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ABSTRACT

In this thesis, three individual topics in mathematical biology are discussed.
Two of the topics are on mathematical biology models while the other one is on
a theorem called the Butler-McGehee lemma, a lemma which is often referred in
the study of mathematical biology.

The main result in chapter 2 is to generalize one of the various formats
of the Butler-McGehee lemma (Butler and Waltman, 1986). An application to
the uniform persistence of a class of dynamical systems which are not ﬁecessa.rily
dissipative is given. In addition, we also give some discussions on the mathematical
tools which are useful to the analysis of the biological models.

In chapter 3, a system of ordinary differential equations is utilized in order
to model the interactions of n competing predators on a single prey population in
a chemostat environment with a periodic nutrient input. In the case of one or no
predators, criteria for the existence of periodic solutions are given. In the general
case, conditions for all populations to persist are derived.

A new system called a cyclostat is modeled in chapter 4. First a single
species system is considered. The criteria for survival vs. extinction of the species
are given. The competition between two species in the system is also considered.
The one result shows that under certain conditions, we can not have coexistence
of the both species while the other result gives the conditions for persistence. The
existence of such a case can be obtained by utilizing bifurcation theory (see Smith,

Tang and Waltman, 1991).
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CHAPTER 1

INTRODUCTION

1.1. Biological background.

The two mathematical models considered in this thesis are based on the
continuous culture technique used in laboratory experiments which was mainly
developed in order to study microbial growth under nutrient limitation in a con-
trolled environment, see Monod (1942) and, Novick and Szilard (1950).

A good description of the continuous culture technique can be found in Ku-
bitschek (1970). The first model in our research describes an environment of
chemostat with periodic input. The chemostat is a laboratory apparatus used in
the continuous culture technique. Figure 1 gives a schematic diagram of a chemo-
stat. Basically one can think of a chemostat as a well-stirred culture vesse!, with an
input and an output, which is inoculated with microorganisms. All essentials for
growth of the microorganisms are added in the nutrient which is supplied through
the input into the vessel continuously at a certain ( a constant or a periodic fluc-
tuating ) rate. The output of the culture vessel removes the contents of the vessel
at a rate same as the input rate so that the volume in the culturc vessel remains
constant. The removed contents contain proportional amounts of microorganisms,
byproducts, and other growth medium.

Later, a more complicated laboratory apparatus was developed. This ap-
paratus is called “gradostat”, see Jager, So, Tang and Waltman (1987). It is

similar
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to a chemostat with several culture vessels. The vessels are connected in a line.
The input is attached to the first vessel while the output is attached to last one.
Between the adjacent vessels is a two way flow. All the flows including the input
and output are at a same rate so that the volume in each vessel is held constant.
The second model in our research, however, describes another kind of multi-vessel
system. This system, we call it “cyclostat”, is almost the same as the gradostat
system except in the way of connecting the vessels. In a cyclostat system, the
vessels are connected in a circle with the input and the output inserted into a
same vessel, and the flow is a one way flow. The term “cyclostat” comes from
the way of connecting vessels. Figure 2 and Figure 3 illustrate the connection in
gradostat and in cyclostat, respectively.

The continuous culture technique is used in industry for the economical
production of useful microorganisms, see Herbert, Elsworth and Telling (1956) as
well as for the simulation of biological waste decomposition or water purification
by microorganisms, see Yang and Humphrey (1975).

In the first model, we shall be mainly interested in studying the competition
between n species on a single prey which in turn feeds on the input nutrient. ;The
whole system is put in a chemostat environment with a periodic input. This ap-
proach simply combines two previous settings: one is a system with two trophic
levels in a chemostat environment with constant input, see Butler, Hsu and Walt-
man (1983), Butler and Waltman (1981), Butler and Wolkowicz (1986, 1987b),
Wolkowicz (1989), and the other one is that with only one trophic level in a
chemostat with periodic input, see Hale and Solominos (1983), Smith (1981), Hsu
(1985).

The second model in this thesis has been set up by H.I. Freedman in discus-
sion of this thesis. Most of the results has been obtained with one species living

in a cyclostat environment with constant input. The case of two competitors in a

3
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cyclostat with constant input is also considered. The result shows that under cer-
tain conditions, there is no coexistence. Up to the time of completion of this thesis,
the author has not seen any research concerned about the so-called “cyclostat” or

any similar system.

1.2. Mathematical deflnitions.

In this section, we give definitions needed for the study in this thesis. For
the sake of convenience and efficiency, we also need some notations which simplify
the statement of this thesis.

First, we define both ° and ' operators as -:—t.

Since both of the two models discussed in this thesis describes a dynamical
systems in a certain way, most of the studies are carried out on the dynamical
systems described by the models. So we start with the notations and definitions
in the theory of dynamical systems.

Let X be a locally compact metric space with metric d. For any subsct
K C X, we shall use IO{ ,O0K,K to denote its interior, boundary and closure,
respectively. One example is X = IR", the n-dimensional Euclidean space in
which we take R? = {z € R® | 2; > 0,i = 1,...,n} as K. Then K, 0K, K

represent the sets

{zeR"|z;>0,i=1,...,n},

{zreR"|z; =0, for some i =1,...,n}, and

n
4

respectively. We denote by F a continuous flow (X,IR,7) on X. The orbit,
positive semi-orbit and negative semi-orbit of F through a point z of X will be

denoted by 7(z),v*(z),7"(z), respectively, and the w- and a- limit sets of the

6



orbit will be denoted by A*(z), A~(z), respectively. With these notations, we

give the following definitions.

DEFINITION 1.1: A subset M of X is called invariant if for all z € M,+(z) C
M. A positively (negatively) invariant set is a subset M of X such that for all
z € M,y*(z)(7~(2)) C M. M is called a mazimal invariant set in a neighborhood
of itself if it is an invariant set such that in the neighborhood there is no other

invariant set containing M. A maximal invariant set is necessarily closed.

DEFINITION 1.2:  The flow F is dissipative if for each z € X, A*(z) # ¢ and

the invariant set Q(F) = |J A*(z) has a compact closure.
z€X

DEFINITION 1.3: A nonempty subset M of X, invariant for F, is called an
isolated invariant set if it is the maximal invariant set in some neighborhood of
itself. The neighborhood is called an isolating neighborhood. An isolated invariant
set is necessarily closed, and if it is compact, a compact isolating neighborhood

can be found.

DEFINITION 1.4:  The stable set W+(M) of an isolated invariant set M is defined
to be {z € X : At(z) # ¢,AT(z) C M} and the unstable set is defined to be

{z€X:A (z) # ¢,A™(z) C M}.
DEFINITION 1.5:  The weakly stable set W;r(M) of an isolated invariant set M

is defined to be {z € X : A*(z) N M # ¢}, and the weakly unstable set W (M) is
defined to be {r € X : A™(z) N M # 4}.

DEFINITION 1.6:  Let M, N be isolated invariant sets (not necessarily distinct).
We shall say that M is chained to N, written M — N, if there exists ¢ MU N
such that £ € W~ (M) N W+(N).

DEFINITION 1.7: A finite sequence M;, Ms,..., M} of isolated invariant sets

will be called a chain if My — My — .- = M(M; — My, if k = 1). The chain

7



will be called a cycle if M = M;.

Persistence is a popular topic in the study of mathematical ecology. Persis-
tence for dynamical system can defined in several different ways. The following
are three of those primative definitions. In the definitions, we always assume that

E is a positively invariant set for the system.

DEFINITION 1.8:  F will be called weakly persistent in a subset E of X if for all
T € 1'07, limsup,_,o, d(7(z,t),0F) > 0.

DEFINITION 1.9:  F will be called persistent in a subset E of X if for all z € E,
liminf, .o d(7(z,t),0F) > 0.

DEFINITION 1.10: F will be called uniformly persistent in a subset E of X if
there exists ( > 0 such that for all z € I’o}', liminf; .o d(n(z,t),0E) > (.

For a system of differential equations ¢ = f(z) defined in IR®, we can take
IR" as X, IR} as E. Then the system is said to be (weakly) persistent if for all
solutions z(t) with z(0) € E, then z:(t) > 0 for t > 0 and liminfioo i(t) >
0, ¢=1,...,n (replace liminf with limsup for weak persistence). Further if there
exists ¢ > 0 such that litIE (i;lf zi(t) > ¢ for all such z(t), then the system is said
to be uniformly persistent.

It is well-known that for an invariant set E, its boundary @F is also invariant.
Then we shall denote by g F the boundary flow of E, the flow restricted on the
boundary of E. Without confusion, we shall use 8F for 9gF.

DEFINITION 1.11: OF is isolated if there exists a covering M of Q(0F) by
pairwise disjoint, compact, isolated invariant sets M, Ma,..., M; for OF such

that each M; is also isolated for F. M is then called an isolated covering.

DEFINITION 1.12:  8F will be called acyclic if there exists some isolated covering
M = {M;}t | of Q(BF) such that no subset of the {M;} forms a cycle (see

8



Definition 1.7). Otherwise, OF will be called cyclic. An isolated covering satisfying

this condition will also be called acyclic.

DEFINITION 1.13: For any subset G of X, we define

L*G) 2 | A*(z) and L(G) 2 |J A (a).
z€G z€G

In our discussion of the cyclostat model, we also need the concept of a
cooperative system. To define such a system, we need to establish a partial order
<on X. An example in IR" is that for any r and y in R", we say z Jyif z; < y;
fort=1,...,n.
DEFINITION 1.14: A (semi-)dynamical system (X,IR, ) is called cooperative
with respect to the partial order < on X if for any pair of z,y € X with z < y,

we have my(z) < m(y) for all ¢t > 0.

Let m = {my,...,mp},m; € {0,1},i =1,...,n. We define a matrix
Pn = diag((-1)™,...,(=1)™).

As another example of partial order in IR", for a pair of z,y € IR", we say that
z X y if and only if each component of P,(z — y) is nonnegative. In the study
of our models, the partial order X on IR" is defined as in the above example
by certain P,. The cooperativity of a system on IR" is always with respect to
this partial order. Therefore, for the sake of convenience, a system can be called

cooperative without mentioning the partial order.

DEFINITION 1.15: A cylinder-like two-dimensional C2-manifold with one bound-
ary in IR, k > 3, is a two-dimensional manifold which is globally C?-homeomorphic
to the half cylinder,

C={(z1,...,z) R} | 22 +23=1,23 20,2, =0 for i>3}.

9



DEFINITION 1.16: Let A, B C X be nonempty, we define the distance between

them as

d(A,B) = inf{d(z,y) | z€Ay¢B).

10



Chapter 2

MATHEMATICAL PRELIMINARIES

2.1. Introduction.

Recently, there have appeared in the literature several papers dcaling with
persistence theory in dynamical systems, Butler, Freedman and Waltman (1986),
Butler and Waltman (1986), Fonda (1988), Freedman and Moson (in press), Freed-
man and Waltman (1984, 1985), Gard (1987), Hofbauer and So (1989) and Hut-
son and Schmitt (preprint), semi-dynamical systems and related systems Butler
and Waltman (1986), Dunbar, Rybakowsky and Schmitt (1986), Fonda (1988),
Freedman and So (1987, 1989), Hale and Waltman (1989) and Hallam and Ma
(1986) and their applications to ecological modeling Butler, Freedman and Walt-
man (1984), Freedman, Addicott and Rai (1987), Freedman and So (1987, 1989),
Freedman and Waltman (1984, 1985), Kirlinger (1986, 1988). For a complete list
of the various types of persistence for dynamical systems, their definitions and
relations, see Freedman and Moson (in press).

When applying persistence theory to the question of survival versus extinc-
tion in models of interacting populations, a theorem known as the Butler-McGehee
lemma is usually required. This lemma may take on various formats, depending
on the nature of the dynamical or semi-dynamical system.

The original version of this lemma appears in Freedman and Waltman (1984),

the setting for which is a hyperbolic restpoint of an autonomous ordinary differ-
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ential equation. Since then, it has been extended to a compact isolated invariant
set, instead of just a rest point, to a continuous flow on a locally compact metric
space by Butler and Waltman (1986) and to continuous semi-flows by Dunbar,
Rybakowsky, and Schmitt (1986). Later, Freedman and So (1989) have developed
this lemma to a form utilizable for discrete semi-dynamical systems. The latest
form for locally compact metric space has been given a new proof by Hofbauer and
So (1989). We also mention that Hale and Waltman (1989) have obtained results
for a complete metric space, not necessarily locally compact. This result, which is
in the setting of an asymptotically smooth C°-semigroup, is useful in studying the
persistence of population models whose dynamics involve such concepts as delays
or diffusions in functional differential equations or partial differential equations,
respectively.

All the above theorems deal with a point z and its limit set A*(z) or A~ (z)
in phase space (see Chapter 1 for definitions). The object of this chapter is to
generalize the Butler-McGehee lemma in such a way as to encompass orbits from
a set G rather than from a single point and to consider the closure of the union of
w-limit (@-limit) set of all points in G. Obviously, if we take G = {z}, our result
will reduce to one of the various known forms of the Butler-McGehee lemma. With
this generalization, we can directly show the uniform persistence of certain systems
by taking G = E\D (see Theorem 2.6).

In addition to the generalization of Butler-McGehee lemma, we shall also
develop some useful tools for the study of the cyclostat model.

This chapter is organized as follows: In Section 2.2, the generalization of
Butler-McGehee lemma is given together with a variation for discrete systems.
Several corollaries are also given. Section 2.3 considers an application of the main
theorem in Section 2.2 to uniformly persistent systems. Section 2.4 gives some

results on a class of polynomials related to the cyclostat models in Chapter 4;
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and the section also gives a theorem on the w-periodic solutions of an w-periodic

system of ordinary differential equations.

2.2. Generalization of Butler-McGehee lemma.
In this section, we shall generalize the so-called Butler-McGehee lemma.

First, we give two lemmas which will be called in the proof of the main theorem

in this section.

LEMMA 2.1. L*(G) and L—(G) (see Definition 1.13) are invariant.

ProoF: It is well-known that A*(z) is invariant. Then, as a closure of a union
of invariant sets, L*(G) is invariant (see Theorems 1.2 and 1.3 in Chapter II of

Bhatia and Szegd (1970)). The proof is similar for the case of L=(G). O

LEMMA2.2. Let M C X be a compact isolated set for F. For any set G C
X\WH(M), if L¥(G)NM # ¢, then there exist a compact isolating neighborhood
V of M and a sequence {y,} C v satisfying the following:

(i) yn— M asn— oo;

(i) there exists {t,} C IRy such that for alln, n(yn,—ts) € OV and 7(y,,t) € %

ift € [Oa tn);

(iii) {m(yn, —tn)} converges to a point p € L*(G).

PROOF:  With the assumption of f‘*'—(_G—) N M # ¢, we may pick a compact
isolating neighborhood V; of M and a sequence {z,} C L*(G)N 1071 so that
2p =+ M asn — oo If 7'(2,.)\1‘;1 # ¢ for all n, then define y, £ z, and V 2 V.
It is easy to see that so-defined {y,} and V satisfy (i) and (ii). In the other case,
if 7=(2n) C V1 for some n, then A=(zs) # ¢ and A=(zn) C M. It follows that
there exists z € G C X\W*(M) such that AT(z) N M # ¢ since 2z, € L*(G).
A compact isolating neighborhood V of M can be found so that =z ¢ V. Since
z € WH(M)\W(M), there exists a sequence {s,} C IR+ satisfying: (a) s, — o0

13



as n — oo while s, < spt1; (b) 7(2, [sn, snt1))\V # ¢; and (c) #(z, sn) — M as
n — oo while 7(z,s,) € % for all n. Now, we define y,, £ n(z,5,). By property
(b), there exists {tn} C IRy such that 7(2,s, ~ t,) € AV while 7(z, 5n —t) € V
for all £ € (0,¢5). The V and {y,} thus defined also satisfy (i) and (1i).

Since 8V is compact, there exists a convergent subsequence {m(yn, — ta)}-
Correspondently to this subsequence, we obtain subsequences of {yn} and {t,}.
These two subsequences of {yn} and {t,} are what we really want for (i), and

thus for the lemma. O

Following is the main theorem, a generalization of Butler-McGehee lemma,

of this section (see Definition 1.13 for L*(G) and Imy).

THEOREM 2.3. Let M C X be a compact isolated invariant set for F. For any
set G C X\WH(M), if L¥+(G) N M # ¢, then IF(G) N WHMN\M # ¢ and
LY (G)NW—(M)\M # ¢.

PROOF: We utilize arguments similar to those in the proof of Lemma 2.1 and
Theorem 4.1 of Butler and Waltman (1986).

By the Lemma 2.2, it suffices to show that ¢, — 00 as n — oo. In fact, if
it is true, then for any ¢ > 0, there exists N such that ¢, > ¢ for all n >N. It

follows that for all ¢ > 0,

n(p,t) = nli_{t; T(7(Yn, — tn),t) = nli_.n;o 7(Yn, — (t, — 1)) €V, (2.1)

since 7 (yn, — (t, —t)) € V for large n. (2.1) shows that 4% (p) C V and hence that
A*(p) # ¢ and A*(p) C M since V is compact and isolating M. It follows that
p € IHG) nWH(M)\M, and so I¥(G) n WH(M)\M # 4.

However, the boundedness of any subsequence of {t,} violates the continuous

dependence of orbits on initial points since M is compact and invariant. It follows

14



that ¢, — oo as n — co. This completes the proof of the theorem. O

REMARK: It is easy to see that the same result can be applied to the set L~(G)

instead of L*(G). And if W*(M) is replaced by W~ (M), the result still holds.
The following corollary is one of the various forms of the Butler-McGehee
lemma (Theorem 4.1 of Butler and Waltman (1986)).

COROLLARY 2.4. Let M be a compact isolated invariant set for F. Then for any

T € WH(M)\W*(M), it follows that
AT (@)W (MN\M # ¢, AT ()N W (M)\M # ¢.
A simlilar result holds for A~ (z).

PROOF: The corollary follows by applying Theorem 2.3 to G = {z}. In this case,
L*(G) = A*(x). O
REMARK: Here, we can demonstrate by an example the fact that Theorem 2.3
is not a trivial extension of the Butler-McGehee lemma (i.e., the conditions in
Theorem 2.3 do not imply those in the Butler-McGehee lemma). This example is

given by the Lotka-Volterra equations

{ T= z(a - :By)’
y=y(—v+6z), =z(0), ¥(0)>0, @a,B,7,6>0.

(2.2)

Consider X = RZ, M = {(0,0)}. Then W*(M) = {(0,y) |y > 0}. Let G = ]ﬁ?,_
Then L+(G) = X while W} (M) = WH(M).

We now give a variant of Theorem 2.3 which is valid for discrete dynamical
systems. All notations are adopted from Freedman and So (1989) except that
f: X — X is a bijection which defines a discrete dynamical system on X. Further

L*(G) is defined analogously as in Definition 1.13 in the sense of discrete systems.
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THEOREM 2.5. Let M be a compact isolated invariant set in X. For any G C
X\W+(M), if I¥(G)N M # ¢, then IH(G) N WH(M)\M # ¢ and I+H(G) n
W= (M)\M # ¢.

PRroo¥: The proof follows analogous to the proof of Theorem 2.3, noting that f

maps a compact set into a compact set. O

2.3. Application to uniform persistence.

In this section, we consider only continuous flows. Let E C X bea positively
invariant set for F and let D be a nonempty closed set in E. Suppose B is a
maximal invariant set in D for F. Denote by Fp the flow F restricted to B. Then

we have U Fp) 2 U,ep AT () = LT(B).

THEOREM 2.6. Let E,D and B # ¢ be defind as above. Further, assume that
E\D is positively invariant and Fp is dissipative, isolated and acyclic with acyclic

covering M. Denote M = |J M;. If there exist a compact neighborhood N of
MieM
M in D and ag > 0 such that for all z € E\D,

Iéﬂgfd(r(z,t),D\N) > ap, (2.3)

then F is uniformly persistent if and only if
(H) for each M; € M,W*(M;)N(E\D) = ¢.

PROOF: The necessity of (H) for the uniform persistence of F is obvious. Now

suppose (H) Lolds. We divide E\D into two sets:

G={z € E\D|A*(z) # ¢} and

Q= {z € E\D | A*(x) = ¢} = (E\D)\G.

Since X is locally compact, there exists a compact neighborhood N, of N

with d(N,0N;) = a1 > 0. If Q # ¢, then we claim that litm‘igfd(r(:c,t),N) > o
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for any z € Q. In fact, litrgzgfd(r(x,t),N) < o implies that At(z) # ¢, since Ny
is compact, which contradicts the definition of ). Therefore, it follows from: {2.3)
that Btggxfd(w(z,t),D) > min{ag,a;} > 0 for each z € Q.

With the above conclusion on Q, if G = ¢, we are done. Otherwise, if G # ¢,
then L*(G) # ¢ and L*(G) C E by the positive invariance of E\D. Moreover,
by (2.3), we have

d(L*(G), D\N) > ap > 0. (2.4)

It follows that to complete the proof, it suffices to show that d(L*(G), N) >
0. Suppose, otherwise, that d(L*(G), N) = 0. Then there exists y € N N L*(G)
since N is compact. Lemma 2.1 shows that y(y) C m Therefore, it fol-
lows from (2.4) and the positive invariance of E\D, v~ (y) C N C D. Hence-
forth, A=(y) is a nonempty, compact and connected set contained in N. Since
B is maximal in D, A~(y) C B. It follows from the invariance of A~(y) that
A~(y) N M; # ¢ for some M; € M. We relabel {M;}%; so that M; becomes
M,. Lemma 2.1 implies that A~(y) C L+(G) and hence LZ+(G) N M; # ¢. By
Theorem 2.3, LT(G) N W+(M;)\M; # ¢. Since M is pairwise disjoint, we may
choose y; € L¥(G)NW+(M;)\M, where M is as defined in the theorem. Since all
arguments utilized to y are applicable to y;, we end up with that A~(y;)NM; # ¢
for some M; € M. There are two cases: (i) A~(y1)\M¢ # ¢ for each M, € M;
or (ii) A™(y1) C M; for some M, € M. Actually, in case (ii), £ = j since M is
pairwise disjoint.

Consider case (i) first. Since y; € W5 (M;)\W~(M;) in this case, applying
Theorm 2.3 to {y;}, we can find 2 € A~(y;) N W~ (M;)\M;, where z can also
be chosen so that z ¢ M. As we mentioned above, all results we obtained for y
are also true for y;. It follows that 2 € A™(y1) C BN N and hence there exists
M, € M such that A*(2) C M,, which implies that M; — M,. If M; = M,,

we obtain a cycle in M, a contradiction to the fact that M is acyclic. Therefore
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assume M; # M,. Then we have A~(y;) N M, # ¢ since 2 € A~(y;) implies that
A*(z) C A~(y). By the assumption of this case, A~(y;)\M, # ¢, which implics
1 € WH(M,)\W*(M,). Applying the above argument to M,, we can find an
M, € M such that M, — M,. Repeating this procedure, we shall end up with a
cycle in M since M is finite, which contradicts the assumption on M, completing

the proof in this case.

In case (ii), M; — M; in B. If M; = M,, we are done. Otherwise, we
relabel M; as M,. Lemma 2.1 implies that L+(G) N M, # ¢. Then we repeat the
argument from the very beginning on M;. We shall end up with a cycle in M by

the same reason as in case (i), completing the proof. O

REMARK: The above theorem assumes a nonempty B. In the case of that
B = ¢, if condition (2.3) is changed to that there exists a nonempty compact
neighborhood N in D such that (2.3) holds for all z € E\D, then F is uniformly
persistent. As a matter of fact, in this case, Q £ L_'*'(ETDS ND C N by (2.3).
If there exists a ¢ € Q, then by the positive invariance of E\D and compactness
of N, v~(¢) N (E\D) = ¢ and v~ (¢)\N # ¢. It follows that L+(E\D)\[(E\D)U
(D\N)] # ¢. This is a contradition either to the positive invariance of E or to

(2.3). Therefore we must have d(N, L+(E\D)) > 0 which combined with (2.3)

completes the proof for our assertion.

Theorem 2.6 can be applied to a system which is not dissipative (the dissipa-
tiveness is needed only on a subset of the “boundary” D) while most of these kinds
of theorems in current papers deal with a dissipative system only. The following
is an example which fits Theorem 2.6 but not aay other of the theorems which

have appeared to the best of my knowledge since it is not a dissipative system.

EXAMPLE:  Consider in the IR? space the differential equations:
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{ = f(z, y) (25)

v =g(z,y),

where the functions f and ¢ are defined as

0, fz=-lorz2>1
~@EGray g < _lando # -2
flen)=) _, ifz=-—2
sy el <1,

T O+ (I-p(z)e(¥))?

and

1, ifz2>1
gz, y)=¢ —(2+2z), ifz<~1
T, if |z] < 1,

where p(z), ¢(y) are any continuously differentiable functions satisfying,

0<p(z)< 3, if0<z<l1
p(z) =0, ifz<0
p(a:):-;-, fz>1

0<q(y)<%, ify<o0
o(y)=0, ify=>0.

It is easily verified that such a system describes a dynamical system as shown

in Fig. 4. We take

{E:{(:z:,y)|-—25:v<—l,y$ln(—1—:z:)}U{(m,y)lzz—l }
D =0E.

Then we have B = { (z,In(-1-12))| ~2<z<-1}and M = {(-2,0)}. By
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some manipulations, we obtain the linear variational matrix of (2.5) at M as

(57 )

-1 0 |

It follows that M is a saddle point. From the definition of g, we can see that in
the area between D and = = —1, y is always negative. It follows that all the orbits
are apart from M with a certain distance as ¢ — co. And the stable set W+ (M)
of M in E is the curve y = —In(—1 — z) with -2 < £ < -1, a part of D. By
Theorem 2.6, the flow defined by (2.5) is uniformly persistent in E relative to D.

On the other hand, since it is not a dissipative system as we can see, the result

can not be obtained by other theorems which require the dissipativeness.

2.4. Results on a class of polynomials and on periodic ODEs.

In this section, we give theorems about the properties of the roots of the
following polynomial which is related to the models which we will study in Chap-
ter 4,

Py(z)=2" +z""1 -1, (2.6)
In addition, we conclude this section with a theorem on the w-periodic solutions

of a w-periodic system of ordinary differential equations in IR®.

THEOREM 2.7. P,(z) = 0 has one and only one positive root ay,, which lies in

the domain (1 — -;;nl_ﬁ,l — 5-12), for n > 2. Moreover, the real parts of all other

roots are strictly less than a,,.

PROOF: Since P,(0) = —1 < 0 and P,(1) =1 > 0, P,(z) = 0 has a positive root
in (0,1). On the other hand Pi(z) = nz" 1 +(n - 1)z"2 > 0 for z > 0 and
n > 2. It follows that P,(z) = 0 has a unique positive root a,. For n > 2, it is

always true that P,/(z) > 0 for z > 0. Hence, we have
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Pa(1) 1
P P15 S S
U <27 B % -1

which completes half of our estimate for a,. To show the other part of the esti-

mation, note that

apt=1-af=(1-an)(l+an+--+ap™).

Dividing the above equation by a”~? and noting that a, € (0,1), we obtain

1 1
—3 +---+a—’:+1+a,,) > (1 - ag)((n —1) 4+ ap).

a, =(1- an)(

an

The above inequality is equivalent to the following one

(1—ap)’-(n+1)(1-ay)+1>0.

Solving this inequality for 1 — a, € (0,1), we obtain

2 2

l—a, < < 1
S At livaiiono3  Zn+l

This inequality completes the estimation of a,,.

for n>2.

Now, suppose zq = A(cosf + isind) is any root of P,(z) = 0 other than a,,

where A > 0 is the norm of zg. Since 2§ ~(1 + z) = 1, we have

A1\ A2 + 24cosf +1 =1

by taking the norm of both sides of the previous equation. If the real part Acosé

of z¢ is greater than ay,, then A must be greater than a, since cosf is always
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smaller than 1. If Acosf = a,, we cannot have cosf = 1, otherwise 29 = A = an,
a contradiction to the assumption. It follows that A is always greater than ay,

if the real part of zo is greater than or equal to a,. However, then we have

1 =A""1v/A? +24cosf + 1 > o™ (1 +a,) = 1, a contradiction. This completes
the proof. O

REMARK: For large n, say n > 5, we obtain a better estimation for ay, which is

(1-d2 71— n—_’;‘,—i—z) To show this, note that

a; " V=14+0,<2 and a;"=1+a;!>2, (2.7)

since a, € (0,1). On the other hand, we have

1 (n-1)(1-an) . :
a; (") = [(1 ~(1-ay)) "“"] > e(r~1(-an)  apd
n!l—an!
(R ] I 28)
n

by the estimation of exponential functions. Combining (2.7) and (2.8), we obtain

In2

en=Di=om) <9 je, @n>1-—, and
n—-1
en!la—anz > 2 ie a < 1 171.2
’ L., n n+1n2'

in2 in2
It is not difficult to calculate that ;2% < -5+ +1 for n > & while - +",n2 > 2n_1

for n > 4.

THEOREM 2.8. P,(z) = 0 has only one real root a, when n is odd. When n is
even, P,(z) has two real roots, one is a, and the other, o, is a negative root
which is less than —1.

PROOF: Taking the first derivative of P,(z), we obtain
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Py(z) =z""%(nz + (n~1)).

It is easy to show that P,(z) has only two critical points, 0 and 1=% for
n > 2. Theorem 2.7 shows that P,(z) has only one positive root a,. Now we
consider Pp(z) on (—00,0]. First we calculate the value of P, at =2 the only
critical point in (—00,0). Since |2=1| < 1 and the sign of (122)" is opposite to
that of (I‘T")"”1 for any n > 2, (1—;2)n + (-l—',;—")"_l < 1 for any n > 2. It follows
that P,,( 3—",;'-‘-) < 0 for any n > 2. Actually, with the same argument, one can show
that for any = € (~1,0], P,(z) < 0. Now suppose n is odd. Then P,(z) — —o0 as
z — —oo. By the above analysis, we know that P, has only one critical point in
(—00,0] at which P, is less than zero. It follows that P, has no root in (—o0,0).
For even n, P,(z) — o0 as £ — —co. With a similar argument to the odd n, one

can show that P, has only one root a in (—oo,~1), completing the proof. [

THEOREM 2.9. All roots of P, are of single multiplicity. Furthermore, if two
roots have the same real part, they are conjugate, and for any root a, we have

a, < Re(a) < ay, for n being even and Re(a) < a, for n being odd.

PROOF: In the proof of Theorem 2.8, we have shown that the roots of P!(z),
0 and 12, are not roots of Py(z). It follows that the roots of P, are of single

multiplicity. Now suppose a = f + 71 is a root of P,. Then we have

e fle + 1)) = 1. (2.9)

Suppose 8 = f+7i is also a root of P,,, where  # v and —y. Theniif |p| < |7,
the norms of 6 and 6 + 1 are smaller than those of a and a + 1, respectively. It
follows that 1 = [|6]|*~!]|6 + 1| < |la||*}||e + 1|| = 1, a contradiction. Similarly

one can show the case of |n| > |y|. It follows that if 8 is a root of P, other than
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a, then 5 = —v. Finally, by arguments similar to the above, we can show that

B > aj if v # 0. This completes the proof. O

Besides the above theorems concerning the roots of (2.6), we also need the

following theorem in Section 4.6. We define a function U : I — IR as follows,

U(z) £ (f(l_zl)“'(l"an))zl +(1+an)§:af,'2 (f(l—z.')—(l—an))a:,-, (2.10)

=2

for £ = (z1,...,2,) € I, where I = {z € R" |0 < z; < 1,i = 1,...,n} is the unit
cube in IR", a,, is as given in Theorem 2.7 and f satisfies that f(0) =0, f/(0) >0
for all u > 0.

THEOREM 2.10. If further f"(u) < 0 foru > 0 and f(1) > 1—ay, then U(z) =0
is an (n — 1)-dimensional manifold through the point z» = (1-A,...,1 =) € I,
where ) is such that f(A) =1 — a,. Further, U(z) > 0 is a convex set and hence

is simply connected.

PROOF: Since U(zy) =0 and

a%(::’\) =(1+a)a 2 (fl-2z:) —(1~an) - f(1- m‘)z‘)|x=n

=—(1+an)a /(A1 -2 <0,i=2,...,n+1,

where we regard z,41 as z;. By the implicit function theorem, there exists an
(n—1)-dimensional manifold M, in a neighborhood of z5. Let M be the maximal
extension of the (n — 1)-dimensional manifold M, on which U(z) =0in I.

We consider a function b : [0,1] — IR defined by h(u) = f(1 —u) -1+ an —
f'(1—u)ufor 0 < u < 1. It is easy to show that A'(u) = -2f'(u)+ f"(1-u)u <0

for 0 < u < 1. It follows that h(u) is monotonically decreasing in [0,1]. Since
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%(—f-l = (1+ an)ai 2h(z;), agz(::) # 0 for at least one ¢ at any point z € I with
U(z) = 0.

Let 7 and # be such that U(Z) > 0 and U(£) > 0. Thenforanyt € (0,1),r =
iz + (1 - t)Z € I, we have h(z;) > th(%;) + (1 — t)h(%;) for all i = 1,...,n since
h"(u) < 0. However, U(z) = (1 + ayp) i a'"1h(zi41) is linear in k. It follows

=1

that U(z) > tU(Z) + (1 ~ t)U(Z) > 0, which completes the proof. O
The next theorem is valid for any polynomial.

LEMMA 2.11. I a polynomial P(c) has k real roots counting multiplicity, then

its derivative P'(c) has at least k — 1 real roots.

PROOF: Suppose ay,...,0¢ are the £ different real roots of P(¢) = 0, of multi-
plicity ki,..., ke respectively. Then, we have that é k;j = k. By the mean value
theorem, we have £ — 1 different roots (, ..., ,—; ]fZ:‘ P’ between a4,...,0,. On
the other hand, o; is of multiplicity k; — 1 for P!, j = 1,...,£ (0 multiplicity

means that it is not a root ). Thus, we have found

14
-1+ (kj—1)=k-1

—
real roots for P', completing the proof. O

COROLLARY 2.12. Allroots of P(¢) = —1+[] (0 —0;) with non-zero imaginary

parts are of single multiplicity if all o; are real numbers.

PROOF: We note that P’ is the derivative of a polynomial of n rea! roots. By
Lemma 2.11, there exists no complex root of P' with non-zero imaginary part.

This completes the proof. O

Next theorem locates one of the w-periodic solutions for a class of w-periodic

ordinary differential equations.
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Let X be a closed convex subset of R™ with X # 7 and
z = f(t,z), (2.11)

be an w-periodic system in X, where f(t,z) is smooth enough so that the existence
and uniqueness of the initial value problem of (2.11) are satisfied. We adopt as
our definition of uniform persistence in this setting that there exists § > 0 such
that litr_rlglfd(z(t), 9X) > 6 > 0 for all solutions of (2.11) such that z¢ € )of; and
as our definition of dissipativity that there exists a B > 0 such that for any z € X,

l|z(t)|| < B for sufficient large t.

THEOREM 2.13. If(2.11) is dissipative and uniformly persistent in X, a positively
invariant convex set in IR™, then there exists an w-periodic solution z(t) lying in

the interior of X.

ProoF: In this proof we utilize the notation of Horn (1970). Consider the

Poincaré map T derived by (2.11). Let M = |J A+*(z). Then by the posi-
tive invariance of X, M C X and by dissipativizt?y":nfi{ uniform persistence, M is
compact and d(M,0X) > n > 0. Denote € = I > 0. Then for any z € int X
there exists N(z) > 0 such that T"(z) C B(M,e), the e-neighborhood of M, for
all n > N(z).

In the nex! part of the proof, we modify a method utilized by Hale (1977)
to construct a compact positively invariant set K in )O{ .

Define B* = m By continuity, for any = € )of , there exists a neigh-
borhood Q. of z such that TN(*)Q, C B*. Since B* is compact, we choose a

k
finite subcover {Q:; |7 =1,...,k} C {Q: | z € B*} such that B* C |J Q;.
=1

N
We denote N = max{N(z;)|j=1,...,k} and define K = |} T"B*. It is

n=0

easy to see that d(K,0X) > 0 because K is compact.
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We now claim that K is positively invariant. To prove this, it suffices to

show that

TN*1p* C K. (2.12)

As a matter of fact, for any z € K, there exists n € {0,1,...,N} such that
z € T"B*. It follows from (2.12) that T(z) € T"*'B* C K since 1 <n+1 <
N + 1. This shows that K is positively invariant. Now we prove (2.12). For any
x € B*, there exists j € {1,...,k} such that z € Qz;. Since N +1 > N(z;) >
1, TN ("’i)Q,,,. C B*. Therefore, we have

TN+1(.'B) € TN+1Q(IL‘J‘) = TN+1—N(:_,')(TN(I,')in) C TN-H—N(:,')B‘ C K,

since 0 < N + 1~ N(z;) < N. This completes our proof of (2.12).

Let So = o K, the closure of the convex hull of K. By definition,

So={yly=al+b(1~1t)abe K,0<t<1}.

If d(So,0X) = 0, there exists y € (So\K)NOX since S, is compact (see Lemma A.9
in Appendix) and d(K,0X) > 0. We can find a,b € K and t € (0,1) such that
y =at+b(1 —1t). Sincea,be K C )}, there exists ¢ > 0 such that both B(a,¢)
and B(b, €) lie in the interior of X. However, there exists a z € B(y, ¢)\X since
y € 0X. Then we have that both a + (z — y) and b + (z — y) are in X since

lz — y]| < e. It follows that
lat+(@-ylt+Pb+E-yIi-t)=at+b(l-t)+(z-y)=2¢ X,

a contradiction to the convexity of X. It follows that d(Sp,dX) = é; > 0. Let
S = B(So, %1) Since 5, is compact, there exists m = N(5;) such that ™(S)) C
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K C Spforalln>m. Let S; = "6{ (nj T‘(S’l)}. Then Sy C S; C S; are convex
1=0

sets with S; open and T%(5;) C S, for i < m, and T%(S;) C Sp for i > m. By

Horn’s Theorem (Horn, 1970) (see Theorem A.7 in Appendix), there exists a fixed

point of T in Sy C int X. 0O

2.5. Discussion.

In the previous section, by applying Theorem 2.3, we established Theo-
rem 2.6 which gives a criterion for a dynamical system to be uniformly persistent.
As seen in the example for that theorem, the set G defined in the proof of the
theorem, which is the strip defined by —1 < z < 1 in the example case, is usu-
ally not compact. This shows that the theorem is applicable to a nondissipative
system. However, as we all know, most of the systems in the study of biological
population theory are dissipative because it is hard to imagine that the population
of a species could become unbounded in an environment with limited resources.
Hence, Theorem 2.6 may be more useful in some other categary of applications.

Further improvement can be done to Theorem 2.6. We notice that the
condition (2.3) is not easy to verify for many systems, while it is easy to verify for
others. Hence one can either reconstruct the theorem or find an easy criter:~a for

condition (2.3). Both approaches could be of interest for future investigation.
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CHAPTER 3

COMPETITIONS FOR A PREY IN A CHEMOSTAT
WITH PERIODIC INPUT

3.1. Introduction.

This chapter is concerned with a mathematical model of competing predators
on a single prey population which grows in a chemostat environment.

The chemostat is a device used for growing microorganisms in a continuous
cultured environment. Arguments indicating the degree to which the chemostat is
an appropriate laboratory approximation of nature are cited in Hsu, Hubbell and
Waltman (1977). These authors also describe the extensive use of the chemostat
in such laboratory work.

The paper of Hsu, Hubbell and Waltman (1977) was the first to give a
mathematical analysis of such a model. This paper dealt with n competing mi-
croorganisms for a single nutrient. Since that time, many papers have been written
about various aspects of competition in a chemostat of populations on a single nu-
trient described by systems of autonomous ordinary differential equations, Butler
and Wolkowicz (1985), Cushing (1989), Hsu (1978). Also see Hsu, Hubbell and
Waltman (1978a,b) and Keener (1983) for related systems. The case of two com-
plementary nutrients has also been considered by Butler and Wolkowicz (1987a).

Models of raicroorganic predators feeding on microorganic prey populations

which in turn feed on a nutrient in a chemostat environment have also been of re-
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cent interest and have received extensive study, Butler, Hsu and Waltman (1983),
Butler and Waltman (1981), Butler and Wolkowicz (1986, 1987b), Wolkowicz
(1989). Here we are also interested in studying such a model.

The papers cited to this point have utilized autonomous systems as models.
However, there is reason to consider nonautonomous models, particularly with
periodic input, since nutrient may be added to the chemostat in a periodic mode
rather than in a constant fashion. In the case of competing populations at a single
trophic level for nutrient with periodic influx, there has been some work done, Hale
and Solominos (1983), Smith (1981), Hsu (1980). The case of periodic washout has
also been considered in Butler, Hsu and Waltman (1985). However, no analysis
has yet been attempted in the case of periodic nutrient input in models with two
trophic levels.

It is therefore the main purpose of this chapter to consider a model of n
predators feeding on a prey population which in turn feeds on a nutrient in a
chemostat environment with periodic input. In the submodel with no predators
we establish the existence of a globally asymptotically stable periodic solution.
In the case of one predator, we show that a positive solution can exist, but are
unable to determine its stability. However we are able to show that subject to
certain constraints, the system exhibits uniform persistence (see Definition 1.9
in Chapter 1). In the general case we obtain criteria for persistence (and hence
coexistence of all populations).

Most papers dealing with persistence have considered dynamical systems
which can be represented by autonomous ordinary differential equations. In our
setting, however, we have a nonautonomous system which is a continuous semi-
dynamical system. It is important to note that the results in Butler and Waltman
(1986) are valid for such systems. Other papers which have considered persistence

criteria for specific nonautonomous systems are Hallam (1987), Hallam and Ma
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(1986, 1987).

In proving our theorems throughout this chapter we will be utilizing two
different notations, that of cylinder spaces and that of Poincaré maps. Although
this may add some confusion for the reader, it is compensated for by virtue of
the fact that certain of the proofs are considerably simplified in the cylinder space
notation and others require the Poincaré mapping notation in order to utilize some
known results.

This chapter is organized as follows. In the next section we describe our
model and obtain some preliminary results. In section 3.3 we consider the sub-
model of no predators. In section 3.4 we analyze the general model. We conclude

the chapter with a brief discussion in section 3.5.

3.2. The model.
We take as a model of n predators competing for a prey in a chemostat with

periodic nutrient input, the system

§=D(S°(t) - S) — 22 fo(S)x
& = (mofo(S) — Do)z — 2 e (3.1)
¥ = (mifi(z) - Dy)y;
S5(0)=2S50>20, 2(0)=12020, y;(0) =yio >0, i=1,...,n
where S%(t) represents the input nutrient concentration rate of S at time ¢, D is
the dilution (or wash-out) rate, Dy and D; are the sums of dilution rate D and the
natural death rate of = and y; respectively, my and m; are the maximal growth
rates of  and y; respectively, and +; are the yield factors.
Moreover, we assume
(A1) S°%t) is a nontrivial positive w-periodic C'! function.
(A2) fi:Ry —[0,1], i=1,...,n, f; € C¥(IR4,[0, 1)), is increasing, where k is
an integer as required, and f;(0) =0, fi(+o00) =1.
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For some of our results we also require
(A3) fi(r)>0forr>0, i=1,...,n

REMARK 3.1:  Suppose

& =min {S°(t) |0<t <w}, £ =max{S°(t)]|0<t<w},

and §= 1 [V S%(t)dt. Then clearly 0 < £ < 8§ < £. As in Butler, Hsu and

Waltman (1983), we can rescale S,z and y; and relabel them as S, z and y;,

respectively so that (3.1) becomes
S = D(S°(t) — §) —~ mofo(S)z
i = (mofo(S) = Do)e = 3> mifilaly
gi = (mifi(z) - Di)yi,

S(0)=5 20, z(0) =20 >0, 4:(0) =900 20, i=1,...,n

System (3.2) is then our model to be analyzed.
REMARK 3.2: It is easy to verify that

D W

S*(t) = T | ePrSOt + r)dr

is a globally exponentially stable w-periodic solution of

S = D(5°(t) - 8),

(3.2)

(3.3)

(3.4)

and moreover, every solution S(t) of (3.4) can be written as S(t) = §*(¢) + Ce~D*

with C = 5(0) — 5*(0). Since ¢; < S%(t) < £3, all solutions S(t) eventually enter

the interval I = [¢;,¢;], and remain there for all future time. The following lemma

describes the behavior of S5*(t).

LEMMA 3.3. (i) There exists b > 0 such that

G +b< S*(t) <l —b forall t€R;
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(i) L f’S*t)dt=3.

PROOF: (i) By Remarks 3.1 and 3.2, £; < §*(t) < ¢, since it is periodic. Suppose
max{S*(t) |0 <t S w} =4 (or oréxtiélw{S‘(t)} = {,), then there exists t* € (0,w)]
such that $*(t*) = ¢; (or = 4). N;w—(3.4) has no constant solution since S°(t) is
not constant, hence there exists to € (0,t*) such that S*(#o) < €2 (or > ¢;). Hence

we can choose a solution S(t) with
S5*(to) < S(to) <€z (or & < S(tg) < §*(to))-

Then by the intermediate value theorem, there exists t; € (2,%*] such that S(ty) =
S*(t1) since S(tp) > §*(to) (or S(to) < S*(t0)) while S(¢*) < S*(t*) (or S(t*) >
S*(t*)). This is a contradiction to the uniqueness of solutions of initial value
problems.

(ii) The proof follows by substituting S*(¢) into (3.4) and then integrating
both sides of (3.4) from 0 to w. O

Denote £} = min{S*(¢) | 0 <t < w}, £3 = max{S*(¢) | 0 < t < w}. Then (i)
implies £; < £} < €5 < £5. Also denote y = (y1,¥2,...,Yn)- The following lemma

gives some properties of the solutions in R}*2.

LEMMA 3.4. Suppose (A2) holds. Then each solution (S(t), z(t), y(t)) of (3.2)
with its initial value in R%*? will remain in R}*? for all t > 0. Further if we
denote u(t) = S*(t) — 5(t) for solutions S(t), then the following are true:

(i) u(0)e™P* < u(t);

(i) Either there exists t; > 0 such that u(t) > 0 for all t > t,, or u(t) < 0
for all t > Q in which case u(t), z(t) and yi(t) all tend to zero exponentially as

t — +o00.

PROOF: Since u(t) = —Du(t) + mq fo(S(t))z(t) > —Du(t), by standard compar-

ison theory it follows that u(0)e™?* < u(t). On the other hand, by variation of
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constants, u(t) = e~P¢(u(0) + F(t)), where F(t) = mq f, €27 f(S(r))z(r)dr is an
increasing nonnegative function for ¢ > 0 since the integrand is positive. There-
fore, the first case of (ii) occurs if u(0) > 0 or u(0) < 0 but F(+oc0) > —u(0).
Otherwise, u(t) < 0 for all t > 0. In the latter case, let

wit) = o(t) + Y uilt) - u(t).

i=1

Since u(t) < 0, we have that w(t) = —Doz(t) — Ej: Diyi(t) + Du(t) < —ow(t),
where 6 = min{D, Dg,Ds,...,D,} > 0. It follow's_:hat w(t) < w(0)e™® — 0 as
t — oo. Therefore, since =(t), y;(t) and —u(t) are all nonnegative, the assertion
(i1) is true. O

With the above lemmas, we can now prove the following theorem.
THEOREM 3.5. System (3.2) with (A2) satisfied is dissipative (see Definition 1.2
in Chapter 1) and all its solutions initiating in R}"? satisfy

() 0% fimiaf u(e);

(i) limsup [S(t) + z(t) + Zy;(t)] < D; 2 where § is given in the proof of
t—o0

i=1

Lemma 3.4;

(iii) there exists t; > 0 and € = £(So,zo,y0) > 0 such that S(t) > £ for t > t;.

PROOF: (i) follows directly from Lemma 3.3. To prove (ii), note that w(t) <
~b6w(t)+(D - 8u(t) < ~bw(t)+(D—8)¢;, since u(t) < S*(t) < €3 and D—6 > 0.
By variation of constants, w(t) < e~% (w(O) - 23'—%;) + 28¢5, On the other
hand, S(t) +2(t) + . 4i(t) = w(t) + $°(¢), which combined with the previous
inequality proves (ii).‘?I‘lhe dissipativeness of (3.2) follows from (ii).

Finally, (iii) follows from the dissipativeness of (3.2) and the fact that S(t) >
D¢ > 0on {(0,7,y) € R**? |z € R+ and y € R} ). O

Since fi(r) < 1 for all r € IR, if m; < D;, then m;f;(r) — D; < 0 for all r,

in which case y; (or = corresponding to ¢ = 0) goes to zero. Therefore, we will
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consider only m; > D; for all ; = 0,1,...,n throughout the remainder of this

chapter.

3.3. Analysis of prey growth.

Here we emphasize the prey population, z, in the case where there are no
predators and in certain cases where there are. As we will see in the following
discussions, lack of nutrient is the only cause of prey extinction, i.e., consuming
of the prey by predators can not lead to a prey extinction if there is a sufficient
supply of nutrient for prey to suﬁrive. This is a natural phenomenon of a simple

food chain.

3.3.1. Extinction of the prey.
The conditions given in the next theorem describe an environment which
provides insufficient nutrient for prey survival and consequently z together with

the y;’s will tend to extinction.

THEOREM 3.6.  Suppose (A2) holds. If ag = L ["(mg fo(S*(t)) — Do)dt < 0,
then for every solution (5(t), z(t), y(t)) of (3.2), z(t) and y;(t), i = 1,...,n, tend

to zero exponentially.

PROOF: Because of conclusion (ii) of Lemma 3.4, it suffices to show the theorem
is valid with the assumption that u(t) > 0 for ¢ > ¢; for some ¢; > 0 where u(t) =
5*(t) ~ S(t). In this case, fo(S(t)) < fo(S*(t)) for t > ¢, since f; is increasing for

any ¢ =0,1,...,n. With some elementary manipulations and analysis, we obtain
0<z(t) S K e for t>1¢, (3.4)

where K = z(t;)e(M+w%0) and M = ax fot (mo fo(S*(r))~Dy)dr. Furthermore,

because of (A2) and (3.4), m; fi(z(t)) - D; < -—D2i for t > t; for some t; 2 ¢, i =
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D'
1,...,n. It follows that y;(t) < wi(tz)e™ (*~*) for ¢ > t,, which together with

(3.4) completes the proof. 0
With m; > D;, (A2) implies that there exists a unique ); for each i =

0,1,...,n such that fi(A;) = g—:— The next result generalizes Corollary 2.3 of Hale
and Solominos (1983).

THEOREM 3.7. Suppose (A3) holds and the derivative fy of fo is strictly decreas-
ing. If Ao > S, then z(t) and yi(t), i = 1,...,n, tend to zero exponentially as

t — oo.

PROOF: Denote I = {t € [0,w] | §*(¢) > Ao} and I_ = {t € [0,w] | §*(¢) <
Ao}, the complement of I} in [0,w]. It is easy to see from (A3) that I- is a

nonempty open set in [0,w]. By the mean value theorem

Fo(S™(®)) = fo(do) = fo(B8())(S*(2) = Xo) < fo(Ma)(S*(2) = o), (3.5)
where 6(t) lies between Ao and S*(t). In fact, if t € Iy, 8(t) > Ao then f3(6(2)) <
fo(Xe) and if 6(t) < Ao then f5(8(t)) > fo(Xe) if t € I-. Hence in both cases (3.5)
holds. The strict inequality [;* [fo(5*(2)) — fo(Ao)]dt < wf5(X0)(8 — Ao) holds

because of (3.5) and the nonemptiness of I_. Therefore, we have
70=22 [ (fS*(®) - fo(Pu))dt < mafy(Ao)§ ~ ha) S 0.
0

By Theorem 3.6, the conclusion of this theorem is true. ]

Note that since a functional response of the form f(z) = o3 for somea >0
satisfies all conditions of Theorem 3.7, z and y;, ¢ = 1,...,n, tend to extinction
exponentially when A = F%:Q:QI%? > §, which is the assertion of Corollary 2.3 of

Hale and Solominos (1983).

3.3.2. Nutrient threshold for the prey.
By the properties of a periodic ordinary differential system P in an Euclidean

space £, P is equivalent to a dynamical system n(e,t) on a cylinder E=€ x Z
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with a flow F, where Z = [0,w]/{0,w}, a quotient space of [0,w] by identifying
0 and w, (Sansone and Conti, 1964), or we may regard Z as a nontrivial circle
on the plane. Here, we regard E as a subset of £ x IR2, Therefore, studying the
asymptotic behavior of solutions of (3.2) is equivalent to studying the Q-limit sets
of trajectories of a dynamical system 7 with flow F on E, with £ = IR x lRi‘“.
For those notations and terminologies in the theory of dynamical systems, we have
given the definitions in Chapter 1. In addition, we utilize the following notations
specifically for this chapter:

For each point e € E, we denote it by e = (S, z,y, z), where S, x are scalars,

y is an n-vector and z € Z,
D = {z,y1,...,yn} is the set of the enclosed n + 1 symbols,
v C D is a subset of these symbols,

OE, = {(S,z,y,2) € E}|v=0, i.e. OF, is that boundary component of E,

where all symbols contained in v are set equal to zero,

OE; = {(S, TryYty.- ”ymz) € E}l'D\u=0’

If we define M £ {(5*(2),0,0,2) € E | z € Z}, where §* is given in
Section 3.2, then M is a compact invariant set for . Furthermore, we have the

following lemma describing a property on 8E, utilizing v = {z} and v = {y;}.

LEMMA 3.8. OE; and OF,,, i = 1,...,n, are invariant for F. Moreover, 0E, C

W*(M) such that if e € OE;\M, then ||7(e,t)|| — o0 as t — —o0.

PROOF: From (3.2), it is easy to see that OE,; and OF,, are invariant and 7(e,t) =
(5(),0,y(t), t mod (w)) — (5*(2(¢)),0,0,2(¢)) as t — oo, =z € |0,w], since
¥i(t) = y:(0) exp(—D;t) whenever e = (Sy,0,y,0) € OE,. It follows that JE, C
W*(M). On the other hand, for e € dE;\M, S(t) # S*(t) since S(t) = §*(¢) +
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ce~ P! for some constant ¢ # 0 whenever S(tg) # S*(to) for any tg € [0,w] (see
Section 3.2). Therefore, ||7(e,t)|| — oo as ¢ — —oo. O

Note that from the above E = 0E, U( U OE,,) and hence JE is invariant.

1=1
THEOREM 3.9. Suppose (A2) holds. If o9 > 0, then Ixtxgngz(t) > 0 for any

z(0) > 0, or even stronger, for all (So,Z0,%0) € IR._':_"'2 with zo > 0, there exists

¢ = ((So,z0,y0) > 0 such that z(t) > ( for allt > 0.

PROOF: First we assume that M is isolated. For any e € E and w(e,t) =
(Se(t), Ze(t), Ye(t),
t mod (w)), if litrgiogfz,(t) = 0, then A*(e) N OE, # ¢, and hence M C A*(e).
It follows that W} (M) = {e € E | lim inf z¢(t) = 0}. We claim that for any e €
E\OE,, if A*(e) C M, then there exists a > 0 such that |S.(t)—S*(t+a)| = O as
t — 00. Actually, in the case that A*(e) C M, then z.(t) and y.i(t), i = 1,...,n,
tend to zero as t — oo, which implies S.(t) — S*(t + a) tends to zero for some

a > 0. It follows that
1 t4w
lim ;/ (mofo(S"._(r)) - Do)dr =09 > 0, (3.6)
t

and hence lim inf z.(t) > 0, a contradiction to A*(e)NIE, # 4. So, At(e)\M #
#, or equivalently, e ¢ W+(M ), which together with Lemma 3.8 implies W+ (M) =
OE,. Therefore, by our assumption, e € W} (M)\W*(M). Hence by Theorem 4.1
of Butler and Waltman (1986), there exists € € A*(e) N (WH(M)\M). Then it
follows from Lernma 3.8 that A*(e) is unbounded, a contradiction to the dissipa-
tiveness of F. This shows that A*(e) N dE, = ¢. Since A*(e) is compact, the
distance d(A*(e),8E:) = ¢ > 0.

Therefore, with the above conclusion, it suffices to show that M is isolated

for F. Since a¢ > 0, by the continuity of fo, there exists Ag > 0 such that

clu/o‘" [mofo(S*(r + a) — Ao) — (Do + Ao)]dr > 222 > 0. (3.7)
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From the dissipativeness of F, we can find £ > 0 (independent of z¢ € IR4) and
to = to(zo) > 0 such that 0 < z(¢) < € for all ¢ > t,. Define

= . ' = =0
K= B {m,(orgza%cf fi(z))} >0 and A > 0.

Then Qa £ {e € E | d(e,M) < A} is an isolating neighborhood of M, where
d is the metric on E. Otherwise, there exists an invariant set V' containing M
in @a with V\M # ¢. By Lemma 3.8, (V\M) N SE, = ¢. Therefore for any
e € V\M, e ¢ OE,, i.e., zo > 0. Since V is invariant, vt (e) C V C Qa, where

v*(e) is the positive semiorbit through e. In Qa, however, we have
d
E[ln :B(t)] 2 mofo(s*(t) _ Ao) - (Do + Ao)

Hence it follows from (3.7) that z(nw) > zoexp(Pnw) — 0o as n — oo, a

contradiction to m(e,nw) € V for all n > 0. This completes the proof. (W

REMARK 3.10: (i) With the assumptions of Theorem 3.9, there exist for each
e € E\OE; aT >0 and a { > 0 such that §*(t) > S(t) + ( for t > T. In fact, as
shown in the previous discussion, there exists 7) > 0 such that u(t) > 0fort > T).
Therefore A*(e) C {(S,2,9,2) | $ < §%(2), (<2< B,0<y<B, z€ Z} for
some B > 0. Since At(e) is compact and on {S = §*(2)}, u'(t) > mo fo(€1)¢ > 0,
then At(e) N {S = $*(2)} = ¢.

(ii) In the submodel where y; =0, ¢ = 1,...,n, Smith (1981) and Hale and
Solominos (1983) gave some results on the persistence of . However, due to the
type of models they studied, the case with the y;’s consuming z is not discussed
in their papers.

Denote 3,F as the flow on the boundary 8F,, where v is as before.

THEOREM 3.11. Let the hypotheses of Theorem 3.9 hold. Then 8,F is uniformly
persistent and there exists a nontrivial w-periodic orbit (5(t), #(t),0, ¢t mod (w))

on OE,.
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ProoF: Note that Q(8(9,F)) = {(5,z,v,2) | § = §*(2),2 =0} =M, z¢€
[0,w] and W+(M) = JE,,. Then by Theorem 3.1 of Butler and Waltman (1986),
9, F is uniformly persistent. Now construct a Poincaré map T from the S—z plane
into itself by defining T'(So, 2:0) = (S(w), z(w)). It follows from Theorem 3.9 and
the dissipativity that {T"(Sp, z¢} has a convergent subsequence for each (Sg,zo)
in the interior of IR%. Then, by Massera’s fixed point theorem (Theorem A.10 in
appedix), there exists a fixed point (5, %) of T in the interior of IR%, which gives
a nontrivial periodic orbit. O

Note that Smith (1981) and Hale and Somolinos (1983) proved the existence
of a periodic solution in the S — z plane using different techniques, but did not

give any information on uniform persistence.

3.3.3. The stability and uniqueness of the periodic solution.

In the previous section we showed that in the case that o > 0, there exists
a “nontrivial” periodic solution (S(t), Z(t), 0) in the S —z plane while in the case
that g9 < 0, z(t) — 0. Hence for the remainder of th.s chapter, we always assume
o9 > 0. Recall that M = {(5,0,0,z) € E| S = S*(2)}.

Before further disscusion, we give a clear picture of 0E,. OE, is a 3-
dimensional manifold with boundary which can be pictured simply by considering
it’s image under the homeomorphism ¥ : (S,z,0,z) — (1 + z,2,5) = (r,8,w),
where the latter are viewed as cylindrical coordinates in IR®. This maps E, onto

the exterior component of the cylinder r = 1 in IR3. Then
M = {(5*(6),0,0,6) | 6 € Z}

has the image of a closed curve on the boundary of dE,, which is the cylinder
r=1.
Now that we know that a periodic solution exists, we are interested in estab-

lishing criteria guaranteeing that it is unique and globally asymptotically stable.
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This is done in the next three theorems. Theorem 3.12 below deals with a general
cylinder-like two-dimensional C2-manifold with one boundary (Definition 1.15).
The results obtained in this theorem are then applied to a specific manifold de-

fined by solutions of a given partial differential equation in Theorem 3.13.

THEOREM 3.12. Let the following hypotheses kold. (i) If the w-limit set OE,)
of OE, for OF lies on an invariant cylinder-like two-dimensional C?-manifold with
one boundary, M, with M as its boundary. (ii) Each w-periodic orbit except
(5*(t),0,0,t mod (w)) is asymptotically stable on M. Then 0F, has only one
w-periodic orbit (S(t), %(t),0,¢ mod (w)) which is globally asymptotically stable

in the interior of E,.

PROOF: Since ' C Q(OE,) for any w-periodic orbit T, all w-periodic orbits lie
on M. Suppose g : M — C is the C2-homeomorphism. Then for any solution
e(t) = (S(t),z(t),y(t), 2(t)) on M, g(e(t)) is a curve on C which by (i), winds
arround C as ¢ increases. Therefore for any w-periodic orbit T, g(T') is a closed
curve on C which winds arround C. If an w-periodic orbit I'; is not unique, then
by (ii), we can find another w-periodic orbit I, such that g(T1) and ¢(T'y), and
both wind arround C, and are adjacent to each other on C. In this case, we call T,
and I'; adjacent on M. Then the portion P of M between I'; and I’; with them
as its boundary is a compact and connected C?-manifold which is homeomorphic
to the portion of C between g(T';) and g(I'z). Let p be an interior point of P. The
a-limit set A, of p contains a minimal set Z C P. By the theorem in Schwartz
(1963) (which requires hypothesis (i)), Z is a closed orbit in P (with respect to M)
since dFy has no critical points and P is not homeomorphic to T2, the two-torus.
Moreover by (ii), Z does not coincide with either of T'; or I'; since Z C A,. This
contradicts the adjacency of I'; and T',.

We can use the same argument to show the global stability of the w-periodic
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orbit I atilizing the dissipativity of the system. This time we consider (S*(z),0, 0, 2)

as I'y, and to form I'y, we first define I* as follows,
[ = M\M,

where M is the closure of M in 8E,. Then it is easy to see that I' is either a
closed curve (including the case of a single point) or an empty set. In the latter
case, the intersection of M and {(S,x,0,2) € 0E, | § = 0} is a closed curve I
(see Fig. 5). As I';, we consider I' if it is not empty and consider I' if Iis empty.
Then all orbits approach to that portion of G bounded by I'; and I';. If T" is not
globally stable, then there exists one orbit v(e), e € dE,, such that A*(e)\I" # ¢.

However, since IT" is asymptotically stable, we have
d(A*(e),I) > 0.

As stated above, A*(e) C G. Applying the theorem in Schwartz (1963) again, we

obtain a closed orbit other than I', a contradiction to the uniqueness of I'. This

completes the proof. 0

The above theorem establishes the global stability provided it can be shown
that the manifold M exists and all positive periodic solutions are stable. The next
theorem gives a criterion in terms of a related partial differential equation for this
to be true. Although the application of the next theorem is not simple in many of
the cases, because of the complexity of (3.8), we believe that it is worthwhile to
state it here since for some specific cases, it may not be difficult for one to find a

solution of (3.8), hence the theorem can be applied.

THEOREM 3.13.  Consider the initial-boundary value problem

{ u+ [D(S°(t) — §) — mo fo(S)z)us + [(mo fo(S) — Do)z]u, + Du = DS(t)
u(S5,0,t) = S*(t), u(S,z,0)=u(S,z,w), (3.8)

te0,w] S2>0, >0.
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Fig. 5. A description for the proof of Theorem 3.12.

44

<Y



Suppose (8, z,1) is a C*-solution of (3.8) which satisfles:

gg #0 and Ty ={(S.z)|@(5 z,t)=5%¢)} =[0,1].
Then if 2% / % < ED; on Ty for allt € [C,..} the conclusion of Theorem 3.12 is

true.

PROOF: If the hypotheses are satisfied, then M = {(S,z,2) | @%(S,z,2) =
$*(z;. z € Z}. It is easy to see that M is an invariant and global attractor in E,
utilizing

u(t) = 4(S(t),z(t),t mod w)

for an orbit in E,. Since % # 0, by the implicit function theorem, there exists
h : R x Z — R such that @(S,h(S,z),z) = S*(z). For an w-periodic orbit
(8(t),%(t),t mod w) of Fy, it follows that #(t) = h(S(t),t). Since M is invariant,

S(t) is « solution of
b = D(S°(t) — v) — mo fo(v)h(v,t) (3.9)
whose linear variational equation about S(t) is
b= [~ D —mofo(S) (S ) ~mofy(SRW]s.  (3.10)

But —2k(5(1),t) = %%/%Is:S(z) < -DD;. Hence it follows from (3.10) that

D

. . Do icins
5< 5 [mofo(5(t)) — Do - 3°mo JHEO)EGIE

which implies 5(t) is asymptotically stabie for (3.9) since J5 (mo fo(S(t))—Do)dt =
0. Obviously, Fy|,, can be generated by the solution v(t) of (3.9) by defining the
orbit (v(t), h(v(t),t),t mod w) on M. Then Theorem 3.12 gives the uniqueness
and global stability. O
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In the case that D = Dy, we observe that i(S,z,t) = S + z is a solution
of (3.8), which satisfies all the conditions of the above thcorem. This solution
was obtained by observation, not by solving system (3.8). With this solution,

Theorem 3.13 can be applied to the next theorem.

THEOREM 3.14. If D = D,, system (3.2) has a globally asymptotically stable

w-periodic solution in the interior of E,.

PROOF: Let 4(S,z,t) =S + z. Then by Theorem 3.13, the conclusion is true.(]

Finally, we note that Smith (1981) proved that if Do < D, system (3.2) has
only one nontrivial w-periodic solution (S(t), Z(t)) on E, which is asymptotically
stable. However, he gave no information on the global stability of (S(t), Z(t)). For
D = Dy, Hale and Solominos (1983) gave the same result as Theorem 3.14.

3.4. The population growth of predators.

In order to discuss (3.2) further, we need a globally stable w-periodic solution
(5(t),%(t),t mod w) on E,. Therefore, in addition to oo > 0, we assume D = D,
throughout the remainder of this chapter. Denote by (S(t),%(t)) the solution
described in Theorem 3.14. Our discussions are divided into the following three

circumstances.

3.4.1. Extinction of y; due to the lack of prey.

In a chemostat environment with competition, the extinction of a species
of competitors can be caused either by the lack of resources or by the lack of
competition ability. In this section, we consentrate ourselves on the criteria for

the first case and leave the second one to the next section.
THEOREM 3.15. Suppose (A2) holds. If o; & L [(m, fi(Z(t)) — D;)dt < 0, then
yi(t) — 0 exponentially as t — oo.
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ProoF: Let (S(t),z(t),y(t)) be a solution of (3.2). Note that if we replace
S(t) by S(t) + z(t) in Lemma 3.4, the assertions (i) and (ii) are still valid (the
arguments are precisely the same). Therefore, it suffices to show this theorem
with the assumption S(t) + z(t) < S*(t) for t > t; for some t; > 0. Since fo is

increasing and z(t) > 0,
#(t) < (mofo(S*(t) — =(t)) — D)z(t)- (3.11)
By Theorem 3.14, all solutions of
@ = (mg fo(S*(t) — u) — D)u (3.12)
tend to Z(t) as t — oo. It follows from (3.11) and (3.12) that
ligigf |Z(t) — z(t)| = 0. (3.13)

On the other hand, yi(t) = yi(t2) exp [ft;(m,f,(z(r)) - D;)dr] for any ¢, > 0 and
t > t,. By (3.13), we can choose t; so large that 1 t”""(m,-f;(z(r)) — D;)dr <
£i < O for t > tp. It follows that 0 < yi(t) < K e~ for some K >0, § > 0 and

t > t2. This completes the proof. O

COROLLARY 3.16. Suppose (A3) holds and fi(z) is strictly decreasing. If A; >

L [V (t)dt, then yi(t) — 0 exponentially as t — oo.

PROOF: We can prove this corollary using the same argument as in the proof of
Theorem 3.7 by replacing Mg, fo,m0,00 and S* with A;, fi,m;,0; and Z, respec-
tively. (W

Usually it is hard to construct the solution (S(t), Z(t)), and hence to compute
fow Z(t)dt. The next corollary gives a criterion for extinction utilizing only the right

hand sides of the equations.
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COROLLARY 3.17. Under the hypotheses of Corollary 3.16, if \; > -2, then

moL ’

yi(t) — 0 exponentially as t — oo, where L= min  fy(z).
6,<z<¢t

PROOF: This follows directly from Corollary 3.16 and the following lemuna. [
LEMMA 3.18. Under the hypotheses of Corollary 3.16, L [" z(t)dt < ;2.

ProoF: Cleatly, 1 [ fo(5(2))dt = Z. It follows that

2 =1 i) - asona == [ reens o - So
0 0

o (3.14)
L w
N s
> 2 [ s
where () is the mean value of $*(t) and S(t). The lemma follows. a

3.4.2. Extinction of y; due to competition.
Now we discuss some situations in which yi, for some k, tends to extinction
no matter how abundant the prey is, because it is outcompeted by other predators.

Denote g;(z) = m; fi(z) — D; and Gi(z,7) = ¢i(2) — rgi(2).

THEOREM 3.19. Suppose (A2) holds. If there exists a positive r such that
Gik(z,r) > 0 for all z € (0,42), then yio > 0 implies that yx(t) — 0 exponen-

tially as t — oo.

P.«0OF: The theorem can be shown using the same arguments as in the proof of
Theorem 2.4 of Hale and Solominos (1983) and utilizing the conclusion of Theo-
rem 3.9 in this chapter. O

Note that the assumption that Gi(z,7) > 0 for all z € (0,¢2) and son::

r > 0 implies that \; < A;.

THEOREM 3.20. Suppose (A3) holds. If & > r* £ 0’5”2‘1,{%}’ then

yio > 0 implies yx(t) — 0 exponentially ast — oc.
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PROOF: As stated in the beginning of the proof of Theorem 3.15, it suffices to
show the validity of the theorem with S(t) + z(t) < S*(¢) for t > ¢, for some
¢; > 0. Also, we have shown in that proof that z(t) < Z(t) + 6(t) with 6(¢) — 0 as
t — 00. Define Y(t) =In % (t)) since y;(t) > 0 for all t > 0. Then Y'(t) satisfies

Y' = -Gi(z(t),r*). (3.15)

Some calculations yield

0Gik(z,r )
0z

It follows that G is decreasing in z. By (3.15)

m;fi(z) —r*myfi(z) <0 for z€[0,6)

Y(2) < Y(0) - fo Gir(E(v) + 8(0), r*)dv. (3.16)
Since 8(t) — 0 as t — oo and f; and fi are continuous,
t+w
Et) & /t [Gik(E(v) + 8(v),r*) — Gir(Z(v), r*)]dv =+ 0 as t— +oo. (3.17)

It follows from (3.16), (3.17) and o; > r*oj that Y(t) — —oco as t — oo, which
implies that yx(t) — 0 exponentially as ¢ — oo. O

We now note that we can have a corollary of Theorem 3.19 for Michaelis-
Menten systems which is similar to Theorem 2.5 of Hale and Solominos (1983).
As in that paper, we define p; = 3i, i =0,1,...,n, and we obtain the following

result:
THEOREM 3.21. Consider system (3.2) with
z .
f,-(z) = ;,-—-l-—z_’ ? —0,1,...,1?.
IfM <A< <A < %fow:i:(v)dv and py < px for some k such that2< k < n,

then 2+ > T2k and y10 > 0 imply yi(t) — 0 exponentially as t — oo.

myay
PROOF: In this case, A\; = ?“‘5_9—15—‘, wi = —B—?, t=1,...,n. Hence

A1
ay = A ([11 - 1) < /\](ﬂk - 1) "—k“ak < ag. (3.18)
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On the other hand,
my fi(z) _ myai(ar + z)°
T fL)  maas(ar + 2

(3.19)

Define h(z) = (-51—)2 Then

dh(z) _(ar+z (a1 —ai)
dz —2(a1+z) (a1 + 2)?

_ 2(a; — ag)(ag + 2)

(1 +2)° <0 for z20.
1

It follows that h(z) is decreasing and so is :—:ﬁ%); Therefore, from (3.19),

my fi(z) _ mifi(0)  ma
i) S i) -y 220

If we define r* = %:—Ef, then the conditions in Theorem 3.20 hold. This completes

the proof. O

3.4.3. Survival and coexistence of the predators.

In the previous sections, we have shown that g; < 0 is a sufficient condition
for y; to tend to extinction whereas o; > 0 is not sufficient for y; to survive, as
shown in Theorems 3.19 and 3.20. In this section, we give several sufficient condi-
tions for the y; to be persistent. We utilize the notations developed in Chapter 1

and Section 3.3.2.

THEOREM 3.22. Suppose (A2) holds. If o; > 0, then 6;;..7: is uniformly persis-

tent on aE;y‘_ .

PROOF: In this case we only need consider y € IR, i.e. £ =R x IR?. Then
we denote F = 6;;“}', BE;;“ = E. As we proved earlier, Q(3F) = { M, M,},
where My = {(5§%(2),0,0,2) | 2 € Z} and M, = {(5(2),%(2),0,2) | z € Z]}.
Using results obtained in sections 3.3.1 and 3.3.2, it can be shown that M, is

isolated for both F and F while M, is also isolated for F. Now utilizing the
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assumption o; > 0 and the technique used in the proof of isolatedness of My for
in Theorem 3.9, we can prove that M is also isolated for . Hence, M = Q(0F)is

an isolated covering of itself. On the other hand, M is acyclic since M, is globally

stable on 3E,.
In the proof of Theorem 3.9, we proved that W+(M,) = dE,. And

WH(M)N int E = ¢

will lead to a contradiction to o; > 0. Therefore, the uniform persistence follows

from Theorem 3.1 of Butler and Waltman (1986). O

REMARK 3.23: Note that if 0; > 0, and yi(t) — 0 as ¢ — oo for k # ¢, then

zg > 0, yio > 0, implies litrE £f yi(t) > 0. This follows from the uniform persistence
established by Theorem 3.22.

Remark 3.23 requires that other predators go to extinction for y; to survive.
The next theorem gives conditions which guarantee that y; survives independent

of the growth of the other predators.
THEOREM 3.24. Suppose (A2) holds. Let 0; >0 and A\; = A foralli =1,...,n.

Then y;o > 0 and zg > 0 imply that limsupy;(t) > 0.
t—oo

PROOF: Suppose the conclusion is false, i.e., tlim yi(t) = 0. Define Yi(t) =
Inyk(t) for those k such that yro > 0. Then

Y _9(2) o o
T~ e 9@ (3.20)

By the assumption on J, there exists » > 0 such that gj(z) 2 r forallz > 0

except z = A. It follows from (3.20) that

Yi(t) > r Yi(t)+ C, where C is a constant,
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which shows that Y;(t) — —oo whenever Y;(t) = —oo. Therefore ye(t) — 0 as
t — oo for k # i. By Remark 3.23, litminf yi(t) > 0, a contradiction, completing
—00

the proof. O

Next, we discuss the existence of an w-periodic orbit on BE;;I‘. By Theo-

rems 2.13, the following is a direct corollary of Theorem 3.22

COROLLARY 3.25.  Suppose (A2) holds. If a; > 0, then 0, F has a nontrivial

w-periodic solution on 3E;;_.

For the remainder of this section, we assume that \; = A, i =1,... , 1.
Although this seems restrictive we note that this case has been of interest to pre-
vious authors (Hsu, 1978; Hsu et al, 1977). As well, any generic results obtained

in this case may also be valid for values of ); sufficiently close to .

THEOREM 3.26. Suppose (A2) holds. Ifforalli =1,...,n, o;>0and ); = ),

then limsupy;(t) > 0 for those ¢ such that y;o > 0.
t—o0

PRroor: This follows directly from Theorem 3.24. a
This theorem gives a sufficient condition for all y;’s to coexist. The following
results concern a class of systems with additional conditions on the f;’s, but still

includes Michaelis-Menten nutrient uptakes.

THEOREM 3.27. Suppose (A3) holds and f! is strictly decreasing fori = 1,...,n.

A\ =)< %’}% foralli =1,...,nandG = ox<nza<xez fi(z), then Iifxlit:py.-(t) >

0 for those i such that y;o > 0.

PROOF: The proof follows from Theorem 3.26 and the following Lemma 3.28.

Note that (A3) implies A is of multiplicity 1 for each g;. a

LEMMA 3.28. Under the assumption of Theorem 3.27,0; >0 foralli = 1,. .. , M.
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PROOF: As in the proof of Theorem 3.6, we have

o; > ——-/ fl(ZE@)(E(@E) - A)dt, i=1,...,n.

/

Since f] is decreasing,
[ faeneo-2i> [ s —osien
0 0
On the other hand, similarly to Lemma 3.18, it can be shown that

Jg 1 v _
< - .
< w/o Z(t)dt

moG

Combining (3.23) with A < ;24 - —'r%%%, we obtain

fil) 1 f%_
rshe s, o

which, by (3.21) and (3.22), implies that o; > 0, completing the proof.

COROLLARY 3.29. For the Michaelis-Menten system, if

a;D; )< oolao + £1)*(ai + &)?
m;—D; ~ ~  mpae(a; + £2)?

for i=1,...,n, then limsupy;(t) > 0 for all such ¢ that y;o > 0.
t—o0

3.5. Discussion.

(3.21)

(3.22)

(3.23)

This chapter is concerned with predator competition for a microorganism

growing in a chemostat environment with a periodic nutrient input. In particular

we considered interactions among the consumers at various trophic levels.

In the first instance we considered the case where the chemostat dynamics

involved the nutrient and one primary consumer. It was found that extinction or

survival of the consumer depended on the time average (over one period) of an
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expression involving the periodic fluctuation of nutrient in the absence of that con-
sumer. In the case of survival, it was shown that both the nutrient and consumer
concentrations approached a unique periodic solution.

We then considered the case of a nutrient, one primary consumer, and several
secondary consumers feeding on, and competing for, the primary consumer. We
showed, not unsurprisingly, that if the primary consumer was not in sufficient
supply, then all secondary consumers went extinct. We were then able to identify
several parameters which determined the survival or extinction of the secondary
consumers as a consequence of competition.

Further if only one secondary consumer survives, we showed that a periodic
solution (not necessarily unique) exists.

In the case where certain of the parameters, termed };, are equal, we were
able to obtain criteria which led to survival of all consumers. It is still an open
question in the case of different A;’s whether one can again find such criteria,
although we suspect that such is the case.

A second problem of interest for future investigation would be to modify the
model of Wolkowicz (1989) by introducing a periodic nutrient input. Finally, it
would be of great interest to consider the question of coupled chemostats (grado-

stat) with periodic nutrient input.
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Chapter 4

4 - CLOSTAT MODEL

4.1. Introduction.

In last two decades, many authors have devoted themselves to the study of
chemostat systems. They achieved a lot of interesting results on the topic. A varied
laboratory apparatus called a gradostat and its mathematical model subsequently
has been set up and studied. Untill today, there are still many authors interested
in these two topics in various settings.

In this chapter, we modify the notion of a gradostat to that of a cyclostat
which can also be implemented as a laboratory apparatus shown as in Figure 3.
The idea is to modify the gradostat in such a way that the flows between the culture
vessels are in one direction only, and that the output of the last culture vessels
flows back to the first one, which itself has an additional output to a collecting
vessel in order to keep the volume in the culture vessels constant. This model
can be considered as an emulation of some recycleable environment. Hence this
chapter will contain to the best of our knowledge the first work on such systems.

The model is described by the equations (4.1) in next section.
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4.2, The model.

The biological model we consider in this chapter consists of n vessels con-
nected in a cycle by one-way flows, in which one species of microorganism is fed
up by the input nutrient (see Fig. 3).

As a model of this system, we take

(51=D(So+ Sn —251) = Z£(51)z1

Si=D(S;-; - Si) — %f(s,')z,‘ (@)
i’] = D(l‘n - 2171) + mf(51)331
| Zi = D(zi~y — ;) + mf(S)z;

51(0),5,'(0),1'1(0), :z:,(O) 2 0; t= 21 LY

where So > 0 represents the input nutrient concentration rate of S, D > 0 is the
dilution (or wash-out) rate, S; and z;; represent the populations of the nutrient
and the microorganism in ith vessel respectively, m is the maximal growth rate
of the species, and v is the yield factor of the nutrient S corresponding to the
species. As a consequence of the biological reality, that any population can not
have negative numbers, we consider system (4.1) in IR%" only. As to the nutrient

uptake functions f, we assume

(A01) £(0)=0, f(u)> 0for u >0, f(u) monotonically increases to 1 as u tends

to o0, and f € C" where r is as required; or

(A02) in addition to (A01), f'(u) > 0 for u > 0.

The positivity and the monotone behavior of f are based on the known facts
that the nutrient uptake rates are always positive and that increasing the nutrient
input increases the nutrient uptake rates, which are of limit 1 as the input tends
to infinity, on the competitors. The rest of the above assumptions are made just

for mathematical convenience.

56



We make the following change of variables,

5= 2

l=§

\Ti = %,f(u) = %f(Sou),i =1,...,n

And we rescale the time ¢ by f = Dt and take all the derivatives with respect
to t. For convenience, we drop the bar and denote the new variables as in (4.1).

Then system (4.1) becomes,

( §1=(1+4 Sn~251) - f(S1)z
J Si = (Si=1 — Si) — f(S:)z:
z, = (zn — 221) + f(S1)z1

(4.2)

| i = (%i-1 — zi) + f(Si)zi
51(0), Si(0),z4(0),zi(0) 2 0; i =2,...,n.

Here f, satisfies one of the following assumptions,

(A1) f(0) =0, f(u) > 0for u > 0, f(u) approaches increasingly tc % as u tends

to 00, and f € C" where r is as required; or
(A2) in addition to (A1), f'(u) > 0 for u > 0.

If n = 1 or 2, system (4.2) describes a chemostat or a gradostat model
respectively, for which many authors have done a lot of work. Therefore we only
consider system (4.2) with n > 3 throughout this chapter.

As a matter of fact, we can describe (4.2) as a dynamical system = on IR2"
by extending f to IR continuously, say f(u) =0 for all u < 0. Even further, with
a well-known theorem in the theory of functional analysis, we can extend f C'-
differentiably to IR if f is C"-differentiable. By doing so, we can bring the theory
of dynamical systems into our study of the cyclostat model. Hence we consider

system (4.2) to be defined on IR?".
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4.3. General aspects of the system.
In this chapter, we devote ourselves to the study of the persistence of the
microorganism in system (4.2). But before paying attention specifically to the

microorganism, we will give some results on the system.

We denote (S1,...,8,21,...,2a) € IR} by (S, ), where S,z € R%, and

H, 2 {(S,z) eR*™ | z; =0 for i= 1,...,n},
HFf £{(5,00eR?>" | S;>0 for i= 1,...,n}.
(4.3)
The following lemma guarantees that we concentrate ourselves in IR2" for
our purpose of study of system (4.2). From now on throughout this chapter, we

always mean IR3" whenever an area is concerned without spicification.

LEMMA 4.1. H; is invariant for = while H} is positively invariant for the sub-

system of = in H, and consequently, IR3" is positively invariant for =.

PROOF: For any e = (S,z) € H;, z; =0 forall : = 1,...,n. It follows that
zi(t) = 0 for all ¢ > 0 since z; = 0 for all i. If H} is not invariant in H,, then
we can find an orbit 7(2,0,¢) of (4.2) such that e € OH}, the boundary of H}
in H;, and there exists T > 0 such that =(¢,0,e) ¢ HY for t € (0,7]. Here
the T can be chosen as small as we want. Then we can find an ¢ € {1,...,n}
such that S;(t) > 0 while S;41(t) < 0 for ¢ € (0,T) and S;y,(0) = 0 (if i = n,
Sn+1 = S1) since for e = 0 we have S'l =1 > 0 at e. By the mean value theorem,
there exists ¢ € (0,T) such that $;11(c) < 0. How=ver, by the definition of (4.2),
Si+1(c) = =Si41(c) > 0. The contradiction leads to our assertion on H .

To show the positive invariance of IR3", assume that there exists such an

orbit 7(¢,0,e) that e € IRZ" while n(r,0,¢) ¢ IR2". Then there exi-t - > 0 such

that eg = 7(70,0,€) € OR32". By the first part of the theorem, eg ca:: not be in
+ P
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H}. Therefore we can find some i € {1,...,n} such that z; > 0 while z;4; =0
(if i = n,zn4; = ;) where z; and z;4, are components of ey = (S, ) in z. Then
utilizing arguments similar to showing the positive invariance of H}, we are led

to a contradiction, completing the proof. 0O

By the above lemma, we can consider a subsystem of (4.2), which represents
a cyclostat with nutrient flow caly,

{Sl=(1+sn—2sl) (44)

Si = (Si-1-S:)
51(0),5:(0)20; :=2,...,n.

System (4.4) is a linear autonomous system whose Jacobian is as follo-s

-2 0 0 0 1

1 -1 0© 0 O

0 1 -1 0 o
A= :

0 0 O -1 0

0 0 o0 1 -1

After some algebraic manipulations, we obtain the characteristic function of

A a3 follows:

E(@)=(c+2)(c+1)""' -1. (4.5)

Then by Theorem 2.7, we have the following theorem.
THEOREM 4.2. All solutions of system (4.4) tend to the only equilibrium E =
(1,...,1) € IR} exponentially.
PROOF: In (4.5), let &« = 0 + 1. Then E(c) becomes a polynomial in ~ ~hich
is same as P(a) defined in (2.6). By Theorem 2.7, the real parts of all roots of
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P(a) = 0 are smaller than 1 — -2-;’_—]- It follows that the real parts of all roots of
E(0) = 0 are negative. Therefore, the trivial solution of the homogencous lincar
system of (4.4) is globally exponentially stable and hence so is E for (4.4). This

completes the proof. 0
The above theorem (ives the following corollary.

COROLLARY 4.3, [nder assuinpiion (A1), system (4.2) is dissipative and all

solutions i IR™ tend to the invariant manifold

HE{(S2)€RY | Si+ai=1i=1,..,n}.

PROOF: For each solution (S(t),z(t)) of (4.2), define Wi(t) = Si(t) + zi(t). Then
(Wi(t), ..., Wa(t)) satisfies system (4.4). By Theorem 4.2, Wi(t) tends to 1 for all

t=1,...,n. It is easy to see that H is compact, completing the proof. Ol

REMARK: By Theorem 4.2, we can see that without the existence of the mi-
croorganism z;, system (4.2) shall eventually approach a state where the nutrient
concentrations in each vessel are equal. Also, we can see from the theorem that
the point E = (1,...,1,0,...,0) € IR2" is an equilibrium of system (4.2).

Let K be any subset of a set of numbers {1, ... ,n}. Then we define

Gk £ {(S,z) e R¥" | 5, =0,i € K}.
Hy £ {(S,2) € R} | z; = 0,i € K},

(4.6)

The following lemma is required in order to prove some of the succeeding

theorems.

LEMMA 4.4. For a nonempty K, any y € Gy or any y € H\{E} (in case of

Hi, K # {1,...,n}) can not be an w-limit point of any point p € R?".
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PRooF: For the givin K and y € Gk, if K = {1,...,n}, then we have that
$;=1>0aty If K# {1,...,n}, then there must exist some i € K such

that S;_, > O while S; = 0. It follow = ¢t S = S;_; > 0 at y. With the
same arguments, if y € Hx\{E}, there exits i € K such that #; = z;_; > 0 at
y. It follows that no matter whether y € Gg or y € Hy, there always exists a
component y; of y such that y; > 0 while y; = 0. Suppose y is an w-limit of
some point p € IR2*. Then by the uniqueness of the solutions and the continuous
dependence of initial conditions of system (4.2), IRZ" is not positively invariant, a.

contradition to Lemma 4.1. This completes the proof. O

The next theorem states that if the microorganism in some vessel goes to

extinction, then those in all other vessels also go to extinction.

THEOREM 4.5. For system (4.2), tlir{.zo zi(t) = 0 for some i € {1,...,n} if and

only iftlim zi =0 forallk € {1,...,n}.
—00

PrOOF: The sufficiency is obvious. Now we suppose tlim &; += 0 for some 7 while
—~—00
limsup z4 > 0 for some k # i. Then there exists some point y € Hg wkich
{—00

is an w-limit point of some point in IR3", where K is a subset of {1,...,n}\{k}

containing z. This is a contradiction of Lemma 4.4, which completes the proof. O

We all know that any species will go to extinction if it is out of the resources
which it requires for life. Therefore, in the setting of a cyclostat device, we can
imagine that the nutrieat in each vessel will be bounded away from zero since
we keep putting it into the device. The next theorem shows this fact, and even

stronger that they are all bounded away from zero uniformly by an amount > 0.
THEOXEM 4.6. There exists an n > 0 such that for any solution of (4.2),

liminf §;(t) > 1.
t—00

PROOF: As in the proof of Lemma 4.4, every point y € G lies on ap »rbit from
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outside of IR?". By the continuous dependence of the initial condition, there exists
a neighborhood Ny of y in IR?" such that all points in Ny are not in any w-limit
set of all points in IR3". According to Corollary 4.3, all w-limit sets of ¢ € IR2"
are located in a compact set H. Since C = H[( U Gr) is compact, where
K runs through all nonempty subsets of {1,...,n}, tl.‘b;;:e exists a finite subcover

{N1,...,Np} of {Ny | y € C} for C. It follows that there exists n > 0 such that

H}Ei{,‘f d(C,n(t,0,€)) > 5 for any e € IR}". completing the procf. 0

By Corollary 4.3, we can study the asymptotic behavior of system (4.2) Ly
the orbits on H only. Thus, we will confine ourselves to the following reduced

n-dimensional system throughout the rest of this chapter,

{ T) = (2, ~ 221) + f(1 - z1)z,
(4.7)

i = (zi—1 — 2i) + f(1 — =)z

z1(0),zi(0) > 0,z;,2; <1, 1 =2,...,n.

4.4. The extinction criterion of the species.

With the results in previous sections, we now can deal with the persistence
of the species. First, it is easy to see By = (0,...,0) € IR} is an equilibrium on
the boundary GIR}, and by Lemma 4.4, system (4.7) has no other equilibrium on
OIR}. Then using a similar technique as in the proof of Lemma 4.1, we can show
that I is positively invariant for the system generated by (4.7), where I is the unit
cube in R2",

By straightferward manipulations, we obtain the Jacobian at E, for (4.7),
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-2+ f(1) 0 0 0 1

1 ~1+ (1) 0 0 0

0 1 ~14f(1) ... 0 0

J(Eo) = : : : . : :

0 0 0 . =14 £(1) 0

0 0 0 1 -1+ f(1)
Its characteristic function is as follows,

EW)y=@w+2-f))v+1-fO)" ' -1 (4.8)

LEMMA 4.7. System (4.7) is a cooperative system (see Definition 1.14).

PROOF: Let Fi(z) be equal to the right hand side function of the ith equation in
(4.7). Then we have & =1>0ifj=i—1 (ifi =1,z = z,), and gg;’- = 0 for

8z;

all other j # 7. This completes the proof. O
By Theorem 2.7 and (4.8), we can show the next theorem.

THEOREM 4.8. Under assumption (Al), if f(1) < (1 — @), where ay, is given as
in Theorem 2.7, then all solutions of (4.7) tend to Ey exponentially, i.e., we say

that system (4.7) goes to extinction.

ProcoF: By Theorem 2.7 and (4.8), the eigenvalues v of J(Ey) satisfy Re(v) <
f(1) = (1 = ay) < 0 under the assumptions of this theorem. It follows that all
solutions of the linear system & = J{Ej)z tend to Ey exponentially. Under (A1),
Fi(z) is iess than the ith row of J{Ep)z in the interior of IR} for all i since Fi(x)
is decreasing. Therefore, for each sclution: z(t) = (z,(2),...,z.(t)) of (4.7), we
have #(t) < J(Eo)z(t). By Theorem 1.7.1 of Ladde and Lakshmikantham (1980)
(see Theorem A.8 in Appendix), z(t) — 0 exponentially as ¢t — oo, since (4.8) is

coorperative. This proves the theorem. O
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Now we define A as the value at which f(A) = (1 — a,). Then the above
theorem states that if A > 1, then z goes to extinction. In the next section, we will
prove a theorem which shows that system (4.7) is uniformly persistent if A < 1.
It follows that A =1 is a threshold for survival vs. extinction for z. So, another
interesting question is how the solutions of (4.7) behave when A = 1. The next

theorem addresses this question,

THEOREM 4.9. Under assumption (A2), if A = 1, i.e,f(1) = (1 — ay), then E,
is globally asymptotically stable.

PROOF: First we define a Liapunov function on the compact set I C IR} as

follows

V(z)=z1 +(1+an) Y ria, (4.9)

=2

For this function, we have V(Ey) = 0,V (z) > 0 for =z € I\E,. Taking the

derivative of (4.9) along the solutions of (4.7), we obtain

V(z) = (za = 221) + f(Q)z1 + (1 + @n) Y a¥%[(zizy — ) + f(1)ai]

=2

= (f(l —z1)—(1 "an))ml +(1 +0‘n)Zai_2(f(1 -z)— (1~ an))"’i

1=2

=U(z) <0,

for all z € I\{Ep}, since f is increasing, where U(z) is given by (2.10) in sec-

tion 2.4. This completes the proof. O

The above theorem tells us that the species goes to extinction even if A = 1,

which is the critical value for the species.
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4.5. Persistence.

First, we require some lemmas which are essential to obtain criteria for

persi-ience.

LEMMA 4.10. If n is even and f(1) = (1 — a), where a is defined in The-

orem 2.8, then there exists a neighborhood N of Ey such that there exists no

equilibrium in N Ifil,‘_

(-]
Proor: For z =(z;,...,Zn) € IR} to be an equilibrium, one must have,

G)2 (2-f1-=) [J(1 - f1-=) =1. (4.10)

=2
Since f/1) = 1 — a; > 2 by Theorem 2.8, we can choose N so small that

each factor of G(z) is still negative when z € N N li’l_'; It follows that

n

G(z) < (2- f1) [J(1 - s0) =1

i=2
since n is even, which is a contradiction to (4.10). This shows that there exists no
o
equilibrium in N NIRY%. O

Consider an autonomous system in IR",

& = g(z).

We may always split IR™ into three subspaces E* @ E° @ E*, where E?*, E°,
and E* are the generalized eigenspaces corresponding to eigenvalues of Dg(E;) of
real part less than zero, equal to zero, and greater than zero, respectively. Then
according to Theorem III.7 in Shub (1987) (see Theorem A.3), to each of the three
Dg(Ey) invariant subspaces E°, E¢, and E* there are associated local ¢ invariant

C" embedded discs W, W£ ., and W}, tangent to the linear subspace at E,.

oc
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LEMMA 4.11. If f(1) > (1~ay), then W, IR} = {Ep} and Wi, IR: = {Eo)

for those discs, which are sufficiently small.

PROOF: Before proving the lemma, we introduce a partial order in IR, with
which system (4.7) generates an order preserving flow by the definition in Smith
(1988) (see Definition A.1 in Appendix). We say that, for z and y € IR®, z < y if
y—z € R},ie., yi—z; 2 0foralli =1,...,n. Itis easy to see that < so defined is a
partial order in IR". By Lemma 2.1 in Smith (1988) (see Lemma A.1 in. Appendix),
system (4.7) preserves the order = if we extend (4.7) to IR" as was done at the
beginning of Section 4.3. Since in the model described by & = J(Eg)z, the ith
vessel gets input from the previous one while it sends output to the next one (we
consider the first vessel is next to the nth), the system leaves no proper invariant
nontrivial subspace. It follows that J(E)) is irreducible (see Definition A.3). We
also note that s(J(Ep)) = f(1) — (1 — @) > 0 (see Definition A.2 for s(A), where
A is a n X n matrix).

Therefore, by Lemma 2.10 in Smith (1988) (see Lemma A.2 in Appendix),
Wi MRY = {Eo}. Otherwise, suppose z € W, [YIR2\{Ey}. Then the orbit
through z will stay in the interior of IR} for all future time by Lemmas 4.1 and
4.4, and it will approache Ej since it is in the stable manifold of E,. In this
case, we can find ¢) > t3 > 0 such that n(t2,0,z) < n(¢;,0,z), which contradicts
Lemma 2.10 in Smith (1988) (see Lemma A.2). This completes the proof of first
part of the lemma.

For W, we notice, by Theorem 2.8, that the manifold is at most two
dimensional, and W, is one dimensional if and only if n is even and f(1) =
(1 — a;). We first consider ths linear subspace E° generated by the only zero
eigenvalue of J(E; ). Since E° is one dimensional, all solutions of & = J(Eg)z on E¢

are rest points. If E°NIR} \{Eo} # ¢, then therc exists a rest point z in the interior
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of IR} . However, by the setting of £ = J(Eg )z, zi—1 = (1—f(1))z;fori = 2,...,n.
It follows that z;_; and z; have alternative signs since 1 — f(1) = a;; < 0. This
contradiction to Lemma 4.4 shows that E° is attached to IR} at only one point
Ey, and so does W, if it is small enough since W[, is tangent to E° at Ey. Now
we consider the case of two dimensions. In this case, all solutions of £ = J(E)z
are loops on E°, one inside another with Eg in the ‘center’. Therefore, for small
enough W, solutions of (4.9) on W[, wind around Ej (see Fig. 6). It is easy to
see that the nonemptiness of WS NIRE\{Ey} violates the positive invariance of

IR} . The proof is completed. O

LEMMA 4.12. Under the same hypotheses of Lemma 4.11, {E,} is an isolated

invariant set in R} for F generated by (4.7).

Proor: With f(1) > (1 — a};), we have one of the following four cases: (a) all
'genvalues are positive, (b) same as case (a) except that one eigenvalue is equal
to zero, ie., f(1) = (1 — a;), (c) some eigenvalues are positive while others are
negative, or (d) some are positive, some are negative and some eigenvalues are zero.
In cases (a) and (c), £y is a hyperbolic rest point, hence it is an isolated invariant
set. For cases (b) and (d), by Theorem IIL.7 in Shub (1987) (see Theorem A.3), all
invariant sets in a small enough neighberhcod of Ej lie on Wf,,. By Lemma 4.11,
Wi NIRE = {Ep}. It follows that Ej is isolated in IR} . This completes the proof.
a

THEOREM 4.13. Under assumption (A2), if f(1) > (1 — ay), i.e., A < 1, then

system (4.7) is uniformly persistent.

PROOF: Here, we want to utilize Theorem 2.6 in Chapter 2. We define F as RZ,
D as IR}, B as Ey. As shown in the proof of Lemma 4.4, all points on D\B

enter the interior of E, which is the set of E\D, for all the succeeding time. It
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Fig. 6. Illustration of a case in the proof of Theorem 4.11.
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follows that B is the only invariant set on D. Since B is compact, the low g on it
is dissipative. Since (4.7) is deduced from (4.2), by Lemma 4.1, E\D is positively
invariant. We take B itself as the covering M. By Theorem 2.6 in Chapter 2,
if we can show that Fp is isolated in E and acyclic with M, and condition (H)
holds, then we are done.

Lemma 4.12 shows the isolatedness of 5. Now suppose Fp is cyclic. Then
there exits such an orbit in E\B that has B as its w-limit set. Therefore, this orbit
is on the stable manifold of B, which is a contradiction to Theorem 2.10 in Smith
(1988) (see Lemma A.2) since there exist distinct points z and y on the orbit with
z X y. This contradiction shows that Fp is acyclic. By Lemma 4.11, for .
x € E\D, z cannot ‘e in W*(B). It follows that (H) holds. This complete: *%..

a

proof.

REMARK: By Theorem 2.7, we know that a, — 1 as n — oco. This shows, with
the above theorem, that the larger the number of vessels in system (4.7), the easier

for the species to survive.

Next, we give more details about the w-limit sets of system (4.7).

THEOREM 4.14. Under (A2), if A < 1 and f"(u) < 0 for u > 0, then there exist

a unique interior equilibrium Z for system (4.7).

PROOF: First by Theorem 2.13 in Chapter 2, for any w > 0, there exists an
w-periodic solution in the interior of I for system (4.7) which is dissipative and
persistent by Theorem 4.13. We pick a point p, from the %-periodic orbit. Then
a limit point Z of the sequence {p,} will be an interior equilibrium. In fact, by
the persistence of (4.7), Ey is isolated, i.e., there exists a neighborhood of Ej in
which there exists no periodic orbit. It foliows tliat Z # Ep, the only equilibrium

on the boundary I,
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Assume I is another interior equilibrium. Then there exists at least one
i € {1,...,n} such that #; # 3;, say ¥; > Z; or visc versa. However, it is casy
to verify that the function g(u) = (1 — f(1 — w))u is increasing for u > wuy for
some ug € (0,1 — A). Since g(z;) = zi_; > 0 for an equilibrium z = (z,,...,n),
0<1-f(1-=z;)<1lfori=2,...,n It follows that 2, < z; < --- < z,, and
z; >1—-Afori=2,...,n. It turns out that g9(z1) = z, — z; > 0 and hence
z1 > 1~ A. Therefore ;-1 = g(%;) > ¢(%;) = ;- if & > Z;, here we regnrd zo
as z, and in this case z, = z; + ¢g(z,). It follows that ; > z; for anyi=1,...,n.
Then it is not difficult to verify that 1 = G(£) > G(Z) = 1, where G is defined as

in (4.10). The contradiction leads to the uniqueness of the interior equilibrium. OJ
THEOREM 4.15. Under (A1), if 1 > X and f"(u) < 0, then the interior equilib-

rium % is globally asymptoticall stable.

PROOF: By staightforward manipulations, we obtain the Jacobian of the lincar

variational system of (4.9) at Z as follows,

§ 0 0 0 1

1 6 0 0 0

0 1 6 0 0
J(z) = . .

0 0 0 bue1 O

0 0 0 1 6,

where §; = —2‘*‘f(1—.‘731)—f'(1—51):1_:] <0,6 = —1+f(1—5,‘,')—f'(1—-57,')53,' <0

for i =2,...,n. Then we can find the eigenfunction for J(%) as follows,

E(o)=-1+[J(c - &)

=1
We consider an auxiliary function
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F(o) = [J(c - &) = E(0) + 1.

i=1

Since f"(u) <0 for u > 0,1 — f(1 —u)+ f'(1 - u)u is increasing. It is easy
to see that Z; < T3 < +-+ < T, < 2%; for the equilibrium Z. Therefore, we have
51+1>68 >+ > 6, It follows that F(o) has at least n — 1 different roots
82,...,6p of n real roots, and has at most one root é; of double multiplicity. There
exist only two cases: (a) §; = b2, cr (b) §; # 8, (see Fig. 7).

First, we have F(0) = 'ﬁl(—&i) > G(%) = 1 since f' > 0. We establish 2

iz

parametric function related to E(o) and F(o) as follows

Eg(o)=F(o)-B, B€l0,1]

It is easy to see that Eg(s) = F(o) and Ey(o) = E(s). Since Eg(o) =
F'(g) > 0 for all ¢ > 0,8 € [0,1], and Eg(0) = F(0) — B > 0 for all B € [0,1],
the largest real root og of Eg(a) is negative for all 8 € [0,1]. With the graphs of
all possible polynomials F(o) (see Fig. 7), we know that for any 8 € (0,1),04 is
of single multiplicity for Eg(c) = 0. It follows that all real roots of Eg(c) are less
than og.

Now, we prove that all the real parts of other roots of Eg(c) are less than
og. If it is not true, then there exist 8 € (0,1)] and a root g = ag + bgi of Eg(o)

such that ag > o and bg # 0. Then we have

= |F(ng)* —Hlnﬁ &|° —H(aﬂ 8;)% + b2]

i=1

> H(Gﬁ ~ &) = |F(ap)|" = £,
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(b)
Fig. 7. Graphs of F(¢) in the proof of Theorem 4.15.
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a contradiction which leads to the conclusion that ag < o for all A, especially for
B = 1. It follows that % is asymptotically stable.

To show the global stability of Z, we notice that by Theorem 4.1 in Hirsch
(1885) (see Theorem A.4), the stable set W,(Z) of Z has Lebesgue me:~ure 1 in I
since the equilibrium set E = {Ep,z} with Ey being totally unstable i: i. Assume
that there exists z € I \W,(Z). Then it is easy to see that both O4(z) = {y €
I|y>z}and O_{z) = {y € I | y < z} have their Lebesgue measure greater
than 0. Therefore, there exist y; € O4(z) (1 W,(Z) and y; € O_(z)NW,(Z). Since
# is asymptotically stable and x ¢ W,(Z), we have w(z) N {Z} - ¢. Hence by

Theorem 3.8 in Hirsch (1985) (see Theorem A."), we have

{z} =w(y2) < w(z) <w(y) = {z},

a contradiction leading to that W,(Z) = 4], completing the proof. d

COROLLARY 4.16. For system (4.7) with Michaelis-Menten uptakes, i.e., f(u) =

oy withm,a >0, if ;;’%—1——_%3‘—) < 1, then the system has a globally stable interior

equilibrium z.

Proor: The system satisfies all the conditions in Theorem 4.15. O

4.6. The compitition ainong two species in a cyciostat model.

By adding one more species y = (y1,...,¥n) € IR} which also consumes the
input nutrient to system (4.1), we obtain a system as follows in which two species,

x and y, compete fcr the only input resource S,
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(81 =S &Sy — 251) - '—f;:f(sl )y — %"9(51)!/1
Si= 7 (e — Si) = 2= f(Si)xi ~ %'-9(5.')1/,‘

{ Iy =D(zn_2xl)+mzf(sl)zl (4.11)
(& D(Tic — 23) 4+ me f(Si)z

v1 = D(yn — 2y1) + mya(S)

[ ¥i = D(y,:...g = yi) + myg(si)yi
Sl(_n)esi(o)axl(o)a zi(o),yl(o),yi(O) 20;7:-2,....1.

All the descriptions about the variables, parasn:aters, constants and functions
are the same as those given right after (4.1). Further after a similar analysis as
done in sections 4.2 and 4.3, we can reach that S; + z; + y; tends to S, cventually:

and then, instead of (4.11), we can study the following system,

{ Ty = (Ticy — pin) + f(1 -z, -y,
¥i = (Yi-1 —pivi) + 9(1 — zi — y )ys
2’1(0)1yl(0) Z Oaxisyi S 1’ 1= 1;" -4 1,

where p; = 2 if ¢ = 1, otherwise p; = 1, and f and ¢ satisfy (A1) or (A2). Here

we identify zy = z,, and yy = y,.. We define

P={(z,y) e R*™ | z2;,4: 20 and zi+y;<1li= 1,...,nk

Then it is not difficult to show that (4.12) i a semi-dynamical system defined in
P since all forward solutions of (4.12) exist for all ¢+ > 0 in P.
In section 4.4, we have shown that if i < A (2r 1< ); ), thenx (ory )

goes to extinction, where 4; and A; are the values at which the functions f and
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g are cqual to 1 — a, respectively. Therefore, the results on A\; > 1 for j =1 or 2
are obvious. On the other hand, we alsc showed that if A\; < 1 (or Ay < 1), then
there exists £ (or y ) € Ifi{,‘_ such that with y =0 (or z =0 ), all z tend to & (
or y tend to §) eventually. In this section, we shall study the behavior of z and y
in the interior of P under the assumpticns that J; < 1for j = 1,2.

First, we give a resuit v'henever r and y have the same functional response
to the input nutrient S, i.e., f(u) = g(u) tor 2" u € [¢, 1],
THEOREM 4.17. Assuming (A1), if f(u) = ¢{=} for &l «: = [0,1], then the set of

equilibria consists of

L={($,y)€m-2+n | zi +yi=%i,i=1,...,n}

and {Ey}, where ; is th= ith component of T giver: in Theorem 4.14. And almost

every soluticn of (4.12) approackes to one of the points on this segment.

PROOF: It is easy to see that in this case, for a. . lution (z,y) of (4.12), z +y
catisfies system (4 7 Therefore, by the previous resuii, any equilibrium (%, §) of
(4.12) satisiies the equalities #; + §; = Z;. It follows that if £; = ¢Z; for some ¢

and q € [0,1], then

Fiy = (pi— f(1 - &i — §i))%i = ¢Zi-1.

This shows that Z = ¢ and hence § = (1 — ¢)Z, which is the casc that (,7) € L.
Now, by reversing the sign of y, we obtain a cooperative system from (4.12).
Then by Theorem 4.1 in Hirsch (1985) (see Theorem A.4), almost every solution

* ‘nds to an equilibrium. This completes the proof. O

To proceed further into this section, we assume that f(u) > g(u) for all

t € (0,1). Otherwise, we could end up in a situation which is toc sophisticated
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to study. This nssumption means that species . alv ys has a stronger functional
response to the resource than y does. It seems 1i:at z can definitely survive under
our assumpticn A; < 1. The question is whether or not y is able to survive itself in

the competition for a single resource. The following theorem answers this question.

THEOREM 4.18. Under (A1), if f"(u) and g"(u) are continuous and f(u) > g(u)
for all u € (0,1), the the equilibrium E; = (%,0) of (4.12) is globally stable. In

other words, y goes to extinction while & survives.

Before giving the proof of this theorem, vre slhow two lemmas which helps in
proving the theorem.
LEMMA 4.19. Under the conditions of Theorem 4.18, there exists no interior

equilibria for system (4.12).

PRrOCF: As (4.10), we define

Gl(“"y) é

3

(pi = f(1 =z — 1))

n
=1

and,

Ga(z,y) £ [[(pi — 91~ z: - y)).

=]

By the assumption that f > g, we have that G,(z,y) < Ga(z,y) for all

(z,y) € P. However, for any interior equilibrium (Z,9), we have G1(Z,7) =1 =

O

G2(%,§), a contradiction, completing the proof.

LEMMA 4.20. All of the equilibria, namely (0,0), (%,0) and (0,§) of systera
(4.12) are simple according to the definition in Hirsch (1985), i.e., there exists no

eigenvalue of those three equilibria having 0 real part. And further, (7, 0) is a sink,
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i.e., all its eigenvalues are of negative real parts, while (0,%) has some eigenvalues

with positive real parts.

PRoOF: We define a matrix A,(z,y), where h is a function satisfying (A1) or

(A2) and (z,y) € IR2", as follows

& 0 O 0 1
1 46 0 0 0
1 & ... 0 0
Ah(xvy) = . : : .. : : ’
0 0 0 ... b1 O
0 0 0 ... 1 bn

where & = —p; + h(1 — x; ~ y;) — K'{1 - z; — y;)2;, 2; = z; or y;, depending on
h = f or g respzctively. Then, by some straightforward manipulations, we obtain

the Jacobians at those three equilibria as follows

(440,00 0
100=(*0 460 )

J@M=(Mfm %&m )

and,

_\ _ [ As(0,9) 0
s00=(Y00 o )

where * represents an 7 x n matrix. 1t is not too difficult to see that A(0,0)
and A,(0,0) are of the same form as the matrices in the beginning of section 4.4.
It follows that the origin (0,0) is totally unstable, i.e., all its eigenvalues are of
positive real parts. Using a similar argument, we cbtain that the eigenvalues of

Af(%,0) and A4(0,7) are of negative real parts since the two matrices are similar
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to those in the proof of Theorem 4.15. For A;(0,§) and Ag(7,0), we obtain their

eigenfunctions as follows,

Py(0) = =1+ [J(o + pi - h(1 - 2)),

i=1

where h equals f or g und z is z or y depending upon whether h = gorh=f
respectively. Utilizing a similar technique ir the proof of Theorem 4.15, we can
prove that the roots of £y all have negative real parts since P,(0) = —1+]] i (pi—
9(1 —2;)) > 0. It follows that all eigenvalues of J(Z,0) have negative reul parts.
On the other hand, at least one root of Py has a positive real part since Py(0) < 0
while Py(o) tends to infinity - ¢ — oco. Therefore, to complete the proof, it
suffices to show that P; has no { real part sol .c.cns. By Theorem 2.12, P, has
no pure imaginary roots of greater than one multiplicity. Suppose fi and —pi is
a pair of conjugate eigenvalues of J(0,7). Then the corresponding eigenvectors
will span a 2-dimensional plane H which passes through the equilibrium (0,#)
and is transversal to the part of boundary {(0,4) | 0 < y; < 1,7 = 1,...,n}.
This violates the positive invariance of P since the closed trajectories surrounding
the equilibrium winds arround it on a 2-dimensional manifold tangent to H. It
follows that of the equilibrium set of (4.12) in P, (£,0) is the only sink, while
the other two are simple equilibria with eigenvalues whose real parts are positive.

This completes the proof. {1
Now, we turn to the proof of Theoremn: 4.i3 to conclude this section.

PROOF OF THEOREM 4.18: As stated in the proof of Theorem 4.17, system (4.12)
becomes a cooperative system by reversing the sign of y. Then by Theorem 4.4 in
Hirsch (1985) (see Theorem A.6), almost every trajectory of (£.12) in P converges
to a sink which is (Z,0) in this case by Lemma 4.20. Also by Lemma 4.20, (z,0)

78



is asymptotically stable. It follows that the stable set W*(z,0) of the equilibrium

is an open sct which contains the interior of P. This completes the proof. O

Theorem 4.18 tells us that only if f > g, species y will go to extinction while
z survives no matter how close the two functions are. It shows that the system

(4.12) foltows the competitive exclusive law in population theory.

4.7. Discussion.
As we mentioned in the introduction chapter, the cyclostat model is a mod-
- of ihe gradostat model. Up to the time of completion of this thesis, we
nos found any system in tke real world which a cyclostat model emulates.
_owever, it is possible to implement this model as a laboratory apparatus (see
Fig. 3). On the other hand, this model still has a lot of interesting problems.
The first one is whether or not the two species model can have persistence. If
the answer is yes, what is the criteria for the persistence. For other problems, we
consider a cyclostat model of more than one trophic level.

Just after the completion of this thesis, the author is brought to the attention
to the research developed by Smith, Tang and Waltman (1991). Their results in
the paper cover the results in the cyclostat model of this thesis in some way
(saying so is because that the models in their paper are set with a specific type
of uptake functions, so-called Michaelis-Menten function). However, most of the
results in the paper need only assumption (A.1) or {A.2) (see section 4.2) for
the uptake functions to satisfy. For the results obtained by bifurcation theory, if
we take f, satisfying (A.2) with f;/(z) < 0 for z > 0 and s(A4 + Fy(z)) > 0 (see
Smith, Tang and Waltman (1991)), then we can obtain the same results by setting
fo(z) = mfy(z) where f, is any function satisfying (A.2) with f/(z) < Ofor z > 0

and m is set to be the bifurcation parameter.
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Appendix

Here we list ~ome definitions and theorems of other authors that we used in

our study.

We begin by considering

2 = f(z) (A1)

where £ € IR™ and f is a continuously differer.tiable function defined on a convex,
open set U C IR". We also consider a pa:tial ordering on IR" generated by an
orthant. More precisely, let m = (m,,...,m,),m; € {0,1},1 < 7 < n, and
o= {reR"|(-1)™z; 20,1 <i<n}. Forz,y€R" wesay z <k, yif

only if y — z € K.,. For the sake of convenience, we drop the subscription of

#m rom =Xg - without any confusion.

DEFINITION A.1: We say that the solution operator ¢, of (A.1) preserves the
partial ordering < (fort > 0) and (A.1) is type K, monotone if whenever z,y € U
with z < y then ¢((z) <X ¢,(y) for all t > 0 for which both ¢,(z) and ¢,(y) are
defined.

LEMMA A.1. (Smith (1988))If f € CY(U) where U is open and convex in IR® then
@1 preserves the partial ordering < fort > 0 if and only if P,, D f(z)P,, has nonneg-

ative off-diagonal elements for every z € U, where P, = diag((-1)™,...,(—~1)™").
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DEFINITION A.2: We write s(A) for the stability modulus of an n X n matrix,

s(A) =max{Re(v) | v is an eigenvalue of A4}.

DEFINITION A.3: A matrix A is called irreducible if it does not icave invariant
any proper nontrivial subspace g=nerated by a subset of the standard basis vectors

for IR" or, equivalently, i one cannot put the matrix in the following form:
_ (M M,
A= ( 0 M ) '

where M; and Mj; are square matrices, by a reordering of the standard basis.

LEMMA A.2. (Smith (1988)) Let (A.1) be a type K., menotone system. Suppose
zo is a hyperbolic steady state of (A.1) where s(Df(zo)) > 0 and Dj(zo) is

irreducible. Then W*(z¢) does not contain distinct points = and y with z < y.

'THEOREM A.3. (Shub (1987)) Let 0 be a fixed point for the C" local differomor-
phism f : U — IR™ where U is a neighborhood of zero in IR™ and 1 < r < co. Let
E* & E°® E" be the invariant splitting of IR™ into the generalized eigenspaces of
D f(0) corresponding to cigenvalues of absolute value less than one, equal to one,
and greater than one. To each of the five D f(0) invariant subspaces E*, E* $ E°,
E¢,E° @ E*, and E" there is associated a local f invariant C" embedded disc
Wiher Wi, Wi, Wik, and W tangent to the linear subspace at 0 and a ball B

around zero in an adapted norm such that:

(i) Wi, = {z € B| f*(z) € B,n > 0;d(f*(z),0) — 0 exponentially}. and

f W, — W{, is a contraction mapping.

(2) f(Wie)NB C Wi If f*(z) € B for all n > 0, then z € W[5,

loc lo¢*

(3) f(WEINBC Wi, If f*(z) € Bforalln€ Z, thenz € Wi .

loc
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(4) (W YNBC Wie. If ff(z) € Bforalln <0, thenz € WL,

(6) Wi = {z € B| f*(z) € B,n < 0;d(f"(z),0) — 0 exponentially}. and
frt Wi, — W

loc 18 & contraction mapping.

DEFINITION A.4: Give a partial order < in X. We call (A.1) a monotone

system if for any 2 <y in X, we have

n(z,t) L w(y,t) for t>0,

where m(u, ) is the trajectory of (A.1) through u € X.

For the next three theorems, (A.1) need to bz a monotone system. W€ ¢ IR™

is the set of points which have compact closures for their positive trajectories.

THEOREM A.4. (Hirsch (1985)) There is a set Q C W* having Lebesgue measure
zero, such that z(t) = ¢,(z) approaches the equilibrium set E as t — oo, for all

r € We\Q.

WesayMijorM,NClR"ifa:jyforalla:EMandyeN. Then we

have,

THEOREM A.5. (Hirsch (1985)) Exactly one of the following conditions holds for

z=y:

(1) Q(z) 2 Qy), or

(2) 9z) =Qy) C B,
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where E is the set of equilibria.

DEFINITION A.5: An equilibrium p is called simple if 0 ¢ SpecD f(p), hyperbolic
if ReA # 0 for all A €SpecDf(p), a sink if Red < 0, a trap if there exists some

open set N, not necessarily containing p, such that ¢;(z) — p uniformly in N as

t — 00.

THEOREM A.6. (Hirsch (1985)) (a) Assume FE is countable. Then z(t) converges

to a trap as t — oo, for almost all x € W°.

(b)

Assume all equilibria are simple. Then z(t) converges to a sink ast — oo,

for almost all z € W°.

THEOREM A.7. (Horn (1970)) Let Sy C Sy C S, be convex subsets of the Banach
space X, with Sy and S, compact and S; open relative to S,. Let f: S; — X be

a continuous mapping such that, for some integer m > 0,
F(S1)CSy for 1<j <m-1, and f(8)CSy, for m<j<2m-1.

Then f has a fixed point in Sg.

DEFINITION A.6: The function g(t,u) is said to possess a quasi-monotone non-
decreasing property if for u,v € IR® such that u < v and u; < v;, then g;(t,u) <

gi(t,v) for any : = 1,...,n and fixed ¢.
THEOREM A.8. (Ladde and Lakshmikantham (1980)) Assume that

(i) g € C|E,IR"] and that g(t,u) is quasi-monotone nondecreasing in u for each

t, where E is an open (t,u)-set in IR*t1;

88



(ii) [to,to + a) is the largest interval of existence of the maximal solution r(t) 2
T(t,to, uo) of

T = g(tim);
(ii) m € C[[to, %o + a), R"], (¢,m(t)) € E,t € [to, 1 + a), and for a fixed Dini
derivative (D), the inequality
Dm(t) < g(t,m(t))
holds for t € [tg,to + a).

Then m(ty) < up implies that m(t) < r(t),t € [to, to + a).

Next we prove a lemma showing that the convex hull of a compact set is

compact.

LEMMA A.9.  For any compact set K in a linear space X , its convex hull
cok £ {y | y=at+b1-1t)a,be K,0<t<1}

is compact.

PROOF:  For any open cover Cy, of coK, if we can find a finite subcover of C X
then we are done. First, for any a,b € K, since the segment L(a,b) £ {at+b(1—-1) |
0 <t < 1} is compact, we can have a finite subcover Cfa, b) = {C, ,.}fg’b). On the
other hand, we can find an “¢(a, b)-tube” T(a,b) £ {y € X | d(y, L(a, b)) < ¢(a,b)}
such that L(a,b) C T(a,b) C Uiy C),. Denote by Ny(a), N,(b) the e-neiborhood
of a,b respectively. Then we consider K x K in the product space X x X. It

is well-known that K x K is compact in X x X since X is so in X. Define

89



D(a,b) £ Ny(a) x Ny(b) for each (a,b) € K x K. Then the set {D(a,b)} forms
an open cover of K x K. By the compactness ¢f K x K, there exists a'ﬁnite
subcover {D(a;,b;)}}_; of {D(a,b)}. Then we claim that C = Uj_,C(aj,b;) is
a finite subcover of {C)}. It is obvious that C is finite since it is a finite union
set of finite sets. For any y € coK, there exist a,b € K and { € [0,1], such
that y = at + b(1 —t). On the other hand, there exists j € {1,...,£} such that
(a,b) € D(aj,b;). It follows that

d(y, L(aj, b)) < d(y, a;t + bj(1 —t)) < td(a,a;) + (1 — t)d(b, ;) < e(aj, b;),

ie., y € T(a;,b;) C Ucec(a; p;)C- This shows that C is a cover of K, completing

the proof. O

THEOREM A.10.  (J.L. Massera, 1950) Let G be a simply connected plane open
domain and T a topological mapping of G into itself, TG C G. If T is sense-
preserving and there exists a point ©9 € G and a subsequence of its successive

images 1 = Tzg,z2 = Tx;,... which converges to a point in G, then T has a

fixed point in G.
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