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Abstract

To colorized a face sketch involves adding appropriate color to the original sketch

while maintaining the sketch’s structure. This task combines the concept of gray-scale

image colorization, which focuses on introducing color elements without changing

the image’s geometry, and image translation, which adds missing luminance and

chrominance information to transform a sketch to a color image.

However, existing works for gray-scale image colorization tend to produce sat-

isfactory colorization results only when they are provided with a rich and detailed

gray-scale image as input. In contrast, sketches have much less information because of

its minimalistic nature and the absence of shading or texture details, which makes the

colorization process more challenging, as it requires the model to not only add the nec-

essary color elements but also infer the missing details based on the sketch’s structure.

Some researchers tend to address this problem using image translation techniques.

State-of-the-art approaches using Generative Adversarial Networks (GANs) based

models are preferred due to their impressive performance and realistic results. Never-

theless, the semantic difference between synthesized images and their corresponding

input sketches remains a key challenge that needs further investigation. Recently,

normalizing flow, which is a new generative model, with ability to losslessly encode

and decode data, has shown potential to tackle the face sketch colorization problem.

In this thesis, we first focus on losslessly converting sketches and their correspond-

ing color images to high-dimensional latent features using a conditional normalizing

flow within an Encoder-Decoder architecture. This framework adopts an inverse

learning mechanism to simultaneously learn the color encoding and decoding pro-
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cesses. To ensure preserving geometry of the sketch while maintaining high-quality

colorization, we integrate a Feature Aggregation module into the coupling block of

our normalizing flow. This module can adaptively fuse sketch and color information

within a high-dimensional space. Moreover, our normalizing flow is designed to be

memory-efficient, which requires much less computational resources compared to that

of similar models. We also demonstrate the effectiveness of our method to preserve the

input geometry and to achieve perceptually satisfying colorization quality using both

qualitative and quantitative evaluations comparisons with existing methods. This

research contributes to advancing the field of face sketch colorization, and providing

an innovative solution that addresses some of the limitations of existing approaches.
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Chapter 1

Introduction

1.1 Motivation

Looking back in history, creativity and artistic imagination have always been inte-

grated into human drawings and paintings, which also act as a means of preserving

civilizations and of cultural exchange. Among these works, the focus often lies on in-

dividuals or matters related to humans. However, in the early days of human history,

due to the limitations of colorization techniques, artists had to rely on their skills for

color sketches to add vibrancy and life to sketches or engravings. This labor-intensive

and time-consuming process necessitated a profound understanding of the importance

of color composition and its use in design.

Besides, with the advent of photography in the 19th century, a large number of

photographs of people and pictures of scenery and buildings have emerged, the pre-

cious historical images have demonstrated the appearance of humanity during that

period of history. However these photographs and images are still in black and white,

leaving a significant gap in our understanding of the true appearance of people’s lives

during that period.

It is evident that color, being a crucial component of images or drawings, can

convey significant information and aid in understanding the content of pictures. For

instance, Figure 1.1a illustrates scenes from women’s daily lives around 2000 years ago

in China [1]. It shows that people during that time favored black and red more than

1



(a) (b)

Figure 1.1: (a) A mural crafted during the Eastern Han Dynasty (25-220 AD), was
found in Zhengzhou, Henan province, China [1]. (b) A photograph [2] taken by Lucy
Bird Isabella in 1898.

other colors. Without this color information, it would be difficult to apply modern

understanding to interpret the aesthetics of ancient people. In another example,

Figure 1.1b, the image is captured without any colors, making it challenging to present

the world in a more lifelike and vivid way.

In recent years, the rapid advancement of deep learning technologies has revo-

lutionized many image processing domains. Tasks such as image denoising [3, 4],

image super-resolution [5, 6], and image inpainting [7, 8] can now be automatically

addressed by neural networks. Similarly, image colorization has also seen significant

improvements due to the development of deep learning. While browsing the web, I

came across a video titled “I used machine learning to restore the recorded Beijing a

century ago” [9]. The addition of color makes the image content more vivid, lively,

and captivating. The post-processed colors added to these old video footages, which

have never been seen in color before, sparked my interest in related techniques.

The technology used in the video [9] is derived from Deoldify [10], an open-source,

fully-automatic colorization method that uses an end-to-end CNN [11] based ap-

proach, producing impressive results on both images and videos [12]. Figure 1.2 shows

an example of an image colorized using this method. There are similar methods [13–

16] for adding color to grayscale images that may involve some manual intervention.
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Figure 1.2: An image colorization example by Deoldify [10], where the left one is the
input and the method will automatically output a colorized version on the right.

In these cases, users can specify the desired colors for specific objects or regions within

an image.

Although deep neural networks have shown impressive results in grayscale image

colorization, adding colors to sketches warrants further exploration. Motivated by

the concept of colorizing historical images, many of which are associated with people

or faces, we choose to concentrate on face sketch colorization rather than ordinary

sketches for the following reasons:

(1) Each face has a unique set of characteristics, such as skin tone, eye color, and

hair color, making face sketch colorization a more personalized task. The capacity to

accurately colorize faces can yield more captivating and visually appealing outcomes

compared to general sketches.

(2) As previously mentioned, faces consist of intricate details and unique character-

istics, which render the colorization process more complex and challenging. Tackling

these challenges successfully and preserving facial features accurately can be fascinat-

ing and rewarding pursuit.

(3) Hand-drawn face sketches also play a significant role in our lives. For instance,

surveillance cameras cannot cover every area in our lives, and criminal suspects may

still evade capture. In such cases, witness testimony is still vital to identify the
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suspects. In particular, a forensic sketch artist draws a sketch of the suspect based

on the eyewitness’s description to assist the police to solving the crime.

(4) Lastly, the face sketch colorization problem has drawn attention from the com-

puter vision community. We find that adding colors to a face sketch while maintaining

its geometry is an interesting and meaningful research topic, and encourages innova-

tion and breakthroughs in the field.

Thus, in this thesis, we focus on developing end-to-end face sketch colorization.

Our goal is to add plausible colors and authentic textures onto a face sketch while the

user can provide a real face image as the color source. As the saying states ‘a picture

is worth a thousand words,’ we believe that images can more effectively communicate

the user’s desired with greater precision compared to that of words or other means.

The method of using one image to guide and control the attributes of another image

is referred to as ”exemplar-based image translation.” In Section 1.2, we explore the

similarities and differences between image colorization and image translation, and

their relationships with our sketch colorization task.

1.2 Image colorization and image translation

Image colorization typically refers to the process of adding colors to gray-scale images.

Non-parametric methods, such as the one presented by Gupta et al. [17], assign colors

to the extracted super-pixels of a given grayscale image after performing cascade

feature matching with a reference image. The effectiveness of this method depends

on the quality of image segmentation. As shown in Figure 1.3, when the elements and

segments in the image are small or complex, the colorization results are less accurate

and has some colorization artifacts, as demonstrated by the color leakage within the

red circles.

Image translation involves changing a given source image into a variety of target

styles. There are no restrictions on the types of these images, as the content in the

source and target images can be interchanged. Traditional methods for this task

4



Figure 1.3: Examples of image colorization by a non-parametric method [17], first row
shows the the given input gray-scale image (left) and the super-pixel segmentation
(right), the second row is the colorized result. The circled region, which has a reddish
tint, shows the colorization artifacts.

usually translate images between different styles by matching high-dimensional im-

age features using algorithms such as nearest-neighbor feature search [18] or Markov

Random Field [19]. For example, in Figure 1.4, the second row illustrates the conver-

sion of a pencil-drawn face sketch into a photo of the corresponding person. However,
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Figure 1.4: For all three rows, the left column shows the source images, the middle
column the reference style images and the right column the translated images with
style from the middle column and content from the left column [18].

these algorithms need a similar reference image to obtain an acceptable translation

outcome.

With the advancement of Machine Learning and Convolutional Neural Networks

(CNNs) [11], image translation also evolved into what is now called Neural Style

Transfer [20]. As a result, the style image is no longer requires to be similar to the

source image. As demonstrated in Figure 1.5, the style image can be entirely distinct

from the source image.

Both tasks, colorization and style translation mentioned above have one common-

ality, which is translating a given image from one form to another. However, the

primary difference lies in the domains of translation; the former task translates be-
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Figure 1.5: Examples provided by Neural Style Transfer [20], where the leftmost
image is the original source image, while the middle and right images are synthesized
versions with corresponding style images displayed in their lower-left corners.

tween grayscale and color domains, with the resulting image maintaining the same

luminance information. In contrast, the latter task permits translation between any

two domains, which can lead to noticeable content changes compared to that of the

input images. For example, in the last row of Figure 1.4, the transferred image suc-

cessfully adopts the landscape style in the middle but also introduces new objects not

present in the source image, such as flowers and a distant house by the lake. Similarly,

in Figure 1.5, the stylized image captures the distinctive style of the artist’s painting,

but the river becomes less recognizable.

Therefore, colorizing sketches can be seen as a sub-task that combines ideas from

both image colorization and translation. Similar to image translation, it involves

filling in the missing luminance and chrominance information while translating solely

between the sketch and color domains. However, like image colorization, it also

demands that the generated image has colors that strictly follow the sketch contours

without distortions or changes. Consequently, our goal is to develop a method that

is less restrictive, and more versatile for colorizing face sketches.

1.3 Strength of deep learning methods for image

translation

In this thesis, the goal is to solve the problem of face sketch colorization using a deep

learning based model. It is noteworthy that deep learning-based approaches for image
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translation have gained significant attention in recent years due to their advantages,

which include:

• Deep learning models can generate realistic and visually appealing face images

using large amounts of data to learn the complex relationships between input

sketches and the corresponding colored images. Figure 1.6 shows some exam-

ples.

Figure 1.6: Multi-modal synthesis of a single input performed by Richardson, et al.
[21] with a resolution 1024 x 1024. The top row shows the sketch input and the
bottom row shows the synthesized image.

• Recent deep learning models have unique mechanisms that enable them to au-

tomatically learn and extract relevant features from the input data, and to fuse

these features together without requiring manual feature engineering. This ap-

proach allows for a more efficient and effective way to translate an image into

the desired domain, as the model can automatically identify and use the most

relevant information. More details are given in the Related Works Section.

• Some deep learning-based models, like normalizing flow [22, 23], demonstrate

lossless preservation properties that guarantee the preservation of essential in-
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formation from the original image during the encoding and decoding processes.

For example, in the research by An et al. [24], the authors use a normalizing

flow for style transfer, while maintaining the capability to recover the original

content image losslessly from the stylized image. The geometry information of

a content image can also be preserved.

However, these approaches are not suited for face sketch colorization. For CNN-based

generative models like Generative Adversarial Networks (GAN) [25], these methods

often fail to preserve the geometry of the sketch. For instance, as shown in Figure 1.6,

the proposed GAN-based method [21] samples colors from a random distribution while

using the sketches in the first row as input. While all synthesized images resemble

human faces, they do not accurately respect the input sketches. Other methods, such

as normalizing flow-based methods, generate unsatisfactory results for the sketch-

to-image colorization task, because they generally struggle to establish an effective

connection between the two image domains, which have a domain gap. We discuss

these deep learning models in more detail in Chapter 2.

In this thesis, we address the face sketch colorization problem by incorporating

ideas from both CNN-based and normalizing flow-based methods. We employ a nor-

malizing flow-based model in our model architecture, specifically designed to losslessly

preserve essential information during the encoding and decoding processes. To supply

color information, we adopt an exemplar-based strategy, enabling users to control col-

ors by selecting their preferred color images to guide the final colorization results. Our

model adapts to unpaired images, allowing the sketch image to accept and integrate

color information from entirely distinct sources.

To effectively add color to a face sketch, we follow many CNN-based methods [21,

26–30] and introduce a new Feature Aggregation Module (FAM) to adaptively merge

the intermediate latent features extracted by our model. This module enhances the

colorization accuracy and quality. Our flow-based model workflow begins by taking a
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face sketch and a real color face image as input. These images are subsequently trans-

formed into high-dimensional latent variables and gradually fused using our FAM .

The model then generates the final colorized face sketches based on the combined in-

formation. In practice, we design our model’s architecture to use less computational

resources, resulting in reduced GPU memory usage and faster training compared to

that of other flow-based models.

In our experiments, we use a comprehensive method to qualitative and quantitative

evaluate and compare our method with methods based on GANs and on normalizing

flows. Since we are the first to use a normalizing flow-based model for face sketch

colorization, we tried our best to achieve more satisfactory and realistic results. The

results show that our proposed method can preserve the sketch geometry and faith-

fully adapt the colors of the reference image.

1.4 Thesis objectives

The objective of this thesis is to develop a normalizing flow-based method that accu-

rately colorizes a face sketch while remains faithful to the input sketch geometry. Our

proposed model can better capture the content of face sketches and accurately colorize

them using various input colored face images. In summary, our main contributions

include the following three main aspects:

• We propose a memory-efficient normalizing flow-based model that accurately

follows the geometry of a given face sketch to create a properly colorized face

image while using less computational resources compared to traditional flow-

based architectures.

• We introduce a new FAM in our model to adaptively merge unpaired color

and sketch features. An ablation study further demonstrates the effectiveness

of this new module.

10



• We compare our flow-based model with existing CNN-based and flow-based

image translation methods using comprehensive qualitative and quantitative

experiments. The results demonstrate that our approach is more effective to

address the face sketch colorization problem.

1.5 Thesis organization

In this chapter, we present our motivation in address the problem of face sketch

colorization and discuss the main challenges of existing methods. As an overview of

this thesis, our approach combines ideas from various deep learning-based models to

address this problem, leading to better performance than previous works. The rest

of the thesis is organized as follows:

In Chapter 2, we introduce the background knowledge in sketch colorization as

well as the deep learning based methods for sketch colorization related problems.

In Chapter 3, we provide a detailed explanation of our model’s design and discuss

the procedure of data pre-processing.

In Chapter 4, we carry out thorough qualitative and quantitative experiments,

including a user study, to demonstrate the effectiveness of our method.

In Chapter 5, we conclude the entire thesis, and show the limitation of our flow-

based model that can be addressed in the future.
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Chapter 2

Background

As we introduced before, deep learning plays an important role in image coloriza-

tion and image translation, with various deep learning-based methods demonstrating

unique strengths in solving these tasks. Our research focuses on leveraging the advan-

tages of these deep learning methods for face sketch colorization, enabling an accurate

mapping of geometric information to the colorized image while adopting appropriate

colors from the reference image.

In this chapter, we introduce the background information relevant to our work.

In Section 2.1, we introduce several deep learning-based image colorization meth-

ods. Then, in Section 2.2, we investigate the mechanisms and strategies employed

in GAN-based models for controlling the results in unpaired image-to-image transla-

tion. Lastly, in Section 2.3, we discuss normalizing flow and its applications in image

processing.

2.1 Deep learning based image colorization

Due to the limited generalizability of non-parametric methods, deep learning-based

models for end-to-end colorization have become the favored approach. These methods

use the CIELAB color space (Lab), which divides an RGB image into a perceptual

lightness (the L channel) component and two distinct colors components (the ab

channels). In this setting, the L channel serves as the input to the model, while the
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ab channels represent the target information that the model needs to predict.

Initially, some researchers [31–33] find that using simple plain networks can gener-

ate diverse colors given a gray-scale image; however, the final colors are not control-

lable. In response, subsequent research efforts focus on developing different methods

to control the generated colors.

Some methods require users to provide additional information, such as color dots or

strokes [15, 16], at specific locations in the image. For example, as displayed in Figure

2.1, users can add green or red colors to the pepper to achieve the desired colorized

result. Nonetheless, these methods often rely on user input to achieve better quality

in the output.

Figure 2.1: Examples provided by Zhang, et al. [15]. The left image represents the
synthesized input, while the right image shows the colorized result.

Other methods enable users to control colors using text descriptions. For example,

methods proposed by Manjunatha, et al. and Bahng, et al. [13, 14] can generate

color images using descriptive words, as shown in Figure 2.2. As well, some of the

most latest and popular models, including Stability AI [34], DALL·E 2 [35], and

Midjourney [36], merge text and images into a shared high-dimensional space, using

diffusion model to synthesize the results. However, using textual descriptions to

control the image synthesis process has been shown to be imprecise and prone to

errors. In more complex scenes with numerous small objects or unique items, object
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Figure 2.2: Examples provided by Manjunatha, et al. [13], where they can colorize
an image based on the text provided below.

detection becomes more challenging, and detailed textual descriptions may introduce

ambiguity, potentially failing to accurately represent the desired results of the user.

To simplify the colorization task and make it more straightforward, recent attention

has shifted towards using exemplar-based techniques to control how the color styles

are applied to grayscale images. He, et al. [37] propose a deep learning-based method

that addresses this problem by using a deep neural network, VGG19 [38], to align the

exemplar image and the source image at the deep feature level, and then reconstruct

a coarse aligned reference image for further colorization. A similar strategy can be

found in the work by Xu, et al. [39], who use an Encoder-Decoder as a style transfer

network. Their approach produces a rough reference color map in the ab channels,

which along with the source image, is input to another Encoder-Decoder [40] to

obtain a refined colorization result. It is important to note that these methods all

use the Encoder-Decoder framework for image colorization. As shown in Figure 2.3,

the encoder extracts low- to high-level features, while the decoder reconstructs the

colorized image using these features. This hierarchical representation helps capture

both local and global structures in the image, resulting in more accurate and visually

appealing colorization outcomes.

We observe that the previously mentioned methods have limitations in adding col-
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Figure 2.3: An example of Encoder-Decoder architecture

ors to the luminance information. Typically, these approaches output only the ‘ab’

channels of the ‘Lab’ space, and the final colorized images are created by combin-

ing the input grayscale image with the output color maps. However, if the input is

a coarse face sketch, traditional colorization methods struggle to add suitable col-

ors. Directly combining the sketch image with color maps may result in perceptual

disharmony for viewers. Instead, our approach aims to enable the model to directly

output colorized face sketches. Similar to the earlier methods, our model also adopts

the Encoder-Decoder framework and the exemplar-based training strategy. In the

upcoming sections, we focus on designing a control mechanism within our model that

can adaptively apply color information from different images to colorize face sketches,

and on selecting an appropriate network for our Encoder-Decoder architecture.

2.2 Unpaired image-to-image translation

Recently, Generative Adversarial Networks (GANs) have seen great success as gen-

erative models because of their realism and state-of-the-art performance in image

translation tasks. In this section, we first introduce the architecture of GAN, and

then explore exemplar-based image translation methods that use GANs and their

variations. We also discuss how these approaches intelligently manage style and con-

tent information to create visually pleasing stylized images.
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2.2.1 Generative Adversarial Networks

Figure 2.4: Example that shows the architecture of GAN [41].

The Generative Adversarial Network was first proposed by Goodfellow, et al. [25]

in 2014. It has two main parts: a Generator (G), also known as the Decoder, and

Discriminator (D). In the context of image translation, the generator’s goal is to

create fake images from a specific latent space that look real. On the other hand,

the discriminator’s job is to clarify fake images made by the generator from the real

images from the dataset.

Their roles can be seen as competing with each other. During training, the gener-

ator is optimized by minimizing the error between the fake image and the real image,

while the discriminator is optimized by maximizing the chance of correctly telling

apart the labels on both real images and fake images made by the generator. The

latent variables can come from either a random distribution or a specific distribution

given by an encoder [41]. For many image translation methods, a clear sign that the

models are GAN variants is that they all include a discriminator without exception

[41].
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2.2.2 Cycle consistency in control contents and styles

Unsupervised training is an early approach for dealing with unpaired image-to-image

translation problems, allowing for high-quality translations even when there is limited

training data. Initially, Jun-Yan, et al. [42] introduce the CycleGAN, which uses

two identical generators to translate images between two different domains and two

identical discriminators as competitors. As shown in Figure 2.5a, generator G maps

images from domain X to Y, while generator F maps images from domain Y to

X. Cycle consistency training ensures that translation is reversible by successively

mapping images back to their original domain using the reconstruction error. The

implementation of generator G follows the Encoder-Decoder architecture in Figure

2.3, encoding each domain into separate latent spaces.

UNIT [43], shown in Figure 2.5b, which is one of the variants, encodes images

into a shared latent space and encourages the model to learn the joint distribution of

multi-domain images in an unsupervised manner [41]. DIRT [44] also encodes images

into a shared space, but separates it into content space and domain-specific attribute

spaces for a more stable and accurate representation of synthesized images. However,

the content in synthesized results can be easily changed compared to the source input.

As shown in Figure 2.6, the face image successfully captures the style, but the content

changes to another similar person. Similarly, the trees in the first row transform into

a mountain due to their geometric resemblance.

(a) (b)

Figure 2.5: (a) CycleGan architecture [42]. (b) UNIT architecture [43].

For our task, the cycle consistency training strategy effectively ensures that syn-
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Figure 2.6: Image translation examples from UNIT [44]. The left column represents
the content domain, the middle column displays the attribute or style domains the
method aims to capture, and the right column presents the final synthesized results.

thesized results remain within the image domain. However, to produce images that

closely adhere to content geometry, simply using this mechanism is not enough. We

need to investigate additional techniques that can control geometry more accurately.

Additionally, the cycle training strategy involves more encoding and decoding pro-

cesses compared to supervised learning, leading to higher computational costs during

model training.

2.2.3 Feature Aggregation Module for contents and styles
control

Normalization based modules

In order to achieve more precise control over both style/colors and content/geom-

etry, some methods use normalization and its variants to fuse different deep latent

features. For example, Huang, et al.[28] first propose Adaptive Instance Normaliza-

tion, building upon Instance Normalization [45]. This technique adjusts the mean and

variance of the input content to match that of the input style, maximizing consistency

with the original geometry [28]. The calculation step can be expressed by

AdaIN(x, y) = σ(y)

(︃
x− µ(x)

σ(x)

)︃
+µ(y), (2.1)

where x denotes the input content, µ(.) the mean of (.), σ(.) the standard deviation
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of (.), and y the input style. In Eq 3.1, it can be seen that, the first step is to shift

the mean to zero and normalize the standard deviation of x to one, and the second

step is to scale the standard deviation and to shift the mean to that of y.

Park, et al. [27] extend the above ideas by developing a module called Spatially-

Adaptive Denormalization (SPADE), depicted in Figure 2.7. This module injects

content information to latent variables derived from random distributions or style

images. Additionally, normalization-based feature aggregation modules can also com-

bine image and non-image features effectively. For example, the method by Yang et

al.[26] encodes various refinement levels as numbers into means and standard devi-

ations represented in a high-dimensional level to control how much sketch geometry

information should be preserved in the synthesized colorful image.

To create a more generalized calculation method for aligning style and content

features, various studies [46–48] encode style or content information into the weights

and biases used in convolution operations on instance denormalized latent variables.

In the context of sketch image translation, several recent works [21, 49–51] have

successfully captured color or style information and generated visually appealing,

realistic face images by leveraging this mechanism.

Figure 2.7: An overview of SPADE [27] reveals that it shares similarities with AdaIN
[28] in normalizing a latent variable using two vectors, γ and β. However, unlike the
mean and standard deviation, γ and β are learnable modulation parameters that are
spatially aligned with the target latent variable.
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Attention based modules

With the popularity of attention in NLP tasks [52], many researchers realize that

it can also be applied in image processing task. The basic architecture of the atten-

tion module is illustrated in Eq2.2. Here, Q, K, and V represent high-dimensional

image features. Typically, Q and K come from different image domains, resulting in

an attention map softmax(QKT
√
dk

), which serves as a weight map indicating the cor-

relation between the two distinct features. The term
√
dk scales the dot products to

counterbalance the small gradient produced by the softmax function. Finally, the fea-

ture map V is multiplied by the weight map, determining the amount of information

carried by feature V for subsequent calculations.

Attention(Q,K, V ) = softmax

(︃
QKT

√
dk

)︃
V (2.2)

In sketch to image translation, Lee et al. [30] successfully apply an attention

module, which they named ‘Spatially Corresponding Feature Transfer (SCFT)’, as

depicted in Figure 2.8. In this module, Vr and Vs, respectively, represent groups of

latent feature maps encoded from a color reference image and a sketch image. The

fused latent variable, V ∗
r , combines the sketch and color features, and is element-wise

summed with Vs to decode into the final colorized image. Similar applications can

be found in the works of Zhang et al. and Wu et al. [53, 54], in which they align

features through an attention map and use these features to guide image translation.

Additionally, Liu et al. [29] develop a method, ‘AdaAttN’, that combines both nor-

malization and attention. As shown in Figure ??, the approach first computes an

attention map, then uses it to calculate the mean and standard deviation with style

feature F x
s , and then performs Adaptive Normalization with content feature F x

c .

We notice that while the feature aggregation modules discussed earlier can success-

fully generate stylized images for GAN-based methods, these methods often struggle

to preserve the geometry of the given sketch image, which is due to the variations

during image generation. For instance, in Figure 2.10, Liu et al. [51] use AdaIN to
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Figure 2.8: Architecture of Spatially Corresponding Feature Transfer (SCFT) [30].

Figure 2.9: Architecture of ‘AdaAttN’ [29].

fuse style information with the coarse face sketch. As the reference image in the first

row changes, the beard of the man in the second row also changes. While the origin

of this issue is unclear, it has not gain much attention from researchers popular, and

it is still a relatively quiet area of investigation.

Therefore, our goal is to develop a model for our Encoder-Decoder architecture

that can precisely infer information from latent variables while maintaining the face

sketch geometry as much as possible. Furthermore, to effectively fuse sketch with color
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information, we design our feature aggregation module based on attention mechanism

[52]. We then integrate this module into our Encoder-Decoder architecture to achieve

sketch colorization that remains faithful to the sketch and accurately captures the

reference colors.

Figure 2.10: Examples of sketch to face translation performed by Liu et al. [51].

2.3 Normalizing Flow

Normalizing flow [22] refers to a class of generative models that use a sequence of

invertible affine transformations to map a simple base distribution, such as a Gaus-

sian distribution, onto a more complex target distribution. By stacking more affine

transformations, the model can capture more intricate details of the data distribu-

tion, allowing it to generate samples that are closer to the true data distribution. The

generative process for a majority of normalizing flow-based models [22–24, 55–59] can

be expressed as follows:

x = Gθ(z) (2.3)

where z is the latent variable that follows a distribution. For example, a Gaussian

distribution with z ∼ N(0, 1). The model Gθ is invertible, which means that a given

datapoint x can be encoded into a random variable z using the following equation:
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z = G−1
θ (x). As Gθ is composed of a series of affine transformation, we can also

denote Gθ as a composition of K transformations:

Gθ = g1θ ◦ g2θ ◦ · · · ◦ gKθ (2.4)

where giθ is a single transformation step, for i ∈ {1 · · ·K}. The relationship between

x and z can also be denoted as:

x
g1θ←→ h1

g2θ←→ h2 · · ·
gKθ←→ z (2.5)

where hi is any intermediate latent variables for i ∈ {1 · · ·K}.

The advantages of flow-based methods are summarized below: (1) They offer more

stable training compared to typical generative models such as GANs. (2) They pro-

vide exact data encoding and latent variable decoding process, allowing datapoints to

be fully represented in a latent space. (3) They enable exact log-likelihood evaluation,

which can estimate expressive distributions of any given data space.

In recent years, Glow (Generative Flow) [23], a normalizing flow-based generative

model, has gained popularity, and many subsequent models [55–58] have demon-

strated impressive performance in various image generation-related tasks, such as

image super-resoltion [55, 60], image denoising [58] and image hiding [56]. As for the

architecture of normalizing flow, we select Glow [23] as the most representative model

to introduce. Table 2.1 illustrates the three fundamental computational steps in both

forward and reverse orders, which are the main components of Glow [23]:

• The first one is the Actnorm layer, which serves a similar purpose as batch

normalization [61] in addressing the vanishing gradient problem when training

deep models. This layer uses a scale (s) and bias (b) parameter to perform

an affine transformation on a given latent variable xi,j. These parameters are

initialized as zeros and function as general trainable parameters, independent

of the data [23].
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Description Function Reverse Function

Actnorm. ∀i, j : yi,j = s⊙ xi,j + b ∀i, j : xi,j = (yi,j − b)/s

Invertible 1x1 convolution

W:[c x c].
∀i, j : yi,j = Wxi,j ∀i, j : xi,j = W−1yi,j

Affine coupling layer [22]

xa,xb = split(x)

(log s, t) = NN(xb)

s = exp(log s)

ya = s⊙ xa − t

yb = xb

y = concat(ya ,yb)

ya,yb = split(y)

(log s, t) = NN(yb)

s = exp(log s)

xa = (ya − t)/s

xb = yb

x = concat(xa ,xb)

Table 2.1: Three components of Glow: ActNorm, an invertible 1x1 convolution layer
and an affine coupling layer. For given variables x and y in the shape of [h× w × c]
with spatial dimensions (h,w) and channel dimension c, (i, j) denotes spatial indices
[23]. For the symbols, ⊙ denotes the matrix multiplication, split the equally channel
level split operation on given latent features x or y, NN the any neural networks,
exp the exponential operation and concat the concatenation operation on two latent
features.

• The second component is an invertible 1 × 1 convolution, which uses a learnable

random rotation weight matrix W as parameter that performs permutation on a

given varibale xi,j. The input and output channels of this variable remain the

same. The purpose of this component is to ensure that all channel information

can adaptively participate in training, resulting in better generalization quality.

• The final component is an affine coupling layer. It first splits the channels of

the received variable x into two equivalent variables xa and xb, each with a

shape of [h × w × c
2
]. One of these variables, such as xb, is passed to a simple

neural network NN to estimate the element-wise scaling parameter s and element-

wise translation parameter t for the affine transformation. The other part of

the variable, xa in this case, undergoes an affine transformation using these

element-wise parameters. Finally, the transformed xa is concatenated with xb

to form the output of the affine coupling layer.
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To simplify the description, researchers typically combine the aforementioned three

modules into a single module consisting of an actNorm, an invertible 1x1 convolution,

and an affine coupling layer in sequence. We refer to this module as the ‘Coupling

Block’, while in Glow, it is called the ‘flow’. Furthermore, due to limited computa-

tional resources, Glow [23] and many subsequent works [24, 55–59, 62] incorporate

these ‘Coupling Blocks’ into a multi-scale architecture. This requires the normalizing

flow-based model to include both downsampling and upsampling layers. In this con-

text, the downsampling layer must also be invertible, so that the reverse process of the

downsampling operation is upsampling. Glow [23] addresses this problem by using a

Squeeze layer, which halves the spatial size of the latent variable h by reshaping each

spatial 2 times 2 neighborhood into the channel dimension [55]. Ardizzone, et al. and

Jing, et al.[57, 63] use wavelet transformation to perform downsampling [64] which

is also an invertible operation. Christian, et al. [65] propose a learnable orthogonal

kernel and use it in a convolution layer for performing invertible downsampling.

In works focusing on image colorization or translation, Ardizzone et al.[63] use a

conditional invertible neural network for grayscale image colorization, avoiding issues

such as mode collapse and unstable training often encountered in GANs. However,

their approach is limited to adding chrominance information to luminance images.

An, et al [24] incorporate an unbiased feature transfer module into a normalizing flow-

based architecture, enabling style transfer in a lossless and unbiased manner. While

their method effectively preserves the geometry of the content image, it has difficulty

translating a face sketch to a realistic image. Sorkhei et al. [59] also use a normalizing

flow-based architecture and carry out high-resolution semantic segmentation map-to-

real image translations, but their task is restricted to paired data translation.

It is evident that existing flow-based methods are not suitable for our face sketch

colorization task, which requires unpaired color face images to guide the colorization

process. Additionally, the significant domain gap between face sketches and real

face images poses a challenge for these methods to effectively establish a correlation
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between the two types of images. Nonetheless, the precise encoding and decoding

mechanisms of normalizing flow are crucial for preserving image information. For

instance, in Figure 2.11, ArtFlow [24] demonstrates near-perfect preservation of the

original image’s content information when transferring different styles to face images.

We believe that integrating a suitable feature aggregation module into normalizing

flow could aid in the face sketch colorization task, resulting in a colorized face sketch

with accurate, visually appealing colors that remain faithful to the sketch.

Figure 2.11: Examples from ArtFlow [24]. The left column is the content image, the
middle column is the style image, and the right column is the stylized image.

2.4 Summary

In this chapter, we discuss various deep learning-based image colorization methods

and analyze why they cannot be directly applied to our face sketch colorization task.

We provide background information on Generative Adversarial Networks (GANs) and

the modules and strategies used in GAN-based methods for controlling content or
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style information in a translated image. These include the cycle consistency training

strategy, normalization, and attention-based feature aggregation modules. Finally,

we introduce the background of normalizing flow and its related methods in image

translation.

In the next chapter, we present our model architecture for face sketch colorization,

which uses normalizing flow in an Encoder-Decoder manner and integrates our pro-

posed feature aggregation module for improved adaptation between sketch and color

information.
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Chapter 3

Face sketch colorization method

In Section 3.1, we first introduce our model architecture, including the overall work-

flow and details of each module separately. Then we discuss the novelty of our model,

which features a memory-efficient design in Section 3.2. Later, we introduce the data

preparation process which includes data augmentation strategies and the steps on

how we generate face sketches from real images in Section 3.3. In Section 3.4, the

loss function is discussed followed by the implementation of the proposed method in

Section 3.5.

3.1 Model architecture

The purpose of the network is to colorize a face sketch Is given any color face image

Iref as the reference color image. We consider this task as a one-to-many mapping

task, such that we can map these two images into their latent domains, and then

restore that sketch latent feature to the domain of the color image by leveraging the

advantages of normalizing flow.

3.1.1 Coupling block

Our network consists of a series of coupling blocks, along with several down samples

or upsampling layers. Our coupling block is designed to perform a reversible affine

transformation, with the main component being the coupling layer, first introduced by
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Dinh et al.[22]. We discuss more details in the following. Additionally, there are two

types of coupling blocks: Conditional and Non-Conditional. The term ‘Conditional’

refers to a module that incorporates additional information to guide the generation

of output, while ‘Non-Conditional’ indicates that the module generates the output

based solely on the input data it receives, without relying on any external guidance

or constraints.

3.1.2 Workflow overview

The workflow of our method is shown in Figure 3.1. Unlike ArtFlow, [24] which uses

a shared encoder for both content and style images, we use two normalizing flows

such that their forward process plays the same role as the traditional CNN-based

encoder, which encodes the sketch image Is and the color image Iref into two groups

of intermediate latent features X and Y , respectively. The reverse process plays the

same role as a decoder which maps the latent features back to the corresponding

image domains. To keep it simple, our normalizing flows, which function more like

an invertible neural network, are denoted as INNs and INNc for taking sketch and

color face images as input, respectively.

Denote X = {F s
i }

N
i=1 and Y = {F c

i }
N
i=1, where Fi is the output latent feature from

the ith coupling block, and the superscripts s and c denote sketch and color, respec-

tively. Then for the final encoded sketch feature, we have : F s
N = INNs(Is , {F c

i }
N
i=j+1)

where N is the total number of coupling blocks of each INN, and j stands for the

number of non-conditional coupling blocks with latent features not used for condi-

tioning. The set of latent features from the non-conditional coupling blocks of INNs,

is denoted as {F s
i }

j
i=1.

For the decoding process, we process the last latent feature F s
N in the reverse order

of the color encoder INNc. The goal is to accurately restore this latent feature back

to the color image domain by using the weights from the color encoder. We denote

this process as : Irec = INN−1
c (F s

N , {F c
i }

N
i=j+1), where Irec is the output colorized
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Figure 3.1: Overall architecture of our proposed network. The network in the green
rectangle is our sketch encoder INNs. The network in the blue rectangle is our color
encoder INNc. The purple dotted line indicates the color encoding process and the
red line indicates the sketch encoding and decoding processes. The model in the blue
rectangle is basically the same as that in the green rectangle. We separate them for
clarity.

image. It is important to note that we don’t need an extra branch to recreate the

sketch in order ensure the colorized image adheres to the sketch’s structure. This is

because our normalizing flow can losslessly convert an image into a latent space and

decode the latent features back to the original image domain. In this case, the sketch’s

geometry is preserved throughout the entire encoding and decoding processes.

3.1.3 Normalizing flow design

Our normalizing flow has three key components: (1) a non-conditional block, (2) a

conditional coupling block (see Figure 3.2), and (3) an invertible downsampling or

upsampling layers.

(1) For the non-conditional coupling block (NCCB), we adopt the coupling block

used in Glow [23] and ArtFlow [24], which consists of three layers: an ActNorm layer

(act) which acts as batch normalization, a Channel Permutation Layer (p), which
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(a)

(b)

Figure 3.2: The architecture of the non-condtional coupling block (NCCB). (a) The
encoding process of NCCB where it takes a single input Fi and outputs feature Fi+1.
(b) The decoding process of NCCB where it takes a single input Fi+1 and outputs
feature Fi.
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is implemented using an invertible 1 x 1 convolution[23] to encourage every channel

information to participate in the learning of deep features, and (3) a coupling layer

(coup) which uses half of the latent feature information in the affine transformation

of the other half. Figure 3.2 shows the detailed design of the NCCB. It is noteworthy

that, regarding the architecture of this module, the only difference from Glow [23]

and ArtFlow[24] is the choice of the CNN, where we use a residual block for a better

nonlinear mapping [56].

Let Fi denote the latent feature after the ith downsampling layer, F̂ i the feature

after ActNorm and the permuted channel layers, F̂ ia and F̂ ib the two features that

have been split equally based on the channel level of F̂ i. Then the output latent

feature Fi+1 from a NCCB can be expressed as:

F̂ i = p(act(Fi)) (3.1)

= Wp
θ ⊗ (Sact

θ × Fi +Bact
θ ) (3.2)

and

Fi+1 = coup(F̂ i) (3.3)

= coup(F̂ ia, F̂ ib) (3.4)

= concat(F̂ ia × σ(f
[1]
θ (F̂ ib)) + f

[2]
θ (F̂ ib), F̂ ib), (3.5)

where Wp
θ stands for the learnable weight matrix of the invertible 1x1 convolution.

Sact
θ and Bact

θ are the learnable scale and shift parameters in ActNorm for a new

mean and standard deviation. In Eq. 3.2, σ stands for the sigmoid operation and f
[1]
θ

and f
[2]
θ represent two neural networks with parameters θ in each coupling block. ⊗

is the matrix multiplication and × is the multiply operation.

Figure 3.2b shows the reverse order of NCCB, it can be seen that we generate Fi

using Fi+1. Denote F(i+1)a and F(i+1)b the two features that are equally split based

on the channel level of Fi+1. Now we have:
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F̂ i = coup−1(Fi+1) (3.6)

= coup−1(F(i+1)a, F(i+1)b) (3.7)

= concat

(︃
F(i+1)a − f

[2]
θ (F(i+1)b)

σ(f
[1]
θ (F(i+1)b))

, F(i+1)b

)︃
(3.8)

and

Fi = act−1(p−1(F̂ i)) (3.9)

= Wp−1
θ ⊗ ((F̂ i −Bact

θ )/Sact
θ ). (3.10)

(2) The Conditional Coupling Block (CCB) is built upon the NCCB architecture

and uses a Feature Aggregation Module (FAM) to fuse half of the latent feature F̂ ib

with the color feature F c
i , as shown in Figure 3.3. Following this, the fused latent

feature is split into two sub-networks. Inside the CCB, the latent feature Fi comes

from either the previous CCB block or the last downsampling layer. The ith CCB

recevies two inputs, the latent feature Fi from the previous CCB block or the last

downsampling layer, and the color latent feature F c
i from the corresponding CCB in

the color encoder INNc.

Here, the latent feature Fi received by the CCB represents two types of informa-

tion. In the first case, as depicted by the red arrow in Figure 3.1, Fi represents the

sketch feature F s
i or F s

i+1, which is used in the encoding process of INNs and the

decoding process of INNc, respectively. The FAM in the CCB adaptively fuse the

sketch feature with the color feature in this case. In the second case, illustrated by

the purple dotted arrow in Figure 3.1, F c
i represents the color feature, which has been

used in the encoding process of INNc. Since both inputs represent the color infor-

mation, these latent features go through the FAM is just to ensure the invertibility

of our normalizing flow. Then the output of the ith CCB provides the color feature

F c
i+1 to each corresponding CCB in the sketch encoder INNs.

Inspired by the success of self-attention in transformers [52], our FAM also employs

the attention mechanism. In the following, we provide an example of the FAM from
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(a)

(b)

Figure 3.3: The architecture of conditional coupling block (CCB). (a) The encoding
process of CCB where it takes a single input Fi conditioned with color information
F c
i and outputs feature Fi+1. (b) The decoding process of CCB where it takes a single

input Fi+1 conditioned with color information F c
i and outputs feature Fi.
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the CCB in the sketch Encoder INNs, the details of which can be found in Figure

3.4. To begin with, half of the sketch latent feature F̂
s

ib and the color latent feature

F c
i are input into two independent multi-layer perceptrons (mlps), mlp

[1]
s and mlp

[1]
c .

Figure 3.4: The proposed feature aggregation module. The purple and red lines
indicate the workflow of the condition and input features, respectively. Transpose
denotes the transpose operation between the channel and spatial dimensions, Reshape
orR in an equation denotes the reshape operation which reduces the spatial dimension
to 1, and Reshape−1 or R−1 denotes the reverse. σ denotes the sigmoid function.

Denote the spatial-aware attention matrix as As ∈ RH·W×H·W and the channel-

aware attention map as Ac ∈ RC×C , the reshape operation R : RC×H×W → RC×H·W ,

and R−1 its inverse operation RC×H·W → RC×H×W , then we have:

As = softmax(R(mlp[1]
s (F̂

s

ib))
T ⊗R(mlp[1]

c (F c
i ))) (3.11)

and

Ac = softmax(R(mlp[1]
s (F̂

s

ib))⊗R(mlp[1]
c (F c

i ))
T ) (3.12)

where the attention matrices As and Ac are calculated based on the channel and

spatial information, respectively. Now we have the fused spatial-aware feature fuses
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and the fused channel-awared features fusec, and the final fused feature Fuse as:

fuses = R−1[As ⊗R(mlp[2]
c (mlp[1]

c (F c
i )))

T ]T , (3.13)

fusec = R−1[Ac ⊗R(mlp[3]
c (mlp[1]

c (F c
i )))], (3.14)

and

Fuse = FAM(F̂
s

ib, F
c
i ) (3.15)

= F̂
s

ib × [σ(fuses + fusec) + 1], (3.16)

where σ is the sigmoid function, mlp
[2]
c and mlp

[3]
c are another two independent mlps.

Finally, the latent feature of the output sketch F s
i+1 from the ith CCB is expressed

as in Eq. 3.17:

F s
i+1 = concat(F̂

s

ia × σ(f
[1]
θ (Fuse)) + f

[2]
θ (Fuse), F̂

s

ib) (3.17)

In the reverse order, the following equations demonstrate the calculation steps of our

FAM and CCB in the color Encoder INNc. Similar to Eq. 3.15 and Eq. 3.8, we

have:

Fuse
′
= FAM(F s

(i+1)b, F
c
i ) (3.18)

F̂ i = concat

(︃
F s
(i+1)a − f

[2]
θ (Fuse

′
)

σ(f
[1]
θ (Fuse′))

, F s
(i+1)b

)︃
(3.19)

(3) For the choice of invertible downsamping or upsampling layers, according to

Etman et al. [65], using pixel shuffle based or the wavelet transformation to downsam-

ple an image can create checkerboard artifacts. In order to generate a plausible color

image, we follow the previous work [65] and use a learnable orthogonal downsampling

operator as:

Fi+1 = OD(x
i) = conv(reshape(exp(Θ−ΘT )), Fi) (3.20)

For upsampling:

Fi = OU(x
i) = convT(reshape(exp(Θ−ΘT )), Fi+1) (3.21)
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where Fi+1 ∈ R 2N
C

× 2N
C is the image after downsampling and Fi ∈ RN×N is the image

with a spatial size N before downsampling. θ ∈ RC×C is a matrix parameterized by

the Haar [66] kernels and C is the channel size after downsampling, for 2D data C is

4 [65]. reshape is defined as RC×C → RC×1×C
2
×C

2 , which reorders the exponentials of

matrices into a convolutional kernel [65]. conv and convT are convolution and trans-

pose of convolution operations. OD andOU denote the orthogonal downsampling and

upsampling functions, respectively.

3.2 Memory-efficient design

In order to make the computation of our model memory efficient, we designed our

architecture to use fewer coupling blocks for shallow scale levels, where shallow scale

levels imply that the latent features stay in a higher spatial size.

In our design, we use only one NCCB between each downsampling layer, and then

all the other CCBs are put after the last downsampling layer. Figure 3.5 illustrates

the traditional design of the architecture in other flow-based methods. It can be seen

that other methods [23, 24, 55, 59] use the same number of coupling blocks for each

scale level. Particularly for very shallow information, more coupling blocks lead to

more memory consumption. Thanks to the learnability of the orthogonal down or

upsampling operation, the necessary spatial information can be adaptively converted

into channel information, allowing the convolution networks f
[1]
θ and f

[2]
θ to more

effectively use this information to estimate the affine coefficients.

We show the comparison between our model with other flow-based methods in

Section 4.3. Additionally, an ablation study in Section 4.5.2 also shows that our

model reduces computational cost that would have been spent on shallow information

but still produces acceptable results.

3.3 Data preparation
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Figure 3.5: The traditional architecture design used in many flow-based models [23,
24, 55, 59]. For each scale level, they use N couplings blocks, while our method use
only one coupling block for all scale levels except for the deepest one.

3.3.1 Dataset

Based on previous research in this field, we have chosen CelebAMask-HQ [67] as our

dataset. This dataset contains 30K high-resolution (1024 x 1024) face images from

public online sources, each paired with a segmentation mask of facial attributes. These

attributes come from 19 classes that cover all facial components and accessories, such

as skin, nose, eyes, ears, mouth, and more. Due to the high labeling costs associated

with the larger size, the masks were manually annotated at a resolution of 512 x

512. However, they can be effortlessly upscaled from 512x512 to 1024x1024 using

nearest-neighbor interpolation without causing noticeable artifacts.

Figure 3.6: Examples from CelebAMask-HQ dataset [67].

We randomly split the data with a ratio of 4:3 into training and testing sets, and

then resize all images from 1024 x 1024 into 256 x 256 to reduce the computational
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cost. Figure 3.6 shows same images from this dataset.

3.3.2 Sketch and mask generation

The original CelebAMask-HQ [67] includes color face images and their corresponding

instance segmentation labels only. To create a face sketch from a color face image, we

follow the method in previous works [21, 68], which uses the sketch filter in Photoshop

to create an initial sketch and then a sketch simplification method [69] to simplify the

sketch. Then we use the instance segmentation labels [67] to generate a binary mask

of the face to remove the unnecessary background around the face, which helps the

model focus more on the face region. Figure 3.7 gives an example on how we generate

the face sketch.

Figure 3.7: The left color image is from CelebAMask-HQ [67], the middle coarse sketch
is obtained using the sketch filter in Photoshop, and the right sketch is generated by
the sketch simplification method [69] from the middle sketch.

3.3.3 Data augmentation

Many existing conditional image translation methods [42, 44, 68, 70] use unsupervised

cycle consistency training. However, these approaches usually include more encoding

and decoding steps than typical supervised methods [54, 71–73], and require more

training time. Therefore, in order to simplify the training process and to make the
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model adapt to different face images, inspired by the work of Lee, et al. [30], we

adopt the self-augmented reference method to guide the colorization process.

Given both the original color face images and the corresponding face sketches, we

apply random horizontally flip, rotation and center crop followed by an interpolation

back to 256 x 256 resolution as the basic data augmentation to increase our sample

diversity. Then, for the color images, we also randomly change their brightness,

contrast, saturation and hue following the work of Lee, et al. [30], and then apply

elastic transformations [74, 75] on the original color images, which are referred as

the reference images. The purpose is to make the reference images geometrically

independent from their corresponding sketches. The examples of the augmented

images can be seen in Figure 3.1.

Elastic transformation, also known as elastic distortion, was first proposed by

Patrice, et al. [76]. It randomly changes the shape of objects in images and cre-

ates a water-like effect by first generating random displacement fields. These fields

are the changes of pixels’ locations in a given image. For a pixel in an image at loca-

tion (x, y), its corresponding displacement field is denoted as (δx, δy). Then, these

fields are convolved with a Gaussian of standard deviation σ. We denote the final

displacement field of each pixel as (Conv(σ, δx) , Conv(σ, δy)). Finally, the transfor-

mation moves each pixel to a new location at (x+Conv(σ, δx), y+Conv(σ, δy)). An

example of elastic transformation on the MNIST dataset [77] can be found in Figure

3.8.

During training, we apply the reconstruction loss that forces the model to conform

with the original geometry but uses the color information from the reference image.

Examples of self-augmented images can be found in the introduction to our overall

model architecture, as depicted in Figure 3.1.
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Figure 3.8: Top left: Original image. Right and bottom: Pairs of displacement fields
and resulting images produced when different displacement fields are applied to the
original image. Up right (σ=0.01), left bottom (σ=8), and right bottom (σ=4) [76].

3.4 Loss function

As introduced at the beginning of Section 3.1, Irec represents the colorized image

generated by our model, while Iref is the paired color image from the dataset that has

undergone elastic transformation and color permutation, as discussed in Section 3.3.3.

Then, we define Igt as the paired color image without any geometric transformation,

ensuring that it shares a similar geometry with the sketch image.

To measure the accuracy of our colorized image, we use the L1-loss to calculate

the absolute difference between the colorized image Irec and the ground truth image

Igt. This loss is referred to as the Reconstruction Loss and is represented as follows:

Lrec = |Irec − Igt|, (3.22)

To encourage our colorized images to be more natural and perceptually pleasing. we
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follow previous work by Johnson, et al. [78], which calculates square of the difference

between the activation maps of the colorized image and of the ground truth image

using a pretrained image classification network (V GG16). This loss is referred to as

the Perceptual Loss [78] and is represented as:

Lpercp =

|S|∑︂
i=1

|ϕi(Irec)− ϕi(Igt)|2 , (3.23)

where ϕi denotes the activation map of the ith layer of the pretrained V GG16 network,

|S| stands for the number of activation maps, where S = {3, 8, 15, 22, 29} the set of

layaer numbers, which has the same number of layers as in the previous work [78].

3.5 Implementation details

During training, the weight ratio of Reconstruction Loss to Perceptual Loss is set at

10:1. We use the Adam [79] optimizer with a batch size of 16, an initial learning rate

of 0.0001 and a total of 100 training epochs. For every 5 epochs, the learning rate is

reduced by a factor of 0.9.

In our model architecture, we set the total number of downsampling operations

to 3, resulting in 3 NCCBs for each normalizing flow. Then, once the image has

been transformed into the desired latent space, we put all the CCBs after the last

downsampling layer. In practice, we use 8 CCBs for each INN model. As seen in

Eq. 3.2, two independent neural networks are used in the coupling block to perform

affine transformation. In practice, we choose a 3-layer residual block [80] followed by a

1x1 convolution layer for these networks. Each residual block contains a convolutional

layer, an InstanceNorm layer [45] and a ReLU layer [81], and the last 1x1 convolutional

layer is initialized with zeros [23]. The channel size of each residual network is the

same as the input channel size, which means that for a shallow scale level, each layer

has only a few parameters. Consequently, the majority of model parameters comes

from our CCBs.
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3.6 Summary

In this chapter, we introduced our sketch colorization method, which is based on two

normalizing flows featuring exact image encoding and decoding, as well as with a fea-

ture aggregation module to effectively fuse color and sketch information. Our model

is end-to-end for both training and testing, taking any color face image and unrelated

face sketch as inputs and directly generating the colorized sketch without the need for

intermediate preprocessing steps. By using learnable invertible downsampling layers,

we can allocate fewer parameters to shallow level features, making our model more

efficient in terms of computational resources, specifically memory, without sacrificing

performance. This allows for faster training.

In the next chapter, we will carry out comprehensive qualitative and quantitative

experiments to assess the performance and efficiency of our model.
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Chapter 4

Experiments

In this chapter, we first introduce some state-of-the-art algorithms that serve as bench-

marks for comparison with our method, as well as the evaluation metrics for quan-

titative assessments. We compare the performance of our proposed method with

state-of-the-art methods using quantitative evaluations (Section 4.3) and qualitative

comparisons (Section 4.4). Moreover, the results of an ablation study are discussed

in Section 4.5 to analyze different settings of our method and to demonstrate the ef-

fectiveness of our design. Finally, we present the evaluation results from a user study

in Section 4.6.

4.1 Compared methods

To demonstrate the performance of our proposed method, we select several algorithms

that use a reference image as guidance to control the output of sketch to image

colorization. We categorize these methods into CNN-based and normalizing flow-

based methods.

For CNN based algorithms, the method proposed by Lee, et al. [30] is an end-to-end

sketch to image colorization method which also employs the self-augmented reference

training strategy. DeepFaceEditing [50] learns sketch to image translation through a

cycle-consistency training. Liu, et al. [51] use a GAN to refine the synthesized image

by employing a self-supervised Auto-Encoder.
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For flow-based methods, An, et al. [24] apply style transfer by encoding and

decoding different style domains using the same parameters. van der Ouderaa and

Worrall [82] leverage an invertible mechanism in the high-dimensional feature space

within a CycleGAN framework. Sorkhei, et al. [59] generate realistic images with the

guidance from segmentation maps.

It is important to note that because DeepFaceEditing [50] does not have the train-

ing code, we can only use the provided pre-trained model to generate the colorized

images. For all the other methods, we use their published codes and retrain their

models on the CelebA [83] dataset with our created sketch images. During training,

we use the default configuration settings of publicly available codes and limit the

image size to 256 x 256.

4.2 Evaluation metrics

To quantitatively evaluate the performance of our method, we choose 4 evaluation

metrics to assess our colorized images from different perspectives.

(1) To measure the overall quality of the colorized images, we use the FID [84] score

to calculate the distance in a high-dimensional feature space between the colorized

sketches and the real images, because FID score captures the disturbance level very

well and has a better correlation with human judgment of visual quality. The ter-

minology ”disturbance level” means the degree of dissimilarity or difference between

the real and generated images by a generative model. Following the implementation

of Martin, et al. [84], we use the last pooling layer of a pretrained Inception-v3 model

trained on the ImageNet dataset [85] as the coding layer to generate high-dimensional

feature vectors. We denote the high-dimensional feature vectors of our colorized face

sketch Irec and reference color image Iref as frec and fref , respectively. Furthermore,

µrec and µref represent the feature-wise means of frec and fref , while Crec and Cref

are the covariance matrices for frec and fref , respectively. Therefore, the FID score

can be calculated as in Eq. 4.1:
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FID(Irec, Iref ) = |µrec − µref |2 + Tr(Crec +Cref − 2(Crec ·Cref )
1
2 ), (4.1)

where Tr refers to the trace of a square matrix which is the sum of elements along

the diagonal of the square matrix.

(2) Next, we follow the evaluation approach employed by An, et al. [24], we

employ the Structural Similarity Index Measure (SSIM) [86] to measure the

geometry similarity between the colorized sketches Irec and the original real images

Igt. Unlike global metrics such as MSE, SSIM measures the similarity in local regions

of images, which more closely aligns with human visual perception. Moreover, it

extracts three key features—luminance, contrast, and structure—that are crucial for

human perception of image quality, and the comparison between the two images is

performed based on these features.

According to Wang, et al. [86], the luminance information of an image refers to

the average values across all pixels. In this case, we represent the means of Irec

and Igt using µrec and µgt, respectively. For contrast information, which is derived

from the standard deviation of a given image, denoted as σrec and σgt for Irec and Igt,

respectively. Then, the structural information is represented by the normalized values

of the images. Lastly, SSIM is defined as a combination of all the above information

and shown in Eq. 4.2:

SSIM(Irec, Igt) =
(2µrec · µgt + C1)(2σrec,gt + C2)

(µ2
rec + µ2

gt + C1)(σ2
rec + σ2

gt + C2)
(4.2)

where

σrec,gt =
1

N − 1

N∑︂
i=1

(I(rec)i − µrec)(I(gt)i − µgt), (4.3)

and N is the total number of pixel of an given image, C1 and C2 are very small

constants to ensure stability when the denominator becomes zero.

(3) and (4) Finally, in accordance with Zhang et al. [53], we use Content Rele-

vance (CR) to assess the semantic consistency between the colorized images Irec and

the original real images Igt. Also, we use Style Relevance (SR) [53] to evaluate the
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colorization accuracy between the colorized images Irec and the corresponding refer-

ence image Iref . Both CR and SR are computed using the cosine similarity of selected

low-level features extracted from a pre-trained VGG16 network [38]. As suggested by

Zhang et al. [53], we use the low-level feature of the 4th and 9th layers to compute

the CR score, and of the 14th, 23th, and 32th layers for high-level features to calculate

the SR score. For the CR score, it is represented as:

CR(Irec, Igt) =

|S|∑︂
i=1

cos(ϕi(Irec), ϕi(Igt)) (4.4)

=

|S|∑︂
i=1

ϕi(Irec)⊙ ϕi(Igt)

||ϕi(Irec)|| · ||ϕi(Igt)||
, (4.5)

where ⊙ denotes the dot product operation and ||ϕi(Irec)|| is the L2 norm of a vector

ϕi(Irec). ϕi denotes the activation map of the ith layer of the pretrained V GG16

network, |S| stands for the number of activation maps, where S = {4, 9} denotes the

set of layer numbers. For the SR score, similar to Eq. 4.4, it can be represented as

in Eq. 4.6:

SR(Irec, Iref ) =

|K|∑︂
i=1

cos(ϕi(Irec), ϕi(Iref )), (4.6)

where |K| stands for the number of activation maps, and K = {14, 23, 32} the set of

layer numbers.

4.3 Quantitative comparison

Table 4.1 presents the quantitative comparison results between our method and the

state-of-the-art approaches mentioned in Section 4.1. It can be seen that our method

is competitive across all metrics when compared with other methods. In the first

column, the FID score, the method proposed by Liu et al. [51] achieves the best

result, but struggles to maintain sketch geometry, as evidenced by its significantly

lower SSIM and CR scores. In contrast, our method achieves a close second-best FID

score of 41.8, only slightly behind Liu et al. [51]. For the SR score, FullGlow [59]
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Methods FID ↓ SSIM ↑ SR ↑ CR ↑

RevGAN[82] 206.3 0.590 0.619 0.502

ArtFlow[24] 121.5 0.578 0.634 0.544

FullGlow[59] 59.8 0.621 0.742 0.648

DeepFaceEditing*[50] 47.7 0.703 0.665 0.738

Self-Supervised[51] 41.3 0.705 0.661 0.747

ReferenceBased[30] 44.3 0.711 0.668 0.741

Ours 41.8 0.773 0.684 0.807

Table 4.1: Quantitative comparison to both flow-based (Blue) and CNN-based meth-
ods (Red). For FID score, the lower the better, for SSIM, SR and CR score, the
higher the better.

takes the top position. However, its inferior FID, SSIM, and CR scores indicate that

it has difficulty to accurately applying color information to the face sketch in terms

of perceptual quality from a human perspective and sketch geometry preservation.

It is clear that the CNN-based methods generally outperform the normalizing flow

based methods, achieving superior scores across all four metrics. However, when

considering both color accuracy and geometry consistency, our normalizing flow-based

method achieves the second-best SR and FID scores, as well as the highest CR and

SSIM scores. This highlights the effectiveness of our approach, which uses normalizing

flow for sketch colorization, and indicates that our method can apply colors to a sketch

more accurately while preserving sketch geometry.

In Table 4.2, we compare the training efficiency of our baseline model with other

normalizing flow based models [24, 59, 82] using three metrics: the number of model

parameters, GPUmemory usage, and Giga Multiply-Accumulate operations (GMACs).

GMACs is a metric used to measure the computational complexity of neural networks

and provides an estimate of the computational resources required for the network,

where a lower GMACs value indicates a more computationally efficient model. As

shown in Table 4.2, our model achieves the lowest GMACs value, leading to the most
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Arch/ loss params GPU memory usage GMACs

ArtFlow[24] 6.5m 52G 57.7

FullGlow[59] 82.3m 13G 157.7

RevGan[82] 6.8m 15G 140.6

Ours 17.1m 12G 17.5

Table 4.2: A comparison between our model with other flow-based methods in the
number of parameters, GPU memory usage and GMACs. All the trainings follow the
default settings.

efficient training. On the other hand, other models [24, 82] use fewer parameters but

consume more GPU memory and require longer training times.

4.4 Quanlitative comparison

Figure 4.1a shows the visual comparison between our method and other methods.

Start from the third column, ArtFlow [24], which simply incorporates a style transfer

module and a training strategy with an flow-based model, cannot properly add colors

to a given sketch image. RevGAN [82] fails to colorize the sketches. While FullGlow

[59] and the pretrained DeepFaceEditing [50] present a realistic color quality on their

colorized images, they cannot ensure that the color follows the geometry of the sketch

as precisely as possible. For example, in the second row, not only do the colorized

images not resemble the input sketches, but also a significant part of the girl’s face is

in shadow, which is not realistic. Next, ReferenceBased [30] and Self-Supervised [51]

can follow the geometry of the sketch in their colorized images, but the colors from

ReferenceBased [30] shown in the seventh column deviate from that of the reference

images shown in the second column, and Self-Supervised [51] overemphasizes the

edges. In contrast, the colorized images of our method shown in the last column

demonstrate a good balance between geometry consistency (input sketch) and color

accuracy (reference image). In Figure 4.1b, we present more colorization examples

by our approach. It can be seen that our method accurately colorize a sketch with
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(a)

(b)

Figure 4.1: (a) Qualitative comparison with other baseline methods, The first column
is the input sketch image and the second column is the corresponding reference image.
The last column is the colorized results using our method. (b) Qualitative comparison
of our method that each sketch image (in the first column) takes 8 colorful images
(in the second column) as exemplars.
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respect to different color images as references. We show more diverse examples in

Appendix A.

4.5 Ablation study

We perform ablation studies to cover three aspects: the proposed FAM module, the

model architecture, and the loss functions.

4.5.1 Analysis of the Feature Aggregation Module

To demonstrate the effectiveness of the FAM, we conduct an ablation study by eval-

uating different feature aggregation methods as alternatives to our FAM. Along with

our baseline model, we examine three additional variations: (a) a model without

FAMs, (b) a model using concatenation operation to fuse features, as suggested in

[59], and (c) a model that employs AdaIN for transferring color information to the

sketch, as described in [24]. In every ablated model, the rest of the components re-

main the same as in our baseline model. This consistency allows us to draw reliable

and insightful conclusions about the impact of various feature aggregation methods

on our model’s performance.

The visual comparsion results are shown in Figure 4.2. It is clear that, without any

feature aggregation strategy (b), the output image appears to be lacking in colors.

Additionally, the other two methods (c) and (d) tend to produce color images with

poor alignment to either the color reference image or the sketch, especially when

there are significant geometric differences between them. For example, in the first

and last columns, both (c) and (d) appear to ignore the sketch geometry, applying

colors directly onto the sketch without any adaptation to its geometric structure. The

quantitative results in Table 4.3 further support this observation, as both (c) and (d)

show poor SSIM and CR scores, indicating their failures to preserve the appropriate

geometry. In contrast, our proposed FAM (a) consistently offers superior colorized

results, outperforming the other variations and validating the effectiveness of our
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Figure 4.2: An ablation study with variants that substitute the proposed Feature
Aggregation Module with different methods.
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FID ↓ SSIM ↑ SR ↑ CR ↑

without FAM 62.0 0.764 0.561 0.759

concatenation 42.3 0.668 0.702 0.709

AdaIN 39.1 0.699 0.705 0.752

Baseline 41.8 0.773 0.684 0.807

Table 4.3: Quantitative comparison on our method with different Feature Aggregation
Modules

approach.

4.5.2 Analysis of the model architecture

To demonstrate the effectiveness of our model in reducing computational resources, we

carry out an ablation study that compares our baseline model with various alternative

models. These alternatives either use more coupling blocks for shallow features or

downsample images with a different number of times. Likewise, other components

maintain identical to our baseline model. As mentioned in Section 3.5, our baseline

model incorporates 3 downsampling layers with a total of 8 CCBs and includes 1

NCCB between every two downsampling layers. For the variant models, we either

reduce the image size by a factor of two or four, and use a combination of the number

of NCCBs and downsampling layers to denote the names of different models. For

instance, NCCB(2, 1) refers to the variant that downsamples the image twice and has

one NCCB between every two downsampling layers. Another example, NCCB(4, 8)

represents a variant model that features 4 downsampling layers and 8 NCCBs in

between every two of downsampling layers. Additionally, we also compare variants

that use the same number of coupling blocks at each scale level, which in our case is

8.

We present the qualitative results in Figure 4.3. It can be seen that the variant

models (a) and (b) maintain a good geometry but perform worse in capturing color

information, resulting in lower overall scores shown in Table 4.4. We believe that these
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Figure 4.3: An ablation study using a different number of downsampling layers and
NCCBs in our desgin.

variants are too small to get good results, as can be seen in Table 4.5. Although these

variants have very few parameters, they consume a large amount of GPU memory.

This is due to the use of a fewer number of downsampling layers on an image, which

requires higher spatial resolution information and demands more GPU memory for

computation.

For the variant models (c), (d), (e) and (f) with more downsampling layers, they

have more parameters but use less memory. This is due to the lossless transfer of

spatial information to the channel dimension, which indicates that a larger kernel size

used in the convolution layers of the coupling blocks. However, more parameters does

not guarantee better performance. Although variant models (c) and (d) give better

FID and SR scores than our baseline, the color bleeding effect is more apparent when

4 downsampling layers are used. For example, in the fifth and sixth column in Figure

4.3, the forehead regions inside the red circle of the man and the woman have the

black color of the hair region leaked to the face region.

Table 4.5 also demonstrates that when having more coupling blocks for each scale

level does not necessarily lead to improvement in performance. With fewer param-

eters, although the training efficiency is improved, more GPU memory is used and
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Arch FID SSIM SR CR

NCCB(2,1) 44.9 0.759 0.668 0.783

Ours NCCB(3,1) 41.8 0.773 0.684 0.807

NCCB(4,1) 40.9 0.713 0.695 0.752

NCCB(2,8) 43.8 0.745 0.653 0.781

NCCB(3,8) 42.7 0.761 0.679 0.774

NCCB(4,8) 41.2 0.720 0.689 0.748

Table 4.4: Quantitative comparison of our method with the variants has different
number of downsampling layers and NCCBs.

Arch #params GPU memory usage GMACs

NCCB(2,1) 0.8m 46G 1.7

Ours NCCB(3,1) 17.1m 12G 17.5

NCCB(4,1) 138.3m 13G 37.6

NCCB(2,8) 1.2m 57G 2.1

NCCB(3,8) 25.2m 21G 19.4

NCCB(4,8) 310.0m 23G 45.2

Table 4.5: The number of parameters and the required GPU memory for training our
variant models. All the experiments use the same setting from Section 3.5

the colorization quality is lower. This means that our memory-efficient design can

achieve acceptable results with a modest number of model parameters and a low

memory footprint.

The recent success of the GPT-4 model [87] has demonstrated remarkable per-

formance, attributed to its use of over 10 trillion parameters. While having more

parameters often leads to better performance, it is essential to consider that not

every research group or department possesses the computational resources or time

required to work with such massive models. Consequently, it is equally important to

develop models that achieve strong performance with as few parameters as possible.

55



Figure 4.4: Ablation study of the loss terms.
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loss FID SSIM SR CR

Ours + w/o Lpercp 53.4 0.745 0.681 0.755

Ours + w/o L1 49.3 0.755 0.763 0.784

Ours 41.8 0.773 0.684 0.807

Table 4.6: Analysis of using loss terms.

4.5.3 Analysis of loss functions

We modify the loss function to investigate the influence of each loss term on the final

results. In Figure 4.4, we observe that when solely using the L1 loss (c), the resulting

colorized sketches appear more pale in comparison to our baseline model (a). On the

other hand, if we keep only the perceptual loss (b), the colorized sketches visually

resemble our baseline but exhibit a blurry appearance. The quantitative outcomes

presented in Table 4.6 further substantiate that incorporating all loss terms yields

the highest overall quality and colorization accuracy. This analysis highlights the

importance of combining various loss terms to achieve optimal results in our model.

4.6 User study

Due to the lack of ground truth for our colorized sketches, the evaluation metrics

mentioned earlier serve as indirect measures of the colorized sketch quality. To further

complement these metrics, we carry out a user study involving human subjects to

evaluate the performance of our model compared to state-of-the-art methods. This

user study aims to qualitatively demonstrate that our proposed model can effectively

maintain accurate geometry while capturing precise colors from the reference image.

There are two main advantages of conducting user study: (1) A user study allows

for a subjective assessment of the colorization results, considering human perception

and aesthetic preferences that may not be fully captured by quantitative metrics.

(2) Involving human participants in a user study provides real-world validation of

the model’s effectiveness in generating visually appealing and geometrically faithful
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colorized images to the sketch, ensuring that the results are practical from human’s

perspective.

Incorporating a user study helps us gain a better understanding of our model’s

performance. In the following, we describe the design of our user study.

4.6.1 User study design

When inviting participants for our user study, it is important to take some practical

factors into account. Firstly, we avoided choosing people we know to participate in

the survey, as they are more likely to recognize which method is ours when viewing

the comparison images, and they tend to give higher scores to our method. This could

lead to biased feedback. To address this concern, we followed the approach used in

previous works [50] and distributed the survey online to strangers.

Secondly, we also need to think about people’s willingness to participate in the

survey and find effective ways to encourage more strangers to join in the survey. To

address this concern, we chose a reputable platform called ‘Wenjuanxing’, a platform

providing functions equivalent to Amazon Mechanical Turk. This platform is specifi-

cally designed for creating, distributing, and managing surveys, and it also maintains

participants’ anonymity and data privacy. By ensuring that no personally identifiable

information is collected and that responses are kept confidential, participants may feel

more comfortable providing honest feedback.

Thirdly, it’s important to make sure that the survey is easy to access, user-friendly,

and time-efficient for both participants and researchers. To accomplish this, we used

clear and simple language in the survey, avoiding overly long or complex questions.

By keeping participants engaged and motivated to provide their feedback, we can also

save time during data analysis.

Therefore, we conduct our user study using a questionnaire with two different

questions. To create a comprehensive set of comparison examples for this study, we

randomly select 30 sketch images and color reference images from the test dataset.

58



To guarantee a thorough evaluation, we divide these examples into two equal halves.

The first half, which has 15 examples, is dedicated to the first question on evaluating

the geometry preservation in the colorized images. In particular, this question asks

how well the colorized images maintain the geometric details and structure of the

original sketches. This assessment helps in determining the model’s effectiveness in

preserving the sketch geometry of the colorized image.

The second half, with another 15 examples, is set aside for the second question,

which evaluates the quality of colorization and its accuracy with respect to the refer-

ence image. This evaluation considers factors such as color fidelity, consistency, and

the overall aesthetic appeal of the colorized images. Assessing colorization quality

helps determine if the model can produce visually pleasing and accurate colorized

results that align with the reference image.

In our user study, for each question, we use a 5-point rating scale that participants

apply to evaluate the performance of each method according to their judgment. The

examples of these questions can be seen in the subsequent subsection 4.6.3, where we

also give a brief introduction of the website we used for gathering and managing the

questionnaires.

4.6.2 User study platform

In this subsection, we provide a visual guide to show how we make questionnaires

on the ‘Wenjuanxing’ platform, including examples of the two types of questions

mentioned earlier. As the platform is primarily in Chinese, we translate the whole

page to English and and explain key content inside each red rectangle in each image’s

captions for easier understanding.

1: ‘Wenjuanxing’ is a user-friendly platform that simplifies the survey creation

process, making it more convenient to design and carry out the questionnaire.

The website’s main page, displaying its features and offerings, can be seen in

Figure 4.5:
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Figure 4.5: An overview of the main page of the survey platform ‘Wenjuanxing’.
Rectangle 1 displays the platform’s name. Rectangle 2 indicates where users can
create a new survey from scratch. Rectangle 3 is the area for inputting survey titles.
Rectangle 4 shows the ’create’ button for initiating a new survey. Rectangle 5
highlights the option to generate a survey from text input. Rectangle 6 reveals
the support for creating a survey through customer service assisted by the platform.
Rectangle 7 lists some templates of various surveys for user convenience.

2: By clicking the ‘create’ button, we are redirected to the page where we can

edit the contents of our survey. As depicted in Figure 4.6, the editing interface

showcases an example question and provides an easy-to-use environment for

customizing the survey’s content.

3: Figure 4.7 also presents an example question addressing the preservation of ge-

ometric information in colorized face sketches. The question evaluates whether

the geometry is clearly identifiable and if the colors are applied both strictly

and reasonably, adhering to the sketch’s original geometric structure.
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Figure 4.6: An overview of the editing page on the survey platform ‘Wenjuanxing’,
which includes our questions. Rectangle 1 represents the various types of questions
that can be created. Rectangle 2 shows the buttons that stand for ”Preview” and
”Finish Editing.” Rectangle 3 displays the content of each question, stating, “For
the colorized face images obtained by methods A through F, please rate their color
accuracy in comparison to the reference image on the left. Rectangle 4 presents
the grades assigned to each option. Rectangle 5 lists the 7 comparison methods
along with their corresponding marking options. Rectangle 6 shows the button to
add question behind the current one Rectangle 7 contains the buttons to edit the
questions. From left to right, they are: Edit, Copy, Delete, Move up, Move down, To
the front, To the back. Rectangle 8 shows the next question.

4: Once finished editing the survey, we can start to send the survey online. This

platform provides a wide range of sharing options, as illustrated in Figure 4.8

5: After participants finish the survey, the platform offers various data analysis

options. In our case, as shown in Figure 4.9, we counted five distinct grades
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Figure 4.7: An example of the question that evaluate the geometry perservation on
the colorized face sketch. The layout is similar to the question in 4.6

Figure 4.8: Rectangle 1 displays various sharing options for our survey. From
left to right, they include sharing via link and QR code (the current page), sharing
through WeChat, sharing via email or text message, utilizing paid services for survey
distribution, customizing the sharing link, and posting the survey to the community.
Rectangle 2 contains the QR code for sharing, while Rectangle 3 holds the sharing
link. Rectangle 4 features buttons for copying and opening the link. Rectangle 5
offers the option to create a poster for the survey, and Rectangle 6 enables quick
sharing through WeChat. Finally, Rectangle 7 provides a way to conduct online
face-to-face conversations with each participant.
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Figure 4.9: Rectangle 1 displays various essential information regarding the survey
responses. From left to right, the options are: Statistics and Analysis, Download
Survey, Source Verification, Completion Rate Analysis, and an Overview of all the
responses. Rectangle 2 offers the option to examine the data in more detail. Rect-
angle 3 presents the distribution of votes across all scales for each question, as well as
the percentage breakdown for each method. Rectangle 4 illustrates different ways
to visualize the data, including options such as tables, histograms, bar graphs, line
graphs, and radar charts.

for each method across all the questions. Subsequently, we compiled the votes

from these 30 questions and generated a comprehensive bar chart, which is

illustrated in Figure 4.10. This chart provides a clear visual overview of the
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overall performance of each method.

4.6.3 User study analysis

Finally, we collected 100 feedback submissions online, leading to a total of 100 x 30

= 3,000 evaluation results for each method. The final statistical findings, as shown in

Figure 4.10, clearly show that our method outperforms all competitors, receiving the

most ’very satisfied’ and ’satisfied’ ratings for both geometry and style preservation.

However, we still observe a significant difference between the votes for geometry

and color preservation. In geometry preservation, a few votes gave very low ratings

to our method and others. This might be because the randomly chosen examples

included some poor colorization results for less common facial attributes, such as

hats or sunglasses. We will present these failure cases in the following chapter.

Moreover, we observe that RevGAN [82] mostly struggled to colorize the face sketch

effectively, but it was able to keep a clear sketch face with minimal color variation. We

think that some users may have appreciated that the sketch geometry does not change

much from the input sketch, causing a few of them to give this method relatively high

scores. Regarding color preservation, we notice that almost no one gave high scores

to RevGAN [82].

We find that for both types of questions, participants displayed a clear preference

for CNN-based methods [30, 50, 51] over existing normalizing flow-based methods

[24, 59, 82] in the context of sketch colorization. This observation is also consistent

with the results in our qualitative and quantitative comparisons. Furthermore, our

method has received more positive feedback from participants, which highlights its

superiority over other flow-based models and proves that the flow-based model is

competent for the task of face sketch colorization.
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Figure 4.10: A summary of user study. In each table, the proportion of each rating
has shown in five different colors such that ‘Very Satisfied’ and ‘Poor’ stand for the
best and worst rating, respectively.

4.7 Summary

In this chapter, we present an overview of the methods we compared, including both

CNN-based and flow-based models, as well as the four different quantitative evalu-

ation metrics employed for sketch colorization tasks. Next, we present qualitative
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and quantitative evaluations, illustrating the satisfied performance of our flow-based

method in accurately adding colors to face sketches while strictly preserving sketch

geometry when compared to other state-of-the-art techniques. We also conduct abla-

tion studies to validate the effectiveness of our proposed Feature Aggregation Module

and demonstrate the memory-efficient design of our model architecture in compared

to other flow-based models. Lastly, we present the survey responses from a user study,

aiming to address aspects not covered by the previously mentioned metrics and al-

low individuals to offer more intuitive and perceptual assessments for a well-rounded

understanding of our method’s performance.
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Chapter 5

Conclusions and future work

5.1 Thesis summary

Face sketch colorization involves accurately adding brightness and color information

to a sketch while maintaining its geometry. This task can be seen as a combination of

image colorization and image translation techniques. Numerous deep learning-based

methods have been developed to tackle these two tasks separately.

In the case of image colorization, deep learning methods typically use Encoder-

Decoder architecture to predict color information based on the available gray-scale

information in the image. However, this approach may not be as effective when ap-

plied to a coarse sketch, which contains comparatively less information. On the other

hand, GAN-based image translation methods often result in changes and imagina-

tion on the geometry in the final generated images, which affects the fidelity of the

original sketch structure. Additionally, existing normalizing flow-based methods face

challenges in establishing a effective correlation between the sketch and color infor-

mation, leading to suboptimal results when translating between unpaired sketches

and images.

To address these challenges, this thesis proposes an Encoder-Decoder architec-

ture by using two normalizing flows composed of a stack of coupling blocks. First,

we integrate a Feature Aggregation Module into the coupling blocks within a high-

dimensional latent space, which helps improve the adaptation between color and

67



sketch information. Then, we take advantage of learnable downsampling layers to

reduce the model parameters related to shallow information. This method not only

saves overall computational resources but also enhances the model’s efficiency com-

pared to other normalizing flow-based models.

To evaluate our approach, we use a comprehensive experimental framework that

includes qualitative and quantitative assessments, along with a user study. The re-

sults indicate that our method not only successfully and appropriately adds colors

to face sketches but also preserves the integrity of the original sketch structure. Our

method yields visually satisfying colorized face sketches that receives many positive

responses and achieves outstanding performance across various evaluation metrics,

demonstrating the effectiveness and potential of our approach in the field of sketch

colorization.

5.2 Limitation

Although our method has shown promising results and considerable progress in the

field of facial sketch colorization, it is important to acknowledge some challenges

that we faced during the experimental phase. In this section, we explore three main

limitations of our approach:

The first limitation is related to our incapability to efficiently manage facial sketches

with rare or uncommon attributes. For example, as shown in the first row of Figure

5.1, the sketches may include elements such as hats, which are not an inherent part of

the face. When given a reference image without these objects, it becomes challenging

to accurately predict the appropriate colors for such facial sketches. Likewise, when

the reference image closely resembles the sketch but contains some rare attributes

not present in the sketch, our method may struggle in dealing with these extreme

cases. As illustrated in the second row of Figure 5.1, the flower in the girl’s hair in

the reference image leads to incorrect colorization of the sketch, where no decorations

are present on her hair.
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Figure 5.1: Examples of failure cases by our method.

The second limitation is related to the level of realism in our colorized images.

When comparing image translation results by a pretrained StyleGAN [21], which

transforms a coarse face sketch into a realistic face image, as displayed in Figure

1.6, the faces appear more realistic than those colorized using our methods shown in

Figure 4.1b. One possible explanation is that the StyleGAN generator has been well-

pretrained with lots of face or real images. As the pretraining can significantly improve

the image generation quality by using some particular fine-tuning method, for complex

objects and general scenes as suggested by Wang, et, al. [88]. Another factor is that

pretraining is performed at a very high image resolution, such as 1024 x 1024 pixels.

This additional detail captured by the model helps to improve its understanding of

real faces, ultimately leading to increased realism in the final generated images.

The third limitation is our struggle to find suitable strategies for using normaliz-

69



ing flows to process high-resolution images, such as 1024 x 1024 pixels, within the

constraints of limited GPU memory and training time. This challenge is due to the

lossless encoding and decoding properties of normalizing flow, During the downsam-

pling steps, when each time the spatial size of an image or latent features is halved,

the channel information must be increased fourfold in response. For instance, with

an image with a resolution of 3 x 1024 x 1024, the initial spatial size is 1024, and

the channel size is 3. After three downsampling steps, the latent feature will have

a spatial size of 128 and a channel size of 192. The processing of these features

demands significant computational resources, which poses significant difficulty when

conducting experiments with limited resources.

In the next section, we discuss potential future works and share some insights from

our research journey over the past few years.

5.3 Future work

Recently, the remarkable success of GPT-4 [87] has attracted considerable attention

due to its outstanding capabilities in generating human-like text and in understanding

subtle differences in natural languages. Given the versatility of GPT-4 [87] and its

capacity to handle a wide variety of tasks, we are interested by the underlying reasons

for its success, as these insights could inspire and guide our future work in the field.

Pretraining, recognized as a key factor in GPT-4’s [87] success, allows the model

to achieve a deeper understanding of words across various language sequences. For

the future work, we can apply a similar strategy for image processing tasks in our

research. As discussed by Wang et al. [88], pretraining has the potential to help

models develop a better understanding of complex objects or scenes within images.

In the context of sketch colorization, it might be possible to implement a compre-

hensive pretraining phase for normalizing flow using a large dataset of face images

and employing unsupervised learning techniques. As a result, when fine-tuning the

pretrained model, it could generate more realistic faces, thus improving the quality
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of colorized sketches produced by the normalizing flows.

To prepare for the pretraining process, a larger and more diverse sketch dataset is

crucial. As a result, another critical task involves gathering sketches generated from

various methods and combining them to form a comprehensive dataset, as illustrated

in Figure 5.2. The benefits of such an approach include enhancing the robustness

of our model and improving its ability to handle a wider range of sketch styles. A

similar strategy can also be applied to pretraining on real faces, such that it can

better interpret any necessary details appears present in the real faces.

Figure 5.2: Examples of sketches generated using different methods. (a) is a sketch
created by the approach proposed by Lee et al. [30], (b) is a sketch produced by Liu
et al. [51], (c) is a sketch collected from online resources [51], and (d) is a sketch
generated using the Photoshop sketch filter.

Subsequently, we also plan to add more user controls during the fine-tuning process,

such as enabling the model to understand user-provided languages, color dots, and

scribbles that further guide the colorization. This approach can improve the results

when good reference images are unavailable, as these additional pieces of information

can serve as a supplement or further refinement. This can be achieved by applying

task-specific heads that project these different types of input information into the

latent space that our pretrained model can understand. By integrating these user-

centric features, it becomes possible for us to develop a more versatile model capable

of meeting people’s demands for a wider range of sketch colorizations.

Finally, in our future work, we also plan to generate high-resolution face images
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by integrating an additional model that undergoes a separate stage of training. This

model will take inputs from our initial models, which have been effectively trained

with lower-resolution images, and generate higher-resolution outputs. This approach

is inspired by similar strategies employed by Wang et al. [88], who use a diffusion

model for super-resolution tasks. Implementing such a model in our work could

prove beneficial, as it allows us to avoid the significant computational cost typically

associated with normalizing flow techniques when handling high-resolution images.

In addition to sketch colorization, we are keen on exploring the potential of flow-

based models for a wider range of image processing tasks, such as the increasingly

popular AI-driven face swapping techniques. Moreover, we also intend to investigate

the applicability of flow-based models in tasks related to natural language processing.

By delving into these additional applications, we aim to demonstrate the potential of

flow-based models and contribute to expanding the horizons of artificial intelligence

applications in our daily lives.

5.4 Journey of thought

During our research journey, we have gathered some insights and reflections that can

serve as valuable advice for future researchers entering the field. If I were to start my

thesis project again, I would first spend more time in determining the main contents

of my thesis, which would help me understand which topics are easier to address and

which ones are more challenging. This process is crucial because some topics may be

very popular, with numerous high-quality papers available for reference, while others

might be relatively unpopular, leading to a scarcity of related literature for guidance.

For instance, normalizing flow-based models have received less attention compared

to other generative models, and the number of studies specifically focusing on image

generation using flow-based models is even scarcer. A similar challenge exists in our

chosen topic of face sketch colorization, where only a few works are directly related to

the subject. Under such circumstances, we encountered numerous difficulties during
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our experiments, and it was often very struggling for me to solve those problems

without any helpful materials available.

My advice to future students would be to initially focus on more accessible topics as

a foundation. After gaining some experience, they can then explore more challenging

subjects to further expand their knowledge and skills.

Another mistake I made during the period of my experiments was that I began

building my models first and only later searched for other researchers’ results to

compare with. I overly optimistic assumed that the papers I had previously reviewed

would provide comprehensive codes to generate their results. In reality, some papers

did not release their training codes, or their codes were outdated and nearly impossible

to execute. As a result, when we finished collecting our results, we had to abandon

some methods that we initially intended to compare with. This forced us to spend a

considerable amount of time searching for other related methods that had accessible

codes for generating comparable results. In future research endeavors, it would be

advisable to first confirm the availability of such resources before working on the

model-building process.

Finally, it is worth noting some personal habit-related challenges that I faced during

the research process. One such issue was my impatience while running code. I

often came up with new ideas or identified new problems after starting the code

execution, prompting me to interrupt the ongoing progress. This behavior resulted

in a significant waste of time, as I often discovered issues with my code at the end

of the week that could have been addressed earlier. Reflecting on this experience,

I would recommend future researchers to practice patience and carefully plan their

experiments first and to avoid such inefficiencies and maximize the effectiveness of

their research efforts.
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[75] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d
u-net: Learning dense volumetric segmentation from sparse annotation,” in In-
ternational conference on medical image computing and computer-assisted in-
tervention, Springer, 2016, pp. 424–432.

[76] P. Y. Simard, D. Steinkraus, J. C. Platt, et al., “Best practices for convolutional
neural networks applied to visual document analysis.,” in Icdar, Edinburgh,
vol. 3, 2003.

[77] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[78] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style trans-
fer and super-resolution,” in Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part II 14, Springer, 2016, pp. 694–711.

[79] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[80] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

79



[81] K. Fukushima, “Visual feature extraction by a multilayered network of analog
threshold elements,” IEEE Transactions on Systems Science and Cybernetics,
vol. 5, no. 4, pp. 322–333, 1969.

[82] T. F. van der Ouderaa and D. E. Worrall, “Reversible gans for memory-efficient
image-to-image translation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 4720–4728.

[83] Z. Liu, P. Luo, X. Wang, and X. Tang, “Large-scale celebfaces attributes (celeba)
dataset,” Retrieved August, vol. 15, no. 2018, p. 11, 2018.

[84] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans
trained by a two time-scale update rule converge to a local nash equilibrium,”
Advances in neural information processing systems, vol. 30, 2017.

[85] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[86] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE transactions
on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[87] OpenAI, Gpt-4 technical report, 2023. eprint: arXiv:2303.08774.

[88] T. Wang et al., “Pretraining is all you need for image-to-image translation,”
arXiv preprint arXiv:2205.12952, 2022.

80

arXiv:2303.08774


Appendix A: Appendix

We provide an extra qualitative comparisons between our method and others in Figure

A.1.

We present more colorization examples using our approach in Figure A.2, A.3, A.4,

A.5 and A.6, while these Figures takes the same caption: Qualitative comparison of

our method that each sketch image (in the first column) takes 8 colorful images (in

the first row) as exemplars.

Figure A.1: Qualitative comparison against with other baseline methods, The first
column is the input sketch image and the second column is the corresponding reference
image. The last column is the colorized results using our method.
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Figure A.2

Figure A.3
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Figure A.4

Figure A.5
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Figure A.6
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