mass and energy balance for all significant reacting components. The dynamic 

optimization problem was solved using simultaneous nonlinear programming. 

Orthogonal collocation was used to discretize the state variables. This strategy 

seemed promising; however, there are no published results for application to a LDPE 

autoclave with peroxide based initiators.

Chatzidoukas, Perkins et al. 2003 considered the optimal grade transition problem for 

a gas-phase olefin polymerization fluidized bed from the viewpoint of optimizing the 

traditional objective function to reduce the time required for a grade change. They 

also looked at the optimal pairing of control variables for every transition. This type 

of work has not been publicly documented for the LDPE autoclave process. Pladis 

and Kiparissides 1999 built a dynamic model for the autoclave that showed promise 

for simulating grade transitions; however, no optimization was performed. None of 

the documented work has been applied to a production facility.

1.3 Process Description

The work described here was based on a reactor located at AT Plastics Inc. site in 

Edmonton, Canada. The process is based on the ICI high pressure low density 

polyethylene autoclave process. A process flow diagram for the process is shown in 

Figure 1-4. The plant was designed to produce homopolymers and copolymer grades 

with up to 28% vinyl acetate having melt indices ranging from 0.3 to 2000.

The main monomers used are ethylene and vinyl acetate, and propylene is sometimes

8
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used as a modifier. The fresh ethylene gas passes into the primary stock tank where it 

mixes with recycled gas from the booster compressor. Liquid propylene, if required 

for a particular polymer grade may be injected into the primary compressor suction 

line. The mixture is then compressed by the primary compressor.

Gas delivered from the primary compressor is then mixed with the intermediate 

pressure recycle gases before being further compressed by the secondary compressor. 

Gas from the secondary compressor is cooled prior to entering the reaction vessel. To 

make the EVA copolymers, liquid vinyl-acetate is injected into the secondary 

compressor suction line at a suitable rate to achieve the required grade.

The reaction vessel is a stirred autoclave. It is split into several mixing zones. The 

temperature of each of these zones is controlled by the injection of diluted solutions 

of organic peroxide catalysts into the zone. This initiates exothermic polymerization 

in the stirred reactor.

Propylene
Injection

Vinyl Acetate 
Injection

Primary
C om pressor

Secondary
Com pressor

Ethylene
Supply

Primary
Stock
Tank

Autoclave
Reactor

Low
Pressure

Stock
Tank

Booster
C om pressor

High
P ressure
Separator

j Initiator 
A  Injection

PurgeToVA
Recovery

Extrusion
Hopper

Polymer

Figure 1 -4 -  Plant Flowsheet 

Approximately 20% of the gas feed is converted to polymer in one pass. The
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molecular weight of the polymer produced is controlled by the reactor pressure, 

temperature, reactor feed gas conditions and the use of vinyl acetate and propylene. 

The mixture of gas and polymer leaving the reactor is reduced in pressure through a 

valve prior to entering the product cooler, where the mixture is cooled. The cooled 

product enters into a high pressure separator (HPS) where the bulk of the unconverted 

gas is separated from the polymer. The gas from the HPS is then recycled via the 

recycle system through the return gas coolers to the suction of the secondary 

compressor.

Molten polymer from the bottom of the HPS is passed to the extrusion hopper where 

further separation of gas and polymer takes place. The low pressure (LP) recycle gas 

returns to the low pressure stock tank which also receives gas from compressor gland 

leaks.

A purge gas stream is taken from the discharge of the booster compressor just prior to 

delivery to the primary stock tank. This is done to control the concentration of inerts 

(mainly ethane, methane carbon dioxide and propylene when necessary) that would 

otherwise build up in the reactor feed gas. The molten polymer from the extrusion 

hopper is fed into extruder where low molecular weight components are de

volatilized prior to pelletization.

1.4 Thesis Outline

This research reported in this thesis has transgressed several paths to a common goal. 

This would be reflected in the organization of the chapters. Chapter 2 gives details on 

the implementation of the plant historian and its integration with other plant systems. 

These include the OPC interface to the DCS, ODBC interface the plant LIMS and 

future plans for integration and data visualization. The purpose of installing this 

infrastructure was to collect process data for identification, monitoring and validation 

of process models. The first principles model is described in Chapter 3. Here details 

of the thermodynamics, reaction kinetics and modeling developments are given. 

Regression, validation and custom modeling are described in Chapter 4. In Chapter 5 

the data based model is described. A soft sensor for the polymer melt index was built;

10
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this was used to build a plant model using multivariable system identification. The 

application of the first principles model for designing optimal grade transition 

trajectories and the details on the dynamic optimization are detailed in Chapter 6. The 

results from the simulations and two plant trials are also shown and discussed. The 

optimal grade changes were compared with operator based changes, and analyzed. 

The major contributions of this body of work, future directions and conclusions are 

given in Chapter 7.

11
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“Everything should be made as simple as possible, but not simpler. ”

Albert Einstein

Chapter 2 

Process Data Architecture 

and Applications

2.1 Introduction

One of the main objectives of this research project was to evaluate, design and 

implement optimal grade transitions control policies for a polymer process, with the 

AT Plastics high pressure polymerization unit as a candidate process. One critical 

item in path to achieve this objective was the information infrastructure necessary to 

facilitate the modeling and control activity at the AT Plastics plant.

An important requirement in any modeling exercise, whether the model is a 

mechanistic or an estimated one, is to be able to validate the model with actual plant 

data.

2 Some of this chapter was presented at the Matrikon MVP Conference, May 2005, Edmonton, Canada 

by Alleyne et al.
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An equally important requirement prior to evaluating and implementing the optimal 

or sub-optimal grade transition control policies is to make sure that the base 

regulatory control layer is configured correctly and is in a satisfactory operational 

state.

Both of these requirements necessitated the installation of an IT infrastructure at AT 

Plastics for data gathering and archiving. The architecture and systems installed for 

collection of plant data is described here. An important prerequisite for the model 

building and validation part of this research is the availability of process data. There 

were many data repositories at the plant site; these were integrated using different 

interfaces to give access to all relevant information. Two main applications using the 

information infrastructure will be described. These include controller performance 

monitoring and online calculations. The importance of these calculations will be 

emphasized later on, in the first principles and data based modeling work.

2.2 Data Access and Visualization

The plant uses a Honeywell TDC 3000 distributed control system (DCS). When the 

project began, we realised that the data collection and dissemination configuration 

was not adequate for the 'modeling, validation, control and monitoring objectives’ of 

this project.

2.2.1 OPC Data Communications

OPC is an acronym for OLE (Object Linking and Embedding) for Process Control. 

This is a standard developed by the OPC Foundation for communication of process 

data between systems. There are many regulatory control vendors and advanced 

control vendors of systems used in plants. These systems make use of plant data 

through OPC communication. OPC allows the end user to have the freedom to choose 

a mix of systems without system interconnectivity issues.

There are many standards published by the OPC Foundation; the three main ones are 

OPC DA - Real-time Data Access (OPC Foundation 1998,OPC Foundation 1998), 

OPC AE - Alarm and Event (OPC Foundation 2002) and OPC HDA -Historical Data

13
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Access (OPC Foundation 2001). As the names imply, DA is used for collection of 

real-time process data, AE for collection of alarms and events and FIDA for historical 

data. Each standard has its application depending on the function required.

2.2.2 Process Data

The plant uses a Floneywell TDC 3000 DCS. OPC DA was used to acquire data from 

the DCS. A PC with a Honeywell K4LCN card was installed and connected to the 

Honeywell local control network (LCN). This PC also had Honeywell’s App Solution 

Pack installed which includes the Honeywell TPN (Total Plant Network) server (OPC 

server).

C ooperate
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Honeywell
Domain

c

c
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Info P lus 21 

CIM IO Client

H istorian da ta  
a c c e s s  to  any 

u ser w ith rights

D
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TPN S ev er (Honeywell O PC  Server) 
CIM IO O PC  Client (IP21 O PC Client) 
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Honeywell
LCN

Honeywell
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Figure 2-1 -  Current Historian and DCS Architecture
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Three plant Historians were evaluated: Honeywell’s PHD, OSISoft’s PI and Aspen 

Tech’s Info Plus 21. Info Plus 21 was chosen mostly because of its reputation in the 

polymer industry, availability of advanced control solutions and support through a 

local vendor Matrikon Inc. Info Plus 21 uses CIM-IO to acquire data from any 

source.

The CIM-IO for OPC client was used to communicate with the Honeywell TPN 

Server. CIM-IO also supported additional features such as store and forward. This 

was very useful for this application and was implemented. This allowed a maximum 

of three days worth of data (based on the size of the store buffer, number of tags and 

frequency of updates) to be stored on the APP Node in a situation where 

communication with the Historian cannot be established. This architecture is shown 

in Figure 2-1.

All critical process data was collected once per second with no compression. This 

was mainly because it was anticipated there would be need for high time resolution 

uncompressed data for analysis. This gave an OPC throughput rate averaging around 

eight hundred (800) real reads per second. Table 2-1 gives a summary of the historian 

point configuration.

POINT TYPE SAMPLE RATE Compression Store at least

(SECONDS) every

Analog Process 

Data (Real)
1 No NA

Critical

Shutdown Points 1 Yes 30 minutes

(Discrete)

Equipment Status 

(Discrete)
5 Yes 30 minutes

Controller Modes 

and Set Points
5 Yes 30 minutes

Table 2-1 - Historian Point Configuration
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The historian was required to store a significant amount of data on a daily basis 

therefore as a result of this the server included 670 GB for archiving. This was 

configured using six hot swappable hard disks in a RAID five array configuration. 

This was anticipated to give at least two years of online data.

2.2.3 Alarm and Event Chronicle

This feature was not initially installed with the historian. However, after using the 

historian data for analysis of plant events, it was realised that it would be useful to 

have the alarm and operator logged data from the DCS stored on the historian as well. 

The design described below will be included in the next phase of historian 

improvement.

After evaluating the available solutions, Matrikon’s ProcessGuard was chosen. This 

was based on the OPC link already being heavily loaded (based on Honeywell’s 

recommendation of six hundred points per second). ProcessGuard would collect data 

directly from the DCS using one of its printer ports. The alarm strings would then be 

parsed, stored and analyzed by ProcessGuard. The system architecture is shown in 

Figure 2-2.

This solution would be useful for alarm management as well. This is a key area which 

can often be overlooked at most process plants until an event occurs. ProcessGuard 

will assist in management of the number and severity of alarms the operator receives. 

After collection of alarms for process events over a period of time, the alarm 

strategies can be modified to reduce nuisance alarms.

It is useful to note that the alarms would not be stored again on the historian; however 

they will be stored once in ProcessGuard and both systems will be time synchronized. 

The visualisation package, which is described later, collects data from Info Plus 21 

and ProcessGuard to display the alarms and events along with the process trends. The 

timestamps of all data collected will be based on the DCS times. This is one of the 

features of OPC which allows the timestamps to be passed from the DCS to the 

Historian along with the values to be stored.
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2.2.4 Batch Data Analysis

The AT Plastics site produces polymers in a semi-batch process. The reaction part of 

the process is continuous for a particular grade campaign; whereas the packaging is 

batch. Thus it is useful to store and compare data based on similar campaigns. This 

becomes more difficult as the number of campaigns increase. Thus a package for 

tracking and retrieving the data for similar campaigns becomes imperative for 

analysis. This was another point of difficulty realised once the historian was installed 

and in use. The batch tracking application will be installed in the next phase of 

historian improvements, mentioned previously.

Another important use of the batch system is for tracking decomposition events, 

cooler cooks and plant shutdowns. This can allow comparison of decompositions and 

the events causing them. This would allow easy data collection and analysis to 

facilitate the preventative detection and diagnosis of such events. Batch 21 from 

Aspen Technology Inc. was chosen as the application to be used. This package will 

also be integrated with the visualization package so that batch, alarm and process data 

can be available to the user.

Batch 21 uses a SQL server base. The batch start and end times are stored along with 

characteristics of the batch. This process operating data is only stored on the 

historian, the batch server uses a SQL based database to store the batch definitions. 

This ensures there is no duplication of data. The architecture for integrating the batch 

system with the current historian is shown in Figure 2-2.

2.2.5 Data Visualization

Once the data became available it was clear that a stable and easily maintainable 

system was required for dissemination of the plant data. Another important factor in 

deciding on the system was that the plant data should be integrated with other data 

sources on the site, one of the main systems being the SQL based LIMS (Laboratory 

Information Management System) system.

It was decided that a secure web-server environment should be used for the 

dissemination of data. In this architecture the user would only require an internet
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browser to access and store the plant data on a local machine. This also reduced the 

maintenance since only the server needs to be maintained.

The application chosen to do this was Matrikon’s ProcessNET. This application 

allows the visualization of the data on many data sources. There is no duplication of 

data on the ProcessNET server. This application will be used for viewing, querying, 

reporting and saving data from Info Plus 21, Batch 21, ProcessGuard, ProcessDoctor 

(will be described later) and WinLIMS. The architecture for this implementation can 

be seen in Figure 2-2.
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Figure 2-2 -  Revised System Architecture
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2.3 Laboratory Information Integration

The LIMS was implemented during the course of this project. It contained valuable 

information which was previously manually entered. This system was tightly 

integrated with the plant historian.

2.3.1 ODBC Interface

The LIMS system being used on the site is QSI’s WinLIMS. This system stores the 

grade recipes, customer information, QC information and manages the lot and batch 

numbers. This information would be important for characteristics of each batch as 

well. Therefore there must be tight integration between the systems. The LIMS uses 

Microsoft SQL server as its database. This application allows external access using 

ODBC.

Info Plus 21 includes an application called SQL Plus. This application allows the 

writing of SQL queries for reading from and writing to the historian. It also supports 

communication with external ODBC databases and its queries can be scheduled in 

Info Plus 21. This application was used to create the link between Info Plus 21 and 

the LIMS.

2.3.2 LIMS Views and Data Exchange

There were several values required to be read from the LIMS into the historian. More 

efficient SQL queries were created by reading the values from the LIMS as a group 

rather than individually. Thus, the data had to be grouped on the LIMS. SQL supports 

a database item called a ‘view’. These are virtual tables whose contents are populated 

by a query when they are accessed. These views can be accessed just as tables can 

from an external application using ODBC. Table 2-2 shows the configuration of the 

ODBC data exchange between the LIMS and the historian. The data exchange 

initiated by the historian is done using SQL Plus and is updated every minute (see the
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appendix for the SQL Plus programs). The data exchange initiated by the LIMS is 

updated every ten minutes.

DATA INITIATED

BY

DATA

SOURCE

DATA

DESTINATION

Grade LIMS LIMS Historian

Batch # LIMS Historian LIMS

Batch Averages LIMS Historian LIMS

Batch Start and End Time LIMS Historian LIMS

Laboratory quality checks Historian LIMS Historian

Quality limits Historian LIMS Historian

Table 2-2 -  LIMS and Historian Data Exchange

The data exchange between these systems is not required to be any faster than a batch 

change (typically in the range of 30 to 45 minutes). However the faster updates were 

used on the laboratory quality checks because these were critical for the bias update 

on the soft sensor (described in Chapter 5).

2.4 Application -  Controller Performance Monitoring

With the goal of optimal grade transitions, the architecture of having a model based 

optimizing controller generate and write set point trajectories during grade transitions 

was envisioned. This optimizer will create the set point trajectories but not the final 

control action; this would remain the task of the Honeywell DCS. The DCS contains 

standard PID algorithms for regulatory control.

The performance of the advanced control depends heavily on the regulatory control 

performance. This has been well documented by Brisk 2004. This work indicated 

there have been great advances in control technology; the bottom line benefits on the 

plant could be increased by two to six percent of the operating cost by implementing 

this technology. The greatest opportunities were only achieved through good 

performance of the regulatory control layer.
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Before any advanced control was attempted, the regulatory control at the plant was 

analysed using available commercial packages. The controllers were monitored and 

repaired to ensure acceptable performance.

At the AT Plastics plant site, it was clear that some loops were not performing as they 

should. However, without sufficient archived data to be analysed, no action was taken 

for years. With the installation of the historian, the historical data necessary for 

controller performance monitoring was now available.

Matrikon’s ProcessDoctor was used for controller performance monitoring. This was 

done in conjunction with another project, whose goal was to find the root cause of a 

decomposition. An overview of the analysis done on thirty-three (33) control loops 

leading up to the time of the decomposition will be given. The diagnosis of the causes 

of decomposition in one case indicated significant interaction between control loops 

in a particular unit. This interaction was stabilized after repairing the problems 

diagnosed by an analysis using ProcessDoctor.

2.4.1 Reactor Loop Performance leading up to Decomposition

One of the first steps taken in the analysis of the decomposition was isolating the 

control loops critical to the reactor. This was done mostly based on process 

knowledge and meeting with operations and plant personnel. It was found that thirty- 

three loops were critical to the reactor operation. An analysis of these loops was done 

using ProcessDoctor. Figure 2-3 shows a tree map view of the thirty control loops 

critical to the 5R reactor. Here the larger size indicates the more important loops and 

the color gives an indication of the RPI (relative performance index). The RPI as 

calculated by ProcessDoctor, is a benchmark which compares the existing control 

loop performance with a reference control loop benchmark chosen by the user. The 

RPI is bounded by 0 < RPI < qo with ‘<1’ indicating deteriorated performance, ‘1’ 

indicating no change of performance, and ‘>1’ indicating improved performance (W. 

Mitchell 2004). This tree map view gives a clear indication of the critical control 

loops which could be the causes of process instability. Once this information is 

viewed, more detailed analysis can be done using reports.
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L atest data
C s ta r t  date: |XOni-0>-04 00:00 [T] End da te : |?00^-02-U 00:00

Group:
[ Unit Summary

  Size:
~ 3  |  Priority

Colot:
"3 [rpT t x

PIC52021

PIC51...

TIC62105

PIC5120O rrcoiooi T1C01003

TIC01068 TIC51047

PIC51048B

C u rre n tly  d is p la y in g  3 3  o f  3 3  i t e m s

Cell labels: & Controller

Filters:

Controller:

r r........
Unit:
1 Primary Stock T ank 

LP Stock Tank
A

Riyister rnmnrj=>ssnr

Seivice Factor:
r =100 z l
RPI:
r <0 3
Stiction:
r >=0 z i
Percent Saturation:
r =100 ’  I

Oscillation Index:
r <0.2 z i
Compression Factor:
r <3 z i
Disposition:
P  [RequitesAttention z i

Figure 2-3 -  ProcessDoctor Treemap view o f  33 regulatory control loops critical to

5R reactor

Reports are flexible and can give a quick summary of important information related 

to the performance of relevant control loops. However, for the purposes of this 

discussion only the control loop oscillation period was important. Therefore, Table 

2-3 shows the oscillation period found by ProcessDoctor with the associated control 

loop description and the ProcessDoctor analysis result. These analysis results are very 

useful as they can give an automated diagnosis of problems associated with the 

control loop, thus reducing the time required for solving plant problems.
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Description ProcessDoctor Analysis Result Oscillation Period 

(min.)

Purge Flow Controller
Large Stiction. Oscillations. Large 

standard deviation.

CV offset. High saturation

2.24

Compressor Oil Cyclone (67%). Lack of capacity or poor 

tuning.

NA

3 rd Stage Suction 

Separator

Oscillations. CV offset. High 

saturation (69%).
1.31

2nd Stage Suction 

Separator

Oscillations. Small CV offset. 

High saturation (49%).
17.52

Booster 1st Stage Suction 

Separator

Oscillations. High saturation 

(70%).
12.23

HP Separator Level 

Controller
Reasonable performance

Primary Discharge 

Controller
Oscillations. Large settling time. 15.38

Primary Stock Tank 

Pressure
Oscillations. Large settling time. 30.25

Purge Separator Tank 

Pressure
Oscillations. Large stiction. 1.74

Reactor Pressure Oscillations. 14.74

Zone 1A Temperature Oscillations. 17.15

Zone IB Temperature Oscillations. 17.39

Zone 2 Temperature Oscillations. 17.42

Zone 3 Temperature Large settling time.

Zone 4 Temperature Large settling time.

Table 2-3 -  ProcessDoctor Report
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From this report it was noticed that two major oscillation periods are present in the 

control loops critical to the reactor. One period was in the range of two (2) minutes 

and another was in the range of seventeen (17) minutes. These oscillation periods in 

conjunction with process flow information can be very useful in finding the root 

cause of the oscillations using ProcessDoctor. This is based on the theory that the 

majority of chemical engineering unit processes behave as low pass filters. Thus by 

looking at common oscillation periods and analyzing the flow sheet the root cause 

can be roughly identified.

It was noticed that the oscillations with a period in the range of two minutes were 

found to be related to the purge separator or a process unit just upstream or 

downstream of the separator, this was be examined next. The oscillations with a 

period in the range of seventeen minutes appear as though they may be caused by 

oscillations on the discharge of the primary compressor.

2.4.2 Unit Process Stabilization

The process to be examined here is a separation vessel at the AT Plastics 5R facility. 

A schematic of this vessel is shown in Figure 2-4, this particular process separates the 

liquid and gas in the low pressure recycle which is being purged. The purge flow after 

the booster compressor in Figure 1-4 is the inlet to this unit process. This process 

includes three coupled control loops. Standard PI control is used on all of these loops. 

ProcessDoctor was used to analyze these loops. These loops were known to be a 

source of difficulty during regular plant operation. There had been many efforts 

previously to tune these loops, this proved fruitless every time. Many reasons for the 

poor performance of these loops had been proposed one predominant explanation was 

that the loops interact excessively and therefore the performance will always be poor. 

It was found that these loops had sustained oscillation with similar dominant 

frequencies. This indicated that the oscillations may have been caused by one source 

(one of the control loops performing poorly or an external disturbance). It was found 

after further analysis with ProcessDoctor that the flow control loop had significant 

valve stiction. The diagnosis from ProcessDoctor led to further testing of the flow
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loop. In manual mode it was found that movement of the valve in the 5 -  40 % range 

caused no change in the flowrate; thus indicating the valve was sticking in that range. 

One method for removing valve stiction is the use of a valve positioner. The 

positioner on this valve was changed (since one was already installed). Figure 2-5 

shows the behaviour of the flow control loop and the process variable (PV) of the 

level and pressure control loops before and after the positioner change. It was 

immediately noticed that the performance of the flow control loop was much better.

^ F I C ^

V j o i j !

FT-
101

PIC-
101

T
Purge Gas
from Low \101J
Pressure y-

recycle after  V ' F :
booster

compressor
(LiquidfVapour)

Purge Gas 
(Vapour)

Purge Gas 
Separator

“ i
LIC-
101

Purge Gas 
Blowdown 

(Liquid)

Figure 2-4 -  Separation Vessel Schematic

Figure 2-6 shows the PV of the loops with tuning after the positioner was changed. 

This simple data analysis exercise isolated the root cause of oscillations and proved to 

remove all oscillations and stabilized all three control loops. There was still 

interaction between the loops as seen in Figure 2-6, but this interaction behaves as a 

disturbance and is quickly compensated for by the PI controller. After repairing the 

final control element, only then the performance of the loops could be improved 

through tuning.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fl
ow

ra
te

 
SP

 
& 

PV 
Le

ve
l 

P
V

Chapter 2 - Process Data Architecture and Applications

Positioner Changed

0 200 400 600 800 1000 1200 1400

Sample (Ts = 10 sec.)

Figure 2-5 -  Control Before and After Positioner Change
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Figure 2-6 -  Control After Tuning with New Positioner
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2.5 Application -  Plant Calculations

There are certain calculated variables which were important for building and 

validation of the models that will be discussed later on. There were some other 

calculations which were built and were not used in the model; however they were 

important for monitoring the process and gave a better understanding of the 

operation. Here calculations which were implemented online will be detailed. These 

calculations have been developed from process knowledge, basic mass, energy and 

component balances and theories which have been developed based on chemical 

engineering principles.

2.5.1 Compressor Mass Flow Model

A model of the mass throughput for the secondary compressor was implemented 

online. As seen from Figure 1-4 the reactor is fed by the secondary compressor. A 

detailed schematic of the compressor is shown in Figure 2-7.

S2S S2D2.1

S2S 2.1 S2D2.1

S1D

S1S 1.1 S1D 1.1
S2D 2,2

S2S 2.2 S2D 2.2
S1S

S2D 2.3

S2S 2.3 S2D 2.3

S1D 1.1S1S 1.2

Stage 1 S2D 2.4

S2S 2.4 k S2D 2.4
Stage 2

Figure 2-7 -  Secondary Compressor Schematic
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There was no other available source to find the total gas feed to the compressor. This 

calculation proved to be very important for regression of the first principles model 

parameters and validation for the model.

Initialize Compressor 
Variables

Calculate average of stage 
1 and stage 2 mass 

flowrates

Calculate mass at suction 
of stage 2 (use Benzler 

Koch EOS*)

Calculate mass at 
discharge of stage 2 (use 

Benzler Koch EOS*)

Calculate mass through 
stage 1

Calculate mass at suction 
of stage 1 (use Benzler 

Koch EOS*)

Calculate mass at 
discharge of stage 1 (use 

Benzler Koch EOS*)

Calculate mass through 
stage 2

Initialize and calculate 
thermodynamic critical 

constants

Figure 2-8 -  Compressor Flow Model Flow Chart (* -Benzler and Von Koch 1955)

The suction and discharge conditions of the secondary compressor limit the selection 

of flow meters which can be used, thereby making it a very costly addition to the 

plant instrumentation. However, the suction and discharge temperature and pressure
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of each stage could be used with thermodynamic relationships to find the mass at 

several monitored points on the compressor. Then these point masses can be used to 

estimate the mass flow through the compressor. The flow chart followed for this 

model is shown in Figure 2-8. This model was implemented online and used all 

variables shown in Figure 2-7. The model was calculated every second. In most cases 

when there was more than one input value available averages were taken, some logic 

for removing a bad sensor from the calculation was implemented, because of the 

availability of duplicate measurements in most cases.

2.5.2 Zone Mixing Index

There has been much research into the mixing regimes which are present within the 

autoclave reactor. Poor mixing has been found to be the reason the zones in an 

autoclave may not behave like an ideal CSTR.

Segment of 
Autoclave 

Reactor

Reactor 
Zone 1

Figure 2-9 -  Autoclave Segment (poor mixing variables)

Figure 2-9 shows the typical temperature sensor configuration for a particular zone on 

an autoclave. The sensors are usually spread as much as possible radically and 

axially. Any difference in the measurements within one zone gives an indication of
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poor mixing. Equation (2.1) shows the relationship used to find the mixing index for 

each zone.

ZaM xl 100 I _ ^ aSD
Zero

(2.1)
SD  J

This index has been set so a value of 100% indicates full mixing. This calculation 

finds the spatial standard deviation of all the temperature measurements in a 

particular zone. The ratio of this spatial standard deviation to a theoretical zero 

mixing index standard deviation is found (this is set by analysing historical data and 

finding the maximum standard deviation during normal operation with no relevant 

instrumentation faults).
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Figure 2-10 — Reactor Mixing Index
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This calculation proved to be very robust and reliable. Figure 2-10 shows the Zone 1 

mixing index during dynamic and steady state periods. This has vast potential for 

increasing initiator efficiency (refers to a factor which indicates the mass of initiator 

would participate in the reactions) since the initiator is less efficient at lower mixing 

indexes. It was noticed that as the temperature decreased the zone mixing improved.

2.5.3 Plant Production

The quantity of polymer produced by the plant is an important variable which is 

related directly to the conversion in the reactor. Figure 2-11 shows the test hopper 

configuration.

Polymer

Diverter

Hopper 1 Hopper 2

Load Cell Load Cell

To Product or downgrade Silos

Figure 2-11 -  Test Hopper Configuration (used for mass flow calculation)

Each test hopper has a load cell which measures the instantaneous mass in the cell. 

Only one cell is used at any time. One is usually being filled by new product as the
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other is being emptied. The status of the diverter valve is available to the control 

system. A calculation was built which measured the difference in the load cell 

reading of the active hopper every 5 seconds. This was then scaled to give a mass 

flow rate in kg/hr. The average of this calculated value was used as a validation 

variable for the plant model developed later on.

Fm = k  |  Diverted x (jLSl -  L S \ ) + Diverter2 x -  LS*s (2.2)

The relationship used to find the mass flow is shown in equation (2.2). Here LS 

represents the reading from the respective load cell.

2.5.4 Analyzer Corrections

There are two main analyzers used in this process. These give feedback on the 

percentage YA in the product and the melt index of the product. These readings are 

very critical for steady state and dynamic fitting and validation of the model. Both 

these readings had problems which made the raw plant values unacceptable for model 

validation.

Percentage VA

This analyzer measures the percent of the mass in the polymer formed using VA 

molecules. It is based on FTIR spectroscopy. This method of analysis injects an 

incident infrared light source onto a sample. The reflected spectrum gives an 

indication of the sample composition. The spectrum is usually very complex; thus the 

Fourier transform of the spectrum is used to find the major components, giving a 

numerical value for the composition. These analyzers are mature in industry but have 

been found to drift and contain offsets. The analyzer considered here was found to be 

susceptible to an offset. The measurement however did capture the dynamics. 

Therefore a simple updating scheme was used to effectively compensate for the 

errors; Figure 2-12 shows an example of the scheme being applied. The SPOT here 

refers to a laboratory check on the value. This is done using another instrument which 

is more reliable, but is not online. The final corrected signal and error are stored on 

the plant historian.
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e T = VA _ SPOTt -  VAr (2.3)

VA _ Corrected = VA + eT (2.4)

Equation (2.3) and (2.4) show the method used for finding the corrected VA 

percentage where e , VA _ SPOT , VA and VA _ Corrected represent the error, the VA 

laboratory measurement, the raw online measurement and the corrected measurement 

respectively. The subscript T is used to represent a particular time. This is important 

here because the error at one time instant is applied for all time until a new spot is 

available.

M easurem ent 

Adjusted 

Spot C heckC0
CoO
£

New
Error

Error

Tim e (s)

Figure 2-12 -  VA Measurement Correction 

Melt Index - Online Rheometer

This instrument is an online rheometer; it will be described in more detail in Chapter 

5. This instrument measures the melt index of the polymer produced. This instrument 

is very flexible and can measure a large range of melt indices. Due to this flexibility, 

the instrument has different output ranges for accuracy. The range is set by a program 

which includes several parameters for correlating the melt index with the instruments 

measured pressure and temperature. There is a correlation computation for each grade 

produced by the plant. All of these programs use either of two ranges, 0 -  100 g/10 

min. or 0 -  1000 g/10 min. The problem arises from the fact that there is only one 

output on the unit and its range is 0 -  100 g/10 min. Thus the measurement works
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well once the 0 - 1 0 0  gm/min. range is used. However once the 0 -  1000 gm/min. 

range is used, the actual reading transmitted, displayed on the DCS and historized is 

divided by 10. This problem seems simple at first but once data analysis is attempted 

it can cause problems. This problem was rectified by using the soft sensor which is 

described in Chapter 5. The soft sensor was used to get information on the range of 

the actual melt index. Equations (2.5) and (2.6) show the method used for finding the 

corrected melt index where M ISS, MI and MI _ Corrected represent the soft sensor 

MI, the MI measurement and the corrected MI respectively. This corrected value is 

stored on the plant historian as well.

i f  M ISS <100 

M I _ Corrected = 10 x  MI 

otherwise

M I _ Corrected = MI

2.5.5 CTA concentration in Reclaimed VA

This calculation was used manually to find the content of impurity in the reclaimed 

VA which behaves as a CTA (chain transfer to agent). This can be viewed as an 

unmeasured disturbance. This disturbance proved to be significant in the first 

principles model. This calculation is based on a change in reclaimed VA percent in 

the total VA feed to the reactor while the VA content in the polymer is kept constant. 

This calculation uses a pair of simultaneous equations which can be derived from the 

assumption that the total VA injection flow should be a constant ratio of the ethylene 

injection flow, these equations are:

FVAj-y + xvaR VAj-y = k X ETHTy (2.7)

FVAT2 + x^RVAj.2 = kx  ETHt2 (2.8)

Only two components are considered important here. These are VA and the CTA 

components. Equation (2.9) is based on this.

xVA = ( l - x (7>1) (2.9)
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These three relationships can be modified to give the following equation.

-(FVAn ETIIT2 -  FVAriETH.n )
X =  1 -

f  (  t ^ T T  A T - r m r  T ^ T T  A T ~ 'r T1 T  T  \ \

(2.10)
RVAtiETHT2-RV A12ETHt , J

The variables are defined below:

FVA Fresh VA 

ETH Fresh Ethylene flow 

RVA Reclaim VA flow 

k Ethylene to VA ratio

From these calculations the mass fraction of CTA was always found to be in the 

range of 1 % to 10%.

2.5.6 Initiator Mass Flow Rate

The mass flow rate of initiator injection into the autoclave reactor is not measured. 

This is typically the case for the high pressure reactor. An approximate value for the 

mass flow rate into the reactor was need for model regression (this will be seen later 

on). Positive displacement pumps are used for the injection of initiator. The flow of 

initiator into the autoclave is used to control the temperature for the respective zone. 

Linear correlations between the temperature controller’s outputs (pump loadings) and 

the strokes per minute were found and can be seen in the appendix. Each stroke 

delivered a constant volume of initiator to the autoclave. Equation (2.11) shows the 

relationship used to find the mass flow delivered by the initiator pumps.

LnD 2
Initiator = k p . « - T - S ( n C 0F) (2 .11)

Where

initiator represents the initiator mass flow rate (kg/hr) 

k represents a scaling factor for units 

Pmix represents the mixture density (approximate value)

L represents the stroke length 

D represents the pump cylinder diameter

S represents the number of strokes per minute (function of pump loading)
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TIC0P represents the respective temperature controller output

2.6 Chapter Summary

In this chapter, details on the necessary IT infrastructure for the collection and 

dissemination of data were given. The data obtained was critical for the next stages of 

the research. Some implemented applications using this infrastructure were detailed. 

These included:

o  Controller performance monitoring -  Which was a necessary step before 

implementing optimal transitions 

o  Online Calculations -  This included several necessary plant calculations 

which were used for regression and validation of the first principles model.
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“An idealist is a person who helps other people to be prosperous. ”

Henry Ford (1863 -  1947)

\  .y %y ] jt '

First Principles Modeling of

3.1 Introduction

Polymerization plants are constantly seeking to increase their production efficiency. 

One of the most valuable tools to do this is a process model. Typically in academia 

first principles models are built in computational packages such as MATLAB and 

SIMULINK. The use of such packages has several limitations when it comes to long 

term sustainability at actual plant sites. This is because the code generated in these 

packages is generally complex. Parameters for tuning of the model are usually buried 

deep within the code. Such models usually last as long as the person who developed it

3 Portions of this chapter were presented at the 54th Canadian Chemical Engineering Conference 

(CSChE), October 2004, Calgary AB, Canada and Aspen Tech’s User Group Meeting, October 2005, 

Houston TX, USA by Alleyne et al.

Polymerization

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 - First Principles Modeling of EVA Polymerization

remains on the project. The model then becomes very cumbersome and difficult to 

maintain by anyone else. Since this research was undertaken closely with industry, 

long term use of the model was important at a plant site, where there are not many 

modeling or simulation experts. Thus it was chosen to build this model using a 

commercial user-friendly package, using as many standard blocks as possible. This 

then gives the site access to a group of experts they can call on for support with 

maintenance and development of the model. It also simplifies long term maintenance 

because the model parameters for maintenance and model modification are available 

in a user friendly interface. For many decades, commercial packages have been 

designed for modeling of hydrocarbon and chemical processes. These tools are 

usually easy to use and are typically modular in nature with unit processes 

encapsulated into customizable blocks which can be linked via input and output 

streams.

With the increasing computing power available today, simulations which once would 

have taken days to converge are now easily solved within minutes or seconds. In 

particular, polymerization simulations have been known to be computationally 

intensive; this is partially due to the relatively complex thermodynamic computations 

and nonlinear reaction kinetics. Previous simulation packages typically simplified the 

thermodynamics to simple phase equilibrium equations.

Over the last thirty years there have been many mathematical representations 

developed to describe the fundamentals of polymerization processes. Modeling 

studies on free radical polymerization of ethylene have been documented by Chen et 

al. 1976; Thies 1979; Lee and Marano 1979; Goto et al. 1981; Mavridis and 

Kiparissides 1985; Feucht et al. 1985; Shirodkar and Tsien 1986; Brandolin et al. 

1988; Kiparissides, Verros et al. 1993; Pladis and Kiparissides 1999; Hamielec A. E. 

2000 .

More and more detailed modeling of polymerization processes is being performed. 

There has been a significant amount of work done on the prediction of the detailed 

MWD of the polymer based on the reaction rates and their contribution to the chain 

length and the amount of chain branching (Wells and Ray 2005). MWD is typically 

obtained experimentally using GPC (gel permeation chromatography).
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Polymer thermodynamics has been receiving increasing attention. It is now accepted 

that thermodynamic theories which include the chain behavior have been found to 

give a good representation of polymer and polymer solution behavior. Over the last 

twenty years, significant efforts have been made in the field of statistical 

thermodynamics. These theories have developed equations which have eventually 

become practical for use as equations of state. Some of the developments for the 

current equations came from models such as the Perturbed-Hard-Chain Theory 

(Donohue and Prausnitz 1978), the Sanchez-Lacombe Equation of State (Sanchez I. 

C. 1976), the Generalized Flory-Dimer Theory (Bokis et al. 1994) and the Statistical 

Associating Fluid Theory (Chapman et al. 1990, Huang and Radosz 1990). These 

theories have been extended to the Perturbed-Chain Statistical Associating Fluid 

Theory (PC-SAFT) EOS (Gross and Sadowski 2002; Gross et al. 2003).

3.2 Polymer Simulation in Commercial Packages

There is a limited number of advanced process engineering simulation packages 

available presently. A summary of them is given in Table 3-1.

All the theories mentioned in the previous section have been implemented to different 

extents by the various polymer simulation packages. Thus there are a few commercial 

packages available which are able to predict the steady state and dynamic polymer 

properties using plant operating conditions. Three of the main packages are Aspen 

Polymers Plus® by Aspen Technology, Inc., Predici® by Computing in Technology 

and gPROMS® by Process Systems Enterprise Limited. Only more recently have 

commercial simulators directly incorporated polymer modeling technology and 

thermodynamics specific for polymer simulations. This has been primarily handled 

by academic researchers or modeling “specialists” in centralised engineering 

organizations (Ko et al. 1992). Early polymer simulations were built by 

approximating them as heavy hydrocarbons (Chen 2002); thus the polymer properties 

were not tracked. There was also a lack of integration of these custom simulators with 

mature process flow sheet modeling. This overly simple method of polymer modeling 

caused many manufactures to lose confidence in its applicability.
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Name COMPANY FEATURES

Steady State and Dynamic Full Plant

Aspen Plus, Polymers
Aspen

Technology

Simulations, Polymer, Large

Plus, Aspen Dynamics, Thermodynamic and Component

Aspen Custom Modeller Database, Regression, Dynamic 

Optimization 

Steady State and Dynamic Reactor

Predici
Computing in 

Technology

Simulations, Polymer, Small 

Thermodynamic and Component

Database, Regression, Dynamic 

Optimization

Process Steady State and Dynamic Full Plant

gPROMS
Systems Simulations, Large Thermodynamic

Enterprise and Component Database, Regression,

Limited Dynamic Optimization

PRO/II

SimSci-

Esscor

Invensys

Steady State and Dynamic Full Plant 

Simulations, Polymer, Medium 

Thermodynamic and Component 

Database, Regression 

Steady State and Dynamic Full Plant

LDPE Autoclaves LPRE
Simulations, Polymer, Very Small 

Thermodynamic and Component 

Database, Regression, In Development

PolyEFF

EFFTech

Engineering

Software

Steady State Reactor Simulations, 

Polymer, Very Small Thermodynamic 

and Component Database, Regression, 

In Development

Table 3-1 -  Simulation Packages and Features

However, over the last decade there has been a significant increase in the number of
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industrial applications of polymer models. There have been varying levels of 

successful implementations of these modeling technologies (Ramanathan S. 1992). 

Some industrial applications of low density polyethylene polymerization (free radical 

polymerization) have been reported by Ko 1990; Orbey et al. 1998; Bokis et al. 2002. 

Polymer process steady state models are now routinely used offline to help develop 

new processes, design new plants, troubleshoot existing plants and optimize plant 

operations (Chen 2002).

3.3 Introduction to the Modeling Procedure

Building a full model for this plant was not a trivial task. It involved many steps. 

Generally the model was built with the objective that it should be as simple as 

possible. In this regard many assumptions were initially made. As the model was 

being validated, many assumptions had to be revised. This resulted in an iterative 

model building process where at each step assumptions were checked and modified 

followed by taking steps backward, modifying assumptions, and then fitting and 

validating again. Figure 3-1 shows the general path followed. It is useful to note that 

these steps are general and can be applied to several polymerization processes.

First a significant amount of time was spent learning the process and understanding 

the main goals for the modeling effort. The properties of different thermodynamic 

relationships were then examined and ones used in the model were based on process 

conditions. Then the parameters for the respective thermodynamic relationships were 

found in the available literature. The same was then done for the reaction kinetic data; 

however, not all values for the literature based kinetic data were available or fully 

trusted. Where values were unknown or there was little confidence in them, 

regression was done, and the limits were set larger than the values we had more 

confidence in. Once the reactor model was regressed and validated for the required 

grades, the recycle loops were then built in. The dynamic requirements were then 

added to the model. The dynamic model was then validated against historical 

dynamic plant data and additional data fitting was done where necessary. Once the 

dynamic full plant model was complete the model was ready for applications.
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S elec t therm odynam ic b asis  for 
modeling

Build reactor flow sh e e t using first 
principles unit p ro c esses

Collect property d a ta  from literature

Collect reaction kinetics da ta  from 
literature, u se  b e s t g u ess  w here 

n ecessa ry

Acquire know ledge of p ro cess  , 
decide  on level of detail for model 

(b a sed  on final applications )
Sw itch G rade 

and u se  model 
fitting sc h e m e

U se  dynam ic 
plant da ta  to fit 
dynam ic model

May need to  return to 
earlier s te p ,  to modify 

assum ptions or add details

A djust reaction kinetics b a se d  on 
s tead y  s ta te  plant grade da ta

Modify s te ad y  s ta te  model to  include 
dynam ic requirem ents

Build recycle  loops and remaining 
unit p ro cesses

C om pare full plant model with plant 
d ata

Plant Model ready for 
Applications

Figure 3-1 -  First Principles Modeling Steps

3.4 Model Components

Table 3-2 summarises the main components in the process and their purpose in the 

process. The source component column represents the Aspen Plus database 

component whose parameters were used for the respective component's thermo

physical property and VLE calculations. Acetone, solvent and initiators are present in 

trace amounts; therefore their thermodynamic properties would not have much effect 

on the final result. These approximations are used to make the simulation less 

computationally complex. Acetone was used as a general component which 

represents all CTA components present as impurities. These are generated usually 

from the decomposition of the initiator and built up in the recycle loops. Some of it is 

condensed at the booster compressor like VA. A similar case was found for the
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solvent. The thermodynamic behaviour of the CTA components and solvent was 

found to be similar to VA, thus they were approximated by VA.

Component Purpose Source Component

Ethylene Monomer Ethylene

Vinyl Acetate Monomer Vinyl Acetate

Propylene Monomer Propylene

Acetone Lumped initiator by-products Vinyl Acetate

Solvent Initiator solvent Vinyl Acetate

Ethylene Segment Ethylene in polymer chain Ethylene Segment

Vinyl Acetate Segment
Vinyl Acetate in polymer 

chain
Vinyl Acetate Segment

Propylene Segment Propylene in polymer chain Propylene Segment

A Initiator 1 Ethylene

X12 Initiator 2 Ethylene

X29 Initiator 3 Ethylene

Z2 Initiator 4 Ethylene

Ethylene Vinyl Acetate Polymer Ethylene Vinyl Acetate

Table 3-2 -  Model Component Summary

It was noticed that the use of reclaim VA increased the concentration of CTA 

components and required the use of less propylene to attain the same melt index. 

Thus the role of Acetone (impurities) was found to be more important for the reaction 

kinetics.

3.5 Thermodynamic Model Properties

The plant covers a wide range of operating flow rates, pressures and temperatures. 

Also the components and region on the phase envelope changes based on the unit 

process being examined. Thus the appropriate thermodynamic method had to be 

chosen based on these factors. One advantage of using the Aspen Plus system for the
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first principles model was its excellent thermodynamic database. All the model 

components used were available in the database and no fitting was required (Aspen 

Technology 2005), there were cases where there were discrepancies with the trusted 

literature data; here as would be seen later on fitting was done. The Aspen’s 

thermodynamic values were replaced with the literature values in these cases. 

Equation of state models are appropriate for systems at moderate to high pressures 

(Khare et al. 2004). Equations of state also tend to be a more seamless solution 

because they provide smooth and reliable results across the vapour to liquid 

transition. As mentioned before equations of state for polymer modeling have 

matured significantly recently (in particular PC-SAFT). However, there have been 

cubic equations of state models which work very well for simple compounds not 

operating in the supercritical region (such as SRK). Therefore it was decided to use 

two equations of state. These were, PC-SAFT (Perturbed Chain Statistical 

Associating Fluid Theory) for the unit processes involving polymer components and 

operating in the supercritical phase region and SRK (Soave-Redlich-Kwong) for the 

remaining unit processes. The Aspen Plus process flow sheet for the full plant is 

shown in Figure 3-2.
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Reclaimed
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(T'

LDPE/EVA Plant Process Flowsheet
Aspen Plus /  Polymers Plus Steady State Model

Vmyl Acetate

Vinyl Acetate
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Ethylene

Propylene Primary Com pressor

O-CHHjjjJ
High Pressure 

Recycle

Feed Gas

Secondary Com pressor
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Product
Separator

Initator 2 Extrusion 
HopperCondensed VA

Initator 3

— ^
Purge
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Figure 3-2 -  Aspen Plus Steady State Plant Flow Sheet
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The assignment of the thermodynamic property set based on unit process is shown in 

Table 3-3.

____________ Unit Process_________
VA Mixer

Feed Mixer

Initiator Mixer

Primary Compressor

Secondary Feed Mixer

Secondary Leak Split

Secondary Compressor

Feed Gas Coolers

Autoclave Reactor Zones

Reactor Outlet Valve

Product Cooler

High Pressure Separator Inlet Valve 

High Pressure Separator 

High Pressure Recycle Cooler 

Losses Split

Low Pressure Separator Inlet Valve 

Low Pressure Separator 

Low Pressure Stock Tank Inlet Valve 

Low Pressure Stock Tank 

Low Pressure Recycle Cooler 

Booster Compressor 

Booster Compressor Coolers 

Purge Split and Purge Valve

Thermodynamics Phase Constraints
SRK Vapour - Liquid

SRK Vapour Only

PC-SAFT Liquid Only

SRK Vapour Only

SRK Vapour Only

SRK Vapour Only

SRK Vapour Only

PC-SAFT Vapour Only

PC-SAFT Vapour Only

PC-SAFT Vapour Only

PC-SAFT Vapour - Liquid

PC-SAFT Vapour - Liquid

PC-SAFT Vapour - Liquid

SRK Vapour Only

SRK Vapour Only

PC-SAFT Vapour - Liquid

PC-SAFT Vapour - Liquid

SRK Vapour - Liquid

SRK Vapour - Liquid

SRK Vapour Only

SRK Vapour Only

SRK Vapour - Liquid

SRK Vapour Only

Table 3-3 -  Thermodynamic Equation o f State Assignment
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3.6 Soave-Redlich-Kwong Equation of State

The actual equation of state used was called Polymer SRK in the Aspen Plus 

database. This is an extension of the SRK equation of state. However this equation of 

state was only used on the recycle portions of the process (this was where the 

polymer content expected was negligible) and thus more importantly the basic cubic 

SRK equation of state was used and not the polymer extensions. More over the SRK 

equation of state has been commonly applied for modeling ethylene systems in low to 

medium pressures.

3.6.1 SRK Theory

The conventional Soave-Redlich-Kwong equation used for pure component 

substances follows (Soave 1972):

<3»v — b v(v + o)

Where:

b = 0 .0 8 6 6 4 ^ -  (3.2)
P1c

R2Z2

Pc
a = 0 . 4 2 7 4 8 ^ ^  (3.3)

refers to a temperature dependent function and the Mathias and Coperman form is 

used (Mathias and Copeman 1983):

i- 2 (3.4)

(3-5)
c

Where c,,c2,c3 are the Mathias-Copeman constants for the particular component.

3.6.2 SRK Pure Component Parameters

Table 3-4 shows the SRK pure parameters for the important components of the
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model.

Component Tc(°C) Pc (bar) C; c2 C3 ZjJ
Ethylene 9.19 51.40 0.656 -0.363 0.677

Vinyl Acetate 245.98 40.36 0.998 0.136 -0.296

Propylene 91.75 46.91 0.738 -0.347 0.675

Table 3-4 -  SRK Pure Component Parameters 

3.6.3 SRK Binary Interaction

For the mixtures, equation (3.1) is modified within Aspen Plus to give:

r. RT a ..
v + c - b  \v + c)\v  + c + b)

Where:

a = a0+ax(3.7) 

a0 is the standard quadratic mixing term:

i= 1 }= \

ax is an additional, asymmetric (polar) term:

'  \ 3 
)X

i= 1

b = Y jxibi (3-10)/

c = X^cX3-ll)

ct = 0.40768

(Aspen-Technology 2003)

pv ra y

4 This parameter is only required when the form expressed in equation (3.6) is used.

49

(3.9)

(0 .29441-z„,) (3.12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 - First Principles Modeling of EVA Polymerization

The binary interaction parameters are implemented in Aspen Properties using the 

following relationships:

kv =kl + klT  + k p 2 (3.13)

Where k* and k* represent the valid temperature range.

/ ^ / j + z j r + z j r 2 (3.14)

Where I* and I* represent the valid temperature range.

Table 3-5 shows the SRK binary interaction parameters for the important components 

of the model (the majority of these had very little interaction so no value was 

required).

Parameter Ethylene- 
VINYL ACETATE

ETHYLENE-
PROPYLENE

VINYL ACETATE- 
PROPYLENE

4 - - -

- - -

k - - -

K -273.15 -273.15 -273.15

kl 726.85 726.85 726.85

'I - - -

e - - -

? - - -

K -273.15 -273.15 -273.15

726.85 726.85 726.85

Table 3-5 -  SRK Binary Interaction Parameters
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3.7 Perturbed Chain Statistical Associating Fluid Theory 

Equation of State

A review of the application of PC-SAFT for LDPE polymerization was done by 

Aspen Technology (Aspen Technology 2002). LDPE polymerization occurs at high 

temperatures and pressures. The thermodynamic properties of the components can be 

found using activity coefficient models or equation of state models (EOS). The 

polymerization of ethylene occurs close to or above critical pressures; it is found that 

EOS models are better at prediction under these conditions.

As mentioned previously, the PC-SAFT equation of state was used for segments of 

the model where predicting the thermodynamics of the polymer chain was important 

and where the components were under supercritical conditions. The PC-SAFT binary 

interaction was very important for predicting the gas/ polymer separation in the high 

pressure and low pressure separators.

3.7.1 PC-SAFT Theory

Some of the basic ideas of PC-SAFT will be discussed here. The PC-SAFT model is 

a theoretical equation of state, developed by Gross and Sadowski. It is based on the 

SAFT equation of state with some modifications to the expressions for the dispersive 

forces. It has been proposed for the thermodynamic modeling of systems containing 

long-chain molecules (such as polymers). These molecular chains are assumed to be 

freely jointed segments which exhibit forces amongst each other. PC-SAFT has been 

shown to give a more realistic relationship for the thermodynamic behaviour of 

polymer molecules and is equally applicable to smaller molecules. The predictive 

abilities of PC-SAFT for the VLE behaviour of polymer solutions and binary 

interaction of small molecules, has been shown to be superior to SAFT and the Peng- 

Robinson equation of state.

This EOS is based on the perturbation theory of fluids. This allows us to express the 

thermodynamic properties of a fluid as the sum of a reference term and a perturbation 

term.
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The perturbation term in SAFT takes into account the attractive (dispersion) 

interactions between molecules. In PC-SAFT, the perturbation theory concept applies 

to segments that are connected to chains rather than between disconnected segments 

(which is the case in SAFT). This is equivalent to considering attractive (dispersion) 

interactions between the connected segments instead of disconnected ones as shown 

in Figure 3-3.

Figure 3-3 -  Depiction o f segment-segment interaction in SAFT and PC-SAFT

Therefore it is clear that this concept offers a more realistic picture of how chain 

molecules, such as hydrocarbons, oligomers, and polymers, behave in a solution.

In SAFT, the perturbation (attractive) contribution is a series expansion in terms of 

reciprocal temperature, and each coefficient depends on density and composition. PC- 

SAFT expresses the attractive term of the equation as a sum of two terms (first- and 

second-order perturbation terms):

Where A denotes the Helmholtz free energy. (The Helmholtz free energy is used 

frequently in statistical thermodynamics to express equations of state because most 

properties of interest, such as the system pressure, can be obtained by proper 

differentiation of A) The helmholtz free energy coefficients A1 and A2 have a 

dependence on density, composition, and molecular size (the terms A1 and A2 are

SAFT PC-SAFT

(Aspen Technology 2002)

(3.15)
RT RT RT
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used in the derivation of the theory of PC-SAFT and can be found in Chapman et al 

1990).

These parameters are obtained by fitting experimental vapour pressure and liquid 

molar volume data for pure components. Also, a C binary interaction parameter is

used to fit phase equilibrium binary data.

Perturbation theory also separates the molecular forces into an attractive and 

repulsive part. Hard chain expressions have been derived for describing the repulsive 

part (Chapman, Gubbins et al. 1990). The attractive forces are divided into the 

contribution due to dispersion and association. From these forces the compressibility 

factor is calculated as the sum of the ideal gas contribution and these forces:

(Gross and Sadowski 2002)

Z = Z ig + Zhc+ Z disp■ + Zawoc' (3.16)

Where:

Pv
Z =----  (3.17)

RT

Z assoc- can be neglected for non-associating systems, however it needs to be 

considered for polar systems (vinyl acetate). Z ig is the ideal gas compressibility factor 

and is equal to one (1). The “segment approach” was applied using PC-SAFT for 

polar systems by Tumakaka and Sadowski 2004. They showed polar PC-SAFT has 

good predictive capabilities for systems involving components with polar 

interactions. The normal PC-SAFT would give an acceptable representation but with 

a fitted binary interaction parameter.

For the basic PC-SAFT three pure component parameters are required for each 

component. These are: 

m characteristic chain length

cr characteristic diameter

e segment energy

To include the polar interaction between the molecules, one additional parameter is

required for pure components.

xp fraction of dipolar segments on a molecule
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PC-SAFT has an optional binary interaction parameter,^ (mentioned previously)

which is typically not necessary for systems whose molecules do not have much 

interaction.

There has been some work on extending PC-SAFT to co-polymer systems (Gross, 

Spuhl et al. 2003) and an internal correction parameter is included here ( kiaifj). This

parameter accounts for the cross-dispersive energy between the segments. It is similar 

to the formulation of the general mixing rule. The fluid mixing rule was adopted in 

the dispersion term, giving:

£iaiP = ^ £,a£ip ( \- K ip )  (3.18)

V.a.p = ̂ (?ia+°iP) (3-19)

The work of Gross and Sadowski 2002 implies the following:

1. PC-SAFT has better predictive capability for the VLE of hydrocarbon systems 

than SAFT.

2. PC-SAFT has better predictive capability for the VLE of polymer/solvent 

solutions at low pressures than SAFT.

3. It also can predict the liquid-liquid equilibrium of polymer solutions at high 

pressures better than SAFT.

4. Although PC-SAFT somewhat over-predicts the critical point of pure substances, 

the predicted critical point is much closer to the measured value in PC-SAFT than 

in SAFT.

5. The correlative capability of PC-SAFT is superior, especially for the phase 

equilibria of polymer solutions at high pressures.

3.7.2 PC SAFT Pure Component Parameters

As mentioned before each species used in the model must have the three PC-SAFT 

component parameters. A summary of these for the major components in the mode 

can be seen in Table 3-6. The pure component parameters are given for polymers as 

well. Mass fraction missing rules are used to find the EVA parameters based on 

polyethylene and polyvinyl acetate. Table 3-6 incorporates the polar interaction

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 - First Principles Modeling of EVA Polymerization

parameters ( //  and xr ). VA is the only polar parameter used which had a significant 

mass fraction at any point in the model.

Component Iv t
(G/MOL)

M/A/'(MOL/
G) 2(A) E/K (K) p(D ) XP

Ethylene 28.05 0.05679 3.4450 176.47 - -

Vinyl Acetate 86.09 0.03662 3.3879 232.33 1.79 0.2596

Propylene 42.081 0.04657 3.5356 207.19 - -

Polyethylene - 0.0263 4.017 249.5 - -

PVA - 0.02552 3.5089 214.4 1.79 0.2596

Table 3-6 -  PC-SAFT Pure Component Parameters (Tumakaka and Sadowski 2004)

k f  represents the molar mass of each component and m represents the number of 

segments. The three core PC-SAFT parameters in Table 3-6 were used in the model. 

The polar interaction was not implemented in the PC-SAFT implementation in Aspen 

Plus and thus was not used. This however, was not found to be significant for the 

required application.

3.7.3 PC SAFT Binary Interaction

PC SAFT was used for prediction of the VLE in the high pressure and low pressure 

separators. The accuracy of the mass in the recycle stream was very important to 

match the plant production. This depended heavily on the accuracy of the phase 

separation in these separators. The PC-SAFT binary interaction in Aspen Plus 

supports three types of binary parameters; these include solvent-solvent, solvent- 

segment and segment-segment. Assuming the binary parameter between different 

segments is zero, the cross energy parameter for a solvent-copolymer pair was 

calculated as:
Nseg

^t, = 'L X AF f i Z ( l - k u ) (3.20)
A

Where:

s, - Cross energy parameter for a solvent-copolymer pair
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su - ej energy parameter for pure solvent i

eaa - sA energy parameter for pure segment of homopolymer A

kiA - Binary parameter for a solvent-segment pair; it is determined from VLE or LLE

data of the solvent i - homopolymer /( solution

The cross energy parameter for a copolymer-copolymer pair in the mixture was 

calculated as:

(3-21)

Where:

£p\Pi " (2ross energy parameter for a copolymer-copolymer pair 

kpp - Binary parameter for a copolymer-copolymer pair 

£pi - Energy parameter of pure copolymer p l 

£Pi - Energy parameter of pure copolymer p 2

The binary interaction parameter, ktj allows complex temperature dependence:

k9 = a 9 +b9ITr + cv inTr + d J r +evT  ̂ (3.22)

Where:

7 ; = - ^  (3.23)
r e f

Tnf - Reference temperature, default value: 273.15 K 

ajj,bjJ,...,ejJ - constants (Aspen Technology 2005)

Table 3-7 shows the binary interaction parameters obtained from Tumakaka and

Sadowski 2004. These were used as initial values for atj in equation(3.22).

Co-polymer system component pair jf
iajP

LDPE/ethylene 0.04

EVA/Ethyene PV A/ethylene 0.03

Ethylene segment/vinyl acetate segment 0.0287

Table 3 -7 - PC SAFT Binary Interaction Parameters
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The temperature dependence relationship was needed for the final model. The fitting 

and final values will be shown later on in the fitting of the full plant model.

3.8 Fundamentals of Free Radical Polymerization Modeling

Free radical polymerization occurs at high pressures. Organic peroxides provide the 

source of free radicals. A free radical is a short-lived reactive intermediate with an 

unpaired electron. The reaction is initiated when a free radical reacts with a monomer 

molecule to form another radical which propagates to other un-reacted monomer. 

This is a very fast reaction because of the high pressure. The chain eventually 

terminates, forming long chains (Meyers 2005).

3.8.1 Reaction Kinetics

Here a generalized method for the kinetic mechanism describing the free radical 

polymerization of ethylene (homopolymer) in high pressure reactors is considered 

(Ehrlich and Mortimer 1970; Goto, Yamamoto et al. 1981). The elementary reactions 

which make up the kinetic mechanism are summarized in Table 3-8 and shown in 

Figure 3-4 (Modified from Aspen Technology 2000).

Reaction Description Kinetics5
Primary free radicals are formed by the

Initiator decomposition of initiator molecules kd

Decomposition (organic peroxides). These free radicals are 

unstable molecules with a free electron. 

Monomer molecules react with the primary

I ^ 2 R

]r

Chain Initiation free radicals to form polymer radicals with 

a chain length of one ( P i ) .

The polymer chain grows as monomer

R '
ci .

' + M - + P X

Propagation molecules successively add to the polymer 

radicals. The radical site moves to the last
P*n

p
+  M ^ P „ +I

5 * - radical in mid-chain
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added monomer.

REACTION DESCRIPTION KINETICS

Termination by 

combination

Two polymer radicals (live polymer) react 

with each other to form one dead polymer 

chain.
P *n

* k,c 
+  P m ~ ^ D n+m

Termination by Two polymer radicals (live polymer) react
* k‘Cl

dis- with each other to form two dead polymer P *n +  P  - > D  + Dm n m

proportionation chains.

Active free radical sites on the polymer

Chain transfer to 

monomer

chain and a monomer molecule react to 

form a dead polymer chain and a polymer 

radical.

Active free radical sites on the polymer

*
p . +  M —> D n +

Chain transfer to 

agent

chain and a chain transfer agent molecule 

react to form a dead polymer chain and a 

polymer radical.

The free radical breaks away from the live

p ’n

k,A

+  A ^ D n + P l

h
Beta Scission polymer chain to form a dead polymer * tbs * 

P .  - » £ >  + R
chain and a new primary free radical.

ri ri

Chain transfer to 

polymer

Intermolecular reactions between a 

polymer radical and a dead polymer chain P *n

ktp
+  D  —> D  + Pm n m

causes long chain branches (LCB)

Short-chain The active free radical site at the end of the u
branching (back live polymer chain transfers to the fifth * sch *

P
biting) carbon atom from the end and propagates.

n n

Table 3-8 -  Polymerization Kinetics
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Figure 3-4 -  Diagram o f Free Radical Reactions

When unsaturated modifiers such as propylene and copolymers such as vinyl acetate 

are used, these copolymerize with ethylene. This requires an expansion in the reaction 

kinetics to include additional chain initiation, propagation, chain transfer and 

termination reactions to cover the co-monomer and active segment.

The reactivity in the copolymerization scheme is assumed to depend on the active 

segment to which the free radical is attached. Therefore for a two monomer system 

the propagation reactions are:

P l + M ^ P f
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where Pn' represents a live polymer radical having n segments with the free radical 

attached to a segment from monomer i and k"p represents the propagation rate

constant for the addition of monomer j  to a live polymer chain with the free radical 

attached to a segment from monomer i (Bokis, Ramanathan et al. 2002). This was 

extended for a three monomer system, which for the propagation reaction as shown 

above would contain nine terms.

The reaction rate constants are calculated from the Arrhenius expression. The 

modified expression which is used in Aspen’s Polymers Plus is shown in equation

Where kT represents the pre-exponential factor at reference temperature ( Tref)

3.8.2 Summary of Relevant Free Radical Kinetic Parameters from 

Literature

It was mentioned before that the majority of the modeling work available on free 

radical polymerization has been on the tubular process. One advantage of this is that 

the reaction kinetics published from these sources should be applicable for the 

autoclave process. Table 3-9 to Table 3-13 give the free radical kinetics available in 

the literature. It was found that fitting of these parameters were still required. Of these

(3.24) and (3.25)

—Ek , = k. exp ---- —
\ R T refJ

(3.24)

(3.25)
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the kinetics published by Iedema et al. 2003 was used as the starting point for the 

model regression.
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Source kpo

(m3/kmol.s)

Propagation

Ep

(J/kmol)

Termination by combination

AEp ktco E tc AVlc 

(m3/kmol) (m3/kmol.s) (J/kmol) (m3/kmol)

Termination by dis-proportionation

ktdo Eta A E[d 

(m3/kmol.s) (J/kmol) (m3/kmol)

Agrawal and Han 1975 1.250E+08 3.266E+07 0.0207

Chen et al. 1976 2.950E+07 2.969E+07 0.0000

Lee and Marano 1979 5.887E+07 2.972E+07 -0.0230

Goto, Yamamoto et al. 1981 1.560E+08 4.405E+07 -0.0185

Donati et al. 1982 3.100E+04 2.581E+07 -0.0248

Feucht, Tilger et al. 1985 4.800E+07 3.718E+07 0.0000

Gupta et al. 1985 2.950E+07 2.969E+07 0.0000

Shirodkar and Tsien 1986 5.800E+07 3.253E+07 -0.0215

Brandolin, Capiati et al. 1988 1.000E+06 2.196E+07 0.0000

Pladis and Kiparissides 1999 1.250E+08 3.377E+07 -0.0197

Iedema, Grcev et al. 2003 1.250E+08 3.377E+07 -0.0197

Ham and Rhee 1996 1.000E+06 2.712E+07 -0.0231

Zhou et al. 2001 5.887E+07 2.970E+07 -0.0237
Schmidt et al. 2005 1.880E+07 3.431E+07 -0.0270

2.200E+10 4.187E+06 0.0101

1.600E+09 1.005E+07 0.0000

1.075E+09 1.248E+06 -0.0140 3.246E+08 0.000E+00 0.0050

8.330E+07 1.256E+07 0.0130

3.100E+04 3.140E+06 0.0000

9.700E+08 3.014E+06 0.0000 9.700E+08 3.014E+06

1.600E+09 1.005E+07 0.0000

2.800E+08 1.248E+06 0.0010 1.300E+08 0.000E+00

3.000E+08 1.654E+07 0.0000

1.250E+09 4.184E+06 0.0130

1.250E+09 4.184E+06 0.0130 1.250E+09 4.184E+06 0.0130

3.000E+08 1.654E+07 3.000E+08 1.654E+07 0.0000

1.075E+09 1.250E+06 -0.0145

8.110E+08 4.598E+06 0.0156

Table 3-9 -  Literature Free Radical Kinetics for Ethylene 1
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Chain transfer to polymer Chain transfer to monomer (3 -Scission

Source ktpo E tp AVlp ktmo E lm AVlm kbso E bs AVhs

(m3/kmol.s) (J/kmol) (m3/kmol) (m3/kmol.s) (J/kmol) (m3/kmol) (s-1) (J/kmol) (m3/kmol

Agrawal and Han 1975

Chen, Vermeychuk et al. 1976 9.000E+05 3.768E+07 0.0000 2.720E+11 8.374E+07 0.0000

Lee and Marano 1979 4.116E+05 3.226E+07 -0.0200 5.823E+05 4.626E+07 -0.0200

Goto, Yamamoto et al. 1981 4.860E+08 5.895E+07 0.0044 1.560E+09 5.455E+07 -0.0235 2.360E+07 6.083E+07 -0.0185

Donati, Marini et al. 1982

Feucht, Tilger et al. 1985 1.700E+06 1.959E+07 0.0000 4.600E+06 2.303E+07

Gupta, Kumar et al. 1985 9.000E+05 3.768E+07 0.0000 2.950E+08 3.943E+07 2.950E+08 3.943E+07 0.0000

Shirodkar and Tsien 1986 7.500E+06 3.555E+07 -0.0016 1.300E+09 4.160E+07

Brandolin, Capiati et al. 1988 4.400E+06 3.977E+07 0.0000 7.300E+06 4.737E+07 0.0000

Pladis and Kiparissides 1999 4.957E+08 5.494E+07 0.0044 1.250E+05 3.377E+07 -0.0197 1.292E+05 4.715E+07 -0.0168

Iedema, Grcev et al. 2003 4.380E+08 5.494E+07 0.0044 4.000E+04 3.377E+07 -0.0197 1.292E+05 4.715E+07 -0.0168

Ham and Rhee 1996 3.000E+04 3.925E+07 0.0198 1.000E+06 4.931E+07 0.0198 2.430E+07 4.068E+07 0.0000

Zhou, Marshall et al. 2001 5.823E+05 4.620E+07 -0.0206

Schmidt, Busch et al. 2005 1.020E+08 4.915E+07 0.0034 3.420E+07 7.595E+07 -0.0055 1.292E+07 4.715E+07 -0.0168

Table 3-10 -  Literature Free Radical Kinetics for Ethylene 2
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Propagation Termination by combination Termination by dis-proportionation

Source k E  AF*̂po f-'p P ktco E,c AF(c ktio Etd

(m3/kmol.s) (J/kmol) (m3/kmol) (m3/kmol.s) (J/kmol) (m3/kmol) (m3/kmol.s) (J/kmol) (m3/kmol)

Beuermann et al. 2001 1.470E+07 2.070E+07 -0.0107

Zhang and Ray 1997 3.700E+09 1.339E+07 0.0000

Brandrup et al. 1999 3.520E+07 1.420E+07

Chain transfer to polymer Chain transfer to monomer P  -Scission

Source ktpo Etp AVlp k F AVKtmo t'tm ' tm kbso Ebs

(m3/kmol.s) (J/kmol) (m3/kmol) (m3/kmol.s) (J/kmol) (m3/kmol) (s"1) (J/kmol) (m3/kmol)

Beuermann, Buback et al. 2001

Zhang and Ray 1997 1.088E+04 2.636E+07 0.0000 7.616E+03 2.636E+07 0.0000

Brandrup, Immergut et al. 1999

Table 3-11 -  Literature Free Radical Kinetics for Vinyl Acetate
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Propagation Termination by combination Termination by dis-proportionation

Source ktpo Etp AVp ktpo Etp AVtc ktpo Etp AVld

(m3/kmol.s) (J/kmol) (m3/kmol) (m3/kmol.s) (J/kmol) (m3/kmol) (m3/kmol.s) (J/kmol) (m3/kmol)

Brandrup, Immergut et al. 1999 3.906E+07

Chain transfer to polymer Chain transfer to monomer y3 -Scission

Source ktpo AVrtp ktpo A Vtm ktpo Etp AVbs

(m3/kmol.s) (J/kmol) (m3/kmol) (m3/kmol.s) (J/kmol) (m3/kmol) (s'1) (J/kmol) (m3/kmol)

Brandrup, Immergut et al. 1999

Table 3-12 -  Literature Free Radical Kinetics fo r  Propylene

Reactivity Ratio r T d e g C P(ATM) Source

Pee/Pev 1.06 90 1010 Brandrup, Immergut et al. 1999

Pvv/Pve 1.09 90 1010 Brandrup, Immergut et al. 1999
Pee/Pep 3.2 Brandrup, Immergut et al. 1999
Ppp/Ppe 0.62 Brandrup, Immergut et al. 1999

Table 3-13 -  Literature Free Radical Reactivity Ratios
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3.9 Polymer Distribution Calculation

The component balance of all the species in the flow sheet on a mole basis and the 

energy balance of the unit process is the foundation of the Aspen Plus application. In 

finding the polymer distribution, we start with the material balance equations for all 

species polymer and non-polymer. Then the population balance equations for live and 

dead polymer are included. These equations for the polymer include the range of 

chain lengths and the kinetic scheme dictates how much of each length is present. 

Since the maximum chain length is usually large and it is not always required to 

obtain the distribution, the statistical averages which characterize the distribution can 

be used. Therefore we can transform the population balance equations into a set of 

moment equations. Usually the first second and third moments are all that are 

required.

These are calculated from:

Live polymer ith moment: fxi = ri' [Pn\ (3.26)

Bulk polymer ith moment: T. = ^  ri ([P ] + [Dn ]) (3.27)

Then the degree of polymerization averages can be calculated:

A
Number average degree of polymerization: DPn = —  (3.28)

K

Weight average degree of polymerization: DPw = —  (3.29)
A

DP
Polydisperty index: PDI = (3.30)

Then the weight averages can be calculated:

Number average molecular weight: Mn = DPn x MWseg (3.31)

Weight average molecular weight: M w = DPw x MWseg (3.32)

( MWseg= average weight of each repeat unit) (Bokis, Ramanathan et al. 2002).

The polymer distribution is not actually measured at the plant (this is common for 

most polymer manufacturing processes). The melt index is used as the main quality

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 - First Principles Modeling of EVA Polymerization

measurement. This gives an idea of the distribution and the plant is controlled by the 

operator using this. Thus the fit of the simulated distribution to the plant distribution 

was not the main focus, since it would not be applicable in finding optimal grade 

transitions.

3.10 Initiator Diffusion Correlations

As described later, one of the main steps in building the autoclave model involved 

fitting the parameters which had a significant effect on the free zone temperatures. It 

was found that the important parameters for fitting the free zone temperatures were 

the initiation and termination kinetics. There were two main initiators used at the 

plant for the polymer grades which were modeled. These initiators had different 

mixing characteristics based on the data obtained, thus a correlation was found for 

each.

As described by Buback et al. 2002, radical-radical termination is in general diffusion 

controlled. These theories were first developed in the late nineteen forties by Von 

Ernst Trommsdorff 1948. This gel effect attempts to model the diffusion control on 

the rate of polymerization and termaination. There is a change in the ability of the 

free radicals as the polymer chain grows. As can be expected as the polymer chain 

grows and becomes tangled, the ability of the free radicals to diffuse will be retarded. 

Therefore the gel effect parameter decreases as the reaction mixture viscosity 

increases. Here the similar concepts from this gel effect were used and extended to 

form the initiator diffusion correlations. The reaction mixture viscosity is directly 

proportional to the autoclave zone temperature and conversion. The rate constant at a 

particular conversion and temperature is therefore modified as shown in equation

(3.33) by a gel factor (G f).

k „ = k f i p (Tz ,X z ) (3.33)

Where

keff is the effective pre-exponential factor 

GF is the gel factor
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Tz is the zone temperature 

X z is the total conversion at zone

A direct relationship between the initiator rate constant and the termination rate 

constants were found after sensitivity runs on the model. After attempting to fit 

several grades which used different initiators or even mixtures of initiators injected at 

different points along the autoclave, it became clear that applying the gel effect to the 

termination reaction did not suffice for the calculation. The free radical diffusivity 

was found to be dependent on the particular initiator mixture used, the temperature 

profile along the zones and the polymer mass fraction profile along the zones. Thus 

instead of applying the gel effect to the termination rate constant it was applied to the 

initiator rate constant. The gel factor was calculated based on the mass fraction of 

polymer in the particular zone and the temperature in the particular zone.

There are two built in correlations available in Aspen Plus. These are shown in 

equation (3.34) and (3.35).

flj, a2,..., ax 0 correlation parameters 

X PF weight fraction of polymer

It was found that using equation (3.34) did not capture the variations for all grades. 

Thus equation (3.35) was used. Two correlations were built since there were two 

main initiators used for the grades considered.

Table 3-14 shows the regressed gel correlation parameters. Figure 3-5 and Figure 3-6 

show the plot of the correlations found. These were incorporated in the final model 

and were found using the regression procedure which will be described later.

(3.34)

(3.35)
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Parameters ax a2 a3 a4 a5 a6 o7 a% ag al0

Initiator 2 1.724E+00 2.570E-06 2.282E-02 7.232E-03 -1.050E-05 -1.300E-03 2.090E-05 4.073E-03 -5.040E-03 8.118E+00 

Initiator 3 1.357E+00-5.630E-057.140E-04 9.071E-03-1.540E-05 3.030E-05 -1.015E-01-2.830E-03 9.260E-05 7.480E+00

Table 3-14 -  Regressed Gel Effect Parameters

8.62 
/©(V > 8.35

W  8.07

] Gel Effect Correlation for Initiator 2 
—  Low Top Zone Grade Profile 
• High Top Zone Grade Profile

Figure 3-5 -  Initiator 2 Diffusion Correlation

It is noticed that a similar effect was observed for both correlations. However, the 

change in the gel effect for initiator two was more significant in the high top zone 

temperature region. The use of high top zone and low temperature top zone refers to a 

distinction made between products running in the high and low temperature range for 

zone one.
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9.00 
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0-20

] Gel Effect Correlation for Initiator 3 
—  Low Top Zone Grade Profile 
• High Top Zone Grade Profile

Figure 3-6 -  Initiator 3 Diffusion Correlation

3.11 Incorporating Poor Zone Mixing

Lufit 1977, Pladis and Kiparissides 1998 documented the importance of the 

autoclave’s zone macromolecular mixing behaviour in modeling of high pressure 

autoclaves. This effect was initially assumed to be negligible. However, after 

attempting to fit several grades, difficulty was found in fitting zones where there was 

no direct initiator flow.

3.11.1 The Floating Zone

Based on the recipe there are some zones which may have no initiator flowing to 

them. These zones are usually lower in the autoclave. They will show a temperature
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increase, indicating that there is still polymerization due to the presence of free 

radicals and unused initiator. Figure 3-7 shows a segment of an autoclave. Here zone 

2 is a floating zone.

Segment of 
Autoclave 

Reactor

Initiator & 
Solvent

Solvent

Initiator & 
Solvent

Reactor 
Zone 1Auto

Reactor 
Zone 2

Man

Reactor 
Zone 3

Auto

TC

TC

TC

Figure 3-7 -  Floating Zone

3.11.2 Model Modification

Poor mixing can cause several effects which do not comply with standard chemical 

engineering assumptions. Each zone of the autoclave was assumed to be a well mixed 

CSTR. This is not actually true. Several modeling studies (Kiparissides et al. 1993; 

Zhang and Ray 1997; Pladis and Kiparissides 1999) and CFD studies (Tosun and 

Bakker 1997; Kolhapure and Fox 1999; Schmidt, Busch et al. 2005; Wells and Ray 

2005) have shown the importance of modeling the imperfect mixing effects.
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Here the major problem caused by poor mixing was the unpredected, higher 

concentration of initiator in the lower zones. This caused the predicted temperatures 

in the lower zones to be less than the actual plant temperatures. This was due to the 

poor mixing of initiator. More initiator agglomerated into unmixed regions in the 

zone. These regions moved into the lower zones where these unmixed regions 

became better mixed. Thus behaving like another source of initiator. This was 

modeled by allowing a fraction of the initiator to bypass the zone without 

participating in the polymerization reactions. This causes higher initiator use and 

higher floating zone temperatures than with perfect mixing.

(1 -PAT))F° ■ ■
© -------- 681 ©  B— « c q 1

| Z2-QUTI

Px{T)F°  T

Figure 3-8 -  Modeling Poor Zone Mixing

Figure 3-8 shows the method used to implement the poor initiator mixing in the 

model.

P z ,  = d r z , + a 2 (3-36)

Where

PZjj represents the flow split fraction from zone i to zone j
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TZi represents the operating temperature of zone / 

ar,a2 represent regressed constants

The correlation shown in equation (3.36) was used to modify the fraction of initiator 

flowing into the lower zone based on the zone operating temperature. Thus 

controlling the initiator mixing based on the zone temperature. a] and a2 were fit 

using the floating zone temperatures and will be described later on.

The regressed parameters for p z were:

ax = 0.000301 

a2 = -0.05447

0.040

0.035 -

<D
o  0.030 - 
N
Urn<D
|  0.025 - o
o

-+-■

c  0.020 - 
o
o
™ 0.015 -
o  —'(0

~  0.010  -
c Poor Initiator Mixing Profile

0.005 -

0.000
45 50 55 60 65 70 8075

Temperature (Scaled)

Figure 3-9 -  Poor Initiator Mixing Profile

The mixing profile for this zone is shown in Figure 3-9. This shows the mixing in the 

zone becomes poorer as the zone operating temperature increases. This result agrees 

with the mixing index and plant data show in section 2.5.2.
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3.12 Chapter Summary

The fundamental principles utilized in developing the first principles modeling for the 

EVA polymerization plant were detailed in this chapter. Details on the two equations 

of state were given and their applications were described. The reaction kinetics for 

free radical polymerization was explored. Then the additions made to the modeling 

theory for high pressure autoclave polymerization were detailed. This included a 

novel method for application of a unique gel effect to each initiator and modeling of 

the poor initiator mixing.
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Though I  am not naturally honest, I  am so sometimes by chance.

William Shakespeare (1564 - 1616)

Chasmr 4 

First Principles Model 

Regression

4.1 Introduction

Many parameters or coefficients in the mass, energy and component balances are 

required for the model. These coefficients have to be estimated from plant data using 

regression techniques. This chapter outlines the regression and other strategies used 

for parameter estimation. The variables used for regression, the results of the 

regression and the validation of the steady state and dynamic first principles model 

are also detailed.

In the published work on the use of first principles models for polymerization 

processes there is usually a significant amount of fitting required. This can be a very 

time consuming step and if certain steps are not followed cautiously, the process can 

take longer than expected and even give erroneous results. For high pressure EVA

6 Portions of this chapter were presented at the 55th Canadian Chemical Engineering Conference 

(CSChE), October 2005, Toronto ON, Canada and Chemical Process Control 7 (CPC7), January 2006, 

Banff AB, Canada, by Alleyne et al.
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polymerization there is no available literature on the best method for going about this 

regression process. Authors such as Ghiass and Hutchinson 2003 have given some 

details on the development of their EVA model. However, details on the parameter 

regression process were not stated. There are many optimization algorithms available 

for regressing large numbers of parameters (Cervantes, Tonelli et al. 2002). The 

conventional formulation of the problem is using least squares regression. However, 

just applying these techniques blindly can lead to a large number of parameters to 

regress using a limited number of plant measurements. This can lead to a badly posed 

problem and thus can give results which cover a very limited range of plant operation. 

It was found that regression of the model parameters can give excellent results for 

certain plant variables; however validation using independent plant data sets gave 

poor results. This was especially found in the case where the model parameters were 

fit for a very limited range of operation. The systematic approach developed here 

allows optimum use of the limited number of the plant variables while fitting the 

most important components of the model. This is a very practical procedure based 

mostly on the common measurements available from the plant. This sequential and 

iterative regression scheme can be extended for application to other types of 

polymerization processes.

4.2 Model Validation Variables

The model incorporated several EVA grades. There are several variables which were 

used for validation of the model. These were used to fit the reaction kinetics, 

thermodynamic parameters and the other correlations mentioned previously. Some of 

these validation variables were readily available from plant measurements and from 

the model while some others were required to be calculated from plant measurements 

and model properties respectively. All of the plant’s product grades have specific 

operating recipes. These recipes have been documented and used as the basis for 

configuration of the simulation model. The grades vary in the content of VA, 

propylene and initiator concentration and operating pressure. The grades also vary in 

operating temperatures and the zones on which temperature control is done. This
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variation in temperature control scheme causes some additional complexity for steady 

state modeling. Thus grade grouping, which is described later, was done. Table 4-1 

shows the main variables available from the process which were used for the multiple 

grade model fitting.

Validation Variable Plant Comment Model Comment
Total Conversion * Calculated from plant mass Calculated from

Polymer Production production, gas chromatographs, monomer flows

Ethylene Conversion feed flow rates, compressor flow and polymer flows

Vinyl Acetate Conversion rates and online product analysis -  directly available

Propylene Conversion (percentage VA in polymer) in model

Melt Index * Online measurement available Calculated

Vinyl Acetate Percent * (slow) Calculated

Floating zone temperature* Available directly Available directly

Weight average molecular 

weight

Number average molecular 

weight

Available from offline GPC 

analysis of selected polymer 

grades

Available directly

Reactor heat duty*
The reactor should be operating 

close to adiabatic
Available directly

Table 4-1 -  Validation Variables 

* indicates primary validation variables, others can be used where necessary.

4.2.1 Compressor Mass Flow Rate

The secondary compressor compresses the total monomer feed to the reactor. This 

calculation was detailed in section 2.5.1. This mass flow is a combination of each 

fresh component feed, the low pressure and high pressure recycle streams. A simple 

thermodynamics model based on the suction and discharge pressures and 

temperatures of each compressor stage was used to calculate the total mass flow 

being feed to the reactor (offline model used by Kumar et al. 2003). This therefore 

was an important variable for fitting and validating the model mass flow rate.
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4.2.2 Ml Correlation

As mentioned before the properties which are calculated by the mechanistic model 

(Mn, Mw...) are not those used for actual polymer quality control on the plant. One 

of the most widely used specifications which the polymer must meet is the melt 

index. This measure is based on the amount of polymer melt at a particular 

temperature which will flow through an orifice of a particular size for a 

predetermined time. This value is related to the polymer physical properties such as 

Mn and Mw, but a theoretically derived mathematical relationship does not exist. 

Thus a correlation had to be found. The data in Table 4-2 show the melt index data 

collected from the plant and the weight and number average molecular weight from 

GPC tests for five grades.

Grade MI Mn Mw

1 1.15 2.21E+04 1.06E+05

2 6.05 1.68E+04 7.40E+04

3 6.79 1.64E+04 6.55E+04

4 25.79 1.35E+04 5.50E+04

5 878.50 5.93E+03 2.14E+04

Table 4-2 -  Melt Index Correlation Data

The logarithmic transformation of the melt index is known to have a strong 

correlation with plant variables. Equation (4.1) was published by Vinodograv and 

Malkin 1980.

MI = M ;3 5 (4.1)

From this, the correlation shown in equation (4.2) was proposed.

MI = (4.2)

From Table 4-2, the parameters of the correlation were found to be:

A = -4.20e-4 

B =  1.20e-5 

C = 9.61
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Plot of Ml Correlation
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Figure 4-1 -  Melt Index Correlation with Mn and Mw Plot

Figure 4-1 shows a plot of the correlation for the range of values used for fitting. 

This correlation was then simplified to the forms shown in equations (4.3) and (4.4).

MI = e('m'xM"+ci) (4.3)

fyf] = g(mlxW,+c2) (4.4)
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4

3 m = -1.818e-4 
c = 3.923
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Figure 4-2 -  ln(MI) to Mn Correlation Plot

Figure 4-2 shows the linear relationship found between the logarithm of the melt 

index and the number average molecular weight.
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Figure 4-3 -  ln(MI) to Mw Correlation Plot

Figure 4-3 shows the same relationship for the weight average molecular weight. The 

distribution averages were found using GPC lab tests on separate samples, each 

reading is made up of an average of three samples.

The MI to Mn correlation was used to calculate the MI in the first principles model, 

since a better fit was found here. This can be seen from the tighter confidence interval 

and better regression coefficient, as shown in Figure 4-2.

4.2.3 Model VA Percentage

The percentage vinyl acetate monomer in the polymer is another important measure 

of the polymer quality. The mole fraction of each monomer segment was tracked 

within the model. The relative reactivity between ethylene and VA dictated the ratio 

of ethylene to VA segments in the EVA co-polymer chains. The percentage VA was 

not available directly in the model but was calculated using equation(4.5).
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M ' Y '
X'MP -  _  Sf. xlOO (4.5)

j

Where

X ‘up mass percent of component i in polymer 

M'w component i segment molecular weight 

X ‘SF component i segment mole fraction in polymer

4.2.4 Initiator Mass Flow Rate

This calculated value was used to ensure that the initiator mass flow rates used in the 

model were comparable with the predicted mass flow rate. This calculation was 

detailed in section 2.5.6. For the steady state model these were implemented using 

design specifications within Aspen Plus. In Aspen Dynamics, PID controllers were 

included to directly mimic the plant operation.

4.3 Model Configuration

Details on the configuration required in Aspen Plus and Aspen Dynamics for the 

implementation of the model will be given next.

4.3.1 Configuration of the Steady State Model

The first block built was the steady state reactor model. This, as described previously, 

included detailed thermodynamics and free radical kinetics. Then the reactor model 

was integrated with the surrounding unit processes to build the steady state plant 

model. These unit processes also include detailed thermodynamics. The steady state 

plant model was then extended to the dynamic model by including equipment hold

ups and measurement time delays to mimic the available online plant measurements. 

The flow sheet used for the reactor model is shown in Figure 4-4. The autoclave 

reactor comprises several mixing zones. These can be modeled as a complex multi

segment and multi-recycle model as shown by Pladis and Kiparissides 1999. 

However, the majority of the autoclave behaviour will be shown to be captured here
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by a simpler multi-zone model. The autoclave being modeled comprised four zones, 

with the first zone being split into two mixing regimes.

Ethylene

LDPEZEVA Reactor Process Flowsheet
Aspen Plus i  Polymers Plus Model

Autodmre Reactor

Ertrusion Wire
Polymer

Figure 4-4 -  Reactor Flow Sheet

There was also a significant amount of model configuration which was done in 

FORTRAN. This language was supported by Aspen Plus for custom modeling, such 

as the correlations described before for the melt index and VA percentage. The 

following were the custom blocks configured using calculator blocks:

o Grade Database (stores the grade information for all grades and accesses the 

correct entry based on a model parameter) 

o Monomer Conversion 

o MI Correlation 

o Percentage VA Calculation 

o Initiator Flow Correlation

o CSTR pressure equalizer (forces all CSTRS to run at the same pressure) 

o Poor Mixing Calculation 

The temperature controllers as mentioned before; were configured in the design 

specification. The following is a list of all the controllers configured in design 

specifications:
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o Zone temperature controllers (initiator flow was the manipulated variable in 

controlled zones while zone temperature was simulated as a manipulated in 

free zones) 

o Purge flow controller 

The different grades produced by this reactor are as result of several different 

operating conditions and configurations. The modeling package was built to handle 

changes in the operating conditions of the unit processes. However, changes to the 

model configuration during the regression process, such as temperature controllers 

changing modes, were not supported. This required an innovative method to regress 

the model parameters. Sub-models (Aspen Plus Hierarchies) were used for this. Each 

sub model was actually a copy of the same model shown in Figure 4-4.

Figure 4-5 shows the configuration used for parameter regression. All of the grades 

selected for fitting were divided into classifications based on common floating zones. 

There were three different floating zone configurations. Thus, there were three sub

models each with different floating zones. One common set of reaction kinetics was 

used for all of the sub models. One flaw of this method of parameter estimation is 

that the model takes three times as long to converge on every run. However, at the 

end of the fitting process the parameter estimates were suitable for all grades being 

considered.

EVA Reactor Grade Groups
Aspen Plus / Polymers Plus Model

EVA-34 EVA-4 EVA-24

HIERARCHY HIERARCHY HIERARCHY

Figure 4-5 -  Reactor Groups for Regression
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There are impurities within the process. These impurities are present in the feed 

components or they are generated during the decomposition of the initiator. One 

major source of impurities is the reclaimed VA stream. The majority of the VA which 

was recycled in the low pressure loop of the process condenses at the conditions 

present in the inter-stage coolers of the booster compressor. The majority of the 

ethylene remains in the stream and is recycled. The condensed VA is sent to a VA 

recovery plant. This plant attempts to remove all impurities from the condensed VA 

stream. The product from this plant is called reclaimed VA. This reclaimed VA is 

mixed with fresh VA at a controlled ratio. There are several impurities which have an 

effect on the reactions. To simplify the effect of impurities, all components acting as 

impurities were lumped together as one component. This component was called 

Acetone. The chain transfer to agent reaction in the free radical kinetics was used to 

model the effect of impurities (referred to as Acetone in the model). The amount of 

impurities in the feed to the reactor was unknown, however based on the calculations 

detailed in section 2.5.5; we can get a rough idea about the amount of CTA in the 

reclaimed VA feed.

4.3.2 Configuration of the Dynamic Model

The steady state model developed in Aspen Plus was exported for use in Aspen 

Dynamics. There are two types of dynamic models supported in Aspen Dynamics. 

These are flow driven and pressure driven. The flow driven model does not strictly 

enforce pressure-flow relationships in the model and does not require “pressure 

changers” (valves, pumps, compressors) between every unit processes which contain 

vapour accumulation. For simplicity the flow driven simulation was used for this 

model.

The Aspen Dynamics model does not support the FORTRAN calculator blocks and 

the design specifications which were developed in Aspen Plus (discussed in section 

4.3.1). Therefore these had to be converted to Aspen Custom Modeller Language. 

Aspen Dynamics supports control schemes; this allowed direct implementation of 

several configurations important for the dynamic model. These included:
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o PID controllers

o Ratio Controller for the VA/Reclaimed VA 

o Time Delays for MI and Percent VA Measurements 

The flow sheet for the dynamic mode is shown in Figure 4-18. The important 

controllers can be seen here with their respective control connections. There are 

several dynamic elements of chemical engineering processes which can be modeled. 

The most important dynamic element was the mass accumulation. Table 4-3 

summarizes the unit processes where the mass accumulation was modeled.

Unit Process Dynamic regression
Feed Gas Coolers Yes

Primary Compressor Inter-stage Coolers No

Booster Compressor Inter-stage Coolers No

Secondary Compressor Inter-stage Coolers No

Product Cooler Yes

High Pressure Separator No

Low Pressure Separator No

Return Gas Cooler Yes

Low Pressure Recycle Cooler Yes

Table 4-3 -  Dynamic Equipment

4.4 Model Regression

The model regression was found to be one of the most important exercises in the 

modeling of this process. The number of parameters available for fitting and the 

significant interaction between them caused this step to be more complex than was 

initially anticipated. The steady state regression step included the fitting of reaction 

kinetics and correlation parameters where necessary.

One unique characteristic of the steady state parameter regression for this particular 

process is the large number of parameters to be regressed. There is some available 

literature in this area. The problem to be solved here relates to the identifiably of the
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model parameter and the best experimental design for the model to identify these 

parameters. Typically for these large models, it is difficult to find the sensitivity of 

the model parameters by changing the different manipulated model variables. When 

the number of parameters to be fitted is more manageable, sensitivity runs can give an 

indication of the ability to estimate the model parameters. An example of the 

application of theoretical methods for analyzing the identifiably of a polymer process 

was given by Yao et al. 2003. Here a sensitivity matrix was created based on several 

runs of the model. As is usually the case with plant data, scaling was required to give 

a useful comparison of the sensitivities. This iterative technique required initial 

estimates for the parameters. Parameter estimates for ethylene polymerization are 

available as seen in Table 3-9 and Table 3-10. Information on the other monomers, 

vinyl acetate and propylene were not as easily available, but reasonable assumptions 

were made. Once the sensitivity matrix was formed, information on the ability to 

estimate the parameters was be found. One other important piece of information is the 

coupling of modeling parameters and process variables. Many times a modeller is not 

familiar with a particular process. By using the higher magnitude elements within the 

sensitivity matrix, one can find the best parameter to variable coupling for fitting. 

Here, however a different method was followed. Initially a significant amount of time 

was spent understanding the process. Also because of the close interaction with 

industry there was a wealth of information available on the parameter to variable 

couplings. Therefore based on a-priori knowledge, a strategy for fitting the model 

parameters for this particular process was developed.

The use of carefully selected grades can allow the fitting of specific parameters. For 

example, grades with low VA and propylene content can be used to fit the ethylene 

based parameters. Grades with high VA content but low propylene content can be 

used to fit the VA based parameters; and so on. Hence a multi-grade parameter 

estimation scheme for the model was developed. This was based on the grades 

typically produced on the plant and the data available for different grades.
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4.4.1 Aspen Plus Regression Theory

Data Fit is a component of the Aspen Plus application. This component was used for 

regressing the parameters of the model. Data Fit is based on NL2SOL, which is an 

adaptive non-linear least squares algorithm. The algorithm implemented in Data Fit 

was described by John E. Dennis et al. 1981, this is a trust region unconstrained 

optimization method with some modifications. Trusted region optimization 

approximates the objective function to a simpler function which gives a reasonable 

local approximation of the objective function behaviour.

A trial step is then made on the decision variables by minimizing the approximate 

function. Then the new value of the objective function is computed. This is usually 

referred to as the trusted region sub problem. If the value of the objective function is 

less than the previous value (for minimization) the step is accepted. Typically if this

A  -  Initial S tep 

B -  N ext S tep 

C -  Optim al

O bjective  Function C ontours 

T rust R eg ion  if S hrink ing  R equired 

T rust R eg ion  if E xpansion Required

-  Initial T rus t Region

Figure 4-6 -  Trust Region Optimization
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step does not work the trusted region will be reduced and the sub problem run again. 

The gradient information is typically stored in the Gauss-Newton Hessian. Figure 4-6 

shows a typical step using Trusted Region Optimization.

The algorithm used in Data Fit replaces the Gauss-Newton Hessian with a Hessian 

which includes an approximation to the difference between it and the quadratic 

Taylor expansion of the linearized function. Also the algorithm does not only reduce 

the trusted region but may switch the approximation model.

The objective function created by data fit is shown in equation (4.6).

f  ( N  i \ \' e x p 1 '

W, ^  (termx + term2)
1 il S e l s

M in -  2 ]xP,xri 2 i=i V / /

termx = ^
/=i

{ x mr- x ri)
\2

term2 =
m = \

{X tnrr~X rr)

Subject to:

x p,b = x p = x pub

X r,l b = X n ■ X riub

Where:

NSels represents the number of data sets specified for regression 

N i represents the number of experiments in data set /

Nrt represents the number of reconciled input parameters 

Nrr represents the number of measured result variables 

W: represents weight for data set /

X p represents the vector of varied parameters 

X mn represents the measured value of the reconciled input variables 

X mrr represents the measured values of the result variables 

X rr represents the calculated value for the result variables

(4.6)

(4.7)

(4.8)

(4.9) 

(4.10)
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a  represents the standard deviation for the measured variables 

The measured variables were average steady state operating data. The averages were 

found from at least three distinct steady state operating periods. During the data 

fitting process there were two parameters which were used to improve the estimates 

found by the algorithm. These were the initial step size (default = 1) and the relative 

perturbation size (default = 0.005). The initial step size sets the initial step size of the 

trust region. This was moved within the range 0.1 to 10 once a solution was found. 

The relative perturbation size was increased up to 0.5 once a solution was found. This 

procedure could some times help if the optimizer converged at a local minimum 

point.

4.4.2 Parameter Sensitivity

Knowledge of the necessary couplings for regression between the validation variables 

and the estimated parameters requires in depth knowledge of the first principles of the 

process. As mentioned, this model contains many parameters which require fitting. 

Thus a systematic scheme for doing this had to be developed.

Reaction Parameters used for 

Estimation

Estimation and Validation Variable 

Conversion MWN MWW FLCB FSCB

Chain Initiation X

Chain Propagation X

Chain Transfer to Monomer X

Chain Transfer to Polymer X X

Chain Transfer to Agent X

Chain Transfer to Solvent X

Beta-Scission X

Termination by Disprop. X

Termination by Combination X

Short Chain Branching X

Table 4-4 -  Estimation Parameter to Variable Pairing (Hendrickson 1997)
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A fundamental part of this is having a clear understanding of the correct parameter to 

variable combinations for regression. Hendrickson 1997 attempted modeling of a 

similar type of process. Table 4-4 shows his pairings. Quickly after inspection of this 

table one realizes that there is not a one to one pairing for the parameters to variables. 

Figure 4-7 from Meyers 2005 shows the sensitivity of several common polymer 

quality variables to reactor temperature and pressure (applicable for tubular and 

autoclave reactors).
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Figure 4-7 -  Quality Variable Sensitivity to Plant Conditions

From these several couplings can be implied. Sensitivity runs on the steady state 

model with literature values were available or assumed values were used to find 

couplings that were not easily discemable. An example of this can be seen in Figure 

4-8.
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g  Sensitivity Results for Mn with change in Beta Scission

-5 °Z oCO
10

9e8 9.1e8 9.2e8 9.3e8 9.4e8 9.5e8 9.6e8 9.7e8 9.8e8 9.9e8 1e9
Beta Scission Pre-exponent

Figure 4-8 -  Mn Sensitivity to (i -Scission

These relationships were built to separate the parameter regression process into 

discrete elements. Each of these regression elements would comprise of some 

parameter for estimation and plant readings which were tightly coupled with the 

parameter. However, it was found that there was significant interaction between many 

of the parameters. Therefore the concept of discrete fitting elements was not possible 

for all elements. A sequential and iterative regression scheme had to be developed. 

This will be discussed and shown next.

Table 4-5 shows the parameter to variable couplings used as the basis for the 

regression scheme which was developed. This was based on prior plant knowledge, 

information available in the literature and sensitivity runs on an approximate model. 

Minor couplings are not indicated. These may case problems while regressing 

parameters but the effects of these should be compensated for by the iterative 

technique.
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M easurement used for Estimation and Validation (Variables) 
Parameters to Estimate t ,

Conversion1 TFLoat Duty MI2 % VA2 MWW3 PDI3 Flow1

Initiator Efficiency & Activation Volume X X Initiator

Chain Initiation X X

Chain Propagation X X X X X

Chain Transfer to Monomer X

Chain Transfer to Polymer X X

Chain Transfer to Agent X

Beta-Scission X

Termination X X

Gel Effect Correlation X X

Zone Poor Mixing Correlation X

PC-SAFT Binary Interaction (F) Total to reactor

Equipment mass hold up (D) X X

Measurement dead time (D) X X

Table 4-5 -  Parameter to Variable Coupling for Regression

F -  requires full plant model for estimation D -  requires dynamic model and data for estimation

Duty -  the autoclave should be adiabatic, therefore the duty should be ideally 0, a small value of -5000 W is used in the simulation. 

1 -  Calculated 2 -  Average from historian 3 -  from GPC analysis of polymer samples
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4.4.3 Iterative Multiple Grade Model Regression Scheme

There has not been much research focused on finding the best method to actually 

regress the model parameters once the couplings discussed earlier have been found. It 

is intuitive that finding the parameter to variable pairings is important, but once this is 

done the steps which follow are typically ad-hoc and subjective.

S ta g e  1

R eac to r Fit?
No

Fundam ental 
param eter 

change  neededu  Y es

Fundam ental 
param eter 

ch an g e  neededS ta g e  2

Full Plant 
model fit?No

U Y es

S ta g e  3

Dynamic 
model fit?No

Y es

R eg ress  dynam ic model 
param eters for dynam ic runs 

betw een g rades se lec ted  
previously

R eg ress  full plant param eters 
for g rades se lec ted  previously

R eg ress  reactor model 
param eters for several g rades

Model R egression  
C om plete

Figure 4-9 -  Flowchart for Regression
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A systematic method for parameter regression for this complex model has been 

developed. The steps defined here were developed based on the requirement of the 

modeling applications, to configure the steady state model followed by the dynamic 

model, the sensitivity and interaction of the model parameters and the variables 

available for validation. Figure 4-9 shows the high level regression steps. This has 

been broken into three stages.

At stage 1 the reactor parameters only are regressed. These parameters include any 

thermodynamics, reaction kinetics and reactor specific correlations. The data used for 

regression and validation are averages of plant variables during steady state 

conditions. One advantage of attempting the ‘reactor-only-fit’ first is that there were 

no recycle loops at this point. This allows faster convergence of the model with the 

“sequential modular” Aspen Plus solver (explained in 4.6.2).

Stage 2 extends the reactor model to include the other unit processes which comprise 

the plant. This is necessary based on the objective of the model which was optimal 

grade transition trajectories. The manipulated variable trajectories had to be the actual 

manipulated variables which the operators use. Therefore modeling of the full plant 

was necessary. At this point steady state plant data was used to regress 

thermodynamic parameters which affect certain key sections of the plant flow sheet. 

The parameters which affect the VLE in the separators were the main area of focus. 

The system losses were also taken into consideration at this point. There is the 

possibility of having to return to Stage 1. This occurs in the case where the VLE 

parameters have exceeded the acceptable limits or the solution is unattainable. The 

unattainable situation was encountered, on further inspection it was noticed that the 

conversion of one of the monomers was causing the problem. This required moving 

back to stage 1 and fitting the conversion for that particular monomer then moving to 

step 2 again. After acceptable results were obtained from stages 1 and 2, stage 3 could 

be started.

Stage 3 was carried out by exporting the model to Aspen Dynamics, modified and 

converging successfully on steady state simulations. This required some 

modifications to the model which will be described later. The main focus of step 3 

was to capture the critical dynamic aspects of the model. Since the dynamic model
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would be validated against measurements directly from the plant it was important that 

the model captured the time delays and time constants for each measurement. On a 

typical plant the time delays are caused by transport lags and measurement lags. The 

significant part of the time constant for this process was due to the mass of gas 

accumulated in the system. The majority of the gas in the system was always 

ethylene. However VA and propylene do have a significant effect on the reactions. 

The mass accumulation of ethylene causes the concentration of the other components 

to change slowly. This can be thought of as a large amount of ethylene flowing into a 

vessel with a small amount of propylene. If the propylene feed increases, the 

concentration leaving the tank does not increase immediately. The concentration 

builds over time; the larger the volume of the vessel, the longer the time. Estimates 

for the vessel accumulation were taken from the plant design data and estimates for 

the measurement time delays were found from dialogues with the senior plant 

operators. At this point it was confirmed that the dynamic model, while running at 

steady state fit the plant well. Then the dynamic estimation was done focusing on the 

critical vessels and process measurement delays (the transport lags were lumped into 

the measurement delays).

Model Regression -  Stage 1

Here details on the steps involved in completing stage 1 of the regression scheme are 

given. The availability of plant data was critical for this type of modeling. In addition 

to the variables (regressed variables) which were collected from the plant historian 

(mentioned in Table 4-5), other plant operating variables (regression inputs) were 

needed to ensure the model mimicked the plant as closely as possible. For stage 1 

these additional variables included:

o Propylene content in feed (average GC reading used) 

o Reactor pressure 

o Temperature of controlled zones

o Feed gas coolers discharge temperature (used to set the reactor feed gas 

temperature)
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Figure 4-10 -  Reactor Regression Scheme
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Figure 4-10 shows the flow chart for the reactor regression scheme. The choice of 

grades here was very important. Here it was more important to group the grades 

based on similar reactor pressure, controlled zone temperatures and reactor feed 

composition. This was because of the three distinct parameters which were required 

to be regressed in each Arrhenius equation (equation (3.25)).

The paring used for these during the fitting process were: 

o k0 relates to changes in composition

o Ea relates to changes in temperature

o AF relates to changes in pressure 

Thus the regression parameters during a regression run would be limited to the 

specific parameters in the Arrhenius equation which have been changed for the 

particular grade being run. That is if there was a pressure change in moving from one 

grade to another, the first grade could be used to fit k0 and the second grade could be

used to fit A F . This iterative procedure was used to regress the reactor parameters for 

eight strategically chosen grades which covered the plant’s full range of operation.

Model Regression -  Stage 2

During the previous stage the feed to the reactor was one simple stream which 

contained the components expected at that point in the process (see Figure 4-4). Here 

the other unit processes, recycle and feed streams were added to complete the steady 

state plant flow sheet (see Figure 1-4). Upon making these modifications and having 

the flow sheet converge, it was noticed the properties of the product leaving the 

reactor were different. This was because the reactor feed composition had changed. 

The challenge was now to regress parameters of the full plant so that the feed 

composition to the reactor returned to the expected values.

Similar to stage 1, the average of several plant process variables were used as fixed 

inputs to the model during the regression process. In addition to the variables 

mentioned in stage 1, the following variables were included: 

o Ethylene Mass Flow 

o Total Vinyl Acetate Mass Flow
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o Percentage reclaimed VA in total VA

o Propylene Mass Flow

o Propylene Concentration in Feed

o Purge Mass Flow

o LPS Pressure and Temperature

o HPS Temperature and Pressure

Figure 4-11 shows the steps involved in regressing the parameters for the full plant 

steady state model. The parameters which were regressed were in

equation (3.22) and k]p  k* and k* in equation (3.13).

''Reactor Feed 
& Compositions 
v Fit?

Polymer 
Properties OK?

All Grades 
Complete

Switch Grade and 
return to A

Adjust SRK and PC-SAFT 
Binary Parameters

Use literature based or 
default thermodynamics

Go to Stage 1, once 
complete return to A

Extend reactor flow sheet 
to full plant flow sheet

Figure 4-11 -  Full Plant steady State Model Regression Scheme
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Model Regression -  Stage 3

After stage 2 the steady state model was exported and modified for Aspen Dynamics.

Steady state 
OK? ►

Ml and VA time 
constant fit?

Ml and VA time 
delay fit?

Adjust Ml and % VA time 
delay

Confirm model with steady 
state simulation

Go to Stage 1, once 
complete return to A

Modify model for Aspen 
Dynamics

Adjust:
Feed gas coolers volume 

Return gas coolers volume 
Product coolers volume

Dynamic Model 
Complete

Figure 4-12 -  Dynamic Model Regression
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The modification required some work is would be described later in section 4.3.2. 

The steps for fitting the dynamic model are detailed in Figure 4-12.

It was necessary to confirm, if the dynamic model converged to the correct steady 

state values, and if not stage 1 would be run again. The steady state run of the 

dynamic model was done using validation data sets for the same grades regressed in 

step 2. Once these were confirmed, dynamic plant data was used for regressing the 

dynamic parameters of the model. It is worthwhile to mention here that only a certain 

number and not all dynamic parameters were regressed. As can be seen in Figure 

4-12, the measurement delays were regressed by adjusting the delays of time delay 

blocks and the time constants were regressed using the volume of three main heat 

exchangers:

o Feed gas coolers 

o Return gas coolers 

o Product coolers 

This is where the majority of mass hold up occurred.

4.4.4 Steady State Model -  Regressed Parameters

The final regressed parameters from stages 1 and 2 are given here. Table 4-6, to 

Table 4-9 show the regressed parameters for the reaction kinetics. Table 4-10 shows 

the regressed parameters for the PC-SAFT binary interaction. Table 3-14 showed the 

regressed gel correlation parameters. Section 3.11.2 gave the regressed coefficients 

for simulating the poor initiator mixing.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

Chapter 4 - First Principles Model Regression

Reaction Comp 1 Comp 2 Pre-Exp (s'1) Act-Energy (J/kmol) Act-Volum e (m3/km o!) Ref. Temp. (°C) Eff.

IN IT -D E C Initiator 1 3.200E+15 1.535E+08 0.021 1.00E+35 0.3

IN IT -D E C Initiator 2 1.540E+14 1.249E+08 0.01242 1.00E+35 0.4235

IN IT -D E C Initiator 3 3.420E+15 1.236E+08 0.025 1.00E+35 0.3634

IN IT -D E C Initiator 4 2.490E+16 1.502E+08 0.02141626 1.00E+35 0.5

C H A IN -IN I Ethylene 2.540E+08 3.530E+07 0.08 1.00E+35

C H A IN -IN I Vinyl Acetate 2.540E+08 3.530E+07 0.08 1.00E+35

C H A IN -IN I Propylene 2.540E+08 3.530E+07 0.08 1.00E+35

PRO PAG ATIO N Ethylene Ethylene 1.490E+08 2.852E+07 -0.0007072 1.00E+35

PR O PAG ATIO N Ethylene Vinyl Acetate 1.554E+08 3.011E+07 -0.0149104 1.00E+35

PRO PAG ATIO N Ethylene Propylene 1.794E+08 3.043E+07 -0.0150547 1.00E+35

PRO PAG ATIO N Vinyl Acetate Ethylene 1.224E+08 3.011E+07 -0.5742968 1.00E+35

PRO PAG ATIO N Vinyl Acetate Vinyl Acetate 1.490E+08 3.011E+07 -0.00001552 1.00E+35

PRO PAG ATIO N Vinyl Acetate Propylene 2.610E+08 4.250E+07 -0.0247567 1.00E+35

PRO PAG ATIO N Propylene Ethylene 1.436E+08 3.059E+07 -0.0426918 1.00E+35

PRO PAG ATIO N Propylene Vinyl Acetate 2.610E+08 4.250E+07 -0.0247567 1.00E+35

PRO PAG ATIO N Propylene Propylene 3.500E+08 4.240E+07 -0.02027 1.00E+35

C H A T -M O N Ethylene Ethylene 7.944E+05 4.250E+07 -0.0347 1.00E+35

C H A T -M O N Ethylene Vinyl Acetate 4.791E+07 3.758E+07 0.0073569 1.00E+35

C H A T -M O N Ethylene Propylene 9.094E+03 4.621E+07 -0.000019634 1.00E+35

C H A T -M O N Vinyl Acetate Ethylene 1.035E+04 1.754E+07 0.026419 1.00E+35

Table 4-6 -  Regressed Free Radical Kinetics 1
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Reaction Comp 1 Comp 2 Pre-Exp (s'1) Act-Energy (J/kmol) Act-Volume (m /kmol) Ref. Temp. ('

CHAT-MON Vinyl Acetate Vinyl Acetate 4.032E+05 4.630E+07 -0.01458 1.00E+35

CHAT-MON Vinyl Acetate Propylene 2.820E+05 4.630E+07 -0.0002491 1.00E+35

CHAT-MON Propylene Ethylene 4.254E+05 4.630E+07 -0.0002491 1.00E+35

CHAT-MON Propylene Vinyl Acetate 2.800E+05 4.630E+07 -0.0002491 1.00E+35

CHAT-MON Propylene Propylene 2.820E+05 4.630E+07 0.000241 1.00E+35

CHAT-AGENT Ethylene Acetone 6.562E+05 5.354E+07 -0.27115 1.00E+35

CHAT-AGENT Vinyl Acetate Acetone 2.079E+05 5.498E+07 0.000001371 1.00E+35

CHAT-AGENT Propylene Acetone 4.511E+04 5.498E+07 0.9862 1.00E+35

CHAT-POL Ethylene Ethylene 4.451E+07 1.243E+08 0.0060594 1.00E+35

CHAT-POL Ethylene Vinyl Acetate 3.452E+08 8.372E+07 0.021927 1.00E+35

CHAT-POL Ethylene Propylene 1.450E+08 2.889E+07 0.001641 1.00E+35

CHAT-POL Vinyl Acetate Ethylene 6.826E+04 1.311E+08 0.0040987 1.00E+35

CHAT-POL Vinyl Acetate Vinyl Acetate 7.465E+07 5.040E+07 0.005139 1.00E+35

CHAT-POL Vinyl Acetate Propylene 1.617E+08 5.040E+07 0.0044 l.OOE+35

CHAT-POL Propylene Ethylene 2.058E+07 5.040E+07 0.002205 1.00E+35

CHAT-POL Propylene Vinyl Acetate 8.730E+07 5.040E+07 0.0044 l.OOE+35

CHAT-POL Propylene Propylene 8.411E+07 5.040E+07 0.0044 l.OOE+35

B-SCISSION Ethylene 6.521E+07 1.143E+08 0.15305 1.00E+35

B-SCISSION Vinyl Acetate 3.073E+06 1.737E+08 2.2698E-06 1.00E+35

B-SCISSION Propylene 1.436E+11 4.891E+07 0.002061 l.OOE+35

Table 4-7 -  Regressed Free Radical Kinetics 2
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O

Reaction

TERM-DIS

TERM-DIS

TERM-DIS

TERM-DIS

TERM-DIS

TERM-DIS

TERM-DIS

TERM-DIS

TERM-DIS

TERM-COMB

TERM-COMB

TERM-COMB

TERM-COMB

TERM-COMB

TERM-COMB

TERM-COMB

TERM-COMB

TERM-COMB

SC-BRANCH

SC-BRANCH

Comp 1

Ethylene

Ethylene

Ethylene

Vinyl.

Vinyl.

Vinyl

icetate

icetate

icetate

Propylene

Propylene

Propylene

Ethylene

Ethylene

Ethylene

Vinyl

Vinyl

Vinyl

icetate

icetate

icetate

Propylene

Propylene

Propylene

Ethylene

Ethylene

Comp 2

Ethylene 

Vinyl Acetate 

Propylene 

Ethylene 

Vinyl Acetate 

Propylene 

Ethylene 

Vinyl Acetate 

Propylene 

Ethylene 

Vinyl Acetate 

Propylene 

Ethylene 

Vinyl Acetate 

Propylene 

Ethylene 

Vinyl Acetate 

Propylene 

Ethylene 

Vinyl Acetate

Pre-Exp (s'1) 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.610E+09 

3.360E+09 

3.360E+09

Act-Energy (J/kmol)

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.211E+06 

4.580E+07 

4.580E+07

Act-Volume (m /kmol)

0.01623

0.01623

0.01925

0.01623

0.01623

0.01623

0.01623

0.01623

0.01623

0.01623

0.01623

0.02146

0.01623

0.01623

0.01623

0.01623

0.01623

0.01341

-0.0235

-0.0235

Ref. Temp. (°C) 

l.OOE+35 

1.00E+35 

l.OOE+35 

l.OOE+35 

l.OOE+35 

1.00E+35 

l.OOE+35 

1.00E+35 

1.00E+35 

1.00E+35 

1.00E+35 

l.OOE+35 

1.00E+35 

l.OOE+35 

1.00E+35 

1.00E+35 

1.00E+35 

l.OOE+35 

1.00E+35 

l.OOE+35

Eff.

Table 4-8 -  Regressed Free Radical Kinetics 3
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O
Cn

Reaction

SC-BRANCH

SC-BRANCH

SC-BRANCH

SC-BRANCH

SC-BRANCH

SC-BRANCH

SC-BRANCH

Co

Ethy> 

Vinyl, 

Vinyl 

Vinyl. 

PrOj 

Pro, 

Prop_

inp 1

'lene

icetate

icetate

icetate

ipylene

ipylene

ylene

Comp 2

Propylene 

Ethylene 

Vinyl Acetate 

Propylene 

Ethylene 

Vinyl Acetate 

Propylene

Pre-Exp (s'1) 

2.550E+09 

3.360E+09 

3.360E+09 

2.550E+09 

2.550E+09 

2.550E+09 

6.930E+08

Act-Energy (J/kmol)

3.380E+07

4.580E+07

4.580E+07

4.580E+07

3.380E+07

4.580E+07

4.580E+07

Act-Volum e (m3/km ol) 

-0.0235 

-0.0235 

-0.0235 

-0.0235 

-0.0235 

-0.0235 

-0.0235

Ref. Temp. (°C) 

1.00E+35 

1.00E+35 

1.00E+35 

1.00E+35 

1.00E+35 

1.00E+35 

1.00E+35

Eff.

Table 4-9 -  Regressed Free Radical Kinetics 4

Component i EV/ L E V A E V A E2-SEG VA-SEG E2-SEG E2 EV A EVA V A E2

Component j PRO P SO LVENT ACETO NE E2 E2 VA-SEG PROP E2 V A PROP V A

0.550 55 -0.0186816 0.06355211 0.04 0.3 0.0287 -8.92E-02 -0.2571 9.42E-02 0.1 0.4485

0.627 56 0 0 0 0 0 -0.15766 8.78E-06 6.12E-06 0 -2.09E-06

s -0.790 79 0 0 0 0 0 -5.889 1.85E-05 6.06E-07 0 1.41E-05

d v 0 0 0 0 0 0 0 0 0 0 0

e .J 0 0 0 0 0 0 0 0 0 0 0

E2 -  Ethylene P

Refer to Table 3-14 and

Table 4-10 -  Regressed PC-SAFT Binary Interaction

ROP -  Propylene SEG -  Segment 

section 3.11.2 for the other steady state regressed parameters.
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4.5 Model Validation

Here the validation results for the reactor model, steady state full plant model and the 

dynamic model will be detailed.

4.5.1 Validation of the Steady State Model

Here the validation data for the steady state models will be detailed. As mentioned 

before the data for the steady state regression was obtained from averages of steady 

state operating periods. The same was done for the validation data sets. The operating 

periods for the regression and validation data sets were different. Since the final 

application of the model was for optimal grade transitions, the most critical variables 

required to be regressed were the melt index and percentage VA. Thus more 

emphasis was placed on these in the regression.

Figure 4-13 and Figure 4-14 show the validation results for the zone 4 temperatures 

and conversion for the eight grades regressed. The zone 4 temperature was floating 

for all grades. The zone 4 temperatures showed a better fit than the reactor 

conversion. This was because at this point thermodynamic VLE parameters were not 

regressed. Thus the gas to polymer separation was not accurate. The polymer stream 

leaving the model was used to calculate the reactor conversion for the model. 

Therefore the errors in this stream would have propagated to the conversion.

Figure 4-15 and Figure 4-16 show the validation results for the percentage VA and 

the melt index. The model showed excellent predictive ability for these two critical 

variables.

Figure 4-17 shows the validation results for all the critical variables for the full plant 

model. Note these are only the grades which were planned to be used in the dynamic 

model.
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4.5.2 Dynamic Model -  Regressed Parameters

The procedure described in Figure 4-12 was used to regress the parameters of the 

dynamic model. The regressed parameters are summarized in Table 4-11.

regressed parameter regression result'j
Feed Gas Coolers (m ) 4.34

•5
Product Cooler (m ) 2.78

Return Gas Cooler (m3) 9.44
-3

Low Pressure Recycle Cooler (m ) 5.06

Melt Index Measurement Time Delay (min.) 25

Percentage VA Measurement Time Delay (min.) 29.333

Table 4-11 -  Dynamic Model Regression Results
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4.5.3 Validation of the Dynamic Model

The dynamic model was validated using two methods. First, the general effects of the 

typical manipulated variables were documented (from conversations with the plant 

operators). It was then confirmed that the model gave a similar response. These are 

show in Table 4-12.

variable effect on mi
Reactor Pressure Reverse

Propylene Flow Direct

VA Flow Direct

Reclaim VA Flow Direct

Purge Flow Reverse

Zone 1 Temperature Direct

Zone 4 Temperature Direct

Table 4-12 -  Manipulated Variables Effect on Model

Then the data from a typical grade transition was used for validation. The dynamic 

validation comparison is shown in Figure 4-19. The regressed dynamic model 

showed an excellent fit to the actual plant data. The online MI measurement went 

offline at the end of the run so this was not shown. However, from the steady state 

validation showed previously, the steady state validation was excellent.
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4.6 Custom Modeling in Aspen Dynamics

There were some modifications required to be made to the standard modeling 

components available in Aspen Dynamics to allow simulation of the model. These 

modifications were implemented closely with Aspen Technology Inc.

4.6.1 Support for Vapour Phase Polymerization

The default CSTR in Aspen Plus was used. Then free radical kinetics was assigned to 

each CSTR. The phase for the reaction was specified as vapour, since the reactor 

contents are under supercritical conditions. When this work was started this feature 

however was not supported in Aspen Dynamics. This required modifying the core 

Polymers Plus thermodynamic relationships for Aspen Dynamics. Once this was 

done the free radical reactions could be executed in the vapour phase within Aspen 

Dynamics.

4.6.2 Dynamic Autoclave Modeling Using CSTR’s

The two main methods for solving a flow sheet are sequential modular or equation 

oriented. A sequential modular solver solves the flow sheet by sequentially solving 

each equation at a time. If required values are unknown, an initial guess is used. The 

solver iterates to eventually find a solution. It is a robust method, but can be time 

consuming, especially when there are recycle loops. The equation oriented method, 

solves the problem by simultaneously solving all of the flow sheet equations together. 

This method is faster and is well suited for dynamic modeling, because speed is 

required, as all the flow sheet equations must be solved at every time instant. 

However this method requires a square problem, i.e. number of equations should be 

equal to the number of variables, that way a unique solution can always be found.

Five CSTR’s in series were used to model the autoclave. The default configuration in 

Aspen Dynamic required that every CSTR operating in the vapour phase has its own 

pressure controller (which is useful for the standard CSTR). Of course, this was not 

actually the case for the autoclave. Each CSTR was used to simulate a different 

mixing region within the autoclave, but they should always operate at the same
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pressure. Thus the pressure controllers had to be removed. Because the Aspen 

Dynamics solver is “equation oriented”, the flow sheet was no longer square. Thus 

the governing equations for the mass flow leaving each for the CSTR’s which were 

no longer under pressure control were now required. Thus a relationship was built 

which forced a very small pressure drop between each CSTR. This governing 

equation is shown

Where

M z°”' represents the mass flow out of zone x 

k represents a constant 

Pz represents the pressure of zone x

Four of these equations were added and one pressure controller was used for the 

remaining CSTR. This required configuration the first time it was run. k for all 

equations was set to be free (set by the simulation solver). Then the pressures were 

set to fixed values (set by the user) and the pressure of each CSTR was set to less 

than the previous pressure by 0.01 kg/cm manually. The simulation was then 

initialized. This initialized the value of £ (usually a very large value, = le6 ) based on 

the mass flows leaving each CSTR in the steady state model. Then k for each 

equation was set to be fixed and the mass flow leaving all the CSTR’s except the last 

were set to be free. The flow leaving the last CSTR was set by the autoclave pressure 

controller. This forced a pressure to mass flow relationship for all the CSTRs. Thus 

all of them were running at approximately the same pressure and the flow leaving the 

last CSTR affects the flow leaving all CSTR’s and thus controls the pressure in each 

CSTR.

4.6.3 Dynamic Heat Exchangers

The standard heat exchanger model used did not include the dynamic mass 

accumulation. A more complex heat exchanger model is required for this. This would 

then require defining a cooling component stream, the heat capacity for both

(4.11)
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materials and the heat exchanger efficiency. The mass accumulation model from the 

complex model was modified for use within the simple heater exchanger model.

Heat 
T ransfer

Outlet
Volume

Inlet
Volume

Tin T out

Figure 4-20 -  Dynamic Heat Exchanger

Figure 4-20 shows the basic model of the heat exchanger. The model contains two 

theoretical volumes, which operate like two tanks. Each of these tanks has a 

theoretical level controller which keeps the tanks from overflowing. The outlet flow 

of each of the volumes is controlled by the level controller. This gives a good basic 

approximation to the dynamic heat exchanger and was used for every dynamic heat 

exchanger in the model.

4.7 Chapter Summary

This chapter detailed the model regression procedure. This task was not trivial, since 

the model contained a vast number of parameters which required regression. The 

results of the regression were given. These kinetic parameters were critical for the 

modeling of free radical polymerization. These can be transferred for use by other 

facilities interested in modeling free radical polymerization with similar monomers. 

The validation results were given for the steady state reactor, the steady state full 

plant model and the dynamic full plant model. The model showed an excellent fit 

with the plant data. The custom modeling required within Aspen Dynamics for 

modeling this process was also explained.
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A weak man has doubts before a decision, a strong man has them afterwards.

Karl Kraus (1874 - 1936)

Soft Sensor and Data Based

5.1 Introduction

The control of polymer quality has become increasingly important as the production 

of polymer grades has increased in quantity and diversity. An important quality 

variable of interest for a multi-grade production facility, such as AT Plastics, is the 

polymer melt index. On a typical polymerization plant there is an extruder 

downstream of the reactor. This chapter first outlines details on the use of the 

operating variables of such an extruder as an empirical sensor for the melt flow index. 

The results of this sensor will be used with several regularly sampled plant variables 

to build a multivariable model for the process. This model has several applications,

7 Portions of this chapter were presented at IF AC’s ADCHEM Symposium, April 2006, Gramado, 

Brazil, by Alleyne et al.
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including development of optimal grade transition strategies via implementation of 

online multivariable predictive control.

An empirical model was built in several stages. First a simple model was built which 

related the polymer’s melt index with the extruder pressure. After several 

modifications a model which also included the extruder’s speed and temperature as 

compensation variables plus a bias updating procedure were developed. The final bias 

updated model has been installed at the plant for over six (6) months and detects a 

change in the melt index nine (9) minutes before the online instrument.

This chapter is organized as follows. First the background on the soft sensor will be 

explained, followed by the details on the design of the soft sensor. This soft sensor 

was then used to identify a linear multivariable plant model for a particular grade 

change. Before the system identification could be done data pre-processing was 

required.. Subspace system identification was used to successfully identify the 

multivariable plant model. The procedure followed in the identification of the state 

space system model will be discussed. The chapter concludes with validation results 

of the state space model to check for the adequacy of the model.

5.1.1 Soft Sensor Motivation

The increased reliance on polymers with specifically tailored properties for different 

applications has been documented extensively (Alperowicz 2005). Previously the 

specifications for polymer grades and products were very relaxed. However, with the 

advent of much larger capacity plants; many smaller plants are moving from 

commodity to speciality polymers with the prospect of higher profit margins. These 

products however have tighter specifications. Thus variability which was acceptable 

before is no longer tolerable. This implies online properties of polymers need to be 

controlled more tightly. The more diverse, lower volume product requirements 

needed by certain customers forces the product specification required from the plant 

to change regularly. Therefore reliable online polymer quality measurements are 

critical for making these product changes efficiently.
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The online measurement for the melt index was determined by an online rheometer. 

This instrument gave an update every six (6) minutes and was subject to transport 

lags. These two problems were not significant as there are system identification 

algorithms which can compensate for these issues. However, a more significant issue, 

because of the large range of melt index measurement required, was that the 

rheometer used several models and die sizes. Each die has a manufacturer’s 

recommended pressure range for which the readings are accurate. However, once the 

instrument gets close to any of the limits, i.e. the polymer is too hard or soft for the 

particular die and measurement temperature, the readings become unreliable. This is 

acceptable if the plant is running a grade campaign which does not have a significant 

change in melt index. Therefore, the goal of modelling the grade transitions was 

severely hampered because the rheometer data during the grade transitions were 

plagued with issues such as the unit having to be switched off or becoming 

unreliable, as it needed die changes or gave inaccurate results because it was at the 

end of its calibrated range. It was clear that some new measurement device or sensor 

was required to give online polymer melt index values.

5.1.2 Polymer Soft Sensors

The measurement of polymer quality through the use of indirect variables (soft 

sensors) has been the subject of much research. McAuley and MacGregor 1991 

developed a soft sensor for the UNIPOL polymerization process; this was based on a 

simplified first principles model and the available plant measurements such as reactor 

feeds and compositions. This soft sensor used a recursive estimation technique to 

update model parameters. Ohshima and Tanigaki 2000 gave a comprehensive review 

of property estimation methods published for different polymerization processes. The 

typical design of these soft sensors involves building relationships between the 

process control variables, such as the reactor, pressure and temperature and the 

polymer property to be controlled. The method of building this relationship typically 

involves methods such as linear observers (Lines et al. 1993), extended Kalman 

Filters (Scali et al. 1997), nonlinear parameter estimation (Kiparissides et al. 1996),
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neural networks (Chan and Nascimento 1994) and partial least squares (Han et al. 

2005). Here a unique approach is taken; the product from the polymerization reactor 

is extruded by an online extruder, where many process variables are monitored.

Watari et al. 2004 and Nagata et al. 2000 independently used measurements from an 

extruder to estimate the properties of molten polyethylene. However, their methods 

required the installation of a fibre optic sensor at the end of the extruder to obtain 

NIR (near infra-red) readings. The method proposed here uses raw data which is 

commonly measured and monitored on extruders to give an indication of the melt 

index of the polymer produced in the reactor.

5.2 The Extruder

A schematic of the extruder is shown in Figure 5-1. The extruder is made up of a 

screw in a barrel. The extruder applies a controlled temperature gradient and pressure 

to molten polymer which is forced through its annulus using the screw then finally 

through a die. This energy transfer to the polymer causes a change in the properties of 

the polymer. The extruder’s screw is driven by a motor. The motor’s frequency is 

modulated (thus screw speed) to maintain a constant level in the extruder feed 

hopper. Side streams are usually added to the extruder where additives can be mixed 

with the molten polymer in the extruder. Several pressures and temperatures were 

monitored along the extruder barrel. There is a mesh screen pack between the last two 

pressure sensors on the extruder. This mesh is very fine and becomes clogged with 

solids and gel particles over time. This causes the extruder variables, predominantly 

the upstream pressure, to change even if the flow rate and other conditions are 

constant. All the pressures monitored on the extruder drift due to annulus and die 

fouling; while the pressures just before the screen pack have an even more significant 

drift because the screen pack becomes clogged as mentioned before. The screen pack 

is changed once it becomes excessively clogged and different screen pack mesh sizes 

are sometimes used, based on the product being produced.
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Figure 5-1 -  Extruder Schematic
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After the extruder there is a pelletizer. The polymer pellets are dried, and then pass 

through a hopper before a side stream is used to measure the melt index with the 

online rheometer.

The extruder is down stream of the reactor thus changes in the melt index of the 

polymer would occur first at the reactor and its effect mirrored at the extruder. 

Clearly, the online rheometer being down stream of the extruder detects changes in 

the melt index much later than the monitored variables at the extruder would. This 

was due to the transport delays and the sample processing time of the online 

instrument.

5.3 Soft Sensor Model Structure

The steps in building the soft sensor for the melt index are detailed here. It was 

observed that the plant operators relied on the extruder pressure to give them an 

indication of the melt index of the polymer whenever the online reading was offline.

5.3.1 Variable Correlation and Lags

All of the variables monitored on the extruder were correlated with the polymer’s 

melt index. It has been shown (McAuley and MacGregor 1991) that the melt index 

has significant log-linear relationship with the plant process variables such as 

temperature and pressure. The same relationship was noticed in the data reported here 

and therefore log-transformed variables were used in the analysis. Table 5-1 shows a 

summary of the correlation of the extruder variables with the log of the melt index. 

The variable used for fitting and validation of the soft sensor was the online 

rheometer. It was expected that the online analyzer providing these readings would be 

delayed (explained in 5.2).

Thus a delay estimation algorithm and cross-validation via visual inspection were 

used to estimate the time delays between all independent variables and the online 

reading. The lags between the extruder variables and the online rheometer are also 

shown in Table 5-1. The cross correlation between the variables was found using 

standard correlation analysis. The data set used to calculate the correlation comprised
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16340 one minute samples form fifteen (15) different grades with melt indices 

ranging from 1.7 to 870 gm/min.

variable correlation lag (MIN.)
PI-01 -0.742 13.92

PI-02 -0.799 13.50

PI-03 -0.881 12.08

PI-04 -0.712 10.08

PI-05 -0.917 10.00

PI-06 -0.981 9.92

TI-01 -0.887 7.83

TI-02 -0.705 5.33

TI-03 -0.947 4.91

SI-01 0.922 10.25

11-01 -0.863 10.33

Table 5-1 - Extruder variables correlation and lag with log o f  rheometer measured

melt index

Figure 5-2 shows one of the plots used to determine the time delay between the 

signals based on visual inspection. The most significant deviations in the data (large 

peaks) were used to visually confirm the time delay.
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Figure 5-2 -  Visual Inspection Plot fo r Time Delay

The delay estimation algorithm used was defined by (Moddemeijer 1988). It is a 

relatively old algorithm, it is available online and it was simple to use. The algorithm 

requires no a priori information about the signals; however, it assumes the signals to 

be stochastic and stationary. These assumptions are not fully true for the signals being 

considered here. As mentioned before, the extruder variables drift with time. 

However, over relatively short times, they can be considered stationary. This method 

involves splitting the two signals into a past and future vector. Then the capture of 

information between the concatenated past and future vectors is calculated. A 

function which continuously splits the data series into the past and future vectors is 

used to find which split gives the maximum common information. The capture of 

information is stored in a variable pair called the criterion. The maximum value of the
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criterion gives the number of sample times which correspond to the estimated time 

delay between the two signals.

Figure 5-3 shows the criterion plotted against sample intervals for two of the extruder 

variables (sample time = 5 seconds).
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= 9.9 min. ------------
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Figure 5-3 -  Delay Estimation Algorithm for two Extruder Variables 

5.3.2 Model Disturbances

The main disturbances affecting the extruder variables are the screen pack fouling 

and cooler fouling. The typical disturbances caused by these are shown in Figure 5-4. 

This figure clearly shows that a screen pack change causes a significant change in the 

operating pressure for PI-05. A cooler cook event causes a change in the pressure and 

melt index. However the steady state melt index after the event is the same while the 

corresponding steady state pressures are not. Hence all the extruder pressures drift 

due to fouling and only the pressure upstream of the screen pack is affected by screen
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pack fouling. The screen pack mesh size can sometimes be changed based on the 

grade being run. This causes inconsistencies in the correlation.

Upstream of Screen Pack (PI-05) 
Downstream of Screen Pack (PI-06) 
Melt Index (AI-01)

140

120

100

<D
3
(/>
0)
d)

Cooler Cook - 60

CL
40

40
Screen Pack Change

-20
0 3000 6000 9000 12000 15000 18000

Sample (Ts = 5 sec.)

Figure 5-4 -  Disturbances effecting Extruder Variables

The most important variables were chosen based on the physics and rheology of the 

extruder and the correlation. As described, the melt index range for products 

produced by this facility is very large. Initially, one simple model was developed 

which covered the entire product range. However, during events such as cooler cooks 

and grade changes, the melt index for each grade showed an exaggerated change. 

Thus, a speed and temperature modified model was developed.
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5.3.3 The Basic Model

The selection of plant variables which comprise the soft sensor was based on the 

correlation with the melt index, time delays and lack of disturbances. The model was 

based on Equation (5.1).

a, b and a  were constants found using regression. These values provided 

information about the relative behaviour of the melt index (increasing or decreasing 

and rate of change). However, the absolute value was found to contain errors; due to 

the speed of the extruder being controlled by the hopper level controller, the extruder 

barrel temperature being changed based on the grade and the fouling of the coolers 

and screen pack.

5.3.4 Speed and Temperature Compensated Model.

This model was based on equation (5.1) but includes some more information about 

the physics of the extruder. Equation (5.3) shows the basis of the model.

where

MIr s is the melt index at a reference temperature, 7’ and reference speed Sr .

PT s is the pressure at a reference temperature, Tr and reference speed Sr .

In this application the extruder can be viewed as a pseudo melt indexer. Within a 

typical melt index instrument, the melt index is measured by applying a fixed 

pressure to the polymer at a fixed temperature and the polymer is forced through a 

die. The mass of polymer which flows through the die in a fixed time interval is the

where

P is the pressure at PI-06 (the variable with the highest correlation). 

MI is the melt index and the form of MI is

(5.2)

(5.3)
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melt index. With the extruder, the pressure applied to the polymer depends on the 

extruder speed and temperature. This gives the relationship shown in Equation (5.4).

MITS = f { P TS) (5.4)

where

MIt s is the melt index at a operating temperature, T and operating speed S .

PT s is the pressure at a operating temperature, T and operating speed S .

This equation can be modified to give Equation (5.5); which compensates for the 

change in temperature and speed.

M Ir„s, = f ( r T,s) + f ( T - T , )  + f ( S - S r) (5.5)

Equation (5.5) reports a melt index similar to that measured by the rheometer.

The relationships internal to these functions are not exactly known, but based on the 

high correlations observed. A linear compensation for the speed was added. The 

relationship which included the speed compensation was of the form shown in 

Equation (5.6).

MITA = exp(a + b(Pa))(c + d ( S )) (5.6)

This was expressed in the form shown in equation (5.7).

M/rs  = exp(a + b(S)  + c(SPfi) + d ( P a)) (5.7)

The relationship shown in equation (5.8) was found after the initial regression.

P = ~a  (5.8)

Thus equation (5.9).
f \

MIts = exp ci-\-b (S  ) + c O

p a + d ( p a)
V v "  ) J

Where a, b, c, d  and a  are constants fit using least squares regression.

A relationship between the melt index and temperature (TI-03) was found by 

manipulation of the variables and observing the relationships which gave the highest 

correlation. The relationship found is shown in equation (5.10).

M 7 cc^ L ( 5 .1 0 )
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Thus equation (5.9) was extended to equation (5.11) which included both speed and 

temperature compensation.

f  S 'exp a + b(S) + <

M1TZ =-
p a

\ r  J
+ d ( P a)

(5.11)

5.4 Nonlinear Least Squares Regression

The model described by equation (5.11) was nonlinear. Therefore non-linear 

regression was used to regress the parameters of the soft sensor. Given that we have 

a model structure and data available for a large number of different products, the 

model’s parameters were regressed using the non linear least squares solver in 

Matlab’s optimization tool box. The solver required the function to be defined as the 

difference between the measured values and calculated values from the model. The 

function defined can be seen in equation (5.12).

exp a + h(S'!) + c '_S_'

v * r ,
+ d(PT)

f i {S,P,T)  = MIi
1i

(5.12)

Where i represents the sample index and Mlj represents each sample of the

measured melt index.

This can be expressed as:

■A(x)
/2(x)

F(x) = / 3(x) (5.13)

M

M x \

The objective function was formulated as shown in equation (5.14).

<5-14)
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This algorithm uses trust region optimization which was briefly described in section 

4.4.1. Having a suitable initial guess was very important for the convergence of this 

problem. The regressed parameters for the smaller models such as equation (5.2) 

were used as initial guesses in the final model. For the unknown parameters a best 

guess was used.

During the regression process, the regressed parameters were found to favour the 

larger dependent variable values (the model fit well for large MI and not as well for 

small MI). Thus equation (5.14) was modified to the weighted least squares 

regression form. Three main regression schemes were considered.

o Relative Weighting -  Here the difference is weighted by the dependent 

variable, this is shown in equation (5.15).

Where

y, represents the dependent variable 

yModel represents the model calculated dependent variable 

o Weighting by the dependent variable -  Here the difference is weighted by the 

square root of the dependent variable, this is shown in equation (5.16).

o Weighting by the variance -  Here the difference is weighted by the standard 

deviation, this is shown in equation (5.17).

The variance of the measurements increased as the value of the measurement 

increased. Estimating the variance would mean splitting the data set into different 

regions and finding the variance for each. This could lead to additional complications. 

The use of ‘normalized’ variables as shown in equation (5.15) and (5.16) proved to be 

suitable and required no additional estimation. The weighting scheme defined in

^    T i yM odel (5.15)

(5.16)

yM odel

<7
(5.17)
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equation (5.15) was eventually used. Thus equation (5.12) was modified to give 

equation (5.18).

exp
ML

a + b^S^ + c '_S_'
p a

\  i

+ d( r?)

ft {s , p ,t ) = -
MI,

(5.18)

5.5 Bias Updating of the Model

The compensated model which was described previously was found to operate well 

for a certain period of time and at certain grades, then drifting occurred. This was 

attributed to the significant changes in the extruder operating conditions due to 

fouling. In order to compensate for this characteristic of the process a bias updating 

scheme for the model was implemented. Here a unique situation was encountered, 

because there were two variables which were available for potentially calculating the 

bias. These were the laboratory values which were available every two to three hours 

and the online instrument. Each one of these possessed inherent problems which 

required the development of a logical procedure to make an intelligent selection about 

the bias which should be applied.

5.5.1 Online Analyzer Bias

The online bias was calculated every half hour based on average values over the last 

half hour. Equation (5.19) shows the method used for calculating the new aCalc.

aak  = ln(M /,,g j - d f c )  (5.19)
V A v s  y

Where

MIAvg represents the average of the online melt index over the last half hour

Ta represents the average of the extruder die plate temperature over the last half

hour

SA represents the average of the extruder screw speed over the last half hour
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PAvg represents the average of the extruder die plate pressure over the last half hour

The bias which was calculated in equation (5.20) was stored in the historian.

biaso„i,ne= acaic-a (5-20)

The bias calculated in equation (5.20) is checked to ensure that it lies within 

reasonable bounds, as shown below.

-1.5 < bias0nljne <1.5 (5.21)

It is important to note that the bias is only applied to one of the parameters in the soft 

sensor model. This is because the bias is only attempting to compensate for offset 

errors caused by fouling.

5.5.2 Laboratory Bias

The laboratory bias was calculated when a new laboratory value was available. The 

ODBC connection to the LIMS (see section 2.3) was used to store the test results 

from the laboratory in the historian. Each of these laboratory samples is called a 

SPOT at the plant. This term will be used here as well to refer to the laboratory 

results. Equation (5.22) shows the method used for calculating the new aSPOT.

( S
asroT= i a - j j & -  -d (P ;p0T) (5.22)

V SPOT  7

Where

MI spot represents the value of the online melt index at the lat SPOT time 

T S p o t  represents the value of the extruder die plate temperature at the lat SPOT time 

SSP0T represents the value of the extruder screw speed at the lat SPOT time 

PSPoT represents the value of the extruder die plate pressure at the lat SPOT time 

The bias which was calculated in equation (5.23) was stored in the historian.

biasSPOT — dspot ^  (5.23)

The condition in equation (5.24) was used to reject clearly erroneous SPOTs from 

causing an incorrect update.

abs{aSPOT - a ) >  1.5xcra (5.24)
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Where

a represents the average a over the last four hours 

o a represents the standard deviation of a over the last four hours

5.5.3 Unified Bias Update

The online bias and the laboratory bias both have situations where each is more 

applicable. The laboratory melt index reading is considered to be accurate and the 

online instrument is usually calibrated to meet it. Therefore when a new value is 

available from the laboratory it would be ideal to use it to update the model. 

However, the laboratory values are available infrequently, generally every two hours 

or longer. The online reading is always available (unless there is some fault or change 

in the instrument’s operating conditions). This value can give valuable information on 

the bias when there has not been a SPOT for a significant period of time. Because 

both the online and SPOT bias contain valuable information, a scheme to combine 

them into a unified bias update was designed. This scheme was based on the integrity 

of the both pieces of data. When a SPOT has just been received from the laboratory, 

its integrity is considered to be high, significantly higher than the online reading. 

However, as time goes on, the SPOT’s integrity decreases and eventually the online 

reading would have higher integrity, particularly if the new spot has not been 

received for a significant period of time. There was also the need to make adjustments 

to the bias only when needed; this would allow the soft sensor to be less susceptible 

to discontinuities (unnecessary changes in bias).

A weighted averaging scheme based on time was used for combining the two bias 

values mentioned before. The time since the last SPOT was calculated as shown in 

equation (5.25)

=  ^Now ^  SPOT (5.25)

Where

tA represents the time since the last SPOT 

tNow represents the current time
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tSPOT represents the time of the last SPOT

The time since the last SPOT was used in equation (5.26) to find the time weighting 

factor y3.

P -  t 1- ^ - 4 ) )  ( 5 .2 6 )

Where ft represents the time weighting factor. Figure 5-5 shows f t ’s behavior as the 

SPOT gets older.

Time Weighting Factor
0.6 -

eo.

2 80 1 3 4 6 75

Time Since Last SPOT (Hrs.)

Figure 5-5 -  Time Weighting factor for Bias

The unified bias is calculated by using f  to find the time weighted average of the 

bias values as shown in equation (5.27).

bias = (1 -  p)biasQnlme + fibiasSPOT (5.27)

It can be seen that once the SPOT is less than two hours old the value of the bias was 

approximately the value calculated from the SPOT. As the SPOT gets older than two
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hours the value begins tending towards the bias calculated from the online

measurement.

After implementation it was noticed that the bias did not change significantly during 

steady state operation. Therefore a simple mean change detection algorithm was used 

to detect a sustained change in the mean of the SPOT. Only when this change was

biasNew represents the average bias over the last four hours

bias0ld represents the average bias between eight and four hours ago

crBias represents the standard deviation of the bias over the last four hours

kT represents a tuning factor which was set to, 2.1, for acceptable updates

Once the bias update was accepted, the bias calculated in equation (5.27) was used to 

calculate the parameter a in the model based on

detected would the bias be updated. A bias update was done only if the condition in 

equation (5.28) is met.

Where

a C a l c = a ~ h i a S (5.29)

Equation (5.30) shows how aCalc was used to calculate the new melt index.

MI, (5.30)Bias T

Figure 5-6 shows the flow sheet of the procedure developed for implementing the 

unified bias updating scheme.
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Figure 5-6 — Bias updating flow sheet (30 min. execution period)
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5.6 Soft Sensor Validation

The model with and without the temperature compensation are shown in Figure 5-7. 

It was noticed that without the temperature compensation there was a significant 

overshoot during the dynamic periods (such as cooler cook events and grade 

transitions) and the model was more susceptible to fouling errors. The temperature 

compensation alleviated the majority of the overshoot and some of the offset due to 

fouling; this is as shown during a typical cooler cook in Figure 5-7.

AI-01
Ml(with Speed Compensation)
Ml(with Speed and Temperature Compensation)

25

20

09:00:00 10 :00:00 11 :00:00 1 2 :00:00
Time

Figure 5-7 -  Soft Sensor during a Cooler Cook Event

The model was modified during the fitting process. This included lagging the 

independent variables to take advantage of the time delay information found 

previously in Table 5-1. Lagging of the independent variables improved the fit during
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the non-liner least squares regression. However, upon implementation, it was found 

that using the lagged independent variables did not give any significant advantage 

and actually the predictive ability of the model was lost. Because the model was for 

the extruder which was upstream of the online instrument, lagging the variables so 

the regression with the online instrument was improved meant we were inserting 

additional time delay into the model. The implemented model used the most current 

data available from all independent variables and gave a value for the melt index nine 

(9) minutes ahead of the online rheometer.

1000

900

800

700

600

500 -

AI-01
S and T Comp. Model

400 -

300 I— 1— 1— 1— i— 1— 1— 1— i— 1— 1— '— i— 1— 
18:00:00 20:00:00 22:00:00 00:00:00

Time

Figure 5-8 -  S and T Compensated Model Dynamic Validation Plot

Figure 5-8 shows the validation data for a dynamic run. It can be seen the model 

captured the dynamics of the melt index change well.
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Figure 5-9 - S and T Compensated Model Validation Plot (several grades)

Figure 5-9 shows the validation data for the model. It can be seen the model showed 

an excellent fit for the full range of grades produced by the plant (these products were 

produced over a four month period).

Figure 5-10 shows a snapshot of the implemented soft sensor over one (1) day, which 

included a grade change. It can be seen that the soft sensor with the bias update gave 

an accurate representation of the MI of the product produced by the reactor. The bias 

from the online instrument and those calculated from the SPOTs are also shown. 

These typically follow similar trends, once the online instrument is operating 

correctly.

/ y45 line S /

^  V  

/ /

/ /  R2= 0 .9 9 7

a /
y Y

•  Validation Data Set 
Linear Regression
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5.7 The State Space Model

5.7.1 Introduction

Chapter 3 and 4 contained the details of a physio-chemical model. This was found to 

be a time consuming process. A soft sensor for the main quality variable was 

developed and implemented. A useful application for this soft sensor was its use in 

the subsequent identification of a lumped, discrete time, linear, time invariant, state 

space model of the process. This type of model could be used for implementing 

predictive control using several commercial packages. From the first principles work 

done before, the actual plant model is known to be non-linear. However, linear 

models may be able to capture the process dynamics, while running at a particular 

grade or between specific grade transitions. Before an identification exercise is 

undertaken, one should ensure that the data set contains persistently exciting inputs 

(Ljung 1987; Soderstrom and Stoica 1989). Here we were mostly interested in 

modeling the grade transition periods. These happened frequently and also required 

significant changes in the plant’s operation. Thus there was a large amount of 

naturally persistently exciting data available for identification. However, as was 

evident from the first principles modeling, this system contained many non linear 

components. Also the changes made by the operators are usually performed 

simultaneously. Thus, the already correlated manipulated variables of the process 

were being excited simultaneously. This presents a problem for most typical S1SO 

and some MIMO identification algorithms. Thus an identification algorithm capable 

of identifying a multivariate model, with multiple simultaneous excitation signals was 

required. The subspace method has proven to be an excellent algorithm for handling 

such problems (Favoreel et al. 2000; Juricek et al. 2001; Juricek et al. 2005). 

Therefore this algorithm was used for identification of the model. The general state 

space model is comprised of a set of difference equations, of the form,

(5.31)

y* = Cx* +Du* + v* (5.32)

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 - Soft Sensor and Data Based Model

Where x is the (nx x l) vector of state variables, u is the (nux l) vector of measured 

inputs, y is the {ny x l) vector of measured outputs, w is the (nxx l) vector of 

process noise and v is the (' ny x l) vector of measurement noise.

Figure 5-11 shows the block diagram for the state space model which was identified 

using a subspace identification algorithm.

w

( ^ )  Represents measured signals 

Figure 5-11 -  Block Diagram o f State Space Model (Cock and Moor 2003)

5.7.2 Overview of Subspace Identification

This is a relatively new method of system identification. There are several 

implementations of this algorithm. Here the N4SID implementation in MATLAB was 

used. This was developed by Van Overschee and De Moor 1994 and has its 

foundations in linear systems theory.

For subspace identification the state vector is defined as a liner combination of past 

inputs and outputs, by equation (5.33)

= JP* (5-33)

Where,
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P* = [U*-PL ’ n k - N ’ y*-pL , y k_N f  (5.34)

The dimension of p t is the number of lags, N  .

The state vector, \ k is not specified a-priori and is computed from the input-output

data. The calculation of J  for N4SID distinguishes this algorithm from other 

implementations. Here J  is calculated from a series of linear algebraic arguments 

which can be derived using successive back substitutions of the original state space 

equations. Once J  is determined the state space matrices can be estimated using 

linear least squares regression. The details of the mathematical derivations of 

subspace methods will not be derived here since this is not the focus of this research. 

This information can be found in several publications and books.

The implementation of the subspace identification algorithm is also very attractive. It 

is conceptually straight forward and thus leads to user friendly software 

implementations (Cock and Moor 2003). For the N4SID implementation the data pre

processing must be done by the user. Once this is done the user is not required to 

modify any highly technical or theoretical parameters. The parameters which were 

required to be set were the system order and delay (if desired).

5.7.3 Data Pre-processing

Several similar grade transitions were used to build the state space model. The steps 

outlined in Figure 5-12 were followed.

Pre-processing

Verify no 
bad data

Collect
Data

Normalize
data

Identify
modelrequired

variables

Validate
model

Figure 5-12 -  Data Based Model Identification Steps

o The collection of data involved the acquisition of uncompressed process 

variables from the historian.
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o To verify that the data sets contained no bad data, plots for the data sets were

inspected to ensure there was no missing or inconsistent data. The data was 

split into two portions one was an identification data set (75%) and the other a 

validation data set (25%). 

o From the soft sensor work described previously it was known that logarithmic

transformation on the melt index gave a linear relationship with plant 

variables. Therefore the melt index variable in the data set (one of the output 

variables -  this was the soft sensor reading) was transformed with a 

logarithmic transformation, 

o Each of the process variables was stored with the engineering units scale used

on the plant. Initially this data was used directly to identify the model. This 

was a very challenging process and the models generated did not capture the 

dynamics of the plant well. It was found that once the variables were 

normalized the identification process gave much better results. Each of the 

variables were scaled to zero mean and unit variance as shown in equation 

(5.35).

* w = —  (5.35)
<7

Where,

xscaied represents the normalized variable which was used for identification 

x represents the raw plant variable

x represents the mean of the variable calculated from the full data set 

<7 represents the standard deviation of the variable calculated from the full 

data set

The mean and standard deviation were calculated using both the training and 

validation data.
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5.7.4 The Identified Model

The schematic of the model which was identified is shown in Figure 5-13. This 

model contained thirteen (13) inputs and two outputs. Three grade transition data sets 

were used to identify and one to validate the model.

These grade transitions were similar, the specifications were:

Start MI Target: 400 gm/lOmin. Start VA Target: 28 %

End MI Target: 878.5 gm/lOmin. End VA Target: 28 %

Inputs

R eactor P re ssu re  - 
Ethylene Flow - 

VA Flow- 
Feed G as 1A-1 Tem p. - 

Feed  G as 1A-2 Tem p. - 
Feed  G as 1A-3 Tem p. - 

F eed  G as 1B Tem p. - 
Zone 1A Tem p. - 
Zone 1B Tem p. - 

Zone 2 Tem p. - 
Zone 3 Tem p. - 
Zone 4 Tem p. - 

Purge Flow -

State Space
Model

Outputs

Melt Index

-► % VA

Figure 5-13 -  Schematic o f the Plant Model

Some details on the data sets used for identification and validation are given in Table 

5-2

Data SET Number of samples sample interval (sec.)
ID-DATA1 330 60

ID-DATA2 494 60

ID-DATA3 469 60

VAL-DATA 233 60

Table 5-2 -  Identification and Validation Data Set Details
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Modeling Time Delay

Significant time delays can cause erroneous identification of the subspace model 

(Overschee and Moor 1996). The time delays for this model were mostly due to 

instrument measurement delay and were insignificant compared to the time constant 

of the loops. Thus the dime delay was assumed to be zero.

Model Order

It was known from the first principles modeling that the model contains over one 

hundred (100) states and its order is actually very high. However, here we were 

looking for a reduced order approximation, which will not cover the full plant 

operation, but possesses predictive ability for the particular grade change being 

considered. The model order was selected based on trial and error. Several orders 

from two (2) to ten (10) were all identified. It was noticed that there was no longer a 

significant decrease in the prediction error after a model order of four (4). And 

actually for higher orders such as six (6) and higher, noise in the data was actually 

being identified as part of the process model. This caused the validation results to be 

very erratic and the prediction errors increased. A model order of four (4) was used 

for the final model.

5.7.5 Validation of the State Space Model

The soft sensor was used as the measured variable for identification and validation of 

the melt index. There was little excitation of the percentage VA components of the 

model, since the start and target grades specifications were the same. Figure 5-14, 

Figure 5-15 and Figure 5-16 show the plots of the validation data for different 

prediction horizons. While, Figure 5-17 and Figure 5-17 show the auto-correlation for 

the melt index and the cross-correlation of the melt index with pressure and propylene 

flow.
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Fit: 85%

0.5
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-0.5
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Predicted

12000 140000 2000 4000 6000 8000 10000
Time (sec.)

Figure 5 -14 - State Space Model Validation (<x> step ahead prediction horizon)

Fit: 93.82%

0.5

2
73
CDN
To

-0.5oz Actual
Predicted

4000 6000 8000 10000 12000 140000 2000
Time (sec.)

Figure 5-15 -  State Space Model Validation (5 steps ahead prediction horizon)
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Fit: 83.17%

0.5
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140000 2000 4000 6000 8000 10000 12000
Time (sec.)

Figure 5-16-  State Space Model Validation (20 steps ahead prediction horizon)

Autocorrelation of residuals for output ln(Mlc)
0.5

-0.5
-20 -15 -10

Cross corrfor input PRESSURE and output ln(Mlc) resids

0.5

-0.5
-20 -15 -10

Samples

Figure 5-17 -  Pressure and ln(MI) model correlation

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 - Soft Sensor and Data Based Model

Autocorrelation of residuals for output ln(Mlc)

0.5

-0.5
-20 -15 -10 -5 0 10 15 205

Cross corr for input PROPYLENE FLOW and output ln(Mlc) resids

0.5
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-15 -10 •5-20 0 5 10 15 20

Samples

Figure 5-18 -  Propylene Flow and ln(MI) model correlation
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It can be seen that the model possessed excellent predictive ability. The cross 

correlation and auto correlation plots lie within the bounds for the critical variables. 

This indicates overall the model captures the majority of the dynamics of the process 

for the product change analysed. If this model were implemented using a 

multivariable predictive controller Table 5-3 shows the suggested controller 

configuration.

Variable control assignment
Reactor Pressure Manipulated

Ethylene Flow Measured Disturbance

VA Flow Manipulated

Feed Gas 1A-1 Temperature Measured Disturbance

Feed Gas 1A-2 Temperature Measured Disturbance

Feed Gas 1 A-3 Temperature Measured Disturbance

Feed Gas IB Temperature Measured Disturbance

Zone 1A Temperature Manipulated

Zone IB Temperature Manipulated

Zone 2 Temperature Manipulated

Zone 3 Temperature Measured Disturbance

Zone 4 Temperature Measured Disturbance

Purge Flow Manipulated

MI Controlled

VA Controlled

Table 5-3 -  Control Scheme for the State Space Model
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5.8 Chapter Summary

This chapter covered the work done on the development of an extruder based soft 

sensor, its implementation and an application. The process variables monitored on the 

plant’s online extruder were used to build a model to predict the melt index. A unified 

bias updating scheme was developed which used laboratory information and an 

online reading to do corrections of the soft sensor. The soft sensor has been installed 

at the plant for over six months and indicates a change in melt index nine (9) minutes 

before the online instrument (see the appendix for a seven (7) day plot of the soft 

sensor). The soft sensor reading was applied to build a data based state space model 

which showed excellent validation results. This developed model can be used for 

several control and monitoring applications.
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Mediocrity knows nothing higher than itself, but talent instantly recognizes genius.

Sir Arthur Conan Doyle (1859 -  1930)

Dynamic Optimization, 

Results and Plant 

Implementation

6.1 Introduction

Optimal grade transition strategies for polymerization manufacturing are of crucial 

importance to polymer manufacturing plants. This is because of the wide variety of 

polymer products with tailored properties required to be produced by polymerization 

facilities (see Chapter 1). The majority of the product produced by the polymerization 

plant can be sold; this is unless the properties are totally unacceptable. However, the 

product which falls within the tightest specification bands set by the client are usually 

sold for premium prices. The difference in price between prime product and non
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prime for the process considered here is in the range of 14 cents per kilogram. This is 

a significant amount for a plant which produces 160 tonnes per day. This can lead to 

the realization of a significant amount of profit if more of the man product is within 

the prime specifications. One major reason for the product not being within the prime 

specification is off grade material produced during the grade transition (product 

change) period. As plants seek to maximize the profit from every kilogram of 

manufactured product the amount of ‘on-spec’ product must be increased. At the AT 

Plastics plant and most other commercial facilities the main method used for grade 

transition is to follow a set 'recipe' based on past 'trial and error 'operating experience. 

These transitions involve little process model information and therefore are sub- 

optimal at best. Experienced operators are allowed to push the limits of what they 

consider to be safe operation to find and establish new plant standards for common 

grade transitions. This can cause significant non prime product and even un-sellable 

product if the properties of the product produced are completely out of sellable 

specifications. More importantly this can lead to potentially unsafe operating 

conditions on the plant. The properties of the polymer produced by the plant are a 

combination of the instantaneous properties produced. Thus manufacturing product 

during the product change period which is very far out of the specifications to 

accommodate a fast grade change can cause the full batch of product to fall out of 

sellable specifications. Thus the optimal grade transition problem becomes more 

complex. The best grade transitions typically would be comprised of a compromise 

between safety, the amount of off-grade product manufactured and the constraints on 

how far the product specifications can be violated to allow the product change to take 

place quickly.

This problem is common to polymer industries world wide. Therefore as global 

competitiveness increases, polymer plants are seeking more detailed and proven 

methods for reducing the off grade product manufactured during product change 

periods. As such, there are many literature sources devoted to this issue. There have 

been many authors who have published results on the implementation of optimal 

control trajectories (Chen & Huang, 1981; MacGregor et al., 1984; Kravaris et al., 

1989; Ponnuswamy, Shah, & Kiparissides, 1987; Ramanathan and Ray 1991; Kozub
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& MacGregor, 1992; McAuley & MacGregor, 1993; Debling et al. 1994; Ohshima & 

Tanigaki, 2000; Kiparissides et al., 2002; Chatzidoukas et al., 2003).

Ramanathan and Ray 1991 and Debling, Han et al. 1994 showed the use of a trial and 

error method for developing grade transition strategies for several polymerization 

processes. Here the models were developed in the POLYRED simulation package. 

This work was extended by Takeda and Ray 1999 which included the use of a SQP 

optimizer in MATLAB for performing control vector optimization on the first 

principles model. However no actual plant trials have been reported. The 

implementation also seemed a bit convoluted since the model was implemented in 

POLYRED and the optimization computation was done in MATLAB.

Dynamic optimization was used by McAuley and MacGregor 1992 to determine the 

optimal grade transition trajectories for a gas phase polymerization process. While 

Ohshima et al. 1994 applied dynamic optimization for a gas phase polypropylene 

reactor. Both these methods applied dynamic optimization to simple models. These 

models were correlation based approximations of the first principles model and did 

not capture the detailed operation considered here. The work by McAuley and 

MacGregor was extended in McAuley and Macgregor 1993, where the previously 

developed optimal trajectories were incorporated into a non linear MPC formulation. 

Here the optimal trajectories were used as the reference trajectories for the controller. 

One drawback of this solution was that the constraints were not explicitly included in 

the controller design. This study showed the application of the controller to a 

complex non linear simulation and did not show any plant applications of the 

controller.

The paper published by Cervantes et al., 2002 discusses the use of dynamic 

optimization of a large scale plant model to find the optimal grade transition 

strategies for a tubular LDPE plant. They created a detailed model of the plant; using 

mass and energy balance for all significant reacting components. Orthogonal 

collocation was used to discretize the state variables and the dynamic optimization 

problem was solved using simultaneous nonlinear programming. This strategy 

seemed promising; however, there are no published results for application to a LDPE 

autoclave with peroxide initiators.
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Chatzidoukas et al., 2003 considered the optimal grade transition problem for a gas- 

phase olefin polymerization fluidized bed from the view point of optimizing the 

traditional objective function to reduce the time required for a grade change. They 

also looked at the optimal pairing of control variables for every transition. This type 

of work has not been publicly documented for the LDPE autoclave process. Pladis & 

Kiparissides, 1999 built a dynamic model for the autoclave that showed promise for 

simulating grade transitions; however, no optimization was applied nor any 

applications reported.

Of all of the published work reviewed, there was no method which showed the 

application of dynamic optimization for producing optimal grade transitions for a 

high pressure EVA reactor. To the best knowledge of this author there are no 

published articles showing results of implementation of the optimal product change 

trajectories on an actual production facility.

6.2 Dynamic Optimization

6.2.1 Fundamentals

Here dynamic optimization was used to find the optimal grade transition trajectories 

for the complex first principles model detailed previously in Chapter 3 and 4. The 

dynamic optimization implementation in Aspen Dynamics was used for solving the 

problem. The general formulation of the objective function and constraints for the 

grade transition optimization problem was described by Takeda and Ray 1999. In

Aspen Dynamics a similar formulation was used and is described next.

m in F (u (f),x (f))  where t e ( t s,te) (6.1)

subject to:

^ |  = f (u(r ) ,x ( f ) )  (6 .2)

y M  = s ( x (0»u (0 )  (6-3)

y  min ~  y  ( 0  ~  y m a x  ( 6 - 4 )
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“ m i, ^ « ( 0 £ U max ( 6 - 5 )

AUmm ^ Au( 0 ^ AUmax (6-6)

Where u(7), x (/) and y(f)are the input, state and output variables. The process

model is represented by equations (6.2) and (6.3). This includes the polymer 

properties, reaction kinetics and plant conditions which control the final polymer 

properties. Equations (6.4), (6.5) and (6.6) represents the bounds on the outputs, 

inputs and movement in inputs respectively.

This type of problem is classified as trajectory optimization. The problem is typically 

difficult to solve directly because of the presence of the time in the objective function 

and derivatives within the constraints. There are several methods which can be used 

to solve this class of problem. These include control vector iteration procedures, 

direct substitution, dynamic programming and control vector parameterization 

(Takeda and Ray 1999). Here the control vector parameterization method was used, 

because it was already implemented in Aspen Dynamics and it has been successfully 

been used to solve other dynamic optimization problems.

6.2.2 Control Vector Parameterization

This was the method used to discretize the input profiles for optimization. Because 

the profiles were planned to be implemented by the plant operator as controller set 

point changes, the input profiles were designed to be piecewise constant. The control 

vector parameterization approximates the input profile with a linear combination of a 

series of trial functions as shown in equation (6.7).

= (6/7)
7=1

Where

ut (7) represents the i'h element of the input vector u (t) 

fai . (t) represents the trial function

a, . represents the parameters which are optimized in the control vector
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parameterization method

The trial functions must be initially defined. This approach removes the time 

parameter from the objective function and converts the optimization problem defined 

in equations (6.1) to (6.6) into a parameter estimation problem which is defined next.

The trial functions used here were a series of step changes. The objective function F, 

inequality constraint function g  and equality constraint function h are all functions of 

the parameters a . This objective function follows the standard NLP formulation and

standard constrained optimization algorithms for solving NLP problems can be 

applied.

There are several well developed methods for solving NLP problems. Here three 

main methods were used two of them were gradient based (SQP) and one was a direct 

search method based on comparison of the objective function at different solution 

points. The gradient based methods require the values of the functions F, g, and h 

also their gradients VF, Vg, and V/z with respect to a. at every step. In SQP these

values are required during the solution of the QP sub-problem. These values are 

obtained from the simulation of the dynamic model using finite difference 

approximations on the non linear plant at every discretization interval. This requires 

multiple steady state runs of the dynamic models along the path of the input vectors

The number and size of the discretization intervals were selected a priori. This along 

with the very simple trial functions chosen can produce a sub-optimal solution. 

However, the solutions obtained were significantly better than those used by the plant 

presently and removing these constraints can make the operator implementable 

solution impossible.

Subject to:

g (a i])<  0(6.9) 

/z(a. ) = 0(6.10)

u , .
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6.2.3 Objective Function Formulation

The general form of the dynamic optimization solution was shown in section 6.2.1. 

However, the specific behavior of the controlled quality variables depends on the 

specific objective function minimized. The specific objective functions were required 

to be programmed into Aspen Dynamics. There are several schemes for selecting the 

objective function. These can be based on:

• High sales, therefore reduce product change time

• Off-specification product is being sold for a lot less than on specification 

product, therefore minimize off specification product

• Off-specification product is being sold for almost the same as on specification 

product and the demand is high, therefore maximize production

There are several of these which are applicable at different times. However, here we 

applied a typical time weighted least squares objective as defined by Ogunnaike and 

Ray 1994.

The objective function for the optimizer was defined in Aspen Dynamics as:

F = T,+T2+T3 (6.11)

where

if MIm < MI < MILo and VAm <VA< VA/ o

(6.12)
else

if MIm < MI < MII O

T2 = w3 J  t x (MI -  MITarget )2 dt

else
(6.13)
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if VAm <VA< VALo
t=te

T] = w s J  tx (V A -V A largel)2 dt

^  (6.14)
else

t~te
\tx (V A -V A r„ J d t

t= ts

Where

F  represents the function to be minimized

7’ represents the mass of product produced which are out of the specifications of the 

start and end product.

T2 represents the sum of the difference in melt index of the product currently being 

produced and the target melt index..

T3 represents the sum of the difference in percentage VA of the product currently

being produced and the target percentage VA..

f&Poiymer represents the flow rate of the polymer produced.

ts represents the time the grade change was started.

te represents the time the controlled variables entered the ending grade specifications.

MI Target represents the target melt index for the ending grade

Â-arget represents the target percentage VA for the ending grade

MILo , MIHj are the specifications for the melt index

VALo, VAHi are the specifications for the melt index

w [ , w 2 , L  , w 6 are weighting factors

The weighting factors w2, w4 and w6 were set to zero for the optimization since once

the properties enter the specifications we considered the grade change complete, all 

other weights were equally applied and set to unity. However there may be other 

objective function schemes where they can be used. There were tighter bounds set on 

the final value constraints of the controlled quality variables; this was used to force 

them to be very close to the target value.
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A derivative constraint was defined in equation was also used to force the quality 

variables to be within stable at the end of the grade change.

d y it
- 2  < — ~  < 2 Vi (6.15)

at

Where i represents the index of the controlled variable

6.3 Generation of Optimal Trajectories

As mentioned earlier, the built-in dynamic optimization functionality of Aspen 

Dynamics was used for development of the optimal trajectories.

6.3.1 Optimizer Configuration

Dynamic optimization like any other nonlinear optimization scheme requires a good 

initial guess for efficient convergence to an optimal solution. The two main controlled 

variables used in the optimization were the polymer’s melt index (Ml) and percentage 

VA (VA). There were several manipulated variables. These were selected based on 

the manipulated variables used by the operator during the grade change being 

considered. To keep the optimization problem simple and manageable only the 

manipulated variables which were usually changed by the operator during a specific 

change were considered. The product changes implemented by the plant operators 

were analyzed to find those which possessed the best performance. The performance 

was based on minimal off-specification product and plant stability. These were used 

as the initial guess for the dynamic optimization.

The optimizer configuration required upper and lower bounds to be specified at each 

limit of the discretization interval. Interior point limits could also be defined, but 

these were not used.

As mentioned before the trial function and number of discretization intervals were 

required to be defined a prior to the optimization. The trial function selected was 

piecewise constant (series of steps). The number of disctetization intervals was 

selected based on the typical length of the product change and the regularity at which 

changes were made by the operator. The final time was selected initially equal to the
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base grade change performed by the operator. Iteratively, as the optimization was run 

successfully, the final time was reduced. It was found that making around twenty 

steps gave acceptable results for most product changes. Therefore the sample interval 

was selected based on having around twenty intervals and an acceptable final time. 

This objective function was minimized by the optimizer by moving the selected 

manipulated variables. For each time instant upper and lower bounds on the 

manipulated variables were set. Also a maximum move parameter was used for each 

variable to ensure that steps in the manipulated variables did not exceed acceptable 

bounds.

6.3.2 Optimizer Algorithms

There were three main algorithms available for dynamic optimization. These were: 

o FEASOPT -  This is a feasible path, successive path, successive quadratic 

programming (SQP) optimizer. The optimum of the objective function is 

found by moving the selected manipulated variables to reduce the value of the 

objective function. This is a gradient based optimizer. Thus at every time step 

the gradient information is calculated and the most optimal steps 

implemented. Because of this each iteration is relatively slow; however it 

converges within a few iterations. This optimizer can allow the manipulated 

variables to violate the bounds, 

o HYSQP -  This optimizer’s algorithm is similar to that implemented by 

FEASOPT; however the bounds on the variables are always respected, 

o NELDER MEAD -  This is a direct search solver based on the simplex 

algorithm. It is more robust than the previous two algorithms. It is not a 

gradient based method. Therefore the sensitivities of the measured variables 

with respect to the manipulated variables are not calculated. The algorithm is 

an unconstrained optimization method. However, a penalty function is used to 

limit the solution to within the bounds. Because this method is a direct search 

method, it perturbs each of the manipulated variables, to find the best
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trajectory for the grade change. Thus, this method usually takes a large 

number of iterations.

The HYSQP solver was used to generate results for the majority of the grade 

transitions considered. This solver gave very practical results because the bounds on 

all of the variables were respected.

6.3.3 Optimizer Tuning

There are several parameters used to assist in the speed of convergence and reliability 

of the solution. These included:

Optimizer tolerance -  this tolerance defined the point at which the optimizer would 

converge to the optimum. The difference between the values of the objective function 

at successive iterations of the optimizer is found and compared with the tolerance. If 

the tolerance is larger, the optimizer stops and returns the solution. The default value 

was found to be too small and thus was causing several unnecessary iterations of the 

optimizer.

Step size -  This parameter defined the magnitude of the change in each manipulated 

variable made by the optimizer.

Number of line searches -  this parameter defines the number of sub-steps the 

optimizer takes to try to find the moves which make the largest change in the value of 

the objective function.
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6.3.4 Grade Transitions Considered

The grades modeled in the dynamic model are shown in Table 6-1.

Low

MI

High Target Low

VA

High Target
Grade #1 24.7 31 27.35 15 17 16

Grade #2 136 170 153 17 19 18

Grade #3 455 450 502.5 17 19 18

Grade #4 136 170 153 27 29 28

Grade #5 336 440 400 27 29 28

Grade #6 778 979 878.5 27 29 28

Table 6-1 -  Grades Considered for Dynamic Optimization

Grade transitions were simulated initially between all of the grades using the operator 

based strategies. Then dynamic optimization was used to find the optimal trajectories.

6.4 Optimizer Simulation Results

We next show the simulation results for some of the grade transitions. A 

descritization interval of ten (10) minutes was found to be sufficient for most of the 

policies.

6.4.1 Simulated Grade Change - #1

The results generated for a grade change from grade #5 to grade #2 are shown here. A 

change in the melt index and the percentage VA content was required. This change 

was usually more difficult than other changes for the operator because the variables 

which control both properties are tightly coupled. It is intuitive that the VA flow rate 

controls the VA content and the propylene (modifier) controls the melt index. It is 

also known that VA behaves like a modifier; however the effect changes with 

pressure and temperature. Therefore the difficulty in predicting the best trajectory for
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the manipulated variables is evident. For this change typically five (5) plant variables 

are usually manipulated. These were: 

o Total YA feed flow rate 

o Propylene feed flow rate 

o Reactor Pressure 

o Reactor, Zone 2 Temperature 

o Purge flow rate
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The optimal trajectories found for the manipulated variables are shown in Figure 6-1. 

The simulated results for this optimal change are shown in Figure 6-2. The two top 

plots show the MI and %VA with and without the delay. The signal without the delay 

gives an indication of one very useful application of the dynamic model. This is as a 

first principles soft sensor. The plant readings for the manipulated variables can be 

used as inputs to the model. Then the calculated melt index from the model can be 

used to give an indication of the corresponding change in melt index approximately 

twenty five (25) minutes before the plant measurement. This grade change has not 

been attempted at the plant over the last three (3) years. Therefore, there was no 

recorded information on the actual off specification product manufactured for 

comparison with the optimal policy.

6.4.2 Simulated Grade Change - #2

The results generated for a grade change from grade #5 to grade #6 are shown next. A 

change in the melt index only was required. This change is unique in that it goes to 

one of the extremes of the polymer MI produced by the plant. The final product is the 

softest polymer produced by the plant and a large overshoot can lead to inability by 

the extmder to process the polymer. Therefore, the plant operators are usually very 

conservative during this change. For this change typically five (5) plant variables are 

usually manipulated. These are: 

o Total VA feed flow rate 

o Propylene feed flow rate 

o Reactor Pressure 

o Reactor, Zone 2 Temperature 

o Purge flow rate
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The optimal trajectories found for the manipulated variables and the simulated results 

are shown in Figure 6-3. Here a descritization interval of five (5) minutes was chosen. 

This was because the grade change period was short. Therefore, using optimal steps 

every five (5) minutes did improve the objective function. The total time downgrade 

product was produced according to the simulation was eighteen minutes. This 

corresponds to about two and a half (2.5) tonnes of off specification polymer. From 

the last year of plant history, the average off specification polymer on this change 

during operator changes was twenty one (21) tonnes and the minimum was eight (8) 

tonnes.

6.4.3 Simulated Grade Change - #3

The results generated for a grade change from grade #1 to grade #4 are shown here. A 

change in the melt index and the percentage VA content was required again. For this 

change typically five (5) plant variables are usually manipulated. These are: 

o Total VA feed flow rate 

o Propylene feed flow rate 

o Reactor Pressure 

o Reactor, Zone 2 Temperature 

o Purge flow rate

The optimal changes found for the manipulated variables are shown in Figure 6-4. 

The simulated results for this optimal change are shown in Figure 6-5. This figure 

also shows the three components which comprise the objective function as described 

in equation (6.12). The optimizer tries to minimize the value of all components and 

each is weighted equally. This grade change has not been attempted at the plant over 

the last three (3) years. Therefore, there was no recorded information on the actual off 

specification product produced for comparison with the optimal policy.
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6.5 Plant Trial of Optimal Policies

Two trials of the optimal policies were done at the plant site. One of the trials was a 

grade transition from Grade #4 to Grade #5. The other was a grade transition from 

Grade #3 to Grade #2. These were selected based on the plant’s production schedule 

for the available time period.

6.5.1 Plant Trial - #1

The optimal trajectory for the manipulated variables was found. The results of the 

optimization are shown in Table 6-2. The discretization interval was chosen as five 

(5) minutes. This was the same change simulated in section 6.4.2. Therefore the 

simulation plots will not be repeated.

Figure 6-6 shows one of the best implementations of this grade transition performed 

by an operator. There was one (1) off specification period. The time from start of off 

specification to steady operation was 50 min. This time corresponds to approximately 

seven (7) tonnes of off specification polymer.

Figure 6-7 shows the optimal trajectory based grade transition. It can be seen that the 

time from start of off specification product to steady operation was 9 min. This time 

corresponds to approximately one and a half (1.5) tonnes of off specification 

polymer. Flowever it was noticed that the percentage VA was higher than expected 

from the simulation. After the grade change, the plant’s inline extruder began having 

problems processing the polymer. The operator commented that the polymer became 

very tacky and sticky. This is one of the properties which VA gives to LDPE. It 

seemed as though there was more VA in the polymer than expected and the extruder 

began having problems because of this. The extruder had to be stopped and cleared, 

before the plant could continue running normally.
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Time Purge VA Flow Pressure Propylene Zone 2 Temp. Time

0 25 665 240 17.6 46.4 0

5 20 660.8 244 17.6 46.6 5

10 15 639.4 248 20 46.6 10

15 10 682 250 40 46.6 15

20 5 724.6 246 60 46.6 20

25 5 746 242 70 46.4 25

30 5 767.4 238 70 46.2 30

35 5 682 234 70 46 35

40 5 660.8 230 60 45.8 40

45 10 660.8 230 45 45.6 45

50 15 660.8 230 45 45.6 50

55 15 667.2 230 45 45.6 55

60 15 667.2 232 41 45.6 60

65 15 667.2 234 40 45.6 65

70 15 667.2 236 34 45.6 70

75 15 667.2 238 34 45.6 75

80 15 667.2 240 30 45.6 80

85 15 667.2 240 30 45.6 85

90 15 667.2 240 30 45.6 90

95 15 667.2 240 30 45.6 95

100 15 667.2 240 30 45.6 100

105 15 667.2 240 30 45.6 105

110 15 667.2 240 30 45.6 110

115 15 667.2 240 30 45.6 115

120 15 667.2 240 30 45.6 120

125 15 667.2 240 30 45.6 125

Table 6-2 - Implemented Change #1 Plan (values scaled)
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6.5.2 Plant Trial - #2

The optimal trajectory for the manipulated variables was found. The discretization 

interval was chosen as ten (10) minutes. The results of the optimization are shown in

Table 6-3.

Time Purge VA Flow Pressure Propylene Time

0 30 540 382.5 43.2 0

10 60 570 385.5 21.3 10

20 90 465 388.2 3.3 20

30 102 360 391.2 3.3 30

40 102 303 394.2 3.3 40

50 102 303 388.8 3.9 50

60 102 390 381 3.9 60

70 102 435 376.5 3.9 70

80 76.5 495 370.8 3.9 80

90 57 495 367.8 6.6 90

100 45 495 366.3 8.1 100

110 30 495 366.3 11.1 110

120 30 495 366.3 11.4 120

130 30 495 364.8 12.3 130

140 30 495 364.8 12.6 140

150 30 495.3 364.8 12.6 150

160 30 495 364.8 11.7 160

Table 6-3 -  Implemented Change #2 Plan (values scaled)
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The results and predicted trajectories for the control variables are shown in Figure 

6 - 8 .

Table 6-4 shows the actually strategy which was implemented. Changes were 

required because the feed gas temperatures were higher than those in the model and 

the return gas coolers were fouled, thus there was less mass accumulation in the 

system. This caused the MI and VA to undershoot more than expected; this affected 

the percentage VA more significantly.

Time Purge VA Flow Pressure Propylene Time

0 30 528 382.5 43.2 0

10 60 558 385.5 21.3 10

20 90 465 388.2 3.3 20

30 102 360 391.2 3.3 30

40 102 303 394.2 3.3 40

50 102 303 388.8 3.9 50

60 102 390 381 3.9 60

70 102 435 376.5 3.9 70

75 60 495 370.8 6.6 75

80 60 495 370.8 6.6 80

90 45 525 367.8 11.1 90

100 45 525 360 11.1 100

110 30 547.5 360 11.1 110

120 30 547.5 360 11.4 120

130 30 555 360 13.5 130

140 30 555 360 15 140

150 30 562.5 360 15 150

160 30 562.5 360 15 160

Table 6-4 -  Grade Change #2 Implemented Strategy (values scaled)

The values with dark shading were modified from the optimizer’s results during 

implementation.
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Figure 6-9 shows the last time this grade transition was implemented by an operator. 

There were three (3) off specification periods. The time from start of off specification 

to steady operation was 3 hr. 5 min. This time corresponds to approximately twenty 

four (24) tonnes of off specification polymer.

Figure 6-10 shows the optimal trajectory based grade transition. The time from start 

of off specification product to steady operation was 1 hr. 35 min. This time 

corresponds to approximately twelve (12) tonnes of off specification polymer, ft was 

noticed that the drop in the percentage VA was larger than what was predicted from 

the model.

6.6 Analysis of the Plant Trials

One of the plant trials was successful and was able to show that optimal trajectories 

do give less off-specification product. The other showed the optimal grade transition 

policy would give reduced off specification product, but certain physical and model 

limitations should be taken into account.

6.6.1 Discussion on Implementation of Optimal Trajectories

The implementation of the optimal policies at the plant gave very useful results. The 

trial which was discussed in 6.5.1 clearly showed that the grade changes made on the 

plant presently by the operators are very conservative. The optimal trajectory 

indicated a change which was usually done in 45 minutes or more could be done in 

18 minutes. The actual test got to the new specification in 9 minutes. This would have 

been excellent, however the product produced after this period could not be processed 

by the extruder. There was excessive overshoot in the VA percentage in the polymer. 

The sudden large change in the VA content in the polymer was thought to be the 

main reason for the inability to process the polymer. This required some more 

detailed analysis. Trial #1 showed an overshoot in the VA, while trial #2 showed and 

undershoot in the VA. On simulation of the model using the manipulated variable 

trajectories the problem was clearly found. The model was simulated for the second 

plant trial since there were no interruptions in the process variables on that run.
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The simulation results and the actual trajectories for the two main controlled variables 

are shown in Figure 6-11 and Figure 6-12. These results show that the steady state 

values for both variables were captured relatively well. One point to note is that 

during the fitting process the MI was weighted heavier than the VA, since the MI is 

the plant’s main controlled variable. Therefore the steady state values for the MI are 

expected to be closer to the plant values.

It was seen in the validation plot Figure 4-19 that the dynamics of the MI were fit 

well. In this validation the VA remained relatively constant. However, when the VA 

was changed the dynamic validation was not as good. This implied there was a 

problem with the VA modeling and it was affecting the MI. Two important plant 

variables which were not available during the model regression process were the 

concentration of VA in the intermediate pressure stream (gas recycle on the HPS) and 

the VA concentration in the low pressure stream (gas recycle on LPS). The PC-SAFT 

VLE parameters dictate the amount of VA which would split into either of these 

streams. There was too little VA in the intermediate pressure stream and too much in 

the low pressure stream. This problem becomes more significant during dynamic 

periods because the accumulation rates in these two streams would be erroneous. This 

caused the VA to overshoot in trial #1 because the model predicted it would 

accumulate too slowly in the RGC. This also caused the VA to undershoot in trial #2 

because the model predicted it would accumulate too quickly in the LP-CLR. Solving 

this problem requires getting samples of the VA content in these two streams so the 

PC-SAFT parameters can be regressed correctly.

Plant trial #2 showed that the model based optimal policies can deliver significant 

value in decreasing the off specification product produced during the grade 

transitions. The use of the first principles model base gave the operator a lot more 

information about a particular grade transition change before it was actually done. 

The operator has the ability to look at and compare the response of several plant 

variables before the grade change is implemented.

The optimal trajectories were found to make large changes early in the transition and 

smaller changes closer to the end. This gives more stable product transitions. This 

was very important because instability in this high pressure polymerization process

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 - Dynamic Optimization, Results and Plant Implementation

can lead to “decompositions”. As can be seen from Figure 6-9 and Figure 6-10, the 

optimal grade change is a lot more stable and settles in a shorter period of time.

The operator usually has to make predictions about the flow rate of different 

components required for the measured quality variables to become steady. The 

system has significant dead time (caused by transport lags and measurement delays) 

and a very long time constant (caused by the system mass accumulation). Therefore 

the operator’s predictions are usually erroneous and this can cause the oscillations 

seen in Figure 6-6. Using the optimal policies generated by the first principles model 

requires significantly less operator prediction and therefore less possibility of an 

error.

The expected implementation of these optimal strategies would include the operator. 

The operator would implement each step, and monitor the process. Then as the 

transition is nearing the end, the operator would make small adjustments to 

compensate for disturbances and plant-to-model mismatch. In this scheme the 

operator would be behaving as the feedback element.

6.6.2 Economic Analysis

The long term implementation of the policies developed here and the extension of the 

model to cover the full range of operation is dependent on the potential financial 

benefits. Data from AT Plastics for 2005 estimated the total downtime for the 5R 

production facility only, to be seven thousand, two hundred and thirty three tonnes 

(7233). Based on this and an estimated reduction in downgrade of forty five percent 

(a conservative number based mostly on the results shown in trial #2) the following 

economic justification was proposed:
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Description Value

Total downtime (Tonnes/year): 7233

% of total downtime attributed to grade transitions (%): 36

% of total grade transition time that can be saved (%): 45

Difference in selling price between prime and off specification 

product ($/tonne)

Total yearly revenue:

$0.14

$159,448.52

Table 6-5 -  Economic Analysis

The plant trial showed that the optimal policies can reduce the off specification 

product by more than fifty (50) percent. A more conservative number of forty five 

(45) percent was used for the analysis. For implementing these optimal policies on 

only one of their reactors this facility can increase the annual revenue by 

approximately one hundred and sixty thousand dollars.

6.7 Chapter Summary

In this chapter we explored some of the published work in the area of optimal grade 

transitions for polymerization reactors. To the best knowledge of this author there 

were no studies that could be directly applied to this particular process. Then an 

overview of the fundamentals of dynamic optimization was described. The 

implementation and configuration required in Aspen Dynamics were then given. 

Simulation results for three different product changes were detailed. Here the model’s 

applicability as a soft sensor also stood out. The results of the plant trials for two 

product changes were then given. One of the results showed some limitations of the 

model and processing constraints of the extruder. The other result showed that the use 

of optimal policies can potentially reduce the off specification product produced by 

over 50%. A brief economic analysis of the potential annual revenue showed that the 

implementation of these optimal policies for one of the facilities production lines can 

yield revenues in the range of one hundred and sixty thousand dollars.
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The big secret in life is that there is no big secret. Whatever your goal, you can get

there i f  you're willing to work. 

Oprah Winfrey (1954 - )

Concluding Remarks and 

Future Work

7.1 Major Contributions

The research in this thesis was a collaborative effort between the University of 

Alberta and AT-Plastics Inc. The main contributions of this collaborative project are: 

Design and implementation of a plant historian -  The data collection and 

dissemination architecture for first principles and data based modeling were detailed. 

This information can guide a process engineer on IT issues which are typically seen 

as being out of his domain. There tends to be no lack of data at most process plants 

but lack of knowledge on strategies for integration of the correct data on a real time 

basis. This section will assist with these issues

Plant Calculations -  The building of the first principles model required fitting and 

validation. Plant data available for this was not always in the same form as that
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available in the modeling package. However, often the plant variables could be used 

to generate the required variable. Generally control engineers would collect vast 

amounts of operating data, and then do the calculations offline. In this work 

calculations were detailed which were implemented online. These calculations can be 

extended for use by any facility interested in doing similar modeling of their process. 

First Principles Modeling of LDPE and EVA Polymerization in a Stirred Autoclave -  

A detailed framework for modeling the autoclave in a commercial modeling package 

was developed. This involved a detailed first principles model, which included unit 

process based equation of state thermodynamics and full free radical kinetics for all 

reacting components. Theoretical additions made by other researchers such as the 

initiator based correlations were added. Some additional theoretical and practical 

extensions were made to the modeling package to incorporate the poor zone mixing 

effects.

Development of a Detailed Model Regression Framework -  A framework was 

developed for the regression of the first principles model with every critical operating 

parameter available on a typical polymerization plant. This framework was designed 

for regressing large amounts of categorized model parameters to allow a single model 

to be applicable for several grades. The two main categories of model parameters 

regressed were thermodynamics, reaction kinetics and dynamic parameters. The 

procedure developed was used successfully for regressing the parameters of first 

principles model. The final model covered the full operating range of the plant. 

Dynamic Autoclave Modeling -  There were several modifications required to 

extend the steady state model to the dynamic model case. Several of these were non

standard developments which were required. These included:

Addition of support for vapor phase polymerization

Modification of the default CSTR based zone pressure control constraints

Dynamic modeling of the heat exchangers

Development and Implementation of a MI Soft Sensor -  A soft sensor for the 

polymer melt index was developed. A theoretical model was developed, followed by 

non linear least squares regression regress the model parameters. The model was 

based on the variables monitored at the inline extruder. Once the extruder was
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operating normally, this soft sensor gave a reliable indication of a change in the melt 

index nine (9) minutes before the online analyzer. This soft sensor has been 

implemented at the plant for over six (6) months and is currently used by the plant 

operators.

Unified Bias Updating -  Bias updating scheme based on a combination of the QC 

laboratory readings and online melt index (once deemed to be usable) was developed 

and implemented.

Optimal Product Change Policies -  A suitable objective function for applying 

dynamic optimization was developed. This was used for developing optimal grade 

transition policies. The optimal grade transition moves were provided to the plant 

operator and the policy was then experimentally evaluated on the real process with 

success.

Academic Contributions -  This work contributes significantly to the body o f  

academic work already available in this area by giving a foundation for industrial 

implementation o f several novel ideas in polymerization modeling, control and 

optimization. There were several ideas discussed and developed which can potentially 

result in profitable applications. These include the use of the dynamic first principles 

model for advanced control, process and sensor monitoring, economic optimization, 

creation of optimal grade transitions, process engineering studies and plant constraint 

analysis. The databased model can be used primarily for localized advanced process 

control and process and sensor monitoring. The soft sensor developed can be used as 

a quality estimator of the polymer produced during periods where the online 

measurement is faulty and can be incorperated in to several feedback control 

stratigies for control of the polymer quality.

7.2 Generalization of the Optimal Grade Transition 

Methodology

This work involved the development of a methodology for generation of optimal 

trajectories for a specific polymerization plant. However, the ideas developed can be 

extended to other operating facilities operating different processes but with similar
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problems.

There were a few important steps which should be executed by an organization 

undertaking a similar task. Some of these steps are not technical but are necessary for 

success. These include:

Personnel -  For implementing optimal grade transitions, there should be at least one 

person at the plant site who is familiar with the principles advanced process control 

and optimization. There should be someone available or the same person referred to 

before who is familiar with the first principles of the process. This person should be 

in contact with several parties on the plant including operations, laboratories, sales, 

production planning, engineering and maintenance.

Time -  Undertaking this type of project takes significant time to achieve returns. 

However, because it requires significant first principles modeling; this brings an 

excellent understanding of all aspects of the plant and its constraints. Also the 

rewards of these projects are usually large even though they may take a long time to 

reach fruition.

Suitable Foundation -  The control and data acquisition systems are necessary. The 

plant information is critical in the model building and validation process. The 

implementation of online calculations and a system for storing or retrieving specific 

batches of data as early as possible can make the data fitting and validation process 

relatively painless. The plants regulatory control loops should be performing well. 

Without this, the optimum can be found in the model, but can never be implemented. 

Model Based -  The generation of the optimal strategies for the grade transitions were 

based on a first principles model. For an operating facility the best practice here 

would be using an established commercial package for development of the model. A 

successful previous implementation of the plants specific process in the application is 

not needed. However, some metrics for choosing an application are:

The support relationship the plant has with the company 

The available thermodynamic modeling options 

Application supports dynamic simulation 

Application supports dynamic optimization

Implementation -  The implementation of the optimal trajectories should be
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relatively painless. If there are complexities, they should be hidden behind a simple 

GUI for operator implementation. Implementing an optimal transition on the plant 

should be similar to changing several set points on the plant. The system should be 

robust and allow operator intervention at any point.

These steps outlined above are general guidelines. The more specific steps are usually 

application dependent. However, many of the regression techniques, modeling 

additions, regressed parameters and other theories detailed in the thesis can be used as 

a foundation for any application.

7.3 Recommendations

During this research project there were several areas identified which would require 

additional work. These are categorized, listed and described here.

7.3.1 Additions and Modifications to the First Principles Model

The model developed for the process showed the ability to predict several important 

plant variables, including the polymer melt index and certain plant flows and 

concentrations. These are the parts of the model which were found to generate the 

most interest. However, the implementation of the optimal grade change trajectories 

revealed an important deficiency of the model. This was the poor dynamic predictive 

ability of the percentage VA content in the polymer produced. Thus one important 

improvement of the model would be regressing relevant parameters to improve the 

prediction. As explained in the discussion of the plant implementations in 6.6.1., this 

would require additional data which was not available during the project. The most 

important was laboratory assays for molar compositions of components in the 

intermediate and low pressure recycle streams.

The first principles model was developed using data for EVA grades. This was 

because during the time considered, the particular line considered only produced 

EVA polymers. However, more recently the production line has been used for 

producing LDPE polymers. A significant amount of research in the modeling of 

LDPE polymerization has stated the necessity to model the presence of the phase
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boundary in the reactor for LDPE polymerization. This implies modeling of the 

reaction kinetics for the gas and liquid phases. While, for EVA polymerization it is 

not necessary to consider this phase boundary because the phase boundary moves 

with the VA composition in the reactor. At the operating conditions in the reactor this 

boundary is not encountered for EVA polymerization. If this was included in the 

model, this could allow the extension of the EVA model produced here to cover both 

LDPE and EVA polymerization.

The primary and booster compressor operate on a common driver. This compressor 

contains several recycle loops which control the mass throughput of the plant. This 

was not modeled in much detail in the first principles model. However, adding this 

would add robustness and accuracy to the model.

7.3.2 Dynamic Modeling Extensions

The optimal trajectories based on the first principles dynamic model were built with 

the main emphasis on reducing the off-specification product manufactured during 

grade transitions. However, there are several other plant events which cause 

downtime or off specification product. These include cooler cooks, initiator type and 

pump changes, plant shutdown and start-up events. The extension of the dynamic 

model to include these events could mean optimal operation during these events to 

also reduce the off specification product.

The modeling of cooler cooks holds a lot of potential for reducing downgrade 

product. This event occurs very regularly and almost every time it occurs downgrade 

product is produced. Some initial work was done in this area. Here the calculated 

compressor mass flow mentioned in section 2.5.1 was used. It was known that the 

mass flow through the secondary compressor reduces during cooler cooks, because of 

higher operating temperatures and therefore the density decreases. This was seen in 

the calculated mass flow rate. The off-specification product manufactured during the 

cooler cooks occurred because the propylene and VA should have been injected into 

the system at a constant ratio to the compressor mass flow. Therefore when the 

compressor mass flow drops, the propylene and VA flow should drop as well. This
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compressor mass flow signal can be used for ratio control to allow the needed change 

in propylene and VA injection.

. Coolers become fouled with polymer during the regular plant operation. The 

removal of this polymer lining is done by an uncontrolled raise in the temperature of 

the cooler contents. This causes a large disruption in the plant’s operation. If the 

cooler and the fouling were more accurately modeled, the optimal cooler cook could 

be found to give minimal disruption in the plant’s operation, and thus reduce the off 

specification product manufactured.

As mentioned in Chapter 4 the Aspen Dynamics model supports two forms of 

dynamic modeling. These models are either pressure driven or flow driven. Here a 

flow driven model was used. The pressure driven model has some advantages over 

the flow driven model. This was clear while the dynamic model was being 

configured. There are certain effects which needed be added to the model and these 

could only be added with a pressure driven model. One of these effects includes the 

reactor’s pressure control. This pressure controller’s manipulated variable in the 

model is a flow rate leaving the reactor. However, on the actual plant this controller’s 

manipulated variable was a valve’s position. The valve’s position possesses a position 

to pressure drop and flow rate relationship (the valve characteristic). The plant 

experiences oscillations in the pressure control during certain events. This has been 

attributed to poor sizing of this control valve. If a more detailed pressure driven 

model were used then these events could be modeled and solutions to these problems 

could be developed offline with the dynamic model.

7.3.3 Data Based Modeling and Control

A state space model was estimated using subspace identification methods. This model 

was based on routine plant data. This model has several applications. These include: 

Model Predictive Control -  Here multiple linear models can be used for 

implementing control while running on grade.
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Optimal Product Change Strategies -  again multiple linear models can be used to 

model and optimize specific grade changes. The model could also be used as a model 

predictive controller, which operates in two modes: 

as a controller while a steady grade is running

an optimal grade transition optimizer. Here the model for one specific grade 

change was built and showed excellent validation 

Model Based Monitoring -  The state space model developed using subspace methods 

can be used for process monitoring. This has several applications in fault detection 

and isolation. One event which is avoided as much as possible is the reactor 

decomposition. The state space model can be extended for monitoring the onset of 

these events. However, this application would require development of a reliable 

method for using multiple linear models for process monitoring.

7.3.4 Extruder Modeling

A soft sensor based on the process variables monitored on the extruder was 

developed. This soft sensor suffered from a bias update because of fouling of the 

extruder, the screen pack and die. This fouling increases the frictional losses and thus 

the die pressure which is the most critical variable in the soft sensor. More detailed 

modeling of the extruder and the fouling process can give a more detailed soft sensor 

which can use the monitored process variables to calculate the melt index while the 

extruder, the screen pack and die are folded and when they are not.

7.3.5 First Principles Model Based Soft Sensor

The first principles model developed here shows excellent predictive ability. The 

plant operators have expressed the need for a soft sensor which gives them faster 

predictions on the melt index. The Extruder based melt index gives them some help 

but it is still significantly delayed. The dynamic model can be used as an online soft 

sensor. The model would read certain key plant variables on a regular basis and return 

the quality variables to the operator without the delay. This knowledge could assist 

the operator in remaining on specification during any major plant event.
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7.3.6 Optimizer Modifications

The optimizer built into Aspen Dynamics was useful for doing some Dynamic 

Optimization. However, many limitations were found. This occurred as more and 

more detailed optimization was done. Without scaling any of the manipulated 

variables and with fixed time instants the optimizer ran and converged. As scaling 

was added the bounds on the change in the manipulated variable were no longer 

respected. Allowing the optimizer to change the optimal sampling instant did not 

return the expected results. It was expected that the optimizer would change the 

optimal time instants at which the manipulated variable changes should be made. 

However, optimal changes at the specified discretization instants only were returned. 

It was also noticed from conversations with the plant operators that simultaneously 

changing every variable which has an effect on a product change may not be most 

advisable. A useful option would be to have the ability to set a constraint within the 

optimizer specifying that only one manipulated variable can be changed at a time and 

a minimum time before the next manipulated variable move. This allows the 

optimizer to produce optimal trajectories more like what the operators would usually 

implement. The changing of multiple variables at one time instant can result in plant 

instability. Therefore the ability to add this staged change in manipulated variables 

can produce more stable grade changes. Because of these limitations, it may be more 

useful to use another optimizer or to program an external optimizer which can 

transfer real time model operating data and the gradient of the variable in the model 

for optimization.

7.3.7 Plant Modifications

There are certain physical modifications on the plant which do not allow rapid 

product changes. Some of these include the limitation on the mass flow of the purge 

stream. This purge stream was sized relatively small compared to the total flow rate 

in the low pressure recycle loop during the plant design. This is the main method by 

which the modifier is removed from the system when the MI is required to be 

decreased. Thus if the purge flow valve was resized to allow larger flow rates, this
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can allow faster product transitions when moving from a high MI to a lower one. 

Another area which causes significant delays during certain product changes is the 

lack of automation for the initiator mixing system. The initiators are mixed with the 

solvent in a very low concentration by the operators. When a grade change using a 

new initiator or a different concentration of initiator is required; the operator mixes 

another batch. The operator must then coordinate the batch change and pump change 

(if necessary) at some point during the product change. These can be automated so 

that it is done before the actual product change is taking place and a batching system 

can mix the concentrations exactly based on the product recipe.

7.4 Concluding Remarks

The optimal grade transition problem for an EVA polymerization facility (AT 

Plastics Inc, Edmonton, Canada) has been analyzed. We have seen, as many other 

authors have indicated, that the use of a first principles dynamic model for 

optimization is an excellent method of handling the problem. However, we 

encountered the difficulty with respect to the lack of generality of other published 

work in this area. A frame work for development of the first principles model was 

developed using a combination of novel ideas and established theory. These were 

combined into a commercial package for long term sustainability in an operating 

facility. The first principles model regression scheme proved itself by resulting in one 

universal first principles dynamic model for all production variations. This model was 

used to successfully develop optimal trajectories for product changes. These optimal 

changes were tested and proved the ability to reduce the downgrade product by over 

50%.

A soft sensor to monitor the melt index of EVA copolymer produced has also been 

developed and is based on the novel idea of using process variables monitored on the 

extruder. This soft sensor has been implemented at AT Plastics Inc. and has been in 

use for the past six (6) months.

These two implementations have received very successful reviews from the AT 

Plastics Inc. personnel. The soft sensor gives the operator an indication of a change in
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melt index nine (9) minutes before the plant’s online instrument. While the economic 

analysis for the optimal grade transitions on one of their polymer manufacturing lines 

shows they can give a potential increase in revenue of one hundred and sixty 

thousand dollars per annum. This can increase the plant’s revenue by close to one 

million dollars per annum by implementation on the plants five manufacturing lines.
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Parameter Estimation 

Details

A.l Data Sets Used

The majority of the regression of the plant parameters were done using the steady 

state model, thus steady state operating data was used for this. The details of the data 

used for regression and validation are detailed here:

• Data for six different grades produced regularly on the plant were used.

• For each data point used for regression and validation, three different steady 

state periods were averaged.

• Each steady state period consisted of one (1) hour of steady operating data. 

Table A - 1 shows a segment of the table used for collection of the plant data. Note: 

the manipulated variable data was left out due to privacy commitments.
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Appendix A - Parameter Estimation Details

Start Time 22/06/2005 19:25 24/06/2005 1:08 28/04/2005 18:05
End Time 22/06/2005 21:46 24/06/2005 4:21 28/04/2005 21:19
Grade 
Purge
Reac_Press 
Eth_Flow 
VA_Flow 
Prop_Flow 
RVA/VA %

Feed_Temp 1 
Feed_Temp 2 
Feed_Temp 3 
Feed_Temp 4 
Z1A_T_SP 
Z1B_T_SP 
Z2_T_SP 
Z3_T_SP 
Z4_T_SP

HPS Pressure 
HPS Temp 
LPS Pressure 
LPS Temp

Ml 419.162 414.732 872.0921454
% VA 27.4 27.2 28.2308624
Prop. Frac in feed 1.103 0.874 1.505636548
Poly_Production 8165.299 8112.998 8061.83835
Prop Conversion 20.84 20.2 20.49209374
Sec. Comp Flow 42.224 42.504 42.13565704
CONV 19.33805182 19.08761058 19.1330548

VA FLOW 3350.128 3350.022 3222.358445
PCONV 20.83178022 20.18978103 20.49197897

E CONV 19.5 20.3 19.8
PCONV 18.5 18.5 18.2

Table A -1  -  Segment o f Steady State Data Collection
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Appendix A - Parameter Estimation Details

A.2 Parameter Sources

Here the parameters regressed and their initial values are summarized.

The following gives a guid for the tables which follow:

• Bold Italics -  Initiator Manufacturer Data Sheet

• Italics -  These parameters were from the literature base case used (Iedema, 

Grcev et al. 2003)

• Regular -  a best guess was used for these parameters. These were based on 

the literature values for similar parameters.
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Appendix A - Parameter Estimation Details

Reaction Comp 1 Comp 2 Pre-Exp (s'1) Act-Energy (J/kmol) Act-Volume (m3/kmol) Ref. Temp. (°C) Eff.

INIT-DEC Initiator 1 3.20E+15 153460000 0.021 1.00E+35 0.3

INIT-DEC Initiator 2 1.54E+14 124900000 0.01242 1.00E+35 0.4235

INIT-DEC Initiator 3 3.42E+15 123620000 0.025 1.00E+35 0.3634

INIT-DEC Initiator 4 2.49E+16 150150000 0.02141626 1.00E+35 0.5

CHAIN-INI Ethylene 254000000 35300000 0.08 1.00E+35

CHAIN-INI Vinyl Acetate 254000000 35300000 0.08 1.00E+35

CHAIN-INI Propylene 254000000 35300000 0.08 1.00E+35

PROPAGATION Ethylene Ethylene 1.250E+8 3.377E+7 -0.0197 1.00E+35

PROPAGATION Ethylene Vinyl Acetate 1.250E+8 3.377E+7 -0.0197 1.00E+35

PROPAGATION Ethylene Propylene 1.250E+8 3.377E+7 -0.0197 1.00E+35

PROPAGATION Vinyl Acetate Ethylene 1.250E+8 3.377E+7 -0.0197 1.00E+35

PROPAGATION Vinyl Acetate Vinyl Acetate 1.250E+8 3.377E+7 -0.0197 1.00E+35

PROPAGATION Vinyl Acetate Propylene 1.250E+8 3.377E+7 -0.0197 1.00E+35

PROPAGATION Propylene Ethylene 1.250E+8 3.377E+7 -0.0197 1.00E+35

PROPAGATION Propylene Vinyl Acetate 1.250E+8 3.377E+7 -0.0197 1.00E+35

PROPAGATION Propylene Propylene 1.250E+8 3.377E+7 -0.0197 1.00E+35

CHAT-MON Ethylene Ethylene 4.000E+4 3.377E+7 -0.0197 1.00E+35

CHAT-MON Ethylene Vinyl Acetate 4.000E+4 3.377E+7 -0.0197 1.00E+35

CHAT-MON Ethylene Propylene 4.000E+4 3.377E+7 -0.0197 1.00E+35

CHAT-MON Vinyl Acetate Ethylene 4.000E+4 3.377E+7 -0.0197 1.00E+35

Table A - 2 -  Initial Values Used in Regression 1
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Appendix A - Parameter Estimation Details

Reaction Comp 1 Comp 2 Pre-Exp (s'1) Act-Energy (J/kmol) Act-Volume (m3/kmol) Ref. Temp. (°C)

CHAT-MON Vinyl Acetate Vinyl Acetate 4.000E+4 3.377E+7 -0.0197 1.00E+35

CHAT-MON Vinyl Acetate Propylene 4.000E+4 3.377E+7 -0.0197 1.00E+35

CHAT-MON Propylene Ethylene 4.000E+4 3.377E+7 -0.0197 1.00E+35

CHAT-MON Propylene Vinyl Acetate 4.000E+4 3.377E+7 -0.0197 1.00E+35

CHAT-MON Propylene Propylene 4.000E+4 3.377E+7 -0.0197 1.00E+35

CHAT-AGENT Ethylene Acetone 4.000E+4 3.377E+7 -0.0197 1.00E+35

CHAT-AGENT Vinyl Acetate Acetone 4.000E+4 3.377E+7 -0.0197 1.00E+35

CHAT-AGENT Propylene Acetone 4.000E+4 3.377E+7 -0.0197 1.00E+35

CHAT-POL Ethylene Ethylene 4.380E+8 5.494E+7 0.0044 1.00E+35

CHAT-POL Ethylene Vinyl Acetate 4.380E+8 5.494E+7 0.0044 1.00E+35

CHAT-POL Ethylene Propylene 4.380E+8 5.494E+7 0.0044 1.00E+35

CHAT-POL Vinyl Acetate Ethylene 4.380E+8 5.494E+7 0.0044 1.00E+35

CHAT-POL Vinyl Acetate Vinyl Acetate 4.380E+8 5.494E+7 0.0044 1.00E+35

CHAT-POL Vinyl Acetate Propylene 4.380E+8 5.494E+7 0.0044 1.00E+35

CHAT-POL Propylene Ethylene 4.380E+8 5.494E+7 0.0044 1.00E+35

CHAT-POL Propylene Vinyl Acetate 4.380E+8 5.494E+7 0.0044 1.00E+35

CHAT-POL Propylene Propylene 4.380E+8 5.494E+7 0.0044 1.00E+35

B-SCISSION Ethylene 1.292E+5 4 .715E+7 -0.0168 1.00E+35

B-SCISSION Vinyl Acetate 1.292E+5 4.715E+7 -0.0168 1.00E+35

B-SCISSION Propylene 1.292E+5 4.715E+7 -0.0168 1.00E+35

Table A - 3 -  Initial Values Used in Regression 2
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Appendix A - Parameter Estimation Details

Reaction Comp 1 Comp 2 Pre-Exp (s'1) Act-Energy (J/kmol) Act-Volume (m3/km ol) Ref. Temp. (°C)

TER M -D IS Ethylene Ethylene 1.250E+9 4.184E+6 0.0130 1.00E+35

TER M -D IS Ethylene Vinyl Acetate 1.250E+9 4.184E+6 0.0130 1.00E+35

TER M -D IS Ethylene Propylene 1.250E+9 4.184E+6 0.0130 1.00E+35

TER M -D IS Vinyl Acetate Ethylene 1.250E+9 4.184E+6 0.0130 1.00E+35

TER M -D IS Vinyl Acetate Vinyl Acetate 1.250E+9 4.184E+6 0.0130 1.00E+35

TER M -D IS Vinyl Acetate Propylene 1.250E+9 4.184E+6 0.0130 1.00E+35

TER M -D IS Propylene Ethylene 1.250E+9 4.184E+6 0.0130 1.00E+35

TER M -D IS Propylene Vinyl Acetate 1.250E+9 4.184E+6 0.0130 1.00E+35

TER M -D IS Propylene Propylene 1.250E+9 4.184E+6 0.0130 1.00E+35

TE R M -C O M B Ethylene Ethylene 1.250E+9 4.184E+6 0.0130 1.00E+35

T E R M -C O M B Ethylene Vinyl Acetate 1.250E+9 4.184E+6 0.0130 1.00E+35

TER M -C O M B Ethylene Propylene 1.250E+9 4.184E+6 0.0130 1.00E+35

T E R M -C O M B Vinyl Acetate Ethylene 1.250E+9 4.184E+6 0.0130 1.00E+35

T E R M -C O M B Vinyl Acetate Vinyl Acetate 1.250E+9 4.184E+6 0.0130 1.00E+35

T E R M -C O M B Vinyl Acetate Propylene 1.250E+9 4.184E+6 0.0130 1.00E+35

T E R M -C O M B Propylene Ethylene 1.250E+9 4.184E+6 0.0130 1.00E+35

T E R M -C O M B Propylene Vinyl Acetate 1.250E+9 4.184E+6 0.0130 1.00E+35

TE R M -C O M B Propylene Propylene 1.250E+9 4.184E+6 0.0130 1.00E+35

SC-BRANCH Ethylene Ethylene 3.36E+09 45800000 -0.0235 1.00E+35

SC-BRANCH Ethylene Vinyl Acetate 3.36E+09 45800000 -0.0235 1.00E+35

Table A - 4 -  Initial Values Used in Regression 3
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Appendix A - Parameter Estimation Details

Reaction Comp 1 Comp 2 Pre-Exp (s'1) Act-Energy (J/kmol) Act-Volume (m3/kmol) Ref. Temp. (°C)

SC-BRANCH Ethylene Propylene 2.55E+09 33800000 -0.0235 1.00E+35

SC-BRANCH Vinyl Acetate Ethylene 3.36E+09 45800000 -0.0235 1.00E+35

SC-BRANCH Vinyl Acetate Vinyl Acetate 3.36E+09 45800000 -0.0235 1.00E+35

SC-BRANCH Vinyl Acetate Propylene 2.55E+09 45800000 -0.0235 1.00E+35

SC-BRANCH Propylene Ethylene 2.55E+09 33800000 -0.0235 1.00E+35

SC-BRANCH Propylene Vinyl Acetate 2.55E+09 45800000 -0.0235 1.00E+35

SC-BRANCH Propylene Propylene 6.93E+08 45800000 -0.0235 1.00E+35

Table A - 5 -  Initial Values Used in Regression 4

¥
Component i EVA EVA EVA E2-SEG VA-SEG E2-SEG E2 EVA EVA VA E2

Component j PROP SOLVENT ACETONE E2 E2 VA-SEG PROP E2 VA PROP VA

a u 0 0 0 0 0 0 0 0 0 0 0

b* 0 0 0 0 0 0 0 0 0 0 0

C<J 0 0 0 0 0 0 0 0 0 0 0

d * 0 0 0 0 0 0 0 0 0 0 0

e, 0 0 0 0 0 0 0 0 0 0 0

Table A - 6 - Initial Values Used in Regression 5

E2 -  Ethylene PROP -  Propylene SEG -  Segment


