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Abstract

Data reconciliation methods play an important role in minimizing the measurement

error and gross error that are present in the process data with respect to the pro-

cess model. On the other hand, causal analysis helps in determining the relationship

among the process variables from the data. It is important to note that these afore-

mentioned methods help in understanding the process data better, provide valuable

insights of the process and contribute to improving the decision making strategies

in the day to day process operation. In this thesis, we develop approaches based

on probabilistic graphical models to address the problems in data reconciliation and

causal inference.

In the first part of the thesis, the problem of data reconciliation with state

uncertainties is addressed in the framework of probabilistic graphical models. In

many existing formulations for data reconciliation, process models are assumed to be

error free. However, while operating the process in real time, process models can suffer

from model inaccuracies, leading to uncertainties in states. This work introduces a

new method for data reconciliation developed in the framework of Bayesian network,

accounting for the state uncertainties. A novel method to construct acyclic Bayesian

networks for process networks with recycle streams is proposed in this work. This

method is also extended for data reconciliation of partially measured systems. The

solution is obtained by utilising a Bayesian network model translated from the process

model and using statistical inference techniques to estimate the reconciled values of

the states. The efficacy of the proposed data reconciliation schemes is demonstrated

on three case studies namely Simple Flow Network, Mineral Processing Unit (without

Recycle) and Mineral Beneficiation Process (with Recycle).
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In the second part of the thesis, novel methods are proposed for causal network

modelling. First, a framework for causality analysis based abnormal event prediction

is proposed. Also, a methodology to construct causal network of the process systems

using finite impulse response model with sparsity constraints and process knowledge is

developed. Using causal network reconstructed from data and the process knowledge,

we develop and test process monitoring hypotheses. Efficacy of the proposed approach

is illustrated using a real industrial process case study of flooding and weeping in a

distillation column. Further, we discuss the outcomes and the findings from the field

implementation of process monitoring framework.

Further, a methodology for causal analysis is developed that makes use of only the

process data without any information about the process knowledge. In this method,

the sparse inverse covariance estimation is coupled with dynamic likelihood score,

and a two-step approach is proposed to address the problem of causal analysis. The

estimation of sparse inverse covariance matrix for undirected sparse network recon-

struction is performed with L0 norm constraint in the framework of greedy sparse

simplex (GSS) algorithm. Further, the GSS algorithm is suitably modified to incor-

porate the additional constraint of positive semi-definiteness of the inverse covariance

matrix. To determine the causal direction among the variables, dynamic likelihood

score is computed for the associated variables in the reconstructed network in the

second step. The efficacy of the proposed approach for causal analysis is illustrated

using a numerical example and an industrial application on prediction of flooding and

weeping in a deethanizer column associated with a fluid catalytic cracking unit.
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Chapter 1

Introduction

1.1 Motivation

Process industries operate in a continuous and relentless manner to meet out the de-
mand and also to maintain the quality of the products that are being manufactured.
In chemical processes, due to the complexity in physical connections, operations and
other types of external disturbances, process variables tend to fluctuate around the
desired operating conditions causing an increase in material and energy consumption,
process upsets, throughput reduction and at times drive the process to temporary shut
down for maintenance. Therefore, to regulate the process in desired condition and
to achieve hazard free operation, process variables are measured on-line and neces-
sary decisions are made hierarchically. In order to achieve this objective, some of the
commonly known approaches used are data reconciliation and causal inference. Due
to the continuous measurement of process variables across the plant, large amount
of data are generated over the time, which enables the industries to leverage ana-
lytics for deriving valuable insights from the process data and also to prune their
decision making process. At the same time, it is important to account for the noise
in process data, generated from the on-line measuring instruments and also due to
the variability within the process. Since the analytics methods are sensitive to data
quality, results obtained are subject to variations depending on the amount of noise
present in the data. Therefore, to mitigate the effect of noise in the results and also
to make them consistent with the actual process, as a pre-processing step, process
data are subjected to data reconciliation [1]. In the actual problem, process model is
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assumed to be deterministic. However, the model can be uncertain due to inaccura-
cies and using it might make the data reconciliation inaccurate. In the past decade,
process data analytics gained enormous momentum than ever before due to various
reasons and have been used extensively in the industries to address the problems in
soft sensor design, estimation, fault detection & diagnosis etc [2, 3, 4]. In the course
of development, various methods have been proposed in the literature [3, 5] to ad-
dress the issues and improve the performance of the tools that fall under the scope
of process data analytics. Inspite of the positive and promising outcomes achieved
using the analytics, skepticism surrounds them due to the difficulty in interpretation
of the results from physics perspective. In order to address this problem, the concept
of probabilistic graphical models was integrated with statistical learning.

Probabilistic graphical models are considered to be one of the unique advances in
the field of artificial intelligence and statistical learning theory. Given the set of
random variables and their distribution, theory of probabilistic graphical models pro-
vides necessary conditions to illustrate the relationship among them as a graphical
model and also as conditional probability distribution [6]. Due to its ability to decode
the relationship among the random variables, probabilistic graphical models and the
foundations of causal inference are considered to be pivotal for the development of
interpretable statistical learning algorithms. Irrespective of its interpretation capabil-
ities, probabilistic graphical model as an independent entity, are useful in illustrating
the data-driven models in the graphical format for better understanding of the re-
spective models [7] and also to model the uncertainties [6].

Therefore, in this thesis, novel methods are proposed to address the problems associ-
ated with data reconciliation and causal inference using the concept of probabilistic
graphical models. In data reconciliation problem, Bayesian network based approach is
proposed accounting for state uncertainties. In causal inference problem, a framework
is proposed for the prediction of abnormal events in process operation such as flood-
ing and weeping. Also, sparse inverse covariance estimation coupled with dynamic
likelihood score is proposed for causal inference. Later in the thesis, efficacy of the
proposed methods are demonstrated using intensive simulations and in an industrial
application of flooding and weeping. In the forthcoming sections, contributions and
outline of the thesis are detailed.
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1.2 Thesis Contributions

The thesis contributes on the development of approaches for data reconciliation and
causal inference in the framework of probabilistic graphical models. To be more
specific, algorithms and techniques are proposed to address the problem of data rec-
onciliation in uncertain systems and also to resolve the issue of flooding and weeping
in distillation columns. Contributions of the thesis are listed in detail as follows.

1. A novel method for data reconciliation using Bayesian network, accounting for
uncertainty in the state variables and probabilistic representation of process
network model as a Bayesian network, with the preservation of process logic
and Bayesian network properties, is proposed.

2. A novel row echelon reduction based approach is proposed to achieve acyclic
construction of Bayesian network for process networks with recycle. This row
echelon reduction method is also extended for data reconciliation of partially
measured systems.

3. Algorithms are developed for statistical inference of measured and unmeasured
state variables through Maximum Likelihood (MLE) estimation, Maximum-a-
Posteriori (MAP) estimation and Particle Expectation Maximization (Particle-
EM) estimation methods. Demonstrated the advantages of the proposed data
reconciliation schemes through simulation studies covering three benchmark
systems.

4. An approach integrating the findings of data-driven model with that of the
process knowledge is proposed for the reconstruction of causal network. Finite
impulse response model is identified with L0 & L1 constraint to extract the
information of possible causal variables. In the course of addressing the problem,
FIR model with L0 constraint is identified using greedy sparse simplex algorithm
and analytical expressions are derived to arrive at the solution.

5. Hypotheses driven approach is also proposed for early prediction of flooding and
weeping in process operation. Efficacy of the proposed framework is demon-
strated in an industrial case study, where causal network is constructed and
monitoring rules are implemented for flooding and weeping detection in a deeth-
anizer column associated with FCC unit. Findings are then implemented in the
Industry to prevent the flooding and weeping events in real-time.
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6. Sparse inverse covariance estimation approach is integrated with causality mea-
sures for causal inference in process data. The proposed problem, in the presence
of L0 constraint becomes non-convex optimization problem which is solved us-
ing greedy sparse simplex method [8] to achieve near global optimal solution.
The algorithm is modified to account for the additional positive semi-definite
constraint on the inverse covariance matrix.

7. Dynamic likelihood score is derived to determine the causal direction in the
estimated undirected graph. The proposed approach for causal analysis is il-
lustrated with a numerical and an industrial case study. In particular, the root
cause and causal map for flooding and weeping in a deethanizer associated with
Fluid catalytic cracking (FCC) is identified in the industrial case study.

1.3 Thesis Outline

The thesis is organized as follows

In Chapter 2, the problem of data reconciliation is introduced and a detailed
discussion on Bayesian network types and their properties are provided. Then, the
concept of degrees of freedom is introduced for linear system of equations along with
the conditions for the consistency of linear system of equations. Following the pre-
liminaries, the proposed Bayesian network approach for data reconciliation for the
system with state uncertainties and recycle streams is discussed. A novel method
to construct acyclic Bayesian networks for process networks with recycle streams is
proposed in this work. This method is also extended for data reconciliation of par-
tially measured systems. The solution is obtained by utilising a Bayesian network
model translated from the process model and using statistical inference techniques to
estimate the reconciled values of the states. The efficacy of the proposed data recon-
ciliation schemes is demonstrated on three case studies namely Simple Flow Network,
Mineral Processing Unit (without Recycle) and Mineral Beneficiation Process (with
Recycle).

Chapter 3 describes the methodology for the prediction of flooding and weeping in
process operations based on causal inference. Here, the method to reconstruct causal
network using finite impulse response model with sparsity constraint and process
knowledge is described in detail. Then, an approach proposed for the prediction of
flooding and weeping using the causal information is discussed. Later, the proposed
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methodology is demonstrated in an industrial case study of flooding and weeping
prediction in a deethanizer column.

Chapter 4 proposes a novel approach for data-driven causal network reconstruc-
tion for process data analytics by integrating sparse inverse covariance estimation
with causal score computation. The estimation of sparse inverse covariance matrix
for undirected sparse network reconstruction is performed with L0 norm constraint
in the framework of greedy sparse simplex (GSS) algorithm. Further, the GSS algo-
rithm is suitably modified to incorporate the additional constraint of positive semi-
definiteness of the inverse covariance matrix. To determine the causal direction among
the variables, dynamic likelihood score is computed for the associated variables in the
reconstructed network in the second step. The efficacy of the proposed approach for
causal analysis is illustrated using a numerical case study and an industrial applica-
tion on prediction of flooding and weeping in a deethanizer column associated with a
fluid catalytic cracking unit.

Chapter 5 provides conclusion for the thesis chapters along with future extensions
of the present work.

5



Chapter 2

Bayesian Network approach for Data

Reconciliation with State

Uncertainties and Recycle Streams

2.1 Introduction

Process variables such as temperature, flow-rate and concentration, when measured
online, are corrupted with random sensor noise. Using these noisy measurements di-
rectly for process control applications can lead to considerable deterioration of closed
loop performance. To resolve this problem, the data reconciliation technique was
introduced by David and Kuehn (1961), where the process data is corrected with the
help of steady state material and energy balance models of the process (as shown in
Figure 2.1). Data reconciliation is widely used in the industry as a pre-processing
technique. The corrected estimates of the measurements obtained by data reconcil-
iation will help in achieving effective monitoring of the process, closed loop control
and real-time optimization.
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Figure 2.1: Outline of Data reconciliation

In general, data reconciliation is formulated as constrained optimization problem with
available process models as constraints [9, 1]. From probabilistic perspective, data
reconciliation can be addressed as Maximum Likelihood estimation (MLE) [10] or
Maximum a Posteriori estimation problem (MAP). Data reconciliation problem for-
mulated initially for the linear systems was later extended to nonlinear systems by
linearizing the nonlinear model around the steady state [11, 12]. Nonlinear data rec-
onciliation is also solved using nonlinear programming methods such as sequential
quadratic programming (SQP). Some of the recent developments in data reconcili-
ation are based on formulating the problem in statistical learning frameworks such
as Principal Component Analysis [13, 14], Bayesian inference [15] and Expectation
Maximization [16]. In principal components based method, process network is recon-
structed from the data coupled with de-noising, which is later shown as the reconciled
value [13]. This method is also extended to nonlinear data reconciliation using Kernel
PCR [14]. In Bayesian method for data reconciliation [15], a statistical framework (Hi-
erarchical Bayesian) is proposed for data reconciliation and gross error detection, with
the inference of true state and corresponding parameters by Maximum–a–Posteriori
(MAP) approach. In Expectation Maximization (EM) approach [16], the EM algo-
rithm is utilized to carry out simultaneous data reconciliation and gross error de-
tection. In general, data reconciliation accounts only for the error in measurement
model and does not consider the error in process model. However, performing rec-
onciliation without accounting for uncertainty in process model [17, 18] might lead
to inaccurate reconciled value. Thus, accounting for process model uncertainty in
solving data reconciliation is of utmost importance for obtaining accurate estimates.
To overcome the issue of model inaccuracy in data reconciliation, methods are pro-
posed in literature [19, 17], in which model parameters are assumed to be uncertain
and the problem is reformulated as simultaneous data reconciliation and parameter
estimation. Apart from uncertainty in parameters, uncertainties in the models can
also arise due to uncertainties in the state. Here, the state refers to a process variable
whose measurement is corrupted with noise. Under a Bayesian network framework
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to be introduced next, this state is a hidden variable to be estimated. In this work,
data reconciliation accounting for uncertainty in states is addressed in the Bayesian
network framework.

Bayesian network, a member of probabilistic graphical model family [6], provides a
framework to effectively address problems involving uncertainty. Bayesian network is
represented as directed acyclic graph (G) with nodes (N) and edges (V), in which each
node represents a random variable, following certain distribution, and edges between
the nodes represent the logical relationship among them. The main advantage of
Bayesian network lies in its compact representation of joint density of several random
variables by the use of conditional independence relation among them. From the
application perspective, Bayesian network has been utilised in the domain of fault
detection and diagnosis. Here, the cause and effect relation of the process variables is
built based on the process knowledge provided by process flow diagram and process
data. Bayesian network developed, through inference and identification rules, is used
to identify the location of fault [20, 21, 22]. In addition, Bayesian network plays
an important role in the field of expert systems by helping the users in making key
decisions at the right instant [23]. The ability of Bayesian networks in handling
uncertainty is the main motivation for this work to use them as a tool to reformulate
the data reconciliation problem accounting for uncertainties in the state. So far in the
literature of process systems engineering, data reconciliation and Bayesian networks
(knowledge based models) have been considered as two separate topics.

This work aims at addressing the data reconciliation problem from Bayesian Net-
work perspective, with state uncertainties taken into account in order to achieve
better estimates of true states. At first, a process network model is considered and
interpreted probabilistically, which is then translated into a Bayesian network with
preservation of process logic and network properties. With the help of available mea-
surements and the Bayesian network constructed from the process model, algorithms
are developed in this work to make estimates of the states using three different sta-
tistical inference methods, namely i). Maximum Likelihood Estimation (MLE), ii).
Maximum–a-Posteriori (MAP) estimation and iii). Particle Expectation Maximiza-
tion (Particle-EM). The directed acyclic property of the Bayesian network requires
that the Bayesian network constructed from the process network model should be free
from any recycle loop. However, in practice, process networks do have multiple recy-
cle streams; hence, direct translation of process model will violate the directed acyclic
property of Bayesian network. In order to construct Bayesian networks with acyclic
structure for process networks with recycle streams, a novel row echelon reduction
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approach is proposed and demonstrated in this work. For systems with partial mea-
surement of states, data reconciliation is another challenging problem. In this work,
the row reduction approach developed for systems with recycle streams is extended to
address Bayesian network based data reconciliation for partially measured systems.
The efficacy of the proposed Bayesian network based data reconciliation schemes is
demonstrated on three benchmark case studies namely (a). Simple Flow network [9];
(b). Mineral Processing Unit [24] and (c). Mineral Beneficiation Process [25]. The
performance of the proposed Bayesian network schemes for data reconciliation com-
pares well with some of the existing schemes from the literature and their advantages
over the existing methods are demonstrated in this work.

2.2 Data Reconciliation

Consider a linear steady state model represented by

Ax = 0 (2.1)

where, A corresponds to incident matrix of process network with dimension RMp×N ,
Mp is the number of process units and N is the number of process streams connecting
the process units. x is the vector of true state with dimension RN×1. The measurement
model is given as

y = x+ ϵ (2.2)

where, y is the vector of measurements with dimension RN×1. The measurement
corrupted with random error ϵ is modelled as zero mean white noise following Gaussian
distribution with covariance (Σy) i.e. ϵ ∼ N (0,Σy).

By considering the steady state model in Eq. 2.1 and measurement model in Eq. 2.2,
the conventional data reconciliation problem is formulated as constrained weighted
least squares problem and is represented as follows

x̂ = min
x

(y − x)T (Σy)
−1(y − x) (2.3)

s.t. Ax = 0

Optimal value of the state obtained by solving the aforementioned optimization prob-
lem is taken as the reconciled value of the process variable. By solving the constrained
least squares problem given in Eq. 2.3, following analytical expression is obtained.

x̂ = [I − ΣyA
T (AΣyA

T )−1A]y (2.4)
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From the assumptions that the measurements are independent, the reconciliation
problem can be posed in probabilistic framework as maximum likelihood estimation
(MLE) problem, where the reconciled estimates are obtained by maximizing the prob-
ability of measurements, which is given as

x̂ = argmax
x

P (y|x) (2.5)

s.t Ax = 0

In the scenario where the prior information about the probability distribution of the
true state variable is available, maximum likelihood estimation (MLE) problem given
in Eq. 2.5 can be reformulated as maximum a posteriori (MAP) estimation problem,
which is given as

x̂ = argmax
x

P (y|x)P (x) (2.6)

s.t Ax = 0

The conventional formulations given by Eq. 2.3, 2.5 and 2.6 are proposed in the
literature [9] under the assumption that the process is in perfect steady state and the
constraints represent the process behaviour exactly. However, possible uncertainties
in the state can result from model – plant mismatch, reduction of the large scale
model, and unaccounted retrofit of the existing process [17]. Thus, under such
uncertain conditions, reconciling or estimating process variables through conventional
approaches may yield inaccurate estimates of the state variables. To the best of our
knowledge, formulations proposed so far to address the uncertainty in process model
account only for the uncertainty in model parameter and the problem is solved as
simultaneous data reconciliation and parameter estimation [19, 18]. In the present
work, a data reconciliation scheme accounting for the state uncertainty is proposed
and the problem is solved under Bayesian network framework.

Following assumptions are made in developing the proposed data reconciliation schemes.

Assumption. 1

Process variables, also defined as states (x) in this work, tend to be uncertain, with
uncertainty following Gaussian distribution with zero mean and variance (σ2

x). The
magnitude of uncertainty in the process model is reflected as the variance (σ2

x) in the
state variable.

Assumption. 2

Measurements of the process variables are unbiased and free of gross errors. Further,
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it is assumed that process variables have some redundancy and they are observable
unless stated otherwise.

2.3 Bayesian Network

Bayesian network, a member of probabilistic graphical model family, represents the
random variables and relationship among these variables by means of conditional
dependence via directed acyclic graph (DAG) structure (G) [6]. In this graphical
representation of the system, variables are the nodes (N) and vertices (V) connecting
the nodes represent the relationship among these variables. From the graph theory
perspective, a graph G is represented as follows

G = (N, V )

In Bayesian network, the source node is defined as a parent node and the terminal
node is defined as a child node. Let Z = (Z1,Z2,. . .ZM) be a set of random vari-
ables. Depending upon the type of relationship between these variables, a Bayesian
network representing this relationship is classified as one of the three fundamental
directed acyclic graph (DAG) structures (Figure 2.2) namely Chain, Common Cause
and Common Effect.

Figure 2.2: Directed acyclic Graph structure of Bayesian networks(A. Chain, B. Com-

mon Cause, C. Common effect)
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2.3.1 Chain

Among the three Bayesian network structures, chain is assumed to be simplest in
structure as shown in Figure 2.2(A). Here, the random variables are connected to
one another in the form of chain with the single child (Z2) for a parent (Z1) or
single parent (ZM−1) for a child (ZM), source node (Z1) stays without any parent and
terminal node (ZM) stays without any children. The joint probability distribution
of the variables in chain structure given in Figure 2.2(A) can be represented as the
product of independent conditional distribution given in Eq. 2.7.

P (Z1, Z2, ...ZM−1, ZM) = P (ZM | ZM−1)...P (Z2 | Z1)P (Z1) (2.7)

2.3.2 Common Cause

Common cause network is a type of Bayesian network structure where a parent is
expected to have two or more children as shown in Figure 2.2(B). In general, this can
be stated as variable with confounders. Joint probability distribution and conditional
independence of the variables representing common cause Bayesian network can be
represented as Eq. 2.8.

P (Z1, Z2, ...ZM−1, ZM) = P (Z2 | Z1)P (Z3 | Z1)...P (ZM | Z1)P (Z1) (2.8)

2.3.3 Common Effect

Common effect network is another important Bayesian network structure where two or
more parents share a common children as shown in Figure 2.2(C). Similar to chain and
common cause Bayesian networks, the joint distribution of the variables in common
effect Bayesian network can be represented as product of conditional distribution as
given in Eq. 2.9.

P (Z1, Z2, ...ZM−1, ZM) = P (Z1 | Z2, Z3, ...ZM)P (Z2)P (Z3)...P (ZM) (2.9)

The probabilistic model corresponding to the aforementioned three fundamental net-
work structures given in Figure 2.2 can be generalized and presented as,
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P (Z1, ..., ZM) =
M∏︂
i=1

P (Zi|PaZi
)P (PaZi

)

Zi ̸∈ PaZi
, Zi ∈ PaCZi

&PaZi
∈ ZC

i .

where, P (Z1, ..ZM) is the joint probability distribution, P (Zi | PaZi
) is the condi-

tional probability distribution and PaZ corresponds to parent of the variable Z. Z

and PaZ are considered to be a tuple of variables (finite sequence) with Z being a
complement of PaZ and PaZ being complement of Z. In Bayesian networks, proba-
bility distribution is chosen usually from an exponential family of distributions and
it can be a continuous or a discrete type.

2.3.4 D-Separation

D – Separation, also known as directional separation, helps in deciding the indepen-
dence among the given set of variables and its corresponding Bayesian network. For
a better understanding of the concept, let us consider a set of three random variables
X,Y,Z, whose joint distribution and conditional independence are represented as the
following

P (X, Y, Z) = P (X | Y )P (Y | Z)P (Z)

Then, D - Separation for the mentioned set of variables, with the assumption of Y to
be known, can be represented as (Z ⊥⊥ X | Y ). Now, with the assumption of Z to be
known, D - Separation can be stated as (X ⊥̸⊥ Y | Z).

2.3.5 Markov Blanket

An important property of a Bayesian network is Markov blanket, which is a boundary
around an arbitrary node with its parents, children and co-parents of the children in
the boundary. This concept can be understood from the arbitrary network provided
in Figure 2.3. From the given arbitrary network, Markov blanket can be constructed
around the node Z6 using the variables Z5, Z8 (Parent), Z1, Z7 (Children) and Z2

(Co-parent). Markov blanket provides the knowledge that is essential to build joint
distribution around a node in the Bayesian network. This principle also holds for the
undirected graphical models like Markov random field. Details about the properties
of Bayesian network and general graphical models can be found in [6].
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Figure 2.3: Markov Blanket in Graphical Model

2.3.6 Degrees of Freedom

Degrees of freedom indicates the minimum number of variables that are required to
uniquely determine the solution for a system of equations. Degrees of freedom Nd is
defined as

Nd = Nuk −Neq (2.10)

where, Nuk is the number of unknowns and Neq is the number of independent equa-
tions representing the mathematical model of a system. In other words, the degrees
of freedom can be interpreted as the information requirement for defining a system,
where the information refers to the number of known and unknown variables that are
essential to determine the unique solution. Using the degrees of freedom as the basis,
Bayesian network structure is constructed from the process network.

Rouche-Capelli Theorem

For the linear system Ax = b with dimension x ∈ RM , there exists a solution set xs in
the subspace of RM with dimension M−rank(A), if and only if rank(A) = rank([A |
b]), where [A | b] is the augmented matrix. Further, the linear system of equation is
expected to be consistent if Nd = (M − rank(A)), where Nd is degrees of freedom.
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2.4 Data Reconciliation based on Process Bayesian

Network

The ability of Bayesian network to deal with uncertainties modelled in a probabilistic
framework is the main motivation for the present work. The objective is to develop
a data reconciliation scheme for a process with state uncertainties using Bayesian
network representation of the process. With the knowledge of process flow network
such as flow direction and degrees of freedom, process variables are represented as
joint distribution and decomposed into a set of conditional probability distributions,
as illustrated in the flowchart in Figure 2.4.

Figure 2.4: Converting Process network to Bayesian network

In converting the process network into a Bayesian network, it is important to ensure
that the basic properties of the Bayesian network are preserved. In Bayesian network
based data reconciliation proposed in this work, the conventional data reconciliation
scheme represented in Figure 2.1 is modified by replacing the process model with a
process Bayesian network model as shown in Figure 2.5.

Figure 2.5: Data reconciliation with Process Bayesian network

The proposed scheme can be understood better from an illustrative example of a
simple process flow network. This process flow network [9] with 4 process units and
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6 streams (Figure 2.6), has been reported widely in the literature as a case study
problem for demonstrating various data reconciliation schemes. Eq. 2.11 represents
the underlying steady state process model and its conditional probability distribution,
utilised for obtaining the Bayesian network representation of the process network.

Figure 2.6: Simple Flow network

Process Unit Mass Balance Probabilistic Model

A X1 = X2 +X3 P (X2 |
X1, X3)P (X1)P (X3)

B X2 = X4 P (X4 | X2)

C X3 = X5 P (X5 | X3)

D X6 = X4 +X5 P (X6 | X4, X5)

(2.11)

Here, the key is to interpret the process model as a conditional probability distribu-
tion model such that the Bayesian network properties of D-separation and acyclicity
are satisfied. In any process flow-sheet, process units with different input/output
configurations can be observed. For instance, in the process flow-sheet presented in
Figure 2.6, A is a process unit with one input and two outputs configuration, C is a
process unit with two inputs and one output configuration, and B and D are process
units with one input and one output configuration. For the process network presented
here with different configuration of process units, uniqueness of solution to the system
of mass balance equations can be interpreted from degrees of freedom. Consider the
model equation x1 = x2+x3 for the process unit A. Common cause Bayesian network
may be constructed for the given process model by simply taking the inputs as par-
ent nodes and outputs as children nodes. Physically, one can interpret the network
corresponding to this model as ’change in x1 leads to change in x2 and x3’. But, such
an interpretation gives rise to infinite number of solutions to this model equation as
it means that there is no one unique set of values that x2 and x3 can take given the
value of x1. To handle this problem, degree of freedom is utilized in construction of
the Bayesian network. For the given process model, degree of freedom is computed
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to be 2, which means, two process variables must be specified for the solution to be
unique. Therefore in the process model, x1 and x3 may be specified first and the
conditional probability distribution describing these three variables is interpreted as
P (x2 | x1, x3)P (x1)P (x3). In P (x2 | x1, x3)P (x1)P (x3), it can be interpreted as that
given the information of (x1&x3), x2 is independent of (x1&x3). Similarly, using the
degrees of freedom analysis explained here, Bayesian networks can be constructed for
the configuration of various process units in the process flow network. Upon analysis
of different process network configurations, it is found that the degrees of freedom
condition should be utilized and a generalized condition for constructing the Bayesian
network is given as card(PaX) = Nd i.e. number of primary parents for the variable
X must be equal to the degrees of freedom. If this condition is not satisfied then the
solution becomes inconsistent (From Rouche-Capelli theorem). Therefore, using this
condition, the process model in Eq. 2.11 is interpreted probabilistically and process
Bayesian network is constructed, taking process variables as the Nodes (N) and rela-
tionship among these variables as the edges (E). The process Bayesian network, thus
constructed from the process model, is shown in Figure 2.7.

Figure 2.7: Process Bayesian Network of Simple Flow network

In Figure 2.7, the nodes in green represent measurements that are available and the
nodes in blue represent true states of the process variables to be estimated. Based on
the aforementioned discussion on probabilistic interpretation of the process model and
the construction of Bayesian network, it can be stated that this sort of interpretation
can be made for any process network. The discussion provided to construct the
Bayesian network from the process network can be summarized as follows.

1. Compute degrees of freedom (Nd) using Eq. 2.10 for the given system A.

2. Fix the parents according to the degrees of freedom for each node. The number
of parents of each node equals to the degrees of freedom, and the configuration
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is not unique. To avoid the structural complexity, whenever possible physical
input variables to the process node are selected as the parents of the node,
namely flow direction of the process variable in the given process network is
generally considered as of the arcs directions in the Bayesian network to be
constructed.

3. Condition 2 is valid for the process network without recycle. In the presence of
recycle, method to be introduced in Section 2.4.1 should be used.

Thus, for any process network with process variables X = (x1, x2, ..., xM) and its
corresponding measurements Y = (y1, y2, ..., yM), process Bayesian network similar
to Figure 2.7 can be constructed. The joint distribution of X and Y for a generic
process Bayesian network can be expressed as a product of measurement model and
process model as follows

P (y1, .., yM , x1, .., xM | σ2
yj
, σ2

xj
) =

M∏︂
j=1

P (yj | xj, σ
2
yj
)P (xj | Paxj

, σ2
xj
) (2.12)

For computational convenience, the joint distribution in Eq. 2.12 can be expressed in
logarithmic form, given as,

logP (y1, .., yM , x1, .., xM | σ2
yj
, σ2

xj
) =

M∑︂
j=1

logP (yj | xj, σ
2
yj
) + logP (xj | Paxj

, σ2
xj
)

(2.13)
where, σ2

yj
and σ2

xj
represent variances of the measurement and state variable respec-

tively.

Further, considering a batch of N independent and identically distributed measure-
ments of M process variables (Y) and their corresponding true state variables (X)
i.e.

Y =

⎡⎢⎢⎢⎢⎣
y1,1 .... y1,M

. .... .

yN,1 .... yN,M

⎤⎥⎥⎥⎥⎦X =

⎡⎢⎢⎢⎢⎣
x1,1 .... x1,M

. .... .

xN,1 .... xN,M

⎤⎥⎥⎥⎥⎦
The joint probability density function in Eq. 2.13 can be expanded to include this
batch of data and is given as follows.

logP (X, Y | σ2
y, σ

2
x) =

N∑︂
i=1

M∑︂
j=1

logP (yi,j | xi,j, σ
2
yj,j

) + logP (xi,j | Paxi,j
, σ2

xj,j
) (2.14)
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2.4.1 Handling Cycles in Process Bayesian Network

In some practical scenarios, process networks (A) have recycles streams. When a
process network with recycle is considered directly to develop the Bayesian net-
work model, cycles will be introduced to the Bayesian network, thereby violating
the acyclicity condition. Thus, in the construction of Bayesian network from the pro-
cess model, it is a challenge to avoid the effect of recycles introduced by the process
model. In order to overcome this problem, a row echelon reduction method is devel-
oped in this work. In this method, the process network (A) with recycle is reduced to
a row echelon form (AR) by Gauss elimination. Reduced row echelon form of linear
system (AR) divides the system of linear equations into (AD) and (AI), corresponding
to dependent and independent variables respectively.(︁

A
GaussElim.−−−−−−−→ AR

)︁
→ [AD (−AI)] (2.15)

Row echelon reduced process network AR results in an acyclic Bayesian network struc-
ture due to the possibility of representing dependent process variables as a function
of independent process variables. Aforementioned approach is demonstrated using a
simple network with recycle loop (Figure 2.8). From Figure 2.8, it can be seen that
direct probabilistic interpretation of process network with recycle introduces cycle in
the probabilistic network as well.

Figure 2.8: Probabilistic interpretation of network with recycle (Left: Actual network

Right: Probabilistic interpretation)

Now, reducing the process network matrix (A) to row echelon form (AR) by Gauss
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elimination, we obtain the following

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 0 0 0

0 1 0 −1 0 0

0 0 0 1 −1 −1

0 0 −1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
→ AR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −1

0 1 0 0 −1 −1

0 0 1 0 −1 0

0 0 0 1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
In this reduction, X5, X6 are independent variables and X1, X2, X3&X4 are dependent
variables respectively. Thus, probabilistic interpretation of reduced process network
(AR) yields a Bayesian network that is acyclic in structure as shown in Figure 2.9.
Thus, using this row echelon reduction approach, Bayesian network with acyclic struc-
ture can be obtained for process network with recycle.

Figure 2.9: Probabilistic interpretation of network with recycle (Left: Actual network

Right: Probabilistic interpretation (After obtaining Echelon form))

Upon overcoming the issue of recycle in constructing the Bayesian network, unique-
ness of the solution may be questioned due to the change in process network structure
resulting from the reduced row echelon matrix AR. We justify the uniqueness of the
solution using the theoretical foundations of linear algebra and data reconciliation.
In data reconciliation, the constraint equation corresponding to the process model is
given as Ax = 0 with A ∈ RM×N and x ∈ RN×1. From the linear algebra perspec-
tive, the solution to the constraint equation can be interpreted as, the solution vector
x ∈ RN×1 spanning the Null space of A.

Proposition 2.4.1

If Ax = 0 and AR ∈ RM×N is the row echelon reduced form of A, then solution for
ARx = b exits if and only if b ∈ RM×1 is zero [26].
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Therefore, based on the linear algebraic interpretation of Ax = 0 and Proposi-
tion 2.4.1, one can state that the basis vector (solution vector) x must span the
same null space of both A and AR, such that, Ax = ARx = 0. This implies that A

and AR are row equivalent for a unique value of x ̸= 0. Although the new balance
equation resulting from row echelon transformation is no longer same as the origi-
nal one physically, the new equation is equivalent to the original one in the sense
that the same process data have to satisfy both the original and the new equation
namely the equality constraint. This justifies the use of the new set of reduced form
of equations for data reconciliation of systems with recycle streams. Further, the row
echelon transformation results in the altered state uncertainties. However, in theory,
this will not affect the reconciled values of the state estimates obtained using the
proposed Particle-EM technique presented in the subsequent Section 2.5.3, since the
transferred state uncertainties themselves are estimated parameters in the proposed
Particle-EM algorithm. Application of this method developed for handling cycles in
process network will be demonstrated in a case study of Mineral Beneficiation Pro-
cess in Section 2.6.3. The flowchart in Figure 2.10 illustrates the sequence of Bayesian
network construction.

Figure 2.10: Flowchart describing the method for handling recycle in Process network

for Bayesian network construction

2.4.2 Data Reconciliation for Partially Measured Systems

One of the challenges in performing data reconciliation is handling the process net-
work, when not all the process variables are measured. From the literature, some of
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the widely used methods for handing partially measured systems are matrix projection
approach [27] and method of orthogonal transformation [28]. In the aforementioned
methods, process network matrix is segmented into measured and unmeasured portion
from which unmeasured section of process network is projected into the null space to
decouple the unmeasured process network from the measured process system. Once
the decoupling is complete, measured portion is reconciled first, followed by recon-
struction of unmeasured region with measured process variables. With respect to
Bayesian network approach for data reconciliation, due to the direct utilization of
process network knowledge, estimating unmeasured process variables by orthogonal
projection may not be possible, as the structural information of unmeasured region
is hidden in projection matrix. In order to preserve the structural information during
decoupling, row echelon reduction method, introduced in Section 2.4.1, is extended
for data reconciliation of partially measured systems. Here, row echelon form is ob-
tained through row reduction by simple initial rearrangement of process variables in
the network.

Consider a process network matrix, A, which has both measured and unmeasured
process variables. With the initial knowledge on available measurements, process
network matrix A can be split into measured and unmeasured variables as shown in
Eq. 2.16, followed by rearrangement mentioned in the same.

A1XM + A2XUM = 0 →
[︂
A2 A1

]︂⎡⎣XUM

XM

⎤⎦ = 0 → NPMX̃ = 0 (2.16)

where, A1 is the measured component of process network and A2 is the unmeasured
component of process network with XM and XUM being variables corresponding to
measured and unmeasured components of the process network respectively. NPM

is rearranged process matrix and X̃ is the vector of rearranged process variables.
With rearranged process matrix, echelon form is obtained through row reduction
which provides dependent variable coefficient matrix (DM) and free variable coefficient
matrix (FM) as the following.

[︂
DM FM

]︂⎡⎣XUM

XM

⎤⎦ = 0 (2.17)

Here, the structure of augmented
[︂
DM FM

]︂
is similar to the structure of AR pre-

sented in section 2.4.1. In particular, after the row echelon reduction, non - zero
entries of dependent variable coefficient matrix (DM) can be written as a function
of free variable coefficient matrix (FM). As the row-reduction is performed after

22



rearrangement, dependent variable coefficient matrix (DM) has the information of
unmeasured variables and free variable coefficient matrix (FM) has the information
of measured variables. From the new reduced model in Eq. 2.17, Bayesian network
is constructed in order to perform data reconciliation. In order to solve the data
reconciliation problem with unmeasured variables in the proposed approach, rank of
the unmeasured variable matrix (A2) must be less than or equal to the row rank
of the process matrix A (rank(A2) ≤ rowrank(A)). If this rank criterion is not
satisfied, then the system will be under-determined and unique solution cannot be
obtained [29]. The generic Bayesian network representation for partially measured
system can be represented as the following.

logP (X, Y | σ2
Y , σ

2
X)) =

N∑︂
i=1

M−UM∑︂
j=1

logP (yi,j | xi,j, σ
2
yj,j

) + logP (xi,j | Paxi,j
, σ2

xj,j
)

(2.18)
where, UM is the number of unmeasured process variables and (M−UM) is the size of
measured variable set, with which unmeasured variables are estimated. Application of
this method developed for handling partially measured processes will be demonstrated
in a case study of Mineral Processing Unit in Section 2.6.4.

2.5 Statistical Inference in Bayesian Network for Data

Reconciliation

The joint probability distribution function (Eq. 2.14) obtained for the process Bayesian
network is used in the estimation of reconciled states through different statistical in-
ference techniques. In this work, three different statistical inference techniques are
considered namely i) maximum likelihood estimation (BN-MLE), ii) maximum-a-
priori estimation (BN-MAP) and iii) Particle Expectation Maximization (Particle-
EM) based approximate estimation. In the data reconciliation schemes using maxi-
mum likelihood estimation (BN-MLE) and maximum-a-priori Estimation (BN-MAP),
uncertainties in the state and measurements (σ2

x, σ2
y) are assumed to be known.

Whereas, in the absence of any knowledge about the uncertainties in state and mea-
surements, the Particle Expectation Maximization (Particle-EM) based estimation
algorithm will be able to simultaneously estimate both the reconciled states and the
uncertainty parameters in iterative steps.

The assumption made in the BN-MLE and BN-MAP schemes that the availability of
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information about state and measurement uncertainty (σ2
x, σ2

y) is essential for estima-
tion of reconciled states is a purely hypothetical one, as in no practical situation these
uncertainties will be known. In spite of this unrealistic assumption, the BN-MLE and
BN-MAP schemes developed in this work are crucial, as the simulated results gener-
ated using these schemes can serve as a benchmark for comparing and evaluating the
performance of particle-EM algorithm, which is a more realistic one when it comes
to practical application. Detailed derivations of these statistical inference algorithms
for estimation of reconciled states are presented in the following sections.

2.5.1 Maximum Likelihood Estimation

In this sub-section, maximum likelihood estimation approach for Bayesian network
based data reconciliation scheme is developed for obtaining the reconciled estimates.
Using maximum likelihood principle, the reconciled estimates are obtained by mini-
mizing the negative log likelihood of joint density function given in Eq. 2.14,

X̂ = min
X

(−logP (X, Y | σ2
Y , σ

2
X)) = min

X

N∑︂
i=1

M∑︂
j=1

−logP (yi,j | xi,j, σ
2
yj,j

)

−logP (xi,j | Paxi,j
, σ2

xj,j
)

= min
X

N∑︂
i=1

M∑︂
j=1

−log

(︄
1√

2πσ2
yj,j

+
1√

2πσ2
xj,j

)︄
+

1

2

(︄
(yi,j − xi,j)

2

σ2
yj,j

+
(xi,j − Paxi,j

)2

σ2
xj,j

)︄
(2.19)

It is important to note that the cost function given in Eq. 2.19 is a combination of mea-
surement and process model, thus resulting in an unconstrained optimization problem
formulation. When prior information of individual source nodes is available, maxi-
mum likelihood estimation (MLE) can be re-cast as maximum–a–posteriori (MAP)
estimation problem in Bayesian network setting which is discussed in the following
section.

2.5.2 Maximum-a-Posteriori Estimation

When prior information of individual source nodes is available, maximum likelihood
estimation problem can be extended to maximum–a–posteriori estimation problem by
incorporating prior information of individual nodes of the process Bayesian network.
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With the inclusion of prior information of individual nodes, MLE cost function in
Eq. 2.19 gets modified into a MAP cost function represented as follows.

X̂ = min
X

(−logP (X, Y | σ2
Y , σ

2
X)) = min

X

N∑︂
i=1

M∑︂
j=1

−logP (yi,j | xi,j, σ
2
yj,j

)

−logP (xi,j | Paxi,j
, σ2

xj,j
)− logP (Paxsource , σ

2
xsource

)

= min
X

N∑︂
i=1

M∑︂
j=1

−log

(︄
1√

2πσ2
yj,j

+
1√

2πσ2
xj,j

)︄
+

1

2

(︄
(yi,j − xi,j)

2

σ2
yj,j

+ (2.20)

(xi,j − Paxi,j
)2

σ2
xj,j

+
(Paxsource − µsource)

2

σ2
xsource

)︄
Given the cost function in Eq. 2.20, estimates of the states are obtained by solving
the optimization problem and these estimates are interpreted as reconciled values.
Quality of the estimates varies depending upon the prior distribution chosen. In the
present work, it is assumed that the prior information of the nodes follows Gaussian
distribution. Mean of the source (prior) is estimated in MAP optimization routine and
the variance is estimated based on Cramer – Rao inequality [30, 31], which provides
the lower bounds for the variance of unbiased estimates as given in Eq. 2.21

ΣXsource = σ2
xsource

= [IL + IP ]
−1 (2.21)

where, IL and IP are the Fischer information matrix of likelihood of the state and
measurement and the prior. On expanding the Eq. 2.21 further, approximation of
prior variance can be obtained as follows.

ΣXsource =

[︄(︄
− ∂2

∂X2
s

log (P (Ys | Xs)P (Xs | PaXs))

)︄
+ (2.22)(︄(︃

∂

∂Xs

logP (PaXs)

)︃(︃
∂

∂Xs

logP (PaXs)

)︃)︄]︄−1

On expanding Eq. 2.22 under the consideration that conditional distribution follows
Gaussian distribution, simple close form expression can be obtained for the variance
of the prior as follows.

ΣXsource = [Σ−1
Ys

+ Σ−1
Xs

+
(︁
(Xs −Xpast)

T (Σ−2
Xpast

)(Xs −Xpast)
)︁
]−1 (2.23)

where Ys and Xs are the measurement and state of the source node with ΣYs and ΣXs

being the variance of measurement and state of the corresponding source node. Xpast

and ΣXpast are the mean and the variance of the state variables calculated from the
data repository.
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2.5.3 Simultaneous Data Reconciliation and Uncertainty Pa-

rameter Estimation

In actual setting, parameters representing uncertainties in states and measurements
(σ2

x, σ
2
y) are not available. In the absence of any knowledge about these uncertain-

ties, reconciliation algorithms developed in the previous sections using maximum
likelihood estimation (MLE) or maximum-a-posteriori (MAP) estimation cannot be
directly applied unless the uncertainty parameters (σ2

x, σ
2
y) are estimated simultane-

ously along with the reconciled states. In the case of Bayesian network models, due
to their hierarchical nature, it would be difficult to obtain analytical solutions for
uncertainty parameter estimation under maximum likelihood estimation (MLE) or
under maximum–a–posteriori estimation (MAP) framework [32, 33, 34]. Even if we
manage to obtain an analytical expressions for Bayesian network model, the solution
will be problem specific due to the network structure. Therefore, in this work, Particle
Expectation Maximisation (Particle-EM) algorithm is developed to obtain a general
solution to the problem of simultaneous state and uncertainty estimation.

Expectation Maximization (EM) is an iterative algorithm which yields approximate
maximum likelihood estimates. EM algorithm is implemented iteratively in two stages
- Expectation step (E–step) and Maximization step (M-step). In the E–step, expec-
tation of the joint log-likelihood is evaluated with guessed parameter values (updated
in the next iteration) and in the M–step, parameters are estimated by maximizing
the expectation of log-likelihood (Q function). In Particle-EM, E–step is evaluated
through Monte Carlo simulations to estimate the state and M–step is evaluated using
conventional optimization approach [34].

Detailed derivation of the Particle-EM algorithm for data reconciliation and simulta-
neous estimation of uncertainty parameters is presented in this section. Joint likeli-
hood with the observed measurements (Y ) and the parameters Θ can be represented
as follows.

L(Y ; Θ) = logP (Y | Θ) = log
∫︂

P (X, Y | Θ)dX (2.24)

Here, (X) is the hidden state, Θ is the parameter representing the measurement and
state uncertainty (variance: θy = diag(Σy), θx = diag(Σx)) and Θ ∈ (θy ∪ θx). On
multiplying and dividing Eq. 2.24 by P (X | Y,Θk) we get,

logP (Y | Θ) = log
∫︂

P (X, Y | Θ)

P (X | Y,Θk)
P (X | Y,Θk)dX (2.25)
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Further, Eq. 2.25 can be expressed in terms of conditional expectation as the following.

logP (Y | Θ) = logEX|Y,Θk

[︄
P (X, Y | Θ)

P (X | Y,Θk)
| Y,Θk

]︄
(2.26)

On further simplification and by applying Jensen’s Inequality [35] to Eqn. (20),
following expressions are obtained.

logP (Y | Θ) ≥ EX|Y,Θk [logP (X, Y | Θ) | Y,Θk]− EX|Y,Θk [logP (X | Y,Θk) | Y,Θk]

(2.27)
logP (Y | Θ) ≥ Q(Θ | Θk)−H(Θk | Θk) (2.28)

where, Q(Θ | Θk) is EX|Y,Θk [logP (X, Y | Θ) | Y,Θk], H(Θk | Θk) is EX|Y,Θk [logP (X |
Y,Θk) | Y,Θk] and Θk represents the parameter estimated during the kth iteration of
EM algorithm. Q(Θ | Θk) is maximized w.r.t parameters, which tends to maximize
the log-likelihood given in Eq. 2.27 since H is not a function of Θ. EM algorithm can
be implemented by following steps.

Expectation Step (E-Step)

In the E – Step, estimates of the true state are obtained by evaluating the Q function
over fixed parameters obtained at kth iteration. On decomposing the joint likelihood
in the Q function, based on the knowledge of process Bayesian network (Markov prop-
erty), into conditional probability distribution, we arrive at the following equation.

logP (X, Y | Θ) =
N∑︂
i=1

M∑︂
j=1

log[P (yi,j | xi,j, θyj,j)P (xi,j | Paxi,j
, θxj,j

)] (2.29)

By substituting Eq. 2.29 in Q function of Eq. 2.27, the Q function can be expressed
as follows.

Q(Θ | Θk) = EX|Y,Θk

[︄
N∑︂
i=1

M∑︂
j=1

log[P (yi,j | xi,j, θyj,j)P (xi,j | Paxi,j
, θxj,j

)] (2.30)

| yi,j, θkyj,j , θ
k
xj,j

]︄

Q(Θ | Θk) =

∫︂ ∫︂ N∑︂
i=1

M∑︂
j=1

log[P (yi,j | xi,j, θyj,j)P (xi,j | Paxi,j
, θxj,j

)] (2.31)

P (Paxi,j
| yi,j, θkyj,j)P (xi,j | Paxi,j

, θkxj,j
)dxi,jdPaxi,j
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In the Q function (Eq. 2.31), it can be observed that conditional distribution of the
state conditioned over the measurements, is inferred as the posterior distribution w.r.t
the parameter from the kth iteration. Now, the posterior distribution in Eq. 2.31 is
sampled from an empirical distribution in order to compute the Q function in the
expectation step. The empirical sampling distribution (proposal distribution) (g(·))
is defined as Gaussian distribution based on the parameter from kth iteration, which
is represented as follows [34].

P (Paxi,j
| yi,j, θkyj,j)P (xi,j | Paxi,j

, θkxj,j
) = P (xi,j, Paxi,j

| yi,j,Θk) (2.32)

≈ 1

Nsample

Nsample∑︂
l=1

g

(︃
(xi,j)l, (Paxi,j

)l | yi,j,Θk

)︃
Here, Nsample represents the number of samples generated during Monte Carlo simu-
lation and (xi,j)l is the value of the samples obtained using Gibbs sampler [36] w.r.t
the state and parameter from the empirical distribution for the ith sample of the jth

process variable. Now substituting Eq. 2.32 in Eq. 2.31, Q function takes the following
form

Q(Θ | Θk) =

∫︂ ∫︂ N∑︂
i=1

1

Nsample

Nsample∑︂
l=1

(︄
M∑︂
j=1

log[P (yi,j | xi,j, θyj,j)P (xi,j | Paxi,j
, θxj,j

)]

)︄
(2.33)

g((xi,j)l, (Paxi,j
)l | yi,j,Θk)dxi,jdPaxi,j

In Eq. 2.33, empirical distribution can be approximated as a Dirac delta function [34]
and using the convolution property of the function, Eq. 2.33 can be simplified further
as follows

Q(Θ | Θk) =
N∑︂
i=1

1

Nsample

Nsample∑︂
l=1

(︄
M∑︂
j=1

log[P (yi,j | xi,j, θyj,j)P (xi,j | Paxi,j
, θxj,j

)]

)︄
l

(2.34)
where, xi,j is sampled from the proposal distribution g(·). Eq. 2.34 can be interpreted
as, for every ith sample out of N available process measurements, Monte Carlo simu-
lations were carried out with Nsample of xi,j generated from the empirical distribution
g(·). Theoretically, by sum of large numbers, Q function is expected to converge to
the expected value [34]. Further, to reduce the variance in the computed expected
value and to reduce the computational cost in re-sampling at every iteration, samples
are drawn from the initial distribution and weights are provided for the expected
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value. These weights are computed using the following equation [34].

wl =
g(xl, Paxl

| y,Θk)

g(xl, Paxl
| y,Θ0)

(2.35)

where, g(xl, Paxl
| y,Θk) is the distribution w.r.t parameter Θk used for obtaining

new weights at the kth iteration and g(xl, Paxl
| y,Θ0) is the proposal distribution

provided at the initial iteration from which states are sampled. Hence, the Q function
given in Eq. 2.34, with incorporation of weights given in Eq. 2.35, modifies as follows.

Q(Θ | Θk) =
N∑︂
i=1

1

Nsample

Nsample∑︂
l=1

wl

(︄
M∑︂
j=1

log[P (yi,j | xi,j, θyj,j)P (xi,j | Paxi,j
, θxj,j

)]

)︄
l

(2.36)
Therefore, on evaluating the Q function (Eq. 2.36) over fixed parameter, estimate of
the state (X̂) can be obtained by averaging the samples from the empirical distribu-
tion. At the first iteration, i.e. k = 0, all the samples are provided with unit weight or
weights of equal importance. As the iterations proceed, weights on the states sampled
from g(xl, Paxl

| y,Θ0) begin to vary, eventually correcting the states and making the
Q function converge to the expected value. Accuracy in the estimate can be achieved
over certain iterations of the parameter. The algorithm for parameter update at each
iteration is discussed in the maximization step (M –Step).

Maximization Step (M-Step)

With the given Q function in Eq. 2.31, objective in the M- Step is to maximize the
Q function w.r.t parameters (Θ) as follows.

Θk+1 = argmax
Θ

Q(Θ | Θk) (2.37)

On computing the derivative of Q function (Eq. 2.31) w.r.t individual parameters
(θ−1

y & θ−1
x ) and equating them to zero, closed form expression is obtained for the

vector of parameters to be updated in the E – Step. Steps for obtaining the closed
form expression to update the parameters are explained below:

The Q function in Eq. 2.31 can be represented in the vector form (Eq. 2.38), in which
yj ∈ RN×1 denotes the measurement vector, x̂j ∈ RN×1 and Pax̂j

∈ RN×1 denote
the estimated vectors of the jth state variable obtained at the kth iteration of the
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Particle-EM algorithm in the E-Step through Particle simulation.

Q(Θ | Θk) =
M∑︂
j=1

(︁
log(P (yj | x̂j, θyj,j)) + log(P (x̂j | Pax̂j

, θxj,j
))
)︁

(2.38)

P (Pax̂j
| yj, θkyj,j)P (x̂j | Pax̂j

, θkxj,j
)

Q(Θ | Θk) =
M∑︂
j=1

(︁
log(P (yj | x̂j, θyj,j))P (Pax̂j

| yj, θkyj,j)P (x̂j | Pax̂j
, θkxj,j

) (2.39)

+log(P (x̂j | Pax̂j
, θxj,j

))P (Pax̂j
| yj, θkyj,j)P (x̂j | Pax̂j

, θkxj,j
)
)︁

On expanding the logarithmic terms in Eq. 2.39 using conditional Gaussian distribu-
tion, Q function can be obtained in the following form.

Q(Θ | Θk) =
M∑︂
j=1

[︄
1

2
(log(θ−1

yj,j
))P (Pax̂j

| yj, θkyj,j)P (x̂j | Pax̂j
, θkxj,j

)− (2.40)

1

2
((yj − x̂j)

T (θ−1
yj,j

)(yj − x̂j))P (Pax̂j
| yj, θkyj,j)P (x̂j | Pax̂j

, θkxj,j
)

]︄

+
M∑︂
j=1

[︄
1

2
(log(θ−1

xj,j
))P (Pax̂j

| yj, θkyj,j)P (x̂j | Pax̂j
, θkxj,j

)−

1

2
((x̂j − Pax̂j

)T (θ−1
xj,j

)(x̂j − Pax̂j
))P (Pax̂j

| yj, θkyj,j)P (x̂j | Pax̂j
, θkxj,j

)

]︄

By taking derivative of Eq. 2.40 w.r.t (θ−1
y &θ−1

x ) and equating it to zero, expressions
in Eq. 2.43 and Eq. 2.44 are obtained, after necessary algebraic manipulations, for
updating the parameters in the E-Step.

∂Q(Θ | Θk)

∂θ−1
y

=
M∑︂
j=1

[︄
− 1

2
(θ−1

yj,j
)P (Pax̂j

| yj, θkyj,j)P (x̂j | Pax̂j
, θkxj,j

)+ (2.41)

1

2
((yj − x̂j)

T (θ−2
yj,j

)(yj − x̂j))P (Pax̂j
| yj, θkyj,j)P (x̂j | Pax̂j

, θkxj,j
)

]︄
= 0

∂Q(Θ | Θk)

∂θ−1
x

=
M∑︂
j=1

[︄
− 1

2
(θ−1

xj,j
)P (Pax̂j

| yj, θkyj,j)P (x̂j | Pax̂j
, θkxj,j

)+(2.42)

1

2
((x̂j − Pax̂j

)T (θ−2
xj,j

)(x̂j − Pax̂j
))P (Pax̂j

| yj, θkyj,j)P (x̂j | Pax̂j
, θkxj,j

)

]︄
= 0
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θk+1
y =

∑︁M
i=1 P (Pax̂j

| yj, θkyj,j)(x̂j − yj)(x̂j − yj)
T∑︁M

j=1 P (Pax̂j
| yj, θkyj,j)

(2.43)

θk+1
x =

∑︁M
i=1 P (x̂j | Pax̂j

, θkxj,j
)(x̂j − Pax̂j

)(x̂j − Pax̂j
)T∑︁M

j=1 P (x̂j | Pax̂j
, θkxj,j

)
(2.44)

In the expressions obtained, only dependent parameters are retained and the inde-
pendent parameters do not appear. Aforementioned derivation steps (E-Step and
M-Step) can be summarized into a sequence of computation steps as presented in
Algorithm 1.

Algorithm 1 Particle-EM Algorithm for Bayesian Network based Data

Reconciliation
1: At iteration count, k = 0, define initial guess for the parameter of Θ0, an empirical

distribution and number of samples (Nsample) to be generated during Monte Carlo

simulation.

2: Initialize the EM algorithm with samples from initial parameter guess value at

iteration count, k = 0.

3: E-Step: Compute Q function given by Eq. 2.36 to obtain the estimate of state

(X̂).

4: M-Step: Maximize Q function to estimate unknown parameters Θ using Eq. 2.43

and Eq. 2.44.

5: Update the parameter Θk = Θk+1 until | Θk −Θk+1 |≤ ϵ

where, ϵ is the error threshold. Repeat Step. 3 and Step. 4 with updated

parameters from Step. 5 until error is under the fixed threshold.

2.6 Case Studies

Four case studies covering three systems listed below are taken to test the performance
of the Bayesian network based data reconciliation schemes (BN-MLE, BN-MAP and
Particle-EM) proposed in this work and compared them with the results obtained
using conventional MLE (Conv-MLE) and conventional MAP (Conv-MAP) methods.
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• Simple flow network problem [9] widely considered as illustrative example in
data reconciliation literature.

• Process without recycle streams: Mineral processing unit [24]

• Process with recycle streams: Mineral Beneficiation Process [25].

• Process with partial measurements: Mineral processing unit [24].

For the purpose of simulation, uncertainties in the state and measurements are de-
liberately introduced in the form of zero mean Gaussian noise with known covariance
(Σx & Σy). The conventional MLE and MAP schemes make an attempt to estimate
the reconciled states without taking these uncertainties in the state into considera-
tion and thus assuming the steady state model to be an exact representation of the
process. The BN-MLE and BN-MAP schemes estimate the reconciled values of the
states using the Bayesian network model of the process with the assumption that the
uncertainties in the state and measurements are known. These known uncertainties
are taken as the state and measurement noise covariance (Σx & Σy) introduced in
the simulation. Particle-EM algorithm is implemented with the assumption that the
state and measurement noise statistics (Σx & Σy) are not known, which is a more re-
alistic representation of any practical scenario. Particle-EM algorithm estimates the
values of both the reconciled states and the unknown noise statistics simultaneously.
The Particle-EM algorithm is validated by comparing the estimated noise statistics
(Σ̂x & Σ̂y) with the known noise statistics (Σx & Σy) used in the simulation. In all
the case studies, 1000 particles are generated for Monte Carlo simulation used in the
implementation of Particle-EM algorithm.

Assuming the knowledge of state and measurement uncertainties to be available for
the implementation of BN-MLE and BN-MAP schemes is hypothetical, as such an
assumption is not valid in any practical situation. However, the simulation results
generated using BN-MLE and BN-MAP schemes can serve as a reference for compar-
ing the performance of other schemes proposed in this work. It is for this reason, the
simulation studies using BN-MLE and BN-MAP schemes are carried out and reported
in this work. Further, it is to be noted that prior information about the individual
source nodes is assumed to be available and incorporated in the implementation of
BN-MAP scheme. This is just to demonstrate that the BN-MAP with incorporation
of prior information will result in the best possible reconciled estimates compared to
the other schemes.
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In order to make the simulations independent of any particular realization, 10 (Nr)

independent simulations are carried out for each case, using N measurement samples
for each simulation run. Average Root Mean Square Error (ARMSE) is used as an
index to assess the performance of data reconciliation schemes.

ARMSE =

(︄
1

Nr

Nr∑︂
k=1

(︄√︄∑︁N
i=1(xi,j − x̂i,j)2

N

)︄
k

)︄
(2.45)

2.6.1 Simple Flow Network - Illustrative Case Study

A simple flow network [9], described in section 4, is taken as an illustrative example
to demonstrate the performance of the proposed data reconciliation schemes. Process
network model with 4 process units and 6 process variables is shown in Figure 2.6 and
the corresponding Bayesian Network model in Figure 2.7. Steady state measurement
data of 1000 samples is generated using the process model. Covariance corresponding
to uncertainty in measurement Σy and state Σx is taken as.

Σy = diag
[︂
0.6 0.65 0.50 0.45 0.55 0.50

]︂
Σx = diag

[︂
0.05 0.02 0.025 0.03 0.025 0.03

]︂
Results corresponding to the estimates of only 4 significant variables X1, X2, X5 and
X6 are presented in Table 3.1 for the sake of brevity. Compared to the conventional
MLE and MAP (Conv-MLE and Conv-MAP) approaches for data reconciliation, the
corresponding Bayesian network based schemes (BN-MLE and BN-MAP) proposed
in this work for known uncertainties in state and measurements obtain state estimate
values that are much closer to the true states. Between BN-MLE and BN-MAP,
performance of BN-MAP is relatively better due to the incorporation of prior infor-
mation. The results obtained from the implementation of Conv-MLE, Conv-MAP,
BN-MLE and BN-MAP schemes in the simple flow network case show that accounting
for state uncertainties (BN-MLE and BN-MAP) will always result in a better esti-
mate of state compared to the case (Conv-MLE and Conv-MAP) in which the state
uncertainties are not accounted for. These results clearly demonstrate the advantage
of formulating the data reconciliation problem in the Bayesian network framework
for systems with state uncertainties.
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Table 2.1: Simple Flow Network – ARMSE for known (*) & unknown uncertainty

(**)

State Variables
ARMSE

Conv-MLE Conv-MAP BN-MLE* BN-MAP* Particle-EM**

X1 1.099 0.9723 0.5060 0.4745 0.5447

X2 0.710 0.6918 0.5004 0.4896 0.5156

X5 0.749 0.7298 0.4820 0.4547 0.4953

X6 1.092 0.9270 0.4495 0.4340 0.4891

In the more realistic scenario of unknown uncertainties in state and measurements, the
ability of Particle-EM algorithm to accurately capture the unknown noise statistics
is evident from the results presented in Table 2.2 In this case, it is observed that
the estimates of state and measurement covariance (Σ̂x & Σ̂y) are much closer to the
true values (Σx & Σy). As a result of the accuracy in estimation of noise statistics
achieved by Particle-EM algorithm, it is observed from the results presented in Table
2.1 that the estimated values of the reconciled states obtained by Particle-EM are
closer to ones estimated by BN-MLE scheme. These results prove the capability of
the proposed Particle-EM algorithm in estimating the values of reconciled states in the
absence of any knowledge about the state and measurement noise as accurately as the
state estimate values obtained by the BN-MLE algorithm using complete knowledge
of these noise statistics. From the histogram of estimate residues shown in Figure 2.11,
it is observed that the residues of state estimates obtained using Bayesian network
based data reconciliation schemes (BN-MLE,BN-MAP and Particle-EM) are closer
to zero mean compared to the state estimate residues obtained using conventional
(Conv-MLE and Conv-MAP) methods.
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Table 2.2: Simple Flow Network - True and estimated noise covariance of States

(Σx, Σ̂x) & Measurements (Σy, Σ̂y)

State Variables
True Estimate

Σx Σy Σ̂x Σ̂y

X1 0.05 0.6 0.0421 0.535

X2 0.02 0.65 0.0171 0.592

X3 0.025 0.5 0.0271 0.513

X4 0.03 0.45 0.0244 0.412

X5 0.025 0.55 0.0231 0.542

X6 0.03 0.5 0.0289 0.503

Figure 2.11: Error Histogram of Data reconciliation Algorithms for Simple Flow

Network

2.6.2 Mineral Processing Unit - Process without Recycle Stream

Implementation of the proposed data reconciliation schemes on the Brunswick Min-
eral Processing unit [24] is discussed in this section. Figure 2.12 shows a simplified
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representation of a larger mineral processing unit, with 8 process units and 15 process
variables. Measurements of all the 15 process variables are assumed to be available.
Steady state linear mass balance equations representing the process model and the
corresponding probabilistic interpretations are given in Eq. 2.46. Process Bayesian
Network developed from the steady state process model is shown in Figure 2.13.

Figure 2.12: Mineral Processing Unit Flow sheet

Process Unit Mass Balance Probabilistic Model

Flotation - 1 X1 = X2 +X3 P (X3 | X2, X1)

Zn Rougher X3 = X4 +X5 P (X5 | X3, X4)

Cu Separator X2 = X9 +X10 P (X9 | X2, X10)

Zn Cleaner X4 = X6 +X7 P (X6 | X4, X7)

Mixer – 1 X5 +X7 = X8 P (X8 | X5, X7)

Pyrite Flotation X10 = X11 +X12 P (X12 | X10, X11)

Pb –Zn Flotation X14 = X12 +X13 P (X14 | X12, X13)

Mixer - 2 X15 = X8 +X11 P (X15 | X8, X11)

(2.46)
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Figure 2.13: Bayesian Network of Mineral Processing Unit

Given the process Bayesian Network and the measurements of process variables, data
reconciliation is performed using various methods proposed in this work. Steady state
measurements of 1500 samples are generated using the process model. Covariance of
measurement uncertainties reported for this process in the literature (Sadeghi et al.
(2018)) is used here:

Σy = diag

⎡⎣0.325 0.425 0.305 0.315 0.340 0.225 0.42 ..

0.335 0.52 0.42 0.25 0.324 0.52 0.42 0.415

⎤⎦
Covariance of state uncertainties is taken as

Σx = diag

⎡⎣0.015 0.015 0.015 0.015 0.02 0.025 0.075 ..

0.062 0.0115 0.015 0.065 0.0175 0.0215 0.0135 0.0142

⎤⎦
Results of only 4 significant state variables X1, X4, X13 and X15 are presented here.
Simulation results presented in Table 3.3 show that the BN-MLE and BN-MAP
schemes make an estimate of state variable values closer to the true values com-
pared to the values estimated using conventional MLE and MAP methods. Further,
as a result of incorporation of prior information, BN-MAP scheme is observed to
perform better than BN-MLE. Due to the availability of information on state and
measurement uncertainties, BN-MLE and BN-MAP schemes perform better than the
conventional MLE and MAP methods which do not take these state uncertainties
into account.
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Table 2.3: Mineral Processing Unit – ARMSE for known (*) & unknown(**) uncer-

tainty

State variables
ARMSE

Conv-MLE Conv-MAP BN-MLE* BN-MAP* Particle-EM**

X1 1.9271 0.9460 0.5824 0.5698 0.5992

X4 2.7688 2.2870 0.5355 0.5264 0.5403

X13 0.6844 0.6926 0.6365 0.6275 0.6596

X15 8.8378 9.3345 0.5972 0.5781 0.7043

With no knowledge about the state and measurement uncertainties being available,
results presented in Table 2.4 show that the Particle-EM algorithm can make accurate
estimate of these uncertainties by estimating the state and measurement covariance
(Σ̂x & Σ̂y) values closer to the true values (Σx & Σy). As a result of this, the
reconciled values of state estimates obtained using Particle-EM algorithm are closer
to the ones estimated using BN-MLE as reported in Table 2.3. Thus, performance
of Particle-EM achieved with no knowledge of state and measurement uncertainties
is closer to the performance of BN-MLE achieved with complete knowledge of state
and measurement noise. Histogram of estimate residues shown in Figure 2.14 reveals
that the state estimate residues obtained using BN-MLE, BN-MAP and Particle-EM
algorithms compared to the ones calculated using conventional methods are closer to
zero mean.
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Figure 2.14: Error Histogram of Data reconciliation algorithms for Mineral Processing

Unit
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Table 2.4: Mineral Processing Unit - True and estimated noise covariance of States

(Σx, Σ̂x) & Measurements (Σy, Σ̂y)
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2.6.3 Mineral Beneficiation Process - Process with Recycle

Stream

Mineral Beneficiation Process [25] with recycle streams is taken as a case study to
illustrate the application of Bayesian Network based data reconciliation schemes pro-
posed in this work for process networks with recycle. Row echelon reduction method
proposed in Section. 3.1 for process networks with recycle streams is used to con-
struct Bayesian Network model with acyclic structure. Mineral beneficiation process
shown in Figure 2.15, with 7 process units and 12 process variables, is a simplified
representation of a larger process unit. It is assumed that measurements of all the 12
variables are available.

Figure 2.15: Mineral Beneficiation Process Flow sheet

Applying row echelon reduction (Eq. 2.15) to the mass balance model of the process
given in Eq. 2.47 and writing the dependent variables X1, X2, X3, X5, X6, X8, X10

as a linear combination of independent variables X4, X7, X9, X11, X12, reduced model
equations are obtained for the process. Reduced process model and the corresponding
probabilistic interpretations are listed in Eq. 2.47.

41



Process

Unit

Mass Balance Reduced Model Probabilistic Model

A X1 +X5 = X2 X1 = X4 +X11 P (X1 | X4, X11)

B X2 = X3 +X6 X2 = X4 +X7 +X9 +

X11 −X12

P (X2 |
X4, X7, X9, X11, X12)

C X3 = X4 +X7 X3 = X4 +X7 P (X3 | X4, X7)

D X7 +X8 = X5 X5 = X7 +X9 −X12 P (X5 | X7, X9, X12)

E X9 = X12 +X8 X6 = X9 +X11 −X12 P (X6 | X9, X11, X12)

F X10 +X6 = X9 X8 = X9 −X12 P (X8 | X9, X12)

G X12 = X10 +X11 X10 = X12 −X11 P (X10 | X11, X12)

(2.47)

Bayesian Network with acyclic structure is constructed from the reduced steady state
model of the process (Figure 2.16).

Figure 2.16: Bayesian Network of the Mineral Beneficiation process

Steady state data of 1000 measurement samples are generated. Covariance of mea-
surement and state uncertainties are taken as:

Σy = diag

⎡⎣ 0.35 0.42 0.28 0.325 0.175 0.155 ...

0.215 0.3 0.245 0.45 0.24 0.312

⎤⎦

Σx = diag

⎡⎣0.025 0.021 0.032 0.027 0.022 0.024 ...

0.032 0.025 0.0172 0.0165 0.0235 0.0205

⎤⎦
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These state uncertainties are incorporated into the reduced process network obtained
after row echelon transformation of the original process network. Taking the Bayesian
network model (Figure 2.16) obtained after row echelon transformation of the origi-
nal process network and assuming the state and measurement noise statistics to be
not known, the Particle-EM algorithm is used to make an estimate of the reconciled
values of the states along with the uncertainties in state and measurement. These
results are compared with the reconciled state estimate values obtained using conven-
tional MLE and MAP methods. Results corresponding to 4 significant state variables
X1, X4, X11, X12 out of 12 state variables are presented here.

Table 2.5: Mineral Beneficiation Process – ARMSE

State Variables
ARMSE

Conv-MLE Conv-MAP Particle-EM

X1 0.8123 0.7963 0.6053

X4 0.5241 0.5149 0.5136

X11 0.6134 0.6127 0.5209

X12 0.8118 0.8036 0.6421

These results presented in Table 2.5 show that the Particle-EM yields state estimate
values that are closer to the true values compared to the ones estimated by conven-
tional MLE and MAP methods. This is due to the fact that the Particle-EM is able
to make a good estimate of unknown noise statistics as reported in Table 2.6, where
the estimated covariance of state and measurement noise (Σ̂x & Σ̂y) are found to
be closer to the true covariance values (Σx & Σy). From the histogram of estimate
residues shown in Figure 2.17, it is observed that the Particle-EM yields state esti-
mate residues that are closer to the zero mean compared to the residues obtained
using conventional methods.
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Figure 2.17: Error Histogram of Data reconciliation algorithms for Mineral Benefici-

ation process
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Table 2.6: Mineral Beneficiation Process - True and estimated noise covariance of

States (Σx, Σ̂x) & Measurements (Σy, Σ̂y)
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This case study has clearly demonstrated that the proposed row echelon reduction
method is very effective for constructing a Bayesian network model with acyclic struc-
ture given a process network with recycle streams. Further, for process networks with
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recycle streams, it is illustrated that the Particle-EM algorithm is capable of making
an accurate estimate of unknown noise statistics along with the reconciled values of
the states.

2.6.4 Mineral Processing Unit - Process with Partial Measure-

ments

Bayesian network based data reconciliation for partially measured systems is demon-
strated using the method proposed in Section 3.2, by taking the mineral process-
ing unit (Section 5.2) as the case study. It is assumed that 7 process variables
X2, X4, X6, X8, X9, X12, X13 are measured and the remaining 8 variables X1, X3, X5,
X7, X10, X11, X14, X15 are unmeasured. Applying the method proposed in Section 6,
the reduced model (Eq. 2.48) is obtained for the partially measured system. This
reduced model is used to construct Bayesian network (Figure 2.18) and to perform
data reconciliation.

Process Unit Reduced Mass Balance Model Probabilistic Model

Flotation - 1 X1 = X2 +X6 +X8 P (X1 | X2, X6, X8)

Zn Rougher X3 = X6 +X8 P (X3 | X6, X8)

Cu Separator X2 = X9 +X10 P (X9 | X2, X10)

Zn Cleaner X7 = X4 −X6 P (X7 | X4, X6)

Mixer – 1 X10 = X2 −X9 P (X10 | X2, X9)

Pyrite Flotation X11 = X2 −X9 −X12 P (X11 | X2, X9, X12)

Pb –Zn

Flotation

X14 = X12 −X13 P (X14 | X12, X13)

Mixer - 2 X15 = X2 +X8 −X9 −X12 P (X15 | X2, X8, X9, X12)

(2.48)
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Figure 2.18: Bayesian Network of Partially measured system

Steady state data of 1500 measurement samples are generated for X2, X4, X6, X8, X9,
X12 &X13. Covariance of uncertainties in measurements and states is taken respec-
tively as:

Σy = diag
[︂
0.425 0.315 0.225 0.335 0.52 0.324 0.52

]︂
Σx = diag

[︂
0.015 0.015 0.025 0.0625 0.0115 0.0175 0.0215

]︂
Here, like in the case of process with recycle streams, state uncertainties are incor-
porated only after transforming the process network using row echelon approach.
Simulation results showing the reconciled estimates of the measured and unmeasured
state variables are presented in Table 2.7. Results of the state estimates obtained
using conventional QR factorization method and the other Bayesian network based
estimation methods (BN-MLE, BN-MAP and Particle-EM) are reported. The state
estimates obtained using the conventional QR factorization method deviate by dis-
tinct margin from the true states compared to the state estimates obtained using the
proposed Bayesian network schemes. The possible reason for this deviation is that
the measured variable matrix AM turns out to be not a full rank matrix. During the
projection of AM on to the column space of Q in QR factorization, if AM is not of full
rank, it may affect the estimates of the measured and reconstructed state variables.
The ARMSE statistics reported in Table 2.7 validates this deviation in the estimates
obtained using QR approach.

In the absence of any knowledge about the state and measurement (for the measured
state variables) uncertainties, the results reported in Table 2.8 show that the Particle-
EM is able to make an estimate of state and measurement noise covariance (Σ̂x &
Σ̂y) that are closer to the true values (Σx & Σy). As a result of this, reconciled
state estimates obtained using Particle-EM are reported (Table 2.7) to be as good as
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the state estimates obtained using BN-MLE that uses the known knowledge of noise
statistics for state estimation.

Table 2.7: Partially Measured System – ARMSE for measured and unmeasured state

variables

State Variables
ARMSE

QR Estimate BN-MLE BN-MAP Particle-EM

Measured

X4 0.9665 0.7439 0.7418 0.7688

X9 1.0723 0.8479 0.8423 0.8587

X12 0.9802 0.7735 0.7723 0.7921

X13 1.0535 0.8397 0.8368 0.8462

Unmeasured

X7 142.59 0.9923 0.9923 1.0530

X10 26.952 1.1836 1.1836 1.1880

X11 14.553 1.5537 1.4230 1.4426

X14 14.297 1.1687 1.1687 1.2524

Table 2.8: Mineral Processing Unit (Partially Measured case) - True and estimated

noise covariance of States (Σx, Σ̂x) & Measurements (Σy, Σ̂y)

State Variables (Measured)
True Estimate

Σx Σy Σ̂x Σ̂y

X2 0.015 0.425 0.0151 0.428

X4 0.015 0.315 0.0147 0.319

X6 0.025 0.225 0.0253 0.218

X8 0.0625 0.335 0.0620 0.322

X9 0.0115 0.52 0.0119 0.514

X12 0.0175 0.324 0.0179 0.320

X13 0.0215 0.52 0.0226 0.515

The results presented here illustrate the capability of the proposed row echelon reduc-
tion method in accurately estimating the reconciled values of the states for systems
with partial measurement in a Bayesian network framework.
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2.7 Summary

Conventional data reconciliation techniques do not take uncertainties in state into
consideration and as a result they may lead to inconsistent estimates of reconciled
states. In this work, a novel framework for data reconciliation using Bayesian net-
work has been proposed accounting for uncertainties in states. Depending upon the
availability of information on state and measurement uncertainty, Bayesian network
based reconciliation is formulated as MLE, MAP and Particle-EM statistical infer-
ence problems. In the course of development of the reconciliation framework using
Bayesian network, a row echelon reduction method is proposed in this work in order
to achieve an acyclic construction of the network for processes with recycle. This row
echelon reduction approach is also extended to systems with partially measured data.
Performance of the proposed Bayesian network-based data reconciliation schemes has
been evaluated on three examples namely simple flow network, mineral processing
unit and mineral beneficiation process.

Simulation studies were carried out to evaluate the performance of i) BN-MLE and
BN-MAP schemes with the assumption that the state and measurement uncertain-
ties are known and ii) Particle-EM scheme assuming that the state and measurement
uncertainties are not known. Assuming the knowledge of state and measurement un-
certainties to be available for the implementation of BN-MLE and BN-MAP schemes
is a hypothetical case, which is used in this work to primarily generate simulation
results that can serve as a benchmark for assessing the performance of other data
reconciliation schemes proposed in this study. It is observed from the results that,
in all the case studies, BN-MLE and BN-MAP schemes, due to the availability of
knowledge on state and measurement uncertainties, make a far better estimate of
reconciled states compared to the conventional MLE and MAP schemes that do not
take these state uncertainties into account. These results validate the need for taking
state uncertainties into consideration for achieving a better estimate of states. Be-
tween BN-MLE and BN-MAP, BN-MAP performs better due to incorporation of prior
information. In a realistic scenario, where no knowledge about the state and measure-
ment uncertainties are available, it is observed in all the cases that the Particle-EM
algorithm is able to make an accurate estimate of unknown noise statistics and as a
result, the state estimates calculated using Particle-EM are reported to be as good
as the state estimates obtained using BN-MLE algorithm. Thus, in the absence of
any knowledge about state and measurement uncertainties, the Particle-EM is able
to achieve a performance that is closer to the performance achieved by BN-MLE
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scheme using the complete available knowledge about state and measurement noise
statistics. The results presented in this work have also demonstrated the ability of
the proposed row echelon reduction method in dealing with process networks with
recycle and processes with partial measurement of state variables.

This research work has clearly highlighted the advantage of formulating the data
reconciliation problem in the Bayesian network framework for system with state un-
certainties. Overall reason for the improvement in the estimates of the true states
using the proposed schemes may be attributed to independent parameterization prop-
erty [6] exhibited by Bayesian network, in which each of the nodes is parametrized
separately based on conditional independence property. As a result of this property,
each one of the variables is represented as nodes of the Bayesian network and is in-
ferred effectively using statistical inference techniques through relevant nodes in the
network.

50



Chapter 3

Prediction of Flooding & Weeping in

Process Operation using Causality

Analysis

3.1 Introduction

Flooding and Weeping are quite predominant in tall columns used for separation in
process industries. Usually, flooding is observed in both packed bed and tray tower
columns. However, weeping can happen only in tray tower columns. These two phe-
nomena can be understood from design and operational perspective. From design
perspective,

(︁
V
L

)︁
ratio (vapor to liquid flow ratio) is considered to be an important

parameter in the column design. Usually, columns are designed with high
(︁
V
L

)︁
ratio,

otherwise known as near flooding condition in order to achieve high separation effi-
ciency. At the same time, low

(︁
V
L

)︁
ratio leading to a weeping condition should be

avoided, to reduce the energy consumption, equipment damage and also poor sepa-
ration efficiency. Thus, the

(︁
V
L

)︁
ratio is a crucial design parameter utilised in regular

column operation to achieve high separation efficiency. Also, in the routine operation,(︁
V
L

)︁
ratio indicates the onset of abnormal conditions leading to flooding and weeping

as indicated in Figure 3.1.

Apart from the
(︁
V
L

)︁
ratio, during flooding condition, high pressure drop is set to occur

on the tray that is located below the point of flooding and the trays that are above
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Figure 3.1: Schematic of Flooding & Weeping conditions based on V
L

ratio

this point are said to flood as well. Similarly during weeping, the temperature drops
drastically at the bottom section of the column. These pressure and temperature
variations in the column are considered to be the effects of the flooding and weeping
phenomena and these are detected during the routine operation much after the onset
of these events. Upon detection, necessary actions are taken by the operators to con-
trol the flooding and weeping events. Since these events are detected and controlled
after their onset, product quality and energy consumption gets affected drastically
and at times process is also driven to temporary shutdown. In some of the current
industrial practices [37, 38], column pressure drop is monitored and timely control ac-
tions are taken to control the flooding. In the absence of pressure drop measurement
and monitoring tools, reactive measures are taken by the operators after the onset
of flooding events to mitigate its effect in overall process operation. In this work,
in order to ensure a smooth operation, the problem of flooding and weeping is for-
mulated using causality analysis, where underlying reasons for flooding and weeping
are determined and effective measures are proposed for early prediction and possible
prevention of these abnormal events.

Causality analysis helps in understanding the relationship among the process vari-
ables from the data. Causality analysis is vital in domains such as economics, biology
and climate science etc [39]. In chemical engineering, especially in process systems
engineering, applications of causality analysis in root cause analysis [40] and control
loop oscillation detection [41] have been reported in the literature. In process systems,
causality naturally exists due to complex physical inter-connections among process
units and presence of control systems. Time series models and first principle models
have been widely used for causality analysis. However, time series models are usually
preferred over first principle models for its ease in use, especially when the processes
are complex and have too many variables to model in the first principle framework.
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Among the different time series models, vector auto-regressive (VAR) model, vec-
tor auto-regressive model with exogenous inputs (VARX) and vector auto-regressive
moving average (VARMA) model [42, 43] are usually considered for analysing the
causal relationship. The most common and very well-known method for causality
analysis using time series data is Granger causality analysis [44]. A time series x1 is
expected to Granger cause time series x2 if the past information of x1 improves the
prediction of x2 compared to the prediction based only on the past information of x2.
The improvement in prediction is quantified by means of Granger score [42] and causal
relationship among the variables is determined in pairwise manner using statistical
hypothesis testing. However, the complexity involved in pairwise hypothesis testing
increases with dimension of the data. It is important to understand that in the actual
processes not all the variables are causally associated with one another, which makes
the true causal relationship to be sparse. However, direct use of causal modelling
techniques, at times, yields results that show all process variables to be causally re-
lated to one another, which leads to spurious outcomes. Therefore, to overcome this
issue, sparsity constraint is enforced on the model parameter during the identification
step [45, 46, 47], which makes the parameter vector sparse in representation, thereby
reducing the spurious connections.

The idea of sparsity plays a vital role in the field of signal processing, image processing,
Statistics and Mathematics etc [48, 49]. Given a high dimensional data, sparsity
constraint can interpret the given data with high accuracy and minimum number
of variables without the problem of over-fitting. Usually, sparsity is promoted on
the parameters with the help of L0 norm [50], L1 norm [51] and combination of L1

& L2 norm [52]. To achieve most sparse solution, L0 norm is preferred followed
by L1 norm and a combination of L1 & L2. However, L0 is non-convex and NP-
hard to solve. Therefore, the original problem is either relaxed to L1 constrained
convex optimization problem [53, 54] or solved using greedy methods [55]. In terms
of application, sparsity constraint is introduced in problems like non-negative matrix
factorization, regression, principle component analysis and network reconstruction etc
[48].

In general, analysing causation is important in process industries to have an event free
and a safe day to day operation. In this work, a two-step methodology involving one
step to analyse the causation and another step to predict the abnormal events such
as flooding and weeping is proposed. In the first step for analysing causation, finite
impulse response (FIR) model is used to identify possible causal variables and then
the cause-effect direction among the identified causal variables is verified using the
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information about the flow direction embedded in the process flow-diagram. Reasons
for using FIR model over output feedback models such as ARX and ARMAX models
are (i) its capability for capturing complex dynamics with simple model structure, (ii)
its open loop structure, which helps to reduce the effect of output feedback during the
identification step and (iii) in the present problem of interest, since output process
variable is known, FIR model structure helps in modelling the input/output relation-
ship explicitly, thereby allowing us to determine the significant input process variables
that affect the output. Inspite of the aforementioned advantages, non-parsimonious
nature of the FIR model can be cited as its drawback. However, this issue is re-
solved with the help of L0 norm and L1 norm sparsity promoting constraint on the
parameters that makes the model parsimonious [56, 50]. After identifying the causal
variables and cause-effect directions, this causal information is used to construct a
set of hypotheses, that validate the results of causality analysis. In the second step,
hypotheses derived from the causality analysis are translated into monitoring rules,
which are then used for the early prediction of abnormal events in routine process
operation.

The main contribution of this work is the development of a methodology to predict
flooding and weeping using causality analysis. An approach that integrates data-
driven model with the process knowledge is proposed for the reconstruction of causal
network. Finite impulse response model is identified with L0 & L1 constraint to
extract the information of possible causal variables. In the course of addressing the
problem, FIR model with L0 constraint is identified using greedy sparse simplex
algorithm and the necessary analytical expressions are derived. An hypotheses driven
approach is presented for the prediction of flooding and weeping in process operation.

3.2 FIR Model Identification with Sparsity constraint

Finite impulse response (FIR) model of a process is a linear mapping of the out-
put variable y[t] with time lagged input variables x[t − p] [57]. FIR model can be
represented as

y[t] =
P∑︂

p=1

x[t− p]θ[t− p] + ϵ[t] (3.1)

Eq. 3.1 can be written in the matrix form as.

Y = Xθ + ϵ (3.2)
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Y =
[︂
y1 y2 ...... yN−1 yN

]︂T
θ =

[︂
θ1,t−1 θ1,t−2 ... θ1,t−p ...... θM,t−1 ... θM,t−p+1 θM,t−p

]︂T

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
1,t−1 x1

1,t−2 ... x1
1,t−p ... x1

M,t−1 ... x1
M,t−p

x2
1,t−1 x2

1,t−2 ... x2
1,t−p ... x2

M,t−1 ... x2
M,t−p

. . ... . ... . ... .

xN−1
1,t−1 xN−1

1,t−2 ... xN−1
1,t−p ... xN−1

M,t−1 ... xN−1
M,t−p

xN
1,t−1 xN

1,t−2 ... xN
1,t−p ... xN

M,t−1 ... xN
M,t−p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where, Y ∈ RN×1 is the output process variable, X ∈ RN×M(t−p) is input process
variables, θ is the parameter vector of dimension RM(t−p)×1, ϵi

i.i.d∼ N (0,Σ) is white
noise, N is sample dimension, M is variable dimension and p is order of time-lag.
Estimation of the parameter vector θ, given X and Y of the FIR model is usually
posed as the least square optimization problem.

θ̂ : argmin
θ

f(θ) ⇒ argmin
θ

∥Y −Xθ∥22 (3.3)

θ̂ = argmin
θ

Y TY − 2(Xθ)TY + (Xθ)TXθ (3.4)

On taking derivative of Eq. 3.4 and equating it to zero, analytical expression for the
estimate of θ is obtained as

θ̂ =
(︁
XTX

)︁−1
XTY (3.5)

This estimated parameters encode the input-output relationship among the variables.
However, using Eq. 3.5 for parameter estimation may result in estimation error, in-
accurate mapping of variables and over fitting caused due to the non-parsimonious
nature of FIR model and also due to accounting for the effect of some less significant
input process variables in the model equations. It is possible to reduce the estimation
error and improve the accuracy of mapping by penalizing or ignoring the parameters
corresponding to less significant input variables. This can be achieved by modifying
the least square parameter estimation problem as a constrained optimization problem
with a sparsity promoting norm constraint imposed on the parameter vector. In this
context, zero norm constraint on the parameter vector can be considered as a natural
choice to achieve at most sparsity. Thus, minimization problem in Eq. 3.3 is modified
as the following.

θ̂l0 = min
θ

∥Y −Xθ∥22 s.t. ∥θ∥0 ≤ s (3.6)

However, L0 norm constraint formulation of sparse regression is a NP-hard problem.
As an alternative way to overcome this problem, a convex relaxation using L1 norm
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constraint is considered and the optimization problem in Eq. 3.6 is reformulated as
follows.

θ̂l1 := argmin
θ

∥Y −Xθ∥22 + α∥θ∥1 (3.7)

where, α is the regularization parameter. The selection of optimal value of α is dis-
cussed in Appendix. A.1. Aforementioned optimization problem is commonly known
as LASSO [51] and they are solved using techniques such as coordinate descent, alter-
nating direction method of multipliers (ADMM) [53] and interior point methods [54]
etc. In this work, optimization problem in Eq. 3.7 is solved using ADMM. Theoretical
insights and the calculation steps of ADMM can be found in [53]. In some cases, L1

norm constraint enforced on the parameter might result in some spurious estimate
of θ̂l1 . Though L0 norm constraint problem is regarded as NP-hard to solve and
non-convex in nature, these issues are addressed in the literature using first-order
methods [50] and greedy methods. In general, aforementioned optimization prob-
lem can be solved using different greedy algorithms such as matching pursuit [55]
and greedy sparse simplex (GSS) [8]. In this work, L0 norm constrained non-convex
optimization problem is solved using greedy sparse simplex to achieve near global
optimal solution. Reasons behind using the aforementioned greedy sparse simplex
over matching pursuit algorithms [8] are (i) the most sparse vector initialization of
the guess vector instead of complete zero vector, (ii) correction mechanism to remove
incorrectly chosen parameters and (iii) continuing iterations for parameter correction
even after the vector of desired dimension is recovered. Details about the greedy
sparse simplex are presented in Appendix A.2. Further, derivation steps involved in
the identification of FIR model using the aforementioned framework are discussed in
Appendix A.3.

Thus, in this work, FIR model identification with sparsity constraint is proposed as
an effective way of identifying the causal variables from the process data and this
method uses the estimated values of the sparse FIR model parameters for pruning
out less contributing input variables and picking up only the most significant process
variables. This proposed method is tested on the process described in the following
section and results of this study are discussed in section 3.4.
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3.3 Process & Problem Description

3.3.1 Process Description

Flooding and weeping events are observed to occur extensively in an industrial deetha-
nizer column associated with a fluid catalytic cracking process presented in Figure. 3.2.
Primary feed for the process enters the pre-heating unit followed by fluid catalytic
cracking unit. During the cracking process, pre-heated feed cracks down into different
products and exits the unit from the top in gaseous state. The product in gaseous
state enters the fractionator column for separation and the separated products enter
as feed for different downstream process units. In this, top product from the frac-
tionator reaches a multi-stage condenser and condensed product from the unit enters
the storage tank. Product from the storage tank splits into two streams and one of
the streams enters the absorber as feed and the other stream enters the deethanizer
unit after compression. Deethanizer unit is also connected with reboiler and reflux
unit to improve the product quality. Especially, reboiler is used for controlling the
temperature inside the column.

Figure 3.2: Process & Instrumentation Diagram of FCC Unit

3.3.2 Problem Description

A brief description of the problem of flooding and weeping prediction in the industrial
Deethanizer column is presented here. Flooding is a phenomenon in which excessive
flow of vapour at high pressure occurs inside a column thereby causing entrainment of
liquid flowing in the counter current direction. Similarly, weeping is a phenomenon,
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where liquid flows down through the sieve holes in the trays of the column without
undergoing separation. Usually, pressure drop in the middle region or outlet flowrate
above the point of flooding is considered to be flooding indicators. In this work,
outlet flowrate measured at top of the column is considered as the flooding indicator.
Temperature at the bottom region of the column is taken as the weeping indicator.
Flooding and weeping events cause major disruptions in routine operations. In order
to overcome such operational difficulties, the problem of flooding and weeping is
formulated in this work in the context of causality analysis, where the root cause for
flooding and weeping is identified. Based on the identified causal variables, monitoring
rules are constructed for the early prediction of flooding and weeping events.

3.4 Flooding & Weeping Prediction using Causality

Analysis

A method for detecting flooding and weeping events in process operations is in-
troduced here. A summary of steps used in the proposed method is illustrated in
Figure 3.3. The approach consists of data pre-processing step, causal network recon-
struction, construction of monitoring rules followed by final implementation. In the
first step, after data pre-processing, causal relation is reconstructed using the process
data and it is verified using the available process knowledge such as process flow-sheet
and the physics of the process. Then in the second step, causal knowledge obtained
in the first step is used for construction of monitoring rules to predict the early onset
of flooding and weeping. In the forthcoming subsections, these steps are discussed in
detail.

Figure 3.3: Methodology for Predicting Flooding & Weeping
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3.4.1 Data Pre-processing

For causality analysis, process data from regular operation is considered. Process
variables include flow rates, pressure and temperature, sampled every minute for a
duration of twelve months. These twelve months of data are further classified on
bi-monthly basis and causality analysis is carried out on bi-monthly sets of data to
ensure consistency of the results provided by the proposed methods. For the sake of
brevity, result from one of the sets is illustrated for explaining the causality analysis.

3.4.2 Causality Analysis using Sparse FIR Model & Process

Knowledge

Process flow-diagram helps in understanding the pathway of propagation, when any-
one of the process variables is changed during the plant operation. However, due
to complex interconnections among the process units and large number of process
variables, identifying the propagation pathway and the causal variables is difficult.
In this section, a causal network reconstruction method that makes use of sparsity
constrained FIR model, with consideration of physics of the process and connectiv-
ity information embedded in the process flow-diagram is presented for the industrial
case. In the first step, sparse FIR model is identified and the corresponding sparse
parameter vector is obtained. On obtaining the sparse parameter vector, the process
variables associated with this parameter vector are considered for further analysis.
Results of sparse FIR model identification with L1 and L0 norm constraints on the
parameters with respect to flooding indicators are presented in Figure. 3.4. For this
case, the list of contributing parameters obtained in the identification step and the
corresponding process variables are illustrated in Figure. 3.5. Similarly, Figure. 3.6
shows the results of sparse FIR model identification with respect to weeping indicator.
The contributing parameters recovered and the corresponding process variables for
this case are shown in Figure. 3.7. These results indicate that, in general, L0 norm
constrained estimator yields the most sparse parameter vector compared to L1 norm
constrained estimator, although in some cases, both L1 and L0 norm constrained esti-
mators may result in parameter vectors of equal sparsity. Hence, for further analysis,
most sparse solution obtained with L0 norm constraint is considered.

The process variables corresponding to the contributing parameters recovered using
L0 norm constrained estimator are taken to be significant in the causation of flooding
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Figure 3.4: FIR Model Identification (Flooding). (R2
train)L0

= 0.894; (R2
val)L0

= 0.854

& (R2
train)L1

= 0.822; (R2
val)L1

= 0.725

Figure 3.5: Sparse parameter vector recovered with L0 & L1 constraint for Flooding.

Significantly correlated parameters are presented in a distinct color. Number of non-

zero parameters recovered with L0 constraint is 20 and with L1 constraint is 40
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Figure 3.6: FIR Model Identification (Weeping). (R2
train)L0

= 0.99; (R2
val)L0

= 0.987

& (R2
train)L1

= 0.992; (R2
val)L1

= 0.976

and weeping events. These significantly contributing process variables are tagged in
the process flow-diagram shown in Figure 3.8. Description of these process variables
tagged in the process flow-diagram, are detailed in Table. 3.1.

Next, a causal network is constructed showing the cause-effect direction among the
identified process variables. The first level causal network can be constructed based
on the input-output relationship of FIR model. This is illustrated in Figure 3.10.
Once the first level causal network construction is completed, corresponding process
variables are mapped on to the process flow-diagram to ascertain if the causal direction
matches with the mass flow direction of the actual process. Further, to avoid any
ambiguity of cause-effect direction in the causal network, the response of process
variables are visualized and based on this, the causal direction is switched. For
instance, in the first level causal network (Figure 3.10), based on the input-output
relation of FIR model, DBF → FIV (DBF causes FIV ) was defined initially. Then,
by visualizing the process variables DBF and FIV as presented in Figure 3.9, one can
understand that FIV responds first followed by DBF . Hence, the causal relationship
is switched and the direction is updated as FIV → DBF in the first level causal
network. Similarly, WI1 → FIV and WI2 → FIV are switched as FIV → WI1 and
FIV → WI2 respectively.
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Figure 3.7: Sparse parameter vector recovered with L0 & L1 constraint for Weeping.

Significantly correlated parameters are presented in a distinct color. Number of non-

zero parameters recovered is 7 for both L0 & L1 norm constraints

Figure 3.8: Process & Instrumentation Diagram of FCC Unit with the information

of contributing process variables

Then, first level causal map is further updated by representing the relationship among
other process variables. To construct the second level causal map, the process variable
that has significantly contributed in predicting the flooding indicator is considered
based on the parameter with highest magnitude. For instance, in this case DUF
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Table 3.1: Process variables description (Flooding & Weeping)

T
ag

(P
V

N
o.

)
P

ro
ce

ss
V

ar
ia

b
le

D
es

cr
ip

ti
on

T
ag

(P
V

N
o.

)
P

ro
ce

ss
V

ar
ia

b
le

D
es

cr
ip

ti
on

D
U
F

(2
)

D
ee

th
an

iz
er

U
ni

t
Fe

ed
W

I 1
(3

)
W

ee
pi

ng
In

d-
(1

)
(B

ot
to

m
Tr

ay
Te

m
p.

)

R
I
T

(3
0)

R
eb

oi
le

r
In

le
t

Te
m

pe
ra

tu
re

R
O
T

(3
8)

R
eb

oi
le

r
O

ut
le

t
Te

m
pe

ra
tu

re

W
C
P

(5
)

W
et

G
as

C
om

pr
es

so
r

P
re

ss
ur

e
D
B
F

(1
1)

D
ee

th
an

iz
er

B
ot

to
m

F
lo

w
st

re
am

A
U
F

(8
)

A
bs

or
be

r
Fe

ed
W

I 2
(4

)
W

ee
pi

ng
In

d-
(2

)
(B

ot
to

m
M

id
Tr

ay
Te

m
p)

D
T

(4
7)

D
ee

th
an

iz
er

Te
m

pe
ra

tu
re

F
T

(5
3)

FC
C

Te
m

pe
ra

tu
re

D
F
T

(1
)

D
ee

th
an

iz
er

Fe
ed

Te
m

pe
ra

tu
re

F
F

(4
8)

FC
C

Fe
ed

B
T
D

(4
3)

B
ot

to
m

Tr
ay

Te
m

p
in

D
ee

th
an

iz
er

F
I
V

(4
6)

F
lo

od
in

g
In

di
ca

to
r

(O
ut

le
t

F
lo

w
-r

at
e)

D
F
S

(2
7)

D
ee

th
an

iz
er

Fe
ed

Se
pa

ra
to

r

63



Figure 3.9: Validation of causal direction through process variable visualization

is selected. This newly selected process variable is considered to be the new output
variable for the sparse FIR model. Using the new set of process variables, first level of
causal map is updated based on the input-output relationship of FIR model and also
by using the information obtained from visualization of process variables. In the final
step, causal network construction is completed by identifying the FIR model among
the subset of process variables that are present in the first level causal map. Resulting
final causal network for flooding and weeping is illustrated in Figure. 3.11. Based on
the causal network constructed, it is possible to identify that there are five primary
nodes, which can be considered as probable causes for the flooding and weeping in
the deethanizer. Using this information, sets of hypothesis explaining the physical
phenomena of flooding and weeping can be constructed. In this problem, a total of
four hypotheses are proposed and they are presented below.

Hypothesis-1 (H1): Effect of change in Feed for the FCC unit

First hypothesis analyzes the effect of feed change in FCC unit along with the prop-
agation of this effect in the downstream units. Whenever the feed for FCC unit
happens to change drastically, feed for the corresponding downstream process units
also changes considerably thereby causing a kind of disturbance in the process opera-
tions. A reduction in FCC feed would cause a reduction in flow of liquid as feed into
the deethanizer. As a result of this, pre-occupied liquid in the deethanizer would get
vaporized and an excessive flow of vapour relative to the flow of liquid is expected to
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DUF

RIT

WI1

ROT

WCP

DBFAUF

WI2

DT

FT

DFT

FF

BTD

FIV

Figure 3.10: First level of Causal Network for Flooding & Weeping. Dashed line

indicates the causal relationship before switching

Hypothesis-1

Hypothesis-2

Hypothesis-3

Hypothesis-4

DUF RIT WI1ROT

WCP

DBF

AUF

WI2

DT

FT

DFT

FF

BTD

FIV

DFS

Figure 3.11: Resultant Causal Network for Flooding & Weeping

happen in the process unit. Over a period of time, continuous and excessive flow of
vapour at high pressure in the column would lead to flooding. This hypothesis can be
validated using the causal network presented in Figure. 3.11. In the given network,
it can be noticed that the FCC feed (FF ) has direct influence on the flooding indica-
tor variable (FIV ) and also on the feed of the absorber (AUF ) and the deethanizer
(DUF ).

Hypothesis-2 (H2): Effect of Reboiler operation

Second hypothesis accounts for operating conditions of the reboiler associated with
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the deethanizer. Whenever the reboiler load is kept unchanged for decreasing flow of
FCC feed or increased for a constant flow of FCC feed, excessive vapour generation
occurs inside the deethanizer column. This excessive flow of vapour is expected to
cause flooding to occur. To validate this claim, complete causal network given in
Figure. 3.11 is considered. In the causal network, it is observed that the shell side
inlet temperature of the reboiler (RIT ) is affecting the tube side outlet temperature
(ROT ) and the bottom tray temperature of the deethanizer (BTD). Similarly, change
in ROT causes a change in BTD. Altogether, three aforementioned process variables
are affecting the flooding indicator variable (FIV ).

Hypothesis-3 (H3): Effect of Flooding control on Weeping

Third hypothesis considers the weeping problem. Based on the physics, weeping
can be understood as excessive flow of liquid without undergoing separation. This
condition is expected to happen specially after flooding is being controlled. To control
the flooding, temperature of the reboiler is reduced which eventually reduces the
vapour pressure inside column. Due to reduction in pressure, entrained liquid gets
released at high flow-rate and as an effect, bottom tray temperature of the column
reduces drastically. As a validation of the current hypothesis, causal network indicates
that Flooding (FIV ) is the cause and the weeping indicated by WI1&WI2 is the
effects.

Hypothesis-4 (H4): Effect of Deethanizer Feed temperature

Fourth hypothesis takes deethanizer feed temperature into account. Whenever there
is a slow and gradual increase in the deethanizer feed temperature, energy balance of
the deethanizer gets affected. Over a period, accumulated temperature increases the
vapour pressure thereby favouring flooding condition in deethanizer. Based on the
causal network, it can be validated that, an increase in deethanizer feed temperature
(DFT ) causes an increase of deethanizer (DT ) temperature and correspondingly
increases vapour pressure, thereby causing flooding (FIV ) to occur in the process
unit.

3.4.3 Construction of Monitoring rules using Causal Hypothe-

ses

Once the causal map is reconstructed for flooding and weeping problem, information
from the causal map is used for constructing the hypothesis set and monitoring rules
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to detect the abnormal events in a logical manner. In general, hypothesis explains
the physics behind the occurrence of abnormal event in process operations. These
hypotheses are then tested for logical validation using offline measurements and also
by visualization like the one illustrated in Figure 3.9. When implemented online, flags
are raised if the hypothesis is considered to be true. After the initiation of all the
hypotheses, existing indicator for the abnormal event is considered as the reference
and time difference is computed between the event flag and the indicator to determine
the detection time. For prediction of flooding and weeping in the deethanizer column,
monitoring rules are implemented. To begin with, process variables in each of the
hypotheses are segregated and they are visualized in a sequence that is given in the
causal network. Once the visualization is completed, thresholds are given for the
process variables and monitoring rules are constructed for the prediction of flooding
and weeping events. At first, process variables associated with the hypotheses are
classified based on the information from the causal network given in Figure. 3.11.

H1 Variables: {FF , DFS, WCP , DUF , FT & AUF}

H2 Variables: {RIT , ROT & BTD}

H3 Variables: {FIV & ROT}

H4 Variables: {DFT & DT}

Upon classification of hypotheses set and process variables, logical monitoring rules
are constructed for prediction of flooding and weeping. Sequence of prediction starts
with the parent/ primary variable of the hypotheses set followed by second variable of
the same set and this is continued until the last variable of the set is reached. This de-
tection procedure is repeated until all the hypothesis sets are validated. Construction
of monitoring rules based on the hypothesis is detailed for H1 as follows.

• First variable of the set FF is considered. By hypothesis 1, it is understood
that drastic reduction in FF leads to flooding. At the same time, it is found
that increase in cracking temperature (FT ) also leads to flooding. Therefore,
first logical criterion to be satisfied is defined as FF < α1 & FT > α2.

• Once the first criteria is satisfied, then second variable of the hypothesis set,
WCP is considered and based on this hypothesis it is known that an increase
in WCP influences flooding. Therefore, second logical criterion can defined as
WCP > α3.

• Upon satisfying the first and the second criteria, third logical criterion is con-
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structed using DUF and AUF . From the hypothesis, it can be understood that
as WCP increases, AUF decreases and DUF increases. Therefore, third logical
criterion can be stated as AUF < α4 & DUF > α5.

Similarly, rules are constructed for other three hypotheses. In second hypothesis,
three key process variables can be noticed as possible reason for flooding. Based on
the physics, it can be understood that when RIT increases, ROT and BTD increase.
Therefore the rules are defined as, RIT > β1 and ROT > β2 & BTD > β3. Third
hypothesis is related to weeping, where control of flooding causes weeping. When FIV

is changed, existing value of ROT alters the process condition that is favourable to
weeping. Based on the physical understanding, rules to predict the onset of weeping
can be defined as FIV < γ1 & ROT < γ2. Similarly from the fourth hypothesis,
it can be inferred that increase in feed temperature of deethanizer, DFT , leads to
increase in temperature inside the deethanizer DT , which eventually causes flooding.
Therefore, prediction rules can be constructed as DFT > κ1 & DT > κ2.

Once all the four monitoring rules are satisfied, flags for the onset of flooding and
weeping are indicated. Here, bounds for process variables in monitoring rules α, β, γ, κ
are fixed by visualizing the trends of each one of the process variables that are present
in hypotheses. For instance, in the third hypothesis, values of γ1 = 0.26 and γ2 = 0.25

are obtained by visualizing the trends of ROT and FIV shown in Figure 3.12.

It is to be noted that switching happens from H1 → H2 only if H1 is not satisfied.
Once the flags are obtained, time difference between the flag and the current event
indicator is calculated to determine the prediction duration. Results of flooding and
weeping prediction are given in Figure. 3.13 and Figure. 3.14. In the results presented
for flooding, it can be noticed that different flags have been indicated earlier than
expected. Each of these flags corresponds to hypothesis which detected the event.
Similar interpretation can be given for weeping prediction as well. The proposed
approach for causal network reconstruction and abnormal event prediction applied
for the problem of flooding and weeping and yielded physically interpretable results
and is also able to predict them using its source variable.
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Figure 3.12: Validation & definition of bounds (orange line) for the variables in

monitoring rules (hypothesis-3)

Figure 3.13: Prediction of Flooding by Hypothesis approach
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Figure 3.14: Prediction of Weeping by Hypothesis approach

3.5 Results & Outcome of Industrial Implementa-

tion

Consistent results were obtained for other five bi-monthly data set with minor modi-
fications in the reconstructed causal network. Some of the causes are not consistent
throughout and they occur only once in a while. Effect of deethanizer feed tempera-
ture (DFT ) and temperature of FCC reactor (FT ) are the causes that do not influence
flooding all the time. This information is updated in the causal network for flooding
and weeping illustrated in Figure 3.11 using a distinct representation. The causal
network for the span of twelve months is presented in Figure 3.15. Comprehensive
results of flooding and weeping prediction are given in Table. 3.2.

Table 3.2: Comprehensive results of flooding & weeping detection

Flooding Weeping

Actual Events 64 113

Detected Events 55 (85%) 101 (89%)

Undetected Events 9 15

False positive 14 22

Average prediction time ∼1.5 Hrs @ Onset of Flooding
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Hypothesis-1

Hypothesis-2

Hypothesis-3

Hypothesis-4

DUF RIT WI1ROT

WCP

DBF

AUF

WI2

DT
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DFT

FF

BTD

FIV

DFS

Figure 3.15: Resultant Causal Network for Flooding & Weeping considering results

for the span of 12 months

The findings of the methodology proposed for causality analysis have been imple-
mented in real-time to predict and control flooding and weeping in deethanizer col-
umn for the process given in Section 3.3. On one instance for example, based on the
information obtained from the causal network and the proposed prediction algorithm,
bottom tray temperature of the deethanizer was reduced using robust-model predic-
tive controller present around the reboiler section of the deethanzier to successfully
prevent flooding. Due to the pro-active measure taken based on the prediction al-
gorithm, flooding events were prevented. It is also observed that, once the flooding
is controlled on time, due to the underlying physics of the problem, weeping is also
controlled.

3.6 Summary

In this work, a novel methodology is presented for the prediction of flooding and
weeping events in an industrial process using causality analysis. The method involves
two-steps, where in the first step causal network is reconstructed using a data-driven
approach coupled with process knowledge. In the second step, hypothesis based
prediction of abnormal event in process operation is carried out by utilising the causal
information. In causal network reconstruction step, finite impulse response model
with sparsity promoting norm constraints, L1 & L0 norm, on the parameter is used for
the selection of possible causal variables and knowledge of process flow-sheet is used
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to validate the direction of causation. In the event prediction step, process oriented
monitoring rules are constructed to predict the events ahead of time. The efficacy of
the proposed approach is demonstrated in the industrial application of flooding and
weeping prediction in a deethanizer column. From the analysis it is found that drastic
feed change, abnormality in reboiler operation and deethanizer feed temperature are
considered to be possible cause for flooding and it is also found that improper control
of flooding leads to weeping. The proposed causality driven approach for abnormal
event prediction is able to predict flooding event on an average of 1.5 Hrs before onset
and the weeping events were detected immediately after the onset of flooding. These
findings are then implemented in an actual industrial setting and positive outcomes
were achieved by avoiding the occurrence of flooding and weeping.
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Chapter 4

Sparse Inverse Covariance Estimation

for Causal Inference in Process Data

Analytics

4.1 Introduction

In Chapter 3, we proposed causality analysis approach using sparse FIR model com-
bined with the process knowledge and applied it in flooding and weeping event pre-
diction in a deethanizer column of an industrial process. In this approach, it is to
be noted that the process knowledge is essential in addition to the process data for
causality analysis. In the case of non availability of the process knowledge, there is a
need for developing a causal inference technique that makes use of only the process
data. In this chapter, a data-driven approach for causal inference using sparse inverse
covariance is proposed and investigated.

Causal inference emphasizes on decoding the relationship among the variables from
the data. Based on the knowledge gained from causal analysis, applications across
different domains such as economics, reaction networks, gene networks etc., are avail-
able in the literature [58, 59]. In the domain of process systems engineering, causal
relationships are generally embedded in process data and process flow sheets. Us-
ing the information of causal relationship in process systems, several challenges such
as root cause analysis of process faults [40], detection of plant-wide oscillations [41]
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and plant connectivity reconstruction [60] etc., can be addressed. To understand
the causal relationships, graphical models are generally considered as a viable tool
and different techniques have been proposed in the literature [58, 39] to address this
problem. Among these methods, time series models such as vector auto-regressive
(VAR) models have been used to determine the causality [61]. Similarly, vector auto-
regressive exogenous (VARX) models along with factor analysis (FA) models are used
for causal analysis along with contemporaneous correlation feature inference in Varia-
tional Bayesian framework [62]. A Bayesian network structure is also learned from the
data using score based learning algorithm [63] to determine the causal relationship.
Apart from the aforementioned techniques, causal relations can also be determined
using the method of intervention of variables [64]. During the construction of causal
graph, it can be noted that not all variables are associated with one another. There-
fore, the concept of sparsity is also introduced in causal modelling in order to reduce
the detection of spurious connections in a network [65, 45, 66].

The idea of sparsity has been extensively used in areas such as machine learning,
image and signal processing, Mathematics and Statistics etc. [67, 68]. Given the data
with large number of variables, introduction of sparsity constraints helps in explain-
ing the data with minimum number of variables. In general, a sparsity constraint can
be induced through regularization of parameters with L0 (Zero) norm [8] or L1 norm
(LASSO) [51] or a combination of L1 and L2 norms (Elastic Net, CLOT) [52, 69].
Among the regularization techniques, L0 provides the most sparse solution followed
by L1 and a combination of both L1 and L2 norms. Using the sparsity constraint,
problems such as regression, principle component analysis (PCA) and graph con-
struction have been formulated and solved [68]. To reconstruct an undirected graph,
estimation of an inverse covariance matrix has been considered as it has the struc-
tural information of Gaussian graphical model. During the reconstruction step, any
of the aforementioned norm constraints can be induced to estimate the sparse inverse
covariance matrix. It is to be noted that L0 norm is usually preferred as it promotes
better sparsity over its counterparts [70]. However, the problem becomes hard to
solve due to the NP-hard nature of L0 norm constraint. Therefore, the original prob-
lem is addressed by relaxing it to its convex equivalent i.e., L1 norm constraint. To
solve the convex relaxation problem, different approaches such as first-order methods
[71], Block coordinate ascent (BCA) [72] and Alternating direction method of mul-
tipliers (ADMM) [73] are available. To solve the non-convex optimization problem
i.e., L0-norm minimization, there are methods in the literature [70, 74], which are
guaranteed to converge to at least a local minimum. Since convergence of co-ordinate
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wise minimum (defined in Appendix A.2.1) is stronger than a local minimum [8], an
algorithm that converges to the former is used in the current work.

Since, inferring the causal direction is important in the field of process systems en-
gineering but many of the aforementioned methods infer an undirected graph from
the data, it is essential to have methods which can infer the directed graph from
data. Therefore, the problem of inferring causal relations is addressed in this work
by combining the estimation of sparse inverse covariance matrix with the dynamic
likelihood score. In the current approach, a two-step algorithm is proposed. In the
first step, a zero-norm constraint is introduced while estimating the sparse inverse
covariance matrix in order to reconstruct a sparse relational network of the process
from the data. In the second step, existing likelihood score is extended for dynamic
models and dynamic likelihood score is computed to infer causal direction among the
associated variables in the reconstructed sparse network from the first step. As men-
tioned earlier, inverse covariance has the information of Gaussian graphical model.
Therefore, when sparsity constraint is introduced, some of the elements in the inverse
covariance matrix becomes zero, which makes that variable conditionally indepen-
dent of other variables. Due to the existence of conditional independence among the
variables [75], information in the Gaussian graphical models can be interpreted from
causality perspective.

The main contributions of this work are summarized as follows. To solve the afore-
mentioned non-convex optimization problem in the first step of the proposed method,
a greedy approach is used to achieve near global optimal solution. In particular, due
to its accuracy over others, greedy sparse simplex method [8] is considered and is
adapted to the current framework of estimation. The algorithm is also modified to
account for the additional positive semi-definite constraint on the inverse covariance
matrix. To infer the causal direction, a dynamic likelihood score is utilized. The pro-
posed approach for causal analysis is illustrated with a numerical and an industrial
case study. In particular, the root cause and causal map for flooding and weeping
in a deethanizer associated with Fluid catalytic cracking (FCC) is identified in the
industrial case study.
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4.2 Graph

A graph (G) is defined as set of objects that are related to each other in some aspect.
Mathematically, a graph (G) is represented using a set of nodes (N) and edges (E)
as

G = (N,E)

where, N denotes the set of all variables and E denotes set of ordered pairs where
each pair represents the link connecting the variables. A graph can be classified into
directed and undirected as illustrated in Figure 4.1. In directed graph, nodes are
connected by edges with an arrow pointed at a particular direction, where as in an
undirected graph, edges do not have the information about the direction.

X1 X2

X1 X2

Figure 4.1: Representation of directed and undirected graph

A graph can also be represented in the form of a square matrix, known as adjacency
matrix (Aadj). In an undirected graph, adjacency matrix will be symmetric with a
value of 1 at (i, j)th and (j, i)th components of the matrix if the variables i and j

are connected in the graph and zero otherwise. For the directed graph, only (i, j)th

component takes a value of 1 if the information is transferred from variable i to j

and zero otherwise. A graph structure can also be constructed from the adjacency
matrix by connecting the non-zero entries of the matrix. However in practice, graph
structure is not known a-priori. In this context, methods for estimating the graph
structure from data has gained significance in the recent years [76]. In the following
subsection, the method of inverse covariance estimation, an approach to estimate the
graph structure from the data, will be discussed.

4.3 Sparse Inverse Covariance Estimation

The problem of inferring the connectivity from data can be formulated as an esti-
mation of inverse covariance matrix, which encodes the information of conditional
independence [72, 77] among the variables. Therefore, the underlying relationships
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among the variables can be inferred from the data by estimating the inverse of co-
variance matrix in the framework of maximum likelihood (ML) estimation.

Proposition. Given a graph G with M variables, X := {xi, i = 1, 2, · · · ,M} follow-
ing a multivariate Gaussian distribution i.e., X ∼ N (0,Σ), where Σ is regular and
let Γ = {1, 2, · · · ,M}. Then for i, j ∈ Γ with i ̸= j,

xi ⊥⊥ xj|xΓ\{i,j} ⇐⇒ (Σ−1)i,j = 0

i.e., the inverse of the covariance matrix encodes the information of conditional in-
dependence among the variables.

Proof. Refer to Proposition 5.2 in [77].

In the current work, the data matrix is represented by X ∈ RM×N where, N is the
number of samples and M is the number of variables. It is further assumed that
the data follows multivariate Gaussian distribution with zero mean (µ ∈ RM×1) and
covariance Σ ∈ RM×M .

Based on the aforementioned assumption, the probability distribution of the data can
be expressed as

P (X) =
1√
2π

(︂
(det(Σ))−1/2

)︂
exp

(︂
− 1

2
XTΣ−1X

)︂
(4.1)

In Eq. (4.1), inverse of the covariance (Σ−1) is replaced by Θ and logarithmic form
of P (X) is considered to have tractable computation. Thus, the expression in the
following form is obtained as,

log(P (X)) =
1

2
log(det(Θ))− 1

2

(︂
XTΘX

)︂
(4.2)

Further, Eq. (4.2) can be modified as,

log(P (X)) =
1

2
log(det(Θ))−1

2
Tr

(︄(︄
1

N

N∑︂
i=1

(xi)(xi)
T

)︄
Θ

)︄
=

1

2
log(det(Θ))−1

2
Tr(SΘ)

(4.3)
where, S is the sample covariance computed from the data and Θ is the inverse
covariance to be estimated. In order to estimate the inverse of covariance, the problem
is presented in the maximum likelihood estimation framework as

Θ̂ = argmin
Θ⪰0

(︂
− log(det(Θ)) + Tr(SΘ)

)︂
(4.4)
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In general, ML estimate of the inverse covariance matrix will lead to dense graphical
model. Therefore, inferring the connectivity among the variables becomes a chal-
lenging task and it may also lead to spurious connections. In order to overcome this
issue, a sparsity constraint in terms of L0 norm on the inverse of covariance matrix
is considered.

It is a well known fact that L0 norm minimization is combinatorial and is NP-hard
to solve. Therefore, the original L0 problem for inverse covariance estimation is
generally transformed to its convex counterpart by relaxing the constraint to L1

norm [71, 53, 72]. Another way of handling the original L0 problem is to use greedy
methods, which makes locally optimal choice at every stage with a goal to reach the
global optimum [78, 8]. As the greedy methods promote better sparsity over convex
relaxations, the former is used in the current work. In the following subsections,
details that are essential to understand both the convex formulations and greedy
methods will be explained by considering a general function f : Rn → R.

4.3.1 One Norm Constrained Optimization Algorithm: Con-

vex Formulation

A convex equivalent solution to the problem of inverse covariance estimation given in
Eq. (4.4) is obtained by incorporating L1 constraint on the decision variable to the
objective function as

Θ̂ = argmin
Θ⪰0

log(det(Θ))− Tr(SΘ) + α ∥Θ∥1 (4.5)

To solve the aforementioned problem, ADMM is most prominently used. In this
section, an overview of ADMM method for a general convex function f(θ) := h(θ) +

g(θ) is presented in brief and its extension for sparse inverse covariance estimation is
also detailed in the later parts. Consider a minimization problem of a general convex
function f(·) as

θ̂ = argmin
θ

f(θ)

= argmin
θ

h(θ) + g(θ)

The aforementioned problem can be solved using different approaches such as first-
order methods [71], block coordinate ascent (BCA) [72] and alternating direction
method of multipliers (ADMM) [73]. In BCA, convergence becomes non-monotonic
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for non-smooth function because of which, the estimate converges to a sub-optimal
solution. In order to avoid this issue, a new variable (z) for θ is introduced in function
g(·) and the unconstrained optimization problem is converted into a constrained form
as

θ̂ = argmin
θ

h(θ) + g(z)

s.t (θ − z = 0)

This formulation, often referred to as ADMM, has the advantage of decomposability
from dual descent and convergence properties from the method of multipliers [53].
The aforementioned problem is then converted into unconstrained form by introducing
the method of multipliers and the final steps of estimating the parameters in ADMM
method are as follows

θk+1 = argmin
θ

Jp(θ, z
k, yk)

zk+1 = argmin
z

Jp(θ
k+1, z, yk)

yk+1 = yk + ρ(θk+1 − zk+1)

where, ρ > 0 and Jp(θ, z, y) = h(θ) + g(z) + yT (θ − z) + ρ
2
∥θ − z∥2.

In order to extend this approach to the case of estimation of sparse inverse covari-
ance matrix i.e., Eq. (4.5), the cost function defined in Eq. (4.5) is first separated
into smooth (h(Θ)=log(det(Θ))− Tr(SΘ)) and non-smooth functions (g(Z)=∥Θ∥1).
Applying the final steps of estimating the parameters in ADMM method for inverse
covariance estimation, an analytical expression for inverse covariance matrix as given
in Algorithm 2 is obtained [53].

Algorithm 2 Sparse Inverse Covariance Estimation: ADMM (Convex For-

mulation)

1: Θk+1 = QΘ̃
k
QT ▷ Smooth function update

2: Zk+1 =
(︂
1− α

ρ
|(Θk+1 + Uk)|−1

)︂
▷ Non-smooth function update

3: Uk+1 = Uk +Θk+1 − Zk+1 ▷ Dual update

In Algorithm 2, Θk is the estimated inverse covariance, Zk is the variable which
regularizes the estimate with L1 norm, U is the dual variable of Θ, and Q is the
matrix with orthonormal vectors obtained from singular value decomposition of Θ.
The resultant graph structure estimated with L1 constraint might make the structure
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dense if the regularization factor (α) is not tuned well, which may again lead to
spurious relations.

Since greedy methods promote better sparsity over convex formulations, the former
is used in the current work of estimation of inverse covariance matrix. Therefore, the
problem of estimation of inverse covariance is formulated as

Θ̂ = argmin
Θ⪰0

(−log(det(Θ)) + Tr(SΘ))

s.t.∥Θ∥0 ≤ s

(4.6)

Further details on solving the problem in Eq. (4.6) are discussed in detail in Sec-
tion 4.5. Once the graph structure is estimated, the next objective is to infer the
direction in which the variables are related, which is discussed in detail in the follow-
ing subsection.

4.4 Inferring Causation in Sparse Inverse Covariance

Given the inverse covariance matrix, causal direction is determined by computing the
likelihood score, which is a metric that is used to compute the causal direction among
the variables in an undirected graph. To explain further details on inference of causal
direction using the likelihood score, two random variables xi and xj are considered.
Given the functions f̂ , ĝ : R → R which are prediction of xj from xi and prediction of
xi from xj, respectively. Let the prediction residuals be defined as ηxj ,f̂

:= xj − f̂(xi)

and ηxi,ĝ := xi − ĝ(xj).

To infer causal relation among continuous random variables, differential entropy (de-
noted by H(·)) is used [79]. For a continuous random variable x ∈ X, differential
entropy can be defined as H(x) = E [−ln P (x)]. Similarly, joint entropy can be
represented as the sum of conditional differential entropy and marginal of the joint
differential entropy using the chain rule of differential entropy [80] as

H(xi, xj) = H(xj) +H(xi | xj)

= H(xj) +H(ηxi,ĝ | xj)

= H(xj) +H(ηxi,ĝ)− I(xj, ηxi,ĝ)

where, I(·, ·) represents differential mutual information. For instance, given two ran-
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dom variables x1, x2, I(x1, x2) := E
[︂
ln
(︂

p(x1|x2)
p(x2)

)︂]︂
where p(·) represents the probabil-

ity density function.

Similarly,

H(xi, xj) = H(xi) +H(xj | xi)

= H(xi) +H(ηxj ,f̂
| xi)

= H(xi) +H(ηxj ,f̂
)− I(xi, ηxj ,f̂

)

The aforementioned equations of differential entropy leads to

H(xi) +H(ηxj ,f̂
)− I(xi, ηxj ,f̂

) = H(xj) +H(ηxi,ĝ)− I(xj, ηxi,ĝ) (4.7)

In the case that the random variables xi, xj either satisfies an additive noise model
with xi → xj or xj → xi, but not both, then the mutual information of the corre-
sponding term is zero [81, 79] i.e., when the causal structure is given to be xi → xj,
then I(xi, ηxj ,f̂

) = 0 and I(xj, ηxi,ĝ) > 0 and vice versa. Therefore, the differential
entropy given in Eq. (4.7), for the causal structure xi → xj can be written as

H(xj − f̂(xi)) +H(xi) = H(xi − ĝ(xj)) +H(xj)− I(xi − ĝ(xj), xj)

⇒ H(xj − f̂(xi)) +H(xi) ≤ H(xi − ĝ(xj)) +H(xj) (4.8)

The proof for non-negativity of mutual information and its relationship to causal
structure identification is presented in Appendix A.4. Further, when the random
variables are assumed to be Gaussian, differential entropy can be related to vari-
ance [79] and the following expression is obtained.

log V ar(xj − f̂(xi)) + log V ar(xi) ≤ log V ar(xi − ĝ(xj)) + log V ar(xj) (4.9)

where f̂(·) is a function that represents the relation between the variables xi and xj.
From Eq. (4.9), it can be noted that the Lxi→xj

< Lxj→xi
for the case when xi causes

xj and Lxj→xi
< Lxi→xj

when xj causes xi.

In the current paper, the aforementioned likelihood score is applied to the case when
the function f̂(·) is considered to be in the form of linear FIR dynamic models. Since
negative log-likelihood is most commonly used to infer the estimate of the parameters
from the data for dynamic models, the dynamic likelihood score i.e., Ld

xi→xj
can be

defined in the context of differential entropy as

Ld
xi→xj

: −log
(︁
Σ̂(xj)t|(xi)t:t−K+1

)︁
− log

(︁
Σ̂xi

)︁
(4.10)
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where Σ̂(xj)t|(xi)t:t−K+1
= V ar((xj)t − ĥ((xi)t:t−K+1)) and ĥ(·) represents the linear

FIR model. The dynamic likelihood score is expected to be Ld
xi→xj

> Ld
xj→xi

for
the case when xi causes xj and Ld

xj→xi
> Ld

xi→xj
when xj causes xi. Hence, this

information can be used to infer the direction in the estimated undirected graph,
thereby transforming undirected graph into a directed graph. It has to be noted that
this score for computing the causal direction is only applicable if the variables are
assumed to be Gaussian. For more details about the likelihood score refer to Mooij
et.al. 2016 [79] and Peters et.al. 2017 [64].

4.5 Sparse Inverse Covariance Estimation using

Greedy Sparse Simplex

In this section, Greedy sparse simplex approach is utilized to solve the inverse covari-
ance estimation problem with zero-norm constraint i.e., Eq. (4.6) along with positive
semi-definite constraint for estimating the sparse graph structure. In particular, the
expressions for minimization steps in GSS algorithm i.e., Eqs. (A.1) and (A.4) when
the function f(·) is expressed using Eq. (4.6) are detailed in this section. Further,
gradient based methods are used to perform the minimization steps of Eq. (A.1)
and (A.4) due to the convex nature of the objective function f(·). The main differ-
ence between the general structure of GSS approach and the method of minimization
used in the current work is that the optimization variable in this approach is a sym-
metric matrix. Therefore, a structured indicator matrix E, instead of an indicator
vector e, is used to iterate through the elements of the matrix in an orderly sequence.
The final steps in the GSS algorithm are also modified to account for the constraint
of positive semi-definiteness of the solution matrix.

Considering Eq. (A.1), when the function f is expressed using Eq. (4.6), the mini-
mization problem reduces to,

δi,j = argmin
δ∈R

f(Θk + δEi,j)

= argmin
δ∈R

−log(det(Θk + δEi,j)) + Tr(S(Θk + δEi,j))

= argmin
δ∈R

−log(det(Θk + δEi,j)) + Tr(SΘk)− δTr(SEi,j) (4.11)

where, i = 1, 2, . . . ,M , j = i, i + 1, . . . ,M and Ei,j is a symmetric matrix with 1
at (i, j)th position and zeros elsewhere. Since gradient based methods are used to
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solve the minimization problem, it is essential to compute the derivative of Eq. (4.11)
with respect to δ. As the derivative computation is independent of indices i and j,
for simplicity in notation, Ei,j is replaced with E in the following derivation and the
indices are specified wherever required. Therefore,

df(Θk + δE)

dδ
= 0

⇒− 1

det(Θk + δE)
Tr[(det(Θk + δE)(ΘK + δE)−1E)] + Tr(SE) = 0

⇒− Tr[(Θk + δE)−1E] + Tr(SE) = 0

(4.12)

Based on the inversion lemma for sum of matrices [82], (Θk+ δE)−1 in Eq. (4.12) can
be given as the following.

(Θk + δE)−1 = (Θk)−1 − δ

1 + δTr(E(Θk)−1)
(Θk)−1(E)(Θk)−1 (4.13)

In Eq. (4.13), δ
1+δTr(E(Θk)−1)

is denoted as β. On substituting the inverse expression
in Eq. (4.12) and after rearranging the terms, an expression of the following form can
be obtained.

βTr
(︃(︂(︁

Θk
)︁−1

E
)︂2)︃

= Tr
(︂(︁

Θk
)︁−1

E
)︂
− Tr(SE) (4.14)

Using the symmetric polynomial property [83], for any square matrix A, Tr(A2) =

[Tr(A)]2 − 2
∑︁

i<j λiλj where, λ denotes the eigenvalue. Further, when the rank(A)
is 1 & Ai,i ̸= 0 then Tr(A2) = [Tr(A)]2

In the current problem, ((Θk)−1E) has the rank of 1 when E operates on the diagonal
element (i = j) and it has the rank of 2 when E operates on off diagonal elements(i ̸=
j) due to symmetric nature of (Θk)−1. Therefore,

Tr[((Θk)−1E)2] =

⎧⎪⎨⎪⎩[Tr((Θk)−1E)]2 for i = j

[Tr((Θk)−1E)]2 − 2
∑︁

i<j λiλj for i ̸= j
(4.15)

Further, denote Tr[(Θk)−1E] as γ and Tr(SE) as κ. Then, for the case when i ̸= j,
Eq. (4.14) can be modified as

δ

1 + δγ

(︄
γ2 − 2

∑︂
i<j

λiλj

)︄
= γ − κ (4.16)
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which can be further simplified as

δ =
γ − κ

γκ− 2
∑︁

i<j λiλj

(4.17)

Note that when i = j, δ = 1
κ
− 1

γ
.

Since the function is convex, the minimum of Eq. (A.1) is unique and is given by
Eq. (4.17). Now the function in Eq. (A.2) can be estimated as

fi,j(Θ
k + δEi,j) = −log

(︂
det
(︂
Θk +

(︂ γ − κ

γκ− 2
∑︁

i<j λiλj

)︂
Ei,j

)︂)︂
+ Tr(SΘk)+(4.18)(︂ γ − κ

γκ− 2
∑︁

i<j λiλj

)︂
κ

Then, (î, ĵ) = argmin{fi,j, i = 1, 2, · · · ,M, j = i, i + 1, · · · ,M} and the inverse
covariance matrix can be updated as

Θk+1 =

⎧⎪⎨⎪⎩Θk +
(︂

γ−κ
γκ−2

∑︁
i<j λiλj

)︂
Ê, when î ̸= ĵ

Θk +
(︂

1
κ
− 1

γ

)︂
Ê, when î = ĵ

(4.19)

where Ê is a symmetric matrix with 1 at (î, ĵ)th position and zeros elsewhere.

To ensure the positive semi-definiteness of inverse covariance matrix, the update will
be modified [84, 85] as

[Uk+1, Dk+1, Vk+1] = svd(Θk+1)

Θ̂
k+1

= Uk+1max(Dk+1, 0)Vk+1 (4.20)

Consider Eq. (A.4), when the function f(·) is expressed using Eq. (4.6), the mini-
mization problem reduces to,

δi,ji1,j1 = argmin
δ∈R

f(Θk −Θk
i,jEi,j + δEi1,j1)

= argmin
δ∈R

−log(det(Θk −Θk
i,jEi,j + δEi1,j1)) + Tr(SΘk)− Tr(Θk

i,jSEi,j)

+δTr(SEi1,j1) (4.21)

where i1 = 1, 2, . . . ,M , j1 = i1, i1+1, . . . ,M , (i, j) ∈ I(Θk) with I(Θk) being a set of
all non-zero indices of the matrix Θk and Ei,j is a symmetric matrix with 1 at (i, j)th

position and zeros elsewhere. For simplicity in notation, Ei,j is represented as E1
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and Ei1,j1 is represented as E2 in the following derivation. Equating the derivative of
Eq. (4.21) with respect to δ to zero results in

−Tr[(Θk −Θk
i,jE1 + δE2)

−1E2] + Tr(SE2) = 0

⇒ Tr[(Θk + (δE2 −Θk
i,jE1))

−1E2]− Tr(SE2) = 0 (4.22)

Using the inversion lemma for sum of matrices [82], inverse portion in Eq. (4.22) can
be replaced by

− Tr

[︄(︃
(Θk)−1 −

(Θk)−1(δE2 −Θk
i,jE1)(Θ

k)−1

1 + Tr((δE2 −Θk
i,jE1)(Θk)−1)

)︃
E2

]︄
+ Tr(SE2) = 0 (4.23)

Denoting the term 1
1+Tr((δE2−Θk

i,jE1)(Θk)−1)
in Eq. (4.23) as β∗, an expression of the

following form is obtained after rearranging the terms as

Tr[(Θk)−1E2 + (−β∗)(Θk)−1(δE2 −Θk
i,jE1)(Θ

k)−1E2]− Tr(SE2) = 0 (4.24)

Based on the properties of trace, aforementioned expression reduces to

−Tr[(Θk)−1E2] + β∗δTr[(Θk)−1E2(Θ
k)−1E2]− β∗Θk

i,jTr[(Θk)−1E1(Θ
k)−1E2](4.25)

+Tr(SE2) = 0

To further simplify the notation, the trace terms in Eq. (4.25) are replaced using the
following expressions.

Tr[(Θk)−1E1] = γ1; Tr[(Θk)−1E2] = γ2;

Tr[(Θk)−1E1(Θ
k)−1E2] = γ12; Tr[(Θk)−1E2(Θ

k)−1E2] = γ22;

Tr(SE1) = κ1; Tr(SE2) = κ2

Thus, Eq. (4.25) can be simplified and represented as follows.

γ2 − κ2 +
Θk

i,jγ12

1 + δγ2 −Θk
i,jγ1

=
δγ22

1 + δγ2 −Θk
i,jγ1

(4.26)

Now, using the symmetric polynomial property, γ22 can be written as
(︃
(γ2)

2−2
∑︁

i<j λiλj

)︃
,

where, λi and λj are the eigenvalues of ((Θk)−1E2). On substituting the equivalent
expression for γ22 in Eq. (4.26) and after simple algebraic manipulations, the following
expression can be obtained.

Θk
i,j(γ12 − γ1γ2 + γ1κ2) + γ2 − κ2 − δκ2γ2 = −2δ

∑︂
i<j

λiλj (4.27)
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Then by rearranging Eq. (4.27), the optimal expression for δ, when i ̸= j, can be
expressed as follows.

δ =
γ2 − κ2 +Θk

i,j(γ12 − γ1γ2 + γ1κ2)

(κ2γ2 − 2
∑︁

i<j λiλj)
(4.28)

When, i = j, Eq. (4.28) modifies as the following.

δ =
1

κ2

− 1

γ2
+Θk

i,j

(︂γ12 − γ1γ2 + γ1κ2

κ2γ2

)︂
(4.29)

and the function in Eq. (A.5) is given as

f i,j
i1,j1

(Θk −Θk
i,jEi,j + δEi1,j1) =

−log
(︂
det
(︂
Θk −Θk

i,jEi,j +
(︂γ2 − κ2 +Θk

i,j(γ12 − γ1γ2 + γ1κ2)

(κ2γ2 − 2
∑︁

i<j λiλj)

)︂
Ei1,j1

)︂)︂
+(4.30)

Tr(SΘk)− Tr(Θk
i,jSEi,j) +

(︂γ2 − κ2 +Θk
i,j(γ12 − γ1γ2 + γ1κ2)

(κ2γ2 − 2
∑︁

i<j λiλj)

)︂
Tr(SEi1.j1)

Now, {î, ĵ, i1̂, j1̂} = argmin{f i,j
i1,j1

; i1 = 1, 2, . . . ,M, j1 = i1, i1 + 1, . . . ,M, (i, j) ∈
I(Θk)} and the update expression for ∥Θk∥0 = s can be presented as follows.

Θk+1 =

⎧⎪⎨⎪⎩Θk −Θk
i,jÊ1 +

(︂
γ2−κ2+Θk

i,j(γ12−γ1γ2+γ1κ2)

(κ2γ2−2
∑︁

i<j λiλj)

)︂
Ê2, when î ̸= ĵ

Θk −Θk
i,jÊ1 +

(︂
1
κ2

− 1
γ2

+Θk
i,j

(︂
γ12−γ1γ2+γ1κ2

κ2γ2

)︂)︂
Ê2, when î = ĵ

(4.31)

where Ê1 and Ê2 are symmetric matrices with 1 at (î, ĵ)th and (î1, ĵ1)
th position

respectively and 0 elsewhere.

To ensure the positive semi-definiteness of inverse covariance matrix, the update
equation will be modified [84, 85] as

[Uk+1, Dk+1, Vk+1] = svd(Θk+1)

Θ̂
k+1

= Uk+1max(Dk+1, 0)Vk+1 (4.32)

The steps of GSS algorithm when the function f is expressed using Eq. (4.6) are
detailed in Algorithm 3.

Implementing the steps detailed in Algorithm 3, an undirected sparse graph/ network
structure can be estimated from the data. Finally, to infer the causal direction among
the variables in the estimated network, likelihood score as detailed in Section 4.4 is
utilised. The overall algorithm of the proposed method is given in Algorithm 4.
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Algorithm 3 Sparse Inverse Covariance Estimation using Greedy Sparse

Simplex Algorithm

• Initialization: Choose Θ0 ∈ Cs. Choosing an identity matrix or using as initial

guess would be an efficient choice.

• General step: For, k = 0, 1, 2, ...M

– If ∥Θ∥0 < s

∗ Estimate (î, ĵ) = argmin{fi,j, i = 1, 2, · · · ,M, j = i, i + 1, · · · ,M}
where fi,j is defined in Eq. (4.18).

∗ If fî,ĵ < f(Θk), update the covariance matrix using Eq. (4.20) and

otherwise, stop the iteration.

– If ∥Θ∥0 = s,

∗ Estimate {î, ĵ, i1̂, j1̂} = argmin{f i,j
i1,j1

; i1 = 1, 2, . . . ,M, j1 = i1, i1 +

1, . . . ,M, (i, j) ∈ I(Θk)} where, f i,j
i1,j1

is defined using Eq. (4.30)

∗ If f î,ĵ

î1,ĵ1
< f(Θk), update parameter vector using Eq. (4.32); otherwise,

stop the iteration.

Algorithm 4 Causal Analysis with Sparse Inverse Covariance

1. Estimate sparse inverse covariance matrix Θ using Algorithm 3.

2. Construct the undirected graph from Θ by connecting its non-zero components.

3. Compute pairwise likelihood score among the connected components in the graph

using Eq. (4.10).

4. Accept the direction with maximum of computed likelihood score:

max
(︂
Ld
xi→xj

, Ld
xj→xi

)︂
.

5. Repeat steps 3 & 4 for other pairs of variables.
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4.6 Case Studies

To demonstrate the efficacy of the proposed algorithm, two case studies are considered
in this work. The first case study is a numerical example where, a constructed system
in which interactions among the variables are known a-priori is considered. The second
case study is an industrial problem, in which the objective is to construct a causal
network for inferring the phenomena of tower flooding and weeping in a deethanizer
column associated with fluid catalytic cracking unit. Industrial process is same as the
one presented in chapter 3, but for better understanding of the results, process and
the problem have been discussed again in detail in the corresponding subsection.

4.6.1 Numerical Example

In this case, data with 6 variables are considered for the study. A network model
representing the actual causal relationship among the variables is shown in Figure. 4.2.
True inverse covariance or the precision matrix for the network in Figure. 4.2 is given

X1X2

X3X4 X5

X6

Figure 4.2: Actual network model for numerical case study

as follows.

Θtrue =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

14.475 4.80 0 0 3.90 0

4.80 8.4745 1.75 6.00 0 0

0 1.75 10.4745 0 0 3.40

0 6.00 0 11.4745 3.80 1.90

3.90 0 0 3.80 7.45 0

0 0 3.40 1.90 0 12.425

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Considering the inverse covariance matrix given in Θtrue as a reference and with
zero mean, 1000 samples of data for each node are generated. Using the computed
covariance (S) from the generated data, sparse inverse covariance is estimated from
the convex (ADMM) and non-convex (proposed) methods for the reconstruction of
undirected network structure. Estimates of the inverse covariance matrix obtained
using ADMM after thresholding and the proposed GSS method are as follows.

Θ̂ADMM =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13.51 4.35 0 −0.21 3.53 0

4.35 7.39 1.46 5.49 −0.19 0

0 1.46 10.04 0 0 3.02

−0.21 5.49 0 10.71 3.49 1.71

3.53 −0.19 0 3.49 7.12 0

0 0 3.02 1.71 0 11.90

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ̂GSS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

14.204 4.823 0 0 3.763 0

4.823 8.165 1.69 5.709 0 0

0 1.69 10.462 0 0 3.511

0 5.709 0 11.086 3.624 1.793

3.763 0 0 3.624 7.284 0

0 0 3.511 1.793 0 12.178

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By connecting the non-zero components of the estimated matrix, it can be noted that
the proposed method is able to accurately reconstruct the true underlying structure.
On the other hand, spurious connections are present in the estimate obtained using
ADMM method. Further to quantify the accuracy of the estimate, Frobenius norm
(∥·∥F , defined as the square root of sum of squares of all the elements in the matrix)
is computed between Θ̂ and Θtrue. For the numerical case study, a value of 0.937 is
obtained for GSS and a value of 2.03 for ADMM is obtained. From these results,
it can be concluded that the proposed approach provides relatively more accurate
estimate compared to its convex counterpart. Also, number of non-zero entries in
the estimate obtained using the proposed method is less than that of the estimate
obtained using ADMM, from which it can be concluded that the proposed method is
promoting better sparsity.

To infer the causal direction, dynamic likelihood score is computed among the vari-
ables in the undirected network that is estimated using the proposed method. Scores
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computed among the connected nodes in the estimated network are given in Table. 4.1.

Table 4.1: Likelihood scores for Numerical case study

Variable Pairs
Ld
xi→xj

Ld
xj→xi

max (Score)
Xi Xj

X1 X2 1.9278 1.4276 1.9278

X1 X5 2.00 1.3895 2.00

X2 X3 0.4610 0.3293 0.4610

X2 X4 0.3323 0.1329 0.3323

X4 X5 3.01 2.658 3.01

X3 X6 0.1964 0.1597 0.1964

X4 X6 0.3187 0.3038 0.3187

Using the estimated undirected network structure and the scores computed, directed
network that explains the causal relation is constructed and is given in Figure. 4.3.

X1X2

X3X4 X5

X6

Figure 4.3: Reconstructed causal network using the proposed approach

4.6.2 Industrial Application: Tower Flooding & Weeping

In this section, the proposed method is applied to an industrial case study i.e., tower
flooding & weeping problem. Flooding and weeping phenomena can occur in packed
columns or tray towers (sieve trays / bubble columns) that are used for separation
in process industries. Although flooding can occur in both packed column and tray
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towers, weeping will happen only in tray towers. These two phenomena will lead to
poor separation efficiency; thereby product quality is reduced and energy consumption
is increased. Occasionally, these phenomena may drive the entire process to shutdown
for days and weeks, and may sometimes also lead to severe equipment damage. In this
particular case study, process upset and process throughput reductions are observed
due to flooding and weeping. Therefore, it is essential to analyze the probable reasons
for occurrence of such phenomena so that the plant can be operated in a normal
mode. In this work, causality analysis is carried out by using the proposed method,
in order to identify the source for such problems in tray tower distillation column. In
the current study, the flooding and weeping phenomena occurring in the deethanizer
column associated with the FCC unit are considered and the results of the proposed
method are validated using the underlying physics of the process as well as subsequent
application of the proposed solution in the actual process.

Figure 4.4: Illustration of Flooding & Weeping

Process description

In this study, Fluid Catalytic Cracking (FCC) and process units associated with it
in the upstream and the downstream such as feed preheating unit, fractionator unit,
condenser and deethanizer column are considered. A schematic of the entire process
is given in Figure 4.5.

In this process, the products from the hydro-treating units enter the feed preheating
unit as feed. Once the preheating is complete, feed enters the FCC unit where it
undergoes cracking in the presence of catalyst. After cracking, the product enters the
fractionator unit as feed in gaseous phase. During the separation, multiple side cuts
are drawn at different temperatures and finally top product from the separation enters
the condenser. The products from the condenser enters the storage tank-1 and then
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Figure 4.5: Schematic of the Industrial Process

splits into two streams, where the product in one of the streams enters the absorber
and the product in the other stream is compressed and enters the deethanizer via
storage tank-2 for further separation. Deethanizer unit has reboiler at the bottom
and reflux on the top. In this process, reboiler is used as control handle to maintain
the temperature of the trays at the bottom section of the deethanizer and at the same
time, the tray temperatures are used to control the phenomena of flooding. Finally,
the products from the bottom of the deethanizer are processed for further separation.

Flooding is a phenomenon in which liquid flowing in the counter-current direction
from top of the distillation column gets entrained in the tray of a column due to the
flow of vapour at high pressure from the bottom of the column. Similarly, weeping
is the phenomenon that happens in a tray tower when the liquid starts flowing down
through the sieve holes due to the lack of pressure exerted by the vapour flowing
upwards. Both these phenomena are illustrated in Figure 4.4. Based on the process
knowledge, a total of four hypotheses are expected to be the possible cause for the
onset of either flooding or weeping in the deethanizer and these four possible hy-
pothesis are listed below. It is to be noted that the existing method reported in the
literature [86] utilises pressure drop information from the column to detect the on-set
of flooding. In the present case study, the pressure drop information is not available
and hence flooding and the primary causes for flooding are identified through other
source variables determined by causal analysis.

Hypothesis-1

First hypothesis is considered to be the change of feed flowing into the Fluid catalytic
cracking unit. Whenever there is a drastic feed change in FCC unit, it leads to
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reduction in flow of feed to the subsequent process units. Eventually, this reduces the
feed for the deethanizer. When feed for the deethanizer reduces, pre-occupied liquid
in the bottom of the column vaporizes at higher rate and this causes flooding.

Hypothesis-2

Second hypothesis is with respect to the abnormal temperature in reboiler associated
with the deethanizer. When increase of the temperature of the reboiler is not related
to the feed entering the deethanizer, bottom tray temperature of the unit increases
the flow of vapour inside the column. This excessive flow of vapour inside the column
eventually causes flooding.

Hypothesis-3

Third hypothesis considers feed temperature of the deethanizer. When feed temper-
ature increases at slower rate, energy balance of the column changes thereby causing
flooding.

Hypothesis-4

Fourth hypothesis is associated with weeping. Based on the knowledge obtained from
process operation, it is understood that improper control of flooding leads to weeping
due to sudden change in operating condition of the deethanizer.

In the following subsection, nature of the process data will be detailed.

Process Data

In order to estimate the sparse inverse covariance matrix, process data from routine
operation is considered. The process data includes 67 process variables such as flow
rates, pressure and temperature associated with the process units (Figure 4.5). They
are sampled every minute, over the period of five months i.e., approximately 200,000
samples.

Outcome

Upon computing the sample covariance from process data, sparse inverse covariance
is estimated and causal direction is computed using dynamic likelihood score. Sparse
inverse covariance estimated using greedy sparse simplex is given in Figure. 4.6 and
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the one estimated using ADMM is given in Figure. 4.7.

Figure 4.6: Estimate of the Proposed Method

Figure 4.7: ADMM Estimate

In the given estimate, non-zero components represented in blue are connected to
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reconstruct relationship among the variables. It can also be noted that the proposed
method is promoting more sparsity than ADMM. Hence, the estimate obtained using
the proposed method is used for the further analysis.

Since the primary objective of this work is to infer the causal map for the flooding and
weeping phenomena, process variables that are associated to these indicators are used
in the analysis. In Figure. 4.6, the first row has the information of flooding indicator
and variables that are associated with it, and similarly, the third and eighteenth
rows have the information of weeping and variables associated with them. Also, the
variables that are redundant are not considered for causal analysis and the physical
interpretation of the remaining associated variables are given in Table. 4.2.

Undirected graph constructed among the subset of variables associated with flooding
and weeping is illustrated in Figure 4.8. In the graph, flooding and weeping indicators
are shown in red and rest all in green. Upon constructing the undirected graph,
direction of cause and the effect is inferred using likelihood score and the scores are
given in Table. 4.3.

ROT

FF

AF

FT

DFV

FI

WI1

WI2

DBT

DFTDIT

CPC

DIF

Figure 4.8: Estimated undirected graph for Flooding and Weeping

Using the information of dynamic likelihood score, presented in Table. 4.3, infor-
mation of causal direction is incorporated to the undirected graph and the resulting
causal network is presented in Figure. 4.9. To validate the causal network, connections
in the network are interpreted using process knowledge. In the causal network, four
primary variables for flooding and one primary variable for weeping have been indi-
cated as possible primary cause along with their relation with other process variables.
In the case of flooding, proposed approach indicates that changes in FF , DFT , ROT

and FT have direct effect on FI. Along with this, the effect of propagation occurring
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Hypothesis-1

Hypothesis-2

Hypothesis-3

Hypothesis-4

ROT

FF

AF

FT

DFV

FI

WI1

WI2

DBT

DFTDIT

CPC

DIF

Figure 4.9: Causal Network for Flooding and Weeping

due to the change in the primary causal variables has been indicated through CPC,
AF , DIF , DIT and DBT . Individually, change in FF and CPC, causes AF and
DIF to change thereby reducing the flow of liquid into the deethanizer. At the same
time, change in ROT causes DBT to change thereby increasing the temperature at the
bottom section of the deethanizer. Similarly, change in FT and DFT will contribute
to the change in temperature inside the deethanizer by increasing the temperature of
the feed, which eventually leads to undesired operating condition. Considering the
changes in FF and ROT simultaneously along with the changes in FT and DFT , it
can be noticed that the outcomes achieved with the proposed method validates the
reasons for flooding explained by hypothesis-1, hypothesis-2 and hypothesis-3. Simi-
larly, for weeping, it can be noticed that flooding (FI) causes weeping (WI1 and WI2)
and among the weeping indicators, WI2 causes WI1. In comparison of this outcome
with the process knowledge explained in hypothesis-4, it is understood that control
of flooding leads to change in conditions inside the deethanizer thereby causing weep-
ing. However, if the control of flooding is performed in a timely manner, with a good
flooding predictor, weeping can be avoided. Among the weeping indicators, WI2 is
located closer to FI and WI1 is measured at the bottom of the deethanizer. There-
fore, due to the system delay, WI2 causes WI1. Then, at last, effects of flooding and
weeping gets encoded in DFV . The end result of causal network estimation using the
proposed method helped us to identify the reasons, that are physically interpretable,
for the problem of flooding and weeping in the deethanizer.
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4.7 Summary

In this chapter, a two-step approach has been proposed for causal analysis. In the
first step, a sparse undirected network is reconstructed from sparse inverse covariance
matrix with correlation information and in the second step the causal direction is
determined using dynamic likelihood score. In the proposed method, a L0 norm
constraint is considered while estimating the sparse inverse covariance matrix and the
resultant problem is solved using greedy sparse simplex algorithm. The algorithm is
suitably modified by incorporating positive semi-definite constraint on the decision
variable. The efficiency of the proposed approach has been demonstrated using a
numerical example and an industrial case study. In particular, the main objective of
industrial case study is to infer causal relationships in order to address the problem
of flooding and weeping in deethanizer unit. From the results, it is observed that the
proposed method is able to identify causal connections accurately for both numerical
and industrial case studies. From the results of industrial case study, it can be further
concluded that the probable reasons for flooding phenomena in a deethanizer unit are
the drastic feed change for FCC unit, deethanizer feed temperature and the reboiler
temperature of deethanizer. Similarly, flooding is considered to be the probable reason
for occurrence of weeping in the deethanizer unit.
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Table 4.2: Process variables description
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Table 4.3: Dynamic Likelihood scores for Flooding & Weeping problem
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Chapter 5

Conclusions & Recommendations

5.1 Conclusions

In this thesis work, we have investigated the problem of data reconciliation and causal
inference in the framework of probabilistic graphical models. Key findings of the work
are summarized as follows.

• In Chapter 2, we addressed the problem of data reconciliation for linear systems
with state uncertainties using Bayesian network framework. In the course of ad-
dressing the problem, conditions have been provided to construct the Bayesian
network from process network, solution method has been proposed to construct
acyclic Bayesian network structure from process network with recycle and this
methodology has been extended to address reconciliation in partially measured
system. Using the Bayesian network, states are inferred using statistical in-
ference techniques such as maximum likelihood estimation and maximum-a-
posteriori estimation. Later, state and measurement noise statistics are es-
timated simultaneously with the states using the proposed Particle-EM algo-
rithm.

• In the second part of the thesis, we presented a complete data-driven approach
and a framework combining the data-driven model with the process knowledge
for causal inference using process data. In Chapter 3, a methodology is pro-
posed for the prediction of flooding and weeping using the concept of causality.
In the proposed approach, causal network is reconstructed using sparsity con-
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strained finite impulse response model coupled with process knowledge such as
process connectivity and physics of the process. In the course of addressing
the problem, L0 norm constraint is introduced in the FIR model identification
step in order to achieve at most sparse solution and analytical expressions are
derived accordingly using the greedy sparse simplex framework. Information
obtained in the reconstructed causal network has been used to construct logical
monitoring rules for the prediction of flooding and weeping in process operation.
The proposed approach has been demonstrated in an industrial application of
predicting flooding and weeping in a deethanizer column. Final outcome has
been used by the industry to improve the decision making in real-time, which
has lead to the prevention of multiple flooding and weeping events during the
routine process operation.

• In Chapter 4, a two-step method is proposed for the data-driven approach for
causal inference, where in the first step, undirected graph structure is inferred
using sparse inverse covariance estimation. Then in the second step, estimated
undirected graph is integrated with causality measure to reconstruct the causal
network from process data. In sparse inverse covariance estimation, L0 norm
constraint is considered and the resulting non-convex optimization problem is
solved in the framework of greedy sparse simplex. The efficacy of the proposed
approach is demonstrated in a numerical case study and in an industrial appli-
cation of flooding and weeping.

5.2 Recommendations

Based on the problems addressed in this thesis, following are some of the recommen-
dations for future work. Since the thesis consists of two different problems, recom-
mendations are presented in two subsections.

5.2.1 Data Reconciliation

1. In the proposed data reconciliation approach, only linear systems with Gaussian
uncertainty is considered for the study. This approach can also be extended for
non-linear system with non-Gaussian uncertainty.
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2. In conventional data reconciliation, it is common to notice that not all the states
are measured. In such scenarios, no measurement will be available for certain
states. Data reconciliation with non availability of measurements of some par-
ticular states can be extended for randomly missing state measurements.

5.2.2 Causal Inference

1. In sparse inverse covariance estimation problem, sample covariance S computed
from the data will be accurate if only if the relationship among the random
variables are linear. At the same time, inverse covariance estimation problem
assumes the random variable to be Gaussian. These assumptions can be relaxed
and the proposed method can be extended to network reconstruction for non-
Gaussian random variable and possibly for non-linear system.

2. In process industries, it is common to have measurements sampled at different
rates thereby making the time scales different from one variable to another.
Usually, in time domain causality analysis, data are assumed to be sampled at
regular intervals for all the variables. Hence, this problem of causality analysis
with multi-rate sampled data can be an interesting one to address.

3. The problem of causal network reconstruction can be formulated in the frame-
work of reinforcement learning, where the RL agent can be utilized to intervene
the variables. Based on the reward obtained for particular intervention, edges
can be determined among the variables leading to a causal network.

4. From process perspective, flooding and weeping problems are predominant in
almost all the process industries dealing with columns for separation. In this
context, transfer learning can be integrated with causal analysis, where the
causal knowledge obtained from one particular process can be transferred to
the process having same issues.
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Appendix A

A.1 Hyper-parameter Selection

Selection of hyper-parameter is important in sparse modelling to obtain optimal model
structure. In the present work, both Akaike Information Criteria (AIC) and Bayesian
Information Criteria (BIC) are computed and best outcome is used to determine the
optimal sparse model structure. Expressions for computing AIC and BIC can be
presented as follows.

AIC = 2k − 2 ln(L̂)

BIC = k ln(n)− 2 ln(L̂)

where, k is the number of model parameters to be estimated, L̂ is the maximum
likelihood value of the function and n is sample dimension. In order to obtain op-
timal model structure, both AIC and BIC are computed for the problem presented
in Eq. 3.7 for different values of α. Then, optimal hyper-parameter, αopt is selected
corresponding to the minimum value of information criterion.

A.2 Zero Norm Constrained Optimization Algorithm:

Greedy Methods

In this section, a brief description of L0 norm minimization problem is discussed by
considering a general non-linear function f(θ). The sparsity constrained optimization
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problem can be represented as
min
θ

f(θ)

s.t. ∥θ∥0 ≤ s

where, the loss function f(θ) is assumed to be smooth and lower bounded; ∥θ∥0
represents L0 norm of the parameter vector. s is an integer which controls the level of
sparsity. Further, it is also assumed that the loss function can be either convex or non-
convex. Based on the assumptions mentioned above, several optimization algorithms
are tailored to handle such problems [8]. Some of the algorithms detailed in [8]
are guaranteed to converge to a basic feasible (BF) vector and some are guaranteed
to converge to a co-ordinate wise minimum (CW-minimum). The definitions of BF-
vector and CW-minimum are given in Appendix A.2.1 for the sake of completeness. In
the hierarchy of optimal solutions, any optimal point is a CW-minimum and any CW-
minimum is a BF-vector. Insights on the optimality conditions and the convergence
properties can be obtained from [8]. Therefore, in the current work, the greedy sparse
simplex (GSS) algorithm, which is guaranteed to converge to a CW-minimum is used
to solve the L0 norm minimization problem and the algorithmic sequence of GSS
approach is detailed in Algorithm 5

In the GSS algorithm, the main idea is to perturb the parameter vector θ ∈ Cs

sequentially in each direction and the parameters are updated by using Eq. (A.3)
& (A.6) based on the optimal δ. This routine is continued until an optimal θ for
the specified level of sparsity s is obtained. The sequence of perturbation at every
iteration is achieved using the indicator vector ei, which denotes the vector whose
ith element is 1 and rest all zero. An optimal δ in Eq. (A.1) and Eq. (A.4) can be
obtained by using first order methods, where the derivatives of the functions in Eqs.
(A.1) & (A.4) with respect to δ are equated to zero. Several search based methods
such as simplex-method or genetic algorithms can also be incorporated to estimate
the optimal δ. However, it is to be noted that, if the objective function is convex, first
order methods provide advantage over search based methods in terms of computation
time for convergence. Therefore, first order methods are generally preferred for convex
objective functions.

A.2.1 Basic feasible vector and CW-Minimum

Letting the set of all vectors with at most s non-zero elements in each vector be
denoted as Cs and I(θ) represents the indices of non-zero elements in the vector θ,
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Algorithm 5 Greedy Sparse Simplex Algorithm

• Initialization: Choose θ0 ∈ Cs (Set of all vectors with at most s nonzero

elements in each vector)

• General step: k = 0, 1, 2, ...Iter

– If ∥θk∥0 < s, define ei to be an indicator vector whose ith element is one

and rest all zero. Compute for every i = 1, 2, ...N

δi ∈ argmin
δ∈R

f(θk + δei) (A.1)

fi = f(θk + δiei) (A.2)

Let (ik ∈ arg min
i=1,..N

fi). If fik < f(θk), then set

θk+1 = θk + δikeik (A.3)

Otherwise, STOP.

– If ∥θk∥0 = s, define I1(θ) to be the set of all non-zero indices of θ and ei, ej

to be indicator vectors whose ith and jth elements are one and rest all zeros

respectively. For every i ∈ I1(θ
k) and j = 1, ...N compute

δji ∈ argmin
δ∈R

f(θk − θki ei + δej) (A.4)

f j
i = f(θk − θki ei + δji ej) (A.5)

Let (ik, jk) ∈ argmin{f j
i : i ∈ I1(θk), j = 1, ...N}. If f jk

ik
< f(θk), then set

θk+1 = θk − θkikeik + δjkik ejk (A.6)

Otherwise, STOP.

the following definitions are given considering the minimization problem min
||θ||0≤s

f(θ)

where f : Rn → R.

Basic Feasible Vector: A vector, θ∗ ∈ Cs is called a basic feasible vector to the above
problem, if
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1. ||θ∗||0 < s =⇒ ▽f(θ∗) = 0

2. ||θ∗||0 = s =⇒ ▽if(θ
∗) = 0 ∀ i ∈ I(θ∗)

Coordinate-wise Minimum: Letting θ∗ be a feasible solution of the optimization prob-
lem, then it is called a Coordinate-wise Minimum if

1. ∥θ∗∥0 < s =⇒ f(θ∗) = min
δ∈R

f(θ∗ + δei) ∀ i = 1, 2, . . . , n

2. ∥θ∗∥0 = s =⇒ f(θ∗) ≤ min
δ∈R

f(θ∗ − θ∗i ei + δej) ∀ i ∈ I(θ∗), j = 1, 2, . . . , n

A.3 FIR Model Identification using Greedy Sparse

Simplex

In the method for causal network reconstruction presented in Chapter 3, FIR model
is identified with sparsity constraint on the parameter. In the course of addressing
the problem of causal network reconstruction, in order to recover the most sparse
parameter vector, L0 norm is preferred over L1 norm. Hence the optimization problem
presented in Eq. 3.6 is considered. Among different methods to solve L0 constrained
problem, greedy sparse simplex approach presented in Algorithm 5 is considered and
analytical expressions are derived accordingly for FIR model to achieve near global
optimal solution. Detailed derivation is presented below.

For ∥θk∥0 < s, Eq. 3.4 is considered and perturbed by optimal δ and the indicator
vector ei. Expression for optimal δ can be derived by following the steps given below.

Consider the function in Eq. 3.6 and express it as minimization problem given in
Eq. A.1.

δi = argmin
δ∈R

f(θk + δei)

= argmin
δ∈R

(︁
Y TY − 2(θk + δei)

TXTY + (θk + δei)
TXTX(θk + δei)

)︁

= argmin
δ∈R

Y TY − 2(Xθk)TY − 2δ(Xei)
TY + (Xθk)T (Xθk)+ (A.7)

2δ(Xei)
T (Xθk) + δ2(Xei)

T (Xei)
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where, i = 1, 2, ......M(t − p) and ei is an indicator vector with dimension same as
θ which takes 1 in the ith position and 0 in rest of the position. Then, optimal
expression for δ is obtained by taking derivative for Eq. A.7 and equating it to zero.
After algebraic rearrangement, final expression for optimal δ can be obtained as

df(θk + δei)

dδ
= 0 ⇒ −2(Xei)

TY + 2(Xei)
T (Xθ) + 2δ(Xei)

T (Xei) = 0

⇒ δ =
(︁
(Xei)

T (Xei)
)︁−1

(Xei)
T (Y −Xθk) (A.8)

Expression of optimal δ, given in Eq. A.8, is substituted in f(θk + δei) and minimum
value of the function along with its index is computed. Upon obtaining the index of
minimum function value, parameter of that particular index is updated as

θk+1 = θk +
[︂(︁
(Xei)

T (Xei)
)︁−1

(Xei)
T (Y −Xθk)

]︂
k
eik (A.9)

For ∥θk∥0 = s, support set I1(θk) is constructed with the indices of non-zero elements
from θk. Then, the function in Eq. 3.6 is expressed as minimization problem given in
Eq. A.4,

δji = argmin
δ∈R

f(θk − θki ei + δej)

= argmin
δ∈R

Y TY − 2(θk − θki ei + δej)
TXTY+ (A.10)

(θk − θki ei + δej)
TXTX(θk − θki ei + δej)

In the above equation, on taking derivative of the function with respect to δ and
equating it to zero, an expression for the optimal value of δ is obtained.

df(θk − θki ei + δej)

dδ
= 0 ⇒ −2(Xej)

TY + (Xej)
TXθk − (Xej)

T (Xθki )ei+

(Xθk)T (Xej)− (Xθki )
T (Xej) + 2δ(Xej)

T (Xej) = 0

⇒ δji =
(︁
(Xej)

T (Xej)
)︁−1

(Xej)
T
(︁
Y −X(θk − θki ei)

)︁
(A.11)

On obtaining the optimal value of δ, function f(θk − θki ei + δej) is evaluated at the
optimal value and the parameter is updated when the function is minimum at (i ∈ I1)

and j as the following.

θk+1 = θk − θkikeik +
[︂(︁
(Xej)

T (Xej)
)︁−1

(Xej)
T
(︁
Y −X(θk − θki ei)

)︁]︂
k

(A.12)

Aforementioned steps are solved iteratively to obtain the sparse estimate of the pa-
rameters.

116



A.4 Proof for Mutual Information is Non-negative

and its relationship in Causal structure identi-

fication

The proof presented here is derived based on the understanding acquired from the
book "Elements of information theory" written by Cover. [87]. In the first place, we
begin with the discussion of non-negative property of mutual information. Secondly,
we extend the discussion to its relation with causal structure identification problem.

Consider two random variables xi and xj which are i.i.d multivariate Gaussian, the
Mutual information of which can be defined as

I(xi, xj) = E
[︃
ln
(︃

P (xi, xj)

P (xi)P (xj)

)︃]︃

By Jensen’s inequality, for any convex function f(·),

E [f(·)] ≥ f (E[·])

Therefore, the mutual information can be written as

E
[︃
ln
(︃

P (xi, xj)

P (xi)P (xj)

)︃]︃
≥ ln

(︃
E
[︃

P (xi, xj)

P (xi)P (xj)

]︃)︃
≥ ln

(︄∫︂
xi

∫︂
xj

P (xi)P (xj)
P (xi, xj)

P (xi)P (xj)
dxidxj

)︄

≥ ln

(︄∫︂
xi

∫︂
xj

P (xi, xj)dxidxj

)︄
I(xi, xj) ≥ 0

When the random variables are independent, from the definition of mutual informa-
tion, I(·, ·) = 0 and when the random variables are not independent, I(·, ·) > 0.

Now, consider the case of pairwise causal structure identification problem. Given the
variables xi and xj, we want to determine the relationship among them, which is
assumed to be either xi → xj or xj → xi but not both, under certain assumptions. In
such a case, it is further assumed that the underlying causal model is additive noise
model of the form xj = f(xi)+η for the causal structure xi → xj. On interpreting the
graphical structure for additive noise model, it can be understood that model input
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(xi) is independent of noise (η). Due to the independence between input and noise,
from the definition of mutual information, I(xi, η̂) = 0. In the case when additive
noise model is interpreted as xj → xi i.e., the dotted path in the graphical model,
the input is no longer independent of additive noise and instead is affected by it i.e.,
xj is affected by η. Since, the mutual information between two dependent random
variables is non-negative, the mutual information between xj and η is positive i.e„
I(xj, η̂) > 0.

xj

xi η

Figure A.1: Additive noise model graph structure for xi → xj (solid edge) along with

anti-causal interpretation xj → xi (dashed edge)
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