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Abstract

Choosing an appropriate action representation is an integral part of solv-

ing robotic manipulation problems. Published approaches include latent ac-

tion models, which train context-conditioned neural networks to map low-

dimensional latent actions to high-dimensional actuation commands. Such

models can have a large number of parameters and can be difficult to interpret

from a user’s perspective. In this thesis, we propose that similar performance

gains in robotics tasks can be achieved by restructuring the neural network

to map observations to a basis for a context-dependent linear actuation sub-

space. This results in an action interface wherein a user’s actions determine

a linear combination of state-conditioned actuation basis vectors. We intro-

duce the Neural Householder Transform (NHT) as a method for computing

this basis. This thesis describes the development of NHT: from computing

an unconstrained basis for a state-conditioned linear map (SCL), to comput-

ing an orthonormal basis that changes smoothly with respect to the input

context. Two teleoperation user studies indicated that participants preferred

using SCL, and tend to achieve higher completion rates with SCL compared to

latent action models. In addition, simulation results showed that reinforcement

learning agents trained with NHT in kinematic manipulation and locomotion

environments tend to be more robust to hyperparameter choice and achieve

higher final success rates compared to agents trained with alternative action

representations.
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Preface

In my first summer at UofA, 2021, I worked closely with Michael Przystupa on

SCL. Michael conceived State Conditioned Linear Maps - SCL. I contributed

the Gram-Schmidt orthogonalization and the idea of a numerical methods pro-

jection (actuation projection) for actions instead of a separate neural network.

Laura Petrich instructed us on how to use the Kinova Gen3 Lite robot arm

in Aug 2021, and gave us sample code for joint velocity control. Michael and

I both contributed equally to the SCL experiments in 2021. Zichen Zhang

and Masood Dehghan assisted in the proof of the soft reversibility property of

SCL. In my 2022 winter, summer and fall RA, I conceived Neural Household

Transforms - NHT, and led the work, with remote assistance from Michael and

Jacob Keller (Michael was on an internship in Montreal and Jacob is a grad-

uate student at UC San Diego). In fall of 2022 I designed and implemented

the second robot user study myself, with assistance from Faezeh Haghverd

and Zichen Zhang in data collection during subject trials. Michael assisted

remotely with writing, planning and logistical problem solving.

SCL is submitted with the two robot user studies in Chapter 5 as M. Przys-

tupa, K. Johnstonbaugh, Z. Zhang, L. Petrich, M. Dehghan, F. Haghverd, M.

Jagersand, “Learning state conditioned linear mappings for low-dimensional

control of robotic manipulators,” in 2023 IEEE International Conference on

Robotics and Automation (ICRA 2023).

NHT is submitted with the reinforcement learning experiments described

in Chapter 6 as K. Johnstonbaugh, M. Przystupa, J. Keller, and M. Jagersand,

“Contextual subspace approximation with neural householder transforms,” in

11th International Conference on Learning Representations, ICLR 2023.

The thesis is entirely my own conception and writing. All user studies were

approved under UofA ethics permit Pro00054665.
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Chapter 1

Introduction

This thesis addresses the problem of learning task-specific mappings that

serve as an interface between low-dimensional continuous inputs and high-

dimensional robotic actuation commands. Such mappings can be used to

enable users to control high degree-of-freedom robots with a simple control

interface like a joystick. For autonomous agents learning to control robots,

task-specific action mappings can constrain robot motions such that danger-

ous or irrelevant movements become impossible.

The motivation for learning these action mappings is primarily to compute

an intuitive and useful interface with which individuals with upper extremity

disabilities can control assistive robotic manipulators (e.g., using a 2-DOF

joystick). While most activities of daily living, such as opening doors or eating,

are trivial or mundane for able-bodied individuals, they can be frustrating or

impossible for individuals with upper body disabilities. Wheelchair-mounted

assistive robotic manipulators, such as the Kinova Jaco, have been developed

as a way to bring more autonomy to such individuals in their daily lives.

Unfortunately, the industry standard for control of these assistive devices has

been identified in several studies as problematic in terms of both cognitive

load, and the time it takes to perform activities of daily living [26], [51]. The

difficult control problem is undoubtedly a factor in these assistive devices still

being far from widespread, despite their availability for over a decade.

A secondary motivation for learning task-specific action mappings is as

a means to impart a higher degree of safety during autonomous learning for

1



robotics. By limiting the range of motions afforded by these mappings, we

can in certain situations ensure that dangerous or unhelpful actions are never

available to an autonomous agent. This is of particular importance for re-

inforcement learning on physical robots, where an errant exploratory action

has the potential to damage nearby objects, the robot itself, or injure nearby

humans.

The problem of learning mappings from low-dimensional actions to high-

dimensional robotic actuation has been previously formulated in the literature

as learning low-dimensional representations of robotic actuations; essentially

framing the problem as a dimensionality reduction problem. Typically, demon-

strations of a particular task are provided by a human. The high-dimensional

actuations used to perform the task are recorded, and then compressed to

some lower-dimensional representation. The action mapping is then taken as

the function that reconstructs the high-dimensional actuations from the com-

pressed representation.

The two most common approaches to robotic actuation representation in

the literature are movement primitives and latent action models. The

study of movement primitives has been extensive and typically represents

robotic actuation as some form of a stable dynamical system. The move-

ment primitive literature is primarily focused on autonomous robotics, with

comparably less work related to teleoperation [13], [54]. Latent action mod-

els, on the other hand, have been studied in the context of both teleoperation

for assistive robotics, and as action representations for reinforcement learning

agents [43]. The representation space (i.e., the bottleneck of an autoencoder)

of latent action models naturally acts as an interface for control. However,

while these autoencoders may converge to a local minimum in the reconstruc-

tion loss, the relationship between the low-dimensional latent space and the

corresponding high-dimensional outputs may be quite unintuitive to a human

user.

A third, relatively restrictive approach is action representation via principal

component analysis (PCA) or singular value decomposition (SVD) [7]. The

principal components of actuation commands in a dataset of demonstrations
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can be computed and used as a basis for teleoperation. The linear structure of

the space spanned by the principal components affords intuitive control and

generalization. This approach is straightforward and easy to implement, but

it may not be possible to represent every possible desirable actuation (for a

given task) with only a small number (2-3) of principal components.

While the application of dimensionality reduction methods has been promis-

ing, one of the contributions of this thesis is to propose a more restrictive prob-

lem formulation: actuation subspace prediction. Actuation subspace prediction

(ASP) has a well-defined objective and enforces a locally-linear reconstruction

of actuation commands. The objective of actuation subspace prediction is to

estimate, at any given moment, the optimal actuation subspace corresponding

to the model’s current context. We introduce the concept of the optimal ac-

tuation subspace in section 4.1. Informally, given the context of the current

situation, the optimal actuation subspace is a k-dimensional linear subspace

that best captures the n-dimensional actuations observed in similar contexts

(where n > k).

The solution to ASP presented in this thesis takes the form of the Neural

Householder Transform (NHT). Like the autoencoders of latent action models,

NHT leverages neural networks as function approximators. However, rather

than learning to compress observed actuations (as autoencoders do), NHT

produces an orthonormal actuation basis corresponding to the current context.

As an additional benefit, the basis vectors produced by NHT are smooth with

respect to changes in the observation1.

NHT can be leveraged to learn an interface for control. After optimization

of NHT with an ASP loss, users can control a robot by choosing weighted

combinations of the actuation bases output by NHT. As the situation/context

evolves, so too do the actuation bases available to the operator. Applications

of NHT for control explored in this thesis include 1) teleoperation with an

NHT interface and 2) control by a reinforcement learning agent with an NHT

interface.

1given that we train the associate neural network with Lipschitz regularization
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1.1 Contributions and Contents

The remainder of this thesis is organized as follows. Chapter 2, Literature

Review, surveys the literature related to teleoperation in assistive robotics,

learning from demonstration, and reinforcement learning from offline demon-

strations.

Chapter 3, Background, first covers Markov Decision Processes, a frame-

work for dynamics necessary to formulate actuation subspace prediction. It

then covers autoencoders, which have been utilized in the latent action frame-

work approach to low-dimensional actuation interfaces. Next, section 3.6 de-

scribes householder reflections and how they have typically been used to com-

pute the QR decomposition in numerical computing software. Finally, section

3.7 discusses the concept of the exponential map on Riemannian manifolds,

a function used to guarantee that NHT is smooth with respect to changing

contexts.

Chapter 4, Methods and Algorithms, begins by more precisely formulating

actuation subspace prediction, and defining the objective. It then discusses the

primary contribution of this thesis, the Neural Householder Transform, and

develops the algorithm from the perspective of latent action models. Section

4.3.3 discusses the smoothness of NHT and presents a theorem that establishes

its Lipschitz continuity.

Chapter 5, Teleoperation with SCL, begins with a set of synthetic exper-

iments designed to probe the teleoperation properties of our action mapping

approach. Next, section 5.2 presents the results from two user studies in which

participants used SCL (an early form of NHT) to perform various robotic ma-

nipulation tasks using a 2-DOF joystick.

Chapter 6, Reinforcement Learning with NHT, describes a set of experi-

ments in which reinforcement learning agents learn to interact with an NHT

interface, and compares learning with NHT to learning in the high-dimensional

actuation space. It then goes on to present the results of two ablation studies

and analyzes the empirical effect of Lipschitz regularization with NHT.

Chapter 7, Conclusions, completes the thesis by summarizing the presented

4



work. Limitations and promising directions for future work are also discussed.

Finally, the appendix includes the complete proof for the Lipschitz conti-

nuity of NHT.
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Chapter 2

Literature Review

In this chapter, we discuss branches of the robot learning and teleoperation

literature that relate to the content presented in this thesis. We then identify

the gap in this literature that the work in this thesis addresses. Table 2.1

summarizes the taxonomy of the literature related to NHT, with a focus on

learning action representations and control policies.

2.1 Action Representation Learning

In real-world applications of reinforcement learning, it is imperative to choose

appropriate representations when defining the Markov decision process. The

consequences of poor design decisions can have adverse effects in domains like

robotics, where safety [58] and sample efficiency [39] are desirable properties.

Typically these properties can be captured by choice of action space. Choices

of robot action types distinct from basic joint motor control, such as Cartesian

control or impedance control, have been shown to influence the efficiency of

robotic learning, depending on the task [44].

Researchers have typically focused on learning action representations that

can capture a variety of robotic motions. This interest has led to the devel-

opment of several different action representation frameworks. Action maps

that transform low DOF inputs directly to relevant high-dimensional robotic

commands have been explored both to reduce cognitive strain during teleoper-

ation and to increase the learning efficiency of artificial agents [15], [18], [42].

The assumption is that joints work together in the high-dimensional ambi-
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Literature/Problem Approach Examples
Action Representation Linear Artemiadis et al. [7],
Learning Matrone et al. [45],

Odest et al. [48],
Santello et al. [53]

Nonlinear Allshire et al. [4],
Li et al. [40],
Losey et al. [43]

Learning from Regression Based Calinon et al. [14],
Demonstration (LfD) K.-Zadeh et al. [32],

Schaal et al. [54],
Kober et al. [35]

Behavioral Cloning Bain et al. [9],
Ross et al. [50],
Yang et al. [60]

RL from Offline RL Agarwal et al. [3],
Demonstration Kumar et al. [36],

Zhou et al. [62]
Inverse RL Arora et al. [6],

Jarboui et al. [28]

Table 2.1: Summary of literature related to learning action representations
and policies from offline demonstrations.

ent space to produce concerted motions that lie on some lower-dimensional

manifold. Previous research on hand poses – a high-DOF setting – supports

this assumption, finding that principal component analysis (PCA) [21], [27]

can capture 80% of configurations with only two principal components [53].

Authors have applied this result to develop linear action map teleoperation

grasping control schemes [7], [45], [48] and planning algorithms [17]. Linear

maps are advantageous because they are easy to analyze and provide intuitive

mappings for teleoperation.

However, globally linear approaches assume all task-relevant high-DOF

commands exist in a single low-dimensional subspace and need more dimen-

sions for precision movements [7]. Other research has investigated nonlinear

action mappings as an alternative. These mappings are typically learned with

a conditional neural autoencoder (CAE) [42], [43]. Instead of a single linear

map, low-dimensional actions are input to a state-dependent neural decoder
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to predict the corresponding high-dimensional motion. Assistive robotic re-

search has demonstrated that CAE models enable higher success rates and

faster completion times in assistive eating tasks compared to alternative sys-

tems [30], [31], [40], [42], [43]. However, CAEs are difficult to analyze because

of their nonlinear structure. Authors have relied on engineering auxiliary loss

terms to implicitly add desirable user-control properties [4], [40], but still re-

quire empirical evaluation to verify enforcement on deployment.

2.2 Teleoperation of Robotic Manipulators

Teleoperation, also called remote operation, is the control of a machine or

device from a distance. Teleoperation of robotic manipulators has a variety of

applications, from manipulation in deep sea and space environments [56], [61],

to control of assistive robotic manipulators in the homes of disabled individuals

[47].

Robotic manipulators typically include 6 to 7 independent degrees-of-freedom.

Simultaneous control of six degrees-of-freedom can be accomplished with a hu-

man using both hands to manipulate two independent 3-DoF joysticks [46].

Leader-Follower (or Master-Slave) haptic telemanipulation is an alternative

approach that can enable 6-DoF control. In haptic teleoperation, the operator

performs the manipulation task with their arm coupled to an exoskeleton [29]

or manipulates a haptic controller [16]. The remote manipulator mirrors the

motions performed by the operator.

While the teleoperation modes discussed above can offer simultaneous one-

to-one control for the independent DoFs of a manipulator, they can be either

cognitively strenuous (two joysticks), or prohibitively expensive (exoskeleton).

In some cases, for example in assistive robotics, it is desirable to achieve effec-

tive control using an interface with only two or three degrees of freedom. A

straightforward and practically useful approach to this is mode switching. In

mode switching, the operator typically cycles through three different control

modes, controlling two-degrees of freedom at a time. In this way, all 6-dof of a

manipulator can be accessed, although not simultaneously. Previous research
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suggests that mode-switching can be cognitively strenuous, with basic tasks

like opening a door or picking an object requiring 30-60 mode switches [26],

[51].

2.3 Learning from Demonstration in Robotics

Much work has been focused on fully autonomous completion of manipulation

tasks by robotic manipulators. These approaches have applications in assistive

robotics, where in some situations a user may prefer to give no input whatso-

ever; they would rather allow the robot to execute the task with full autonomy.

In contrast to industrial applications for robotics, assistive/field robots often

operate in unstructured environments. In addition, a manufacturer cannot

account for every possible use case or task in these environments. For these

reasons learning from demonstration (LfD) has emerged as a popular approach

to fully autonomous control [13], [24], [37].

2.3.1 Regression methods in LfD

A large body of literature exists in which robots learn skills from demonstration

by fitting linear functions that map input features to actuations such as joint

velocity, or force/torque commands [12]. These methods typically involve some

form of locally weighted regression (LWR) [8], and use radial basis functions

(RBFs) as the input features. These nonlinear features enable the model to

learn functions that are locally linear, but globally non-linear with respect to

the observed variables (e.g., joint configuration, object pose).

Gaussian Mixture Regression

Gaussian Mixture Regression (GMR) is an approach to learning from demon-

stration in which the relationship between input features and actuations are

modeled jointly with a Gaussian Mixture Model (GMM), typically optimized

with the expectation maximization (EM) algorithm [14]. Once the GMM is

fitted to accurately model the joint distribution in the training demonstra-

tions, the conditional distribution can be computed through GMR, enabling

9



online generation of novel trajectories. The stable estimator of dynamical sys-

tems (SEDS) algorithm relies on a constrained optimization procedure rather

than EM to compute the parameters of the GMM to obtain an asymptotically

stable dynamical system [32].

Movement Primitives

Another framework for learning from demonstration that often relies on locally

weighted regression is movement primitives (MPs), in which entire trajectories

are encoded as the action [49], [54]. Dynamical movement primitives have seen

much success in robotics leading to impressive real-world experimental results

by constraining the action space [35], [58]. Dynamical movement primitives es-

sentially model the demonstration trajectories as spring-damper systems with

a transient forcing term that is learned from the demonstration data and gives

the trajectories their shape.

2.3.2 Behavioral Cloning

Artificial neural networks provide a mechanism for flexible non-linear function

approximation that can be naturally leveraged for the problem of learning from

demonstration. Behavioral cloning (sometimes also called imitation learning)

is an approach to LfD that users supervised learning to train a neural network

to map observations to actions [9], [50]. Recent work in behavioral cloning has

shown that sub-optimal demonstrations can be leveraged to improve sample

efficiency when cloning expert policies [60]. This work is noteworthy in that

it learns a latent policy, similar to the latent action models discussed above.

2.4 Offline and Inverse Reinforcement Learn-

ing

Offline reinforcement learning is similar to behavior cloning in that both rely

on offline datasets of transitions. Offline RL additionally requires transitions

to be labeled with rewards. While in the best case behavioral cloning al-

gorithms will copy the policy that generated the dataset, access to reward
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labels enables offline RL algorithms to outperform the behavior policy [3],

[38], without any additional (online) interaction with the environment. Offline

RL algorithms can learn policies that outperform the behavior policy that

generated the offline dataset; that is, offline RL can learn from suboptimal

demonstration trajectories. On the other hand, the performance of behavioral

cloning is typically eroded when suboptimal demonstrations are included in

the training dataset.

However, offline RL can suffer from other issues such as when there is a

discrepancy between the evaluation task and the provided demonstrations.

Extrapolation errors due to out of distribution actions can cause erroneous

Q-value estimates in dynamic programming-based offline RL algorithms [36].

Recent work argues that training a variational autoencoder to encode the

actions in the offline dataset and then performing offline RL to learn a latent

policy can mitigate this issue [62].

Inverse reinforcement learning (IRL), in contrast to offline RL, assumes

that reward labels are not available in the demonstration data. Inverse RL

methods seek to compute reward functions that could accurately describe the

behavior observed in the demonstrations [6]. Given a dataset contains some

expert demonstrations, it is possible to first use inverse RL to learn a reward

function to label the dataset, and then perform offline RL [28].

2.5 Nonlinear Dimensionality Reduction

Nonlinear dimensionality reduction algorithms provide a means to model data

in a high-dimensional ambient space as a lower-dimensional manifold. The

two most popular non-linear dimensionality reduction algorithms are isomap

[57] and locally linear embedding (LLE) [52]. Both algorithms rely on local

relationships between datapoints. LLE explicitly models each datapoint as a

linear combination of its k nearest neighbors. In this sense, the global data

manifold constructed from LLE is locally linear. To the best of our knowledge,

neither LLE nor isomap have been used to compute action representations for

robotic control.
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The neural householder transform (NHT) should not be considered a non-

linear dimensionality reduction algorithm because, unlike isomap and LLE,

NHT does not aim to construct a global non-linear manifold (see the swiss roll

dataset [52]). Rather, given some context, NHT models the data encountered

in the neighborhood of that context as existing on a linear subspace. As

the context changes, the linear subspace also changes. However, there is no

assumption that the data exists on some global non-linear manifold.
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Chapter 3

Background

This section begins by explicitly discussing the notation used throughout the

thesis, then goes on to briefly review Markov Decision Processes, autoencoders,

the Latent Action Framework for teleoperation, Householder Reflections, QR

Decomposition, and the Exponential Map to the Unit Sphere.

3.1 Notation

We denote matrices with upper case bold letters, and vectors with lower case

bold letters. For example, a system of linear equations can be written as

Ax = b, where x ∈ Rn is an n-dimensional vector, A ∈ Rm×n is an m × n

matrix, and b ∈ Rm is an m-dimensional vector. Likewise, general (non-

linear) vector-valued functions are denoted with lowercase bold letters. For

example, a function f : Rn → Rm mapping Rn to Rm could be written as

f : x 7→ f(x), where x ∈ Rn and f(x) ∈ Rm. Unless otherwise indicated, all

vectors are treated as column vectors. Row vectors are indicated by explicitly

transposing column vectors.

3.2 Markov Decision Processes

The teleoperation studies presented in section 5.2 can be understood in the

framework of Markov Decision Processes without reward, MDP/R [1]. How-

ever, chapter 6 involves reinforcement learning, and thus requires description

of the full MDP.
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An MDP is defined by a tuple (S,A, T, p(s0), r, γ) where S is a continuous

state space and A is a continuous action space. The transition probability

operator T (s, a, s′) : S×A×S → [0, 1] denotes the probability of transitioning

to state s′ ∈ S when taking an action a ∈ A from a state s ∈ S. If the

transition function is deterministic, we write it as s′ = T (s, a). The reward

function r(s, a) gives the scalar reward received after taking action a in state

s. The discount factor γ indicates preference for immediate vs. long-term

reward, and p(s0) is the initial state distribution.

3.3 Autoencoders

An autoencoder (AE) is an unsupervised learning model that attempts to

summarize high-dimensional data x ∈ Rm in some lower-dimensional space.

They include an encoder f(x) = z to compress the data, and a decoder to

reconstruct the data g(z) = x̂. Typically both f and g are neural networks with

parameters (ϕ, θ) respectively (fϕ and gθ throughout the thesis). A basic AE

will be trained to reconstruct the data with mean squared error: minϕ,θ Ex∥x−

x̂∥22. Recent papers suggest AEs can be sufficient for learning mappings of low-

dimensional actions to high-dimensional control [31].

3.4 Latent Action Framework

The latent actions framework assumes that the actuation commands produced

by the optimal policy π∗ exist on some lower-dimensional manifold. In latent

action models, latent actions z ∈ Rk are mapped to this manifold. These

models have typically been studied in settings where there exists a dataset of

transition tuples (s, a, s′, r). We follow this paradigm and leave the study of

learning latent action models online as future work, noting that some experi-

ments along these lines have been previously reported [4].

Broadly, the class of models previously studied are conditional autoen-

coders. These models include a neural encoder fθ(s, a) = z which predicts the

latent action. If the model is a variational CAE, then fθ(s, a) = (µ,σ), and

z is sampled from N (µ,σ) by the reparameterization trick [33]. These latent
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actions are then reconstructed with a decoder gθ(z, s) = a, where s is assumed

to contextualize how the latent action z should map to the higher-dimensional

space. In some works, there is also a latent transition model Tθ(z, s) = s′,

which is trained to encourage the latent space to be predictive of transitions.

The most general loss function incorporating the above models is the fol-

lowing:

argmin
θ

Lrecon(a, s, gθ, fθ) + βLreg(s, a, fθ) + αLdyn(z, s, s
′, Tθ). (3.1)

The first term Lrecon is responsible for enforcing that the model’s latent ac-

tions map to the original action space. The second term, Lreg incorporates all

the terms that enforce additional requirements of the latent space. The typical

choice are compression terms that pack the latent codes into some desired dis-

tribution which can include the Kullback-Leibler divergence, maximum mean

discrepancy, or even the L2-norm of z. The third term Ldyn is for training

and utilizing the latent dynamics model, which is tasked with predicting the

dynamics of observations, given the current observation and an action z. The

LASER model described by Allshire et al. [4] is an example of a latent action

model that includes nonzero coefficients on all three terms of equation 3.1. The

LASER model serves as a baseline in the reinforcement learning experiments

described in section 6.

The notation above reflects the notation from the literature [40], [42], [43].

In later sections, we modify the notation to reflect that agents are select-

ing actions in the low-dimensional action space. Throughout the thesis we

consider the low-dimensional action space to be k-dimensional, and the high-

dimensional actuations u to be n-dimensional. We also deal with context

vectors c for our action maps, rather than directly with states. We will then

write the decoder as gθ(a, c) = u.

3.5 Linear Least Squares

The linear least squares problem is fundamental in statistics and machine

learning. The problem arises when one has a matrix A ∈ Rn×k and an n-vector
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b ∈ Rn, and it is necessary to find the k-vector x ∈ Rk that approximately

solves the system

Ax ∼= b (3.2)

where b generally does not lie in the column space of A. Because we often

cannot express b as a linear combination of the columns of A, there may not

exist any x ∈ Rk that solves equation 3.2 in the ordinary sense of equality.

This is the reason we use the symbol ∼= when expressing the least squares

problem. Since we may not be able to reduce the residual r = Ax − b to

exactly the zero vector, the solution is given by a k-vector x that minimizes

the Euclidean norm of the residual:

min
x

∥r∥ = min
x

∥Ax− b∥ (3.3)

3.6 QR Decomposition and Householder Re-

flections

Every A ∈ Rn×k can be factorized as a product of an orthogonal matrix Q

and an upper triangular matrix [59]. This is called the QR factorization of A,

and it can be written as:

A = Q

[
R
O

]
(3.4)

where Q ∈ Rn×n is orthogonal, R ∈ Rk×k is upper triangular, and O ∈

R(n−k)×k is the (n − k) × k zero matrix. Orthogonal matrices play an impor-

tant role in the Neural Householder Transform, and here we will note a few

properties of orthogonal matrices that will be immediately useful. Suppose

Q ∈ Rn×n is orthogonal. Then:

1. The columns of Q are all mutually orthogonal.

2. Each column of Q has unit norm.

3. Q⊤Q = In, where In is the n× n identity matrix.

4. ∥Qx∥ = ∥x∥ for all x ∈ Rn×n.
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The QR factorization is most commonly used as a numerically robust approach

to solving linear least squares problems [25].

r = Q

[
R
O

]
x− b (3.5)

Because Q⊤ is orthogonal, it preserves the norm of any vector it transforms.

Thus,

∥r∥ = ∥Q⊤r∥ = ∥Q⊤
(
Q

[
R
O

]
x− b

)
∥ = ∥

[
R
O

]
x−Q⊤b∥ (3.6)

Now, since r andQ⊤r have the same norm, we can minimize ∥r∥ by minimizing

the right hand side of equation 3.6. That is,

min
x

∥Ax− b∥ = min
x

∥Q⊤b−
[
R
O

]
x∥ (3.7)

We can partition Q⊤b ∈ Rn as follows,

Q⊤b =

[
c1
c2

]
(3.8)

such that c1 is a k-vector and c2 is an n− k-vector. Now the right hand side

of equation 3.6 can be rewritten as:

∥Q⊤b−
[
R
O

]
x∥ = ∥

[
c1
c2

]
−
[
Rx
O

]
∥ = ∥

[
c1 −Rx

c2

]
∥ (3.9)

By the definition of the Euclidean norm, we have:

∥
[
c1 −Rx

c2

]
∥2 = ∥c1 −Rx∥2 + ∥c2∥2 (3.10)

Thus, we can reformulate the minimization in equation 3.7 as:

min
x

(
∥c1 −Rx∥2 + ∥c2∥2

)
(3.11)

The ∥c2∥2 term does not depend on x, so

min
x

∥Ax− b∥ = min
x

∥c1 −Rx∥2. (3.12)

And so minimization of equation 3.12 minimizes the norm of the residual

Ax − b. Since R is upper triangular, the solution x to the linear system

Rx = c1 can easily be computed by back-substitution [25], resulting in the

least squares solution to the overdetermined system Ax ∼= b.
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3.6.1 Householder Reflections

A common method to compute the QR factorization of a matrix A ∈ Rn×k

constructs Q⊤ by choosing a sequence of Householder reflections in order to

successively reduce A to an upper triangular form:

HkHk−1 . . .H1A = Q⊤A =

[
R
O

]
(3.13)

where Hi ∈ Rn×n, 1 ≤ i ≤ k are Householder reflections, constructed from a

corresponding sequence of n-vectors vi:

Hi = I− 2
viv

⊤
i

v⊤
i vi

. (3.14)

The numerical methods literature contains ways to compute vi to compute the

QR decomposition [25]; however, we will not go into the details here. Instead,

a contribution of this thesis is to train neural networks to map context vectors

to these vi such that the product of the corresponding Householder reflections

form a basis for an optimal k-dimensional actuation subspace in the given

context.

We do note, however, that these Householder reflections, also called House-

holder transformations, are symmetric and orthogonal. Hence H−1
i = H⊤

i =

Hi. Following the notation from equation 3.13, Q can then be written as

Q = H1H2 . . .Hk. (3.15)

And thus both Q and R for the QR factorization can be obtained by selecting

an appropriate sequence of Householder vectors vi.

3.7 Exponential Maps on Riemannian Mani-

folds

Riemannian geometry studies smooth manifolds with a Riemannian metric.

This metric enables a formal notion of distance and angles on the manifold.

While the formalization of this theory is outside the scope of this thesis (see

[2] for a formal description), the aim of this subsection is to provide some

informal intuition about exponential maps on Riemannian manifolds. In order
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Figure 3.1: Illustration of exponential map on S1, the unit sphere in R2. The
tangent vector ξ ∈ R1 indicates the direction and distance to travel along the
surface of the manifold (here the manifold is a circle).

to perform actuation subspace prediction in a way that smoothly varies with

respect to changes in context, NHT uses the exponential map on the unit

sphere as part of its computation of actuation basis vectors.

Every point x on a Riemannian manifold has a corresponding tangent

space. The tangent space is a higher-dimensional generalization of tangent

planes to surfaces in three dimensions or tangent lines to curves in two di-

mensions. The example illustration in figure 3.1 shows the tangent space on

the unit circle S1 at the point e1, denoted as Te1S
1. The unit circle is a 1-

dimensional surface, embedded in 2-dimensional space. The tangent space at

e1 is a 1-dimensional vector space: any point in Te1S
1 can be described by a

single scalar, representing the direction and length of the vector. In general,

the dimension of the tangent space is equal to the dimension of the surface,

and one less than the dimension of the ambient space. For the unit sphere S2,

tangent spaces take the form of planes that touch the sphere at a single point.

The exponential map on a manifold M at a point x is a function that maps

vectors in the tangent space at x to the manifold itself. Informally, one can

imagine the vector ξ in the tangent space TxM as indicating a direction and

distance along which to travel on the surface of the manifold. The image of ξ

under the exponential map Expx is the point reached starting at x and travel-

ling on the manifold in the direction ξ for a distance of ∥ξ∥. The illustration
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in figure 3.1 shows an example ξ and its image labeled v on a unit circle. The

red arc has a length equal to ∥ξ∥, the length of ξ. Figure 3.2 shows three

example ξ’s and their images on S2, the unit sphere in three dimensions.

Note that for every ξ in the domain TxM of the exponential map, the

image remains on the manifold. If the manifold M = Sn−1, a unit sphere in

n-dimensions, the exponential map sends any arbitrary (n − 1)-dimensional

tangent space vector to a unit length n-dimensional vector. This ability to

map arbitrary vectors to vectors of unit norm in a smooth manner is the reason

we use the exponential map as a component in NHT; these properties enable

us to guarantee Lipschitz continuity (see section 4.3.3).
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(a) ξ = [−2, 0]⊤ (b) ξ = [−2, 2]⊤

(c) ξ = [0, 2]⊤

Figure 3.2: Examples of inputs ξ (cyan dot) and their images Expe1(ξ) (red
dot on sphere) for the exponential map on S2 (sphere in three dimensions) at
e1.
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Chapter 4

Methods and Algorithms:
Neural Householder Transform

In this chapter, we discuss the general teleoperation paradigm of actuation

subspace prediction. While actuation subspace prediction could be approached

with several solution methods, we develop the Neural Householder Transform

approach to actuation subspace prediction.

4.1 Problem Statement

We assume that the actuations we wish to model were observed in some con-

text, and the resulting dataset is a collection of context-actuation pairs (actua-

tions and context are both represented by vectors). We formulate the problem

of actuation subspace prediction by supposing that, for every context

c, there exists an associated subspace that best approximates the actuations

observed in the neighborhood of c.

We use x = (c,u) to denote a tuple consisting of an actuation u and the

context c in which it was observed. For convenience, we define the following

functions to extract the actuation and context vectors from a tuple x, respec-

tively: C(x) = c; U(x) = u. In addition, we denote the neighborhood of a

context vector as N (c) = {c′ : ∥c− c′∥ < δ} for some δ ∈ R.

Definition 4.1.1 (Optimal Actuation Subspace). We define W ∗(c), the op-

timal k-dimensional actuation subspace associated with context c, as the k-

dimensional subspace that minimizes the expected projection error of actua-
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Figure 4.1: Diagram of actuation subspace.

tions observed in the neighborhood of c:

W ∗(c)
.
= argmin

W
Ex|C(x)∈N (c)∥U(x)− projW (U(x)) ∥22 (4.1)

where W is a k-dimensional linear subspace of Rn, and projW (U(x)) is the

orthogonal projection of the actuation u onto W .

Our goal is to approximate a function Q∗(c) that maps context vectors to

an orthonormal basis for the associated optimal actuation subspace W ∗(c).

Q∗ : c 7→ Q̂ | col(Q̂) = W ∗(c) (4.2)

where Q̂ ∈ Rn×k is a n× k matrix of real numbers, and col(Q̂) is the column

space of Q̂. We assume access to a dataset of actuation-context pairs. This

dataset may take the form of demonstrations provided by a human, or some

other expert control system.

4.2 State Conditioned Linear Maps

In this section, we describe our proposed alternative to the conditional au-

toencoder paradigm of latent action models. The goal is to compute a useful

map from low-dimensional actions a ∈ Rk to high-dimensional actuation com-

mands (e.g. motor torques in a robotic manipulator) u ∈ Rn, where n > k.
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Figure 4.2: Training procedure for NHT. Qθ uses a neural network and House-
holder transformations to map a context vector to an n × k matrix Q̂ with
orthonormal columns. The actuation u associated with context c is projected
onto the column space of Q̂.

Our approach centers on optimizing a parameterized approximation of Q∗ (see

Equation 4.2).

First, let us consider using a linear map from the latent space to the ac-

tuation space. Instead of a non-linear function gθ : a, c 7→ u that jointly

maps context vectors and actions to the actuation space, we work with a non-

linear function Qθ : c 7→ Q̂ that maps context vectors to a matrix. The

matrix Q̂ : a 7→ u itself is a linear map from low-dimensional actions to

high-dimensional actuation commands.

As Q̂ serves a similar purpose to gθ (both map actions to actuation com-

mands), we could consider Q̂ to be a linear decoder in the latent action frame-

work. Then, the optimization of the standard reconstruction loss is formulated

as follows:

θ∗ = argmin
θ

Eπ∥u− Q̂a∥22 (4.3)

Where Q̂ = Qθ(c) is a function of the context c. θ∗ represents the optimal

parameter vector for Qθ.

The problem now becomes how to select the action a ∈ Rk to use in this

optimization. One approach is to follow the conditional autoencoder paradigm
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and predict a with an encoder neural network. We opt instead to compute

the optimal action a∗, which we define as the action that minimizes equation

(4.3) for fixed u and Q̂ when θ is held constant:

a∗ = argmin
a

∥u− Q̂a∥22 (4.4)

Finding a∗ is a least squares problem, and the solution can be computed with

the Moore-Penrose left pseudoinverse Q̂+ = (Q̂⊤Q̂)−1Q̂⊤. The solution to

(4.4) is given by a∗ = Q̂+u. Now our optimization problem becomes:

θ∗ = argmin
θ

E||u− Q̂Q̂+u||22 (4.5)

Note that the matrix Q̂Q̂+ is an orthogonal projector onto span(Q̂). There-

fore, when we calculate û = Q̂Q̂+u, we are performing an orthogonal projec-

tion of u onto span(Q̂). That is, û = projspan(Q̂)(u).

Now it is clear that the solution to Equation (4.5) is the best approxi-

mation attainable by Qθ to the optimal actuation subspace W ∗(c) defined in

Equation (4.1).

4.2.1 Gram-Schmidt SCL

It can be desirable for the matrix Q̂ produced by Qθ to have orthonormal

columns. One reason is that Q̂+ can be trivially computed as Q̂+ = Q̂⊤, which

is computationally cheaper to perform. Our experimental results also indicate

that learning an Qθ that produces Q̂ with orthonormal columns tends to be

more robust to hyperparameter choices (see Appendix). For these reasons we

compute Q̂ by first computing an orthogonal matrix Q, and then extracting

the first k columns:

Q =
[
Q̂ Q⊥

]
(4.6)

where Q ∈ Rn×n, Q̂ ∈ Rn×k, and Q⊥ ∈ Rn×(n−k). Note that we do not make

use of Q⊥; it is only named to provide insight into the structure of Q.

The Gram-Schmidt (GS) process is a straightforward way to compute an

orthonormal basis that spans the same column space as an arbitrary matrix.

Luckily, the Gram-Schmidt process is easy to implement, and differentiable. A
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Figure 4.3: Illustration of how a small change in neural network output can
cause a large change in actuation basis when using Gram-Schmidt orthogonal-
ization.

Gram-Schmidt orthonormalized SCL can be easily implemented by coding a

Gram-Schmidt routine and then relying on auto-differentiation software such

as Pytorch or Tensorflow to pass gradients through the GS process during

training of the state-conditioned linear map model.

However, there is an important issue with using the Gram-Schmidt process

to obtain an orthonormal basis for a linear actuation subspace. The Gram-

Schmidt process is not smooth with respect to changes in the input matrix.

Small changes in the input matrix can cause abrupt flips of the basis vectors

output by the GS process. From the perspective of a user that interacts

with an SCL interface, this can cause serious disorientation or confusion. The

motion of the robot could change abruptly at any given moment even when

the user input remains unchanged. Figure 4.3 shows an illustration of this

basis flipping effect. The next section describes an alternative method for

computing a smoothly changing orthonormal basis from an arbitrary input

vector.
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4.3 Neural Householder Transform

We can obtain n×n orthogonal matrices by computing Householder transfor-

mations. However, in order to span an arbitrary k-dimensional subspace, we

need to chain together k reflections:

Q = H(v1)H(v2) · · ·H(vk) (4.7)

where H : Rn → Rn×n computes the Householder matrix that reflects about

the hyperplane orthogonal to vi:

H(vi) = I− 2viv
⊤
i , i ∈ {1, ..., k} (4.8)

where each vi has unit norm. Next, we describe how NHT uses a neural

network to compute these vi unit vectors.

4.3.1 Exponential Map on Unit Sphere

We would like to leverage neural networks to learn a map from contexts c to

the vi needed to compute Q̂. We can readily obtain unit vi from the output

of a typical neural network hθ by simple normalization: vi = hθ(c)/∥hθ(c)∥.

Unfortunately, this approach can result in unstable approximations. As the

norm of hθ(c) shrinks, arbitrarily small perturbations to the context can cause

disproportionate changes in vi.

As a more stable alternative, we make use of the exponential map from

Riemannian geometry [2], which maps points in the tangent space of a manifold

to the manifold itself (in our case, the sphere). We seek unit vectors in Rn,

which lie on the (n-1)-sphere. We can therefore make use of the exponential

map on S(n−1) at e1 (the first standard basis vector, e1 = [1, 0, . . . , 0]⊤). The

mapping

Expe1 : ξi 7→ vi (4.9)

maps1 tangent vectors ξi ∈ R(n−1) to unit vectors v ∈ Rn. We require k

tangent vectors ξi that will map to the vi vectors used to compute Q. We

1For the sphere, the exponential map at e1 is computed as vi = e1cos(∥ξi∥) +

1
∥ξi∥

[
0
ξi

]
sin(∥ξi∥).
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therefore configure the neural network hθ to output a vector ξ̄ ∈ Rk(n−1). We

treat the output of hθ as k stacked tangent vectors:

hθ : c 7→ ξ̄; ξ̄ =
[
ξ⊤1 , ξ

⊤
2 , . . . , ξ

⊤
k

]⊤
(4.10)

We then use the exponential map on each tangent vector, resulting in a vector

v̄ ∈ Rnk of stacked unit n-vectors:
ξ1
ξ2
...
ξk

 Exp7−−→


v1

v2
...
vk

 (4.11)

where v̄ =
[
v⊤
1 ,v

⊤
2 , . . . ,v

⊤
k

]⊤
. Each vi is then used to compute a Householder

matrix (Eq. 4.8), which are composed to obtain Q(v̄) (Eq. 4.7). Overall,

NHT (Qθ : c 7→ Q̂) can be understood as the composition of each of these

computations:

c
hθ7−→ ξ̄

Exp7−−→ v̄
Q7−→ Q(v̄) 7→ Q̂(v̄)︸ ︷︷ ︸

NHT

(4.12)

where c is a context vector of arbitrary dimension, and Q(v̄) is an n × n

orthogonal matrix, and Q̂(v̄) is the matrix formed by the first k columns of

Q(v̄).

4.3.2 Existence

If we hope to use NHT to approximate arbitrary subspaces, it is important to

ensure that for every k-dimensional subspace W of Rn, there exists a vector

v̄ ∈ Rnk such that W = span
(
Q̂(v̄)

)
.

Remark. Let W ⊆ Rn be an arbitrary k-dimensional subspace. There is

sequence of k Householder reflectors Q = H1H2 · · ·Hk such that the first k

columns of Q are an orthonormal basis of W .

Proof. Let M be an a n × k matrix whose column space is W . By tre-

fethen1997numerical Algorithm 10.1 we can construct a QR decomposition,

M = QR where Q is the product of exactly k Householder reflections. Now

we are done because it is a basic property of QR decompositions that the first
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k columns of Q are an orthonormal basis for the column space of M , which is

W .

Thus, given the existence of an optimal contextual subspace W ∗(c), we can

be sure that there exists some v̄∗ such that Q̂(v̄∗) spans W ∗. It is left to the

neural network hθ to approximate a set of tangent vectors ξ̄ that map to v̄∗,

given c.

4.3.3 Smoothness of Qθ

We conjecture that low-dimensional action interfaces that change abruptly

from state-to-state may degrade learning in RL agents. Thus we are interested

in whether or not Q̂ = Qθ(c) changes smoothly with respect to changes in the

context. Concretely, we would like to limit the change in the high-dimensional

actuation û corresponding to an identical low-dimensional action a given that

the change in the context is small. Let Q̂1 = Qθ(c1) and Q̂2 = Qθ(c2) for two

nearby contexts, c1 and c2. Suppose an agent takes the same low-dimensional

action a in both contexts. Denote the corresponding actuation commands as

û1 = Q̂1a and û2 = Q̂2a, respectively. We would like to limit the magnitude

of the change in û (i.e. ∥û1 − û2∥) with respect to changes in context. That

is, we would like to find a constant L such that:

∥û1 − û2∥ ≤ L∥c1 − c2∥ (4.13)

where ∥ · ∥ refers to the vector 2-norm. We begin by assuming that the agent

is limited to low-dimensional actions with norm less than or equal to M . Then

we have:

∥û1 − û2∥ = ∥Q̂1a− Q̂2a∥ (4.14)

= ∥(Q̂1 − Q̂2)a∥ (4.15)

≤ ∥(Q̂1 − Q̂2)∥ · ∥a∥ (4.16)

≤ M∥(Q̂1 − Q̂2)∥ (4.17)

where the norm in Eq. 4.17 is the matrix norm induced by the vector 2-norm.

We now seek to limit this norm by finding a scalar constant L such that

∥Q(c1)−Q(c2)∥ ≤ L∥c1 − c2∥ (4.18)
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Given that such an L exists, it is called a Lipschitz constant, and Q is consid-

ered to be L-Lipschitz. It turns out that there is a well understood procedure

for training Lipschitz continuous neural networks [22]. Using this Lipschitz

regularization, we can choose a constant Lh such that

∥ξ̄1 − ξ̄2∥ ≤ Lh∥c1 − c2∥ (4.19)

where ξ̄1 = h(c1) and ξ̄2 = h(c2). The exponential map on the sphere has a

Lipschitz constant of 1, so we have the same result for the Lipschitz continuity

of v̄ with respect to changes in context. All that remains is to show that Q(v̄)

is Lipschitz continuous.

Theorem 1. Let v̄1, v̄2 ∈ Rnk be constructed from k stacked unit n-vectors,

and Q(v̄) be the product of the corresponding Householder reflections (as de-

fined in Eq. 4.7, 4.8). Then,

∥Q(v̄1)−Q(v̄2)∥ ≤ LQ∥v̄1 − v̄2∥ (4.20)

where LQ = 2
√
k.

Proof. Please see section A.2 in the appendix.

Using the fact that the Lipschitz constant of a composition of Lipschitz

continuous functions is upper bounded by the product of the constituent Lip-

schitz constants [22], we combine the results of equation 4.19 and theorem

1 to obtain a Lipschitz constant for Q: NHT is Lipschitz continuous with

L = 2Lh

√
k.

Thus, the low-dimensional action a is guaranteed to result in similar actu-

ations in nearby contexts:

∥û1 − û2∥ ≤ 2LhM
√
k · ∥c1 − c2∥ (4.21)

where û1 = Q̂1a and û2 = Q̂2a, respectively.
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Chapter 5

Experiments I — Teleoperation
with SCL

In this chapter, we present results from a set of teleoperation experiments that

compare SCL – an early approach to actuation subspace prediction from which

NHT evolved – to other action dimensionality reduction techniques including

PCA, mode-switching, and latent action models. In these experiments, human

participants controlled a 7-DOF robotic manipulator with a 2-DOF joystick

interface while using SCL to map the joystick inputs to joint velocity com-

mands. A diagram showing the usage of NHT/SCL for teleoperation is shown

in figure 5.1.

We begin this section with a discussion of how SCL satisfies several teleop-

eration properties that have been identified in the literature in section 5.1. We

then present results from a latent action user study that compares SCL to PCA

and a basic conditional autoencoder (CAE) approach in section 5.2.1. Finally,

in section 5.2.2 we compare SCL to mode-switching and a CAE augmented

with human-prior losses in a more challenging pouring task. Throughout this

section, the context c available to SCL is the vector of joint angles q, and the

actuations u are joint velocities q̇. We make the corresponding substitutions

in the notation.
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Figure 5.1: System diagram illustrating how an agent (human or artificial)
can control a high-DoF robot using NHT.

5.1 Study of Teleoperation Properties

In this section, we show theoretically and empirically how SCL maps guarantee

both proportionality and reversibility which are desirable properties in robotic

manipulation. We use Ψ(q) = x as the kinematics function of the end-effector’s

position and orientation [19]. The transition operator is defined as T (q, a; θ) =

q+Q(q)a.1

This section was motivated by the work of Li et. al. [40], whose work we

based our properties on, but is otherwise different for several reasons. Their

method is semi-supervised targeted. Therefore, it requires a human operator

to label subsets of transition data by providing the desired joystick input. Our

method is unsupervised thus eliminating the labeling process. Their system

also needs additional loss terms to enforce these properties, which require

additional hyperparameter tuning.

Proportionality For scalar α ∈ R the resulting action a′ = αa will lead to

a proportional change in the end effectors current position:

α∥Ψ(T (q, a; θ))−Ψ(q)∥ ≈ ∥Ψ(T (q, αa; θ))−Ψ(q)∥.

Intuitively, the end-effector is expected to move in proportion to the magnitude

of the input. As SCL maps predict a linear weight matrix, proportionality

1In practice, the inputs of Q are not limited to joint angles and can still contain additional
task-specific context information.
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is locally achieved (where kinematics Ψ is approximately linear) by design.

Suppose we have that a′ = αa for α ∈ R+. This will lead to a proportional

increase of the response (Q̂a′ = αQ̂a = αq̇).

Soft Reversibility For two states qi and qj and an action a ̸= 0 such that

qj = T (qi, a; θ), “Reversibility” means that:

qj = T (qi, a; θ) ⇒ qi = T (qj,−a; θ).

For this definition to hold for SCL maps, Q(qj) must be equivalent to

Q(qi), which unfortunately is not guaranteed. Instead, we show that SCL

satisfies a “soft reversibility” property: the state qk reached by the inverse

action from qj will be closer than qj to qi.

Theorem 2 (Soft Reversibility). Let ∥a∥2 < 1 and T (q,a; θ) = q + Q(q)a.

Q(q) ∈ Rn×k is a matrix reshaped from the vector form of hidden layer acti-

vations v(q) ∈ Rnk. Suppose v is Lipschitz continuous for some Lv ≤ 1, that

is, ∥v(qj)− v(qi)∥2 ≤ Lv∥qj − qi∥2. Then for some qj = T (qi,a; θ) we have:

∥T (qj,−a; θ)− qi∥2 < ∥qj − qi∥2

Proof. From our definition of T (q, a; θ):

qj = qi + Q̂(qi)ai

qk = qj + Q̂(qj)aj (5.1)

where qi,qj,qk are three consecutive states, ai and aj are the actions at current

time step and the next time step respectively. If the action aj is the reverse

action aj = −ai, we can rewrite Eq. (5.1) as

qk = qi + Q̂(qi)ai + Q̂(qj)(−ai)

= qi + (Q̂(qi)− Q̂(qj))ai
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Figure 5.2: Empirical results from an experiment demonstrating proportion-
ality and soft reversibility of SCL maps on the Kinova Gen-3 lite robot. The
line and shaded area show the mean and one-half standard deviation from 100
runs (10 trained models, 10 random states), respectively. Note ||qfwd − q0||2
for SCL and PCA overlap.

From the Lipschitz continuity assumption, it follows that:

∥qk − qi∥2 = ∥(Q̂(qi)− Q̂(qj))ai∥2

≤ ∥Q̂(qi)− Q̂(qj)∥2 ∥ai∥2 (5.2)

≤ ∥Q̂(qi)− Q̂(qj)∥F ∥ai∥2 (5.3)

= ∥v(qi)− v(qj)∥2 ∥ai∥2 (5.4)

≤ Lv∥qi − qj∥2 ∥ai∥2 (5.5)

≤ (Lv∥ai∥2) ∥qi − qj∥2 (5.6)

< ∥qi − qj∥2 (5.7)

for any pairs of joint angles in a robot’s set of joint configurations qi,qj ∈ Q

such that qj = T (qi, ai; θ), where Q is the set of joint angles of the robot. We

can tell from Eq. (5.7) that if Lv∥ai∥2 < 1, taking the reverse action aj = −ai

brings the robot to a state closer to qi than before.

Experiments Validating Properties We empirically validated our theo-

retical results for proportionality and soft-reversibility on a Kinova Gen-3 lite
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[34], comparing the properties of SCL maps to those of CAE and PCA models.

For the SCL and CAE algorithms, we trained 10 models each using the Adam

optimizer for 200 epochs, with a learning rate of 1e-3 and mini-batches of 256.

Both SCL and CAE were trained with encoders that had two hidden layers

each, with 256 neurons and tanh activation functions. The decoders had simi-

lar configurations, except that the SCL decoder outputs a matrix as described

in section 4.2. During training of the SCL maps, we enforced Lipschitz conti-

nuity with Lv = 1 by applying the Lipschitz training procedure in Algorithm

1 of Gouk et. al. [22]. We forced the linear maps Q̂(q) to be orthonormal

with the Gram-Schmidt process during training and deployment.

To compare the proportionality and reversibility properties of each algo-

rithm, we generate an angle θ ∼ U(0, 2π) which we transform into actions

a = α[cos(θ), sin(θ)]⊤. We control the norm of the actions with the scalar α.

For each value of α, we first apply the action a for one second, stop the motion,

and then apply the inverse action −a. We denote qfwd and qrev as the joint

configurations of the robot after the forward and inverse actions, respectively.

For each run of the experiment we measure first the distance from the start

state q0 to qfwd, and then the distance of qrev to q0.

Our results are shown in Fig. 5.2. Ten random states from our demon-

stration data were chosen as initial states, and each algorithm (CAE, SCL,

PCA) was used to compute joint velocities given a random action with in-

creasing magnitude. For SCL and PCA, the reverse action consistently brings

the joint positions closer to their original state q0: this demonstrates the soft

reversibility property. For the CAE, the reverse action tended to move the

joint positions farther away from the original configuration. Likewise, both

PCA and SCL demonstrated an exact linear proportionality in the forward

actions, while the CAE did not.

5.2 Teleoperation User Studies

We conducted two sets of user studies to validate the efficacy of SCL as a

learnable action mapping approach. We chose to evaluate SCL in teleoperation
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Figure 5.3: A user controls a 7-DOF robotic manipulator through low-
dimensional actions of a 2-DOF joystick. The state-conditioned linear mapping
Q(q) ∈ R7×2 transforms the joystick inputs a to high-dimensional motor com-
mands q̇.

because of previous research in assistive robotics [42], [43]. The first user

study compares across the spectrum of action mapping approaches on two

synthetic tasks that empirically could be solved with actions existing in a two-

dimensional subspace. The second user study pushes the limits of SCL and

compares against a mode-switching control scheme, as well as a more advanced

CAE model. Moreover, the second user study task could not be solved with

the first two principal components of PCA and was excluded. All experiments

were conducted on a Kinova Gen3 lite robot with a control rate of 40 Hz [34].

Reported statistical significance used a 0.05 p-value. A Kruskal-Wallis test

was performed before the reported Dunn test significance.

5.2.1 Latent Action User Study

Our first user study compared SCL against other action mapping methods in

the literature. We chose tasks that can be solved with 2D and 3D Cartesian

control, which we refer to as Table Cleaning and Pick and Place in this section.

Despite being simple, these tasks allow us to empirically evaluate the efficacy

of SCL compared to existing action mapping approaches.
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Experimental Set-up The Table-Cleaning task setup is shown in Figure

5.2.2. Participants were asked to push five small objects on a table out of a

designated boundary in 60 seconds. For the table cleaning task, we collected

five demonstrations of circular scrubbing motions on a table. Three trajectories

were used to train the PCA, SCL, and CAE models, and the remaining two

were held out for validation. The total amount of training data was 509 (q,q̇)

tuples.

The setup for the Pick and Place trials can be seen in Figure 5.3. The

task was to reach from a home configuration to grasp the bottle, which was

initially placed on the black “x” marked on the table within 90 seconds. The

participants were then instructed to move the bottle to another fixed, marked

position on the table. Grasping was controlled by a trigger on the joystick

controller. We collected eight demonstration trajectories for the pick and

place task. We used six trajectories for training and two for validation of each

model. The six training trajectories accounted for 2001 (q,q̇) tuples. For each

task, participants were given five minutes to practice, and two attempts at

the task. We had 13 participants (4 females and 9 males, age 23 - 33). We

followed a single-blind experimental set-up, randomizing the order of models

each participant used for each task.2

Models We compared SCL against PCA [7], [48] and a conditional autoen-

coder (CAE) [42], [43]. Respectively, they represented a linear and non-linear

approach for learning low-to-high dimensional mappings for control. Our CAE

model is based on the open-source version of Karamcheti et. al. [31]. The

conditional autoencoder and SCL maps were trained on demonstration data

to fit the mean-squared error between the recorded and reconstructed joint

velocities (i.e., with unsupervised learning). The SCL and CAE models were

trained with the same data, learning parameters, and architectures described

in section 5.1. For each algorithm, we chose the best model (out of ten) based

on a validation loss for deployment. Participants used a 2-DOF joystick to

2The studies were approved by the University of Alberta Research Ethics and Manage-
ments (Pro00054665).
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provide low-dimensional control commands with inputs mapped as actions

a = [a0, a1]
⊤, with ∥a∥ ≤ 1.

Results and Discussion Our empirical results are included in Figure 5.4

where we report success rates. Our results suggest that PCA worked well for

participants in the table-cleaning task, but it failed to perform consistently

in the Pick and Place task. There was a qualitative difference in the motions

required to reach the bottle versus the motions needed to move the bottle to

its destination (i.e., different motions were needed to “pick” vs. to “place”).

PCA was forced to capture all variation in joint velocities for both pick and

place motions with just two principal components. SCL, on the other hand,

was free to adapt the subspace of joint velocities, given the current configura-

tion/context of the manipulator. This meant that the joint velocity commands

available to the participants (via the output of action map g(c, a)) could be

entirely different when reaching for the bottle, versus after the bottle had

been grasped. We observed that the ability of SCL to use the current context

to adapt the action maps for locally useful actions resulted in a statistically

significant advantage in the pick and place task, in terms of the number of

successful trials for each participant (See Fig. 5.4).

Figure 5.4: The number of trials in which participants successfully completed
the Table Cleaning and Pick and Place tasks.

Based on our observations, the low success rate of the CAE model could

be attributed to two primary reasons. First, the CAE internally uses affine
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Figure 5.5: Table Cleaning and Pouring Experiments.

mappings as opposed to linear mappings. When a user’s input is 0 ∈ R2 (no

input), the joint velocity generated will be determined by the bias terms in

the hidden layers of the model. The SCL method does not suffer from this

problem, because it instead transforms actions with a linear map.

Second, we observed that many CAE trials resulted in failure if users nav-

igated to joint configurations outside of the training trajectory distribution.

In these states, the robot behavior became unpredictable, and in many cases

counter-productive (e.g., all actions appeared to move the end-effector away

from the bottle). These issues of unpredicted behavior have been previously

seen in the literature [43]. In contrast, the soft reversibility property of SCL

enabled participants to recover from configurations outside of the training dis-

tribution.

5.2.2 Assistive Robotic User Study

In our second user study, we were interested in comparing SCL to systems

that have previously been used for assistive robotics including CAE and a

mode-switching system (MS) [47]. We set up a Pouring task (Figure 5.2.2),

where participants had to pick up a cup full of beans, pour them into a bowl

and then replace the cup in a designated location on the table within two

minutes. This task was highly nonlinear, consisting of several motions that

involved both translation and rotation of the robot’s end-effector. We collected

10 demonstration trajectories, where 8 were used for training (5200 training

tuples) and 2 for validation (1191 validation tuples).

This study included 14 participants (ages 22 - 51, 2 female, 12 male).

Participants were given four two-minute practice trials with each of the control

systems to familiarize themselves with the action mappings. We then collected
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Figure 5.6: Completion rates. Figure 5.7: Median Likert Scale re-
sults.

Pouring User Study Results. Figure 5.6 Violin plots of completion with
mean. Figure 5.7 Radar plot with stars indicating significance w.r.t mode-
switching.

results for each method over three test trials.

We report the average success rates of participants in Figure 5.6. We found

a significant difference between mean success rates when comparing CAE to

both SCL and MS, but not comparing SCL to MS. Generally, we found users

could pick up the glass with any interface, but struggled to pour with the CAE

model.

In addition, we also collected user subjective opinions which included a 5-

question Likert scale survey (1 low and 7 high) featured in Figure 5.7. We

found that only Control and Reversibility were statistically significant by

Dunn’s Test. We also collected the NASA Workload Index [23] featured in

Figure 5.8. Again, by Dunn’s test, we found statistical significance between

CAE and both SCL and MS.

Although our results show the promise of SCL in assistive robotic settings,

further work is necessary to improve the user experience. With a single mode,

SCL performed comparably to mode-switching, which exposed three control

modes (x-y, z-yaw, and roll-pitch, following [47]). On average, users switched

modes 17.55±3.91 times while using the mode-switching interface in the pour-

ing task. We conjecture that on even more complex tasks (e.g., dynamic tasks,
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Figure 5.8: Violin plots of NASA TLX scores for each method in the pouring
task.

or tasks requiring simultaneous orientation and position control), the benefits

of SCL would be more pronounced over typical assistive robotic systems. In

previous works, tasks have often consisted of several sub-tasks and were achiev-

able with CAE models. Interestingly, our results would seem to disagree with

existing work on CAE models for shared autonomy. One explanation could

be that previous research included additional heuristics to account for CAE

limitations. As discussed in several instances, we have found the CAE models

move without user input. It’s possible to address this heuristically (e.g., send 0

velocity if the action norm is small), but our focus was on achieving properties

of the interface end-to-end.
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Chapter 6

Experiments II —
Reinforcement Learning with
NHT

Our empirical reinforcement learning results focus on validating the efficacy

of neural householder transforms for learning kinematic tasks within a custom

MuJoCo simulation of a Barrett WAM robotic manipulator with 7-DOF (see

Figure 6.1). We model each task as an MDP and report results in two environ-

ments: WAMWipe and WAMGrasp. Learning involves first training an NHT

model on an offline dataset of demonstrations, and then fixing the parameters

of NHT and using Deep Deterministic Policy Gradient (DDPG) [41] to learn a

policy online. We compare DDPG agents trained with an NHT action interface

against agents trained with a state-of-the-art latent action model [4], agents

trained with an actuation basis computed by SVD, and agents trained in the

raw actuation space of the task (i.e., 7-DOF joint velocity control). In our ex-

periments, we used a publicly available implementation of deep deterministic

policy gradient [5]1.

6.1 RL Environment Details

In both WAMWipe and WAMGrasp, one environment step corresponds to 10

MuJoCo simulation time-steps of length 0.002 seconds. Both environments

1Although we used the implementation of DDPG introduced in the HER paper, we did
not use HER in any of our experiments.
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(a) WAMWipe (b) WAMGrasp

Figure 6.1: Simulated kinematic manipulation environments with distinct goal
types and constraints.

Env a Dim. u Dim. Goal Type Constraints

WAMWipe 2 7 Pos Safety, Contact, Orient.
WAMGrasp 3 7 Pos, Orientation Safety

Table 6.1: Properties of reinforcement learning environments in simulation
experiments.

allow a maximum of 200 environment steps per episode.

6.1.1 WAMWipe

In WAMWipe the goal is to control the manipulator such that the flat face of

the last link remains flush against a table while sliding to a randomly sampled

goal position. The reward is -1 for every step unless the end-effector is within

a small distance of the goal position, in which case the reward is 0. Episode

failure occurs if the end-effector: (1) pushes into the table, (2) lifts off of the

table, or (3) the end-effector tilts such that it is no longer flush with the table.

Let p denote the unit vector orthogonal to the face of the end-effector, pictured

as a purple arrow in figure 6.2. Constraint (3), the orientation constraint, was

considered violated when the angle between p and the vector orthogonal to

the surface of the table (not pictured) was greater than π/16 radians. The

agent’s observation in our experiments was a concatenated vector of joint
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Figure 6.2: The 3-vector p pictured here was used to determine whether the
orientation constraint/goal-condition was satisfied in WAMWipe/WAMGrasp,
respectively.

angles, Cartesian coordinates of the end-effector, Cartesian coordinates of the

goal position, and the unit vector orthogonal to the face of the end-effector.

The actions in our WAMWipe experiments were either 7-DOF joint velocity

commands, or 2-dimensional actions input to an NHT, SVD, or LASER action

interface.

6.1.2 WAMGrasp

In WAMGrasp the goal is to simultaneously reach a randomly sampled grasp-

point while achieving a goal orientation that is determined by the grasp-point.

Let p∗ denote the unit vector pointing from the grasp-point (small sphere

in Figure 6.2) to the object being grasped (large sphere in Figure 6.2). We

consider the orientation satisfactory if the angle θ between p∗ and the vector

orthogonal to the face of the manipulator, p, is less than π/16 radians. The

reward in WAMGrasp is -1 at every step unless the end-effector is within

a small distance of the grasp-point with a satisfactory orientation. Episode

failure occurs if the end-effector collides with either the object being grasped

(large red sphere in Figure 6.2) or the table. In each episode, the grasp-point

is randomly sampled from the surface of a sphere with the same center but a

larger radius than the large red sphere in Figure 6.2. The agent observation

was a concatenated vector of joint angles, Cartesian coordinates of the end-

effector, and Cartesian coordinates of the grasp point. The actions in our
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WAMGrasp experiments were either 7-DOF joint velocity commands, or 3-

dimensional actions input to an NHT, SVD, or LASER action interface.

6.2 Action Interface Baselines

In addition to training NHT from a dataset of demonstrations, we trained

LASER [4] from the same dataset and computed the singular value decompo-

sition (SVD) of the dataset of joint velocities executed during the demonstra-

tions. In our experiments, the state-conditioned actuation basis computed by

NHT, static basis computed by SVD, and nonlinear decoder of LASER all serve

as different choices of an interface between DDPG and the raw actuation com-

mands that determine the next state of the environment. In our WAMWipe

experiments, NHT, LASER, and SVD all exposed a two-dimensional action

interface to DDPG, while in WAMGrasp they all exposed three-dimensional

interfaces. The k ∈ {2, 3} actuation bases provided by SVD were the vectors

in R7 corresponding to the k largest singular values.

Demonstrations were collected by recording context-actuation (c, q̇) pairs

from PD controllers that were hand-engineered for each environment. In both

environments, the context c upon which the output of NHT and LASER are

conditioned was the concatenation of joint angles and Cartesian coordinates

of the end-effector. LASER is regularized by the KL and dynamics terms

in its loss function (see equation 3.1), while we regularize NHT by enforcing

Lipschitz continuity with Lipschitz constant L at each layer during training

[22]. Moreover, the Adam optimizer is used for both NHT and LASER, with

learning rate αmap, and otherwise default parameters. Likewise, Adam is used

as the optimizer in our chosen implementation of DDPG, with learning rates

αactor and αcritic for the policy and value function, respectively.

6.3 Hyperparameter Search

The hyperparameter search experiment described here was designed to esti-

mate the performance of the best policy that could be learned by DDPG in a

finite amount of time for agents trained with (1) an NHT action interface, (2)
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a LASER [4] action interface, (3) an actuation basis computed by SVD, and

(4) 7-DOF joint velocity actions.

The hyperparameter search also enabled us to study the sensitivity of agent

learning-dynamics to different hyperparameter configurations for each action

interface. The results serve as empirical evidence with which to answer ques-

tions such as: “Could changing the neural architecture of NHT cause a sig-

nificant drop in the final success rate of a policy learned by DDPG?” An-

swering such questions is non-trivial since there may or may not be complex

interactions between map (i.e., NHT, LASER) hyperparameters, DDPG hy-

perparameters, and final agent performance. It is unknown whether NHT

hyperparameters tuned for an agent with arbitrary configuration A will be the

best NHT hyperparameters for an agent with a different configuration B. For

example, it is conceivable that a DDPG agent with hyperparameter config-

uration A may perform best with NHT configuration C, while DDPG with

configuration B performs best with NHT configuration D. Thus a meaningful

search should jointly vary the hyperparameters of the mapping models and

the DDPG agent.

Although a grid search over hyperparameters is a common approach to

answer such questions, it has been shown that random search in the space of

hyperparameters may be more efficient [10] (i.e., find better hyperparameter

configurations at a lower computational cost). As such, we performed a ran-

dom search over map (i.e., NHT, LASER) and DDPG hyperparameters. We

jointly sampled 128 configurations each for NHT + DDPG, LASER + DDPG,

DDPG with SVD, and DDPG with joint velocity actions. For the latter two

conditions, the only hyperparameters of interest are those of DDPG itself.

For each configuration, we first trained the mapping function (if applicable),

and then trained the DDPG agent, over five runs with different random seeds.

The ranges and method of sampling used for each hyperparameter are listed

in Table 6.2. Moreover, for both WAMWipe and WAMGrasp, each agent

was trained for one million environment steps, using three workers to generate

experience. This resulted in 100 training epochs of 10,000 steps each.

Figure 6.3 summarizes the results of the random hyperparameter search
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Parameter Range Sampling

αmap (1e-6, 1e-1) Exponential
βKL (LASER) (1e-6, 1e0) Exponential
βdyn (LASER) (1e-6, 1e0) Exponential
L (NHT) (1e-1, 1e2) Exponential
Map Batch Size (32, 256) Uniform
Map Activation {ReLU, sigmoid, tanh} Uniform
Map Hidden Layers {1, 2, 3, 4} Uniform
Map Hidden Units (16, 1024) Geometric

αactor (1e-4, 1e-2) Exponential
αcritic (1e-4, 1e-2) Exponential
Rand Action ϵ (0, 0.4) Uniform
Action Noise σ (0, 0.4) Uniform
Penalty on ∥a∥ (0, 1) Uniform
Max ∥a∥ (1, 10)* Exponential
DDPG Batch Size (32, 256) Uniform
Polyak (0.9, 0.99) Uniform

Table 6.2: Hyperparameter ranges and sampling methods for pre-trained map-
ping functions (top) and DDPG (bottom). We use 1ex as shorthand to denote
1 × 10x. Exponential and Geometric sampling of parameters was carried out
as described in [10]. *For the agent with 7-DOF actions we use the range (0.1,
10).

for NHT and DDPG, LASER and DDPG, DDPG with SVD, and DDPG with

joint velocity actions. The violin plots represent the distribution of final suc-

cess rates (success rate after 100 epochs of training) across every randomly

sampled hyperparameter configuration. We found that the distributions of

final success rates across hyperparameter configurations suggest that agents

trained with NHT tend to be more robust to different hyperparameter config-

urations. Although in some runs the 7-DOF agent managed to reach a success

rate of 100% in WAMGrasp, the variance of final success rates amongst 7-DOF

agents is much larger than the variance of success rates for NHT agents. In

general, there was not a strong correlation between any one hyperparameter

and the final performance of the agents (coefficient of determination < 0.1).

One exception was that we found small values for max∥a∥ significantly harmed

the agents with low-dimensional actions, but helped the agents with 7-DOF
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Parameter Range Sampling

α (1e-4, 1e-2) Exponential
Discount Factor γ (0.9, 0.99) Uniform
GAE Parameter λ (0.9, 0.99) Uniform
VF coefficient (0.25,1) Uniform
Clipping Parameter ϵ (0.05,0.5) Uniform
Steps-per-update {1024,2048,4096} Uniform

Table 6.3: Hyperparameter ranges for PPO in the HalfCheetah-v4 experi-
ments. We use 1ex as shorthand to denote 1 × 10x. Exponential sampling of
parameters was carried out as described in [10].

Figure 6.3: Violin plots of final success rates across 128 randomly sampled
hyperparameter configurations (five runs each).

actions, particularly in WAMWipe.

We now seek to compare NHT + DDPG with the baselines LASER +

DDPG, DDPG with SVD, and DDPG with joint velocity actions after hyper-

parameter optimization (i.e., using their best hyperparameters respectively).

The learning curves in Figure 6.4 plot the mean success rate during training

for the best performing agent in each condition, averaged over five runs. It

can be seen that DDPG agents trained with an NHT action interface produced

the best performing agents after hyperparameter optimization (higher success

rates in fewer epochs) in both WAMWipe and WAMGrasp.
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Figure 6.4: Learning curves corresponding to the configurations with the
best average final success rate, overall hyperparameter configurations, for each
method. Each curve shows the mean success rate over five runs of the best
configuration, with the shaded regions indicating the standard error.

6.4 Comparison to Jacobian Pseudoinverse In-

terface

Here we compare NHT to an additional choice of action interface that, unlike

the baselines discussed in the main text, is not learned from demonstrations.

The Jacobian of the robotic manipulator describes the relationship between

the joint velocities and the Cartesian and angular velocity of the end-effector.

The pseudoinverse of the Jacobian can be used to define a six-dimensional

action interface for an RL agent: three dimensions in the agent’s action space

correspond to Cartesian velocity, and the remaining three correspond to the

angular velocity.

Figure 6.5: Violin plots of final success rates across 128 randomly sampled
hyperparameter configurations (five runs each) for NHT vs a Jacobian pseu-
doinverse (Jacobian pinv) action mapping baseline.

We compared NHT to the Jacobian pseudoinverse as an action interface
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for a DDPG agent in WAMGrasp and WAMWipe in a hyperparameter search

experiment with the same methodology described in section 6.3(128 hyperpa-

rameter configurations, five seeds for each configuration). As already noted,

the dimensionality of the agent’s action space was six when using the Jacobian

pseudoinverse interface. NHT was used to learn a two-dimensional action inter-

face for WAMWipe, and a three-dimensional action interface for WAMGrasp.

The hyperparameter search results are plotted in figure 6.5. The variation in

performance for the Jacobian pseudoinverse agents is entirely due to different

DDPG agent configurations (the Jacobian has no hyperparameters).

As expected, the agent with the Jacobian pseudoinverse action interface

performed poorly in WAMWipe; like the 7DOF joint velocity agent, the Jaco-

bian pseudoinverse agent was able to freely jam the end-effector of the robot

into the table, or lift the end-effector from the table, resulting in an auto-

matic failure for its training episodes. Without a learned action interface, the

exploratory behavior inherent in reinforcement learning resulted in destruc-

tive behavior that made learning in the highly constrained environment of

WAMWipe difficult.

In WAMGrasp, the Jacobian pseudoinverse agents were sometimes able to

learn to achieve 100% success rate. However, it is clear from the violin plots

in figure 6.5 that limiting the joint velocity commands to useful subspaces

learned by NHT has some benefit over allowing free exploration with the Ja-

cobian pseudoinverse interface. Some of the poorer hyperparameter configu-

rations resulted in close to 0% success rate when interacting with WAMGrasp

through the Jacobian pseudoinverse interface. NHT tended to concentrate

agent performance, overall hyperparameter configurations, toward a success

rate of 75% to 100%.

6.5 HalfCheetah

While our main interest in the application of NHT lies in constrained/safe

robotic manipulation, there is value in validating the utility of NHT in more

standard reinforcement learning environments. In addition, it is important to
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show that the action interface learned by NHT is useful for agents trained with

various RL algorithms; not only for DDPG agents. We therefore performed

a hyperparameter search experiment with a standard implementation [20] of

PPO [55] on the HalfCheetah-v4 environment from OpenAI Gym [11]. This

environment has a 17-dimensional observation space that includes angular po-

sitions and velocities, and a six-dimensional torque actuation space (compared

to the joint velocity actuation space in WAMGrasp and WAMWipe). We

compared NHT agents to agents that learned in the standard 6DOF actuation

space of HalfCheetah, and agents with LASER [4] and SVD action interfaces.

NHT, SVD, and LASER all learned 2-dimensional action interfaces. This ex-

periment precisely mirrored the hyperparameter search experiments reported

in section 6.3, except that the demonstrations used to train NHT, SVD, and

LASER were collected from the best-performing policy learned by the standard

6DOF agent. A total of just 1,000 transitions were recorded from this expert

policy. The return on this demonstration episode was over 6,000. The hyper-

parameter ranges and sampling methods for this experiment are summarized

in Table 6.3.

The learning curves of the agents with the best average final performance,

and the distribution of final agent performances for each method in HalfCheetah-

v4 are shown in Figure 6.6. Interestingly, we found that the constant (i.e. not

state-dependent) action interface of SVD was sufficient to learn more efficiently

than the standard 6-DOF agent while still achieving the same asymptotic per-

formance. This suggests that all of the instantaneous actuations used by an

expert (> 6, 000 return) HalfCheetah agent lie close to a fixed two-dimensional

linear subspace! There appears to be some benefit to the agent learning in an

adaptive actuation subspace with NHT, although the performance gains are

small in this environment. The agents learning with NHT tended again to be

more robust to different hyperparameter configurations.
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Figure 6.6: Results of hyperparameter search for action mapping methods in
HalfCheetah-v4. Left: Learning curves corresponding to the configurations
with the best average final success rate. Right: Violin plots of final success
rates across 128 randomly sampled hyperparameter configurations (five runs
each).

6.6 Ablations

6.6.1 Ablation of Orthonormal Constraint

What is the benefit of enforcing orthonormal actuation bases in NHT? Besides

the fact that the pseudoinverse of Q̂ can be computed trivially as the transpose

during training, we wanted to find out if there was any empirical benefit. To

answer this question we performed an experiment in which we trained a neural

network to produce an arbitrary state-conditioned matrix as an actuation basis

for WAMWipe and WAMGrasp. Unlike NHT, this baseline is not constrained

to output a matrix with orthonormal columns. We will refer to the baseline as

the state-conditioned linear map (SCL) model. The SCL baseline is a neural

network hθ : c 7→ Q̂ ∈ Rn×k that maps context vectors to an n× k matrix Q̂.

In our WAMWipe experiment n = 7 and k = 2, while for WAMGrasp n = 7

and k = 3.

As in section 6.3, we performed a hyperparameter search in which we sam-

pled 128 hyperparameter configurations and trained NHT/SCL and then a

DDPG agent with five different random seeds. The sampling method and

ranges for each parameter were the same for both NHT and SCL, and are

listed in Table 6.2. Figure 6.7 summarizes the results of this hyperparameter

search with violin plots of the final performance attained by agents with NHT

and SCL action interfaces for the WAMWipe and WAMGrasp environments.
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Figure 6.7: Violin plots of final success rates across 128 randomly sampled
hyperparameter configurations (five runs each) for NHT vs a non-orthonormal
state-conditioned linear (SCL) action mapping baseline.

We found that 64 out of 640 (10%) of the runs for SCL in WAMWipe

failed due to numerical instability. In these cases the matrices output by the

unconstrained neural network had large norms, resulting in very large joint

velocity actuations that caused the MuJoCo simulations to fail. Interestingly,

we did not observe the same numerical stability issues in the SCL models

that were trained for WAMGrasp. Note that, in contrast, for NHT numerical

stability is not an empirical issue. The 2-norm of the matrix produced by NHT

is guaranteed to be equal to one.

In WAMWipe, the best hyperparameter configurations of SCL resulted in

actuation interfaces that were suitable for the DDPG agent to achieve 100%

success rate. However, in both WAMWipe and WAMGrasp, the distributions

of final agent performance in Figure 6.7 indicate that NHT was more robust

than SCL with respect to variation in hyperparameter configurations. This

suggests that NHT may be less sensitive to different choices of hyperparame-

ters, making it easier to tune in practice.

6.6.2 Ablation of Actuation Projection

The latent action framework advanced by Losey et al. [43] and described in

section 3.4 involves an encoder neural network fϕ(c,u) = â which outputs

a low-dimensional latent action, and a decoder network gθ(â, c) = û that

reconstructs the actuation given the low-dimensional action and its context.
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Figure 6.8: Performance distribution of DDPG agents trained on WAMWipe
and WAMGrasp, with NHT interfaces optimized using actuation projection
and action prediction.

Recall that in section 4.1 we began our discussion of NHT/SCL by noting

that Q̂ = Qθ(c) can be interpreted as a linear decoder in the latent action

framework. We continued our development of NHT by discussing how actua-

tion projection can be used to obtain the optimal low-dimensional action for

reconstruction of an actuation given a fixed actuation basis Q̂. In this sub-

section we present the results of an ablation experiment that was designed to

provide evidence regarding the question “How would using an encoder neural

network instead of actuation projection affect the performance of NHT?”.

In fact, early versions of SCL did use an encoder neural network to predict

low-dimensional actions during training. At deployment (i.e., when NHT is

used as a control interface), the encoder is discarded, as only the decoder is

necessary to compute the actuation basis. We will refer to the training of NHT

with an encoder neural network as action prediction, as opposed to the default

training procedure that relies on actuation projection.

The optimization problem of NHT trained with action prediction becomes:

min
ϕ,θ

Eπ∥u− Q̂â∥22 (6.1)

where Q̂ = Qθ(c) and fϕ(c,u) = â.

We conducted an experiment in which we performed a large-scale random

hyperparameter search, comparing the final performance of agents trained with

NHT action interfaces optimized using either actuation projection or action
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Figure 6.9: Performance distribution of PPO agents trained on HalfCheetah,
with NHT interfaces optimized using actuation projection and action predic-
tion.

prediction. For both conditions, we sampled 128 hyperparameter configura-

tions and trained each configuration with five different seeds.

Figure 6.8 shows the results of the ablation of actuation projection in the

WAM environments. In this experiment, we found that the median final per-

formance of agents trained using action prediction NHT interfaces was slightly

lower than the median performance of agents trained using an actuation pro-

jection NHT interface. For both WAMGrasp and WAMWipe, the shape of

the performance distributions in the respective environment was quite similar.

We observed roughly the same result for the HalfCheetah environment,

depicted in figure 6.9. In this experiment, the actuation projection agents

had a slightly higher median performance compared to agents trained with

an NHT interface optimized using action prediction. The highest performing

agent in the action prediction condition performed slightly above its actuation

projection counterpart, but it is not clear if this result is repeatable.

Overall, a conclusion we can draw from these ablation experiments is that

removing the encoder neural network and training NHT instead with actu-

ation projection does not harm agent performance. This is a positive result

because actuation projection is computationally cheaper compared to training

an encoder neural network. With actuation projection, we entirely eliminate

the memory footprint of the encoder neural network and cut the number of

learnable parameters in half.
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Figure 6.10: Results of Lipschitz regularization sensitivity study in WAMWipe
and WAMGrasp. Vertical bars indicate standard deviation of agent perfor-
mance.

6.6.3 Sensitivity to Lipschitz Regularization

We have gone to lengths to ensure the Lipschitz continuity of NHT. If an or-

thonormal actuation basis was our only desideratum, we would have simply

performed Gram-Schmidt orthonormalization on a neural network output, as

described in section 4.2.1. We opted to go further, making use of exponential

maps and householder reflections, in order to ensure that Q̂ changes smoothly

as a function of context. These computational design choices result in an NHT

that includes a Lipschitz regularization hyperparameter, L (see section 4.3.3

for details). Recall that for a fixed low-dimensional action, the Lipschitz con-

tinuity of NHT guarantees that ∥û1− û2∥ ≤ L∥c1− c2∥, where an agent takes

the same low-dimensional action a in both contexts c1 and c2. This subsection

presents results from experiments that aimed to study the sensitivity of agent

performance to different values of this Lipschitz regularization parameter.

In this experiment, we set every hyperparameter aside from the Lipschitz

parameter L to the best-performing configuration from our random hyper-

parameter search experiments (see section 6.3). We chose 6-7 values of the

Lipschitz parameter, and for each value trained NHT and then the agent with

30 random seeds. Figure 6.10 shows the results of this sensitivity study in the

WAM environments, while Figure 6.11 shows the results in the HalfCheetah

environment.
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Figure 6.11: Results of Lipschitz regularization sensitivity study in HalfChee-
tah. Vertical bars indicate standard deviation of agent performance.

The first observation we note from these results is that the optimal value

for L will be dependent on the environment; more precisely, it depends on the

relative scale of changes in context vs actuation vectors. In WAMWipe and

WAMGrasp, the best performing agents had a Lipschitz parameter value of

100 (note the log scale of the x-axis in both Figures). In HalfCheetah, the

best performing agent had a Lipschitz parameter value of 1.

Another observation is that the Lipschitz parameter may have an effect

on the variance of agent performance. In the WAM environments, the best

performing values of L resulted in smaller variance in performance across the

30 runs. In HalfCheetah, we did not observe a similar effect. Future work

should seek to better understand this potential correlation between the Lip-

schitz parameter and variance in agent performance, and analyze results for

statistical significance.

We also note that there are complex interactions between the hyperparam-

eters of NHT and the hyperparameters of the agents in these experiments.

These interactions are not well understood. Setting aside the complexity in-

troduced by NHT, even the interactions between different hyperparameters of

any particular implementation of DDPG are not well understood, for example.

The results presented in Figure 6.10 and Figure 6.11 should not be interpreted

as evidence that any particular value for L will always be optimal in these

environments. These are case studies for a particular fixed hyperparameter

57



configuration in each environment.

One conclusion we may draw from these experiments is that for certain

configurations, there is value in enforcing the Lipschitz continuity of NHT.

The results on WAMGrasp, for example, show this. The right-most value of

the Lipschitz parameter (104) is essentially no Lipschitz regularization; this

is the result one would obtain if they simply trained NHT with a standard

optimizer (e.g., unmodified Adam optimizer). We can see that the introduction

of Lipschitz regularization (i.e., decreasing the value of the L to around 100)

has a positive effect on performance. Too much Lipschitz regularization of

course damages performance. In the extreme, a Lipschitz parameter with a

value of zero would result in a fixed actuation basis that cannot change with

changing context (similar to the SVD action interface of section 6.3).
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Chapter 7

Conclusions

In this thesis, we proposed actuation subspace prediction as a novel problem

formulation for robotic control and an alternative to deep latent action models.

We derived the Neural Householder Transform model as a solution to actuation

subspace prediction and showed that it is smooth with respect to changes

in context. Through two teleoperation user studies, we found that SCL (an

earlier form of NHT) is a promising approach to enable humans to control high-

DOF manipulators with a simple joystick interface. In a large hyperparameter

search experiment, we found that reinforcement learning agents trained with

NHT outperformed agents trained to act in (1) the original actuation space,

(2) a global linear actuation basis computed by SVD, and (3) a state-of-the-

art deep latent action model, LASER, in novel WAMWipe and WAMGrasp

robotic manipulation environments, as well as in the standard HalfCheetah

environment.

The experiments involving reinforcement learning agents trained with an

NHT action interface were designed with the aim of minimizing the danger of

false positive results. Extensive hyperparameter searches were conducted not

just for the NHT agents but also for all of the baselines, including ablated vari-

ants of NHT. Conclusions were generally drawn with respect to distributions

of performance for each method.

Limitations and Future Work The approach to action mappings pre-

sented in this thesis has limitations that may be inherent to the problem of

controlling high degree-of-freedom systems with low-dimensional action inter-
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faces. Our results seem to empirically suggest that being locally constrained to

a subset of the actuation space has the potential to degrade the performance

of RL agents (see e.g., the performance of LASER in WAMGrasp). We hy-

pothesize that this is a result of the agent’s options being constrained (in some

states) to a subset of the actuation space that mostly contains joint velocity

vectors that are not useful/harmful. This can occur if the action mapping

model was not fully trained, or learned a non-ideal mapping.

An additional open problem is that it is not clear how NHT will perform

in manipulation tasks that involve significant discontinuous forces. In contrast

to the discontinuous nature of contact interactions, we have shown that the

actuation bases of NHT change smoothly with respect to context. However,

it is imaginable that discontinuities could be accounted for by a discontinuous

policy in the low-dimensional action space. We can also consider augmenting

our method with ideas from the force control and impedance control literature

as a promising future research direction.

Several open questions relating to NHT remain. First, how can we pre-

dict which pre-trained NHT models will be successful as action interfaces for

teleoperation or RL agents? A second open question is whether NHT can be

useful as an interface for visual servoing, or other alternative robotic control

methods. Third, will NHT with joint torque actuation bases be useful for

teleoperation? The NHT interfaces used in the HalfCheetah experiments did

include joint torque actuations, but this modality has not yet been explored

in the context of teleoperation.

Overall, NHT shows promise in providing a low-dimensional interface with

which to control high-dimensional systems for both humans and artificial

agents. As NHT can be viewed as a neural network architecture, or as a com-

putational tool for learning subspaces that correspond to continuous context

vectors, there may be additional applications outside of actuation subspace

prediction for which NHT is utilized in the future.
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Appendix A

Proofs

A.1 Smoothness of Exponential Map on Unit

Sphere

For the sphere, the exponential map at e1 is computed as

v(ξ) = e1cos(∥ξ∥) +
1

∥ξ∥

[
0
ξ

]
sin(∥ξ∥) (A.1)

where ξ ∈ Rn−1 and v ∈ Rn.

We are interested in the Jacobian of the Exponential map:

JExp(ξ) =


...

...
...

∂v(ξ)
∂ξ1

∂v(ξ)
∂ξ2

· · · ∂v(ξ)
∂ξn−1

...
...

...

 (A.2)

Given JExp(ξ), we can compute the directional derivative of v with respect to

a perturbation in the direction of unit vector δ as:

∇δv(ξ) = JExp(ξ)δ (A.3)

We will now show that ∥∇δv∥ ≤ 1, which implies that v is Lipschitz continuous

with Lipschitz constant 1:

∥v(ξ1)− v(ξ2)∥ ≤ LExp∥ξ1 − ξ2∥ (A.4)

with LExp = 1.
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Proof.

v(ξ) =


cos∥ξ∥

ξ1∥ξ∥−1sin∥ξ∥
ξ2∥ξ∥−1sin∥ξ∥

...
ξn−1∥ξ∥−1sin∥ξ∥

 (A.5)

We will compute ∂v
∂ξj

, the partial derivative of v with respect to each ξi. We

consider the first element of v independently, and then we write a general

expression for the remaining n− 2 terms of ∂v
∂ξj

.

First element of ∂v/∂ξj First note that the derivative of the 2-norm of a

vector with respect to a specific element in that vector is:

∂

∂ξj
∥ξ∥ =

ξj
∥ξ∥

(A.6)

Now, by the chain rule, we have

∂v1
∂ξj

=
∂

∂ξj
cos∥ξ∥ = −ξj∥ξ∥−1sin∥ξ∥ (A.7)

Remaining elements of ∂v/∂ξj First, we note the following:

∂

∂ξj
∥ξ∥−1 = − ξj

∥ξ∥3
(A.8)

which can be shown using the chain rule with our previous result regarding

∂
∂ξj

∥ξ∥. Now, consider ∂
∂ξj

ξi∥ξ∥−1, which has a different form depending on

whether i = j:
∂

∂ξj
ξi∥ξ∥−1 = ξi

∂

∂ξj
∥ξ∥−1 + ∥ξ∥−1 ∂

∂ξj
ξi (A.9)

which is just an application of the product rule. The left hand term includes

a factor ∂
∂ξj

ξi, which is equal to zero if i ̸= j, and equal to one if i = j. Hence

we can write:

∂

∂ξj
ξi∥ξ∥−1 = ξi

∂

∂ξj
∥ξ∥−1 + 1i=j∥ξ∥−1 (A.10)

= −ξiξj∥ξ∥−3 + 1i=j∥ξ∥−1 (A.11)

where 1 denotes the indicator function, that is:

1i=j =

{
1 i = j

0 i ̸= j
(A.12)
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Finally, it can be shown with an additional application of the product rule

that

∂vi+1

∂ξj
=

∂

∂ξj
ξi∥ξ∥−1sin∥ξ∥ (A.13)

= ξiξj∥ξ∥−2cos∥ξ∥+
(
1i=j − ξiξj∥ξ∥−2

)
∥ξ∥−1sin∥ξ∥ (A.14)

Thus the elements of ∂v/∂ξj can be written as:

∂vi+1

∂ξj
=

{
−ξj∥ξ∥−1sin∥ξ∥ i = 0

ξiξj∥ξ∥−2cos∥ξ∥+ (1i=j − ξiξj∥ξ∥−2) ∥ξ∥−1sin∥ξ∥ 1 ≤ i ≤ n− 1

(A.15)

We now return to ∇δv(ξ):

∇δv(ξ) = JExp(ξ)δ =
n−1∑
j=1

δj
∂v(ξ)

∂ξj
(A.16)

Here we will again treat the first element of ∇δv separately. We will denote

the ith element of ∇δv as [∇δv]i.

[∇δv]1 =
n−1∑
j=1

−δjξj∥ξ∥−1sin∥ξ∥ (A.17)

= −∥ξ∥−1sin∥ξ∥
n−1∑
j=1

δjξj (A.18)

= −⟨δ, ξ⟩∥ξ∥−1sin∥ξ∥ (A.19)

where ⟨δ, ξ⟩ denotes the inner (dot) product of δ and ξ.

Now, for the remaining elements of ∇δv:

[∇δv]i+1 =
n−1∑
j=1

δj
(
ξiξj∥ξ∥−2cos∥ξ∥

)
(A.20)

+
n−1∑
j=1

δj
(
1i=j − ξiξj∥ξ∥−2

)
∥ξ∥−1sin∥ξ∥ (A.21)

= ξi⟨δ, ξ⟩∥ξ∥−2cos∥ξ∥+
(
δi − ξi⟨δ, ξ⟩∥ξ∥−2

)
∥ξ∥−1sin∥ξ∥ (A.22)

To simplify the remaining algebra, we will define:

αi = ξi⟨δ, ξ⟩∥ξ∥−2 (A.23)

βi = ∥ξ∥−1(δi − αi) (A.24)
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which allows us to write [∇δv]i+1 simply as:

[∇δv]i+1 = αicos∥ξ∥+ βisin∥ξ∥ (A.25)

Now we consider the squared norm of ∇δv(ξ):

∥∇δv(ξ)∥2 =
n∑

i=1

[∇δv]
2
i (A.26)

= [∇δv]
2
1 +

n−1∑
i=1

[∇δv]
2
i+1 (A.27)

=
(
⟨δ, ξ⟩∥ξ∥−1sin∥ξ∥

)2
+

n−1∑
i=1

(αicos∥ξ∥+ βisin∥ξ∥)2 (A.28)

Let us consider the right-hand term separately:

n−1∑
i=1

(αicos∥ξ∥+ βisin∥ξ∥)2 (A.29)

=
n−1∑
i=1

α2
i cos

2∥ξ∥+ β2
i sin

2∥ξ∥+ 2αβcos∥ξ∥sin∥ξ∥ (A.30)

= cos2∥ξ∥
n−1∑
i=1

α2
i + sin2∥ξ∥

n−1∑
i=1

β2
i + 2cos∥ξ∥sin∥ξ∥

n−1∑
i=1

αβ (A.31)

Which leads us to examine
∑n−1

i=1 α2
i ,
∑n−1

i=1 β2
i , and

∑n−1
i=1 αβ. First, we will

consider
∑n−1

i=1 α2
i :

n−1∑
i=1

α2
i =

n−1∑
i=1

(
ξi⟨δ, ξ⟩∥ξ∥−2

)2
(A.32)

= ⟨δ, ξ⟩2∥ξ∥−4

n−1∑
i=1

ξ2i (A.33)

= ⟨δ, ξ⟩2∥ξ∥−4∥ξ∥2 (A.34)

= ⟨δ, ξ⟩2∥ξ∥−2 (A.35)
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Next, we consider
∑n−1

i=1 β2
i :

n−1∑
i=1

β2
i =

n−1∑
i=1

(
∥ξ∥−1(δi − αi)

)2
(A.36)

= ∥ξ∥−2

n−1∑
i=1

(
δ2i + α2

i − 2δiαi

)
(A.37)

= ∥ξ∥−2

(
n−1∑
i=1

δ2i +
n−1∑
i=1

α2
i − 2

n−1∑
i=1

δiαi

)
(A.38)

= ∥ξ∥−2

(
∥δ∥2 + ⟨δ, ξ⟩2∥ξ∥−2 − 2

n−1∑
i=1

δiξi⟨δ, ξ⟩∥ξ∥−2

)
(A.39)

= ∥ξ∥−2

(
1 + ⟨δ, ξ⟩2∥ξ∥−2 − 2⟨δ, ξ⟩∥ξ∥−2

n−1∑
i=1

δiξi

)
(A.40)

= ∥ξ∥−2
(
1 + ⟨δ, ξ⟩2∥ξ∥−2 − 2⟨δ, ξ⟩2∥ξ∥−2

)
(A.41)

= ∥ξ∥−2
(
1− ⟨δ, ξ⟩2∥ξ∥−2

)
(A.42)

(A.43)

where we use the fact that ∥δ∥ = 1. Finally, we consider
∑n−1

i=1 αβ:

n−1∑
i=1

αβ =
n−1∑
i=1

αi∥ξ∥−1(δi − αi) (A.44)

=
n−1∑
i=1

∥ξ∥−1(δiαi − α2
i ) (A.45)

= ∥ξ∥−1

(
n−1∑
i=1

δiαi −
n−1∑
i=1

α2
i

)
(A.46)

We saw in our calculation for
∑n−1

i=1 β2
i that

∑n−1
i=1 δiαi = ⟨δ, ξ⟩2∥ξ∥−2. We also

computed that
∑n−1

i=1 α2
i = ⟨δ, ξ⟩2∥ξ∥−2. Hence

∑n−1
i=1 δiαi =

∑n−1
i=1 α2

i , and the

right hand side of equation A.46 cancels to become zero.

n−1∑
i=1

αβ = 0 (A.47)
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Now, returning to the squared norm of ∇δv(ξ), we substitute the results of

our computations for the terms involving α and β:

∥∇δv(ξ)∥2 = ⟨δ, ξ⟩2∥ξ∥−2sin2∥ξ∥+
n−1∑
i=1

(αicos∥ξ∥+ βisin∥ξ∥)2 (A.48)

= ⟨δ, ξ⟩2∥ξ∥−2sin2∥ξ∥+ cos2∥ξ∥
n−1∑
i=1

α2
i + sin2∥ξ∥

n−1∑
i=1

β2
i (A.49)

= ⟨δ, ξ⟩2∥ξ∥−2sin2∥ξ∥+ ⟨δ, ξ⟩2∥ξ∥−2cos2∥ξ∥+ sin2∥ξ∥
n−1∑
i=1

β2
i

(A.50)

= ⟨δ, ξ⟩2∥ξ∥−2
(
sin2∥ξ∥+ cos2∥ξ∥

)
+ sin2∥ξ∥

n−1∑
i=1

β2
i (A.51)

= ⟨δ, ξ⟩2∥ξ∥−2 + sin2∥ξ∥
n−1∑
i=1

β2
i (A.52)

= ⟨δ, ξ⟩2∥ξ∥−2 + ∥ξ∥−2
(
1− ⟨δ, ξ⟩2∥ξ∥−2

)
sin2∥ξ∥ (A.53)

= ⟨δ, ξ⟩2∥ξ∥−2 + ∥ξ∥−2sin2∥ξ∥ − ⟨δ, ξ⟩2∥ξ∥−4sin2∥ξ∥ (A.54)

= ⟨δ, ξ⟩2∥ξ∥−2
(
1− ∥ξ∥−2sin2∥ξ∥

)
+ ∥ξ∥−2sin2∥ξ∥ (A.55)

We know that ∥ξ∥−2sin2∥ξ∥ ≤ 1, so the left hand term in equation A.55 is

always positive. Hence, ∥∇δv(ξ)∥2 is maximized whenever δ is in the same

direction as ξ. When this is the case, ⟨δ, ξ⟩ = ∥ξ∥ (recall that ∥δ∥ = 1). We

then have:

max ∥∇δv(ξ)∥2 = max ⟨δ, ξ⟩2∥ξ∥−2
(
1− ∥ξ∥−2sin2∥ξ∥

)
+ ∥ξ∥−2sin2∥ξ∥

(A.56)

= ∥ξ∥2∥ξ∥−2
(
1− ∥ξ∥−2sin2∥ξ∥

)
+ ∥ξ∥−2sin2∥ξ∥ (A.57)

= 1− ∥ξ∥−2sin2∥ξ∥+ ∥ξ∥−2sin2∥ξ∥ (A.58)

= 1 (A.59)

Hence max ∥∇δv(ξ)∥2 = 1 for all ξ, and therefore max ∥∇δv(ξ)∥ = 1, which

implies that the exponential map on the unit sphere at e1 is Lipschitz contin-

uous with Lipschitz constant LExp = 1.
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A.2 Smoothness of Q(v̄)

In this section we prove the Lipschitz continuity of Q(v̄), as stated in theorem

1.

Theorem 1. Let v̄1, v̄2 ∈ Rnk be constructed from k stacked unit n-vectors,

and Q(v̄) be the product of the corresponding Householder reflections (as de-

fined in Eq. 4.7, 4.8). Then,

∥Q(v̄1)−Q(v̄2)∥ ≤ LQ∥v̄1 − v̄2∥ (4.20)

where LQ = 2
√
k.

We write Hi as shorthand for H(vi) = I − 2viv
⊤
i . We write v̄ ∈ Rnk to

denote the concatenated column vector of vi ∈ Rn: v̄ = [v⊤
1 ,v

⊤
2 , . . . ,v

⊤
k ]

⊤.

We denote the map from v̄ to the corresponding product of reflections as

Q : v̄ 7→ Q(v̄), where

Q(v̄) = H(v1)H(v2) · · ·H(vk) (A.60)

We likewise write δ̄ ∈ Rnk to denote the concatenated vector of perturba-

tions to each vi

δ̄ =


δ′
1

δ′
2
...
δ′
k

 =


c1δ1

c2δ2
...

ckδk

 (A.61)

where ∥δ̄∥ = 1, with scalars ci ∈ R scaling the unit norm δi vectors that

represent the direction of change for each vi. We consider the directional

derivative of Q(v̄) in the direction of δ̄:

∇δ̄Q(v̄)
.
= lim

ϵ→0

Q(v̄ + ϵδ̄)−Q(v̄)

ϵ
(A.62)

where ∥δ̄∥ = 1.

The existence of a positive constant LQ that bounds ∥∇δ̄Q(v̄)∥ implies

Lipschitz continuity of Q(v̄):

∥Q(v̄1)−Q(v̄2)∥ ≤ LQ∥v̄1 − v̄2∥ (A.63)
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for all v̄1, v̄2 constructed with k stacked unit n-vectors. We explicitly compute

such an LQ below. As a first step, we show in section A.2 that ∥∇δH(v)∥ = 2.

We will then use this result to compute an upper bound on LQ in section A.2.

Lipschitz Continuity of H(v)

The directional derivative of H(v) in the direction of δ is defined as:

∇δH(v)
.
= lim

ϵ→0

H(v + ϵδ)−H(v)

ϵ
(A.64)

where δ ∈ Rn. Recall that v is in the n−1 sphere, and thus any instantaneous

change to v must occur in a direction tangent to the sphere at v; that is,

δ ⊥ v. Furthermore, without loss of generality, we let ∥δ∥ = 1. Thus, δ is a

unit vector in the direction of the perturbation of v.

We first simplify the first term in the numerator:

H(v + ϵδ) = I− 2(v + ϵδ)(v + ϵδ)⊤ (A.65)

= I− 2(vv⊤ + ϵδv⊤ + ϵvδ⊤ + ϵ2δδ⊤) (A.66)

= I− 2vv⊤ − 2(ϵδv⊤ + ϵvδ⊤ + ϵ2δδ⊤) (A.67)

= H(v)− 2(ϵδv⊤ + ϵvδ⊤ + ϵ2δδ⊤) (A.68)

Substituting the result into the definition of ∇δH(v), we have:

∇δH(v) = lim
ϵ→0

−2(ϵδv⊤ + ϵvδ⊤ + ϵ2δδ⊤)

ϵ
(A.69)

= lim
ϵ→0

−2(δv⊤ + vδ⊤ + ϵδδ⊤) (A.70)

= −2(δv⊤ + vδ⊤) (A.71)

Now we compute ∥∇δH(v)∥. Note that the symmetry of the sphere guarantees

that ∥∇δH(v)∥ is invariant with respect to both δ and v.

∥∇δH(v)∥ .
= max

x ̸=0

∥∇δH(v)x∥
∥x∥

(A.72)

The numerator is maximized when x is in the plane spanned by v and δ.

Given this is the case, we can write x as a linear combination of v and δ. Let

x = αv + βδ (A.73)
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for some α, β ∈ R. We then have the following:

∥∇δH(v)∥ = max
x ̸=0

∥∇δH(v)x∥
∥x∥

(A.74)

= max
x ̸=0

∥ − 2(δv⊤ + vδ⊤)x∥
∥x∥

(A.75)

= 2
∥(δv⊤ + vδ⊤)(αv + βδ)∥

∥x∥
(A.76)

= 2
∥αδv⊤v + αvδ⊤v + βδv⊤δ + βvδ⊤δ∥

∥x∥
(A.77)

= 2
∥αδv⊤v + βvδ⊤δ∥

∥x∥
(A.78)

= 2
∥αδ + βv∥

∥x∥
(A.79)

where equation A.78 follows from A.77 by the fact that δ ⊥ v. Equation A.79

follows from the fact that both δ and v have unit norm.

Now, recall that x = αv+ βδ. The numerator in A.79 represents a simple

change of basis for x. Since δ and v are orthonormal, this change of basis

preserves the norm of x. Hence ∥αδ + βv∥ = ∥x∥, and we have:

∥∇δH(v)∥ = 2 (A.80)

This implies H(v) is Lipschitz continuous with Lipschitz constant 2.

Lipschitz Continuity of Q

We now consider the directional derivative of Q(v̄) in the direction of δ̄:

∇δ̄Q(v̄)
.
= lim

ϵ→0

Q(v̄ + ϵδ̄)−Q(v̄)

ϵ
(A.81)

where ∥δ̄∥ = 1. Recall:

δ̄ =


δ′
1

δ′
2
...
δ′
k

 =


c1δ1

c2δ2
...

ckδk

 (A.82)

Theorem 1. Let v̄1, v̄2 ∈ Rnk be constructed from k stacked unit n-vectors,

and Q(v̄) be the product of the corresponding Householder reflections (as de-

fined in Eq. 4.7, 4.8). Then,

∥Q(v̄1)−Q(v̄2)∥ ≤ LQ∥v̄1 − v̄2∥ (4.20)

76



where LQ = 2
√
k.

Proof. We begin by expanding the numerator of ∇δ̄Q

∇δ̄Q(v̄) = lim
ϵ→0

H(v1 + ϵδ′
1)H(v2 + ϵδ′

2) · · ·H(vk + ϵδ′
k)−Q(v̄)

ϵ
(A.83)

We now consider the first term in the numerator. In the following we write

Hi as shorthand for H(vi), and ∇Hi as shorthand for ∇δiH(vi), the derivative

of H(vi) as defined in equation (A.64).

H(v1 + ϵδ′
1)H(v2 + ϵδ′

2) · · ·H(vk + ϵδ′
k) (A.84)

= (H1 + ϵc1∇H1)(H2 + ϵc2∇H2) · · · (Hk + ϵck∇Hk) +O(ϵ2) (A.85)

= H1H2 · · ·Hk + ϵc1(∇H1)H2 · · ·Hk + ϵc2H1(∇H2)H3 · · ·Hk + . . . (A.86)

+ ϵckH1H2 · · ·Hk−1(∇Hk) +O(ϵ2)
(A.87)

= Q(v̄) + ϵc1(∇H1)(
k∏

i=2

Hi) + ϵc2H1(∇H2)(
k∏

i=3

Hi) + · · ·+ ϵck(
k−1∏
i=1

Hi)(∇Hk) +O(ϵ2)

(A.88)

= Q(v̄) + ϵ
k∑

j=1

cj

[
(

j−1∏
i=1

Hi)(∇Hj)(
k∏

l=j+1

Hl)

]
+O(ϵ2) (A.89)

and substitute the result into the definition of ∇δ̄Q(v̄):

∇δ̄Q(v̄) = lim
ϵ→0

Q(v̄) + ϵ
∑k

j=1 cj

[
(
∏j−1

i=1 Hi)(∇Hj)(
∏k

l=j+1 Hl)
]
+O(ϵ2)−Q(v̄)

ϵ

(A.90)

=
k∑

j=1

cj

[
(

j−1∏
i=1

Hi)(∇Hj)(
k∏

l=j+1

Hl)

]
(A.91)
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We now work toward bounding the norm of ∇δ̄Q(v̄):

∥∇δ̄Q(v̄)∥ =

∥∥∥∥∥
k∑

j=1

cj

[
(

j−1∏
i=1

Hi)(∇Hj)(
k∏

l=j+1

Hl)

]∥∥∥∥∥ (A.92)

≤
k∑

j=1

cj

∥∥∥∥∥(
j−1∏
i=1

Hi)(∇Hj)(
k∏

l=j+1

Hl)

∥∥∥∥∥ (A.93)

=
k∑

j=1

cj∥∇Hj∥ (A.94)

≤

√√√√ k∑
j=1

c2j

√√√√ k∑
j=1

∥∇Hj∥2

 (A.95)

=
∥∥δ̄∥∥

√√√√ k∑
j=1

∥∇δjH(vj)∥2 (A.96)

=

√√√√ k∑
j=1

(2)2 (A.97)

= 2
√
k (A.98)

Where equation (A.94) is thanks to the fact that each of theHi in the preceding

equation are orthogonal, and equation (A.95) follows by the Cauchy-Schwarz

inequality.

Hence, the norm of the directional derivative of Q(v̄) is bounded by 2
√
k;

that is:

∥∇Q(v̄)∥ ≤ 2
√
k (A.99)

which implies

∥Q(v̄1)−Q(v̄2)∥ ≤ LQ∥v̄1 − v̄2∥ (A.100)

with Lipschitz constant LQ = 2
√
k.
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