el Cha™™ & C

nationale

Canadian Theses Service Service des thdses canadiennes

Onaws, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the

ality of the original thesie submitted for microtilming.

very effort has been made to ensure the highest quality of
reproduction possible.

l:‘e are missing, contact the university which granted
t ee.

Some raoes may have indistinct print especially # the
ina

es were typed with a poor typewriter n or
1 un?v?rsity sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-330 (1. 0008) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microti . Nous avons
tout fait pour assurer une qualité supérieure de reproduc

tion.

S'l manque des pages, veuillez communiquer avec
funiversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & raide d'un ruban usé ou si l'université nous a fau
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme es!

sour. ise A la Loi canadienne sur le droit d"auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canada

The University of Alberta

Design and Formal Specification of a Data Model and
Language for a Database System for CAD Applications

by

Narayana Prasad Srirangapatna

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Spring, 1989

.’l National Library Bibliothéque nationale
of Canada du Canada
Canadian Theses Service Service des théses canadiennes

Otiawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form: or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a4 la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous queique forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-52860-5

Canadi

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Narayana Prasad SRIRANGAPATNA

TITLE OF THESIS: Design and Formal Specification of a Data Model and
Language for a Database System for CAD Applications

DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Doctor of Philosophy
YEAR THIS DEGREE GRANTED: 1989

Permission is hereby granted to The University of Alberta Library
to reproduce single copies of this thesis and to lend or sell such copies for
private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis
nor extensive extracts from it may be printed or otherwise reproduced without

the author’s written permission.

Permanent Address:

23,K.R. Vanam
Mysore - 570008
India

Dated - Ap '7%7

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the
Faculty of Graduate Studies and Research, for acceptance, a thesis entitled Design and
Formal Specification of a Data Model and Language for a Database System for
CAD Applications submitted by Narayana Prasad Srirangapatna in partial fulfillment

of the requirements for the degree of Doctor of Philosophy

Date ‘Q‘ . d%‘&-

To my parents

ABSTRACT
The increasing importance of integrated databases in several specialized application

areas like engineering design (CAD), interactive graphics, image processing, geographi-
cal data management, office automation et cetera, has pointed to the limitations of con-
ventional DBMS and the need for more suitable database architectures. In particular, the
special requirements of engineering design databases include: direct modeling of design
objects and their interrelationships at different abstraction levels; classification, aggrega-
tion, generalization and specialization, multiple representation, version and instance
abstractions; incremental and dynamic database schema definition and modification;
complex, user-definable database operations, and semantic integrity and consistency con-
straints requiring the power of general programming languages for their specification and
implementation; concurrent access and interactive design transaction management pro-
tocols; and flexible and high-level user interfaces. These requirements imply the need for
"richer” semantic data models, complex data type systems, and object-oriented design
paradigms. This thesis presents a conceptual-level, semantic data model that captures
directly the notions of entities, entity interrelationships (representation, version and
instance abstractions), and structural abstraction hierarchies (classification, aggregation,
generalization and specialization). The model also provides a set of high-level data
model operations that can be used to create and manipulate design objects. As well, the
structural integrity constraints of entity identity, entity typing, and referential integrity are
directly captured by the data model. More complex semantic integrity constraints
(including value domain, derived value, entity composition and interface, and mutual
consistency constraints) are also provided as explicit, user-specifiable constraints. The
object paradigm provides a natural framework for the integration of structural and
behavioural abstractions of the design database, and leads to the design of an integrated
database language which combines a data type system that provides abstract data types

of entity (design object) and value (structured value), and structured types of aple, set
and sequence (complex objects) with a simple procedural, Pascal-like language. To date,
conventional DBMSs have supported only rudimentary query and data manipulation
languages and very simple structural integrity constraints. The proposed database
language, on the other hand, enables user specification of complex, application-specific
operations 2r1 semantic integrity and consistency constraints at the database schema
level. These operations and coastraints can be triggered by an integrity subsystem thus
providing a means of checking and enforcing the integrity v, «r- . - . n database. These
concepts and features of the design database system are illustrated with examples drawn
from the domain of VLSI circuit design. Formal algebraic (axiomatic) and model-based
(operational) specifications of a structured type system used in defining the semantic data
model and the integrated database language are given. A subsystem that provides the
structured values of sets, sequences, tuples and unions is also implemented. Finally, a
formal denotational semantics specification of the semantic data model and the integrated
database language is given using the VDM specification system. These specifications can
be used as the basis for implementing particular subsystems of an actual design DBMS,
or in rapid prototyping of an experimental version for design analysis, verification and

refinement.

Acknowiedgements

I am deeply grateful 1o my research advisor Professor William W. Armstrong for his
invaluable guidance and constant encouragement throughout the course of my research
study. This work owes a great deal o his persistent cfforts to focus on basic and funda-
mental issues, and his insightful suggestions. I am also indebted to him for ' * financial
support he provided to me during this period.

I am also highly thankful to the members of my examining committee, Professors
Emil Girczyc, Mark Green, Tim Merrett and Tamer Ozsu for their careful reading and
constructive comments which contributed significantly to refining the final version of this
thesis.

I must also acknowiedge the moral encouragement I received from my parents dur-
ing the period of my study in a far away country. I am grateful to them for their unfailing
confidence in me.

Last, but not least, the very helpful and cheerful spirit of all the administrative and
technical support staff in the department made for a conducive environment in which to
work. [am thankful to all of them.

Table of Contents

Chapter Page
Chapter 1: INTRODUCTION ...uucueremssssiusesssssusssmessasissiaemsssssssssssssastssssissssmssmasasmmsisssssnseese 1
1.1, Computer-Aidod DESIGR SYBIEMSccunirenmmmerssusstsessunmnmmsmsnsmmesssasssiisies | sismasassssssencss 1
1.2. CAD Systom ATCRIECUNEcocesnsrsssesisensersssnssssnsnsssnsssmsmsssrsssssssassssssitestusmistasssicscass 2
1.3. Advantages of 8 Design DBUDESEcccivives sesssnessesnssssssnniiinuisastssasasmsesummssossasssses 6
1.4. Contributions Of this TREBEScccvcinsiriosannsssstesessnisrssasstsestsstastssasssnsssasnssssssssssesasssnies 7
Chapier 2: CAD DATABASE SYSTEM ISSUES ...ccociiemenuennnserccssssssssseansasaaassasssssssssacsorsasasese 10
2.1. Special Roquirements of Design DELbaesc....coceciusstresssmsessecaruississuensinsnsenesenses 10
2.2. Limitstions of Conventional Datsbase Sysiems in CAD EAVIORMEALSccoieemuieesnesneneneens 13
2.3. Elements of 8 CAD DBMS ASCRIMECIIIEccivieisserosansnsasnessnssssssssnsarasnsssstsssissssssisas 18
2.3.1. A Conceptual-level, Semantic Data MOdelccocmiseisisnesssuinmensnstsssassnensanusssscncs 20
2.3.2. A Mathematical and Logical Data MOlccccoeiirenimrsstesissssstssssesniinsnsessoseissseenss %
zs.a.mnmmmmlmmmwmmum 26
2.3.4. Application-specific Databese OPErBUONScccoutucussimsurmssssssscstsssssussssssisusensustess 28
2.3.5. Database Inegrity CORSIRIMScoveeoeuessseisissniissiorissisnsssssesstissnsntsnsnasansessnesssasness 29
2.3.6. Concusicnt Access Control and Transaction MANAGEMENEcccoiicercssnieisasaassesionsessenses 32
2.4, SUMMMALYcovvreesensrestsssssssnssssssesssassstssssssnsssssasmassssstsssss ciesteseatimensstasssarsesinsesnsessss 33
Chapter 3: A SURVEY OF CURRENT RESEARCH IN CAD DATABASESccoeviiecarcnsnsorens 35
3.1, IOMTOOMICTION «ooccoeereensreessssressrsesssssasossssssssnssssanesssssessssassssssasssntsssssssnssssssensassssesessssessss 35
3.2. Augmonting Classical DA MOGEESceouuireniieesesensoiusisissssssnninsnensssssssstusnsnssnssassses 35
3.3. SCManUcC DB MOGCISccceeceeessrnsssamssncsssersansssatsssrssssssssansarsssssstsssssssssssassnsassstssaessose 37
3.4. Interfacing Data Models 10 Programming LARGUAEESoccceissecsnsrisnananessssatsscsnnaneane 39
3.5, Integratod Database LANGUAGESccccoruimersraniraniessssssssstssninsmsassnssiasenstststsnsssasansueseas 41
3.6. Object-oricntcd Database Management SYSIEMScccocvsesureiscsssntrssnsntsssassesaonnssssasuesess 43
3.7. Comparative Analysis and SUMIMALYcccocvrsseseisesesnmsesssssstisesssnsentassassassssstisstsssatosasees 4
Chapicr 4: A SEMANTIC DATA MODEL FOR DESIGN DATABASEScocccieernmmieasiassosiccess 48
4. 1. INLTOOUCTIONoneeeomeeesorsesessssssnssnsaesssasssssassontesssssosssssssnsstsssssssasssassaesssssssssssssessonasavuns 43
B.2. ERMILICS ...ovvvvevennnnomessostsossssssnnesassossnssssssssassssrsssssssssssensassassssssesstosssssnsssnssssentossancsaninee 43
4.3 EDILY CHASIESccovirismmimieesenasasarsstossetonssnssmsssssssssssansassostsssssssnsastantanassatonsssestntantens 49
B, AIIIDUIESoueeesviecercorsasssensasssseensssssssstasassessossessssssesssnsssstansastsnatssssssssrsssesssssssssas 50
4.S. CORBITBNIScoroomeriosssosessssstssnseressssssesessessnrssssssssssrssssssesastssessasstastesesstoesessessesssonsase 52
4.5.1. DOMBIN CONSIRINoveevenreerecnesoronriosassssssessarasasresssssssssessssssssssassasasntsssssensossassssesses 52
4.5.2. KCY CONSIRIMMccovcererrnrenressesneninessnsesensssssassessessassenassssstssssssssassnssssaneestocssssssssses 53
4.5.3. Class Mombership CONSITRINEccerereinsiniosssmesssassnssansssesssassstossesssasssnsssasassaasscons 53
4.6. Entity Inmerrelationships revesesesssrarrrerrettatatastsstteseseserestissosssssseres ss
4.6.1. Representation REISIONSAIPccciiiirinininieniinnaissessnssissssssstonsenanssessensantsnssnisensens 56

oo

4.12.2. Derived ARFIDUIOScccccoviiirmmnienisantiiesessnsesssossnnsasssssosssssssssnntonsissasassesssssnsasaass

4.12.3. Complex Semantic Integrity and ConsistenCy CORSUTRINScocouveenuiinnneiiinsiiiionnies
4.13. Partially Defined Design Objects in CAD Databasesccccovivssnnniienisncsniiisnnniiisnenens

................

ooo
--

ooo

5.7. SYSIem ATCRIIOCIINGccoovnceneisencssrnssanasasessansasaassssssssassssnsssssssssssssssssnssasiesssnnesaasans
58 wmmraao-oms A Conceptual Basisccoceeieennnnicnnnnns

5.9. IDL SYtom DEBiRccccoeceriemessnssssnssnssssasesaaesssnesssassaassssscssasssssstessnsassessasiesssnssasansns
5.9.1. Values

..

oo

ooo

..

...

5.10. SUBMRELYccocoeconsesssssssanssiesssrsssesnsenesssessasassssssassssssasssssssestessessessssssenaasssssasasssonasess

£232TEIR=2JIFI3IL22TEE8S

S =2

6.2. DOLBDAIE SCIEMEeeveenreussrisessessrssasesssstsssssssissassssassanssss eatesismassistassissssortsssasnanics 127
6.3. AN ULILY LIDERY <.ccooueeiversssnsansnsussssssasisssnssnsssiststssssssssssssmsstinssssusnsssusssnsussssas cusuesses 137
6.4. DefINing 8 4-Dit ABGETccouerrsersisisinsinenasmessssssssiaststtatissssst i etsimssns st ssses 140
6.5. Design Database PIOCOBBIIGcovunsismsmirnssmmsismsssninissnammssusiatatscsstimsntussstscsestscsess 149
6.5.1. LOGIC SIMULEIONcrivruersersesersessssiissssssimnsmsstsssstssssssstsrmsnsrasssstissssiarsanssaseasssesess 150
6.5.2. Timing Analysis ... e rssssaseasessessnssasnanssosaes sae sesve raes weemsaessesneee conee 138
6.6. SUMIRELYcoecsesrsesssessessonsusesssssssssresssnsases sasstsatssstsssatesasss cosstssestantatentontsssessssoscens 159
Chapter 7: FORMAL SPECIFICATIONScucoioiieumeruesimssnssmsensnisrscassssussnsnsussissnsnasasessaesees 160
7.1, INUOBUCTION «..ecvvvocseraresssasssressssssssssssassnsnsseressssssssssssssssnsasssssssossssstsstasenssssisssessesassenss 160
7.2. Vienna Development MOthOdc.cocssisrssnmsssssnsssssstsssstanisnsansssnsssesssatasssssstanasnentess 162
7.3. VDM SPOCIICOIONScovuiueremossnasstacsstesssssnssmmisssaststasssinisstassstoss st sssismsanassstssssasasases 163
7.3.1. The VDM TYPE SYBIEMoooruiriaseenssestessstsissasssmsnsnssssstssssssssassmassansnisessssssnssasesine 163
7.3.2. A VDM MOGE] ..coverereeerseesssssrsssnsssessasssassansesssssssssasssssetsasssssatsssasastasansossisssssscssase 1M
7.4, AlQCHRIC SPOCIBCAIONSoocuennecsseresnmsonarisssisssststosissssatimsasissassssssstisasassisissiasacnsees 175
7.4.1. Larch Auxiliary Specifications of the IDL Structsred TYPOSc...oceeeeenenenasasecssnsacasacees 175
7.5. SVIM: An Implementation of the Values and Operators of the IDL Structured Types 180
7.6. DEnOHONE] SEMBMICEoveecrerricsesserssenessrarsssssssssssssssasasssasssarssssssssasasssastassssassssessssss 14
7.7. A Denotational Semantics fO IDLcccovenvereninceriiisssastanarssanissssssssnssissessssaaissssossenes 187
7.7.1. ADSITRCE SYTRBXcccosveurernirersmonasssstsssssssssansssasassonss: ‘soasssssssssssnanssstsssssisssstoncescantans 187
7.7.2. SEmMANUC DOMBIScovecrreeesassncrssresessaissnsaessssassssssssssrssssanesssssstesssrassassssinassssasssess 193
7.7.3. System SUMEovoeerraiicnnisiosennes - ceessresccsenneressssrsersatasssssanas 194
7.7.4. Semantic Well-formedness and Mcaning Functions sessresesasiesananerenrusnesssessensssssssens 196
7.8, SUBMIALY ...cceovereesesssomescsessessnsessastsssssssstssssssssssnsssassnsatonstsstusassntsnsanassssssssnsucssssssnsase 204
Chapter 8: CONCLUSIONuoeiiiieisisisisnstsnsnsssesniessssssssssosssassissssasatanassssssnestasesinsesssonsases 205
8.1. Summary cveesesseseenasesensesessnesetranstittessttetatasesseesasesteesaeitastesssstantaseransisses 205
8.2. FUBIE REIEATAoveeeierrrerecessnesescssssssessssssessssssssssnassssssssssssssssnassssastassasasessssasnsnasatsss 206
8.2.1. DBMS/Design Tool INEITACEcccoeeieisiesnmmenssisatsmnstasinssssascsstssnasintasuissssssstassssens 206
8.2.2. DAtabase SYSlem SEIVICEScovestrssesnimernssssnssennsssnssssestntostssnsstasuiesesiestastsstess 207
8.2.3. Oer DB MOGELScovercnriccccsmssrsssissssesssssessntassosssssssassssssaseasaresssessssssssssassssnns 209
RETETEINOES <....vvveeenneensosssessssssassessessossssssssssiesssrsssesssstnnsasssssssssssssssssasastsassatsssssssseiscsssssantes 212

List of Tables

Table Page
3.1 CAD Detsbass Sysiem Features: Comparative ARBIYSIScccceuineeaetniicasnansenncnniniesinnne 47
4.1 3-VAMIOE LOBIC ..ccocoociianncnicsnnnsucssncssnssanessassanssnasassssnsssesnassnsesansssssuasssssnsssnsessssstsssnsssess 2
42 Partial Databass SCROMEcoovcvccrrnnennrrsssesssssssrsnssnsatsssesssssassasssansssssssssnnanesasessssssasse n
4.3 Partial Databagse SCREMIEccccconnnieienrnsaacrssssrnssosssastsssssssassssssasanassssssrane: esasnassossase 7
44 Parthal Database SCROMAc.oviniieiniennicinissssanissssssssnssossssnsstsssessasasssssssssssssansssscsanane ™
4.5 Partial Databaer SCREMISccciviiiiiiinnnnninsmiisnssiossssesessssssensessesisesersssassossssssessssesessenses 8l
S.1 IDL Oporstor Precedoncs TADIEcccccierecincisnasansessnesonsaesstssnisnsasassassstasassssssnsssssosens 118

List of Figures

Figure
1.1 CAD System Architecture: File-based Sysiem

1.2 CAD System Architecture: Database-based Sysiem
2.1 A Partial Composition Hierarchy of a VLSI Chip

2.2 A Layered Architecwre for a CAD DBMS

ooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooo

2.3 Correspondence between Data Models and Data Types
4.1 Entity Clas* Composition (Aggregation) Hierarchy

42 Entity Class Generalization/Specialization Hierarchy

4.3 Cross Relationship Constraint

4.4 [s-a Hierarchy of Classes .

oo

................

4.5 Is-a Hierarchy of Classescooeccvsccrnnnccicnsesess

oo

5.1 Varisbles and Values in IDLccciiieiicecccsincenaiscesacsanes

ooo

5.2 Varisbles and Values in IDL: The State afier specified ASSigNMENEScocoeeeenseneennietaniacanneess

6.1 Has-comp and Is-a Class Interrelationship Hierarchies

6.2 4-bit Adder: VLSI Circuit Schematic

6.3 Full Adder: VLSI Circuit Schematic

6.4 Half Adder: VLSI Circuit Schematic

6.5 4-bit Adder: Has-comp and Is-a Class Interrelationship Hierarchycoovceeeccniiscsnicnsniencscnnns

6.6 Logic Simulation: Data Structures a-" Algorithms

6.7 Timing Analysis: Data Structures and Asgorithms

oo

Chapter 1
INTRODUCTION

1.1. Computer-Aided Design Systems

Engineering design is a complex process, difficult to describe formally. Design
approaches an¢ methodologies vary greatly depending on the application domain
(mechanical engineering, VLSI, architectural design, chemical process engineering etc.),
the specific design problem and the individual designer involved [Hal84,Seq83].
Broadly, however, engineering design can be described as a process that begins with a set
of (possibly vague and incomplete) requirement specifications, involves a series of suc-
cessive transformations (iterative improvements) of desired design parameters, and
finally results in a set of specifications detailed enough for manufacturing or building the
desired product, apparatus or structure. Typically, the design problem is very complex
and has to be recursively "decomposed” into smaller and simpler problems each of which
is solved separately, and the individual solutions are finally combined. Computer-Aided
Design (CAD) is a design process in which a variety of computer-based tools and tech-
niques are employed to aid in the design process. The increasing complexity, sophistica-
tion and scope of CAD applications has highlighted the need for and the importance of an
integrated design database to store and manipulate large amounts of design data. This
has also motivated the development of integrated design environments [AGS84, KSS83],
analogous to the concept of programming environments for software engineering. The
design environment provides a set of software tools, languages and services for interac-
tive design activities. These include database management systems (DBMS), friendly
user interfaces, messaging and communication facilities, and a host of software engineer-
ing tools like editors, compilers, interpreters, query and command languages etc. The
design environment also provides an integrated interface which allows data definition,

manipulation, querying, computation and communication to be done without having to
switch between different "modes” at the user’s level; as well, it provides a modular
software architecture which allows casy and incremental additions and modifications of
the design syste.a components. Such an interactive environment enables the design
activity to be carried out iteratively at several abstraction levels ranging frc m functional
specification at the top level to detailed physical specifications at the bottom level. Exam-
ples of such integrated design environments include Bell Labs’ Designer Workbench
[079] and vdd (VLSI design database system) [Chu83), HP’s CAEE (Computer Aided
Electrical Engineering) system [LeO83), Camegic Mellon University’s SPICE (Scientific
Personal Integrated Computing Environment) [Bar84], and NASA’s IPAD (Integrated
Programs for Aerospace-Vehicle Design) [Joh80].

1.2. CAD System Architecture

Traditional file-based systems are based on a sequential design flow paradigm in
which each design tool reads design data from a design file (which may have been pro-
duced by another design tool earlier in the design process), processes the data, and writes
another design file (to be processed by other design tools in the next stage of the design
process) (Figure (1.1)). Such systems are characterized by a multiplicity of data formats,
and a flow of design data through a sequence of design steps. In a VLSI circuit design
system, for instance, the design tools consist of graphic editors, design rule checkers,
PLA generators, circuit extractors, electrical simulators, and layout plosters. The design
file encoding formats may be CIF ([MeC80]) for layout, CAESAR ([Ost81)) for circuit
schematic, and ISP ([BeN71]) for functional specifications. Architecturally, such sys-
tems may be organized around the facilities provided by sophisticated operating and file
systems (e.g. SCALD [McW78), Designer's Workbench (DWB) [{O779], Berkeley CAD
Project [New81] etc.) or a customized data manager that provides a uniform interface for

access to all data (e.g. University of California, Berkeley's SQUID [Kel84), HAWK
(Kel84), IBM’s Engincering Design System [San82] etc.). The drawbacks of such file-
based systems are: (1) it is difficult to maintain consistency of the design data in different
files and in different formats when these can be modified independenty; (2) it is very
difficult, if not impossible, to propagate changes backward along the design sequence;
and (2) the system is batch-oriented, and incremental and interactive processing is not
feasible.

A database-centred CAD system architecture (Figure (1.2)), on the other hand,
overcomes some of these drawbacks by means of a Design Database Management Sys-
tem (D-DBMS) which maintains all design data in a (logically) centralized database and
provides concurrent access control, transaction management, stable storage and failure
recovery services. A Design System Interface (DSI) layered on top of the Design DBMS
can then provide access protocols, specialized subviews of the design data required by
different design tools or interactive users, and feedback in case of design errors or incon-

sistencies. The advantages of such an architecture are described in the next section.

DT-1

DT: Design Tool
DF: Design File

DT-2

-— em e o=y

Figure 1.1 CAD System Architecture: File-based System

DBMS

DT: Design Tool
DDB: Design Database
DBMS: Database Management System

Figure 1.2 CAD System Architecture: Database-based System

1.3. Advantages of a Design Database

The principal advantages of using a centralized design database in a CAD system
are:
« Automation of data translation between different formats, views and representations
required by different design tools
CAD applications have evolved into systems consisting of a number of design tools each
of which reads design data stored in a simple data file in a fixed format, processes the
data in a batch mode, and generates output data in a fixed format, again stored in a simple
data file. At cach step of this multistage, batch-oriented design process, data translators
and formatters are needed to transform and format data produced by one design tool into
a form that is required by the next design tool in the design sequence. This transforma-
tion and formatting process can be more effectively carried out if all the design data is
organized in a design database managed by a D-DBMS.

« Centralization of code required to build and maintain efficient data storage, update and
access structures

This was one of the major benefits that motivated the development of DBMSs for large
scale data processing applications where a large number of application programs operate
on a common data base. This feature also provides physical data independence: data
storage and access structures can now be changed without affecting the logical view of
data encoded in the application programs.

o Easier management of semantic integrity and mutual consistency among multiple
representations of design data

With the logical centralization of all design data under the control of a D-DBMS, it
becomes possible to maintain consistency and correctness by specifying and enforcing
database integrity constraints. This aspect is particularly crucial in the CAD environment

which is characterized by complex semantic integrity and consistency requirements.

« Elimination of duplication and redundancy; data sharability; logical data indepen-
dence

Further, with the centralization of design data, duplication and redundancy of data is
reduced and data sharability is increased greatly. Also, the D-DBMS provides, by means
of a schema (internal) and view (external) definition facilities, logical data independence:
each design tool can (within limits) define its own "logical view" of the same underlying
database.

» Modular system architecture

The database-centred architecture also provides modularity, since communication
between independently evolving design tools can be more easily established through the
design database. Also, new design tools can be added, and existing ones modified without
having a major impact on the rest of the system.

1.4. Contributions of this Thesis

The contributions of this thesis are as follows:

Chapter 2

(1) Characterizing design databases in terms of their special requirements which make
them different from the conventional databases for business data processing.

(2) Showing how the conventional database systems do not meet these special require-
ments with respect to modeling expressiveness, complex operations, complex
semantic integrity and consistency constraints, concurrent access control and tran-
saction management protocols, and system interfaces.

(3) Defining an architectural framework for building a D-DBMS. The elements of this
framework are (a) a conceptual-level, semantic data model; (b) an internal-level

logical data model; (c) an integrated datatase language; (d) concurrent access con-
trol and design transaction management protocols; and (e) complex operations and
semantic integrity and consistency constraints. Only brief overviews of these ele-
ments are sketched here. Items (a) and (c) are discussed in more detail in Chapters 4
and S.

Chapter 3

(4) A survey of current literature on database systems for non-traditional applications
with particular reference to systems, models, techniques of specific relevance to
design databases in a CAD environment.

Chapter 4

(5) Dcvelopment and specification of a conceptual-level, semantic data model that cap-
tures the abstractions required in design databases and serves as the basis for an
implementation of a D-DBMS for CAD applications.

Chapter 5

(6) Design and specification of an integrated database language that addresses the
issues of data abstraction, polymorphism, data persistence ctc. in the design data-
base environment. The database language system provides an implementation of the
conceptual-level, semantic data model.

Chapter 6

(7) Developing a methodology for design database specification and processing of a
VLSI circuit design.

(8) Ilustrating the methodology by application to the specification of a 4-bit adder cir-
cuit and its design processing tasks of logic simulation and timing analysis.

Chapter 7

(9) Formal VDM (denotational) and Larch (algebraic) specifications of a type system
that provides structured types and values. This type system serves as a building
block in (a) the design of the semantic data model and the integrated database
language; and (b) in their formal specification.

(10) A denotational semantics specification for the semantic data model and the
integrated database language.

(11) The SVIM subsystem that implements the structured values specified in (7). This
can be used as a basis for (a) a type system for the catabase luiguage, and (b) a
(VDM) denotational semantics specification interpreter which then defines an opera-
tional specification of the semantics as well as providing a rapid compiler prototyp-
ing or generating tool.

Chapter 2
CAD DATABASE SYSTEM ISSUES

2.1. Special Requirements of Design Databases

There are several unique and special requirements of a design database that are not
met by conventional database systems. These requirements include:
* Hierarchically composed entities and complex objects
A CAD system manipulates hierarchically composed design entities with several
different representations at different abstraction levels. For example, in a VLSI circuit
design system, a Chip entity is composed of Bus, ALU, Register Section, and Control
Section entities. The Bus entity may, in turn, be composed of Adder, Zero Control, Shift
Register, Shift Control, and XOR Control, entities. The Adder may consist of a set of
Gate entities and so on. A partial composition hierarchy of such a VLSI design database
is shown in Figure (2.1). The design object composition hierarchy can, in general, be
defined recursively: an entity belonging to a specified entity class can contain other enti-
ties, including entities in the same class, as components; however, an entity cannot con-
tain itself as a component. Thus a Cell entity can contain other Cell entities as com-
ponents but not itself as a component. Hence, the VLSI circuit cell composition hierarchy
is an acyclic directed graph with nodes representing entities and edges representing the
Has-component relationship. Complex objects are structured collections of entities or
basic data type values which are to be manipulated as "atomic” objects. In the VLSI
design database for example, it is necessary to manipulate a set of Gare entities or a
sequence of Point entities as atomic objects.
* Multiple representations for entities
Design databases are also characterized by multiple representations for entities

10

11

CHIP
7
N
BUS ALU REGISTER CONTROL
SECTION SECTION
[| |
ZERO SHIFT XOR
ADDER CONTROL controL| | conTrOL
GATES) Cartesian
[l j Aggregation
? Set Aggregation

Figure 2.1 A Partial Composition Hierarchy of a VLSI Chip

corresponding to different abstraction levels at which these entities can be viewed. For
example, a VLSI chip may be represented as a layout geomerry, a transisior network, a
logic circuit or a functional block schematic. The D-DBMS should set up these multiple
representations and track their mutual consistency through updates and changes to the
database made by the designer.

o Multiple Entity Interrelationships

12

Design databases are also characterized by multiple, "typed” entity intemrelationships,
each with its own application-specific, user-defined semantics. Common entity interrela-
tionships include Version-of and Instance-of relationships between entities. The Version-
of relationship relates multiple versions which are different implementations with the
same functionality or interface, or different implementations obtained by updating
specified property values. For example, there may be several versions of an ALU entity
with the same functionality but based on different device technologies. The /nstance-of
relationship relates multiple instantiations of a standard or library part. Each instantiation
(or instance) has its own properties (corresponding to the instantiation parameters) in
addition to thosc of the standard or library part. For example, a standard cell can be
instantiated with appropriate translation, rotation and scaling coordinate transformations,
and used as a component entity in defining a larger cell or an entire chip. The associated
relationship semantics may take the form of operations that can be applied to the relation-
ship instances, integrity and consistency constraints on entities participating in the rela-
tionship, their association cardinalities, and/or protocols (that trigger constraint-checking
or semantics-preserving operations when specific relationship instances are created or

deleted from the database).

» Complex Semantic Integrity and Consistency Constraints

Design databases are also characterized by complex semantic integrity and consistency
constraints on design entities and their interrelationships. These constraints may require
the full power of partial recursive functions for their specification. This complexity arises
from the complex structure of entity composition hierarchies, the need for complex
objects, the multiple representations at different abstraction le +els, and the variety of
entity interrelationships. For example, in the VLSI circuit layout database there could be
a semantic integrity constraint that boxes of a cell located on the same layer do not over-

13

lap. If the cell entities are recursively composed from other cell instances, then a recur-
sive function is required to specify and check the above constraint. This is one example
of the class of the 30 called "transitive closure” computation problems [Cle81).

« Long-duration interactive design transactions

The design process is, by nature, iterative, incremental and interactive. Design transac-
tions can, therefore, last for long time periods. Consequently, conventional database
notions of concurrent access control, transaction correctness and atomicity have to be
redefined if we are not to lock out large parts of the design database, or make it
effectively a single-designer sysiem. There is thus a need for new protocols for con-
currency control and transaction management.

There are other important requirements for design databases including incremental
schema definition and modification, fast response, flexible interfaces and modular system
architectures that we have not discussed in detail here, but which are important for a
practical design database. All of these requirements make design databases different
from conventional databases used in business data processing applications.

2.2. Limitations of Conventional Database Systems in CAD Environments

In this section, we consider the limitations of conventional database systems based
on the classical data models whick have proved successful in business data processing
applications. Examples of such systems include INGRES [Sto74], DB2/SQL [Cha76),
RDB etc. The fundamental limitations of such systems in a CAD application environ-

ment are:

* Modeling Expressivenes

All the general-purpose database systems available to date are based on one of the three
classical data models: hierarchical, network and relational. There are two aspects of

14

modeling expressiveness that limit the applicability and ease of use of these conventional
DBMSs in CAD applications. These are:

(1) Entity: The classical data models have no notion of an entity as a uniquely identifiable
object in the application domain. Entities are represented as records (network), segments
(hierarchical) or tuples (relational), and ensity idensity is mapped onto physical or logical
addresses, or "key" attribute values. This leads to a proliferation of explicit integrity con-
straints; for example, the key uniqueness, subset or foreign key constraints in the rela-
tional model. Also, loss of entity identity makes it impossible to define operations which
take entities or complex objects as arguments, and return them as results.

(2) Abstraction Mechanisms: The classical data models are "representation-oriented” and
do not provide any abstraction mechanisms like classification, aggregation, generaliza-
tion and specialization (formally defined in Section 2.3.1). These abstraction mechanisms
are particularly useful in the design environment to deal with large, complex structures
and relationships by abstracting essential properties. For example, by grouping together a
set of entities which share common properties into an entity class (classification) a user
can define class-specific (or type-specific) operations on these entities (entity typing).
Aggregation abstraction is essential for dealing with complex objects; and a
superclass/subclass entity class interrelationship (generalization/specialization) provides
a means of viewing entities at different abstraction levels. For example, the classical rela-
tional model is "flat” in that its primitives (tuples and relations) cannot be nested to
define hierarchically composed entities or grouped together to define complex objects.
The connections among the components of a hierarchically structured entity or a complex
object have to be defined in terms of specified property (attribute) values. This makes
access and manipulation of complex objects very difficult, contrived and unnatural by
requiring the user to specify explicitly the connections defining the hierarchically struc-

15

tured entity or the complex object. None of these abstraction mechanisms is provided by
the classical data models. Also, the relational model eliminates the distinction between
entities and relationships by implementing both as tuples - semantic relativism - which
makes it impossible for the system to automatically enforce associated semantic con-
straints like referential integrity. For example, semantic relativism makes it impossible
for the DBMS to enforce a semantic constraint like referential integrity (which constrains
all entity-valued references to refer to entities which exist in the database). Thus, if a
tuple is deleted from a relation, the DBMS cannot ensure that no tuple in any of the other
relations contains a reference to the deleted tuple (via an attribute value). This limitation
can, of course, be remedied by means of "foreign key attributes”, "domain subset con-
straints” or "abstract domains" as in Codd’s RM/T [Cod81]. The st m can now ensure
referential integrity by checking that each referencing attribute velue s a valid reference.
o Complex, user-defined, database operations:

The conventional database systems provide only a set of primitive, low-level data mani-
pulation, navigation and retricval operations. Even the "high-level” relational algebra or
relational calculus operations in relational database systems are "structure-oriented” and
“type-independent.” Furthermore, most high-level query languages (SQL [Cha76]) do not
support recursive queries or general-purpose computation (Turing computability). Any
sophisticated data manipulation or computation in such systems requires an embedding
of a data access sublanguage in a general-purpose host programming language language
(EQUEL ([Sto74). This has serious problems of (i) "impedance mismatch” between the
abstractions supported by the database system and those supported by the host program-
ming language; (ii) lack of data persistence; (iii) lack of data polymorphism etc. We shall
discuss these issues in greater detail in Chapter 5. It is, therefore, importan: that the
design database system provide an integrated database language through which users can

16

define sophisticated, application-specific operations on data, and derived (or computed)
properties. For example, an operation Scale can be defined to geometrically scale a cell
entity stored in a VLSI circuit design database.

 Complex Semantic Integrity and Consistency Constraints

The design database is characterized by a number of potentially complex semantic
integrity and consistency constraints arising from the complex composition structure of
entities, their interrelationships and multiple representations at different abstraction lev-
cls. These may be value domain constraints ("fan-in" and "fan-out” constraints on a VLSI
circuit gate entity), composition and interface constraints (boxes on the same layer of a
cell layout do not overlap or cell interconnects terminate properly etc.), and mutual con-
sistency constraints (logic, circuit, transistor network and geometric layout representa-
tions of a chip are consistent). These explicit, user-defined constraints may be specified
as assertions of first-order logic, or as partial recursive functions. For example, the com-
position constraint that for any cell layout boxes on the same layer do not overlap is
specified by a recursive procedure that, given a cell, descends a recursively-defined cell
hierarchy to check the constraint. Again, conventional database systems do not handle
such complex semantic integrity constraints. The classical data models provide only sim-
ple "structural integrity” constraints (¢.g. one-to-many association cardinality from owner
to member records in a CODASYL/DBTG set; key uniqueness in a relation etc.). This
implies, as with operations, that complex constraints can only be checked and enforced
by application programs with embedded data access statements in them, thus leading to
complexity at the user and application levels, and consequent redundancies and incon-
sistencies.

o Concurrent Access Control and Design Transaction Management

Here again, the conventional database systems which rely on classical concurrent access

17

control and transaction management protocols are inadequate. Any concurrent access
control scheme for design databases has to deal with the following issues:

(1) What are the concurrent access and update semantics with respect to complex
objects and entity composition hierarchies? This issue interacts strongly with how
-omplex objects and entity composition hierarchies are implemented, and what are
the semantics associated with their creation, deletion and manipulation.

(2) Given the above considerations, what kind of concurrent access protocols are
required? If locking techniques are to be employed, what is the granularity of lock-
ing?

(3) What are the semantics of a design transaction, or equivalently, how are design tran-
sactions defined in terms of the integrity and consistency constraints they are to
preserve? How are long-duration, interactive design transactions to be handled?

Concurrent accesses in conventional database systems involve very simple "read-
modify-write" sequences, each of which affects a small data unit (a record or a tuple) and
takes a very short time (a few seconds). Furthermore, the integrity contraints with respect
to which the transactions are defined are simple enough to be checked “"on-the-fly". The
classical techniques of 2-phase locking or time stamping are defined with respect to these
characteristics and, therefore, are quite inadequate in dealing with fundamentally
different modes of concurrent access and complex constraints associated with transca-
tions in a design system.

« System Interfaces

Design systems consist of several design tools or application programs which operate on

the data stored in the design database. It should be possible to quickly and casily inter-

face these tools to the database system. The system should also provide an interactive
user interface so that the designer can inspect, query and modify the design database

18

interactively. A user interface to the design database can be defined in terms of one or
more of the following: (1) a set of database routines that can be linked to the design tool
at load time; (2) an interprocess communication protocol that can provide access from an
independently executing application process through the D-DBMS process to the design
database; and (3) an integrated database language that provides both interactive and pro-
grammed access to the database. Conventional systems provide only the first type of
interface, or equivalently. one which involves preprocessing embedded database state-
ments into procedure/function calls to the DBMS, which can then be processed as in (1)
above. An integrated database language has to be a general-purpose, procedural language
which has built into it the data model abstractions of the design database so as to make it
not only possible, but also very natural and straightforward, for the user to specify com-

plex database operations and semantic integrity and consistency constraints.

2.3. Elements of a CAD DBMS Architecture

From the discussion of the requirements of design databases and the limitations of
conventional database systems in addressing these requirements, we ar. w to specify a

database system architecture that consists of the following major elements:

(1) A conceptual-level, semantic data model that models directly both the structural
(objects) and behavioural (operations) abstractions of the design application. Thus,
constructs of this data model specify entities, entity composition hierarchies, com-
plex objects, entity classes, representation, version, instance interrelationships
between entities, and so on.

(2) A mathematical and logical data model which provides data structures and opera-
tions suitable for implementing the conceptual-level, semantic data model abstrac-

tions. That is, entities, entity classes, composition hierarchies etc. of the semantic

3

@

@

19

data model (the conceptual-level) can be implemented in terms of the pure relational
model constructs (tuples, relations, foreign keys etc.), or in terms of abstract and
structured types of VDM (set, sequence, map types etc.) (the logical level). Also
required is a logic to formulate assertions about these structures and operations and
to prove theorems about properties of models and implementations.

An integrated, formally defined database language that not only supports the data
model abstractions but also combines a facility for general-purpose computation
with features like data persistence, polymorphism, etc. required in a database
environment. Such a database language can be used to specify both complex,
application-specific operations on data, and complex, semantic integrity and con-
sistency constraints. Further, the database language should provide a single, unified
interface for interactive data definition (commands or statements), and programmed
data access and manipulation (database function or procedure calls).

Operational protocols that regulate concurrent accesses to the database and imple-
ment interactive design transactions by enforcing specified semantic integrity and
consistency constraints. These protocols take the form of complex, user-defined
operations (specified as procedures or functions written in the integrated database
language) that are triggered when the user invokes the data model operations that
manipulate entities or entity interrelationships stored in the database.

A modular system architecture which provides convenient interfaces to other CAD
system components, including design tools and system utilities, and enables casy
addition of other functional modules.

20

2.3.1. A Conceptual-level, Semantic Data Model

In this section we describe the design database abstractions captured by a
conceptual-level, semantic data model. The conceptual view of a design database consists
of design entities which are typically composed of other design entitic : (entity composi-
tion hierarchy); these entities have properties (anributes, relationships, and constraints);
entities have multiple representations and versions existing simultaneously. The design
database semantics are partly defined by a set of integrity constraints including structural
integrity constraints (unique entity identities, and referential integrity), and complex
semantic integrity and consistency constraing; (value domain, value uniqueness, func-
tional dependency, entity composition and equivalency constraints). Design entities may
exist in partially or fully defined "states” in the database. We define the following
abstractions to model and structure this conceptual view of design databases:
« Database Entities: correspond to design objects in the design application domain.

Definition 2.1: Every database entity has a unique system-defined identifier (also

called swrrogate as in Codd’s RM/T [Cod81]).

o Classification: The classification abstraction is defined in terms of entity classes
(HaM81].
Definition 2.2: An entity class intension is the collection of properties (antributes
and constraints) shared by all the entities belonging to the class. An entity class
domain is the set of all entities that posses the properties defined by the correspond-
ing entity class intension. An entity class domain can be empty or non-empty, finite
or infinite, and it can be generated and/or recognized by some procedure. An ensity
class extension is the subset of the entity class domain that is actually stored in the
database at a given time instant. The entity class intension (properties) is statically
defined while the entity class extension is created and modified dynamically by

21

inserting into it newly created entities and deleting from it existing entities.
Aggregation: The aggregation abstraction enables a collection of entities or data
values to be viewed as an "atomic” object with its own entity identifier.

Definition 2.3: The Cartesian, set and sequence aggregation abstractions define,
respectively. tuple (), set (s) and sequence (q) objects as follows:

{ =(a =€, ... Gy =EN) ¥ ay, ..., ay are attributes;

€1, ..., €y are entities or basic data type values */
s={ey...eN) /* e, ..., ey are entities or basic data type values */
q=<eép..ey> /* e, ..., ey are entities or basic data type values */

The components ¢, ..., &y are eatities which could potentially be members of mul-
tiple entity class extensions (and hence belong to multiple classes) or basic data type
values. The "type" information associated with the components is then one of the
clements from the set ("Entity”, "Integer”, "Real”, "Boolean”, "String" }. The type
"Entity" is specified by listing an entity class.

The tuple, set and sequence objects obtained by the aggregation abstraction can
themselves be viewed as entities, and therefore, can be members of the extension of
some entity class. For example, the tple object 7 could belong to an entity class
(say) Tuple-object with attributes (properties) a,, ..., Gy and corresponding types
entity classes E, ..., E,. The set and sequence abstractions can be used to model
complex objects which are sets and sequences of entities or other basic data type

values.

Generalization/Specialization: The generalization abstraction cnables - =< in
different entity classes to be grouped together in a superclass that absl@l . ..
tors out) their shared common properties.

Definition 2.4: The generalization of entity classes E, .., E, defin -

superclass E such that:

Ext(E) = Ext(e;) U ... U Exx(E,)
where Ext(E) denotes the extension of class E .
The specialization abstraction (inverse of generalization) enables entities in an
entity class to be partitioned into different subclasses according to the additional
properties that distinguish entities in them.
Definition 2.5: The specializations of an entity class E define entity subclasses E ,

..s E, such that:

Ex(E,) U ... VExy(E,) = Ex(E)
Ext(E;) = { e | e € Ext(E) & e has properties defined by the
intension of E;)

These abstractions can also be defined in terms of the Is-a (subclass of) relation:

Is-a={ (E,, Ey) | (E, is a subclass of E; OR
E, is a superclass of E) AND E inherits the
properties of £ }
such that if (E |, E,) € Is—a, then E | is a specialization of E,. The Is-a relation thus

defines a property inheritance hierarchy of entity classes.

Multiple Representations: Typically, design entities are modeled at different levels
of abstraction for the purposes of design, analysis and evaluation.

Definition 2.6: The multiple representation abstraction is modeled in terms of the
Repr-of relation defined over the domains of a representation entity class E and an

abstract entity class E ; as:

Repr-of ¢ dom(E) x dom(E ,)
(e}, €2) € Repr-of <=> entity ¢, is a "representation” of entity ¢,

where dom(E) represents the domain of entity class E. The Repr-of relation enables
the system to track the relationships among multiple entity representations to
enforce associated semantic integrity and consistency constraints.

23

Multiple Versions: A given design entity may have different versions intended to be
functionally equivalent. These presumably have different internal structures or attri-
butes but the same external interface. Implementation versions are a set of alterna-
tive implementations to a functionally specified entity. Update versions are a set of
refinements obtained by successive updates to entities in a "version set".

Definition 2.7: The multiple version abstraction is modeled in terms of the
Version-of many-to-1 mapping defined from the domain of a version entity class E,
to the domain of a generic entity class E, as:

Version-of: dom(E ;) = dom(E »)
Version-of(e) = e, <=> entity ¢, is a "version” of entity ¢,

Again the version-of mapping enables the system to track the relationships among
multiple versions and enforce associated semantic integrity and consistency con-
straints.

Multiple Instances: A design may consist of multiple “instances” of a given design
entity each of which augments the design entity by defining additional propertics;
there may also be several copies of a design entity existing in the database at the
same time. For example, a design entity from a "standard part library” may be used
as a component several times in a given design.

Definition 2.8: The multiple instance abstraction is modeled in terms of the
Instance-of many-to-1 mapping defined from the domain of a instance entity class

E , to a master entity class E, as:

Instance-of: dom(E ;) — dom(E)
Instance-of(e) = €5 <=> entity e, is an "instance” of entity e,

Again the Instance-of mapping enables the system to track the relationships among
multiple instances and enforce associated semantic integrity and consistency con-

straints.

24

To enforce the semantics associated with the three entity interrealtionships, addi-
tional equivalency or other constraint-checking operations must be associated with each
realtionship by the application programmer.

e Data Model Operations: are basic operations to create, delete, retrieve and other-
wise manipulate entities, entity properties and interrelationships. These correspond
to the basic relational algebra (or relationa calculus) operations of the relational data
model. These are described in detail with reference to the conceptual-level, semantic
data model defined in Chapter 4.

2.3.2. A Mathematical and Logical Data Model

This model provides a formalization of the data structures and operations of the sub-
system that implements certain abstractions of the conceptual-level, semantic data model
(like set and sequence values (complex objects)). As shown in Figure (2.2), this defines
an implementation layer that interfaces the semantic data model layer with the file system
layer. If this logical data modcl layer provides the appropriate data structures and opera-
tions, the specification and implementation of the semantic data model layer can be
simplified to a great extent. Thus, for example, the implementation of entities, entity
classes, and complex objects of the semantic data model can be defined in terms of a set
of basic, parametrizable data structures and operations (data types) provided by the
internal-level, logical data model. Given the complex abstractions to be supported by the
semantic data model (Section 2.2), the relational model proves too "limited and low-
level” for use as the internal-level logical data model because of its highly restricted data
structures and operations. We therefore need to define a more suitable logical data model.

Conceptual

Storage

c
g .——b!

Data Model

- - o

Logical
Data Model

File System

o o o -y

Design

- - o

Relationships
Data Model

Complex Object

Composite Types

(Set, Sequence,
Tuple, Union)

L’E‘ype Operators

File System
Operations

Figure 2.2 A Layered Architecture for a CAD DBMS

26

2.3.3. An Integrated Database Language: Integrating Data Types and Data Models

To date, database applications have been limited by the "impedance mismatch”
between classical data models (with their data abstractions) and conventional high-level
languages (with their data types). The traditional approach of embedding a data manipu-
lation language in a host language has resulted in complicated, clumsy and ad-hoc inter-
faces defined in terms of "work areas,” "cumrency indicators,” et cetera [Bro80]. A more
recent approach to integrating data models with programming languages seeks to extend
the programming language with special data types that capture the data model abstrac-
tions. Examples of such systems include Aldat [Mer78], Pascal/R [ScM80] and
Modula/R [Rei84) which add a relation data type to their host languages. Extending this
approach we can now design an integrated dambase langauge that is equipped with a
range of data types needed to capture all the complex data model abstractions. Database
specifications written in such a language can now be statically checked for "consistency
and correctness” by well known techniques of type inferencing and checking. This leads
us to the idea of a hierarchical mapping between data models and data type sysiems
[Bro80] as shown in Figure (2.3). A database instance is now a collection of values (of
specified data types), the database schema is a set of data type specifications, and the data
model is just the underlying type representation (data structure). The features of data-
bases to be supported by such an integrated database language are:

« Strong Typing - to support (and enforce) semantically meaningful operations on
database objects. Brodie’s proposal [Bro80] of “interpreted types” (user-defined
types whose domain is specified in terms of an underlying type (c.g. Integer) which
make two types defined on the same underlying domain “incompatible”) is an exam-
ple of strong typing used to enforce application semantics.

Data Mode! Theory J._. Data Structure Theory

l !

Data Model b et Data Structures

Database Schema smm%‘

! -
Database J.——{ Data values

Figure 2.3 Correspondence betwecn Data Models and Data Types

Data Abstraction - the representation of the data type is hidden from the application
and the only access to data values is provided through the type's operators.

Generic Operations and Polymorphism - the type system should also be powerful
enough to support specification of "generic operations” which can operate on values
of more than one type, and "polymorphic values” which belong to more than one
type (BuA86).

Data Persistence - data values exist independently of an execution instance of the
database program. This involves mapping the data type values into a set of "per-
sistent data structures” which are replicated on secondary storage by the system.
When the database is accessed subsequently through another program, the values
should be recoverable along with the associated cype information. Thus, the data-
base language should ensure that while a value persists so does its type.

28

« Data Sharing - among multiple instances, applications, views and users. This
involves notions of "program modules” and "scopes” [MSR84] and concurrent
access synchronizing protocols.

Several integrated database languages have been proposed in recent literature. These

include TAXIS [MBW80], Galileo [ACO85] and Amber [Car84]. We will describe some

of these briefly in Chapter 3.

2.3.4. Application-specific Database Operations

The semantics of the design database are partly defined by a set of compiex,
application-specific, user-defined database operations. These operations may be used for
sophisticated data manipulation, for computing derived (property) values, and/or for
checking complex semantic integrity and consistency constraints. By providing these
operations at the database schema level, both programmed access (through design tools)
and interactive access are simplified as the operations can be specified and implemented
once, and invoked through a simple command or procedure (or function) call. These
operations can be specified as mappings between specified value domains
[SMF86, Zil84). They can be implemented in a variety of ways [DKL85):

(1) Relation tables may explicitly store the graph of the function (set of pairs of
corresponding argument (input) and result (output) values) defined by the operation;
the operation simply "looks up” the appropriate tuple or tuples in the relation table
to compute the desired result. In this case, some form of stored data compression

may be desirable to minimize the storage requirements.
(2) A user-defined procedure (or function) written in the high-level, procedural database

language may be executed with appropriate arguments to compute the desired
result.

29

(3) A high-level query/data manipulation language statement (or group of statements)
may define the result in terms of basic data model operations or other, previously
defined, operations.

An example of an application-specific, user-defined database operation is given in

Chapter 4.

2.3.5. Database Integrity Constraints

Integrity constraints define valid database states. These constraints ¢ be classified
into inheremt constraints (structural integrity) and explicit constr..ats (semantic
integrity). Inherent constraints are a part of the data model’s definition. For example, the
one-to-many relationships between owner and member records in a CODASYL/DBTG
set (network data model) and the uniqueness of tuples within a relation (relational data
model) are inherent constraints, and therefore, cannot be violated. For example, the
semantic data model of Section 2.3.1 provides referential integrity (all entity-valued
references are valid) as an inherent constraint. Explicit constraints are independent of the
data model, and are defined outside the framework of the data model’s definition. For
example, key attributes for a relation scheme, and functional, multivalued etc. dependen-
cies are explicit constraints that can be specified in the relational data model. Integrity
constraints can also be classified as static constraints (which hold for every database
state) or dynamic constraints (which specify constraints on update operations). Explicit
constraints can be specified as formulas of a first-order logic involving entity variables,
constants, comparison and Boolean operators and function symbols. In the relational data
model, for example, these can be defined by relational calculus expressions. Other more
complex constraints require the full power of partial recursive functions for their
specification. These can be implemented by constraint checking procedures (or functions)
written in a high-level, procedural language. The execution of these procedures can be

30

invoked explicitly by the users or "triggered” by an integrity managemert subsystem

whenever specified "events” (the database is updated, a new entity or relationship

instance is created, or an operation is invoked etc.) occur. The issues involved in design-

ing an integrity management subsystem are complex and beyond the scope of the present
work. Hence, in the database language IDL described in Chapters 4 and 5, there is at

present no syntax to support the specification and use of integrity checking and mainte-

nance triggers.

Explicit constraints in design databases may be grouped into value domain, key,

class membership, composition, interface, consistency, and concurrent access con-

straints.

Value Domain Constraints arise from the semantics of the design application. In a
VLSI circuit design system, for example, these may include: (1) "geometric design
rules” which specify constraints on the cell layout geometry in terms of clearances,
sizes, orientations etc. (2) "fan-in" and "fan-out" constraints which specify how
many inputs and outputs can be connected to a gate’s terminals. There may also be
derived value constraints which require that some attribute values are derived from

other attribute values.

Key Constraints specify that certain atributes of a class form a key for the entities
in the class; that is, the values associated with such key attributes are unique within

the class and can be used in entity retrieval operations.

Class Membership Constraints capture the generalization/specialization abstraction
in terms of specified interrelationships between entity classes; for example, the /s-a
(subclass of) relation between classes that defines a generalization/specialization
hierarchy of entity classes.

K}

Composition and Interface Constraints arise whenever two or more design entities
are "composed” or "interfaced" to form more complex entities. For example, in a
VLSI circuit design system, a composition constraint may be that two boxes on the
same layer of a layout cell do not overlap. Similarly, an interface constraint may be
that ports of some of the components constitute the interface ports of the layout cell
being formed.

Consistency Constraints specify mutual consistency requirements among different
representations of the same design entity. For example, it is necessary to ensure that
the physical layout, the transistor network, the logic circuit and the functional block
schematic representations of a given VLSI chip are all mutually consistent and
updates to any one of them are properly propagated to the others. For example, Katz
and Wiess [KaW83] define that "a VLSI circuit design is consistent if conformance,
composition and equivalency constraints are met; that is, (1) a design entity’s imple-
mentation satisfies its "interface constraints” (conformance); (2) the composition of
component entities is "well-formed” (composiri~~); and (3) entities specified as
equivalent across representations are shown to Lx uivalent (equivalency). "
Concurrent Access Constraints wasure that concurrent accesses to the database by
several designers do not result in inconsistencies or conflicting updates. These are
usually specified as concurrent access protocols implemented by a concurrent

access control subsystem.

32

2.3.6. Concurrent Access Control and Transaction Management
Concurrent access constraints are required to prevent "conflicts” among concurrent
user "transactions” trying to update the database simultaneously. A transaction is defined
as a sequence of primitive database maintenance operations (INSERT, DELETE and
MODIFY) that preserves database integrity and consistency, and whose execution is
atomic (all operations are executed or none is executed) and durable (resilient to
hardware or software failures). A schedule of concurrent transactions is an ordering on
their component primitive database maintenance operations; a serial schedule orders the
transactions to execute sequentially. The classical concurrent access synchronization
problem is to generate a serializable schedule of user transactions; i.c. a schedule which
produces the same effect on the database as some scrial schedule. The well known tech-
niques of 2-phase locking and time stamping provide a solution to the concurrent access
synchronization problem. However, these are inappropriate for a CAD database for two
reasons: |
(1) locking entire entity composition hierarchies may result in large parts of the data-
base being locked; and,
(2) “design transactions” are interactive and, typically, last over extended time periods.

Both these characteristics will preclude any reasonable degree of concurrency if imple-
mented by conventional locking protocols. One solutior is to copy design objects,
accessed by a user for write/update, to the user’s private "data space” (analogous to
"address space"), modify the object and finally to copy it back into the database [LoP83].
This leads to the concept of C-transactions (for Conversational transactions) defined by
"check-out” and "check-in" operations to be implemented by a transaction management
subsystem of the design DBMS. Also, the hierarchical structure of design objects neces-
sitates access protocols based on different types of locks on objects under concurrent

33

access. One suggestion involves two types of locks: an “intentions lock" to indicate that a
component object is to be modified and an "exclusive lock” to indicate that no other tran-
saction may access the object till its modification by the locking transaction is complete
[Kat82). Another proposal [Kla85] involves organizing transactions in a two-level
hierarchy. A group transaction copies desired objects from a “public database” into a
"group database.” A number of user transactions which are created as subtransactions of
the group transaction then copy objects from the group database into several private user
databases. Updates to database objects are modeled by "version graphs” which show how
given versions are derived from other versions. Consistency is implemented by means of
different lock types: R (Read only), RD (Read & Derive), DS (Read & Derive shared),
DX (Read & Derive exclusive) and X (Read, Derive & Modify exclusive). A "lock com-
patibility matrix” defines mutual compatibility between these lock types. Transactions
request locks on objects before checking them out of the database and release them after
checking them back in. While concurrency among group transactions may be regulated
by a 2-phase locking protocol (ensuring strict consistency), user transactions may be
regulated by a non-2-phase locking protocol (permitting increased parallelism at the cost
of some inconsistency). A more detailed study of these issues is beyond the scope of this
thesis.

24. Summary

In this chapter we have focused on the special requirements of design databases as
contrasted with those of conventional databases. We then describe the limitations of trad-
itional database systems in addressing these requirements. Next, we specify the clements
of a CAD database system architecture. These elements include: (1) a conceptual-level
semantic data model (which captures the concepts of design objects and their interrela-
tionships); (2) a mathematical and logical data model (which provides a formal

34

specification and implementation layer for the semantic data model); (3) an integrated
database language (which eliminates the "impedance” mismatch between the data model
and the application program and simplifies specification of complex database operations
and semantic integrity and consistency constraints; and (4) a concurrent access control

and transaction management subsystem (brief skecth only given herein).

Chapter 3
A SURVEY OF CURRENT RESEARCH IN CAD DATABASES

3.1. Introduction

As described in the Section 2.2.1, the classical data models are inadequate to cap-
ture the complexity of structures, relationships and behaviour found in a design database.
Several extensions to the classical data models as well as a variety of semanric data
models have been proposed to conceptualize these requirements. These include the
Binary Data Model [Abr74), the Semantic Data Model (SDM) [HaMB81], the Entity-
Relationship Data Model [Che76), the Semantic Hierarchy Model [SmS77), RMIT
[Cod79], the TAXIS data model [MBW80]), and the functional data models ([BuN84] and
DAPLEX [Shi81]). A semantic data model provides primitives to model entities with
complex structures, and "typed relationships” among these entities. Sowa [Sow81] lists
the requirements to be supported by a conceptual schema for "knowledge-based systems”
to include aggregation hierarchies, functional dependencies, abstract domains, procedural
attachments and inference mechanisms. McLeod and Smith [McS81] view a data model
as defining (1) a "data space” consisting of atomic elements and relationships among
them; (2) "type definitional constraints”; (3) data manipulation operations; and (4) a
predicate language that enables data selection and retrieval operations.

32. Augmenting Classical Data Modeils

The approach of augmenting classical relational or entity-relationship data models
involves adding to the basic data models additional concepts, abstraction mechanisms
and operators especially relevant to the application domain. GEM [Zan83] is a data
model that extends the relational data model with the concepts of entities (with surro-
gates), set-valued attributes, generalization and aggregation abstractions, null values and

35

36

an enhanced QUEL-based query language. A GEM entity is defined in terms of an entity
name, a sequence of attribute values and a key attribute set. An attribute value may be
atomic (integer, real, etc.), a set of values, a reference to another entity, or a tagged value
with the tag indicating one of a list of specializing value classes. Entities can be accessed
through their key attribute values, or through their surrogates which are system-generated
unique identifiers. The QUEL-based query language provides the notions of "functional
composition” and (explicit and implicit) "entity joins” which enable complex retrieval
operations to be specified. A 3-valued logic with TRUE, FALSE and NULL truth values
is defined to handle undefined attribute values.

Batory and Kim [BaK85] define data modeling concepts of particular relevance to
VLSI design applications. In their conceptual model, a design object is characterized by
an interface description (fype) and one or more implementation descriptions (versions).
Primitive objects have only interfaces but no implementations. A molecular object is an
aggregation of a set of simpler component objects. A version of a molecular object is
defined by specifying a set of component object types and interconnections between
them, and a set of mappings between the interfaces of the molecular object and its com-
ponent types. An instance of an object type or an object version is a copy which inherits
attributes from the object type or the object version. This eliminates redundancy in stored
data by abstracting common information among a number of instances into the object
type or version attributes. Object types, versions and instances can also have "external
features” associated with them. A parameterized version is a molecular object with com-
ponent object types (interfaces), rather than versions (implementations), defined. Thus,
these objects can be thought of as consisting of "sockets” (defined by object types); the
molecular object can be implemented by “plugging” in any appropriate component object
versions. The model also provides for structuring object types, versions and instances in

37

terms of entities and relationships of the Entity-Relationship model (at the conceptual
level) and mapping such structures into relation schemes (at the internal level). A set of
basic operations on types, versions and instances is also defined.

Hardwick [Har84] proposes an enhanced relational model based on homogeneous
and heterogeneous relations which correspond, respectively, to aggregation and generali-
zation abstractions. An enhanced algebra provides data model operations of AND and
OR integrations (relation definition), projection, enclosure (abstracting a relation to
form an attribute), disclosure (inverting an enclosure to form a relation), differentiation
(searching for values belonging to an attribute in a hierarchy) etc. It also provides a sim-
ple method of constructing user-defined functions and applying "join” and "selection”
operations to such functions.

3.3. Semantic Data Models

In this section we describ. some of the many semantic data models that have been
proposed in the literature. Brodie [Bro81] describes a database system called ACM/PCM
(Active Component Modeling/Passive Component Modeling) which is based on an
extended semantic data model. This data model provides "hierarchies of multiply typed
data abstractions”, a "data type algebra” and “procedure control abstractions.” An object
scheme defines structural aspects of the database including objects and relationships
while an action scheme defines the behavioral aspects in terms of operations applicable to
these objects. Semantic integrity is ensured by specifying all data manipulation through
operations defined in the action scheme. This database system has been used in the
design of Criminal Court and Real Estate information systems.

SDM (Semantic Data Model) (HaM81] conceptualizes a database as a collection of
entities (representing corresponding entities in the real world); these entities are grouped

38

in. entity classes which can be related to each other by means of inzerclass connections;,
entities and entity classes have arnributes whose values are drawn from specified "value
domains”. An entity class can be a base class (defined independently of all other classes)
or a nonbase class (defined in terms of one or more other classes). The interclass connec-
tions include the subclass connection and the grouping connection. A set of rules define

attribute and attribute value inheritance across these interclass connections.

Buneman and Nikhil [BuN84] describe a conceptual data model based on the
mathematical notion of functions. The functional data model defines a database as a col-
lection of data types and functions over these types. For example, the relation scheme:

EMPLOYEE (NAME:string, SS#:integer, FULLTIME:boolean)
is regarded as a set of functions,
NAME: EMPLOYEE — string
FULLTIME! EMPLOYEE boolean
A set of functional operators (extension, restriction, construction and composition)
enables powerful, applicative expressions of high-level operations on the database. For
example, the expression,
! EMPLOYEE. * NAME

defines a composition (.) of a function that generates a list of EMPLOYEE entities (!
EMPLOYEE) with a function that returns their names (* NAME). They suggest that the
combination of a simple data structure (entity set) and associated operations, the notion
of function application and composition, and a user-definable type system provide a
powerful database processing environment. The functional data model’s query language
FQL (Functional Query Language) is an applicative (or functional) language where the
only control structure is the application of functions to arguments (Lisp-like expression
evaluation) based on the functional data model. It is claimed that besides providing a

39

more powerful database langusg® than relational algebra, FQL provides a simple, uni-
form and consistent Way of specifying user-defined types (strong typing and abstract data
tyPes), ang user-defined "high-level operations” (through functional composition).

34. Interfacing Data Models 10 Programming Languages

Current approaches to the Problem of interfacing data models 10 programming
languages draw heavily on the techniques of abstraction (data and procedural) in pro-
gRmming 1anguage theory. One approach to embedding database operations in program- '
ming langyage constructs is presented by Mall, Schmid and Reimer (MSR84). The basic
idea is to define relations as "tyPed and named objects” which can be imported into the
scope of y "database Processing nvironment.” A generalized selector mechanism based
on first-order predicate calculuS expressions provides for relation clement selection
operationg (o be defined. A set Of selection, assignment and update operations are also
provided, The database operations considered include access and integrity control, failure
recovery, data sharing, and concurrency management. Concurrent access control is
achieveq by visibility control (modularization of scopes and import/export clauses) and
80Cess modes (read, Write, readwrite) of selected relation variables. Transactions are
defined a5 sequences of operations that preserve database integrity and consequently
must be yijewed as "dtomic actions.” A transaction must, therefore, be executed to com-
pletion, or in case of failure, aborted and the database restored 1o its state at the start of
transaction, Concurrent execution of transactions operating on overlapping objects can be
achieved py a variety of locking Protocols applied at different locking granularities deter-
mined by selection Predicates- These concepts have been implemented in Pascal/R
[ScM80] and Modula/R [Rei84)-

Modula/R extends the Modula-2 language with database constructs derived from the
relationa) data model. The data model objects are relations and relation elements

40

(individual tuples or subsets of a relation). In addition to the basic operations of relational
definition, assignment and update, the data model operations include a generalized selec-
tor mechanism which is a first-order predicate calculus expression for specifying relation
element selection. Concurrent access to database objects is controlled by employing the
Modula features for specifying variable scopes (visibility) and access modes (Read,
Write and ReadWrite). The transaction defines the unit of integrity, and concurrent tran-
saction access is handled by locking database objects as determined by selection predi-
cates. Thus, transactions accessing the same relation but non-overlapping selected cle-
ments can be executed in parallel.

Smith, Fox and Landers [SFL83] describe the design of ADAPLEX, a system for
developing database application programs. It extends the programming language Ada to
include database constructs derived from a database sublanguage based on the functional
data model DAPLEX [Shi81). The data model objects consist of entifies and endity sets.
The abstraction mechanisms include entity subtype and entity supertype which model,
respectively, specialization and generalization abstractions for e-tity types. The con-
straints on the data model objects are specified as consistency rules defining overlap
and uniqueness constraints for entity sets. The basic database operation is the transac-
tion which encapsulates all database access operations and is defined to be the unit of
concurrency, consistency and failure recovery. The specifications are preprocessed to
generate a runtime database module and a pure Ada program (with database function
calls in it) which can then be compiled and executed.

41

3.5. Integrated Database Languages

GLIDE2 (Graphical Language for Interactive DEsign) is an integrated programming
language and database system designed to .upport interactive design applications
(EaT79). It was designed to efficiently support interactive operations on dynamically
structured data. A GLIDE database is structured in terms of "frames” (an extensible con-
text or workspace), "objects” (constants, types, variables, procedures and modules),
"structures” (array, record, set, file and vector) and user-defined abstract data types. Its
features include management of large amounts of data (107 10 10'2 bytes), a dynamically
definable database schema, geometric modeling primitives, fast access to data on secon-
dary storage, complex integrity constraint management, multi-user concurrent access, and
backup and recovery facilities.

TAXIS [MBW80)] is a lax .. age for designing and implementing "interactive infor-
mation systems.” It integrar< .. ~cepts from Artificial Intelligence, Databases and Pro-
gnmming Language areas. .. .ign objectives were to provide a conceptual-level,
semantic data model, complex transaction definition and exception handling facilities,
and a compilable specification language. A TAXIS database is structured in terms of
objects and properties. An object may be a token (atomic value), a class (set of tokens) or
a metaclass (set of classes). Properties are triples: <subject, asribuse, p-value> where
subject and p-value are objects and anribute is a name. Token-valued subject and p-
values define facmual properties (structure of the token specified by the subject) and
class-valued subject and p-values define definitional properties (structure of "instances”
of the subject class). Classes can also be specified as instances of a "variable-class” meta-
class (the set of tokens associated with these classes is variable), a "finitely-defined-class”
metaclass, a "formatted-class” metaclass etc. TAXIS classes and metaclasses are organ-
ized into an inheritance hierarchy defined by the binary is-a relationship. If A is-a B,

42

then every instance of A is also an instance of B and A inherits all the properties of B; A
can have additional properties or redefine some of B’s properties. Relationship /S-A is
defined as the reflexive and transitive closure of the is-a relationship. The definitions in a
TAXIS schema have to satisfy the "IS-A relationship postulates.” The set of data model
or primitive operations include insert object into a class, delete object from a class, iterate
over the instances of a class, and update a property value of an object. Transactions
(groups of primitive operations) are also modeled as classes whose instances are the
values returned by an execution of the transaction. Transaction classes are defined in
terms of prerequisite, action, result and return value properties. The correspondiag p-
value classes are "expressions” which define computations on objects in serms of arith-
metic, assignment and data model operations, and conditional, biock and looping control
flow constructs. The transactions classes and expressions are also conceptually organized
into the same is-g hierarchy as other classes, thus providing a single unifying framework
for structuring both data and computations.

Galileo [ACOS85] is a high-level, interactive, strongly-typed, expression-oriented
conceptual language supporting semantic data model features. The data model provides a
type system consisting of concrete (primitive) and abstract (concrete types augmented
with constraints and operators) data rypes, subtypes, entity class and subclasses, and
tuple, sequence and set aggregation abstractions. The language also provides the con-
cept of an environment which is simply a group of expressions which define a set of
data structures and operations by means of an “environment expression”. This is a modu-
larization feature enabling incremental development of a database system. The system
also provides facilities to specify groups of expressions as transactions which are units

of semantic integrity and failure recovery.

Amber [BuA86] provides a set of parametrizah’. data types, supports inheritance on

43

types and a very general form of persistence. It also supports a form of polymorphism in
which values of a most general type - dynamic - can be "coerced” to values of more
specific types. However, this approach is likely to be very inefficient because there is no
clustering of values by type and it requires elaborate functions and control mechanisms

for creating, inserting and testing values in the database.

3.6. Object-oriented Database Management Systems

Several database system implementations based on object-oriented concepts have
been proposed. Gibbs [Gib84] presents an object-oriented data model for office informa-
tion systems. The object-oriented office data model is based on the concept of modeling
the structures and semantics of common office objects like stations, desks, files, cabinets,
clocks and calendars. The model defines the structures (object, data type and template
type), operations and constraints (domains and triggers) applicable to these objects.

Maier and Copeland [CoM84] describe a database system based on the concept of
integrating a "set-theoretic” data model with the object-oriented programming environ-
ment of Smalitalk. The conceptual facilities of importance to database systems are
defined to include a flexible and powerful type system (ability to define new types, add
operations to existing types and separate data declaration from type definition), modeling
entity identity, and data abstraction mechanisms. In this context, useful Smalltalk
features include the notion of objects (which provide entity identity), the class mechan-
ism (which provides the data abstraction and type definition facility) and messages
(which provide operations on objects). In the set-theoretic data model, objects are
viewed as labeled sets. Each set clement has a name (label) and a value (which can be
another labeled set). A "path-syntax” for accessing component parts of a set and a set-
calculus query language are also defined. A combination of Smalltalk and the set-
theoretic data model augmented with authorization, concurrency control and recovery

subsystems provides a design for a complete database system.

IBM is developing a database system for VLSI design [DiL85] which involves
building an object-oriented system on top of an underlying relational system. The DBMS
provides the notion of complex objects (which model design objects) which are system-
implemented groups of related tuples. Tuples (from different relations) forming a com-
plex object are related by using system-generated suple [Ds as values for attributes
defined over abstract domains COMPONENT_OF and REFERENCE which implement
the corresponding relationship abstractions. This enables users to specify database opera-
tions like fetch, delete, copy, lock etc. on objects and the system automatically translates
them into appropriate operation sequences on the underlying relations. The complex
objects and abstract domains also enable implementation of referential integrity, multiple
versions and design transactions. A VLSI layout editor based on this database system has
been implemented [HalL84).

3.7. Comparative Analysis and Summary

In this chapter, we have presented an overview of current research on issues of
relevance to the design of D-DBMSs. These research efforts have involved augmenting
classical data models with additional abstraction mechani:ms, designing semantic data
models tailored for specific classes of applications, interfacing data models to program-
ming languages, designing integrated database languages, and using object-oriented
models and techniques in the design and implementation of DBMSs.

Table (3.1) tabulates the design database system features required, and shows how
existing 7..0 proposec systems evaluate in the context of these requirements. We compare
four ciass=s of models/systems and typical representatives from each of these:

Augmented and Extended Relational Models

45

This class represents relational systems extended with the notion of entity and some
of the required abstraction mechanisms. For example, GEM [Zan83] provides surrogates
which implement entities, and limited forms of Cartesian and Set aggregation and gen-
eralization. While it simplifies and enhances a QUEL-like relational calculus based query
language, it does not provide the features of classification, structural integrity constraints,
entity interrelationships and complex operations or semantic integrity and consistency
constraints.

General-purpose Sewansi:: Ddta Models

This class consists of general-purpose semantic data models based on the notions of
entities and entity classes. For example, SDM [HaM81] provides the basic structural
abstractions of classification, generalization/specialization etc. but not the entity interre-
lationships, complex operations or semantic integrity constraints required in a design
context.

Functional Data Models

This class of systems is based on the notion of mathematical functions as the basic
data structuring construct. DAPLEX [Shi81] was initially proposed as a high-level, user-
friendly interface to an underlying relational, network or hierarchical database. ADA-
PLEX [SFL83) which extends ADA for database applications by embedding the
DAPLEX sublanguage comes closest to satisfying most of the essential features in a
design database, but lacks sequence aggregation, entity interrelationships and provides
only limited generalization abstraction and integrity constraints.

NF? Relational Data Model

A number of systems based on non-first normal form of the relational data model
have been proposed in recent literature [AMMS2, Dad86, JaS82, PiA86). These seek to

46

remove the restrictions imposed by normalized relation schemes when the data being
modeled does not inherently have a tabular structure. However, the NF 2 relational model
still lacks the basic notion of entitics and entity classes. So, although it provides Carte-
sian, Set and Sequence aggregation through values that can be tuples, sets or sequences,
the ease and flexibility with which such values can be manipulated is severly limited. For
example, lacking the notion of entity identities these complex structures (values) cannot
be shared, passed as parameters or otherwise processed as entities with their own identi-
ties. The NF2 model also does not provide structural or semantic integrity constraints,

nor entity interrelationships and complex operations.

In capturing these requirements, the notion of system-defined as well as user-
defined ADTs is very useful. For example the notions of entities and their interrelation-
ships, the aggregation abstractions etc. can be modeled by appropriate ADTs. However,
none of above classes of database models/systems provides a useful set of type construc-
tors and general Turing procedures which can be used to define ADTs. Many recent data-
base systems and languages seek to remedy this defect as discussed in detail in Chapter
S.

47

sisAfeuy daneredwo) :sasmed] wanskg aseqeied v (1°¢) d1qeL

N A N N SIS0 AIUBa|
snuewds xddwo) | "Il
N A A N SINJEA PIAUX] ‘01
N N 3 N $993uL | ¥'6
panUISU . N N suonesddo 1ayY | '£°6
N i N N anpxoyd Buunt | 76
A A N A 23enSueq K000 | ‘V'6
suotiesodQ dseqeieq ‘6
N A A N — gudkLAmua | €8
N N A l A fenuadpdy | TS
N A A i ssouonbiun) Aimug | 1’8
KuSowg NS ‘8
A A A A suoneadQ 19O tied 'L
N N N N digsuonieoy dueisul | €9
N N N N diysuoneioy UOISIA | T
N N N N dysuonedy uonewasuddy | 19
- sdiysvonejaudu] ivg 9
wtensuo)) depdAQ X N | uressuo) diyssaquon sseD | €S
¢ | wiensuo) ssousnbun N A wiensuo) KN | TS
N A N N wrensuo) urewoq | 1S
SIUIRIISU0) 'S
N A A PORUISA | UONEZIEINAAS-UONBZIIEINID 'y
A A A A uoneIuaTy ueisoue) | €€
A N N N vone3udty umbos | ‘T¢
X A N A uone3u8By 105 | ‘I't
uoneSusly '€
N i A N voneoyisse) |' T
N A A A Ay 1

19po ©itd 19pOW ®ieQ 19poN 1t 1PPON tieQ

TeuoneRy tIN feuondung onuewdg sodind-[esdud) | [euoneidy paudwdny anedd ‘ON

31qvL Sisk[euy aAncsedwo) SUNILd] WIIsAS aseqeied AVI

Chapter 4
A SEMANTIC DATA MODEL FOR DESIGN DATABASES

4.1. Introduction

As we have seen in Section 2.2, a range of structural and behavioural abstraction
mechanisms, including referential integrity, structural aggregation and procedural
abstractions, are required in modeling a design database. A semantic data model seeks to
capture directly (in terms of the data model constructs) the application domain concepts.
In a CAD application, the semantic data model has to provide constructs to correspond to
concepts like entity, entity class, entity interrelationship, composition hierarchy etc.
These can be implemented directly, or indirectly through another level that provides its
own set of (mathematical/logical) constructs. In this chapter we provide a formal
specification of our semantic data model which includes the nov.ons of entiries, entity
classes, entity interrelationships, integrity constraints, and operations. Illustrative exam-
ples from the domain of VLSI design are also given to show how the design database
requirements are captured by the model.

4.2. Entities

Entities are data which model real world objects in an application. A typical design
process will have pre-existing entities and will create more entities. Their specification
occurs during a design process. This notion of entity corresponds to the notion of entity
as defined by the Entity-Relationship model [Che76). In a VLSI design system, the data
describing gates, chips, functional blocks, transistors etc. form the design entities. Each
entity has a unique identifier (surrogese) which is a system-defined value drawn from a
suitable value domain, and a set of associated properties defined in terms of anribute

values, constraints and relationship inswnces. Entities can be implemented as instances

49

(values) of an abstract data type Entity. User access to the entities is provided by user-
specified variables (which are bound to specified entities by the system), and by selection
operations (of the data model) which specify key attribute values of entities (e.g. its
user-defined name) or its relationship to other entities (c.g. "the amplifier in C-145"). A
design system must have such entity identities since an object may not have enough pro-

perty values to uniquely identify it.

4.3. Entity Classes

Entity classes provide the classification abstraction.
Definition 4.1: An entity class intension is the collection of properties (artributes and
constraints) shared by all the entities belonging to the class.
Definition 4.2: If E is an entity class, we define the domain of class E (denoted dom(E))
as the set of all entities which share the properties defined by the intension of class E:

dom(E) = { e | entity e has at least properties defined by the intension of class E }

Definition 4.3: The entity class extension (denoted Ext(E)) is the set of all entities, stored
in the database at a given time instant, that posses the propertics defined by the

corresponding entity ciass intension:

c
Entity class names are unique and distinct class names denote distinct classes. Examples

of entity classes in a VLSI design database are data representations named Cell, Box,

Ext(E)={ e | ¢ € dom(E) and ¢ is stored in the database }
dom(E)

Gate, Chip etc. All entities in the database have the system-defined abstract type Entity,
and collectively , can be viewed as constituting the extension of a most general Entity (or
Object) class.

4.4. Attributes

Attributes specify properties of entities belonging to an entity class. Each attribute
has an associated value rype. The value type can be an aromic type (entity class or primi-
tive data type (Integer, Real, Boolean, String]) or a composite type (tuple, set or
sequence type whose values are tuples, finite sets or sequences of values of atomic or
composite types). Thus, an attribute can be visualized as a mapping from the entity class
to the domain of its associated value type.
Definition 4.4: If entity class E defines an attribute A with value type T, then we have the
time-varying mapping:

M[A]: Ext(E) — dom(T)

where dom(T) denotes the domain of values of type T. A special value NULL € dom(T)
may be used to indicate that an entity in class E has no value assigned for attribute A at a
particular time instant. Thus, if attribute A of entity e has a value v (not equal to NULL),
then:

M[A](e)=vV
If the value of attribute A of entity e is undefined, then:

M[A](e) = NULL

For basic data types T, dom(T') is defined in the usual set-theoretic sense; for composite
types, set type S = (T} and sequence type Q = <T >, we define dom(S) as the set of all
finite sets of values of type T, and dom(Q) as the set of all finite sequences of values of
type T respectively. Thus, an entity attribute has a value which may be: (1) a basic data
type value (Integer, Real, Boolean and String value, which may viewed as a primitive
entity); (2) another entity in another (not necessarily distinct) entity class; or, (3) a struc-
ture (tuple, set or sequence of entities or basic data type values).

Thus, the collection of attributes in an entity class intension implements the Cartesian

31

aggregation abstraction by mapping each entity in the entity class extension into its
"component” entities. Attribute values which are structures (tuples, sets and sequences)
provide the ruple, set and sequence aggregation.

Definition 4.5: The function Asnrib returns the set of attributes defined for (i.c. applicable
to members of) class E:

Attrib(E) = { A | attribute A with value type T is defined for class E }
Definition 4.6: The attributes of a collection of entity classes also define the HasComp

relationship (aggregation abstraction) specified as:

HasComp = { (E, E;) 1 3A € Aurib(E) such that A has value type E, (E3) or <E>)
The transitive closure of HasComp is denoted by HasComp* .

Example 4.1: If entity class Cell defines auributes cell_id, cell_type, U_corner,

ur_corner and struct with, respectively, types /nteger, String, Point, Point and { Element)
then we have:

Attribute functions:
Mcell_id): dom(Cell) = dom(/nteger)
Mlcell”_type): dom(Cell) — dom(String)
M([ll_corner): dom(Cell) = dom(Point)
M(wr_corner): dom(Cell) — dom(Point)
M(struct): dom(Cell) — dom({Element))

Attribute set:
Attrib(Cell) = { cell_id, cell_type, ll_corner, ur_corner, struct)

Entity composition hierarchy:
(Cell, Point) € HasComp
(Cell , Element) € HasComp

For notational simplicity, we will henceforth write A(e) for M[A](e).

52

4.5. Constraints

Our data model provides for three types of data model integrity constraints.

4.5.1. Domain Constraint

A domain constraint defines the set of valid values for specified attributes or groups
of attributes.
Definition 4.7: A domain constraint is specified as a first-order predicate calculus
expression composed of attributes, value constants, comparison and Boolean operators.
The domain constraint constrains attribute values of entities in the class such that a sub-
stitution of an entity’s attribute values for the corresponding attributes in the expression
evaluates to the Boolean constant TRUE or the value NULL. An arithmetic or com-
parison operation involving NULL values cvaluates to a NULL; Boolean operations
involving NULL values evaluate according to a 3-valued logic defined by the truth table
given below:

3-valued Logic
T T
F T
T NULL

NULL NULL
Table 4.1 3-valued Logic

We define (Pred)[A (e VA] to denote the expression obtained by substituting A (e) for all
A in the expression Pred. Thus, if D is a domain constraint with associated constraint
expression Pred defined by class E, then for e € Ext(E), if (Pred)[A (e)/A] = TRUE,
then the constraint D is satisfied for entity e; else if (Pred) [A (e)/A] = NULL, then the
constraint D cannot be evaluated for entity e. If the domain constraint expression evalu-

33

ates to FALSE, the domain constraint is not satisfied, and the system will disallow
specification of an attribute value that causes such a violation of the constraint.

Example 4.2: The entity class Cell may define a domain constraint D to be (1 S cell_id
& cell_id <4000), which constraints cell_id attribute values to lie in the specified range.

4.5.2. Key Constraint

Definition 4.8: (Key constraint) A given subset of atributes defined by an eadity class
forms a key for entities in the class.

The attribute values associated with the key attributes of cach entity in the class are
unique and can be used to select a unique entity from an entity class in a selection opera-
tion. Since entities are internally managed through system-defined identifiers, a user-
defined key attribute may be undefined (i.e. NULL valued). The key constraint only
ensures uniqueness when all key attributes are defined. Mandatory non-NULL keys
would require the key values to be specified at entity creation tme and no update of the
key values would be permitted. Thus, if A; (i = 1, .., k) are the key attributes defined bv
class E , then (Ve € Ext(E)) the wple (A (), ... A, (e)) is unique within the class E , .
vided all the values A, (e) are defined (i.c. not NULL).

Example 4.3: The Cell entity class may define a key constraint K to be K = { cell_id,
cell_type }, which defines cell_id and cell_type to be key atributes.

4.5.3. Class Membership Constraint
A class can be specified to have a set of subclasses or be formed by a union of
other classes.

Definition 4.9: The subclass/superclass relationship between classes is captured in terms
of the Is-a (subclass of) relation defined as:

Is-a = { (E,, Ey) | E is a subclass of E or E, is formed by a union of other
classes including E, }

The transitive closure of the /s—a relation is denoted by /s—a* . A subclass inherits pro-
perties in its superclasses and defines additional properties. This can be modeled in terms
of an injection (/) from a subclass (E ;) to a superclass (E,):

1,: dom(E) = dom(E ,)
which maps an entity in the subclass to its corresponding “image" in the superciass. This
injection can be implemented by inserting every newly created entity belonging to a class
E into the extension of E and, recursively, into the extensions of all its superclasses in
the /s-a hierarchy. This induces the following class membership constrains.
Definition 4.10: For all classes E |, E, such that (E, E,) € Is—a (Ext(E,) C Ext (Ej))

This allows us to view entities at different levels of abstraction corresponding to the
different classes they are found in. We also define a "most general” class Entiry whose
extension contains all entities as members. This is modeled by an injection (/,) from
every class (E) to the class Entity :

1,: dom(E) — dom(Entity)
which maps every entity in class E to its corresponding "image" in the class Entity. This
can be implemented by means of an abstract data type Entiry associated with every cntity
(value).
Example 4.4: Consider the specification of Cell and Celllnstance classes given in Exam-
ple 4.9. The Celllnstance entities represent particular instantiations of Cell entities, and
hence can themselves be viewed at another level of abstraction, as cells. Thus:

(Celllnstance, Cell) € Is-a
Ext(Celllnstance) < Ext(Cell)

When the system creates a CellInstance entity by inserting a newly created entity into the

extension of the Celllnstance class, it uses the /s-a hierarchy to also insert the entity into

33

the extension of the Cell class. Now, the entity has the atributes “instance#” (instance-id)
and "transform” (instance transformation matrix) by virwe of being in the Cell/nstance
class and the attributes "cell-id", "cell-type", “ll-comer”, "ur-comner” and "component™ by
virtue of being in the Cell class. This allows us to view an entity at different abstraction
levels; in this case both as cell instance and as a cell. The many-to-1 mapping from cell
instances to cells can be captured by making a set of entities with different "instance#"
and "transform” values (in the Celllnstance class) have identical “cell-id", "cell-type",
"ll-corner”, "ur-comer” and "component” values (in the Cell class). An alternative for-
mulation that uses the /nstance-of entity interrelationship is given later in Example 4.8.

4.6. Entity Interrelationships

A set of "typed” relationship relations implement entity interrelationships.
Representation relations define the relationships between entities which are different
representations (views) of the same abstract design object (multiple representation
abstraction). Version relations define relationships between alternative implementations
(implemenation versions) oc updates (update versions) of a generically defined entity
(multiple version abstraction). /astance relations define the instance/master relationships
between entities (multiple instance abstraction). Associated with each relationship is a set
of operations, a cardinality constraint and protocols (functions/procedures that imple-
ment the associated semantic constraints) which together define the semantics of the rela-

tionship.

4.6.1. Representation Relationship

A design entity may have several different representations at different levels of
abstraction together with semantic constraints to ensure mutual consistency among them.
In our model, the multiple representation abstraction is captured in terms of a set of
"named"” (or indexed) representation relations. The name of the relation determines the
meaning (to the designer) of the representation.

Definition 4.11: A representation relation R; defined as:

R, ={(i,e ey le; € Ex(E)), e, € Ext(E,), and entity e is a
"i representation” of entity ¢, }
c (i} x Ext(E ;) x Ext(E,)

models the representation relationship between entity classes £, and E,. Here i is the
name of the representation relationship that captures the user-defined application-specific
meaning for the entity interrelationship. The relation Repr-of specified in Definition 2.6 is
now defined by the many-to-1 mapping from Ext(E;) to Ext(E,) defined by R;. The
associated cardinality constraint given by ¢; = <a, 1> specifies the cardinality of this
mapping. Note that this is a time varying relation since relationship instances and enti-
ties may be created and/or deleted at specified times.

Example 4.5: If we define a Layowr representation relationship between Cell and Gate

entities, then:

Riayou = ((Layout,c,g)|c € Ext(Cell), g € Ext(Gate), and entity c is a
"Layout” representation of entity g }
< {Layout } x Ext(Cell) x Ext(Gate)

CLayow =<3, 1>

57

4.6.2. Version Relationship

The multiple version abstraction can be defined in several different ways. Imple-
mentation versions are alternative impler-:. . -.s of a functionally specified entity.
Update versions are "refinements” obtainc: , successive updates to a given entity.
Again, there are associated semantic constraints to ensure mutual consistency among
these versions. In our model, the version relationship instance between entities can be
created (or deleted) explicitly by the designer, or by means of operations executed by the
system.

Definition 4.12: A version relation V; defined as:

V;=((i,e;, e le, € Ex((Ey), e € Ext(E,), and entity ¢, is a
"i version" of entity e, }
< (i} x Ext(E) x Ext(E4)

models the version relationship between entity classes E and E,. Here i is the name of
the version relationship that captures the user-defined application-specific meaning for
the entity interrelationship. The mapping Ver-of specified in Definition 2.7 is now defined
by the many-to-1 mapping from Ext(E) to Ext(E ;) defined by V;. The associated cardi-
nality constraint given by ¢; = <a, 1> specifies the cardinality of this mapping. Note that
this is a time varying relation since relationship instances and entitics may be created
and/or deleted at specified times. A version history (or chronology) of update versions
can be formed by including a time parameter as in:

V,=((i,e, e, 1)1 e, € Ex(E)), e, € Ext(E,), and entity ¢, isa
"i version" of entity e, created at time ¢ }
< (i} x Ext(E) < Ext(E ;) x dom(Time)

Example 4.6: Consider two alternative implementations (classes Add, and Add,, and
entities a, and a,) of a full adder (class FullAdder and entity f). The enuties @, and a,
have different internal structures but the same functionality (interface), presumably cap-

tured by the specification of entity d. Entitics a, and a, now represent implementation

58

versions of entity d. This version relationship can be captured in terms of the version

relations Vg and V4, as follows:

a, € Ext(Add,), a, € Ext(Add,), d € Ext(FullAdder)
(Addl.al. d) € Vw‘
(Addy,az,d) € Vo,

Example 4.7: As another example, consider the the relationship between two ALU ver-
sions (@, and a,) obtained by updating the ALU (a) at times ¢, and 1,. This can be

defined in terms of version relation V. y ¢

a,a,,a,€ Ext(ALU)
(ALU.al.a. 11), (ALU. aza, 12) € VALU

4.6.3. Instance Relationship

A design may consist of multiple "instances” of a given design entity. Each instance
may be just a copy of the original (as when a standard part is used as a component in
several different contexts in the design) or a specific instantiation of a master entity with
its own instantiation parameters (as when a standard cell is used in different locations
with different orientation and scale factors in a chip layout).

Definition 4.13: An instance relation /; defined as:

I; ={(i,e;.ep e, € Ex(E,), e, € Ext(E;), and entity e, is a
"i instance” of entity e,)
c li) x Ext(E,) x Ext(E7)

models the instance relationship between classes £, and E,. Here i is the name of the
instance relationship that captures the user-defined application-specific meaning for the
entity interrelationship. The mapping Inst-of specified in Definition 2.8 is now defined by
the many-to-1 mapping from Ext(E,) to Ext(E ;) defined by /;. The associated cardinal-
ity constraint given by c; = <a, 1> specifies the cardinality of this mapping. Note that
this is a time varying relation since relationship instances and entities may be created

and/or deleted at specified times.

59

Example 4.8: The instance relationship between a cell ¢ and its instantiations i, igcan

be defined in terms of an instance relation /Gepmery :

c € Ext(Cell); iy, i, € Ext(Celllnstance)
(Geomerry, i, ¢), (1120 €) € IGaomery

4.6.4. Other Relationships

A fourth general relationship type (n-ary relation scheme) is also provided. As in the
relational model, this has no particular system-defined semantics, constraints or proto-
cols.

Definition 4.14: An n-ary relation Gy, is defined as:

Gg = ((v}, .., v,) | values or entities v, ...v, are mutually related by relationship R }
Example 4.10: Consider the entity class, relationship and operations specifications for a
VLSI circuit layout database defined in an informal "Schema Definition Language”
below.

/* entity class specifications */
CLASS Cell = (/* layout cell */
ATTRIBUTE
cell_id: INTEGER, /* cell identifier; modelled here as an integer

value, it can also be modelled more generally
as, say, a string value */

cell_type: STRING, /* cell type */
11_comer: Point, /* lower left comer of the cell’s bounding box
in some reference coordinate system */
ur_comner: Point, /* upper right corner of the cell’s bounding box */

component: { Element}; /* set of component elements of the cell */
CONSTRAINT

c_1: RANGE(1 <= cell_id & cell_id <= 4000), /* domain constraint */

¢_2: RANGE(cell_type IN { "NMOS", "CMOS" }); /* domain constraint */

c_7: SUBCLASS(Celllnstance); /* specialization abstraction */
)

CLASS Point = (/* layout point */
ATTRIBUTE
x: INTEGER, /* x coordinate */

: INTEGER,; /* y coordinate */
ONSTRAINT
¢_3: RANGE(]1 <= x & x <= 1024),/* domain constraint */
c_4: RANGE(1 <=y & y <= 1024); /* domain constraint */
)

CLASS Element = (/* layout element */
CONSTRAINT

c_S: UNION (Geometry, Celllnstance); /* specialization abstraction (subclasses) */

)

CLASS Geometry = (/* layout geometry */
CONSTRAINT
c_6: UNION (Box, Port, Wire); /* specialization abstraction (subclasses) */
)
CLASS Celllnstance = (/* a cell (placement) instance */
ATTRIBUTE
instance#: INTEGER, /* instance id */
transform: <INTEGER>; /* placement transformation matrix relative to

the reference coordinate system */
)

CLASS Box =(/* layout box */
ATTRIBUTE
box_id: INTEGER, /* box identifier */
length: INTEGER, /* box length */
width: INTEGER, /* box width */
layer: STRING, /* layer on which the box is placed */
location: Point; /* location of the box in the cell */
CONSTRAINT

¢_8: RANGE(] <=box_id & box_id <= 1024), /* domain constraint */

c_9: RANGE(] <= length & length <= 1024), /* domain constraint */

c_10: RANGE(layer IN ("Metal", "Poly"}); /* domain constraint */
)

CLASS Port = (/* layout port */
ATTRIBUTE
port_id: INTEGER, /* port identifier */
port_type: STRING, /* port type */
direction: STRING, /* port orientation */
location: Point; /* port location */
CONSTRAINT
c_11: RANGE(direction IN {"I", "O")), /* domain constraint */

)c_l2: RANGE(]1 <= port_id & port_id <= 300); /* domain constraint */

ATTRIBUTE
wire_id: INTEGER, /* wire identifier */

61

layer: STRING, /* layer on which the wire is placed */
ints: <Point>; /* the sequence of points defining the wire */
NSTRAINT

)c_13: RANGE(layer IN {"Metal”, "Poly”})); /* domain constraint */

/* entity interrelationships */
REPRESENTATION /* multiple representation abstraction */
Layout (Cell (3], Gate [1]); /* gate and its cell layout; the numbers in
square brackets are association cardinalitics */
/* database operations */
OPERATION
BoxOverlap: Cell -> BOOLEAN, /* semantic integrity constraint:
BoxOverlap(c) is TRUE if some two boxes
on the same layer in cell ¢ overlap
(constraint violated); is FALSE
otherwise (constraint satistied) */
Area: Cell -> INTEGER, /* area of a cell: Area(c) returns the area of cell ¢ */

Scale: Cell * INTEGER ->Cell, /* geometric scaling of a cell: Scale(c, f)
retums cell ¢ scaled by a factor f ¥/

Overlap: Box * Box -> BOOLEAN; /* checks if two boxes overlap:
Overlap(b1, b2) is TRUE if boxes bl and
b2 overlap; is FALSE otherwise */

Figures (4.1) and (4.2) shows the resulting entity class composition and

generalization/specialization hierarchies.

62

1 Has-comp relationship

} is-a relationship

Figure 4.1 Entity Class Composition (Aggregation) Hierarchy

63

-

e

t Is_a relationship

Figure 4.2 Entity Class Generalization/Specialization Hierarchy

4.7. Schema Definition Constraints

The /s —a relationship between entity classes has a many-to-many association cardi-
nality. Thus a given entity class can have muitiple generalizations and specializations.
The Is—a relationship defines a "property inheritance” hierarchy by virtue of the induced
class membership constraint. Thus, member entities of a subclass (having properties of
that class) also belong (recursively) to all its superclasses as defined by the /s—a hierar-
chy (and so have the properties specified by the superclasses). Therefore, in addition to
its own attribute and constraint properties, an entity subclass may redefine some of the

inherited properties subject to the constraints described below.

4.7.1. Attribute Redefinition
The asntribute redefinition constraint ensures that inherited attributes are not

redefined inconsistently by a subclass.
Definition 4.15 If an attribute A: T, in entity superclass E, is redefined tobe A: T; in
entity subclass E ,, then the attribute redefinition constraint requires that:

dom(T) < dom(T'y)
The condition holds trivially when T, and T, are the same atomic types. For set (and
sequence) types S, = (T} (and <T,>) and S, = (T3} (and <T';>), we define:

dom(S ;) ¢ dom(S) iff dom(T',) € aom(T)
where T| and T, may be entity classes or primitive data types. For entity classes £, and
E,, we define:

dom(E ;) cdom(E,) iff (E,, E,) € Is—a*
Furthermore, every multiply defined attribute has a unique most general entity class

where it is defined.

4.7.2. Domain Constraint Redefinition

The domain constraint redefinition constraint ensures that inherited domain con-
straints are not redefined inconsistently by a subclass.
Definitic n 4.16: If a domain constraint D : Pred, defined by superclass E, is redefined to
be D: Pred, in subclass E, then the domain constraint redefinition constraint requires

that:

(Ve € Ext(E,)) (VA € Atrib(E y) U; Aurib(E;) such that (E,, E;) € Is—a*)
(Pred,)){A(e)VA]=>
(VA € Aurib(E,) U; Aurib(E;) such that (E |, E;) € Is—a*) (Pred,)[A (e YA)

which says that for every entity e, € Ext(E,), if (pred))[A(e)/A] (i.c. predicate pred,
with A(e) substituted for A where A is an attribute defined by E, or inherited from its

6S

superclasses in the /s-a hierarchy) is true, then (pred,)[(A(c)/A] is also true. That is, for
every entity in Ext(E ,), if domain constraint D (in E,) is satisfied then so is domain con-
straint D (in E,). The index i in the union ranges over integers such that (€3, E;) € Is-a*
(the transitive closure of /s-a relation). In general, this may not be verifiable statically (at
compile time) due to the undecidability of first-order predicate logic.

Example 4.10: The Cellinstance class can redefine the domain constraint D inherited
from the Cell class to be:

D: (1000 < cell_id & cell_id < 4000)
4.7.3. Key Redefinition
Definition 4.17: If a key K: (A, A,) defined by a superclass is redefined in a

subclasstobe K: {A ', ..., A;'), then the key redefinition constraint requires that:

{A l" ey Ak'} { ot {A s soo At ,
Example 4.12: Again, the Celllnstance class may redefine the key constraint K inherited

from the Cell class to be:
K ={cell_id)
4.7.4. Relationship Definition
The set of representation relationships defined in a valid database schema has to
satisfy the cross relationship constraint defined as follows.
Definition 4.12: Given any two representation relationships:
R; < (i} x Ext(E,) x Exx(E)

RjC (j} x Ext(E ") x Ext(E ")
we define the constraints:

(E,, E,") € HasComp* => - ((E;, E,) € HasComp*)
(Eq, E7) € HasComp* =>— ((E,', E,) € HasComp®*)
for all pairsi and j.
The idea of this constraint is to ensure that the aggregate/component relationship between
entities in one composition subhierarchy is not reversed by the corresponding representa-
tions in another composition subhierarchy.
Example 4.12: Consider the composition and representation relationships defined below:
(Cell, Element), (Adder , Gate) € HasComp*

Riayous gae S (layous_gate } x Exx(Cell) x Ext(Gate)
Riayous_adder < (layous_adder) x Ext(Element) x Ext(Adder)

The above specifications are incorrect since the two representation relationships “inter-

sect” as shown in Figure (4.3) below:

Rayou_gae
Cell I) Adder
HasComp \:><:/ HasComp
‘,"" \\‘~,
Element Gate
Rlayom_amldt:r

Figure 4.3 Cross Relationship Constraint

Analogous cross relationship constraints are defined for version and instance relationship

sets.

67

4.8. Attribute Value Table

Definition 4.12: The set of all attribute values stored in the database at a particular
time ¢ defines the anribute value table (AVT):

AVT = ((¢,A,v)le € Ext(E) forsome E,A € Aurib(E’) for some E' such that
(E,E"e& Is—a®*,and A hastype T,v € dom(T'),and M[AJ(e) =V)

The attribute name (A) and entity (e) together determine the attribute unambiguously.
The system looks up the definition of A starting from e’s (most specific) class and chain-
ing up the /s-a hierarchy. Attribute names can be multiply defined or reused provided
they are in classes which do not share a common descendant, or if so related satisfy the

attribute redefinition constraint.

4.9. Data Model Operations

A set of basic data model operations are defined. All other database operations of
data manipulation, retrieval and update are defined in terms of these basic data model
operations. We provide below an "operational definition” of the semantics of these opera-

tions.

(1) Accessing an entity class extension: Ext(E')

returns the extension of entity class E at the current time instant. For example,

Ext(Gate) returns the set of Gate entities.

(2) Accessing an entity’s class specification: Class(e)

returns the most specialized entity class of which the entity bound to the user-
defined program variable ¢ is a member. The most specialized class of an entity is
always defined at entity creation time as the argument to the CreateEnt operation.

[step 1] retum E such thate € Ext(E) &
—~@E'suchthat (E',E) € Is—a* & e € Ext(E"))

For example, Class(b) returns (say) the entity class Box which indicates that b is a

3)

“)

Box entity.

Creating an entity: e ¢ CreateEnt(E)

creates a new database entity, inserts it into the extension of class E, and recur-

sively, into the extensions of all its superclasses in the /s-a hierarchy, and binds
variable ¢ 10 the newly created entity:

[step l]cruteanewemitze
2] insert e into Ext(E)

[step 3) for all E' such that (E, E') € Is-a*, insert ¢ into Ext(E")

[step 4] retumn e

Note that, after this operation, only the entity identifier is defined. This operation
creates an entity which has all the properties (slots) of class E and all its superc-
lasses, but no values are defined for any of these at this stage. Such an entity could
be a called a "proto-entity”. The attribute values have to be defined subsequently by
invoking the data model operations. It is also possible to assign specified default
aribute and relationship values at this time. For example, the operation i «
CreateEnt(Celllnstance) creates an entity, inserts it into the extensions of Cellln-

stance and Cell and binds it to variable i.

Deleting an entity: DeletcEnt(e)
deletes the entity bound to variable e from the database by removing it from the

extensions of all entity classes of which it is a member:

[step 1] let E « Class(e)
[step 2] delete ¢ from Ext(E)
[step 3] for all £’ such that (E, E’) € Is-a*, delete e from Exty(E")

The relationship instances involving the deleted entity are also deleted (although
this need be done only when the relationship instance is referenced and not at entity
deletion time). For example, DeleteEnt(c) would delete entity bound tw variable ¢
from the database.

(5) Assigning an entity attribute value: SETA(e) = v

(6

assigns value v to attribute A of the entity e. The attribute A must be defined by class
E or one of its superclasses in the /s-g hierarchy. If T is its associated value type,
then v &« dom(T). This model distinguishes between the concepts of “entity iden-
tity"” and "attribute values”; entities can be created without any attribute values hav-
ing been defined. Complex objects can now be built up incrementally by specifying
appropriate attribute values. Thus the class definition only provides a “template”
that defines what attributes are permissible and how they relate to other classes.
Corresponding t0 each subset S of attributes with values defined there can be a
proto(E, S) class. In contrest, the mk-E function constructs an object (or entity) of
type (or class) E from predefined field (or attribute) values without using the notion
of object (or entity) identity. Complex objects will then have to be constructed
"bottom up" progressing from elementary objects to larger aggregates.

[step 1] let E « Class(e)
(step 2] if - (A € Aurib(E)),

then get E' such that (E, E') € Is-a* and A € Aurib(E’) and A has type T
(step 3} if v € don(T'),

then let AVT « AVT - ((e, A,*)) U ((e,A,v))

else return "value type error” message

where, in Step 3, * denotes a wild card character that matches any value. For exam-
ple, Set cell_type(c) = "NMOS" would assign the value "NMOS" to the autribute
cell_type of the entity c.

Resetting an entity attribute value: RESET A (¢)

removes the currently assigned value (if any) of attribute A of entity e.

[step 1] let AVT « AVT - ((e,A,*))
where * denotes a wild card character that matches any value. For example, Reser

cell_type (¢) would remove the assignment made in the example above.

)

8)

)

70

Accessing an entity’s attribute value: A (e)
retumns the value of auribute A of entity e; returns NULL if no value has been

assigned yet or if a Reset operation has been executed.

[step 1] if tuple (¢,A,v) € AV: then return v else return NULL
For example, cell_type (c) would return the value assigned to the cell_rype auribute

of entity c .
Retrieving an_entity set from_the database: RETRIEVE ALL e: E WHERE
(var_def seq|C (e))

retrieves all entities ¢ in Ext(E) such that the condition C(e) is satified;

var_def seq is an optional variable definition sequence that has the form e;: £y, ...,
e,: E, where ¢; are free entity variables and E; are corresponding entity classes.
This operation returns the set:

{ele € Ext(E), ¢; € Exi(E;)and C(e) =TRUE }
For example, RETRIEVE ALL c: Cell WHERE ((Layout, c, g) € Rpy0,) would

etrieve all Cell entities which are Layout representations of the Gate entity g .

Selecting an entity from the database: SELECT e: E WHERE (var_def _seq | C(e))

selects the entity e in Ext(E) such that the condition C (e) is satified; var_def seq is
an optional free variable definition sequence that has the form e: E, ..., ¢,: E,
where ¢; are free entity variables and E; are corresponding types. This operation

returns the entity:

e le € Ex(E), e; € Ext(E;) and C(e) = TRUE

(10) ADT operations: The composite types of Set and Sequence each provide the usual

set of associated abstract data type operators (as described in Chapter 7).

Entity Relationship operations: The following operations are defined for manipulating

the representation relationships.

n

(11) Creating a representation relationship instance: CreateRepli, ¢/, €3)
creates an i relationship instance between the representation entity e, and the

abstract entity 3.

[step 1] insert the wple (i, ¢, e,) into R;.
(12) Deleting a representation relationship instance: DeleteRep(i, e), ¢2)
deletes the relationship instance between entities ¢, and e, defined by representa-

tion relation R;:

[step 1] delete the tuple (i, e}, €) from R, .
(13) Retrieving representations of a given abstract entity: GetRep(i, e7)

returns the set of representation entities for a given abstract entity e, as defined by

the representation relation R; :

[step 1]retumn (e, 1 (i€, e) €R; }
(14) Retrieving the abstract entity corresponding to given representation: GetAbs(i, e)

returns the abstract entity corresponding to the given representation entity (e,) as

defined by the represeatation relation R; :

[step 1] retu™n entity e, such that (i, ¢, €;) € R;
The GetAbs operation del. . an equivalence relation on the representation entities as fol-
lows:
Equiv(e, ¢,") iff GetAbs(i, e,) = GetAbs(i, e)

Analogous operations are defined for version and instance relationships.

Example 4.13: Consider a database of persons, employees and violin players. A partial
schema for such a database is defined by the class definitions in Table (4.2) which results
in the /s-a (subclass of) hierarchy shown Figure (4.4): Person, Employee and Violin

player entities can now be created by means of the CreateEnt data model operation as

72

%;Iigg At%ggsg nstraint
erson ubclass: Employee,
Name Violin-player
Address
Employee Title
Depanment

Violin-player | Skill-level

1

Table 4.2 Partial Database Schema

Person

Employee

Violin-player

1 Is-a (subclass of)

Figure 4.4 Is-a Hierarchy of Classes

follows:

73

p = CreateEnt(Person) /% creates a new entity p which is inserted
into the extension of class Person
(denoted "Ext(Person)” or "Persons™) */

¢ = CreatcEnt(Employee) /* creates a new entity ¢ which is inserted into
the extensions of class "Employee” (denoted
"Employees”) and (by using the "Is-a"
hierarchy) class "Person"” (denoted "Persons™) */

v = CreateEnt(Violin-player) /* creates a new eatity v which is inserted into
the extensions of classes "Violin-player”
("Violin-players™) and "Person” ("Persons”) */

But now the only way to specify that person p is also employec e and violin player vis to
set up a user-defined relationship between entities p, e and v. Alternatively, a new entity

class Violin-player-employee can be defined (statically) as shown in Table (4.3).

(Class e g%g;g Sg%gggi_m
Person e ubclass: Employee,

Name Violin-player, Violin-player-employee
Address

mployee Title
Department

10!:n-player Skiil-level

jolin-player-employee

Table 4.3 Partial Database Schema

The Is-a (subclass of) hierarchy is now modified as shown in Figure (4.5). Now the
operation:

74

{? Employee

Violin-player

Violin-player-employee

T Is-a (subci 'ss of)

Figure 4.5 Is-a Hierarchy of Classes

p = CreateEnt(Violin-player-employee)
creates a new entity p and inserts into extensions of classes Violin-player-employee,

Employee, Violin-player and Person. Thus p will represent (simultaneously) a person, an

employee and a violin player. This brings up the issue of defining new classes by (set)

intersection of the specified entiy class extensions. The class Violin-player-employee

could be defined as the intersection of the classes Employee and Violin-player. The

DBMS can then automatically insert p into the extension of Violin-player-employee. But

this solution involves modifying the /s-a hierarchy dvnamically or there may not always

15

be a most specific class for every entity.

Relaxing the 'most specialized class’ constraint on entities

Consider a new data model operation:
INSERT ENTITY entity INTO entity-class-list

which inserts an existing entity entity into the extension of classes in the list entity class
list and all their superclisses. This permits entities to be specialized dynamically by
inserting existing entit:es into new entity class extensions and defining appropriate new
property values for them. But now an entity may no loger hav:, ~ingle most specialized
class.

Example 4.13a: To define person p simultaneous . - .. . - ..uyee and a violin player,

the following solutionco « . ' &

p = CreateEnt(Pr: .. *..
INSERT ENTTTY .. .0 Employee, Violin-player;

Now entity p represents 1 p> son, an employee, and a violin player, but has no most
specific class. In this case the operation Class(e) returns the set of minimal entity classes
of which e is a member. We can define more general operations than those above which
maintain the concept of a class as corres* - ding to the properties an object has: subc-
lasses have more properties in all cases. The effect obtaized would be the same as if the
quasi-order o.” classes were completed to an intersection semilattice, where all intersec-

tions of classes, if non-empty, are present. The details of this will not be given here.

76

4.10. Structural Integrity Constraints

M

()

The following structural integrity constraints are defined:

Entity Identity: Every database entity has a globally unique identifier which is
independent of its attribute values and relationship instances in which it may partici-
pate. This avoids the need to define keys and associated proliferation of kev unique-
ness, subset and foreign key constraints of the relational model [CoM84]. Whenever
a new entity is to be created, .he system supplies a globally unique identifier. Entity
identifiers are system-defincu and keys are user-defined, but both can be used in
retricval operations. Entity identifiers are made visible by providing a system-
defined attnbute (say) Ent/D. Entity identifiers can be simple integers or structured
with fields corresponding to server name entity name, time of creation, owner etc.
If key attributes are defined, then it is possible for the system to ensure that the key
attribute values uniquely identify an entity; of course there may be several entities

with the same values for some subset of the key.

Referenual Integrity: In our data model referential integ. - (Cod81] is enforced
through abstract domains defined by the entity class extensions. Any entity defining
an attribute value of another entity, or a relationship instance, is verifieu by the sys-
tem to be a member of the appropriate entity class extension. If ~ferenced entity
is not found in its entity class extension, the reference is void and the attribute is
assigned a NULL value, and the relationship instance is deleted from the database.
That is, the deletion of a referenced entity nullifies the reference. Formally, referen-
tial integrity is defined in terms of "valid” values. A value v is valid if:

(a) if v is a basic data type value (including NULL) then it is a valid.

(b) else if v = e (an entity) and e € Ext(E) for some E then v is valid.

(©)elseif v = (vy,...v)orv =<v,,..,vy>and vy, ..., vy are valid values, then v

m

is valid.
Referential integrity in the database can now be enforced by ensuring that:

(a) all entity attribute values are valid:

for all uples (e.A,v) e AVT,e € Ext(E) for some £, 4 ¢ Atnb(E) and,
v is a valid value

(b) all relationship instances are valid:

for all tuples (i, e, e2)in R (and V; and [;):
e, € Ext(E,) for some entity class £, and ¢, € Ext(E,) for some entity class E,
and the relationship functionality constraint is satisfied:
if f; = <m, n>, then:
cardinality({e, 1 (i, e,.€5) € R; (and V; and /;) for a given e; }) Sm
and,
cardinality({e, 1 (i, €),€7) € R; (and V; and [;) fora given e, }) <n
(3) Entity Typing: All entities are "typed” by the entity classes to which they belong.
The generalization/specialization abstraction hierarchy of entiry classes models both
the "type inheritance” an. “inclusion polymorphism” mechanisms [CaW85]. Thus
entities can belong to multiple classes corresponding to different levels of abstrac-

tior :t which they can be viewed.

4.11. Database State

The database state G is defined collectively by the extensions of all the entity classes
in the schema, the attribute value table, and the representation, version and instance rela-

tionships:

C= (<Ext(E,)l i=l, ey N>, AW. U] Rj' Uk Vl , Ul ll UR GR)

78

4.12. Database Operations

The semantics of the design database are partly defined by a set of user-definable,
application-specific data manipulation and retrieval operations which may require the full
power of general programming languages (Turing computability). These operations may
be used to (1) manipulate, query and retrieve information from the database, (2) compute
derived values, or (3) check complex semantic integrity and consistency constraints
specitied nrocedurally. The database operations are specified as functions which map
values from a demain defined by the cross product of domains corresponding to entity
classes, primitive data types or set and sequence data types, to a similarly defined
codomain. Thus . *atabase operation O specifies the function:

(D X..xDp =C 1 %..xCy,
where N, 2ud C; are value domains defined by the atomic types or set or sequence types.
Operana' names can be overloaded (analogous to operators in programming languages)
provid=d they can be distinguished by their input domains D;.

The cofcept of operations in our model differs fundamentally from that in systems
like Smalltalk: operations are not part of a class but have an independent status. An
operation takes data values or entities belonging to a certain cl- s (and potentially to
several different subclasses) as input arguments and returns data values or entities as
result arguments. Hence, there 1s no system-defined inheritance of operations. However,
an operation that takes an entity in a subclass can use an operation that 1akcs an entity in
a superclass, because the entity in the subclass is also in the superclass and has all the
superclass properties.

Example 4.14: Consider the entity classes and operations listed below. The class Win-
dow has subclass Fancy-window. The operation /nser: inserts a specified text string into
the specified coordinate location in a specified window. Similarly the operations Rotate-

79

text, Insert-menu-items and Get-speech act on a specified fancy window. These opera-
tions are implemented as database language* procedures and functions with appropriate

parameters as shown below.

%m%ow ubclass: rancy-window

Fancy-window

Table 4.4 Partial Database Schema

Operation Implementation
Insert PROCEDURE Insert(IN w: Window; x, y: INTEGER; text: STRING)
Rotate-text PROCEDURE Rotate-text(IN f: Fancy-window; angle: INTEGER)

Insert-menu-items PROCEDURE Insert-menu-items(IN f: Fancy-window; items: {Item})
TYPE Item :: x: INTEGER;
y: INTEGER;
text: STRING;

Get-speech FUNCTION Get-speech(f: Fancy-window;
time-interval: INTEGER): Sound

The Insert procedure takes input values w (window), x, y (position) and text (text to be
inserted) and perforins the desired operation. Similarly for the other operations. The pro-
cedure Insert-menu-items can use the Insert operation (which acts on winaows) as fol-

lows:

* described in detail in Chapter 5

PROCEDURE Insert-menu-items(IN f: Fancy-window; items: (Item})
BEGIN

VAR i: Item; x, y: INTEGER; text: STRING;
/* insert items into fancy window using the "Insert” operation */
FOR i = Elems(items) DO
x = x(i); y = y(i); text = text(i);
Insent(f, x, y, text);
ENDFOR
END

The invocation of /nserr above will work correctly because the fancy window f has all the

properties of a window. The Get-speech function can be defined in such a way that it

does not change any properties of f (both as a window and as a fancy window) but associ-
ates a sound with it.
These database operations can be implemented in a variety of ways.

(1) Relation tables may explicitly store the graph of the function defined by the opera-
tion. Data manipulation and retrieval is then defined st of relational algebraic
(table manipulation) operations.

(2) A high-level, query/data manipulation language statement (or group of statements)
may define the result in terms of other, previously defined operations or the basic
data modei operations defined in Section 4.9.

(3) A user-written, high-level integrated "database language™ procedure or function may
process input arguments to compute the desired result. We shall elaborate on such a

database language in the next chapter.

81

4.12.1. Data Manipulation, Querying and Retrieval
Complex data manipulation, querying and retrieval operations can be writic . as
database language routines that use the basic data model operations in appropriate state-

ments.

Example 4.1S: Consider the following partial schemna shown in Table (4.5) below:

\'J
€S1SIor resistance _
Amplifier | resistors Resistor]
Cell amplifier Ampliher)
cell-id | GER

Table 4.5 Partial Database Schema

and the update "Increment the resistance values of all resistors in amplifiers in the cell
with cell-id = 19 by 50%". The following database language program fragment executes

the specified update:

VAR x-set: {Resistor};
x: Resistor;

/* Step 1 [Retrieve the desired resistors | */

x-set = RETRIEVE ALL r: Resistor WHERE (a: Amplifier, c: Cell | (cell-id(c) =
19) & (a IN amplifier(c)) & (r IN resistors(a)));

/* Step 2 [Change the resistances] */
FOR x = Elems(x-set) DO

SET resistance(x) = resistance(x) * 1.5;
ENDFOR

82

4.12.2. Derived Attributes

These can be specified and implemented as databasc operations which compute the
derived values.
Example 4.16: The derived attribute area of a cell entity can be modeled as a database
operation with the mapping specification:

area: Cell — Integer

and can be implemented by the database language function which simply compi*e’, the
area of the rectangle defined by the lower left and upper right corners of the + ...ding

box of the cell as shown below.

FUNCTION area(c: Cell): INTEGER

BEGIN
RETURN ((x(ur_comer(c)) - x(ll_comer(c))) * /* length of cell multiplied by */
END (» ‘ur_corner(c)) - y(ll_corner(c)))); /* width of cell */

Here, x and y are attributes of a Point class which specify the Cartesian coordinates of a

Point entity.

4.12.3. Complex Semantic Integrity and Consistency Constraints

A design database is characterized by complex semantic integrity constraints. In a
VLSI design database, for example, composition, consistency and correctness Conssrainis
may represent "design rules,” mutual consistency of differcnt representations of the same
design entity, or update protocols that define how one part of the database is to be
modified in response to an update to another part. These constraints are specified in
terms of constraint checking functions which can be implemented as database operations
whose execution can be triggered by the D-DBMS in response to user requests or data-
base updates.

83

Example 4.17: The cell composition constraint that two boxes may not overlap on a
given layer can be specified as a constraint checking function BoxOverlap with the map-
ping specification:

BoxOverlap: Cell — Boolean
and can be implemented as the recursively defined database operation shown below:

/* recursive function to evaluate the semantic integrity constraint BoxOverlap:
returns TRUE if boxes on the same layer of the cell overlap (constraint
not satisfied) or FALSE otherwise */

FUNCTION BoxOverlap (c: Cell): BOOLEAN /* ¢ is the formal parameter that
represents the cell entity for
which the integrity constraint is
being checked */
VAR el, e2: Element; /* declare local entity variables */
B:GIN
FOR el = Elems(component(c)) DO /* iterate over the set of components

in cell c; elems is the iterator
that successively yields elements

in the set value component(c) */
IF (el IN Ext(Celllnstance)) /* if the element is a Cellinstance
(Ext is the data model operation
that returns the extension of a
class) ¢/
THEN IF (BoxOverlap(el)) /* recursively invoke BoxOverlap */
THEN RETURN(TRUE),
ENDIF
ELSE FOR ¢2 = Elems(component(c)) DO /* iterate over the set of elements in cell ¢ */
IF (e2 IN Ext(CellInstance)) /* if the element is a Celllnstance */
THEN IF (BoxOverlap(¢2)) /* recursively invoke BoxOverlap */
ENDmlF RETURN(TRUE);

ELSE IF ((e1 IN Ext(Box)) AND (¢2 IN Ext(Box)) AND (layer(el) = layer(e2))
/* elements are both boxes and are on the same layer */
THEN IF Overlap(el, ¢2) /* check two boxes overlap */
THEN RETURN(TRUE);
ENDIF
ENDIF
ENDIF
ENDFOR
ENDIF
ENDFOR

RETURN(FALSE); /* no two boxes on the same layer overlap */

Here, component and layer are attributes defined in the entity class Cell; Overlap is
motbadaubueopenﬁonthuchecksiftwospeciﬁedboxumwahpping.&sen-
tially, the algorithm implemented by the above function does the following for each pair
of Element entities composing the given Cell entity: (1) if either one of them represents a
Celllnstance entity, invoke BoxOverlap recursively; (2) if both of them represent Box
entities on the same layer, then invoke Overlap to check if they overlap.

The function BoxOverlap can be triggered by an integrity subsystem whenever a
box is made a component of a cell. If the function retums TRUE the constraint is violated
and the update is disallowed; otherwise the constraint is satisfied and the update allowed.

4.13. Partially Defined Design Objects in CAD Databases

Here we consider a method for database operations to handle partially defined
design objects which are represented in the design database by entities with values
specified for a subset of «heir applicable attributes. Consider, for example, a database
operation DbOn with the mapping specification:

DbOp: Dy X ... XDy =Dy % ... XDy’
where D; (1 S i< m) and Dj' (1 S j < n) are value domains: entity classes, basic data
types, or set or sequence types. Let the operation be implemented by a database language
procedure DbProc with the calling interface:

PROCEDURE DbProc(IN 0,: D y; ..; O : D OUT 01" Dy'; .., o, D,")
whereo; (1 Sism)ando;' (1] < n) are the formal input and output parameters respec-
tively.

Let the operation DbOp be invoked by the procedure call:

DbProc(@y, ... Gy @1's s Gy")
where g; (1 SiSm)andg;' (1 S j S n) are the actual input and output arguments

corresponding to the formal parameters. These arguments may be entities, atomic values
(ofbaﬁcdmtypa),maseqmﬂxceptintbeﬁmuse(mﬁﬁes), the arguments
are "fully defined", andtheproeedmcanexecuwcamtlywithawen-deﬁnedmam. In
the case of entity arguments, however, correct procedure execution cannot be statically
guaranteed, as entities may represent only "partially defined” design objects: that is, only
some of their attributes may have values specified for them. The dutabase operation invo-
cation protocol requires only the entity identifiers (procedure call by reference or pointer
semantics). A correct execution of the procedure then requires dynamic (run-time) com-
patibility and definedness checks to be made. These checks could be specified by predi-
cates defined within the scope of the procedure that implements the database operation.
Formally, we define a compatibility predicate as follows. If entity e; is an argument
corresponding to the formal parameter o; with "type” entity class C; in procedure
DbProc, then we define the predicate compatible as follows.

(a) if every entity has a single most specialized class:

compatible(e;, 0;) A (Class(e;), C;) € Is—a") OR (Class(e;) = C;)
(b) if entities do not have a single most specialized class:

compatible(e;, 0;) A
(3Ce Class(e;) - ((C, C;)els—a’ OR C=C;) & ¢; €Ext(C))

where the symbol A is to read as "is defined as” and s—a" is the transitive closure of the
Is—a (subclass) relation on entity classes. That is, an entity ¢; belonging to C; or any
subclass of C; is compatible with the formal parameter o;. Since the system automati-
cally inserts an entity belonging to a certain class recursively into all its superclasses as
defined by the Is-a relationship, the compatibility predicate is implemented simply by
checking that ¢; is a member of the extension of class C; (e; € Ext(C;)). Thus, the

86

subclass/superclass class hierarchy provides universal polymorphism by inclusion which
allows an operation to be applied to entities belonging to different classes.
Formally, we define a definedness predicate as follows. Define the DefState function

as follows:

DefState(0;) A (Ay, ..n Ap)
where A, ..., A, are atributes in class C; (both explicit and inherited) such that if the
entity argument corresponding to the formal parameter o; has appropriate non- -NULL
values specified for these attributes, "correct” execution of the procedure is guaranteed.
Thus, the DefState function applied to a formal parameter computes a “sufficiency set” of
atributes. The user may provide the system with a "minimal” sufficiency set of attributes,
or alternatively, provide "hints” on how to compute it. If no such data is supplied, the
system computes the sufficiency set (which may not be minimal) by a static analysis of
the procedure. For an entity argument ¢; corresponding to the formal parameter o;,
define the DefState function as:

DefState(e;)A (Ay, ... Ay’ }
where Ay, ..., A,' are attributes of ¢; that have non-NULL values defined. Multiple attri-
bute definitions with the same attribute name can be disambiguated by considering the
class C; (the class of the formal parameter 0;) and the entity ¢; (the argument) and its
classes. Then, we define the definedness predicate as follows:

defined(e;, 0;,) A(Ay, . JelAy,..Ay")
A et ane 'ate(0;) < DefState(e;)

The procedure DbProc performs the required compatibility and iincdness checks using
the above predicates. If either of these two predicates (compatible and defined) evaluates
10 FALSE, then the procedure is not executed, but an undefined exception is returned. If
the procedure DbProc calls other procedures with entity arguments, then these called pro-
cedures, in turn, perform the compatibility and definedness checks with respect to their

87

parameters and arguments, returning the undefined exception if the predicates evaluate to
FALSE. Thus, the undefined exception can be propagated up the procedure call hierarchy
to the top (user) level where a suitable error message can be printed. By tracing the exe-
cution down through the procedure call hierarchy, it is also possible to indicate where the
undefined exception is raised and which undefined attribute of which entity caused the

exception.

4.14. Summary

In this chapter, we have presented and formally specified a conceptual-level, seman-
tic data model that provides the design database concepts of entities, entity classes, attri-
butes, constraints, entity interrelationships, basic data model operations, and structural
integrity constraints. A unique feature of the model is that it provides a framework for
handling design objects that are partially defined and whose definition can be built up
incrementally. This semantic data model may be described as an entity-oriented model,
because database entities correspond directly to application domain objects. Several
"object-oriented” database systems kave appeared in recent literature. We feel that the
essential criterion for evaluating object-oriented databases should be whether they pro-
vide the notion of a database object (or entity) representing an application domain object.
While object-oriented languages like Smalitalk, C++, Ada etc. provide features that sim-
plify an implementation of the entity-oriented semantic data model, it is by no means
necessary to work within the framework (and hence limitations) of these languages. As
we show in Chapter 5, none of these languages addresses the entire range of issues of
importance in implementing an entity-oriented semantic data model, and hence a new
database language which combines features of traditional object-oriented languages with
database-specific requirements is needed. This integrated database language provides an
interface between the semantic data model and the application domain operations, and

allows clear and concise specification of complex semantic integrity and consistency con-
straints, and application-specific operations. We present the design of such an integrated
database language in the next chapter.

Chapter §
AN OBJECT-ORIENTED DATABASE LANGUAGE FOR A CAD DBMS

8.1. Introduction

A database language provides users with an interface to the database system. Tradi-
tionally this database language interface has been defined at three different levels. The
data definition language (DDL) provides the database administrator a meens of defining
the Aatabase schema in terms of the basic structuring constructs of the data model and the
associated auxiliary information about access privileges, accounting information etc. The
data manipulation language (DML) provides application programmers with a means of
accessing and manipulating the database through database system calls embedded in their
high-level application programs. Typical data manipulation operations may include data
retrieval, data update, and report generation. The data and control (database state) infor-
mation communication between the application program and the DBMS is achieved
through main memory buffers shared between the two address spaces. The query
language (QL) enables the casual, non-programmer user to retrieve data and information
through ad-hoc queries. Typically, query languages are high-level, non-procedural,
command-like languages, which can often be stylized natural language commands.

The design of a database language and its capabilities depend, of course, on the
underlying data model supported by the DBMS. Engineering CAD applications are
highly interactive, iterative, incremental, and involve complex operations and semantic
integrity and consistency constraints. It is therefore necessary to provide designers with a
single, unified interface to the design database that combines data definition, manipula-
tion and query capabilities in an integrated database language. One aspect of current
research on design database systems has addressed this problem of providing a suitable
database language interface. However, as we shall describe below, none of these efforts

89

have been completely successful for two primary reasons:

(1) The database system is based on a classical data model, which as shown previously,
is unsuited for design databases; and,

(2) The database language is seen as an interface that bridges the semantic gap between

the application program/user and the data model supported by the DBMS rather
than as an integrated system that has the required semantics built into it.
The detailed analysis below should therefore convince the reader that a new integrated
database language tailored to capture the abstractions of the design database semantic
data model is an essential component of a CAD database system architecture. In Section
5.9 we describe the design of our proposal for such a database language.

§.2. Database Language Design Issues
The design of a database language centres around the following issues:
« Data Abstraction
+ Polymorphism and Property Inheritance
+ Data Persistence
» Type System Implementation
o System Architecture
 Partially Defined Objects
+ Design Transaction Control
 Set-oriented Retrieval and Processing

We shall cor.sider some of these in some detail below.

91

§.3. Data Abstraction

Abstraction is a powerful concept that enables us to deal with complexity by
separating the speciﬁcaﬁoﬁ. implementation and usage aspects of a software system. The
basicobjecdveofdaxaabsmdonistohidemedeuﬂsofdansmmingﬁomum
and 1o restrict them to using a set of well-defined operations through which they may
access and manipulate the data structure. This enables not only modularization of
software by encapsulating data structures and operations, but also enforces security by
preventing incorrect manipulations of data. Data abstraction in software systems is
achieved through the notion of data ty;.. ~ . fype, in the context of programming
languages, is defined as a set of values (or data objects) - its domain - -+ . > °f legal
operations on these values. Data types help to ensure "authentication" (oniy legal opera-
tions are applied to values), and "protection” (illegal modifications of the representation
are prevented) [Gut80). A data type implementation has two components - its representa-
tion (which defines the structure of the values of the type) and its operators (which define
how the operations are implemented). A comprehensive treatment of the evolution of
abstraction in programming languages is found in {Gua78].

Let us consider the type systems of typical programming and database languages
proposed in recent literature. Aldat [Mer78], Pascal/R [ScM80] and Modula/R [Rei84)
all provide a relation data type which enables them to directly manipulate database rela-
tions using relational algebra or relational calculus. C++ [Str84] provides int (integer),
float (real), and char (character) primitive data types, pointer, array, structure and union
composite data types, and the class construct which enables definition of ADTs. E
[RiC87] extends C++ by providing a dbclass construct that defines a persistent class and
whose instances represent persistent database values. CLU (LiG86] provides the usual

primitive data types, the array, sequence, variant, oneof (union), record, and struct

92

(tuple) composite data type constructors, and the cluster construct which enables
definition of ADTs. Galileo [Alb84, ACO8S] provides the usual primitive data types.
tuple, sequence, union, modifiable value (var) and function composite data type construc-
tors, and a class construct for ADT definition. Poly {(Mat85] is a strongly typed language
that features a data type system in which types consist of sets of objects (which may be
data values or procedures) and a fype mark; types are “first class” values (which can be
created and manipulated at run-time like any other v''ies) and type specifications are
“textual” and are separately compilable units (like the modules of some other languages).
Poly types include the usual primitive data types, the record, struct and union composite

data type constructors (and corresponding operations), and the fype construct that enables
definition of ADTs.

5.4. Polymorphism and Property Inheritance

Cardelli and Wegner [CaW85) provide a taxonomy of forms of polymorphism in
programming languages. Universal polymorphism involves generic procedures (or func-
tions) that can process values from an infinite number of types all having a common
structure. This form of polymorphism is further classified into parametric polymorphism
in which the specific type to which the argument value belongs is implicitly or explicitly
supplied through a type parameter, and inclusion polymorphism which involves viewing
values as belonging to different types with overlapping domains. An example of a generic
procedure which exhibits parametric polymorphism is a length function that returns an
integer value given a list of elements of arbitrary type. Inclusion polymorphism relies on
a hierarchy of types defined by the subtype/supertype relationship between types and the
fact that a value of a subtype can be used in contexts where a value of the supertype is
expected. Such a hierarchy defines an extensional constraint (values belonging to a sub-
type also belong to a supertype; that is, domain(subfype) C domain(supertype)), and an

93

imtensional constraint (operators of a supertype are inherited by the subtype)
[Alb84, CaW8S). For example, in the case where type car is defined as a subtype of the
type vehicle, inclusion polymorphism implies that the domain of car is a subset of the
domainofvehicle.mdhence.evaycarimmweualaoavehickinmnce,mdevery
operation that can be applied to vehicle instances can also be applied to car instances.

Ad-hoc polymorphism, on the other hana, involves a small set of "monomorphic
procedures” that are implicitly invoked to process values from a corresponding small set
of types that do not have any apparent common structure. Ad-hoc polymorphism by over-
loading involves using the same name (or syntactic notation) to denote different pro-
cedures; the selection of a particular procedure depends on the context and the type of
argument value supplied. For example, the addition operator (+) is normally overioaded
10 denote addition of different combinations of integer and floating point values. Ad-hoc
polymorphism by coercion involves an implicit or explicit conversion ¢ a given argu-
ment value to an appropriate value of the desired type expected by the procedure. For
example, an integer value can be converted to a floating point value before an addition
operator is applied.

Let us now consider the data typing and polymorphic features of some high-level
languages. Algol-68 which allows run-time coercions like a two dimensional array with
only one row to be converted to a vector, and pure Lisp with untyped values and plenty
of run-time coercions, illustrate clearly the danger of erroneous results due to coercions
when theyariscﬁompmgnnuningermmdnotbydcsim.mshasledtoamnd
towards strongly typed languages that prohibit automatic coercions and require all coer-
cions to be explicitly specified by the programmer. Simula’s [DMN70] class hierarchy
provides inclusion polymorphism with subclass objects being permitted whenever a
superclass object is expected. Lisp Flavors [WeM81] extends this inheritance hierarchy

94

by allowing multiple immediate superciasses, and Amber (Car84] extends the notion of
inheritance to higher-order functions. ML [Mil84] introduced the notion of parametric
polymophism with type variables that can be instantiated to different types in different
contexts. ML’s type sysiem also enables the most general type that fits a given
speciﬂcaﬁontobeinfmd.aothaitisposdble.foteumple.towriwuemicmm
cedure that works for elements of any type with an ordering relation. Other languages
which provide parametric polymorphism include CLU [LiG86] and Poly (Mat8S]. The
concrete types of Galileo [ACO8S] are organized into a property inheritance hierarchy
based on a system-defined is (subtype) relationship between the types. Classes (and
derived classes) are also organized into a user-defined subset hierarchy that supports
inclusion polymorphism. Taxis (MBW80] is an entity-based database specification
language that provides a tree-structured hierarchy of entity classes, transaction classes
and value classes defined by an /sA relationship that specifies both an extensional con-
straint (subclasses are contained in superclasses) and a structural constraint (properties
are inherited and may be redefined so that the original and the new definitions, in tumn,
satisfy the ISA reladonship). Again this organization supports inclusion polymorphism.
IRIS [Fis87] provides a fype hierarchy defined by the subset/superset relationship
between "object types” that supports multiple (type) inheritance and inclusion polymor-
phism.

In the case of design databases, polymorphic values arise naturally as a consequence
of the generalization/specialization hierarchy of entity classes (entities are members of
multiple classes); and, generic procedures are required to model operations that can be
applied to entities belonging to different entity classes. Consider for example, the VLSI
circuit layout database scheme described in the example given carlier. The entity class
hierarchy defined by the specifications makes a Box entity also a member of the

95

Geometry class, and a Celllnstance entity also a member of the Cell class. Similarly, the
derived v.lue function area is polymorphic as it can be applied to bouwn Celllnstance and

Cell entities.

$.5. Data Persistence
Traditionally, persistence of data has been provided by file and database manage-

ment systems with application programs making service calls these subsystems to

move data between the program’s address space in main memory and the persistent store.

Data persistence in programming languages involves one of the following techniques

[BuA86].

(1) The "all-or-nothing" approach, exemplified by languages like Lisp or Prolog,
enables everything in a program state to be saved on secondary storage ("snapshot”)
and recovered for later execution. This has the disadvantages that the saved state is
not sharable among different users and there is no distinction made between tem-
porary and persistent values.

(2) Replicating persistence involves moving values in and out of secondary storage by
means of explicit input-output requests. Although languages like Pascal and APL
pmvidethiskindofpenistenoe,dmmsemliuﬁuﬁonsonmetypeofvdues
that can be replicated.

(3) In intrinsic persistence every program value is, by definition, persistent and is repli-
cated on secondary storage thus eliminating, at least conceptually, any distinction
between primary and secondary storage.

The problem with the conventional approach to data persistence is the loss of data

abstraction capability provided by the language’s data type system as a result of the map-

ping between main memory and the persistent store. Data persistence and data typing

96

should be viewed as orthogonal properties. That is, all values have a persisience attribute
independent of their data types. Furthermore, a spectrum of data persistence can be visu-
alized. In order of increasing data persistence, different "degrees™ of persistence can be
associated with:

(1) Intermediate values in expression evaluation.

(2) Data values of local variables (in the procedure’s activation record stored on the
stack).

(3) Data values of global variables (stored on the heap).

(4) Data values retained between executions of a program.

(5) Data values retained between executions of versions of a program.
(6) Data values that outlive versions of a program.

In contrast to Pascal or APL, replicating persistence in the database context requ.res that
the type information alsobenplicmdalongwi(hmevalues.sothatwhenthedatabaeis
recovered and referenced subsequently the appropriate type information is available. This
essentially requires making all database values have a "persistent data type” and a "global
scope"” within the application program.

PS-Algol [ABC83] is an extension of S-Algol that transparently provides data per-
sismwuwembkdaubueapplicaﬁauwmmipulmdazbuemdpmmmmues
uniformly. Its data type system consists of scalar types (inseger, real, etc.), vector type
(*T which defines vectors of elements of type T), and a pointer (10 a structure) type (per-
sistent identifier (PID)). Persistent values are stored and manipulated on the heap. The
criterion for persistence of values on the heap is "reachability” of a value starting from a
persistent "root value” defined explicitly by the user. The specification, access and mani-
pulation of persistent values is achieved through a “functional interface” consisting of a

97

set of system-supplied procedures (or functions) callable from the application program.
Wheneveradaubasevalueismovedontothehup(asaresultofacallwthe
open.database procedure) a pointer to the main memory structure representing the data-
base value isretmned(mdlecdlingmﬁne).mpoimer(whichhasthetypePlD)can
beuseduacomponentofothetsuucmwbuﬂdupnminmemympmenuﬁonsof
complex database values. The initial PID value representing the entire database is, of
course, returned by the open.database call. The program variables bound to these PIDs
are global, and on transaction commit or program termination, the updated data values
referenced by these variables are written out to the database.

The database language Amber [Car84] provides replicating persistence through the
dynamic type, which is a most general type whose domain contains all database values of
imerest;adynanﬁcvaluecanbe”coaced"toavalueofappmpﬁawtypeusingthecoercc
instruction provided in the language. The mapping between database values and the (file)
structure on secondary storage is established through extern and intern instructions.

E [RiC87] provides a dbclass (database class) mechanism which is basically a per-
sistent class whose objects (instances) can reside either on secondary storage or in main
memory, and can be explicitly moved between these arcas by the programmer. The
members of a dbclass must all be dbclass objects. Dbclasses are user-definable and may
be parameterized with data type and function parameters. The system provides a set of
built-in dbclasses including dbine, dbfloat, dbchar, dbvoid etc. Pointers to dbclass objects
can be declared just as with normal classes and data types, but operations on such
pointers are restricted to assignment and dereferencing. Dbclass objects can only be
declared “locally,” and are allocated on the heap. E also provides the concept of a file
which is a built-in, persistent dbclass that stores an unordered sequence of dbclass objects
of one specific dbclass. Operations to create and destroy a file instance and to store and

98

retrieve objects are provided by the file dbclass.

In the database context, therefore, persistence is essentially achieved through two
mechanisms: "schema”, which provides a name space, and "persistent values” (of per-
sistent types) which are automatically saved on and retricved from secondary storage.

5.6. Type System Implementation

A type system implements a language’s data type concepts (built-in types and type
constructors) by providing a set of represemtations (data structures), operators (pro-
cedures and functions), and auxiliary procedures that provide polymorphism (type hicrar-
chy, type parameterization, coercion and overloading), and storage management (alloca-
tion, deallocation, garbage collection etc.). If the language includes an ADT feature, then
the type system also provides access controls to regulate access to the type’s representa-
tion instances.

A type’s representation has implications with respect to certain properties of the
type and how its instance structures are allocated and manipulated in main memory. For
example, a mutable set type may have a Liked list representation; now the set denoted by
a variable of the type can be modified efficiently by the type’s operators of insert, delete
etc. A mutable type thus implies that the size of the instance structure can change during
program execution and hence heap storage is required for values of the type. In contrast
animnutabletype’sinstancescucturesamﬁxedinsize.andhencecanbecmtedina
program’s stack area. The other associated concept of relevance to a type’s implementa-
tion is that of value vs. pointer semantics. Value semantics for a type implies that vari-
ables of the type can be visualized as "containing” (abstract) values (or objects) of the
type, and operations like assignment, initialization, argument and result passing, and
equality testing involve distinct objects which may represent the same or different

99

abstract values. With mutable types this means that a scparate instance structure is
required for each variable of the type and operations of assignment and argument and
resylt passing duplicate the instance structure while the equality test compares two dis-
tinct instance structures for equality. With immutable types, however, the instance struc-
tures can safely be shared among multiple variables »f the type that have the same
abstract value. Equality testing then requires checking that the variables are bound to the

same instance structure.

Example S.1: Consider a mutable Stack ADT that provides value semantics. A set of

stack declarations, operations and corresponding semantics can now be written as:

[1] VAR x, y: Stack;/* declare stacks x and y */

(2] i:INTEGER;

[3] x = Push(x, 4); /* assign to x (left value) a stack obtained by pushing 4
on to the stack contained in x (right value) */

[4] x = Pop(x); /* assign to x (left value) a stack obtained by popping the

stack contained in x (right value) */
(5] i = Top(x); /* assign to i the top of the stack x */
[6ly=x; /* assign to y a stack equal to that contained in x */

[MIF(x=y) fad icate is TRUE if both x and y contain "equal” stacks */
THEN ..
ELSE..

The statements in lines 3 and 4 are executed by simply modifying the instance structure
bound to varisble x. The assignment in line 6 duplicates and binds to variable y the
instance structure bound to variable x. The test in line 7 compares distinct instance struc-

tures bound to variables x and y .
Consider now an immutable Complex-number ADT that provides value semantics.
A Complex number declaration, the assignment and complex conjugate operation and

corresponding semantics can be written as:

100

(1] VAR a, b, c: Complex-number; /* declare lex number a, b and ¢ */

2] b=a; /* assign to b the complex number a */

[3] ¢ = Complex-conjugate(a); /* assign to ¢ a complex number obtained by
taking the :}omplex conjugate of the complex
number a

The assignment in line 2 simply binds variable b to the instance structure bound to vari-
able a, while the assignment in line 3 creates and binds to variable ¢ a new instance
structure which represents the complex conjugate of the complex number represented by

the instance structure bound to variable a.

With pointer semantics on the other hand, variables of the type are just pointers to
(abstract) values of the type. Operations like assignment, argument and result passing,
and equality testing involve pointers to the values. Instance structures can now be shared
among multiple variables of the type that have the same value and operations of assign-
ment, argument and result passing just create additional pointers while the equality test

compares pointers to instance structures.

Example 5.2: Consider the mutable Stack ADT that now provides pointer semantics. A

set of stack declarations, operations and corresponding semantics can now be written as

follows:

101

(1] VAR x, y: Stack; /* declare stack pointers x and y */

(2] i:INTEGER;

(3] Push(x, 4); /* push 4 on 10 the stack pointed to by x */

(4) Pop(x); /* pop the stack pointed to by x */

(5] i = Top(x); /‘usigntoithewpofdlesmkgoimedtobyx‘/

6]y =x; /* assign to y the stack pointer x */

(7N1IF (x=y) I icate is TRUE if both x and y point to the same stack */
T}LIEN..
ELSE ..

The operations in lines 3 and 4 simply update the instance structure bound to the variable
x. The assignment in line 6 binds variable y to the instance structure bound to variable x.
The test in line 7 compares the bindings of x and y.

Thus, the two aspects of mutable vs. immutable type and pointer vs. value semantics
interact strongly, and together define the properties of a type and how the type system
implements them.

The other aspect of a type system implementation deals with polymorphism through
type parameterization, type hierarchies, coercion (of values) and overloading (of operator
symbols). Polymorphic procedures and functions are pruc :dures or functions defined
with implicit or explicit type parameters along with specifications of operations that are
to be provided by these types. The type system can then check that argument types satisfy
such constraints. An example of such a type system is that of CLU [LiG86). In CLU, a
polymorphic function p could be defined as:

p = proc [t: type] (x: t) returns(t)
where t has equal:proctype(t, t) returns(bool)

wheretisatypepmmewrwithmeeonsmintthatitprovidcanopmtionequalwhich
testst‘orequalityofvaluesofthetype,andxisfomalargumem.pisnowafunctionthat
takesanargumentvalueoftypetandtet\nnsaresultvaluealsooftypet. The type
hierarchy, which provides inclusion polymorphism, is defined in terms of a

102

subtype/supertype relation between types. The type sysiem can then replace a subtype by
itssupatypestoinfertypeconsistcncy,andhencepamitvaluesofuubtypetobeused
when a value of a supertype is expected. For example, Galileo's [Alb84] type system

defines a "concrete type” hierarchy in terms of an is (subtype) relation as follows:

1)
()

3)

@

&)

(6)

For any type ¢, (¢ is 0).

For tuple types r and s of the form (a;: £y, ... Gy ty)s (7 is s) iff (a) the set of
attributes of r contains the set of attributes of s, and (b) if 7' and s' are the
types of a common attribute, then (7' is s°).

For variant types r and s of the form <a,: ty, ..., @, 1, >, (7 is 5) iff (a) the set
of tags of r is contained in the set of tags of s, and (b) if ' and s’ are the types
of a common tag, then (' is s°).

For sequence types 7 and s of the form "seq " with elements of types 7' and s,
(riss)iff (r'iss").

For modifiable types r and s of the form "var ", (r is 5) iff the associated types
are the same.

For function types (r & s) and (' = s'), (r = 5) is(r'—>s)iff(r'isryand (s

iss').

In implementing polymorphism by coercion, the type system provides appropriate

conversion procedures to convert between instance structures (values) of different types.

For example, an expression (4.6 + 3) is compiled into the expression (4.6 + float(3))

where float is a system library function that converts an integer argument into a real

number and returns the real number. Thus, the language C++ [Str84] provides the fol-

lowing type coercions:

char — short = int — long; float — double; int — double

103

In implementing polymorphism by overloading, the type system replaces the overloaded
operator or function symbol by the appropriate procedure. For example, in C++, an over-
loaded date constructor may be specified as:

date(int, int, int); /> day, month and year */

date(char®); /* date as a string value */
date(int); /* day, assume current month and year */
date(); /* today, the default date */

with a different procedure comresponding to each of these constructors. The type system
will substitute the appropriate procedure depending on the type and number of arguments
in any invocation of the constructor. Stroustrup [Str84) gives an example of a string data
type (defined in terms of C++ class (ADT) facilities) which implements string values as
pointers to string objects, provides value semantics for operators of the type by creating a
copy of the string value whenever required (initialization, assignment and argument pass-
ing in a "call by value" procedure call), and provides all the required storage manage-

ment.

5.7. System Architecture

Typically, there are three approaches to implementing the database language inter-
face:

(1) Special database language constructs are embedded in a host programming language
[Sch80]. These database statements are preprocessed by a preprocessor to generate
host language calls to a DBMS Interface (DBI) module. The resulting database pro-
gram can now be compiled by the host language compiler and linked to the DBI
module at load time if it is precompiled with appropriate procedure linkage conven-
tions; it can also be linked to the DBI module at run time if a Monitor module can
mediate the communication between the application process and an independently
executing DBI process. Examples of this architecture include EQUEL ([Sto74],

104

Modula/R [Rei84), Pascal/R [ScM80), PLAIN [Ker81]. Altemnatively, the database
constructs can be encoded in terms of an intermediate data structure representation
while the pure host language application code is compiled. This allows the system
topachgenndopﬁmizeasetofnlmddaubueopenﬁonsinmof“daubue
transactions” which can take advantage of the underlying database structure for
efficient execution. Adaplex [SFL83] is an example of this approach to implement-
ing a DBMS.

(2) A special-purpose, "integrated” database and programming language is provided to
the application programmer. This enables us to eliminate the "impedance mismatch”
between the two components. Now, database applications written in the integrated
database language can be compiled into machine code by a corresponding compiler
and executed. An example of this architecture is TAXIS [MBW80).

(3) The database language program can be translated into an intermediate encoded
representation (data structure) which can be interpreted at run time by a System
Interpreter component of the DBMS. Examples of this architecture include query
languages like QUEL. [Sto74] and GEM [Zan83), and integrated database languages
like GLIDE2 [EaT79), EFDM [KuA86}, Galileo [ACO85], Poly (Mat85] and
Amber [Car84].

5.8. Integrated Database Language for a D-DBMS: A Conceptual Basis

We shall proceed by listing the semantic data model abstractions to be captured by
the integrated database language, considering how each of these can be provided by the
language system, and discussing the related capabilities and features of several languages
proposed in the literature.

« Entity

108

Entities are the basic abstractions of the design database. From the point of view of the
database language, entities can be modeled by combining the concepts of the abstract
da:arype(ADT)andtheobjectparadigm.AnEnd:yADTwouldpmvidedauaMpro-
cedural abstraction by encapsulating the representation (data structures) and the opera-
tions (procedures) applicable to entities. With the development and subsequent populari-
zation of Smalltalk [GoR83], there has been a proliferation of "object-oriented”
languages, databases and systems. Consequently, object-orientation has become a buzz-
word with different, and often imprecise, meanings. We define below precisely what we
mean by the object paradigm and show how this is useful in the context of our database
language. The object paradigm provides three basic concepts:

(1) Objects which can be visualized as instances of ADTs that encapsulate data struc-
tures and operations on these structures (data abstraction). Thus, any language
which provides an ADT feature can, in a limited sense, be considered an object-
oriented language.

(2) Inheritance of representations and operations by "subtypes” from "supertypes”. This
can be provided by organizing the set of ADTs in the property inheritance type
hierarchy defined by the supertype/subtype relationship, so that subtypes inherit the
data structures and operations from supertypes, and add new data structures and
operations in addition to refining or redefining the inherited data structures and
operations. Again, the existing object-oriented languages exhibit a range of inheri-
tance mechanisms.

(3) Object identity provides each object with a unique identity so that objects can be
assigned to variables, shared among different variables, procedures, programs and
even users, used as building blocks of more complex structures which may, in turn,

be instances of other ADTs, and passed as arguments to and returned as results from

106

procedures. Several existing languages with both ADTs and inheritance, however,
do not provide this notion of object identity, and therefore do not qualify as fully
object-oriented.
Wegner [Weg87) provides a taxonomy of the various forms of the object paradigm and
analyses how these concepts have been manifested in several different programming
languages.

Translated into the context of our proposed database language, therefore, the object
paradigm provides each instance of the Entity AiT with a unique identifier thus enabling
entities to be treated as "first class” values: entities can now be assigned to variables, used
as building blocks of more complcx stru:tures, siuet among multiple structures, passed
as arguments to and returned as results from datatase operations, and as we shall see
later, can be made persistent. Extended languages like Pascal/R or Modula/R have nei-
ther an Entity ADT nor an object paradigm. Enhanced languages like Modula-2 and C++
do not have a built in Entity ADT; C++ for example, provides a class construct that
enables a user to define an Encity ADT, but does not support the object paradigm which
implies a fundamental limitation with respect to its usefulness as a database language.

» Complex Objects

Complex objects, which are sets or sequences of entities and basic data type values, are
another basic abstraction of the design database data model. To implement this at the
database language level, we need parameterized sef and sequence composite types, again
in combination with the object paradigm which enables us to manipulate these complex
objects as atomic entities. Again, most of the proposed database languages do not provide
these composite types although it is possible for the user to define these types using the
ADT facility provided in languages like C++, Galileo (class), Clu (cluster), Poly (type),
and Ada (package).

107

o Classification

Our design database data model provides the classification abstraction in terms of the
class construct. A class extension defines a set of entities that - ‘re a collection of com-
mon properties defined by the class insension. These shareq , perties are defined in
terms of artributes which map entities to values in specified value domains, and con-
strainss which are predicates on the attribute values of an entity. The notion of the class
can also be captured by an ADT, but we choose to keep the notions of ADT and class
orthogonal so that we can combine the two concepts when necessary, and yet be able to
distinguish between them. This design provides us with modeling expressiveness and
flexibility which would otherwise be lost.

Again, several of cthe proposed languages in the literature provide the concept of
ADTs (although the construct that defines an ADT is often called class), but not the
notion of class as a set. A user defined ADT that implements a class as a set in such a
language, however, does not preserve the distinction between the two concepts.
Languages like Galileo, Taxis and Amber provide the notion of a class as set, which,
however, is not orthogonal to the concept of an ADT, and hence the two cannot be com-
bined.

o Generalization/Specialization Hierarchy

This concept enables design entities to be viewed at different levels of abstraction by
allowing them to belong to different classes and letting them inherit the attributes and
constraints defined for these classes. These entity classes are organized in a property
inheritance hierarchy defined by the superclassisubclass relationship between the
classes. Subclasses inherit properties from superclasses thus capwring the
generalization/specialization abstraction. As the inheritance hierarchy can, in general, be
a directed graph (and not just a tree) our model supports multiple inheritance. Inheritance

108

constraints define how properties c*n be inherited from multiple superclasses without
conflicts or ambiguities. Since the database language implements the entity class as a set,
the class generalization/specialization hierarchy defined by the superclass/subclass rela-
tionship can be implemented as a set hierarchy defined by the set inclusion relation. A
second useful consequence of the generalization/specialization abstraction is that it
enables polymorphic operations in which operations with entity parameters belonging to
a certain class can also operate on entities belonging to their subclasses.

Examples ot languages with class hierarchies include C++ and Smalltalk (single
inheritance), and Taxis and Adaplex (multiple inheritance). Other languages like Amber,
Galileo and Poly provide polymorphism through type hierarchies defined in terms of
supertype/subtype relationship between parameterized composite types like tuple, union,
set and sequence etc. Yet other languages like Clu and Ada provide parametric polymor-
phism which involves passing types as arguments to procedures.

« Entity Interrelationships

Our design database data model also provides a set of predefined, “typed”, parameterized
relationships that capture the semantics of the design entity interrelationships like Repr-
of, Version-of and Instance-of. The parameters of such relationship specifications are the
"type” of the relationship (i.c. representation, version or instance), the entity classes
involved, the association cardinality and user-defined procedures (protocols) to be
invoked whenever the basic relationship operations (create, delete, or retricve) are
applied. The database language can provide these interrelationship abstractions as
parameterized ADTs. Again, none of the proposed languages provide the entity interrela-
tionship abstraction which puts the burden of setting up and maintaining such relation-

ships and associated semantics on the user.

109

* Persistence

Design database entities are persistent, which implies that they ,‘ersist beyond an execu-
tion instance of the database program. Conventional approaches to persistence have been
described earlier Section 5.2. Our integrated database language can provide persistence
by making the entity class, the Ensity ADT, and the database schema persistent; tha is,
all entity classes, entities, and values reachable starting from these entities are automati-
cally saved on disk by the system upon program/session termination. This also eliminates
any disiinction betweenmainmemorymddiskudnconcepmdlevelmdtlnumis
presented with a one-level persistent store. There is, therefore, no user-level /O instruc-
dmmqumdwmvedaubetweenmepmmmaddnssspwemddndaubuemdisk.
The systemcan.ofcourse.choosetoopﬁnﬂudleamoumoﬂ/anuixedinsuxin;and
restoring persistent entities by using several techniques including demand-driven 10,
caching, and restoring only updated entities etc. Among the proposed languages only
Poly provides selective persistence although Smallalk, Galileo and Taxis all provide
intrinsic persistence in which all of the program address space is automatically saved by
the system.

« Complex Database Operations, Semantic Insegrity and Consistency Constraints

A design database is characterized by complex operations, semantic integrity and con-
sistency constraints which, in general, require the power of a Turing machine (comput-
able functions) for their specification and implementation. The integrated database
language, therefore, has to be a full-fledged, general-purpose programming language.
The trend in current proposals for integrated database language has thus been toward
increasing computing power, and in fact all of the languages we have discussed above are
Turing complete.

In the next section, we combine the cuncepts discussed above in the framework of a

110

general-purpose, Pascal-like language 10 come up with the design of our /nsegrated Data-
base Language (IDL).

$9. IDL System Design

59.1. Values

The basic elements of IDL are values which are data objects (instances of primitive
aabsmdantypes)auwdmdnmﬁpumedinmmLprommAvdueisamic
data type value, an entity, or a tuple, set or sequence of basic data type values or entities.
Values exist independently of procedure/function invocations. Main memory space for
new values is allocated automatically by the system. The system also reclaims the
memory space allocated to a value when it is no longer "accessible”. Values may be
divided into two categories. Muzable values are those which have a modifiable “state”
which can be changed without changing the “identity” of the value (time-varying
behaviour). Entities, sets and sequences are mutable values. /mmuctable values are those
values which have no modifiable state. Integers, reals, Booleans, strings and tuples are

immutable values.

59.2. Type System
lDLptovidesdiebuicdantypesoflmger.Real.StringandBoolean:tlncompo-

site data types Tuple, Set and Sequence; and, abstract data type Endty. Type

speciﬁcadmsappeuinvuiabkdeclu:ﬁm&“ebasicdautypesmddnmplctypem

immutable types while the composite data types and the abstract data type Ensity are mut-

able types. Each type has an associated represensation.

Integer Type

The values of this basic data type constitute a subrange (defined by the length and format

111

of the bit representation in the machine used to encode integers) of integers in mathemat-
ics. It is an immutable type. The operations of the type are + (sum), - (difference), * (mul-
tiplication), / (division), ** (exponentiation), mod (modulo), and comparison operations
of = (equal), < (less than), <= (less than or equal), > (greater than), and >= (greater than
or equal).

Real Type
Thevaluesofmisbasicdautypemasubset(deﬁnedbydxelengthandfomatofmebit
mptcsentationinmemachineusedtoencodereals)ofﬂ\emalsinmathcmaﬁcs.ltisan
immutable type. The operations of the type are + (sum), - (difference), * (multiplication),
/ (division), ** (exponentiation), float (convert an integer value to a real value), round
(round a real value to an integer value), runc (truncate a real value to an integer value),
and comparison operations of = (equal), < (less than), <= (less than or equal), > (greater
than), and >= (greater than or equal).

String Type

The values of this basic data type are sequences of ASCII characiers. It is an immutable
type. The operations of the type are substr (substring), length, | (concatenate), indexc
(position of a specified character in the string), indexs (position of a specified substring i1
the string), chars (iterator over the characters in the string), and comparison operations of
= (equal), < (less than), <= (less than or equal), > (greater than), and >= (greater than or
equal).

Boolean Type

This basic data type has the values TRUE and FALSE. It is an immutable type. The
Boolennopeutionsm&(AND).l(OR),'(NOI‘).mddlecompu'isonopmtion-
(equal).

112

Sequence Type

Values of this composite type are variable length sequences of elements which can be
basic data type values, tuples, or entities. A Sequence type is specified by applying the
sequence type constructor (<...>) to a specific element type parameter as shown in the

examples below:
<Point> /* sequence of Point entities */
<INTEGER> /* sequence of integers */
<REAL> /* sequence of reals */

The Sequence type is a mutable type, and its values may be manipulated by the type’s
operators described in Chapter 7.

Set Type

Values of this composite type are sets of elements which can be basic data type values,
wples or entitics. A Set type is specified by applying the set type constructor to a specific

element type parameter as shown in the examples below:

{Point} /* set of Point entities */
{INTEGER) /* set of integers */
(REAL} /* set of reals */

The Set type is a mutable type, and set values may be manipulated by the type’s operators
described in Chapter 7.

Tuple Type

Values of this composite type are tuples consisting of sets of atribute-value pairs. A
wple type is specified by applying the tple constructce to specified attribute-domain
pairs. The exampie below shows the specification of a tuple type Event with attributes
signal, value and time:

113

Event :: signal: STRING,
value: BOOLEAN,
time: INTEGER;

The tuple type is an immutable type and tuple values may be manipulated by the type’s
operators described in Chapter 7.

Entity Type

This is an abstract data type. The values of this type represent database entities. A vari-
able whose type is an entity class defines an Entity type object (database entity). As
shown in the example below, the variable ¢ represents an entity belonging to class Cell.

CLASS Cell =(...) /* define entity class Cell; the ellipsis denotes

VAR omitted property specifications */
c: Cell; /* ¢ is a Cell entity implemented as a value of the
abstract type Entity */

The associated /s-a class hierarchy defines an inclusion polymorphism for values of the
Entity type: the entities are members of the extension of their entity classes and also,
recursively, their superclasses in the /s-a hierarchy. The operations of the abstract type
Entity are the basic data model operations defined in Section 4.9.

Type Representations

The basic data types and Set, Sequence and Tuple composite data types have the
representation defined by the structure Value_Rep:

114

struct Value_Rep {

int valuelD; /* value ID (system generated) */
char struct_type{6]; /* structure gpe (Int, Real, Bool,
String, Set, Seq, Tuple, Entity) */

]union ValueType_Rep value; /* actual value */

The Entity abstract data type has the representation defined by the structure Entity:

struct Entity { /* persistent database entity */
int entityID; /* internal entity identifier */
lstmct Class_Def *class; /* pointer to most specific entity class */

The operations of the Entity type are the basic data model operations defined in Section
49.

5.9.3. Variables

Variables are fundamental "things” in the IDL universe. A variable has a rype and
may have a value that it currently denotes. A variable is said to be uninitialized if it does
not denote any value.

(1) Variables can be introduced by variable declarations as shown in the examples below:

VAR
i: INTEGER; /* integer value */
r: REAL: /* real value */
s: STRING; /* string value */
p: Point; /* a Point entity */

point_set: (Point); /*a set of Point entities */
point_seq: <Point>; /*a sequence of Point entitics */

(2) A value may be assigned to a variable.

115

(3) A variable may be used as an expression; the value of such an expression is then the
value denoted by the variable at that time.

5.9.4. Expressions
An expression evaluates to a value in the IDL universe. The simplest form of
expressions arc the value constants (integers, reals, literals etc.) and variables. More
complex expressions air ouilt up vy combining simpler expressions using type Operators,
function invocations and/or value returning data model operations. Most type operators
are specified by an infix or prefix syntax; others are specified as invocations of user-
defined functions. When an expression involving infix or prefix operators is not fully
parenthesized, the proper grouping of subexpressions may be ambiguous. To resolve this
ambiguity, operators are assigned precedence values, and applied in order of decreasing
precedence. The operator precedences are as shown in Table (S.1).

Operator Precedence Table
&(AND) 1
<, <=, =, >, >= 2
+, -, 3
*/ 4
L 2 5
“(NOT) 6
-(minus) 7

Table 5.1 IDL Operator Precedence Table

Opaataswithd\esameprecedencearcapplied&mnlefttoﬁght.

116

59.5. Assignment

Assignment of a value to a variable is a basic operation in IDL and has the form:

x = E; /* xis a variable and E is an expression */

The effect of the assignment above depends on the type of x. If the type of x is a basic
data type or a Set or Sequence type, then a new value (equal to that obtained by evaluat-
ing E) is constructed, and x is set to denote that value (value semantics). If x has the
abstract type Entity or the composite type Tuple then it is set to denote the same value
obtained by evaluating E (pointer semantics). The assignment semantics are illustrated
graphically below. Figure (5.4) shows variables x, y, a, b, u and v with their associated
values. Figure (5.5) shows the state after the following assignments:

= X;
=3,
v=u;

Some examples of assignments are:

i=2; /* i has type INTEGER */

r=3.1412; /* r has type REAL */

flag = TRUE; /* flag has type BOOLEAN */

st = "This is a string"; /* st has type STRING */

int_set={1,2,3); /* int_ sethastype(lN’l'BGER]"/

real_seq = < 32.1, 45.678,091.2 >; /* real_seq type <REAL> */

ent_set={cl,c2,c3 }; /*cl,c2, c3havegpeCelland
ent_set has ell) */

¢ = mk-Event("x", TRUE, 10); /* ¢ has type le s/

In IDL variables hold pointers (left values) to the values they denote. The mutable types

117

are Set, Sequence and Ensity. Updates to values denoted by variables of these types are
defined in terms of the appropriate type operators which abstract from the low-level con-
cemns of manipulating left values. For example, a sequence value can be defined and

manipulated as follows:

VAR s: <INTEGER>; /* declare a sequence varniable */
n: INTEGER;

s = emptySeq(); /* create an empty sequence and bind it to s */

s = append(s, 2); /* append value 2 to the sequence */

s = insert(s, 1, 10); /* insert value 10 in the 1st position in the sequence */
n = select(s, 1); /* select the 1st element in the sequence */

n = length(s); /* compute the length of the sequence */

118

Memory

Entity

Figure 5.1 Variables and Values in IDL

119

x .@ Integer
m Integer

>

u .
Entity

Memory

Figure 5.2 Variables and Values in IDL: The State after specified Assignments

§.9.6. Procedures and Functions

Procedures and functions encapsulate data declarations and control structures within
a local environment. Both procedures and functions perform an action on zero or more
argument values. A procedure terminates without returning any value while a function
terminates by returning a single value of a specified type. Procedures and functions are
generically called routines. A routine declaration has a header and a body. A procedure

120

header specifies a procedure name and a sequence of input and output formal parameters
and has the form:

PROCEDURE name (INP1: T1: oovi P Trvs OUT Prat: Tmals i Pt Tn)i

Here name specifies the name of the procedure, p, through p,, are formal input parame-
ters with corresponding types T, through T,, and p,,,, through p, are formal output
parameters with corresponding types T, through T,. When the procedure is invoked
the input parameters are initialized by assignment of corresponding argument values.
When procedure execution terminates, the output arguments are initialized by assignment
of corresponding formal parameter values computed by the procedure.

A function header specifies a function name, a sequence of input formal parameters,
and a result value rype, and has the form:

FUNCTION name (0: T;: P T): T

where name specifies the name of the function, p, through p,, are formal input parame-
ters with corresponding types T, through T, and T is the type of the result value returned
by the function. When the function is invoked, the input parameters are initialized by
assignment of cotresponding argument values.

Depending on the type of the parameter, this parameter passing protocol is
equivalent to call-by-value (basic data types and the Set, Sequence and Tuple types) or
call-by-reference (the Entity type).

The body of a routine consists of a sequence (possibly empty) local variable
declarations followed by a sequence of IDL statements, and has the form:

121

VAR variable-declaration-sequence
BEGIN

statement-sequence
END

Exceptions and error conditions can be handled at the user’s level by explicitly test-
ing for appropriate pre-conditions using the standard procedure/function parameter

mechanism:

PROCEDURE P (IN x: X; OUT c-code: Integer; c-message: String)
/* declare the procedure with the appropriate exception code and message
parameters */

VAR a: X; code: INTEGER; mess: STRING;

BEGIN
P(a, code, mess); /* procedure call includes the exception
code and message arguments */
IF ~(code = 0) /* test exception code value and process condition */
THEN PRINT mess;

Alternatively, a "SIGNALS exception-name" construct along with "exception handlers”
(routines that trap exception signals and process according to user defined procedures) as
in CLU can be used.

5.9.7. Type Checking

The declaration of a variable specifies its type; that is, the set of values it may
denote. In an assignment, the value resulting from the evaluation of the expression must
be within the domain of the type of the variable. There are no implicit type conversions
in IDL. Thus IDL is a "type safe" language. It is not possible to treat a value of type T as
if it were of another type. IDL is also statically typed in that type checking can be done

122

at compile time: that is, the type of the value that could result from the evaluation of any
expression is known at compile-time. Hence every assignment can be type-checked to
ensure that the variable can be assigned a value of the specified type. The type correct-
ness rule for assignment is: (1) if the variable is an atomic type (a basic data type or
abstract type Entity (of class C), then the expression being assigned must be the same
basic data type or entity type (of any subclass of C as defined by the /sA hierarchy of
entity classes); or (2) if the variable has type Tuple, Set or Sequence, then the expression

must evaluate to a value of the corresponding type.

5§9.8. Statements

IDL is a statement-oriented language: statements are executed for their side effects
and do not return any values. Assignments and procedure invocation are simple state-
ments. Control statemenss direct the flow of control in an IDL program. The following

control statements are provided:

If-then-else

This statement provides control flow selection and has the form:

IF condition THEN statement_sequence-1 ELSE statement_sequence-2 ENDIF

Here, condition is an expression of type Boolean and if it evaluates to TRUE, then the
statement sequence following THEN is executed; otherwise the statement sequence fol-
lowing ELSE is executed. By nesting the if-then-else statements, a multiway control flow
branching can be achieved.

While-do

This statement provides conditional iteration and has the form:

123

WHILE condition DO statement_sequence ENDWHILE

This repeatedly executes the stasement_sequence as long as condition remains TRUE; the

statement terminates when condition evaluates to FALSE.

For-do
This statement provides unconditional iteration and has the form:

FOR loop_var = iterator DO statemens_sequence ENDFOR

An iterator iterates over the elements in its argument by returning individual elemeats on
successive calls. It is implemented as a coroutine that saves its state between invocations.
IDL has the following iterators:

(1) Elems - for Set and Sequence types

(2) Chars - for String type

(3) From-to and From-to-by - for Integer type

When the iterator is used in a For-do loop, in each iteration the loop variable is bound to
the clement returned by successive calls to the iterator as shown in the following exam-

ple:
VAR s: {Gate]; /¥ s 1s a set of gates */
q‘:lGue; /* q is a (pointer to a) gate */
FOR q = Elems(s) DO /* q is bound to successive clements in the set s */
ENDFOR /* do the desired gate operation */

When the iterator signals :he end of the sequence, the for-do statement terminates.

124

Break
This statement terminates the execution of the smallest enclosing for-do or while-do
loop:

BREAK;

Import-database
This statement initializes the database program environment by reading in (from the
specified directory) the database (schema + values) saved from a previous session:

mnmou Nl
dc?nhue zi]!io " from directory "/visi/project/cpu” */

Define-database
Thhsamnmtmupadaubaumenvimnmtwid\dnspeciﬁednm; this is
saved in the specified directory when the session is exited:

DEFINE-DATABASE cpu IN Nvis/project/cpu
/* defines daubue named " and saves in directory
“Mvisi/project/cpu” upon exit session */

Close-database
This statement terminates an interactive database session by saving the database eaviron-

ment in the direc sory (specified at the start of the session) and exiting:

CLOSE-DATABASE cpu /* saves the database environment "cpu" in the specified
dn'ectol'y and exits */

mhnmgedsoptwidesusmemudnbasicdmmdelopatﬁommnnwdifydn
database.

125

$.9.9. Modularization

An IDL program consists of a group of database, procedure, function declarations
and a sequence of IDL statements. Database declarations provide definitions of entity
classes, variables and their types, and specifications of database operations. An environ-
ment is defined in terms of scoping units. IDL provides two levels of scoping. A global
scope extends from a define-database or an import-database statcment to a close-
dambasesmemenLAlocalscopeextendsﬁunmepmcedmﬁuncﬁmhnderwd\e
corresponding end (procedure/function) construct. Every local scope is nested within the
global scope. There are as many local scopesast.herempmcedmcsmdfunctionsinme
IDL program. Local scopes cannot be nested within cach other. Variable declarations in
the global scope are visible in the local scope, except when local declarations override
global declarations with the same name.

5.10. Summary

This chapter has discussed the design issues of relevance to integrated database
languages including data abstraction through composite and abstract data types, polymor-
phism and property inheritance, data persistence, type system implementation and system
architecture. Several contemporary approaches to these issues are presented and com-
pared in the context of different languages and systems proposed in recent literature.
These ideas are then synthesized into a conceptual basis for the design of an integrated
database language for a CAD database system based on the semantic data model
prcsemedinClmptutt.’l‘lledesimofsuchahnguagecalledmLismendescribed.’l‘he
proposed language is an object-oriented procedural language that provides, in addition to
the standard features of a general-purpose language, structured parameterizable types of
Tupk.SamdSequnce.dwabmqpeEndtythamdeuaduigndaubueobjecu
and the data model concepts of entity classes, entity interrelationships, structural

126

abstraction hierarchies and bsic data model operations. Formal specifications of the
semanﬁcdaumodelandlDL.mdlprototypeimplcmenudmofasmwnnedvtluc
module are given in the next chapter.

Chapter 6
DESIGN DATABASE SPECIFICATION: AN ILLUSTRATIVE EXAMPLE

6.1. Introduction

In this chapter we shall present an illustrative case study involving the design and
specification of a 4-bit adder using the design database system described in chapters 4
and S. There are several different VLSI circuit design methodologies and techniques that
can be used. A complete design specification involving all the different representations of
the adder circuit, the design integrity constraints, and the analysis and synthesis tools
used in various phases of the design would, of course, be very complex. For a complete
and detailed information on VLSI design systems and techniques, the reader is referred to
the following sources: [MeC80, Rub87, Seq83]. In this chapter, we shall focus on (1) the
schematic (logic gate) and layout (transistor network) representations of a design; (2) the
operations for creating a database instance containing the design and specification of a
4-bit adder; and (3) logic simulation and timing analysis as representative design process-
ing tasks, and how they can be implemented using the design database system. The
design methodology and some of the terminology is based on the ELECTRIC [Rub87]
design system.

6.2. Database Scheme

The database scheme consists of a set of type, class, relationship and operation
specifications. A layout representation of a VLSI circuit is defined in terms of transis-
tors, ports, ¢--«acts, poly wires which constitute the layout primitives (blocks), and cells
which are aggregations of components which may be layout primitives or other instances
of predefined cells. Instances of the primitives are defined in terms of corresponding

instance entities and many-to-1 instance relationships between instance and master enti-

127

128

ties. Transistors are the basic units of the VLSI circuit layout, and are modeled by the

class Trans:

CLASS Trans = (/* transistor layout primitive */
ATTRIBUTE
type: TransType, /* transistor type; "TransType" is an enumerated type */
ports: {PortInst), /* transistor’s ports (signal terminals) */
struct: {Box}, /* mask geometry that defines the transistor */
delay: INTEGER;/* propagation delay */
CONSTRAINT
) k: KEY (type);

Transistor instances are specific placements of a transistor, and are modeled by the class
Transinst and the instance relationship /1:

CLASS TransInst=(/* transistor instance */

ATTRIBUTE

instID: INTEGER, /* instance id */

position: Point, /* location of the transistor instance */
CONSTRAINT

k: KEY (instID);

)

INSTANCE I1 (TransInst{M], Trans{1]) /* M(any)-to-1 instance relationship
between transistor instance and
transistor entities */

Ports define connection points ¢ ransistor, and are modeled by the class port:

CLASS rort = (/* port layout primitive */
ATTRIBUTE
name: STRING, /* port name */
struct: Box, /* mask geometry */
direction. BOOLEAN; /* O=in, 1=out */
CONSTRAINT
k: KEY (name);
)

Port instances are specific placements of a port, and are modeled by the class Portlnst
and the instance relationship /2:

129

CLASS Portlnst = (/* port instance */
instID: INTEGER, /* instance id */
position: Point, /* location of the port instance */
signal: Signal; /* logic signal carried by the port */

) k: KEY (instID);

INSTANCE 12 (Portinst{M], Port[1]) /* instance relationship between
port instance and port entities */

Contacts are circuit layout elements that provide connection points into the VLSI circuit

chip from the external world, and are modeled by the class Contact:

CL.ASS Contact = (/* contact layout primitive */

ATTRIBUTE
type: ContactType, /* contact type; "ContactType" is an
enumerated type */
ports: (PortInst), /* transistor ports connected */
struct: {Box}; /* mask geometry */
CONSTRAINT
k: KEY (type);

Contact instances are specific placements of a contact, and are modeled by the class Con-

tactInst and the instance relationship /3:

CLASS Contactlnst = (/* contact instance */

ATTRIBUTE

instID: INTEGER, /* instance id */

position: Point, /* location of the contact */
CONSTRAINT

k: KEY (instID);

)

INSTANCE I3 (ContactInst{M], Contact[1]) /* instance relationship between
contact instance and contact
entities */
Poly wires define connections that carry signals between port instances, and are modeled

by the class PolyWire:

130

CLASS PolyWire = (/* poly wire layout primitive */

ATTRIBUTE
from: Portlnst, /* from port instance */
to: Portinst, /* 1o port instance */
delay: INTEGER; /* propagation delay */
CONSTRAINT
) k: KEY (from, to);

The mask geometry of the VLSI circuit is defined in terms of the graphics primitives box
(modeled by the class Box) and poins (modeled by the class Point):

CLASS Box =(/* box graphics primitive (mask geometry) */
ATTRIBUTE
width: INTEGER, /* box width (x-axis) */
height: INTEGER, /* box height (y-axi) */
1Corner: Point, /* box’s lower left corner */
layer: LayerType; /* box’s mask layer; "LayerType" is an enumerated type */

CONSTRAINT
k: KEY (llComer, layer);
)
CLASS Point = (/* point primitive */
ATTRIBUTE

xCoord: INTEGER, /* x-coordinate */
: INTEGER; /* y-coordinate */
NSTRAINT
k: KEY (xCoord, yCoord);
)

Cells are user-defined aggregations of instances of the layout primitives, and are

modeled by the class Cell:

CLASS Cell = (/* cell layout primitive */
ATTRIBUTE
name: STRING, /* cell name */
struct: {Element}; /* cell composition structure */
exPorts: <Portinst>; /* exported (interface) ponts of the cell */
CONSTRAINT
) k: KEY (name);

The structure of a cell is defined by a set of elements (cell, transistor, port, contact

instances, and poly wires) which are modeled by the class Element:.

131

CLASS Element = (/* element layout primitive */
CONSTRAINT
m: UNION (CellInst, TransInst, Portinst, Contactinst, PolyWire);
)

Cell instances are specific placements (defined by a transformation matrix) of a cell, and

are modeled by the class Celllnst and the instance relationship /4:

CLASS Celllnst = (/* cell instance */
ATTRIBUTE
instID: INTEGER, /* instance id */
transMatrix: <INTEGER>; /* cell placement transformation matrix */
CONSTRAINT
k: KEY (instID);
)

INSTANCE 14 (Celllnst[M], Cell(1}) /* instance relationship between cell
instance and cell entities */

A library is a user-defined collection of cells:

CLASS Library = (/* cell library */
ATTRIBUTE
name: STRING, /* library name */
collection: {Cell}; /* library cell collection */
CONSTRAINT
k: KEY (name);
)

The sernantic integrity constraints on a layout include design rules (spacings, clearances,
overlaps and orientations etc.) and connectivity (all poly wires interconnect appropriate
port instances, and no dangling wires).

A schematic representation is defined in terms of logic gates (AND, OR, XOR etc.),
function blocks (adders, registers etc.), and logic signals which constitute the schematic
primitives.

CLASS Signal = (/* logic signal schematic primitive */
ATTRIBUTE
name: STRING, /* signal name */
value: BOOLEAN; /* logic value */
CONSTRAINT
k: KEY (name);
)

132

CLASS AND = (/* AND gate schematic primitive */
ATTRIBUTE
in: (Signal}, /* input signals */
out: Si /* output signal */
delay: GER; /* gatedelay */
CONSTRAINT
) k: KEY (in, out);
CLASS OR =(/* OR gate schematic primitive */
ATTRIBUTE
in: (Signal}, /* input signals */
out: Si /* output signal */
delay: GER; /* gatedelay */
CONSTRAINT
k: KEY (in, out);
)
CLASS XOR = (/* exclusive OR gate schematic primitive */
ATTRIBUTE
in: (Signal), /* input signals */
out: Signal, /* output signal */
delay: INTEGER; /* gate delay */
CONSTRAINT
k: KEY (in, out);
)

The database is further structured in terms of design technologies and environments. A

technology is a collection of layout, schematic or other primitives.

CLASS Technology = (/* VLSI design technology */
ATTRIBUTE
techGroup: STRING, /* technology group name */

grougSpec: TechGroup; /* technology group */
CONSTRAINT
k: KEY (techGroup);

)
CLASS TechGroup = (/* wechnology group */
CONSTRAINT
m: UNION (LayoutGroup, GraphicsGroup, SchematicGroup);
)

A layout group is a collection of layout primitives:

CLASS LayoutGroup = (/* layout group */
ATTRIBUTE
name: STRING, /* layout group name */
collection: {LayoutBlock}; /* layout primitives collection */
CONSTRAINT
k: KEY (name);
)
CLASS LayoutBlock = (/* layout primitive */
CONSTRAINT

m: UNION (Trans, Port, Contact, PolyWire);
)
A graphics group is a collection of graphics primitives:

CLASS GraphicsGroup = (/* graphics group */
ATTRIBUTE
name: STRING, /* graphics group name */
collection: {GraphicsBlock}; /* graphics primitives collection */
CONSTRAINT
k: KEY (name);
)
CLASS GraphicsBlock = (/* graphics primitive */
CONSTRAINT

m: UNION (Box, Point),
)

A schematic group is a collection of schematic primitives:

CLASS SchematicGroup = (/* schematic group */
ATTRIBUTE
name: STRING, /* schematic group name */
collection: {SchematicBlock}; /* schematic primitives collection */
CONSTRAINT
k: KEY (name);
)
CLASS SchematicBlock = (/* schematic primitive */
CONSTRAINT

m: UNION (AND, OR, XOR, NAND, INV); /* AND, OR etc. gates */
)

An environment is a collection of technologies:

133

134

CLASS Environment = (/* visi design environment */

ATTRIBUTE
name: STRING, /* environment name */
collection: {Technology}; /* collection of technologies */
CONSTRAINT
k: KEY (name);

)
The Has-comp and Is-a class interrelationship hierarchies defined by the definitions

above are shown in Figure 6.1.
Environment
Technology
TechGroup
o’ ! s -
o’ ! e
-7 - 'L =~ e
LayoutGroup GraphicsGroup SchematicGroup
LayoutBlock GraphicsBlock SchematicBlock
——= Has-comp relation - ~-> [s-arelation

Figure 6.1(a)

135

LayoutBlock
7 . -
[} \\ ~‘\\
’ \ S
[\ ~
[AN s
-~
'I [N ‘\‘
\ -

- == <> Ig-a relation

——» Has-comp relation

OR INV XOR AND]
< \ 14
) S ~ \\ I" ’ ’
~ \ .
A \

Figure 6.1(b)

136

Library
Cell

PolyWire ——— Element - Portinst

Pid -* ') S~ -~
L4 s | s ~ L
&’ s ' \\
'/' ! S
-2 1 -
Cellinst Translnst Contactinst
----> [s-a relation —= Has-comp relation
Figure 6.1(c)

Figure 6.1 Has-comp and /s-a Class Interrelationship Hierarchies

137

6.3. An Utility Library

An uwtility library of procedures and functions provides several useful operations
that can be used in conjunction with the class definitions given in the previous section.
We describe some of these operations that are of immediate relevance; other more spe-
cialized ones can be defined by the user.

« MakeBox creates a box with specified attribute values:

FUNCTION MakeBox (width, height: INTEGER; lIComer: Point; layer: LayerType): Box
VAR b: Box;

BEGIN
b = CreateEnt(Box);
SET width(b) = width;
SET height(b) = height;
SET liComer(b) = liCorner;
SET layer(b) = layer;
RETURN (b);

END

« MakePoint creates a point with specified x and y coordinates:

FUNCTION MakePoint (xCoord, yCoord: INTEGER): Point
VAR p: Point;

BEGIN
‘S, = CreateEnt(Point);

ET xCoord(p) = xCoord;
SET yCoord(p) = yCoord;
RETURN (p);

END

138

« MakeTrans creates a transistor from given interface and structure specifications:

FONCTTION MakeTrans (type: TransType; ports: [Portnst]; struct: (Box]): Trans
VAR t: Trans;

BEGIN
t = CreateEnt(Trans);
SET type(t) = type;
SET ports(t) = ports;
SET struct(t) = struct;
RETURN (t);

END

o MakePort creates a port from given interface and structure specifications:

FUNCTION MakePort (name: STRING, struct: Box, direction: BOOLEAN): Pont
VAR p: Port;

BEGIN
g = CreateEnt(Port);
ET nsme(p) = name;
SET st - (p) = struct;
SET dirv. 1.’ m(p) = direction;
RETYV? ()
END

« MakeContact creates a contact from given interface and structure specifications:

FUNCTION MakeContact (type: ContactType; ports: (Portnst]; struct: {Box}): Contac:
VAR c: Contact;

BEGIN
¢ = CreateEnt(Contact);
SET type(t) = type;
SET ports(t) = ports;
SET struct(t) = struct;
RETURN (c);

END

« MakePortinst creates a port instance of a given port at a specified position:

139

FUNCTION MakePortnst (p: Port; position: Point): Portlnst
VAR i: Portinstance;

BEGIN
i = CreateEnt(PortInst);
SET instID(i) = GetUniquelD();
SET position(i) = position;
Createlnst(12, p, i);
RETURN ();

END

« MakePolyWire creates a poly wire conmecting specified port inssances:

FUNCTION MakePolyWire (from, to: Postlnst): PolyWire
VAR w: PolyWire;

BEGIN
w = CreateEnt(PolyWire);
SET from(w) = from;
SET to(w) = to;
RETURN (w);

END

 MakeCell creates a cell with specified name and structure:

FUNCTION MakeCell (name: STRING; struct: {Element]; exPorts: <PortInst>): Cell

VAR c: Cell;

BEGIN
¢ = CreateEnt(Cell);
SET name(c) = name;
SET struct(c) = struct;
SET exPorts(c) = exPorts;
RETURN (c);

END

140

« MakeSignal creates a signal with the specified name:

1 name: : Signal
VAR s: Signal;
BEGIN
s = CreateEnt(Signal);
SET name(s) = name;
RETURN (s);
END

« MakeXOR creates a XOR gate with specified name and interface signals:

name: :1n1, in2, out: Signal): XOR
VAR x: XOR;

BEGIN
x = CreateEnt(XOR);
SET name(x) = name,
SET in(x) = {inl, in2};
SET out(x) = out;
RETURN (x);

END

Other operations that create entitics in other classes and manipulate them can be similarly
defined.
6.4. Defining a 4-bit Adder

The schematic representation of a 4-bit adder is defined in terms of the class Four-
BitAdder:

141

CLASS FourBitAdder = (/* 4-bit adder */

ATTRIBUTE

name: STRING, /* adder name */

x: <Signal>, /* input 1 (4 bits) */

y: <Signal>, /* input 2 (4 bits) */

sum: <Signal>, /* sum (4 bits) */

cin: Sigml, /* carry in */

cOut: Signal, /® carry out */

struct: <FullAdder>; /* composition structure */
CONSTRAINT

k: KEY (name);
r: RANGE (Length(x)=4 & Length(y)=4 & Length(sum)=4 & Length(struct)=4);

)
The interface of the 4-bit adder is defined by the signals x, y, sum, cIn and cOut, while its

structure is defined by an array (of size 4) of full adders (Figure 6.2).

142

x[1]

y(1]

x{2]

y(2)

x(3]

y(3]

x[4]

yl4)

Full
Adder

-» sum(1]

-» sum(2]

Full

| Adder

sum(3)

carryOut

sum(4]

Figure 6.2 4-bit Adder. VLSI Circuit Schematic

143

The schematic representation of the full adder is defined in terms of the class FullAdder:

CLASS FullAdder = (/* full adder */

ATTRIBUTE
name: STRING, /* adder name */
x: Signal, /* input 1 */
y: Signal, /* input 2 */
sum: Signal, /* sum */
cln: Signal, /* carry in */
cOut: Signal, /* carry out */
struct: { SchematicBlock); /* composition structure */

CONSTRAINT
k: KEY (name);

)

The interface of the full adder is defined by the signals x, 3, sum, cIn and cOuws, while its
structure is defined by a set of schematic blocks (half adders and XOR gate) (Figure 6.3).

carryin

x ———
HalfAdder HalfAdder

—

T |]
B}

Figure 6.3 Full Adder: VLSI Circuit Schematic

TThe schemanic representation of the half adder is defined in terms of the class HalfAdder:

144

CLASS HalfAdder = (/* half adder */

ATTRIBUTE

name: STRING, /* name */

x: Signal, /® input 1 */

y: Signal, /® input 2 ¢/

sum: Signal, /* sum */

carry: Signal, /* carry */

struct: {SchematicBlock}; /* composition structure */
CONSTRAINT

k: KEY (name);

)
The interface of the half adder is defined by the signais x, y, sum, and carry, while its

structure is defined by a set of schematic blocks (NAND, INV and XOR gates) (Figure
6.4).

XOR
X
D e e

NAND INV

Figure 6.4 Half Adder: VLSI Circuit Schematic

The Has-comp class interrelationship hicrarchy defined by the above specifications is
shown in Figure 6.5.

145

FourBitAdder e cc e e

\\\ Signal /

L4
e = = = = = =

”’
~
e ccccr e e _ e m e n .- —----wo=aed

/
Schematic Block ’—Ig J

- - => Is-arelation

—-» Has-comp relation

Figure 6.5 4-bit Adder: Has-comp and Is-a Class Interrelationship Hierarchy

To create a database instance of the schematic representation of a 4-bit adder we define

the following procedures and functions (in IDL).

146

« MakeF ourBitAdder creates a 4-bit adder entity from given interface specifications:

FUNCTION MakeFourBitAdder (name: STRING; X, y, sum: <Signal>;
cIN, cOut: Signal): FourBitAdder

VAR f: FourBitAdder:; 1: <FullAdder>; c: <Signal>;
uName: <STRING>; u: FullAdder;

BEGIN
f = CreateEnt(FourBitAdder);
SET name(f) = name;
SET x(f) = < x[1], x[2], x[3], x[4]>;
SET y(f) = < (1], (2], (3], y(41>;
SET sum(f) = < sum([1], sum(2], sum(3], sum{4]>;
SET cIn(f) = cln;
SET cOut(f) = cOut;
1 = emptySeq();
uName = InputFullAdderName(name, 1);
u = MakeFullAdder(uName, x[1], y{1]. sum[l] cln, c[1]);
Append(l, u);
uName = InputFullAdderName(name, 2);
u = MakeFullAdder(uName, x(2}, y[2], sum[2], c{11], c[2]);
A nd(l. u);
InputFullAdderName(name, 3);
u = MakeF l1Adder(uName, x{3], y[3], sum(3), c[2], c[3]);
Append(l, u);
uName = InputFullAdderName(name, 4);
u = MakeFullAdder(uName, x[4], y(4], sum[4], c[3], cOut);
Append(l, u);
SET stuct(f) =1;
RETURN (f);
END

147

« MakeFullAdder creates a full adder entity from given interface specifications:

FUNCTION MakeFullAdder (name: STRING; x, y, sum, cIN, cOut: Signal): FullAdder

VAR f: FourBitAdder; s: <Signal>;
al, a2: HalfAdder; xor: XOR; aName, xName: STRING;

BEGIN
f = CreateEnt(FullAdder);
SET name(f) = name;
SET x(f) = x;
SET y(f) =y;
SET sum(f) = sum;
SET cIn(f) =cln;
SET cOut(f) = cOut;
aName = h'\ﬂnlft}hlfAdderNam(nm, 1);
al = MakeHalfAdder(aName, x, y, s{1], s[2]);
aName = InputHalf AdderName(name, 2);
a2 = MakeHalfAdder(aName, s[11, cIn, sum, s{3]);
xName = InputXORName(name);
xor = MakeXOR(xName, s[2], s(3], cOut);
SET struct(f) = { al, a2, xor };
RETURN (f);
END

148

« MakeHalfAdder creates a half adder entity from given interface specifications:

FUNCTION MakeHalfAdder (name: STRING; x, y, sum, carry: Signal): HalfAdder

VAR h: HalfAdder; s: Signal; xor: XOR; n: NAND; i: INV;
gName: STRING:;

BEGIN
h = CreateEnt(Half Adder);
SET name(h) = name;
SET x(h) = x;
SET y(h) = y;
SET sum(h) = sum;
SET carry(h) = carry;
gName = InputGateName(name, "XOR");
xor = MakeXOR(gNarme, x, y, sum);
gName = InputGateNamz(name, "NAND");
n = MakeNAND(gName, x, y, s);
gName -[}‘ngutGateName(nm. "INV"™);
i = MakeINV(gName, s, carry),
SET struct(f) = { xor, n,i };
RETURN (h);
END

To create a layout representation of the adder defined above, first we use a sequence
of make functions that create the appropriate transistors, ports, poly wires etc. Then a cell
that implements the 4-bit adder composed from these layout primitives is defined. The
"exported" ports of this cell are those that carry the interface signals used in defining the
schematic representation of the 4-bit adder. A correspondence between the cell (layout)
and the functional four bit adder (schematic) is now set up in terms of a representation
relationship R1 defined as follows:

REPRESENTATION R1 (Cell{M], SchematicBlock(1])
An instance of this representation relationship is created and and the interface signals of
the 4-bit adder are assigned to the exported ports of the cell by means of a SetUpRep pro-

cedure as follows:

149

PROCEDURE SetUpRep (IN relName: REPRESENTATION;
c: Cell, s: SchematicBlock; interface: <Signal>)

VAR i: INTEGER; p: Portlnst;

BEGIN
CreateRep(relName, c, 8);
FOR i = 1 TO Length(exPorts(c)) DO
p = (exPorts(c))(1]; .
SET signal(p) = interface(i];
ENDFOR
END

In the procecure above, the parameters relName is the representation relationship name
RI; ¢ is the cell that defines the layout representation of the 4-bit adder s; exPorts is the
sequence of exported port instances in the cell that correspond to the sequence of inter-
face signals interface defining the 4-bit adder.

6.5. Design Database Processing

VLSI design involves processing design data by several different design tools at
various stages in the design process. A number of these tools have been developed for
static and dynamic analysis, simulation, verification and optimization of the VLSI circuit
being designed. Each of these tools expects its input and produces its output in specified
structured formats. Hence, before a design tool can be invoked to process the design data,
it is necessary to create the appropriate input data structures for it. These structures can
be considered as defining external-level views on the stored data in the design database.
Similarly, the output generated by the design tool is another exteral view which has to
be converted back into the internal structure to update the database. Examples of design
tools include design rule checkers, electrical rule checkers, test generators, routers,
automatic layout generators, placement tools, silicon compilers, circuit-level simulators
(SPICE ([Nag?75], switch-level simulators (RSIM (Ter83]), RNL (BaT80] etc.), logic

150

simulators (CADAT (HHB8S), MARS (Sin83]) etc.), timing analyzers, and functional
verifiers etc. In the following sections we discuss timing analysis and gate-level logic
simulation techniques, and illustrate how these tasks can be implemented using our
design database system.

6.5.1. Logic Simulation

Logic simulation consists of determining circuit bchaviour as a function of time.
This technique is appropriate when it is impossible or prohibitively expensive to derive a
closed-form analytical solution describing circuit behaviour. Essentially, logic simulation
involves computing the circuit output (signal values at specified output terminals) as a
function of particular circuit input called a test vector (signal values at specified input ter-
minals). Logic simulation can be performed at the switch level (circuit elements and sig-
nals are modeled, respectively, by transistors and analog waveforms) or at the gate level
(circuit elements and signals are modeled, respectively, by gates and Boolean values).
Gate-level simulation is computationally much less expensive than switch-level simula-
tion. The circuit model for gate-level logic simulation consists of elements (gates with
specified signal propagation delays), interconnections (zero-del2v wires), and logic signal
values 0 (false), 1 (true) and x (undefined). The behaviour v. cach gate is defined by a
truth table extended to include the third logic value x. The circuit being simulated is
defined in terms of its schematic representation consisting of instances of these gates,
each with specified input and output signals. The objective of the simulation is to com-
pute the signal values at the outputs of selected gates in response to a specified test vector

applied at the inputs of selected gates.

The actual simulation itself can be cither incrementai-time simulation or event-
driven simulation. In incremental simulation, at each simulation step, the simulation

clock is advanced by a fixed increment determined by the smallest propagation delay of

151

the individual model elements, and all the signal values are recalculated. Event-driven
simulation consists of a sequence of "events”, each of which is a change in value at a par-
ticular time of a specified signal. At each simulation step, the system removes the "next
event" from a time-ordered priority queue of events, calculates signal value changes that
will occur as a result of these events at specified future times, and schedules these
changes by entering them into the event queue. The simulation is then advanced another
step. This process is repeated until a specified time or until the event queue is empty
when the simulation completes and the desired output signal values can be read off.

To apply the gate-level logic simulation to the 4-bit adder defined in our database,
the schematic representation can be extracted from the database and restructured to con-
form to the input format requirements of a simulator like RSIM [Ter83], and the simula-
tor invoked to process this data. Alternatively, an implementation of a gate-level logic

simulation can be defined in our system by the specifications shown in Figure 6.6 below:

152

TYPE Event :: signal: Signal; /® signal entity ¢/

value: N; /* logic value of the signal */
time: INTEGER; /* time at which the signal vatue changes */
VAR eq: <Event; /* event queue - time-ordered priority queue

of events implemented as a heap array */
cumentTime: INTEGER; /* current time */
simTime: INTEGER; /* desired final simulation time */

/* main procedure */

PROCEDURE LogicSimulation()

BEGIN
eq = InitEQ(); /* initialize event queue */
currentTime = InputCurrentTime(); /* read in current ume */
simTime = InputSimTime(); /* read in simulation time */

Simulate (currentTime, simTime, eq); /* event-driven simulation */

/* event queue initialization function */
FUNCTION InitEQ(): <Event>

VAR eq: <Event>; /* event queue */
event: Event; flag: BOOLEAN; n: INTEGER;
BEGIN
eq = emptySeqQ; /* create an sequence of events */
InputEvent (event, flag); /* read in initial events; flag = TRUE => eof */
VJEILE (flag) DO
Append(eq, event); /* append event to event sequence */
EINnEnEvem (event, flag); /* read in initial event */

n = Length(eq); /* leagth of initial event sequence */
EﬁD’ MkPriorityEQ(eq, 1, n); /* create a time-ordered priority queue of events */

e

153

/* event-driven simulation procedure */
PROCEDURE Simulate (IN currentTime, simTime: INTEGER; eq: <Event>)
VAR event: Event;
BEGIN
/* while current time < simulation time and event queue is not empty */

WHILE ((currentTime < simTime) & ("(IsEmpty(eq)))) DO
event = GetNextEvent (currentTime); /* get next event from the event queue s/

currentTime = time(event); /* advance current time */
CalcChanges (event); /* calculate signal value changes */
END

/* calculating signal value changes (future events) for a specified current
event */

PROCEDURE CalcChanges (IN event: Event)
VAR s: Signal; v: BOOLEAN; e: Event; g: Gate; gates: (Gate);

BEGIN
s = signal(event); /* signal defined by the event */
v = value(event); /* logic value defined by the event */

/* retrieve all gates which have the specified signal as an input */
gates = RETRfEVE ALL g: Gate WHERE (s IN in(g));

/* iterate over the set of gates retrieved */
FOR g = Elems(gates) DO

¢ = ComputeOutput(g, event); /* compute output signal value of the gate */

IF (“(signal(e) = NULL)) /* if the signal value has changed from its

current value */
TPII?FN InsenEQ(e,eq); /* schedule future event by inserting into the event queue */
ENDFOR
END

——>

154

/* computing a future event that changes the value of an output signal of a
gate as a result of a current event */

FUNCTION Compute” -t (g: Gate; event: Event): Event

VAR e: Event;

BEGIN ") . .
I:N‘l%g gm\)l)tcAND(g. event); '/‘ mﬁgxtpﬁt.;:mmzﬁmmp /‘/
IF (g IN Ext(OR)) /* check if gate is an OR gate */
pr ¢ = ComputeOR(g, event); /* compute output signal change */
IF (g IN Ext(INV)) /* check if gate is an INV gate */

THEN e = ComputeINV (g, event); /* compute output signal change */
ENDIF

/* similarly for other gates */
RETURN(e); /* return future event */

Figure 6.6 Logic Simulation: Data Structures and Algorithms

Type Event defines the data structure for an event - a signal value change at a specified
time. Variable eq is time-ordered priority queue of events which is implemented as a
min-heap array; cwrenTime and simTime are, respectively, the current time and the
desired final simulation time. The procedure LogicSimulation is the main procedure.
Procedure /nitEQ initializes the event queue by reading in the specified initial test vector.
Procedure MkPriorityEQ creates a time-ordered priority queuc of events. Procedure
Simulate works by getting the next event from the event queue (GetNextEvent) and calcu-
lating the changes (CalcChanges) in signal values triggered by this event. Procedure
CalcChanges retrieves all gates whose inputs contain the signal defined by the cvent, and
computes the change in gate’s output (ComputeOutpws). Function ComputeOutpus deter-
mines the type of gate and invokes a corresponding procedure to compute the output of
the gate - a future event to be scheduled if it is different from the current output. The

155

Simulate procedure loops until the current time exceeds the simulation time or the event
queue is empty. At this point, the desired output signal values can be read off.

6.5.2. Timing Analysis

Timing analysis consists of determining the longest-delay signal propagation path
from the input to the output terminals in a circuit. This is useful in ensuring correctness
of clock cycles and in optimizing some performance measures. For the purpose of timing
analysis, the VLSI circuit is modeled as a network of nodes (ports or terminals at which
signals appear) interconnected by arcs (circuit elements - transistors and wires - with
specified signal propagation delays). Signals propagate from the input nodes to the output
nodes along many different paths with corresponding delays. Timing analysis has to
determine the overall circuit delay as the delay along the longest-delay path to some out-
put node. The basic technique for determining the longest-delay path is defined by the

{ollowing recursive formuia:

circuit_delay = max (longest_delay (NODE;)) }

longest_delay (NODE) =
if NODE is an input node
then O
+! = max { longest_delay(pred(NODE)) + delay(ARC)) }

where i ranges over the output nodes, pred is a function that returns the set of predecessor
nodes of its argument, ARC is the sequence of circuit elements connecting a predecessor
node to the node NODE, and delay(ARC) is the sum of delays of the elements in the
sequence ARC. After the longest delay path is determined a more accurate timing
verification can be done by applying circuit-level simulation to this path.

The longest-delay calculations for our 4-bit adder database can be implemented as

156

shown in the specifications in Figure 6.7 below:

TYPE ArcType = (wire', "ransistor'] /° arc type enumerated type */

/* network arc */
Arc :: source: Portlnst; /* source port instance */
dest: Portinst; /* destination port instance */
arcType: ArcType; /* axc type */
delay: INTEGER; /* arc delay */
/* network node */
Node :: port: Portinst, /* port instance */
propDelay: INTEGER; /* propagation delay from a source

up to this node */

VAR arcs: <Arc>; /* network arcs table */
nodes: <Node>; /* topologically sorted network nodes list */

/* main procedure */
PROCEDURE CalculateDelay()
BEGIN
arcs = SetUpArcs(); /* set up the arcs table */

nodes = TopoSort(arcs); /* sort network nodes topologically */
LongestDelay (arcs, nodes); /* compute propagation delay to each node */

——>

157

/* function 10 set up the network arcs tble +/
FUNCTION SetUpArcs(): <Arc>

VAR arc: Arc; arcs: <Arc>; arcType: ArcType;
p. s, d: Portinst; ports, sources, dests: (Portnst);
m: Port; t: Trans; tI: TransInst;
w: PolyWire; delay: INTEGER: flag: BOOLEAN;

BEGIN
arcs = emptySeq();

FOR w = Eiems (Ext(PolyWire)) D(}‘

s = from(w);

/* initialize arcs table */
/* iterate over the wires in the circuit */
SOurce port instance */

d = to(w); /* destination port instance */

arcType = "wire"; /* arc s a wire */

delay = delay(w), /* arc delay */

arc = mk-Arc(s, d, arcType, delay); /* make an arc entity */

Append(arcs, arc); /* enter into arcs table */
ENDFOR

FOR tl = Elems (Ext(TransInst)) DO

t = GetMaster(11, tI);

/* iterate over transistor instances */
I* get master transistor */

ports = ports(t); /* get its ports */
sources = emptySet(); /* initiglize source port set */
dests = emptySet(); /: initialize destination port set */
FOR p = Elems(ports) DO /* iterate over the ports */
m = GetMaster(12, p);
[F (direction(m)) /* FALSE (0) = source port;
TRUE (1) = destination port */
THEN Insert(dests, p); /* insert port instance as a source */
ELSE Insert(sources, p); /* insert port instance as a destination */
ENDIF
ENDFOR

arcType = "transistor”;

/* arc is a transistor */

delay = delay(t); [* arc delay */
FOR s = Elems(sources) DO /* iterate over source port
Inslances */
FOR d = Elems(dests) DO /* iterage over destination port
mstances ‘/

arc = mk-Arc(s, d, arcType, delay);

/* create an arc entity */

Append(arcs, arc); /* enter into arcs table */
ENDFOR
ENDFOR
ENDRE‘I‘URN(ancs); /* return the arcs table */

>

158

/* longest delay procedure */
PROCEDURE LongestDelay (IN arcs: <Arc>; nodes: <Node>)
VAR 1, nl: Node; p: Portlnst; sources: (Portlnst}; a: Arc;

BEGIN
FOR n = Elems(nodes) DO /* iterate over the nodes */
g Elpon(n); /* port instance defining the node */
propDelay(n) = 0; /* initial propagation delay */
sources = GetSources(arcs, p); /* get the corresponding source port
instances */

FOR s = Elems(sources) DO /* iterate over the source port instances */

nl = GetNode(s); /* get the node corresponding to source
instance */

a = GetArc(nl. n); /* get the arc from node nl to node n */

/* check: arc delay + propagation delay of source >
propagation delay of the node being processed */
IF ((delay(a) + propDelay(n1)) > propDelay(n))

/* update propagation delay of node being processed */
THEN propDelay(n) = delay(a) + propDelay(n1);

ENDIF
ENDFOR
ENDFOR
END

Figure 6.7 Timing Analysis: Data Structures and Algorithms

The type Arc defines the network arcs cach of which connects a source port instance to a
destination port instance, has an arc type (wire or transistor), and a corresponding delay.
Type Node defines the network node in terms of the port instance it represents, and the
signal propagation delay from a source port instance t0 its port instance. Variable arcs
specifies the table of network arcs; variable nodes specifies the sequence of network
nodes. The main procedure CalculateDelay works by first setting up the arcs table (SetU-
pArecs), sorting the nodes topologically (TopoSort), and then computing the longest delay
to each node (LongestDelay). This algorithm only wurxs for networks with no cycles (i.c.

159

circuits with no feedback). Function SetupArcs sets up the arc table by iterating over the
set of wires and transistors in the network (that defines the 4-bit adder), and calculating
the arc instance corresponding to each of them. The function TopoSort computes the
topologically sorted list of network nodes. The procedure LongestDelay computes the

longest delay to each node using the recursive formula given carlier.

6.6. Summary

In this chapter we have presented an illustrative example VLSI circuit design of a
4-bit adder. The database schema specifications consist of a set of type, class, reiation-
ship, and operation specifications relevant to the layout and schematic representations of
the 4-bit adder. We also present examples of design database processing involving gate-
level logic simulation and timing analysis computations. The processing algorithms are
implemented by IDL routines and interface with the database though imported schema
specifications and the semantic data model operations. Similar routines can be written to
produce structured data files formatted for processing by standard design tools external to
the system. The conciseness and conceptual clarity of these specifications illustrate

clearly the benefits and advantages of the design database system.

Chapter 7
FORMAL SPECIFICATIONS

7.1. Introduction

Formal specifications of software systems lead to (a) greater understanding of the
problem and the appropriate design solution; (b) proofs of correctness of the implementa-
tion with respect to the specification; and (c) “cleaner” implementation architectures
[CHJ86, Jon86, McG86].

+ Model-based (Operational) specifications describe system behaviour in terms of a
model constructed from abstract and concrete primitives.

* Algebraic (Axiomatic) specifications describe system behaviour by defining the rela-
tionships among operations in terms of a set of axioms without reference to an
explicit model.

In this chapter we describe model-based (VDM) and algebraic (Larch) specification sys-

tems. We also discuss the technique of denotational semantics to formally define the

semantics of programming languages. We then apply these specification techniques to
formally define the following:

* The IDL structured type system

* The IDL Language excluding the embedded semantic data model operations (opera-
tionally specified in Section 4.9) and the structured type opcrators (specified expli-
citly in Section 7.3.1, axiomatically in Section 7.4.1 and operationally in Section

1.5).

IDL's type system is specified (a) by the VDM type system (Section 7.3.1); (b)
axiomatically by the Larch auxiliary specifications (Section 7.4.1); and (c) operationally
by the SVIM subsystem implementation (Section 7.5).

160

161

VDM is a system for defining modei-based (operational) specifications of complex
software systems. As with all such tools, it captures only certain aspects of the target sys-
tem. However, it is still evolving and new concepts and capabilities are being introduced
into VDM which are enhancing its modeling power, and consequently, its utility as a
specification system. VDM specifications are based on user-specified (abstract) types
(obtained by applying a set of "type constructors”), and functions and operations that
define system behaviour. The type constructors which define the "structured types” from
component types include those of IDL - Set, Sequence, Tuple and Union. Section 7.3.1
contains an explicit specification of these structured types (and their operators) in terms
of direct definitions. In addition to providing an operational specification of the IDL type
system, these serve to axiomatize VDM on which the denotational semantics

specifications of IDL in Section 7.7 are based.

The Larch Auxiliary Specifications of Section 7.4.1 provide an algebraic approach
to specifying the data abstractions defined by the IDL type system. Larch is a two-tier
specification system designed for program verification. The "auxiliary specifications”
define data abstractions (data types), and the "interface specifications” define procedural
abstractions. Thes. specifications can be used in proving program implementations

correct with respect to specifications of system behaviour.

SVIM (Section 7.5) is a subsystem that implements a part (values and operators) of
the IDL type system. It can be used as the basis for a "denotational semantics
specifications interpreter” that (a) executes the denotationzl semantics specifications of
IDL thus providing a "definitional interpreter”; and (b) provides a rapid translator proto-
typing tool. It can also be used as a building block in an implementation of IDL.

The formal semantics of IDL are given as "denotational semantics” specifications.

Denotational semantics is a technique for specifying formally the semantics of

162

programming languages. As described in Section 7.6, this involves defining meaning
functions that map the language’s syntactic units into well-defined mathematical objects.
The meaning function of a syntactic unit is defined in terms of those of its component
parts as defined by the language’s syntax. These specifications are written in terms of
VDM constructs (Section 7.7) and formalize the following parts of IDL. values, types,

variables, expressions and basic statements.

7.2. Vienna Development Method

The Vienna Development Method (VDM) (BjJ82,Jon86] is a model-based
specification system that has been used successfully in a number of industrial applica-
tions. VDM was developed at the IBM Vienna Research Laboratories during the 1970s.
Since then VDM work has continued in many centres including the Dansk Datamatik
Center, Copenhagen, University of Oxford, University of Manchester, and Standard
Telecommunications Laboratory in England. VDM has its origins in VDL (Vienna
Definition Language) [CHJ86, McG86] which was used to specify an abstract machine
interpreter for PL/I thus providing an "operational semantics” for the language. Since
then VDM has developed into a general-purpose software development method. It has
been applied to the formal specification of the programming language Ada [Oes80], the
software engineering environment KAPSE [Dep81], and the system CHILL (CCC81].

Other model-based specification systems include Z [Abr80, Suf82] developed by the
Programming Research Grour: at University of Oxford, HOS {Mar82] developed by
Higher Order Software Inc. in Cambridge, Massachussetts, and GIST [Wil82] developed
by the Information Sciences Institute, University of Southern California.

163

7.3. VDM Specifications

A VDM model consists of a set of (abstract) objects and a set of functions and
operations. The objects represent sysiem inputs, system outputs or a system state. The
values that can be assigned to these objects are typed by built-in or user-defined (abstract)
rypes which characterize their behaviour. Functions and operations define the system
behaviour and are specified implicitly (by pre- and post-conditions ~a system inputs, out-
puts and state) or defined explicitly (by, possibly recursive, algorithms).

7.3.1. The VDM Type System

The built-in basic data types of VDM include Z (integers), N (natural numbers), N,
(positive integers), R (real numbers) Bool (Boolean values) etc. Users can define their
own structured types by applying tfype constructors to the built-in and other previously
defined types. The VDM type constructors are:

Scalar Type Constructors
A named type introduces a meaningful name for an existing type. For example the
specification:

Distance =R
makes values of type Distance to be real numbers.
An enumerated type defines a type whose values are specified by enumerating the ele-
ments of a set. For example the specification:

Colour = { Red, Green, Yellow, Blue }
defines an enumerated type Colour with (abstract) values corresponding to the given
colours. For an enumerated type E = { ¢, ..., €, }, the following type operators are also
defined:

* ord retums the ordinal number for a given value in the type:

164

od:E =N,
ord(¢) =n where n is the ordinal number of value ¢ in the list (e, €,)

A subrange type defines a type whose values are subranges of built-in numeric or previ-
ously defined enumerated types. For example the specification:

Hour= { 1:12}
defines the domain of type Howr to be integer values in the range 1 to 12.

Set Type Constructor

The set type constructor defines a type whose values are finite sets. A set type S with con-
stituent type T is defined by:

S=setof T

S is now the "finite powerset” and the values of type § are now finite sets of values of
type T. The following fype operators are also defined for type S. The structured type
operators are specified by direct definitions (i.c. procedurally) in terms of standard set-
theoretic operations. These structured type operators are modeled by functions (which
operate on values) unlike operations (which modify a state (global named value). An
actual implementation of these operators may, however, usc the statc information
depending on the properties associated with the type (i.e. mutability vs. immutability and

pointer vs. value semantics).

* emptySet creates an empty set value:

emptySet: (empty-string} — S
emptySet(empty-string) A ()

The symbol A above is to be read as "is defined as”.

* insert inserts a value of the clement type into a set value:

insert: SxT— S
insert(s, t) A s U (t}

* delete deletes a value of the element type from a set value:

165

delete: SxT =S
delete(s, t) As - (t}

* size retumns the cardinality of the set value:

size: SN
size(s) A n where n is the cardinality of the set s

* isEmpty tests if the set is empty:

isEmpty: S — Bool
isEmpty(s) A TRUE if s is empty
FALSE otherwise

* member tests if a specified element is in the set:

member: S x T — Bool
member(s, t) A TRUE ifte s
FALSE otherwise

* choose selects an arbitrary element in the set:

choose: S = T
choose(s) At wheres# (} andte€ s

Here, choose is a "non-deterministic” function in the sense that the value returned
by it is determined, in addition to the value of s, by the hidden state of its represen-
tation. This hidden state can, however, be indirectly determined by using a sequence
of choose and rest (defined below) operations that results in a sequence of clements

in the set.

* rest retumns the set with the element selected by the immediately preceding choose
deleted:

rest: S — S
rest(s) A delete(s, choose(s))

* equal is a predicate that tests for equality of two set values:

equal: S x S — Bool
equal(s),5)As; Ss2&s,25,

166

Reporting errors for type operators

Error checking and reporting are built into a higher-level layer that provides procedures
and functions with appropriate error code or message parameters. In the case of the set
insert and delete operators, for example, there could be corresponding user-defined
opentiomlmnandDelcuthumakeunofd\e set operator member to make a check

before inserting or deleting:

PROCEDURE Insert (IN s: Set; ¢: Element; OUT e-message: STRING)
BEGIN
e-message = "";
IF member(s, ¢) THEN e-message = "clement is already a member!™;
ELSE insert(s, ¢);

PROCEDURE Delete (IN s: Set; e: Element; OUT e-message: STRING)
BEGIN

c-message = "";

IF member(s, ¢) THEN delete(s, €); ELSE e-message = “element not in the set”;

If the check fails, these operations return a meaningful message to the calling routine
through the standard parameter passing mechanism. The Insert and Delete operations
with the appropriate message parameter could be provided in a utility library.
Sequence Type Constructor
The sequence type constructor defines a type whose values are sequences of values of the
constituent type. A sequence type Q with element type T is defined by:

Q=3qof T
The values of type Q are finite sequences of values of type T. The following type opera- .
tors are also provided:

* emptySeq creates an empty sequence:

167

empiySeq: (empty-string) = Q
emptySeq(empty-string) A <

length returns the length of the sequence:
leu glh: Q =N
length(q) A n where n is the length of the sequence
insert inserts an element value at a specified position in the sequence:
inser: QxTxN, - Q
insert(g, t, n) A <q'[i] | for 1<i<n ¢'[i} =q[i]; fori=nq'li]=t;
for n<i<length(q)+1 ¢ '[i] = q[i-1]
delete deletes the element at a specified position in the sequence:
delete: QxN; = Q
delete(q, n) A <q'[i} | for iSi<n ¢ '[i] = q(i]; for n<i+1slength(q) q'li] = qli+1]>
append appends an element to the sequence:
append: QxT = Q . . .
append(q, V) A <q'{i] | for 1si<length(q) q'[i] =qlil; q '[length(@)+1] = >
select returns the element in the specified position in the sequence:
select: QxN; - T
select(q, n) Aq{n] where n < length(q)
isEmpty tests if the sequence is empty:
isEmpty: Q — Bool
isEmpty(q) A TRUE if q is empty
FALSE otherwise
member tests if a specifizd element is in the sequence:
member: Q x T — Bool
member(q, t) A TRUE if 3i - 1 SiSlength(q) & q[i}=t
FALSE otherwise
head returns the first element in the sequence:

head: Q- T
head(q) A q(1]

168

* tail returns the sequence with the first element deleted:
tail: Q - Q
tail(q) A delete(q, 1)
* equal is a predicate that tests for equality of two sequences:

equal: Q x Q — Bool
equal(q;. 42) A lenzthgg 1)=length(qy) &

i - 1<i<length(q,) - select(q,. i)=select(q2:

Union Type Constructor

The union type constructor defines a ty}, - whose values are "tagged” values of the consti-

tuent types. A union type U with constit :nt tynes Ty, ..., T,, is defined by:
U=T)l...\T,

The domain of U is now the disjoint union of the domains of T, ..., T,. The following

operators are also defined:

* inject injects a value of a constituent type inio a value of the union type:

inject-i: T; = U
inject-i (1;) A (T;, ;) if 4, € T;
undefined otherwisc

The tag T; dences that the value is from the corresponding type.
* inspect tests if a value of the union type belongs to a specified constituent type:

inspect-i : U = Bool
inspect-i (u) ATRUE if uhas tag 7;
FALSE otherwise

* project projects a value of the union type onto the corresponding value of a consti-

tuent type:

project-i: U= T;
ptoject-i (T‘ R l") A A if {; € T"
undefined otherwise

There is a family of inject, inspect and project operators for each union tyPe.

169

* equal is a predicate that tests for equality of two union values:

equal: U x U — Bool)
equal(iy, 47) A 3i - inspect-i(u)=inspect-i(u 2=TRUE &
equal(project-i(u), project-i(u)
Map Type Constructor
The map type constructor defines a type whose values are maps (finite total functions)
from a specified domain to a specified codomain. A map type M with domain D and
codomain R is defined by:
M=mapDtoR

The values of type M are mappings from domain of D to domain of R. A value of type M
is constructed by giving a set of pairs of commesponding values of types D and R:

m:Mandm={d; =7y, ...,d, =7a) suchthatd; #d; fori#j
The following operators are also defined:

* domain returns the finite set of values in the mapping’s domain:

dom: M = setof D
dom(m)A{dld->rem)

* range returns the finite set of values in the mapping’s codomain:

mg: M — setof R
mgm)A (rl{d—>r)e m)

* map application retumns a value of codomain type corresponding to the given value

of the domain type:

(U:MxD=R
m(d)Ar where(d—>r)em

* map composition retumns a new map which is the composition of the given maps:

170

M,=mapDtwoR’
M,=mapR'toR

oM xM, - M
m‘OmgA(d—nl%r'eR’(d +rem &' —r)e my)

* merge merges two given maps:

U MxM-M

Form;andm, such tlmdom(ml)ﬁdom(mz) =9,
myumyA{d=rl(@—>r)em ORW—r)emy))

* override merges the two mappings overriding the mappings of the first map by the

mappings of second map for common domain values:

4+ MxM-M
m + mA(d=rl(doNem &—~de dom(m,))or(d —r)e m;) |

* domain deletion retrarns a new mapping whose domain is the domain of the given

mapping restricted to those elements not in the given set:

J_:MxsetofD—->M
m/sA{d— m(d)!de (dom(m)-s))

* domain restriction returns a new mapping whose domain is restricted to those cle-

ments in the given set:

1_:Mxsetof DM
misA{d— m(d)!de (dom(m)Ns)}

Composite Type Constructor

The composite type constructor (::) defines a type whose values represent “composite
objects” with named "component objects”. Such a type can be used to model records of
Pascal, swructures of C, PL/I etc. A composite type C with fields f, ... fo Of types
respectively Ty, ..., T,, can be defined by:

17
C ::fl: Tl

fn T,
The values of type C are tuples with attributes £, ..., f, and corresponding values of

types Ty, ... T - The following composite type operators are also defined:
* make function constructs a value of the composite type from given field values:

mk-C:T; x...xT, =C
mk'C('l, sery 'H)A (fl = tl. ...,f' = tn)
* selector function retricves a component value corresponding to the given field from
the composite - : - ue€:
f" :C->T
f,'(fl =£p..-.f,. =IR)AI,-
* function changes the value assigned toa specified field of a composite value:

B;:CxT; =»C
ui((fl='l'""fn =tn), ti')A(flztl’ ...,f" =f‘-',,fn =tn)

There is a family of selector and p functions for each composite type. The u func-
tions can be used in combinatio” to change the values of multiple fizlds in a single

operation.

* equal is a predicate that tests for equality of two composite values:

equal: C xC — Bool
equal(c,, ¢2) A Vi- 1<isn - equal(f;(c1). fi(c2)

Composite types can also be used to specify recursively constructed objects. For

example, a binary search tree can be defined by the specifications:

Bst = [Node]
[Node] = Node U (nil}
Node :: left: Bst

key: N

right: Bst

where nil is a special object that denotes the absence of a Node object. Here, Bst is the

172

abstract binary search tree type being defined; Node is the type of each node in the tree.
Each node stores a key value (key) and two (possibly nil) binary search subtrees (left,
right). A specific binary search tree is defined by its root node (a value of type Node).
The search tree property requires that for every node in the tree all keys in a right branch
mgrealerthanthekeyinthenodcwhichinmispeaterthanallthekeysinthe left
branch. This property is specified by the binary search tree node invariant which can be
defined as:

inv-Node(mk-Node(lst, k, rst)) A
(Vik € remns(lst) - ik <k) & 'Vrk € retrns(rst) - rk > k)

where the function retr. ..refined i v

retms: Bst = set - . .~
retrns(b) A cases v ¢!
nil = {)
:t:ik-NOde(ISt' k, rst) — retms(Ist) U (k) L retrns(rst)
¢

v. - «lues of recursive types are constructed in a finite sequence of steps by combining

Jiur.tive or already constructed values.

Users can define abstract types (A) in terms of representation types (R) constructed
by using the type constructors, and setting up a mapping between abstract values and
comresponding -sentation values. Such a mapping is defined in terms of the retrieve
function (Retrv} specifiec as:

Retrv:R =2 A
The mapping cardinality of Retrv from R to A is many-to-one and reflects the fact that
many different representation values may denote a single abstract value. Thus the
representation value is more "detailed” and the retrieve function may be thought of as
regaining the abstraction from the (implementation) details. To ensure that all representa-
tion values that may arise arc "legal", i.c. they can be mapped to an abstract value by the

retrieve function, a representation invarian: predicaic which constrains the domain of

173

representation type is defined. The retrieve function is then a total function. The other
notion associated with representation and abstract types is that of adequacy. A represen-
tation type is adequate if there is at least one representation value cosresponding to any
abstract value. This requirement can be satisfied by discharging adequacy proof obliga-
tion:

Vae A 3reR - (Retrv(r) =a)

7.3.2. A VDM Model
A "M model consists of the following components:

* A collection of types (built-in and user-defined abstract types specified in terms of
representation types constructed with type constructors, retrieve functions, and
representation i vai.ants).

¢ A collection of +ariables (of specificd types) that denote system inputs, outputs and
states.

* A collection of initial states (in which the state. invariant holds).

* A collecticn of functions.

* A collection of operations.

The functions and operations define the behavioural aspects of the system. Functions are

(implicitly) specified by stating the result = . computed, or (directly) def ! by ~vir-,

an algorithm to compute the desired result. [mplicit specifications are declarative, shorter

and clearer, and usually define a range of acceptable results. Direct definitions are pro-

cedural and usually define a specific result. A template for a function specificatior. «..a be

written as shown below:

174

fr:D)r:R
pre-f: ... d ...
post-f:d ...T ...

The first line of the specification, called the signamre, specifies the name of the function,
the names and types of its argument and result parameters. The second line specifies the
precondition which deSnes constraint on or properties to be satisfied by the argument
values. The third line specifies the postcondition which defines constraints on or proper-
ties to be satisfied by the parameter and result values. A function is implemented by giv-
in;" a direct (algorithmic) dennition. If algorithm F implements a function f, then F is

correct with respect to f if the following logic formula holds:

Vd e D - pre-f(d) => F(d)e R & post-f(d, F(d))
A function defines a behaviour that depends only on its arguments while an operation
defines behaviour that depends, in addition to its arguments, also on the state of the sys-
iem. An operation thus requires access to a collection of "external variables” that define

the system state. A template for an operation specification can be written as shown

below:

OP(a:T,)rT,

ext: dvy: T wrva: Ty

pre-OP: ...a..v; ..Vy

post-OP: ...a.. V) ... Vg .. Vy..T ..

The first line of the specification specifies the name of the operation, and the names and
types of its argument and result parameters. The second line specifies external (system
state) variables accessible to the operation, and the type of access: read (rd) or read and
write (wr). The precondition defines constraints on or properties to be specified by the
argument and stute values. The post condition defines constraints on or propertics to be
satisfied by the argument, result and state valies. The primed and unprimed versions of
the state variable v, in the postcondition indicate its values before and after the execution

of the operation. Operations can be implemented by programs, procedures or cven

175

individual statements in an imnlementation language, and such implementations can be
proved correct with respect (0 the operation specifications by using the proof axioms of

the language in a manner similar to that for functions.

7.4. Algebraic Specifications

Algebraic (or axiomatic) specifications define the behaviour of systems in terms of

the relationships among a set of operations of the system. Such specificatioas consist of:
* Sorts which are names for sets of values (analogous to data type domains).

* Operators which model system operations. These are specified by their functional
types (signatures) defined as mappings from a domain to a codomair defined as

Cartesian products of lists of specified sorts.
* Axioms which are equations that define the relationships among the operators

Loose (or initial) specifications define a theory (of first-order logic) that consists of the
closure of the set of equations derivable from the axioms under the ~iles of equational
inference. Tight (or final) specifications define a theory that consists of a "tight closure”
of the set of equations derivable from the axioms under the rules: (1) equational infer-
ence; (2) structural induction; and (3) the rule that if equality is not derivable under (1)
and (2), then inequality holds.

74.1. Larch Auxiliary Specifications of the IDL Structured Types

The Larch specification system [GHW8S] is based on the algebraic specification
technique. Larch’s design philosophy is to provide = modular, two-tiered approach to for-
mal specifications that can be useful in program development and verification environ-
ments. Larch Auxiliary Specifications are defined in terms of units called fraits. A trait
models a well-defined data abstraction although it need not correspond to an abstract data

176

type. The trait is defined in terms of operators (syntax) and axioms (semantics). An
operator defines a mapping from its domain to its range; the domain and range are
specified in terms of sorts. A sort is a set of values and corresponds to the domain of a
data type. The axioms of the trait are written as equations composed of well-formed
terms. A term is recursively defined as a constant value of a specified sort, a variable that
ranges over the valucs of a specified sort, or the result of an operator application to its
arguments which are terms themselves. The theory associated with a trait consists of all
the axioms, the inequation — (TRUE = FALSE), and all theorems derivable from these
under the axioms and rules of infurence of first order predicate calculus with equality.
The specification of a trait may also include references to other predefined traits. This
allows traits to be combined in well-defined ways to build up abstractions in a hierarchi-
cal and modular fashion. An imported trait ensures that the theory being defined by the
importing trait is a conservative extension of the theory associated with the imported
trait; that is, the operators of the imported trait may not be further constrained by the
importing trait or any other imported trait. An included trait, on the other nand, allows its
operators to be further constrained by the equations of the including trait. An assumed
trait makes its associated operators available in the trait being defined. Trait
specifications also include additional clauses which essentially enricia the associated
theory. Thus, the generated by clause says that all values of the distinguished sort of the
trait can be generated by the operators in that clause. The partitioned by clause specifies
that two unequal terms of the distinguished sort can be distinguished by using only the
operators in that clause. The converts clause says that the trait’s specification adequately
defines the collection of operators in that clause. And finally, the exempts clause exempts
the operators in it from apjpearing in any constraint equation. A deuiled description of

Larch can be found in [GHW8S].

177

The Set Type:
We define the set type in terms of trait SetS whose sort S represents its domain. The

associated operators emptySci, insert, isEmpty, size, member and delete are all inherited
from the assumed or imported traits and have the same semantics as in their respective
defining traits. Operator choose selects some element (unspecified but always the same
for a given set value) from the set. Operator ress retums the set after deleting the element

selected by the immediately preceding choose.

SetS: trait
imports SetBasics with [S for C]
includes IsEmpty with [S for C],
Member with [member for €],
Size with [Sfor C),
Container with [S for C, emptySet for new],
Rest with [S for C)
introduces
choose: S = E /* E is in the Container trait */
constrains member, isEmpty, choose, rest, size
sothat for all [5,.5,,5:S,¢:E}
(choose(rest(s)) = choose(s)) = FALSE
isEmpty(rest(s)) = if (size(rest(s)) = 0) then TRUE else FALSE
size(rest(s)) = if (iSEmpty(s)* *~ - O else size(s)-1
inember(rest(s), €) = if (ch< ' then FALSE else member(s, ¢)
generated by [emptySet, insex
partitioned by [choose, member, size, rest]
converts [choose, rest]
exempts for all [5., s,: S, e: E] choose(emptySet()), choose(insert(s, €)),
choose(delete(s, ¢))

The Sequence Type:

We define the sequence type in terms of trait SeqQ whose sort Q represents its domain.
Operators emptySeq, isEmpty, member, length and select are inherited from the assumed
or imported traits. Operator insers inserts an element into the n'* position of the
sequence, operator delese deletes the n'* element from the sequence, operator append

appends the given element as the last element of the sequence.

178

SeqQ: trait

assumes Cardinal
includes IsEmpty with [Q for C},
Membetwlth} member for ¢],

introduces
append: QX E 2 Q /* E is in the Container trait ¢/
insert: QxE x Card = Q
delete: Qx Card = Q
constrains delete, insert, append, isEmpty, member, length, scicct
”,g"t for all [ng:(Q, e,e“.:e : Eén. ny, ny Card
isEmpty(append(q, ¢)) =
isEmpty(insert(qg, ¢, n)) = FALSE for n <length(q)
i ty(delete(q, n)) = if len (delete(q,n))=0 then TRUE eise FALSE
member(append(q, €), €2) = if (¢ =e,) then member(q, ¢,) eise TRUE
member(insert(q, ¢, n), €2) = if —(¢ ;=) then member(q, ¢3) eise TRUE
length(append(q, ¢)) = length(q)+1
length(insert(g, ¢, n)) = length(q)+1 for n < length(q)
select(append(, ¢), n) = if nslength(q) then sclect(q, n) else if n=length(q)+1 then
select(insert(q, ¢, 1,), #7) = if n,<n | then sclect(q,) else
if no>n, then select(q, n;-1) else e
select(delete(q, ¢, n,), 1) =if ny<n then select(q, n,) else
f n,>n, then select(q, n,+1) else select(q, #1)
generated by [emptySeq, append]
partitioned by [select, length]
converts [delete, insert, append]
exempts for all [n: Card, e: E, q: Q] delete(emptySeq(), n), member(delete(q, n), ¢),
len m(dele‘e(qo e»

The Composite Object Type:
We define the composite object type in terms of trait CompC whose sort C represents its
domain. f, ..., f, are fields and T, T, are sorts of the traits corresponding to the

field types.

179

CompC.: trait
includes Container with [T; for C] (i=1,..,n)
introduces
mk-C:Tyx..xT, =T
fiToT (=l)
W:TxT; =T (i=1,.,n)
constrains so that for all [t: T, #;: T]
£i(mk-C(tyy s) = 4
Fi(i(mk-Cltys ey 3)s) = &

generated by [mk-T]
partitioned by [f,] (i=1,...,n)
converts [mk-C. f", M] (i = 1, cony n)

The Discriminated Union Type:
We define the discriminated union type in terms of trai* « ~.onU whose sort U represents

its domain. T, ..., T, are the sorts of traits corresponding to the constituent types.

UnionU: trait
includes Container with (T; for C}(i=1,..,n)
introduces
inject-i: T, » U (=1, ..,n)
inspect-i: U - Bool (i =1, ..., n)
project-i: U—T; (i=1,..,n)
constrains inject-i, inspect-i, project-i so that forall {u: U, 4;: T;)
inspect-i(inject-i(z;)) = TRUE
project-i(inject-i(t,-)= i
generated by [inject-i] fori=1,..,n
partitioned by [inspect-i, project-i } fori=1,...n
converts [inject-i, inspect-i, project-i] fori=1,...,n

180

7.5. SVIM: An Implementation of the Values and Operators of the IDL Structured
Types

The SVIM (Structured Value Implementation Module) subsystem implements the
values and operators of the IDL structured types defined in Section $.9.2. This subsystem
can serve as the hasis for implementing a denotational semantics specification inserpreser
thus providing a furmal operational semanics for the database system. The specification
interpreter would also serve as a rapid compiler prototyping tool. Also, the SVIM subsys-
tem can be used as a building block in an implementation of the IDL type system.

An interactive command interface to SVIM has also been implemented. Using this
interface, a user can interactively create structuzed values and operate on them using the
corresponding structured type operators. The system functions by parsing input com-
mands and invoking appropriate SVIM routines that actually implement the values and
operators. The command language is explained below. The syntactic conventions are:
keywords are in roman font and user supplied parameters are italicized; blanks separate
the command line into tokens except inside string values enclosed in dovble quotes. The
user supplied parameters are as follows:
type is a basic data type from the set { Int, Real, Bool, String).
value is a basic data type value.
valuelD is an integer that represents the internal, system-generated identifier assigned to
cach value created by the user.
setID is the valuelD of a set value.
seqlD is the valuelD of a sequence value.
tuplelD is the valuelD of a tuple value.
unionlD is the valuelD of a union value.

position is an integer denoting a position in a sequence.

181

antribute is an alphanumeric string that denotes an attribute name in a tuple value.
tag_string is an alphanumeric string that denotes the tag of a union value.
(1) store type value
siores a value value of an atomic data type fype in the value table.
(2) remove type value
removes a value value of an atomic data type fype from the value table.
(3) lookup type value
looks up a value value of an atomic data type fype in the value table.
SetT tors
(4) create empty-set
create ()
create an empty set.
(5) insert rype value into *setID
insert *valuelD into *set/D
The first form inserts a value value of an atomic data type type into set with value
identifier set/D; the second form inserts a value with identifier valuelD into the set
with identifier sedD.
(6) delete rype value from *set’D
delete *valuelD from *set/D
The first form deletes a value value of an atomic data type fype from the set with

value identifier set/D; the second form deletes a value with identifier value/D from
the set with identifier set/D.

(7) member type value in *setiD
member *valuelD in *setiD

182

The first form checks if a value value of an atomic data type fype is in the set with
value identifier set/D; the second form checks if a value with identifier valuelD is in

the set with identifier sedD.

(8) size *sedD
returns the size of the set with value identifier set/D.
(9) choose *setiD
returns an arbitrary member of set with value identifier set/D.

Sequence Type Operators

(10) create empty-seq
creat <

create an empty sequence.

(11) append type value to *seqlD
append *valuelD to *seq/D
The first form appends a value value of a basic data type type to the sequence with
the value identifier seq/D; the second form appends a value with identifier value/D
to the sequence with identifier seq/D.

(12) insert-seq fype value into *seqglD at position
insert-seq *valuelD into *seqlD at position
The first form inserts a value value of a basic data type fype into the sequence with
the value identifier seq/D at position position; the second form inserts a value with
identifier valuelD into the sequence with identifier seq/D at position position.

(13) delete-seq position from *seqglD
deletes the element at position position from the sequence.

(14) member-seq type value in *seqiD

183

member-seq *valuelD in *seq/D
The first form checks if a value value of a basic data type type is in the sequence
with value identifier seq/D; the second form checks if a value with identifier
valuelD is in the sequence with identifier seq/D.
(15) length *seq/D
returns the length of the sequence with value identifier seq/D.
(16) select position in *seqlD
returns the element at position position in the sequence with value identifier seq/D.
Tuple T
(17) create tuple (anir | = value -spec, ..., air, = value—spec,)
where attr; is alphanumeric string that begins with a letter, and value —spec; has the
form type value (value value of basic data type type) or *valuelD (value with value
identifier value/D). This command creates a tuple with attributes ater, through atir,
and corresponding values value —spec , through value—spec, .
(18) project *ruplelD on anr
projects the tupie with identifier fig7/elD on its attribute ater.
Union T tors
(19) create union (tag = tag, value = value-spec)
creates a union value with tag tag and value value-spec.
(20) tag *unioniD
retuns the tag component of the union value with the identifier union/D.
(21) value *unionlD
returns the value component of the union value with the identifier union/D.

184

Value Interpretation
(22) interpret *valuelD
interpret-rec *valuelD
The first form prints out the value identifier and type of the value with the identirier
valuelD; if the value is a structured value, the identifiers and types of all its com-
ponents are printed. The second form interprets recursively on the components; the
recursion terminates after all the atomic data type value components are printed out.
(23) list
lists all the identifiers and types of all values stored in the value table.
(24) quit

tenainates the session.

7.6. Denotational Semantics

Denotational semantics is a formal specification technique for defini.g the seman-
tics of programming languages [BjJ82, Gor79, McG80, Ten76]. A denotational semantics
specification is given in terms of a meaning function specified as:

M:L - DEN
where domain L is the set of all syntactic objects of the language being defined and
domain DEN is the set of all "denotations” which are well-defined mathematical objects
like integers, reals, sets, functions etc. The meaning function maps syntactic objects into
corresponding abstract mathematical (or semantic) objects.

Typically, the objects in L are "structured hierarchically” and are built up from com-
ponent objects as defined by the abstract syntax of the language. Typical syntactic
categories defining the syntax of programming languages include variables, expressions,

statements, control structures, modules, programs etc. The denotational semantics of

185

such programming languages are then defined by a hierarchy of meaning subfunctions

corresponding to each syntactic category. The semantics of a structured object is then

defined in terms of the semantics of the component objects. For example, if binary

numerals (in domain BinNml) have a syntactic structure defined by the abstract syntax:
BinNml =0 | 1 | BinNml 0| BirNml 1

the semantics of binary numerals can be defined by mapping them into their correspond-

ing integer values:

M: BinNml - Z
M[b] A case b of
0-0
1-1
b,0-2*Mb,]
by1-2*M[b,]+1
end

The meaning function, which maps a binary numeral into the integer value it represents is
defined by case analysis of its structure. As another example, the semantics of arithmetic
expressions can be defined in terms of the semantics of their constituent subexpressions

and the arithmetic operators:

M: ArithmExpr — Number
M([x+y] A M([x] + M[y]

where ArithmExpr and Number are the domains respectively of arihmetic expressions
and numbers. The semantics of an expression involving the sum of two terms x and y is

given as the sum of the semantics of the two terms.

The denotations (in DEN) may be quite complex and may involve recursively
defined objects. Hence it is necessary to ensure that the denotational domains are well-
defined and do not involve arbitrary sets or functions which may give rise inconsistencies
or paradoxes of naive set theory. This is achieved by restricting these domains to the so
called Scort domains which are complete lattices with a partial order relation that is inter-
preted as an approximation relation and two special objects bottom (undetermined object

186

that approximates all other objects) and top (overdetermined or inconsistent object that is
approximated by all other objects). The set of primitive domains includes insegers, reals,
Booleans etc. with each set augmented with the top and bottom elements. More complex
domains are constructed by applying domain constructors to specified domains. The
domain constructors include sum, discriminated union, Cartesian product and continuos
function (mapping). The VDM types and *vne constructors defined in Section 6.3.2
correspond to these domains and domain constructors. It has been shown that all
domains specified by these constructors are well-defined, permit finitc approximations (of
infinite objects), and can model recursively defined objects with recursively defined (or
reflexive) domains. Reflexive domains can include function spaces defined in terms of
mappings (in tum, modeled by sets, pairs, pointers etc.)

As an example consider the semuntics associated with the notion of variables in a
programming language. Assuming a simple language in which variables are implemented
as store locations, the meaning of variables can be defined in terms of an environmen:
(Env) which maps variables (Var) to locations (Loc), and a store (Store) which maps

locations to scalar values (ScalarValue):

Env = map Var to Loc
Store = map Loc to ScalarValue
M: Var = (Env = (Store — ScalarValue))

M(vi(e)(s) A s(e(v))

where the meaning function M maps variable v in environment e to the value assigned to
it by store s.
To summarize, a denotational semantics specification of a language involves the fol-
lowing:
* A collection of syntactic domains and syntax rules (abstract syntax) which define
how the syntactic domains are constructed.

187

* A collection of semantic domains (denotations) and their definitions in terms of prim-
itive domains and domain constructors.
* A collection of meaning functions which map syntactic objects into corresponding
semantic objects.
The advantages of denotational semantic specifications of programming languages
are (a) every syntactic object is given a unique meaning by being mapped on t0 a
specified denotation, and hence there is no ambiguity, inconsistency or incompleteness
associated with informal descriptions of language semantics; (b) the meaning functions
and denotations are mathematical objects and formal mathematical techniques can be
used to prove results about their properties; and (c) a denotational specification inter-
preter can be used to compile and execute the specifications of particular programs in the
language thus providing a "definitional interpreter” for the language.

7.7. A Denctational Semantics for IDL

In this section, an outline of a denotational definition of the semantic data model
and the integrated database language is sketched. The denotational semantics of the struc-
tured type operators and the data model operations embedded in the language is not given
as these are operationally specified in Sections 4.9 and 7.3.1.

7.7.1. Abstract Syntax

The syntactic categories used in defining the abstract syntax are as follows:
An IDL program consists of an initialization statement, a body composed of a sequence
of "blocks” and a close-database statermnent:
Program :: init: InitStmnt

body: seq of Block
: CloseDB

An initialization statement is a define-database or an import-database staternent:

188

InitStmnt = DefDB | ImportDB
A define-database statement has a database name and a database file di 2ctory:

DefDB :: name: DBName
dir: Di
A database name is an identifier (domain /d) and a directory is assumed to be a a file
directory (a predefined domain Directory). An import-database statement has the same
structure as a define database except that its effect is to set up an initialized env:-. .. .

by reading specified files already created in the given directory:

ImportDB :: name: DBName
A close-database statement specifies the database name:

CloseDB = DBName
A block is a declaration or statement:

Block :: Decl | Stmnt
A declaration can be a user type declaration, a variabl. declaration, a class declaration, a

procedure declaration, or a function declaration:

Decl = TypeDecl | VarDecl | ClassDec! | ProcDecl | FunDecl
A user type declaration is either an enumerated type or a tuple type:

TypeDecl = EnumeratedType | TupleType
An enumerated type has a type name and a set of basic data type values:

EnumeratedType name: TypeName

values: set of BasicTypeValue
A tuple type has a type name and a set of attribute specifications:

TupleType :: name: TypeName
artribs: set of AttribSpec

An attribute specification has an attribute name and a corresponding domain:

189

AttribSpec :: name: AttribName
dom: DomSpec

An attribute domain specification is a basic data type, a class name, or an enumerated
type:

DomSpec = BasicType | ClassName | EnumeratedTypeName
A Variable declaration specifies a variable name and its type:

VarDecl :: name: VarName
type: Type
A variable name is an identifier. A variable type can be a basic type, a set type, a

sequence type, a class name (the Entity type), an enumerated type or a tuple type:

Type = BasicType | SetType | SeqType | ClassName |
EnumeratedT ame | :ﬂ:ﬁmum
BasicType = { Int, Real, Bool, S l-.!n}
SetType = BasicType | ClassName | EnumeratedTypeName | TupleTypeName
SeqType = BasicType | ClassName | EnumeratedTypeName | TupleTypeName

A class declaration consists of a class name, a set of attributes, a set of constraints, a set
of superclasses and a set of subclasses:
ClassDecl :: name: ClassName
attrib: set of Attrib
constr: set of Constr

super: set of ClassName
sub: set of ClassName

A class name is an identifier. An attribute has a name and a domain which is a type:

Atrib :: name: AttribName
dom: Type

An atribute name is an identifier. An atribute with a ClassName domain has the
system-defined abstract data type Entity. super and sub are immediate super and subc-
lasses; /s-a* is the least quasi-order on these relationship pairs. A procedure declaration
has a name, a sequence of input and output parameters, a set of local types, a set of local
variables, and a body composed of a sequence of statements:

190

ProcDec! :: name: ProcName
inParams: seq of VarDecl
outParams: seq of VarDecl
localTypes: set of 1
localVars: set of V. 1
body: seq of Stmnt

A function declaration has a name, a sequence of input parameiers, a result type, a set of
local types, a set of local variables, and a body composed of a sequence of statements:

FunDecl :: name: FunName

Type
localTypes: set of TypeDecl
localVars: setof V 1
body: seq of Stmnt

A statement is an assignment, a procedure invocation, an if-then-else construct, an if-then
construct, a while-do loop, a for-'o loop, or a data model operation that executes a com-
mand:

Stmnt = Assgn | ProcInvoc | IfThenElse | IfThen | WhileDo | ForDo | DataModelOp
An assignment consists a target variable and a value expression:

Assgn :: lhs: VarName
rhs: Expression

A procedure invocation consists of the procedure name, a sequence of input arguments,

and a sequence of output arguments:

Procinvoc : name: ProcName
inputArgs: seq of Expression
outputArgs: seq of VarName

The for-do iteration loop consists of a loop variable, an iterator, and a body composed of

a sequence of statements:

ForDo :: loopVar: VarName
iterator: Iterator
body: seq of Stmnt

An if-then-else construct consists of a condition part, a then part and an else part:

191

IfThenElse :: cond: BoulExpr
then: seq of Stmnt
else: seq of Stmnt

An if-then construct consists of a condition part, and a then part:
IfThen :: cond: BoolExpr
then: seq of Stmnt
A while-do loop consists of a condition part and a body composed of a sequence of sute-

ments:

WhileDo :: cond: BoolEx
body: seq of Stmnt

An expression can be an arithmetic expression, a string expression, a Boolean expression,

a set expression, a sequence expression, an entity expression, or a tuple expression:

Expression = ArithmExpr | StringExpr | BoolExpr | SetExpr | SeqExpr |
EntityExpr | TupleExpr

SetExpr = set of Expr

SeqExpr = seq of Expr

An arithmetic expression can be an elementary expression, an arithmetic infix expression,
or an arithmetic negation:
ArithmExpr = Expr | ArithmInfixExpr | ArithmNegation
Arithml pr ::el: Expr
: ArithmOp
: Expr.

ArithmOp = [4--, */.**)
ArithmNegation = ArithmExpr

A string expression can be an elementary expression, or string type operation:

StringExpr = Expr | StringTypeOp
A string type operation is an application of a string type operator to appropriate argu-
ments that returns a string value:

StringExpr :: op: StringOp

args: seq of Expr
A Boolean expression can be a predicate expression, a negation, or a Boolean infix

expression:

192

BoolExpr = PredExpr | Negation | BoolInfixExpr
Negation = BoolExpr
BoollnfixExpr :: bl: BoolExpr

BoolOp

b3: BoolExpr
BoolOp = (&, 1)
A predicate expression consists of a pair of arithmetic expressions and a comparison

operator:
PredExpr :: al: ArithmExpr
O Abenepr
CompOp = { =, <, >, <=, >=, Iun)
An entity expression is an elementary expression that returns an entity:

EntityExpr = Expr
A tuple expression has a tuple type name and a sequence of atomic values:

TupleExpr : name: TupleTypeName
values: seq of AtomicValue

An clementary expression can be a denotable value, a variable reference, an attribute
value, a function invocation, a data model operation that retums a value, or recursively,
an "Expression™:
Expr = DenValue | VarRef | AttribValue | Funlnvoc | DataModelOp | Expression

The syntactic categories SetExpr, Expr, Expression etc. define the values that can be
computed at run-time (dynamically). The set of these values is strictly larger than the set
of "denotable values” whose types are defined by Type expressions at compile-time (stat-
cally). The set of denotable values (as defined in Section 7.3.2. Semantic Domains)
includes "womic values” (basic data type values and entities) and "structured values”
(tuples, sets (of atomic values) and sequences (of atomic values)). Since an atomic value
can be an entity, arbitrarily complex structures can be built up from a hierarchy of enti-
ties. For example, to specify a type "set of set of set of String” define:

CLASS S_string = (
ATTRIBUTE
comp: {STRING);

CLASS Ss_string = (
ATTRIBUTE
) comp: {S_string);

CLASS Sss_string = (
ATTRIBUTE
) comp: {Ss_string};

The corresponding denotable values are introduced by the declarations:

VAR s: STRING;
sl: S_String;
$2: Ss_String;
s3: Sss_Srring;

An auribute value consists of an attribute name and an entity:

AnribValue :: attrib: AttribName
entity: EntityExpr

A function invocation consists of the function name, and a sequence of arguments:

Funinvoc ::name: FunName
args: seq of Expression

7.7.2. Semantic Domains
A denotable value can be an atomic value or a structured value:

DenValue = AtomicValue | StructValue
An atomic value can be a basic data type value or an entity:

AtomicValue = BasicTypeValue | Entity
A basic data type value can be an integer, a real, a string, or a Boolean:

BasicTypeValue = Z | R | String | Bool
A structured value can be a set value, a sequence value or a tuple value:

193

194

StructValue = SetValue | SeqValue | TupleValue
SetValue = set of AtomicValue
SeqValue = seq of AtomicValue

A tuple value is a set of attribute-value pairs:

TupleValue = set of avPair
avPair :: attrib: AuribName
value: AtomicValue

An entity consists of an entity identifier, and a (most specific) class:

Entity :: entID: N,
class: ClassName

7.7.3. System State

The following domaie (abstract types) and variables define the system state. The
class aggregation graph is defined in terms of the HasComp abstract type:

HasComp :: aggr: ClassName
comp: ClassName

where aggr and comp fields denote, respectively, the aggregate and component classes.
The class generalization hierarchy is defined in terms of the /sA abstract type:

ISA :: sub: ClassName
super: ClassName

where sub and super fields denote, respectively, subclass and superclass. The relation
Is—a" is a set of IsA values. The entity attribute values are defined in terms of an attri-

bute value table entry type:

AviEntry :: attrib: AttribName
entity: Entity
value: DenValue

where antrib, entity and value fields denote, respectively, attribute name, entity and attri-
bute value. The attribute name is implicitly qualified by the class of the entity. The well-
formedness constraint on the attribute name (defined in Section 7.7.4) verifies its correct-

ness subject to the attribute redefinition constraint. The context conditions environment

195

is a mapping from identifiers to the syntactic objects they denote:

6 € CCEnv = map Id to { type, variable, class, procedure, function,
attribute, constraint, dataModelOp, entity)

The static environment is a complex object consisting of the set of type, variable, class,
procedure and function declarations, and the class generalization and aggregation hierar-

chies:

o € SEnv :: types: set of TypeDecl
etValues: map TypeName to SetValue
vars: set of VarDecl
classes: set of ClassDecl
procs: set of ProcDecl
funs: set of FunDecl
isA: set of IsA
hasComp: set of HasComp

The state invariant corresponding to the static environment is:

inv-SEnv(mk-SEnv(types, etValues, vars, classes, procs, funs, isA, hasComp)) A
is-DAG(isA)

where the predicate is-DAG checks that the directed graph defined by its argument is acy-
clic.
The dynamic environment is a complex object consisting of a store, an attribute value

table, a entity class extension map, and an entity database:

p € DEnv ::store: map VarName to [DenValue]
avt: set of AviEntry
ext: map ClassName to (set of Entity)
entDB: set of Entity

where [DenValue] = DenValue U {null}. The null denotation represents an undefined

value. The state invariant corresponding to the dynamic environment is defined as:

inv-DEnv(mk-DEnv(store, avt, ext, entDB) A inv-Avt(avt) & inv-EntDB(entDB)
inv-Avt(avt) A Vee avt - is-unique(<attrib(c), entity(e)>)
inv-EmtDB(entDB) A Vee entDB - is-unique(entID(e)) &

(BCeclasses(0) - e€ ext(

The inv-Avt predicate checks that there is a unique entry corresponding to each pair of
attribute and entity values. The inv-EntDB predicate checks that identifiers of entities in

196

the database are unique, and that they are members of some class extension.

7.7.4. Semantic Well-formedness and Meaning Functions
An enumerated type declaration modifies the static environment by adding to the fypes
and etValues fields:

WF: EnumeratedType — (CCEnv x SEnv) — Bool
WF(mk-EnumeratedType(n, v)](6, 6) A
6(n) = type & —~(mk-EnumeratedType(n, v) € types(c))

M: EnumeratedType — SEnv — SEnv
M[mk-EnumeratedType(n, v)](0) A
mk-SEnv((types(c)umk-EnumeratedType(n, v)),
(etValues(c)+(n—v)),
vars(0), classes(), procs(G), funs(), isA(c), hasComp(0))

A tuple type declaration modifies the static environment by adding to the types field:

WEF: TupleType — (CCEav x SEnv) — Bool
WF[mk-TupleType(n, as))(6, 6) A
6(n) = type & —(3te types(G) - name(t)=n) & (Vae as) - WFTupleAttrib[a](0, o)

M: TupleType — SEnv — SEnv
M[mk-TupleType(n, as))(c) A
mk-SEnv((types(c)umk-TupleType(n, as)), etValues(o), vars(0),
classes(), procs(G), funs(G), isA(c), hasComp(0))

A variable declaration modifies the the static environment by adding a VarDec! object to
the vars field, and modifies the dynamic environment by adding to the store field a null
denotation for the variable being declared:

WF: VarDecl - (CCEnvxSEnv) — Bool
WF[mk-VarDecl(v, 1)](6, 6) A
6(v)=variable & O(t)=type} & —(mk-VarDecl(v, t)€ vars(c))

M: VarDecl = (SEnvxDEnv) — (SEnvxDEnv)
M[mk-VarDecl(v, t)}(c, p) A
let ' = mk-SEnv(types(c), etValues(c), (vars(c)umk-VarDecl(v, t)),
classes(c), procs(0), funs(o), isA(0), has g)) in
(l:‘t g.)- mk-DEnv((store(p)+{v—null}), avt(p), ext(p), entDB(p)) in

A class declaration modifies the static environment by updating its classes, isA and
hasComp fields:

197

WEF: ClassDecl — (CCEnvxSEnv) — Bool
WF[mk-ClassDecl(n, as, cs, super, sub)l(0, o) A
6(n)=class & —~(3Cs classes(0) - name(C)=n) &
Vaeas - WFAurib{a)(n, 0, 0) & Vcecs - WFConstr{c](0) &
Vpe super - WFIsA[mk-IsA(n, p)}(0) & Vbe sub - WFISA[mk-IsA(b, n)}(6)

M: ClassDecl — SEnv — SEnv
M[mk-ClassDec:i(n, as, cs, super, sub)](c) A
mk-SEnv(types(0), etValues(o), vars(0), (classes(o)v
{mk-ClassDecl(n, as, cs, super, sub) }, procs(0), funs(c),
isag)u (mk-)ls)A(n, n') | n'esuper JU (mk-IsA(n', n) | n'e sub)),
(]
{mk-HasComp(n, n ") | 3a€ as - dom(a)e name(classes(0))}))

The well-formedness predicate for the IsA object ensures that both the arguments are
class names (i.c. class (syntactic) objects).

WF: IsA — CCEnv — Bool
WF[mk-IsA(n ;, 12)](0) A 6(n,) = 6(n,) = class

The well-formedness constraint on attribute definitions says that the attribute name is
cither not inherited from any superclass, or if inherited, satisfies the attribute redefinition
constraint (Section 4.).
WE: Attrib = (ClassNamexCCEnvxSEnv) — Bool
WF[mk-Attrib(n, d))(C, 0,) A 6(n)=attribute & 6(d)=type &
—(neinh_attrs(C, 0)) |
Vae (a;,, |3C, - a;, € atrib(C) & C € classes(0) &
name(C,) € super(C) } - d C dom(a)
where the function ink_attrs (inherited attributes) is defined as:

inh_attrs(n, 0) A
for Ce classes(o) such that name(C)=n -
if (super(C)= @)
then @

clse (name(a) | 3C ;e classes() - ae attrib(C ;) & name(C)€ super(C)} U
inh_attrs(name(C), ©)

A procedure declaration modifies the static environment by adding to the set of procedure
declarations, and modifies the dynamic environment by updating the store to include a
(recursively) defined function obtained by computing the denotations of the statements in
the procedure with the input parameters bound to values in the calling environment, and

198

the output parameter variables and the local variables bound to null denotations in the

Store.

WEF: ProcDecl = (CCEnvxSEnv) = Bool
WF[mk-ProcDecl(n, ips, ops, Its, lvs, b)}(6, 6) A
all-disjoint(<elems(ips), elems(ops), clems(lvs), dom(6)>) &
length(ips)20 & length(ops)20 & length(lvs)20 &
procs(o) -)=n)) &
Vie lts - WFTypeDecl(t)(0, 6) &
Vvelvs - WFVarDecl(v])(0, o) &
WFBody(b](8, 6)

M: ProcDecl — (SEnvxDenv) — (SEnvx(DEnv—DEnv))
M[mk-ProcDecl(n, ips, ops, Its, lvs, b)](c. p) A
let ¢’ = mk-SEnv(ltsUtypes(0), etvalues(c),
(vars(o)Uipsiopslvs), classes(o),
(procs(o)ywmk-ProcDecl(n, ips, ops, lts, lvs, b)),
funs(o), isA(c), hasComp(0)) in
(let f(store(p)) =)))
(let p' = mk-DEnv(store(p)+{id - MExpression[id](p) |id € ips) +
{id—null | ide opsLlvs}, avt(p), ext(p), entDB(p)) in
)fpr i=1 to length(b) do MStmnt([b[i]l(c’, p');
in
f
)in
(o.0)
where length is the sequence operator that returns the length of a sequence; elems is the

sequence operator that generates the set of elements in the sequence; and the predicate
all-disjoint is defined as:

all-disjoint: seq of (set of Id) = Bool

all_disjoint(ss) A Vi je indxs(ss) : isj => ss(i) N ss() = O
where indxs is the sequence operator that returns the set of index values of the sequence

elements.

A function declaration modifies the static environment by adding to the set of func-
tion declarations, and modifies the dynamic environment by updating the stor. to include
a (recursively) defined function obtained by computing the denotations of the statements
in the functions with the input parameters bound to values in the calling environment,
and the local variables bound to null denotations in the store.

199

WEF: FunDecl — (CCEnv x SEnv) — Bool
WF[mk-FunDecl(n, ps, rt, lts, lvs, b)|(6,0) A
all-disjoint(<elems(ps), elems(lvs), dom(0)>) &

l_e:gh(g:n)'z(o & length(lvs)20 &
€ o) - name(f)=n) &
Vte lts - WFTypeDecl(t)(0, 0) &

Vve lvs - WFVarDecl[v](0, 0) &
WFBody([b](6, o)

M: FunDecl — (SEnvxDenv) — (SEnvx(DEnv—DEnv))
M([mk-FunDecl(n, ps, rt, Its, lvs, b)](c, p) A
let 0’ = mk-SEnv((types(o)Ults, vars(GrupsLlvs), classes(o),
procs(c), (funs(c)xomk-FunDecl(n, ps, it, Its, lvs, b)),
15A(0), hasComp(0)) in
(let f(store(p")) =
(let p' = mk-DEnv(store(p)+{id -»MExpression{id](p) | ide ps} +
(id—null | ide lvs}, avi(p), ext(p), entDB(p) in
)fpr i=1 to length(b) do MStmnt{b{i]}(¢’, p');
in
f

(0.0

An assignment modifies the dynamic environment by updating the store with a new ele-
ment that maps the variable (on the left hand side of the assignment) to the value
obtained by computing the denotation of the expression (on the right hand side of the

assignment):

WEF: Assgn — (CCEnvxSEnv) — Bool
WF[mk-Assgn(v, €))(6, 6) A 6(v) = variable & WFExpression{e](6,)

M: Assgn — DEnv = DEnv
M[mk-Assgn(v, ¢)l(p) A
mk-DEnv((store(p)+{v—MExpression{e](p) }), avt(p), ext(p), emtDB(p))

A procedure invocation modifies the dynamic environment by applying the function
obtained by computing the denotation of the procedure to the updated store that includes
the denotations of the arguments:

WF: ProcInvoc = (CCEnvxSEnv) - Bool

WF[mk-ProcInvoc(n, in-args, out-args)](ﬁ, o)A
6(n) = procedure & Vee clems(in-args) - WFExpression[e](0, 0) &
Vve elems(out-args) - WFVarDecl[v](6, o)

M: Procinvoc — DEnv — DEnv
M[mk-ProcInvoc(n, in-args, out-args)|(p) A
if t(lf:\ i=1 to length(in-args), owips{i], e=in-args(i] - DefState(o) < DefState(e))

let P = MProcDecl(n)(c, p) in
let p'= (mk-DEnv(store(p)+<ips[i]—-)MExptession[in-args[i]](p)l
i€ indxs(in-args)>+ <out-args[i]—null | 1€ indxs(out-args)>),
) avt(p), ext(p), entDB(p))
in P(0, p')
else
p

where

DefState(o) = { A | 3Ce classes(0) - name(C)=type(o) &
ae attrib(C) & name(a)=A & value of attribute A is required to be non-null}

DefState(e) = { A | 3Ce classes(o) - name(C)=class(e) &
ae attrib(C) & name(a)=A & —(A(e)=null))

A function invocation returns a value obtained by applying the function obtained by com-
puting the denotation of the function to the updated store that includes the denotations of

the arguments:

WEF: Funlnvoc — (CCEnvxSEnv) — Bool
WF[mk-FunInvoc(n, args)}(0, 6) A
6(n) = function & Vee elems(args) - WFExpression[e](0, ©)

M: Funcinvoc = DEnv — DenValue
M[mk-Funlavoc(n, args)l(p) A
if u(‘iglr i=1 to length(args), p=ps(i], e=args[i] - DefState(p) < DefState(e))

let F = MFunDecl{n](p) in
let p'= (mk-DEnv(store(p)+<ps[i]—MExpression[args[i]}(p)!
] ie indxs(in-args)>, avt(p), ext(p), entDB(p))
in F(O)p')(args)
else
null

where

201

DefState(o) = { A | 3Ce classes(0) - name(C)=type(o) &
aeattrib(C) & name(a)=A & value of attribute A is required to be non-null}

DefState(e) = {A | 3Ce classes(0) - name(C)mclass(e) &
ae attrib(C) & name(a)=A & —~(A(c)=null)}
A for-do iteration loop modifies the dynamic environment by updating its store by adding

an element that maps the loop variable to the denotation generated by the iterator com-

puting the denotations of the statement in the loop in the updated dynamic environment:

WF: ForDo — (CCEnvxSEnv) — Bool
WF[mk-ForDo(v, it, b)}(0, 6) A
6(v) = variable & WFIterator{it)(0, o) & Vse b - WFStmnt(s](0, o)

M: ForDo — DEnv — DEnv
M([mk-ForDo(v, it, b))(p) A
for Vie Isiltv:t'ntor{it](lgl?I do
MStmnt[b}(mk-DEnv((store(p)+{v—1i}), avt(p), ext(p*, entDB(p));

An if-then-else construct computes the denotation of the Boolean expression in its condi-
tion part; if it evaluates to TRUE, the denotation of the statement sequence in the then
part is computed, otherwise the denotation of the statement sequence in the else part is

computed:

WF: IfThenElse — (CCEnvxSEnv) — Bool

WF{mk-IfThenElse(cond, then_part, else_part))(0, 6) A
WFBoolExpr{cond](0, 6) & Vse elems(then_part) - WFStmnt[s](0, o) &
Vse (clems(else_part) - WFStmnt[s)(6, o)

M: IfThenElse — DEnv — DEnv
M[mk-IfThenElse(cond, then_part, elsc_part)](p) A
if MBoolExpr{cond](p) then MStmnt{then_part](p) else MStmnt|else_part}(p)

The semantics of an if-then construct are similarly defined as:

WEF: IfThen = (CCEnvxSEnv) — Bool
WEF{mk-IfThen(cond, then_part](6, 6) A
WFBoolExpr{cond](0, 0) & Vse elems(then_part) - WFStmnt(s](0, o)

M: IfThen — DEnv - DEnv
M[mk-IfThen(cond, then_part)](p) A
if MBoolExpr{cond](p) then MStmnt[then_part](p) eise p

A while-do loop computes the application of a recursive function (wh) obtained by

202

evaluating the denotation of the Boolean expression in its condition part and testing if it
is TRUE:

WF: WhileDo — (CCEnvxSEnv) = Bool
WF[mk-WhileDo(cond, body)](0, 6) A
WFBoolExpr{cond](0,) & Vse& body - WFStmnt[s](0, ©)

M: WhileDo — DEnv — DEav

M([mk-WhileDo(cond, body)}(p) A _
let wh = (def bv: MBoolExpr{b]; if bv then (MBoolExpr{b]; wh) else Ipg,,) in
wh(p)

A variable reference returns the value to which it is mapped by the store:

WF: VarRef = (CCEnvxSEnv) — Bool
WF[mk-VarRef(v)](0, 6) A 6(v)=variable & (ve vars(G))

M: VarRef = DEnv — DenValue
M([mk-VarRef(v)](p) A store(p)(v)

An auribute value is obtained by retrieving the value component of the attribute value
table entry such that its attribute and entity components correspond to the given attribute

and the entity obtained by computing the given entity expression:

WF: AtribValue — (CCEnvxSEnv) — Bool
WF[{mk-AttribValue(n, €)}(0, 6) A 6(n)=attribute & WFEntityExpr{c](0, ©)

M: AuribValue — DEnv — DenValue
M([mk-AuribValue(n, ¢)l(p) A
value(k) such that 3ke avi(p) - attrib(k)=n & entity(k)=MEntityExpr{e](p)

The semantics of an arithmetic infix expression are defined as:

WF: ArithminfixExpr — (CCEnvxSEnv) — Bool
WF[mk-ArithmInfixExpr(el, op, €2)](0, 6) A
WFArithmExpr{e1](0,) & op € ArithmOP & WFArithmExpr{¢2}(6, 6)

M: ArithminfixExpr —» DEnv = AtomicValue
M[mk-ArithminfixExpr(e1, op, e2)I(p) A

letvi= MAn’ﬂntxd‘mE;(;ll](g) in

let v2 = MAri e2)(p) in

cases op:
+—=vl+v2
-=pvl-v2
*tovlstv2
/= vl/v2
woyvltev2

The semantics of a arithmetic negation are defined as:

WEF: ArithmNegation = (CCEnvxSEnv) — Bool
WF[mk-ArithmNegation(e)](0, o) A WFArithmExpr{e)(0, ©)

M: ArithmNegation — DEnv — AtomicValue
M[mk-ArithmNegation(e)](p) A - MArithmExpr{e](p)

The semantics of a Boolean infix expression are defined as:

WF: BoolInfixExpr — (CCEnvxSEnv) — Bool
WF{mk-BoolInfixExpr(e1, op, €2)](0, 6) A
WFBoolExpr{e1](6, 6) & op € BoolOP & WFBoolExpr{e2](0, o)

M: BoollnfixExpr — DEnv — Bool
M[mk-BoolInfixExpr(el, op, €2)](p) A
let vl = MBoolExpr{el](p) in
let v2 = MBoolExpr{e2](p) in

cases op:
AND = if vl then v2 else false
OR = if vl then true eise v2

The semantics of a Boolean negation are defined as:

WEF: Negation — (CCEnvxSEnv) — Bool
WF[mk-Negation(e)](6,) A WFBoolExprie](0, o)

M: Negation - DEnv - Bool
M[mk-Negation(e)](p) A if MBoolExprie](p) then false else true

The semantics of a predicate expression are defined as:

204

WF: PredExpr — (CCEnvxSEnv) — Bool
WF{mk-PredExpr(al, op, a2)}(6,) A
WFArithmExpr{a1](6, ¢) & op € CompOp & WFArithmExpr{a2](0, ©)

A rh PodE vl o 2o A

- a ’ »

letvli= MAFll'l(dlmg al]‘(,p) in
let v2 = MArithmExpria2)(p) in

cases op:
= — if vi=v2 then true else false
> = if vi>v2 then true else false
< = if vi<v2 then true eise false
>= = if vi2v2 then true eise false
<= — if viSv2 then true eise false
!= = if viwv2 then true eise false

7.8. Summary

This chapter has discussed formal specification techniques. VDM is a model-based
(denotational) specification technique that has been used successfully in a number of
actual software design and development projects. Larch is an algebraic (axiomatic)
specification technique supporting software design and formal verification using a hierar-
chy of data and procedural abstractions. Both VDM and Larch specifications of a struc-
tured type system are presented. An implementation of the values and operators of the
structured type system (the SVIM subsystem) is also presented. A sketch of the formal
specification of the semantic data model and the integrated database language (IDL) is
then presented using denotational semantics techniques.

Chapter 8
CONCLUSION

8.1. Summary

This thesis has focused on the problem of applyiny database technology to
computer-aided design applications. Chapter 1 provided a brief overview of computer-
aided design systems and integrated design environments, and the motivation for design
databases. Chapter 2 claborated on the special database requirements of CAD applica-
tions and the limitations of conventional database systems in meeting these requirements.
It also proposed a design database system architecture consisting of: a conceptual-level,
semantic data model; an integrated database language; complex application-oriented
operations; complex semantic integrity and consistency constraints; and a concurrent
access control and interactive design transaction management subsystem (not carried out
in detail). Chapter 3 surveyed related research efforts on some of these topics. Chapter 4
described the design of the conceptual-level, semantic data model which captures the
structural and behavioural abstractions of design databases in terms of entities, entity
classes, entity interrelationships, integrity constraints and operations. Chapter 5 discussed
database language design issues of data abstraction, polymorphism, data persistence, type
system implementation, and system architecture in the context of several current research
proposals. This led to the conceptual basis for the design of an integrated database
language followed by a specification of the features of the language. Chapter 6 presented
an illustrative example of the specifications for defining and processing the design of a
VLSI 4-bit adder circuit. Chapter 7 dealt with formal specification issues. Model-based
(operational), algebraic (axiomatic) and denotational semantics specification techniques
were discussed. The structured type system that would subsequently be used in the
specification of the semantic data model and the integrated database language was then

205

206

formally defined in terms of VDM and Larch specifications. Using these structured types,
a denotational semantics specification for the model and the language was then outlined
in terms of an abstract syntax (syntactic domains), & collection of semantic domains, and
a collection of well-formedness (context conditions), and meaning (semantics) functions.

8.2. Future Research

In the context of the work reported in this thesis, several additional aspects and
related issues of design database systems can be identified for future research. Some of

these are discussed in the following subsections.

8.2.1. DBMS/Design Tool Interface

The user interface provided by the integrated database language is based directly on
the underlying semantic data model. Thus, at the level of this interface, the wser deals
directly with the abstractions of entities, entity classes, structured values etc. A design
tool written in the integrated dambase language can therefore directly access and manipu-
late these abstractions. However, there is a large collection of already existing design
tools written in other languages. To be able to use these tools with the design database an
interface between the design tool and the DBMS has to be defined and implemented. This
interface translates between the semantic data model abstractions of the DBMS and the
data structuring, manipulation and transmission abstraction provided by the design tool
(application) language. A separate interface will be required for each such language. This
interface can take cither of the two forms: (1) a set of design tool callable DBMS routine ;
that can be linked to the design tool before execution; or, (2) an independently executing
DBMS Interface process that mediates communication between the design tool and the
DBMS by appropriately translating between the two models. Designing and implement-
ing such interfaces for the design database system described in this thesis constitutes a

topic for future work.

8.2.2. Database System Services

The addiiional system services needed in practical database systems include: con-
current access control and design transaction management; multiple version manage-
ment; performance optimization; reliability and failure recovery; and distributed process-
ing architectures. Some of these topics are considered below:

Concurrent Access Control and Transaction Management

In a design database, the granularity of concurrent access is the eatity rather than a
physical (stworage block or file) or a logical (record or tuple) unit [BKK8S, Kat86]. Since
the entities are shared, suuctured hierarchically and interrelased in complex ways, the
semantics of concurrent access are much more complicated than in conventional data-
bases. Consequently the classical concurrent access control (locking and time stamping),
transaction atomicity (commit/rollback), and failure recovery (undo/redo) protocols are
inadequate. A transaction is a sequence of data manipulation and update operations that
maintains the integrity and consistency of the database. A transaction is atomic (i.e. all
operations in the sequence are executed 10 completion o none of the operations is exe-
cuted), and durable (i.c. system failures are transparent with respect to the tansaction).
Several recent papers have reported on concurrent access and transaction management
models: Katz [Kat86) discusses a model based on the check-out/check-in “library opera-
tions". Bancilhon et al [RKK85] propose a model of design database transaction manzge-
ment based on a hierarchy of cooperating client/subcontractor transactions. These can be
adapted and exiended to work with database model presented in this thesis.

Version Management

Version management is another important service that will greatly aid the designer

208

by automating much of the tedious accounting information necessary to manage multiple
versions. Zdonik [ZdW86] discusses a version control mechanism that captures the
"derived-from” relahomship between versions. Beech and Mahbod [BeM88] describe a
version creation and referencing model for the Iris [Fis87] object-oriented database sys-
tem. Katz and Lehman [Kal.84] discuss secondary storage structures to support and
implement versions and alternatives of large design files. Again, these models can be
adapted in an implementation of the version-of relationship provided by the semantic
data model specified.
Performance Optimization

Performance is another issue that is crucial to effective design databases. Without
adequate speed and fast response to user-invoked operations and queries a design DBMS
will fail to meet the performance requirements of an interactive design system. Database
queries which involve iterating over recursively defined objects arise often in design
databases; for example, in querying recursively defined part hierarchies [RHM], and in
checking recursively defined semantic integrity constraints (like BoxOverlap). Such
queries can be computationally very expensive unless some sophisticated optimization
techniques are employed that significantly reduce the search space. A large class of such
queries involves computing the "transitive closure” of a relation, or the least fixpoint of a
recursively defined equation. Several such optimization techniques have been investi-
gated in recent literature and these can also be adapted in the context of the model
presented in this thesis.

8.2.3. Other Data Models
NF2 Relational Models

Non-first normal form (NF 2) relational models [AMMS82, JaS82) relax the first nor-
mal form constraint of the classical relational model requiring attribute values to be
atomic by allowing them to be relations. A further generalization discussed in [PiA86])
allows attribute values to be tuples, lists or multisets so that arbitrarily complex struc-
tures can be built up by suitably nesting these basic constructors. A NF2 algebra which
defines nest and unnest operations, assignment and ordering of values provides the basic
operations of the data model. An extended SQL-like query data definition and data mani-
pulation language provides a user interface to a NF 2 database. [Dad86) describes a pr-
totype DBMS based on the NF 2 model. The use of the NF 2 model to provide an insr-
mediate stage in translating between the semantic data model view of the design DBMS
and a relational view of a user or design tool, or in data sharing and exchange in a
"federated database system" [Zeh86) appears feasible, and provides a topic for future

research.
Knowledge-base Systems

The quest for making database systems more "intelligent” by using Al techniques
has led to the concepts of knowledge representation paradigms and knowledge-base sys-
tems. The knowledge representation models include semantic nets and frame-based sys-
tems which incorporate a rich set of (possibly user-defined) object interrelationships and
property inheritance hiesarchies [Tic87). Current research focuses on integrating these
concepts with the object-oriented programming paradigm (object classes, methods and
messages) to yield the so called knowledge-base systems that combine the reasoning
ability of Al systems with the efficient data structuring and algorithmic processing ability
of database systems.

210

Logic Databases

There has been much research exploring the connection between first-order logic
and the relational data model. A logic database views a relation as an extensionally
defined predicate. Tuples in the relation correspond to elementary facts, which are predi-
cates with constant arguments (corresponding to the tuple components) that evaluate to
TRUE. A query corresponds to an open wff (i.c. a well-formed formula with free vari-
ables). Database retrieval corresponds to proving the query goal by binding the free vari-
ables to values in the database. A large class of structural integrity constraints defined by
functional and multivalued dependencies can be specified as closed Horn clauses with no
function symbols. In such a system, recursively defined objects and queries can be for-
mulated using Horn clauses. The advantages of the logic data model include: a unified
underlying formalism for data definition, integrity constraint specification, data manipu-
lation and querying; and, a more expressive and powerful computational model that per-
mits recursion. Some of the limitations that need to be addressed by further investigations
include: more efficient secondary storage management; support for concurrency, failure
recovery and security; data typing, polymorphism and inheritance; more efficient evalua-
tion strategies; and optimization strategies for query processing.

Zaniolo [Zan85] proposes an extension of the relational algebra that deals with com-
plex objects defined as nested predicates (i.c. predicates whose arguments may them-
selves be predicates) and provides deductive retrieval using non-recursive, safe Homn
clauses. Bancilhon [Ban86] proposes an integration of the object paradigm with the logic
paradigm to provide a model that can deal with "complex (structured) objects” and incre-
mental update (or modification) operations. A recent paper by Ait-Kaci [Ait86] extends
the first-order logic programming paradigm by introducing the notion of types and "type
subsumption” which promises fuller integration of object-oriented databases (abstract

211

types, polymorphism and inheritance) with logic programming (deductive processing by
unification). Tsur and Zaniolo [TsZ86] propose a logic database language called LDL
that augments PROLOG by providing pure Hom clause logic (with sequential rule execu-
tion constraint removed), <~'s as atomic objects, negation by set difference, schema
definition and update cap. s,

The logic model has applications to several database issues including deductive pro-
cessing and inferencing, handling incomplete information, and database programming
languages. Investigation of these issues in the context of the design database model
presented in this thesis is another direction for future research.

[Abr74])
[Abr80]
[Ait86]
[Alb84]
[ACO8S]

(AMMS2]

[AGS84]

[ABC83]
[BaT80]
[BKKSS]
[Ban86]
[Bar84]
[BaK8S5])
[BeM88)
[BeN71]
(BjJ82]
[Bro80]
(Bro81]

References

J.R. ABRIAL, Data Semantics , in Data Base Management, J.W. Klimbi and
K.L. Koffeman (ed.), North Holland, 1974.

J.R. ABRIAL, The Specification Language Z: Basic Library, Working Paper,
Oxford University Programming Research Group, 1980.

H.ArrKAClTypeSubsungnonuaModelof uunonmE.a\gen
Database Systems, in Expert Database Systems, L. Kerschberg (ed.), 19

A. ALBANO, Type Hierarchies and Semantic Data Models, SIGPLAN
Notices Notices, 1984.

A. ALBANO, L. CARDELLI and R. ORSINI, Galileo: A Strongly-Typed

Interactive Conceptual Language, ACM Trans. Database Systems 10, 2 (June
198S), 230-260.

H. ARISAWA, K. MORIYA and T. MIURA, Operations and Properties of
Non-first-normal-form Relational Databases, Principles of Database Systems
Symposium Proceedings, 1982.

W.W. ARMSTRONG, M. GREEN and P. SRIRANGAPATNA, A Database
Management System and Associated Tools for a General Design
Environment, Proc of 1984 Canadian Conf on VLSI, Oct 1984.

M.P. ATKINSON, P.T. BAILEY and K.J. CHISOLM, An A h to Persistent
Programming, Compmr Journal 26, 4 (November 1983), .

C.M. BAKER and C.J. TERMAN, Tools for Verifying Integrated Circuit
Designs, Lambda 1, 3 (4th Quarter 1980), 22-30

F. BANCILHON, W. KIM and H.F. KORTH, A Model of CAD Transactions,
Proceedings of VLDB , 1985

F. BANCILHON, A Logi ing/Object-oriented Cocktail, SSIGMOD
Record 15, 3 (September 15”845

11)9!814 BARSTOW, Interactive Programming Environments, McGraw-Hill Inc.,

D.S. BATORY and W. KIM, Modeling Concepts for VLSI CAD Objects,
Supplement 1o 1985 ACM SIGMOD Proceedmgs. 1985, 18-32.

D. BEECH and B. MAHBOD, Generalized Version Control in an Object-
oriented Database, OOPSLA Proceedings, 1988.

C.G. BELL and A. NEWELL, Computer Structures: Readings and Examples,
McGnaw Hill, New York, 1971.

D. BIOERNER and C.B. JONES, Formal Specification and Sofiware
Development, Prentice Hall, 1982.

M.L. BRODIE, The Application of Data "gges to Database Semantic
Integrity, Information Systems S, (1980), 287-

M.L. BRODIE, Data Abstraction for Designing Database-Intensive
Applications, SIGMOD Record 11, 2 (Feb 1981), .

212

[BuN8g4]

(BuA86)
[CCC81])

[Carg4]
[CaW85]

[Cha76]

[Che76]
[Chu83]
[Cle81]

[Cod79])
[Cod81]
[CHI86)
[CoM84)

[Dad86]

[DMN70]

[Dep8l]
[DKL8S]

[DiL85]

[EaT79]

213

P. BUNEMAN and R. NIKHIL, The Functional Data Model and its Uses for
Interaction with Databases, in On Conceptual Modeling, M.L. Brodie et.al
(ed.), Springer Verlag, 1984.

P. BUNEMAN and M. ATKINSON, Inheritance and Persistence in Database
Programming Languages, Proceedings of SIGMOD 86, May 1986.

fgIgIlLL Formal Definition, CCITT Period 1980-1984 Working Party XI/3,
L. CARDELLI, Amber, Technical Report, AT&T Bell Labs, 1984.

L. CARDELLI and P. WEGNER, On Understanding , Data Abstraction
and Polymorphism, Computing Surveys 17, 4 198S5), .

D.D. CHAMBERLIN, SEQUEL2: A Unified Approach to Data Definition,
?:;gi 560-57‘;“ Coatrol, IBM Journal of Research and Development 20, 6

P.P.S. CHEN, The Entity-Relationship Model: Toward a Unified view of
Data, ACM Trans. Database Systems 1, 1 (March 1976), 9-36.

K.C. CHU, vdd - A VLSI Design Database System, Engineering Design
Applications: Proc. of Annual Meeting, Database Week, May 1983.

E. CLEMONS, Design of an External Schema Facility to Define and Process

Recursive Structures, ACM Transactions on Database Systems 6, 2 (June
1981), 295-311.

EF. CoDD, Extending the Database Relational Model, ACM Trans.
Database Systems 4, 4 (December 1979), 397-434.

E. F. CODD, Data Models in Database Management, SIGMOD Record 11, 2
(Feb 1981), .

B. COHEN, W.T. HARWOOD and M.I. JACKSON, The Specification of
Complex Systems, Addison-Wesley Publihing Company, 1986.

G. COPELAND and D. MAJFR, Making Smalltalk a Database System, PODS
Symposium Proceedings, 1984, 316-325.

P. DADAM, A DBMS to Support Extended NF2 Relations: An Integrated
Ygxgvg on Flat Tables and Hierarchies, Proceedings of SIGMOD 1986, May

O.J. DAHL, B. MYRHAUG and K. NYGAARD, SIMULA Common Base
Language, S-22, Norwegian Computing Centre, 1970.

DEPARTMENT OF INDUSTRY(UK), Report on the Study of Ada-based System
Development Methodology, Department of Industry, 1981.

N. DERRETT, W. KENT and P. LYNGBAEK, Some of Operations in
an Object-oriented Database, Database Engineering 8, 4 (December 1985),
66-74, IEEE TC on Database Engineering.

K.R. DITTRICH and R.A. LORIE, Object-oriented Database Concepts for
E‘n.ﬁmng Applications, RJ 4691, IBM Research Laboratory, San Jose,

y .

C. EASTMAN and R. THORNTON, A Report on GLIDE2 Language Definition,
CAD Gtoqg). Institute of Physical Planning, Carnegic Mellon University,
March 1979.

(Fis87)
[Gib84)
[GoR83]
[Gor79]
[Gri76)
(Gri81]
(Gua78]
[Gut80]
[GHW8S)
(HHB8S5]
(Hal.84)
(HaMS81]

[Har84]

[JaS82]
[Joh80]
{Jon86)
(Kat82)
[Kaw83)

(KSS83]

214

D.H. FISHMAN, Iris: An Object-Oriented Database Management System,

ACM Transactions on Office Information Systems S, 1 (January 1987), 48-69.
S.J. GIBBS, An Object-oriented Office Data Model, CSRG-154, Computer
Systems Research Group, University of Toronto, January 1984.

A. GOLDBERG and D. ROBSON, SMALLTALK-80: The Language and its

Implementation, Addison-Wesley, 1983.

M.J.C. GORDON, The Denotational Description of Programming

Languages: An Introduction, Springer, New York, 1979.

D. GRIES. An Illustration of Current ldeas on the Derivation of Correctness
Proofs and Correct IEEE Transactions on Software Engineering

2, (December 1976), 238-244.

D. GRIES, The Science of Programming, Springer Verlag, 1981.

L.R. GUARINO, The Evolution of Abstraction in Programming Languages,
CMU-CS-78-128, ngmem of Computer Science, Carnegie Mellon
University, 22 May 1978.

J.V. GUTTAG, Notes on Type Abstraction, /[EEE Transactions on Software
Engineering SE-6, 1 (January 1980), 13-23.

J.V. GUTTAG, J.J. HORNING and J.M. WING, Larch in Five Easy Pieces,
Report #5, Digital Systems Research Center, Palo Alto, CA, July 198S.

.l,-ll-lB.1 968";DAT User’'s Manual Revision 5.0, HHB Softron, Mahwah, NJ,
une .

G. HALLMARK and R.A. LORIE, Towards VLSI Design Systems using
Relational Databases, Proceedings of Compcon 84, 1984, 326-329.

M. HAMMER and D. MCLEOD, Database Description with SDM: A Semantic
Database Model, ACM Tods 6, 3 (September 1981), 351-386.

M. HARDWICK, Extending the Relational Database Data Model for Design
Ai\ liclalngns,:CM/IEEE 21st Design Automation Conference Proceedings,
. 116.

G. JAESCHKE and H.J. SCHEK, Remarks on the Algebra of Non First Normal
Form Relations, Proceedings of SIGMOD PODS , March 1982.

H.R. JOHNSON, The Engineering Data Management System for IPAD, in
IPAD: Integrated Programs for Aerospace Vehicle Design, 1980, 145-178.
%26 JONES, Systematic Software Development Using VDM, Prentice Hall,
R.H. KATZ, A Database approach to managing VLSI Design Data,
ACMI/IEEE 20th Design Automation Conf Proc, 1982, 274-282.

R.H. KATZ and S. WEISS, Chip Assemblers: Concepts and Capabilities, 20th
Design Automation Conference Proceedings, 1983, 25-30.

R. KATZ, W. SCACCHI and P. SUBRAHMANYAM, Development
Environments for VLSI and Software Engineering, VLSI and Software
Engineering Workshop, 1983, 50-63.

[Kal84)

(Kat86)

(Kel84)

(Ker81]
(K1a85]

[KuA86]
[LeO83)

[LiG86]
[Lon78]
[LoP83]

[MSR84]

[Mar82]
Mat85)
[McG80]
[McG86]
[McS81]

McW78]

218

R.H. KATZ and TJ. LEHMAN, Database Support for Versions and
Alternatives of Large Design Files, /EEE Transactions on Software
Engineering SE-10, 2 (March 1984), 191-200.

R.H. KATZ, Computer-Aided Design Databases, in New Directions for
Datwbase Sysiems, G. Ariav & J. Clifford (ed.), Ablex Publishing
Corporation, 1986.

K.H. KELLER, An Electronic Circuit CAD Framework, Ph.D. Thesis,
ll)gesmnem of Electrical Engineering and Computer Science, UC Berkeley,

M. L. KERSTEN, The Architecture of the PLAIN Database Handler, Software
Practice and Experience 11, (1981), 173-186.

P. KLAHOLD, A Transaction Mmmn g Complex Applications in
Integrated Information Systems, Pr ACM 1985 International
Conference on Management of Data, May 1985 388-401

K.G. KULKARNI and M.P. ATKINSON, EFDM: Extended Functional Data
Model, The Computer Journal 29, 1 (1986), 38-46.

C.L. LEATH and S.J. OLLANKK, Software Architecture for the
Implementation of a Computer Aided Engineerin g System, ACM/IEEE 20th
Design Automation Conference Proceedings, 1983, 137-142.

B. LISKOV and J. GUTTAG, Abstraction and &nﬁcation in Program
Development, The MIT Press, McGraw-Hill Book pany, 1986

R. LONDON ET AL, Proof Rules for the Programming Language EUCLID,
Acta Inf. Informatica 7, (1978), .

R.A. LOREE and W. PLOUFFE, Complex Objects and their Use in Design
Transactions, Engineering Design Applications: Proceedings of ACMI/IEEE
Database Week, May 1983.

M. MALL, J.W. SCHMIDT and M. REIMER, Data Selection, Sharing, and
Access Control in a Relational Scenario, in On Conceptual Modelling, M.L.
zrgdie, J. Mylopoulos & J.W. Schmidt (ed.), Springer-Verlag, 1984, 411-

J. MARTIN, Program Design which is Provably Correct, Savant Institute,
Camnforth, Lancashire, UK, November 1982.

D.C.J. MATTHEWS, Poly and Standard ML, ACM SIGPLAN Notices Notices
20, 9 (September 1985), .

A.D. MCGETTRICK, The Definition of Programming Languages, Cambridge
University Press, 1980.

N. Gehani & A.D. McGettrick, ed., Software Specification Techniques,
Addison Wesley, 1986.

D. MCLEOD and J. M. SMITH, Abstraction in Databases, SIGMOD Record
11,2 (Feb 1981),.

T. MCWILLIAMS and L. WIDDOES JR., SCALD: Structured Computer-Aided

Logic Design, Technical R;gon No. 152, Digital Systems Laboratory,
Stanford Uns'ermy. March 1

(MeC80)
[Mer78])
[Milg4)
[MBW80)

[Nag75]
[New81]

[079]

[Oes80]
[Ost81]
[PiA86]

[Rei84]

[RiC87]

(RHM]

[Rub87)]
[San82)

[Sch80]

[ScM80]

[Seq83)
[Shi81]

216

C. MEAD and L. CONWAY, Introduction to VLSI Systems, Addison-Wesley,
Reading, 1980.

T.H. MERRETT, Aldat - Augmenting the Relational Algebra for Progammers,
SOCS-78-1, School of Computer Science, McGill University, 1978.

R. MILNER, A Proposal for Standard ML, Proceedings of the Symposium on
Lisp and Functional Programming, 1984, 184-197.

J. MYLOPOULOS, P.A. BERNSTEIN and H.K.T. WONG, A Language Facility
for Designing Database-Intensive Applications, ACM Transactions on
Database Systems S, 2 (June 1980), 18

L.W. NAGEL, SPICE2: A Computer Prognm to Simulate Semiconductor
Circuits”, ERL-M520, University of California, Berkeley, May 1975.

A. NEWTON, Design Aids for VLSI: The Berkeley Perspective, /EEE
Transactions on Circuits and Systems CAS-28, 7 (July 1981), .

L.A. O'NELLL, Designer’'s Workbench - Efficient and Economical Design
?9’1(913, Proceeding of 16th Design Automation Conference, June 1979, 185-
D. Bjoemer & O.N. Oest, ed., Towards a Formal Description of Ada,
Springer-Verlag, 1980.

J. OSTERHOUT, Caesar: An Interactive Editor for VLSI Circuits, VLSI/
Design 4, (November 1981), 34-38.

P. PISTOR and F. ANDERSON, Designing a Generalized NF2 Model with an
SQL-Type Language Interface, Proceedings of the 12th International
Conference on Very Large Data Bases, August 1986.

M. REIMER, Implementation of Database Programming Language Modula/R
on the Personal Computer LILITH, SofmarePracuceandExpmenceM
10 (October 1984), 945-956.

J.E. RICHARDSON and M.J. CAREY, Programming Constructs for Database
S; lementation in EXODUS, SIGMOD 87 Conference Proceedings,
1987, 208-219.

A. ROSENTHAL, S. HEILER and F. MANOLA, An Example of Knowledge-
Based Query Processing in CAD/CAM DBMS, Proceedings of the 10th
International Conference on VLDB, , 363-370.

S.M. RUBIN, Computer Aids for VLSI Design, Addison Wesley , 1987.

J.L. SANBORN, Evolution of the Engineering Design System Data Base,
Proceedings of the 19th Design Automation Conference, June 1982.

J.W. SCHMIDT, Programming Languages and Datatabase Models: On the
Integration of Concepts, Constructs and Notations, in Database Systems, B.

Shaw (ed.), University of Newcastle upon Tyne, 1980.

J.W. SCHMIDT and M. MALL, Pascal/R Report, Technical Report No. 66,

Fachbereich Informatik, University of Hamburg, 1980.

C.H. SEQUIN VLSI le An Outlook, Proceedings of
IEEE 71, l(hnmry 1985) Complexity: d

D.W. SHIPMAN, The Functional Data Model and the Data Language
DAPLEX, ACM Trans. Database Systems 6, 1 (March 1981), 140-173.

[Sin83]
[SmS77]
[SFL83]

[Sow81]
[SMF86]

[Sto74]
(Str84]
[Suf82]

[Ten76)
(Ter83)

[Tic87]
(TsZ86]
[Weg87]
[WeM81]
(Wils2]

Wir77]
[Zan83]
(Zan85)
(ZdW86]

217

N. SINGH, MARS: A Multiple Abstraction Rule-based Simulator, Stanford
University Heuristic Programming Project HPP-83-43, December 1983,

JM. SMITH and D.C.P. SMITH, Database Abstractions: #&?on and
Genenlization, ACM Trans. Database Systems 2, 2 (June 1977), 105-133.

JM. SMITH, S.A. FOX and T.A. LANDERS, ADAPLEX: Rationale and
RMifargg; Manual, T.R. # CCA-83--08, Computer Corporation of America,
y .

J. F. SOWA, A Concegﬁnl Schema for Knowledge-Based Systems, SIGMOD
Record 11,2 (Feb 1981), .

D.A. SPOONER, M.A. MILICIA and D.B. FAATZ, Modeling Mechanical CAD
Data with Data Abstraction and Object-oriented Techniques, Proceedings of
t4hl¢ 6{“nzxesr'na:ional Conference on Database Engineering, Los Angeles, 1986,

M. STONEBRAKER, The Design and lementation of INGRES, ACM
Transactions on Database Systems 1, 3 (1974), 189-222.

B. STROUSTRUP, Data Abstraction in C, Computing Science Technical
Report No. 109, AT&T Bell Laboratories, January 1984.

B. SUFFRIN, Formal Specification of a Display-oriented Text Editor, Science
of Computer Programming 1, 3 (May 1982), .

R.D. TENNENT, The Denotational Semantics of Programming Languages,
Communications of ACM 19, 8 (1976), 437-453.

C.J. TERMAN, RSIM - A Logic-level Timing Simulator, Proceedings of

%’E International Conference on Computer Design, October 1983, 437-

W.F. TICHY, What can Software Engi Learn from Artificial
Intelligence?, Computer, November 1987, 43-54.

S. TSUR and C. ZANIOLO, LDL: A Logic-based Data Language, Proceedings
of the 12th International Conference on VLDB, August 1986, 33-41.

P. WEGNER, Dimensions of Object-Based Language Design, OOPSLA’87
Proceedings, 4-8 October 1987, 168-182.

D. WEINREB and D. MOON, Objects, Message Passing and Flavors, in Lisp
Machine Manual, Symbolics Inc., Cambridge, MA, 1981.

D.S. WIE, Program Developments: Formal Explanations of
Implementations, Technical Report No. RR-82-99, USC Information
Sciences Institute, August 1982.

N. WIRTH, Program Development by Stepwise Refinement, Communications
of ACM 14, (April 1977), 221-227.

C. ZANIOLO, The Database Language GEM, SIGMOD 83/SIGMOD Record
13, 4 (May 1983), 207-218.

C. ZANIOLO, The tation and Deductive Retrieval of Complex
Objects, Proceedings of VLDB 85, 1985, 458-469.

S.B. ZDONIK and P. WEGNER, Lan and Methodology for Object-
oriented Database En.ironments, Proceedings of the 19th Hawaii
International Conference on System Sciences, 1986, 378-387.

218

[Zeh86] A. Diener and C.A. Zehnder, ed., The Federative Database Server, Institut
fur Informatik, ETH, August 1986.

[Zil84) S.N. ZILLES, Types, Algebras and Modelling, in On Conceptual Modelling,
M.lL.-“Egmdie. J. Mylopoulos & J.W. Schmidt (ed.), Springer-Verlag, 1984,
44 \

