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Abstract

The contents of this dissertation may be divided into two cases. In Chapters
2 and 3 we construct robust designs for polynomial regression functions that
may be contaminated by higher degree polynomials. The contaminating space is
denoted by F. In this setting we find minimax designs with a minimal number
of support points. Such designs may not have enough support points to fit the
models against which you wish to protect. We provide some guidelines to the
experimenter who looks for good designs that also protect against the alternative
model.

[n Chapter -1 we consider approximately polynomial regression models where
the true model is unspecified. The unspecified contaminating space is an Lo-type
space and denoted by F,. For such problems. Wiens (1990. 1992) extends Hu-
ber (1975)’s minimax approach to simple linear regression as well as to bivariate
lincar regression. Although Wiens's minimax approach is not so straightforward
to extend to higher degree polynomial regression functions. we construct a mini-
max design for an approximately quadratic polynomial regression model without
constant term. For higher degree polynomial models we restrict to densities that
are easy to work with and construct optimal designs. We compare these optimal
designs to the minimax designs that are constructed by Wiens (1990) and to
the optimal designs for an approximately quadratic regression model without

constant term.
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Conventions:

With the exception of the introduction and chapter . in our thesis the in-
dependent variable r for the regression problem assumes values anywhere in the
interval {—1/2.1/2]. For any choice of design points (z:)i<n in this interval. the
corresponding design measure is defined as (1/n) 7, J,,. However. our loss
functions and optimization problem extend in a natural way to arbitrary distri-
butions on [—1/2.1/2]. and so we define a design measure to be any probability
measure § over [—1/2.1/2]. Our point of view is that the design is only a guide
as to the placement and relative frequency of the design points. [n practice. any
design & will have to be approximated by an implementable design of the type
(1/n) 327- d:,. via randomization for example. An important result of our con-
vention is that the number of observations n and the design £ are independent.

and so n may be treated as a constant in the minimization over &.
Notation:

I. Unless otherwise noted. g and £ denote arbitrary probability measures
on [—1/2.1/2]. and all integrations in the r variable are over the range
[—1/2.1/2]. The moments of any measure will be denoted using subscripts.

that is. § = [ ' &(dr) and y; = [ 1 p(dx) for all { > 0.

[
.

For a function f:[—-1/2.1/2] — R. we will sometimes use the shorthand
Lef = [ f(x)&(dx). In addition. the symbol z may occasionally denote the

identity function on [R: for example. rf refers to the function r — rf(r).

3. We may use either tr(:) or trace(.1) to denote the trace of a matrix. while
det(.1) or |-1| means its determinant. The eigenvalues of A are denoted A

and Amac(-1) means the largest eigenvalue of A.



Chapter 1

Literature review and objectives

1.1 Introduction

[n the study of a dose-response relationship. it is common for an experimenter to
apply equally spaced dosage levels in his experiment. But if he knows that the
relation of dose and response is linear. then it would be more effective to apply
minimum and maximum dosage only. To understand this. we must carefully
distinguish between two types of error that can occur in such experiments : bias
error. due to inadequacy of the model. and variance error. due to sampling. An
equally spaced design is optimal when we are only concerned with the bias error.
while the classical optimal design. which makes observations at the minimum
and maximum values only. is optimal when we are only concerned about the
variance error. In practice. it is realistic to assume that the model function is
known only approximately and to use a design that minimizes a combination of
these error terms. The goal of this thesis is to provide guidelines on choosing

such designs.



1.2 Classical optimal designs

Many prairie farmers in Alberta have traditionally stocked dugouts with trout
to provide summertime fishing and fun. but now a few are attempting to make
a business out of culturing fish indoors. vear-round. One problem that these
farmers are facing is limited water supplies. so it is economical if the farmers can
recycle waste water for raising fish. Most solids in wastewater from trout-rearing
facilities settle readily. but a suspension of fine material remains. Several studies
have shown that fine particulate adversely affects fish health and productivity.
The wastewater engineering research team at Alberta Environmental Centre
conducted a bench-scale experiment to find out the amount of total suspended
solid (TSS) after applying ozone application rates (O3) ranging from 0 to 2 mg/L.
(see Heo and James (1995)). Because ozonation is to be used for disinfection
and the associated capital cost is high. the team wants to determine Oy rate in
an optimal manner — minimizing the worst cost. [f the research team knows
by their previous experience that TSS and Oj rate are linearly related. the team
only needs to apply the lowest rate (no ozonation) half of the times and the
highest rate half of the times in order to obtain the optimal design. This is quite
unexpected to the layman who would normally expect that one should apply Oy
rates spread evenly over the range 0 to 2 mg/L. When observations (TSS) are

subject to experimental error. the n observations are given by
!j(;Ci) = 00 + 0|.L',‘ + =i r=1..... n,

where z; is the O3 rate and y(r;) is the amount of TSS at rate x; € [0.2]. We

. . .y
assume the error terms =; are uncorrelated with mean zero and variance 2. The



parameters @y and 8, are unknown regression coefficients. We will use the least
squares estimates 6, = ¥ (r; — )y — §)/ S(x; — 2)? and 6y = § — 6,%. Our
problem is to choose r;’s to improve the quality of this estimate 9 = (éo. é. )T
One measure of how well the least squares line fits is the integrated mean squared

error (IMSE).

IMSE = /-E(Oo+0lr—én—0]r)2dr
0
(3 6(F — 1)2 + 2\
= g~

n T 35 (a; — )2 )

To minimize IMSE. the ;s ought to be as spread out as much as possible. in
other words. half of them at the lowest r-value and the other half at the highest
z-value. This example demonstrates that we can improve the quality of our
estimates by planning the locations of the r-values. rather than just choosing
them haphazardly. We generalize the above statistical model to a regression

problem with multiple variables as follows.
y(z:) = z'(x,)0 + =. i=1.... n. (L.2.1)

where the regressor z(z) € IRP is a given function of . The design points x;
are confined to a subsei S C /R, which we call the design space. The parameter
6 € R? is unknown. and the error terms =, are uncorrelated with mean zero and
common variance g=.

The goal in the regression problem is to estimate the parameter .

[. One part of that problem is to select an estimator. Throughout we will

simply use the least squares estimator 8.



2. Another part of the problem is to choose the design points ;. i =1..... n
in an optimal manner. This is equivalent to choosing their empirical mea-

sure £ := ';Zf‘zl dg, on S.

For any potential design measure €. we define the following matrix.

e = [ 2(2)27(2) £(d). (1.2.2)

which is often called the per-observation information matrix of the design £. This

matrix is related to the covariance of our estimator by
V(@) — (2 4-1
Cov(8) = (07/n) A .

The classical optimality problem is to choose & to minimize a particular loss
function. Examples of loss functions include the determinant. the trace. and the
largest eigenvalue of the matrix Ae '. and these give the D-. A- . E-optimality
criterion. respectively. I[n the fish example above. where z7(r) = (l.r) and

S ={0.2]. we have

det(A7") L/(& - &)

(e = (1+&)/(& - &)

Using these expressions it is not hard to see that the design with half its design
points at 0 and the other half at 2 is D-optimal. but not -4-optimal.
[t has been observed by Atkinson (1982) that although the loss functions for

D-optimality and [MSE-optimality are invariant under scale changes in the

4



variable. both - and E-optimality suffer from the theoretical disadvantage that
they are not invariant. Nevertheless it is usual to scale quantitative factors to
lie between -1 and +1. In our work. we will always assume that the data have
been scaled so that r lies between —1/2 and +1/2. [n our notation. this means
taking S = [—1/2.1/2].

With S = [-1.1]. and 27(z) = (L. z..... z*). Hoel (1958) shows that the D-
optimal design puts equal mass at the zeros of the polynomial (1 — r*)P/(x).
where P{(r) denotes the derivative of the kth Legendre polynomial P.(r) on
[—1.1]. If the experimenter wants to investigate z(x)8. the performance of a
design £ can be measured by the standardized variance d(x: &) := zT(.r).-lg 'z(r)
of the optimal estimator 27(r)8. A design is called G-optimal if it minimizes
max s d(x:£). Kiefer and Wolfowitz (1960) proved that a design is D-optimal
if and only if it is G-optimal. For the readers who are interested in the classi-
cal optimal designs. we refer to Fedorov (1972). Silvey (1980). and Pukelsheim

(1993).

1.3 Model robust designs

[n the fish example. the experimenter assumes that TSS and Oj are linearly
related. What if he is mistaken about this relation? [f TSS and Og are not exactly
lincarly related. then the optimal design cannot possibly detect the presence of
any non-linear term in the regression function. no matter how large the sample

size.



The classical optimal designs have the disadvantage that they are extremely
model dependent. These designs provide no opportunity to check the model's
adequacy. Box and Draper (1959) seem to have been the first to be concerned
about the dangers of assuming that the model is known exactly when designing
a regression experiment. They studied the case where the experimenter fits a
polynomial of first degree whereas the true response is quadratic. The estimate
is subject to both ~bias error” due to the inadequacy of the linear function. as
well as “variance error” due to sampling. They reach a somewhat unexpected
conclusion that the designs minimizing bias alone are closer to minimizing both
bias and variance than the designs minimizing variance alone.

[n many practical situations. the model function is known only approximately

so it is more realistic to consider a perturbed model
y(z) = zH(z)8 + f(z) + =. (1.3.1)

where f is an unknown perturbation function that lies in a contaminating space
F. The estimator 8 is no longer unbiased. and the mean squared error matrix
is. with b(f.&) = [; z(x) f(z) E(dx) = (1/n) T z(x;) f(x;). given by
MSE(f.8) = E[(@-0)6-6)T] (1.3.2)
= (0°/n)A7" + AT BT (£ A"
The mean squared error (1.3.2) consists of two terms — the first is a variance
error and the second is a bias error.

An optimal design obtained under the model (1.2.1) no longer is appropriate

under the perturbed model (1.3.1). The design for the first problem makes the

6



variance term (az/n)Ag' small but not the bias term .—lg'b(f.&)bT(f.E)AE_'.
For any contaminating function f we could construct a design that minimizes
MSE(/. &) for that specific f. However we are not looking for a design which is
optimal for one f. but rather we are looking for a design which is reasonable for
all f € F. in other words. a robust design. A design is said to be optimal for the
perturbed model (1.3.1) if it minimizes the maximum loss over f. Beginning with
Box and Draper (1959). designs for versions of (1.3.1) have been constructed in
a large number of papers. These differ in the class F. the design space S. the
regressors z(z). and in the loss [unctions used. [n the following subsections. we
review some of these papers that have been classified into three groups for our
convenience. The first two groups discuss L, type designs and L. type designs
which are named after the norms used in the bound on the disturbance term f.
Prior to running the experiment. it is very common that the experimenter has
little information about the regression model. 27 (x)0 + f(x). The experimenter
might have. however. several possible models for the regression function. so it
is plausible to put a weight on the different models. Liuter (197l 1976) took
this into account. proposed the generalized D-optimality criterion and proved
an equivalence theorem similar to that of Kiefer-Wolfowitz. The third group
consists of articles in which Liuter’s idea was applied. and hence these designs

are called Lauter type designs.

~l



1.3.1 L, type designs

Huber (1975. 1981) and Wiens (1990. 1991. 1992. 1993. 1994. 1996) take the

contaminating space F»

Fo = {[: 113 = [ f@Pde <t [ 2@ f(@)dz =0} (133)

where the radius ) is assumed known. The first condition in the definition of
F allows for finite bias and the second condition ensures the identifiability of
6. Huber restricts to symmetric designs on [—1/2. 1/2] and obtains the minimax
designs for the integrated MSE as a loss function. His optimal design measure
§ has a density of the form & = (az® + b)*. where a > 0 and b depend on the
ratio (6%/nn?). As (¢%/nn*) — 0. the limiting distribution is uniform (& = 1)
and as (6%/nn*) — x. the limiting distribution is a measure that puts all its
mass at the extreme points. i.e.. £ = (d_1/2 + d1/2)/2.

Wiens (1990) extends Huber's result to the case of multiple linear regression.
z(z) =(l.rp...... rp)". where S is a sphere of unit volume in [RP. He also gave
robust designs for a bivariate model with interaction. z(x) = (l..r). r2. 1,.02)7.
S=[=1/2.1/2] x [-1/2.1/2].

Under the approximately linear regression model . 27 ()8 = 6, +3F_ 0+
f. with the contaminating space 5 in (1.3.3). Wiens (1992) constructs designs
that minimize the maximum loss over f. He considers any loss function L(f.&)
satisfving
(1) Monotonicity: [f MSE(f.£) — MSE(fa, €) is nonnegative definite. then
L(f1.8) = L(f2.£):

oL



(ii) Unboundedness: L(f,.&) — oc. if Apac(MSE(fr.£)) — <. as n — oc.

He searches for a design £* that satisfies
sup L(f.€") = inf sup L(f. §)
Fa = F

where = is the space of all probability measures on S. He also proves that in
order that supg, L(f. &) be finite. £ must be absolutely continuous.

[n the case that the fitted response is a plane. and the design space is a
sphere of unit volume in RP. Wiens presents explicit designs corresponding to
the following five loss functions:

Lp =det(MSE(f.€)) D-optimality.
L. = trace(MSE(f.£)) A-optimality.
Lg = Mmax(MSE(f.€)) FE-optimality.

Lg=[sdz: f.)dz Q-optimality.
Le =supgegd(z: f.€) G-optimality.

See Figure 1.1 for the optimal design densities in the case of D- and A-optimality

criteria with p = | and v := (6*/ny?) = 1.



Figure 1.1: D- and A-optimal design densities for straight line regression, min-
imax in contaminating space F; as in (1.3.3) with v = 1: (a) D-density=
5.12z2 + 0.573; (b) A-density= (2.345 — 0.07/z2)*.
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1.3.2 L type designs

Marcus and Sacks (1976) and Li and Notz (1982) made the criticism that using
the contaminating space F, means that no discrete design. and hence no imple-
mentable design. can have finite loss. They. as well as Sacks and Ylvisaker (1978).
Pesotchinsky (1982). Li (198). Liu and Wiens (1997). take a smaller contami-

nating space
Fe ={f:|f(z)] <o(z). forall z € S}. (1.3.4)

with various assumptions about o.
Marcus and Sacks (1976) take S = [—1.1] and 2" (z) = (I.r). and let 0 be a

given function on S with 0(0) = 0. They then look for designs that minimize
sup E[(8 - 00)* + b(6, — 6,)?).

where 6y and 0, denote the estimates of fo and 8. and b is a specified constant.
For instance. if o(r) > m. then the unique optimal design has support only on
the points {—1.0. 1}. If o is convex. the best design is supported on two points
{—=.z}. where = depends on o and b.

Li and Notz (1982) extend the work of Marcus and Sacks (1976) to the

multivariate case where z(z) = (1.1y..r9..... r,)7. and

Fu={f: @ <c /SZ(:c)f(m)d:c = 0}.

When the estimates éi are linear (but are not necessarily the LSE) and the

designs are restricted to have finite support. they show that the designs that
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minimize the weighted VISE. with weights (5;).
sup E[(6o — 60)% + Y _ b:(6: — 6:)°].
Fx

have support on the extreme points of S C [RP.

Pesotchinsky (1982) also extends the results of Marcus and Sacks. He consid-
ers (p+ 1) dimensional linear regression and for the construction of the optimality
criteria he uses the ®;-family. More precisely.

14
y(z;) = 0o + Zxaj Lij + f(xi) + =i
=
where &, = (1;,..... I,p). © is a convex function. and he assumes that |f(z)| <
o(||z]|*). For 0 < k < 2c. his optimality functionals ®4(f.€) are derived from
the MSE matrix via

Sulf.€) trace[MSE(f. £)*] [/k_ sz:/\k(f $) "
& ,\)— p+l o p+lJ=OJ S N

where A\o(f.&) < N (f.8) < ... < A\ ([. &) are the eigenvalues of MSE(f.&). Then
®o(/f.) = lim @x(/.&) = {det(MSE(/f.£))}/ 0.

and
(/€)= Jim €4(/.§) = max {A,(/-)} = Amax(MSE(S. €)).

Thus ®4. ;. and &, give the D-. A-. and E-optimality criteria. respectively.
Pesotchinsky applies a minimax approach and defines a ®;- optimal design £;(0)
as one that minimizes the supremum of ®x(f.€) over {f : |f(x)]| < eo(||z|*)}.

He proved the following two facts in the class =(m) of all symmetric designs &
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with fixed E¢(z?) = m. First. any symmetric design £ € =(m) supported only
by the points of the sphere S, of radius r = \/mp is D-optimal in =(m) if
o(||z]|?) is convex. Secondly. A- and E-optimal symmetric designs are unique
and correspond to the uniform continuous measures on appropriate spheres.

Li (1984) studies robust regression using a design space S consisting of finitely
many points. symmetrically distributed on the interval [—1/2. 1/2].

Liu and Wiens (1997) study the regression model E(Y | z) = Zf,’;(; 0,0 +
zPy(x). Here S = [—L. 1} and v is unknown but |y(z)| < o(z). where o is known.
With three criteria
(1) Choose £ to maximize det(.l¢). subject to bounding the normalized bias.
(2) Choose £ to minimize the maximum bias. subject to bounding the variance.
(3) Choose £ to minimize the maximum determinant of the MSE matrix.
the optimal designs are given for p = 2.3 for general 0 and for p > 1 if o is
constant. When p = 2 and o(x) = | the optimal design corresponding to (3)
i5 (Omin(1.a/ym) + O _min(i.a;ym))/2- The Ly designs are generally supported on a
small number of points and thus do not allow the exploration of models larger

than the fitted ones.

1.3.3 Lauter type designs

Dette (1990. 1991. 1992) worked extensively on polvnomial models under the
Lauter type of criterion. Before reviewing his papers. we need to introduce the
D,-optimality criterion. which is useful when only a subset of the parameters is
of interest. We first need to look at the papers written earlier by Stigler (1971).

Atwood (1971). Studden (1982). and Cook and Nachtsheim (1982).
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Let 27 (x)8 = (2] (x)8,.21(x)@,). where 8- contains the parameters of in-

terest. The corresponding information matrix ¢ is split into block matrices

de = (:;: ::) . where A4 is s x s. (1.3.5)
The covariance matrix of . is proportional to X7'. where £ = 90— Ao A7 Aja.
A Ds-optimal design maximizes det(X). But det(d) = det(.4,;)det(X). thus
this corresponds to maximizing the ratio det(1)/det(1;,).

Since the classical designs and the minimum bias designs do not allow for
model adequacy checking, Stigler (1971) sought a criterion which enables us
to check whether the model is appropriate. and to provide efficient inferences
about the model if it is appropriate. He introduced (-restricted D-optimal
designs and ('-restricted (--optimal designs. for kth degree polynomial regression
on [—1.1]. The C"-restricted D-optimal design for the kth degree polynomial is
one which maximizes det[-{¢] among all the designs ¢ satisfying det[d¢(k)] <
C'det[A¢(A+1)|. The C-restricted G--optimal design for the Ath degree polynomial
is one which minimizes max_ <.<; d(x.€) among all the designs £ satisfving
det[A¢(k)] < Cdet[4¢(k + 1)]. For C' > L. the C-restricted D- and G-optimal

designs for the linear model is given by

S(=0)=&(1) = 1/4+ (1/2)\/1/4 = 1/C. £0) = (1/2) = \/1/4 = 1/C.

We split the regression function z"(z)@ into two parts as we did in (1.3.5).
27(r)0 := 21 ()0, + 2z(£)0, = 35, 0; 2 + X f; '. The objective of At-

1=s+1

wood (1971) is to derive good estimators and designs for estimating the regression
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function z7(z)@. As an estimator. he used a weighted average of the best linear
unbiased estimators of the degree s polynomial and the degree k& polynomial and
as a design. he used a combination (I — a)&(s) + a&(k) of the known optimal
designs £(s) and &(k) for the polynomials of degree s and k. respectively. In
his derivation. when £k = s + | or £ = s + 2. Atwood applied the fact that the
best degree s polynomial approximating the regression function z7(z)@ is the
Chebyshev (or Zolotarev) polynomial of degree A.

Studden (1982) applies Stigler’'s technique in a general setting. The model
is assumed Lo be an rth degree polynomial but the coefficients of the higher

powers might not be zero. So the regressor z” () is decomposed into two parts.

zlr)=(l.r...... ).zl () = (L L™). So then the covariance matrix of
Orsi.... O is proportional to ¥~'. He formulated the D,,, problem which is to

maximize det(;;) subject to a bound on the determinant of ¥. The D,;,, and
Dopy-optimal designs are obtained in terms of the canonical moments.

The work of Cook and Nachtsheim (1932) was motivated by a problem con-
cerning the estimation of uranium content in calibration standards. The re-
gression function can be approximated by a polynomial of a finite degree. but
the degree is not known in advance. Since the experimenter was certain that a
polynomial of degree less than equal to six would be an adequate model. they
applied Lauter’s idea to the integrated variance criterion and presented the iter-
ative methods for design construction.

Dette (1990) assumed that the unknown model belongs to the class of polyno-

mials P = {g;lg; = /o ajr'. j=0..... k } and determined designs that do



well for each member of Py.. He not only considered all the information matrices
(:15(_/’))5‘7:0. but he also introduced a family of priors w = (wJ)" o

A design € is optimal for Py with respect to the prior w if € maximizes the
function ¥,.(§) = ¥4, J'—:_JT log{det (A¢(Jj))]- The support points of the optimal
designs are given by £1 and the zeros of a Jacobi polynomial. The masses at
the interior support points are equal but the masses at the boundary points %1
are somewhat larger. The D- and D,-optimal designs are identified as special
cases. The one dimensional results are generalized to multivariate polynomial
regression on the g-cube.

[n polynomial regression models with Lauter’s optimality criterion. Dette (1991)
identifies robust designs given by Stigler (1971). Studden (1982) and Cook and
Nachtsheim (1982). as D-optimal designs in the sense of Lauter.

Dette (1992) dealt with a situation where extra information about the model
could be given. For instance. the experimenter is quite sure that the degree of
the polynomial model which has to be fitted is even (or odd) and could provide
the upper bound of the degree. k = 2r (or k = 2r — 1). say. He chooses the
loss functions to be "7, wy log[det A (€)/det Ay_;(€)] in the case of polynomial
models of even degree and 3_]_, wy log|[det Ay_ (€)/det Ay _»(£)] in the case of
polynomial models of odd degree. For the class of odd degree polynomials. with

= |/r. the D,-optimal design puts equal masses at the zeros of the polynomial

) [CER(Ty(x)) + CP(Ty(x))]. where (¥ (z). @ > —1/2. denotes the [th
ultraspherical polynomial which is the {th orthogonal polynomial with respect

to the measure (1 — z%)2~'/2dz and Tj(x) denotes the [th Chebyshev polynomial

16



of the first kind orthogonal with respect to the measure (1 — z2)~'/2dz. He also
considered the case of polynomials with only even (or odd) powers. For the even
powers of polynomials. P, = { 3} a;; ¥ |i=L..... r}. the D-optimal design
puts equal masses 1/(2r + 2) at the zeros of the polynomial (1 —Ig)(',(.:i/ﬁ)(T_)(l'))
and mass 1/(r + 1) at the point 0.

The papers involved with Lauter type designs apply extensively the theory
of the canonical moments based on the work of Skibinsky (1968). The interested

readers are referred to Dette (1993). Lau and Studden (1985). and Lauter (1976).

1.4 Summary of results

[n this dissertation we construct optimal designs for approximately polynomial
regression functions. [n Chapter 2 and Chapter 3 we construct minimax designs
when an experimenter fits a polynomial of degree p although the true model is
a polynomial of degree q.¢ > p. In polynomial regression the supremum of the
loss function depends on £ only through its first p + ¢ moments. Searching for
an optimal set of set of moments is quite complex. so we look only at discrete
measures with the minimal number of support points.

We review a result by Wald (1939) which says that for any probability mea-
sure on [0. L]. there is a probability measure with [(s + 2)/2| or fewer support
points. with the same first s moments. In Chapter 3 we offer an independent
proof of this result. In fact we show that for any measure g on [a.b] not sup-
ported by p or fewer points. there exists a measure € on [a. b] with p + 1 support

points. for which p and € have the same first 2p + | moments.
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Rychlik (1987) constructs Q-optimal designs for a linear regression function
that is contaminated by higher degree polynomials. Applying Rychlik’s approach
to cases under D- and -l-optimality criteria. we construct optimal designs in
Chapter 2.

The optimal design depends not only on the form of the loss function but
also on how we define -original part™ and “contamination part”. [n Chapter 2.
we consider that. even though the experimenter has misjudged the exact nature
of the response function. he wants a fitted response function that will be useful
in predicting response values in the future. [n Chapter 3 we consider that the
original model function. a pth order polynomial. has been contaminated by the
addition of some higher order terms only. We want the fitted response function
to estimate the original model as closely as possible. The two different situations
are distinguished by denoting them polynomial model [ and polynomial model
[l

[n this polynomial regression setting the main drawback is that the designs
don’t have enough support points to fit the models against which we wish to
protect. In Chapter 2 we provide a guideline to remedy this situation.

[t is not straightforward to apply Hubers or Wiens's minimax technique to
an approximately quadratic polynomial regression function. In Chapter 1. using
an ad-hoc approach. we construct optimal designs for approximately polvnomial
regression models. We compare these designs to the minimax designs for bivari-
ate linear model obtained by Wiens (1990). We obtain a minimax density for an
approximately quadratic regression model without constant term and compare

the minimax design to the ad-hoc optimal design.
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Chapter 2

Model robust designs in

polynomial regression I

Suppose that an experimenter fits. by least squares. a linear regression model
E(Y | £) = 0y+0,x. but is concerned that true model might be contaminated by
some unknown function f. that is. E(Y | x) = 0y 4+ 6,0 + f(z). [n this situation
the experimenter would like to choose design points r; that vield good estimates
of 8y and 6, while offering some protection against the possible contamination.
The optimal placement of design points was found by Huber (1975. 1981) and
Wiens (1990. 1992) under the assumption that the contamination function f

belongs to the L, type space

Fr= {f:/f"’(.z:)dzg 7]2./f(1:)(l.r =/th(r)dx:0}.

For this contaminating space. Huber (Q-optimality) and Wiens (D- and A-
optimality) construct robust designs by minimizing. over a space of designs. the

maximum loss as f ranges over F,. However. a criticism of this approach is that
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the space 7, is so wide that any discrete design. and hence any implementable
design. has infinite maximum loss over F». One possible remedy is considered by
Rychlik (1987). who restricts the class of contamination functions to the space
F. which consists of all qth order polynomials in F,. Rychlik then constructs
a minimax symmetric discrete design for Q-optimality case for the contaminat-
ing space F. The main result in Rychlik (1987) is that any symmetric design is
minimax if its even moments are identical to the corresponding even moments
of Huber’s minimax continuous design.

[n this chapter we work with three different types of loss functions based on
the D-. -, and Q-optimality criteria. Since the normalized Legendre polyno-
mials form an orthonormal basis in L,. we can rewrite Rychlik’s contamination
space as

q
F={n) ail;:> o} <1}.

i=2
where [, is the normalized Legendre polynomial of degree i. In other words.
the fitted model is E(Y | ) = 6 + 6,z. but the true model is of the form
EY|r)=00+6r+nY,al(r).

[n polynomial regression. the supremum over F of the loss function depends
on the design measure only through its first (¢ + ) moments. This means that
our scarch for an optimal design measure is really a search for an optimal set
of moments. This allows us to exploit Wald's (1939) result giving the minimum
number of support points for a probability measure with a fixed set of moments.
Our minimization problem is therefore reduced to a search over a finite dimen-

sional subspace of design measures with small support. In Section 2 we prove
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that for D-optimality. the optimal design is always symmetric. For the Q- and
A-optimality cases. it is not known whether the optimal design is symmetric or
not. but we prove the existence of an optimal design in the class of symmetric
designs.

Adapting Rychlik’s method we obtain the minimax symmetric design under
the D- and A-optimality criteria.

There are two main results in section 5. The first. Theorem 2.5.1. rephrases
Rychlik’s main theorem and says that any symmetric design measure £ is min-
imax if the expectations under £ of the first [(q + 1)/2] even-order Legendre
polynomials are the same as for Wiens's design measure. This is the same as
saying that £ and Wiens's design share the first [(¢g + 1)/2] even moments. Since
the moments in Theorem 2.5.1 are generated by a continuous density. they be-
long to the interior of the moment space. Applying Comment 3 in this chapter.
the optimal design £ can be chosen to have (g + 1)/2] + L.

As we mentioned in Chapter . the minimax design depends on the ratio
v =a?/ni. When v = 0. only the “bias™ term is involved in the minimization.
and so the uniform density is optimal. On the other hand. as v approaches
infinity. the “variance™ term swamps everything else. and we expect the optimal
density to resemble the classical design. that is. all the mass is on the boundary.

The second main result of section 5 is Theorem 2.5.2. which says that for large
v the optimal design coincides exactly with the classical design (012 +01/2)/2.
The proofl of Theorem 2.5.2 needs only simple algebra but is very lengthy. One
of the reasons for the length of the proof is that the cases where q is even or odd

must be treated separately.
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2.1 Introduction

[n this chapter. we consider the case where the experimenter fits a polynomial of
order p. but where the true model function is only approximately a polynomial
of order p. More precisely. we set z,(z) = (l.x..... z?)T. where the regressor r
ranges over the interval [—1/2. 1/2]. The experimenter fits. by least squares. the

model
E(Y |r)=zl(x)8. 6¢c R (2.1.1)
although the true model is

E(Y|r)=2(x)8 + f(r). [ is unknown . (2.1.

N
—
[EV)
~—

For any choice of design points (r;)?_, our observations will be given by

where we assume additive. uncorrelated errors z; with common variance o2>.
Our fitted response function is a pth order polynomial whose coefficients are

given by the usual least squares estimate

0 = (nde)™' S zi(x) yi-
=1

Here & = (1/n) ¥, d,, is the design measure. and Ae = [z (x)2zT (x) E(dx) is
the corresponding information matrix.
The definition of optimal design depends on the criteria used to judge the

quality of the estimate 8. This depends not only on the form of the loss function
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but also on how we define “original model” and “contamination”™. There are
many ways to split the true response function £E(Y | r) into a lower order part
and a remainder: this choice reflects the purpose of the estimation. Different
choices. such as we make here and in Chapter 3. will lead to similar but different
optimal designs.

Here in Chapter 2 we imagine that. even though the experimenter has mis-
judged the exact nature of the response function. he wants a fitted response
function that will be useful in predicting future values of y. Accordingly. we

define the true coefficient vector 8q to be the vector 8 € IRP*! that minimizes
/ (E(Y | 2) — 2T(2)8]* dz.
Differentiating with respect to @ we are led to
00 = [ [ 21(x)2] (z) da] ™" /z.(r)E(Y | r) da. (2.1.3)

(Note that all integrations in the .r variable are assumed to be over the range
[—1/2.1/2].) The uniqueness of 8, depends on the invertibility of the matrix
[ z1(x)z] (x) dr which is guaranteed by Lemma 2.1.1.

Define the function f(x) to be E(Y | z) — 2T (x)@y. and assume as well that
J is a polynomial of degree ¢ > p. The true response E(Y | r) in (2.1.2) then is

a polynomial of degree q.

E(Y|x)=2z"(r)a. where z(z) = (L.z..... . ae R™. (2.1.4)
Then using this fact in equation (2.1.3).

flxr) = 2T (7)o — Z[(.’L‘)T[/ zi(z)z(x)" dz]™! /zl(r)z(r)'r dr c.
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..... x?). the contamination function f(z) can be rewritten as follows.

| &) zi(r) " S
=) = [(z-_)(x)) B ([f z 23 dz|T[f zlled:r]"‘zl(:r)” o (2-1.5)

We now collect the non-zero components of the right hand side of the equation

(2.1.5). the function f(x) can be written
1) = (200 = [ 200125 @) dafT[ [ 21(0)2] () d:cr'zwr))rﬂ. (2.1.6)
with 8 € IR7?. Defining the function
ulr) = zo(e) = [ 210028 (@) dal [ [ 21(0)2](2) de] ' 20(2). (217)

we can write the true model as “pure part” plus “contaminated part™ in the

following way-.
E(Y |x) =zl (r)0y + u"(2)B. (2.1.3)

The quality of the least squares estimate 8 will depend on the size of the con-
tamination term u’ ()8 and on the placement of the design points. We assume
the contamination is small. in the sense that for some known 5 > 0. the function

u” B belongs to

F={u"B: /[u'r(.’r)ﬁ[? dr < n*}. (2.1.9)

[t is easy to see from the equation (2.1.6) that [ z,(z)f(z)dz = 0 which ensures
the identifiability of 8y. For a given loss function £ then. our problem is to

choose design points that are robust against the worst possible contamination
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in F. that is. to minimize supr£. Our loss function will always depend on
the support points (r;), only through the design measure £ = (1/n) %, d;..
so we recast our problem in terms of measures on [—1/2.1/2]. Setting (¢ =

[ zi(x)uT(x) £(dx). we can rewrite the estimate as

n

0 = (ne)™' Y iz

= (nAg) 7' Y 2wz ()00 + uT(£)B + =,
= (nde) ' [nAe0y + nCB + Z (zi)z]
= 0y + A7 CeB + (nAe) ™! Z:;l zi(x;)z;

= Go+ A7 CeB + A / zi(z)e(z) £(dz). (2.1.10)

Taking expectations gives £(8) = 0y + .-lg'('g B. so we get a bias error due to

the inappropriateness of the model function z7(z) @,. The covariance matrix of
0 is given by

9

- o'- -

Cov(8) = —Ag

and so for a given design £ and contamination term u” (r)8. the mean square

error of @ is the matrix
MSE(B.€) = E|(8 — 80)(8 ~ 8,)7] = %.-15-‘ + A7 CeBBTCT AT (2.1.11)

We will consider each of the three loss functions

Lp(B.§) = determinant [MSE(B.)]. (2.1.12)
Li(B.€) = trace[MSE(B.€)]. (2.1.13)
Lo(B.€) = IMSE(j(x)) /E ~E(Y ) de  (2L14)
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and our problem becomes that of obtaining optimal designs in the sense of min-

imizing supz Lp. supg L.1. and supz Lg. We close this section by proving

Lemma 2.1.1 The matriz A, is singular iff the measure yu has p or fewer sup-

port points.
Proof: If -, is singular. let ¢ be a non-zero vector so that ¢’ 4,c = 0. Then
e de=cl / bb" u(dr) e = / (c7b)? u(dz) = 0.

where b= (I...... r?)". The measure ;2 must then be supported on the points
where (¢"b)? = 0. and since ¢7b is a polynomial of degree less than or equal to
p. there are at most p such points.

On the other hand. if the points (r,)7_, support u. where r < p. define

olr) =l (r—ur;) =co+cir+---+c,rP. Here weset ¢; = 0 fori = r+1..... D

Let ¢ be the vector (. cy. - --. (rp)T. then

Aje = (f O(r)u(dr)./l:o(;r)u(dx) ..... /r"o(x)u(d;r))T.

But 0 =0 p-a.e. and so A,c = 0. which shows that 4, is singular. |

2.2 Suprema of loss functions

[n this section we will find formulas to express the suprema of the loss functions

over ¥ in terms of the design measure €. Recall that for any probability measure



€ on [—1/2.1/2] we define

A = / z1(z) 2T (z) £(dz). (2.2.1)
Ce = / z () u’ () E(dz). (2.2.2)

For the special case when £ is the Lebesgue measure. we use the notation g
and (. We also define a (q — p) x (¢ — p) matrix by By = [fu(x)u’(z)dz.
o = By*B/y and v = ¢ /ni.

We note that the matrix By is invertible. Each component of the vector
u(.r) is a polynomial. so for any vector ¢ € R77P such that Byc = 0. we have
0 = " Bye = [ ||u”c||? dr. This implies that the polynomial u” ¢ vanishes almost

everywhere on [—1/2. 1/2]. which can only happen if ¢ = 0. so By is invertible.

2.2.1 D-optimality criterion

We begin by rewriting the loss function in terms of 4¢ and Cf.

Lp(B.§) = determinant|MSE(S.¢&)]
2\ p+!
o~ I n .
= = — (1 + =8"cT A7 ).
( ) |-Le] g2 e E

n

The supremum over F can be written as

supLp(B.§) =  sup Lp(B.€)
5 BT BoB<n?
o2\P - . .
= sup (—) == (L+=a" By A7 CeBy P
a"a=t \ 1 l.‘lgl v
2y Pl
- (= L(l+—l,\.,mc;f). (2.2.3)
n | e} v



where G¢ = B(,_'/")C'g--lglC'EBo—l/z. Applying the fact that for A,x, and Bpxn
matrices. the non-zero eigenvalues of AB and B are the same and have the same
multiplicities. we write ApaxGe = ,\ma_‘(.»lg'/QC'gBo“("{AE[/")). when ¢ > 2p + 1.
so that it is clear there are p + 1 non-zero eigenvalues in the matrix Ge.

We claim that the minimax design exists and is symmetric under the D-optimality
criterion. This is not the case for the - and Q-optimal designs as we will see in
the next subsection.

To prove the claim in Theorem 2.2..1 below. we need a few definitions and
lemmas. Let = denote the space of probability measures on [—1/2.1/2]. and
equip = with the topology of weak convergence. We also let =5 = {£ € = :
|-le] > 0} and = = {€ € = : € is symmetric}. For any probability measure € on
[=1/2.1/2]. we let £~ denote the image of & under the mapping r — —r. The
symmetrized version of £ is defined to be the measure € = (E+&7)/2. Thus € is
svmmetric if and only if € = &~ = €.

Define g : = — R U {<} by g(§) = supg Lp(B.€) if |1¢] > 0. and g(€) = x

otherwise.
Lemma 2.2.1 The function g is continuous on =.

Proof: We start by noting that the matrix ¢ is made up of moments of &.
that is. (Ag),; = §+j-a for | < i.j < p. Since the map £ — r*+/=2 is bounded
and continuous on [—1/2. 1/2]. Theorem 25.8 (see page 3-1- of Billingsley (1986))
tells us that & — (A¢);; is continuous. Now the determinant of a matrix is a
polynomial in its components. so € — |.l¢| is also continuous. Similar arguments

show that £ — (¢ is continuous.



Suppose now §(n) — & with |4¢| > 0. Since | Ag(n)] — |-1¢|. we have [Agn)] >
0 for large n so without loss of generality we will assume that ¢, is invertible.
The inverse map is continuous on the space of nonsingular matrices. so that
.»lg(l,, — g ' and hence Ggn) — Gg. elementwise. This convergence along with

the estimate

sup @' (Gen) — Ge)a < 3 (Gemy — Ge)?
aa<i tj
then convinces us that g(&(r)) — g(&).
Suppose. on the other hand. that £(n) — & with |-¢| = 0. Since g(£(n)) is

bounded below by a constant times |Agp,,)|~'. we have g(£(n)) — x = g(€) as

n — 2. so ¢ is continuous at £. ]

We recall a lemma which was stated and proved in Wiens (1993).

Lemma 2.2.2 [fV" and W™ are matrices each of whose elements is a linear func-
tion of a real variable t. and if W is positive definite. then o(t) = a”VTW ~'Va

is a conver function of t for each a.

We note that by Lemma 2.2.2. G¢ is convex in £ if | A¢| # 0. and it is easy to
see that then sup;qg =} @’ Gea is also a convex functional of €.

Lemma 2.2.3 For any £ € =. we have g(&) < g(&).

Proof: Without loss of generality we may assume that g(€) < . that is. ¢

is invertible.



The measures £ and £~ share the same even moments. while the odd mo-
ments of £~ carry a reversed sign. that is. & = (—1)*(£7);. Therefore we have
Ae = PAe-P where P = diag((—1)°..... (—=1)?). An immediate consequence
is that |A¢] = |A¢-| . The convexity of the map € — log(]-¢|™') implies that
log(l-—lgi") < (1/2) log(JAe]™") +(1/2) log(]Ae-17") = log(]4¢l™"). It follows that
A < LA,

We next show that \maGe = AmaxGe-. Similar to the matrix P. we define
the matrix Q = diag((—1)7*'..... (—=1)9). Note that P = PT = P~' and Q =
Q" = Q"'. First. we see that z,(—z) = Pz,(r) and z4(—r) = Qz(x). There-
fore z\(—r)zl(—r) = Pz(x)2](2)Q. and so Ce- = [z(z)2](x) € (dx) =
[Pz ()2l (r)Q&(dr) = PCeQ. Applying the equations Ae- = PAP and

- = PC¢Q when & is Lebesgue measure, we can show that u(—r) = Qu(x) as

follows:
u(—r) = zy(—-r)— ('(;r.~1glz,(—.t)
= Qz(z) — QC};FPPAJIPPzI(I)
= Qzy(r) — Q('(;r_-lo"z[(r)

= Qu(x).

This now shows that By commutes with Q since Q ByQ = [ Qu(z)u(r)"Qdr =

Ju(—r)u"(—r)dr = By. Consequently we have

Ge- = By'PCLAZCe-By'?

= By PQCIPPA;'PPCQB; "
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= QB {4\ CeBy "

= QGeQ.

This proves Amax(re = AmaxGe-. and therefore

- 0-2 p+1 1 1 ) )
9§ < {— —{1+%{,\mc£+,\mc€_]}

n | el

a2 \"' 1 L ,
= (7) m{l + ’\m’lx rE}
= g(§)

Theorem 2.2.4 There erists a D-optimal design € € =3-

Proof: Let M = infzg(§) < oc and let {£(n)} be any sequence in = with
g(€(n)) — M. Since = is compact. there exist a subsequence {£(n i)} and € such
that £(n;) — &. Because £(n;) — £ implies g(nj) — f and since ¢ is weakly
continuous. g(g(nj)) — g(g). On the other hand. M < g(f('nj)) < g(&(n;)) and
g(€(n})) — M so g(&(n;)) — M. Hence g(€) = M. so € is optimal and £ € =§

2.2.2 A4- and Q-optimality criteria
Rewriting the loss function £, in terms of ¢ and (¢ gives

L.(B.6) = trace[MSE(B.&)]
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2

trace(.—lgl) + trace(.-lg'C'gﬂﬁTC'ET:'lg‘)

%) trace(:lg') + ,BT('g.-lg")C'f,B.

(=
g

So. we get

supLy(B.§) =  sup L4(B.€6)
F 87 ByB<n?
o _ L 1207 (—2,.0 o172
= a'b;lc?:l (;) [trace(.-l£ N+ I—/—arBo (£TA£ (eBy "ol
= Tltrace(AS) + LA 2.2.1)
= ;‘[trdce(: £ ) + ;/ max E]’ (.__.._..s

where H; = B()_[/Iﬂ('ér.-lgz Ce Bn_l /e

Secondly we consider the loss function L.

Lo(B.§) = [ MSE (j(2))dz

= /E{!](:II) — E(Y|xr)} dr
= /E{Zr(l')é - ZT(I)OQ - uT(z)B}") dx

/ZT(I){E(é ~ 60)(0 — 80) "}z, (x) dr + ﬁ'r{/u(x)uT(z) dr}g
/trace{zﬁx).\[SE(B, &)z \(x)}dz + BT By
= trace{MSE(B.€) Ao} + BT BoB.

I

Substituting the expression for the MSE and taking the supremum over F gives

swLo(B.§) = sup Lo(B.6)
F BT BaB<n?

*)

N % trace (.‘1El';10) + ”2’\maxBO~I/2[C'ET‘;l£_I'"ll)flf—l(’i + [5)0“30—'/:2

= (Z) trace(:lg'.‘lo) + 07l + Amax A¢|
n
o? -1 L 9 e

= | =) [trace(17 " Ag) + = (1 + Amax Kg)]. (2.2.5)
n v
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where Re = By '/*CJ A o7 CeBy 2.

Remark For the D-optimality case. we have shown that the optimal design
exists and is symmetric. For the A- and Q-optimality cases. the loss is not
convex and the question of whether or not the optimal design is symmetric
remains open. Nevertheless we can prove the existence of an optimal design in
the class of symmetric designs. The proof is essentially same as in Lemma 2.2.1
and Theorem 2.2.1 except that the space = is replaced by =2.

Define a function h : =* — R U {oc} by h(€) = suprL.(B.£) if |-e] > 0.
and h(§) = > otherwise. As we proved in Lemma 2.2.1. the function A is
weakly continuous. Only one thing we need to pay attention to is the fact that
when §(n) — & with |A¢] = 0. h(§(n)) — ¢ as n — 2c. since h(E(n)) >
”,—ftra('c( .'15'(',”). We now prove the existence of an optimal design £ € =5. Let
M = infz. h(§) < >c and let {{(n)} be any sequence in =* with h(E(n)) — M.
Since =* is compact. there exist a subsequence {&(n;)} and £ such that £(n;) — &.

Since h is weakly continuous. h(€(n;)) — h(€) and so h(€) = M. and € € =3-

2.3 Number of support points

Having found a tractable formula for the maximum loss arising from various
loss functions. we turn our attention to finding the optimal design. that is. the
probability measure £ that minimizes supz L(8.£). A closer inspection of the
loss function reveals that. since we are doing polynomial regression. supg £(3.§)

depends on £ only through its first p + ¢ moments. This shows us that there
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is no unique optimal measure. but rather an optimal set of moments. which in
general may have several different corresponding measures. Therefore. in order
to simplify the search for the optimal set of moments. we begin by looking only
at discrete measures with the minimal number of support points. This section
is dedicated to proving a modification of a result by Wald (1939) which says
that for any probability measure on [0. 1|. there is a discrete probability measure
with [(s + 2)/2| or fewer support points. with the same first s moments. where
the square brackets [ | mean the integer part of a number. By this reduction.
we hope to simplify the problem and get concrete information on the optimal
solution.

Moment space 1/[,: Let M, be the sth moment space. that is. M, is the
image of the space of probability measures g on [0. 1] under the mapping p —
(frdu..... J.r’dp). Then VM, is a compact. convex subset of R and its extreme
points are the image of {d; : t € [0.1]}. that is. the extreme points of M, are
{(e.e=.. ... £):0<t< 1}

A natural question arises: What is the minimum number of support points
needed to attain any possible set of moments? In other words. find the minimum
value of £ so that for every (y;..... ts) € M. there exists a probability measure
of the form pu = Zf‘zl «,0¢, where o; > 0. Zf‘zl a; = L. and ({;)1<;<k. such that
i = [rdu(x) for | <i<s.

We study moment space VM, in detail and answer the above question in this
section.

Definition 2.3.1 The degree of a distribution function F with jump points

ti....tm in [0.1] is defined as the number of interior jump points. i.e.. those in

34



the open interval (0. 1). plus one-half the number of jump points at the endpoints.

i.e.. those at 0 or . In other words.
degree (F) = [{ty..... Em} O (0. D)+ (1/2)[{ts..... tm} N {0. 1}].
where the bars | | denote cardinality.

Theorem 2.3.2 Wald (1939)
Let F be a discrete distribution function on (0. 1|, and G an arbitrary distribution
function on [0. 1]. If F has degree d. then the number of changes in sign of F —G

is less than or equal to 2d — 1.

Proof: Let F' have jumps at the interior points 0 < | < ty < --- <ty < I.
Since F is constant on each of the subintervals (¢.t,). ... (fg_1. te). the function
F' — (¢ is monotone and so it can have at most one change of sign on each of
these d' — | intervals. Besides that. F — ¢ may have a change of sign at any of
the endpoints ¢,.¢,..... ts. giving 2d' — | potential changes of sign.

[t remains to check FF — (& on the intervals (0.¢t,) and ({g.1). We consider

three different cases.

[. (d =d). In this case. I has no jumps at either 0 or 1. Since —G < 0 and
I — & > L. there is no change in sign of F — (7 in either (0.¢) or (¢y.1).

So the total number of changes is less than or equal to 2d’ — | = 2d — 1.

N

. (d =d +(1/2)). If F has a jump at 0 (resp. at 1). then there may be a
change of sign in the interval (0.¢;) (resp. (tg.1)). So the total number of

changes is less than or equal to 2d’ = 2d — 1.
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3. (d =d + 1). Since F has a jump both at 0 and 1. the sign of F — G may
change on either of (0.¢;) or (£g.1). The total number of changes is less

than or equal to 2d’ + | = 2d — 1.

Theorem 2.3.3 Wald (1939)
Let F. G be discrete distribution functions on (0. 1| with degrees less than or equal
to d. and both having jumps at 1. Then the number of changes in sign of F — G

is less than or equal to 2d — 2.

Proof: Suppose that one of the functions has degree strictly less than d. and
without loss of generality suppose that it is F. Then degree (F) = m < d—(1/2)
and so by Theorem 2.3.2. we find that the number of changes in sign of F — &
is less than or equal to 2m — 1 < 2(d — 1/2) — | = 2d — 2.

So to prove the theorem. we may assume that degree (F) =degree (G) = d.
Without loss of generality. we may assume that ¢4 the largest interior jump point
of F. is greater than or equal to the last interior jump point of . Therefore
F— ( is constant on ({z. 1). so no change in sign can occur over this interval.

[f ¢ is an integer. then both F and G have jumps at 0 and d’ = d — | interior
jump points. As in case 2 of the proof of Theorem 2.3.2. the number of changes
in sign of F — (7 is less than or equal to 2d’ = 2d — 2.

On the other hand. if ¢ is not an integer. then neither F nor G have jumps

at 0. and they both have d' = d — (1/2) interior jump points. Since there are no
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Jjumps at 0. the function F'—( is equal to —G on (0. ¢;). and so no change in sign
is possible on either (0.¢;) or (¢¢.1). As in case | of the proof of Theorem 2.3.2.

the number of changes in sign of F —( is less than or equal to 2d' — 1 = 2d—2. =

Theorem 2.3.4 Wald (1939)
Let F.G be distribution functions on [0. 1] with the same first s moments. then

either FF = (. or F — (7 has at least s changes in sign.
Proof: For all a € R we have
{ ,
/ (@it + ast? + -+ - + a,*) (F = G)(dt) = 0.
0
and so using integration by parts.

1
/ (@) + 2ast + -+ + sa.t*~")(F = G)(t) dt = 0.

0

Now suppose that F — (& only changes sign at 0 < ¢; < t» < --- < {; where
k< s. Put A = --- =a, = 0. and consider the & equat,ions

a) +2&2t|+ -..+sastls—l =0

a, +2ﬂ2t2+ --.+sast2s—l =0

ay + 2ast+  --- + sast* = 0.
Letaj.a,..... @4+1 be a non-trivial solution to this system of equations and define

a polynomial @ by Q(t) = a\ +2ast+- - -+sa,t°"" = a; +2aat+- - -+ (k+ Dagy t5.
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The polynomial Q can have at most k roots. and since ¢{; < to < --- < l; are k
distinct roots of Q. these all must be simple roots. Thus the function @Q changes
sign at each {; and so the product Q(F — () does not change sign. However.

JQ(F —G)Y=0and so F =G. -

Theorem 2.3.5 Ifr is a boundary point of M,. then there exists a discrete prob-
ability measure p whose first s moments are given by r and whose distribution

function F has degree less than or equal to s/2.

Proof: Let P be a supporting hyperplane of M, at r. Thatis P = {z € [R*:
(a.2)rs = ¢} for some ¢ € IR and a € [R®. so that (a.z)gs > c for all z € A
and equality is achieved at r. Now r can be written as a convex combination of
extreme points of A/, N P. that is. of extreme points of M, that also lie in P. [n
other words. there exists m € IN. t.....t, € [0.1]. and ay..... am € [0.1]. so
that Yo, = Lo= T2 ol ... 8).and 3 a;t) —c =0fori = L.2..... m.

[l =37, aidy, then the first s moments of p are given by . We claim that
the corresponding distribution function F has degree less than or equal to s/2.

The polynomial P(t) = 2 ;=1 @t/ — c has roots at each of £..... tm. The
inequality (a.z)gs > c applied to the extreme points in M, shows that P is non-
negative on [0. l]. Thus. each root of P in (0. 1) must be a double root. Since
P is an sth degree polynomial. s must exceed 2 times the number of roots in
(0. 1) plus any roots at the endpoints 0 or 1. Dividing this inequality by 2 gives

{ti..... tm} N (0. 1) + (1/2)[{ts..... tm} N {0.1}] < s/2. which is the desired
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result. ]

Corollary 2.3.6 The distribution function F of Theorem 2.3.5 is unique.

Proof: Let (¢ have same first s moments. By Theorem 2.3.2. the number of
changes in sign of F' — (7 is less than or equal to s — 1. By Theorem 2.3.4. either
F' = G or the number of changes in sign of F —( is at least s. The distributions
F and ¢ must then coincide. .

We are now able to prove the main result of this section. which gives the

minimum number of support points of a probability measure on [0. L] with the

first 5 moments specified.

Theorem 2.3.7 [f x € M. then there exists a probability measure p on [0. 1].

with (s +2)/2 support points or fewer. whose first s moments are given by r.

Proof: First suppose that r is a boundary point of M,. Then by Theorem
2.3.5 there is a distribution function F whose first s moments are given by r and
whose degree is less than or equal to 5/2. Therefore the number of jump points
of I is less than or equal to (s + 2)/2.

[f z is an interior point of M. then the set M, N {(x.t) : t € [0.1]}
is not a singleton. [n particular. if we let ¢{; = inf{t : (z.t) € M,.,} and
ty = sup{t : (z.t) € M, }. then t; < t». Since (zr.t;) and (r.t3) are on
the boundary of M,,;. we may apply Theorem 2.3.5 and obtain distribution

functions F} and F». so that the corresponding measures both have the first n
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moments given by r. and so that the degrees of both F, and F, are less than
or equal to (s + 1)/2. Since F|; # F5. Proposition 3 tells us that F; — F» has at
least s changes in sign.

Now. if both F| and F, have jumps at 1. then Theorem 2.3.3 says that the
number of changes in sign would be less than or equal to 2({(s +1)/2) =2 = s — L.
As this contradicts the fact that Fy —F; has at least s changes in sign. we conclude
that one of F| or F, has no jump at L. For such a distribution function. the
number of jump points is at most the degree plus one-half. that is. it is less than

or equal to (s + 2)/2. ]

Comment 1. Theorem 2.3.7 says that every r in M, gives the first s moments
for some discrete distribution function with [(s+2)/2] or fewer jump points. This
is. in fact. the best result possible for r in the interior of M,. That is because.
for such r. the proof of Theorem 2.3.7 gives two distinct discrete distribution
functions F; and F, whose first s moments are given by .. [f F is another such
function. then it must differ from one of F;. F»: without loss of generality suppose
that F # F\. Then Theorem 2.3..1 says that F — F| has at least s changes in
sign. and so by Theorem 2.3.2 we find that s < 2 degree (F) — L. In other words.
(s +1)/2 < degree(F) which implies that the number of jump points of F is
greater than or equal to (s + 1)/2. But the number of jump points is an integer

so it also is greater than or equal to [(s + 2)/2].

Comment 2. Suppose r € int(M,). Let F, # F» and the first s moments of

Fi =r.i=1.2. The Theorem 2.3.7 says that deg(F;) < (s + 1)/2. i=1.2. On
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the other hand. the comment above implies that deg(F,) = deg(F») = (s + 1)/2
and F, has jump at 1. but F} does not. We want to prove a result corresponding

to Theorem 2.3.7 that deals with symmetric measures on [—1. 1].

Theorem 2.3.8 If r € M,. then there erists a symmetric probability measure
ft on [—1. l]. with s + | support points or fewer. whose first s even moments are

given by .

Proof: If v is a probability measure on [0. 1| whose first s moments are given
by r. and if p is the image measure of v under the mapping r — r2. then the
first 5 even moments of u are given by r. Also. the degree of the corresponding
distribution functions are the same.

[f 1~ is the image of 1 under the map r — —r. then L= (u+p")/2gives a
symmetric probability measure on [—1.1]. Also. the even moments of y and ji
coincide and the number of support points of ji is 2 x degree (F). plus one if g
has a jump at 1. Here F is the distribution function corresponding to .

Now. if r is a boundary point of M,. there is a probability measure v on
[0. 1] whose first s moments are given by r. and whose distribution function has
degree less than or equal to s/2. If z is an interior point of M,. the proof of
Theorem 2.3.7 gave v whose distribution function’s first s moments are given by
x. which does not have a jump at 1. and which has degree less than or equal to
(s + 1)/2. In both cases. the number of jump points of /i is less than or equal to
s+ 1. [ |

Comment 3. If z is an interior point of M,. then Theorem 2.3.7. combined
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with the first comment. shows that the degree of F is equal to (s + 1)/2. and so
the number of support points of i is equal to s + L. Therefore if s is even. the

symmetric measure z must have a support point at zero.

Our objective in this chapter is to obtain optimal designs minimizing the supre-
mum of each loss function under the three criteria. [n the second section. we
obtained the suprema of three loss functions over F in terms of the design mea-
sure §. [n polynomial regression the supremum of the loss function depends on €
only through its first p+¢ moments. Searching for an optimal set of moments is
quite complex. so we looked only at discrete measures with the minimal number
of support points. [n the rest of this chapter. we apply the results from this
section to polynomial regression. We will be searching for a design measure that
minimizes the supremum of each loss function. [t is of special interest with a

interior point of M. We summarize above results in this setup.

Theorem 2.3.9 Suppose we fit a polynomial of degree p although the true model
is a polynomial of degree q.q > p. Each loss function depends on the design £
through its even moments. £,.&,.....5%;. where s = [(p + q)/2]. If the vector
(&2.&.. ... §as) belongs to the interior of the moment space M. then an opti-

mal design is of the form & = TiZ\ cudy. zx € [—1/2.1/2] with (0. r)3Z!
determined by £,.€,. . . .. Eas-

[n the following three sections. we apply the results from the previous sections
to solve our minimization problem under three optimality criteria. Following the

ground work laid by Huber (1975). Rychlik (1987) obtained minimax designs for

polynomial regression. We start the fourth section by reviewing Rychlik’'s work.
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2.4 (Q-optimal designs for approximately linear

models

2.4.1 Huber’s minimax design for simple linear regression
(SLR)

As we mentioned in Section L.3.1. Huber obtains the minimax design by fitting
the linear model although the true response is only approximately linear. We

recall the fitted model. the true model and the contaminating space.

Fitted Model: E(Y |z) = 6, +0,r. (2.-4.1)

True Model: E(Y |r) = 6y+60,c+ f(rx). (2.4.2)
where the contamination function f lies in the contaminating space

Fa= {f;/f'l(.r)dz < ,,‘-’./f(x) dz =/xf(x)d:r = 0}. (2.4.3)

Under the Q-optimality criterion with the contaminating space F,. Huber's min-
imax design depends on the parameter v = ¢2/ny?. [f 0 < v < 162/25. then for

t = t(r) € (1.9/5] such that

5. |
SEE—1) =1, (2.4.4)

the density is

mt:x) = 1 + 3l(t — (1222 = 1). (2.1.5)

[f v > 162/25. then for ¢ = c(~) € (0. 1) such that

13(3 + 6¢ + 4c* + 2c%)?
25(1 + 2¢)3(1 — ¢)?

= w. (2.1.6)
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the density is

m(c:r) = (4 — )T, (2.4.7)

(1 +2c)(l —¢)?
2.4.2 Rychlik’s optimal design for SLR

The contaminating space F» used above is so wide that the maximum loss is
infinite. So Rychlik restricts the contaminating space to a finite dimensional set
of disturbances. that is. the intersection of F, and a finite dimensional subspace

of L*(—~1/2.1/2). He takes

F = Za.l‘ /f dr-/zf( I—O/f(:vdz<r}}

Applying the fact that the Legendre polynomials orthogonal to 1 and r form an
orthogonal basis of the space spanned by F. Rychlik proves that for 0 < v <
162/25. any symmetric design is minimax if its even moments are identical to the
corresponding even moments with respect to Huber's continuous design m(t: r).
where m(t: .r) and ¢ are defined in (2.-.-t) and (2.4.5). For v > 162/25. he proves
that the minimax design has extreme support points. that is. £ = (O_12+d12)/2.
As an example. we provide Rychlik’s optimal design £ for fitting a line although

the true response might be a cubic or quartic.

o
+
o]—

=
+

L5 1+ 10, if » > 2970
&= ga_m + [;o‘:_%\,a if 15.15 < v < 2970

where a € [0.742. 1] is the root of the equation (315a%/16)(105a” — 135a +5la —

5) = v. The design point ¢(t) is defined as (t/3) + (—t2 + 18¢/7 — 3/35)"/2. At
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this point we note that there are four support points when v < 15.15 in the
example above. We apply the Rychlik’s approach to D- and .4-optimality cases.
in fact we will improve his results in terms of the number of support points -

our minimax design will have fewer support points.

2.5 D-optimal designs for approximately linear

model

2.5.1 Wiens’s minimax design for SLR

Wiens (1992) obtains minimax designs for SLR with the contaminating space Fo».
under various optimality criteria. He extends these ideas to multiple regression
as well. Wiens proves that in order that supg, L(f.&) be finite. it is necessary
that £ be absolutely continuous. From now on we will consider measures 13
with density &'(r) = m(r). unless otherwise mentioned. Under the D-optimality
criterion. Wiens's (1992) minimax density depends on v.

If0<w< L5
5 -
v = (126 = 1)(126 + 1), (2.5.1)

the density is

[l

m(r:&) =14+ —(126 — )(122° = 1). 0< |z < 1/2. (2.5.2)

—

[f v > 11/5. then for &(v) such that

26[(1 — Vb)J(E2:b) — VB
(1= Vb)& — (1/12)(1 - 63/2)

— J(&2:0). (2.5.3)
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3(4& — b)

J(b: &) 3(1 _ b) _ 2(1 — bls/‘l)'

the density is
m(z:&) = (d® —b)T/K(b). Vb/2 < |z| < 1/2. (2.5.6)

where A'(b) = (1 — b) — (2/3)(1 — b*/?). and b is determined by the equation

15(1 — b) — 6(1 — b°/2)

2= o1 =) — R0(L= 673" (2

[ )
b
-1
e

2.5.2 Minimax design based on Rychlik’s approach
Ising Wiens's minimax density we construct the optimal density based on Rych-
lik's idea. We recall that the fitted model (2..1) and the true model (2.1.2) are
Fitted Model: E(Y |r) = 64+ 6,.r. (2.5.8)
True Model: E(Y |z) = g+ 8,z + f(x). (2.5.9)
where [ belongs to the contaminating space F in (2.4.8). Again applying the

fact that the Legendre polynomials orthogonal to | and x form an orthogonal

basis of the space spanned by F. we express this contaminating space as

q
F={n> ail; :3 a? <1} (2.5.10)
where /; is the ith normalized Legendre polynomial. that is. [;(r) = (2i +

[)'/? P(2z). where P, is the ith Legendre polynomial on [— 1. 1. For instance.

lo(x) = L. {i(x) = 2V3z. la(x) = V5(62° — 1/2). l3(z) = VT(20z* — 3).
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The true model can be expressed as

q
EY|r)=6+6ir+n) a;li(z) (2.5.11)

=2

The mean squared error matrix of 8 is then
MSE = (v .-1{' + .‘»lg'CgaaT C}T:lg' )

where A¢ and C¢ are as in (2.2.1) and (2.2.2) with w7 (z) is replaced by {7 (x) =
(I(x)..... [,(r)). By virtue of Theorem 2.2.1. we assume that £ is symmetric

and so the matrices above are

where

cl (&) = El" =(Ecly..... Eel,).

0.72”(6) = Eg -L'lT = (EE .L'l-l ..... Eg Ilq).

We observe that ¢l (£)ea(€) = 0. since [; is an odd function for odd j and z{; is

an odd function for even j. We find that

a2\? 1 |
det(MSE) = (7) L+ 5al (L7 Cea).
Put
c L L T(vT ,1—[ v
Lp(a.§) = E(H_;a e g Cea)
l

= {1+l (e(@)e(E) + =aeel (©)al.

i
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Note that. for fixed second moment &,. the loss function depends only on (¢ and
not -l¢. We next want to find £ minimizing the supremum of £(c.¢€) :

£ = argmin sup L(a.§)
¢ ja<t

l l - 1
= arg H}Ein 5[1 + ;/\mu(cl(f)clr(f) + 502(5)05(5))]-

The non-zero roots of ¢((§)c{ (§) + zca(€)c] (€) are

M (&) = |le(8)]I>. with eigenvector o (€) = ¢;/||ei]].
A2(8) = (1/&)lea()]|.  with eigenvector aa(€) = e/||ca].
Our minimization problem is now
. o1 L
§" = argmin — (1 + —max{\ (). \2(£)} ).
£ & v
We state and prove a result that is similar to Rychlik’s under Q-optimality. [n
the theorem below we prove that for small v any design measure € is minimax if
its expectations of even Legendre polynomials are identical to the corresponding

expectations for Wiens’'s continuous design (2.5.2).

Theorem 2.5.1 When 0 < v < 11/5. any symmetric design measure € is min-
tmar if the expectations under & of the first s := [(q + 1)/2| even-order Legendre
polynomials are the same as for Wiens's design (2.5.2). Moreover. there erists
a rminimaz design with s + 1 design points on [—1/2.1/2]. The design points and

point masses are calculated. for j = 1.....: s. by

60 j&x — 3(j — 1) Ww+5

— L where & = : 2.5.12
(2 + 1)(2j +3) e & 720 ( )

&2 =
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Proof: We first assume \;(€) = max{\(£). A\2(€)}. and prove the first part of

this theorem in four steps.

l. Find an absolutely continuous measure M (d). with density m(d). that

minimizes A (€) = [lei(§)|I? = T, (Ee[li])? subject to & = d.

N
.

Choose d* to minimize ﬁ[l + ,';/\[(.M(d) |, and put & = M(d").
3. Verify that \((£%) > \y(€7).

L. Verify that m(d*) is indeed a density. i.e.. is non-negative with a total mass

of unity.

These four steps imply then that £ is minimax. The reason is that for any

measure £. the maximum loss is proportional tc

olf) = i(1+1max{,\|<s>,/\-.,<s)}>

v

—{l /\l(f )}

L{1'*‘ f\l(s )} (byland?2)

g)

= o(§) (by3).

v

Thus any distribution £ with (¢ = (% is also minimax. We now solve our
minimization problem step by step.

The first step is to minimize \(§) = 7, (E¢[li])* subject to & = d. It is
natural to conjecture that a minimizer is given by m(z:d) = 1 +cly(z). (so then
Eyay(li) = 0if i > 2) where ¢ = ¢(d) satisfies d = [ z*(1 + cly(x))dz. This
implies ¢ = (v/5/2)(12d — 1). On the other hand. ¢ = Eyqglla] = /\(M(d)).
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This shows that M(d) is the minimizer because if £ is any distribution function

with & =d. then
M (€) > (Eg[la])? = (5/4)(12d — 1)* = A(d) = \(M(d)).

The second step is to find d minimizing the loss. (1/d)(1 + 5/\[(1\/[((1))). [t turns

out that the minimizer d* is [(4v + 5)/720]'/2. so that

| o

m(z:d”) = | + =(12d" — 1)(122% — 1).

-

The third step is to verify that A\ (£") > \ao(£7). We have calculated \,(£") above:
A(ET) = (5/-H)(12d™ — 1). with & = [(4r + 5)/720]"/2. We recall that the second
eigenvalue is given by |lca(€7)||?/&5 = (Z9_.(Fe- £l;)?)/€5. We observe that if j
is even. then E¢.(xl;) = 0. since xl; is a odd function and £* is symmetric. When
J s odd. 2k + 1. say. rly..; can be expressed as a linear combination of the even

Legendre polynomials. that is.
Ly = aglog + blogesy)- (2.5.13)
where the coefficients a; and by are
@k = (2K + DHHA + Dk +3)]71720 b = (K + D[(4k + 3)(4k + 5)] 712

Except for the first term. all other terms after taking expectations in (2.5.13)

will disappear:

Ee- (2lys1) = apFe-(lak) + biEe-(lagesr))

G|EE-(12) ifk=1
0 if £ > L.
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Then TI_,(Ee-(£l;))? = ailf L(x)(l + c*la(z)) dz]* = (9/140)c*?. where ¢ =

(v/5/2)(12d* — 1). Substituting d". the second eigenvalue becomes
lea(€NP/d™ = (27/35){c"/{(2/V5)e" + L]} (2.5.14)

The right hand side of the equation (2.5.14) is less than ¢*. which is A\ (€*). This
proves that A\{(£") is indeed larger than \y(£”). The final step is to show that
m(d*) is in fact a density. Since m(x:d") takes its minimum at r = 0. it suffices
to show that m(0:d*) > 0. Simple calculations show that this holds provided
0<wv<Il5.

For the second part. we notice that when j > 2. the expectations of the even
Legendre polynomials with respect to € are equal to zero. A straightforward

calculation provides. for j = 1.....: S.

Ey; = 60,6 —3(j - 1) where € — 445
ST )T+ 3) =\ 5

and any symmetric measure £ sharing these moments will also be minimax. This

completes the proof. =

Since the moments in Theorem 2.5.1 ahove are generated by a measure with
a density. they belong to the interior of the moment space. Thus by applyving
Theorem 2.3.9. we characterize the optimal solution for arbitrary q in the Remark

below.

Remark [f we fit a linear model where the true response is a polynomial of

degree ¢ > 2. then for 0 < v < [4/5 there exists an optimal design € of the
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form £ = ¥3 @.d,,. where r; € [=1/2.1/2]. a; > 0. and ¥ o; = 1. The design
& contains unknown parameters: the point masses a; and the design points ;.
When s is even. since zero is a support point. there are s/2 point masses and
5/2 design points. When s is odd. there are (s — 1)/2 point masses and (s +
1)/2 design points. Whether s is even or odd. there are s unknown parameters

to be determined. But equation (2.5.12) gives s equations and thus we can

theoretically determine all unknown parameters.

For very large . we show that the optimal design has two design points which

are separated as widely as possible.

Theorem 2.5.2 For every s > | there erists v, < >c such that (6_,/5 + d1/2)/2

is minimar for v > v,

The proof of Theorem 2.5.2 is not complicated but is very long. We need to give
a proof separately when ¢ is even or odd. We prepare some preliminary work to
simplify the proof. The first thing we need to do is to write the eigenvalues \;(§)
and \»(€) in terms of the moments &;. [t turns out that it is much easier to explain
the following proof if we write the eigenvalues in terms of w; := [(2r)* £(dx) =
2%&,, instead of the moments &;. Since € is symmetric. writing the eigenvalues
in terms of w; will capture only the even Legendre polynomials. We dealt with
the Legendre polynomials before. but now we need to write up the coefficients
explicitly in the notation. We denote the (2j)th Legendre polynomial on [—1. 1].

by Py(r) = T, paj2i £*. The expectation of this polynomial is denoted by

A
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@Q2j(W) = E¢[Py;(2x)] = 1o Pojoi Wi- As an illustration. we show some of the

Pyj’s as well as the Q.;()’s.

Py(r) = (1/2)(=1+32%) = prg + poa T’
P_;(.L‘) = (1/8 3—' 3013 +351‘) —p40+p;).1: +p4;.7:
Ps(x) = (L1/16)(=5 + 105s% — 315<% + 23125).

= peo +Pe2r + PeaL' + peg L

1/2 "
Quwp) = [ (1/D(=1+3(2eP) €ldr) = (1/2)(=1+3w1) := pao + po 1
Qi(¥) = (1/8)(3 =30y +35wa) := pag + P Wi + Pay
Qs(¥) = (1/16)(=5 + 105w, — 315wy + 231 wy)

‘= Deo t+ De2 W1 + Pea W2+ Pes 3.

The eigenvalues can be rewritten in terms of w;. by

(W) = Z[Efz._,jl‘-’ E¢ \J1j + LPy(21))

= Z(U«H[FsP) (2x)|]? = Z 1+ 1)Q3;(w).
=1

J=1

| s—1
’\l(w) = —Z[(legl)J +b; Egl)(_H.[)]

J+1

2 l
_Z[ )\/‘j{,+_+—Q-J(¢) \/ﬁ—Q (J+l)( ]
- i (4 + 3w (2 + 1)Qaj () + 2(j + DQai0y(w)]*.
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Secondly. we define a polynomial Rs; in the variable v, by taking Q.;(%) and
replacing the w;’s in the following manner: if the preceding coefficient is positive
we replace w; by v} but if it is negative we replace y; by v;. Some of the R, j’s

are

Ra(wr) = (1/2)(=1 +3uy)
Ry(wi) = (1/8)(3 — 30w, + 35u3)
Re(wn) = (1/16)(=5 + 105w, — 315w, + 231w7)

Ry(wy) = (1/128)(35 — 1260w, + 693007 — 12012y, + 6:435w}).

Third and last. we define
rle) =3 (4 + RS (w). (2.5.15)
Jj=l1
and we notice that r(1) = \{(1). where 1 is the s + | dimensional vector of ones.

Let g(v) = ﬁ{l + :7,\; (¥)}. We are now ready to prove the theorem when ¢ is

evern.

Proof: We want to prove that for sufficiently large v. g(3) > g(1) for all ¥.
Here we have assumed that X;(1) > A\»(1). This is true because

s

A1) = Z (1 + D?Q3,(1) = 3" (4j + 1) = s(2s + 3).
Jj=l

J=l1
s—1
Aa(l) = ; 1 +3[(‘-’J' + 1)Q2;(1) +2(j + 1)Qa+1y(1)]?
s—1 l - - g - ) ——s—l . an 9. .
= ; T3l D2+ 1) _,‘2(” +3) = (s — 1)(2s + 3).

51



The inequality g(1) > g(1) is equivalent to

S eMD) = ()
- l —w

because

o) 2 g(1) M —(L+ 2N (@) 2 1+ -M(1)
1 / 4

v+ M) —uvr —wA(1)
wmv

iff > 0.

The following lemma finds the maximum of (v, A\(1) — A\ (0))/(1 — ;) over 2.
Assuming this lemma for the moment we finish up the proof for the theorem and

we will prove the lemma later.
Lemma 2.5.3 For each s > |. there erists w; < | such that
M) > r(en) Jor all ¥ with v, € (wf.1).

This lemma implies

e A (1) = A () < wh(l) - r(w;)_

|l — 441 - | — )]
and so
sup w1 (1) = M (#) <  sup widi(1) = re) = vy
(W v;<er<i} L= wy B wy<en <l L —w

The numerator of right hand side in the above inequality. w1\ (1) — r(w). is a
polynomial in v, which vanishes at w, = 1. hence has a factor (1 — uy). Thus
Vsi{wy) < oc for each wy. On the other hand. for 0 < v, < w; we have

vidi(1) — M) sup wiAi(1)

sup

- = Ugo.
(W :0<u <} L~ w 0<ur <y L — W

(4]
Ut



Taking v; = max{v,,. v} gives g() > ¢g(1) for all ¥ whenever v > v,. Con-
sequently (0_;/2 + d1/2)/2 is minimax for v > v;,. This proves the theorem for q

everl. |

Proof: (of Lemma 2.5.3)

We must show that ¥ with & € (vy. 1).

=Y (4 + 1)Q3;(w) > Z (L + DR3 (w1) = r(w).
Jj=1 Jj=1

Since vy > wy - > w,. and w; 2> wi. for all ¢
Q2;(¥) = Raj(¥n). forall 9. (2.5.16)

But we must take care of the case when Q.;() and R, j(w]) are negative. Since
R,;(wy) is continuous in vy and Ra;(1) = 1. for each j = 1.2.....: s. there exists
wiy such that Ryj(wy) > 0 for all v, € (). 1). For example. set v}, to be the

largest root of Ry;(w). Taking wy as the maximum of {w}, : j=l.....: s} gives
Ryj(wy) 20 for all wy € (wy.1). (2.5.17)
The inequalities (2.5.16) and (2.5.17) imply that
(Q2j() > Raj(wy) > 0 for all ¥ with vy € (w].1).

and hence this shows \((9) > r(w,) for all ¥ with v, € (w;. 1). |

[t remains to find SUDys <y < (WiAM(1) —r(¥n))/(1 — ¥n) := vs and determine

whether or not vy < 1v,. The maximum of “2U=r@1) qeeyrs at w, = 1. and

1 —in
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we can formulate v,; in terms of s and the coefficients poj2; of Qa;(1)). We write

out the formula for v, in the following lemma and give a proof.

Lemma 2.5.4

2 — l >
sup wiAML) = r(y)) = 33(‘23 +3)(2s” +3s — 1)

cianst | L—w

s J-2
- _)Z(l_/ + 1) (;: k pajoksa [{k +J even})
c=1

=3
Proof: The proof is a collection of four facts.
Fact 1 r(w)=3%_(4j+ l)Rl::j(wl) is convex for all w; € (7. 1).
Fact 2 h(w) = '—%—:—‘ﬂl is an an increasing function of v, € (wj.1).

Fact 3 S5.(1) = $j(2j+1). where we define Sa;(w;) := P»,;(y/w1). For example.
2j 2 j j

A L
Sa(wr) = F(=1+3w) = Ra(yn)
! . y
S_;(lﬂ]) = g(-3 —30u, + 35‘1111.) = R‘;(l,u])
! ) .
Ss(en) = [=(=5+ 1050 = 3150 + 2310)) # Re(w)

Fact 4 For j > 3. we have
Si;(1) = TS (2 = 1) pajak jodd
RI_,J(I) — { __]( ) k=1 ( ) 27,k J o

i—2)/2 .. .
S",’Zj(l-) - ;J=| / (21)P2j.2(21+l) J even

-2
= S(l) = ; K pajoksn [{k + J even}-

We explain why these facts will provide the proof. Since \,(1) = r(1). we rewrite

hwy) in terms of r. h(y,) = L(ll::(il By Fact 2.

max_ h(un) = (1) =r'(1) = r(1).

vy <un <l
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Combining the facts above gives an expression for /(1) as follows:

P = 23 (4 + DRy(DRs,(D)

1=1

= 2i(l]+l)R’(l) (because R»;(1) = 1)
l

j:

~

Il
M.

(4 + DS, +23 (4 + DRy (because Sy = R, 51 = Ry
Jj=3

-
il

[
[v]..-

(4 + 1)S5,(1)
I

J

s -2
+ 2) (j+ 1) (Séj(l) — > kpajakes [{k +j even})
1=3 k=1

3

-2
= ([_]+ l)b' (1) — )Z 47+ 1) (ZA[M])/H.)[{A +Jeven})

J=l =3
s iz
— L+ 1)Jj(2j + 1 —)Z 4+ 1) k paj, ’k*—’[{A+JQV8n}
j=[ _] X I\—l

Therefore.

i) =r(l) = }: L+ D272+ -1)

j=2

— _)_Z l_]-*—l (ZAP) """)[{A +J8V€n})

! 3
= 33(23 +3)(2s- +3s — 1)

K} Jj=2
— ‘_)Zi(-u + 1) (; k pojoksa [{k+j even})
Jj=: $=

This proves Lemma 2.5.1. =

Proofs of Facts

1. [t is enough to show that Rl:;j('wl) is convex for all v € (w;.1). We will see
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why [Ra;(w))]” = 2[Ry RY; + R 51 = 0 for all v, € (¥;. 1). Remember that v}

was defined in such a way that R.;(w,) > 0 for all v, € (7. 1). and R3;(w1) 20

for all w, since all the negative terms in Ra;(,) are linear in w,. Consequently.
:fj(wl) is convex and so is r(w;) for all y; € (wi. 1).

2. The convexity of r implies that r'(y) < (r(v) — r(1))/(wv, — 1). which is

equivalent to h'(w;) > 0. and this shows that A(y/) is an increasing function.

3. Taking the transformation w; = y*. we have

d 1 d
— Ss; = ——=— Psi(y).
(lw[ -j(wl) 2\/&7[(1!] .’._)(.l/),
where Py; is the (27)th Legendre polynomial. Using the properties (y* — P =

JyP; = P,_y) and yP] = jP; + P]_,. we obtain

)
Polli=t = 2 luPo(s) = Poyr )=

- .117[132;'(!/) +yP2(y) = Py ()]l
— 1J7[Plj(y) + 2Py (y)]ly=1

= J(2j+1).

Thus. 55,(1) = (j/2)(2) + 1).
4. Fact 1 is a simple observation and so the proof is omitted. We write out the
values of v, for even ¢. in Table 2.1.

So far we have been concerned with only when ¢ is even. How do we prove
Theorem 2.5.2 for odd q? The proof will be parallel to the case of even ¢. and we

are able to obtain a formula similar to Lemma 2.5.4. The only differences are in
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Table 2.1: Values of wf.v.vs and vy, = max{vs. v} as in Theorem 2.5.2.
Fitted response is a straight line: true response is a polynomial of degree even

q. For v > v, the minimax design is J+, /2

=

qls:=q/2| vy =v,s V2 W
2 l 10 2.-16 0.33
1 2 91 40.17 | 0.7416
6 3 8362.88 387.74 | 0.9652
3 1 7839.25 | 2841.27 | 0.995
g(%) and r(w,). which depend on A\, :
l l
g(¥) = —[L+ =\ (9)].
Uy v
r(w) [i [ [(2) + DRaj(wn) +2(j + )R (en)]?
: = PR 2 U Z 2 ; =.
Wy o = (1 +3) 2j + 1) Raj(w (J 2+ 0N

Here s = (¢ + 1)/2. and we are assuming that \s(1) > A;(1). This assumption

is verified by noticing that

S

M) = (/G +3)I2) + DQay(1) + 20 + 1)Qageny(1)]?
J=1
s5—1
= (LJ+3)=(s=1(2s + 3).
J=1
s—1
AM(1) = (L+1)=(s=1)2s+1).
J=l1

The only difficulty is to prove that r(w,) is convex as we proved in Fact | for the
previous case. Here r(w;) is not so simple as before. and it is helpful to follow

the proof if we rewrite A2(%)) in terms of the coefficients of the odd Legendre
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polynomials. Since

E¢rlyjry = (4 +3) EeglzPsja(27)]
= \/—lj + '}/2 Eg[2I P_)j+[(2$)]

= 4 +3/2Qu4(0).

we can rewrite the second eigenvalue in terms of Q21 (%).

s—1 s—1
Aa(¥) = (/) Z {EE Il’.’.j+l($)]2 = (1/‘111 Z (4 +3 ),*1("#)-
Jj=l1 Jj=l1

As an illustration. we mention a few terms above

Ee 2.0 Py(2x)
Q1)
Qs(v)
Q:(v)

Similar to (2.5

= E¢2z[(5/2)(21)% — (3/2)(2z)] = Ee [(5/2)(2z)* — (3/2)(22)*].
= (I/2)(=3w; + 5wa) := py wy + p3a e

= (I/8)(15w, — 70wy + 63w3) := ps1 w1 + P33 e + P55 U3

= (1/16)(=35w) + 315ws — 693wy + 129 wy)

= pra tpra e+ prsey + pro Us.

.15) we express r(w,) as

s—1
= (1/w) Y (4) +3)R3, 1 (w1).
3=1

Some of the Ry, (w)'s are

R3(wy)
Rs(ey)
Rz(wy)

= (1/2)(=3wi +5u7) := p3y w1 + pas v}

= (1/8)(15w) — 70w + 63w)) 1= ps.y 1 + psa w1 + pss 0y

{l

(1/16)(=35w, + 31507 — 693w, + 429 wy).

We state a similar result to Lemma 2.5.4 and give a proof.

61



Lemma 2.5.5

oo wa() = r(y) L (9 g 1
w;nsln?-'{\sl o = 5(.5 — D)s(2s + 1)(25 + 3)

s—1 J—!
— _)_Z([J +3) (Z kpgj+1.2k+l [{k +J odd})
k

i=2
Proof: We first determine that h(y,) := %ﬁ("” is an increasing function
for v'f <y < 1. This is true as long as r(w,) = (L/wy) 3 (4 +3)R§j+l(w|) is
convex when w; lies between w; and 1. We claim it is convex and prove it by
showing that G(w,) := (1/w, )R?_::j+l (¢1) is convex. We will show that G"(w) >0

for all w; <w; < 1.

A simple calculation shows that G"(w,) > 0 iff

i Ry (1) R, (1) + i Ryjey (1) Ry (1)

/
2j+1

—w Ry (un )R

2j+1

(w1) + R, (v1) 2 0.

which is equivalent to

w R, ((wi)(wi Ry (w1) = 2Ry () 2 0.

j+

Substituting Ry; (1) = | and using the definition of w;. we find that R'(w,) > 0.
for all &} < w; < 1. Our task is now to show that (v, R (¢1) — 2R(w;)) > 0. It

Is easier to see if we. in Ra4(w)). group the high power terms and linear terms

separately.,

+1)/2 i i+1)/2 .

?:; )/ Pojsttiot UF ﬂ-ng / Pojri4i-3 U (J odd)
Ryjii(uy) =

J/2)

2+1 Jjf2 , s .
=1 P2jrtaist U7 H (DPojria + X100 P2jeraiot) U (Jeven).
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We look only at the case when j is odd. as the other case is very similar. The

relationship
(J+1)/2 (G+1)/2
5 W 2 B
e Ry (w) = Y (20) prjrraici U+ D Pojetai=3 W
=1 =1
implies that
(+1)/2 N
i Ry, (w1) = 2Ryj(wr) = Y (2= D) pojersimi i (2.5.13)
=1
(J+1)/2
- Z D2j+r14i-3 -
i=1

[n equation (2.5.18). it is clear that the first term is positive: the second term is
negative because the coefficients pj 1 4:~3 are negative. Thus the left hand side
of (2.5.18) is positive. so that r(w,) is convex and h(w,) is an increasing function
of vy for all vy < v < 1. So the maximum of h(w,) occurs at 1. That is.

e _ wir(l) = r(w) s i
u_l_rgﬁ;\g h(w) = o ley=1 = r'(1) = r(1).

[t remains to determine r’(1). Differentiating r(w,) with respect to , gives
r(on) = (/o) et £ (4) + 3)Rajr (w1 Ry (w1) = £ (4 + 3) B3 1 (w1)).
To calculate r'(1). it is useful to define Saj,1(w;) similar to what we did for even

q- Define Sy, (v) = Vo Py (V). So then Ri(1) = Si(1). and

R, (1) = Shia (1) — i/:?l (‘_?Ic — I)p2j+iak-1 when j > 2 is even
o Shyei(D) = T2 2D)pajraies when j >3 is odd.
J-1
= Syl —;kplj+l.2k+l [{k+j odd}-
=1

Using the relation Py, (y) = (2j + D)[yPsji(y) — Poi(y)l/(y* — 1). we obtain

Saja1 (1) = (1/2)(Pojua (1) + Py (1) = (1/2)(2% + 3j + 2)).
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We are now in a position to conclude

s—1 s—1
i) —r(l) = _.)Z(lj +3)R.l3j+l([) — 2Z (4) +3)Raji (1)
j=1 =t
sl -
= 2) (L +D[=1+ S5 (1) = > kpojwiann [{k +j odd}]
= k=1

1

(L +3)(27% + 3))

=1
j=1

235" (4j +3) (Z K paji k4 [{k +j odd})
k=1

= é(-ﬁ' — 1)s(2s + 1)(25 + 3)

s—1 Jj-1
=23 (1) +3) (Z Kk poji ks [{k +J odd})

j=2 k=1
[
We present some values of v, when ¢q is odd in Table 2.2.
Table 2.2: Values of wj.vs.vs and vs = max{v,.vn} as in Theorem 2.5.2.

Fitted response is a straight line: true response is a polynomial of degree odd g.

For v > v, the minimax design is dx1y0-

=

qls:=(q+1)/2 | vy =v,| ve Wi
3 2 35 10.5 | 0.6
3 3815 | 82.0|0.82

o

So [ar we have analyzed and obtained the optimal designs for small v. (0 < v <

(1-4/5)). or large v. (v > v,). What are the optimal designs for (14/5) < v < v,?
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If v € (14/5.v,). the optimal solution lies on the boundary of the moment space
M,. and so by Corollary 2.3.6. the design distribution is uniquely determined.
Before giving examples. we take a look at the eigenvalues A\;. \>. when 2 < ¢ < 6.
We make two observations. First. when ¢ is odd. the second eigenvalue \»(7))
utilizes one more moment. Secondly. the eigenvalues repeat. The first eigenvalues
Ai(®)) are the same when ¢ = 2 and 3. ¢ = 1 and 5. the second eigenvalues are
the same when ¢ = 3 and 1. ¢ = 5 and 6. We close this section by illustrating

how we obtain the optimal designs for the cases ¢ = 2.3.-1.5. and 6.

Table 2.3: Eigenvalues when true response is Legendre polynomial of degree ¢

where w; is denoted by 2%¢,;.

q AM(w) Aa(w)
2 (5/) (3w — 1)? none
3 (5/H)Bw; —1)2 (7/4w ) (Bws — 3w;)?

(5/H)Bwy — 1)*+

l (7/ kw1 ) (5w — 3wy )?
(9/6-1)(3 — 30w, + 35u)?
i (5/D(Ber — )2+ (1/en)[(7/4) (5ws — 3wy )?+
5
(9/61)(3 — 30w, + 35w,)? (L1/6:4)( 15w, — T0ws + 63w3)?]
5/-H(B3w; — 1)*+ — e g 2
6 ( / )( 1 ) (l/wl)[(l/-l)(:)'li’z—-31.’)1)"*‘

9/60)(3 — 30w, + 35ws)? )
(9/6:1)( Ui F )Tt (11/64)(150; — T0ws + 63wy)?]

(13/256)(231wy — 315wy + 105w, — 5)2




Example 1: ¢ = 2.

The experimenter fits a linear model. although the true model might be quadratic.
[t is simple enough to obtain the optimal design by a direct calculation.

50_1+ 30,1 if v > 10

&= pr = /s
S = U = v 5

30y s e v <10
We notice that vy also equals 10 in the table of the examples of v;.

Example 2 : g is 3 or L

[n this case there are 3 support points including zero on [—1/2. 1/2]. for small
v € (0. 4/5). From Table 2.1 and Table 2.2. we have v, = 35 when ¢ = 3. and
vs = 91 when ¢ = 1. The optimal solution in terms of the moments w; and ws.
is given below. We state it for ¢ = 3. with the relevant changes for ¢ = 1 in
brackets.

[ (1. 1) ifv>35 (91)

(ef.w3) = ¢ (c".c™) if4/5<v <35 (91)

L (/52 282 ify < L4y
where ¢* is a minimizer in [0. 1] of the loss function. ignoring the constant term.
l{e) = (/e)(r + max{)\i(c). A\2(c)}). where ¢ = (c.c?) and ¢ € [0.1]. Thus the

optimal design is

1 if v >35 (91).

£ =< %(5_ vt 176_+_{;\/c_. if 14/5<1r <35 (91).

(1 —a)dg + %(5_\/5 + %‘54»\/:_1 if v < L1/5.
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where

35072 30w; — 3
a=—"1 _andq = "L "

3007 —3 110w}

Example 3 : g is 5 or 6.
There are 1 support points. +x; and +i». say. From the tables. we have v, =

381.5 or 862.88. The optimal solution in terms of moments. y,. w,. and w;. is

[ (L.1.1) if v > 381.5 (862.88)

(wi.wi.w3) =<  boundary of My if /5 <wv <381.5 (862.88)

( /4,,1.7 30wy

15

= B2 iy < 145
[t is not easy to describe the boundary of Mj. but a portion of it is given by

(vy.w. w}) and this provides an optimal solution

’

Lo 1+ () if v >381.5 (862.88).

t«l—

WA if 14/5 < v <3815 (862.88).

[ e

{ (t().t\/J_-—l-f-(l—(t)(st\/I—z if v < L1/5.
where ¢ is the minimizer of the loss function [(c) = (1/c)(r+max{\(c). \a(c)}).
where ¢ = (e. 2. ¢?). For small v. the three parameters . r,. and .r, are deter-

mined by the three equations

vy = a(2r)? + (1 — a)(2r)%
vy = a2n)) + (1 - a)(2z,)*
vy = a(20)® + (1 - a)(2z2)°



2.5.3 Suggested minimax design for arbitrary g

[nstead of presenting the minimax design for each ¢q. we conclude this section

by providing some guidelines when we fit a linear model but we are concerned

that the true respounse is a polynomial of some unknown but arbitrary degree q.

There will be three different cases depending on the size of v.

L.

[
.

The minimax design for 0 < v < (1/5) :
The optimal design is of the form £ = Y3 o,d,, which consists of s

=1

unknowns. These unknowns are determined by the s equations (2.5.12).

A minimax design for medium size of v. (1/5) < v < v, :

The optimal solutions in terms of moments are on the boundary of the
moment space M. which is not so easy to describe. But a part of the
boundary can be expressed by (w;.w?..... wy) and this suggests that for
cach v. the optimal design £* is determined by the minimizer ¢* of the loss
function l(c) = (1/¢)(v + max(\(c). Aa(c))). where e = (c. . ... ¢’) and
c € (0.1). that is. £ = dt\/c—./._,. This minimization can be easily solved

numerically.

3. The minimax design for large v > 1, :

By Theorem 2.5.2. the minimax design consists of the extreme points £1/2

with equal mass.
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2.6 A-optimal designs for approximately linear

model

[t is not as straightforward as for the D-optimal case to obtain the .4-optimal
minimax design. [n the proof of Theorem 2.5.1 we set up the problem in four
steps. In the first step. we assumed that the first eigenvalue \; is larger than
the second eigenvalue A,. [n the third step we verified that the first eigenvalue is
indeed larger at the minimax density. For A-optimality this third step fails to be
satisfied for small v. Wiens (1992) suggests that one may construct a minimax
design by minimizing the loss function while one of two eigenvalues is held fixed.
For v > 14/9. the second eigenvalue is larger at the minimax density. Wiens

obtains minimax design of the form m(zr) = a(xz? — b/4)* /2.

2.6.1 Wiens’s minimax design for SLR

For small v. Wiens first constructs a density to minimize the first (second) eigen-

value subject to the second (first) eigenvalue being fixed. The density is of the

2\ * b2 +
cr- 1 -

where the coefficients a. b. ¢ satisfy

form

/m(il‘it-”/)dit = 1. /rzm(.r:t."/)d;r = 7.

A(m(z:t.v)) =t (Nao(m(x:it.v)) =t).
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One then determines (£*.v*) to minimize the supremum of the loss function.

Then if 0 < v < 1/9. the minimax density is

my(z:t*. ") if supgLa(my(z:¢*.7")) < sup La(ma(z:t*.5")).
m(z:t*. ") =

ma(r:t*. ~v*) otherwise.
2.6.2 Minimax design based on Rychlik’s approach

For small v. we are not able to obtain a result like Theorem 2.5.1 in this case.
but for large 1. we have result similar to Theorem 2.5.2. That is. the optimal
design has two design points which are extreme. The proof of this result follows

very easily and so we present the result without proof. The eigenvalues are

M) = Z[Eslzj(f)]"):(Es VA + LPy;(22))°
= Z 1+ D[Ee Py(22)] = Y (4) + DQ3,(3b)

J J
16 s—1
A(Y) = =) lajEels; +b; Efl’(.l*l)]
Uy 5o
163 25+ 1 J+1
= w e )+ T Qe F

—‘—.[(-J + 1)Qa; (W) + 2(j + 1)Qagjsry(1)]%.

where for the first eigenvalue. j runs from | to s or s — L. depending whether ¢
is even or odd. We notice that the first eigenvalue is the same as the one for Q-
and D-optimal cases. but the second eigenvalue is not. All the calculations are

based on the fact that A»(1) > X (1) for all ¢ > 3.
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Theorem 2.6.1 For every s > | there ezists v, < oc such that (§_i/2 + 61/2)/2

ts manimax for v > vs. The lower bound v, is determined by v, = max{Vs;. Vsa }-

where
wiA2(1)
Vsgp = max —————,
- o<wi<e H(1 —wy)
Lo
Ve = max ——————[\(1) — r(en)]

ei<er<t (I — wy)
1
= 55— 1)s(2s+ 1)(25 +3)
s—1

j=2

Some values of i, are in Table 2.1.

Table 2.1 Values of wi.vg.vs and v, = max{v,,.vs} as in Theorem 2.6.1.
Fitted response is a straight line: true response is a polvnomial of degree even

q. For v > v, the minimax design is dz1/2-

qls=lqg+ /2| vy =v,| e wy
3 2 35 10.5 0.6
-4 2 35 20.09 | 0.7-116
5 3 331.5 32.0 0.82

2.6.3 Suggested minimax design for arbitrary ¢

We conclude this section by providing guidelines on how to fit a linear model
when we are concerned that the true response is a polynomial of some unknown
but arbitrary degree. There will be three different cases depending on the size

of v.



[\
.

2.7

. The minimax design for 0 < v < (4/9) :

We are not able to provide an optimal design. But we look at this problem

in Chapter 4 with the contaminating space F..

A minimax design for medium size of v. (4/9) < v < v, :
An optimal design is of the form £* = 0.z /2 Where ¢* is the minimizer
of the loss function I{(e) = v(1 + 1/c) + max{\(c). A2(c)}. for each v. The

vector ¢ = (c.c>..... c’) is as defined in the previous section.

The minimax design for large v > v, :
By Theorem 2.6.1. the optimal design consists of the extreme points with

equal mass.

Final comment

The designs we have obtained may not have enough support points to fit the
models against which we wish to protect. and so are clearly non-robust in this
respect. For instance. as we have seen in Example 2. there is an optimal design
with three support points when fitting a linear regression line although true
model might be cubic or quartic. Since there are only three support points it is
not possible to check whether or not the alternative model is appropriate. When

v < L14/5. in this example we found an optimal design of the form

(l - O.')(SQ + Q()._J,_.Il .



Consider the following perturbation of this optimal design for some small con-
stant ¢

(I —a)dy + adi(r,ze)-
[n this way. we obtain a close-to-optimal but safer design. The best way to

choose the constant ¢ will be the subject of future research.



Chapter 3

Model robust designs in

polynomial regression 11

[n Chapter 2 the experimenter wanted a fitted response function that would be
useful in predicting future y-values. Here in Chapter 3. we imagine that the
original model function. a pth order polynomial. has been contaminated by the
addition of some higher order terms only. We want the fitted response function
to ignore the vagaries of the contamination and estimate the original model as
closely as possible. Otherwise the problem is the same: to find a design that
is optimal. [t simplifies the mathematics to restrict our search to designs with
minimal support. This is possible by using Theorem 3.3.2. which says that for
any measure z on [a. b} not supported by p or fewer points. there exists a unique
measure £ on [a. b] with p+ 1 support points. for which x and € have the same first
2p+1 moments. When the original model function is a pth order polynomial that
might be contaminated by a p+ | order term only. for the D- and A-optimality

cases. the maximum loss functions are simplified. This simplification makes it
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easy to prove the existence of a symmetric optimal design for the D-optimality
criterion. [n Section 2.2. we mentioned that for the - and Q-optimality cases.
it is not known if the optimal design is symmetric. When the contamination
term is quadratic while the true model function is linear. we are able to prove

that the optimal designs are symmetric.

3.1 Introduction

[n this chapter the true coefficients of the lower order model are simply the first
p + 1 coefficients from the contaminated model.

More precisely. we set z(x) = (l.z..... 2T and za(x) = (L7 ... AL
where the regressors r range over the interval [—1/2.1/2]. The experimenter

fits. by least squares. the model
E(Y|r)=2l(r)8. 6 ¢e R
although the true model is
E(Y|r)=2(1)0, +20(r)8. 6, R*'.Be RI".

[n contrast to Chapter 2. here the true coefficient vector coincides with ;.
and the contamination term is simply zl' 8. The parameter 8, is identifiable
because any two polynomials that agree on a neighbourhood of zero have the
same coefficients. For any choice of design points (z;)™., our observations will
be given by

Yyi = Z_{‘(.’L'i)el + Z;(JI,’),B + =5 t=1l..... n.
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where we assume additive. uncorrelated errors z; with common variance 2.
The quality of the least squares estimate 8 will depend on the size of the

contamination term 23 and on the placement of the design points. We assume

that the contamination is small. in the sense that for some known 55 > 0. the

function 2I'3 belongs to

F= {18 [(]=)8) dz < ).

As in Chapter 2. the contamination space F defined above is a space of
polynomials whose degree is less than or equal to g. but it is not the same
contamination space F used in Chapter 2. [n Chapter 3. the notation F refers
to the space above.

For a given loss function £ then. our problem is to choose design points that
are robust against the worst possible contamination in F. that is. to minimize
supz L. Our loss function will always depend on the support points (x;)% only
through the design measure £ = (1/n) ™, d,.. so we recast our problem in
terms of measures on [~1/2.1/2]. In this chapter we let A¢ and C. for any

measure £ on [—1/2. 1/2]. be given by

de = [2@zl (@) &Wa). Ce= [ =012 (0) (dn.

This is the same as in Chapter 2 except u(xr) is replaced by z.(z). Note that Ae
isa(p+1)x(p+ 1) matrix. while C¢ is a (p+ 1) x (¢ — p) matrix.

The estimate 6. the mean squared error of @ and three loss functions are
derived in Chapter 2. See the equations from (2.1.10) to (2.1.11). We now want
to obtain optimal designs in the sense of minimizing supr Lp. supg L, and

supg Lg.



3.2 Suprema of loss functions

[n this section we review the supremum of the loss function over F in terms of
the design measure €. For convenience we define a (q — p) x (¢ — p) matrix by
By = [ zy(x)zf(r)dzr. and let o = By*B/n. and v = o*/nn?. The invertibility

of the matrix By follows from the same reasoning as in Chapter 2.

3.2.1 D-optimality criterion

We derived supr £p(8.€) in (2.2.3). here we merely rewrite it after rearranging

the term v = o*/np?.
B

2\P 2
sup Lp(B.€) = [ 2] (0 + AnaxGe) - (3.2.1)
F n ) |Ag

where G¢ = [5’0“'/"3(?__1&—1(.5 BO—I =)

3.2.2 A-optimality criterion

Similarly.
supL4(B.€6) = n? [1/ trace(.-lgl) + ,\muHE] . (3.2.2)
F

where g = 861/2(?"1£_2C'£B(;1/2-

3.2.3 Q-optimality criterion

Although the idea is the same in Q-optimality case we obtain a little different

formula and so we write it out properly. We begin by expanding
(20 —E(Y | 0)]) = [27(6 - 8,) — zIBJ?
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= z7(6 —00)(8 — 00)"z, — 22T(8 — 00)zL B + BT 2.2 .
Taking expected values gives
Elzf0 — E(Y | r)]? = 2T MSE(B.€)z, — 2BTCT A 2123 B + BT 2221 8.

Recall that .1y and Cy denote the A, and (', matrices when u is Lebesgue

measure on [—1/2. 1/2]. Then we can rewrite the loss function as
Lo(B.€) = /E[z,T(x)é — E(Y | 0)]*dr
= trace[MSE(B.&)Ao| —28"C{ A;'CoB + B BB
trace[A; ' Ao] + BTCF A Ao A7 ' CeB

—:.).ﬂ'r('g‘:‘gl('u,g + ,GTB()ﬂ.

Taking the supremum over F gives

supLo(B.€) = sup  Lg(B.€)
F BT BoB<n?
= (E) trace(.—l{'.—lo) + r)2(1 + Amax-e)
n
= r)2 [u Lrace(.»lg':\o) + {1+ /\max'jf)] . (3.2.3)

where

'/E = B(;I/z(('ér-‘lg—l-‘105lg—l('£ _ ('()T:lg—l('s _ (vg':ls—lcvo)Bo—l/‘l.

Using the results of the next section we hope to get more concrete information

on the nature of the optimal solution.
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3.3 Number of support points

Having found tractable formulas for various loss functions. we turn our attention
to finding the optimal design. that is the probability measure £ that minimizes
supr L(B.£). A closer inspection of the loss function reveals that. since we are
doing polynomial regression. supg £(8.£) depends on £ only through its first
P -+ ¢ morments.

The main result of this section is Theorem 3.3.2 which gives the minimum
number of support points necessary to define a measure whose first few moments
are specified. The proof depends on Lemma 2.1.1 which clarifies the relationship

between the value of p. the matrix A,. and the number of support points of p.

Lemma 3.3.1 [f the measure p has eractly p + | support points. i.e.. [ =

Sro0@.d,,. then det A, = [T, oy [Tigj(xi — ;).

Proof: When u has exactly p + | support points. then we may rewrite A, as

A | a 0 --- 0 l ro --- b

Lo Iy s Ly 0 o --- 0 Il oy - ¥
Ap =

& o) \o 0 o)\l g o

The matrix on the left is a Vandermonde matrix. and so its determinant is given

by [Tix;(x; — ;). The result now follows easily. =

Theorem 3.3.2 For any measure y on [a.b] not supported by p or fewer points.
there erists a unique measure £ on [a.b] with p + | support points. for which p

and § have the same first 2p + | moments.
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Proof: We begin by defining

Co Ho Ha - Hp Hp+1
L N I N Hp+2 (3.3.1)
Cp Hp Hpv1 - Hp Hoap+1

where the invertibility of the matrix of moments is guaranteed by our assumption
on p and Lemma 2.1.1. Setting o(z) = cp2? + - - + ¢1.L + ¢o. we may rewrite the

matrix equation above as the system
/O(J.').‘L‘i p(dz) = /ﬂ“*" wdz). i=0.1.....p. (3.3.2)
Setting w(x) = £P*! — o(x). this system tells us that

/w(.r);t’ u(dr) =0. i=0.1.....p

in other words. that fwrdu = 0 for any polynomial r of degree less than or

equal to p. In particular. if w can be factored non-trivially as w = rs. then
/ r*(x)s(z) p(dz) = 0. (3.3.3)

We claim that the polynomial v has p+ 1 distinct real roots (r;)7_y lving in the
interval [a. b]. First of all. if & had a complex root we could find a factorization
of the type w(r) = r(z)(2® + d?) with d # 0. Then (3.3.3) implies that u is
supported by the p—1 or fewer roots of r. which contradicts our assumption about
pt. Similarly. a multiple root would allow a factorization w(z) = r(z)(z — d)2.
which leads to the same contradiction. Finally. for any root d of v we have

w(r) =r(z)(c —d) and so

/ r(z)(z — d) p(dz) =0,
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Since g is not supported by the roots of r. it follows that z — d must vanish
somewhere in the interval [a.b]. in other words. a < d < b.
The points (x;)!_, will be the support points for our measure £. We find the

masses by solving the equation

L | I | Qg Lo
o Iy - Ip a Hy
p . .
R A ap p

Note that since the z;’s are distinct. the matrix above is a Vandermonde matrix
and hence invertible. Define the measure £ = " ja.d,,. Clearly. w(z) =

[T7-o(x — r,) vanishes &-almost everywhere and so
/ o(r)r £(dr) = / PHidr). i=0.1..... (3.3.4)

By construction. € has the same first p moments as p. and so setting i = 0 in

(3.3.2) and (3.3.4). we get

toer = [oln)utdz) = [ o(z)€(dz) = Epur.

which means that the (p + 1)th moment is also the same. Continuing in this
way for i from 1 to p. we conclude that £ has the same first 2p + | moments as
. We now prove that the weights ; are positive. Since x and € share the same
first 2p + | moments. they give the same integral for any polynomial of degree
2p + L or less. For any i between 0 and p. define r;(z) = [l;(x — x;). Then r,
is a polynomial of degree p. so r? has degree 2p and thus
a ] - 2,)? = [ r}(@) &(de) = [ r}(@) w(dz) > 0.
J#i
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where the strict inequality follows from our assumption on the support of p.
The only thing left to show is uniqueness. Let £ be a measure with p + 1

support points at £y < z; < --- < z, and T any other measure with the same

first 2p+ | moments as €. We consider the following polynomials. each of which

has degree of 2p + 1 or less.

Figure 3.1 Some of v functions.

wo(r) = (z — xo) [Ty (z — £)?

1#j—1.j
T T
Ij_2 I L; I+

YAV

o --- Lp-1 Ip
We have v, = 0.£—almost everywhere. i = 0. 1..... p + | and by the shared
moments [w; dT = 0.i = 0.1..... p + L. Suppose T(R\ {zo..... zp}) > 0 so
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that none of w; is identically equal to zero 7-a.e. Then T must assign mass to the
p + 2 disjoint intervals {y; < 0}‘1’:([, Conversely. this shows that if 7 has p + 1
support points. then they must be precisely rq..... Ip. [n this case. the masses

of 7 are found by solving

| | Qg &
Iy Iy -+ Ip a | [ &
I R VA 3
so that 7 = £. This concludes the proof. =

[n our regression setting we work on the space of the symmetric measures

and thus we must clarify that the above theorem holds there as well.

Theorem 3.3.3 If the measure 1 in Theorem 3.3.2 is symmetric about 0. then

s0 15 &.

Proof: The measure £~ has p + | support points and shares the first Zp+1
moments with .. the odd moments being zero. By the uniqueness in Theorem

3.3.2. we have £~ = €. in other words. £ is symmetric. [

From now on & refers to the measure with p + | support points whose exis-
tence is guaranteed by Theorem 3.3.2. We denote by & the kth moment of the

measure &.
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3.4 Some results whengq—p =1

Suppose now that ¢ — p = 1 so that C¢ = (4. . ... E3p+1)7. and By is a positive
scalar.
Lemma 3.4.1 If€ has p+ | support points (z;)"_,. then
A = -
(vg“_lgl(‘% = £2P+2'

where the elements of the vector ¢ are the non-leading coefficients of the polyno-

mial TTP_y(x — ;).

Proof: Define o(r) = [[y(z—r1;) =co+cjc+---+ cpz? + £7*! and note that

o vanishes pi-almost everywhere. Letting c= (cq. . ... ¢p)" and integrating gives
Jo(z)&(dx) Epri

0= : = dec+ : = Adec + (k.

J rPo(r)é(dr) E2p+1

and multiplying the equation above by .-15“ gives the first result. Multiplyving

the equation above by C'ér:'lg' gives C'sT;lg‘C' = —C'ETc. But
—('érc = —(co€pr1 + -+ cp€opr1)
= S”p—*— (COSp-rl +ee+ Cps 2p+1 +£’p+ )

= 3“/Fp*l dx)

= &Sypia- (3.-4.1)
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Observations when ¢ —p =1

SV
.

. For any measure p. the supremum of the loss function supz£L(B8.p) is a

function of the first 2p + | moments of u. But applying Theorem 3.3.3 we
obtain a discrete measure £ with p+ | support points that shares the first
2p+ | moments. and hence gives the same loss. For the measure €. Lemma

3.-L1 tells us that ('g.—lE_lC = &2p+» and so

2\ P 2
supLp(B.p) =supLp(B.€) = (U—) S/ (l/ + By 2p+2) - (3-412)
F F n BY

For any measure &. let £~ stand for the image measure under the mapping
o+ —r. and let £ be the symmetrized measure (L/2)(E+&7). It is known
that |A¢] < |1£-{ and since &yt is the same for € and €. we conclude
that the D-optimal measure must be symmetric. But it doesn't make the

minimization procedure easier.

We notice that for the A-and Q-optimality cases the “bias™ term is indepen-
dent of point masses. ;. From Lemma 3.-1.1. (T A7?Ce = c"cand A'Ce =
—c. and the vector ¢ depends only on design points z;. And hence the bias

terms f{¢ and .J¢ become

By'*cTeBy ' and By ' (cT Ao + CTe + cTCo) By /2.
For any matrix map { — -(f) that is linear in ¢. the mapping t —
trace(.A='(¢)) is convex because

(AT =244 4774 4!

85



and
-y

5)~t[tmce( 174 = 171(t))] > 0.

This means that the “variance™ term of sups £4(8.€) is convex. ( we
make a note that this claim is true for arbitrary p and ¢ not necessarily

q—p=1)

k. A counterexample shows that ~bias™ terms of supy £4(8.£) as well as
supr Lo(B.€) are not convex. Let p = l. ¢ = 2 and consider the measure
§ = [g0-4 + 505 This gives & = .1100. & = .211. and & = .1061
and so bias,(§) = 1.0. biasg(€) = 0.73 whereas bias(€) = 1.6465.
biasQ(g ) = 2.133. where 5 is the symmetrized version of £. Nevertheless.
when p = | and ¢ = 2. we can prove that optimal design for L, as well as

for Ly is symmetric.

Lemma 3.4.2 [fp =1 and q = 2. for any measure £ with |A¢] # 0 we can find

a symmetric measure £ such that. for any 3.

LA(B.E) S La(B.§) and Lo(B.€") < Lo(B.£)
and therefore the A-optimal solution and the Q-optimal solution are symmetric.
Proof: Since p =1 and ¢q = 2. we have z.(z) = 2.

L s' —1 l ( f‘... —£I>
e = and A7l = —— :
¢ (a 52) mE e TeTalseg

By Theorem 3.3.2. we may assume that & has 2 support points on [—1/2.1/2].

say. £ = ad, + (I — a)d,. for some z.y € [—1/2.1/2]. Then Lemma 3.3.1 tells us
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that
& —& =a(l —a)(r—y)*
We now define
§ = (e +0u=x)/2.
Note that (y — r)? = (53¢ — 45£)? and & = 0 so we get

1 ., L — &2
&G=-(r—y?= S — &

1 ol - @)
First we look at the “variance™ part of L ,( resp. Lg). that is. trace(A¢ ") resp.
trace[AE".-lgl). This is equal to (§; +d)/(& ~£l‘2). where d = 1 for d-optimality

and d = 1/12 for Q-optimality. Therefore.

£S5 { d Co — 2 4 ddall —
var(e) = 28 g & Rt&itldalloa)
& -4 3 & — &7
c.) C2 —2 2 ’) ..
_ 2 +(i _ <s| +d(1 ] «) > < & +C{ = ~var’ (€).
C) —f- C_) — Ca C_) —E'
S2 1 Q2 — 4 & i

Let us look at the bias term in L. that is. (7 A;%Ce. By Lemma 3.1.1. for any

measure supported by two points r and y we have. Ae 'Ce = (—xy. T+ y). so

_ 1
“bias™ (&) — "bias™(£") = (zy)’ + (r +y)® - (I 5 y)

4

[ ) a ) . 2
= gl y)*[16 — (z* — 6y + y7)]

The minimum of 16 — (22 — 6zy + y*) over the range —1/2 < r.y < 1/2 occurs at
£ = —1/2.y = 1/2 and the minimum value is 1. Since this is always positive.

and since var(€7) < var (§). we get £4(8.£%) < L4(B.€).



For Q-optimality. it is useful to use the formula A5'Cy = (1/12.0), then rewrite

Lo(B.€) as

Lo(B.§) = tr(A7' o)
+B" {[Ag'Ce — 45" Co[ o[ Ag ' Ce — AT'Co| + By — CTAF'Co} B

= tr(Ag " o) + BT {(zy + 1/12)* + (z + y)?/12 + 1/180} B.
Looking only at the term involving B and subtracting we get

"bias™(§) — ~bias™(€%) = (zy + /12> +(z + y)?/12 = [I/12 — (z — y)? /)2

= (1/16)(c + y)* [2 — (£* — 6zy + y?)]

The minimum of 2—(z?—6zy+y*) occurs at £ = —1/2.y = 1/2 and the minimum

value is 0. As for A-optimality. this shows that Lo(B.£%) < Lo(B.€). [ |

3.5 Optimal designs

We will illustrate how we can obtain optimal designs. We have proved that the
D-optimal measure is symmetric when ¢ — p = 1. In general. this follows from
Theorem 2.2..1. We have also proved in Lemma 3.-1.2 that the - and Q-optimal
measures are symmetric when p = | and ¢ = 2. For the other cases. since we
are not able to prove the optimal design is symmetric. we restrict to the class of
symmetric designs.

Applying Theorem 3.3.3 we see that the minimization problem depends on

the design points r; and their masses a;, i = I..... [(p + 1)/2]. Writing these in
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vector form gives
xT:=(ry..... Zipery/2)). and a = (qq..... Qpp+1)/2])-

To emphasize that we are viewing the maximum loss as a function of  and o
we write [(a. &) = supg L(B. Y, a;d;,). We formulate the minimization problem
as follows.

0<a; <1

Minimize [ (. z) : subject to { Y q; =1

0<ur; < 1/2
Since we have assumed that £ is symmetric. we only consider the design points
r, € [0.1/2]: the remaining ones are obtained by reflection. The number of
support points will vary according to number of moments involved in the loss
function.

For small values of p and ¢. the minimization problem can be solved numer-
icallv. Under the D- and A-optimality criteria we obtain the minimax designs
for approximately linear. approximately quadratic and approximately cubic re-
gression models. All the D-optimal design points and their masses are in Table

3.6. Table 3.8. Table 3.19. Table 3.12 and Table 3.1.L.
3.5.1 Approximately linear model

D-optimality criterion

Example 1: p = | (linear) and q = 2 (quadratic).

The experimenter fits a linear regression although the true model might be
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quadratic. By Theorem 3.3.3 and Lemma 3.14.1. there exists a design with two
support points £z; on [—1/2. 1/2] with equal mass and so ignoring the constant

term in the equation (3.-1.2). the target function becomes

supLp(B.&) = —[— (r+80&) = L, (u + 30 J:l‘) = Ip(xy).
F

E-) I

Consequently the optimal design is. with £} = (1/80)"/".

- (6_1+4d1)/2 v>5
) +0:)/2 ifrv<s

Example 2: p = | and ¢ = 3 (cubic).

The true model might be a cubic polynomial. but we fit a linear regression.
so the regressors are z,(x) = (l.2)" and 2zy(x) = (22 3)7. The supremum of
the loss function supr £(B.£€) in (3.2.1) is a function of the first 4 moments.
So in Theorem 3.3.3. the number of moments. 2p + I must be greater or equal
L. which implies that p needs to be 2. and thus we obtain a discrete measure
(o

§ with 3 support points. Since the measure is svmmetric. € is of the form

§=(l—a)dy+ (a/2)d,, + (a/2)d_,,. For this measure

L o /8082 0
.-1£:( ).and CE=( , )
0 & 0 H8(&/6)

The supremum of the loss function becomes

l Y .
Ipla.x;) = — [v + max{80a” ;. 18 a £8}].
I

The minimizer (a"..r}) is obtained by minimizing (p(c. ) over the domain

[0. 1] x [0. 1/2].
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Example 3 : p = | and q = - (quartic).

We fit a linear regression although the true model is a quartic polynomial. so
the regressors are z;(r) = (l.z)7 and zs(z) = (2°. 2%. £*)T. The supremum of
the loss function supz £(8.€) involves only the first 5 moments. Theorem 3.3.3
says that an optimal measure £ has 3 support points 0 and +z;. This measure
is of the form & = (1 — a)dy + (a/2)d:, + (/2)d_,, for some z, € [0. 1/2]. The
matrix -lg is same as in Example 2. The eigenvalues of the matrix G¢ are 448%

and 980€3 — 10080&,&, + 28224€3. Thus the maximum loss is

In(e. 1) = ——[v + max{980a%z! — 10080a’c" + 28224025, 118 a5},

QL7
A-optimality criterion
Example 4: p=1 and q = 2.
Similar to the D-optimal case. there are two support points. #:x,. with point

mass 1/2. [gnoring the constant term. the loss function in equation (3.2.2) is.

by Lemma 3.1.1.

sup L4(8.€) = wtrace(A7') + By ' PCT A CeBy '
F

0+ 1 =1/2 -1/2
= MR BBy (since A7 Ce = —)

2 4 | ] ”
Ql—._,-—) +80 x| :=1[4(r;) (sincec’ = —Ii).
1

Thus an optimal design is £* = (Jm;n{q,,/g}+J_min{1;.1/2})/2. with z7 = (v/160)'/8.

That is.
£ = (6.1 +01)/2  ifv>5/2
(O—g; +0::)/2 v <5/2
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Table 3.1: A-optimal design when p=1.¢ =2

v (design point : mass ) minimax loss

0 | no optimal design exists 0.0000
(£0.-1292 : 0.5) 9.14

2.5 (£0.5 : 0.5) 17.5

5 (£0.5 : 0.5) 30

1o (£0.5 : 0.5) 55

30 (£0.5 : 0.5) 155

The optimal design points and point masses are in Table 3.1 below.
Example 5: p=l.g=3and p=1l.q=1
There is an optimal measure £ with three support points =, and zero. and the

suprema of the loss functions are respectively

viary + 1 "
[i(a.ny) = %+mzm{80crr‘l‘.»l~18xf}.
- 1
viard + 1 ) R . v
Lfaey) = 28T {1182, 98002 £ — 100800 28 + 282210 1),
a.riy

Again the minimizer (a*..r]) is obtained by minimizing the loss functions above
over a square [0. 1] x [0. 1/2]. We present the optimal design for some v in Table

3.2

3.5.2 Approximately quadratic model

D- and A-optimality criteria
Example 6 : p =2 and q = 3.

The experimenter fits a quadratic model although the true model might be cubic.
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Table 3.2: A-optimal design when p= 1. ¢ =3 or 4

v (design point : mass ) minimax loss
0 | no optimal design exists 0.0000
L | (£0.2174:0.5). (0:0) 13.33
5 | (£0.3250 : 0.5). (0: 0) 99.66
10 | (£0.3865 :0.5). (0:0) 143.87
30 (£0.5:0.5). (0:0) 262.00

By Theorem 3.3.3 there is an optimal measure £ with three support points on
[—1/2.1/2] including zero. so £ = (1 — a)dy + (a/2)d;, + (a/2)d_,,. Thus the

loss function. by (3.-1.2). becomes

l
bslrpﬁo(ﬁ-f) = m(l/+4~1856)

L

m (I/ + 48 .I,'?) = lD((!.Il )
- 1

Hence the optimal design is

. . - | .
& =0-a)dy+(a/2)0 +(a/2)d_1 with a= 7§{T - 3v + V92 + T0v + 19}

The maximum loss for A-optimality is. by Lemma 3.-1.1.

&+ 1 1
supLi(B.€) = v =+ C—] + Amax e
F &1-& &
L+ azx} + (1 —a)r? 1
J48z7.
[ a(l —a)x} |+ 448,

The optimal designs for some v are in Table 3.3.
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Table 3.3: A-optimal design when p=2. ¢ =3

v (design point : mass ) minimax loss
0 no optimal design exists 0.0000

1 | (£0.5:0.2602). (0 : 0.4797 101.8782

5

10 | (£0.5 : 0.2602). (0 : 0.1797 766.7818
30 | (£0.5 : 0.2602). (0 : 0.4797) 224-4.345

)

(£0.5 : 0.2602). (0 : 0.4797) 397.3909
)
)

3.5.3 Approximately cubic model

The last example in this section uses the regressors z,(x) = (l.r..r% r*)7. and
z,(.r) = r'. That is. we fit a cubic regression whereas the true model might be
quartic.

Example 7: p=3 and ¢ = 4.

We consider an optimal design measure of the form
§=(a/2)(dz, +0_5) + (1 = a)/2)(dz, + 0_1,).

The maximum loss functions are easily obtained from Lemma 3.-1.1.

1
3165 — E6E3 + E6€a&a — €3

Sup Lp(B.E) = [ + 2304&].

L+ &y + &6 + &
£, — &5 && — &

| +2304 % (r] + 2zix3 + L3 + L}I3).

supL4(B.€§) = v
F

The optimal design points and their masses are in Table 3.-1.
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Table 3.4: A-optimal design when p = 3. ¢ = 4

v (design point : mass ) minimax loss

0 no optimal design exists 0.0000

(£0.2348 : 0.3341). (£0.5.0.1659) 141-4.387
5 | (£0.2416 : 0.3311). (£0.5.0.1690) 6203.047
10 | (£0.2425 : 0.3307). (£0.5.0.1691) 12186.19
30 | (£0.2431 : 0.3304), (£0.5.0.1696) 36117.73

3.6 Comparisons between polynomial models I
and I1

We present numerical values for optimal designs for the polynomial model I
of Chapter 2 and the polynomial model II of this chapter. We first recall the

notation z,(.r). z»2(r). and w(r) from the first section of Chapter 2:

u(r) = zs(z) — [/zl(r')z;_,r(x)dl']T[/zl(x)zT(r) dz|™'z(x).

We notice that the contamination part w(r) of the model [ is a polynomial
containing all powers up to the gth. On the other hand. the contamination part
Z»(.r) of model II contains only terms of degree greater than p. The D-optimal
design points and masses for the polynomial model [ are in Table 3.5. Table 3.7.
Table 3.9. Table 3.11 and Table 3.13. We also remember that the contaminating

space F in this section is same as in 2.5.10 in Chapter 2.

95



D-optimal criterion

Example 8: p=1and g =2
The regressors are z,(z)" = (l.z). 2(z) = 2.
[t is easy to calculate u(z) = (2° — 1/12). By = [u(x)u’ (z)dz = 1/180. and

(e = %( 128, — 1)2. The supremum of the loss function is
l 5 y
supLp = C—[U + —(12¢, — l)"]
F &2 1
Consequently the optimal design is. £ = (¢ min{z;.1/2} F O—min{er.1/2y)/2. with
ry = (W +5/720)"4. that is

- (0_ 1+<):/ if v >10
A (6—rs +06,:2)/2 v <10

Example 9: p =1 and ¢ = 3.
The regressors are z(r)" = (l..r). 2l (z) = (4. £*). The contamination part is

u'(r) = (£® = 1/12. 0% — 32/20). The matrices are calculated as follows
By = /diag(l/lso. 1/2800). G¢ = diag(%( 126, — 1)°. %(20& — 362)°).
hence we obtain the maximum of the loss function
Sl}p[,D(,B.E) = S—t[u—kmax{: (126, — 1)? —()054 - 3&)°}.

There are 3 support point including zero. and the optimal design is of the form
& =(l—-a")d + (a"/2)(dr; +0-;). where a” and z} are the minimizer of the

maximum loss.
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Example 10: p=1 and ¢ = .
The regressors are z((x)" = (l.x1). 2l (x) = (£2. 3. ).

The contamination part consists of three polynomials.
ul(r) = (27 = 1/12. 2% — 32/20. £ — 1/80).

The matrix By = fu(r)u’(r)dr is a 3 by 3 matrix

/130 0 1/840
Bo=| 0 12800 0
/810 0 1/3600

Two cigenvalues of the matrix G¢ are

5 945 5> 925 161
44110085 + %5; + 220585 — 31 &> — 18900&,&, + TR
and
7 [y . ..)
£ (206 ~ 362"

Again there are three support points and so the optimal design is of the form
& =(l—-—a")d + (a“/‘l)(t)}; +d_;:). where a* and ] are the minimizer of the

maximum loss.

Example 11: p=2and ¢ = 3.
The regressors are 2, ()" = (L.r..r?). 2l(z) = 3.
The contamination is a polynomial of degree three. u(x) = r* — 3z/20. The
constant matrix is By = 1/2800. and the bias term has a single eigenvalue.
Crg = 612(205_; —~ 3&)*. The maximum of the loss function is of the form

L 7 o

m[” + 5(2054 - 3&)°.
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The optimal design is of the form £* = (1 —a*)do + (" /2)(d,; +0_;;). where a”

and ] are the minimizer of the maximum loss.

Example 12: p=3and q = .
The regressors are z((r)" = (l.r. 2% 1%). 2] (r) = .
The contamination is a polynomial of degree four. u(z) = =* — 3z2/14 + 3/560.

The constant matrix is By = 1/44100. The maximum of the loss function is

! 006D +. 170
; £ = . —[v + (—9/64)(313600€> + 17760
WP = —a g ey T (TY/CNBIN00E + ITT60E,

+ 9€; — T2062€, — 62720062646 + 1344006285 — 1TTH0E2E,

2

— 965 + 7203 + 31360062 — 13-L100€,&6) /(€3 — £4))-

We provide the optimal designs for the polynomial model [ and the polyno-

mial model [I in the following tables.
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Table 3.5: D-optimal design for model [ when p= 1. ¢ =2

1%

(design point : mass )

minimax loss

0.0
0.1
0.5
L.0

L0
30

(+0.2887 : 0.5)
(£0.2943 : 0.5)
(£0.3140 : 0.5)
(0.3341 : 0.5)
(+£0.4317 : 0.5)
(£0.5 : 0.5)

(£0.5 : 0.5)

0.0000
1.1769
5.-4965
10.2492
37.0820
60
110

Table 3.6: D-optimal design for model [ when p=1.¢ =2

14

(design point : mass )

minimax loss

0.0
0.1
0.5
1.0

10
30

no optimal design exists
(£0.1880 : 0.5)
(£0.2812 : 0.5)
(£0.33-11 : 0.5)

(£0.5 : 0.5)
(+0.5 : 0.5)
(+£0.5 : 0.5)

0.0000
5.6569
12.6491
17.8385
40
60
140
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Table 3.7: D-optimal design for model [ when p= 1. ¢ =3

minimax loss

v (design point : mass )

0.0 | (£0.3873 : 0.2778). (0.0000 : 0.-L44) 0.0000

0.1 | (£0.38-14 : 0.2930). (0.0000 : 0.11-10) 1.1769

0.5 | (£0.3726 : 0.3551). (0.0000 : 0.2897) 5.4965

L0 | (£0.3598 : 0.4318). (0.0000 : 0.1364) 10.2492
2.0 | (£0.3747 : 0.14786). (0.0000 : 0.0423) 18.3736
2.8 | (£0.3933 : 0.43-19). (0.0000 : 0.0302) 24.0000
5.0 (£0.4317 : 0.5). (0.0000 : 0.0000) 37.0820
10 (£0.-4755 : 0.5). (0.0000 : 0.0000) 60.4531
30 (£0.4916 : 0.5). (0.0000 : 0.0000) 1147.6658

Table 3.8: D-optimal design for model [I when p = 1. ¢ = 3

% (design point : mass ) minimax loss
0.0 no optimal design exists 0.0000
0.1 | (£0.2656 : 0.2506). (0.0000 : 0.1933) 5.6569
0.5 | (£0.3247 : 0.3748). (0.0000 : 0.2504) 12.6-191
1.0 | (%0.3344 : 0.5). (0.0000 : 0.0000) 17.8885
50| (£0.4226 : 0.5). (0.0000 : 0.0000) 12.2857
10 (£0.1727 : 0.5). (0.0000 : 0.0000) 67.1213
30 (£0.5000 : 0.5). (0.0000 : 0.0000) 148.000
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Table 3.9: D-optimal design for model [ when p = 1. ¢ = 4

v (design point : mass ) minimax loss
0.0 | (£0.3873 : 0.2778). (0.0000 : 0.-1-4-L1) 0.0000

0.1 | (£0.390 : 0.28-£1). (0.0000 : 0.-4313) 1.1769
0.5 | (£0.3999 : 0.3082). (0.0000 : 0.3836) 5..1965

1.0 | (£0.4079 : 0.3360). (0.0000 : 0.3230) 10.2492
2.0 | (£0.4176 : 0.3852). (0.0000 : 0.2296) 18.3736
2.8 | (£0.4226 : 0.-4200). (0.0000 : 0.1600) 24.0000
50| (£0.4307 : 0.5). (0.0000 : 0.0000) 37.0828

10 (£0.--411 : 0.5). (0.0000 : 0.0000) 63.3668

30 (£0.11652 : 0.5). (0.0000 : 0.0000) 160.2507

Table 3.10: D-optimal design for model [[ when p=1. ¢ =4

12

(design point : mass )

minimax loss

0.0
0.1
0.5
1.0
5.0
10
30

no optimal design exists
(£0.3-832 : 0.1433). (0.0000 ; 0.7134)
(£0.3854 : 0.3153). (0.0000 : 0.3694)
(£0.4073 : 0.4395). (0.0000 : 0.1211)
(£0.-1226 : 0.5). (0.0000 : 0.0000)
(£0.4112 : 0.5). (0.0000 : 0.0000)
(£0.4679 : 0.5). (0.0000 : 0.0000)

0.0000
9.1303
15.2197
19.1857
42.2857
68.3665
16-.609
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Table 3.11: D-optimal design for model [ when p=2. ¢ =3

4 (design point : mass ) minimax loss
0.0 | (£0.3873 : 0.2724). (0.0000 : 0.-1552) 0.0000
0.1 | (£0.3918 : 0.331-). (0.0000 : 0.3371) 193.1609
0.5 | (£0.4080 : 0.3251). (0.0000 : 0.3498) 853.-4112
1.0 | (£0.1254 : 0.3191). (0.0000 : 0.3613) 1500.122
5.0 } (£0.5000 : 0.3032). (0.0000 : 0.3936) 1087.935
10 | (£0.5000 : 0.31-11). (0.0000 : 0.3711) 6279.972

. 30 | (£0.5000 : 0.3257). (0.0000 : 0.3487) 1-1953.00

Table 3.12: D-optimal design for model [I when p = 2. q =3

v (design point : mass ) minimax loss
0.0 | (£0.2500 : 0.2500). (0.0000 : 0.5000) 1792.000
0.1 | (£0.5000 : 0.253-). (0.0000 : 0.-1932) 1812.854
0.5 | (£0.5000 : 0.261). (0.0000 : 0.4719) 2040.824
1.0 | (£0.5000 : 0.2735). (0.0000 : 0.4531) 2280.155
5.0 | (£0.5000 : 0.3032). (0.0000 : 0.3936) 1087.935
[0 | (£0.5000 : 0.31-1-1). (0.0000 : 0.3711) 6279.972
30 | (£0.5000 : 0.3257). (0.0000 : 0.3487) [-1953.00
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Table 3.13: D-optimal design for model [ when p=3. ¢ =1

v (design point : mass ) minimax loss
0.0 { (£0.1700 : 0.3551). (£ 0.4306: 0.1-449) 0.00
0.0 | (£0.1724 : 0.2525). (£ 0.4339 : 0.2.175) 475078

0.5 | (£0.1810 : 0.2613). (£ 0.-4162 : 0.2387) 2003326
1.0 { (£0.1903 : 0.2706). (£ 0.4609 : 0.229.) 3338269

5.0 (£0.2166 : 0.2795). (£ 0.5 : 0.2205) 7523991
10 (£0.2191 : 0.2689). (£ 0.5 : 0.2311) 11602481
30 (£0.2217 : 0.2578). (£ 0.5 : 0.2422) 27685078

Table 3.1-k: D-optimal design for model II when p = 3. ¢ = 1

7 (design point : mass ) minimax loss
0.0 | (£0.2225 : 0.3323). (£ 0.5 : 0.1672) 3047007
0.1 | (£0.2226 : 0.3294). (£ 0.5 : 0.1706) 3146930
0.5 | (£0.2228 : 0.3188). (£ 0.5 : 0.1812) 3531119
1.0 | (£0.2229 : 0.3097). (£ 0.5 : 0.1903) 3989385
5.0 | (£0.2233 : 0.2809). (£ 0.5 : 0.2191) 7385404
10 | (£0.2234 : 0.2697). (£ 0.5 : 0.2303) 1161146
30 | (£0.2235 : 0.2582). (£ 0.5 : 0.2418) 27547100
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Chapter 4

Optimal designs for
approximately polynomial

regression

Huber (1975) and Wiens (1990. 1992) obtained minimax densities for an ap-
proximately linear regression model with the contamination space F.,. It is verv
natural to extend the minimax density approach to an approximately quadratic
regression. [t turns out that the minimax density for higher degree polynomials
is not tractable. [n this chapter we restrict to a class of densities that is tractable.
practical and can be generalized to higher degree polynomial models. We present
optimal designs for approximately quadratic regression and approximately cubic
regression for this restricted class. These optimal designs are easily generalized
to multiple regression as well. We not only describe the optimal designs for an
approximately quadratic bivariate regression with interaction terms but we also

explain how the densities might be implemented in practice.
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4.1 Review for approximately linear regression

and motivation

As we mentioned in Chapter 1. Wiens (1990. 1992) obtains minimax designs
for approximately linear regression. Our objective in this chapter is to extend
his idea to higher degree polynomial models. We present designs for approxi-
mately quadratic and cubic regression models as well as bivariate models with
interaction terms.

We use the perturbed model and the contaminating space F».

E(ylz) = 2zl (x)0 + f(x). (4.1.1)

[€F: = {[: /3= [ [@Pde < [ z(@)f(=)de=0}.

The regressor z € RP is given function of z. where x varies on a design space

S C [R7. Wiens calculates the loss functions explicitly. With

b/.€) = [ 2(@)f(e) de(z)

and ¢ as defined in (1.2.2) and g corresponding to the Lebesgue measure.

Wiens finds that

Lolf.©) = IMSE(j(x))

= (%) tr[Ag o] + 87(/.) A7 o047 '6(/.6) + [ () de.

Lo(f.€) = det(.\'lSE(f.E))=<%.) ﬁ(l+(Ti._,bT(f,£).~1g‘b(f.E))-
La(/.6) = t(MSE(/.€)) = (%) trAZ + b7 (£.£)AT(/.€).

105



Wiens applies the minimax approach. that is. looks for £* € = such that supg, L(f.§)
is minimized by £”. It is necessary that £ be absolutely continuous for supg, L(f.€)
to be finite (see Lemma | in Wiens (1992))and so without loss of general-
ity we may restrict our attention to absolutely continuous measures €. Let
m(x) = £'(xz) be the density with respect to Lebesgue measure. For the maxi-
mization part. it is enough to look for f in a finite dimensional space in RP. To

state the result precisely. we need a few definitions.
Ke = /z(z:)zT(a:)m"’(m)d:z:.
He = AeAj'de. Ge=Ke— He.
M) = nGg'*(m(z)l - AcAFY) z(x).
Wiens establishes an important result in Theorem | of Wiens (1992):

sup L(f.€) = max L(hs.&) forall hy=rT(x)3 |3 = 1.

By this result. we are maximizing a continuous function over the compact set

{.3:13ll = 1} and hence the maximum is attained. This result leads to
supLo(f.&) = Lo(hs &) = e [1/ tr(:lg'.-lo) + ,\mm([\'&HE_'] . (1.1.2)
Fa
o2 \7! >
: — _ {2 /2 1 k2
SupLolf.€) = Lo(hs.€) = ( - ) T [V Amae GG
(-1.1.3)

SUpLa(f.6) = La(hs.€) = 1* [tr(Ag") + Aal G2 AZGYH)] . (1.10)

For the minimization part. Wiens fits a plane. z(z) = (1.z27)7. where z =

(ry..... r,). and the design space S C [R? is a sphere of unit volume with radius
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w. He restricts to densities m(x) that are symmetric in each variable and each of

the variables is exchangeable. There are two non-zero eigenvalues in each matrix
/2 - /2 - — /2 —% /2
GPAT'GR. Kl GPAZIGYR.
which are of the form

AN(m(z)) = /mz(:z:)d:t:. Ao(m(z)) = /x.m‘-’(m)dm.

A

(S8

where

S = /.c',-’dm - q“:‘). £ :/J:',-’m(a:)d:c. (4.1.5)

To proceed to the minimization. we need to know which eigenvalue is larger. Let
us assume that \; > \,. First hold & fixed. and minimize [ m>*(zx)dx over all
continuous densities. Let m(ax:&) denote the minimizer. Next. minimize the

maximum loss function

<
sup Lo(f.€) = i° [/ m*(z: &) dx + v(l +qz—0) )

Fa 2
Let m(z:&5) be the minimizer. Finally verifv that indeed the first eigenvalue
is larger at the minimizer. that is. \{(m(z:&5)) > X\a(m(z:&5)). For Q- and D-
optimal designs. the first eigenvalue at the minimizer is larger. For A-optimal

design the second eigenvalue is larger at the minimizer. This leads to the optimal

density functions. for Q- and D-optimality cases.

m(x. &) = a(l|z|]® — b)*.



where a and b are determined by the equations in (+.1.5). For A-optimality case
m(z. &) = a(llz|* - 6)*/|j=||*.

For higher degree polynomial regression models. not only are there more than
two eigenvalues. but also the eigenvalues are more complicated than the ones in
the linear model and so obtaining the optimal density function is not so easy.
We will illustrate these obstacles by fitting a quadratic polynomial under the
Q-optimality criterion. [n the perturbed model (4.1.1) with the contaminating
space JF,, take the regressor. z(z) = (1. z.2%)". where —1/2 < z < 1/2. Ignoring

the term 7°. the maximum [VMSE is

sup Lo(f.€) = vir (A7 o) + Amax(Ke HS ).
Fa

Letting & = [.o'm(r)dx. k; = [ 'm?(x) dr. we calculate matrices

1 0 1/12 L 0 &
Ao = 0 /12 0 |. de=]|0 & 0
/12 0 1/80 & 0 &
ko 0 ks he O A
Re = |0 Kk 0. He=|0 hy 0
ks O Ky hi 0 hy

where the clements of matrix /e are functions of certain moments:
ho = 9/1— 30& — 1805
hi = 9&/4 — I5€; — 1563 + 180&.E,.
hy = 12&. hy = 963 /4 — 306,€, + 1803,
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There are three non-zero eigenvalues in the matrix KH; ' :

Moo= ky/ho,

A2 = (B+ VBI—1AC)/2A.
A3 = (B— VBZ—1AC)/2A.

where A. B.C depend on h; and ;.

A h0h3 — h'lz = det(Hs)/hg,

B = I\.’()h:; + lm'_;h,() - Zkghl.

C = koky — k3 = det(Ke)/ka.
We are now looking for the density m that minimizes
max{\(m). \a(m)} + v tr(:lg'.‘lo).

We first assume \; > \,. when evaluated at the minimizing density. Fix &.&;:

this fixes the matrices ¢ and He so that the problem is to:
I. Minimize \(m) = [ .r*m*(r:&. &) dz for fixed &. and &;.

2. Vary the parameters of the minimizing m so as to minimize

Ai(m) + I/tr(--lg':\o).
3. Verify that for the final m*. we have indeed \;(m*) > \y(m*).
From the first step. minimizing k, for fixed &,.&; gives

m(c) = (ax® - b/2> +¢)F. b > 0.
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This m can never place mass near 0. :}:% only as it should when v — o>c. [t turns

out that

Aa(m(zza”. b".c")) > \i(m(z:a". b".c")).

where a* = a(&5.&3). b" = b(&.&}). ¢ = c(£5.£;) are the minimizers at step 2
above. Now then minimizing )\, for fixed &, &, gives the minimax density of the
form. for positive a. and real coefficients b.c.d.e. and f.

l+bz2+cx“>+

1.1.6)
d+er? + fr! ( )

m(r) =a (
But the density above is very complicated. As a remedy. we restrict to densities
m which are reasonably tractable and have the correct limits. In this restricted

class it is not meaningful to pick a largest eigenvalue. and now we write the loss

function to be minimized as
lo(m) = max{Ai(m). A\o(m)} + vr(A7" Ao).
We propose densities. with coefficients a > 0. —oc < b < . 0 <s<t<L 1/2
m(r) = a{(z?® — %) (z® — 2) + b}~ (-1.1.7)

To carry out the minimization process using the “nlmin~ function in Splus. we
need to take transformations on ¢. ¢’ = (¢ — s)/(1 — 2s). and so that the domain
is a rectangle shape. 0 < 5 < % and 0 < ' < % From the fact f m(z)dr = 1.
the constant a is written in terms of s. ¢. and b. Thus our optimization problem
becomes to

0<s<!
Minimize g {s.s + t'(1 — 2s).b}: subject to { 0 < ¢' < x
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[n the optimization problem. it is complicated and time consuming to ob-
tain the integrals & and k;. We have applied Simpson’'s rule (see p.266 of
Thisted (1983)) to approximate these integrations. We now provide explana-
tions why we choose to restrict to the densities in (1.1.7). First. the den-
sities of this form are not only easily constructed but also can be general-
ized to the higher polynomial models. For a general polynomial regressors.

z(r)=(l.r.o?. . ... rP)T. take the densities of the form
a{(2® —s7)(2* = 53) -+ (£* — 5}) + b},

Transformation on the domain 0 < s, < s2 < --- < sp < 1/2 can be easily done

via
51 = 510850 = (52— 51) /(L = 2s7).... . S ; = (5p = sp—1) /(1 = 2sp_1)  (1.1.8)
so then 0 < ) < % foralli=1..... p. We verify that this transformation works.
Let
S'={seRP : 0<si<1/2:i=1..... p}
and

S={s€lRF : 0<s <sa<---<sp<1/2}.

Defineo: 5 — S’ by

(0(8)); = (55 —s;-1)/(l = 25;_4)

for j = 1..... p. where 5o = 0. We prove that o is a one-to-one mapping of S

onto S’ : Let s € S. we show that o(s) € S’. The condition s;_; < s; < 1/2
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implies that 0 < (s; — s;21)/(1 — 2s,_1) < 1/2. that is. 0 < (@(s)); < 1/2.
and thus. o(s) € S'. Now for any s’ € S’ define coordinates inductively s, =
sprsp =S s (L=2s;0). =2, p- By induction 0 < s;_; < 1/2. Thus
sj—1 < 8; < s+ (1/2)(1 = 2s;-1). This shows that s = (51.....: sp) € S and
clearly o(s) = s’. The same inductive argument shows that if o(s) = o(t). then
s =t so o Is one-to-one.

Also. for v = 0. the minimizing density m* () is approximately uniform. As
r gets larger. the mass is concentrated around 0 and :t%. This means that the
densities have the correct limits because (i) for » = 0. only the bias term is
minimized and hence the optimal design is uniform. (ii) for large v. the variance
swamps the bias term. and so the optimal density is as in the classical Q-optimal
case. that is. all masses are at 0 and the boundary points.

We sum up the algorithm to obtain an optimal density for an approximately

polynomial regression. z(r) = (l.r..... T,

- Obtain the matrices -ly. -A¢. K¢ and set He = A¢Ag' A,

S
.

Obtain the (p + 1) eigenvalues of the matrix KeH'.
3. make the transformation (4.1.8).

l. Obtain the coefficient a in (.1.7) as a function of s’ and b as a result of

Sm(x)dr = 1.

Write out the loss function / in terms of s’ and b.

a1

lo(s'.b) = maxi<i<pr1 {\ (. 0)} + vtr[A7" (5. b) Ag).

112



Using Simpson’s rule. calculate the &;'s and k;’s and apply the ~nlmin”
function in Splus to minimize [(s’.b) over p dimensional rectangle and

—x < b < x for all v.

[n the following section we provide optimal density functions for some v’'s under

the three optimality criteria.

4.2 Numerical results for quadratic and cubic
regression models
4.2.1 Design densities for approximately quadratic re-
gression
(2-optimal design
As illustrated in the first section of this chapter. Q-optimality leads to the fol-
lowing type of density
m(ria.s.t.b) = af(2® — s7) (£ = 17) + b}* (1.2.1)
to minimize the loss function lo(m(zr:a.s.t.b)).

D-optimal design

There are three eigenvalues in the matrix Gé/ 2’16_ 'GE'/ 2. and they are

&
B+ vB*—1AC
1\‘2 = .
2A
B—-vB2-1AC
/\3 = ‘)A .
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where A. B and C are

A = & — &

I

B = &(ko—ho) + ky — hg — 28(ka — hy).

C = (ko—hol(ky — hy) — (ks — hy)*.

-\-optimal design

The three eigenvalues of the matrix Gé/‘l;lg")Gé/g are
ks — ho
/\l = =~ 2 ~
$a

v - B+ vB?—1AC
T 2A
N B-/B*-1AC
S 2A

where A. B and C are

A = (L+E)E+E) + G+ &)

B

1

(&3 + &) (ko — ho) + (1 + E3)(ky — ha) — 265(1 + &) (ks — hy).

C = (ko— ho)(ky — h3) — (ka — hy)>

We present constants for densities for a few values of  in Figure 1.1 and Table

1.1. Table 1.2 and Table 4.3.
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Figure 4.1: Q-optimal design densities for an approximately quadratic regression

model with contaminating space F,.
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Table -1.1: Values of the constants for the Q-optimal design with the regressor

(L.r. )T and density a{(z? - 5%)(z> — t3) + b}~.

L a s t b minimax loss
0.0 { 0.9935 |0.3055 | 0.4051 | 1.0002 1.0000
0.1 | 3.7502 | 0.0000 | 0.0000 | 0.2542 1.2949
0.5 | 12.7553 | 0.0000 | 0.0000 | 0.0659 2.4199

1O | 303131 | 0.2384 | 0.2.148 | 0.0225 3.7771

5 | 161.6086 | 0.2296 | 0.3588 | 0.0020 13.7980

10 | 252.2335 | 0.2402 | 0.3658 | -0.0008 25.5299
30 | 595.1804 | 0.2581 | 0.37763 | -0.0053 70.8142

50 | 858.2380 | 0.2617 | 0.3832 | -0.0067 115.2659
100 | 1649.753 | 0.2735 | 0.3864 | -0.0090 225.1967
300 | 1561.569 | 0.2777 | 0.3958 | -0.0109 659.8831
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Table -1.2: Values of the constants for the D-optimal design with the regressor

(L.r..c?)T and density a{(a? — 5%)(z2 — £2) + b}+.

v a s ¢ b minimax loss
0.0 | 0.0575 0.00 0.50 | 17.4020 0.0002
0.1 | -L1404 0.00 0.00 | 0.2290 20-.233
0.5 | 138.5807 | 0.0000 | 0.0000 | 0.0413 862.-1813
1.0 | 35.0934 [ 0.1487 | 0.1489 | 0.0192 1534.574

5 | 242.8386 | 0.2213 | 0.3531 | -0.0004 5011.176
10 | 416.5016 | 0.2388 | 0.3639 | -0.003: 8295.715
30 | 1026.31 | 0.2777 | 0.3638 | -0.0078 1968711
50 | 1589.-4 | 0.2660 | 0.3823 | -0.0085 30198.11
[00 | 2935.27 | 0.2725 | 0.3830 | -0.0099 55263.38

300 | 8528.96 | 0.2399 | 0.1212 | -0.0096 150218.8
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Table -1.3: Values of the constants for the A-optimal design with the regressor

(L..r.2?)T and density a{(r? — s?)(z> — t?) + b}™*.

v a s ¢ b minimax loss
0.0 | 0.0219 0.3598 | 0.3602 15.65 0.0
0.1 | 25611 0.00 0.00 0.37796 19.0908
0.5 | 10.5537 0.00 0.00 0.0823 90.8195
1.0 | 178.3140 | 0.2384 | 0.3627 | 0.0013 150.8177

5 | 3343 | 0.2460 | 0.33721 | -0.0025 554.8372

10 | 569.2337 | 0.2548 | 0.3785 | -0.0050 101-1.474
30 | 131134 | 0.2743 | 0.3816 | -0.008-1 2724.04
50 | 2107.822 | 0.2920 | 0.3755 | -0.0102 1363.187
100 | 3712.865 | 00.2776 | 0.3934 | -0.0106 33-1-1.859
300 | 10357.91 | 0.2806 | 0.3999 | -0.0119 23899.08
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4.2.2 Design densities for approximately cubic regression

We fit a cubic polynomial although the true model might be only approximately
cubic. The regressor z(z) = (l.z.z°. %) and —1/2 < r < 1/2. Similar to the

quadratic case. here are four matrices:

L 0 1/I2 0 L 0 & O
0 /12 0 1/80 L_|0 & 0 &
Tl o s o |0 T e 0 & o0
0 1/80 0 @ [/448 0 & 0 &

ke 0 ks O he 0 hy 0

) 0 k& 0 Kk 0 hy 0 hj

Ke = . He =
. 0 ki O hi 0 hy O
ke 0 ke 0 hy O hs

where
ho = 9/4— 306 + 180€3.
hi = 9&/1 — 1565 — 15€, + 1806:&,.
hy = T5€; — 310&:€, + 28006,
hy = T56.& — 42067 — 420658 + 2800656
hy = 9€2/1— 306.€, + 180€2.

hs = 7562 — 840€,Es + 280062,

We first recall the suprema of three loss functions in (-£.1.2). (4.1.3) and ({.1.1).

There are four eigenvalues of each of the matrices. KeH'. GY2A7'GY? and
€Hle £ 3 3

,’é/ “):lg "’Gé/ *. It can be shown that two larger eigenvalues are of the form. the
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super script @ is replaced by D. and A.

B2 +\/BF — 149¢Q

Q _
AT = 2A9Q

@ _ B+ VB — 149¢2
4 ‘3 -_ 2-A2Q -

where A. B. and C’s are respectively

AR = hohy — ki B = kohy + kyho — 2kshy. CQ = koky — k2.

AT = hahs — b} BS = kahs + keha — 2kyhy. C9 = koks — k2.

For the D- and --optimality cases A, = | = A,. The other constants B.C are

BP = [—Es(ks — hs) + 26, (ks — h3) — Ea(ks — hs)] /(€} — Ea85).
o = [(k2 = ha)(ks = hs) — (ks - ha)z] /(&8s — &).
BY = [&i(ko — ho) = 2&5(ka — hy) + ky — hy] /(& — D).
CP = (ko= ho)(ky = hy) = (ks ~ k)] /(& - &
Bl = [(hs = ha)(€} + &) — 2ky - ha)(Eats + )
(ke — hs) (& + &) /(€] — Sae)™.
Gt = [k = )l = hs) = (s = ho)?] /(6 ~ ).
By = [(ko — ho)(€} +€2) = 26a(1 + &) (k2 — hy)
(1 + &) (ks — ha)l/(&s — €2)*

]

3= 6+ 8 - 28] [(he — ho)(ky — ha) — (ke — h0)?] /(61 - €D

N
I
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In this cubic regression. we are working on the density of the form
al(z® — s*)(2* — £2)(2® — u®) + b*. (4.2.2)

The coefficient a is non-negative. b is real and 0 < s < t < u < 1/2. Taking
transformations on s.t.u we rewrite the supremum of loss function [. say. in

terms of s. . u'. and b. Consequently our optimization problem. for each fixed

V. is to

0<s<i?

. : : : 0<t<y
Minimize {[s.s + £'(1 — 2s).t + «/(1 — 2t). b]; subject to -
o<u <

|b] < +oc.

We present the design densities for some values of 1 in Figure -1.2. Table 1.1

Table 1.5 and Table 1.6.
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Figure 4.2: Q-optimal design densities for an approximately cubic regression

model with contaminating space F».
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Table 1.-: Values of the constants for the Q-design with regressor (1. .. > 13)7T

and density a[(z* — 5?)(z? — £2)(z® — u?) + b|*.

v a 5 t u b minimax loss

0 0.9931 | 0.1768 | 0.3255 | 0..4122 | 1.0069 1.0
375.6921 | 0.2089 | 0.2783 | 0.3789 | 0.0025 -1.6856

5 1 2502.225 | 0.1354 | 0.3075 | 0.4489 | 0.000. 18.2199

10 | 3950.191 | 0.1129 | 0.3164 | 0.4532 | 0.0002 34.2523

30 | 9116.176 | 0.0766 | 0.3275 | 0.4609 | -0.0001 96.7066

50 | 13387.3 | 0.0846 | 0.3206 | 0.4671 | -0.0002 158.3118
100 | 25209.03 | 0.1064 | 0.3066 | 0.4762 | -0.0001 311.0753
300 | 65091.77 | 0.0818 | 0.3131 | 0.4786 | -0.0003 917.073

Table -1.5: Values of the constants for the D-design with regressor (1..r. > r3)7

and density a[(r? — 5?)(2? — £2)(® — u®) + b]*.

v 7 5 t u b minimax loss
0 1.9989 | 0.0786 | 0.3903 | 0.45.14 0.5 2.-1950

l 77211 | 0.2154 | 0.3201 | 0.394 | 0.00128 3682302

5 | 3886.56 | 0.1284 | 0.3365 | 0.4347 | 0.0001 11006605
10 | 5705.22 | 0.1666 | 0.2766 | 0.1567 | 0.0002 17407275
30 | 5103.67 | 0.1368 | 0.3193 | 0.4290 | 0.0001 545821644
50 | 20954.8 | 0.1537 | 0.2846 | 0.4740 | 0.0000 59985266
100 | 38705.3 | 0.1680 | 0.2726 | 0.4313 | 0.0000 107854319
300 | 105929.5 | 0.1850 | 0.2582 | 0..4890 | 0.0000 287322612




Table -1.6: Values of the constants for the 4-design with regressor (1. .r. 2. r°)

and density a[(L? — s°)(2* — £2)(2* — u®) + b]*.

N\T

v a 5 t u b minimax loss
0 0.9905 0.2191 | 0.3745 | 0.-L107 | 1.0098 0.0000
L 22769.3 | 0.1278 | 0.3210 | 0.4510 | 0.0003 2416.38
5 914,62 | 0.1458 | 0.3412 | 0.-1491 | 0.0001 3975.609
10 | 7849.92 | 0.1281 | 0.3802 | 0.4395 | -0.0002 16507.76
30 | 19640.54 | 0. 14445 | 0.3187 | 0.-4733 | -0.0000 43-153.8
50 | 314764 | 0.1129 | 0.3418 | 0.4697 | -0.0003 69737.21
100 | 57743.0 | O.1147 | 0.3427 | 0.4733 | -0.000: 133714.1
300 | 160703.2 | 0.0710 | 0.3710 | 0.4662 | -0.0000 383961

4.3

Bivariate regression model

4.3.1 Approximately linear with interaction terms

Wiens (1990) also fits the bivariate surface with interactions. That is

gressor is z(x) = (l.ry..ro.000)7

. the re-

. and the design space is a rectangle S =

[=1/2.1/2] x [=1/2.1/2]. Wiens restricts to symmetric designs as well as ex-

changeable m. We find then

Ao = diag(L. L/12. 1/12.1/141).

Ae = diag(l.&:.82.8m).

[\.E =

f[& =

diag(ko. ku. ko, ka).

2 )

diag(l. 12€5. 1265 1-14€3,).
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where

& = /J:'fm(:z:)da:. Eao =/;r';’1::::m(:z) dz.
ky = /m"’(:z:)d:c. ko =/xfrn2(m) dz.

kyy = /J:'fx:::mz(m)d:z:.

The maximum [MSE is now

- p— [ [
/\ma.x(Kfflf l) Ty <[ * 6—6’ * l-l-lf‘)") .

There are three eigenvalues in the matrix [\}Hg‘ :

[ BY 9
Ay = 28] /z,m (z)dzx
Ay = “-115322 /z;xjm'(m)dm

Wiens (1990) obtains the minimax density of the form
mo(z) = {a + b(z] + 13) + criz3}*.

with the coefficients determined by the three equations

/mo(m)(lm = l./J;fmo(:z:) dxr = Eg./rf;rgnzo(x) dx = Exn.

(4.3.1)

For small values of v (0 < v < 1.2758) Wiens calculates the minimax densities

explicitly ( see Table 1.7).

Our goal which as we introduced in Section 1.1 is to look for tractable den-

sities for all v. The algorithm in Section -f.1 can be generalized to this case as
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Table -L7: Values of the constants for the (Q-design with regressors

(L.ry.£2.7.02)" and density {a + b(z? + £3) + cxizi}*.

v a b c & 29 minimax loss
0.0 I 0 0 0.0833 | 0.0069 1.0000
0.1026 | 0.8716 | 0.5109 | 5.5091 | 0.0888 | 0.0080 1.3957
0.2452 | 0.7379 | L.1455 | 10.2538 | 0.094: | 0.0091 1.9125

0.4307 | 0.6004 | L.7947 | 14.4636 | 0.1000 | 0.0102 2.5491
0.6621 | 0.4603 | 2.4761 | 18.2869 | 0.1056 | 0.0112 3.3057
0.9427 1 0.3182 | 3.1816 | 21.8213 | 0.1111 | 0.0122 L. 1837
L2758 | 0.1745 | 3.9055 | 25.131 | 0.1166 { 0.0133 5.2412

long as we restrict to symmetric and exchangeable densities. We determine the

minimizing coefficients of a general density of the form
m(ri.r2) = ao{(xi — 57 + bo) T (3 — 5% + by) 7} (-1.3.2)

over the domain 0 < 5 < 1/2. —oc < by < oc. We show the optimal densities for
v =2 and v = 10 in Figure 4.3. We compare our optimal designs in Table 1.8
and Wiens's minimax designs in Table 1.7.

We write out the maximum loss functions for D- and l-optimality cases.

L ko — 1263 kan — L1IES,
supLp(f.&) = ——(r + max{hky — |. = 5'. = &
Fa

§1&a &

—=}
ko — 1262 kap — L4IEL,

& &

n
[ M)

.

2)
s}lg)l:,‘(f.f) = 1/(l+é+€£2)+nlz1x{ko—l.

We present the optimal designs in Table 1.9 and Table -1.10.
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Figure 4.3: Q-optimal design densities for an approximately linear bivariate
regression model F»: (a) m = 51.37(z% +0.05619)(y> + 0.05619) when v = 2; (b)
m = 178.92(z? — 0.00988)F(y? — 0.00988)" when v = 10.

0 2 4 6 8 10 12

Y X

(b)
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Table .83: Values of the constants for Q-design regressor (l.xy,rs, r172)7 and
density ao{(z] — s* + bo)* (23 — 52 + bo)*}.

regressor

v ay bo s & minimax loss
0.0 1.05e~% | 975.672 | 0.19997 | 0.0833 1.0000
0.2452 | 43300 | 0.3972 | 0.0000 | 0.0949 1.9136
0.6621 | 16.3292 | 0.1641 | 0.0000 | 0.1058 3.3058
1.2758 | 33.4823 | 0.0895 | 0.0000 | 0.1155 5.1881
5 108.1208 | 0.0171 | 0.0650 | O.1-tL1 15.2121
L0 [78.9152 | 0.0322 | 0.2051 | 0.1562 27.3458
30 471.071 | 0.0082 | 0.2494 | 0.1776 71.9586
100 1597.25 | -0.0284 | 0.2700 | 0.1970 217.1245
Table 1.9 Values of the constants for the D-design with
(Lory.paorira) . density ao{(x7 — 5% + bg) T (2 — 52 + bg) } .
17 ag bo s & minimax loss
0.0 0.0000 | 1:3336.25 | 0.0000 | 0.0833 0.0001
0.2452 | 12,445 0.2000 | 0.0001 | 0.1029 3158.756
0.6621 | 85.600 | 0.02475 | 0.000 | 0.1347 5581.7
1.2758 | 131.02 | 0.04400 | 0.2333 | 0.1565 6896.11
5 550.666 | 0.00011 | 0.2483 | 0.1804 11230.34
10 1005.57 | -0.0158 | 0.262:1 | 0.1904 1541 1.77
30 2869.85 | -0.0457 | 0.2731 | 0.2043 28271.81
100 | 10249.13 | -0.1170 | 0.1927 ! 0.2168 63007.22




Table

1.10:

Values of the constants for the .4-design with regressor

(Lry.ra.xyr2)”. density ao{(z? — 5% + bo) (23 — 5% + bo) } .

4.3.2 Approximately quadratic with interaction terms

We can extend the idea above to the quadratic regression model with interaction.
that is. € = (ry..9)

again a rectangle [—1/2.1/2| x [—1/2.1/2]. We obtain the basic matrices with

v ag bo s & minimax loss
0.0 0.0000 | 10L.455 | 0.1977 | 0.0833 0.0000
0.2452 | 1.2392 | 0.4024 | 0.0000 | 0.0948 36.7937
0.6621 | 28.8611 | 0.1028 | 0.0000 | 0.1132 34.001
1.2758 | 96.26 | 0.01859 | 0.0000 | 0.1378 133.635
5 20156 | 0.0326 | 0.2339 | 0.1639 338.71
10 421.61 | 0.0127 | 0.2487 | 0.1755 574.96
30 1216.18 | -0.0204 | 0.2669 | 0.1932 1389.13
100 | 1506.07 | -0.05693 | 0.2765 | 0.2092 38-18.60

T

&n = [cizim(x) dx. ke = [ ririm*(z) dz.

L 0
0 1/12
~ 0 0
oy o
/12 0
0 0

0 /12 112 0

0 0 0 0
/2 0 0 0

0  1/80 /1 0

0 /L4 1/80 0

0 0 0 1/144/

.z(x) = (l.xy.ro.03. 05 5109)7. The design domain is




0 0 & & O
0 & 0 0 0 0
Lo |00 & 0 0 0
&L 0 0 & S» O
& 0 0 & & O
0 0 0 0 &n
ko 0 0 Ak hk» O
0 Kk O 0 0 0
) 0 k& 0 0 0
Ke =
ks 0 0 ki km O
ks 0 0 hp ki O
0 0 0 0 0 kx»
where

hy = 7/2—60& + 36065

hy 0 0 hy
0 hy 0 O
0 0 hy O
ha 0 0 hy
hay 0 0 hs
6 0 0 0

hy = T6&/2 - 3065 — 156, + 180&:€; — 15622 + 180E260.

)

Il;; = [25_;

hy = TE/2 — 3066, — 30&a€a + 18OE; + 1803,

hs = TE3/2 — 30&:&s — 306220 + 360&,Em.

There are 6 eigenvalues in the matrix ReH '

among the following - eigenvalues.

ko Koy 1\7 — ko
/\1 = — Ay = = /\3 = : =

hy - he hy —hs~

where A. B and C are
A = h,lh,.,; + ,Llh_-', - .2’1
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[t can be shown the maximum is

/\4 =

B+ vB* - 1AC
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B = kgh_; + I\Toh.;', + k4h[ + ng/Ll - ‘Uighg,

C = k0k4 + k()k-)_g - 2/\7-:;
The maximum [MSE is. with above -t eigenvalues.

supLo(f.€) = max{\}, + l/tr(:’lo.-’lg')
Fa
|
66 T1i€x
— 66 — 66 & + 6068 — 60682 — 9& + 56

= max{\}i_, +v [

(35_"; — & — &) 360(£3 — 26384 + 2636m — €35
For the D- and A-optimality cases. the maximum loss functions are
L D \D \D \D

Sllp[: ( . C) = 5 ) 5 (l/ + m'd.\—(/\ ./\2 . /\2 . /\2 . }).
L I E5Em(EF — 26483 + 26083 — &3) I

2 l i + & 2(& — &)
supLa(f.&) = v + + = 3 = 5 )
;.f’ A (5, €0 & — 263 +Em G — &1+ 2nbl — €L

+max{A;. A A AL

where the eigenvalues are function of &. &, €. ko. k2. ky and ks, We omit the
expressions of the eigenvalues because theyv are very lengthy.
We provide designs for some v in Figure -1.-4. Table 1.11. Table .12 and Table

L.13. In this case. the density is of the form

)

m(x) = a{(x] — $°) (o] — ) + 6} {(3 = $*)(23 — %) +b}7. (-1.3.3)
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Figure 4.4: Q-optimal design densities for an approximately quadratic bivariate
regression model with F,: (a) m = 5467((z*>—0.036)(z2—0.111)+0.0093)* ((y*—
0.036)(y% —0.111) +0.0093)* when v = 2; (b) m = 32042.64((z® —0.22562)(z> —
0.35652) + 0.0015)*((y? — 0.2256%)(y? ~ 0.35652) + 0.0015)* when v = 10.
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Table 1.11: Values of the constants for the @-design with regressor
(l..cy .z xf. 23. rr2) " and density a{(z? — s2)(z? — £2) + b} {(23 — 5°)(23 —
t?) +b}+.
v a b $ t & & minimax loss
0 0.0005 | -13.3672 | 0.0000 | 0.-4863 | 0.0833 | 0.0125 1.0000
I 1 23349.22 | 0.01617 | 0.1829 { 0.3226 | 0.1039 | 0.0180 6.233-
5 | 16814.33 | 0.0035 | 0.2150 | 0.3474 | 0.1175 | 0.0228 24.6463
10 | 32042.6-4 | 0.0015 | 0.2256 | 0.3565 | 0.1194 | 0.02-43 16.2915
30 | 93752.19 | -0.0018 | 0.2386 | 0.3671 | 0.1239 | 0.0263 128.866
100 | 363563.8 | -0.0051 | 0.2517 | 0.3782 | 0.1274 | 0.0289 106.744-14
Table 1.12:  Values of the constants for the D-design with regressor
(l.oy. Ly 3. 13, 01x22)” and density a{(x? — s%)(z7 — £2) + b} {(2} — s?)(23 —
?) +b}+.
v a b 5 t & &, minimax loss
0 0.0002 64.514 | 0.3137 | 0..1216 | 0.0833 | 0.0125 9.86
3653.1 0.0103 | 0.1765 | 0.265-1 | 0.1212 | 0.0220 | 211048418
5 | 31846.77 | 0.0005 | 0.2286 | 0.3116 | 0.1477 | 0.0303 | 378180288
10 | 52176.31 | -0.0003 | 0.2135 | 0.3372 | 0.1530 | 0.0323 | 507068013
30 | 149875.1 | -0.0028 | 0.2217 | 0.3578 | 0.1605 | 0.035-1 | 882575359
100 | 532912.5 | -0.0057 | 0.2436 | 0.3704 | 0.167-1 | 0.0383 | 1810399532
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Table 1.13: Values of the constants for the .-design with regressor
(Lo 3. r3. 2102)" and density a{(z} — s°)(s? — £2) + b} {(£2 — s2)(3 —
£2) + b},

v a b s ¢ & & minimax loss
0 0.0009 32.606 | 0.1538 | 0.4-132 | 0.0833 | 0.0125 0.0000
l 9L.1818 | 0.0922 | 0.0000 | 0.0000 | 0.0947 | 0.0152 185.15
5 1502.37 | 0.0204 | 0.1809 | 0.2951 | 0.1037 | 0.0178 2191.14
10 | 5791.90 | 0.0087 | 0.2168 | 0.3363 | 0.1062 | 0.0191 +4105.3
30 | 28583.87 | 0.001618 | 0.2368 | 0.3599 | 0.1103 | 0.0221 10696.53
100 | 862-41.37 | -0.00165 | 0.2430 | 0.367-1 | 0.1186 | 0.0255 30281

Remark

Although in general the minimax density (4.1.6) is complicated. the quadratic
model without a constant term is analytically solvable. Setting the regressor

z(r) =(r.A)7. —1/2< < L/2. we calculate the matrices

Ao

diag(1/12.1/80). ¢ = diag(&s. €y).

Ke = diag(ka.ky). He = diag(1/(1263). 1/(80€3)).

The two eigenvalues of K¢ H' are

l 2 9
AM(m(x:6:.8)) = e /.r“m"(x) dz.
Ao(m(r:&5.&y)) = ﬁg/x“ml(;c) dx
q

The maximum [MSE. ignoring the term 5?. is now
mjg}XﬁQ(f-f) = max{\(m(zr:£&.8,)). \a(m(z:£2.&))}
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1 1
126, 80,

+u( ).

[n three steps. we obtain the minimax density as follows.

L. First we assume that \{(m(z)) > Xa(m(x)). Holding &. &, fixed we

Jm(r)dr = 1.
minimize/.r"’m"’(r) dz. subject to ¢ [.r*m(r)dr = &. (-1.3.1)

Jtm(r)dr = &,.

Let m(.r: &.£,) be the minimizer.

N

Minimize

l
12¢;

l l
126, * 80¢,

/Izmz(fif‘z,f-x)d;r+l/( ) over(&.&i).

lvlv

whose domain is 0 < & < V& < V& < L. Let (&.&;) be the minimizers.

3. Verify that

1
1263

ld/pm(tﬁf)

/ﬁmﬁa@fnd P2 e

For the first step. put
my(r) = (I — t)mo(x) + tm;(x).
where mg. m; satisfy the three conditions in (-1.3.-1). Set

L(t) = /J' m3(z )d.z:—%—a/mt dx—b/x mt(x)dr—c/.rm,(r)
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for Lagrange multipliers a.b.c > 0. Since L(¢) is a convex function of ¢ for all
mg and m,. the density my is optimal if and only if L’(0) > 0 for each m;. This

means that mgp must satisfy

L'(B)lmo = 2/£2mt(x)m:(r)dr+a/m£(r) dx—b/x‘-’m;(x) dz
—c/x my () dr
= /(ml — mo){2mo(z)z”® + a — bz* — cx'}dr > 0.
The above inequality requires that

mo(z) = blcx® + 1 —a/r?)*. (1.3.5)

The second step is equivalent to finding (£5.£}) minimizing

l t

l)ﬁ,/r‘b(cﬁ'%—l—a/x“ mo(.r )d.z:+1(l 55 8051)
b i 1
= a (ft+s>—(l)+l(l)—£)+m)

[n the third step. we must verify that for the minimax m(r:a".b".c").

l‘)f)/iJ"cr +1—a"/z°) " m(zx)d: /b' e +1—a"/z) " m(r) d

This is equivalent to

GG -0 2

Suppose that m(z:a.b.c) > 0 for z € (s.1/2). Since [m(z:a.b.c) = L. the
coefficients a.b.c and the moments &;.£s may be written in terms of s and &,

whose domain is 0 < s < 1/2.0 < & < L. For very small v all three steps can be
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carried out successfully. For larger v, A\; > A, is not satisfied at the minimizing
density. We present some of the minimax densities for 0 < v < 0.4 in Table .14

and we compare in Table 1.15 the densities obtained by method in this chapter.

Table 1.14: Values of the constants and eigenvalues for the regressor (z.r2)7T

and the density b(cz® + | —a/c?)*.

v a b c A Aa minimax loss
0.0 l 0.0000 | 1.00 | 0.0000 | l
0.1 { 0.0078 | 1.4361 | 0.2151 | 1.0160 | 1.0023 1.1599
0.2 [ 0.0146 | 1.6561 | 0.3538 | 1.0373 | 1.0071 1.2956
0.-1 | 0.026: | 2.0029 | 0.5418 | 1.0809 | 1.0200 1.5370

Table -1.15: Values of the constants and eigenvalues for the regressor (r.r2)7

and the density a{(z? — s?)(z* — £2) + b}~.

v a 5 t b A Ao minimax loss
0.0 0.9923 ] 0.2333 ] 0.4263 | 1.0003 | 1.0000 | 1.0000 1.0000
0.1 ] 5.3934 | 0.0000 | 0.0000 | 0.1729 | 1.0087 | 1.0069 1.1909
0.2 111534 | 0.0000 | 0.0000 | 0.0772 | 1.0322 | 1.0237 1.3650
0.4 | 24.2226 | 0.0000 | 0.0000 | 0.0288 | 1.-1849 | 1.2162 1.6699

.0 | 80.0000 | 0.0000 | 0.0000 | 0.0000 | 1.1849 | 1.2462 23115
5.0 | 113.9624 | 0.0000 | 0.0000 | -0.0078 | 1.7716 | 1.3814 5.-4289
10 1 270.7635 | 0.1989 | 0.2876 | -0.0033 | 2.1854 | 1.6088 8.9431
30 | 399.-1985 | 0.0000 | 0.0000 | -0.02986 | 3.1812 | 2.1740 21.7318




4.4 Applications on ozonation data

We have obtained optimal designs that are continuous. In practice we need to
implement these continuous designs. We illustrate an implementation technique
using the ozonation experiment that was introduced in Chapter 1. Before the
experiment the researcher was convinced that TSS and O3 were linearly related.
and that as Oy increases TSS decreases. After a bench-scale experiment he re-
alized that this assumption is questionable and it is more reasonable to assume
that the relationship is only approximately linear. That is. we adopt the ap-
proximately linear regression model with > type contamination. Suppose that
n = 16 and v = 10. From Section 2.4.1 the minimax density is then. after taking

a transformation on Oy so that it lies between —1/2 and 1/2.

mo(r) = 15.55(r* — 0.021)".

The design points might be chosen by selecting the n points -\/[0_'(%).1' =

L..... n. For this particular example the minimax design points are
+0.5. £.4802. £0.4583. £0.4338.

%0.-1057. £0.3720. £0.3286. £0.2608.

The ozonation is not the only factor useful to remove suspended solids. The
other important factor is the Gas to Liquid ratio which we denote GL. Three
different levels. 0.2.0.1.0.6 of GL were applied in this experiment. [t might
be useful to adopt an approximately linear model in a bivariate regression set-

ting with possible interaction terms. After taking a linear transformation on
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GL so that it lies between —1/2 and 1/2. we consider an approximately linear
regression model with regressors z(z) = (l.xy.Zs.1,r9)7 and the design space
[—1/2.+1/2] x [=1/2. +1/2|. The optimal density is of the form (4.3.2). We
assume again that v = 10. and the sample size is 16. The corresponding density
is

mo(ry.xs) = 178.91(x7 — 0.0098827)* (5 — 0.0098827)*.

By independence the corresponding distribution function My can be written as

the product of M, and M. The optimal design points can be chosen from

Hi=1), o 4G=1)
n—1 ). My n—1

(MY

). ij=1.....4

For this particular example the optimal design points are

(—0.5.40.2313). (=0.5. +0.14272). (—0.3960. +0.2313). (—0.3960. +0.-1272).

(+0.3960. +0.2313). (+0.3960. +0.4272). (+0.5.+0.2313). (40.5. +0.4272).
(—=0.5.-0.2313). (—-0.5. -0.4272). (—0.3960. —0.2313). (—0.3960. —0.4272).

(+0.3960. —-0.2313). (+0.3960. —0.1272). (+0.5.—-0.2313). (+0.5. —0.1272).
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Chapter 5

Conclusions

Our goal in this thesis is to find a minimax design £*. that is.
sup L(f.£") = inf sup L(f.£).
F = F

where three loss functions and three different contaminating spaces are consid-
ered. With respect to contaminating spaces. we distinguish these problems by
denoting them (P1). (P2). and (P3). In the first two cases. the fitted model is

§(r) = 2] (r)8 the differences are found in the true model as shown below.

True Model Contaminating space

(PL): E(Y |z) =2{(x)80 +u"(£)8 F = {[(u"(x)B)*dz < "
Ju(z)z{ (x) dr = 0}
(P2): E(Y|r) =z{(r)0 +2z;(r)B F={[(z](x)B)*dz < n*}

where 20 (z) = (L.c.....2?) and 2zl (z) = (zP*'... .. x).

[n the multiple regression case (P3) we have the true model

E(Y | z) = 2" (2)80 + f(z).
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and contaminating space

Fo={[ (@) de < . [ 2(2)[(z) dz = O},

Here the bold  reminds us that the variable is multidimensional and the regres-
sors are given. for example. by 2" (z) = (1. . 2. £12,) or
zl(x) = (l.ry. £y, £y 1. 22, 12).

Let’s explain the difference between problems (P1) and (P2). which on the

surface look identical.

Figure 5.1: True model function E(Y | r) =0+ 0z + lz2.

N AN
S

(PL) . (P3) (P2)

The difference is simply the way in which the function E(Y | r) is decom-
posed into “lower order part™ and -“contamination part”. In (Pl). the true
coefficient @y and u are defined so that a fitted response function will be use-
ful in predicting future values of y. On the other hand. in (P2). 8, and 3 arc
simply the coefficients of low powers and high powers of . respectively. [n this

case the experimenter simply wants to estimate the original model function as
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closely as possible regardless of the contamination. We illustrate the difference
with a simple (and artificial) example: Suppose that the true model function is
E(Y | £) = 0+0x+ Lz and we want to fit a linear model. In (P1) the fitted line
will follow the contamination term z2. whereas in (P2) it deliberately ignores
the contamination and follows the horizontal 0 + Oz as closely as possible.

We now summarize our main results and explain what can be extended from

them. There are three main results:

(R1) The suprema of loss functions are expressed in terms of moments. Since
there might be many design measures corresponding optimal set of mo-
ments. with help of Wald (1939). we looked only at discrete measures with

the minimal number of support points.

For (P1) under the D-optimality criterion with p = [. arbitrary ¢ and
small v. any symmetric measure g with gy = m.; is minimax. where
i=l..... [(g + 1)/2] and m is Wiens's measure as found in (2.5.2). We

observe that any optimal measure tends to Wiens's measure as q— x.

(R2) Independently of Wald. we have shown for (P1) and (P2) with arbitrary
p and q. that for any symmetric optimal measure u not supported by p or
fewer points. there exists an optimal measure € with p + 1 support points

that shares the first 2p + | moments of s.

(R3) For (P3) under a restricted class of densities. we obtained continuous

optimal designs for multiple regression with interaction terms.

142



We illustrate how the results can applied to our regression problems. Suppose
that an experimenter fits a linear regression model although the true model
might be cubic. i.e.. p = [. ¢ = 3. Define g : = — R U {oc} by g(&) =

v + max{3(126 — 1)~ (208, — 362)2} if & # 0 and g(€) = o otherwise. As

o

we have shown in Lemma 2.2.1, the function g is continuous on the compact set
=. and hence there exists an optimal measure p*. say. on =. Applying (R2). there
is an optimal design measure § with 3 support points. £ = (1 —a)dy + (a/2)d+,, -
The design point z, and its mass a are chosen to minimize g. For instance. when
v = 1. one choice is a = 0.8636. and r; = 0.3598. On the other hand. from
(R1). we know that Wiens's measure m is also optimal: it has density m(z) =
L+ 3(12y/(v +5)/720 — 1)(122 — 1) on [—1/2.1/2]. By Theorem 3.3.2 and
Theorem 3.3.3. there is a measure of the form £ = (a/2)d_,, +(1—a)do+(a/2)d,,.
so that § = m, for i = 0.1.....5 and thus £ is also optimal. Solving for r
and a gives ) = \/my/ms. and a = \/(-11/4—5)/(7‘201?). When v = 1. since
my = 1/v/80. and m, = 0.0186 and so this gives z; = 0.4079 and a = 0.672. So

we have two distinct optimal measures with three support points.
[n the first two results. the number of support points of these optimal de-
signs is too low to provide an opportunity to assess the higher order model. We

present an example of how we might overcome this obstacle.

Estimation in higher order models
Using Wiens's optimal measure. the number of support points might be added

so that we estimate the coefficients in higher order models. For instance. when
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p =l and q = 3. we have seen an optimal measure with three support points.
Since there are [our coefficients in the model. we need a minimum of four support
points in our design to estimate them all. The error variance is estimated by
replicating the observations.

Now. because Wiens's measure m is absolutely continuous. Theorem 3.3.2
tells us that there exists a unique measure with 4 support points with same first
seven moments as Wiens's. This measure is necessarily optimal as well. [t has

the form

=l —a)o_;, + @d_,, + g + (1 — )d,,]/2.
where a. r,. and r, are determined by three equations. & = /(4 + 5)/720.
&1 = (3/1h)& — 3/560. and & = (5/112)& — 1/672.

Lack of Fit (LOF) test for (P1)

The LOF test can be performed by realizing that Theorem 2.5.1 also proves that
any optimal design measure has the same second moment as Wiens's. The reason
for this is following. We know from Section 2.5.2. that \\(£) = %, (Ee[l])? >
(5/-)(12& — )2, Let h(&) = (1/&)[1 + (5/4w)(12& — 1)?]. We observe that
h is strictly convex in &. and so h has a unique minimum. We also know that

supx Lp(&) > h(&) and we found £ in Theorem 2.5.1 so that
sup Lp(£") = minh(&2) = h(§3).
F &2
[f another £ minimizes supr Lp(€) then

h(&3) = sup Lo(§") = sup Lp(&) 2 h(&a) 2 h(E3)-
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Since it is a unique minimum. & = &.-

We point out that higher moments may not be the same as Wiens’s. This
enables us to carry out the LOF test.

We demonstrate how this claim can be used in the LOF test for fitting a
straight line whereas true response might be quadratic. In (P1l) this means
z{(z) = (L.z) and uT(z)B = (22 — 1/12)B. We assume that the errors are
normally distributed. Using the equation (2.2) in Wiens (1991) we obtain the
non-centrality parameter in the test of LOF. P(B.£) := (& — &)8°%. We now

want to find £ such that

min P(3.£") = max min P(3.§). (5.0.1)
{$=1} = (#2=1}
where =/ = {€ € = : & minimizes supz Lp(€)}. This is equivalent to find &

[}

maximizing §; over =' = {§ € =: & = /(4v + 5)/720}. Then the solution for

(5.0.1) is of the form £ = (1 — a)dn + (@/2)d+1/2. where & = €5, This is so

because & = a"/16 = &/ is the maximum.

Applications of (R3) to Growth Models

We provide guidelines on how the optimal designs for an approximately polyno-
mial with interaction terms might be adopted in other areas of science.

(1) Yield-Density Curves (see Seber and Wild (1989))

[n agriculture. several models are used for quantifying the relationship between

the density of crop planting and crop vield. The common Yield-Density models

are
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Shinozaki and Kira: E(Y |z) = (3 + 3ir)”" (5.0.2)

Holliday: E(Y |z) = (30 + 3z + dox®)~ L. (5.0.3)

where r and w denote the density of planting and the vield per unit area and
y := w/r represents the average yield per plant if all plants survived. [t seems to
be quite usual that the agronomist. after collecting his data. fits the models above
to predict the yield or to find the density of planting maximizes the yield. But
the main drawbacks in this situation are that first the experimenter can never
be sure the model used is correct and secondly. for the models above. E(Y | r)
decreases as r increases when r is small. however in reality this decrease will
not occur. We might be able to overcome these difficulties by looking at this
as a design problem as follows. Suppose the density of planting .r lies between
[a—b/2.a+b/2]. for a.b € R. The nonlinear model (5.0.2) can be linearized by

a Taylor series expansion and the change of variables &’ = (z — a)/b.

E(Y{z) = (Jo+da)" —(3+dha)Hr—a)+ f(x)  (5.0.4)

= O+ 0"+ f(I). r'el-1/2.1/2] (5.0.5)

Similarly. the Holliday model transforms to E(Y | 2’) = 0y + 6,2 + 022 + f(').
where 0y = (Jo + Jia + 3ha”) "0, = —b(Fy + Ha + Hha*)~? and 6, = b33 +
Jia+ 3,a*) 3. Before planting the crop. by applying the algorithm in Section .1
and the technique of implementing the densities in Section -1.-l. the agronomist

may choose the optimal z;’s so that the estimates for €’s are the most efficient.
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Crop yield is not only affected by the density of planting but also the shape of
the area available to each plant. A bivariate model is recommended considered
for this case. E(Y | &i.xz2) = [Fo + 31 (L/z1 + 1/xs) + 3o/ (x122)]7'/7. where z,
is the spacing between plants within a row and z, is the distance between the
rows. Using a similar idea to the one above. the optimal design for bivariate
regression model with interaction terms can be chosen by the experimenter.

We close this section by mentioning applications on growth models in Forest

Science.

(2) Growth Models

Predicting total tree height based on observed diameter at breast height outside
bark is routinely required in practical management and silvicultural work ( see
page 2 of Huang. Titus. and Wiens (1991)). Many nonlinear height-diameter
functions are available to predict height growth. The Chapman-Richards func-
tion has been used extensively in describing the height-diameter as well as a
base function for developing more complicated models (Huang and Titus (1994)).

These functions are given by the expression
E(Y |r) = L3+ F(1l —e 95y, (5.0.6)

where y is the total tree height (meters). z is the diameter (meters) of the tree
at breast height. The technique described in (1) above might be applied when

Jo > 1.
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