! * National Library
of Canada

Acquisitions and

Bibliotheéque nationale
du Canada

Direction des acquisitions el

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfiiming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

395, rue Wellington
Ottawa (Ontario)

Your e Volre iéldcoe

Owe lile Noire idldronce

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése socumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

§'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualit¢ dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a laide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
3 la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendeinents subséquents.

University of Alberta

NetGen: A Tool For Partitioning Sequential Programs
For Net-Based Execution

by

Daryl James Maier ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science

Department of Electrical Engineering

Edmonton, Alberta
Fall 1995

I * National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington

Otawa, Ontario Ottawa (Ontario)

K1A 0N4 KlA 0N4 Your fiie Volre réldrence

Our file Nolre réldrence
THE AUTHOR HAS GRANTED AN L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE NON-EXCLUSIVE IRREVOCABLE ET NON EXCLUSIVE
LICENCE ALLOWING THE NATIONAL PERMETTANT A LA BIBLIOTHEQUE
LIBRARY OF CANADA TO NATIONALE DU CANADA DE
REPRODUCE, LOAN, DISTRIBUTE OR REPRODUIRE, PRETER, DISTRIBUER
SELL COPIES OF HIS/HER THESIS BY OU VENDRE DES COPIES DE SA
ANY MEANS AND IN ANY FORM OR THESE DE QUELQUE MANIERE ET
FORMAT, MAKING THIS THESIS SOUS QUELQUE FORME QUE CE SOIT
AVAILABLE TO INTERESTED POUR METTRE DES EXEMPLAIRES DE
PERSONS. CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

THE AUTHOR RETAINS OWNERSHIP L'AUTEUR CONSERVE LA PROPRIETE
OF THE COPYRIGHT IN HIS/HER DU DROIT D'AUTEUR QUI PROTEGE
THESIS. NEITHER THE THESIS NOR SA THESE. NI LA THESE NI DES
SUBSTANTIAL EXTRACTS FROM IT EXTRAITS SUBSTANTIELS DE CELLE-
MAY BE PRINTED OR OTHERWISE CI NE DOIVENT ETRE IMPRIMES OU
REPRODUCED WITHOUT HIS/HER AUTREMENT REPRODUITS SANS SON
PERMISSION. AUTORISATION,

ISBN 0-612-06505-7

Canada

University of Alberta

Library Release Form

Name of Author: Daryl James Maier

Title of Thesis: NetGen: A Tool For Partitioning Sequential Programs For Net-
Based Execution

Degree: Master of Science

Year this Degree Granted: 1995

Permission is hereby granted to the University of Alberta Library to reproduce single

copies of this thesis and to lend or sell such copies for private, scholarly, or scientific

research purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore \-rovided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

ﬁ' (")’7”'/}t‘..4,.~£-'\

e A P

I

Daryl James Maier
4124-125 Street

Edmonton, Alberta, Canada
T6J 2A3

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled NetGen: A Tool For Partitioning
Sequential Programs For Net-Based Execution submitted by Daryl James Maier in
partial fulfillment of the requirements for the degree of Master of Science

™~

Nl
’——’/'47/ AR
Professor W. Iderg {Supervisor)

Lot Brgcdhe

Dr. J. Mowc%&o

Nk b

Dr. X. Li

Date: Au‘r};,n)-{ 24, 1995

Abstract

This thesis describes the development of an experimental tool that allows a researcher to
study the partitioning of a sequential program suitable for execution in a net-based com-
puting cnvironment. Net-based computing models the execution of software as a Petri
net, where segments of sequential code represent places and transitions coordinate the
exccution of such segments. This model allows the representation of synchronization,

sequentiality, and parallelism between segments of code.

The tool (NetGen) bases its parallelization decisions vn the results of a static dependency
analysis of a Pascal program. A dependency net structure is produced that summarizes the
dependencies between statements and their required execution order. The partitioning
process groups (or coalesces) statemen’s in the net that have a particular dependency rela-
tionship that the researcher wishes to explore. Statements within these groups are exe-
cuted sequentially and parallelism can exist between different clusters. Three different
methods of grouping nodes are availabie for investigation in addition to several supple-

mentary net generation parameters.

Acknowledgements

1 am grateful for having the opportunity to work under the supervision of Professor
Werner Joerg. His ideas and insight have allowed me to learn much about the exciting
area of parallel computing. I would also like to thank the members of my examining com-
mittee, Dr. Jack Mowchenko and Dr. Xiaobo Li, who took the time to read my thesis on
short notice. Their comments and suggestions were invaluable and very much appreci-
ated.

Finally, I would like to thank my parents and farnily who have provided much encourage-
ment and support throughout my years of study.

Chapter 1
1.1
1.2
1.3

Chapter 2
2.1
2.2

2.3
24

25

Chapter 3
3.1
3.2
33
34
3.5
3.6
3.7
3.8

Chapter 4
4.1
4.2
4.3

Table of Contents

List of Tables
List of Figures
List of Symbols
Introduction 1
VIOIVALION . o.vveseeseererererserireesesessetenaseseseenssssrsensasesantesestesssatsnsarssssssiastsasssnns 1
THESIS GOALS .cveererierrieeiraresssirestesirasrssarssts st saseasssssaessests rrererreanirnees 4
Thesis OZANIZAtON c...eeueuriveersirreriistsnse sttt s 5
Parallel Execution of Software 7
TOTOTUCHION ...+ eeeveveresvereenereerernesrssarssaessesessaesessesssassssesssonss ossssestnsiassnssesnssssss 7
Parallel Computing Paradigms ..c...eveeecnemsinmnimsmmnnimnicnininsnien 8
2.2.1 Parallel Computer ArchiteCtUIES......ccovurmeirriiimiiirneieiinieiinsniannns 8
2.2.2 Parallel Programming Paradigmscccooovemimimerniineeiinsninninen: 10
2.2.3 Net-Based Compuiing.....ccocevnrmvreveressnsessnsncnnens bevereeeere s rtenees 10
The Software Parallelization Process......ccovvrveeenisinsininneninniiisne. 11
Software PArtitioniNgceeecveererermiiirnnssssssssississisis s sassacsss 13
2.4.1 Partitioning COITECINESS.....ovvirererrinesnsriniismsisnisssn s setsnsessenes 14
2.4.2 Partitioning EffiCIENCYcovvermienmvercnsriniiniiiniiiiinn e 14
2.4.3 Sources of Parallelism in Programscecooviniiniiininnes. 15
Software Development Environments................. eeree et benes 16
2.5.1 Manval Parallelizationccererenvnnenreniinieneniienineee. 16
2.5.2 Automatic Parallelization..........ccceviimnimeninenennnesiincnsiee, 18
2.5.2.1 Paraftase-2coeveveerereerereeresirsisinnennsssnasesastssssiesisnssasans 20
2.5.2.2 PTRAN ..o creienesiesresttie et sassesssnssssssnens 20
2.5.3 Semi-Automatic (Interactive) Parallelizationcccocvvmiuiiensinenes 21
Flow and Dependency Analysis 22
TITOAUCLION c.vvevirrerirrireresreseisreessestssssssesnerissesssbessssastassssesssnessstsansnsasnanes 22
Control FIOW ANALYSIS c....vcereriiinirisinreisesssesistsniinsnnisinsss s s ssseens 23
Data Flow Analysis.......cccovvereiinnvmnnieninincensieniinnnns trrereereeneesennseeresbeniens 24
Control DEPENdENCe........ccuvimmnimrmirissinesiscssssiremsiers st sscsess 26
Data DEPENAEIICEvuirmriirrrnssersessssssasissssisiasssssssis st ssssssansssessisies 29
J/O DEPENAENCIES ...evvvrvrinrrsersrsisssssisessmsssissisists st rasaasass 30
Representing Dependency Informationcoeiuemnninniiscssnseneneens 31
Conditions For ParalleliSmcccceverirvcrrnninrinnnimninensnsiisniiinesne. 32
A Program Partitioner For Net-Based Execution 33
ITOQUCHION ...veevverereriuieresieraerensesseessseressessassnsssssassessissaasessasssnsestesessnsestonesan 33
Target ATCRItECIUIEu.vuccvevsersirerintssisss sttt 34

Sequential Programming Language.........ecocvuvmerimnimiamsninsnessisesisiecisens 35

44

4.5

Chapter 5
5.1
52
53
54
55

5.6
5.7

5.8

Chapter 6
6.1

4.3.1 Language ELEIMENES cvvvevererrerireieecsriaesesesesssessessesseserensssrssensseseresssss 30

4.3.1.1 SEALEINENLS c..vvrveierereeressesnssesarecssesessssesesssssssassssessssassasarsed |
4.3.1.2 Blocks, Regions, and SCOPC....cc.ccrcruneiimerierisessnnnene 3
Annotated Net GENETation ..o ivrernroninnmesisneessetaisrss e 38
4.4.1 Dependency Annotated NEt........ovrvinirssimsensessiesessesssssssennn 39
4.4.1.1 Dependency Edges......ccovminiiiniiciinin, 44
4.4.1.2 Dependency RegIONScccoevrveriinininciimininnine 45
4.4.1.3 Condition REGIONSccoervivninmiiinineicencniiinis 47
4.4.1.4 Block Depth ..o 47
4.4.2 Intraprocedural Program Analysis ..o 48
4.42.1 Parsing The Sequential Program........ccccovniniinnninn. 48
4.4.2.2 DEClArationso.eceeererereerrvereniirsicnsiisesesse i 48
4.42.3 Dependency Net NOdes.....cooovieniimneiiininiienen. 49
4.42.4 Control DEPEndence........ocueieinissirsemnsssssnsisenneesenns 3 |
4.42.5 Analysis Of Multiple BIOCKScoverriernicenirerininiennenns 52
4.4.3 Interprocedural ANAYSIS cvvvereererrersereeneemesseeisesssr s sssriscisenss s O3
4.43.1 Alias ReSOIULION.......oovrverreverseereencssrisiesniissnsssssssssnness 3
4.43.2 Dependency COmputation........oceevmsreessssneeseseeissenneneises 34
4.4.4 makenet INVOCAtION SYNEAX ..e.vvvveerrerermcrneriirrrriseisesssssesasessissaesess D9
Node ngratloni()
4.5.1 nodemig INVOCAtion SYNAXcoevveirererneeiiniiienisssse s 60
Program Partitioning Via Node Coalescing 61
TNEOQUCHION v eveveeeerieverereeesreresserenesseesbesesbese st sass s s s st ebaet saassnssbbensbnsbenansas 61
SUPEINIOAES ..v.eveevveirriirrsesinisssssst st st 62
SUPErNOAE PIOPEILIES ...vucvvrurirreiersscusnisirsinssissirn st sssines 63
Supernode FOrmation RUIES........cveecueemcinniisiiiiniiisisi i 64
Node Coalescing TEChRIQUES.....cvvvevcrisiirenseensicniimiinieiiss et 66
5.5.1 Node Coalescing Via A Dependency Strength Threshold............. 66
5.5.1.1 Dependency Strength Calculation.........cocveiiiiniienineens 68
5.5.1.2 Pseudo-Dependency Strengths........coo v, 69
5.5.1.3 Computing Target NOdesccccovvemiemniiiiniieicnns 70
5.5.1.4 Coalescing Threshold........c.ccoeviieveennicniiiiininianen, 72
5.5.1.5 Node Coalescing Algorithmocoeviicininniniinnnn 72
5.5.2 Coalescing Via Number Of Dependencies Threshold................... 74
5.5.3 Coalescing For Maximal Node Parallelismccocoovvvvinninnen. 75
coalesce INVOCAtIoN SYNAX......evivrvcremiisiesinsensissiiins st seenes 76
Net Description Languagecceeviessiseenemenmsinssimnssscses s 77
5.7.1 Language DeSCrPLiONcovvuriuieeusiemismsiiisiininnssssei e 77
NetGen IMplementation.......ouevrisrsresmeierssemiisssssssessacss 78
5.8.1 Development TOOIS......coveiiieiereniniinin e 78
5.8.2 Correctness Of DESIZNcccouermmiinmiimreiinniernsrcsieiinniiinninsrsesn, 78
5.8.3 DeSign SAfEty ...cocovcvmmriremirienrieininriensesessss e 78
Program Partitioning With NetGen 80

T tEOAUCHION . ervveeeeereeereesreestesnersnesnsassnasssessssssessansnssssssrssnsssnssssnnasssssssssnnnss 80

6.2

6.3

6.4

Chapter 7
7.1
7.2

Bibliography

Appendix A
Al
A2

Appendix B
B.1
B.2
B.3
B.4
B.5
B.6
B.7

Appendix C
C.1
C2
C3
C4
CS5

Sample Program analysis.......c.esmssiessenssssimsmmsansss s senees
6.2.1 Program DeSCriPON ..vueceuimsrimssissssmsssmmsssmmsssssssusssenss s sneses
6.2.2 Node CoalesCingcccoveruerenrisiminniissssiesescsnens rereereereeeresreaaaareas
Sample Program IEastSQUATEScvemmsrsssssssesnsssmsmmsssssssssssmsssssssssnsseess
6.3.1 Progiam DeSCrPtONccurevmreunimmiimismisssssmsiissinssasssssen e
6.3.2 Node COalESCING c.ovoviirerirmunincirsremsisisrsnsssss s sssssses suerss
Sample Program GIaphiCsccemmsumssecmsssmsssimmnisssssss st cnsess
6.4.1 Program DesCriPioncmucusimminisssscnensisrismsiss s
6.4.2 NOde CORESCING ..vuevrrerrerirresirsmessusessisissmsnass st sesesserees

Conclusions and Future Work

COMCIUSIONS et evevereresreserrsesssesessertssesssenmstssassssasssssensassasbasssstsasasssssunstusasss
FULUEE WOTK wevrvereeeinrerenseesseesseescsessssrsssssssensussnasssssasssrsssssttssasesstanasssacses
7.2.1 Petri Net Generation From A Coalesced Net.......coovveeecirissinienes
7.2.2 Coalescing SUPEIMOES ...vuvvvcuciimniminismsmsicssissnasmsisiss s
7.2.3 Dependency Analysis IMPrOVEMENLS ..ccocuucuemsirsirscsessemescnteensses
72.4 Source Language IMprovements.......coeouviismencnniinniimsnnissasissacees

Grammar Descriptions
Pascal SUDSEt GIAMITIATveveerieretsuersnimssssseersssaesssssssinssanstsssssisssasisssienss
Net DeSCription GrAmMIar.... .o reeessccsssmsessessssensasssssasssssmrsssemsssscsses:

Algorithms

ALIAS RESOIILION c.vrieectrerrresssssesestiissrsssasssssassssssusssnsssnsssssasssssansustsssasans
Dependency COMPULAHON.......cevwsuuemrumessssrsssssessssssmmmsssssmssssusssensssessssesens
NOJE MIGIAtON . ccvtrevverirerrrssmrsssessecssesssssrsssrssass s sttt ssese
Calculation Of Target NOGEScovvvurereissinmnnrismiiinssiessessssissssnsssssees
Coalescing By Dependency Srength.......rsicisiminisisssssiscens:
Coalescing By Number Of Dependenciesc..coeuierierscimmsimssssssneesseesee
Coalescing For Maximal Node Parallelismoevcoeiienesenisimsinmisenseenes

Sample Files

Sample Net Description FIle ...
Sample Node Coalescing Parameter File....coociecnieiiimsiimssinssemssrissecnse.
Sample Program analysis.......o.oecuorsimsmmssarsssissiasssmniessssmssmsnsessssssessees
Sample Program LeastSqUAIESccuuvimrsessersemssmssiismsmssssmssinsssses
Sample Program graphics ...oo.eerieiiiimsismmssnsesnsmnsmim st

Table 3.1
Table 4.1
Table 4.2
Table 5.1
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5

Table 6.6
Table 6.7
Table 6.8
Table 6.9
Table 6.10
Table 6.11
Table B.1

List of Tables

Control dependencies for the sample program in Figure 3.1a 28

Types of nodes available in the dependency annotated net 39

Data retained by nodes in a dependency annotated net 50

Pseudo-dependency parameters 70

Program analysis Coalescing Via Dependency Strength (CR = 1.0) 81
Program analysis Coalescing Via Number Of Dependencies (ND = 1.0) 81
Program analysis Coalescing For Maximai Node Parallelism 82

Program leastsquares Coalescing Via Dependency Strength (CT = 1.0) 83
Program leastsquares Coalescing Via Dependency Strength (CT = 1.0,
PSEUDO_CONTROL_T = 1.5) 83

Program leastsquares Coalescing Via Number Of Dependencies (ND = 1.0) 84
Program leastsquares Coalescing Via Number Of Dependencies (ND = 2.0) 84
Program leastsquares Coalescing For Maximal Node Parallelism 85

Program graphics Coalescing Via Dependency Strength (CT = 1.0) 86
Program graphics Coalescing Via Number Of Dependencies (ND = 2.0) 87
Program graphics Coalescing For Maximal Node Parallelism 88

Algorithm symbols and convenience functions 109

Figure 2.1
Figure 2.2
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1

Figurc 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure 4.8
Figure 4.9

Figure 4.10
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 7.1

List of Figures

Petri net constructs 10

The program parallelization process 12

Example control flow graph 24

Aliasing of variables via procedure parameters 27

Data dependencies between statements 30

NetGen’s processing steps required to produce a net-based representation of
a sequential program 33

Execution environment for a net-based program 35

makenet processing steps 38

Demonstration of unnecessary dependencies 41

The mapping of a program into execution steps 42

Mapping Pascal statements into a dependency net 43

Hard and soft dependencies in the annotated net for the sample program in
Figure 3.1 45

Block depth, dependency regions, and condition regions 47
Determination of dependencies between nodes in different dependency re-
gions during node migration 58

Node migration 59

Input/output requirements of the node coalescing phase 62

Node coalescing violating a necessary dependency 65

Example of inefficient node coalescing 66

Calculation of dependency strength between statements 69

Node coalescing using dependency strength criterion 72

Node coalescing for maximal node parallelism 76

Conversion of an annotated net into a Petri net for net-based execution 93

List of Symbols

%] emp.ty set

€ is an element of

3 is not an element of
3 such that

A logical and

v logical or

1S1 cardinality of set S

Chapter 1

Introduction

This thesis describes NetGen, an experimental tool for partitioning Pascal programs into
subtasks for execution on net-based multiprocessor computers [MaJn95]. The partitioning
process is guided by the identification of segments of code that could potentially be exe-
cuted in parallel. Several techniques for forming and clustering code segments are avail-
able to the researcher. The resulting parallelized program is stored in a format suitable for

conversion to a Petri net representation that can be executed on the target computer.

The work is part of a greater research effort exploring experimental multiprocessor archi-
tectures and parallel software development in the Department of Electrical Engineering at

the University of Alberta.

1.1 Motivation

It is accepted knowledge that the execution of a program as multiple, paralle] subtasks can
potentially reduce its overall execution time. Parallel processing has received consider-
able attention of late as the physical limits of a single processor are fast approaching. As
the performance requirements of today’s applications continue to increase, parallel pro-
cessing is perceived as an attractive solution for potentially increasing performance using

existing technology.

Unfortunately, the performance benefits of parallel processing come at a price. An execu-
tion speedup is not guaranteed, and in fact depends on the application type. Scientific
applications that perform numerous repetitive calculations are often the best candidates
for parallelism, whereas general-purpose applications do not usually exhibit a great deal of

useful parallelism. End users, however, can only benefit from such performance gains if

parallel processing.

In general. two opposite approaches can be taken when developing software for parallel
computers: manual or automatic parallelization. The former approach is language ori-
ented, leading to dedicated parallel languages (e.g., Ada, Occam), to language extensions
fitting particular classes of machines (e.g., Parallel Fortran, Concurrent Pascal). or to oper-
ating system extensions for inclusion in sequential languages (e.g.. Enterprise system
[Wong92]). Presently, the latter approach is mainly focused on particular machinc archi-
tectures; it has been extensively investigated in scientific computing for vector machines,
and to a much lesser extent for dataflow machines. However. programming parallel
machines is an arduous, and by no means intuitive, task. In addition, a tremendous
amount of tested and reliable software already exists for sequential computers. Consc-
quently, automatic parallelization may prove a more efficient and productive way to

exploit the hardware potential.

To make multiprocessing computers more appealing to a wider range of users they must
be made cos: effective. At present, to attain this goal requires that parallel processing plat-
forms be buil based on multicomputer architectures. Unfortunately, the type of parallel-
ism that can be readily exploited on such architectures is usually coarse-grained. Finer
granularities require more expensive and special-purpose hardware, found mostly in tech-

nologically immature dataflow machines.

To obtain a cost effective approach with potential performance improvement, a hybrid
approach, combining promising dataflow parallelism with the cost-cffectiveness of realis-
tic multicomputer systems, is studied. The hybrid architecture is an abstract machine
based on the Petri net concept. Presently, it is being used as an intermediate notation
betwec:: two main problem areas: the investigation of ways to generate net representations
from sequential programs and the research of low-cost architectures best suited for paral-

lel execution of programs represented as Petri nets.

The two problem areas are interdependent. The development of net-based architectures is

guided (in part} by a measure of the amount of parallelism that can typically be extracted
from general-purpose programs. Similarly, the translation of programs into nets is influ-
enced by the architectural constraints of the target computer. Therefore, a tool is required
that allows a researcher to examine how the parallelism in any arbitrary program can be
formed into a net, governed by certain architectural constraints. These constraints appear
as net generation parameters that can be modified such that the effects on the resulting net
structures can be studied. For example, one such parameter could represent the cost of a
context switch between parallel subtasks. Consequently, the structure of the nets formed

should be an indication of how the general-purpose parallelism would be exploited on a

particular target computer.

The research direction taken by this project is also motivated by two recent contrary view-
points on the status of parallel processing in modern computing. On one hand, [Lewis94]
claims the future of parallel computing lies on the desktop with “multiprocessor systems
consisting of four, eight, and 16 processors”. Traditional mainframe and massively paral-
lel multiprocessors are far too expensive to be practical for widespread and general-pur-
pose use. Consequently, smaller, less expensive configurations that contain fast sequential
processors appear much more attractive for exploiting parallelism within the applications
run by the ordinary user. The impact of parallel processing technology is highly depen-
dent on the development of effective parallel software languages, development tools, and
computing environments. The ultimate goal of the parallel computing research initiative
at the University of Alberta is to develop a machine that can easily exploit the parallel
properties of general-purpose programs and to do so with the user being oblivious to the
process. The NetGen project attempts to make a positive contribution to parallel comput-
ing by providing a tool that can be used to explore ways of mapping general-purpose
applications to parallel machines. It is also hoped that this tool can be used to influence
the development of parallel architectures that are suitable for exploiting the parallelism

characteristics found in any arbitrary program.

The second viewpoint provides a much more cynical outlook on the present status and

future of parallel computing. [Furht94] claims that parallel computing is no longer viable

and has few applications in modern computing. He envisions no future for multiprocess-
ing and is appalled by the amount of research devoted to the area. Furht further declares
that graduate students should instead concentrate their research efforts on “hot” areas that
will guarantee them jobs in today’s marketplace. This is a very near-sighted outlook on a
topic that many researchers believe contains several unexplored areas for research. While
it is true that parallel computing has stagnated of late, this is certainly not an indication
that there are no research avenues remaining to be studied. On the contrary, perhaps this
indicates that a new perspective needs to be taken on parallel computing. Instead of con-
centrating on developing traditional architectures and paradigms, perhaps new computing
paradigms and different technologies should be explored (c.g., non von-Neumann
machines and dataflow ideas). The net-based parallel computing paradigm studied in this
project is one such novel area of research. As its exploration is only in its infancy, it
would be immature to claim that research in this direction is impractical. At present, suit-
able tools need to be created to make the determination of the effectiveness of this para-
digm. NetGen represents only the first step in this process and should prove to be a useful

tool for experimenting with the net-based programming paradigm.

1.2 Thesis Goals
This thesis shall focus on the translation of sequential programs into a net representation
and describe, in particular, a tool for experimenting with net formation parameters. The

NetGen project has three primary objectives:

1. To develop a tool that can analyze a sequential program, identify potential arcas
for parallelism, and then translate it into a representation suitable for conversion

into a Petri net notation for execution on the abstract machine.

2. To provide several parameters that can be varied such that the effects on the result-
ing net structures produced can be studied. This will allow a researcher to investi-
gate the effects of applying the various net generation parameters on general-
purpose sequential programs. Ideally, the target machine would be able to cxploit

all the parallelism that exists within the subject program. Unfortunately, this rarely

occurs because, in general, the parallelism requirements of sequential programs
cannot be entirely fulfilled by a single architecture. However, it would be useful if
values could be found for the net generation parameters such that any arbitrary

program could be executed on a particular machine with an expected performance

improvement.

3. It is hoped that the results obtained from NetGen can be used to influence the
development of net-based multiprocessor computers and/or the program transfor-

mation tools required to execute a program on such machines.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 provides relevant background material on software development for parallel
computers. Some important issues that must be addressed by the developer are discussed

along with several examples of parallelization tools.

Chapter 3 discusses program flow and dependency analysis. This type of analysis is
essential for any useful automatic parallelizer. Required flow and dependency analysis

concepts and pertinent definitions are presented and discussed in the context of the Net-

Gen project.

Chapter 4 describes the NetGen project as a whole but concentrates on a discussion of the

initial net generation and node migration phases.

Chapter 5 describes the node coalescing phase which begins to partition the software into
tasks. The net description language is described and a perspective on some implementa-

tion issues is presented.

Chapter 6 contains the results of partitioning some sample programs using the node coa-

lescing techniques described in Chapter 5.

Chapter 7 describes the conclusions and possible areas for future rescarch with this

project.

The Appendices contain sample files, grammar descriptions, and the important algorithms

discussed in this thesis.

Chapter 2

Parallel Execution of Software

2.1 Introduction

Computers with more than a single processing element (PE) can potentially decrease the
execution time of an algorithm or application. To take advantage of the benefits of parallel
processing requires that an application be “partitioned” across ali or scme of the PE’s on
the target computer. The performance gains are largely dependent on the particular prob-

lem and on how well it has been partitioned.

The partitioning process results in the decomposition of a program into many fragments,

called subtasks!. The identification of subtasks can be clone manually (by the program-
mer), automatically (by the compiler), or by a combination of the two. Each technique has
its merits and shortcomings; all share the common goal of easing the complex task of pro-

gramming parallel computers.

This chapter will explore some traditional techniques used in developing and partitioning
software for parallel computers. A popular parallel computing paradigm will be intro-
duced first, followed by a discussion of multiprocessor architectures and programming
techniques that adhere to the model. The software parallelization process is described
next, with specific attention focused on program partitioning issues. Finally, proven tech-
niques used to alleviate the complex task of programming parallel computers are
described. In the course of this discussion, several parallel software development research

initiatives will be presented.

1. sometimes loosely referred to as processes or even proclets [Ottenstein85).

2.2 Parallel Computing Paradigms

A paradigm is “an illustrative model or example, which by extension provides a way of
organizing information.” [Budd91] Paradigms are helpful in conceptualizing a problem
by relating its solution to the model. Parallel computing is a diverse field with many arcas
of active research. As a result, it is useful to categorize these research efforts for compari-

son and performance evaluation purposes using a common, underlying paradigm.

The most popular paradigm for parallel computing characterizes computing environments
as either synchronous or asynchronous [LeEI192, AmBuZi92]. Synchronous parallel com-
puting performs identical operations on data in parallel. The operations are arranged such
that the dependencies between computations are eliminated. Conversely, asynchronous
parallel computing involves parallel processes independently coordinating their activitics.

The data and instructions executed may differ between individual processes.

This paradigm can be conveniently used to classify both parallel architectures nd paralicl
programming methods. The primary benefit of a mutual paradigm is that it allows a pro-
grammer to easily ascertain the appropriateness of a programming language for a particu-

lar parallel architecture.

2.2.% Parallel Computer Architectures

Traditionally, Flynn’s hardware taxonomy [Flynn72] was used to classify computer archi-
tectures. This scheme organizes architectures into four categories based on the number of
instruction and data streams. Although suitable for the simpler architectures of the past,
many new parallel architectures do not fall neatly into a single category. Although it has
been criticized for its rigidity, it does provide a convenient “shorthand for characterizing
[parallel] architectures” [Duncan90] and is a common basis for new classification

schemes.

A parallel computing paradigm based on that described in the previous section can be used
to conceptualize different parallel architecture designs. [Duncan90] categorizes parallel

architectures as being either fundamentally synchronous or asynchronous. This scheme is

a superset -of Flynn’s hardware taxonomy and can accommodate more recent parallel

architectures.

Synchronous architectures employ a central controller to coordinate the activities of each
processor. All processors typically perform identical operations on different sets of data in
a lockstep fashion. These architectures can be further classified into vector, systolic, and
SIMD (single instruction, multiple data) categories. Synchronous architectures are ame-
nable to the parallelism found in many scientific problems. Although they can provide
significant performance gains in certain problem domains, they do not exhibit the general-

purpose parallelism characteristics that are being explored in this thesis.

[Duncan90] bases the classification of asynchronous architectures on Flynn’s MIMD
(multiple instruction, multiple data) category. MIMD architectures are characterized by a
number of processors that can execute independent instruction streams. The underlying
architecture is asynchronous, relegating the responsibility of subtask synchronization to
the software. In contrast to synchronous architectures, MIMD architectures do not
employ a centralized controller for coordinating activities. As a result, individual proces-
sors in the MIMD model are autonomous and can be arrangad in several topologies.
These features make MIMD architectures suitable for exploiting the general-purpose par-
allelism that can be extracted from any arbitrary sequential program. It is for this reason
that an asynchronous architecture is assumed the target for the parallelization tool

described in this thesis.

The MIMD model is fairly broad and encompasses many parallel computer designs. It
can be further refined to provide additional insight into the interprocessor communication
medium: shared or distributed memory. Processors within a shared memory model coor-
dinate their efforts through a global memory that is accessible to all processors. Distrib-
uted memory architectures have a separate, private memory for each processor.
Communication between processors is accomplished by passing messages through the
processor interconnection network. In general, shared memory architectures employ a

small number of processors, have relatively low communication overheads, and are not

readily scalable. This is due to the increased memory contention with additional proces-
sors. Distributed memory architectures are scalable and possibly composed of heteroge-

nous elements, but suffer from communication latencies.

2.2.2 Parallel Programming Paradigms

The asynchronous/synchronous paradigm can also be applied to parallel programming.
Shared memory and message-passing models are the most common manifestations of the
asynchronous paradigm in parallel programming. The shared address space approach
allows a programmer to view a program as a “collection of processes accessing a central
pool of shared variables” [KGGK94]. The message-passing approach, on the other hand,
models a program as a collection of processes that communicate by sending and receiving
messages. It is clear how the two programming approaches correlate to the asynchronous

shared memory and message-passing architecture models.

2.2.3 Net-Based Computing

Net-based computing is an alternative method of modelling software based on the asyn-
chronous, message-passing paradigm described above. This approach models the exccu-
tion of software as a Petri net'. Petri nets are asynchronous and contain constructs for
naturally representing sequentiality, parallelism, and synchronization of processes. These
constructs are illustrated in Figure 2.1. Conveniently, these constructs are essential for
describing the parallel execution of software and, as a result, net-based computing is the

representation of a parallel program as a Petri net.

a) b) c)
transition —»

place —

Figure 2.1 Petri net constructs (a) sequentiality, (b) parallelism, and (c) syn-
chronization.

1. For a more in-depth introduction to Petri nets, the reader is referred to [Murata89}.

-10-

In the net-based computing model, Petri net places represent segments of sequential code.
The presence of tokens in places indicate the execution of the corresponding code seg-

ment. Execution of code segments is coordinated by transitions in the Petri net.

Although Petri nets may be a natural way of representing parallelism, the process of trans-
lating a program into a Petri net format remains an open problem. Existing parallel pro-
grams can be mapped rather easily into Petri nets since the program has already been
partitioned for parallelism with explicit process synchronization and communication
mechanisms inserted. The translation of sequential programs into a Petri net representa-
tion is much more difficult. The sequential segments of code that will execute in the Petri
net places must be identified and coordinated explicitly. The selection of sequential code

segments is by no means obvious and the user would greatly benefit from a tool that could

perform this selection automatically.

2.3 The Software Parallelization Process

The execution of software on parallel computers is considerably more complex than on
conventional sequential machines. For single processor systems, a program merely has to
be compiled into the native assembly language of the target processor and it is ready to
execute. The most difficult task is efficiently optimizing a program before it is executed—
often the responsibility of the compiler. For multiprocessor systems, the execution of a
program is a several stage process. Software must be efficiently partitioned into concur-
rent subtasks which are synchronized and scheduled onto the processors of the target par-
allel computer. A program parallelization is often guided by both programmer input and
information inferred from an analysis of the software by a compiler. The typical parallel-
ization process is illustrated in Figure 2.2. Certain implementations may insert additional

stages or merely concentrate on a particular stage of the process (as in NetGen’s case).

The term parallelization implies the translation of a non-parallel program or problem into
an equivalent parallel program. It does not, however, specify the method in which the
transformation is to occur. Parallelism within programs can be specified explicitly by the

programmer or can be identified using largely automatic techniques by a compiler. With

-11-

manual techniques, the majority of the parallelization process is the responsibility of the
programmer; process scheduling and processor allocation is usually handled by the com-
piler and/or operating system. Conversely, automatic parallelization is performed largely

by the compiler with little programmer intervention.

Automatic parallelization begins with an analysis of the source program to identify all
control and data dependencies. Often, many of these dependencies can be resolved by
applying special dependency elimination transformations to the source program. These
include performing an analysis of subscript variables for arrays, removing storage-related
dependencies, and transforming loops to eliminate loop-carried dependencies [Sarkar91a].
Program dependency analysis is machine-independent; the source is examined without
considering any properties of the target parailel computer. Chapter 3 is devoted entirely to
a discussion of the theory of program flow and dependency analysis pertinent to the Net-

Gen project.

The information inferred from the program dependency analysis is used to guide the iden-
tification of subtasks that could potentially be executed in parallel. This is called program
partitioning and it typically relies on architecture-specific information to obtain a suitable

parallelization. Partitioning is often intertwined with process scheduling.

Parallel
Program

Scheduling &
Processor p—»
Allocation

g Program |
t Dependency |
| Analysis '

Process

Sequential
Synchronization

Program

Partitioning §

Dependency
Elimination
Transformations

Figure 2.2 The program parallelization process. The emphasized blocks indi-
cate the stages where NetGen concentrates its analysis.

-12-

Once the problem has been partitioned, the activities of the subtasks must be synchro-
nized, or coordinated. Synchronization is used to ensure a correct sequencing of tasks and
the proper use of shared resources. Typical process synchronization schemes include
semaphores and barriers and require specialized support from the underlying hardware
and operating system. The subtasks must then be optimally scheduled on the processors

of the target machine to ensure the shortest execution time of the program.

This thesis focuses primarily on the dependency analysis and partitioning phases of the
parallelization process. The remaining stages were excluded partly because they are
highly dependent on the characteristics of the target machine. One of the mandates of this
thesis is to provide a tool that can collect information useful in the search for architectures
that can execute net-based programs. As a result, NetGen’s analysis is geared toward a

particular class of parallel architectures, not a specific parallel machine with well-defined

characteristics.

2.4 Software Partitioning

Program partitioning is the decomposition of a sequential program into parallel subtasks.
It involves identifying clusters of statements that should be executed sequentially and then
determining parallelism between clusters. This process is guided by a program depen-
dency analysis supplemented with architectural information. Due to resource limitations
on the target machine, the maximum amount of parallelism within a program cannot
always be adequately exploited. Partitioning provides a method of mapping this parallel-

ism to the realistic capabilities of the target computer.

[Sarkar91a] distinguishes two program partitioning strategies: data partitioning and con-
trol partitioning. The former approach attempts to minimize communication overhead and
improve data locality by partitioning data across subtasks. The latter method attempts to
balance the available parallelism and reduce the overhead by partitioning a program into
parallel subtasks. Although both approaches are dependent on the target machine, recent
partitioning initiatives employ a combination of the two for increased performance. Con-

trol partitioning is the method employed by the majority of parallelization tools studied in

-13-

this thesis. Hence, for the remainder of this work a control partitioning approach will be

assumed.

Two new issues arise when developing software for parallel machines that must be
addressed: the correctness of the program partitioning and the efficiency of the resulting
parallelized code. Although correctness and efficiency are objectives of even sequential

programs, they assume additional importance in a concurrent environment.

2.4.1 Partitioning Correctness

When programs are partitioned, it is imperative that the subtasks to be executed in parallel
are indeed independent. If this condition were violated then a correct execution of the
program cannot be assumed. Thus, an exact determination of all dependencies between
potential concurrent subtasks is essential. Of equal importance is the proper sequencing
of subtasks once any dependencies have been identified. Concurrent processes must be

synchronized such that all dependencies between them are satisfied.

2.4.2 Partitioning Efficiency

The efficiency of the partitioned program is another important consideration. If the over-
head of allocating, executing, and reallocating two tasks concurrently is greater than cxe-
cuting the tasks sequentially, then no benefit will be gained from a concurrent cxecution.
An important factor in this issue is that of task size: tasks that are too small may experi-
ence problems with communication overhead, while tasks that are too large may contain
additional areas suitable to parallelization. Consequently, some measure of the cfficiency
of the partitioning decisions must be made before program parallelization is considered

complete.

A closely related issue is that of process grain size or granularity. Grain size is a measurc
of the average number of instructions or statements that constitute a parallel task. Granu-
larity is dependent on the underlying architecture of the target computer and it strongly

influences parallel program performance.

-14-

[Stone90] defines task granularity as:

the ratio R/C, where R is the length of a run-time quantum and C is

the length of the communications overhead produced by that quan-

tum.

This ratio illustrates the interdependence between task size and machine architecture.
Lower ratio values indicate a stronger communication overhead influence on the alloca-
tion of parallel tasks and can preclude the use of parallelism altogether. Higher ratio val-
ues reflect an attenuation of the effect of communication costs on parallelization and can

indicate that parallelism is beneficial.

Coarse-grained parallelism is characterized by a high task granularity. Tasks are large to
allay communication costs but the amount of parallelism exploited is usually low. Con-
versely, fine-grained parallelism is characterized by a low task granularity and a large

number of parallel tasks.

Consequently, a trade-off exists between parallelism (small grain size) and communica-
tion (large grain size) [LeE192]. Optimal grain size selection is a process scheduling prob-
lem that is known to be NP-complete [Ullman75]. The granularity of a subtask is

therefore chosen based on a combination of heuristics and target architecture capabilities.

2.4.3 Sources of Parallelism in Programs

Parallelism can be derived from many sources and can be exploited at many levels. Con-
sequently, the partitioning of a program is not unique. Factors such as the parallelism
identification techniques applied, the rigorousness of the dependency analysis, and even
the capabilities of the target machine play an important role in the resulting program parti-

tioning.

Perhaps the most obvious source of parallelism lies within the problem to be solved. This

type of parallelism is available only to the application developer during the problem

decomposition phase. Many scientific problems are inherently parallel. The choice of an
appropriate paralle] algorithm, implementation language, and data structures amenable to

parailelism are also important [Poly88].

Parallelism at the procedure level is considered to be coarse- grained. For this type of par-
allelism to be feasible, subroutines should be independent. This implies that subroutines
should represent largely independent tasks that are usually apparent from the problem to
be solved. Parailelism at this level is usually structured, which allows the programmer to

manually identify opportunities for parallelism.

Loops can be a rich source of parallelism within subroutines. It has been shown that 80%
of the time spent in program execution is spent on 20% of the code [Carling88]. Consc-
quently, considerable research has been directed toward identifying parallelism within
loops. If it can be determined that different loop iterations are independent then they can

be executed in parallel. Parallelism across loop iterations is considered medium-grained.

The search for parallelism at the basic block, statement, or processor instruction level is
usually considered fine-grained parallelism. Parallelism at this granularity is very
unstructured and opportunities for parallelism are best determined by a compiler. Usually,
special fine-grained architectures (e.g., dataflow) or processors (e.g., VLIW) are required

to exploit parallelism at this level.

2.5 Software Development Environments

2.5.1 Manual Parallelization

Parallel programming languages allow the programmer to have the greatest control over
partitioning programs for paralle! computers. The developcr assumes the responsibility of

explicitly creating and destroying parallel processes and synchronizing their activities.

The primary advantage of this method of programming is that the developer has a decper
insight into the problem being transformed and can therefore identify, from a problem

decomposition perspective, tasks that can be executed in parallel. As a result, manual

parallelization is attractive when the problem to be solved is inherently parallel or if

greater control is required when specifying parallel tasks.

There are several disadvantages to having the programmer explicitly specify parallelism
in an application. Most notably, identifying parallelism within a problem and then coordi-
nating the resultant parallel tasks is an arduous and error-prone process. It is certainly
possible that the programmer could create tasks that race or deadlock. Part of the reason
for this is an incomplete or incorrect identification of all global data and control dependen-
cies beforehand. This problem will be discussed extensively in Chapter 3. Although
knowledge of the problem domain is useful for parallelizing, opportunities for parallelism

could easily be missed within the identified parallel tasks.

[Ottenstein85] identifies additional shortcomings of explicitly parallel programming tech-
niques. He indicates that maintenance of parallel programs could be difficult since a pro-
gram may be modified such that the original explicit process partitioning is no longer as
good as it could be. Portability is another issue with such languages. Efficient program
partitioning on one parallel computer does not guarantee that execution on a computer

with different synchronization and communication overheads wiil also be appropriate or

efficient.

Both parallel programming languages and graphical development tools are available that
permit the manual specification of parallelism. The parallel programming language
approach is well-established and researched. Recent, widespread availability of graphical
workstations, however, has spawned the development of the highly visual and more intui-

tive graphical development tools.

Most parallel languages are based on extensions to existing sequential languages. Unfor-
tunately, this has led to a large number of dialects for some languages (e.g., Fortran). An
essential property of all parallel programming languages is that they contain explicit con-
structs for specifying parallel process creation, termination, synchronization, and commu-

nication. Although the actual constructs vary from language to language, their functions

are similar. In general, parallel tasks are created and terminated with some variation of
FORK/JOIN statements [A1Go89, HwBr84]. FORK essentially creates a new process that
simultaneously executes with the original process. The new process begins executing at
the point specified by the FORK statement. JOIN statements are used to terminate paratlel
tasks by waiting for a previously FORKed process to terminate. Although FORK/JOIN
constructs are very powerful, they can be difficult to coordinate and are prone to program-
mer error. As a result, more controlled constructs such as PARBEGIN/PAREND and
PARDO are used. The PARBEGIN/PAREND pair enclose statements that can all be exe-
cuted in paraliel. PARDO is used as a loop header (much like a Fortran DO loop) to indi-
cate that each loop iteration is independent and can be executed concurrently with the

others.

Graphical parallelism specification tools are becoming increasingly available. Typically,
these tools allow the user to “draw” the processes to parallelize and specify their synchro-
nization requirements graphically. For example, Enterprise [Wong92] allows paralleliza-
tion of existing C programs by graphically associating subroutine definitions to different
icons. The parallelism in a program is specified by the icon types and their interconncc-
tions. Some environments integrate graphical parallelization tools into the software life
cycle to facilitate the translation of a problem specification directly into a working parallel

application [LeE192].

2.5.2 Automatic Parallelization

An opposite approach to partitioning software involves having a compiler make all paral-
Jelization decisions. Automatic parallelization methods attempt to identify parallelism
within code that has already been written; they cannot use any knowledge about the prob-

lem domain to guide the parallelism determination.

This approach offers several benefits. The primary advantage is that it performs an effort-
less conversion of an existing sequential program to a parallel platform. Given the abun-
dance of software that has been developed for sequential machines over the last forty

years (referred to as “dusty deck” programs [AlGo89)), this approach offers a quick, cost-

effective solution to reaping the benefits of parallel computing.

Automatic parallelization does not require the programmer to have any familiarity with
the internal details of the software to be converted, nor does it require any knowledge of
the parallelization procedure. The techniques used in automatic parallelization are prov-
ably correct. As many programs typically consist of thousands of lines of code, this
method not only greatly simplifies the conversion process but it eliminates the possibility

of a costly programmer conversion error.

Software development for parallel environments has been hampered by the difficulty in
debugging parallel software. When dealing with multiple tasks executing concurrently,
not only must the program logic within each task be correct, but the synchronization and
communication between them must be as well. For this reason, debugging of parallel pro-
grams requires a more dynamic analysis than their sequential counterparts. Although par-
allel debugger technology has improved of late, error detection is still an arduous process
[LeEl192]. Until that technology has matured, [ABKP86] suggest developing and debug-
ging software on a sequential machine and then using an automatic parallelization tool to

transport it to a parallel platform.

It has also been suggested that automatic parallelization tools are essential at levels where
parallelism becomes unstructured [Poly88]. Unstructured parallelism involves parallelism
among different instruction and/or data streams and is difficult to identify manually. Such

parallelism is typically encountered when trying to exploit finer granularities.

Despite these significant advantages, auton:atic parallelization suffers from making paral-
lelization decisions based on a static program analysis. Exact determination of all depen-
dencies at compile-time is not always possible, and the parallelizer is forced to employ
conservative assumptions about dependencies. As a result, it is possible that dependencies
are assumed where none actually exist. These are appropriately referred to as false depen-
dencies. They typically arise when the value of a variable cannot be determined at com-

pile-time, when pointers are used, or at procedure call sites. This is the most serious

problem with automatic parallelization as the compiler does not have sufficient insight
into the program and its characteristics. This important issue is addressed in more detail

in the next chapter.

2.5.2.1 Parafrase-2

The Parafrase-2 compiler system [PGHLLS89, ZiCh90] was the first program paralleliza-
tion tool targeted toward several architectures. It is primarily a research tool used to
experiment with the application of program transformations and parancl compiling tech-
niques. The Parafrase-2 compiler is a source-to-source translator that supports Fortran, C,
and Pascal programs. Several parallelization transformations are available. These are
referred to as passes of the sequential code. Passes can be categorized as either machine
independent (e.g., conventional dependency analysis), architecture specific (e.g.. control
dependence elimination on vector machines), or machine dependent (c.g., optimization of
register usage). The order in which passes are applied to the program is specified in a pass
list, which is input to the compiler with the sequential code. Passes are designed to be
highly configurable for different parallel architectures and new passes can be developed
rather easily. Different passes can communicate via switches, which are similar to local
and global variables. Estimates of the execution times of segments of code are made at
compile-time using the Static Program Analyzer module and this information is used to

guide some of the program transformations.

2.5.2.2 PTRAN

PTRAN (Parallel TRANslation) automatically restructures sequential Fortran programs
for execution on parallel machines. The compiler attempts to determine the amount of
parallelism within a program that can be best exploited on the architecture at hand.
PTRAN performs an extremely thorough analysis of the source program. It begins by
constructing a variation of the control dependence graph supplemented with data depen-
dence information. This graph is then partitioned into tasks such that all nodes in the task

execute sequentially, but the tasks themselves can execute concurrently.

The goal of PTRAN’s analysis is to minimize the overall execution time of the program.

To this end, statistics are employed to estimate the expected execution time for a particular
partitioning. The average execution frequency of segments of code is determined from
execution profiling information generated from previous uses of the software. A task tree

is formed by partitioning and merging adjacent tasks based on a minimum execution time

criterion.

2.5.3 Semi-Automatic (Interactive) Parallelization

The amount of information that can be extracted automatically from a program is limited
by a lack of insight into actual program dependencies. This missing knowledge can be
supplied via semi-automatic (or interactive) parallelization tools. Most modern parallel-
ization tools allow some method of removing false dependencies. These range from the
user providing compiler pragmas to specify dependency information (called assertions)
[ZiCh90] to tools that allow graphical display and modification of dependency nets
[Harrison90, LeEl92]. Other interactive tools, such as ParaScope [CHHK*93], provide
additional capabilities. These include an evaluation of the suitability for parallelism in

certain areas of code and an incremental tool for applying paraliel transformations.

These tools suffer from many of the same drawbacks as manual parallelization techniques.
The compiler will relax some of the dependencies based on the information supplied by
the programmer. If this information is incorrect then subtle errors could be introduced
into the parallelized program. Unfortunately, this method also requires the user to have

some familiarity with the internal details of the software and its expected usage.

Chapter 3
Flow and Dependency Analysis

3.1 Introduction

Automatic and user-assisted parallelization tools offer many challenges to the tool devel-
oper. The primary difficulty in developing a parallelization tool for an imperative lan-
guage such as Pascal is that all dependencies between statements must be identified before
the analysis can proceed. Imperative languages are intrinsically sequential and rely on the
propagation of computation side effects to produce a desired result. Since the result of
executing a statement is dependent on the machine’s state prior to its exccution, the rela-
tive order in which a pair of statements are executed is important [Baldwin87]. To recog-
nize parallelism in imperative languages requires the identification of data and control
dependencies in the subject program. Parallelism between two statements is identified by
an absence of control and data dependencies between them. Consequently, the amount of
parallelism that can be exploited is limited by the number of dependencies that can be

safely identified.

The majority of parallelization tools perform a static analysis of the subject program to
identify potential areas for parallelization. A static analysis is used to determinc as much
information as possible about the program at compile-time without requiring an exccution
of the program. The information inferred from the analysis is applicable to any possibic

execution of the subject program [MuJo81].

Scalar analysis [ZiCh90] is an application of static analysis useful in parallelizing compil-
ers. It is used to determine scalar variable usage throughout a program. Scalar variables
are simply defined as those variables that are not arrays. Arrays may be considered in a
scalar analysis, but an access to any element of an array is treated as an access to the entire

array. Scalar analysis is an essential phase in parallelization tocls and the information

-22 -

inferred is used extensively in the later dependency analysis stages.

Performing a scalar analysis requires an analysis of the flow of control and data through a
program. There are three domains in which flow analysis techniques can be applied: local,
intraprocedural, and interprocedural. A local analysis typically allows flow analysis to be
performed on basic blocks (sequential segments of code with a single entry and single exit
point) or on individual statements [ZiCh90, AhSeU186]. An intraprocedural analysis
expands the scope of the flow analysis to an entire procedure. Interprocedural analysis is a

further enhancement, allowing flow analysis to be performed across procedure bound-

aries.

Most parallelization tools perform an interprocedural flow analysis to more accurately
determine the flow of control and data throughout a program. However, sometimes only a
local analysis is preferred. For example, the Bulldog compiler is an instruction-level com-
piler that assembles Fortran programs for VLIW (Very Long Instruction Word) machines.
For VLIW processors, each instruction contains multiple independent operations. The
independent operations are determined by the compiler and are usually found in close
proximity to one another in the original source program. As a result, a local flow analysis,

concentrating on basic blocks, is performed to achieve the best results [Ellis87,

Johnson91].

3.2 Control Flow Analysis

A control flow analysis determines all possible control paths in a program. It is an essen-
tial prerequisite for control dependence analysis. Control flow information is conve-
niently represented in a control flow graph (CFG) and a separate CFG is usually

constructed for each procedure in the program. The definition of a CFG in this work is

based on [FeOtWa87].
Definition 3.1: Control Flow Graph

A control flow graph (CFG) is a directed graph G augmented with a
unique entry node BEGIN and a unique exit node END such that

-23-

each node in the graph has at most two successors. Edges between

nodes represent transfers of control between nodes. Conditional

execution is indicated with T (true) and F (false) edge labels

whereas unconditional execution is indicated by the absence of an

edge label. For any node N in G there exists a path from BEGIN to
N and a path from N to END.

Note that this definition of a CFG only allows nodes to have at most two possible succes-

sors. In general, it is possible for a CFG node to have multiple outgoing edges (such as

with a ‘case’ statement). As will be seen in Section 4.3, the number of outgoing edges

was restricted to make the definition compatible with NetGen'’s source language character-

istics. A sample

CFG is illustrated in Figure 3.1.

3.3 Data Flow Analysis

a) PROGRAM smallest; b)
VARa,b,c,smallest,i : INTEGER;
sum,avg : REAL;

BEGIN
sl sum := 0.0;
s2 FOR i := 1 TO 10 DO

BEGIN
s3 readln(a,b,c);
s4 IF (a <= b) AND (a <= c) THEN
s5 smallest := a
ELSE
S6 IF (b <= a) AND (b <= c) THEN
s7 smallest := b
ELSE
S8 smallest := c;
sS9 sum := sum + smallest
END

s10 avg := sum / 10.0;
sl11 writeln(‘Average = ',avg)

END.

Figure 3.1 Example control flow graph. (a) a Pascal program, and (b) its con-

trol flow graph.

-24 -

Data flow analysis attempts to determine how scalar variables are used in a program and is
an important precursor to data dependency analysis. Data flow information collected from
statements, basic blocks, and procedures can be conveniently represented using a mathe-
matical set notation. An analysis of a program is completed by manipulating this informa-

tion using basic set relations.

Data flow analysis has been studied extensively in the literature and many useful analysis
techniques have been developed [AhSeUI86, Much81, ZiCh90]. Although much informa-
tion can be collected from data flow analysis, only the information pertinent to NetGen’s
analysis will be discussed. The interested reader is referred to [ZiCh90, Burke90,

AhSeUI86, and Much81] for a comprehensive survey of additional data flow analysis

techniques.

Regardless of the level at which data flow analysis is performed, it is convenient to exam-
ine the use of scalar variables within that domain. Determining when a particular variable
is defined and subsequently referenced is a fundamental necessity in data flow analysis.

Informally, a definition of a variable X is a statement that assigns a value to X. A variable

is used (or referenced) by a statement if its r-value! may be required [AhSeUI86].

All definitions and uses of scalar variables in statements can be represented in sets (com-
monly referred to as def and use sets, respectively). Statement sets can be further aggre-

gated to produce def and use sets for basic blocks or entire procedures.

To acquire a more accurate representation of variable usage throughout a program, inter-
procedural data flow analysis is performed. This technique examines the flow of data
across procedure boundaries and makes it possible to detect whether an entire procedure
can be executed in parallel with another statement or procedure. Unfortunately, interpro-
cedural analysis introduces a new problem, namely that of aliases to variables established

by the parameters in procedure calls.

1. an r-valuc is the value on the right side of an assignment.

-25-

There are three types of variables that can be used within a procedure: variables local to
the procedure, variables declared outside a procedure but visible within the procedure, and
variables passed as parameters to the procedure. Data flow analysis can proceed with little
difficulty when considering the first two types of variables. However, procedure parame-

ters can pose a special challenge.

Variables can be passed to a procedure in two ways: by value or by reference. When a
variable is passed by value, a copy of the actual parameter is made and passed to the pro-
cedure. On the other hand, when a variable is passed by reference, the actual parameter
itself is passed to the procedure. Parameter passing by value poses few problems in a data
flow analysis. This is because a new, unique variable is declared at the start of the proce-
dure and any changes to that variable modify the copy, not the original. However, when
parameters are passed by reference it is now possible that two or more different variables
refer to the same memory address. This situation is illustrated in the example program in
Figure 3.2. As can be seen, variables A and X are aliases since they refer to the same
memory location. Within procedure W, X modifies the contents of A. Variables B and Y
are not aliases since Y is merely a copy of B at the start of the procedure and refers to a
different memory location. All aliasing relationships must be identified before an accurate

data flow analysis can be performed.

Aliases can also be introduced through the use of pointer variables. Analysis of code with
pointer variables is generally a very difficult and involved task. The analysis can be sim-
plified by restricting the source language to make pointers more “well-behaved” but the
problem remains complex. For this reason, the initial implementation of NetGen does not
allow pointer variables. Aliases introduced via pointers will not be discussed furthcf, but
the interested reader is referred to [AhSeU186] and [ChWeZa90] for additional informa-

tion.
3.4 Control Dependence

Control dependencies arise from the flow of control in a program. Whenever an impera-

tive language is parallelized, control dependencies between statements must be observed.

-26-

a) PROGRAM alias; b) A=275
B = 10
VAR A,B : integer; A =50
B = 10

PROCEDURE W(VAR X: integer, Y: integer)
BEGIN

X=X *Y; The program output demon-

Y :=0 strates the aliasing relationship
END; between variables A and X. Tt

also shows how variables B

BEGIN and Y are not aliases.

A :=5;

B := 10;

WRITELN{(‘A = ‘',A);

WRITELN('B = ‘,B};

W(A,B);

WRITELN({‘A = ',A);

WRITELN('B = ',B)
END.

Figure 3.2 Aliasing of variables via procedure parameters. (a) a sample pro-

gram and (b) output from the program

As imperative languages rely on the propagation of side effects between statements to
compute a result, the order of the statements is important. The definition of control depen-

dence is based on the notion of post-dominance [Sarkar91a]:

Definition 3.2: Post-dominance

Node Y post-dominates another node X # Y iff every directed path
from X to END in the CFG contains Y. [|

Post-dominance is used to determine nodes that have identical control conditions. In the
above definition, if node Y post-dominates X, Y will always be executed whenever X is

executed. Therefore X and Y have identical control conditions.

The definition of control dependence follows [FeOtWa87}]:

Definition 3.3: Control Dependence
Let G be a CFG. Let X and Y be nodes in G. Y is control depen-

dent on X iff:

1. there exists a directed path P from X to Y such that every node
Z in P (excluding X and Y) is post-dominated by Y. and
2. X is not post-dominated by Y. |

The first condition requires that for each node Z in path P, all paths from Z to END must
pass through Y. The second condition requires that another path exist from node X to
END in the CEG. Based on this definition, the control dependencies for cach of the nodes

in the sample program in Figure 3.1a are summarized in Table 3.1.

Node &):;:?ll‘:g;g;ndent On
S
2 -
3 2T
4 2T
5 4T, 2T
6 4F, 2T
7 6T, 4F, 2T
8 6F, 4F, 2T
9 2T
10 | -
1 -

Table 3.1 - Control dependencies for the sample program in Figure 3.1a

Excessive control dependencies can limit the amount of parallelism that can be cxploited
in a serial program. For this reason, it is often desirable to remove all control dependen-
cies from the subject program before parallelization begins. A common technique to

eliminate control dependencies is if-conversion [AKPW83] and is discussed further in

.28 -

Section 7.2.3.

The computation of control flow and control dependencies within a program can be done
exactly with many imperative languages, including Pascal. This is because the targets of
most branch statements can be determined at compile time. An assigned GOTO statement
in Fortran, where the branch target is the value of a variable, is an exception. In this case,

data dependence analysis would have 10 be used in lieu of control dependence analysis

[Sarkar91al.

3.5 Data Dependence

A data dependency between two statements occurs when they share a variable access.
Data dependencies arise from the flow of data within a program. Data dependency analy-
sis is a complex and heavily researched field of study. Most of the recent research deals
with the determination of data dependencies within loops, since much of the available par-
allelism in scquential programs can be found within loop structures. As the present Net-
Gen project does not deal with parallelization of loop iterations, loop-carried dependency

analysis will not be discussed.

The definition of data dependence follows from the literature [Sarkar9la, Almasi89]:

Definition 3.4: Data Dependence
Let SI and S2 be statements in a CFG. A data dependence
(denoted S1 3 S2) exists between statements S1 and S2 with respect

to variable X iff at least one of the following is true:

I. X is written by S1 and later read by S2 (flow dependence,

denoted S1 &7 S2), or
2. X is read by S! and later written by S2 (anti-dependence,

e

denoted S1 &° S2). or
4. X isread by S1 and later read by S2 (input dependence, denoted

S1 &' S2). =

The various types of data dependencies are illustrated in Figure 3.3. Of ail the above
dependencies, input dependencies have the least effect on parallelization. Usually, two
independent reads to the same memory location (without any intervening writes in
between) do not have an effect on the value stored there. Consequently, the same value
will be retrieved regardless of the sequence in which the reads were performed. However,
if the variable refers to a memory location whose contents are controlled by an external
hardware device (such as an 1/O processor or a timer) then the variable’s value could
change between successive reads. Variables of this type are called volatile and must be
explicitly declared as such in the scurce language. [Sarkar9la] indicates that input depen-
dencies can be ignored for correct parallelism but should be studied for efficient parallel-

ism (e.g., reducing cache hot spots).

This code fragment yields the data dependencies:

sl y :=10 s28fs1
S2 x =y + 2 35052
s3 y := 12 S SOS
i 3 ity $38°SI
S48 S2
548'S2
Figure 3.3 Data dependencies between statements

Unlike control dependence analysis, data flow and dependence analyses arc generally
inexact. Consequently, whenever a result is in doubt, the solution favors a safe or conser-

vative outcome.

3.6 /O Dependencies

gramming language. Often the order of I/O statements specified in a sequential program
is important and should not be rearranged. For example, if a program were to display a
textual message for the user, it wouid be unsatisfactory if the order of the message ele-
ments were changed. This could render the message unreadable. Consequently, some

form of dependence analysis should be applied to I/O statements to prevent such problems

from occurring.

The solution adopted by NetGen models 1/O dependencies in a fashion similar to data
dependencies. The 1/O stream itself can be treated as a variable, and the various READ

and WRITE statement dependencies modelled with a dependency on that stream.

3.7 Representing Dependency Information

Traditionally, some variation of the dependence graph [KKPLWS81] is used in dependency
analysis problems. A dependence graph is a directed graph that summarizes the depen-
dencies between statements in a program. The nodes represent program components
(such as statements) and edges between nodes indicate a dependency between the corre-
sponding statements. Multiple dependency arcs between two nodes are permitted and a
node may be dependent on itself. Conventional dependence graphs usually associate a

direction with each dependency. This is beneficial if the exact type of data dependence
between two statements must be known (e.g., is S1 8% S27) or if a dependence analysis
involving loops and arrays is to be performed. Control flow information is usually not

preserved in such a representation.

An alternative structure for representing dependencies is the program dependence graph
(PDG) [FeOtWa87]. Nodes represent statements or predicate expressions and edges rep-

resent both data and control dependencies.

The program dependence graph explicitly represents both the

essential data relationships, as present in the data dependence

This structure is useful in determining parallelism as only the necessary sequencing of

statements is preserved.

As will be seen in the next chapter, the dependency annotated net is a third representation

that is used in the NetGen project.

3.8 Conditions For Parallelism
Once all program dependencies have been determined, potential parallelism among statc-
ments can be identified. Parallelism between statements requires that they have no con-

trol, data, or I/O dependencies between them.

Applying the techniques outlined in this chapter will result in the identification of all pos-
sible statements that could be parallelized within a sequential program. The extent to
which this information is used, however, depends on the remaining parallelization steps

and on the resources of the target machine.

Chapter 4

A Program Partitioner For
Net-Based Execution

4.1 Introduction

NetGen is an experimental program parallelization tool that produces a high-level net
description of a program. Such a description is suitable for conversion into a Petri net rep-
resentation. The focus of the parallelization is on sequential program partitioning, and
scveral experimental parameters are available to guide this process. NetGen consists of
several interconnected modules, as illustrated in Figure 4.1. Each module performs a par-
ticular analysis that is essential to the correct partitioning of the subject sequential pro-

gram. The annotated net formation phase first determines the dependencies within the

Annotated
Net
Formation

e
A

ke
i
L]

Node
Migration

s [l

-

Node
Coalescing

o
Q
—

Petri Net
Formation

A T

A
byt

—
— m o w— oy [—

source program. Guided by the dependency analysis, the node migration stage arranges
the code so that statements can be executed as soon as possible and permits parallelism to
be expressed among these statements. Node coalescing can then be used to identify
groups (or clusters) of statements that, depending on the criteria specified by the
researcher, will be executed sequentially. The final, unimplemented stage of this project
involves the translation of the partitioned program into a Petri net representation to be exe-
cuted on a net-based architecture. The different modules communicate by passing a repre-
sentation of the source program in a net description language. Each module adds

information to the program description that is pertinent in subsequent analysis phases.

The modular approach to the parallelization process was chosen to clearly abstract the
duties of each of the analysis phases. In addition, such an approach facilitates the creation
of additional analysis steps that can be inserted into this process. For example, the current
implementation deals only with the parallelization of Pascal programs. Additional lan-
guage front-ends (such as Fortran or assembler) can be created to provide analysis capa-

bilities to other programming languages.

This chapter discusses the first two stages in the net generation process. It will provide a

suitable background for describing the node coalescing phase in the next chapter.

4.2 Target Architecture

As NetGen is an experimental tool that could be used in the search for architectures suit-
able for net-based computing, a specific target architecture cannot be identified. However,
the architecture does exhibit general characteristics that the class of net-based machines
will possess. In general, a tightly-coupled shared memory environment is assumed.
There are a number of processing elements that communicate over a shared bus. A global
memory, equally accessible to all processors, is available. Each processor has its own
Jocal memory that can be used for stack purposes. The system is driven by a task alloca-
tion unit, which essentially executes the Petri net description of the software and assigns

appropriate tasks to processors. The general hardware configuration is illustrated in Fig-

CPU CPU Shared

Memory
Local Local
Memory Memory
Local Local

=l | PetriNet Memory Memory
= Hardware

net CPU CPU
Figure 4.2 Execution environment for a net-based program

Each machine has a particular level of task granularity that it can best exploit. The parti-
tioning of the software must therefore be done to accommodate the granularity require-
ments of the target architecture. The user can modify the coalescing parameters

accordingly to influence the grouping of statements into subtasks.

4.3 Sequential Programming Language

For the NetGen project, the choice of an appropriate sequential programming language
was based on both the features and programmability of the language, and on the ease of
performing a program analysis. Consequently, a subset of the popular Pascal program-
ming language was chosen to be the subject of the parallelization process. From the pro-
grammer’s perspective, Pascal provides a rich set of programming constructs, operations,
and data structures that make it suitable for the expression of many programming prob-
lems. From an analysis perspective, one of the most important characteristics of Pascal is
that it is a block-structured language that allows the existence of multiple variable scopes.
Since the dependency between statements with variables of different scopes is one of the
parallelization properties that can be studied with NetGen, its support by the subject
sequential language was imperative. Program flow and dependency analysis is also facili-

tated by the structure and context-free nature of the language.

The language was restricted primarily to ease the development of this initial analysis teol.
However, some constructs were eliminated because they can be formed from other lan-
guage elements. The major standard Pascal features that are not supported include the fol-

lowing:

 goto statements. In a language that provides loop constructs, goto statements are

superfluous and can be eliminated [Bola66].

e pointer variables. Although prevalent in many program designs, the effects of

pointer variables are not a subject for investigation in this initial implementation.
e case statements. These can be emulated using cascaded if statements.

 compound data types. Compound data structures such as records and sets would

add unnecessary complexity to this initial analysis tool.
e file I/O. Only the standard input and output streams arc available.

Additional standard Pascal features can be added later and a study of the effects of their
inclusion should prove insightful. Herein, the Pascal subset language used in the NetGen
project shall be referred to simply as Pascal; additional qualifiers will be used if further
clarification is necessary. A complete description of the standard Pascal subsct grammar

is provided in Appendix A.1.

4.3.1 Language Elements

There are several Pascal language features that are important to NetGen'’s sequential pro-
gram analysis. These properties either have a direct analog in the dependency annotated
net or are essential in understanding its construction. This section attempts to clarify some
of the concepts and terminology that will be used when describing how a net is generated

from a Pascal program.

4.3.1.1 Statements

There are two types of statements available in the Pascal language: simple and structured
statements. Variable assignments and procedure calls are simple statements whereas com-
pound statements, conditionals, and loops are considered structured statements. The dis-

tinction between simple and structured statements becomes important when nodes are

created for the annotated net.

4.3.1.2 Blocks, Regions, and Scope

Pascal is a block-structured language. A Pascal program is composed of a number of sec-
tions (called blocks) that can contain variable declarations, constant definitions, procedure
declarations, and statements. The program itself is contained in the program block while
procedures and functions reside in separate procedure and function blocks, respectively.

One of the useful properties of blocks is that they can be nested, giving rise to the notion

of regions and scope.

“A block (and any blocks it contains) constitutes the rerion in which...[an] identifier can
retain its original meaning.” [Cooper83] An identifier declared within a block is accessi-
ble to all procedures and functions declared within that block. Subsequent blocks
declared within those subroutines will also recognize the identifier. Regions are important
as they define the largest possible program domain in which a particular identifier can be
used. An identifier’s scope is a closely related concept—the terms are often confused.
The scope of an identifier is the actual program area in which the identifier is visible. It
may be either the same size or smaller than its region. Scopes arise from the nesting of
blocks and limit the region of an identifier only when a similarly named identifier is

declared within one of those nested blocks.

A global identifier is one that is declared in the program block—its region is the entire
program. A local identifier is declared within a procedure or function block and is visible
only to the blocks nested within it. NetGen also uses the terms relatively local and rela-

tively global to refer to the scope of an identifier. Both are very subjective terms and are

A At mm than Wlanl in which thau are annlied A relativelv elobal identifier is one

whose scope completely encompasses a block in which it is used. In other words, it is
declared outside the current block. A relatively local identifier is one whose scope has

limited the visibility of an identically named identifier in an outer block.

4.4 Annotated Net Generation

The first step in the parallelization process is the construciion of a dependency annotated
net for the sequential program. Basically, an annotated net is « description of the depen-
dencies between statements in the sequential program. This section describes makenet,
the tool used to accomplish this analysis. As this is the only phase that deals directly with
the original sequential program, this step must be performed first. Subsequent stages can

manipulate the description of the dependency net that is produced by this module.

makenet employs the processing steps depicted in Figure 4.3 to produce a dependency
annotated net. The first step parses the sequential Pascal program to be parallelized. An
intraprocedural analysis is performed on each subroutine to determine the def and use scts
for each statement. The statements are initially mapped into a net structure without any
dependency information. The second analysis phase performs an interprocedural analysis
of the nets produced in the previous step. Aliasing of identifiers is resolved and the nets

are annotated with dependency information by computing the dependency relationships

* determine def and use

sets fc'>r.e'ach statement Intraprocedural analysis
« form initial net

bt

ko]
o
0

* resolve aliases

+ compute dependencics | [nierprocedural analysis
between all statcments

» describe dependency
net in net description
language

gty

.ndl

between statements. Finally, the net information is transcribed into a file for the next par-

allelization module. Each processing step will be described in detail in subsequent sec-

tions.

4.4.1 Dependency Annotated Net

NetGen performs most of its analysis on an intermediate dependency net representation of
the source program. The net representation structure used is the dependency annotated
net, which is similar to the conventional dependency graph described in the previous
chapter. A dependency annotated net (or simply dependency net) is an undirected graph
that summarizes both the essential dependencies between statements and their relative
execution order. A sample dependency net is illustrated in Figure 4.4c. The net is aug-
mented with a unique entry node NET_INITIALIZE and a unique exit node
NET_TERMINATE. All other nodes in the net represent either a Pascal simple statement,

a loop predicate, or a condition predicatel. Table 4.1 lists all possible node types. Depen-

Node Type Description

NET_TERMINATE Exit point of the net. It is always the last nede executed.
ASSIGNMENT Assignment statement

PROCEDURE_CALL Procedure call

IF_PREDICATE Predicate for a condition statement

LOOP_HEADER Loop header for a FOR or WHILE loop
10_PROCEDURE Standard /O procedure (READ or WRITE)

Table 4.1 - Types of nodes available in the dependency annotated net

dencies are represented as directionless edges between nodes and at most one dependency
edge can exist betwee1 .y two nodes. This has two implications. First, there is no con-
cept of dependence direction associated with an c¢dge. Since only a scalar analysis is per-
formed and parallelization across loop iterations is not investigated, dependence directions
are not needed. Second, the number of dependencies between statements is not important

for determining execution order or possible parallelism. The mere existence of a single

1. Herein, references to nodes and statements will be considered equivalent.

edge is sufficient for analysis purposes. Although the number of dependencies between
statements can be important during the node coalescing phase, that information can be

easily computed when required.

This net representation does not describe a program in a Petri net notation. Instead. a for-
mat that facilitates the identification of dependencies between statements is employed.
However, the dependency annotated net contains sufficient information to generate a Petri
net description of the source program following NetGen’s analysis. This intermediate net
structure should not be confused with the net description language used as the communi-
cation medium between modules. Although similar, the net description language merely
provides a textual representation of the intermediate net structure and will be discussed in

Section 5.7.

A separate dependency net is produced for each block in the source program. Thc depen-
dency information used to construct the net is inferred from a static analysis of cach block.

Every dependency net created has the characteristics described in this section.

The execution order of statements is determined by the dependencies between them. In an
imperative language, the dependencies between statements are transitive and often many
are redundant when specifying the correct execution order. Consider the program frag-
ment in Figure 4.4a that contains both data and contrel dependencies. A conventional
dependency graph would have edges similar to that shown in Figure 4.4b. As can be scen,
node 4 has a dependency with nodes 1, 2, and 3. Since node 4 has a dependency with
node 3, node 3 has a dependency with node 2, and node 4 must be executed after both
nodes 2 and 3, then a dependency edge is not necessary from node 4 to node 2. All the
dependency edges needed to specify the correct execution order are illustrated in Figure
4.4c. Hence, although there may in fact be a dependency between two statements, a
dependency edge need not be created if they are already indirectly connected via other
dependency edges. This is the approach taken by NetGen when constructing a depen-

dency annotated net.

a) . b) c)
| (D 0

S1 c :=a* 4;
S2 a :=b *c * 10; ‘t’ ‘3’
s3 if (a < 256) then
sS4 b := ¢
e1se) O
S5 b :=c¢c * 2;
Figure 4.4 Demonstration of unnecessary dependencies. (a) a program frag-

ment, (b) all dependency relationships, and (c) its minimal depen-
dency relationships

The correct ordering of statements in the dependency net is specified not only by the
dependencies between them but by mapping nodes into execution steps. An execution
step specifies all the statements that can be executed together at a particular “step” in the
program execution without any real time considerations. A net is composed of several
execution steps that collectively describe the relative sequence in which statements must
be performed. An execution step only contains statements that have no dependencies with
one another. However, they may have dependencies with statements in other execution
steps. Statements that share an execution step can potentially be executed in parallel (i.e.,

they have no dependencies between them and can therefore be executed at the same time).

Figure 4.5 illustrates a sequential program’s mapping into execution steps. Figure 4.5b
shows the minimum set of dependencies for the program that are computed following the
net annotation phase. It is apparent that nodes 2 and 3 do not have any dependencies with
one another and could potentially be executed in parallel. Consequently, nodes 2 and 3
can share an execution step, as depicted in Figure 4.5c. The purpose of the node migration

phase (discussed in Section 4.5) is to determine which nodes can share an execution step.

Execution steps are numbered consecutively beginning at zero. In general, the next state-

ment to be executed following the current statement is found in a subsequent (or numeri-

a) PROGRAM triangle;

VAR a,b,c,d,e: integer;

BEGIN
Sl readln (a,b,c):
S2 d := a*a + b*b:;
S3 e := c*c;
sS4 if (d = e) then ; ;-
35 writeln(‘Right triangle’) " i)
S6 writeln{'Not a right triangle’)

END.

Regions shaded & and represent execution steps. The execution step number is
indicated in the upper-right corner of each execution step.

Figure 4.5 The mapping of a program into execution steps. (a) simple pm-“ "
gram, (b) its dependency annotated net, and (c) its dependency ret
following node migration

cally larger) execution step. The exception to this rule is with loop back edges which
appear at the end of each loop body toward the loop header. Figure 4.6 illustrates how the

various statements from the Pascal source are mapped into execution steps.

The NET_INITIALIZE node resides alone in the first execution step of the net while the
NET_TERMINATE node is always placed in the last possible execution step. The former
represents the initialization of any execution context (such as the creation of a stack) that
must be performed before any statements in the net are executed. The latter node is the
complement of the NET_INITIALIZE node: it represents the deallocation and restoration
of the execution context once the net has completed execution. Consequently, no other

nodes may appear in the same execution step as these nodes.

All nodes have an implicit control dependency ori the NET_INITIALIZE node. This is
done partly to ensure that all nodes are executed after the subroutine has had a chance to
properly initialize its execution context before any statements are executed. It is also cor-

rect to assume a control dependency with the entry node because it can be interpreted as 4

boolean condition that determines whether or not the subroutine will be executed. A sim-
ilar approach is taken by [FeOtWa87] in their program dependency graph, but they insert
an explicit ENTRY node into the graph to handle the boolean condition. Note that this
control dependency edge is treated like all other dependencies: if an indirect path of

dependencies exists to the NET_INITIALIZE node then an explicit edge is not required.

The NET_TERMINATE node does not have any dependencies with any other node.
Although this is usually an indication for parallelism, due to the special properties of the

NET_TERMINATE node it is always placed last iri a net.

The statements in the branches of a conditional must be executed after the condition pred-
icate is evaluated. The outcome of the evaluation determines which branch will be taken.
Consequently, every node in the branches is control dependent on the predicate node and
hence a dependency edge is required. Note that the True and False branches may be dif-
ferent lengths (i.e., they contain a different number of statements). Both branches still

begin in the next execution step from the predicate node. However, the next statement fol-

General Net Assignment Procedure Call
n n
Conditional For / While Loop
Condition "

CEor/while (exPIﬂ ll:lggger

n+l n+l
Loop
Body

' Y : n+2

i N .
NET_TERMINATE : :

Predicate if (expr)

True False
Branch Branch

« each branch of the conditional statement is control dependent on the condition pred-
icate node

« all statements within the body of a loop are control dependent on the loop hea:ler
node

lowing the condition statement begins in the next execution step after the longest branch
path. A similar situation exists with loops. The loop header node must be executed before
any of the loop body statements. This constraint appears as a control dependence between

the loop header and every statement in the body of the loop.

4.4.1.1 Dependency Edges

The dependencies within an annotated net can be classified into two types: hard or soft
dependencies. A hard dependency is a single, directionless dependence edge between two
nodes that represents all control, data, and /O dependencies between them. It eliminates
the need to have several dependence arcs between nodes. Any information about the
number or types of dependencies that the hard dependence edge is representing is not
retained. Only the existence of a dependence edge is sufficient for most analyses. Hard
dependencies play an important role in influencing statement sequencing and identifying

potential parallelism.

Soft dependencies, on the other hand, exist between statements that do not lie on the same
control path. In other words, a soft dependency appears between statements that can ncver
be executed at the same time. This type of dependency is found between statements that
are in different branches of the same conditional statement. Although both branches can
be executed, only one branch will ever be executed at a time in a particular execution
environment (e.g., a procedure). A soft dependence edge is also directionless but it does
not affect the ordering of instructions. Soft dependencies do allow nodes that arc in differ-
ent control paths to share an execution step, a privilege usually reserved for nodes that
could be executed in parallel. Since both nodes will not be executed at the same time, they
can be thought of as candidates for potential parallelism. Soft dependencies are also used
to determine the next statement to be executed following the node in the current execution
step. The next statement must be in the same control path, and therefore the choice of the
next node to execute can be made by considering only those nodes without 2 s0ft depen-

dency with the current node.

ple program in Figure 3.1. For the remainder of this thesis, hard dependence edges

between nodes will be represented as solid lines, whereas soft dependence edges will be

depicted using dashed lines.

———— Hard Dependencies
------ Soft Dependencies

()
C262020 B OCL00,0
(=)

NET_TERMINATE

Figure 4.7 Hard and soft dependencies in the annotated net for the sample pro-
gram in Figure 3.1.

4.4.1.2 Dependency Regions

Besides the explicit hard dependencies and execution steps, grouping nodes into depen-
dency regions can also affect the statement parallelism determination. A dependency
region is a collection of nodes that can only be parallelized amongst themselves and where
each collection is delimited by structured constructs of the language. Each block forms a
dependency region since parallelism is exploited within the confines of a single procedure.
Every loop also begins a new dependency region since loops have special sequencing and
parallelism requirements Although parallelism across loop iterations is not expiored in

NetGen's analvsis. parallelism opportunities within a single iteration can be examined. As

a result, a special structure is needed to isolate a single loop iteration from the other non-

loop statements. Figure 4.8 depicts the various manifestations of dependency regions.

In general, nodes outside a dependency region cannot be executed in parallel with nodes
inside the region. This is certainly not true for blocks—execution of statements in differ-
ent blocks in parallel is simply not permitted in NetGen. However, under some circum-
stances nodes outside a loop can be executed in parallel with the loop as a whole. The
problem with allowing loop ard non-loop statements to be considered for parallelism is
clear: node coalescing that is performed at a later phase might group a non-loop node into
the loop. This is unacceptable since the non-loop node would then be executed with cach

loop iteration.

Dependency regions can be nested. Each region within a block is assigned a unique inte-
ger number for identification purposes. Every new block is assigned zero as its depen-
dence region identification. Any region created within a block dependence region is
associated with a loop. At present, no other structures in NetGen require a separate depen-

dency region for analysis.

Dependency regions have only one entry point. The first node is referred to as the region
header node. For blocks the NET_INITIALIZE node is the region header, whereas for
loops the loop header node is the start of the dependency region. A dependency region
nested within another region can be treated simply as another node in the net. Dependen-
cies can be computed with it and it can be moved for parallelization purposes. Every
dependency region maintains a set of all external nodes (i.e., outside the dependency
region) to which it has a dependency. These are called efferent region dependencies since
they are the set of all dependent nodes that lie outside the dependency region. This infor-
mation is compiled by ignoring the fact that the statements are in separate dependency
regions and applying the traditional analysis techniques. Thus, a statement outside a
dependency region can be executed in parallel with the region if it has no dependencics
with any statement in the region. If this is the case then the external statement could be

placed in the same execution step as the region header node.

4.4.1.3 Condition Regions

Every condition statement is associated with a unique condition region. A condition
region associates the branches of a condition statement to a particular condition predicate.
These regions do not affect program parallelization. All branches of the same condition
statement belong to the same condition region. These regions can be nested and each is

assigned a unique condition region number. Figure 4.8 illustrates how condition regions

are assigned.

4.4.1.4 Block Depth

Every block that is created in a Pascal program is nested a certain number of levels within

Block Depth 0 ———>PROGRAM V;

Block Depth | —————>PROCEDURE X;
Block Depth 2 clapoyne

Block Depth | —————>PROCEDURE Z;

BEGIN
readln(b,c);

if (b < 10) then

BEGIN
c := b * 20; Condition Region 0

then

Condition Region 1

else
c := b + 20;

Dependency Region 0 ——>
writeln(b,c);

Dependency Region | —————>for b := 1 to 10 do

Dependency Region 2 ;

END

Figure 4.8 Block depth, dependency regions, and condition regions

the program block. The level at which a block is nested with respect to the program block
is called the block depth. The program block is at a block depth of zero. More than one
block may be at a particular block depth. Figure 4.8 illustrates how block depths are com-

puted for various nested procedures.

4.4.2 Intraprocedural Program Analysis

The translation of a sequential program into a net-based representation begins with an
intraprocedural analysis of the Pascal source. This analysis is used to infer important
information from each subroutine including its control structure, the declaration of nested
subroutines and variables, and the usage of such variables in each statement. The result of
this initial analysis phase is the production of a rudimentary net description for every Pas-
cal block. The structures produced are not yet dependency nets since they do not contain

any information about the dependency relationships between statements.

4.4.2.1 Parsing The Sequential Program

The first step in the intraprocedural analysis is the bottom-up parse of the Pascal source.
Pascal is a simple language to parse as it has an LL(1) type of grammar. The language is
structured such that only one pass of the source is required to extract all necessary infor-
mation. Subsequent analysis stages deal only with the information learned from the initial

parse and hence the source program is not examined again.

The analysis proceeds by constructing a separate net for every Pascal block encountered.
A NET_INITIALIZE node is created and added to the first execution step of the new net
structure. The statements within a block will eventually form the nodes of that net. Each
statement is analyzed individually. The line number within the source file where a partic-
ular statement was encountered is stored since it is required in the final Petri net gencra-

tion stage.

4.4.2.2 Declarations
Before the statement part of a block there are several sections that allow the declaration of

constants, variables, and other blocks. All declarations involve the usc of an identifier that

assumes a unique meaning in the current block. For constants and variables, the identifier

refers to the name of the constant or variable; for other block declarations, the identifier

refers to the name of the procedure or function.

For constant declarations only the identifier name is retained. Its corresponding value is
not important in any analysis performed by NetGen and is extraneous. Although proce-
dure and function declarations begin new blocks, their names are stored locally to associ-

ate them with the current block.

Variable declarations are treated somewhat differently as they are the principal elements
of a data dependency analysis. Each variable declaration is given a unique declaration
number. Declaration numbers begin at zero and apply throughout the entire source pro-
gram. This is convenient during data flow and dependence analyses since some method is
required to distinguish the variables involved. The declaration number is stored along
with the variable identifier in the current block. Array variables are treated as scalar vari-
ables and are stored as such. Any access to a particular ¢lemerit of the array is treated as
an access to the entire array. Variable data types are not retained, as the semantic proper-

ties of variables are not an issue in dependency analysis.

A section for type definitions also precedes the statement part of a block. It allows the
programmer to rename types to improve the readability of the code. Like the data types

associated with variable declarations, the information contained within this section is

superfluous and is ignored by NetGen.

4.4.2.3 Dependency Net Nodes

The statement part of a block is the source of all nodes in a net. The statements are ana-
lyzed in the order in which they appear in the source program. When a conditional state-
ment is encountered, the True branch is analyzed first, followed by the False branch.
When a loop statement is detected, its loop body is analyzed immediately after the loop
header. The definition of a node and the proper proceure for inserting a node into the net

has already been specified in Section 4.4.1.

Every node is assigned a unique node number. Node numbers begin at zero and apply
only to the current net. These numbers are assigned based on the order in which state-
ments are encountered during the program parse. A convenient property of node number
assignments is that a statement executed prior to the current statemenit will have a rela-

tively smaller node number.

When a new node is encountered there are several pieces of supplementary information
that must be retained for subsequent analysis stages. This information is summarized in
Table 4.2. Some of this data cannot be supplied during the intraprocedural analysis phase

and must be inserted later following an interprocedural analysis.

Symbol Description

NN Unique node number

Ntype Type of node

Src Statement text from Pascal source

LN Line number in Pascal source file where statement is focated
Estep Execution step in which this node is a member
HD Hard dependency edge set (refers o nodes)

SD Soft dependency edge set (refers to nodes)

DD Data dependence set (refers to nodes)

CD Control dependence set (refers to nodes and cdges)
(0] 1/0 dependence sct (refers to nodes)

Eff Efferent region dependencics (refers to nodes)

def def set (refers to variable declarations)

use use set (refers to variable declarations)

DR Dependency region

RHN Region header node

CR Condition region

Table 4.2 - Data retained by nodes in a dependency annotated net

As each statement is encountered, the def and use sets are computed. The variables used

or defined by the statement are stored via their declaration numbers in the appropriate data

flow set. The def set represents all the variables that have been modified by the current
statement. Only assignment statements, FOR loop headers, and READ procedures can
modify a variable in the Pascal subset recognized by NetGen. The use set contains all
variables that are read by the current stati=:2nt. As will be seen in Section 4.4.2.5, the
data flow sets for a procedure call statement are further supplemented with all the vari-

ables defined and used within that procedure.

All nodes are associated with the current dependency region and/or condition region under
analysis. Conditional statements begin a new condition region and loop statements begin
a new dependency region. Both types of regions remain “open” until they are closed by
the termination of the corresponding loop or condition statement. As a result, other
regions may be nested within open regions. The condition predicate node is not part of the
new condition region that it creates; it is associated with the previous open condition

region. New loop header nodes, however, are associated with the new dependency region.

4.4.2.4 Control Dependencz
The control dependence between nodes can be computed during the intraprocedural analy-
sis phase. Unlike data dependency analysis, control dependence information can be deter-

mined at this stage because control flow within one procedure is not influenced by the side

effects of another.

An explicit control flow graph is not generated for each block. Although the notion of a
CFG is essential for defining control dependence it is not required because control flow
can be directly inferred from parsing the source program. Similatly, control dependence
can also be determined from the parse. From the definition of control dependence (Defini-
tion 3.3), it follows that nodes can only be control dependent on nodes that have more than
a single branch target. The only statements that satisfy this requirement in the Pascal lan-
guage are conditional statements and loop headers. Consequently, any node is immedi-
ately control dependent on the last conditional or loop header encountered. The branch
(True or False) from the control dependent node is also required to complete the control

dependence set. Since the sequential program is parsed such that its statements are

encountered in the order in which they are executed, determining control dependence via

this method is appropriate.

If a control dependence between two statements is identified, a hard dependency edge
between them is not inserted until after the interprocedural analysis. Only the control
dependence set is retained. Since a dependency edge will not be added if another (indi-
rect) dependence path already exists between two nodes, it would be premature to add an

edge before the data dependence analysis is complete.

4.4.2.5 Analysis Of Multiple Blocks

When a procedure or function block is encountered during parsing. special consideration
is required upon forming a new dependency net. Unlike the program block, parameters
can be passed to procedure and function blocks. Consequently, the formal parameters and
their parameter-passing method (by reference or by value) must be retained. Such param-

eters are the source of aliasing relationships between variables in different blocks.

Each formal parameter is added to the def set of the NET _INITIALIZE node for the new
block. These parameters can be thought of as being defined upon entry to the block.
When the block is completed, the NET_TERMINATE node is inserted into the depen-
dency net. The union of all def sets within the net is computed and stored in a special
block def set. A block use set is similarly determined from the use sets. This information
clearly represents all the variables that have been defined or used within a procedure or

function.

These sets are particularly useful at procedure or function call sites, where additional
information is computed for data dependence analysis purposes. The variables contained
within the block def and block use sets of a subroutine are added to the def and use sets of
the call statement. This is done to provide additional information for parallelization pur-
poses: a subroutine call can be executed in parallel with another statement if the subrou-

tine code has no dependencies with the other statement.

Subroutine call sites are also where aliasing between actual and formal parameter vari-
ables is determined. During this intraprocedural analysis phase, possible aliases between
variables are merely noted; the determination of variable equivalence classes is performed
during the subsequent interprocedural analysis. Each actual parameter is matched to the
corresponding formal parameter of the subroutine. If the parameter is passed by reference
then an alias is indicated between the formal and actual parameter. Conversely, if the

parameter is passed by value then an alias relationship is not established (since only a

copy of the variable is passed).

4.4.3 Interprocedural Analysis

After a rudimentary net has been formed for each block in the source program, the interac-
tion among these blocks must be determined. To this end, aliases across block boundaries
are identified and the dependencies between all nodes in a net are computed. At this point,
the parse of the Pascal source has been completed. Herein, only the internal structures that

contain information learned from the parse are consulted; the source is no longer exam-

ined.

4.4.3.1 Alias Resolution

In order for the dependencies between statements to be accurately determined, all variable
aliases must be identified. With the Pascal language subset used in the NetGen project, the
only source of variable aliases are procedure calls. More specifically, if a parameter is
passed by reference a possible alias exists between the formal parameter variable and the

actual parameter variable. Consequently, the search for aliases requires an interprocedural

analysis.

NetGen uses a simple algorithm for resolving aliases. Its basic premise is that if any two
nodes could ever possibly be aliases of one another then they are always made so.
Although simple, this approach is rather restrictive and can lead to the assumption of
“false” aliases. A more complex analysis is required to eliminate such false alias relation-
ships. The approach taken, however, is clearly a safe technique because no aliases are

missed.

-53.

The alias determination algorithm has been adapted from Algorithm 10.12 in [AhSeUI86].
Instead of immediately updating the def and use sets of every statement that employs an
aliased variable, the aliasing relationships are stored and are applied only when each node
is visited during the dependency calculations. The algorithm for resolving variable aliases
is presented in Appendix B.1. The result of applying the algorithm to the declarations
determined from the intraprocedural program analysis is the mapping of aliased variables
into equivalence classes. A variable can be a member in only one equivalence class.
Accessing any variable within a particular equivalence class is treated as an access to all

variables within that set.

The algorithm in Appendix B.1 resolves both the reflexive and transitive types of aliasing
situations. For example, suppose X, Y, and Z are variables. 1f X and Y are aliases then it
is desired that X and Y be put into the same equivalence class (i€, X=Y and Y = X). In
addition, if X is an alias of Y and Y is an alias of Z then X should be made an alias of both
Y and Z (i.e., X =Z whenever X =Y and Y =Z). The simple al gorithm presented is adept

at handling both cases.

4.4.3.2 Dependency Computation

Once all the variable aliases have been resolved, the dependencies between nodes can be
safely computed. As indicated earlier, given the role of execution steps and the transitive
nature of the dependencies, a dependence edge will not be inserted between two nodes if
an indirect dependency already exists between them. The addition of the new dependency
edge would be redundant. Data, control, and 1/O dependency conditions are checked
between nodes within the same control flow, and soft dependencies are inserted between

nodes in different control flows.

The algorithm for computing this minimal set of dependencies is ComputeDependencics
and is described in Appendix B.2. As can be seen on line 1, the algorithm traverses cvery
net produced. Within a net, the nodes are analyzed in the order in which they were added
to the net during the intraprocedural analysis phase. When a node is encountered. every

node executed prior to that node in the net is checked for a dependency. If a dependency

-54 -

is found, and an indirect path of dependencies does not already exist between them, then a

hard dependency edge is inserted.

Line 8 checks whether or not two nodes have the same control dependence set. If they do
not then they cannot be executed in the same control flow and a soft dependency edge is
placed between them. A hard dependency edge cannot be placed between nodes with a
soft dependency. Line 11 checks for a control dependence, while lines 13, 16, and 19
check for flow, anti, and output data dependencies, respectively. Dependence on an I/O

resource is examined in line 22.

If a dependency exists between nodes then a hard dependence edge may be inserted
between them. Nodes that lie in different dependency regions (line 26) must have the
efferent region dependencies updated. Finally, line 29 checks whether an iﬁdirect path of
dependencies already exists between the current node and the previously inserted ndde. If
such a path exists, then a new edge is not required. Otherwise, a hard dependence edge is
inserted in the net between the two nodes (lines 30-31) and the appropriate dependency

sets are updated accordingly (lines 32-37).

PathExists is an important support algorithm for ComputeDependencies. It essentially
determines whether or not two nodes are connected via some path of hard dependencies in
a dependency net. The algorithm itself is straightforward and is similar to other connected
component determination algorithms. Given two nodes n and m, where n.Estep >
m.Estep, the algorithm starts at node n and searches for node m following existing hard
dependency edges in the net. The conditional on line 10 steers the search to nodes that
have been analyzed previously. If the search does not reveal node m then a dependency
edge must be inserted since an indirect path cannot be found. Conversely, if node m is

reached then a dependency already exists between them.
4.4.4 makenet Invocation Syntax

The analysis tool that generates a dependency annotated net is a stand-alone executable

called makenet. It is invoked from the command-line with the syntax:

-55-

makenet <Pascal source filename> <output annotated net filename>

Although the syntax of the sequential Pascal program is verified by makenet. this mod-
ule does not perform any semantic checking of the source code. It is assumed that the pro-
gram to be parallelized has already been tested and executed in a sequential environment
and can be compiled successfully. However, any errors or anomalics that may be encoun-
tered during the analysis process will result in the immediate termination of the net gener-
ation procedure. An informative diagnostic message is generated to assist the user in
isolating the problem. Upon successful completion of the program analysis, the resulting
annotated net will be described using the net description language and stored in the speci-

fied output file.

4.5 Node Migration

The next phase in NetGen’s program parallelization process is node migration. It is this
stage of the analysis where parallelism among nodes is revealed. Nodes are moved to the
earliest possible execution step in which they can begin executing, possibly sharing th.
execution step with other nodes. The existence of multiple nodes in the same exccution
step is an indication of potential parallelism among those nodes. The movement (or
migration) of nodes is restricted by the existence of hard dependency cdges within the
dependency net. These dependencies must be strictly obeyed. Failure to adhere to the
dependency constraints between nodes established in the net will result in an incorrect
program partitioning. This section describes nodemig, the module responsible for per-

forming the node migration.

nodemig manipulates the dependency annotated nets produced by makenet. The algo-
rithm used to migrate nodes is described in Appendix B.3. The three main components of
this algorithm are MigrateNodes, AddNode, and DependencyExists. MigrateNodes is
responsible traversing each of the annotated nets that have been produced (line 1). A new,
empty net is created for each annotated net (line 2). The execution steps of the current net
are then traversed in increasing order and each of their constituent nodes are added to the

new net via the migration procedure (line 5).

-56 -

The AddNode algorithm performs the node migration procedure. Basically, it places
nodes in their earliest possible execution step governed by the dependency edges in the
new net. Only the dependency edges to nodes that have been added previously as impor-
tant when adding a new node. Since the goal is to place the node in its earliest execution
step, this implies that only nodes that reside in a previously created execution step should
be considered in the analysis. Starting with the execution step in which the candidate
node originally belongs, each existing execution step in the new net is traversed in
decreasing order and checked as a possible receptor for the candidsite node. If any depen-
dencies exist with the receptor execution step, the migration cannot proceed and the node

is placed in the last execution step in which it did not have any dependencies.

In algorithm AddNode, the lastSafeEstep on line 1 refers to the last known execution step
in which the current node can bz placed without any conflicts. Each execution step from
the current nods (1w tiie stast of the 1.5t s checkad 5 a possible receptor for the node (line
2). A candidate nude cannot have a dependency w ith any node in a possible receptor exe-
cution step (line 4). The existence of such a dependency would violate the definition of
parallelism betwazn nodes and the migration is therefcre not permitted. A node is eventu-
ally placed in the execution step immediately following an execution step in which it had

at least one hard dependency. Its new execution step will occur no later than the original

execution step.

The dependency regions of the candidate node and the nodes within the possible receptor
execution step determine the source of dependencies that need to be checked in order to
allow the migration. A candidate node must check every node in the potential execution
step. There are three possible node migration scenarios. First, the candidate node and a
node within the receptor execution step can lie in the same dependency region. In this
case. the existence of a hard dependency between the nodes is sufficient to deny access.
Consider the dependency net in Figure 4.9. If node w is to be migrated into execution step

n then only the hard dependencies between nodes v and w need to be checkzd.

Second. the candidate node has a larger dependency region number than a node within the

|
Dependency Region d+l—————> °

— Dependency Region d

N+

Figure 4.9 Determination of dependencies between nodes in different depen-
dency regions during node migration

possible receptor execution step. This indicates fat the candidate node lies within a loop
structure and is being compared io a node outside the loop. Since nodes within the loop
body must be kept together, any migration of the node must be acceptable to all nodes
within the loop. Consequently, the node in the possible receptor execution step is checked
for membership within the efferent region dependencies set of the loop. If such a depen-
dency exists then migration is not aliowed. Note that it is possible that the candidate node
and the node outside the loop did not share a hard dependency. However, the existence of
a dependency from some other node within the loop is sufficient to deny migration. Con-
sider the illustration in Figure 4.9. This second scenario occurs if, for example, the loop
header node were to attempt migration into execution step n+1. Since different execution
steps are involved, there must be no dependencies between node w and any node in the

loop (this includes the loop header and nodes x through y) for the migration to proceed.

The final scenario is similar to the previcus case. In this scenario, the candigate niode has
a smaller dependency regien number than A node within the possible receptor execution
step. This indicates that the candidate node is being compared to a node within a com-
pleted loop structure. A node cannot be executed in parallel with a loop upfess it has no

dependencies with any of the statements within the loop. Consequenily, the camiidate

node is checked for membership within the efferent region dependencies set of the loop.
If such a dependency exists then the migration is not allowed. Again consider Figure 4.9.
This scenario occurs if node z were to attempt migration into execution step n+m. If no

statement within the loop has any dependencies with node z then the migration is allowed.

The dependencies between nodes are checked with the DependencyExists support algo-

rithm. The first scenario is tested in line 1, the second on line 4, and the third on lines 7-8.

The migration of a node is illustrated in Figure 4.10. Node x begins in execution step four
(a). Since it does not have any dependencies with any node in execution step three it can
migrate into that execution step (b). However, it still does not have any dependencies with
a node in the previous execution step. Consequently, node x can migrate once more into

execution step two (C).

a) (%) o b) () o) %)
OB OO
Q ©® @
© 3 &)
)

~

Figure 4.10 Node migration. (a) original annotated net from makenet, (b) one
migration of node x, (c) 2 second migration to a stable execution

step

It may happen that no nodes migrate at all during this analysis phase. This simply indi-
cates that there is no parallelism that can be exploited based on the dependency edges that
were found. nodemig will output a message if this occurs since this will likely affect the

user’s choice of coalescing parameters in the following analysis phase.

4.5.1 nodemig Invocation Syntax

nodemig is invoked from the command-line with the following syntax:

nodemig <source net name> <target net name>

where the source net is the net description file produced from makenet and the target nct
is the net description generated following the analysis. Any errors or anomalies that occur
during node migration will result in the generatiori of an appropriute error message and the

immediate termination of the analysis process.

Chapter 35

Program Partitioning Via
Node Coalescing

5.1 Introduction

The previous chapter laid the foundation necessary for partitioning a sequential program
into parallel subtasks. This chapter describes how these results are used to safely guide
the partitionir g process. The final stage in NetGen’s analysis is node coalescing. Node
coalescing begins to group nodes into clusters (called supernodes) that represent segmenis
of code that should be executed sequentially. The criteria used to select statements to be
coalesced are supplied by the researcher. Typically, this involves choosing a particular
node coalescing technique and by varying several cluster-forming parameters. The final

net will consist of a number of these coalesced clusters, some of which may be executed in

parallel.

It is this stage of the parallelization process that the researcher has the most influence in
affecting the program parallelization decisions. The effects of these decisions on the final

program partitioning is a subject for further empirical study beyond this thesis.

This chapter describes coalesce, the tool used to partition a net into superncdes. As
illustrated in Figure 5.1, coalesce requires the net description produced from the node
migration stage, a file containing coalescing parameter values, and the user’s choice of a
coalescing technique. A coalesced net description is produced. The final section of this
chapter discusses the intermediate net description language that the NetGen modules use
to communicate results. A perspective on some implementation issues for the NetGen

project is-also provided.

-61 -

byl

.parm

Experimental parameters chosen by user

A

r— — =
I PeriNet |
| Formation |
IR |

N Node
Coalescing

v

z Pyt

—

{from node migration)

2 Lol

-

- N

Coalescing technique chosen by user

Lo,

Dependency Maximum Number of I, |
Strength Nodg Dependencies | e [
Parallelism
L — —d
Figure 5.1 Input/output requirements of the node coalescing phase

5.2 Supernodes

The fundamental building block of the final net is the supernode. Supernodes contain
nodes that have a particular dependency relationship that the researcher wishes to cxplore.
Well-defined criteria are used to select statements that possess these dependency charac-
teristics. At present, these criteria include selecting nodes that have a certain “dependency
strength” between them, selecting nodes based on the number of common dependencics,
and choosing nodes that maximize the number of paraliel nodes in the final net. The
results acquired from applying these node selection techniques to a net can be mugificd

through the variation of supernode-forming parameters by the researcher.

Supernodes are formed by coalescing statement nodes within the nets produced by the
node migration phase. The constituent nodes of a supernode must be executed sequen-
tially. In other words, a supernode contains nodes that cannot be executed in parailel

based on the criteria specified by the researcher.

The number of supernodes that will be produced for a given dependency net cannot be

accurately predicted beforehand. Supernode formation depends not only on the parame-

.62 -

ters specified by the user but on how well the dependencies within the net fit these criteria.
Hence, grouping is influenced by both the user-specified parameters and the unique depen-

dency characteristics of the particular net.

5.3 Supernode Properties

All supernodes possess common characteristics regardless of how their constituent nodes
were chosen. As a result, once all supernodes have been formed they can be treated iden-

tically. All supernodes have the following properties:

o A dependency net must contain at least one supernode. Every node in the dependency
net could be coalesced into a single supernode (i.e., the program will execute as it
would on a sequential machine). The maximum number of supernodes is limited by

the number of nodes there are in the dependency net (i.., each node could form a sep-

arate supernode).

o Every supernode contains at least one node. There is no limit to the number of nodes

that may belong to a single supernode.

o A supernode may contain multiple control flow entry points and multiple control flow
exit points. Every supernode contains at least one entry node where the flow of control
can enter and at least one node (possible the same node) where it can exit. All entry
and exit nodes must be clearly identified. The number of entry and exit points in a

supernode is dependent on the supernode formation technique.

s Supernodes conrain nodes that will be executed sequentially. Actually, all nodes on a
contro} path from an entry point to ar exit point will be executed scquentially. There
may be several such paths within a single supernode but only one will ever be execut-

ing at some instant.

o Supernodes occupy execution steps. A supernode can begin executing in the earliest
execution step of all of its constituent nodes. It is assumed that the entire supernode

will be executed in that execution step. Like their counterparts in the original depen-

-63-

dency nets, execution steps specify the order in which supernodes must be executed.

 Supernodes that share an execution step can be executed in parallel. This property
allows supernodes to be executed in parallel if they do not have any dependencies

between them.

Each supernode is assigned a unique supernode number. This identification begins at zero
and is unique only to the current net. Every supernode must retain the following informa-
tion: the supernode number, the execution step, the constituent nodes, the set of entry
nodes, and the set of exit nodes. Any extra information required to translate a net of
supernodes into a Petri net representation can be obtained from the original net itself. For
example, the ordering of the nodes within a supernode does not have to be specified since

it can be determined from the node placement in the net produced from node migration.

5.4 Supernode Formation Rules

Although the method of choosing nodes to be included in a particular supernode can bhe
varied, all coalescing methods must ensure that fundamental supernode formation rules
are obeyed. These rules prevent nodes from grouping if they violate necessary depen-
dency or sequencing relationships between the statements. The basic rules that govern

supernode formation are as follows:

« A node can belong to only one supernode. This rule is included simply as a formality.

At present, assigning a node to multiple supernodes does not have any meaning.
+ A node can be added to any supernode except if the following is truc:

A node n in execution step ; cannot be added to a supernode S beginning in execution
step e if there is some node m in execution step y such that m ¢ S, e <y <ux,and nis
the next node to execute following m. This avoids two problematic situations. First, it
precludes the addition of a node to a supernode if a necessary dependency would be
violated by doing so. Consider the dependency net fragment in Figure 5.2, Supernode

SO wants to coalesce with node 4. However, if this were to occur then node 4 would

-64 -

be executed in execution step 0. Since it has a dependency with node 3 (which exe-
cutes in execution step 1) then the inclusion of node 4 in SO would clearly violate a

necessary sequencing requirement (node 4 must be executed after node 3). As aresult,

such coalescing is not permitted.

SO wants to coalesce with node 4: Doing so would have node 4 execute before node 3:

! e 1

0

2 2
. 3 3
/ ‘ and this violates the sequencing constraint between
SO node 3 and node 4
Figure 5.2 Node coalescing violating a necessary dependency

Second, this rule prevents the more general situation where control could leave a
supernode, enter another supernode, and then return to the original supernode. This
scenario is illustrated in Figure 5.3. Supernode SO is attempting to coalesce with node
3. However, by including node 3 in SO, the flow of control would be as follows: SO
would begin executing in executicn step 0, pass control to S1 in execution step 1 after

node 1, and then return to SO in execution step O afte= S1 has finished executing.

Although this flow of control can be represented in a Petri net format, the efficiency of
such an approach is questioned. After control has passed from S1 back to SO, a back
edge would have to be inserted into the final net to accommodate this scenario. Hence,
to prevent such inefficiencies from occurring, this situation is disallowed at this stage

of the analysis.

« A supernode cannot coalesce with another supernode. The inclusion of this feature at
this point in the NetGen project would be premature. The ability to coalesce super-

nodes further implies a greater understanding of the dependency properties that caused

SO wants to coalesce with node 3: If SO were allowed to coalesce with node 3:

PRy 0

—> represent flow of control the awkward control flow shown would be
required in the final Petri net representation.

Figure 5.3 Example of inefficient node coalescing.

them to be formed initially. Consequently, although the researcher may have some
idea as to how and why certain supernodes should be grouped together, having Net-
Gen perform this coalescing without some insight into the purpose is difficult to
express at present. This point is discussed further in the context of future enhance-

ments to this project in Section 7.2.2.

5.5 Node Coalescing Techniques

Now that the properties and rules for forming supernodes have been established, the pro-
cedures for selecting nodes in the net to be grouped together can be defined. NetGen pro-
vides three methods for coalescing nodes: grouping based on the strength of the
dependencies between nodes, grouping based on the number of dependencies between
nodes, and grouping for maximal node parallelism. Each will be discussed in detail i1 the

following sections.

5.5.1 Node Coalescing Via A Dependency Strength Thresheih
Dependencies between statements imply they cannot be executed in parallel. As a result,
these statements can be grouped together and executed sequentially. However, detcrmin-

ing how to group statements with dependencies together poses a challenging problem.

- 66 -

When programs are split for parallelization, the additional overhead required to preserve
the context of a segment of code may be expensive. This is especially true for local vari-
ables as they are created dynamically on a stack and their allocation, use, and deallocation
requires stack management. On the other hand, global variables remain in a fixed location

and no management of the data area is required.

The dependency strength between two nodes is an empirical measure of the binding of the
nodes based on the locality of the common variables between them. The strength of the
dependency attempts to represent the cost of partitioning between two statements. A
higher dependency strength implies that a greater overhead cost would be incurred if the
two statements were placed into separate code segments. Similarly, a lower dependency
strength implies a less severe cost of partitioning. Dependency strength is based entirely

on data dependencies—control and /O dependencies between statements do not affect its

calculation.

With a block structured language such as Pascal, several variables in different scopes may
be visible to a procedure. In general, statements that share relatively local variables (or
even processor registers in some languages) have a much stronger dependency than if they

shared only global variables.

To be useful, the strength of a dependency between two nodes must be quantified. This is
an open problem since there are several ways of computing a value for a dependency
strength. It is unclear how to determine exactly which computation methods are better or
more accurate than others. However, all calculations must convey the notion of a weaker
node dependency for common global variables and a stronger node dependency for com-

mon local variables.

The dependency strength concept can be used as a criterion for grouping nodes in a depen-
dency net. This iethod allows nodes that have a dependency strength greater than some
arbitrary threshold to coalesce into the same supernode. Nodes are left alone if they do

not meet the threshold grouping requirements. The coalescing threshold, therefore, is

-67 -

defined as the minimum dependency strength between two nodes that will cause them to
be coalesced into the same supernode. Note that meeting the coalescing threshold is only
one requirement for aggregating the nodes. If grouping the nodes violates a fundamental
supernode formation rule then they will not be coalesced, regardless of the dependence

strength.

NetGen provides a node coalescing method based on the dependency strength between
nodes. The researcher can experiment with the effects of varying the coalescing threshold
on the supernodes formed in the final net. In addition, NetGen allows the user to asscciate
a pseudo-dependency strength between nodes with control and /0 dependencies to pro-

vide opportunities for further experimentation.

5.5.1.1 Dependency Strength Calculation

To compute the dependency strength between two nodes requires that the common vari-
ables and their block regions be known. This information can be determined from the
information stored by each node and by using variable declaration data. NetGen uses the

following formula to quantify the dependency strength between two nodes:

1
2Epp—BDv+1 +2PD

m

DS =~
n m
where:
DS = dependercy strength
BDp = block depth of the current net in which the two statements are found
BDv = block depth of the common variable
PD = apseudo-dependency parameter (discussed in Section 5.5.1.2)
n = the number of common variables between the statements
m = the number of control and /O dependencies between the statements

(used with pseudo-dependencies)

This formula is unique to the NetGen project and produces a relatively higher value for

- 68 -

stronger dependency strengths and a relatively lower value for weaker dependency
strengths. Each common variable is represented only once in this calculation. If there are
no common variables between nodes then the dependency strength is zero. As can be
seen, this formula computes an average dependency strength using all common variables
between two nodes. The average was included to alleviate the problem of a single vari-
able influencing the dependency strength result. For example, if two statements have five
global variables in common and only one local variable in common then the binding
should be made relatively weak between them. The single local variable shouid not have

very much effect on the dependency strength calculation.

Figure 5.4 demonstrates how the dependency strength is calculated between two nodes

(without pseudo-dependencies).

Block depth=0

Common variables: W, Y, V

PROGRAM A
VAR U,V
Block depth = | Y A \Y
PROCEDURE B l \L l
VAR W, X 1 . i N 1
Block depth =2 DS = (2-2+1) (2":1;*‘1) (2-0+1)
PROCEDURE C
VARY, Z
: DS =0.61!
Z=W*Y+V, _—
: . Y =U*V*V+W,
Figure 5.4 Calculation of dependency strength between statements.

5.5.1.2 Pseudo-Dependency Strengths

In addition to the dependency strengths that are calculated aatomatically between nodes

-69 -

that share a common variable and a data dependency. the user can also direct NetGen to
add a specified amount to the dependency strength between statements to account for con-
trol and /O dependencies. Table 5.1 describes three parameters available to the
researcher that can provide pseudo-dependency strengths. The pseudo-dependency
parameters default to zero and can be changed by specifying their new value in the node
coalescing parameters file. When a control or /O dependency is detected between nodes
ther the value specified by the corresponding parameter will be averaged into the depen-
dency strength calculation. If there are no such dependencies between nodes then the
pseudo-dependency strength is not considered in the calculation of the dependency

strength..

Parameter Description

PSEUDO_CONTROL_T Dependency strength between a node and any node control
dependent on it via a True cdge

PSEUDO_CONTROL_F | Dependency strength between a node and any node control
dependent on it via a Falsc edge

—

PSEUDO_IO Dependency strength between two nodes that share an /G
dependency

Table 5.1 - Pseudo-dependency parameters

The PSEUDO_CONTROL_T and PSEUDO_CONTROL_F parameters are used to assign
different pseudo-control strengths to the True and False paths following a condition or
loop header node. This can potentially be used to force nodes to coalesce along onc of the
branches by providing a relatively large pseudo-control parameter for the desired branch.
The PSEUDO_IO parameter is used to assigs: 2 dependency strength between nodes that

have an I/O dependency.

5.5.1.3 Computing Target Nodes

In some of the algorithms presented in this section, it is important to determine what nodes
can be executed immediately following a particular node (referred to as the targets of the
node). This information is summarized in the Target(n) set, which is derived entirely from

the dependency net. The algorithm used to compute the Target(n) set is described in

-70 -

Appendix B.4.

The =lgorithm is divided into three separate cases: determining the next node following a
condition statement, determining the next node following a loop header, and determining

the next node following any other statement type. Each case is described below.

There are two types of condition statements: those with a single True branch and thcse
with both True and False branches. Both types require special attention when computing
the set of nodes that car: execute after a predicate node. In the latter case, the nexi nodes to
execute are those at the start ¢f the True and False branches. The determination of these
nodes requires an examination of the execution step following the predicate node for the
nodes that are control dependent on the prediczs node (lines 2-8). In the former case, the
nodes in the next execution step that are control dependent on the predicate node and the
first nodes reachable after the condition region must be added to the Target(n) set (lines 9-

16). The algorithm uses a variable found_false to indicate whether or not a False branch

was found after the predicate node.

Loop headers have two possible exit points: the beginning of the loop body or the first
statement following the loop. Like the True branch in the predicate node rase discussed
above, all nodes in the execution step following the loop header that are control dependent
on the loop header are added to the Target set (lires 18-20). In addition, the first nodcs
that are reachable in an outer dependency region (i.e., outside the loop body) are also

added to the set (lines 21-27).

For any other type of node, the set of nodes to be executed next consist of the first nodes in
a subsequent execution step that do not have a soft dependency with the subject node (line
30). If the next nods lies in an outer dependency region (indicating that the subject node is
the last node in a loop iteration) then the region header node is added to the Target set (line

34).

5.5.1.4 Coalescing Threshold
The coalescing threshold for node grouping is specitied in the coalescing pararmeters file
with the COALESCING_THRESHOLD parameter. The default coalescing threshold is

ZEro.

5.5.1.5 Node Coalescing Algorithm

The algorithm used to coalesce nodes based on the dependency strength characteristics
between them consists of several parts. Some parts are responsible for creating super-
nodes while others ensure that the fundamental supernode formation rules are obeyed and
that all necessary supernode information is retained. The algorithm is presented in
Appendix B.5 in four parts. For each net to coalesce, the algorithm’s parts should be
applied in the order they appear in the Appendix. The various parts of the algorithm will

be discussed next and applied to the example dependency net in Figure 5.5a.

a)

d) For SO, Entry =0, Exit=1, 2, 3
For S1, Entry = 6, Exit=6
For 82, Entry = 4, Exit=4
For S3, Entry = 7, Exit=7
For &4, Entry =5, Exii = 5

Figuré 55 Node coalescing using dependency strength criterion. (a) sample
dependency net, (b) after supernode formation application, (c) after
supernode splitting, and (d) the entry/exit ncdes

The first part of the algorithm simply traverses the nodes of the net and forms supernodes

-72-

based on the dependency threshold criterion. Only minor checking is done in this part to
ensure that the node formation rules are obeyed. Each execution step in the net is visited
in order (line 2). A new supernode is created for each node in the current execution step
that does not siready belong to a supernode (lines 3-5). The algorithm will then locate all
nodes in the net that can coalesce into that supernode. After the first node has been placed
in the supernode, a search is initiated to find all nodes within the current and next execu-
tion steps (line 9). All nodes within that range are also candidates for coalescing. Nodes
within the current execution step are checked because even though they could potentially
be executed in parallel, based on the coalescing parameters specified by the researcher it
may be better to group them into the same supernode. Of all possible nodes that can be
executed next, only those that lie in the same dependency region, are not already members
of a supernode, have a dependency strength greater than the coalescing threshold, do not
have any soft dependencies with the subject aode, and that lie within the current condition
region will be added to the supernode (line 10). The soft dependency criterion was
inserted because grouping nodes with soft dependencies is not really an important effi-
ciency issue. Since the nodes separated by a soft dependency will never be executed in
the same control flow (i.e.. i:=ver executed truly in parallel) then grouping them into the
same supernode to reduce potential context switching costs between them is irrelevant.
The condition regions criterion was added to ensute that 2 node outside a conditior ~* le-
ment would not be coalesced with only a single branch of the conditional (thereby avert-
ing the situation where two distinct branches would compete over coalescing the same
node). Newly added nodes are subject to this same proccdure applied to them. Once there
are no more nodes found that meet the coalescing criterion in line 10, the next supernode

is started and this process is repeated.

Figure 5.5b illustrates the application of this first part of the coalescing algorithm to the
example net. The coalescing radius is 0.3. Note that node 6 has not been coalesced with
any other node, even though it has a dependency to node 7 that is above the coalescing
threshold. Node 7 is rejected because it does not lie in the subsequent execution step after
node 6 and it is in a different condition region than node 6 (i.e., there is no soft depen-

dency between node 6 and node 7).

-73 -

The secend part of the algorithm ensures that the supernodes formed in the previous step
obey all supernode formation rules. Now that every node in the net helongs to a supern-
oude, the nodes are checked again to ascertain whether or not a particular node could have
been coalesced into more than one supernode (line 5). If a node has a choice of coalescing
with multiple supernodes then the node and its targets will be split from the supernode in
which it is presently contained and will form a new supernode. This is done primarily in

fairness for the other supernodes that want that node.

In addition, if the target of a node in one execution step is to a node in a previous cxccu-
tion step then the target node is split from its sup=rnode and placed in a new supernode
(line 7). This is done to eliminate the possibility of control flow leaving a supernode,
entering another, and then returning to the first. Figure 5.5c illustrates the application of
this second part of the coalescing algorithm to the example net. Note that nodes 4 and 5

now lie in distinct supernodes, by the condition on line 7.

The next stage of the algorithm “compresses” the net containing the supernodes by remov-
ing any empty execution steps. The fourth part of the algorithm determines the cntry and
exit nodes of each supernode. It is those nodes where the flow of control will enter and
leave, respectively. The NET_INITIALIZE node is always considered an £ntry node and,
similarly, the NET_TERMINATE node is always an Exit node (lines 1-2). Once again the
target of each node in all of the supernodes is determined (tines 3-5). If the target node
lies outside of the supernode then the source node is marked as an Exit and ific target node
is marked as an Entry. The results of this algorithm applied to the example are shown in

Figure 5.5d.

5.5.2 Toalescing Via Number Of Dependencies Threshold

The algorithm presented in the previous section can be adapted somewhat to provide an
alternative criterion for coaicscing nodes. Instead of coalescing based on the strength of
dependencies between nodes, nodes are now aggregated by the number of common depen-
dencies they share. The total number of dependencies is computed by summing the num-

ber of variables the two nodes have in common and any control or /O dependencies. The

-74 -

number of dependencies threshold for this technique refers to the minirnum number of
dependencies that must exist between two nodes that will cause them to be coalesced into
the same supernode. The value of this threshold can be specified by the

NDEP_THRESHOLD parameter in the node coalescing parameters file.

The algorithm for this coalescing method is presented ii: Append.x B.6. It is identical to
the algorithm presented in the previous section with the exception that instead of checking
dependency strengths between nodes to determine coalescing, the number of dependen-

cias is checked. This affects line 10 in the first part of the algorithm and line 5 in the sec-

ond.

5.5.3 Coalescing For Maximal Node Parallelism

An alternative method of grouping nodes is based on exploiting the maximum possible
parallelism that has been detected for a sequential progiam. This essentially forms any
nodes that exhibit paralielism in the dependency net into a separate supernode. Segments
of sequential execution are 50 coalesced into a single supernode. This technique differs
from the previous two in that all the supernodes formed will be single entry, single exit.

This alleviates many of the coalescing problems of the previous approaches.

The algorithm for coalescing for maximal node parallelism is specified in Appendix B.7.
Tt consists of two stages: a supernode formation stage and a net compression stage. Super-
node formaticn invclves ideatifying segments of nodes in the net such that the segment
has a single entry point and a single exit point. In other words, the nodes within the super-
node can be executed sequentially. These are identified (in part) by checking th~ fan-out
of a node (lines 13-17). If the flow of control can branch to more than one node then each
of these target nodes will begin a new supernode and the current node will terminate what-
ever supernode it is a member. Similarly, if a node has multiple control flow paths enter-
ing it then it is made the start of a new supernode (lines 18-27). Since supernodes have

only one flow of control through them, the Entry and Exit nodes are easily identified.

This coalescing technique does not have any user-defined parameters as its coalescing cri-

275 -

terion is clearly specified. An example gependency net that is coalesced with this method
is illustrated ir. Figure 5.6.

a)

™~

Figure 5.6 Node coalescing for maximal node parallelism. (a) Sample depen-
dency net, and (b) resulting node groupings

5.6 coalesce Invocation Syntax
The partitioning module is invoked from the command-line with the following syntax:
coalesce [-cr] [-nd] [-md] -p <parameter file> <input net> <output net>
where:
-cr selects node grouping based on the coalescing radius approach
-nd selects node grouping based on the number of dependencies

-md selects node grouping based on sequential dependencies

The node coalescing parameter file contains a set of parameter-value pairs. Each parame-

ter is specified on a separate line in the file using the syntax:

<PARAMETER NAME> <VALUE>

A sample parameter file is provided in Appendix C.2.

-6 -

The parameter file, one coalescing technique, the source net, and the file name of the new
coalesced net must be specified. Any errors or anomalies that may occur during this phase

will result in the generation of an error message and the immediate termination of the

module.

5.7 Net Description Language

Following each NetGen module, the results of th analysis performed must be communi-
cated to the other modules. Since these other modules exist as separate executable files, a
net format that is both persistent (i.e., exists even after a module has completed) and
descriptive is required. The net description language is a method of describing the struc-
ture of a dependency net in a textual format. Although it is intended to be analyzed and

generated by other modules, the format of the net description file is presented in a human-

readable form.

A net description file is composed of two sections: variable declarations and net descrip-
tions. The variable declarations section summarizes all variables that have been declared
in the program. Variable names are stored along with their declaration numbers and decla-
ration block depths. Aliasing information is not required since this information has
already been added to the def and use sets of each statement (which are described in this
file). A detailed description of the dependency nets are included following the declaration
information. The program block net is stored first followed by any procedure or function
block nets. The nets are stored in the order in which their b'acks appeared in the original
Pascal source. Each net is described by listing its constituent execution steps in order and
providing detailed information about each node contained therein. All data items speci-
fied in Table 4.2 for a node are represented in the net description file in a textual format.
Supernode descriptions are also included in the appropriate execution step. Supernodes
are described by indicating the supernode numbet, all constituent nodes, and all entry and

exit nodes.

£.7.1 Language Description

The complete canicxi-free grammar of the net description language can be found in

-77 -

Appendix A.2. A sample net description file that illustrates the contents of the various

sections is provided in Appendix C.

5.8 NetGen Implementation

5.8.1 Development Tools

NetGen was developed on a SPARC workstation under the Unix operating system and was
implemented in strict A™SI C using the GNU gcc compiler version 2.3.3. Early versions
of the project were developed on a Pentium-based workstation running the Windows NT

operating system.

The lexical analyzer used for the parsing of the sequential program was generated by
GNU Fiex version 2.5.1. The Pascal language parser was generated using GNU Bison
version 1.22. Flex takes a description of the tokens to look for and produces a “lexer” that
can identify those tokens in an input stream. Bison takes an annotated grammar descrip-
tion of a language and produces a parser that can recoghize certain language clements

(e.g., statements).

5.8.2 Correctness Of Design

No formal proofs of correctness were performed on the code developed for this project.
Similarly, formal methods were not used to verify the correcizioss of the nsany algorithms
developed in this thesis. Instead, a more intuitive and deduziivis apiouch was taken when
justifying the procedures and results produced by the wailows a0 thm designs. The
algorithms developed in this thesis are not overly complex and saci: .+ -crification methed
was deemed sufficient. Nonetheless, extensive testing of the vasiois wmodules with several

net structures was performed successfully and the results verified ma-ually.

5.8.3 Design Safety

An important consideration when developing a tool to narallelize sequential programs is
that of partitioning correctness. The partitioned software should produce the same results
as the original sequential program. To this end, safety features are built into the analysis

process to ensure a correct program partitioning. If there is ever any doubt as to whether

-78 -

or not a dependency exists between two statements, the conservative approach is taker.
and one is assumed. This may be an incorrect assumption but it is a safe assumption that
guarantees a correct partitioning. A similar scenario exists when computing aliases,

where aliases are assumed in the presence of any doubt.

-79 -

Chapter 6
Program Partitioning With NetGen

6.1 Introduction

The preceding chapters described a tool to experiment with the partitioning of a sequential
program subject to several parallelization parameters. This chapter will provide a demon-
stration of partitioning a sequential test program using the techniques developed in the
preceding chapter. This chapter merely demonstrates the analysis capabilities of NetGen.

Interpretation of the results is not one of the mandates of this thesis.

6.2 Sample Program analysis

6.2.1 Program Description

The sample program presented in Appendix C.3 will be used to demonstrate the analysis
techniques in this section. This program was adapted from a similar program presented in
[Etter88] cn page ANS-34. The program reads 61 population values and determines the
years of greatest percentage increase in population. It also computes the average increase

in population per year for the total period of time.

6.2.2 Node Coalescing

Node coalescing via the dependency strength criterion with a coalescing threshold of 1.0
yields the partitioning shown in Table 6.1. Node coalescing via the number of dependen-
cies criterion with a number of dependencies threshold of 1.0 yields the partitioning
shown in Table 6.2. Finally, node coalescing via the maximal node parallelist criterior:

yields the partitioning shown in Table 6.3.
7.} Sample Program leastsquares
6.3.1 Program Description

This sample program demonstrates the calculation of the coeificients of a straight line that

-80 -

Supernode | Execution Constituent Nodes | Entry Nodes Exit Nodes
Number Step

_T.-_T_W NET_INITIALIZE NET_INITIALIZE
1 1 1 1 | 1
2 1 2 2 2
3 2 3 3 3
4 3 4,5,6,7,9,10 4 6,7
5 4 8 8 8
6 5 11,12,13 11,12 13
7 6 NET_TERMINATE | NET_TERMINATE NET_TERMINATE

Table 6.1 - Program analysis Coalescing Via Dependency Strength (CR = 1.0)

Supernode | Execution Constituent Nodes | Entry Nodes Exit Nodes
Number Step

0 0 NET_INITIALIZE, | NET_INITIALIZE 1,2
1,2
1 1 ' 3 3 3
2 2 4,5,6,7,9,10 4 7
3 3 8 8 8
4 4 11,12, 13 11,12 13
5 5 NET_{ERMINATE | NET_TERMINATE N_ET_TERMINATE

Table 6.2 - Program analysis Coalescing Via Number Of Dey srdcnges (ND = 1.0)
is fit to a regression of points (least squares fit). The points in the ~.zve are supplied by
the user. The source listing for this example is provided in Appendix C.4 and a sample net
description file can be found in Appendix C.1. The program was adapted from program

12,7 in [McWa83].

6...1 Node Coalescing

Table 6.4 illustrates the coalescing of program leasitsquares viz a dependency
strength criterion with a coalescing threshold of 1.0. However, regardless of the coalesc-
ing threshold (unless CT = 0) all node groupings will be the same if all variables are
declared in the same block. This is to be expected since a dependency strength varies

across statements that share variables declared in different blocks. This clustering can be

i‘:ﬁ:;::de ISE::::ution Constituent Nodes | Entry Nodes | Exit Nodes
Il EE———
T 0| NETINITIALIZE | NET.INITIALIZE | NET_INIALIZE |
1 1 1 1 1
2 1 2 2 2
3 2 3,4 3 4
4 3 5 5 N
5 3 9 9 9
6 4 6 6 6
7 4 10 10 10
8 5 7 7 7
9 5 8 8 8
10 6 11 11 11
11 6 12 12 12
12 7 13 13 13
13 8 NET_TERMINATE | NET_TERMINATE | NET_TERMINATE “

Table 6.3 - Program analysis Coalescing For Maximal Node Parallelism

influenced by modifying the pseudo-dependencies. Table 6.5 illustrates the effect of set-

ting the PSEUDO_CONTROL _T parameter to 1.5.

Table 6.6 and Table 6.7 show the resulting supernodes when a coalescing based on the
number of dependencies is performed. The number of dependencies thresholds are 1.0
and 2.0, respectively. Finally, Table 6.8 illustrates the coalescing of nodes in the sample

program for maximal node parallelism.

6.4 Sample Program Graphics

6.4.1 Program Description

This sample program demonstrates vector plotting on a character device by drawing a
square spiral rotated through 45 degrees. The source listing can be found in Appendix
C.5. Note that the numbers located in the left margin of the program listing refer to the

node numbers that are assigned during program analysis. Although there are several pro-

-82-

Supernode Execution Constituent Nodes | Entry Nodes Exit Nodes
Number Step

0 0 NET_INITIALIZE | NET_INITIALIZE NET_INITIALIZE

I | 1 1 1

2 1 2 2 2

3] 3 3 3

4 I 4 4 4

5 2 5 5 5

6 3 6,7,8,9, 10 6 7,8,9.10

7 4 11,12, 13 _ T 13

8 5 NET_TERMINATE | NE -::f_: - £ | NET_TERMINATE

Table 6.4 - Program leastsquares Coalescing Via ch(g;?ﬂ(f“!‘cy Strength (CT =1.0)

Supernode Execution Constituent Nodes | Entry Nodes Exit Nodes
Number Step
1,2,3,4

1 1 5,6 5 6

2 2 7 7 | 7

3 2 8 | 8 8

4 2 9 9 9

S 2 10 10 10

6 3 H | il li

7 _ 4 ‘ 12 ”12 12 i

8 5 i3 13 13

9 6 NET_TERMINATE | NET_TERMINATE | NET_TERMINATE

Table 6.5 - Program leastsquares Coalescing Via Dependency Strength (CT = 1.0,
PSEUDO_CONTROL_T = 1.5)

cedures involved, only the non-trivial main program block will be examined in this sec-

tion. This program was adapted from Program 10.4 in [McWa83].

6.4.2 Node Coalescing

Table 6.9 illustrates the coalescing of program grar:%:i.cs via a dependency strength cri-

:upemode Execution Constituent Nodes | Entry Nodes Exit Nodes
umber Step
I e ———————— S—
0 0 NET_INITIALIZE,
1.2,3,4
1 i 5.6,7.8,9.10 S 5
2 2 11,12, 13 11 13
3 3 NET_TERMINATE | NET_TERMINATE | NET_TERMINATE
Table 6.6 - Program leastsquares Coalescing Via Number Of Dependencies
(ND =1.0)
;l:l[:: ;‘;:de }Sitxe:cution Constituent Nodes | Entry Nodes Exit Nodes
1 1 1 | |
2 I 2 2 2
3 1 3 3
4 1 4 4 4
5 2 5 5 5
6 2 6, 6 6.9
7 s 7 7 7
8 4 8 8 8
9 4 10 10 10
10 5 11, 12 11 12
1 | 6 13 13 13
i 12 7 NET_TERMINATE | NET_TERMINATE NET_TERMINATE

Table 6.7 - Program leastsquares Coalescing Via Number Of Dependencies

(ND=2.0)

terion with a coalescing threshold of 1.0. Table 6.10 shows the resulting supernodes when
a coalescing based on the number of dependencies is performed. The number of depen-
dencies threshold is 2.0. Finally, Table 6.11 illustrates the cozlescing of nodes in the sam-

ple program for maximal node parallelism.

-84 -

i":xl:;;::de g:ieepcution Constituent Nodes | Entry Nodes Exit Nodes
0 0 NET_INITIALIZE | NET_INITIALIZE | NET_INITIALIZE
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 1 4 4 4
5 2] 5 5
6 3 0 6 6
7 4 7 7 7
8 4 8 8 8
9 4 9 9 9
10 4 10 10 10
11 5 11,12, 13 11 13
12 6 NET_TERMINATE | NET_TERMINATE | NET_TERMINATE

Table 6.8 - Program leastsquares Coalescing For Maximal Node Parallelism

-85 -

Supernode Execution Constituent Nodes | Entry MNodes Exit Nodes
Number Step
T ———
0 0 NET_INITIALIZE | NET_INITIALIZE | NET_INITIALIZE
I 1 1 1 1
2 1 2 2 2
3 | 3 3 3
4 | 4 4 4
S] 5 5 5
6] 6 6 6
7 1 7 7 7
8 2 8 8 8
9 3 9 9 9
10 4 10 10 10
11 4 11,12 11,12 11,12
12 4 12 13 13
13 5 14 14 14
14 5 15,16 15,16 15,16
15 5 17 17 17
16 6 18 18 18
17 6 19,20 19,20 19,20
18 6 2] 21 21
19 7 22 22 22
20 7 23,24 23,24 23,24
21 8 25 25 25
22 8 26 26 26
23 9 NET_TERMINATE | NET_TERMINATE | NET_TERMINATE

Table 6.9 - Program graphics Coalescing Via Dependency Strength (CT = 1.0)

- 86 -

;T:s;zgde lsity::;cution Constituent Nodes | Entry Nodes Exit Nodes
- —
0 0 NET_INITIALIZE | NET_INITIALIZE | NET_INITIALIZE
! 1 | 1 ! 1
2 1 2 2 2
3 1 | 3 3 3
4 1 4 4 4
5 1 5 5
6 1 6 6 6
7 I “ 7 7 7
8 2 8 8 8
9 3 9,10, 13, 14,17, 18, 9 ‘ 10, 14, 18,22
21,22

10 4 11 11 11
11 4 12 12 ' 12
12 5 15 15 15
13 5 16 16 16
14 6 19 19 19
15 6 20 20 20
16 7 23 23 23
17 7- 24 24 24
18 8 25 25 25
19 8 26 26 26
20 9 NET_TERMINATE | NET_TERMINATE | NET_TERMINATE

Table 6.10 - Program graphics Coalescing Via Number Of Dependencies (ND = 2.0)

-87-

Supernode
Number

0]

Execution

Step

0

Constituent Nodes

T AT
NET_INITIALIZE

Entry Nodes

NET_INITIALIZE

Exit Nodes

NET_INITIALIZE

I

2 [2 2 2
3 1 3 3 3
4 ! 4 4 4
5 1 5 5 5
6 I 6 6 6
7 ! 7 7 7
8 2 8 8 8
9 3 9 9 9
10 4 10 10 10
i 4 i 1 11
12 4 12 12 12
13 4 13 13 13
14 5 14 14 14
15 5 15 15 15
16 5 16 16 16
17 5 17 17 17
18 6 18 8 18
19 6 19 19 19
20 6 20 20 20
21 6 21 21 21
22 7 22 22 22
23 7 23 23 23
24 7 24 24 24
25 8 25 25 25
26 8 26 26 26
27 9 NET_TERMINATE | NET_TERMINATE | NET_TERMINATE

Table 6.11 - Program graphics Coalescing For Maximal Node Parallelism

-88 -

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis described the development of an experimental tool that partitions software for
net-based computing environments. Net-based computing models the exccution of soft-
ware as a Petri net, where segments of sequential code represent places and transitions
coordinate the execution of such segments. This model allows the representation of syn-

chronization, sequentiality, and parallelism between segments of code.

The tool (NetGen) bases its parallelization decisions on the results of a static dependency
analysis of a sequential program. A dependency net structure is produced that summa-
rizes the dependencies between statements and their required execution order. The parti-
tioning process groups (or coalesces) nodes in the net based on certain dependency criteria
defined by the researcher. There are several parameters and coalescing techniques avail-
able to experiment with. The effects of these parameters on the resulting net structures is

a subject for further investigation.

The thesis was divided into three main sections. First, background material pertinent to
the program parallelization process was presented. In the course of this discussion, scv-
eral relevant examples of other program parallelization tools were described. Second, the
NetGen tools that transform a sequential program into an intermediate net format prior to
partitioning were discussed. Finally, the node coalescing techniques and the results of

several sequential program partitionings were presented.
The NetGen project provides a method of experimentally generating net-based programs

from existing programs. An evaluation of the partitioning results is beyond the scope of

this thesis. This leaves several related open problems that can be studied with NetGen:

-89 -

I. ldentify gencral coalescing parameters that produce a “good” program partitioning for
all classes of programs. A “good” program partitioning is one that produces a parallel
program that exhibits some execution speedup over its sequential counterpart. The
effectiveness of a particular program partitioning requires information ahout the target

architecture and other partitioning results to which it can be compared.

2. Investigate what coalescing method should be applied when confronted with a particu-

lar class of programs (e.g., how should scientific programs with many loops be best

coalesced).

3. Dctermine general architecture requirements and features based on the coalescing
results of general-purpose programs (e.g., study how general-purpose programs coa-
lesce into nets and use this information to influence the developmeni ot net-based

archiieciures).

Any general coalescing parameters could be useful when developing compilers for the tar-
get machine. If it can be determined that a particular class of program is being compiled
(such as a program with many sequential statements or condition constructs) then the node
coalescing technique and corresponding parameters best suited to that type of program can
be applied. In order to obtain as much information as possible for the development of
future compilers, many classes of programs must be studied with several parameter val-
ues. The coalescing techniques discussed in this work attempt to solve the software parti-
tioning problem based on the usage of local and global variables between statement, by
the degree of coupling between statements, and by allowing maximal parallelism. Addi-
tional parameters could be added to the existing coalescing procedures and new supernode

formation algorithms could be implemented and studied.

From a preliminary analysis of the results it would seem that this tool (in its present form)
would be mainly suitable for the exploitation of finer granularities of parallelism. Such
parallelism could best be exploited on superscalar processors which permit the concurrent
execution of several independent instructions. This is most likely due to the analysis pro-

cedure performed by NetGen since all parallelization decisions are made based on the

-90-

dependencies determined from a scalar analysis of the source. As a result, the tool could
be very useful in determining paralielism in programs that will be targeted for superscalar

architectures.

7.2 Future Work

As this is the first experimental parallelization tool for the net-based computing ideas
under investigation at the University of Alberta, there are several directions in which Net-
Gen can be further developed. This section presents many possible ideas for cxtending

this project.

7.2.1 Petri Net Generation From A Coalesced Net

Clearly, the largest area yet to be developed is the conversion of the final coalesced net
into a Petri net representation. This is an essential step in the program conversion process
as the target machine will only accept programs described in a Petri net format. This for-
mat will also facilitate the evaluation of the partitioning results either by direct net execu-
tion on the target machine or via simulation. Unfortunately, the development of net-based
architectures is still in the research phase. Until suitable architectures have been imple-
mented to accommodate net-based computing, a simulator has been developed that is use-
ful in evaluating the performance of programs represented as Petri nets [JoCa95]). The
simulator allows the researcher to dynamically visualize the flow of tokens (control flow)
between places (sequential code segments). Control flows representing parallelism, syn-
chrenization, and non-determinism can be observed. Several simulation parameters can
be modified including the number of available processors in the target environment and

the execution times of specific code segments.

Although ideally suited to make performance estimations of a net-based program on a par-
ticular architecture, this simulator was not used to study the effectiveness of the partition-
ing strategies described in this thesis. The reason for this is three-fold. First, the
characteristics of the target machine are not well-defined and therefore the use of such a
simulator is precluded. Second, in order to make performance measurements, some com-

mon point of reference is required to which the performance of a particular net structure

.97 -

can be compared. Since no studies in this area have been completed for net-based com-
puting, any performance results obtained would be meaningless. Third, the mandate of
this thesis was to provide a tool that allows experimental generation of net-based pro-
grams. The evaluation of the effectiveness of the individual partitioning strategies is cer-

tainly a subject for future study, but is beyond the scope of this work.

The information gathered about supernodes in the node coalescing phase will be used to
generate a Petri net description of the original sequential program. Supernodes will trans-
late into Petri net places and the location and ordering of supernodes in the final depen-

dency net will be used to determine the necessary transitions between places.

For completeness, the sequential program described in Figure 7.1a is partitioned via Net-
Gen and manually converted into a Petri net representation (d). The intermediate net gen-

eration stages are illustrated in parts (b) and (c).

7.2.2 Coalescing Supernodes

The supernodes formed using the techniques described in this thesis vary in size and num-
ber. Unfortunately, the size of the resulting supernodes mav be inappropriate for the target
machine. For example, a large number of supernodes (indicating a finer granularity) may
result in context switching overheads on the target machine that preclude such a program
partitioning. Although the researcher should make every effort to incorporate architecture
characteristics into the choice of parameters, this may be insufficient. As a result, a further
coalescing of supernodes into larger entities may be required at a later stage. Determining
ways of coalescing supernodes might also provide additional insight into the features

desired in a node coalescing algorithm

7.2.3 Dependency Analysis Improvements

As the effectiveness of the program parallelization is strongly dependent on the rigorous-
ness of the initial program dependency analysis, any improvement to the dependency anal-
ysis phase is encouraged. At this point, NetGen is limited to a scalar analysis of the source

program to determine dependencies. Consequently, the parallelization of any program

-92-

a) PROGRAM TRIANGLE;

VAR a.b,c,d,e,area,perim : REAL;

BEGIN
1 WRITELN('Enter 3 sides of a triangle’);
2 READLN(a.b,c):
3 d := a*a + b*b;
4 e := c*c;
5 perim := a + b + c;
6 IF (d = e) THEN
BEGIN
7 WRITELN('This is a right triangle'};
8 area = 0.Z*a*Db;
9 WRITELN(‘area = ',area)
END
ELSE
10 WRITELN(‘'Not a right triangle’);
11 WRITELN(‘Perimeter = ‘,perim)
END.
b) 0 ¢) 0 d)

NET_INITIALIZE 1,2

NET_INITIALIZE

11, NET_TERMINATE

8
_ NET_TERMINATE

11, NET_TERMINATE

Figure 7.1 Conversion of an annotated net into a Petri net for net-based execu-
tion. (a) the program to be transformed, (b) the annotated net after
node migration, (c) a possible coalesced net, and (d) the final Petri
net representation.

-93-

that makes extensive use of array structures could be retarded. A scalar analysis also pre-
cludes any dependency analysis across loop iterations, which are a rich source of parallel-
ism in many application domains. As a result, analysis of array subscripts could greatly

improve the accuracy and scope of the statement dependency calculations.

An additional methed that can be employed to improve the dependency analysis determi-
nation is the application of several parallelism improvement transformations on the source
code. These are typically employed in other parallelization tools (e.g., PTRAN). Several
approaches can be taken to eliminate dependencies and thus improve the opportunities for
parallelism. Control dependencies can be eliminated using if-conversion [AKPW83].
This approach converts control dependencies into data dependencies by computing the
exact condition required for the execution of a statement (called the mask of the state-
ment). “The program can then be rewritten as a sequence of...statements whose execution
depends on the mask; all other if-statements...are eliminated.” [ZiCh90] To remove data
dependencies, [Sarkar91a] suggests employing subscript value analysis, storage transfor-
mations (such as changing scalar variables into one-element arrays), and rewriting the pro-

gram in a single-assignment applicative language.

7.2.4 Source Language Improvements

As described earlier, only a subset of standard Pascal was sufficient to generate programs
suitable for partitioning by NetGen. Unfortunately, many useful features were eliminated
from the language. To make partitioning suitable for a wider range of software applica-
tions these language elements should be included. Most importantly, pointer variables and
complex data structures should be supported as they are commonplace in modern software
designs. Unfortunately, the addition of such elements often proliferates the complexity of

the dependence analysis.

Another useful feature would be the inclusion of additional sequential language front-ends
for the analysis. Popular imperative languages such as Fortran, C, or even assembler can
be provided. Unfortunately, each language provides unique parallelization challenges that

must be resolved, often using techniques applicable only to that language. For example,

-94 -

assembler code is typically pervaded with many indirect memory references. Much like
the pointer variable problem in other languages. these references must be resolved stati-
cally in order to perform an accurate dependence analysis. However, since they are used
much more frequently in assembler, a large amount of the dependency analysis effort must

be expended on this problem.

-95.-

ABKP86

AhScUI86

AKPW83

AlGo89

AmBuZi92

Baldwin87

BolJa66

Budd91

Burke90

Carling88

Bibliography

R. Allen, D. Baumgartner, K. Kennedy, A. Porterfield, “PTOOL: A Semi-
automatic Parallel Programming Assistant”, Proc. 1986 Int. Conf. on Paral-
le! Processing, 1986, pp. 164-170.

A. Aho, R. Sethi, J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

J. Allen, K. Kennedy, C. Porterfield, J. Warren, “Conversion of Control
Dependence to Data Dependence”, Proceedings of the Tenth Annual ACM
Symposium on Principles of Programming Languages, 1983, pp. 177-189.

G. S. Almasi, A. Gottlieb. Highly Parallel Computing. Benjamin Cum-
mings, 1989.

A. L. Ambler, M. M. Burnett, B. A. Zimmerman, “Operational Versus Def-
initional: A Perspective on Programming Paradigms”, IEEE Computer,
Vol. 25, No. 9 (September 1992), pp. 28-43.

D. Baldwin. Why We Can’t Program Multiprocessors the Way We're Trying
to Do It Now. Technical Report 224, University of Rochester Computing
Science, November 1987.

C. Béhm, G. Jacopini, “Flow diagrams, Turing machines and languages
with only two formation rules”, Communications of the ACM, Vol. 9, No.

5 (May 1966), pp. 366-371.

T. Budd. An Introduction To Object-Oriented Programming. Addison-
Wesley, 1991.

M. Burke, “An Interval-Based Approach to Exhaustive and Incremental
Interprocedural Data-Flow Analysis”, ACM Trans. on Programming Lan-
guages and Systems, Vol. 12, No. 3 (July 1990, pp. 341-395.

A. Carling. Parallel Processing: The Transputer and Occam. Sigma Press,
1988.

-96-

CHHK*93

ChWeZa90

Cooper83

Duncan90

Ellis87

Etter88

FeOtWa87

Flynn72

Furht94

Harrison90

HwBr84

JoCa95

K. Cooper, M. Hall, R. Hood. K. Kennedy, et al.. “The ParaScope Parallel
Programming Environment™, Proceedings of the IEEE. Vol. 81. No.2 (Feb.
1993), pp. 244-262.

D. Chase, M. Wegman, F. K. Zadeck, “Analysis of Pointers and Struc-
tures”, Proceedings of the ACM SIGPLAN 90 Conference on Program-
ming Language Design and Implementation, Vol. 25, No. 6 (June 1990),
pp- 296-310.

D. Cooper. Standard Pascal User Reference Manual. W. W. Norton &
Company, Inc., 1983.

R. Duncan, “A Survey of Parallel Computer Architectures™, IEEE Com-
puter, Vol. 23, No. 2 (February 1990), pp. 5-16.

J. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, 1987.

D. M. Etter, Problem Solving In Pascal For Engineers and Scientists. Ben-
jamin/Cummings, 1988.

J. Ferrante, K. Ottenstein, J. Warren, “The Program Dependence Graph and
Its Use in Optimization”, ACM Transactions on Programming Languages
and Systems, Vol. 9, No. 3 (July 1987), pp. 319-349.

M. J. Flynn, “Some Computer Organizations and Their Effectivencss”,
IEEE Trans. on Computers, Vol. C-21, No. 9 (Sept. 1972), pp. 948-960.

B. Furht, “Paralle] Computing: Glory and Collapse™, IEEE Computer, Vol.
27, No. 11 (November 1994), pp. 74-75.

W. Harrison, “Tools for Multiple-CPU Environments”, IEEE Software,
Vol. 7 (May 1990), pp. 45-51.

K. Hwang, E. A. Briggs, Computer Architecture and Parallel Processing.
McGraw-Hill Publishing, 1984.

W. Joerg, K. Campbell, “PSIM - A Simulator for Concurrent Exccution of
Net-based Programs”, IEEE Pacific Rim Conference on Communications,
Computers, and Signal Processing, May 1995, pp. 517-520.

-97-

Johnson91

KKPLWSI

LeEI92

Lewis94

MalJo95

McWa83

Muljo81

Murata89

Ottenstein8s

PGHLLS90

Poly88

Sarkar91a

M. Johnson, Superscalar Microprocessor Design. Prentice-Hall, 1991.

D. Kuck, R. Kuhn, B. Leasure, D. Padua, M. Wolfe, “Dependence Graphs
and Compiler Optimizations”, Conference Record of 8th ACM Sympo-
sium on Principles of Programming Languages, 1981, pp. 207-218.

T. G. Lewis, H. El-Rewini. Introduction to Parallel Computing. Prentice-
Hall, 1992.

T. G. Lewis, “Where is Computing Headed?", IEEE Computer, Vol. 27,
No. 8 (August 1994), pp. 59-63.

D. Maier, W. Joerg, “Parallelization of Sequential Programs for Net-based
Execution”, IEEE Pacific Rim Conference on Communications, Comput-
ers, and Signal Processing, May 1995, pp. 323-326.

J. McGregor, A. Watt. Pascal For Science and Engineering. Pitman Pub-
lishing, 1983.

S. S. Muchnick, N. D. Jones. Program Flow Analysis: Theory and Applica-
tions. Prentice-Hall, 1981.

T. Murata, “Petri Nets: Properties, Analysis, and Applications”, Proceed-
ings of the IEEE, Vol. 77, No. 4 (Apr. 1989), pp. 541-580.

K. J. Ottenstein, “A Brief Survey of Implicit Parallelism Detection”, Paral-
lel MIMD Computation: The HEP Supercomputer and Its Applications, J.
S. Kowalik Ed., The MIT Press, 1985.

C. Polychronopoulos, M. Girkar, M. Haghighat, et al, “The Structure of
Parafrase-2: an Advanced Parallelizing Compiler for C and Fortran”, Lan-
guages and Compilers for Parallel Computing, D. Gelernter et al Eds., The
MIT Press, 1990, pp. 423-453.

C. D. Polychronopoulos. Parallel Programming and Compilers. Kluwer
Academic Publishers, 1988.

V. Sarkar, “PTRAN - The IBM Parallel Translation System”, Parallel
Functional Languages and Compilers, Addison-Wesley, 1991, pp. 309-391.

-98 -

Sarkar91b

Stone90

Ullman75

Wong92

ZiCh90

V. Sarkar, “Automatic partitioning of a program dependence graph into
parallel tasks™, IBM Journal of Research and Development. Vol. 35, No. §/
6 (Sept./Nov. 1991), pp. 779-804.

H. S. Stone. High-Performance Computer Architecture, 2nd Ed. Addison-
Wesley, 1990.

J. D. Ullman, “NP-Complete Scheduling Problems™. Journal of Computer
and System Sciences, 10, 1975, pp. 385-393.

P. Wong. The Enterprise Executive. Technical Report TR92-13, Dept. of
Computing Science, University of Alberta, Edmonton, Canada, 1992.

H. Zima, B. Chapman. Supercompilers for Parallel and Vector Computers.
Addison-Wesley, 1990.

-99.-

Appendix A

Grammar Descriptions

The grammars presented in this section are all described in Backus-Naur form (BNF), a
format for specifying context-free grammars. The grammars are presented with the non-
terminals alphabetized. Non-terminals are represented in lowercase and terminal symbols

are indicated in uppercase. The start symbol is indicated in boldface type.

The symbol ‘I’ that appears in many of the productions represents an alternative. For

example, the production:

A :B
1C

implies that non-terminal A can derive either B or C.

- 100 -

A.1 Pascal Subset Grammar

actual_parameter
actual_parameter_list

actual_parm_list

adding_op

array_type

array_variable

assignment_statement

block

compound_statement
const_def

const_def_list

const_def_part

constant

direction

: expression
: *(* actual_parm_list ‘)’

: actual_parm_list *," actual_parameter
| actual_parameter

RTR)
M
Ic’

IOR

: ARRAY ‘[* index_type_list ‘]" OF type_denoter
: variable_access

- variable_access ASSIGNMENT_OP expression

: const_def_part
type_def_part
var_decl_part
pf_decl_part
statement_part

: BEGIN statement_sequence END
: IDENTIFIER ‘=" constant

: const_def_list ;" const_def
| const_def

: /* empty */
| CONST const_def_list *;’

: unsigned_num

| ‘+” unsigned_num
‘-’ unsigned_num

| IDENTIFIER

| ‘+* IDENTIFIER

| > IDENTIFIER

| STRING_LITERAL

: TO
| DOWNTO

-101 -

cxpression : simple_expression
| simple_expression relational_op simple_expression

factor : variable_access
| unsigned_num
| STRING_LITERAL
| function_designator
| ‘(‘ expression ‘)’
{ NOT factor

for_statement - FOR IDENTIFIER ASSIGNMENT_OP expression direction
expression DO statement

formal_parm_list : /I* empty */
| “(* formal_parm_sections ‘)’

formal_parm_section : parameter_group
| VAR parameter_group
formal_parm_sections : formal_parm_sections *;’ formal_parm_section

| formal_parm_section

function_decl : function_heading ‘;’ block ‘5’
function_designator : IDENTIFIER
| IDENTIFIER actual_parameter_list
function_heading : FUNCTION IDENTIFIER formal_parm_list .’ result_type
if_branch : statement
if_branches : THEN if_branch
| THEN if_branch ELSE if_branch
if_statement : IF expression if_branches
index_expression : expression
index_expression_list : index_expression_list *,” index_expression

| index_expression

index_spec - IDENTIFIER DOTDOT IDENTIFIER ‘" IDENTIFIER
index_specs : index_specs ;” index_spec
| index_spec

-102 -

index_type : ordinal_type

index_type_list : index_type_list ‘.’ index_type
| index_type
indexed_variable : array_variable ‘[* index_expression_list *]’
multiplying_op D
P
| DIV
IMOD
| AND
new_array_type : PACKED array_type
| array_type
new_fp : IDENTIFIER
new_fplist : new_fplist *,” new_fp
| new_{p
new_identifier_list : new_identifier_list ‘,’ new_identifier

| new_identifier
new_ordinal_type : subrange_type

new_type : new_ordinal_type
| new_array_type

ordinal_type : new_ordinal_type
| ordinal_type_identifier

ordinal_type_identifier : type_identifier
parameter_group : new_fplist *:” parm_type
parm_type : IDENTIFIER

| ARRAY ‘[index_specs ‘1" OF parm_type
| PACKED ARRAY ‘[* index_specs ‘]" OF IDENTIFIER

pf_decl_part : /* empty */
| pf_decls
pf_decl : proc_decl

| function_decl

- 103 -

pf_decls

proc_decl

procedure_statement

program

relational_op

repetitive_statement

result_type

sign

simple_expression

simple_statement

statement

statement_part

statement_sequence

structured_statement

: pf_decls pf_decl
| pf_decl

: PROCEDURE IDENTIFIER
formal_parm_list ‘;’ block ‘3’

: IDENTIFIER
| IDENTIFIER actual_parameter_list

: PROGRAM IDENTIFIER ;’ block ©.°

T

INE
I‘<‘
I‘>7
ILE
| GE

: for_statement
| while_statement

: IDENTIFIER
: /* empty */
I £+9

I"

: sign term
| simple_expression adding_op term

: /* emapty */
| assignment_statement

| procedure_statement

: simple_statement
| structured_statement

: compound_statement

: statement_sequence °;’ statement
| statement

: compound_statement

i if_statement
| repetitive_statement

- 104 -

subrange_type

term

type_def

type_def_list

type_def_part

type_denoter

type_identifier

unsigned_num

var_decl

var_decl_list

var_decl_part

variable_access

while_statement

. constant DOTDOT constant

: factor
| term multiplying_op factor

: IDENTIFIER ‘=" type_denoter

: type_def_list *7’ type_def
| type_def

: /* empty */
| TYPE type_def_list “;’

: type_identifier
| new_type

: IDENTIFIER

: UNSIGNED_INT
| UNSIGNED_REAL

: new_identifier_list ‘:’ type_denoter

: var_decl_list ¢;” var_decl
| var_decl

: [* empty */
| VAR var_decl_list ‘3’

: IDENTIFIER
| indexed_variable

: WHILE expression DO statement

- 105 -

A.2 Net Description Grammar

decl_section : DECLARATIONS *{* declaration_list ‘}’

declaration_list : declaration_list var_declaration
| var_declaration

edge_type : TRUE

| FALSE
execution_step : EXECUTION_STEP INTEGER ‘{* node_specs ‘}’
execution_steps : execution_steps execution_step

| execution_step

integer_list : integer_list *,” integer_list_value
| integer_list_value

integer_list_value : INTEGER
net_description : decl_section
program_section

optional_proc_sections

net_var_assignment : net_variable ‘=" possible_values
net_variable : NUMBER_OF_EXECUTION_STEPS
| NUMBER_OF_NODES
| BLOCK_DEPTH

netdata_section : ‘{“ netinfo_list execution_steps ‘}’

netinfo_list : netinfo_list net_var_assignment
| net_var_assignment

node_data : NODE INTEGER ‘{‘ node_entry_list ‘}’

node_edge_list : node_edge_list ‘,” node_edge_pair
| node_edge_pair

node_edge_pair : INTEGER edge_type

node_entry : supernode_specs
| node_var_assignment

- 106 -

node_entry_list

node_list

node_specs

node_var_assignment

node_variable

: node_entry_list node_var_assignment
! node_var_assignment

: node_list node_data
{ node_data

1 /* empty */
| node_list

: node_variable ‘=" possible_values

: NODE_TYPE

| SOURCE

I LINE_NO

t HARD_DEP

| SOFT_DEP

| DATA_DEP

| CONTROL_DEP

| IO_DEP

| DEP_REGION

| REGION_HEADER_NODE
| CONDITION_REGION

| EFFERENT_REGION_DEP
| DEF

| USE

optional_proc_sections : /* empty */

possible_values

procedure_section

procedure_sections

program_section
supernode_entry

supernode_entry_list

| procedure_sections

: STRING_LITERAL
| integer_list
| node_edge_list

: PROCEDURE IDENTIFIER netdata_section

: procedure_sections procedure_section
| procedure_section

: PROGRAM IDENTIFIER netdata_section

: supernode_variable ‘=" possible_values

: supernode_entry_list supernode_entry
| supernode_entry

- 107 -

supernode_specs - SUPERNODE INTEGER ‘{* supernode_entry_list ‘}’

supernode_variable : CONSTITUENT_NODES
| ENTRY_NODES
| EXIT_NODES
var_declaration - IDENTIFIER *,” INTEGER *,’ INTEGER

- 108 -

Appendix B
Algorithms

The symbols and convenience functions described in Table B.1 are used in the algorithms

presented in this section.

Symbol/Function Representation

n,m a single node in a net

e, f a single execution step

N,M an entire dependency net

S a supernode

Q.q a queuc

CT coalescing threshold

NDT number of dependencies threshold

N.Esteps the number of execution steps in net N

DeQ(q) remove and return the item from the head of queue ¢
EnQ(q,x) add item x to qucue g

AddToSN(S,n) adds node » to supernode §

RemoveFromSN(S,n) removes node n from supernode §

SN(n) returns the supernode to which node n belongs
DStr(x,y) returns the dependency strength between nodes x and y
NDep(x,y) returns the number of dependencies between nodes x and y
PlaceNode(n,e) places node n into execution step ¢

CreateSN(e) creates a new supernode starting in exccution step ¢

Table B.1 - Algorithm symbols and convenience functions

The following convention is also used when referring to a specific element of data associ-

ated with a node:

Example: To reference the execution step number of node n: n.Estep

- 109 -

B.1 Alias Resolution

Resolvehliases()

8]

Inpu::none
Output:none

for each variable declaration x in the program

for each variable decl y that has been indicated as an alias of x
set x =yand y = x

-110-

B.2 Dependency Computation

ComputeDependencies ()

11

12

13

14

15

16

17

18

19

20

21

22

23
24

Input: none
Output: none

for each net N
{
for each node n previously seen in N
{
apply aliases to n.def and n.use sets
for each node m already visited
{
Hdep false
Ddep false
IOdep = false

1]

if (m.CD # n.CD) then

{
Add m to n.SD
Add n to m.SD

}
else

{
if {m € n.CD) then

{
Hdep = true

if (n.use A m.def #@) then

Hdep = true
Ddep = true

if (n.def A m.use #@) then

Hdep = true
Ddep = true

if (n.def A m.def #J) then

Hdep = true
Ddep = true

if (n.Ntype = IO AND m.Ntype = IO)

Hdep = true
IOdep = true

- 111 -

then

25

26

27

28

29

30
31

32

33

34

35

36
37

if (Hdep

{

= true) then

if (n.DR # m.DR) then

{

add n to m.Eff
add m to n.Eff

(PathExists(n,m) = falsej then

Add m to n.HD
Add n to m.HD

if
{

{Ddep = true) then
add m to n.DD
add n tec m.DD
(I0dep = true) then

add m to n.IO
add n to m.IO

- 112 -

PathExists(currentNode, seenNode)
Input: currentNode € node
seenNode € node
Output: true if a path of dependence edges exists between
currentNode and seenNode.

false if a path does not exist between the nodes.

1 initialize Q
2 reset marked nodes set

3 EnQ(Q, currentNode)

4 while (Q is not empty)
{

5 n = DeQ(Q)
6 if (n = seenNode) then return (true)

else

{
7 if (n is not marked) then

{
8 mark node n
9 for each node m € n.HD
{

10 if (m.NN < n.NN) then EnQ{(Q,m)

}

}

11 return (false)

- 113 -

B.3 Node Migration

MiarateNodes ()

Input: none
Output: none

1 for each net N
{
2 create a new net M 3 M.Esteps = N.Esteps
3 for each execution step e € N
{
4 for each node n € e
{
5 AddNode (n, e, M)
}
}
6 PlaceNode (NET_TERMINATE, M.Esteps+1)
)
AddNode(n. e, M)
Input: n € node
e € execution step
M € net

Qutput: none

1 lastSafeEstep = e
2 for each execution step f visited already in M
{
3 for each node m € £
{
4 if (DependencyExists(m,n) = true) then
{
5 PlaceNode(n, lastSafeEstep)
6 return;
}
}
7 lastSafeEstep = f

}

8 PlaceNode(n, lastSafeEstep)

114 -

DependencyExists(m. nj

Input: m € node
n € node

Output: true if a dependency exists between the nodes
false if a dependency does not exist

1 if (m.DR = n.DR) then
{

2 if (m € n.HD) then return true
3 else return false
}
else
{
4 if (m.DR < n.DR) then
{
5 if (m € n.DR.Eff) then return true
6 else return false
}
else
{
7 if (n € m.DR.Eff) then return true
8 else return false
}

-115-

B.4 Calculation Of Target Nodes

Target(n)
Input: n € node
Output: the set of all nodes that can be executed immediately after

node n

1 if (n.Ntype = IF_PREDICATE) then
{

2 found_false = False
3 for each node m € (n.Estep + 1) 3 m € n.SD
{
4 if (n € m.CD) then
{
5 Add m to Target (n)
6 if ((n,False) € m.CD) then
{
7 found_false = True
}
else
{
8 cond_region = m.CR
}
}
}
9 if (found_false = False) then
{
10 found_node = False
11 for each execution step e 3 e > n.Estep
{
12 for each node me€ e 3 m € n.SD
{
13 if (m.CR < cond_region) then
{
14 Add m to Target(n)
15 found_node = True
}
}
16 if (found_node = True) then return

-116 -

17

18

19

20

21
22

23

24

25
26

27

28
29

30

31

32
33

34
35

36

else if (n.Ntype = LOOP_HEADER) then

{

}

for each node m € (n.Estep + 1) 3 m &€ n.SD

{
if (n € m.CD) then

{
Add m to Target(n)

}
}

found_node = False

for each execution step e 3 e > n.Estep + 1

{

for each node me€ e 3 m € n.SD

{

if (m.DR < n.DR) then

{

Add m to Target(n)
found_node = True

}

if (found_node = T.ue)

else

{

found_node = False

for each execution step e 3 e > n.Estep

{

then return

for each node me€ e 3 m € n.SD

{

if (m.DR ? n.DR) then

{

Add m to Target(n)
found_node = True

}

else

{

Add n.RHN to Target(n)
found_node = True

}

if (found_node = True)

then return

-117 -

B.5 Coalescing By Dependency Strength
The following steps are applied (in order) to each net N generated from the initial analysis

stages.

1. Supernode Formation

1 initialize ToVisit_Q
2 for each execution step e € N
{
3 for each n € e 3 SN(n) = @
{

4 S = CreateSN{e)

5 AddToSN(S,n)

6 EnQ(ToVisit_Q,n)

7 while (ToVisit_Q is not empty)

{
8 n = DeQ(ToVisit_Q)
9 for each node m € (n.Estep U n.Estep+l) 3 (m # n)
{

10 if (m.DR = n.DR) A (m € n.SD) A
(DStr(n,m) 2 CT) A (m.CR 2 n.CR) A
(SN(m) = @) then
{

11 AddToSN(SN(n) ,m)

12 EnQ(ToVisit_Q,m)

}

2. Split Supernodes

1 for each execution step e € N

2 (for all supernodes S € e

3 (for each node n € §

4 (for each node m € (n.Estep+l) 3 (m # n)
5 (if (m.DR = n.DR) A (m € n.SD) A

{(DStr(n,m) 2 CT) A (m.CR 2 n.CR) A
(SN(n) # SN(m)) then

6 SplitSN{SN(m),m)

-118-

if (SN(m).Estep £ SN(n).Estep) A
(SN(n) # SN(m)) A
(m.DR = n.DR) A (m € n.SD) then

SplitSN(SN(m),m)

Compress Net

nextEStep = 0
for each execution step e € N
{
if (|e| # @) then
{
for each S € e
{
S.Estep = nextEStep

}
nextEStep++

Identify Entry/Exit Nodes

Set NET_INITIALIZE node as an ENTRY node
Set NET_TERMINATE node as an EXIT node
for each supernode S € e
{
for each node n € S
{
for each node m € Target(n)
{
if (m ¢ S) then
{
set m as an ENTRY node
set n as an EXIT node

-119-

SplitSN(S, n)

BW N P

o ~Jovwu

Input: S € supernode

n € node

Output: None

Initialize ToVisit_Q

lI\

CreateSN(n.Estep)

EnQ{(ToVisit_Q,n)
while (TovVisit_Q is not empty)

{

m = DeQ(ToVisit_Q)
RemoveFromSN(S,n)
AddToSN(T,m)

for each node n € (m.Estep+l)

{
if n € S then EnQ{ToVisit_Q,n)

-120 -

B.6 Coalescing By Number Of Dependencies

The following steps are applied (in order) to each net N generated from the initial analysis

stages.

1. Supernode Formation

1 initialize ToVisit_Q
2 for each execution step e € N
{
3 for eachn € e 3 SN(n) = @
{
4 S = CreateSN(e)
5 AddToSN(S,n)
6 EnQ{ToVisit_Q.,n)
7 while (TovVisit_Q is not empty)
{
8 n = DeQ(ToVisit_Q)
9 for each node m € (n.Estep U n.Estep+l) 3 (m # n)
{
10 if (m.DR = n.DR) A (m € n.SD) A
(NDep (n,m) 2 NDT} A (m.CR 2 n.CR) A
(SN(m) = @) then
{
11 AddToSN(SN(n),m)
12 EnQ{ToVisit_0Q,m)

}

2. Split Supernodes

1 for each execution step e € N

2 { for all supernodes S € e

3 { for each node n € S

4 (for each node m € (n.Estep+l) 3 (m # n)
5 { if (m.DR = n.DR) A {m & n.SD) A

(NDep (n,m) 2 NDT) A {(m.CR 2 n.CR) A
{(SN(n) # SN(m)) then

6 SplitSN(SN({m) ,m)

-121-

if (SN{(m).Estep £ SN(n).Estep) A
(SN(n) # SN(m)) A
(m.DR = n.DR) A (m ¢ n.SD) then

SplitSN(SN{m),m)

. Compress Net

. Identify Entry/Exit Nodes

-122 -

B.7 Coalescing For Maximal Node Parallelism
The following steps are applied (in order) to each net N generated from the initial analysis

stages.

1. Supernode Formation

1 initialize newSN_Q, nextNode_Q
2 EnQ(newSN_Q,NET_INITIALIZE)
3 while (newSN_Q is not empty)
{
4 n = DeQ(newSN_Q)
S S = CreateSN(n.Estep)
6 Set n as an ENTRY node
7 lastNode = n
8 EnQ (nextNode_Q,n)
9 while (nextNode_Q is not empty)
{
10 n = DeQ{nextNode_Q)
11 if (n € newSN_Q) then
{
12 continue
}
13 if (|Target(n)| > 1) then
{
14 for each node m € Target(n) 3 (m # n.RHN)
{
15 EnQ (newSN_Q, m)
}
16 lastNode = n
17 AddToSN(S,n)
}
else
{
18 fanin = 0
19 for each node m € N
{
20 if (n € Target(m)) then fanin++
}
21 if (fanin > 1) then
{
22 if (]|s] = 0} then
{
23 AddToSN(S,n)
24 lastNode = n
}
25 else EnQ(newSN_Q,n)

-123 -

26
27
28

29

else
{
AddToSN(S,n)
lastNode = n
EnQ (nextNode_Q, Target (n))

}

}
mark lastNode as an EXIT node

2. Compress Net

- 124 -

Appendix C
Sample Files

C.1 Sample Net Description File

DECLARATIONS ({

b, 0, 0
a, 0,1
xxsum, 0, 2
xysum, 0, 3
ysum, 0, 4
xsum, 0, 5
yi, 0, 6
xi, 0, 7
i, 0, 8

}
PROGRAM LeastSquares {

NUMBER_OF_EXECUTION_STEPS = 9
NUMBER_OF_NODES = 15
BLOCK_DEPTH = 0

EXECUTION_STEP 0 {

NODE 0 {
NODE_TYPE = 0
SOURCE = “NET_INITIALIZE”
HARD_DEP =
DEP_REGION = 0
REGION_HEADER_NODE = 0
CONDITION_REGION = 0

}

SUPERNODE 0 {
CONSTITUENT_NODES
ENTRY_NODES = 0
EXIT_NODES = 1, 2, 3, 4

n
e
s
o8]
w
>

}

EXECUTION_STEP 1 {

- 125 -

NODE 1 {
NODE_TYPE = 2
COURCE = “xsum := 0"
LINE_NO = 14
HARD_DEP = 0, 7
DATA_DEP = 7
CONTROL_DEP = 0
DEP_REGION = 0O
REGION_HEADER_NODE =
CONDITION_REGION = 0
DEF = 5

0

}

NODE 2 {
NODE_TYPE = 2
SOURCE = “ysum := 0"
LINE_NO = 15
HARD_DEP = 0, 8
DATA_DEP = 8
CONTROL_DEP = 0
DEP_REGION = 0
REGICN_HEADER_NODE
CONDITION_REGION = 0
DEF = 4

1]
o

NODE 3 {
NODE_TYPE = 2
SOURCE = “xysum := 07
LINE_NO = 16
HARD_DEP = 0, 9
DATA_DEP = 9
CONTROL_DEP = 0
DEP_REGION = 0
REGION_HEADER_NODE
CONDITION_REGION =
DEF = 3

o i
(=]

NODE 4 {
NODE_TYPE = 2
SOURCE = “xxsum := 07
LINE_NO = 17
HARD_DEP = 0, 10
DATA_DEP = 10
CONTROL_DEP = 0
DEP_REGION = 0
REGION_HEADER_NODE =
CONDITION_REGION =
DEF = 2

O |
o

- 126 -

SUPERNODE 1
CONSTITUENT_NODES = 5, 6
ENTRY_NODES = 5
EXIT_NODES = 6

}
EXECUTION_STEP 2 {

NODE 5 {
NODE_TYPE = 5
SOURCE = “FOR i := 1 TO n”
LINE_NO = 18
HARD_DEP = 0, 6
CONTROL_DEP = 0, 6
DEP_REGION = 1
REGION_HEADER_NODE = 5
CONDITION_REGION = 0
EFFERENT_REGION_DEP = 1, 2,
DEF = 8

}

SUPERNODE 2 {
CONSTITUENT_NODES
ENTRY_NODES = 7
EXIT_NODES = 7

i}
~J

}

SUPERNODE 3 {
CONSTITUENT_NODES
ENTRY_NODES = 8
EXIT_NODES = 8§

1]
s 0]

}

SUPERNODE 4 {
CONSTITUENT_ NODES
ENTRY_NODES = 9
EXIT_NODES = 9

i
O

}

SUPERNODE 5 {
CONSTITUENT_NODES
ENTRY_NODES = 10
EXIT_NODES = 10

10

}
EXECUTION_STEP 3 {
NODE 6 {

NODE_TYPE = 6
SOURCE = "“READ(xi, yi)”

- 127 -

}

LINE_NO = 20

HARD_DEP = 5, 7, 8, 9, 10
DATA_DEP = 7, 8, 9, 10
CONTROL_DEP = 5

DEP_REGION = 1
REGION_KEADER_NODE =
CONDITION_REGION = 0
DEF = 6,-7

5

SUPERNODE 6 {

}

CONSTITUENT_NODES = 11
ENTRY_NODES = 11
EXIT_NODES = 11

EXECUTION_STEP 4 {

NODE 7 {

NODE_TYPE = 2
SOURCE = “xsum := xsum + xi
LINE_NO = 21
HARD_DEP = 1, 6, 11
DATA_DEP = 1, 6, 11
DEP_REGION = 1
REGION_HEADER_NODE

=5
CONDITION_REGION = 0

DEF = 5
USE = 5, 7
}
NODE 8 {

NODE_TYPE = 2

SOURCE = “ysum := ysum + yi”
LINE_NO = 22
HARD_DEP 2, 6, 11
DATA_DEP = 2, 6, 11
DEP_REGION = 1
REGION_HEADER_NODE
CONDITION_REGION = 0

[}
(8]

DEF = 4
USE = 4, 6
}
NODE 9 ¢

NODE_TYPE = 2
SOURCE = “Xysum :
LINE_NO = 23
HARD_DEP = 3, 6, 11
DATA_DEP = 3, 6, 11
DEP_REGION = 1
REGION_HEADER_NODE = 5

xysum + xi * yi”

- 128 -

0]
o

CONDITION_REGION
DEF = 3
USE = 3, 6, 7

}

NODE 10 {
NODE_TYPE = 2
SOURCE = “xxsum := XXsum + xi * xi”
LINE_NO = 24
HARD_DEP = 4,
DATA_DEP = 4,
DEP_REGION = 1
REGION_HEADER_NODE =
CONDITION_REGION = 0
DEF = 2
USE = 2, 7

{

6, 11
6, 11

5

}

SUPERNODE 7 {
CONSTITUENT_NODES = 12
ENTRY_NODES = 12
EXIT_NODES = 12

}

EXECUTION_STEP 5 ({

NODE 11 {
NODE_TYPE = 2
SOURCE = “b := (n*xysum - xsum*ysum)/(n*xxsum - Xxsum*xsum) “
LINE_NO = 26
HARD_DEP = 7, 8, 9, 10
DATA_DEP = 7, 8, 9, 10
DEP_REGION = 0
REGION_HEADER_NODE =
CONDITION_REGION = 0
DEF = 0
USE = 2, 3, 4, 5

0

}
SUPERNODE 8 ({
CONSTITUENT_NODES = 13

ENTRY_NODES = 13
EXIT_NODES = 13

}
EXECUTION_STEP 6 {
NODE 12 {

NODE_TYPE = 2
SOURCE = “a := (ysum - b*xsum)/n”

-129 -

LINE_NO = 27
HARD_DEP 11
DATA_DEP = 1l
DEP_REGION = 0
REGION_HEADER_NODE
CONDITION_REGION =
DEF = 1

USE = 0, 4, 5

=0

0

}

SUPERNODE 9 (
CONSTITUENT_NODES = 14

ENTRY_NODES = 14
EXIT_NODES = 14

}

EXECUTION_STEP 7 {

NODE 13 {
NODE_TYPE = 6
SOURCE = “writeln(‘'values of a and b are ‘,a,b)”

LINE_NO = 29
HARD_DEP = 12
DATA_DEP = 12
DEP_REGION = 0
REGION_HEADER_NODE =
CONDITION_REGION = 0
USE = 0, 1

0

}
EXECUTION_STEP 8 {

NODE 14 {
NODE_TYPE = 1
SOURCE = “NET_TERMINATE”
DEP_REGION = 0
REGION_HEADER_NODE

=0
CONDITION_REGION = 0

- 130 -

C.2 Sample Node Coalescing Parameter File

COALESCING_THRESHOLD 3.0

PSEUDO_CONTROL_T 1.3
PSEUDO_CONTROL_F .45
PSEUDO_CONTROL_IO 1.5

-131-

C.3 Sample Program analysis

PROGRAM analysis;

{ This program reads 61 population values and determines the
greatest percentage increase in population. }

VAR
percent, bestpercent : REAL;
i, yearl, year2, bestyear : INTEGER;
oldyear, oldpopulation : INTEGER;
newyear, newpopulation : INTEGER:

BEGIN
1 readln {oldyear,oldpopulation);
2 bestpercent := 0.0;
3 FOR i := 1 TO 60 DO
BEGIN
4 readln (newyear,newpopulation) ;
5 percent := (newpopulation - oldpopulation} * 100.0
/ oldpopulation;
6 IF (percent > bestpercent) OR (i = 1) THEN
BEGIN
7 bestpercent := percent;
8 bestyear := newyear
END;
9 oldyear := newyear;
10 oldpopulation := newpopulation
END;
11 yearl := bestyear - 1;
12 year2 := bestyear;
13 writeln(‘'Greatest percent increase occurred between ', yearl,
v and ‘', year2)
END.

-132-

C.4 Sample Program LeastSquares

PROGRAM LeastSqguares;

{ Determines the coefficients of the linear equation y = ax + Db
that fit a regression of points }

CONST n = 10;
VAR

i: INTEGER;
xi,yi,xsum, ysum, Xysum, xxsum,a,b : REAL;

BEGIN
1 xsum := 0;
2 ysum := 0;
3 xysum := 0;
4 xxsum := 0;
5 FOR i1 := 1 TO n DO
BEGIN
6 READ(xi, yi):
7 Xsum := xXsum + Xi;
8 ysum := ysum + yi;
9 xysum := xXysum + xi * yi;
10 XXSum := XXSum + xXi * xi;
END;
11 b := (n*xysum - xsum*ysum)/(n*xxsum - xsum*xsum);
12 a := (ysum - b*xsum)/n;
13 writeln(‘values of a and b are ‘,a,b)
END.

-133 -

C.5 Sample Program graphics

PROGRAM graphics;

CONST
screenwidth = 60;
screenht = 26;

VAR
cursorx,cursory : INTEGER;
screen : ARRAY[O..screenwidth,Q..screenht] OF CHAR;

x,¥,length,dn : INTEGER;
forever : BOOLEAN;

PROCEDURE fail(x,y : INTEGER];

BEGIN
WRITELN(x,', ‘.,Yy.,' is off the screen’)

END;

FUNCTION abs{x : INTEGER): INTEGER;

BEGIN
IF (x < 0) THEN
abs := x * -1
ELSE
abs := x
END;

PROCEDURE lineby(xdif,ydif : INTEGER);
CONST star = ‘*’;

VAR
xmax : BOOLEAN;
xsign, ysign,i,maxval,finalx,finaly : INTEGER;

BEGIN
finalx := xdif + cursorx;
IF (finalx > screenwidth) OR (finalx < 0) THEN
fail (finalx, finaly);

finaly := ydif + cursory;
IF (finaly > screenht) OR (finaly < 0) THEN
fail (finalx, finaly);

screen|cursorx, cursory) := star;

IF (xdif <> 0) OR (ydif <> 0) THEN
BEGIN

- 134-

Xxmax := abs(xdif) > abs(ydif):
IF xmax THEN
slope := abs(ydif/xdif)

ELSE

slope := abs(xdif/ydif);
IF xdif > 0 THEN

xsign := 1
ELSE

xsign := -1;
IF ydif > 0 THEN

ysign := 1
ELSE

ysign := -1;
sum := 0.5;

IF xmax THEN

maxval := abs(xdif)
ELSE
maxval := abs(ydif);

FOR i := 1 TO maxval DO
BEGIN
sum := sum + slope;
IF sum > 1.0 THEN
BEGIN
TF xmax THEN
cursory := cursory + ysign
ELSE
Cursorx :
sum := sum - 1
END;

cursorx + Xsign

IF xmax THEN

cursorx := cursorx + xsign
ELSE
cursory := cursory + ysign
screen[cursorx,cursory] := star;
END
END
END

PROCEDURE lineto{u,v : INTEGER);

VAR xdif,ydif : INTEGER;

BEGIN
xdif := u-cursorx;
ydif := v-cursory;

-135 -

lineby({xdif,ydif)
END;

PROCEDURE moveby(a,b : INTEGER);

VAR error : BOOLEAN;

BEGIN
IF a < 0 THEN
error := -a > Ccursorx
ELSE
error := screenwidth-a < cursorx;

IF NOT error THEN
IF b < 0 THEN

error := -b > cursory
ELSE
error := screenht-b < cursory:

IF error THEN fail (cursorx+a,cursory+b);

Cursorx := CUursorx + a;
CUrsory := cursory + b

END;

PROCEDURE moveto(x,y : INTEGER);
BEGIN
IF (x>screenwidth) OR (y>screenht) OR (x<0) OR (y<0) THEN

fail(x,y)

cursorx
cursory :

X;
Y

END;

PROCEDURE insertspaces;
VAR row,col : INTEGER;

BEGIN
FOR col := 0 TO screenwidth DO
FOR row := 0 TO screenht DO
screen[row,col] := space
END;

-136 -

PROCEDURE drawgraph;

VAR row,col : INTEGER;

BEGIN
FOR row := 0 TO screenht DO
BEGIN
FOR col := 0 TO screenwidth DO
write(screen{row,coll);
writeln
END
END;
BEGIN
1 insertspaces;
2 moveto (screenwidth DIV 2,screenht DIV 2);
3 x := screenwidth DIV 2;
4 y := screenht DIV 2;
5 dn := 1;
6 forever := True;
7 length := 0;
8 WHILE forever DO
BEGIN
9 IF (dn = 1) THEN
BEGIN
10 dn := 2;
11 X := X+length;
12 y := y+length
END;
13 ELSE IF (dn = 2) THEN
BEGIN
14 dn := 3;
15 X := X-length;
16 y := yt+length
END;
17 ELSE IF (dn = 3) THEN
BEGIN
18 dn := 4;
19 x := x-length;
20 y := y-length
END;
21 ELSE IF (dn = 4) THEN
BEGIN
22 dn := 1;
23 X := x+length;
24 y := y-length
END
25 lineto(x,¥);
26 length := length + 1
END
END.

-137 -

