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Abstract

We develop the Trellis Driver package for integrating Java applications with Trellis m etacom puters, 

which are user-level aggregations o f hosts. U sing TrellisDriver. exec () calls in place o f  

Runtime. exec ()  calls, applications can distribute their workllows across m etacomputers. For 

exam ple, Proteom e Analyst (PA) is a high-perform ance bioinform atics tool that executes a w ork­

flow o f  jobs to annotate proteom es. R unning all workflow jo b s on a single server severely restricts 

throughput for large analyses. Em pirical results show that Trellis D river’s job  scheduling overheads 

can be amortized by batching together m any jobs, leading to linear speed-up o f  application phases.

We further investigate techniques to optim ize PA’s perform ance by reducing data m ovem ent 

between workflow jobs. We test our new D ata-C onscious (DC) scheduling policy for Trellis in a 

sim ulation study. Sim ulation results show  that DC scheduling is most beneficial when co-locating 

jobs and data offers considerable savings in either netw ork overheads, or overheads due to applica­

tion file sizes.
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Chapter 1

Introduction

M any areas o f  science, including bioinform atics, chem istry, and physics, exhibit problem s that re­

quire years o f  com puting cycles to solve. Exam ples o f  such problem s include protein annotation, 

therm odynam ic m olecular m odelling, sim ulating ion transport, and sim ulating protein folding [26]. 

Regardless o f the advances in central processing unit (CPU) power, or the data processing and stor­

age capabilities o f  even the most powerful supercom puters at any point in time, there are always 

scientific problem s w hose resource dem ands exceed the capacity o f any single m achine or even 

a collection o f dedicated, high-end servers from one com puting site. For exam ple, the study o f 

the chiral recognition surfaces o f  two chiral m olecules involves calculating interaction energies at 

many different separations and orientations [34]. T he com putation for one data point can take up to 

four hours on a single server, using present-day technology. A chiral recognition experim ent with

10,000 data points w ould, for exam ple, require 40,000 CPU  hours, or approxim ately 4.6 CPU years. 

There is, then, a persistent need to aggregate resources from  m ultiple com puting sites to improve 

throughput -  the am ount o f  w ork com pleted over a certain  tim e p e r io d -a n d  significantly reduce the 

turnaround time o f  the com putation. By doing so, system s integration is able to further a particular 

area o f  science.

Software applications that are w ritten to solve large-scale scientific problem s typically execute 

multiple program s, each o f  which perform s a small part o f  the overall com putation. Som etim es, 

each part o f  the com putation can be perform ed independently. Often, however, there is a pattern 

o f  dependencies betw een different parts o f  the com putation that form s a workflow , which is a di­

rected acyclic graph (DAG) o f  interdependent application tasks. Workflows are explained in detail 

in Section 1.1.1. As an external exam ple from the literature, which we will discuss only here, we 

can consider the workflow o f  an atm ospheric m odelling application [1, 2], shown in F igure 1.1.

In the first stage o f  the workflow, environm ental data is acquired from a distribution o f  sensors, 

and then fed to a general circulation m odelling task, which com putes global weather patterns. The 

circulation m odelling task sends its output data to a regional w eather model, which produces wind 

data for a fixed area, using som e additional sensory data. O utput values from the regional weather 

model are then sent to several pollution m odelling tasks, including a photo-chem ical m odel, a parti-

1
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Figure 1.1: A tm ospheric Sciences Workflow

cle dispersion m odel, and a bush fire model. The outputs from  the various pollution models are then 

passed to a 3D visualization task, which provides a graphical representation o f atm ospheric trends.

In F igure 1.1, the direction of the arrows indicates the flow o f data. For instance, the general 

circulation model task passes data to the regional w eather m odel task. Therefore, the form er task 

m ust com plete before the latter may begin. Thus, the execution o f  jobs proceeds downw ards in the 

diagram .

We refer to a single unit o f  com putation, or task, as a jo b . Typically, there is a m aster or driver 

jo b  that m anages the other jobs. This m aster jo b  starts the other jobs, monitors their progress, and 

com bines their individual results to generate a com plete solution. Thus, the m aster jo b  controls 

the overall execution o f  the workflow. Although F igure 1.1 does not show a m aster job , a m aster 

job  could be added to this workflow to perform , for exam ple, the transferring of data from  the 

sensors to the hosts that execute the various m odelling program s, as well as the invocation o f  all 

data acquisition, m odelling, and visualization jobs.

A m etacom puting  system is a com m on platform  for executing scientific applications with large 

and com plex workflows. In a m etacom puting system , resources belonging to different com puting 

centres that are managed by different adm inistrators, are aggregated to boost com puting capacity. 

R unning applications on a m etacom puting platform  poses several technical challenges -  namely, 

transparency o f  data access, security o f  com m unications, fault tolerance and, finally, scheduling o f 

the resulting workload across m ultiple sites.

H ere the term scheduling  refers to the m apping o f  individual jobs to specific processors. The

2
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problem  o f jo b  scheduling has been a topic o f  interest in high-perform ance scientific com puting 

for decades. M uch work to date has focused solely on m axim izing application throughput. W hile 

this m etric is im portant in determ ining the overall effectiveness and user acceptance o f  a particular 

scheduling algorithm , the m agnitude o f data that must be transferred betw een networks is another 

essential perform ance factor in scheduling in m etacom puting. Undue data m ovem ent im poses a per­

form ance penalty on workflow execution, as individual jobs must wait for their typically large input 

files to be transferred across shared networks before they can run. An ideal policy for scheduling 

scientific workflows places the com putation near the data whenever it is feasible to do so, while still 

ensuring high throughput.

1.1 Key Concepts

H aving explained the main motivation behind this research, we now provide background inform ation 

on the key concepts o f  workflows, m etacom puting, data consciousness in scheduling, and m echa­

nism s versus policies. Finally, we explain how these concepts are com bined to form  the basis of 

the experim ental and developm ent work presented in this thesis. A solid understanding o f  these 

concepts and how they fit together is necessary to fully appreciate the contributions o f  this work and 

its place in the broad research area o f high-perform ance scientific com puting.

1.1.1 Workloads and Workflows

C ertain applications in science perform  a large num ber o f  independent com putations. We refer to 

the set o f  all com putations, o r jobs, that m ust be run within an application as the workload. One 

specific type o f  workload is an em barrassingly parallel com putation, in w hich no com m unication 

between individual jobs is required. Param eter space studies are a good exam ple o f  em barrassingly 

parallel workloads [23]. In such experim ents, each jo b  is an invocation o f  the sam e calculation with 

a unique data point, and has no influence on the outcom e o f  other calculations. Scheduling o f  such 

w orkloads is easy since there are no constraints on job  ordering; the scheduler can assign any job  to 

any available host.

O ther applications, however, perform  com putations that have a pattern o f  interdependencies. 

T he w orkloads o f  these applications constitute workflows, which are control-flow  or data-flow struc­

tures o f  typically heterogeneous tasks that collaboratively solve a large-scale problem . Workflows 

are conveniently expressed as DAGs [13]. Data analysis applications with discernible com putational 

phases are good exam ples o f applications that execute workflows. Recall our earlier exam ple o f the 

atm ospheric m odelling program  whose workflow was shown in F igure 1.1. The first application 

phase o f  data acquisition generates environm ental data that is consum ed by the general modelling 

phase that follows. This second phase produces data that is consum ed by the regional weather 

m odelling phase, and so on. The data flow between phases places constraints on the order in which 

individual jobs may run. For instance, any com bination o f the data acquisition tasks may run concur-

3
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F igure 1.2: Overlay M etacom puter with Two Adm inistrative D om ains

rently, but all data acquisition tasks m ust com plete before the general m odelling task can run. The 

scheduling o f these types o f  workloads is m ore com plicated than it is for em barrassingly parallel 

workloads.

1.1.2 Metacomputing

A cadem ic researchers and industry professionals who run scientific applications whose workflows 

contain hundreds or thousands o f jo b s often wish to harness the power o f  m ultiple independent 

servers to m axim ize the throughput o f  their applications. The servers used may fall under different 

adm inistrative dom ains, which are autonom ous com puting centres where local adm inistrators en­

force their own policies concerning resource usage. It is com m on for users to obtain accounts at 

several high-perform ance com puting centres (HPCCs) so that they m ay aggregate resources to pro­

v ide the needed hardw are and softw are capacity. The difficulty in executing workflows over multiple 

HPCCs is that jobs and data must be passed between adm inistrative dom ains, each o f  which runs its 

own batch scheduling software, and m ay sit behind its own firewall.

F or effective and convenient utilization o f  all available resources, users should be able to submit 

their jobs to one instance o f  a scheduling service that autom atically distributes jobs over multiple 

execution hosts (or servers). M etacom puting aims to abstract a collection o f  individual com put­

ing servers by providing the user with a view o f a single supercom puter. O verlay metacomputers 

provide this abstraction by building on top o f  existing infrastructure with software that perform s 

cross-dom ain job  scheduling.

U sers can create their personal m etacom puter by com bining specific machines from  any com ­

puting centre to which they have access. Consider the schem atic diagram  o f a m etacom puter shown 

in F igure 1.2. In this case, the user has access to two different adm inistrative dom ains from two 

different universities. The separate resources from these two system s appear as one large system 

to the user. Overlay m etacom puter softw are provides the user with a single point o f control for job  

adm ission and m anagem ent.

A com mon solution for providing m etacom puter-w ide scheduling is to im plem ent a user-specific 

metacmeue. A m etaqueue is a central depository for jobs that are to be run over a metacomputer. 

M etaqueues are sim ilar to global queues in the sense that they provide high-level job  queuing. Jobs

4
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in a metaqueue are not bound to any particular host or HPCC cither at the time they are subm itted, 

or while they wait in the queue for resources to becom e available. Only when a job  is selected for 

running is that job  bound to a specific m achine or group o f m achines. Based on a well-defined set 

o f  criteria, the m etacom puting system  decides onto which HPCC to offload a job , and autom atically 

handles program  and data shipping between dom ains. Users subm it and m onitor jobs through the 

m etaqueue only; they need not interact with local jo b  scheduling system s to handle the exact place­

m ent o f individual jobs. This feature m akes submitting jobs intuitive and straightforward to users, 

and allows local adm inistrators to retain their autonomy.

1.1.3 Data Consciousness in Scheduling

Certain scheduling algorithm s focus exclusively on m axim izing application throughput. Throughput 

is defined as the num ber o f  w ork units com pleted in a fixed tim e interval. These algorithm s, however, 

are often unaw are o f  the location o f  data files required by individual jobs. If  a large percentage o f 

jobs must copy their data from  a rem ote host before executing, the cum ulative data movem ent when 

executing a workflow o f  thousands o f  jo b s could be substantial. M oving such a large am ount o f 

data between m achines across separate networks may limit the attainable throughput, since a greater 

proportion o f  execution tim e is now spent in com m unication as opposed to com putation.

We aim to define a scheduling strategy that is data conscious , which we define as a strategy that 

considers the location o f  a jo b ’s input data when evaluating that jo b ’s suitability for execution on a 

specific processor or group o f  processors. Data consciousness is an im portant goal for job  schedul­

ing in m etacom puting environm ents. M etacom puters com prise hosts from  different adm inistrative 

dom ains, possibly at geographically distant sites, so there is often considerable overhead in fetching 

the input data o f  a jo b  from  a rem ote host.

W hile data affinity (i.e., enforcing data locality through jo b  assignm ent decisions) is the pri­

mary design goal o f the scheduling policy we develop, there are other job-specific traits that can 

influence perform ance o f  workflow execution. Consider the im portance o f  the pattern o f  inter-job 

dependencies. The com pletion o f  certain  jobs may free up or unblock m ore waiting jobs than would 

the com pletion o f  others. Jobs with a higher num ber o f dependents should be preferred for running 

over those with few er dependents. The length o f time a given jo b  has been in the work queue should 

also be considered, in the interest o f  lim iting the m axim um  tim e for servicing jobs. By favouring 

jo b s with a long waiting tim e for execution, the scheduler prevents starvation o f  jobs deemed less 

im portant by other m easures.

Typically, schedulers consider a variety o f  job  criteria and map the jobs to a single priority 

value; the job  with the highest priority is then chosen for running. Thus, our fundamental challenge 

in designing an efficient scheduler for a m etacom puting environm ent is to define a set o f equations 

that takes quantified m easures o f  all o f  the aforem entioned jo b  characteristics for a given job , weighs 

each o f them appropriately, and returns a numeric value representing that jo b ’s priority.

5
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1.1.4 Mechanisms vs. Policies

It is important to distinguish between the notions o f  m echanism s and policies. A m echanism  pro­

vides the infrastructure or means for carrying out a task, whereas a policy outlines rules on how that 

task is to be carried out. Thus, policies form ulate heuristics (i.e., rules o f  thum b) to make intelligent 

decisions as to how to best use m echanism s to accom plish their tasks. Consider the task, required by 

an operating system , o f  providing users with access to a file. The o p e n  ()  system call provided by 

Unix systems is a m echanism  for accom plishing this task. Any prefetching and caching techniques 

used by a particular version o f  Unix for optim izing file access are a matter o f  policy. Separation 

o f  the mechanism  from the policy is advantageous because system s program m ers may change one 

w ithout affecting the other. For instance, im plem entors o f o p e n  () may integrate a new prefetch­

ing policy into this routine without m odifying its semantic behaviour or syntactic signature, both o f 

w hich are exam ples o f m echanism .

Although designing and im plem enting a mechanism for executing workflows with inter-job de­

pendencies is non-trivial, solutions that are both efficient and scalable do exist [13]. Such m echa­

nism s provide a m eans for users to subm it jobs, and have those jobs run on rem ote hosts. Choosing 

the best jo b  to assign to a free host, however, is a m atter o f  policy.

A policy for scheduling workflow jobs in m etacom puters defines a method for choosing the most 

appropriate jo b  to run next, from  a group o f  several candidate jobs. D uring the execution o f  any non­

trivial workflow, there are often m ultiple jobs that can be run at a given m om ent due to flexibility in 

the pattern o f  dependencies between jobs. A greater num ber o f  candidate jobs offers the scheduler 

m ore flexibility in assigning jobs to hosts, which in turn can lead to better jo b  assignments.

1.1.5 Integration of Key Concepts

The individual concepts discussed above fit together in a specific way within the context o f  this 

thesis. We address scientific applications perform ing large-scale com putations that entail running 

a workflow o f jobs, and that require high-perform ance com puting resources to com plete w ithin a 

tim efram e acceptable to the researchers who depend on those com putational results. O ur execution 

platform  is an overlay m etacom puter, which is a convenient aggregation o f  hosts from  m ultiple 

adm inistrative dom ains. Overlay m etacom puters are a sim ple yet effective way o f  obtaining the 

necessary com puting capacity for such applications.

Given a m etacom puting environm ent and a workflow o f stand-alone jobs, each with its own input 

data needs, we seek a strategy o f  assigning jobs to hosts that places jobs with their input data when 

practical to do so. We focus on developing a scheduling policy that upholds data consciousness by 

w eighing the cost o f  m oving files across networks against other job-specific factors.
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1.2 Contributions and Outline

Having introduced the com puting science concepts that are fundamental to this work, and subse­

quently explained how these concepts relate to each other, we now highlight the main contributions 

o f  this work, and provide an overview o f the organization o f  this thesis.

1.2.1 Contributions

There are three main contributions o f  this thesis:

1. Development of a Java Package to Transform Process-level Concurrency into Workflow 

Concurrency Within Mctacomputers

We use the bioinform atics tool Proteom e A nalyst (PA) as a guiding application. PA’s workflow 

contains several opportunities for jo b  parallelism , but exploitation o f  this parallelism  requires 

integrating the application with the cross-dom ain scheduling service typical o f  a m etacom ­

puter. We develop a new software m odule called Trellis Driver that allows Java applications, 

such as PA, to integrate with the existing Trellis m etacom puting system.

2. Implementation of Job Batching Strategies to Amortize Scheduling Overheads

The additional software layer between the PA application and Trellis m etacom puting infras­

tructure im poses a non-negligible latency on the launching o f  external jobs. We describe 

our support for batching together jobs o f  either the sam e or a different type to am ortize job  

scheduling overheads. Em pirical results obtained in a local area network (LAN) setting show 

that jo b  batching provides linear speed-up (i.e., a 4  tim es speed-up on 4 processors) o f data- 

parallel phases.

3. Development and Evaluation of a Data-Conscious Scheduling Policy that Reduces Work­

flow Turnaround Time

After evaluating PA’s perform ance in a real setting, we develop a sim ulator that m odels the 

PA workflow and the underlying Trellis system . We use this sim ulator to explore the effects 

o f executing PA’s workflow over a wide area netw ork (WAN), which has higher latencies than 

a LAN, and increasing the sizes o f  the workflow jo b  input files.

The increased data movem ent cost in such scenarios leads us to develop the D ata-Conscious 

(DC) scheduling policy that considers the location o f  input data when assigning jobs to hosts. 

Through our sim ulator, we com pare the perform ance o f  our DC policy against two existing, 

w idely-used scheduling m echanism s. Our results show that DC scheduling produces notably 

shorter workflow turnaround tim es when the the network com m unication costs or the file sizes 

are large.
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1.2.2 Outline

PA is a bioinform atics tool that provides a high-perform ance classification fram ework for protein 

sequences. It consists o f  a Java driver program  that invokes other helper program s to analyze and 

infer functional characteristics o f individual proteins. Prior to this work, PA ran all helper jobs on 

the sam e server. Test trials o f  the original version o f  PA indicate that for large inputs there are phases 

that take roughly five hours to com plete. U sing the newly-developed Trellis Driver Java package, we 

integrate PA with the Trellis m etacom puting system  -  thereby allowing PA to distribute its workflow 

o f jo b s  across aggregations o f  servers com prising  an overlay m etacomputcr. Em pirical results show 

that linear speed-ups can be achieved for data-parallel phases.

O nce PA is integrated with m etacom puting, we next optim ize the execution o f PA’s workflow 

by im proving the scheduler within the Trellis system. We define the DC scheduling policy that 

places jobs on hosts where their input data resides, when deem ed practical, so that the cum ulative 

data m ovem ent is reduced. We develop a sim ulator that m odels the execution o f  PA’s workflow 

over a Trellis metacomputer. Sim ulation results indicate that DC scheduling places the maximum 

possible percentage o f  jobs with their input data, and reduces m akespan (i.e., turnaround time) by up 

to 53%  against First Com e First Served (FC FS) in a WAN setting when the file sizes are sufficiently 

increased.

S
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Chapter 2

Motivation

Chapter 1 explained the fundamental problem in high-perform ance scientific com puting that our 

research addresses, and highlighted the key concepts o f  workflows, m etacom puting, data conscious­

ness, and scheduling policies. In this chapter, we provide the motivation for our choice o f  a guiding 

scientific application, the developm ent o f  a software m odule that enables the sim ple integration of 

our application with Trellis m etacom puters and, finally, the consideration o f  input data location 

when m apping jobs to processors.

Initially, we describe our m otivating application and its workflow, and explain why we believe 

this application can benefit from being run across an overlay metacomputer. Next, we address the 

shortcom ings in the current mechanism  our application uses for running external jobs, and explain 

the need for a replacem ent module that allows jobs to be handed o ff to a m etacom puting system 

-  thereby im plicitly scheduling the jo b s across many rem ote hosts. Finally, we provide a detailed 

illustrative exam ple of a sim ple workflow that can benefit noticeably from  a scheduling policy that 

places jo b s with their input data.

In C hapter 3, we review existing solutions for parallelizing workflows, integrating resources 

from  m ultiple com puting sites, running external jobs through language m echanism s, and consid­

ering data location in job  scheduling. In Chapter 4 , we provide an architectural overview o f all 

com ponents involved in the integration o f  our chosen application with m etacom puting. We describe 

how com m unication is carried out between the scientific application, the m etacom puting integration 

m odule, and the m etacom puting system itself.

2.1 Example Application: Proteome Analyst

W e chose to use an existing scientific application with an established user com m unity as a guide 

in developing our metacomputing integration software, and our Data-Conscious (DC) scheduling 

policy. This way, we can be assured that the resulting products works in real-world situations. 

We also have the privilege o f contributing to another discipline in science by providing improved 

com putational support.

9
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F igure 2.1: Job Pipelines for Training and Prediction

Am ong the many biological problem s that require years o f  com puting pow er to solve is that 

o f  annotating large sets o f  protein sequences. Currently, there are m ore than 1,200 genom es ana­

lyzed and stored in public databases [9]; som e o f these genom es have up to tens o f  thousands o f 

sequences. The sheer volum e o f  this biological data necessitates the developm ent o f  tools that can 

extract meaningful data trends and thereby convey useful biological know ledge to researchers.

Proteom e Analyst (PA) is a bioinform atics application that provides detailed annotations o f pro- 

teom es (sets o f  protein sequences) [29]. Annotations offered include general function, which indi­

cates the prim ary role the protein plays in the cell; and subcellular localization, which indicates the 

location within the cell w here the protein perform s its prim ary role.

PA uses the m achine learning technique o f classification to make predictions or annotations o f  a 

new protein [20]. Classification answers the question: Given a data sam ple and a finite set o f  distinct 

categories, o f which o f these categories is the data sam ple a m em ber? One use for predicting the 

properties o f  a protein is in suggesting the kinds o f  physical experim ents that would be most valuable 

for em pirically confirming the predictions made about that protein.

Although the above sum m ary provides an accurate snapshot o f  PA, the PA application has many 

m ore capabilities. PA can create a custom  classifier to predict a new property, from a set o f  labeled 

proteins. PA’s graphical exposition o f annotation results offers a “w hat-if” analysis, in which users 

may see the effects o f  altering an individual feature on a protein’s predicted properties.

For our purposes, we focus on two distinct aspects o f PA, both o f  which have sim ilar workflows 

that are com putationally-intensive. Figure 2.1 shows the workflows for these two com m on use

10
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cases. First, PA can machine-Iearn a classifier as part o f  a training process (left side o f  F igure 2.1). 

PA accepts a training set, which is a set o f proteins whose class labels have been assigned by domain 

experts through experim ental analysis, and from this training set autom atically builds a Naive-Bayes 

classifier in a learn-by-exam ple fashion [20], Second, PA can use an existing classifier to predict 

annotations o f  new (i.e., previously unseen) proteins (right side o f  F igure 2.1). PA accepts a query 

sequence, perform s a lexical analysis on this sequence, and then assigns it to a functional category. 

N ote that when describing PA’s inputs, we use the term s “protein” and “sequence” interchangeably.

Both the training and prediction processes produce workflows that are three-stage pipelines. 

Conceptually, a protein is either part o f  a training set or it is a query sequence that is being analyzed 

for prediction. Each protein in the input proteom e produces one instance o f the pipeline.

During the training process, the initial input to a pipeline is a protein from the training set, which 

has an assigned class label. In Stage 1, a text version o f  the protein, which is a string representa­

tion o f  its prim ary structure, is com pared against the Swiss-Prot biological database o f  sequences, 

using the Basic Local A lignm ent Search Tool (BLAST) toolset [4]. Swiss-Prot is a high-quality, 

curated database o f  known proteins and their various properties [5]. The output from this string- 

m atching step is a set o f  hom ologues, or proteins with a sim ilar prim ary structure. In Stage 2, the 

known inform ation about the hom ologues is parsed to extract features (descriptive keywords) from  

the Swiss-Prot database. A fter the Parsing jo b  is com plete, we possess a keyword sum m ary o f  a 

particular protein. In Stage 3 o f training, a mapping function from  the features to a class label is 

m achine-learned, and used in the construction o f a new classifier.

D uring the prediction process, the initial input is an unknow n protein, which we call a query 

sequence, whose class we wish to determ ine. The first two stages o f  the prediction pipeline are 

identical to those in the training pipeline: A string representation o f  the sequence is fed to the 

B LA ST utility, which produces hom ologues. These hom ologues are then given to the parsing utility, 

which produces features. Stage 3 is a prediction step in which the extracted features, or keywords, 

o f  the query sequence are given to an existing classifier for analysis. The classifier produces a class 

label, thereby assigning that sequence to an ontological (i.e., m etaphysical) category.

In either use case, the jobs from all three pipeline stages are “sm all” in the sense that they 

have a short running time, typically on the order o f seconds, and work with relatively small input 

and output data, typically o f size tens of kilobytes or less. A single pipeline therefore requires 

few com puting cycles and minimal data storage space. However, som e proteom es have thousands 

or tens o f  thousands o f  sequences. The human genom e, for exam ple, consists o f approxim ately

23,000 sequences [31J, This results in roughly 23,000 pipeline instances being executed. Thus, the 

collective com putational and data storage requirem ents for large analyses can be quite high.

To assess and illustrate the need for workflow concurrency in such cases, we m easured runtim es 

o f  various application phases in a test program  using the original PA. In this experim ent, we trained 

and validated a new classifier using a m oderately-sized training set based on a collection o f  proteins

11
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Test P ro g ra m  P hase W orkflow  S tage R u n tim e  (H :M M :S S)
BLA ST Stage 1 4:51:26

Feature Extraction Stage 2 0:08:33
M achine Learning Stage 3 (left side) 0:05:43

Resubstitution Stage 3 (right side) 0:18:34
Total 5:24:16

Table 2.1: Phase Tim es for Training and Validation o f  a New Classifier Based on Gram  Negative 
Bacteria, Using Original PA

from several gram  negative bacteria that consists o f  3 ,916 protein sequences and 1,531 features 

(keywords). PA was run on a single L inux box with two A M D  A thlon M P 1800+ processors, 1.5 GB 

main memory, and Red H at Linux 7.1.

Table 2.1 show s the correspondence between each o f  the four phases o f our test program  and 

the previously illustrated workflow pipelines, as well as the runtim es from these phases. N ote the 

long BLAST runtim e o f  nearly 5 hours. Recall our earlier exam ple o f  the human genom e with its

23,000 proteins, which is roughly six tim es the size o f the sam ple proteom e used here. In that case, 

the BLAST phase would require roughly 30 hours.

The original PA uses Java’s Runtime. exec ()  facility to invoke the external BLA ST program  

(Stage 1 in the pipeline). U nfortunately, all these jobs are run locally (i.e., on the sam e server as the 

main PA process). Thus, the application’s perform ance is lim ited to that o f  the local server, which 

must execute every jo b  in every pipeline. The BLA ST phase’s long runtim e, shown in Table 2.1, 

em pirically confirm s the disadvantage o f  running all these jo b s onto the local server.

Since the first two stages in each pipeline perform  an independent analysis on one particular 

protein, we can execute an arbitrary num ber o f  BLA ST and Parsing jobs concurrently, w ithout 

sacrificing application coherence. For this reason, Stages 1 and 2 are em barrassingly parallel. D is­

tributing BLA ST jobs from  distinct pipelines over the constituent hosts o f  a m etacom puter can 

significantly increase PA’s throughput (i.e., w ork units com pleted in a fixed tim e interval) for large 

or even m oderately-sized proteom es, including that used in the test program  above. Enabling a Java 

application for m etacom puting however, requires a replacem ent for Runtime. exec ()  that passes 

a jo b  to a m etacom puter scheduler instead o f running that jo b  locally. We describe the new software 

m odule we developed to achieve this goal in Section 2.2.

With the im provem ent in application throughput that a m etacom puting platform  offers com es 

the challenge o f  avoiding excessive data movem ent between adm inistrative dom ains. As m entioned 

earlier, undue data m ovem ent imposes a perform ance penalty on PA. To effectively parallelize PA, 

the assignm ent o f  jobs to hosts must fit well with the pattern o f  data flow between jobs.

W hen executing PA’s workflow, we should strive to assign jobs from  Stages 1 and 2 o f a com m on 

pipeline to the sam e m achine. The hom ologue file outputted by a BLAST job  (Stage 1) must be 

present on the m achine on which the subsequent Parsing job  (Stage 2) runs. M oving a few such files
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between hosts has minimal impact on the w orkflow ’s execution time. M oving the hom ologue file 

o f every protein in a proteom e as large as the human genom e, however, produces a high volume o f 

total data movement. In som e cases it may be w orthwhile to delay execution o f a Parsing jo b  until 

the m achine that ran the corresponding B LA ST jo b  becom es available. The value o f  delaying the 

execution o f  a job  in the interest o f  p lacing that jo b  near its data is further discussed in Section 2.3.1.

2.2 System Support: Trellis Driver

M etacom puters offer a suitable parallel execution platform  for resource-intensive scientific appli­

cations. W hile there are many existing m etacom puting solutions, there is an ongoing need for a 

m echanism  that provides the integration o f applications with a m etacom puter scheduler.

PA and other scientific applications consist o f  a main jo b  that invokes, or drives, other jobs. At 

various points in execution, the main jo b  invokes external program s to run specialized “helper” jobs 

that perform  a specific part o f  the com putation. I f  there are many o f  these helper jobs, or if  they are 

resource-intensive, it can be desirable to run several o f  them concurrently across m ultiple servers to 

m axim ize throughput.

PA, which is written in Java, uses the Java 2 P latform  application program m ing interface (API) 

function Runtime. exec ()  [28] to launch the BLA ST jobs. As illustrated in F igure 2.1, BLAST 

constitutes Stage 1 o f all pipelines. In the original version o f  PA, all BLAST jobs are run locally, 

which means that on a single-processor m achine, these jobs must contend with the main driver 

program  for the sam e processor. On a m ulti-processor m achine, it would be possible to run several 

helper jobs sim ultaneously on separate processors, but this only achieves job  parallelism  within the 

local host. In the case o f  the human genom e with its 23,000 odd proteins, restricting all 23,000 o f  the 

required BLA ST jobs to a single server would seriously limit the attainable throughput and hence 

increase the turnaround tim e for the analysis o f  this proteom e.

A m ore practical solution is to m odify the jo b  dispatching functionality within a driver-based ap ­

plication to use the resources o f  a m etacom puter. U sers get the benefit o f executing several workflow 

jobs sim ultaneously, w ithout having to m anually place individual jobs on rem ote machines.

Given the existing PA application, w hich is already driver-based, and the existing Trellis m eta­

com puting system [23, 22], we develop a new softw are m odule called Trellis Driver that integrates 

these two com ponents. As much as possible, Trellis Driver behaves as a drop-in replacem ent for 

Runtime. exec ( ) .  Trellis Driver provides a m ethod TrellisDriver. exec ( ) ,  for instance, 

that takes a com m and string to be run as a separate process. However, rather than passing that 

com m and string to the local operating system  for execution, TrellisDriver. exec ()  sends 

the com m and string to the Trellis scheduling service for execution in an underlying metacomputer. 

Basing the com m and interface and the functionality o f  Trellis Driver on that o f  the Runtime class 

simplifies m odifying PA (and other Java applications) to use Trellis Driver. We further discuss Trellis 

Driver in Chapter 4.
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2.3 Optimization of Workflow Execution: Data-Conscious 
Scheduling Policy

Integrating PA with the Trellis m etacom puting system enables the parallel execution o f PA’s work­

flow. Such a m easure reduces the tim e needed for processing proteom es, possibly by a wide margin. 

There is, however, a contrast between enabling m ore brute force com puting power and using the 

existing power more wisely. Perform ance can also be improved by a m etacom puting scheduling 

policy that considers the location o f the input files o f jobs. For reasons argued above, we wish to 

avoid shipping too many files between the hosts that com prise a user’s overlay metacomputer.

A lthough individual hom ologue files are relatively small, and consequently, impose little data 

m ovem ent overhead, recall that every input protein produces one instance o f  the analysis pipeline. 

PA’s workflow, then, becomes quite data-intensive for large input proteom es.

In this section, we first explain the trade-off between data affinity and throughput, and provide 

an intuitive argum ent o f how a scheduling policy can achieve both these objectives in a manner 

that m axim izes application perform ance. N ext, we quantify our previous argum ent by providing an 

illustrative exam ple o f  the execution o f  a sm all workflow, in which data file sizes and job  runtimes 

are taken from  PA. We show that exploiting data locality improves perform ance noticeably, even in 

this sim ple case.

2.3.1 Data Locality vs. Throughput

Scheduling policies used in any m etacom puting environm ent m ust address the central goal in ca­

pacity com puting, that o f  m axim izing throughput. W hen scheduling scientific workflows, the place­

m ent o f jobs near their typically large input data becom es important. Blindly assigning any job  to 

any available host may produce a substantial am ount o f  data m ovem ent, which can significantly 

slow the overall com putation. One strategy for achieving data locality is to withhold jobs from exe­

cution when their data is not locally accessible, which has the undesirable effect o f lowering central 

processing unit (CPU) utilization.

Som etim es, it may be desirable not to assign a jo b  to any presently available host, but wait until 

another host, on which a copy o f  that jo b ’s input data resides, becom es free. The delay in starting 

the jo b ’s execution may be com pensated for by the service time reduction due to the avoidance o f 

having to transfer a large am ount o f data across the network. A jo b ’s service time is defined as 

the time to fetch any and all input files from a rem ote host, if necessary, plus the tim e to execute 

that job. W aiting too long for a desired host to becom e free may delay the tim e o f an individual 

jo b ’s start (and com pletion) to the point w here data locality produces no net savings in service time. 

Additionally, a scheduler’s frequent refusal to dispatch jobs to hosts because they do not have the 

desired data may result in reduced jo b  parallelism .

There is then, a trade-off in preserving data locality and maintaining high throughput. Figure 2.2 

provides a conceptual graph o f  this com prom ise. This graph shows the throughput for varying
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F igure 2.2: Conceptual T rade-off Between Data Locality and Throughput

data locality levels for two different applications. The curves drawn in F igure 2.2 serve merely as 

illustrative exam ples, and do not represent any actual o r expected universal workflow behaviour.

Recall that throughput refers to w ork units com pleted in a fixed tim e interval, and that work 

refers solely to com putation and not com m unication. Thus, if  a jo b  is idle for a fixed am ount o f 

tim e because it is waiting for a copy operation to finish im porting its required input files, the jo b ’s 

throughput is zero for that tim e interval.

Data locality refers to the proportion o f  jobs that are placed with their data. This metric is 

a property o f  the scheduler’s policy settings, and cannot be directly set. By varying the em phasis 

placed on input data location in the scheduler’s job  placem ent decisions, we can alter the level o f  data 

locality realized when executing workflows, and observe the corresponding effects on application 

throughput. In the graph shown above, a data locality level o f  0%  m eans no jobs are placed on a 

host where their data resides. A data locality level o f  100% m eans every jo b  is placed on a host that 

has a copy o f its input data. In practice, both these extrem e cases m ight never occur.

From Figure 2.2, we see that when the scheduling policy provides no data locality (i.e., the 0% 

case), throughput is not that high for either application. Every jo b  m ust copy its input files from a 

rem ote host before it can run, therefore a considerable portion o f  every jo b ’s service tim e is spent in 

com m unication as opposed to com putation. The data m ovem ent overhead seriously limits through­

put. As data locality is increased by the scheduling policy, throughput at first improves, reaches a 

m axim um , and then steadily declines, with both applications. A higher degree o f  data locality im­

plies that at any given time, a greater proportion o f  jobs are actively w orking on their com putations, 

and not waiting for their input data to be retrieved from  a remote host. Hence, throughput is higher.

However, there com es a peak in perform ance. This occurs when the penalty to job  service time, 

caused by scheduler’s refusal to assign jobs to available hosts who do not have the appropriate data,
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Figure 2.3: M ultiple Instances o f  Proteom e A nalyst’s P ipeline Workflow

P ipeline  E vent P ro te in  1 P ro te in  2 P ro te in  3
BLAST 3.8 3.3 3.0

Data Transfer 1.1 1.1 1.0
Parsing 0.5 0.6 0.7

Table 2.2: Runtim es and Data Transfer Times for All Pipelines.
All times shown in seconds.

begins to outw eigh the savings from avoiding data m ovem ent by handing out a job  later. Note the 

differences between the two applications in term s o f  the exact data locality value that delivers peak 

perform ance. The second application is likely m ore data-intensive than the first, and thus, requires 

a higher level o f  data locality to achieve maximum throughput.

W hen the scheduler pursues the goal o f data locality too aggressively, it is m ore likely to avoid 

assigning a jo b  to an available host, choosing instead to wait for the host with the required data to 

becom e free. With many hosts frequently idle, fewer workflow jobs are running simultaneously. 

In the extrem e case o f  data locality being enforced in every job  assignm ent (i.e., the 100% case), 

throughput is quite low for both applications.

2.3.2 Scheduling Example

A fter explaining the trade-off between data locality and throughput, we now provide a detailed 

scheduling exam ple based on the behaviour o f PA when run on a real m etacom puter that spans a 

w ide area network (WAN). Our exam ple dem onstrates the perform ance gains that exploitation of 

data locality offers.
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In our exam ple use case, three proteins whose pipelines are shown in Figure 2.3 are given as 

input as part o f  a prediction process. As explained earlier, it is desirable to run Stages 1 and 2 o f 

a com m on pipeline on the sam e m achine to avoid transferring the hom ologue file, which is passed 

between these two pipeline stages, between m etacom puter hosts. In this scenario, there are two 

hosts in our user’s m etacom puter that are connected via a WAN; we refer to these as hosts A and 

B, respectively. We assum e that the tw o hosts have identical hardw are and therefore the runtim es of 

any jo b  are precisely the sam e on both hosts. We also assum e that the text files for all three input 

proteins, which contain the string representation o f  the sequence structure, are available on either 

host. Thus, the input to the BLA ST jo b , which is the initial input to a pipeline, is always stored 

locally.

Table 2.2 shows the non-negligible data transfer tim es between the hosts, for the hom ologue 

files that are produced by Stage 1 and consum ed by Stage 2, as well as the runtimes o f  the BLA ST 

and Parsing jobs. Values are given for all three pipeline instances from the workflow shown in 

F igure 2.3, and are all shown in seconds. We see that com m unication tim e is significant com pared 

to com putation tim e: The data transfer tim e is roughly 1 second, and the com bined processing tim es 

for BLA ST and Parsing jo b s  are roughly 4 seconds.

Typically, the PA user does not have exclusive access to the hosts com prising their overlay m eta­

com puter. G iven the shared nature o f  m etacom puting resources, we sim ulate another user’s jobs, 

which run on both m achines utilized by our PA user, throughout our sam ple w orkflow’s execution. 

For sim plicity, we assum e that all the other user’s jobs take exactly 1 second to com plete. We also 

assum e that the batch scheduler on both hosts constantly alternates between executing a jo b  belong­

ing to our PA user, and executing a jo b  from the other user. W hen no jobs from our PA user are 

available to run, the local schedulers sim ply run one o f  the other user’s jobs.

In our exam ple, and in the real PA, the PA driver process creates pipelines o f jobs in a serial 

manner. T hat is, PA jo b s  are issued to  the m etacom puter scheduler in the following order: the 

BLA ST jo b  from  the first pipeline (BLA ST 1), the Parsing jo b  from the first pipeline (Parsing 1), 

the BLA ST jo b  from  the second pipeline (BLAST 2), and so on. In addition, a jo b ’s subm ission 

includes inter-job dependency inform ation -  so the scheduler knows, for exam ple, that it m ust wait 

for a BLA ST jo b  to com plete before it can run the corresponding Parsing job.

F igure 2.4 (a) shows the jo b  m appings for our sam ple workflow resulting from a First Com e 

First Served (FCFS) m etascheduling policy that does not consider the location o f a jo b ’s input data. 

F igure 2.4 (b) shows the job  m appings resulting from a data-conscious m etascheduling policy that 

places jobs with their input data.

N ote that the initial jo b  m appings produced by both policies are identical. The two policies 

behave differently when choosing a jo b  to run on host B after 4.3 seconds, which is marked as D eci­

sion A in F igure 2.4. The FCFS scheduling policy chooses Parsing 1 over Parsing 2 since the form er 

com es earlier in the jo b  ordering. Parsing 2 is chosen to run on host A somewhat later. Both job
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assignm ents entail fetching the hom ologue file o f  the relevant protein from the other m etacom puter 

host, on which the corresponding B LA ST jo b  ran. A noticeable am ount o f time (1.1 seconds in both 

cases) is required to transfer the data files before the Parsing jobs can run.

The data-conscious scheduling policy chooses Parsing 2 to run on host B at D ecision A, instead 

o f  Parsing 1, since the form er jo b ’s input data is already on this host, having been generated by the 

B LA ST 2 job. Parsing 1 is then chosen to run on host A, since BLAST 1 ran on this host. Since 

no data movem ent is required by either jo b  assignm ent, these first two parsing jobs com plete 1.2 

seconds earlier than in the FCFS scenario.

The two policies next differ when scheduling the last workflow job, Parsing 3, which is marked 

as D ecision B in F igure 2.4. In the FCFS scenario, the Parsing 3 job  is run on host A as soon as this 

m achine becom es available after BLA ST 3 has com pleted. This entails transferring the hom ologue 

file o f  protein 3 from host B. In the data-conscious scenario, the scheduler decides, instead, to wait 

for host B to becom e available. The delay in starting this final workflow job is m ore than made 

up for by the tim e savings from the subsequent avoidance o f  data movement. Such a scheduling 

decision requires a strategy for knowing when specific m etacom puter hosts will becom e free. We 

discuss our chosen strategy in Chapter 6.

The makespan, or turnaround time, for the entire workflow is 12.2 seconds in the FCFS scenario 

and 10.6 seconds in the data-conscious scenario. Since there were three proteins analyzed, the 

throughput is 3 /1 2 .2  «  0.25 proteins per second for the FCFS case and 3 /1 0 .6  «  0.28 proteins per 

second for the data-conscious case. The im provem ent in perform ance becomes evident with larger 

proteom es. For instance, given a proteom e with 1,000 sequences, the FCFS scheduler will com plete 

the analysis in 1,000 /  0.25 = 4,000 seconds (1:06:40) whereas the data-conscious scheduler will 

require only 1,000 /  0.28 = 3,572 seconds (0:59:32).

To make the scheduling decisions necessary for maxim izing utilization and throughput, the 

scheduler must successfully weigh the benefits o f exploiting data affinity against the cost o f  de­

laying a jo b ’s execution. The scheduler, then, requires accurate estimates on the tim es at which 

various m etacom puter hosts will becom e free, the jo b ’s expected runtime, the size and location o f 

all the jo b ’s input files, and the data transfer rate. We explain our sources for obtaining estim ates o f 

these param eters in Chapter 6.
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Chapter 3

Related Work

T he previous chapter provided the m otivation for using m etacom puting as an execution platform for 

scientific applications, developing a softw are package that allows Java program s to distribute jobs 

across m etacom puters, and developing a scheduling policy that enforces data locality. To date, a 

considerable am ount o f research has been done in m etacom puting, jo b  launching m echanism s, and 

scheduling policies.

In this chapter, we review existing solutions to the aforem entioned problem s. We then explain 

why the discussed solutions do not adequately solve our overall problem  o f  m inim izing turnaround 

tim es for scientific workflows that are executed over m etacomputers.

First, we discuss existing strategies to parallelize the BLA ST program  within bioinform atics 

workflows, and justify  our m ethod o f  parallelism . Second, we outline two existing system s for 

distributing jobs over servers at distinct com puting sites, and explain why we use Trellis, instead, 

to execute Proteom e Analyst (PA)’s workflows. Third, we review existing program m ing language 

mechanism s for launching external jo b s  from within an application. We explain how none o f these 

legacy mechanisms provide implicit jo b  scheduling across m ultiple hosts. Finally, we discuss previ­

ous work in data consciousness in inter-host jo b  scheduling.

This chapter serves to justify  the technology choices we m ake in our work. The remaining 

chapters describe, in detail, the software tools and the scheduling policy we develop to efficiently 

execute PA’s workflows over m etacom puters.

3.1 Parallelization of BLAST in Bioinformatics Workflows

Im proving the perform ance o f  applications such as BLAST, which are com m on in bioinform atics 

workflows, is a topic o f  considerable interest to system researchers, particularly as the size o f  bio­

logical databases increases. The BLA ST phase is the perform ance bottleneck of PA, as indicated in 

Chapter 2. We now discuss previous solutions to parallelizing BLAST, and justify  our decision o f 

running a sequential (i.e., non-parallel) version o f BLAST.

Braun et al. [6J discuss three approaches to parallelizing BLAST, each at a different level of
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granularity. The first two fine-grained approaches to parallelism  involve partitioning the biological 

database, and distributing the database subsets over a cluster o f  w orkstations. These strategies seek 

to reduce the time for a single sim ilarity search. The third coarse-grained approach involves repli­

cating the database on several w orkstations or hosts, and partitioning the set o f input queries am ong 

the hosts. This strategy seeks to im prove the throughput o f m ultiple sequence similarity searches.

Users o f  PA are primarily concerned with the throughput o f  many (i.e., possibly thousands) o f 

sequences, and not the response tim e for an individual sequence. We therefore prefer the replication 

approach over the partitioning approach. A lthough this m ethod o f  parallelism  requires storing the 

entire database at each host, the Sw iss-Prot [5] database that PA uses is a m ere 64 MB in size, which 

entails negligible storage requirem ents for m odern workstations.

M eyer et al. [19] explore the perform ance gains o f  alternate data distribution strategies on a 

three-phased protein modelling workflow. The workflow is a pipeline o f  jobs consisting o f  two 

initial phases -  BLAST and a sequence filtering step -  followed by an optional third phase, in which 

either o f  two program s -  M odeler or T hreader -  m ight be run. The selection o f which program to 

run, if any, in the third phase is based on the results o f  the second phase.

The authors report on experim ents in which the workflow is parallelized at a coarse level by 

running multiple pipelines on separate hosts concurrently. The input data set is evenly partitioned, 

and the resulting query subsets are distributed by a m aster node to the B LA ST jobs on worker nodes 

(i.e., execution hosts) at the start o f  execution. U nfortunately, reductions in turnaround tim e level 

o ff significantly when m ore than four hosts are used. This lim it on perform ance improvement was 

attributed to load imbalance. The T hreader program  (the third phase) has by far the longest runtim e, 

but is only run for 3 out o f  66 input sequences. Often, one host ends up executing two, or even all 

three, o f  the Threader programs.

The above results dem onstrate that statically distributing all the BLA ST jobs (and pipelines) 

to the hosts can lead to a load im balance when the runtim es o f  d ifferent pipelines vary drastically, 

as is the case in PA. We believe that a dynam ic scheduling strategy, in which jobs are assigned 

to hosts based on availability, has greater potential to im prove the perform ance o f  such pipelined 

bioinform atics workflows.

Wang et al. [33] propose the BLA ST++ tool that exploits com m on substructures (words) within 

m ultiple input sequences to provide efficient processing o f  batched queries. BLAST++ follows 

the same basic algorithm for finding sim ilar sequences as standard (i.e., non-batched) versions o f 

BLAST. In standard BLAST, however, batches o f  queries are processed sim ply by running BLAST 

on query sequences one at a time. BLA ST++ processes a batch o f  queries in one execution run by 

form ulating a single virtual query from the concatenation o f all input queries, and then searching the 

database for sequences sim ilar to the virtual query. For N  query sequences, then, BLAST++ scans 

the entire database only once for sim ilar words as opposed to N  tim es, as does the standard BLAST.

Empirical results dem onstrate that BLA ST++ reduces the tim e for processing query sets deci-
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sively -  by at least 50%  -  against the benchm ark, non-batched BLAST. The perform ance gains o f 

BLA ST++ are particularly evident in trials using the hum an genom e dataset, dem onstrating that the 

batching approach scales well to large datasets. Batching the execution o f  m ultiple jobs can benefit 

PA by reducing the com m unication between hosts, and by am ortizing scheduling overheads.

A nother version o f  BLAST, M EG A BLA ST [35], also optim izes the processing o f  queries in 

batches. However, M a et al. [17] investigate M EG A B LA ST and find that the algorithm  trades sen­

sitivity, which is the percentage o f actual sequence sim ilarities found, for efficiency (i.e., processing 

time). Thus, while M EGABLAST runs faster, it may m iss out on answers found by the original 

BLAST.

We choose to use the non-batched BLA ST [4] from  the N ational Center for B iotechnology In­

form ation (NCBI) because it is used by dom ain experts (i.e., biologists). Furtherm ore, PA views 

BLA ST as a black box, m eaning that PA is not dependent on the particular im plem entation o f 

BLAST. Thus, our current BLA ST utili ty could be substituted with BLA ST++, if desired. To obtain 

high throughput, we parallelize BLAST by distributing the individual jobs over an aggregation o f 

servers, such as a grid or a m etacomputer. M etacom puters offer perform ance scalability, since m ore 

hosts can be added as needed to augm ent the available com puting power.

3.2 Resource Integration: The Virtual Supercomputer

A com m on strategy for boosting com puting capacity is to aggregate resources from m ultiple sites 

and make them appear as a single resource. W orkflow-based applications such as PA can then hand 

off jo b s to an underlying jo b  scheduling service for autom atic placem ent and execution, instead o f  

manually placing jobs on specific hosts, which is cum bersom e for large workflows.

In the following subsections, we first review two existing system s that provide jo b  scheduling 

across adm inistrative dom ains, and then briefly explain why we adopt the Trellis system as a parallel 

processing platform  for PA.

3.2.1 Globus

The Globus A lliance [11] is a well-known effort to develop the fundam ental technologies for build­

ing com putational grids in which com puting power is traded as a resource, much like electricity in a 

pow er grid. The Globus toolkit provides softw are for building grid system s and applications. G lobus 

offers the essential services o f resource discovery and m anagem ent, and cross-dom ain security.

As discussed by Lam b and Lu [16], G lobus is feature-rich and powerful in concept, but has a 

num ber o f  shortcom ings: 1) A dm inistrators from all participating sites must negotiate service-level 

and security agreem ents; 2) The Globus m iddleware is non-trivial to set up; and 3) The middleware 

must be installed and managed by adm inistrators with privileges. We therefore seek a much sim pler 

solution for resource integration.
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3.2.2 Condor

Condor [30] is a distributed job  batching system designed for running com pute-intensive jobs over 

collections o f  servers. Although originally developed for harnessing central processing unit (CPU) 

cycles o f  idle w orkstations, Condor supports a variety o f  distributed systems, including clusters 

and m ultiprocessors. C ondor’s “ flocking” technology [10] allows it to work across adm inistrative 

dom ains, creating a grid-like com puting environm ent.

U nfortunately, Condor suffers from a significant drawback: All workstations that are to be a 

part o f  the C ondor pool must have the Condor software installed by system adm inistrators. We 

prefer to aggregate resources through overlay m etacom puting, which does not require adm inistrator 

privileges to set up.

3.2.3 Trellis

The Trellis m etacom puting system [22] is a sim ple way to integrate resources from  m ultiple high- 

perform ance com puting centres (HPCCs) to boost com putational capacity. Unlike the two systems 

described above, Trellis does not require all participating parties to adhere to a specific set o f stan­

dards, or adopt new infrastructure, and does not require adm inistrator privileges to set up and use. 

Based on the concept o f  overlay m etacom puters, which was explained in Section 1.1.2, Trellis does 

not replace existing local schedulers, but builds on top o f  them with a centralized scheduler that 

hands o ff jo b s to specific hosts, based on availability. No new hardw are or softw are need be adopted 

by local adm inistrators, except for the Secure Shell (SSH) software suite, which is used for secure 

inter-dom ain com m unication [21]. SSH is open-source software that is easy to deploy and use, and 

is already in use worldwide.

3.3 Language Support for Running External Jobs

A fter having justified our choice o f  Trellis as a solution for integrating disparate H PC C resources, 

we now seek a m eans o f  invoking Trellis to run external jobs from  within an application. Trellis is 

potentially easy to use from  a program m ing standpoint because it offers a single point o f  control for 

adm inistering jobs over collections o f hosts from  m ultiple sites.

As indicated earlier, driver-based applications need a way o f  efficiently calling out to external 

program s from  within the m aster or driver process. We now review existing program m ing language 

m echanism s for running external jobs, and explain our choice o f  Trellis Driver for carrying out this 

task.

3.3.1 Subprocess Creation: Running Jobs Locally

Nearly all m odern scripting and program m ing languages provide one or several application p ro­

gram m ing interface (API) functions that allow one process to start another process on the same
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m achine, ANSI C [15] and scripting languages with a sim ilar syntax, such as Python [32], provide 

the com m ands o f  system () and popen () for creating child processes, or subprocesses. The 

system ()  function takes a com m and string, passed in as an argum ent, and executes that com mand 

string in a separate process, system ()  blocks until the underlying subprocess com pletes, at which 

tim e its exit status is returned to the caller. Thus, system! ) runs subprocesses in a synchronous 

fashion.

In workflow-based execution, however, we often wish to run subprocesses asynchronously. For 

instance, to achieve m axim um  concurrency within the BLAST phase o f  PA, the driver should be 

able to start all the BLA ST jobs and then await their com pletion before proceeding to the next 

phase. A PA driver process using system! ) to launch a workflow jo b  would be stalled until that 

one jo b  com pletes. This serializes the execution o f  workflow jobs, elim inating the possibility o f  job 

concurrency. Thus, system! ) is not useful in the asynchronous execution o f  jobs.

A N SI C provides the popen ()  function as a non-blocking way o f  launching a new process, 

popen ()  runs a given com m and string in a separate process and creates a pipe for com m unication 

betw een the parent and child process. W hile an open inter-process com m unication channel is som e­

tim es desirable, it is not necessary for workflow-based applications. Often, a driver m erely starts the 

workflow  jobs, and checks for their com pletion at a later time. M oreover, popen ()  is too low-level 

a m echanism  for our work. Using this function to run PA jobs over m ultiple hosts would require 

specifying the host that is to run each job . M anual placem ent o f  jobs is onerous for large workflows.

In com m on versions o f  Unix and L inux, the s y s t e m ! ) and p o p e n  () functions are im ple­

m ented using the lower-level functions o f  f o r k  ( ) ,  e x e c  ( ) ,  and w a i t  ( ) .  The Unix and Linux 

A PIs provide access to these three functions as a means o f m anually starting subprocesses [27]. The 

f o r k  ()  com m and creates a child process that is an exact clone o f  the parent process. Typically, a 

call to f o r k  ()  is followed by a call to e x e c  ()  in the child process, which starts running a new 

com m and in that ch ild ’s executable image. The parent may await com pletion o f the child with the 

function w a i t  ( ) ,  which returns the subprocess’ exit status.

A  driver process can run external jo b s  asynchronously by starting jobs, as desired, through 

f o r k  ()  and exec ()  invocations, and then later awaiting the com pletion o f  jobs through w a i t  () 

calls. However, starting subprocesses w ith f o r k  () and exec ()  requires a later call to w a i t  () 

for every issued workflow job , which is inconvenient from a program m ing perspective. A m ore prac­

tical alternative would be to use a jo b  barrier function that blocks until every outstanding subprocess 

has com pleted. This way, drivers could synchronize with the com pletion o f  an entire workflow phase 

with one function call.

As m entioned earlier, the PA application is written in Java and uses the Java API function Run­
time . exec ()  to start external jobs, such as the BLAST jobs in Stage 1 o f  the protein analysis 

p ipelines (Figure 2.1). Runtime. exec ()  autom ates many o f  the steps involved in creating a 

new process. Runtime. exec () also has the benefit o f  being highly portable, since Java 2 plat-
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form functions are constant across different architectures. Unfortunately, like the com bination o f 

fork ( ) , exec ( ) ,  and wait ( ) ,  the Runtime. exec () facility has no jo b  barrier functions. A 

driver process must then m ake a separate call to Process .waitFor () to await the com pletion 

o f  every workflow jo b  it initiated.

In addition to lacking workflow barrier functions, Runtime.exec ()  and all the other lan­

guage mechanism s described above do not provide integration with job  schedulers. All issued jobs 

are run locally, m eaning it is only possible to exploit process-level concurrency within a single 

server. The large-scale scientific applications we are addressing in this research [26J require a 

high degree o f  job-level concurrency, attainable only by distributing their workflows across mul­

tiple hosts, to com plete within an acceptable tim e fram e (i.e., hours or days, as opposed to weeks or 

months).

Program m ers could pass to job  launching m echanism s, such as R u n t i m e . e x e c  ( ) ,  com m and 

lines that invoke rem ote shell technologies, such as SSH, to run workflow jobs on rem ote hosts. 

However, as with p o p e n  ( ) ,  this strategy requires deciding in advance where individual jobs will 

run. To successfully load balance an application’s workflow, which means distributing the com puta­

tion am ong the hosts in a m anner that reflects the current resource usage, a runtim e binding o f  jobs 

to m achines is more appropriate than a priori jo b  assignments, since the latter can only be based 

on a static system view. Thus, we desire a language mechanism that passes jobs to a scheduler that 

offloads those jobs onto available hosts.

3.3.2 Remote Method Invocation: Running Jobs Remotely

The Java 2 Platform  includes the R em ote M ethod Invocation (RM I) package [28] that allows objects 

in one program  to invoke the services o f  objects in a different virtual m achine and hence on a 

different host. Theoretically, RM I could be used to place objects that run workflow jobs on remote 

m achines, and have the PA driver invoke these rem ote objects as needed. U nfortunately, RM I is 

specific to Java, and therefore only w orks between Java objects and processes. PA requires a way o f 

calling out to non-Java utilities, such as BLAST, to perform protein analyses. We must instead seek 

a solution that supports non-Java executables as well.

3.3.3 Trellis Driver: Running Jobs Over Metacomputers

We develop the Trellis Driver package as a means for PA and other Java applications to run jobs 

over aggregations o f  hosts com prising a Trellis metacomputer. Trellis Driver sends PA-issued jobs 

to the Trellis metascheduler, which provides cross-dom ain scheduling o f the jobs.

Trellis Driver allows the PA driver process to invoke, through TrellisDriver. exec () 

calls, external program s to run workflow jobs remotely. The external program s invoked may be Java 

or non-Java executables. TrellisDriver. exec ()  executes jobs asynchronously, m eaning that 

PA is not blocked until the newly-issued job  com pletes, and may, then, run m ultiple workflow jobs
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concurrently. Trellis D river’s API hides the details o f  subprocess creation, such as the selection o f 

an execution host, and offers a high-level interface for jo b  dispatching. Additionally, Trellis Driver 

provides workflow synchronization functions, so that applications m ay start any num ber o f jobs, and 

then later issue a single function call to await the com pletion o f  all outstanding jobs.

3.4 Co-Locating Jobs and Data

Trellis Driver enables concurrency within PA’s workflow by allow ing PA to execute many jobs si­

multaneously across Trellis m etacom puters. W hile workflow concurrency can greatly enhance per­

form ance, further perform ance optim ization is possible by adapting the m etascheduler to enforce 

data locality, which entails placing jobs near their input data files. We now review a previous ap­

proach to integrating scheduling and data placement.

Shan et al. [24] investigate the impact o f  file sizes and network com m unication costs on w ork­

load turnaround tim e in a com putational grid. The authors em ploy distributed scheduling, in which 

m ultiple peer Grid Schedulers (G S’), located on disparate servers, exchange resource availability 

inform ation to decide on which server a jo b  should be run. Through sim ulation, the authors model 

the execution o f large workloads consisting o f  up to tens o f  thousands o f  jobs, at m ultiple sites 

connected via a wide area network (WAN).

The first sim ulation results indicate that the distributed scheduling algorithm  produces an average 

response time that is alm ost as good as that attained by a baseline centralized strategy. Shan et al. 

do not consider the centralized strategy further; they deem  this strategy impractical due to a lack o f 

fault-tolerance and scalability. A lthrough Trellis uses centralized scheduling, Trellis’ design is fault- 

tolerant because the failure o f  one or many execution hosts does not affect the continued execution o f 

the workload jobs by the rem aining hosts. Previous real-life experim ents [23] that entailed executing 

a scientific application over 18 adm inistrative dom ains have dem onstrated T rellis’ scalability.

Additional results presented by Shan et al. show that when input data sizes are not considered, 

there is a severe perform ance penalty for large file sizes. W hen the file sizes are inflated by a factor 

o f  10, average response tim es increase m ore than ten-fold over the case with the original file sizes. 

Average response tim es also increase substantially when the servers are spread over fewer sites 

and multiple servers at each site must contend for the slower WAN links. From  these last results, 

it appears that when the workload is distributed over m ultiple sites, WAN connections can becom e 

perform ance bottlenecks. The above findings suggest that file sizes and network transfer rates should 

be considered when scheduling large workloads over aggregations o f  servers from m ultiple sites, 

which metacom puters constitute.
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Chapter 4

Trellis Driver: Architecture and 
Functionality

This chapter describes the architecture and functionality o f  the Trellis Driver software layer. We first 

dem onstrate how the Proteom e A nalyst (PA) application uses Trellis Driver to execute its workflow 

over m etacom puters. We then describe the design o f  both the Trellis Driver m odule and the Trellis 

m etacom puting system , upon which the form er m odule builds.

Chapter 2 explained how m etacom puting can boost the perform ance o f  scientific applications 

through increased throughput. We gave an illustrative exam ple o f how scheduling that is data 

conscious further increases perform ance in m etacom puters that span wide area networks (WANs). 

Chapter 3 contrasted and justified our approach to parallelizing BLA ST against previous solutions. 

We justified our choice o f  Trellis as an execution platform  for PA, and Trellis Driver as a m eans for 

distributing jobs over m ultiple hosts. Finally, we review ed related work in data-conscious schedul­

ing.

We now describe the com ponents involved in integrating PA with Trellis. Initially, we show code 

snapshots from the original and modified versions o f  PA to provide a clarifying exam ple o f  how Java 

program s use Trellis Driver. Next, we introduce the Trellis m etacom puting system, and explain the 

placeholder scheduling m echanism . N ext, we provide an architectural overview o f the Trellis Driver 

module. Finally, we describe the Trellis D river application program m ing interface (API).

In Chapter 5, we provide the im plem entation details o f  Trellis Driver, describing both the job  

barrier functions and the job  batching m echanism s contained therein. Chapter 6 describes our sim ­

ulation program , which m odels a W AN-based m etacom puting environm ent, and serves as a testbed 

for developing our DC scheduling policy.

4.1 Sample Usage

Existing Java applications, such as PA, that use the Runtime. exec ()  facility to run external jobs 

can easily be adapted to use Trellis Driver. F igures 4.1 and 4.2, respectively, show the original PA
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code that runs the BLAST jobs locally, and the modified version o f  the sam e PA code that runs the 

BLA ST jobs across m etacomputers, using Trellis Driver. N um bers at the start o f each line of text in 

these two figures represent the actual line num bers within the PA source files. A dapting PA to use 

Trellis D river requires adding 6 new lines o f  code and replacing 13 existing lines with 6 new ones, 

in the section o f  code shown here. Consequently, the changes required to port PA to m etacom puting 

are modest.

In F igure 4.1, code is taken from two program  segm ents o f  the original PA: the execute ()  

m ethod in the Classif ierWrapper class, and the executeBlast ()  m ethod in the 

BlastTaskPredictor class. The former routine coordinates the four m ajor activities involved 

in the building and validation o f a new classifier based on a training set. These four activities are 

listed inside com m ents in the code, from lines 316 to 319 in F igure 4.1. The first task o f  feature 

collection actually entails the two steps o f  finding hom ologues using BLAST and feature parsing, 

o f  which only the code for the first is shown. As shown on lines 375 to 382, PA iterates through the 

training set and executes a training task (i.e., a BLAST analysis) on each protein.

T he function called in the loop body (line 381, F igure 4.1) triggers a chain o f function  calls, of 

which only the top-level call is shown, that together form ulate and execute the appropriate BLAST 

com m and for the current protein. The executeBlast () routine, shown on lines 141 to 153 in 

the latter code segment in Figure 4.1, makes the actual call to Runtime.exec () that invokes 

the BLA ST utility (line 146). After the BLAST jo b  is started through Runtime. exec (), the 

Process. waitFor () method is called (line 147) to await the jo b ’s com pletion. The execution 

o f  BLA ST jo b s is synchronous, since the program  starts each BLA ST jo b , and then w aits for it to 

com plete before proceeding to the next analysis. The original PA, therefore, has no concurrency 

between B LA ST jobs.

F igure 4.2 shows the same two program  segm ents from  the modified (i.e., parallelized) version 

o f  PA, which we refer to as PA-Trellis. N ote that there is an extra line o f code at the beginning o f 

the Classif ierWrapper. execute ()  function (line 326, F igure 4.2) that obtains a reference 

to the associated Trellis Driver object, which is stored in the variable td. The loop that iterates 

through the training set and starts the BLAST task for every protein (lines 379 to 386) is unchanged 

from  the original PA version. There is, however, an extra line o f code ju st before the loop (line 376) 

that instructs Trellis Driver to group the execution o f  two BLA ST jo b s on the sam e m etacom puter 

host w henever possible. Chapter 5 shows how batching m ultiple jobs together am ortizes scheduling 

overheads.

The BlastTaskPredictor. executeBlast () routine is changed substantially from  the 

original version. A reference to the TrellisDriver object (as opposed to the Runtime ob­

ject) that is associated with this Java virtual m achine (JVM) instance is first obtained (line 141, F ig­

ure 4.2). The call site o f td.exec() (line 146), which replaces the original call to 

Runtime . exec () , starts a BLAST analysis on the current protein as a Trellis job. PA-Trellis
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ClassifierWrapper.execute!):

313 public void execute!) {
314 /*
315 * this method accomplishes the following tasks:
316 * 1. collects features for the proteins for training
317 * 2. starts the classifier's training process
318 * 3. creates and runs the resubstitution cardSet
319 * 4. creates the Summary.html page for this classifier
320 */
321 ReportTimer timer = new ReportTimer(
322 "Classifier Training", this.classifierld,
323 ReportTimer.CLASSIFIER_TRAINING);
324 timer.startEvent("Classifier Training");

364 SequenceList seqs = new SequenceList(this.user, this.listld);
365 numTraininglnstances = seqs.getProteins().size();
366
367 timer.startEvent(
368 "Homologue Finding (BLAST)", "Classifier Training");
369
370 Protein protein;
371 Task trainTask = this.trainingPolicy.getTrainingTask!);
372 Task filter = this.trainingPolicy.getFilter();
373
374 /* 1. Get some features * /
375 for (Iterator proteinlter = seqs.getProteins().iterator();
376 proteinlter.hasNext();
377 ) (
378 protein = (Protein) proteinlter.next();
379
380 // analyze proteins
381 trainTask.execute(protein, protein.getOutputDir());
382 }
383 timer.stopEvent("Homologue Finding (BLAST)");

BlastTaskPredictor.executeBlast():

141 Runtime rt = java.lang.Runtime.getRuntime();
142
143 String commandline = this.command + " -i "
144 + protein.getFile();
145
146 Process p = r t .exec(commandline);
147 int error = p.waitFor();
148 if (error != 0) {
149 System.err.println(
150 "BlastTaskPredictor.executeBlast() Non-zero exit code: "
151 + error);
152 }
153 p .destroy();

Figure 4.1: Code for BLAST in O riginal (Sequential) Version o f  Proteom e Analyst
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ClassifierWrapper.execute():

313 public void execute() {
314 /*
315 * this method accomplishes the following tasks:
316 * 1. collects features for the proteins for training
317 * 2. starts the classifier's training process
318 * 3. creates and runs the resubstitution cardSet
319 * 4. creates the Summary.html page for this classifier
320 */
321 ReportTimer timer = new ReportTimer(
322 "Classifier Training", this.classifierld,
323 ReportTimer.CLASSIFIER_TRAINING);
324 timer.startEvent("Classifier Training");
325
326 TrellisDriver td = TrellisDriver.getDriver();

366 SequenceList seqs = new SequenceList(this.user, this.listld);
367 numTraininglnstances = seqs.getProteins().size();
368
369 timer.startEvent(
370 "Homologue Finding (BLAST)", "Classifier Training");
371
372 Protein protein;
373 Task trainTask = this.trainingPolicy.getTrainingTask();
374 Task filter = this.trainingPolicy.getFilter();
375
376 td.setGroup("BLAST", 2);
377
378 /* 1. Get some features */
379 for (Iterator proteinlter = seqs.getProteins().iterator();
380 proteinlter.hasNext();
381 ) (
382 protein = (Protein) proteinlter.next();
383
384 // analyze proteins
385 trainTask.execute(protein, protein.getOutputDir());
386 )
387 int[] exitcodes = td.waitForAll();
388
389 timer.stopEvent("Homologue Finding (BLAST)");

BlastTaskPredictor.executeBlast():

141 TrellisDriver td = TrellisDriver.getDriver();
142
143 String commandline = this.command + " -i "
144 + protein.getFile();
145
146 td.exec(commandline, "BLAST");

Figure 4.2; Code for BLAST in Modified (Parallel) Version o f  Proteom e Analyst
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elim inates the call to Process . waitFor () since this version does not wait for one BLAST jo b  

to com plete before starting the next. With this asynchronous jo b  launching strategy, all BLAST 

jobs are issued before any results are collected. PA-Trellis can then obtain a m axim um  degree o f 

concurrency equal to the num ber o f  placeholders in the underlying metacomputer.

After having iterated through the training set and started the appropriate BLA ST jo b  for each 

protein, the Classif ierWrapper. execute ()  routine must await the com pletion o f  all the 

BLAST jobs before it may proceed with the feature parsing step, the code for which is not shown 

in the figure due to space constraints. The call site td.waitForAll ()  (line 387, Figure 4.2) 

causes the application to block until all outstanding BLAST jobs have finished, and returns an array 

containing the exit codes o f  these jobs.

We have shown the front end of Trellis Driver to em phasize the ease of porting existing Java 

applications to m etacom puters through this module. We next provide the back-end details by giving 

an architectural overview  o f the Trellis m etacom puting system  and the Trellis Driver m odule itself in 

Sections 4.2 and 4.3, respectively. The com m and interface o f  the TrellisDriver Java package 

is further described in Subsection 4.3.1.

4.2 Trellis Metacomputing System: Overview

The Trellis system [23, 22] is a m etacom puting solution aim ed at scientific researchers who require 

the com putational resources o f  many high-end servers. Developed in a Unix environm ent, Trellis 

provides a convenient user-level aggregation o f high-perform ance com puting centres (HPCCs) that 

are contained within separate adm inistrative dom ains, possibly spanning m ultiple platform s, oper­

ating systems, and jo b  queuing systems. Trellis is layered on top o f  existing infrastructure, offering 

jo b  m anagem ent services that provide the abstraction o f  a single, powerful resource from  m ultiple 

resources. As m entioned in Section 3.2, the only new softw are required is the w idely-available S e­

cure Shell (SSH) security tool [21]. M oreover, Trellis is deployed entirely at the user-level, m eaning 

users may install and configure their own instance w ithout adm inistrator support.

Users can define a personal m etacom puter by com bining specific hosts from any o f  the HPCCs 

to which they have access. N ote that users need not have exclusive access to these constituent hosts. 

HPCC resources are typically shared am ong m em bers o f a dedicated research or industry com m u­

nity. Local jo b  batching systems enforce equitable usage o f  their respective com puting systems, 

according to the policies o f local adm inistrators. All that users o f Trellis require is a regular, non­

privileged account on any HPCC whose resources they wish to use. Users get the benefit o f  utilizing 

resources from m ultiple HPCCs while local adm inistrators retain their autonomy.

After specifying the participating hosts in their m etacom puter, users can create one or more 

metaqueues to which they can deposit jobs that are to be run over the Trellis system. M ultiple 

m etaqueues are supported so that users can run and m onitor m ultiple applications at the sam e time. 

In addition, users may create m etaqueues with differing properties, such as job  ceiling tim e and
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the m axim um  or m inim um  num ber o f  processors bound to placeholders. A m etaqueue may be 

custom ized to the needs o f a specific application.

Trellis is im plem ented as a thin layer o f  software that sits between applications and the infras­

tructure o f  HPCCs. The Trellis platform  consists o f  m ultiple com ponents that handle all the essential 

tasks involved in the cross-dom ain scheduling and execution o f  large workflows with inter-job de­

pendencies and per-job data requirem ents. In particular, Trellis includes:

1. Trellis File System (Trellis FS)

As jo b  m igrate from one m etacom puter host to another, a practical problem that occurs is that 

o f  ensuring the required data is always available. Trellis FS [25] provides transparent access 

to rem ote data and supports m any com m on file system operations, such as sparse access and 

caching.

2. Trellis Security Infrastructure (Trellis SI)

Since m etacom puter hosts span m ultiple HPCCs, security across administrative dom ains is a 

prim ary concern. Trellis SI [14], layered on top o f  SSH, provides single sign-on and handles 

cross-dom ain authentication, authorization, and data management.

3. Trellis Metascheduler and Command Line Server (CLS)

The Trellis M etascheduler includes all com m ands necessary for specifying and m anaging 

hosts and m etaqueues, as well as those for subm itting and monitoring jobs. Contained in the 

m etascheduler is the CLS, which carries out the distribution o f  jobs to m etacom puter hosts. 

The m etascheduler is the Trellis com ponent this work focuses on.

4.2.1 Placeholder Scheduling

In Trellis, jo b s are assigned to specific hosts through the m echanism  o f placeholder scheduling  [22], 

which follows a “pull” m odel. In placeholder scheduling, local batch queues interact with m etaque­

ues to retrieve and execute jo b s on dem and. A placeholder is formally defined as a unit o f  potential 

work. For a given unit o f  work, which in this case constitutes a job  in an application’s workflow, 

it is possible for any placeholder within all o f  those previously launched to actually com plete that 

work. Each placeholder is associated with a particular m etaqueue and is submitted to a particular 

host by the user. One can then view a placeholder as a special-purpose job  that is subm itted to the 

batch queue o f  a rem ote host.

Often, placeholders are im plem ented as jo b  scripts for batch schedulers. From the perspective o f  

the local batching system , then, placeholders are sim ply regular, non-privileged user jobs that must 

wait in the queue for their turn to run.

F igure 4.3 illustrates the placeholder scheduling m echanism . Each Trellis user installs and runs 

one instance o f  Trellis CLS, create m etaqueues as desired, and submits placeholders to hosts as is 

necessary to achieve the desired level o f concurrency. W hen a placeholder job  runs, it first contacts
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its associated m etaqueue, via the Trellis CLS, and asks for a new com m and line. A com m and line 

is the means o f  specifying a unit o f  actual w ork (a job ) in a Unix environm ent. Thus, the binding 

o f  jobs to hosts occurs at placeholder execution tim e (not subm ission time), under the control o f 

the CLS. W hen assigned a new job, the placeholder sim ply runs the corresponding com m and in its 

local environm ent, and then reports the jo b ’s com pletion, via the Trellis CLS, to the m etaqueue. 

W hen there are no jobs in the m etaqueue that are presently available to run, the CLS inform s the 

placeholder o f  this, and the placeholder can either re-subm it itself to its local batch queue or take 

itself offline.

This scheduling mechanism  follows a “pull” m odel, in which jobs on remote hosts initiate com ­

munication by requesting work, and pull jo b s out o f  a m etaqueue and onto their local com puter 

system. This is in contrast to a “push” m odel, in which a scheduling process offloads jo b s onto 

individual com puters according to a w ork distribution algorithm .

W hile sim ple in nature, the pull model in Trellis effectively solves the problem o f load im bal­

ance, which stems from an uneven distribution o f  jo b s over the available resources. H osts that are 

heavily loaded will have fewer placeholders asking for work over a given tim e interval and will 

pull fewer jobs from the metaqueue. H osts with a lighter load will have more placeholders asking 

for work and pull more jobs from the m etaqueue. P laceholder scheduling therefore achieves load 

balancing across all hosts.

4.2.2 Job Control in Trellis CLS

The names and semantics o f the CLS jo b  m anagem ent com m ands are based on those o f  existing 

batch queuing systems, such as the Portable Batch System (PBS) [3] and the Sun N 1 G rid Engine [7]
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jo b  schedulers. PBS provides the com m ands qsub, qdel, and qstat to add jobs, remove jobs, 

and list the contents o f  a local job  queue, respectively. A PBS queue functions much like a printer 

queue. New jobs are added at the back o f  the queue and must wait until all previous jobs finish 

before they are processed (i.e., executed). By analogy, Trellis’ placeholder scheduling is similar 

to having a pool o f printers (in this case hosts) pull jobs from a queue instead o f  having a printer 

daem on find idle printers and push jo b s onto those printers. Trellis CLS provides the com m ands of 

mqsub, mqdel, and mqstat to add jo b s to a m etaqueue, rem ove jobs, and query the metaqueue 

status, respectively.

Follow ing are exam ples o f usages o f  the three Trellis CLS com m ands for jo b  management:

1. mqsub -b -p proteinlBLAST proteinlParse "java FeatureParser 1 
15 1 0.01 ~/output/proteomel5/proteinl"
Adds a jo b  to the default Trellis m etaqueue. The new job  belongs to the target “pro­

te in lP arse” and has the com m and line “java ca.pence.utils.FeatureParser 1 15 1 0.01 

~ /o u tp u t/p ro teo m el5 /p ro te in l” , as given by the last two arguments.

A target refers to a group of workflow jobs that are mutually independent and can, therefore, 

be executed in parallel. The -p flag allows Trellis users to specify inter-target dependencies. 

In this case, “p ro tein lB L A ST ” is a prerequisite target. The newly-subm itted jo b  will not run 

until all jo b s in the “p ro tein lB L A ST ” target have com pleted.

The -b flag specifies that the com m and runs in blocking mode, m eaning the caller is sus­

pended until Trellis com pletes the job.

2. mqsub -q gram_neg proteinlBLAST "BLASTpgp -E 0.001"
Adds a jo b  belonging to the target “p ro tein lB L A ST ” , which has no prerequisites, to the 

“gram m eg” m etaqueue nam ed with the -q flag.

3. mqdel -q plantl 20
D eletes the job  whose num eric identifier is 20 from  the “p la n tl” metaqueue.

4. mqstat -q animall -t squirrelBLAST -s E
Displays inform ation on the jobs in the “a n im a ll” metaqueue. The -t flag selects those jobs 

belonging to the “squirrelBLAST” target, while the -s flag and E  param eter specify only jobs 

that are currently executing.

4.3 Trellis Driver

Trellis Driver is a Java m odule that integrates applications with the Trellis m etacom puting system. 

Trellis Driver allows applications to launch external jo b s and transparently schedule these jobs across 

the hosts o f  an overlay metacomputer. Since jobs are no longer restricted to the local server, the 

com putational capacity o f the application’s execution environm ent can be greatly increased, leading
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to increase throughput and reduce turnaround times. The fundam ental concept o f  Trellis Driver 

is general enough to lend itself to any program m ing language that provides functions for running 

com m and lines as separate processes.

PA, and other Java programs, im port Trellis D river as a Java package. The front end o f  Trellis 

Driver is a well-defined API, designed to be sim ilar to that o f the Runtime class (and its associ­

ated functions such as Runtime. exec ( ) )  for ease o f  portability. A  detailed listing o f  all API 

functions is presented in Subsection 4.3.1. Briefly, Trellis D river’s API provides functionality for 

specifying job  grouping patterns, starting jobs through the function TrellisDriver. exec (), 
and synchronizing with their com pletion. The back end o f  Trellis D river interacts with the rele­

vant m etaqueue by issuing blocking mqsub calls, through the local operating system . Accordingly, 

there must be an instance o f the CLS actively running on the sam e m achine on which the Trellis 

Driver-enabled application runs.

Trellis Driver adds to the Trellis m etascheduler, and CLS, the follow ing three features:

1. Job Launching Through a Library Function

Although a driver process could call out to the mqsub utility via a library function such as 

system ( ) ,  specifying a new jo b  in this m anner often requires passing several parameters, 

as seen in the exam ple mqsub use cases shown in the previous subsection. Trellis Driver 

autom ates and simplifies the subm ission o f jobs to mqsub by abstracting cum bersom e mqsub 
com m and details, such as the (lags and prerequisite target list. External jobs may be started 

from within an application through Trellis Driver library functions, which take com mand 

strings as arguments.
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2. J o b  B atch ing  to  A m ortize  S ch ed u lin g  O v erh ead

Program m ers may provide hints about the grouped nature o f the application’s workflow jobs. 

Trellis Driver autom atically batches the execution o f  a preset num ber o f  jobs from a specified 

job  group to am ortize the overhead o f  creating a new m q s u b  process for running these jobs. 

The functions for enabling jo b  batching are given in Table 4.1 while the purpose and concept 

are explained in Chapter 5.

3. J o b  B a rr ie rs  fo r D riv e r  S y n ch ro n iza tio n  w ith  W orkflow

Since scientific workflows can consist o f  hundreds or even thousands o f  jobs that can run inde­

pendently o f  the driver process, support for com putational synchronization is necessary. The 

driver process can await the com pletion o f  som e or all workflow jobs through the job  barrier 

functions provided by Trellis Driver. These sam e functions provide a means o f  collecting the 

exit codes o f  jobs that were executed asynchronously.

F igure 4.4 shows the various softw are com ponents in our m etacom puting integration solution. 

The Trellis Driver com ponent (horizontally central) is newly developed, while the other com po­

nents were im plem ented prior to this work. The data flow resulting from  m ultiple jo b  subm issions 

follows a producer-consum er pattern. Threads within the application (producers) generate jobs by 

calling TrellisDriver. exec ( ) ,  abbreviated as t d . exec ( )  here. Threads within Trellis 

Driver (consum ers) process jobs by calling mqsub to send them to the Trellis m etascheduler, which 

executes on the sam e server as the application, mqsub inserts the com m and line into the desired 

m etaqueue for processing by the T rellis system , as seen in the bottom  right corner o f  F igure 4.4.

Each application thread or producer can call t d . exec () m ultiple tim es, since a thread may 

launch as many external jobs as it desires. F igure 4.4, however, shows the data flow situation that 

occurs when two different producers each make only one call to td. exec ( ) .  At the sam e the 

two producers are pushing jobs into the buffer, there is one consum er that is pulling jobs out o f  the 

buffer. Dark gray entries represent jo b s  subm itted by P roducer 1, white entries jobs subm itted by 

Producer 2, and the light gray entry a jo b  subm itted by a third producer that is not currently adding 

a job  to the buffer. W hen Producer 1 calls a work barrier function to wait on all its outstanding jobs, 

Trellis Driver walks the linked list o f  jo b s belonging to Producer 1 by following the “per-producer 

next” links shown, waiting for each jo b  to com plete in turn. In the exam ple above, Trellis Driver 

waits at buffer entry 1 until that job  has com pleted before exam ining buffer entry 3. Only after the 

job  at entry 3 has com pleted does the jo b  barrier function return.

To decouple the num ber o f producer threads from the num ber o f  consum er threads, Trellis Driver 

uses a standard bounded buffer to store incom ing jobs. The bounded buffer is a lim ited-size storage 

space for com m and lines. The advantage o f  this design is that we keep the generation o f jobs separate 

from the execution o f  jobs. We wish to avoid starting a new consum er thread for every incoming 

job , since this could flood the JVM  with hundreds or even thousands o f  threads. Having this many
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threads active at the sam e tim e would seriously underm ine perform ance. There is no lim it on the 

num ber o f  producer threads, since this depends on the application code. M aintaining a fixed num ber 

o f  consum er threads, that is independent o f  the num ber o f  producers, ensures scalability.

Trellis Driver allows users to set the size o f  the bounded buffer and the num ber o f  consum er 

threads. Thus, if an application program m er is conscious o f resource usage within the JV M , they 

may specify a relatively small buffer size and low num ber o f  consum ers. If  the program m er has 

many thousands o f  jo b s to run within a short tim e frame, and sufficient JVM  resources, they may 

specify a relatively large buffer size and high consum er count. Program m ers can also specify which 

Trellis m etaqueue to use, so that they m ay pick a m etaqueue that is tailored to their current applica­

tion.

A pplications can subm it jobs either synchronously or asynchronously through Trellis Driver. 

In synchronous m ode, the calling producer thread blocks until Trellis com pletes the given job. In 

asynchronous mode, the caller continues after subm itting a Trellis job , and confirm s the com pletion 

and collects the exit status o f  that jo b  at a later time. Im plem enting the work barrier functions 

requires keeping track o f  which jobs are submitted by which producers. Buffer entries m aintain the 

special-purpose “per-producer next” links to maintain this inform ation.

4.3.1 Trellis Driver API

The Trellis D river A PI provides a com m and interface through which Java program s can hand o ff jobs 

to the Trellis m etascheduler for rem ote execution. The API provides m ethods for defining the T rel­

lis Driver execution environm ent (e.g., specifying which m etaqueue to use), starting and stopping 

the jo b  scheduling m echanism , running jobs synchronously and asynchronously, and aw aiting the 

com pletion o f  one or many outstanding Trellis jobs. The com plete Trellis Driver API specification 

is given in Tables 4 .1 ,4 .2 , and 4.3.
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API Function Description
g e t D r i v e r () Returns the Trellis Driver object associated with the cur­

rent application. The Trellis Driver object is then used 
for all subsequent com m unication between the applica­
tion and Trellis Driver. Analogous in purpose to the 
R u n t im e  . g e t R u n t i m e  () method.

g e t C o n s u m e r s C o u n t ( ) ,  
s e t C o n s u m e r s C o u n t ( 
c o u n t  )

Retrieve and specify the num ber o f  consum ers, respectively. 
A cceptable values for consum er count currently range from 
2 to 512.

g e t B u f f e r S i z e ( ) ,  
s e t B u f f e r S i z e ( s i z e  
)

Retrieve and specify the num ber o f  buffer entries, respec­
tively. A cceptable values for the buffer size currently range 
from  100 to 10,000.

g e tQ u e u e N a m e ( ) ,  
s e tQ u e u e N a m e ( 
m e ta q u e u e - n a m e  )

Retrieve and specify the nam e o f  the Trellis m etaqueue to 
which jobs are subm itted, respectively.

s e t G r o u p ( 
g r o u p  ja a m e , 
b a t c h . f a c t o r  )

Registers a new jo b  group, labeled as groupJiam e , with 
Trellis Driver. The num eric value batch .factor  indicates 
how many such jo b s are to be batched together into a sin­
gle m q s u b  com m and.

c r e a t e P i p e l i n e ( 
p i p e l i n e - n a m e , 
l e n g t h  )

Defines a new jo b  pipeline, labeled as p ip e lin e jia m e , that 
contains as m any stages as specified by length. This means 
that length  jobs, possibly o f  different type, are to be batched 
together into a single m q s u b  com m and.

s t a r t () Inform s consum ers to start running jobs.
s t o p () Inform s consum ers to stop running jobs.

Table 4.1: Trellis D river API: Configuration Functions

A P I F u n c tio n D escrip tion
execSynch( 
c o m m a n d - l in e  )

Runs the given com m and (i.e., com m andJine)  as an external 
Trellis jo b , in synchronous mode. The function call blocks 
until Trellis com pletes the job , at which tim e the exit code 
o f  the m q s u b  process that ran this job  is returned.

exec ( c o m m a n d - l in e ,  
c o m m a n d -g r o u p  )

Runs the given com m and (i.e., com m and Jine)  as an external 
Trellis job , in asynchronous mode. The optional param eter 
com m aiul-group  specifies the job  group or pipeline this job  
belongs to. T he function call returns when the jo b  is inserted 
into the bounded buffer. The function returns a key that the 
caller can use to reference the newly-subm itted jo b  later.

exec ( p r o d - i d ,  
c o m m a n d - l in e ,  
c o m m a n d .g r o u p  )

Identical in purpose and behaviour to the version of 
exec ()  shown above, except for an extra initial param eter 
that identifies the producer that is subm itting this job. This 
version o f  exec ()  allows different producers to separate 
their jobs from  one another.

Table 4.2: Trellis D river API: Job Launching Functions
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A PI F u n c tio n D esc rip tio n
waitForOne( k e y  ) W aits for the Trellis jo b  associated with the given reference 

key (i.e., key)  to finish. The exit code o f  the m q s u b  process 
that ran the specified jo b  is returned to the caller, after Trellis 
finishes executing the job.

waitForAll() Waits for all outstanding Trellis jobs to finish, regardless 
o f  which producer submitted them. An array o f exit codes 
from  the respective m q s u b  processes that ran the various 
jo b s  is returned to the caller, as soon as the last jo b  finishes 
executing.

waitForAll ( p r o d . i d  
)

W aits for all Trellis jobs that were submitted by the speci­
fied producer (i.e., prodJd)  to finish. An array o f  exit codes 
from  the respective m q s u b  processes that ran all o f  this pro­
ducer’s jobs is returned to the caller, as soon as this pro­
du ce r’s last jo b  finishes executing.

Table 4.3: Trellis D river API: W orkflow Synchronization Functions

In the next chapter, we follow the com putational flow within Trellis Driver that occurs when PA 

launches a series o f  external jobs. For now, we provide an exam ple o f  the steps involved in starting 

and m onitoring jo b s through Trellis Driver:

1. Configuration

The program m er first calls the functions shown in Table 4.1 to configure the Trellis Driver 

execution environm ent. The run tim e param eters o f  num ber o f  consum ers, buffer size, and 

m etaqueue nam e are set through calls to the appropriate three functions. Workflow inform a­

tion is then conveyed to Trellis D river with calls to s e t G r o u p  ()  and c r e a t e P i p e l i n e  ( ) ,  

which the program m er uses, respectively, to define new jo b  groups and pipelines. The pro­

gram m er then calls s t a r t  ()  (only once) to enable jo b  processing by Trellis Driver.

2. Job Launching

Through calls to TrellisDriver. exec () (Table 4.2), the program m er starts all de­

sired external jobs. M ultiple calls to TrellisDriver . exec () ,  which replace any former 

Runtime, exec () invocations, achieve jo b  parallelism  in the Trellis environm ent. W ork­

flow jo b s m ay also be executed synchronously via TrellisDriver . execSynch () ,  in 

which case only one external jo b  runs at a time.

3. Workflow Synchronization

Using the functions listed in Table 4.3, the program m er enforces synchronization between the 

driver process and the workflow jo b s  that w ere launched by the driver. Workflow synchro­

nization is achieved by imposing work barriers that block the application until some or all 

outstanding workflow jobs have com pleted. Calls to TrellisDriver .waitForAll () 

allow the application to block until all jobs started by a given producer thread, or all jobs
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started by any thread, com plete. Calls to TrellisDriver .waitForOne ( ) ,  which are 

analogous to Process . waitFor ()  calls, allow the application to await the com pletion o f 

individual jobs. Finally, the program m er calls stop () (only once) to end the job  processing 

by Trellis Driver, and term inate the JVM  threads within Trellis Driver.

4.3.2 Comparisons with MPI

Program m ers familiar with the popular M essage Passing Interface (M PI) m essage passing library 

standard [18, 8] will note the sim ilarities between the functionality offered by our Trellis Driver 

package and the message passing services o f  MPI. N ote that we did not design Trellis Driver to be­

have like MPI or be a replacem ent for M PI. M PI is a standard for exchanging messages in distributed 

system s, whereas Trellis Driver is a Java interface that links applications with an actively running 

Trellis metascheduler. However, analogies can be m ade between the sem antics o f MPI functions 

as seen by the program m er, and the internal mechanism s o f Trellis Driver, which help provide this 

m odule’s visible semantics.

Com m and lines issued by a sender (producer thread) can be thought o f  as m essages sent to a 

receiver (consum er thread), which oversees the execution o f  that com m and in the Trellis environ­

ment. M PI manages com m unication in the form o f messages sent between processes running in 

separate memory spaces. Trellis D river m anages com m unication in the form  o f com m and lines 

passed between separate Java threads executing in the same virtual m achine instance. Table 4.4 

provides further descriptions o f  the six Trellis D river API routines that handle this com m and line 

com m unication, and also indicates to w hich M PI routine each one corresponds.

4.4 Concluding Remarks

In this chapter, we presented our solution for porting driver-based Java applications, such as PA, to 

m etacom puting. We described the functionality and the architecture o f  the Trellis Driver Java m od­

ule that is used in place o f the Runtime . e x e c  ()  facility. We explained the Trellis placeholder 

scheduling m echanism, which provides load balancing o f  jobs across all hosts.

Having integrated PA with m etacom puting through Trellis Driver, we now wish to study the cost 

o f  m oving data over the network connecting the individual m etacornputer hosts. W hen the m eta­

com puter spans a local area network (LA N ), the m etascheduler’s policy towards data locality is not 

critical to application perform ance. In Chapter 5, we experim entally confirm  this assertion. When 

the m etacom puter spans a wide area network (WAN), we expect and observe, in Chapter 6, that the 

data movement overhead becomes high enough to necessitate the use o f a scheduling policy that co­

locates jobs and data. We develop a new scheduling policy for Trellis that is shown experimentally 

to reduce data movement overheads by placing jobs on hosts that hold their input data. Thus, the 

next two chapters serve to dem onstrate the substantial perform ance benefit o f  running PA’s workfiow 

over a metacornputer, whether the m etacornputer deployed spans a LAN or a WAN.
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Trellis Driver 
Function

M P I Function Semantic Similarities

s t a r t () M P I . I n i t  () Initializes the execution environm ent. In Trellis 
Driver, the environm ent depends on parameters 
preset by the application such as buffer size and the 
num ber o f  consum ers. In M PI, the environm ent 
depends on com m and line settings such as stated 
process priority and debugging settings.

s t o p () M P I . F i n a l i z e  () Term inates the execution environm ent. No more 
jobs may be started or m essages sent after a call 
to either o f  these functions. A single call must be 
m ade at the end o f  the m aster or driver process to 
properly clean up all program  threads.

e x e c S y n c h () M P I_S end  () Starts a synchronous m essage send operation. The 
caller is blocked until it receives notice that the op­
eration has com pleted. In Trellis, a m essage con­
stitutes a com m and line and gets processed by a 
consum er thread, which executes the specified job  
in the underlying m etacom puter. In M PI, a mes­
sage constitutes a chunk o f  program  data that is 
processed and acknow ledged by a designated re­
cipient.

e x e c () M P I . I s e n d t ) Starts an asynchronous m essage send operation. 
The caller returns right away and is given a han­
dle through which they m ay verify the result o f  this 
operation later. In Trellis, the handle is a numeric 
key that refers to a jo b  in the buffer. In M PI, the 
handle is a request object that is modified when the 
status o f  the com m unication changes.

w a i t F o r O n e () M P I .W a it  () Provides a synchronization barrier for one out­
standing m essage, which m ay be either an unfin­
ished Trellis jo b  or an M PI com m unication that is 
still active.

w a i t F o r A l l () M P I-W a it A l l  () Provides a synchronization barrier for all outstand­
ing m essages, w hether they are unfinished Trellis 
jobs or active M PI com m unications.

Table 4.4: Semantic Com parison o f  Trellis D river and M PI methods.
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Chapter 5

Trellis Driver: Implementation and 
Empirical Evaluation

C hapter 4 presented an illustrative exam ple o f how Proteom e A nalyst (PA) uses the newly-developed 

Trellis D river m odule to run m ultiple workflow jobs concurrently over a Trellis metacomputer. 

The preceding chapter then outlined T rellis’ placeholder scheduling m echanism . We then gave 

an overview  o f Trellis D river’s bounded buffer architecture, and explained the intrinsic producer- 

consum er data flow pattern. Finally, we annotated the Trellis D river application program m ing inter­

face (API).

In this chapter, we provide full im plem entation details on the Trellis Driver Java module. We 

describe the com putational flow within this software layer throughout a jo b ’s lifetime. In our run­

ning exam ple, we follow  the pathway o f  function calls that are triggered when the PA application 

specifies the properties, subm its, and collects the results o f  BLA ST jobs through Trellis Driver. A f­

ter describing the functionality o f each class in Trellis Driver, we explain the two techniques offered 

for grouping m ultiple workflow jobs into a com mon m q s u b  process, which address two different 

inherent scheduling overheads.

We then present em pirical results from  our test case o f  PA. We observe that while m q s u b  im ­

poses significant latency in the scheduling o f jobs, batching many jobs o f the same type together 

successfully am ortizes m q s u b  latencies, leading to linear speed-up o f  the BLAST phase. The rela­

tionship between the num ber o f  placeholders, the num ber o f  jobs batched, and load balancing is then 

explained through an illustrative exam ple. Finally, we exam ine the difference in speed-up trends for 

the BLA ST and Parsing phases.

5.1 Trellis Driver: Implementation as a Java Package

Trellis D river consists o f  four distinct Java classes that are grouped into a com mon package: 

TrellisDriver, ConsumerThread, BoundedBuffer, and BufferEntry. Figure 5.1 

provides an illustrative diagram  of the interaction between objects from these four classes and the
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F igure 5.1: Pathw ay o f  Function Calls During Execution o f  Jobs in Trellis D river

external com ponents, during the execution o f  jobs. Arrows in the figure represent invocations o f  one 

object’s m ethods by the code within another object. Dotted lines represent an expanded view o f  a 

com ponent from  an instance o f  a certain class, such as the buffer for storing jo b  inform ation that is 

contained in the singleton TrellisDriver object. We abbreviate TrellisDriver with TD.
Trellis D river w as previously described as a softw are m odule that integrates applications with the 

Trellis m etacom puting system . To clarify this conceptual definition, the left side o f F igure 5.1 shows 

the part o f  the PA application that utilizes Trellis D river’s jo b  scheduling services. M ore specifically, 

the box in the upper left corner shows calls to the API functions, such as TD. s e t G r o u p  ( ) ,  d is­

cussed in the previous chapter. The right side o f the figure shows one m q su b  process that is created 

when a C o n s u m e r T h r e a d  instance retrieves one set o f  jo b s from the buffer, and sends these jobs 

to Trellis for execution. The m q s u b  process shown here lives until all the latest jobs sent to  Trellis 

finish executing.

An instance o f  each o f  the PA application and m q s u b  utility are shown in F igure 5.1 m erely to 

show the external program s that are involved in the execution o f  workflow jobs. We avoid discussing 

the internal workings o f  either PA or m q su b  here. We presented the com putational pipelines for the 

training and prediction use cases o f  PA in Section 2.1, and explained how m q s u b  adds jo b s to a 

m etaqueue so that these jobs are later assigned to placeholders in Section 4.2. We now present a 

step-by-step description o f the processing o f  a new jo b  by Trellis Driver.

5.1.1 Functional Pathway During Job Execution in Trellis Driver

This section provides a w alkthrough o f all the tasks involved in executing the workflow jo b s from 

the BLA ST phase in the PA application. As discussed in Section 2.1, both the training and prediction 

use cases o f  PA entail running BLAST as the first step in the analysis pipeline o f an input protein.
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On the left side o f  Figure 5.1, we see som e o f  the call sites to key API functions from the part of 

PA that interacts with Trellis Driver. A lthough not shown in this diagram for the sake o f  com pact­

ness, it is always necessary to call TrellisDriver. getDriver () to obtain a reference to the 

single TrellisDriver instance associated with the current application. This reference is stored 

in a program  variable, represented as TD in the PA box in Figure 5.1, and is then used to invoke API 

m ethods in all subsequent Trellis D river operations. The application may also set the buffer size, 

num ber o f consum ers, and metaqueue nam e, and must call the start () function to enable the job  

processing m echanism  within Trellis Driver. The call sites to the relevant configuration functions 

are not shown in the interest o f  com pactness.

To enable the reduction o f  job  scheduling overheads within Trellis Driver, PA must take the 

im portant step o f  registering the B LA ST jo b  group. The TD. s e t G r o u p  () call inform s Trellis 

Driver o f  a new job  group, entitled “B LA ST” , for which m ultiple jobs o f this com m on type are to be 

bundled together in a single m q su b  process, and therefore, run on the same machine. Section 5.3.1 

explains how batching together m ultiple jobs o f  the sam e type am ortizes scheduling overheads. In 

this exam ple, the PA application specifies a batching fa c to r  o f two (2), which means that two BLAST 

jobs are to be grouped into a com m on m q s u b  process. The program m er may, in fact, choose any 

value within a certain legal range, which we discuss later in Section 5.2.

A fter registering the BLA ST jo b  group, the PA application then iterates over all proteins in the 

input proteom e and starts a BLAST analysis on  each one. This is done through the T D . e x e c  () 

invocations within the w h i l e  () loop, shown in the centre o f the PA box in F igure 5.1. Trellis 

Driver stores the com m and line o f each incom ing BLA ST jo b  in its own buffer entry, which is then 

protected from being overwritten with another com m and line until the application has acknowledged 

the com pletion o f  that particular job. D etails on the transitioning o f  buffer entry states throughout a 

jo b ’s lifetim e are given in Section 5.2.

The first argum ent in the call to T D . e x e c  ( )  shown in this exam ple, h a s h C o d e ,  is a numeric 

value that uniquely identifies the producer. O ne source o f unique numeric values for individual 

producers is the hash code o f  the Java virtual m achine (JVM) thread encom passing this producer. 

R ecall, from  Figure 4.4, that Trellis D river keeps track o f  which jobs belong to which producers by 

setting “per-producer next” links between the relevant buffer entries.

The second argum ent given to T D . e x e c  ()  is a string containing the BLAST jo b  group label. 

Trellis D river uses this string as a key in the jo b  group hashtable to find the batching factor for 

BLA ST jobs (in this case two). W hen storing com m and lines o f BLAST jobs in the buffer, Trellis 

Driver forms sublists o f two buffer entries containing BLA ST com m and lines. Consum er threads 

can then iterate over these sublists to recruit two BLAST jobs at a time for execution.

The third and final argum ent to T D . exec ()  is the com m and line itself. In PA, BLAST jobs 

are specified by the absolute path o f the BLA ST binary followed arbitrary argum ents, which specify 

properties o f  the BLAST search.
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Execution Parameter Lower Upper
Buffer Size 100 10,000

N um ber o f  Consum ers 2 512
Job G roup B atching Factor 1 Buffer Size

Job P ipeline Length 1 Buffer Size

Table 5.1: U pper and Low er Bounds on Trellis Driver Execution Param eters

A fter starting BLA ST analyses for all proteins in the input proteom e, the PA code calls 

TD . w a i t  F o r  All (), giving the hash code o f  the calling producer as the only argument. Trel­

lis D river then walks the corresponding per-producer job  list, blocking at each buffer entry in that 

list until the associated BLAST job  has been marked as com pleted by a consumer.

Including the JVM  thread-specific hash code in all TD.exec () calls when subm itting jobs, 

and providing this same hash code in the subsequent T D . waitForAll () call, allows multiple 

producers to execute separate pieces o f  an application’s workflow without interfering with each 

o ther’s jobs. Although the above exam ple shows only one producer, there could in fact be multiple 

copies o f  this sam e PA code running B LA ST analyses for distinct proteom es concurrently.

5.2 Trellis Driver Classes

1. TrellisDriver
T he TrellisDriver object handles all com m unication with the client Java program , as 

well as with the other objects in the Trellis Driver package. As described previously, pro­

gram m ers must first obtain a reference to the singleton TrellisDriver object belonging 

to their application, and then may invoke API m ethods on this object as needed to run external 

jobs. The TrellisDriver object also stores the bounded buffer that holds the com mand 

lines, and m anages the pool o f  consum er threads that process jobs.

As a pre-processing step, an input validity check is perform ed in the four configuration func­

tions o f setBufferSize(), setConsumersCount(), setGroup() ,  and create 
Pipeline (). Table 5.1 shows the fixed ranges for each o f these execution parameters. 

A lthough currently not adjustable by the user, the param eters shown could easily be made so.

2. ConsumerThread
ConsumerThread objects com m unicate with the underlying m etacom puter by continually 

pulling com m and lines out o f the buffer and subm itting them to the desired Trellis metaqueue 

with mqsub. During workflow execution, ConsumerThread objects follow a basic cycle 

o f  fetching, executing, and m arking jobs as com plete.

3. BoundedBuffer
The single BoundedBuf fer instance holds the com m and lines o f  all jobs issued to Trellis
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Producer adds jo b  lo buffer 
with TD.cxecO

Producer collects return 
code with TD.waitOneQ Free
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In ProgressConsum er observes 
completion o f  mqsub job

Consum er retrieves command 
line for execution

Figure 5.2: State Transitions and Associated O perations for Bounded Buffer Entries

Driver. For perform ance scalability, the B o u n d e d B u f  f e r  object uses a buffer that is o f  fixed 

size (i.e., bounded) to decouple the num ber o f consum ers from  the num ber o f  producers.

Each incoming com m and line is placed in a buffer entry that was previously marked as Free. 

Trellis Driver keeps up-to-date linked lists o f buffer entries in each o f  the four states, which 

are outlined in the subsection im m ediately following. All buffer m anipulation functions are 

synchronized Java methods, so m utual exclusion is enforced.

The B o u n d e d B u f  f e r  object also contains hashtables for storing inform ation on producer 

threads, job  groups, and job  pipelines.

4. BufferEntry
An array o f  BufferEntry instances implements the bounded buffer for storing com m and 

lines. Individual BufferEntry objects contain multiple fields for recording all pertinent 

jo b  information. W hen required, the label o f the job  group is stored. The jo b ’s com mand 

line and the return code o f the mqsub process that passes this com m and line to the Trellis 

m etascheduler are also stored.

Figure 5.2 provides a state transition diagram  for a bounded buffer entry. In this exam ple, one 

producer is executing one jo b  asynchronously. W hen the producer invokes T D . e x e c  ( ) ,  the 

new jo b ’s com m and line is written to a previously Free buffer entry, which then moves to the 

Filled state. A consum er thread retrieves the com m and line and passes it as an argum ent to 

the mqsub utility for execution, changing the state o f  that entry to InProgress. The mqsub 
process passes its return code back to the consum er upon the jo b ’s com pletion. The consum er 

records this return code in the buffer entry, which is moved to the Finished state. Finally, the 

producer calls TD.wai tO n e  ()  to synchronize with the com pletion o f this individual job  and 

collect the mqsub exit code. The buffer en try’s state then moves back to Free.
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Figure 5.3: H om ogeneous Batching o f  BLA ST Jobs W ithin Trellis Driver

5.3 Batching of Multiple Jobs

The following subsections describe our two techniques for batching jo b s  o f  the sam e and different 

types, respectively, into a com m on mqsub process. The two batching strategies described here 

am ortize different sources o f  overhead, both o f  which are inherent in workflow scheduling.

5.3.1 Job Groups: Homogeneous Batching of Jobs

In PA, the short runtim es o f  BLAST and Parsing jobs m ake for poor jo b  granularity. There is an 

inherent overhead in m oving a com m and line through Trellis D river and in starting the associated 

mqsub process. Likewise, there is an overhead for a mqsub process to term inate and pass its exit 

code back to Trellis Driver. A ggregating several BLA ST or Parsing jo b s into one mqsub process 

can greatly am ortize the Trellis Driver and mqsub latencies.

Trellis Driver supports the grouping o f  m ultiple jobs from  a com m on workflow phase to reduce 

scheduling overheads. We refer to this jo b  batching strategy as homogeneous batching since the jobs 

bundled together by Trellis Driver are alw ays o f  the sam e type (i.e., they are invocations o f  the same 

external program).

F igure 5.3 illustrates the flow o f B LA ST com m and lines within Trellis Driver when hom oge­

neous batching is used. The left side o f  the diagram  provides a snapshot o f  PA code from the 

BLAST phase. Here, the workflow is specified in term s o f  control flow, so PA starts all BLAST 

jobs, invokes a workflow barrier function to await their com pletion, and then repeats this process for 

the Parsing phase.

When PA calls TD. setGroup ( ) ,  Trellis Driver registers the BLA ST job  group by adding an 

entry to the jo b  group hashtable (not shown), which m aps the BLA ST label to the given batching
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factor o f  two. The TD . e x e c  ()  calls send the BLAST com m and lines to Trellis Driver, which stores 

them in separate buffer entries, as seen in the centre o f the diagram . A series o f  “per-consum er next” 

links is m aintained to form  jo b  groups o f the desired size.

On the right, we see one consum er recruiting two BLA ST com m and lines from the buffer and 

passing them to an m q s u b  process. The com m and line recruiting proceeds in three steps:

1. The consum er reads the BLAST job  group label from the top buffer entry shown and consults 

the jo b  group hashtable to find that the desired batching factor is two.

2. The consum er follow s the per-consum er next links until it has grabbed two BLA ST jobs, or 

until a fixed tim eout has expired.

3. The consum er passes the concatenation o f the two BLAST com m and lines to m q su b .

Having a tim eout prevents the starvation o f  an incom plete jo b  group at the end o f  a workflow 

phase. For instance, if  PA executes 1,000 BLAST jobs and the BLAST batching factor is 16, this 

produces 62 groups o f  16 -  accounting for the first 992 jo b s -  and one rem aining sm aller group o f  8 

BLAST jobs. W ith no tim eout, the consum er recruiting the last few BLAST com m and lines would 

wait indefinitely for 8 m ore jo b s that would never come.

W hen a placeholder is given a jo b  bundle (i.e., a set o f  jobs grouped together by hom ogeneous 

batching), it receives one com m and string that consists o f  m ultiple BLA ST com m and lines sepa­

rated by sem i-colons. As per Unix convention, placeholder scripts execute these com m and lines 

individually. W ith hom ogeneous batching, the exact order o f jo b  execution within a single jo b  bun­

dle is irrelevant, since the jo b s com e from the sam e workflow phase and are, therefore, mutually 

independent.

5.3.2 Job Pipelines: Heterogeneous Batching of Jobs

Although Trellis D river and m q s u b  im pose significant overhead for jobs with short runtim es, the 

cost o f  transferring data betw een jobs from  successive pipeline stages that are run on different hosts 

can also entail considerable overhead. The late binding o f  jobs to placeholders in Trellis means 

that BLAST and Parsing jo b s from  a com m on pipeline can be run on different hosts, particularly at 

high placeholder counts. In such cases, the hom ologue file outputted by the BLA ST jo b  must be 

transferred to the m achine w here the successor Parsing jo b  runs.

To avoid data m ovem ent overheads, Trellis Driver supports the bundling o f jobs from  different 

workflow phases. We refer to this strategy as heterogeneous batching  since the jobs bundled together 

are o f distinct types (i.e., they are invocations o f different external programs).

F igure 5.4 illustrates the flow o f  protein pipeline jobs within Trellis Driver when heterogeneous 

batching is used. The left side o f the diagram  shows a code extract from the overlapped BLA ST 

and Parsing phases. H ere the workflow is specified in term s o f  data flow, so PA issues the BLA ST
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Figure 5.4: Heterogeneous Batching o f Protein Pipelines W ithin Trellis D river

job  and the Parsing jo b  from the first pipeline, then the BLA ST and Parsing jobs from  the second 

pipeline, and so on.

Before executing each pipeline, however, PA calls T D . createPipeline ()  to register the 

next jo b  p ipeline with Trellis Driver. This function call adds a new entry to the jo b  pipeline hashtable 

(not shown), which m aps pipeline labels to their given lengths, which are always tw o in this work­

flow. The T D . exec ()  calls add the com m and lines o f the BLA ST and Parsing jo b s to the buffer, 

as seen in the centre o f  the diagram. The per-consum er next links are set according to the specified 

pipeline length.

T he consum er recruits com m and lines in a m anner sim ilar to that used in hom ogeneous batching. 

The difference is that there is no tim eout for recruiting jobs. Thus, a consum er that finds one BLAST 

job , which is part o f  a two-stage pipeline, will wait indefinitely for the accom panying Parsing job. 

This approach is used because the application is expected to supply the correct num ber o f  jobs for 

every pipeline.

Data flow dependencies between the BLAST and Parsing jobs are respected, since the com m and 

strings given to placeholders always specify the com m and lines in the sam e order in which the 

corresponding jobs were issued. For instance, in F igure 5.4, the consum er constructs a com m and 

string containing the first BLAST com m and line, followed by a sem i-colon, and then the first Parsing 

com m and line. Following Unix convention, the placeholder receiving the com m and string shown in 

the above figure executes BLAST 1 before Parsing 1.

5.4 Experimental Results

In Section 2.1, we explained the three stages o f  PA’s jo b  pipelines. Stages 1 and 2, BLA ST and 

Parsing, respectively, are identical in both the training and prediction use cases. Table 2,1 presented
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Figure 5.5: PA-Trellis M akespan with Varying Batching Strategies 
BLAST and Parsing Phases Run Across a LAN

the runtim es o f all four phases in our PA test case, in which we trained and validated a new classifier. 

The BLAST phase had by far the longest runtim e. A lthough Parsing had a m uch shorter runtim e, 

like the BLA ST phase, Parsing is also em barrassingly parallel, m eaning any num ber o f  jobs from 

either Stage 1 or Stage 2 may execute concurrently. Accordingly, we parallelized both the BLAST 

and Parsing phases o f  PA.

Experim ental results presented in this chapter show:

1. H om ogeneous batching is m ore effective than heterogeneous batching (Figure 5.5). The for­

m er strategy reduces makespan to a much greater degree than the latter, suggesting that in this 

PA workflow, m q su b  imposes greater overhead than data transfer.

2. L inear speed-up o f  the BLAST phase is approached or achieved at all p laceholder counts.

3. The Parsing phase actually slows down when parallelized at low placeholder counts. Even at 

high placeholder counts, speed-ups are nowhere close to linear.

We parallelized the Parsing phase o f  PA the sam e we did for the BLA ST phase. Recall the code 

snapshots from  the original and parallel PA (PA-Trellis), presented in Section 4.1, in the latter of 

which we replaced Runtime.exec () calls with TrellisDriver.exec () calls,
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N um .
PH s

No
B atch ing

Ile te ro .
B atch ing

Iiom o . B atch ing
2 BF 4 BF 8 BF 16 BF 32 BF 64 BF

2 4:17:14 3:26:17 3:30:02 3:06:50 2:54:43 2:49:16 2:46:27 2:45:44
4 2:18:20 1:43:55 1:47:35 1:33:47 1:27:44 1:24:48 1:23:22 1:25:42
8 1:26:03 1:00:32 0:59:52 0:49:21 0:44:55 0:43:21 0:43:57 0:44:46
16 1:08:41 0:40:14 0:40:42 0:28:36 0:24:45 0:23:29 0:23:24 0:24:56

Table 5.2: Com bined BLAST and Parsing M akespan for Varying Batching Strategies and Factors
(H:M M :SS)

Original (Sequential) BLA ST and Parsing M akespan was 4 :59 :59

To benchm ark PA-Trellis against the original PA, we trained a new classifier with the same 

input proteom e o f 3,916 sequences and 1,531 features that we used in our test case, presented in 

Section 2.1. In all experim ents discussed below, PA-Trellis was run over a cluster o f  L inux machines, 

connected via Fast Ethernet. Thus, the underlying m etacom puter spanned a local area network 

(LAN). Each constituent host was a L inux box that had two AM D A thlon M P 1800+ processors, 

1.5 GB main memory, and ran Red H at 7.1. The BLAST executable and the Swiss-Prot database 

were replicated on all m etacom puter hosts. The sequence text files (i.e., the BLA ST inputs), were 

stored on an NFS-m ounted volume, m aking for transparent and fixed-time data access across all 

hosts. There was no need to use the Trellis File System (Trellis FS) for data access.

5.4.1 Homogeneous vs. Heterogeneous Batching

Figure 5.5 shows the com bined m akespan for the BLAST and Parsing phases o f  PA-Trellis with 

varying batching strategies and factors. The “No Batching” series represents a base case where the 

BLAST and Parsing jobs were all run individually, and thus there was no am ortization o f  m q s u b  or 

data movem ent overheads. Here, batching factor is abbreviated as BF.
We im m ediately see that either batching strategy decreases makespan noticeably against the base 

case at all placeholder counts. For clarity, Table 5.2 displays the values o f the com bined m akespan 

o f  the BLAST and Parsing phases. The label PH is an abbreviation for placeholder. These numbers 

show that hom ogeneous batching reduces m akespan considerably m ore than does heterogeneous 

batching. A lready at a batching factor o f  4, hom ogeneous batching wins easily against heteroge­

neous batching in terms o f  makespan. For instance, at 16 placeholders, the heterogeneous m akespan 

is 0:40:14, which is a 41.4%  reduction o f  the base case makespan o f 1:08:41. However, the hom oge­

neous makespan with a batching factor o f  only 4 is 0:28:36, which is a much larger 58.4%  reduction 

against the base case makespan. S im ilar trends can also be seen with fewer than 16 placeholders. 

At all higher batching factors, the hom ogeneous strategy outperform s heterogeneous even more de­

cisively, at all placeholder counts. Thus, m q s u b  appears to be a far greater source o f overhead than 

data movement, irrespective o f  the num ber o f  placeholders.

With hom ogeneous batching, there are dim inishing returns in m akespan improvements, which 

eventually go negative, as the batching factor increases. This is evident in the flattening out o f
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Figure 5.6: Load Balancing with Varying P laceholder Counts and Batching Factors

successive makespan bars in F igure 5.5 (except for the heterogeneous bars on the far right). Note 

that hom ogeneous m akespan is reduced considerably when going from a batching factor o f  2 to 4, 

but only slightly, if  at all, when going from  a batching factor o f  16 to 32. The batching factor that 

produces the lowest m akespan varies with the num ber o f  placeholders. From Table 5.2, it appears 

that larger batching factors lead to better perform ance at lower placeholder counts. We discuss this 

phenom enon in the following subsection.

5.4.2 Causes of Load Imbalance

H aving established that hom ogeneous batching works best for our test PA workflow, we now exam ­

ine the different characteristics o f the B LA ST and Parsing phases. We begin by investigating the 

relationship between the num ber o f placeholders, the batching factor, and makespan.

As an illustrative exam ple o f  inherent load im balance in som e situations, Figure 5.6 shows three 

different load balancing scenarios, each o f  which has 100 jobs but a distinct com bination o f  p lace­

holder count and batching factor. Colum ns in the diagram s illustrate the assignm ent o f jo b  bundles 

to specific placeholders, which are labeled at the bottom. N um bers in the boxes represent the size o f  

the job  bundles. Rows represent jo b  assignm ent “rounds” , in which the Trellis scheduler hands off 

one bundle o f jobs to each placeholder. Tim e proceeds downwards in the diagrams, m eaning that 

the first row represents the first round o f  jo b  assignm ents, the second row the second round, and so 

on. Dashed lines from the tim e arrow to the box o f  jo b  assignm ents provide a visual m easurem ent 

aid.

Figure 5.6(a) shows a scenario in which the num ber o f  placeholders times the batching factor
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N um . P H s 2 BF 4 BF 8 B F 16 BF 32 B F 64 BF
2 2:47:08 2:35:35 2:29:09 2:27:11 2:25:38 2:25:12
4 1:23:26 1:17:15 1:14:26 1:12:53 1:12:32 1:15:19
8 0:42:49 0:39:07 0:37:26 0:37:07 0:37:58 0:38:56
16 0:23:33 0:20:09 0:19:24 0:19:41 0:19:51 0:21:33

Table 5.3: BLAST M akespan with Varying H om ogeneous Batching Factors
(H:M M :SS)

Original (Sequential) BLAST M akespan was 4 :51 :26

N um . P H s 2 BF 4 BF 8 B F 16 BF 32 B F 64 B F
2 1.74 1.87 1.95 1.98 2.00 2.01
4 3.49 3.77 3.92 4.00 4.02 3.87
8 6.81 7.45 7.79 7.85 7.68 7.49
16 12.38 14.47 15.03 14.81 14.68 13.52

Table5.4 : Speed-up o f  Parallel BLA ST over Sequential BLA ST with Varying H om ogeneous B atch­
ing Factors

evenly divides the num ber o f  jobs, and thus perfect load balancing is achieved. In Figure 5.6(b), 

when the batching factor is 10, there is some load im balance since the placeholders do not all run 

the sam e num ber o f  jo b  bundles. The workflow’s execution takes longer in this second scenario, 

requiring six tim e units as opposed to the five required in the first scenario.

Figure 5.6(c) shows the sam e workflow as in (a) but with eight placeholders instead o f  four. 

A gain, we see some load im balance, since the placeholders run different num bers o f  jo b  bundles. In 

this case, doubling the num ber o f  placeholders does not cut turnaround tim e in half (i.e., by 50% ). 

The workflow execution takes three tim e units as opposed to five, or 60%  o f the original runtime.

Admittedly, if  there were 120 jobs instead o f  100 in the above exam ple, perfect load balancing 

would be achieved with a batching factor o f  10, or with 8 hosts. However, the above exam ple 

is intended to show that as the job  bundle granularity or the num ber o f  placeholders increases, it 

becom es less likely to be able to assign each placeholder the sam e num ber o f  jobs. From the three 

scenarios illustrated, we see that either a high num ber o f  placeholders or a large batching factor can 

throw off load balancing, thereby prolonging makespan.

5.4.3 Differences in BLAST and Parsing Phases

Table 5.3 displays the BLAST m akespans for the PA-Trellis workflow introduced in the previous 

section, with the best m akespans obtained at each placeholder count highlighted. Note that the 

optim al hom ogeneous batching factor decreases as the num ber o f  placeholders increases. We believe 

this is due to the load balancing trends discussed previously. At 2 placeholders, when half the 

workflow jobs (50% ), on average, are assigned to each placeholder, a batching factor o f  64 produces 

the shortest makespan. At 16 placeholders, when only one sixteenth o f  the workflow jobs (roughly 

6%), on average, are assigned to each placeholder, the optim al batching factor is 8. Thus, the
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N um . P H s 2 BF 4 BF 8 B F 16 B F 32 B F 64 B F
2 0:42:54 0:31:16 0:25:34 0:22:05 0:20:49 0 :20 :32
4 0:24:09 0:16:31 0:13:19 0:11:56 0:10:50 0:10:22
8 0:17:03 0:10:14 0:07:29 0:06:14 0:05:58 0:05:50

16 0:17:09 0:08:27 0:05:22 0:03:59 0:03:33 0:03:23

Table 5.5: Parsing M akespan with Varying H om ogeneous Batching Factors
(H:M M :SS)

O riginal (Sequential) Parsing M akespan was 0 :08:33

N um . P H s 2 BF 4 B F 8 B F 16 B F 32 BF 64 BF
2 0.20 0.27 0.33 0.39 0.41 0.42
4 0.35 0.52 0.64 0.72 0.79 0.82
8 0.50 0.84 1.14 1.37 1.43 1.47
16 0.50 1.01 1.60 2.15 2.41 2.53

Table 5.6: Speed-up o f  Parallel Parsing over Sequential Parsing with Varying H om ogeneous Batch­
ing Factors

com bination o f  large jo b  bundles and a high num ber o f  hosts prolongs m akespan. This observation 

is consistent with our earlier illustrative load balancing scenarios.

M easuring speed-up ratios for the BLA ST and Parsing phases allows us to assess how effectively 

we are am ortizing the overheads o f  m q s u b  and data transfer. Table 5.4 shows speed-ups for the 

BLA ST phase. N ot surprisingly, as the batching factor increases and hence, the overheads o f  m q su b  

are am ortized m ore, speed-ups improve. For the 2-placeholder case, we achieve linear speed-up with 

batching factors o f 32 and 64. For the 4-placeholder case, linear speed-up is achieved with batching 

factors o f 16 and 32. For the 8 and 16-placeholder cases, we fall ju s t short o f linear speed-up. We 

believe that contention for the com m on Trellis C om m and L ine Server (CLS), which must process 

requests for a larger num ber o f  placeholders, is the reason for this slightly w eaker perform ance. We 

explore this issue further in Chapter 6.

Table 5.5 displays the Parsing m akespans for the PA-Trellis workflow. Table 5.6 shows the 

corresponding speed-ups. Immediately, we note that parallelizing this phase does not produce any 

worthwhile speed-up. At 2 or 4 placeholders, there is actually an increase in the Parsing times, 

regardless o f  how high we set the batching factor. Even at 8 or 16 placeholders, when we see some 

reduction in phase time at higher batching factors, the speed-ups obtained are quite low, well short 

o f linear.

We believe this poor speed-up is sim ply due to the small granularity o f  the Parsing jobs. The 

short runtim es for individual Parsing jobs, which we estim ate to be within the 0.5 to 0.7 second 

range in Chapter 6, makes for a low ratio o f  com putation to com m unication in this phase. Here, 

com putation refers to the time spent actually executing Parsing jobs, and com m unication refers to 

all overheads o f  Trellis Driver, m q su b , and even placeholders contacting the CLS.
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5.5 Summary of Results

In Chapter 4 , we outlined Trellis D river’s scalable, bounded buffer architecture as well as its API, 

which is based on that o f  Runtime. exec ( ) .  The code extracts from the original PA and PA- 

Trellis dem onstrated how Trellis D river functions as a drop-in replacem ent for Runtime. exec (), 
with the added feature o f  workflow barrier functions.

In this chapter, we described the im plem entation o f  Trellis Driver. We follow ed the com pu­

tational flow as Trellis Driver processes all the BLA ST jobs launched by the PA application. We 

explained our two different jo b  batching strategies, which address two different inherent scheduling 

overheads. O ur em pirical results showed that the overheads o f  mqsub and data m ovem ent can be 

am ortized by batching. In particular, hom ogeneous batching leads to linear speed-up o f  the BLAST 

phase in our test case. The speed-up values showed that the optim al batching factor varies with the 

num ber o f  placeholders; we believe this is due to load balancing trends. The Parsing phase obtains 

low speed-ups due to small jo b  granularity.
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Chapter 6

Data-Conscious Scheduling Policy: 
A Simulation Study

This chapter investigates the circum stances under which the Proteom e A nalyst (PA) application can 

benefit from  a scheduling policy that assigns jobs to hosts that hold their input data. We im plem ent 

and refine our new scheduling policy in the context o f a sim ulation study, which provides a controlled 

environm ent for easily altering key param eters such as file sizes and com m unication overheads.

C hapter 5 presented em pirical results showing the effectiveness o f  hom ogeneous jo b  batching at 

am ortizing jo b  scheduling overheads. We saw that linear speed-up for the BLAST phase o f  PA is 

achieved at higher batching factors, even though the jo b  scheduling strategy used by Trellis is First 

Com e First Served (FCFS), which does not consider data movement.

The results from  the previous chapter dem onstrated that good speed-ups are achievable without 

data consciousness in scheduling. However, three important questions are left unanswered:

1. W hile PA achieves impressive perform ance gains when the m etacom puter spans a local area 

network (LAN), what are the gains when the m etacom puter spans a w ide area network (WAN)?

2. W hat are the effects o f  using scheduling policies other than FCFS within the m etacom puter?

3. W hat influence do application and m etacom puting parameters, such as file sizes or contention 

for the com m and line server (CLS) am ong multiple placeholders, have on perform ance?

This chapter explores the above questions. We first explain the design o f  our new Data-Conscious 

(DC) scheduling policy. We then determ ine the cases in which co-locating jobs and their input data 

im proves perform ance significantly. Finally, we explore the impact on perform ance o f  param eters 

such as jo b  batching strategy and data transfer rate.

6.1 Why Use Simulation?

The previous chapter presented results from experim ents that were run in a real setting involving 

a LA N -spanning m etacom puter whose resources were all contained within a single adm inistrative

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



domain. Since m etacom puting works across m ultiple adm inistrative dom ains that may be geograph­

ically dispersed, w e wish to m easure the perform ance o f  PA-Trellis on a m etacom puter that spans 

a WAN as well. However, WAN environm ents are hard to regulate for our own use. M any factors 

that can im pact perform ance, such as sustainable cross-dom ain bandwidth, lie beyond our control. 

Obtaining exclusive access to all the resources over which we wish to distribute our m etacom puter 

can be difficult since it requires the cooperation o f all parties who share those resources.

A m ore practical alternative is to use sim ulation to model the execution o f PA-Trellis over a 

W AN-spanning m etacom puter. A sim ulator program  allows us to reproduce the PA-Trellis appli­

cation and its execution environm ent in sufficient detail, while controlling all factors that influence 

perform ance, including data transfer tim es. Additionally, we can adjust the settings o f  the relevant 

model param eters to explore their theoretical im pact on perform ance. For exam ple, we can inflate 

the file sizes to see how well our new scheduling policy handles data-heavy workflows.

Two m ore properties, com m on to all sim ulators, greatly aid our work. First, virtual experim ents 

executed by a sim ulator are carried out in virtual tim e and not real time. Thus, we can run a range o f 

sim ulated PA-Trellis experim ents in a few seconds o f  real tim e where equivalent experim ents with 

the actual application would take hours to com plete. Second, the im portant scientific objective o f 

reproducibility o f  results is easily m et in sim ulation. The determ inistic nature o f many sim ulators, 

including the one we develop, m eans that precisely the sam e perform ance results are observed in 

successive trials with identical inputs.

6.2 Smurph Simulation

We use the Sm urph sim ulation package [12], developed at the University o f  Alberta, to model the 

execution o f  the PA application’s workflow over a Trellis m etacomputer. The Smurph utility is de­

signed for writing d iscrete event sim ulations o f  packet-based network protocols. We found Sm urph 

to be easily adaptable for creating an accurate sim ulation o f  the PA workflow and the Trellis place­

holder scheduling environm ent.

Figure 6.1 provides a diagram  o f the flow o f control and data between the key objects in our 

Sm urph sim ulation. T he thick grey arrow s indicate data flow or the passing of inform ation, such 

as com m and lines, betw een objects. T he thin black arrows indicate control flow between objects, 

typically done through signalling. In our sim ulation, we model the batch queues on hosts within 

the m etacom puter, which control the execution o f  local placeholders (also m odelled), and the CLS 

process, which stores inform ation on all jobs injected into the Trellis system via m q s u b  calls.

There is a single R oot or m aster object whose code is executed at the beginning o f  every sim ­

ulation. At start-up tim e, the Root object reads one text file specifying the placeholder-to-host as­

signm ents. Based on this inform ation, the Root creates the appropriate batch queue and placeholder 

objects. The Root then opens another file containing the list o f workflow jobs to be executed.
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Figure 6.1: Control and Data Flow in Smurph Sim ulator

O ur sim ulator then enters its main workflow processing loop, which functions in three steps:

1. The Root reads through the list o f  workflow jobs until it reaches the end o f  the current phase. 

For each jo b  read in, the Root subm its that jo b  to the appropriate CLS object, creating that 

CLS object first if  necessary. T he handing o f  jobs to CLS instances is our way o f  sim ulating 

the m q s u b  invocations by consum er threads within Trellis Driver.

In all our sim ulations, we assum e only one user running a single copy o f  PA. We therefore 

create only one CLS instance that processes all the workflow jobs.

2. The Root sleeps to allow the single CLS instance to distribute the workflow jobs am ong the 

placeholders. W hen the CLS has recorded the com pletion o f all its jobs, it signals the Root.

3. The Root resum es reading the workflow file at the point just after the end o f  the previous 

phase. If there are m ore jobs listed (i.e., there is another phase in the workflow), the program ’s 

execution repeats from  Step 1. If the end o f the file is reached, the Root prints out workflow 

execution statistics, including m akespan and total data movement, and the sim ulation ends.

During the execution o f  a workflow phase, as in any real Trellis setting, placeholders initiate 

contact with the CLS by sending messages either reporting the com pletion o f  jobs or asking for 

work. First, the CLS processes any outstanding reports o f  finished jobs and sends acknowledgm ents 

to the relevant placeholders. Second, to each placeholder asking for work, the CL.S sends a reply 

message containing the com m and line o f  a new job. This activity repeats itself until every jo b  in the
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current workflow phase is recorded as com plete, at which point the CLS signals the Root and awaits 

the arrival o f a new phase o f jobs, as discussed above.

Each batch queue object sim ulates a local batching system that executes on one host and controls 

when each placeholder bound to that particular host runs. Local placeholders are, in essence, queued 

jobs. Batch queues follow a repetitive process of: signalling the placeholder at the front o f  the queue 

that it may run; waiting for that placeholder to retrieve the com m and line o f  a new jo b  and when 

necessary the input data, execute the jo b , and report the jo b 's  com pletion to the CLS; and finally, 

reinserting that placeholder at the back o f  the queue.

P laceholder objects model the m ovem ent o f  data files between m etacom puter hosts by sleeping a 

fixed am ount o f  virtual tim e related to the input data retrieval tim e as well as to the network type (i.e., 

LAN or WAN). Likewise, placeholders “execute” jo b s sim ply by sleeping for a num ber o f virtual 

tim e units that corresponds to the jo b ’s runtim e. T hus, the execution o f workflow jobs proceeds 

alm ost instantaneously in real time since the sim ulator program  has only to advance virtual time.

Included in the job  inform ation passed from  the R oot to the CLS is the inter-job dependency 

inform ation reflecting the data flow between B LA ST and Parsing jobs, for each protein pipeline. The 

sim ulator keeps track o f  the hosts on which particular BLA ST jobs run and generate their hom ologue 

files. W hen m odelling the actions o f  our data-conscious scheduler, the sim ulator considers whether 

or not the placeholder that is currently asking for w ork is running on the same host that stores 

the hom ologue input file o f  any ready-to-run Parsing jo b  (i.e., any Parsing job  whose prerequisite 

BLAST jo b  has com pleted). Parsing jo b s  w hose input is available locally, if  bound to the current 

placeholder, are given higher priorities than those w hose input data must be copied from  a rem ote 

host. We now describe the equations used for jo b  priority calculations within our new scheduling 

policy.

6.3 Job Priority Calculations

W hen we introduced the notion of data consciousness in scheduling in Section 1.1.3, we raised two 

important points: First, although data affinity is the prim ary objective o f  our new scheduling policy, 

there are other job-specific characteristics that are relevant when assigning jobs to hosts within a 

metacomputer. Second, schedulers usually m ap each candidate job to a num eric priority value, so 

that the highest ranked jo b  may be chosen for execution.

In our DC scheduling algorithm , we em ploy a job  priority calculation scheme that examines 

three properties for each job. The abstract form o f our priority equation is:

prior ity  =  data a ffin ity  +  dependent jobs  + queue t im e  (6.1)

Equation 6.1 shows that the priority assigned to a candidate jo b  is the linear sum o f three numeric 

values, each representing one o f  the relevant jo b  properties. Data affinity is a m easure o f  the poten­

tial data m ovem ent savings. Higher values indicate that little or no data m ovement is required should
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the given jo b  be assigned to the prescntly-available placeholder as com pared to another placeholder 

in the near future. D ependen t jo b s  is the num ber o f  o ther workflow jobs that cannot run until this 

particular jo b  has com pleted. Thus, jobs that are bottlenecks in the workflow have higher values for 

this second term. Q ueue tim e is a m easure o f how long this jo b  has been in the m etaqueue; higher 

values indicate a jo b  has waited in the queue for a long time. Including this third term prevents 

starvation o f  jobs with heavy data m ovem ent requirem ents or few dependents.

In practice, the priority o f a candidate job  x  for a given current placeholder current PH  and a set 

o f  upcom ing placeholders futurePHs, is defined as follows:

p r io r i ty (x ,  c u r r e n lP H , fu tureP H s)  =

D a ta .A f f in i t y - R - C  (x , c u r r e n tP H , fu tu r e P H s ) -I— ^'ueue t im e  (x )—  (6.2)
placeholder-la tency

The function Data A ffin ity  J i .C  m easures the relative cost o f data affinity for jo b  x.  The relative 

cost o f  data affinity is a function o f the candidate jo b  x ,  the current placeholder currentPH, and the 

set o f  all future placeholders futurePHs,  which constitutes those placeholders expected to ask for 

work in the near future. We explain the intuition behind the relative cost metric and how this value 

is calculated below. Before, however, we discuss two im portant characteristics o f  Equation 6.2.

First, note that there is no term for dependent jobs. W hile the argum ent o f  favouring the execu­

tion o f  jobs that are workflow bottlenecks is quite valid in the context o f  workflow scheduling, the 

PA workflows we consider do not contain any such bottleneck jobs. The BLA ST jobs that com prise 

the first pipeline stage always have only one dependent job , which is the Parsing jo b  from the same 

pipeline. The Parsing jobs com prising the second pipeline stage have zero dependent jobs, since in 

our work we execute the third pipeline stage within the driver process. Rudim entary testing showed 

that the inclusion o f  the dependent jobs m etric had no significant effect on the perform ance o f any of 

our workflows. For this reason, we exclude the dependent jobs count from our priority calculations.

Second, observe that queue time is divided by w hat we call “placeholder latency” . Here, queue 

tim e is a function o f  job  x  and placeholder latency is a constant m easuring the tim e for one-way 

com m unication between placeholders and the CLS, in the specific network environm ent (i.e., LAN 

or WAN). For exam ple, when a placeholder contacts the CLS to ask for work, there is a finite am ount 

o f  tim e for that request to traverse the network and reach the CLS. Placeholder latency is a measure 

o f  this com m unication time.

We perform  the division in the second term o f the equation to scale down the im pact o f  queue 

tim e on final priority. Through preliminary evaluations o f  jo b  priorities, we found that using queue 

tim es directly m ade the value o f this second term too large against the metric o f  relative cost. C onse­

quently, the goal o f co-locating jobs and their data would often be eclipsed by the goal o f m inimizing 

the queue tim es o f  jobs. Norm alizing queue tim es by placeholder latency brings the values o f  this 

jo b  property in line with those o f relative cost.

We chose placeholder latency as a scaling factor because we wanted to reduce queue times in
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a m anner that was conscious o f the underlying network. For exam ple, in WAN environm ents, the 

dispatching o f  jobs proceeds more slowly than in LANs due to the increased com m unication times 

between the placeholders and the CLS . This slower execution o f the workflow reflects the properties 

o f  the m etacom puting environm ent and not the actions o f the scheduler. The larger placeholder 

latency value in WAN environm ents then scales well with the inevitably longer queue times o f jobs.

We now explain our metric o f relative cost, defined as:

D a t a . A f f i n i t y - R . C  (x ,  c u r r e n tP H , fu tu reP H s)  =

M in  ( c o s t .o f  (x ,  P H , ) ) —c o s t .o f  {x^ cu rren tP H )

V P  H i , where P H t e  fu tu reP H s  =  {P H ,  , P H S>. . .  P H n } (6.3)

Equation 6.3 defines the relative cost o f  data affinity for a job  x  as the m inim um  cost o f  assigning 

x  to one o f  the first n  upcom ing placeholders {PH, f o r  1 to n), m inus the cost o f assigning x  to 

the current placeholder (currentPH). In practice, both these quantities are expressed in simulation 

tim e units. Conceptually, cost can be thought o f  as the perform ance penalty incurred by having a 

particular placeholder run the given candidate job. A jo b ’s relative cost tells us whether it is better 

to run that jo b  now or later.

The cost o f  running jo b  x  on the current placeholder is calculated in a sim ilar m anner to that 

o f  running x  on an upcom ing placeholder. As Equation 6.4 will show, m easuring the cost on the 

current p laceholder is a special case o f  m easuring the cost on an upcom ing placeholder.

W hen the policy predicts a higher cost o f  binding jo b  x  to an upcom ing placeholder as opposed 

to the current placeholder, the value o f  the first term in Equation 6.3 will be greater than the value of 

the second term. Relative cost will then be positive, indicating that it is advantageous to assign job  

x  to the current placeholder rather than an upcom ing placeholder. W hen the policy predicts a lower 

cost for assigning jo b  x  to an upcom ing placeholder, the first term will be smaller. Relative cost will 

then be negative, indicating that it is desirable to delay the execution o f  x.

We take the minimum value in the set o f jo b  assignm ent costs for the respective upcom ing 

placeholders so that in our priority calculations we always consider the m ost prom ising upcom ing 

placeholder. Thus, even if there is only one upcom ing placeholder that can guarantee data affinity for 

jo b  x ,  we com pare the perform ance penalty o f assigning x  to the current placeholder with that o f as­

signing x  to the best-fitting upcom ing placeholder. W henever assigning x  to the current placeholder 

entails data m ovem ent, we will delay the execution o f  x  when there is any opportunity to place x  on 

a host that stores its data in the near future. This is assum ing that the future jo b  assignm ent occurs 

soon enough that the delay in execution does not overwhelm  the data m ovem ent savings.

Follow ing is the equation for calculating the cost o f  assigning jo b  x  to either the current or an 

upcom ing placeholder:

c o s t .o f ( x ,  PH i)  — arriva l- t irne(PH i)  +  penalty  * data . trans fe r  (x ,  P i p )  +  ru n t im e  (x)

(6.4)
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T he arrival J im e(PH i)  term  in Equation 6.4 is an estim ate o f  when placeholder PHj will next ask 

for work. For calculating the cost o f  running a jo b  x  on the current placeholder, c u r r e n t P H  is used 

instead o f  P H ;, and arrival tim e is zero, since the current placeholder can run a jo b  immediately.

Arrival tim es in Equation 6.4 are m easured in the sim ulator’s virtual tim e units and are always 

relative to the present. We make our predictions on future placeholder arrivals based on inform ation 

o f  past arrivals. We keep track of the average tim e between successive arrivals for each placeholder, 

and use this metric to estim ate a given placeholder’s next arrival tim e (arrivalJime(PHi)).  Although 

using average arrival tim es works in our sim ulation study, in general, com puting future arrival times 

is quite difficult. For instance, the variation in jo b  runtimes over different platform s must be consid­

ered in a heterogeneous setting.

By exam ining the next arrival tim es for all placeholders, we can construct a list o f upcom ing 

placeholders and then sort that list in the order in which those placeholders will ask for work. In­

specting the first n  entries o f  this list then tells us the next n  placeholders that will request work. 

In practice, we have found that considering the next 32 placeholder arrivals (using n  = 32 in E qua­

tion 6.3) produces a high degree o f data affinity without requiring the sim ulation program  to exam ine 

an unnecessarily long next arrivals list.

T he dataJransfer  function, the second term in Equation 6.4, m easures the virtual tim e required 

to  transfer jo b  x ’s input data to the host on which placeholder P H ; runs. Section 6.4 describes the 

m odel param eters, pertaining to the network environm ent, that are used to calculate data transfer 

tim e. As m entioned in Section 6.2, our sim ulator tracks which BLA ST jobs run and produce their 

hom ologue files on which hosts. The workflow file read in at the beginning o f  the sim ulation con­

tains the nam es and sizes o f  the hom ologue input files for each Parsing job. U sing the location o f 

hom ologue files and inform ation from  the workflow file, our sim ulator can determ ine how much 

data, if  any, would need to be transferred if jo b  x  was assigned to placeholder PHi.

N ote that we inflate the cost o f data transfer through multiplication by a constant (penalty). This 

way, the final priority o f  a candidate jo b  is m ore dependent on w hether or not that jo b ’s input data 

needs to be shipped across the network. This helps our scheduling policy better attain its primary 

objective o f  co-Iocating jobs with their data. Also, users o f  Trellis can control the degree to which 

data affinity is enforced by adjusting the value o f the penalty  constant. In our sim ulations, we have 

found that using penalty  = 25 is sufficient to achieve high data affinity levels.

The final term in Equation 6.4 m easures the runtim e o f job  x.  We assum e job  runtim es are 

constant across all hosts. In a real setting, the runtim e for a given jo b  may vary greatly, depending 

on the placeholder to which that jo b  is bound -  given that m etacom puting aggregates heteroge­

neous resources. However, the assum ption o f runtim e uniform ity is acceptable in the context o f  our 

m otivating application, PA, whose workflow is often distributed over clusters o f  hosts with similar 

hardw are and softw are capabilities. For instance, we have observed no significant variation in the 

runtim es o f  either the B LA ST or Parsing jobs on different hosts in the LA N  environm ent used in the
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M odel P a ra m e te r L ow er U p p er
Sequence File Size (B) 250 850

BLAST R untim e (s) 2.0 8.0
H om ologue File Size (B) 5,000 85,000

Parsing R untim e (s) 0.5 0.7

Table 6.1: Approxim ation o f  PA Workflow Param eter Ranges Based on M easurem ent

PA-Trellis experim ents o f  the previous chapter.

There is obviously som e room for variation in the priority calculation schem e presented above. 

In Equations 6.2 and 6.3, for instance, one could add numeric coefficients to the various term s to 

alter the weight placed on the different jo b  characteristics. Likely, there are several coefficient values 

that could lead to data affinity being well-balanced against lim iting m axim um  queue time. However, 

the values as shown in the equations above m ake the priority calculation sim ple, and are known to 

work in practice.

6.4 Model Parameters

Before we could carry out any experim ents contrasting the perform ance o f  com peting scheduling 

algorithm s in sim ulated LA N  and WAN settings, we first needed to determ ine appropriate constant 

values for all model param eters.

To properly characterize real PA workflows, we m easured the input sizes and runtim es o f  the 

BLAST and Parsing jobs from  a handful o f  the proteins from the sam e proteom e used in Chapter 5. 

Table 6.1 lists the ranges for the four workflow param eters o f  interest. We base the values o f  our 

these Smurph model param eters on the characteristics o f five different proteins whose sequence 

specification files are varied in size, and cover (roughly) the overall range o f  sequence file sizes that 

we have observed in proteom es analyzed by PA.

Recall that the analysis o f  a single protein entails executing a short pipeline o f  jobs, which was 

shown in F igure 2.1. W hen generating synthetic PA workflows for our sim ulation, we select the 

size o f  the sequence file, which constitutes the initial input to a pipeline, from a uniform  probability 

distribution spanning the range o f  sequence file sizes shown in Table 6.1. Following our observations 

o f  real PA input file sizes and jo b  runtim es, we generate the runtim es o f  the BLA ST and Parsing jobs, 

and the hom ologue file sizes based on the sequence file sizes.

In addition to replicating the PA workflows in our sim ulation, we must also replicate the execu­

tion environm ent o f  those workflows. Table 6.2 shows m easurem ents for the four relevant param e­

ters o f the Trellis placeholder environm ent, for both LAN -  and WAN -  m etacom puters.

The first param eter listed in Table 6.2, CLS Service Invocation Time, is a m easure o f the time 

for interaction between placeholders and the CLS. To m easure this parameter, we launched a single 

placeholder whose script was modified to report the turnaround times for the CLS functions called
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Model Parameter LAN WAN
CLS Service Invocation Tim e (s) 0.66 1.30

Q ueuing D elay (s) 0.35 0.35
SCP Latency (s) 0.58 1.20

SCP Transfer Rate (B/s) 20,000 5,000

Table 6.2: Sm urph Sim ulation Param eters Based on M easurem ent

by placeholders for jo b  retrieval and jo b  com pletion reporting. As the table shows, the time for 

placeholder interaction with the CLS in a WAN setting is roughly double that in a LAN setting.

The second param eter listed, Q ueuing Delay, is a m easure o f the processing tim e o f  a single 

placeholder request by the CLS. An im portant consequence o f  running multiple placeholders is that 

often more than one placeholder contacts the CLS sim ultaneously. All placeholders executing w ork­

flow jobs from the active PA instance share a com m on m etaqueue, and so individual placeholder 

requests must be queued at the CLS as placeholders await their turn for accessing that metaqueue.

To m easure Q ueuing Delay, we launched a “dum m y” placeholder that constantly pulls com m and 

lines out o f  the m etaqueue but does not execute them , thereby continuously interacting with the 

CLS. One placeholder that was m odified to report the turnaround times o f  the two job  m anagem ent 

functions but still executed com m and lines given to it, was also launched. Turnaround tim es for the 

jo b  m anagem ent functions in this case w ere com pared against those in the case with no contention. 

The average difference in these tim e values was taken as a m easure o f the queuing delay. This 

param eter is the sam e in a LA N  or WAN setting, as shown in Table 6.2, since the queuing delay is 

purely at the CLS end, and is independent o f the network type.

The rem aining two param eters o f  SCP Latency and SCP Transfer Rate m easure the tim e re­

quired to transfer an input file between m etacom puter hosts. Secure Copy (SCP), part o f  the SSH 

suite [21], provides file transfers over an encrypted channel. SCP Latency represents the start-up 

cost o f transferring a file over the network using SCP. The per-file latency in a WAN environm ent is 

roughly double that in a LA N  environm ent.

The SCP Transfer Rate represents the average bandwidth attained during the copying o f  a file 

from one m etacom puter host to another. LA N  transfer rates are based the tim e to copy hom o­

logue files between hosts in the Linux cluster we used in our PA-Trellis experim ents. WAN transfer 

rates are representative o f actual file transfer tim es between high-perform ance com puting centres 

(HPCCs) in Edm onton and Calgary, and between HPCCs in Edm onton and New Brunswick. Note 

the four-fold reduction in the data transfer rate going from a LA N  to a WAN environm ent. To esti­

mate this final sim ulation param eter, we exam ined the differences in transfer times o f  the hom ologue 

files as com pared to their size differences, for each o f  the five proteins previously mentioned.

The bandwidth m easures shown in Table 6.2 may seem rather small given the speed o f modern 

LANs and WANs. There are three reasons why we use these numbers: First, they are based on real 

transfer times o f  hom ologue files taken from  an actual PA workflow. Second, SCP has an encryption
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overhead that reduces sustainable bandwidth. Third, the maximum size o f any hom ologue File is 

only 85,000 B. Given the properties o f  m odern networks, PA or any application is unlikely to achieve 

maximum bandwidth for such small messages.

6.5 Practicality of Data Consciousness in Scheduling

An im portant first step in developing a new scheduling policy that considers data placem ent is to an­

swer the question: Under what circum stances does intentionally placing jobs with their data notably 

improve application perform ance? Clearly, input file sizes are a central factor in the scheduling de­

cisions. W hen the input files are o f  a sufficient size, the scheduler may choose to delay the execution 

o f a job  for the sake o f achieving data affinity, depending on how far into the future the desired host 

will becom e available.

The results presented in this section show:

1. D C scheduling offers a m oderate reduction in m akespan o f almost 15% over FCFS for PA 

workflows based on the original hom ologue file sizes.

2. The makespan reduction achieved by DC scheduling increases to 53% over FCFS as the file 

sizes are scaled up sufficiently.

3. O ur DC algorithm  places the m axim um  possible percentage o f  jobs on hosts that hold their 

input data, regardless o f  file sizes.

We sim ulated the execution o f our synthetic workflow by reproducing the job  placem ent de­

cisions o f  the three scheduling algorithm s o f  FCFS, Shortest Job First (SJF), and DC. The FCFS 

algorithm simply assigns the jo b  at the front o f  the queue to the first available machine. Thus, jobs 

are bound to hosts in the precise order that they enter the Trellis metaqueue. The SJF algorithm 

walks the list o f available jobs, exam ining their expected runtim es, and always chooses the shortest 

job  to run. We discuss the situations in which SJF is desirable, in Section 6.7. As Section 6.3 ex­

plained, our DC algorithm  calculates jo b  priorities based on m ultiple jo b  characteristics (the most 

im portant being location o f  input data) in order to reduce data movement and, hence, application 

response time.

The following three subsections respectively discuss the perform ance im provem ents achieved 

by DC over FCFS and SJF for virtual experim ents using the original file sizes (i.e., those that were 

observed in practice), file sizes inflated by 10, and file sizes inflated by 100.

6.5.1 WAN Results: Original File Sizes

Figure 6.2 shows the makespan o f  our synthetic 1,000-pipeline-instance workflow, further explained 

below, for the three com peting scheduling algorithm s. Values in this graph, and all upcoming 

graphs o f  makespan and data affinity, are the average o f  ten trials with different random number
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seeds, each o f which produces a 1,000-pipeline workflow with unique file sizes and job  runtimes. 

We use hom ogeneous batching o f 16 jobs within Trellis D river since this is known to be an effective 

batching factor (i.e., one which provides good speed-up ratios) in real PA workflows, as seen in 

Chapter 5.

The num ber o f  placeholders is plotted along the horizontal axis in F igure 6.2. M akespan m ea­

surem ents are plotted along the vertical axis and are given in Sm urph indivisible tim e units (ITUs), 

which are the sim ulation’s virtual tim e units. Here, makespan refers to the elapsed virtual time from 

when the first BLAST jo b  enters the m etaqueue to when the final Parsing job , and hence the entire 

workflow, com pletes. We specified all model param eters and jo b  inform ation in such a way that a 

single Sm urph ITU corresponds to 0.01 seconds in a real setting. So a m akespan of 3.00 x 105 ITUs 

conceptually represents a real makespan o f  3.00 x 103 seconds.

Figure 6.2 shows that the DC algorithm  provides a m inor perform ance benefit against FCFS 

and SJF. The differences in the m agnitude o f  m akespans between the FCFS, SJF, and DC cases are 

m ore pronounced for sm aller num bers o f placeholders, although DC continues to outperform  the 

other two algorithm s, even when 32 placeholders are used. The greatest proportionate reduction in 

m akespan occurs with 8 placeholders, when the DC makespan o f  9 .00 x  104 ITUs is 13.5% and 

14.3% less than the respective makespans o f 1.04 x 105 ITUs for FCFS and 1.05 x  105 ITUs for 

SJF.

As the preceding num bers suggest, FCFS and SJF m akespans are roughly the same, while the 

DC makespans are som ewhat less, at all p laceholder counts except 32. A t 32 placeholders, the 

m akespans for all three algorithms are within a much narrower range o f  one another, with the DC 

m akespan being only 6.9%  less than that o f  FCFS.

We claim  contention for the CLS as the main reason for D C ’s w eaker perform ance at 32 place­

holders. The greater the num ber o f placeholders, the m ore likely their individual com m unications 

with the com m on CLS are to overlap. Since the CLS can process only one placeholder request 

at a time, m ultiple requests are frequently queued up, jo b  dispatching is slowed, and makespan is 

prolonged. We believe that contention affects the perform ance o f  DC m ore than for the other two 

algorithm s. In Section 6.6, we discuss this phenom enon in detail, and present results showing that if 

the queuing delay is reduced even slightly, DC outperform s FCFS and SJF  by a reasonable margin 

with 32 placeholders.

In Section 5.4.2, our illustrative exam ple o f  load im balance dem onstrated how high placeholder 

counts can lead to an uneven jo b  distribution, which prolongs m akespan. W ith 32 placeholders, for 

exam ple, m inor discrepancies in the num ber o f jobs executed on each host are m ore likely to occur 

than at 4 placeholders. We believe, however, that im perfect load balancing has only a minor impact 

on the 32-placeholder case, and so we do not further investigate load balancing effects.

Figure 6.3 shows the proportion o f jobs for which data affinity was achieved (i.e., jobs that 

were placed with their input data) for the three scheduling algorithm s. The horizontal axis plots the
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num ber o f  placeholders while the vertical axis plots the degree o f  data affinity attained.

We intentionally placed all protein sequence specification files, which are the inputs to the 

BLA ST jobs (Stage 1 in Figure 2.1), on a remote host that was not part o f  the sim ulated m eta­

com puter. Thus, the first jo b  in a pipeline is never local to its data, analogous to an unavoidable cold 

cache miss on the first data access m ade by a program. Given that each pipeline has two stages, and 

that all input files for the first stage m ust be copied from a host that is external to the m etacom puter, 

the m axim um  possible data affinity for our workflow is 0.5, or 50%  o f all jobs.

Figure 6.3 shows that the DC algorithm  achieves the m axim um  50%  data affinity level at all 

p laceholder counts. In practice, we do not consider every jo b  that is ready to run, since walking 

a long list o f  candidate jo b s slows down our sim ulator program . We have found that considering 

up to 128 ready jobs is sufficient to consistently find a jo b  w hose input data is local to the current 

placeholder.

The data affinity m easurem ents in F igure 6.3 confirm that DC m eets its objective o f  co-locating 

jobs and their data for this particular com bination of batching strategy, input file sizes, and network 

type. The figure also shows that FCFS and SJF attain much lower levels o f  data affinity. This is not 

surprising since neither scheduling strategy considers the location o f  input data.

A lthough SJF m ay appear to have higher data affinity levels than FCFS at lower placeholder 

counts, it is im portant to understand that the jo b  assignm ents m ade during the workflow’s execution 

vary greatly betw een different random  seed trials. To em phasize this last point, we calculated the 

standard deviation in the ten data affinity values from the individual random  seed trials whose av­

erages form  the data points on the curves in Figure 6.3. The overlapping o f  the standard deviation 

bars between the values on the FCFS and SJF curves indicates that there is no statistical difference 

between the data affinity levels obtained by these two strategies.

W hile DC outperform s both FCFS and SJF by a wide m argin for data affinity, it is evident from  

the preceding m akespan m easurem ents that there is not a large perform ance gain to be achieved by 

using scheduling that is data conscious, when the virtual workflows use the original hom ologue file 

sizes. This is understandable, given that the maximum size o f  any hom ologue file passed between 

pipeline stages is only 85,000 B, as shown by Table 6.1. A lthough present-day WANs do im pose 

non-negligibie latencies, the hom ologue files in our virtual PA workflow are simply not large enough 

to give DC a strong perform ance edge over its two com petitors.

The total quantity o f  potential data m ovem ent also depends on the size o f  the workflow. For these 

experim ents, we generated a synthetic PA workflow consisting o f  the first two stages (BLAST and 

Parsing) o f 1,000 protein analysis pipelines. Our choice o f  1,000 pipelines is intended to produce a 

workflow that entails non-trivial data m ovem ent, but is still w ithin the scope o f  real PA use cases. In 

practice, PA users have analyzed some proteom es containing only 1 sequence and others containing 

up to 100,000 sequences. Thus, 1,000 proteins entails a m oderate am ount o f  data movement.
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6.5.2 WAN Results: File Sizes Inflated by 10

Following the modest perform ance im provem ents in our first set o f experim ents, we inflated the 

hom ologue file sizes so that the potential am ount o f  data to be transferred becam e large enough to 

affect perform ance significantly.

F igure 6.4 shows m akespans obtained with the three scheduling algorithm s for the sam e PA 

workflow using hom ogeneous batching o f  16 jobs, but with file sizes multiplied by 10. As expected, 

m akespans for DC are lower than those o f  FCFS and SJF at all placeholder counts by a wider margin 

than in the original trials. The greatest proportionate reduction occurs with 8 placeholders, when the 

DC makespan o f  9.07 x 10'1 ITUs is 19.0% less than the FCFS makespan o f 1.12 x 105 ITUs, and 

20.4%  less than the SJF makespan o f  1.14 x 105 ITUs. Thus, DC has a m oderate perform ance gain 

over FCFS or SJF when the file sizes in our workflow are multiplied by 10.

F igure 6.5 shows data affinity levels. DC achieves the maximum level o f 50%  at all placeholder 

counts, far outperform ing FCFS and SJF. As in the previous data affinity graph (Figure 6.3), the 

curve for FCFS appears to be higher than that o f  SJF at lower placeholder counts. However, there is 

once again overlapping between the bars m arking the standard deviations in the m easured values for 

FCFS and SJF, m eaning there is no statistical difference between the data affinity levels obtained by 

these two algorithms.

6.5.3 WAN Results: File Sizes Inflated by 100

Figure 6.6 contrasts makespans o f the com peting scheduling strategies for the sam e PA workflow, 

using the sam e jo b  batching strategy, but with file sizes multiplied by 100. Not surprisingly, there 

is a dram atic reduction in makespan for DC against FCFS or SJF at all placeholder counts. The 

greatest savings occur with 16 placeholders, when the DC m akespan o f 5.05 x 104 ITUs is 52.8%  

and 53.7%  lower than the respective m akespans o f  1.07 x  105 ITUs and 1.09 x 105 ITUs for FCFS 

and SJF. DC, then, has a large perform ance advantage over the other two algorithm s when the file 

sizes are m ultiplied by 100. M akespan values for FCFS and SJF are quite close except when 2 

placeholders are used.

Data affinity levels are shown in F igure 6.7. As before, DC achieves the maxim um  level o f 50% 

at all placeholder counts, with FCFS and SJF attaining much lower data affinity levels. We see the 

sam e wide standard deviation bars on the average data affinity values plotted by the FCFS and SJF 

curves. Note, though, that there is no overlapping o f  bars for the 2-placeholder case, suggesting 

FCFS fares worse than SJF here.

W hile the cause o f  this perform ance discrepancy may be o f general interest in workflow schedul­

ing, we have not yet found a satisfactory reason for it. We do not investigate this phenom enon any 

further, since our data affinity results achieve their main purpose o f  dem onstrating that DC attains 

higher data affinity levels than either FCFS or SJF.
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6.5.4 Summary of Results

The m akespan m easurem ents from the preceding three sets o f  em pirical trials indicate that data- 

conscious scheduling provides a m inor reduction in makespan against FCFS and SJF for synthetic 

PA workflows using file sizes taken from a real setting. We would expect a real PA workflow of 

roughly 1,000 pipelines, then, to benefit only slightly from our new algorithm  when run in a WAN 

environm ent. However, when we m ultiply the file sizes by 10, and especially by 100, we see much 

larger proportionate makespan reductions. As expected, workloads that are m ore data-intensive 

perform  notably better with DC than with FCFS or SJF.

The preceding results dem onstrate that data-conscious scheduling is m ost useful in situations 

when the am ount o f data passed between interdependent workflow jobs, and hence the am ount o f  

tim e spent transferring data, is significant com pared to the overall makespan.

The data affinity m easurem ents from  the preceding trials indicate that the DC algorithm  achieves 

optim al data affinity levels, irrespective o f  file size. Thus, in a WAN environm ent, D C m inim izes the 

num ber o f  jo b  assignm ents that result in data transfer, even when the total data m ovem ent savings 

are small.

6.6 LAN vs. WAN: Differences in Performance

In our first sets o f  experim ents, we sim ulated a WAN because o f the high data m ovem ent overhead 

in such an environm ent. The WAN experim ents, then, form ed a suitable testbed for determ ining 

the circum stances in which data-conscious scheduling is desirable. However, it is com m on for PA 

workflows (and those o f other scientific applications) to be run over LANs. O ne reason for using 

a LA N  is that it offers a controlled environm ent in which application adm inistrators can elim inate 

unwanted contention for com puting resources and network bandwidth.

The results in this section show:

1. Perform ance benefits o f  DC scheduling in a sim ulated LAN follow the sam e trends observed 

in a WAN. As file sizes in the PA workflow are increased, m akespan reductions o f  DC over 

FCFS and SJF increase notably, reaching a respectable 25.0%  when file sizes are inflated by 

100.

2. The DC algorithm places a slightly lower percentage o f jobs with their data in LANs that it 

does in WANs, when the original file sizes are used.
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Figure 6.8 show s the m akespan obtained with the three scheduling strategies at the sam e five 

placeholder counts used in the WAN trials, with hom ogeneous batching o f 16 jobs. We illustrate 

both LAN and WAN m akespans (the latter borrowed from Figure 6.2) to highlight the differences 

in m akespans obtained in the two network environm ents. With 2 placeholders, the FCFS makespan 

is 3.18 x 105 ITUs in a LAN setting, as com pared to 3.78 x 105 ITUs in a WAN setting -  which 

is a reduction o f  15.9%. The SJF m akespan o f  3.15 x 105 ITUs in a LAN is 15.1% less than the 

3.71 x 105 ITUs m akespan in a WAN. Finally, the D C-LAN  makespan o f 3.00 x 105 ITUs is 11.5% 

less than the DC-W AN m akespan o f  3.39 x 105 ITUs.

The m akespan reduction for DC is som ewhat sm aller than that for the two other algorithms 

because the only source o f  makespan savings for DC when run over a LAN versus a WAN is the 

decreased cost o f  placeholder com m unication with the CLS, as listed in the first row o f Table 6.2. 

Since DC m inim izes data m ovem ent in  any netw ork environm ent, the total overhead due to data 

transfer experienced by DC is much less than that experienced by either FCFS or SJF. The makespan 

reduction values above suggest that placeholder com m unication imposes significant overhead.

M igrating from  a WAN to a LA N  environm ent, we continue to see the same trends in both 

m akespan reduction and the relative perform ances o f  the various algorithms at all placeholder counts, 

except for 32. At 32 placeholders, the D C-LA N  makespan o f  2.91 x 104 ITUs is a m ere 6.4%  less 

than the DC-W AN makespan o f  3.11 x  104 ITUs. This DC makespan also is slightly higher than 

the m akespans o f  FCFS and SJF, which are 2.88 x 104 ITUs and 2.74 x 104 ITUs, respectively.

In Section 6.5.1, we claim ed that the main reason for D C ’s drop in perform ance at 32 placehold­

ers was contention for the com m on CLS. We reasoned that a high placeholder count causes individ­

ual placeholder requests to overlap often, resulting in one placeholder being serviced by the CLS, 

while the others idly await their turn. This frequent contention increases the average turnaround 

time for the two placeholder operations o f  retrieving a new com m and line and reporting a jo b ’s 

com pletion, thereby slow ing the workflow execution.

The waiting tim e for queued placeholders depends on the Queuing Delay param eter, the concept 

o f  which was explained in Section 6.4 and for which a value o f  0.35 seconds was given in Table 6.2. 

We ran our sim ulation with a decreased Q ueuing Delay value o f 0.25 seconds to verify whether 

reduced queuing tim es significantly decrease the perform ance penalty imposed by contention. We 

obtained FCFS-LA N  and DC-LAN m akespans o f  2.83 x 104 ITUs and 2.76 x  104 ITUs, respec­

tively, for our synthetic workflow at 32 placeholders. Further reducing the Queuing Delay value to

0.15 seconds w idened the gap between FCFS and DC makespans in a LAN, producing values o f 

2.79 x  104 ITUs and 2.67 x 104 ITUs, respectively. These results indicate that reducing the Q ueu­

ing Delay even m oderately causes the m akespan o f  DC to drop below that o f FCFS, suggesting that 

contention is indeed the main cause o f D C ’s slightly weaker perform ance at 32 placeholders.

Figure 6.9 plots the data affinity levels for the LAN trials using the original file sizes. DC obtains 

data affinity o f  alm ost 50%  at all placeholder counts, far outperform ing FCFS and SJF. The slightly
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suboptim al data affinity levels are not problem atic. The lower cost o f  data m ovem ent in a LAN 

m eans that the scheduler som etim es chooses not to co-locate jobs and their data.

D espite the high data affinity attained by DC, however, the makespan results show that there is 

at best a m inor perform ance im provem ent and, at 32 placeholders, a slight drop-off in perform ance 

when DC is used instead o f  FCFS or SJF.

As we increase the file sizes, D C ’s perform ance benefits gradually increase. Figures 6.10 and 

6.11 provide the makespan and data affinity results from the LAN experim ental trials with file sizes 

inflated by 10. The DC makespans are only slightly less than that o f FCFS and SJF, even though 

DC attains m axim um  data affinity at all p laceholder counts. Figures 6.12 and 6.13 provide the 

results from the LAN trials with file sizes inflated by 100. Here, DC begins to offer a noticeable 

perform ance benefit over FCFS and SJF. The greatest reduction occurs with 8 placeholders, when 

the DC makespan o f  8.02 x  1 0 4 ITU s is 25.0%  less than the FCFS m akespan o f  1.07 x 1 0 5 ITUs.

As expected, increasing the file sizes does not hurt perform ance substantially in a LAN. This 

last observation is evident in the increasing gaps between the makespan values from the two trial 

sets as we scale up the file sizes. W AN m akespans increase significantly while LAN m akespans 

increase moderately. With file sizes inflated by 100, the FCFS-LAN makespan at 2 placeholders is 

3.73 x  10 5 ITU s, a steep 41.1%  less than the FCFS-W AN makespan o f  6.33 x 10 5 ITUs.

W e conclude that although the benefits o f D C scheduling follow the same trends in a sim ulated 

LA N  as in a WAN, the potential data m ovem ent savings are too small to benefit makespan to any 

significant degree, unless the file sizes are inflated by at least 100.

6.7 Advantages of SJF

Thus far, we have em phasized the perform ance benefits o f  DC prim arily over FCFS, which is the 

scheduling m echanism  currently used in Trellis. We include SJF metrics in our makespan and data 

affinity results for three reasons: 1) S JF  is a widely-used jo b  scheduling strategy that is easy to 

im plem ent; 2) SJF, like FCFS, is unaw are o f  input data location and is therefore a suitable second 

baseline strategy to com pare our DC algorithm  against; and 3) SJF minim izes mean response time, 

which is a standard perform ance m easure in scheduling. M ean response time refers to the average 

tim e elapsed from when a jo b  is subm itted to the Trellis system to when that jo b  finishes executing. 

In this section, we show that despite the tendency o f  SJF to minim ize mean response times, DC 

actually produces lower mean response tim es than SJF in WANs for all file sizes, and in LANs when 

the files are inflated by 100.

PA users are concerned prim arily about the end-to-end tim e for training a new classifier or using 

an existing one to classify an entire proteom e, and not individual job  response times. However, some 

scientific applications have workflows that consist o f  a single pipeline o f  jobs. In these cases, the 

mean response tim e determ ines the rate at which the results are produced and made available to the 

user. The SJF strategy would then be a logical scheduling strategy to use.
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H om ogeneous B a tc h in g  o f  16 Jo b s , R a n d o m  Seed =  1

T he benefits o f  SJF are m ost apparent when there is a substantial range in service times. This 

is because the algorithm avoids executing the longest-running jobs, which can tie up all other jobs, 

until the end o f  the w orkflow’s execution. F igure 6.14 plots the distribution o f  runtim es for the Trellis 

jo b s com prising the BLAST phase. T hese results are based on a hom ogeneous batching factor o f 

16, with a random  seed value o f  1. E xam ination o f  the workflow files produced by different seed 

values revealed a sim ilar variation in jo b  runtim es.

In Table 6.1, we saw there was considerable variation in the runtim es o f individual BLAST jobs 

(betw een two and eight seconds). W hen m ultiple BLA ST jobs are bundled into a com mon Trellis 

jo b  with hom ogeneous batching, the d iscrepancies in runtim es evidently becom e magnified.

Figures 6.15 and 6.16 illustrate the m ean response tim e across the BLA ST and Parsing phases 

at our five standard placeholder counts in WAN and LAN settings, respectively. The results in both 

figures indicate that FCFS has the h ighest mean response tim e for any num ber o f placeholders in 

either network type. This is not surprising since FCFS is designed to be fair and not to minimize 

jo b  response times. The WAN results show n in Figure 6.15 indicate that only at 2 placeholders does 

SJF  produce a lower mean response tim e than DC. At higher p laceholder counts, DC outperforms 

SJF. The data movem ent savings realized by a data-conscious scheduling policy, even when using 

the original, relatively small files, evidently pay o ff against the baseline SJF strategy in a WAN 

environm ent.
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The results shown in Figure 6.16 indicate that SJF  outperform s DC in terms o f  mean response 

times in a LA N, albeit by a very narrow m argin at 16 and 32 placeholders. The perform ance gap 

between SJF and DC narrows as m ore placeholders are added because the data affinity achieved by 

chance for SJF linearly decreases with the num ber o f  placeholders. For instance, with 2 placehold­

ers, there is a 1 in 2, or 50% probability, that any given Parsing jo b  will be placed on the host that 

holds its input data. However, with 32 placeholders, there is only a 1 in 32, or roughly 3% proba­

bility, that a Parsing jo b  will be placed with its data. Inspecting the data affinity curves for SJF in 

Figure 6.9 confirm s this assertion.

Despite the inevitable rise in total data m ovem ent as the num ber o f placeholders increases, the 

overall cost o f  data m ovem ent in a LA N  does not becom e so great that DC ever outperform s SJF 

for mean response time, even at 32 placeholders. These results reveal that if  the PA user desires 

short mean response times, SJF is a better choice than DC when PA’s workflow is distributed across 

a LAN.

Even when the file sizes are inflated by 10, m ean response times achieved by the various schedul­

ing algorithm s follow the sam e trends as in the previous trials, in both LA N  and WAN settings. For 

this reason, we do not present the corresponding graphs. W hen the file sizes are inflated by 100, 

however, DC outperform s SJF in either network type.

Figures 6.17 and 6.18, respectively, show the m ean response times in WAN and LA N  settings 

with file sizes inflated by 100. Not surprisingly, FCFS again has the worst perform ance at all p lace­

holder counts in either setting. Figure 6.17 shows that DC mean response times are considerably 

lower than those o f  SJF in a WAN, with the relative perform ance gap between the two algorithm s 

w idening as the placeholder count is scaled up. This is understandable given that the percentage 

o f  jobs placed with their data by chance drops for SJF as placeholders are added, as explained 

above, but DC achieves high levels o f  data affinity at all placeholder counts, as shown by F igure 6.7. 

The greatest gap in perform ance occurs at 32 placeholders, when the DC mean response tim e o f 

8.75 x 10 3 ITUs is 46.0%  lower than the SJF m easure o f  1.62 x 10 4 ITUs.

Figure 6.18 shows that in a LAN, with file sizes inflated by 100, DC outperform s SJF for mean 

response tim e, unlike in the LAN trials with sm aller files. Again we see a w idening in the relative 

gap for SJF and DC values as the placeholder count is increased. Here, the greatest perform ance 

gap occurs at 16 placeholders when the DC mean response tim e o f 1.18 x 10 4 ITUs is 16.9% less 

than the SJF m easure o f  1.42 x 10 4 ITUs. Thus, when the potential data movem ent becom es high 

enough, DC outperform s SJF in mean response tim e, even in LANs where data transfer costs are not 

prohibitively high. From this set o f experim ents, we conclude that for all file sizes in a WAN, and 

for sufficiently large files in a LAN, DC produces som ew hat shorter job  response tim es than SJF.
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6.8 Summary of Results

The PA-Trellis experim ents carried out over an actual LAN, whose results were presented in C hap­

ter 5, left som e unanswered questions. Nam ely, what are the effects o f  running PA-Trellis over 

a WAN, or increasing the file sizes? In this chapter, we conducted a sim ulation study to explore 

these questions and in so doing, determ ined the circum stances in which data-conscious scheduling 

improves PA’s perform ance by a fair m argin.

We explained our new DC policy’s m ethod o f  assigning job  priorities, which essentially m ea­

sures the trade-off between running a candidate job  im m ediately and running that job  later for the 

sake o f data affinity. We found that D C produces som ewhat lower makespans than either FCFS or 

SJF in a WAN, when the original file sizes are used. W hen the hom ologue file sizes are inflated 

by 10 or 100, D C ’s m akespans are considerably lower than those o f the other two scheduling algo­

rithms. In a LA N  setting, makespan values follow  the same trends as in a WAN, except the benefits 

o f DC over FCFS are less pronounced since data m ovem ent overheads are lower in LANs. In either 

network type, we found that DC places all or nearly all the workflow jobs with their data, when 

possible. Lastly, we exam ined m ean response tim es produced by the three algorithm s and found that 

DC edges out SJF at all file sizes in W AN, and for large files in a LAN.
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Chapter 7

Conclusions

Scientific applications that are resource-dem anding can benefit significantly by executing their w ork­

flows, in parallel, over aggregations o f  servers, specifically m etacom puters. O ur application o f 

choice, Proteom e A nalyst (PA), was a representative exam ple o f  a scientific com putation that can 

notably reduce its turnaround time by load balancing its workflow across m etacom puters. The two 

PA use cases we focused on, training and prediction, both entail executing a fixed pipeline o f  jobs for 

every protein sequence in the input proteom e, which may contain tens o f  thousands o f  sequences. 

In either the training or the prediction pipeline, the first two stages o f  BLA ST and Parsing are em ­

barrassingly parallel, m aking them suitable candidates for m etacom puting.

Trellis Driver integrated PA with m etacom puting easily, thereby enabling PA to distribute its 

workflow o f  jobs over a local area network (LAN) cluster o f hosts. The code snapshots from the 

original PA, which ran all BLAST jobs locally, and the parallel PA (PA-Trellis), which used Trellis 

D river to run its BLA ST jobs across m etacom puters, dem onstrated that Trellis D river conveniently 

functions as a drop-in replacem ent for the R u n t i m e . e x e c  ()  m echanism. Only 6 new lines o f 

code were added, and 13 existing lines replaced with 6 new ones to parallelize the BLA ST phase o f 

PA. The bounded buffer architecture ensures that no m atter how many BLA ST jo b s PA starts, the 

resources consum ed by Trellis D river will be restricted.

With the benefit o f  increased throughput that m etacom puting offers com es som e unavoidable 

overheads in scheduling jobs across m ultiple hosts. We developed two distinct batching strategies 

for Trellis Driver that address the separate overheads o f  m q s u b  scheduling and data movement. 

H om ogeneous batching, which groups together jobs o f  the same type, was shown experim entally to 

be much better at speeding up PA’s workflow than heterogeneous batching, which groups together 

jobs o f  different types. Thus, for our 3 ,9 16-sequence test case, m q su b  appears to be a much greater 

source o f  overhead than file transfers between pipeline stages.

Em pirical results from the LAN experim ents revealed significant perform ance variations be­

tween the BLAST and Parsing phases. The BLAST phase attained linear speed-ups with higher 

batching factors at lower placeholder counts, suggesting that hom ogeneous batching is quite ef­

fective at am ortizing m q s u b  overheads. The optim al batching factor varies with the num ber of
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placeholders, which we attribute to load im balance under certain conditions. The Parsing phase 

had low speed-ups at all placeholder counts, regardless o f  the batching factor. The perform ance 

differences between the parallel BLAST and Parsing phases indicate that jo b  granularity greatly 

influences speed-up.

The data flow dependencies between the first and second pipeline stages may necessitate trans­

ferring many files over the network. We developed a sim ulation o f  PA-Trellis and an underlying 

Trellis m etacom puter to investigate the perform ance benefits o f  a data-conscious scheduling policy, 

which aims to minim ize the num ber o f  files transferred. O ur sim ulation reproduced the job  place­

m ent decisions o f  three scheduling strategies, and allowed us to explore the effects o f  factors such 

as network type and file sizes. W hen m odelling a wide area network (WAN) setting, we found that 

our new Data-Conscious (DC) policy significantly reduces m akespan (by roughly 50% ) against the 

existing First Com e First Served (FCFS) m echanism , when the file sizes are inflated by 100. In a 

LAN setting, m akespan reduction is smaller, but still respectable (roughly 25% ), for the same in­

flated file sizes. Thus, in workloads with high data m ovem ent costs, whether due to large file sizes 

or high network latencies, DC scheduling is reasonably beneficial.

In Chapter 1, we stated three main contributions o f  this thesis:

1. The developm ent o f a Java package to enable workflow concurrency within m etacom puters;

2. The im plem entation o f  job  batching strategies to am ortize scheduling overheads; and

3. The developm ent o f a data-conscious scheduling policy that reduces turnaround time.

The design and implem entation overview  o f our new Trellis D river m odule showed how exist­

ing Java program s can easily be ported to m etacom puting by replacing Runtime. exec ()  calls 

with TrellisDriver. exec () calls. Our em pirical evaluation o f  Trellis Driver showed that 

batching multiple jobs together does indeed reduce mqsub overheads, leading to linear speed-up 

o f  em barrassingly parallel application phases. The sim ulation experim ents dem onstrated that our 

DC scheduling policy, which places jobs with their input data, when practical, notably reduces 

m akespan, or turnaround time, when the data movem ent costs are high enough.
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