o &g National Library

3

of Canada

Acquisitions and
Bibliographic Services Branch

395 wellington Street
Ottawa, Ontaro

K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellimgton
Ottawa (Ontany)

Bibliothéque nationale
du Canada

Direction des acquisitions ot
des services biblographiques

AVIS

La qualité de cette microforme
dépend grandement de la qualite
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec luniversité
qui a conféré le grade.

La qualitt dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a laide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
3 la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



UNIVERSITY OF ALBERTA

LINEAR STABILITY OF
ROTATING BOUNDARY LAYERS

BY ©
ROBERT MICHAEL PROKOP

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND
RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE.

DEPARTMENT OF MECHANICAL ENGINEERING

EDMONTON, ALBERTA

FALL, 1993



Nati ib
L I

Acquisitions and

Bibliotheque nationale
du Canada

Direction des acquisitions el

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontano)

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a Ila disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-88031-7

Canada



UNIVERSITY OF ALBERTA

RELEASE FORM
NAME OF AUTHOR: Robert Michael Prokop
TITLE OF THESIS: Linear Stability of Rotating Boundary Layers
DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1993

PERMISSION IS HEREBY GRANTED TO THE UNIVERSITY OF
ALBERTA LIBRARY TO REPRODUCE SINGLE COPIES OF THIS THESIS
AND TO LEND OR SELL SUCH COPIES FOR PRIVATE, SCHOLARLY, OR
SCIENTIFIC RESEARCH PURPOSES ONLY.

THE AUTHOR RESERVES ALL OTHER PUBLICATION AND OTHER
RIGHTS IN ASSOCIATION WITH THE COPYRIGHT IN THE THESIS, AND
EXCEPT AS HEREINBEFORE PROVIDED, NEITHER THE THESIS NOR
ANY SUBSTANTIAL PORTION THEREOF MAY BE PRINTED OR
OTHERWISE REPRODUCED IN ANY MATERIAL FORM WHATEVER
WITHOUT THE AUTHOR'’S PRIOR WRITTEN PERMISSION.

/MM/}

422-52313 Range Rgad 232
Sherwood Park,
T8B 1B7

Date: ,j[fl/ // 5'/73



UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

THE UNDERSIGNED CERTIFY THAT THEY HAVE READ, AND
RECOMMEND TO THE FACULTY OF GRADUATE STUDIES AND
RESEARCH FOR ACCEPTANCE, A THESIS ENTITLED LINEAR STABILITY
OF ROTATING BOUNDARY LAYERS SUBMITTED BY ROBERT MICHALL
PPOKOP IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE.

Dr. W. . Finlay

ey

Dr. K. C. Cheng

Dr. K. Nandakumar

Date: ,(/17”( / é://?%



ABSTRACT

In this study, the linear stability of flow over a rotating flat plate which leads to
Gértler-type vortices is examined. The parabolized governing equations are solved
using a Legendre spectral element method with a marching scheme. The normal
component of the Coriolis force is dominant and causes the development of the
boundary layer to be suppressed. For sufficiently low rotation rates, the
suppression of the boundary layer thickness is negligible and a rotational Gortler
number is the appropriate parameter to describe the growth of the vortices. At
higher rotation rates, it is no longer possible to apply the rotational Gortler
number; the most unstable wavelength is dependent on both the rotation number
Ro, and the Reynolds number Re,. Although unique neutral stability curves do not
exist, the results agree quite well with previous local stability analysis when

sufficiently far from the leading edge.
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SYMBOLS AND NOMENCLATURE

Roman Symbols

G Gortler number for flow over a concave plate
G,, Gortler number for flow over a rotating flat plate
P pressure
P sum of pressure gradient and centrifugal force
R position vector
Re, Reynolds number
Ro, rotation number
Y i-th component of velocity
a complex eigenfunction for the perturbation
U, free stream velocity
X streamwise distance
i-th component of distance
X downstream distance from the leading edge of the plate
X, downstream disiance where the initial condition is supplied
y normal distance
z spanwise distance
Greek Symbols
ad partial derivative
i) perturbation wavenumber



- > D

boundary layer thickness

rotation rate of the plate

dimensional wavelength of the vortices
nondimensional wavelength of the vortices
kinematic viscosity of the fluid

density of the fluid

time



CHAPTER 1

1.0 INTRODUCTION'

The flow over a flai plate rotating about a spanwise axis is a simple
geometry in which streamwise-oriented vortices are induced. Like the Gortler
problem (flow over a concave plate), the mechanism for the transition to
turbulence begins with the growth of these vortices. Although the Gortler problem
has been well-studied, there is little previous research on the stability of rotating
boundary layers. The study of the flow over a rotating flat plate is the simplest
possible rotating boundary layer. Through the analysis of this geometry, insight
can be gained into the transition to turbulence for more complex rotating boundary
layers such as the flow over pump impellers and turbine blades.

Though an analogy can be made between a rotating boundary layer and the
Gortler problem, there are several differences between the two geometries. The
Gortler problem is restricted to a large radius of curvature to simpliiy the
governing equations and to avoid separation of the boundary layer. However,
there is no analogous restriction in the amount of rotation for a rotating boundary

layer. In the Goértler problem, the vortices are the result of the normal component

! A version of this chapter has been submitted for publication. Prokop & Finlay 1993. Physics of
Fluids A.



of the centrifugal force. For a rotating boundary layer, the normal component of
the Coriolis force causes the instability.

The study of the stability of boundary layers such as the votating flat plate
and the Gortler problem is particularly interesting since there is no critical onset
of instability. The flow is unstable to spanwise perturbations at all points in the
flow. In comparison, fully-developed flows such as curved channel flow (the
Dean problem) and the rotating channel do have a critical onset of instability.
Below the critical value of the governing parameter (e.g. the Dean number for the
curved channel), the flow is stable to all spanwise perturbations. However, once
this critical value is exceeded, the flow becomes unstable. The fact that the base
flow is fully developed in these cases may be the reason for the critical onset of
instability since the boundary layer velocity profile changes as it moves
downstream.

In the present study, the effect of the Coriolis force on the development of
the non-Blasius boundary layer is taken in account. This is discussed in section
2.3. In section 2.4, the linear growth of the Gortler-type vortices in the boundary
layer is examined using a marching scheme and these results are compared to a

previous local stability analysis.



CHAPTER 2

2.0 LINEAR STABILITY OF ROTATING BOUNDARY LAYERS?
2.1 Background Information

Figure 1 shows a sketch of the geometry and coordinate system considered
in this study. The angular velotity of rotation of the plate @ is perpendicular to
the streamwise direction. The orientation of the vortices is also indicated in the
figure. The generally accepted sign convention for this system would denote the
rotation shown in Figure 2.1 as negative rotation. This direction of rotation tends
to stabilize the system compared to the nonrotating case'>**. The flow on the
other side of the plate (the side not visible in Figure 2.1) is usually called the
unstable side and turbulent transition via the usual nonrotating flat plate routes is
enhariced by the rotation. Since only negative rotation is considered in this study,
the sign to indicate the direction of the rotation is ignored and all nondimensional
quantities are positive.

To the author’s knowledge, the first analysis of the stability of flow over
a rotating flat piate was performed by Chawla', in which the local stability of the

Blasius profile was considered. Subsequently, Koyama et al> measured the effects

2 A version of this chapter has been submitted for publication. Prokop & Finlay 1993. Physics
of Fluids A.



of Coriolis force on a two dimensional flat plate boundary layer. They found that
on the stabilized side, the boundary layer remains laminar and its development is
suppressed. Masuda and Matsubara® showed experimentally that the flow on the
destabilized side is characterized by turbulent spots, while vortex structures similar
to Gortler vortices appear on the stabilized side. They found that the vortex
spacing on the stabilized side decreases with increasing rotation number and
decreasing Reynolds number. Matsubara & Masuda® experimentally measured the
wavelengths of the vortices on the stabilized side. They also used a temporal
stability analysis to calculate the most unstable wavelengths and to produce a
unique neutral stability curve.
2.2 Theory and numerical methods

The Navier-Stokes equations for the flow geometry in Figure 2.1 are as

follows:
- 1 p * y -
+Uu .__!=—__a_p_4y.?a_—l_+23“kujﬂk I

where the bars denote dimensional quantities and p° is the sum of the pressure

gradient and the centrifugal force:

- P l==
P ""%*(El Q,Re,) ) @

Here R, is the position vector. In this study, the rotation vector has the form



£=(0,0, Q) A3)

so that ihe plate rotates about its leading edge.

Introducing the following nondimensional variables, where X is the length

along the plate and U, is the free stream velocity,

X u, >°
x‘-—x£ u‘-..u_‘ p‘-_pel_J; 4)

and the rotation number Ro, and the Reynolds number Re,,

Ro = Re =— ®
v

results in the following nondimensional equation for steady flow:

% gt 1 Ty
U—=--t peoe—"' +2R0. e, 8,, u ©)
] a 3 a A Rex a a:j x Vijk k3 %§

The stability equations are produced by inserting a spanwise perturbation

of the form

u'=ii exp (iB2) M

into equation (6). Here B is the perturbation wavenumber and @ is a complex
sigenfunction. The complex eigenfunction varies in the normal and spanwise
directions at a given streamwise location in the flow. A vector plot of the complex
eigenfunction shows that it takes the form of streamwise-oriented pairs of counter-

rotating vortices.



Taking the usual large Re, limit results in a set of parabolic equations since
the streamwise diffusion terms can be neglected®. This is due to the fact that the
variation in the velocity profile varies much more slowly in the streamwise
direction than in the cross stream plane. The computer code used to solve these
equations and the accompanying stability equations is virtually the same as the
code used to study Dean vortices and Gértler vortices by Guo & Finlay® and Guo’.
In these studies, a Legendre spectral element method was used to solve the
parabolized governing and stability equations with a marching technique.
Consequently, since the solution is found as the streamwise location is varied, this
stability analysis is of a convective nature. The Legendre spectral element method
combines the high accuracy of spectral methods with the geometric flexibility of
finite element methods. Thus, it was possible to study Dean vortices, Gortler
vortices, and the rotating flat plate vortices with the same code by incorporating
the appropriate boundary conditions. Extensive comparisons with experiments on
Dean and Gértler vortices (see Guo & Finlay® and Guo’) and the nonrotating flat
plate boundary layer were performed in order to validate the code. A brief
discussion of the numerical scheme employed by the code may be found in the
Appendix, and a more detailed description may be found in Guo'.

2.3 Base Flow
The base flow refers to the two-dimensional boundary layer velocity profile

in which the vortices develop. For a stationary flat plate, the base flow is a
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Blasius profile, However, once the plate is subjected to rotation, there are
Coriolis and centrifugal forces placed on the flow and no analytical or semi-
analytical solution is available; the base flow is calculated instead. This calculated
profile is then input into the stability code, where a perturbation is introduced and
the parabolized stability equations are solved.

One of the difficulties in calculating the base profile is that an initial
condition for the profile must be supplied at some distance X, from the leading
edge due to the singularity at the leading edge. For a given rotation rate, a scaled
Blasius profile was used as the initial condition at the start of the computation.
This was a reasonable choice since it satisfies the boundary conditions at the wall
and at infinity. It was found that as the computation proceeded downstream, the
boundary layer thickness eventually became a constant fraction of the Blasius
solution. The closer the initial condition for the boundary layer thickness was to
this constant value, the faster the solution converged to the constant fraction
downstream. Furthermoré, this value was independent of the location at which the
initial condition was supplied. Therefore, this profile is believed to be the
similarity boundary layer thickness of the governing equations and it was used as
the boundary layer thickness at X,,.

The nondimensional rotation rate Ro,/Re, is the ratio of the force which
suppresses the development of the boundary layer and the forces which result in

its development. This ratio is constant as the flow moves downstream since it

7



does not contain a length scale. Consequently, it is physically reasonable that the
boundary layer thickness is a constant fraction of the Blasius boundary layer
thickness.

The Coriolis force on the flow increases as the rotation rate increases. The
normal component of this force acts towards the plate, while the streamwise
component acts in the downstream direction. Because the streamwise component
of the force depends on streamwise location, its presence precludes a self-similar
solution to the equations. However, at low rotation rates, the normal component
dominates, and the appearance of self-similarity is possible.

The normal component of the Coriolis force not only induces the vortices
to form, but causes the boundary layer to become thinner. The higher the rotation
rate, the greater the normal pressure gradient and the thinner the boundary layer.
This trend is shown in Figure 2.2, where & is the point at which the streamwise
velocity is 99% of the free stream value and J; is the boundary layer thickness of
the nonrotating case (i.¢., the Blasius boundary layer thickness for the same Re,).
Since the Coriolis force increases linearly with the rate of rotation Q, there is a
linear relation between the boundary layer thickness and Ro,/Re,; this result
agrees with the measurements of the twé dimensional developing boundary layer
in a rotating channel flow given by Koyama et al®.

Because the normal component of the Coriolis force is much larger than the

streamwise component of the force when Ro,/Re, is small, the calculated profile

8



appears to show some self-similarity. Figure 2.3 displays the velocity profile at
two streamwise locations for Ro,/Re, = 2x10° and Ro,/Re, = 25x10”* which
correspond to low and high rotation rates respectively. The data points for the two
downstream locations for Ro,/Re,=2x10 are almost on top of one another. The
profile is not exactly self-similar for fixed Ro,/Re, because of the streamwise
component of the Coriolis force which causes a streamwise pressure gradient. At
low Ro_/Re,, where the normal component dominates, the effect of the streamwise
pressure gradient is below the resolution of observation. However, at sufficiently
high Ro,/Re,, the effect of the streamwise pressure gradient and the absence of
self-similarity become apparent. For example, a small amount of nonself-
similarity can be seen in the data for Ro,/Re, = 25x107 in Figure 2.3. If the
profile was exactly self-similar, no such difference would exist. In addition, the
bulge near the top of the boundary layer for Ro,/Re, = 25x10” is reminiscent of
boundary layer profiles with a favourable pressure gradient. This provides further
evidence that the streamwise component of the Coriolis force has become
significant.
2.4 Linear Stability of the Base Flow

Once the two dimensional base flow has been obtained, it is possible to
study the linear stability of spanwise perturbations to this flow. Since the base
flow is two dimensional, the study of spanwise perturbations to the flow is a three

dimensional problem.



A typical plot of the growth rate of disturbances as a function of wavelength
and Re, is shown in Figure 2.4. The wavelength A has been nondimensionalized

Ag=—= @®)

v

The most unstable wavelength is indicated by the dotted line. At a point
sufficiently far downstream, the most unstable wavelength reaches an asymptotic
value. This occurs once the wavelength of the vortices is small compared to the
boundary layer thickness. From this point on, the flow viewed by the vortices is
parallel and unchanging, as is the case for the Gortler problem™®.

The base flow used in most studies of the Gortler problem is the Blasius
profile due to large radii of curvature. As shown earlier, the influence of the
normal component of the Coriolis force suppresses the development of the rotating
boundary layer and the profile is not Blasius. However, for a sufficiently low
rotation rate, there is a negligible amount of error introduced by assumi‘ng a
Blasius profile. It was found that rotation rates Ro,/Re, of the order 10 have
about 5% error in the asymptotic waveiength using the Blasius solution as the base
flow rather than the calculated profile. Consequently, for ihe purposes of this
study, rotation rates Ro,/Re, below 10 will be described as "low rotation” and the
Blasius solution is used as the base flow. For rotation rates abeve this value,

termed "moderate” or "high rotation", the base flow has been calculated.
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Figure 2.5 shows a comparison between experimentally measured
wavelengths* and the calculated asymptotic wavelengths. As can be seen, the
experimental wavelengths are generally larger than the most unstable wavelengths.
This could be due to experimental conditions which cause larger wavelength
vortices to be preferentially excited or which initially have more energy in long
wavelength disturbances.  For example, Guo & Finlay’ showed that a
misalignment between the leading edge of the plate and the flow of only half a
degree caused the selection of wavelengths considerably greater than the most
unstable wavelength for the Gortler problem. Figure 2.4 shows that the contours
of growth rate are broader above the most unsteble wavelength than below. Thus,
given equal initial energy levels, it is more likely that wavelengths greater than the
most unstable wavelength will be selected rather than wavelengths less than the
most unstable. Floryan & Saric® showed that in an experiment, once the
wavelength of Gortler vortices is selected near the leading edge, the vortices
proceed downstream with this selected wavelength independently of the local
growth rates further downstream. Thus, the observed wavelengths of the vortices
are not necessarily the most unstable at that streamwise location.

2.4.1 Linear Stability for Low Rotation Rates
Matsubara and Masuda* demonstrated that for local linear stability, one of

the parameters which governs the instability of a rotating boundary layer is

11
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G,f,,-{—;‘—) %9-=Re.’ko, ©®)

Note the similarity to the square of the GSstler number G used in the study of the

concave boundary layer:

Gi-i(i)"‘ (10)

where the first portion describes the flow parameters and the second group
describes the geometry of the system. Since the downstream location X has been

used as the length scale ir this study, G, can be written as:

G E)u‘(ﬂ)m% N, 12 an
rot v U- X X
by using the relation between 6 and x
S
}uﬁ.‘ﬁ 12)

The rotational Gortler number can also be used to nondimensionalize the

spanwise wavelength of the vortices A

=Re,Ro}" (13)

in the same manner as the Gortler problem. A plot of the growth rate of the
vortices versus G, collapses to the same curve if Ag is the same. Therefore, for

Jow rotation rates, the rotational Gortler number is sufficient to describe the
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instability. Figure 2.6 shows the variation in the most unstable wavelength of the
vortices as the rotational Gartler number is varied. Thus, the flow over a rotating
flat plate shows a strong similarity to the Gortler problem at low rotation rates and
it is appropriate to use the Blasius profile as the base flow.
2.4.2 Linear Stability for Moderate and High Rotation Rates

Once the rate of rotation has become sufficiently high that it is no longer
appropriate to use the Blasius profile as the base flow, the rotational Gértler
number is no longer suitable for describing the flow. It is not possible to combine
the two parameters Ro, and Re, into a single variable that governs the growth of
the vortices. Two cases having the same rotational Gortler number, but much
different values of Ro, and Re,, have different values of the most unstable
wavelength. This is due to the fact that the streamwise component of the Coriolis
force has become sufficiently large to introduce a significant streamwise pressure
gradient which eliminates the appearance of self-similarity of the velocity profile.

Figure 2.7 shows the variation in the most unstable wavelength as a function
of Ro, and Re,. Because the Goértler number no longer applies, the other
nondimensional wavelength defined earlier, Ag., is used. This plot clearly
illustrates the trends observed by Masuda & Matsubara® and Matsubara &
Masuda*: the nondimensional spanwise spacing of the vortices decreases with
increasing rotation and decreasing Reynolds number.

The earlier use of the variable Ro,/Re, in this study is also supported by this

13



data since the contours of dominant wavelength closely follow lines of constant
Ro,/Re, below Ro,/Re, = 10%. However, for moderate and high rotation (Ro,/Re,
> 109, this is no longer the case and the most unstable wavelength is a function
of both variables.

2.4.3 Comparison to Local Stability Analysis

The comparison of the results of local stability analysis and marching
schemes for the Gortler problem has been the subject of much debate. Hall® (cf.
also Day, Herbert & Saric'®) showed that a marching technique does not produce
unique neutral stability curves for the Gortler problem. In a local analysis, the
partial differential equations that govern the stability of the flow are reduced to
ordinary differential equations by neglecting some terms. Near the leading edge,
ordinary differential equations are not a sufficient approximation of the full partial
differential equations to describe the decay of the vortices near the outside edge
of the boundary layer’. When the full partial differential equations are solved, the
early stages of growth are different for different perturbations and it is not possible
to construct unique neutral stability curves.

Similarly, it was found that neutral stability curves do not exist in the
rotating boundary layer: the early stages of growth of the vortices depends on both
the shape and the location of the initial perturbation. However, a short distance
from the leading edge, the growth of all of the perturbations converges 1o one

curve. This trend agrees with the results of Hall® for the Gértler problem. Hall®

14



found that the growth rates of all perturbations eventually converge to the neutral
curve obtained by a local analysis further downstream for the Gértler problem.
Far away from the leading edge, the boundary layer thickness is much
greater than the size of the vortices. Therefore, the use of ordinary differential
equations to approximate the full partial differential equations is reasonable: it has
been shown for the Gértler problem that the local stability and marching schemes
produce similar results away from the leading edge'®. Figure 2.5 shows that the
asymptotic wavelength calculated in this study and previous local analysis* are

approximately the same; there is a difference of about 7%.
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Figure 2.1. The geometry and sign convention of flow over a rotating flat plate

is shown. Only a small section away from the leading edge is illustrated.
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CHAPTER 3

3.0 CONCLUSION

3.1 Summary

In this analysis of the stability of flow over a rotating flat plate, it has been
shown that the rotation suppresses the development of the boundary layer. As the
amount of rotation is increased, the boundary layer thickness decreases. For
rotation rates Ro,/Re, below 103, the effect of rotation on the boundary layer
development is minor and the Blasius profile can be used as the base flow. As the
rotation rate increases above this value, the base flow begins to differ from the
Blasius profile and the flow begins to lose its self-similarity. However, because
the normal component of the Coriolis force is dominant for small Ro,/Re,, the
flow is nearly self-similar. This is not exact self-similarity since there is a
streamwise component of the Coriolis force that depends on streamwise location
in a nonsimilar way. Once the rate of rotation is sufficiently high, this component
of the Coriolis force causes a significant streamwise pressure gradient and the
appearance of self-similarity is lost completely.

For low rotation rates (i.e. Ro,/Re, < 10%), the rotational Gortler number
is the appropriate variable to describe the growth of the vortices. At higher

rotation rates, the wavelength of the most unstable wavelength is a function of Ro,
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and Re, and it is not possible to combine these va-iables into a single variable that
governs the growth of the vortices. This is due to the loss of the self-similarity
of the velocity profile.

A marching scheme was used to solve the governing equations. Like the
Gortler problem, there is no unique neutral stability boundary for the rotating
boundary layer. Far from the leading edge, local theory and the marching scheme
give similar results.

3.2 Future Work

This study has considered only the linear growth of the vortices; the energy
level of the vortices is infinitesimal. However, as the vortices continue to grow
downstream, they begin to grow in a nonlinear fashion and a secondary stability
mechanism becomes important. In general, a spanwise secondary instability may
cause the vortices to interfere with each other. A vortex may split into a new pair
if the vortices are far apart or two vortices may merge to form a single vortex if
they are close together.

It has been shown tilat vortex splitting and merging occur fer Dean vortices
(vortices formed in a curved channel)!. However, in the Gértler problem, vortex
splitting and merging events do not generally occur because the vortices have a
smaller growth rate of secondary instability than Dean vortices'. Thus, the
vortices may break down before a split or merge can occur. Instead, the vortices

tend to distort when subjected to a spanwise perturbation'. One possible reason
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for this difference may be related to the fact that Dean vortices occur in the
presence of a streamwise pressure gradient while Gdrtler vortices do not.

If this is the case, the vortices in a rotating boundary layer may show two
regimes of nonlinear behaviour. At low rotation rates when there is a strong
analogy to the Gortler problem, the vortices may distort without significant
splitting or merging. At high rotation rates, the streamwise component of the
Coriolis force introduces a significant pressure gradient. Consequently, the

splitting and merging events that characterize the nonlinear growth of Dean

vortices may be observed.

27



CHAPTER 3 REFERENCES

' Y. Guo and W.H. Finlay, "Wavenumber selection and irregularity of
spatially developing nonlinear Dean and Gortler vortices”, submitted to J. Fluid

Mech.

28



APPENDIX

Description of the Numerical Method

The parabolized Navier-Stokes equations are solved using the Legendre
Spectral Element Method in 2 marching scheme. By incorporating the continuity

equation, the general form of these equations can be written as:

ou,
2u ——+—(uxu’)+—(uxuz)-f =

ap‘ a’u azllx (Al)
ox Re ayz azz

(
B B, By pa 2, 1| T T (A2)
& U G ke o o)

( \
ap' 1 a’:«,}fﬁ (A3)

+ e

R‘xkayz azz/

—(lt,etz (u i (u,uz 7=

where f is a body force. For the rotating flat plate, f is the Coriolis force term
and p’ is the sum of the pressure gradient and the centrifugal force (see equations
(1), (2) and (6) in the main text). At a given location, the solution is marched
downstream one step and the streamwise velocity is calculated at the new
streamwise location using the x-momentum equation. A third order Adam-
Bashforth scheme is used to march the nonlinear convection and force terms and
a backward Euler scheme is used to march the linear terms. The pressure and the
other components of velocity are determined at the new streamwise location from

the other two components of the momentum equations and the continuity equation.
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using a global iterative Uzawa scheme. Thus. the resulting matrix system can be

written as:

. Und Uu
2B, A

2
+ B,(c -F)y'=-BP}"'- E,w"“ (Ad)

X

in the streamwise direction and

nel +1
B; u' -BU; o (AS)

"y EB[(C _F’)A-l__D’Plﬂ

nelpynel
B!"'u"'-BlU; - (A6)

X2 “Fy-l-_ nel_
= Eo,(cm D P p A,

in the cross stream plane. The continuity equation becomes

D Unol D U.’l—-——(U”l ,.) (A7)

The symbol U;" is the velocity vector at the Gauss-Lobatto/Gauss-Lobatto nodes
at step n. The symbols A, B, and D are the standard Laplace matrix, the lumped
mass matrix, and the gradient matrices respectively. C; and F,; are the convection
and force terms and 8, = 23/12, -16/12, and 5/12 for / = 0, 1, and 2.

The stability equations are produced by inserting
u=u+u
into the parabolized Navier-Stokes equation. The base flow is u’ and v’ is a

spanwise perturbation of the form
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‘=i exp (iB2) (48)

Here § is the perturbation wavenumber and i@ is a complex eigenfunction.
Assuming that the perturbation also has slow streamwise variation, the
terms with second derivatives in the x direction can be neglected. This results in

the following parabolized equations

3 Sy, =L | Hx, s (A9)
Zax(u,ux) w, Re[ay+ az)
in the streamwise direction and
1 (oa, oa
(u u’)+—(u ux) +W, —-%+_R_e—(?y! jk—’) (A10)
(u,u)+ (u 2a)+w, -—-al—xﬂw 1 [?;%Z'Z‘] (Al1)
in the cross stream plane. The continuity equation is
_E“}_(_a_ ﬂ-p),; &, (A12)
Iy \& T

where
w=2 i +a u°)+(--a +ip)(u°a +ii u°)——l [2:'3——-‘-52&)
T vt & T Re T &2 !

andi = x,y, and z.

The complex eigenfunction @ at each streamwise location is determined
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from the unique eigenvalues u’, Ro,, Re, and the spanwise wavenumber 8.
Subsequently, the kinetic energy E; of the perturbation at each streamwise location

is obtained according to

E,=[lu'f dy dz (A13)

The nondimensional growth rate ¢ is then calculated from

o=(n E}" -In z:)é (A14)

since
Ek=¢ ox (A15)

for linear perturbations. Here [ is the downstream distance used to
nondimensionalize ¢. Thus, one can calculate how the growth rate varies as the
spanwise wavenumber of the perturbation B is varied. To generate the data for the
contour plots shown in the main text, several runs for the same Ro, and Re, are
made with different 8. The most unstable wavelength is then obtained from the

contour plots.
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