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ABSTRACT

Deep learning has yielded promising results in music infor-
mation retrieval and other domains compared to machine
learning algorithms trained on hand-crafted feature repre-
sentations, but is often limited by the availability of data
and vast hyper-parameter space. It is difficult to obtain
large amounts of annotated recordings due to prohibitive
labelling costs and copyright restrictions. This is espe-
cially true when the MIR task is low-level in nature such
as instrument recognition and applied to wide ranges of
world instruments, causing most MIR techniques to focus
on recovering easily verifiable metadata such as genre. We
tackle this data availability problem using two techniques:
generation of synthetic recordings using MIDI files and
synthesizers, and by adding noise and filters to the gener-
ated samples for data augmentation purposes. We investi-
gate the application of deep synthetically trained models to
two related low-level MIR tasks of frame-level polyphony
detection and instrument classification in polyphonic record-
ings, and empirically show that deep models trained on
synthetic recordings augmented with noise can outperform
a majority class baseline on a dataset of polyphonic record-
ings labeled with predominant instruments.

1. INTRODUCTION

Music information retrieval (MIR) encompasses a wide
range of tasks for classification or discovery of structure
in music. These tasks may range from track-level descrip-
tions such as genre and artist to audio analysis of frame-
level information such as chord tagging and instrument
activations. Polyphony estimation and instrument recog-
nition are two related frame-level MIR tasks that may be
improved by the use of deep neural networks due to their
ability to learn representations without extensive domain
knowledge of music, but are limited by a severe lack of
recordings with frame-level annotations. We thus exper-
iment with the use of synthetically generated recordings
augmented with the addition of noise for training deep con-
volutional networks for these tasks.

Copyright: c© 2018 Rameel Sethi et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

The ability to search based on instrumentation is fun-
damental to several applications of music information re-
trieval such as ethnomusicology, efficient querying of mu-
sic databases, and playlist recommendation systems. Ser-
vices like Shazam [1] allow users to identify a currently
playing track through input of a short segment of audio,
as well as discover new tracks similar to the one cur-
rently playing. Interest in applying MIR techniques to field
recordings has also been expressed, even though such re-
search is still in an early stage [2].

Instrument recognition, among other MIR classification
tasks, is largely dependent on the availability of large
amounts of clean, annotated audio for training classifiers.
Recently, deep neural networks have achieved state-of-
the-art results in classification tasks in a number of do-
mains [3]. Music information retrieval is no exception;
deep learning has achieved state-of-the-art results in MIR
tasks including predominant instrument recognition [4]
and genre recognition [5]. The surge in popularity of deep
learning approaches can be attributed to their flexibility
and large number of parameters that may be learned; how-
ever, training deep models requires large amounts of la-
belled examples.

Although there are many datasets containing vast
amounts of audio either on the web or in ethnomusicol-
ogy archives in the form of field recordings, it is rare for
these audio databases to be accompanied by adequate la-
bels. There are a number of reasons for the lack of suffi-
cient labelling, particularly in the case of musical attributes
at the level of a single audio analysis frame–a small num-
ber of audio samples (e.g., 256). It is difficult for musi-
cologists to label audio clips on a frame-level basis since
each audio frame needs to be listened to before assigning
labels. Additionally, many music databases are not open-
access due to copyright restrictions.

Synthetic generation of training examples is one method
of data augmentation that has found success in domains
such as image classification [6]. This involves generation
of realistic training samples using some prior knowledge
of the underlying data distribution or other domain exper-
tise. An important component of realism in data augmen-
tation is the application of deformations, most prominently
for images [7]. Augmentation techniques may similarly be
applied to audio in the form of noise addition, as long as la-
bels are either unchanged or transformed appropriately [8].

In this paper, we explore the use of synthetically gener-
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ated audio recordings based on a predefined specification
of instruments as training data for instrument recognition
in polyphonic music. We generate multi-track composi-
tions of instruments following General MIDI (GM) stan-
dard specification of instruments and render these to audio
using a soundfont synthesizer. We apply deep convolu-
tional neural networks trained on these synthetic record-
ings to the MIR tasks of polyphony detection and instru-
ment recognition.

The main contribution of this work is that it demonstrates
the effectiveness of deep classifiers, trained on synthetic
generated examples, on MIR tasks where they share no
training data yet still perform. This implies that existing
MIR tools that employ deep learning can augment their
training sets and improve their robustness with synthesized
examples.

2. RELATED WORK

2.1 Polyphony Estimation and Instrument
Recognition in Polyphonic Music

In this work we consider polyphony to be the number of in-
struments sounding, rather than multiple sounds from the
same instruments, such as a 6-string guitar). Polyphony
estimation in music is a challenging task due to overlap be-
tween sound sources, in this case instruments, in both time
and frequency domains. Polyphony inference in music is
often performed through the use of frame-based models for
multiple fundamental frequency (f0) estimation [9]. More
recently, convolutional neural networks have been used for
instrument recognition in polyphonic music [10]. Poly-
phonic instrument recognition is an instance of the more
general problem of sound-source separation, where the
task is to separate individual sources of audio from a given
mixture. A classical approach to sound-source separation
utilizes non-negative matrix factorization with sparse cod-
ing [11], while more recently deep networks have been
used [12]. Our work seeks to model polyphony estima-
tion and instrument recognition in tandem using a single
classifier since they are intertwined in nature.

2.2 Deep Convolutional Neural Networks in MIR

Convolutional neural networks or convnets are artificial
neural network architectures that use convolution in place
of matrix multiplication in some layers. Deep neural net-
works, multilayered networks, have the ability to learn fea-
ture representations at multiple levels [13], which often re-
sults in improved performance over hand-crafted features
and eliminates the need for area experts to spend large
amounts of time and effort in finding effective feature rep-
resentations. The success of deep learning has its origins
in areas such as computer vision [14] [15] and speech
recognition [16]. The use of deep learning has improved
upon the state-of-the-art in several MIR tasks such as au-
tomatic music transcription [17] [18] music recommender
systems [19]. Deep belief networks have also been used in
conjunction with hidden Markov model frame-smoothing
methods for tablature transcription [20]. In order to speed
up training, and to yield benefits of transfer of knowledge

from a source task to a target task, deep networks are of-
ten trained starting with pretrained weights [21]. Our aim
in this paper is not to investigate novel approaches to im-
proving performance of deep convolutional networks in
MIR tasks, but rather to simply utilize existing networks
while focusing on synthetic data augmentation aspects as
described in later sections.

2.3 Data Augmentation and Synthetic Data
Generation

Data augmentation is the transformation of existing data by
adding noise or other means to make more training and test
examples. Data augmentation can be used to help simulate
noisy environments where a classifier is expected to run.
Training on both clean and augmented or noisy data can
improve the accuracy of a classifier to future unseen which
we consider to be the quality of robustness. Thus, data
augmentation is of utmost importance in producing a better
model. Audio data augmentation utilizing label-preserving
audio transformations including pitch shifting has been
shown to improve classification accuracy on singing voice
detection [22]. Recently, software frameworks for data
augmentation [23] [8] approach data augmentation in mu-
sic as application of a pipeline of transforms which may be
label-invariant or label-variant in nature. Software frame-
works for data augmentation in soundscape event classifi-
cation have also been built [24]. However, there is often no
access to large amounts of real annotated music recordings;
augmentation using synthetic examples, such as generated
music, may help in such cases. Synthetic data generation
has been applied to pose recognition [25] and person re-
identification [26]; in music it has been used to generate
synthetic mixtures of monophonic instruments to improve
performance in instrument transcription [27]. The goal of
our approach is to complement and extend the use of data
augmentation by training deep convolutional networks on
synthetically generated clips of multiple instruments. This
synthesis and augmentation enables us to better train and
improve MIR task performance of supervised classifiers.

3. PROBLEM FORMULATION

In this section we formally define the twofold problem of
polyphony estimation and instrument recognition in poly-
phonic music. There is currently no standard MIREX [28]
task definition for instrument recognition largely due to the
ambiguity between producing frame-level or track-level
predictions. We use the definition of instrument recogni-
tion by of Li et al. [10], but modified to include polyphony
estimation as well.

The input is an audio segment with a known maximum
polyphony p (including the possibility of no instruments
playing) and total number of possible instruments l accord-
ing to an instrument taxonomy for the specification against
which synthetic recordings are generated. The output is
a vector y ∈ {0, 1}l+p+1, a concatenation of polyphony



estimation, and instrument estimation.

yi =



{
1 if polyphony is i
0 otherwise

0 ≤ i ≤ p
1 if instrument i− p− 1

is playing
0 otherwise

p < i ≤ l + p + 1

For example given l = 5 (5 instruments) and max-
imum polyphony of 3, if the last 3 of the 5 instru-
ments were sounding the vector y would be the con-
catenation of [0, 0, 0, 1] (3 instruments) and [0, 0, 1, 1, 1]
(the last 3 instruments are playing) to form the vector
[0, 0, 0, 1, 0, 0, 1, 1, 1]. An output vector might look like
[0.1, 0.2, 0.3, 0.4, 0.0, 0.1, 0.9, 0.8, 0.7] which when pro-
cessed with softmax on the polyphony would produce the
expected output vector after normalizing. This is formu-
lated as a multi-label classification problem since multi-
ple instruments may be playing according to the maximum
polyphony specified. If a prediction results in a mismatch
between the predicted polyphony number and the number
of instruments, only the prediction of polyphony is marked
correct if the polyphony is correct and vice versa for in-
struments.

4. CONTINUOUS SYNTHESIS OF MIDI MUSIC
TRAINING EXAMPLES

In this section we describe a simple algorithm for con-
tinuously training a polyphony estimation and instrument
recognition classifier employing continuous synthesis of
training examples as music represented as MIDI files.

4.1 Data Generation

To overcome the difficulty of finding large annotated
datasets which cover a wide variety of musical styles, our
system generates synthetic training data in the form of
MIDI compositions of instrument note events sampled at
random following a uniform distribution over the complete
General MIDI specification (GM1) [29] of 128 program
numbers. It is worth noting that not all program numbers
correspond to instruments and thus some irrelevant classes
exist in the resulting classifier as well as in the training
data. The polyphony of each composition is chosen uni-
formly at random from the range [0, 3]. We choose this
range since performance on polyphony tasks is found to
decrease significantly as the maximum polyphony of the
track under consideration increases beyond this range. We
use the Python library mingus 1 to create MIDI files.

In the generation process, we first choose a subset of
available instruments to include in the clip. The generated
file contains one track for each instrument present. Notes
are then placed in each track until a full 2 second bar is
filled (120 BPM), with no overlapping of notes within the
track. Notes range in pitch from C2 (MIDI 24, 65.41 Hz)
to C7 (MIDI 84, 2093 Hz) and in duration from 1/4 to 1/16
of the clip. The note pitches were chosen to be close to the

1 https://bspaans.github.io/python-mingus/

Algorithm 1: Pseudocode describing operation of
synthesis loop

1 network: A polyphony/instrument classifier with
learned weights

2 regen: Number of epochs between data generation
3 accuracy← 0
4 tolerance← 10−4

5 learning-rate← 0.1
6 while ∆accuracy > tolerance do
7 generate labelled music
8 generate noised versions of music, using the

randomized noise functions of described in
Section 4.3

9 combine both datasets
10 learning-rate← 0.1e−0.01∗epoch + 0.0000001
11 split into train and test sets
12 train network for Regen epochs
13 accuracy← evaluate performance

instruments with lowest and highest fundamental frequen-
cies, the cello and piccolo respectively.

Once the MIDI files have been generated, they are
rendered to WAV using TiMidity++ 2 using the freely-
available Fluid R3 GM soundfont 3 . Some of the files may
be slightly longer than 2 seconds because the instruments
have significant sustain; to remedy this, the WAV files are
then clipped to exactly 2 seconds in length using ffmpeg 4 .
If the audio is less than 2 seconds in playing time, then the
clip is padded with silence.

4.2 Synthesis Loop

The synthesis loop focuses on generating new samples to
train and test by generating music as described in the pre-
vious section, adding noise to the music, and then training
and testing on the new music for some specified number
of epochs, which we call regen for the remainder of this
paper. After regen epochs, the neural network is evaluated
and the music is thrown out, and the loop repeats. It should
be noted that the the purpose of discarding old clips and re-
generating new clips after regen epochs is not to yield per-
formance improvements on the test set, but rather to keep
the process memory-efficient without having to save all
clips on disk. The learning rate is exponentially scheduled
to decay from a starting value of 0.1 as described below.
Figure 1 shows a diagram of the operation of the synthesis
loop.

4.3 Noise

Noise is added to the music with the use of csound 5 , a pro-
gram utilizing an audio domain-specific language (DSL).

2 http://timidity.sourceforge.net/
3 https://packages.debian.org/stretch/

fluid-soundfont-gm
4 https://ffmpeg.org
5 http://csound.github.io/
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Figure 1: Diagram of synthesis loop

An effect from the following noise effects is chosen uni-
formly at random and applied to each sample. 6

• reverb: random reverb added to the signal

• subtlereverb: a more subtle reverb added to the sig-
nal

• manytrees: a lowpass filter meant to emulate trees
dampening sound

• tree: a small lowpass filter

• high pass: a high pass filter at a random frequency

• mid high pass: a high pass filter at a random fre-
quency between 800 and 2000hz

• high high pass: a high pass filter at a random fre-
quency above 2000hz

• hiss: lowpassed white noise added to the signal

• whitenoise: white noise added to the signal

4.4 Spectrogram Design and Input

The network input is a 227x227 (scaled down from
256x256 to fit AlexNet input dimensions without crop-
ping) spectrogram image generated using the short-time
Fourier transform (STFT). 256 overlapping FFTs of size
512 are taken over the 2 second synthesized audio clip us-
ing a Hamming window. We reduce the frequency range
to between 100 and 10000 Hz to reduce noise; although
the cello has a minimum frequency of 65 Hz, most notes
played are above this frequency. Log-amplitudes with lin-
ear frequency buckets are used for spectrogram creation.

6 The noise program we used: https://github.com/
abramhindle/audio-fuzzer

There are 3 channels of input: amplitude, phase and phase
gradient with respect to time. Supplying the network
with the phase gradient is intended to enable more precise
frequency estimation, in a manner inspired by the phase
vocoder.

4.5 Network Architecture

We use the AlexNet [7] convolutional neural network ar-
chitecture with weights pretrained on ImageNet [30]. The
final softmax output layer is modified to have only l+p+1
output classes instead of the usual 1000 classes for Im-
ageNet. A one-hot encoding is used for the polyphony
class labels. The network output consists of two parts:
first n + 1 neurons, one-hot, indicating how many of the
n instruments are sounding, then n neurons indicating the
probability of each of the n instruments being present in
the clip. The output is interpreted by choosing the k instru-
ments with highest probability, given that k instruments are
predicted to be sounding.

For all training during experiments a stochastic gradient
descent (SGD) optimizer is used with learning rate deter-
mined according to the schedule used in Algorithm 1.

Hyperparameter and network selection is performed us-
ing a grid search over the following parameters (each re-
peated 5 times):

• Batch size: in range [5, 50, 500]

• Epochs: In range [10, 25, 50, 100, 200, 500, 1000,
2000]

• Loop: Whether we regenerate compositions contin-
uously in a loop, or use a fixed set of compositions

• regen: In range [5, 10, 20, 50]

• Networks: One of [AlexNet, VGG-19 [31],
GoogleNet [32]]

Figure 3 shows a partial plot of the grid search described
above.

Based on the best grid search performance, for all net-
works discussed in this paper we use parameters of batch
size of 5, with a maximum of 100 epochs, using the
AlexNet architecture with regen = 10. We also utilize
early stopping with a loss tolerance of 10−4 and a patience
of 3 epochs.

5. EXPERIMENTS

5.1 Evaluation Criteria

The evaluation metrics used on our polyphony/instrument
classification experiments are:

• Polyphony Accuracy: The polyphony accuracy is
the percent of examples for which the correct
number of sounding instruments was predicted.
Polyphony follows a one-hot encoding scheme rang-
ing from zero to the maximum number of instru-
ments sounding simultaneously, yielding a binary
crossentropy loss function.

https://github.com/abramhindle/audio-fuzzer
https://github.com/abramhindle/audio-fuzzer


(a) Amplitude (b) Phase (c) Phase gradient (d) Resulting spectrogram

Figure 2: RGB spectrogram composed of amplitude, phase and phase gradient channels

Figure 3: Plot of f-measure against number of epochs for
different architectures, batch sizes and continuous versus
fixed composition generation

• Instrument Accuracy: The instrument accuracy is
the percent of examples for which the correct instru-
ments were guessed. Instrument prediction is treated
as a multilabel classification problem, necessitating
a binary crossentropy loss function.

• Total Accuracy: Determined through a binary
crossentropy loss function over both polyphony and
instruments.

• Confusion Matrices: These are computed for classi-
fication of both polyphony and instruments.

• F-measure: The F-measure is required for
polyphony and instrument recognition in mu-
sic evaluation due to class imbalances in frame-level
polyphony and number of instruments.

5.2 Synthetic Test Performance

Our first task is to classify the polyphony and the instru-
ments sounding of our generated music. Per each model,
we perform 8 runs with 10,000 training samples (gener-
ated at random for each run), 2,500 validation samples,
and 2,500 test samples generated once and held out. We
set the polyphony p = 3 and total instruments l = 127.
The samples are generated in such a way that the num-
bers of classes of each polyphony are the same; there may
be slight differences in the numbers of samples containing

each instrument, but not enough to cause a statistically sig-
nificant class imbalance problem since each instrument is
equally likely to be chosen. The validation and test sets
were kept constant across trials. For all experiments, we
evaluate on the validation set at the end of each epoch to
check for eventual overfitting within a tolerance level of
10−4.

To investigate the robustness of synthetically trained net-
works to noise, we evaluate models obtained from spec-
trograms generated from clean WAV audio on test datasets
with noisy audio and vice versa, where the noise added can
be at random from any of the types described previously.
The number of samples trained on is kept constant regard-
less of whether the model is trained purely on clean data or
a mix of clean and noisy data (where the ratio of clean to
noisy data is 1-1). The results are summarized in Table 1.

Table 2 summarizes polyphony F-1 scores obtained on
a separately generated test set of 2500 MIDI samples for
both clean and noisy models. For polyphony values of 1
and 2, clean models show poor performance when applied
to noisy data and vice versa. This may be due to the addi-
tional noise effect being modeled as a sound source.

Despite the large number of output classes, both
polyphony estimation and instrument recognition outper-
form a majority class baseline on a synthetically generated
test set. As expected, models trained on clean audio per-
form best on clean test audio. Surprisingly, however, clean
audio models applied to noisy data perform significantly
better than noisy audio models applied to clean data. The
clean model did suffer much in terms of performance by
being applied to noisy samples, while noisy data demon-
strated more stability or robustness by maintaining perfor-
mance on clean and noise evaluations although at generally
lower performance.

5.3 Evaluation on real world musical recordings

In order to demonstrate the feasibility of this method on
actual recordings we engage in polyphony detection (the
number of instruments sounding) and instrument recog-
nition on existing benchmark datasets. We evaluate our
synthesis loop algorithm on the IRMAS [33] dataset 2874
test samples in the form of excerpts from songs ranging
from 5 to 20 seconds in length containing a total of 11
instruments. We do not train on any of the IRMAS sam-
ples. In order to make the classification on spectrograms
resulting from clips longer than 2 seconds a well-defined
task, we divide the clip into 2-second overlapping windows



Train-Test Poly. Prec. Poly. Recall Poly. F-1 Inst. Prec. Inst. Recall Inst. F-1
Clean-Clean 0.73± 0.02 0.73± 0.02 0.73± 0.02 0.35± 0.02 0.33± 0.02 0.34± 0.02
Noisy-Noisy 0.53± 0.02 0.53± 0.02 0.53± 0.02 0.25± 0.02 0.21± 0.02 0.23± 0.02
Clean-Noisy 0.65± 0.03 0.65± 0.03 0.65± 0.03 0.28± 0.03 0.24± 0.03 0.26± 0.03
Noisy-Clean 0.52± 0.03 0.52± 0.03 0.52± 0.03 0.24± 0.03 0.21± 0.03 0.23± 0.03

Table 1: Test precision, recall and F-1 scores of clean and noisy models

Train-Test Polyphony F-1

Clean-Clean

0 0.99± 0.06
1 0.80± 0.06
2 0.60± 0.05
3 0.36± 0.08

Noisy-Noisy

0 0.99± 0.06
1 0.99± 0.06
2 0.99± 0.06
3 0.99± 0.06

Clean-Noisy

0 0.96± 0.04
1 0.15± 0.07
2 0.01± 0.08
3 0.85± 0.06

Noisy-Clean

0 0.99± 0.07
1 0.15± 0.06
2 0.01± 0.01
3 0.95± 0.04

Table 2: Polyphony F-1 scores on test MIDI

with 50 per cent hop size and evaluate our synthesis loop
model on each window. We calculate the mean frame-level
F-score per instrument over all recordings. For IRMAS,
the labels are predominant instruments, but since multi-
ple instruments are labeled per recording we may use the
labels for multiple instrument recognition purposes. We
performed a manual mapping from the instrument taxon-
omy of the dataset to the MIDI specification. We count
a prediction as correct if any of the MIDI instruments in
the original instrument’s mapping are predicted. The mean
polyphony and instrument recognition scores along with
standard deviation over 8 trials are found using the same
8 models trained on clean synthetic compositions as de-
scribed in the previous section. The noisy models did not
perform as well on the IRMAS dataset. The results are
summarized in Tables 3 and 4.

Poly M Precision Recall F-1

1 C 0.50± 0.05 0.56± 0.04 0.53± 0.05
N 0.24± 0.06 0.10± 0.06 0.14± 0.06

2 C 0.37± 0.06 0.24± 0.04 0.29± 0.06
N 0.10± 0.05 0.05± 0.06 0.06± 0.05

3 C 0.75± 0.03 0.14± 0.05 0.24± 0.06
N 0.75± 0.07 0.28± 0.05 0.41± 0.07

Mean C 0.48± 0.05 0.28± 0.06 0.35± 0.06
N 0.41± 0.08 0.29± 0.09 0.34± 0.05

Table 3: Test polyphony precision, recall and F-1 scores
on IRMAS. N for noisy models, C for clean models

Polyphony estimation results from our synthetic classifier

Instrument M Precision Recall F-1

Cello C 0.00± 0.00 0.00± 0.00 0.00± 0.00
N 0.00± 0.00 0.00± 0.00 0.00± 0.00

Clarinet C 0.20± 0.03 0.01± 0.01 0.02± 0.02
N 0.02± 0.01 0.01± 0.01 0.02± 0.01

Flute C 0.00± 0.00 0.00± 0.00 0.00± 0.00
N 0.00± 0.00 0.00± 0.00 0.00± 0.00

Guitar (ac) C 0.04± 0.01 0.01± 0.01 0.03± 0.01
N 0.00± 0.00 0.00± 0.00 0.00± 0.00

Guitar (el) C 0.02± 0.01 0.01± 0.01 0.02± 0.01
N 0.00± 0.00 0.00± 0.00 0.00± 0.00

Organ C 0.00± 0.00 0.00± 0.00 0.00± 0.00
N 0.00± 0.00 0.00± 0.00 0.00± 0.00

Piano C 0.00± 0.00 0.00± 0.00 0.00± 0.00
N 0.00± 0.00 0.00± 0.00 0.00± 0.00

Saxophone C 0.02± 0.01 0.01± 0.01 0.02± 0.01
N 0.00± 0.00 0.00± 0.00 0.00± 0.00

Trumpet C 0.82± 0.20 0.07± 0.04 0.13± 0.06
N 0.05± 0.02 0.03± 0.01 0.04± 0.02

Violin C 0.00± 0.00 0.00± 0.00 0.00± 0.00
N 0.00± 0.00 0.00± 0.00 0.00± 0.00

Voice C 0.00± 0.00 0.00± 0.00 0.00± 0.00
N 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table 4: Test instrument precision, recall and F-1 scores
on IRMAS. N for Noisy Models, C for Clean Models

outperform a majority classifier, like ZeroR, at the frame
level. The clarinet and trumpet classes yield the best aver-
age frame-level precision, while others such as flute fail
to be positively classified. F-measure are not competi-
tive with state-of-the-art approaches, Slizovskaia et al. [34]
achieved 0.67 F-measure on IRMAS over all instruments.
But the majority classifier is still outperformed for several
instruments without any training on the IRMAS training
set. Poor performance on some classes like voice may be
explained by the lack of a standard MIDI program num-
ber for voice events. While instrument recognition is not
much better than a majority class rule, this may again be
attributed to the large number of output classes the model
was trained on.

6. CURRENT LIMITATIONS AND FUTURE
WORK

Our synthesis loop algorithm currently generates training
examples at random. We could focus more on achiev-
ing high performance on a specific dataset (e.g. different
genre) and tune the loop to generate data more similar to
the test dataset under consideration.

Although we evaluated on a dataset of real music record-
ings, the effects of noise were not investigated. Augment-
ing these datasets with noise would enable us to further



test robustness of our synthesis loop algorithm to noise.
An additional path to explore is comparison of our noising
framework with other open-source frameworks utilizing
both label-invariant and label-variant transformations [8]
to investigate which types of noise effects and other aug-
mentations yield the best improvements in performance.

It is worth noting that soundfonts such as the one used
to render are mostly restricted to Western instruments and
are typically rendered in 12-tone equal temperament. A
different approach may need to be taken for non-Western
music collections.

We restricted the use of transfer learning in this work to
the use of pretrained model weights on ImageNet for fa-
cilitating speedup in network training. Transfer learning,
the application of a model trained on one domain applied
to a different domain, has been shown to improve perfor-
mance between related MIR tasks such as genre classi-
fication and music similarity when faced with a limited
number of training examples [35]. Transfer learning has
also been applied to cross-domain prediction between mu-
sic and speech [36], where it is shown that models trained
on speech emotion generalize well to detection of music
emotion and vice versa. One possible investigation is to
fine-tune a synthetically trained model on real music to de-
termine whether similar performance may be achieved in a
sample-efficient manner.

7. CONCLUSIONS

In this paper we presented a method for overcoming limi-
tations in the amount of training data available for MIR in
the form of a simple synthesis loop algorithm for generat-
ing batches of synthetic music clips to be used in training
a convolutional neural network. This network was to esti-
mate the number of instruments sounding, as well as which
instruments are sounding.

We show that our method results in reasonable perfor-
mance on the tasks of polyphony estimation and instru-
ment recognition in music without usage of any training
data supplied by 3rd parties or the target task. The ben-
efit of this work is that synthesis and augmentation lets
classifiers perform on unseen data well, as demonstrated
by clean versus noisy tasks, and as demonstrated by the
real world examples. This implies that synthesis and aug-
mentation has a place in MIR, as it opens up the possibil-
ity for training synthetically trained classifiers to achieve
state-of-the-art performance in a variety of MIR tasks with
limited training data available. We show that purely syn-
thetic examples can achieve reasonable performance and
robustness. Perhaps a combination of augmentation and
synthesis can aid future MIR tasks?

We suggest some improvements to our algorithm to im-
prove learning efficiency and bring performance closer to
existing state-of-the-art methods. Future directions include
studying generation of more realistic synthetic recordings,
investigation of the effects of audio deformations other
than noise by comparing different open-source audio de-
formation frameworks, and the possibility of using transfer
learning to enable sample-efficient fine-tuning of trained
deep audio classifiers.
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