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Abstract 

Micro and nanoscale confinements and local curvatures, which are ubiquitous in natural and 

man-made materials and systems, cause significant impact on thermodynamic phase behavior. 

This effect has been extensively studied for single component solid–liquid phase transitions, but 

rarely for multicomponent systems. Using Gibbsian thermodynamics, we derived an expression 

to describe the thermodynamic solid–liquid equilibrium for multicomponent systems, where the 

equation takes thermal, mechanical and chemical equilibrium conditions into account. This 

derivation highlights the equivalence of general forms of the Gibbs–Thomson and Ostwald–

Freundlich equations. We show the effect of the radius of curvature of the solid–liquid interface 

on the phase diagram, where the equation can be applied to the entire composition range. The 

equation can predict the effect of curvature on both the freezing and precipitating processes, thus 

a precise expression for the curvature-induced eutectic point shift is also derived. The 

water/glycerol system, which has complete mixing of the two components in the liquid phase but 

nearly pure solid phases during freezing and precipitating processes, is chosen to explore these 

equations. Here, we predict the curvature effect on the freezing and precipitating process of the 

entire phase diagram, and the eutectic point temperature and concentration shift with curvature. 

We also applied the equations to the freezing behavior of the aqueous electrolytes that are 

actively used in zinc–air batteries. The osmotic virial equation is an accurate, straightforward 

way to describe the nonideality of aqueous solution as a function of concentrations. Here, 

osmotic virial coefficients of various electrolytes which are commonly used are found by fitting 

literature data, and the nanoscale confinement effect on the freezing point of electrolyte systems 

is also investigated. The theoretical studies in this thesis, which used thermodynamic analysis to 
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investigate the nanoscale confinement effect on multicomponent solid–liquid equilibrium 

systems, can find crucial applications in cryobiology, soil science, synthetic nanoporous 

materials and other various nanoscience fields. 
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Preface 

(Mandatory due to collaborative work) 

This thesis is organized in four chapters. 

Chapter 1 is the introduction. 

Chapter 2 of this thesis, with minor modifications, has been published as: F. Liu, L. Zargarzadeh, 

H. J. Chung, and J. A. W. Elliott, “Thermodynamic investigation of the effect of interface 

curvature on solid–liquid equilibrium and eutectic point of binary mixtures”, Journal of Physical 

Chemistry B, 2017, 121 (40), pp 9452–9462. In Chapter 2, the Margules model coefficients for 

the water/glycerol system assuming a flat solid–liquid interface were found by Leila 

Zargarzadeh. This part of work was deleted from this thesis. Along with my supervisors, Leila 

also contributed to revising my original draft. 

Chapter 3 of this thesis, has been prepared for submission as F. Liu, H. J. Chung and J. A. W 

Elliott, “Freezing of aqueous electrolytes in zinc–air batteries: Effect of composition and 

nanoscale confinement”.  

The overall conclusions of the thesis are summarized in Chapter 4. 
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1. Introduction 

1.1. Background 

In surface chemistry and physics, different equations have been derived to show the effect of 

curved phase boundaries on the equilibrium. The role of curved phase boundaries is increasingly 

important for micro/nanoscale systems. The most well-known equation describing the impact of 

phase-boundary curvature on phase equilibrium is the Kelvin equation, which is the basis of all 

following studies. The original Kelvin equation was revised to represent combining chemical 

potential equilibrium with mechanical equilibrium,1 and this form of the Kelvin equation can be 

extended to vapor–liquid equilibrium and liquid–liquid equilibrium. The Gibbs–Thompson 

equation and the Ostwald–Freundlich equation are two analogues of the Kelvin equation for 

solid–liquid equilibrium. The Gibbs–Thompson equation describes the equilibrium melting point 

of a small pure solid in its own pure liquid as a function of solid radius of curvature. The 

Ostwald–Freundlich equation expresses the solubility of a solid particle in a bulk liquid solution 

as a function of solid radius of curvature. The conditions for solid–liquid equilibrium include 

conditions for thermal, mechanical and chemical equilibrium, conditions that have been 

commonly applied in thermodynamic calculations. However, Gibbsian thermodynamics of 

composite systems utilizing knowledge of geometry has not been previously fully applied to 

provide the complete conditions for solid–liquid equilibrium of a solution confined in a pore 

made of a third non-soluble material. In addition, the most nonideal form of the Gibbs–

Thompson equation and Ostwald–Freundlich equations have not been derived with the effect of 

contact angle. Most solid–liquid phase diagrams in literature consider only computations for a 

flat solid–liquid interface or if they do consider a curved solid–liquid interface, consider only a 
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narrow range of concentrations. To our knowledge, a rigorous thermodynamic study on the 

curvature effects for solid–liquid equilibrium in multicomponent systems has not been done over 

the complete range of concentrations and temperatures, nor has the effect of curvature on the 

eutectic point temperature and concentration been explored.  

One of the applications of multicomponent liquid systems that may undergo freezing at low 

temperatures are alkali hydroxide aqueous electrolytes that are frequently used in secondary 

batteries for energy grid storage, where high specific energy, low material cost and 

environmental friendliness are keys for application. Understanding the freezing properties of 

aqueous electrolytes in secondary batteries is of vital importance for operations in cold climates. 

Ice crystal growth can break the structure, lower the conductivity and cause irreversible damage 

to the entire battery system. In such batteries where nanopores are abundant in electrodes, the 

nanopore can lower the freezing point of the system.2 So investigation of the freezing point of 

multisolute aqueous electrolyte systems under confinement in the porous structure of the 

electrodes is necessary. Despite its importance for low-temperature operations, there is no prior 

work in literature that provides the freezing point change due to geometrical confinement of the 

electrolyte over a range of compositions and concentrations for various electrolytes and 

additives. A thermodynamic model that can predict how much ice is formed at a given 

temperature can be informative for engineers that design batteries for low temperature 

applications. 

This thesis on nanoscale confinement effects on solid–liquid equilibrium gives a promising 

theoretical framework for solid–liquid equilibrium for multicomponent systems. These 

thermodynamic models can be applied in many fields such as cryobiology, forestry, soil science, 

and design of secondary batteries with aqueous electrolytes.   
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1.2. Scope of the thesis 

This thesis is aimed to theoretically predict the thermodynamic properties of solid–liquid 

equilibrium of aqueous solutions confined in nanoscale pores. The thesis is investigated under 

the conditions of constant reference pressure (𝑃𝐿 = 1 atm), and negligible gravitational effects. 

The solid surfaces of pores are considered to be smooth, rigid, homogenous and nonsoluble in 

the solution confined within. The systems are liquid that can solidify confined in a capillary or 

pore with different radii. The interfacial tension of the solid–liquid interface is assumed to be a 

constant number, independent of temperature and concentration. 

Chapter 2 gives the full derivation of the conditions for solid–liquid equilibrium, yielding the 

equilibrium temperature equation as a function of concentration and radius of curvature of the 

solid–liquid interface so that curvature effects on the phase diagram and eutectic point can be 

investigated. 

Chapter 3 applies the equation derived in Chapter 2 to zinc–air battery electrolyte and 

investigates the confinement effect on freezing point depression for single solute electrolytes and 

electrolytes with additives.  

The overall conclusions of the thesis are summarized in Chapter 4. 

    Throughout the thesis research, MATLAB was used for computational purposes and 

OriginsPro 8 was used for graph production. 
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2. Thermodynamic Investigation of the Effect of 

Interface Curvature on Solid–Liquid 

Equilibrium and Eutectic Point of Binary 

Mixtures 

2.1. Abstract  

Thermodynamic phase behavior is affected by curved interfaces in micro and nanoscale 

systems. For example, capillary freezing point depression is associated with the pressure 

difference between the solid and liquid phases caused by interface curvature. In this study, the 

thermal, mechanical and chemical equilibrium conditions are derived for binary solid–liquid 

equilibrium with a curved solid–liquid interface due to confinement in a capillary. This 

derivation shows the equivalence of the most general forms of the Gibbs–Thomson and 

Ostwald–Freundlich equations. As an example, the effect of curvature on solid–liquid 

equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a 

curved solid–liquid interface, a complete solid–liquid phase diagram is developed over a range of 

concentration for the water/glycerol system (including the freezing of pure water or precipitation 

of pure glycerol depending on the concentration of the solution). This phase diagram is 

compared with the traditional phase diagram in which the assumption of a flat solid–liquid 

interface is made. We show the extent to which nanoscale interface curvature can affect the 

composition-dependent freezing and precipitating processes, as well as the change in the eutectic 

point temperature and concentration with interface curvature. Understanding the effect of 
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curvature on solid–liquid equilibrium in nanoscale capillaries has applications in the food 

industry, soil science, cryobiology, nanoporous materials and various nanoscience fields. 

2.2. Introduction 

2.2.1. Effect of phase boundary curvature on phase diagrams 

Understanding the fundamental science of solid, liquid or vapor confined in capillaries or 

pores is significant in surface chemistry and physics. Different equations have been proposed to 

explain the effect of phase boundary curvature on equilibrium. One of the most well-known 

equations is the Kelvin equation that describes the equilibrium vapor pressure above a curved 

interface compared to the vapor pressure above a flat interface at the same temperature. The 

initial equation derived by Lord Kelvin3 was only approximate. It was not thermodynamically 

correct as it did not consider chemical potential equilibrium.1 In the corrected form of the Kelvin 

equation, the mechanical equilibrium (Laplace equation) is combined with chemical potential 

equilibrium.4,5 The Kelvin equation can be applied to drops, bubbles, and capillary-held wetting 

liquid menisci, and it has been validated for surfaces with mean radius of curvature larger than 

eight times the molecular diameter of the material of interest (for example for cyclohexane the 

Kelvin equation is valid down to a radius of curvature of 4 nm).6,7 Later on, several groups 

extended the Kelvin equation to multicomponent mixtures in vapor–liquid equilibrium,8,9 taking 

into account chemical potential equilibrium for multiple components in different phases, i.e., 

equality of chemical potential of each component in different phases.10 Although the Kelvin 

equation was initially derived for the case of vapor–liquid equilibrium, the idea can be extended 

to liquid–liquid equilibrium. The liquid–liquid analogue of the Kelvin equation has been applied 
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to investigate the thermodynamic equilibrium of micro and nanodrops being concentrated by 

partial dissolution into a surrounding oil phase.11,12 

The Gibbs–Thompson equation is an analogue of the Kelvin equation for solid–liquid 

equilibrium that describes the equilibrium melting point of a small pure solid crystal in its own 

pure liquid as a function of crystal radius. The validity of the Gibbs–Thompson equation has 

been proven by experiments.13,14 There are many experiments showing the effect of curvature on 

phase equilibrium in a range of porous systems: metal oxide gels, porous glasses and nanoporous 

materials.15 For single component solid–liquid equilibrium confined inside pores, the 

experimental results have been compared with theoretical predictions to show the relevance of 

the size of the pores.16,17 The capillary freezing point inside glass capillaries with radii of 3 𝜇𝑚 to 

87 𝜇𝑚 was measured while the image of the ice–solution interface was captured to analyze the 

contact angle.14 For porous materials with different nanoscale curvature in single component 

solid–liquid equilibrium, the freezing temperature of liquid in a pore is lower than that of bulk 

liquid with a flat surface. The Gibbs–Thompson equation has been shown to be valid to predict 

the freezing and melting point depression of ice in nanoscopic glass pores that are as small as  

~4 nm in diameter.18 The Gibbs–Thompson equation can also be extended for multicomponent 

systems in solid–liquid equilibrium. In cryobiology, in which cells in solution or tissues are 

subjected to low temperatures, the temperature at which ice propagates through confined spaces 

is lowered by the Gibbs–Thomson effect.19,20,21 Also the Gibbs–Thomson equation has been 

applied to predict microstructure formation during solidification in multicomponent systems.22 

The Ostwald–Freundlich equation is another analogue of the Kelvin equation for solid–liquid 

equilibrium. Introduced by Ostwald23 and later corrected by Freundlich,24 the Ostwald–

Freundlich equation25 expresses the solubility of a solid particle in a bulk liquid solution as a 
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function of particle curvature. As the size of the solids is decreased to the nanoscale, the 

solubility will depend on the size of the particle.26 A nonideal form of the Ostwald–Freundlich 

equation developed by Eslami et al. was used to describe the effect of precipitate solute 

curvature on aqueous microdrop concentrating processes.27  

The references mentioned above consider only the computation of the equilibrium state in a 

narrow range of concentration. Studies on the effect of curvature on phase equilibrium in 

multicomponent systems have been quite limited compared with single component systems. To 

our knowledge, a rigorous thermodynamic study has not been done of the effects of curvature on 

solid–liquid equilibrium in multicomponent systems over the complete range of concentration 

and temperature.  

Some recent works studied the effect of curvature on multicomponent vapor–liquid 

equilibrium.28,29 In nanosized pores in which vapor and liquid phases coexist, equation-of-state 

models have been used to describe capillary condensation for binary mixtures, and to calculate 

the critical pore radius, and condensed-phase equilibrium pressure for nanosized pores.28,30 

Another example by Shardt and Elliott is the investigation of the curvature effect on 

multicomponent vapor–liquid phase equilibrium. They developed phase envelopes and phase 

composition diagrams for the ideal system methanol/ethanol and the nonideal system 

ethanol/water. They showed that the azeotrope (equal volatility point in nonideal systems) shifts 

with nanoscale curvature.29  

In the field of materials science, several studies attempted to model phase diagrams for 

nanoscale alloys by adding surface thermodynamic terms to the Gibbs free energy of bulk 

available in CALPHAD (CALculation of PHAse Diagram).31,32 However, that approach is not 
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consistent with the Gibbsian thermodynamics of composite systems1 which is the basis of the 

work presented here. That approach31,32 does not lead to the well-known Gibbs–Thomson 

equation and Ostwald–Freundlich equations.  

In this work we develop the effect of solid curvature on the solid–liquid phase diagram across 

the entire composition range for any arbitrary binary solution that forms pure solids including the 

effect of the contact angle at which the solid–liquid interface contacts a confining pore wall. 

2.2.2. Solid–liquid phase diagrams in the absence of curvature 

Solid–liquid phase diagrams can have many complexities. However, there are many 

multicomponent systems for which the solid phases are in pure form because of the differences 

in molecular size and/or molecular structure.33 Partial miscibility of solid phases (resulting in 

non-pure solid phases) is uncommon in cases other than  metallic systems.34 Here, our focus is 

on aqueous solutions. For the purposes of this thesis, we restrict our discussion to binary systems 

in which a pure solid phase is in equilibrium with a solution. Such systems have only two 

possible solid phases and a single eutectic point.  

An illustrative phase diagram in Figure 1 describes the phase behaviour of such a 

two-component mixture at constant pressure. At higher temperature, the solution exists as a 

single phase, i.e., an unsaturated stable homogenous liquid phase. At lower temperature the 

liquid separates into a pure solid phase and a liquid solution. The component of the pure solid 

phase depends on the concentration of the liquid solution. If we choose one component to call 

the solvent and one to call the solute, the left part of Figure 1 is the freezing process of the 

solvent and the right part is the precipitating process of the solute. 



9 

 

    Liquidus lines (curves ae and be) in Figure 1 represent the onset of solidification. In the case 

of an aqueous solution, curve ae shows the composition dependent freezing point depression, 

whereas the curve eb represents the concentration dependent solubility limit of the other 

component in the aqueous solution. The liquidus lines also show the concentration of the 

unfrozen or unprecipitated solution at a given temperature. The left and right liquidus meet at a 

minimum point e, called the eutectic (“easy melting”) point.34 The eutectic point is the point 

where solid solute, solid solvent and liquid mixture coexist. The eutectic point is the lowest 

temperature for the given pressure at which the liquid phase is stable. Below the eutectic point, 

the system consists of two pure solid phases. When a liquid solution of a given overall 

composition is cooled, the system temperature lowers at constant composition until a liquidus 

line is met and solidification begins, with further cooling the composition of the remaining liquid 

follows the liquidus line to the eutectic point. 
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Figure 1. Illustrative constant pressure, temperature–composition phase diagram of solid–liquid 

equilibrium in a binary system with a simple eutectic and pure solid phases above the eutectic 

temperature.  

  

2.2.3. Objectives of this work 

The phase diagram shown in Figure 1 is constructed under the assumption that the interface 

between the solid and liquid is flat. In this thesis, we apply Gibbsian composite system 

thermodynamics to understand the effect of interface curvature on solid–liquid phase equilibrium 

in a binary mixture. We start by deriving the general conditions for solid–liquid equilibrium in a 

capillary which imposes a curved solid–liquid interface. The conditions for equilibrium are then 

examined for the case of the water/glycerol system, quantifying the effect of interface curvature 

on the two liquidus lines (freezing point temperature as a function of concentration and 
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precipitation saturation concentration as a function of temperature). The eutectic point 

temperature and concentration are also calculated. As an example to explore the effects of 

curvature, we chose the water/glycerol binary system, since this system exhibits complete 

miscibility in the liquid state and nearly complete insolubility between components in the 

respective solid states (i.e., pure component solids). Furthermore, water/glycerol solid–liquid 

phase diagrams have important applications since glycerol is a popular antifreeze substance—the 

first permanent type antifreeze agent for radiator cooling systems in automobiles,35 and the first 

cryoprotectant for preserving living cells.36  

 

2.3. Governing Equations 

2.3.1. Derivation of general conditions for solid–liquid equilibrium and calculating the 

liquidus lines (freezing and solute precipitation) and eutectic point 

Gibbsian thermodynamics of composite systems gives a formal approach for finding the 

conditions for equilibrium of a multiphase multicomponent system by extremizing entropy 

subject to constraints on the system. Our objective is to find the effect of confinement in a 

capillary of radius r on the solid–liquid phase diagram of a two-component aqueous system. 

Here, the largest radius of curvature that a solid phase forming out of the aqueous solution can 

have is defined by the interaction with the capillary wall. Thus we consider the equilibrium of 

the system illustrated in Figure 2, where a single-component solid phase is in equilibrium with a 

two-component liquid phase and where the curved solid–liquid interface contacts the capillary 

wall at the contact angle, 𝜃.  
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Figure 2. Schematic of solid–liquid equilibrium with a curved solid–liquid interface in a 

capillary.  

 

We assign the solid components in the capillary wall to be part of the reservoir and assign the 

liquid–capillary and solid–capillary interfaces to be parts of the system.1 The solid phase can be 

either pure ice or pure precipitated solute, as we limit our study only to those aqueous solutions 

in which ice forms as pure water or solute precipitates as pure solute. Component 1 represents 

the molecules that are in the solid phase and liquid phase and component 2 represents the other 

molecules that are in the liquid phase. The solid–liquid interface contains molecules of both 

components 1 and 2. The liquid–capillary and solid–capillary interfaces are considered to be part 

of the system so that adsorption of components 1 and 2 at the liquid–capillary and solid–capillary 

interfaces is included in consideration. The pressure and temperature of the reservoir surrounding 

the system (including the capillary solid), 𝑃𝑟𝑒𝑠 and 𝑇𝑟𝑒𝑠, respectively, are considered to remain 
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constant. The system does not exchange any mass with the reservoir, therefore the number of 

molecules of each component in the system is constant. Molecules of component 1 are present in 

the solid phase (solid solvent or precipitate), the liquid phase (solvent/solute mixture), the solid–

liquid interface, the liquid–capillary interface and the solid–capillary interface. Molecules of 

component 2 are present in the liquid phase, the solid–liquid interface and the liquid–capillary 

interface; however, they do not exist in the solid or the solid–capillary interface. 

    We can find the conditions for equilibrium of the system by finding the conditions that 

extremize entropy of the system plus reservoir: 

𝑑𝑆 = 𝑑𝑆𝑆 + 𝑑𝑆𝐿 + 𝑑𝑆𝑆𝐶 + 𝑑𝑆𝐿𝐶 + 𝑑𝑆𝑆𝐿 + 𝑑𝑆𝑟𝑒𝑠 = 0 
(1)  

where 𝑆𝑆, 𝑆𝐿 and 𝑆𝑟𝑒𝑠are the entropies of the solid phase, the liquid phase and the reservoir, and 

𝑆𝑆𝐶 , 𝑆𝐿𝐶, 𝑆𝑆𝐿 are the entropies of the solid–capillary, liquid–capillary, and solid–liquid 

interfaces, respectively. The entropy differentials can be written as in Equations (2)–(7) using the 

fundamental relations and the definitions of intensive properties temperature 𝑇, pressure 𝑃, and 

chemical potential 𝜇.37 The differential of entropy of the liquid phase (superscript 𝐿) is written 

as: 

𝑑𝑆𝐿 =
1

𝑇𝐿
𝑑𝑈𝐿 +

𝑃𝐿

𝑇𝐿
𝑑𝑉𝐿 −

𝜇1
𝐿

𝑇𝐿
𝑑𝑁1

𝐿 −
𝜇2

𝐿

𝑇𝐿
𝑑𝑁2

𝐿    (2)  

where V is volume, U is internal energy, 𝜇𝑖
𝐿 is the chemical potential of component i in the liquid 

phase and 𝑁𝑖
𝐿 is the number of moles of component i in the liquid phase. Since component 2 

does not exist in the solid phase, the differential of entropy of the solid phase (superscript S) is 

written as: 
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𝑑𝑆𝑆 =
1

𝑇𝑆
𝑑𝑈𝑆 +

𝑃𝑆

𝑇𝑆
𝑑𝑉𝑆 −

𝜇1
𝑆

𝑇𝑆
𝑑𝑁1

𝑆 (3) 

Using Gibbs Surface of Tension approach, the curved solid–liquid interface (superscript SL) 

is treated as a phase that has area but no volume and to which are assigned excess properties (SSL, 

USL, 𝑁1
𝑆𝐿, 𝑁2

𝑆𝐿) and an interfacial tension 𝜎, the value for which does not depend explicitly on 

curvature. Therefore, the differential of the solid–liquid interface entropy is given by 

𝑑𝑆𝑆𝐿 =
1

𝑇𝑆𝐿
𝑑𝑈𝑆𝐿 −

𝜎𝑆𝐿

𝑇𝑆𝐿
𝑑𝐴𝑆𝐿 −

𝜇1
𝑆𝐿

𝑇𝑆𝐿
𝑑𝑁1

𝑆𝐿 −
𝜇2

𝑆𝐿

𝑇𝑆𝐿
𝑑𝑁2

𝑆𝐿  (4) 

where A is the area of the interface, 𝜇1
𝑆𝐿 represents the chemical potential of surface excess 

component 1 molecules, and 𝜎𝑆𝐿 represents the solid–liquid interfacial tension.  

Since the radius of the capillary will not be changing as the system evolves to equilibrium, it 

is convenient to adopt the Gibbs Dividing Surface approach in which the dividing surfaces 

between the capillary and either the liquid or solid phases are placed such that there are no 

excess moles of the capillary solid material in the interfaces. We will be either leaving the 

contact angle as a variable or setting the contact angle, hence we will not have to explicitly 

introduce any curvature dependence for the interfacial tension of the capillary solid and therefore 

proceed without loss of generality. This is also consistent with defining the reservoir to contain 

all molecules of the capillary solid. Therefore, the differential of the entropy of the liquid–

capillary interface (superscript LC) is: 

 𝑑𝑆𝐿𝐶 =
1

𝑇𝐿𝐶
𝑑𝑈𝐿𝐶 −

𝜎𝐿𝐶

𝑇𝐿𝐶
𝑑𝐴𝐿𝐶 −

𝜇1
𝐿𝐶

𝑇𝐿𝐶
𝑑𝑁1

𝐿𝐶 −
𝜇2

𝐿𝐶

𝑇𝐿𝐶
𝑑𝑁2

𝐿𝐶  (5) 

and the differential of the entropy of the solid–capillary interface (superscript SC) is:  
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 𝑑𝑆𝑆𝐶 =
1

𝑇𝑆𝐶
𝑑𝑈𝑆𝐶 −

𝜎𝑆𝐶

𝑇𝑆𝐶
𝑑𝐴𝑆𝐶 −

𝜇1
𝑆𝐶

𝑇𝑆𝐶
𝑑𝑁1

𝑆𝐶  (6) 

    Finally, the differential of the entropy of the reservoir (superscript res) may be written: 

𝑑𝑆𝑟𝑒𝑠 =
1

𝑇𝑟𝑒𝑠
𝑑𝑈𝑟𝑒𝑠 +

𝑃𝑟𝑒𝑠

𝑇𝑟𝑒𝑠
𝑑𝑉𝑟𝑒𝑠 −

𝜇𝑟𝑒𝑠

𝑇𝑟𝑒𝑠
𝑑𝑁𝑟𝑒𝑠         (7) 

Next the system constraints are enumerated. The total internal energy of the system plus 

reservoir is constant: 

𝑑𝑈𝑟𝑒𝑠 = −𝑑𝑈𝑆 − 𝑑𝑈𝐿 − 𝑑𝑈𝑆𝐿 − 𝑑𝑈𝑆𝐶 − 𝑑𝑈𝐿𝐶  (8) 

The total volume of the system plus reservoir is constant: 

𝑑𝑉𝑟𝑒𝑠 = −𝑑𝑉𝑆 − 𝑑𝑉𝐿  (9) 

The total number of moles of component 1 in the system (solid phase, liquid phase, solid–liquid 

interface, solid–capillary interface, and liquid–capillary interface) is constant: 

𝑑𝑁1
𝑆 = −𝑑𝑁1

𝐿 − 𝑑𝑁1
𝑆𝐿 − 𝑑𝑁1

𝑆𝐶 − 𝑑𝑁1
𝐿𝐶 (10) 

The total number of moles of component 2 in the system (liquid phase, liquid–capillary interface, 

and solid–liquid interface) is constant:  

𝑑𝑁2
𝐿 = −𝑑𝑁2

𝑆𝐿 − 𝑑𝑁2
𝐿𝐶  (11) 

The number of moles in the reservoir is also constant.  

𝑑𝑁𝑟𝑒𝑠 = 0    (12) 
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    The next step is to use geometric knowledge to impose relationships between phase volumes 

and areas since changes in these are not independent. We assume that the solid–liquid interface 

takes the shape of a spherical cap with geometry as defined in Figure 3. 

 

Figure 3. Schematic diagram of the geometry of solid–liquid equilibrium in a capillary. The 

solid–liquid interface is assumed to take the shape of a spherical cap with height h and base 

width equal to the capillary radius r. The radius of curvature of the solid–liquid interface is R.  

 

Denoting the surface area of the spherical cap 𝐴𝑐𝑎𝑝
𝑠𝑝ℎ

, and the volume of the spherical cap 

𝑉𝑐𝑎𝑝
𝑠𝑝ℎ

, the following geometrical relationships are valid.38 

𝐴𝑐𝑎𝑝
𝑠𝑝ℎ

= 2𝜋𝑅ℎ =
2𝜋𝑟2(1 − 𝑠𝑖𝑛𝜃)

𝑐𝑜𝑠2𝜃
 (13) 
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𝑉𝑐𝑎𝑝
𝑠𝑝ℎ =

𝜋ℎ(3𝑟2+ℎ2)

6
 = 

𝜋𝑟3(𝑠𝑖𝑛3𝜃−3𝑠𝑖𝑛𝜃+2)

3𝑐𝑜𝑠3𝜃
    (14) 

𝑅 =
𝑟

𝑐𝑜𝑠𝜃
= 

ℎ

1−𝑠𝑖𝑛𝜃
    (15) 

    The increase in the liquid–capillary area equals the decrease in the solid–capillary area: 

𝑑𝐴𝐿𝐶 = −𝑑𝐴𝑆𝐶 (16) 

    The change in the area of the solid–liquid interface can be found by taking the derivative of 

Equation (13). 

𝑑𝐴𝑆L = 𝑑𝐴𝑐𝑎𝑝
𝑠𝑝ℎ =

4𝜋𝑟(1 − 𝑠𝑖𝑛𝜃)

𝑐𝑜𝑠2𝜃
𝑑𝑟 −

2𝜋𝑟2(𝑠𝑖𝑛𝜃 − 1)2

𝑐𝑜𝑠3𝜃
𝑑𝜃 

 (17) 

    The change in the volume of the solid can be found by realizing that the solid volume can be 

changed by changes in the volume of the spherical cap or by moving the spherical cap up or 

down in the capillary: 

         𝑑𝑉𝑆 = 𝑑𝑉𝑐𝑎𝑝
𝑠𝑝ℎ +

1

2
𝑟𝑑𝐴𝑆𝐶  

    =
1

2
𝑟𝑑𝐴𝑆𝐶 +

𝜋𝑟2(2 − 3𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛3𝜃)

𝑐𝑜𝑠3𝜃
𝑑𝑟 −

𝜋𝑟3(𝑠𝑖𝑛𝜃 − 1)2

𝑐𝑜𝑠4𝜃
𝑑𝜃 

  (18) 

Substituting Equations (2)–(7) into Equation (1), making use of constraints in Equations (8)–

(12), (16)–(18), noting that since the temperature and pressure of the reservoir are fixed, 𝑑𝑟 = 0, 

and collecting like terms yields: 
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(
1

𝑇𝐿
−

1

𝑇𝑟𝑒𝑠
) 𝑑𝑈𝐿 + (

1

𝑇𝑆
−

1

𝑇𝑟𝑒𝑠
) 𝑑𝑈𝑆 + (

1

𝑇𝑆𝐿
−

1

𝑇𝑟𝑒𝑠
) 𝑑𝑈𝑆𝐿 + (

1

𝑇𝐿𝐶
−

1

𝑇𝑟𝑒𝑠
) 𝑑𝑈𝐿𝐶

+ (
1

𝑇𝑆𝐶
−

1

𝑇𝑟𝑒𝑠
) 𝑑𝑈𝑆𝐶 + (

𝜇1
𝐿

𝑇𝐿
−

𝜇1
𝑆𝐶

𝑇𝑆𝐶
) 𝑑𝑁1

𝐿 + (
𝜇1

𝑆

𝑇𝑆
−

𝜇1
𝑆𝐶

𝑇𝑆𝐶
) 𝑑𝑁1

𝑆

+ (
𝜇1

𝑆𝐿

𝑇𝑆𝐿
−

𝜇1
𝑆𝐶

𝑇𝑆𝐶
) 𝑑𝑁1

𝑆𝐿 + (
𝜇1

𝐿𝐶

𝑇𝐿𝐶
−

𝜇1
𝑆𝐶

𝑇𝑆𝐶
) 𝑑𝑁1

𝐿𝐶 + (
𝜇2

𝐿

𝑇𝐿
−

𝜇2
𝐿𝐶

𝑇𝐿𝐶
) 𝑑𝑁2

𝐿

+ (
𝜇2

𝐿

𝑇𝑆𝐿
−

𝜇2
𝐿𝐶

𝑇𝐿𝐶
) 𝑑𝑁2

𝑆𝐿 + (
𝑃𝐿

𝑇𝐿
−

𝑃𝑟𝑒𝑠

𝑇𝑟𝑒𝑠
) 𝑑𝑉𝐿

+ [
1

2
𝑟 (

𝑃𝑆

𝑇𝑆
−

𝑃𝑟𝑒𝑠

𝑇𝑟𝑒𝑠
) + (

𝜎𝐿𝐶

𝑇𝐿𝐶
−

𝜎𝑆𝐶

𝑇𝑆𝐶
)] 𝑑𝐴𝑆𝐶

+ [(
𝑃𝑆

𝑇𝑆
−

𝑃𝑟𝑒𝑠

𝑇𝑟𝑒𝑠
) (

−𝜋𝑟3(𝑠𝑖𝑛𝜃 − 1)2

𝑐𝑜𝑠4𝜃
) −

𝛾𝑆𝐿

𝑇𝑆𝐿
(

−2𝜋𝑟2(𝑠𝑖𝑛𝜃 − 1)2

𝑐𝑜𝑠3𝜃
)] 𝑑𝜃 = 0 

(19) 

    After considering all constraints and geometrical relations, all differentials in Equation (19) 

are independent. So, for Equation (19) to be true for any possible variation about equilibrium, the 

coefficients multiplying the differentials in Equation (19) must each be set equal to zero, thus 

yielding the following conditions for equilibrium:  

 𝑇𝑆 = 𝑇𝐿 = 𝑇𝑆𝐿 = 𝑇𝑆𝐶 = 𝑇𝐿𝐶 = 𝑇𝑟𝑒𝑠 = 𝑇 (20) 

 𝜇1
𝑆 = 𝜇1

𝐿 = 𝜇1
𝑆𝐿 = 𝜇1

𝑆𝐶 = 𝜇1
𝐿𝐶 (21) 

 𝜇2
𝐿 = 𝜇2

𝑆𝐿 = 𝜇2
𝐿𝐶 (22) 

 𝑃𝐿 = 𝑃𝑟𝑒𝑠               (23) 

 𝑃𝑆 − 𝑃𝐿 =
2𝜎𝑆𝐿𝑐𝑜𝑠𝜃

𝑟
 (24) 

 𝜎𝑆𝐶 − 𝜎𝐿𝐶 = 𝜎 𝑆𝐿𝑐𝑜𝑠𝜃 (25) 

Equation (20) is the thermal equilibrium condition. Equations (21) and (22) are chemical 

equilibrium conditions. Equation (23) is the mechanical equilibrium between the reservoir and 
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liquid phase. Equations (24) and (25) are also mechanical equilibrium conditions; Equation (24) 

is the Young–Laplace equation and Equation (25) is the Young equation. 

    By assuming the system temperature T and the liquid phase pressure PL are set by the 

reservoir, the set of equilibrium conditions that arise from Equations (20)–(25) can be combined 

to calculate the liquidus lines. In Equation (24), when the solid–liquid interface is flat, 𝑟 goes to 

infinity and the pressure in the solid phase is equal to the pressure in the liquid phase. It should 

be noted that the radius of curvature is defined to be positive when the center of the circle that 

defines the interface is placed inside the solid phase, i.e., when the interface is curved towards 

the solid. We combine the thermal equilibrium (equality of temperature of the solid phase, liquid 

phase and solid–liquid interface), the mechanical equilibrium of Equations (23) and (24), and the 

equality of chemical potential of component 1 in the solid and liquid (the first equivalence in 

Equations (21)) to get,  

 𝜇1
𝐿(𝑇, 𝑃𝐿 , 𝑥1

𝐿) = 𝜇1
𝑆 (𝑇, 𝑃𝑆)            (26) 

To develop the governing equation for the phase diagram, Equation (24) and equations of 

state for the chemical potentials must be inserted into Equation (26). The chemical potential of 

the solidifying component in the pure solid phase can be found by assuming that the solid phase 

is incompressible and that the solid molar entropy is independent of temperature, and thus can be 

expressed by: 

 𝜇1
𝑆(𝑇, 𝑃𝑆) = 𝜇1

𝑆(𝑇𝑚,1, 𝑃𝐿) − 𝑠1
𝑆(𝑇 − 𝑇𝑚,1) + 𝑣1

𝑆(𝑃𝑆 − 𝑃𝐿)    (27) 

where 𝑇𝑚,1, the melting point of pure component 1 at the pressure of the bulk phase (i.e., liquid 

phase pressure 𝑃𝐿), is chosen as the reference point for calculating chemical potential. 𝑠1
𝑆 and 𝑣1

𝑆 
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are the molar entropy, and molar volume of pure component 1 in the solid phase at 𝑇𝑚,1 and 𝑃𝐿, 

respectively.  

    Before giving the chemical potential of component 1 in the liquid phase, we define auxiliary 

functions osmole fraction �̃�, osmotic pressure 𝛱, activity 𝑎 and activity coefficient 𝛾 by their 

relationships to chemical potential in the liquid.39,40,41  

 �̃� = −
𝜇1

𝐿 − 𝜇1
𝐿0

𝑅𝑇
     (28) 

where 𝜇1
𝐿 is the chemical potential of component 1 in the liquid phase, 𝜇1

𝐿0 is the chemical 

potential of pure liquid component 1 and from here on 𝑅 is the universal gas constant. The 

activity of component 1 in solution can be expressed: 

 𝑎1
𝐿 = 𝑥1

𝐿𝛾1
𝐿    (29) 

where 𝑎1
𝐿 is the composition-dependent activity of component 1 in the binary solution and 𝛾1

𝐿 is 

the composition-dependent activity coefficient of component 1 in solution which accounts for 

solution nonideality.  

 
𝛱 =

𝑅𝑇�̃�

𝑣1
𝐿 = −

𝑅𝑇ln(𝑎1
𝐿)

𝑣1
𝐿 = −

𝑅𝑇ln(𝑥1
𝐿𝛾1

𝐿)

𝑣1
𝐿  

(30) 

where 𝑣1
𝐿 is the molar volume of pure liquid component 1 and 𝛱 is binary solution composition-

dependent osmotic pressure. 

For the chemical potential of component 1 in the liquid solution, we use: 

 𝜇1
𝐿(𝑇, 𝑃𝐿 , 𝑥1

𝐿) = 𝜇1
𝐿0(𝑇𝑚,1, 𝑃𝐿) − 𝑠1

𝐿(𝑇 − 𝑇𝑚,1) + 𝑅𝑇ln(𝑥1
𝐿𝛾1

𝐿) (31) 



21 

 

where 𝑠1
𝐿 is the temperature-independent molar entropy of pure component 1 in liquid form at 

𝑇𝑚,1 and 𝑃𝐿.  

The chemical potential can equivalently be expressed in terms of osmotic pressure.21 

 𝜇1
𝐿(𝑇, 𝑃𝐿 , 𝑥1

𝐿) = 𝜇1
𝐿0(𝑇𝑚,1, 𝑃𝐿) − 𝑠1

𝐿(𝑇 − 𝑇𝑚,1) − 𝑣1
𝐿𝛱(𝑇, 𝑥1

𝐿) (32) 

Substituting Equations (27) and (31) into Equation (26), and replacing (𝑠1
𝐿 − 𝑠1

𝑆) using the 

Clapeyron equation: 

 
1

𝑠1
𝐿 − 𝑠1

𝑆 =
𝑇𝑚,1

∆𝐻1
𝑓𝑢𝑠

 (33) 

where ∆𝐻1
𝑓𝑢𝑠

is the molar enthalpy of fusion (latent heat of melting) for pure component 1 at 𝑇𝑚,1 

and 𝑃𝐿, leads to: 

 ln(𝑥1
𝐿𝛾1

𝐿) =
∆𝐻1

𝑓𝑢𝑠

𝑅𝑇𝑚,1
(1 −

𝑇𝑚,1

𝑇
) +

𝑣1
𝑆

𝑅𝑇
(𝑃𝑆 − 𝑃𝐿) (34) 

     Substituting the Laplace equation, Equation (24), for the pressure difference term in Equation 

(34) and rearranging for the solid–liquid equilibrium temperature yields: 

 𝑇 =

2𝑣1
𝑆𝜎𝑆𝐿𝑐𝑜𝑠𝜃

𝑟 − ∆𝐻1
𝑓𝑢𝑠

𝑅ln(𝑥1
𝐿𝛾1

𝐿) −
∆𝐻1

𝑓𝑢𝑠

𝑇𝑚,1

 
         

(35) 

    The freezing or precipitating temperature depression can be expressed as: 

 𝑇𝑚,1 − 𝑇 =
𝑅𝑇𝑚,1 ln(𝑥1

𝐿𝛾1
𝐿) −

2𝑣1
𝑆𝜎𝑆𝐿𝑐𝑜𝑠𝜃

𝑟

𝑅ln(𝑥1
𝐿𝛾1

𝐿) −
∆𝐻1

𝑓𝑢𝑠

𝑇𝑚,1

 
         

(36) 
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Equation (36) is a very general form of both the Gibbs–Thomson equation and the Ostwald–

Freundlich equation that also include the effect of the contact angle. The way we have done this 

derivation highlights the equivalence of the Gibbs–Thomson and Ostwald–Freundlich equations. 

Equation (35) and (36) are each nonideal forms of both the Gibbs–Thomson equation and 

Ostwald–Freundlich equation, the naming of the equation depending only on which component 

is identified as component 1. 

Alternatively and more commonly for the freezing process than the precipitating process, the 

solidifying point depression can also be written in terms of osmotic pressure:   

 

𝑇𝑚,1 − 𝑇 =
2𝑣1

𝑆𝜎𝑆𝐿𝑇𝑚,1𝑐𝑜𝑠𝜃

𝑟∆𝐻1
𝑓𝑢𝑠

(1 +
𝑅𝑇𝑚,1�̃�

∆𝐻1
𝑓𝑢𝑠 )

+

𝑅�̃�𝑇𝑚,1
2

∆𝐻1
𝑓𝑢𝑠

1 +
𝑅�̃�𝑇𝑚,1

∆𝐻1
𝑓𝑢𝑠

 

=
2𝑣1

𝑆𝜎𝑆𝐿𝑇𝑚,1𝑐𝑜𝑠𝜃

𝑟∆𝐻1
𝑓𝑢𝑠

+
𝑣1

𝐿𝛱𝑇𝑚,1

∆𝐻1
𝑓𝑢𝑠

 

(37) 

The first term of Equation (37) is the capillary effect, and the second term of Equation (37) is 

the osmotic effect.14 Equation (37) has an osmole fraction version and an osmotic pressure 

version. The osmotic pressure version can be found in previous work.14,21 The second term of the 

osmole fraction version has been applied in multi–solute nonideal solutions without curvature 

effects.42  

     For a flat solid–liquid interface, the pressure of the solid phase equals the pressure in the liquid 

phase and 
2𝑣1

𝑆𝜎𝑆𝐿

𝑟
  in Equations (35)–(37) is zero. For a curved interface, the pressure difference 

between the solid and liquid phases varies as a function of the radius of curvature according to 

Equation (24) and the curvature term appears in Equations (35)–(37).   
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    The freezing and precipitating liquidus lines meet at a minimum point which is called the 

eutectic point. In order to calculate the eutectic point concentration and temperature, we use 𝑇𝐹 

and 𝑇𝑃 to represent the freezing temperature of solvent and the precipitating temperature of solute, 

respectively. Then according to Equation (35) for the solidifying temperature, and considering the 

fact that summation of mole fractions in liquid phase is 1 (hence for a binary system  𝑥𝑠𝑜𝑙𝑣𝑒𝑛𝑡
𝐿 +

 𝑥𝑠𝑜𝑙𝑢𝑡𝑒
𝐿 = 1) 

 𝑇𝐹 =

2𝑣𝐹
𝑆𝜎𝐹

𝑆𝐿𝑐𝑜𝑠𝜃𝐹

𝑟 − ∆𝐻𝐹
𝑓𝑢𝑠

𝑅ln[(1 − 𝑥𝑠𝑜𝑙𝑢𝑡𝑒
𝐿 )𝛾𝐹

𝐿] −
∆𝐻𝐹

𝑓𝑢𝑠

𝑇𝑚,𝐹

 (38) 

 

𝑇𝑃 =

2𝑣𝑃
𝑆𝜎𝑃

𝑆𝐿𝑐𝑜𝑠𝜃𝑃

𝑟 − ∆𝐻𝑃
𝑓𝑢𝑠

𝑅ln(𝑥𝑠𝑜𝑙𝑢𝑡𝑒
𝐿 𝛾𝑃

𝐿) −
∆𝐻𝑃

𝑓𝑢𝑠

𝑇𝑚,𝑃

 

 

(39) 

where 𝑥𝑠𝑜𝑙𝑢𝑡𝑒
𝐿  is the mole fraction of solute in the liquid phase, 𝑣𝐹

𝑆 and 𝑣𝑃
𝑆 represent the molar 

volume of pure solvent solid phase in the freezing process and pure solute solid phase in the 

precipitating process, respectively. ∆𝐻𝐹
𝑓𝑢𝑠

 and ∆𝐻𝑃
𝑓𝑢𝑠

 represent the molar enthalpy of fusion of 

solvent in the freezing process and solute in the precipitating process. 𝜎𝐹
𝑆𝐿 and 𝜎𝑃

𝑆𝐿 represent the 

interfacial tensions of solid solvent–liquid solution in the freezing process and solid solute–liquid 

solution in the precipitating process, respectively. 𝜃𝐹  and 𝜃𝑃 represent the contact angle between 

the curved solid–liquid interface and the capillary in the freezing and precipitating process, 

respectively. 𝛾𝐹
𝐿 and 𝛾𝑃

𝐿 represent the activity coefficients of solvent in the liquid phase in the 

freezing process and solute in the liquid phase in the precipitating process, respectively. At the 

eutectic point, 𝑇𝐹 equals 𝑇𝑃 and equating Equations (38) and (39) yields an equation for the 

eutectic point solute concentration, 𝑥𝐸. 
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2𝑣𝐹
𝑆𝜎𝐹

𝑆𝐿𝑐𝑜𝑠𝜃𝐹

𝑟 − ∆𝐻𝐹
𝑓𝑢𝑠

𝑅ln[(1 − 𝑥𝐸)𝛾𝐹
𝐿] −

∆𝐻𝐹
𝑓𝑢𝑠

𝑇𝑚,𝐹

=  

2𝑣𝑃
𝑆𝜎𝑃

𝑆𝐿𝑐𝑜𝑠𝜃𝑃

𝑟 − ∆𝐻𝑃
𝑓𝑢𝑠

𝑅ln(𝑥𝐸𝛾𝑃
𝐿) −

∆𝐻𝑃
𝑓𝑢𝑠

𝑇𝑚,𝑃

 
         

(40) 

which can be solved together with Equation (35) for the eutectic temperature. It has already been 

noted in previous work that the eutectic point concentration equation for a  binary system with a 

flat surface is usually a transcendental equation,43 which is difficult to solve directly. So linear 

fitting44 and polynomial fitting45 are used. Here we give the transcendental equation for the 

eutectic solute concentration in the case of curved interfaces. Equation (40) can be solved 

numerically together with Equation (35) to yield the eutectic solute concentration and the 

eutectic temperature for a given curvature.  

    In order to present the maximum effect of curvature, and for lack of the required information 

to do otherwise, we take the contact angle that either the ice–liquid interface or the glycerol 

precipitate–liquid interface makes with the capillary solid wall to be zero for this exploration. 

Note that this is also equivalent to considering a nucleating sphere of either ice or precipitate 

without interaction with the capillary solid, the maximum radius of curvature of which equals the 

radius of the capillary. By setting the contact angle equal to zero, we have removed from our 

concern the role of adsorption at the capillary solid wall.  For this work, the zero contact angle 

assumption may exaggerate the predicted freezing/precipitation point depression due to capillary 

radius. In the case of zero contact angle, Equation (35) becomes: 

 𝑇 =

2𝑣1
𝑆𝜎𝑆𝐿

𝑟 − ∆𝐻1
𝑓𝑢𝑠

𝑅ln(𝑥1
𝐿𝛾1

𝐿) −
∆𝐻1

𝑓𝑢𝑠

𝑇𝑚,1

 (41) 
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    The freezing or precipitating temperature depression can be expressed as: 

  𝑇𝑚,1 − 𝑇 =
𝑅𝑇𝑚,1 ln(𝑥1

𝐿𝛾1
𝐿) −

2𝑣1
𝑆𝜎𝑆𝐿

𝑟

𝑅ln(𝑥1
𝐿𝛾1

𝐿) −
∆𝐻1

𝑓𝑢𝑠

𝑇𝑚,1

 
         

(42) 

    The eutectic concentration is then given by 

 2𝑣𝐹
𝑆𝜎𝐹

𝑆𝐿

𝑟 − ∆𝐻𝐹
𝑓𝑢𝑠

𝑅ln[(1 − 𝑥𝐸)𝛾𝐹
𝐿] −

∆𝐻𝐹
𝑓𝑢𝑠

𝑇𝑚,𝐹

=  

2𝑣𝑃
𝑆𝜎𝑃

𝑆𝐿

𝑟 − ∆𝐻𝑃
𝑓𝑢𝑠

𝑅ln(𝑥𝐸𝛾𝑃
𝐿) −

∆𝐻𝑃
𝑓𝑢𝑠

𝑇𝑚,𝑃

 

 

(43) 

2.3.2. Freezing and precipitation liquidus line and eutectic point calculation for the 

water/glycerol system.  

After finding the general form of the conditions for solid–liquid equilibrium, the next step is 

to solve this set of equations for the system of interest in this chapter, which is the water/glycerol 

system. We want to compute the liquidus lines of the phase diagram, i.e., the freezing point as a 

function of composition (solidification of solvent water) and the precipitation saturation 

composition as a function of temperature (solidification of solute glycerol). We wish to compare 

such a phase diagram computed in the presence of a curved solid–liquid interface (i.e., confined 

in a capillary) to the traditional phase diagram computed for a flat solid–liquid interface 

(unconfined).  

Figure 4 shows a schematic diagram of the system with curved solid–liquid interfaces and 

contact angles of zero. The left figure refers to the freezing process and the right figure refers to 

the precipitating process. Component 1 represents the molecules that are present in both solid 

and liquid. Therefore, in the freezing process component 1 is water and component 2 is glycerol. 
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For the precipitating process, component 1 represents glycerol and component 2 represents 

water. According to the Gibbs Surface of Tension approach5 we have adopted, the solid–liquid 

interfacial tension is independent of curvature.  

 

Figure 4. Schematic diagram of equilibrium with a curved solid–liquid interface and contact 

angle of zero. The freezing process is shown in the left panel and the precipitating process is 

shown in the right panel. 

 

For all of the preceding equations we have used the index 1 for the component that exists in 

both solid and liquid phases. Thus, for the left liquidus line (freezing of water as the solid), 

component 1 refers to water molecules, and all the properties of water must be inserted into 

Equations (41) or (42). For the right liquidus line (precipitating of glycerol as the solid), 

component 1 represents glycerol molecules, and all the properties of glycerol must be inserted 

into Equations (41) or (42). The properties of pure water and pure glycerol are tabulated in Table 

1.  
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Table 1. Properties of pure water and pure glycerol46 at 𝑃𝐿 = 1 atm  

 𝑇𝑚,1(K) ∆𝐻1
𝑓𝑢𝑠(J mol⁄ ) at 𝑇𝑚,1  𝑣1

𝑆(m3 mol⁄ ) at 𝑇𝑚,1 

Water  273.15 6010 1.963 × 10−5 

Glycerol  291.35 18300 6.896 × 10−5 

 

2.3.3. Activity coefficient model 

Equation (41) must be used along with a model to express the activity coefficient of 

component 1 (𝛾1
𝐿 in Equation (41)). In this thesis, we consider a solution consisting of water and 

glycerol. To model the activity coefficients, we used the Margules model, and obtained the 

coefficients by fitting the model to solid–liquid equilibrium data for the water/glycerol system. 

For the water/glycerol system, the two-parameter Margules model gives a better fit compared to 

the osmotic virial equation.47 𝛾1
𝐿 is the activity coefficient of component 1, the component that is 

in both solid and liquid. To show the activity coefficients of different molecules clearly, here we 

use 𝛾𝑤
𝐿  and  𝛾𝑔

𝐿 to represent the activity coefficients of water and glycerol respectively. 𝑥𝑤
𝐿  is the 

mole fraction of water in the liquid, and 𝑥𝑔
𝐿 is the mole fraction of glycerol. According to the 

general Margules equation, the activity coefficients of the two components of a binary system 

are given by: 

 𝑙𝑛(𝛾𝑤
𝐿) = 𝑏𝑤(𝑥𝑔

𝐿)2 + 𝑐𝑤(𝑥𝑔
𝐿)3 + ⋯ (44) 

 𝑙𝑛(𝛾𝑔
𝐿) = 𝑏𝑔(𝑥𝑤

𝐿 )2 + 𝑐𝑔(𝑥𝑤
𝐿 )3 + ⋯ (45) 
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where coefficients bg, cg, ... are not independent, and are related to bw, cw, ... through the Gibbs–

Duhem equation at constant temperature and pressure. 𝛾1
𝐿 should be replaced by 𝛾𝑤

𝐿  from 

Equation (44) for the freezing process, and 𝛾1
𝐿 should be replaced by 𝛾𝑔

𝐿 from Equation (45) for 

the precipitating process. Considering the dependency of the coefficients (through the Gibbs–

Duhem equation), and truncating the polynomials to third-order terms, results in the two-

parameter Margules equation:48 

 ln(𝛾𝑤
𝐿 ) = [𝐴𝑤𝑔 + 2(𝐴𝑔𝑤 − 𝐴𝑤𝑔)𝑥𝑤

𝐿 ](𝑥𝑔
𝐿)2 (46) 

 ln(𝛾𝑔
𝐿) = [𝐴𝑔𝑤 + 2(𝐴𝑤𝑔 − 𝐴𝑔𝑤)𝑥𝑔

𝐿](𝑥𝑤
𝐿 )2 (47) 

Parameters Awg and Agw are obtained by fitting Equation (41) in the absence of curvature (𝑟 →

∞) , along with Equation (46) for the freezing process, or along with Equation (47) for the 

precipitating process, to the experimental data of temperature versus mole fraction of the left and 

right liquidus by minimizing the residual sum of squared errors. The Margules coefficients 𝐴𝑤𝑔 

and 𝐴𝑔𝑤 are considered to be independent of temperature.  

2.4. Results and Discussion 

2.4.1. Margules coefficients for the water/glycerol system from experimental data49  

This part was done by Leila Zargarzadeh, and is not shown here as the content of the thesis. 

The full content is included in published reference.78 The resulting Margules parameters  𝐴𝑤𝑔 

and  𝐴𝑔𝑤 are given in Table 2 and were used for calculations in the following sections. 
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Table 2. Parameters obtained from fitting the two-parameter Margules model to the experiment 

data of Lane49 at 𝑃𝐿 =1 atm. 

 𝐴𝑤𝑔  𝐴𝑔𝑤 

−1.0952 −2.1641 

 

2.4.2. Effect of curvature on the solid–liquid equilibrium phase diagram and the eutectic point 

for the water/glycerol system  

    Equation (41) gives the relationship between equilibrium temperature (𝑇) and liquid mole 

fraction of the solidifying component (𝑥1
𝐿). Values for the parameters 𝑇𝑚,1, ∆𝐻1

𝑓𝑢𝑠
, and 𝑣1

𝑆 can be 

found in Table 1. The activity coefficients of component 1 can be calculated from Equations (46)  

or (47) with the parameters of the two-parameter Margules model shown in Table 2.  

The interfacial tension is dependent on temperature and concentration,50 but it is hard to 

measure the interfacial tension of a nanoscale solid particle with liquid directly by experiment.51 

It should be noted that the main goal of this article is to investigate the effect of curvature on the 

freezing and precipitating liquidus lines and on the eutectic point. Knowing the exact value of the 

interfacial tension would allow quantitative prediction of the equilibrium temperatures for the 

freezing and precipitating processes; however the value is subject to change with the system’s 

conditions. For simplicity, we assumed that the interfacial tension is constant and independent of 

temperature and concentration. We investigate the curvature effect at constant capillary radius 

𝑟 using 32 mN/m52 as the interfacial tension of the ice–aqueous solution interfacial tension. 

There is a lack of experimental data and theoretical models for interfacial tension of glycerol 

precipitate with glycerol aqueous solution. Therefore, we make computations over a range of 
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possible solid glycerol–aqueous solution interfacial tensions (100 mN/m, 32 mN/m, 10 mN/m, 1 

mN/m). Figure 5 shows the temperature of equilibrium as a function of concentration where the 

radius of the capillary changes from 1 µm to 100 nm, 10 nm, and 5 nm for various possible 

values of interfacial tension.  

According to Figure 5(a) and (b) when the radius of the capillary is 1 µm or 100 nm, the 

freezing point and the solubility limit are not appreciably different from those of the flat surface. 

When the radius of the capillary decreases down to 10 nm, as shown in Figure 6(c), the freezing 

point is significantly decreased and the decrease becomes larger when the capillary radius is 

reduced further down to 5 nm as shown in Figure 5(d).                                                    
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Figure 5. Predicted solid–liquid equilibrium phase diagram for the binary system of water and 

glycerol in capillaries at 𝑃𝐿 = 1 atm with radii of (a) 1 µm, (b) 100 nm, (c)10 nm and (d) 5 nm. 

Predictions are done over a range of possible glycerol solid–liquid interfacial tension values for 

lack of data to do precise calculation. 

 

The freezing point line (left hand liquidus) and the precipitating line (right hand liquidus) 

meet at the eutectic point. The eutectic point can be found by solving Equation (43) together with 

Equation (41) to see how the eutectic point temperature and concentration change with curvature. 

Figure 6 and Figure 7 predict the eutectic point temperature and concentration as a function of 

radius of curvature in the range from 5 𝑛𝑚 to 100 𝑛𝑚. Figure 6 shows how the eutectic point 

temperature changes with radius of curvature. The eutectic point temperature of the 
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water/glycerol system decreases as the radius of the capillary decreases. When the radius of 

curvature is around hundreds of nanometers, the eutectic point does not change appreciably as a 

function of the curvature. When the radius of curvature is under 100 nm, the eutectic point 

temperature has a significant drop from its flat interface value.  

 

Figure 6. Predicted eutectic point temperature as a function of radius of curvature at 𝑃𝐿 = 1 atm. 

Predictions are done over a range of possible glycerol solid–liquid interfacial tensions for lack of 

data to do a precise calculation. 

 

Figure 7 shows that the eutectic point concentration changes as a function of radius of 

curvature. The eutectic point concentration stays almost the same when the radius of curvature is 

above 100 nm. When the radius of curvature is less than 100 nm, the trend of eutectic point 

concentration change depends on the difference between solid glycerol–liquid interfacial tension 
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and solid ice–liquid interfacial tension. If the glycerol 𝜎𝑆𝐿 is bigger than the ice 𝜎𝑆𝐿, then the 

precipitating liquidus changes more than the freezing liquidus, which makes the eutectic point 

concentration increase as the radius of curvature decreases. If the glycerol 𝜎𝑆𝐿 is smaller than the 

ice 𝜎𝑆𝐿, then the freezing liquidus changes more than the precipitating liquidus, which makes the 

eutectic point concentration decrease as the radius of curvature decreases. Regardless of the 

trend, the eutectic concentration changes significantly when the radius of curvature becomes less 

than 100 nm. 

 

Figure 7. Predicted eutectic point concentration as a function of radius of curvature at 𝑃𝐿 =
1 atm. Predictions are done over a range of possible glycerol solid–liquid interfacial tensions for 

lack of data to do a precise calculation.  
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2.5. Conclusion 

We have presented a derivation of thermal, mechanical and chemical equilibrium conditions 

for solid–liquid equilibrium in a capillary of radius 𝑟, with different contact angles. We 

investigated the effect of curvature on solid–liquid equilibrium for the water/glycerol system. 

Curvature affects both the freezing process and the precipitating process. The solidifying points 

and the eutectic point temperature decrease as the radius of the capillary decreases and when the 

radius of curvature is reduced to the nanoscale, the decrease becomes significant. The derived 

conditions for equilibrium shown for solid–liquid equilibrium can be applied to other 

multicomponent systems in capillary pores. The calculation procedure presented for a 

multicomponent phase diagram with curvature provides a way of combining chemical potential 

equilibrium with the mechanical equilibrium of a curved solid–liquid interface.  

There are limitations to this work that can be enumerated and discussed: (1) The Margules 

parameters are considered to be independent of temperature. (2) The interfacial tensions between 

each solid and the aqueous liquid solution were taken to be constants, independent of curvature, 

concentration and temperature. The shift of freezing point and eutectic point could be made 

accurately using the methods presented in this work if the glycerol solid–liquid interfacial 

tension were known. (3) Our calculations are based on the assumption that both ice–liquid and 

glycerol precipitate–liquid interfaces make a zero contact angle with the capillary solid wall.  

This study gives a promising theoretical method to predict thermodynamic properties of 

solid–liquid equilibrium across a curved interface in nonideal multicomponent systems 

(demonstrated here for a binary system but extendable to multicomponent cases) that has 

applications in many fields such as cryobiology, forestry, and soil sciences. In cryobiology, the 
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freezing point of solutions containing diverse solutes, including salts, cryoprotectants, proteins, 

and many other macromolecules in confined spaces such as membrane pores is of vital 

importance.19,20,21,42,45 Furthermore, during freezing, direct cell injury has been associated with 

eutectic crystallization.53 In forestry, in the xylem parenchyma of hardwood tree species and in 

dormant flower bud primordia of woody species, extracellular water exists in microcapillaries in 

the extracellular space.19 These microcapillaries can depress the freezing point of water in the 

intercellular spaces, and impede the spread of ice through the tissue. The freezing point 

depression of the microcapillaries can help the plant survive at low temperature. In soil science, 

the freezing and melting of water in porous particles that are abundant in soil are of critical 

interest in cold regions because of their role in frost damage. Previously, the solid–liquid 

equilibrium inside porous media has been studied for ice with pure water.54,55 With our 

equations, the prediction of freezing and melting temperatures in nanoscale pores in soil could be 

extended to water that contains various soluble substances, such as salt or organic components 

that are abundant in soil.  
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3. Freezing of aqueous electrolytes in zinc–air 

batteries: Effect of composition and nanoscale 

confinement 

3.1. Abstract 

Zinc–air batteries, which typically employ aqueous electrolytes, have attracted much attention 

owing to high energy density, low cost and environmental friendliness. While the zinc–air 

battery is a promising solution for energy grid applications, the freezing of the electrolyte is an 

important problem for operation in cold climates. The freezing point of the electrolyte can be 

affected not only by chemical composition, but also by micro/nanoscale confinement in porous 

electrodes or separators. In this work, we first find osmotic virial coefficients by fitting 

experimental freezing point data for various electrolytes that are used in zinc–air batteries. 

Secondly, we show how additives that improve the performance of the batteries may also lower 

the freezing point of the electrolyte system. Thirdly, we show how the nanoscale confinement 

inside zinc–air batteries further decreases the freezing point; a 10 nm diameter capillary pore can 

suppress the local freezing point of the electrolyte by ~10 °C. Finally, we map out the 

equilibrium mol% ice as a function of temperature, concentration, and confinement. This study 

can provide insight to design tailored electrolytes specialized for low temperature applications.  
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3.2. Introduction 

3.2.1. Zinc–air battery configuration 

    Large scale secondary rechargeable batteries, which store electricity in reversible chemical 

energy format, are the key component for energy grid storage, where electrical energy is stored 

during times when electricity generation exceeds consumption. In remote communities where 

electricity supply is off-grid (i.e., no electric cable connection from a major power plant), 

including those in northern Canada, such large scale energy storage is especially needed because 

the supplies for electricity generation (such as diesel or hydro power) may be intermittent or 

even inconsistent.56 In cold environments, freezing of the electrolyte is a critical issue.  

While lithium-ion batteries dominate the rechargeable energy storage market, metal–air  

secondary batteries are expanding owing to their high specific energy, low material cost, and 

environmental friendliness.57 Several metals have been proposed for metal–air batteries, such as 

lithium, magnesium, aluminum, iron and zinc.58 Lithium–air batteries have the highest specific 

energy (5928 W h kg−1) and high cell voltage (2.96 V) and are shown to have 5 to 10 times 

more energy density than standard lithium-ion batteries, but the current lithium–air battery is 

unstable when exposed to moist air or aqueous electrolyte.59 Lithium salt and alkaline aqueous 

solution can be used in an aqueous electrolytic type of lithium–air batteries.57,60,61 Magnesium 

and aluminum are also good candidates in terms of high energy density and relative stability with 

aqueous electrolyte, but they are low in reduction potential which leads to poor coulombic 

charging efficiency.57 Electrolytes that can be used in magnesium–air batteries are NaCl, 

KHCO3, NH4NO3, NaNO3, or a solution of NaNO3 and HNO3, NaNO2, Na2SO4, MgCl2, MgBr2, 

and Mg(ClO4)2.
62 For aluminum–air batteries, the choice of electrolyte can be flexible; the 
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electrolyte can be salt (such as sodium chloride), sea water, or alkaline electrolytes (such as 

potassium hydroxide).63 However, the aluminum–air battery is not rechargeable; the battery 

stops working when the aluminum anode is consumed by the reaction of oxygen forming 

hydrated aluminum oxide.64  

Zinc, which is abundant in the Earth’s crust, has a good balance between specific energy 

(1084 W h kg−1), cell voltage (1.65 V) and cost, and is considered to be the most economically 

feasible battery material for grid energy storage.59,65,66 Alkali hydroxides (NaOH, LiOH, and 

KOH) are among the commonly used zinc–air battery electrolytes. KOH (potassium hydroxide) 

is the most frequent choice due to having the highest ionic conductivity with K+, the lowest 

viscosity for mass transport, fast electrochemical kinetics, and high solubility of zinc salts.67 The 

concentration range of KOH is between 20 and 45 wt% KOH in the aqueous solution; ~30 wt% 

KOH provides the maximum ionic conductivity (around 640 mS cm−1).68,69 For low temperature 

applications (down to −30 °C), a slightly higher concentration (30–40% KOH) is preferred.67 

The electrolyte is of vital importance in the battery performance in many aspects such as 

capacity retention and cycling efficiency. Aqueous alkaline electrolytes, which are commonly 

used in metal–air batteries, have strong advantages including excellent conductivity, high 

reaction kinetics with oxygen, and a wide choice of electrocatalyst materials.  

In this study, we focus on the thermodynamic properties of the electrolyte system in zinc–air 

batteries at low temperature. As shown in Figure 8, zinc–air batteries are composed of four 

components: a zinc electrode which works as the anode, a cathode comprising a catalyst-painted 

gas diffusion layer (GDL), a separator and an alkaline electrolyte.66 The separator is in between 

the two electrodes, and acts as a physical barrier that prevents physical contact of the two 

electrodes which would cause a short-circuit. The role of the separator is to allow the transport of 
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hydroxyl ions from the air electrode to the zinc electrode. Therefore, stability in alkaline 

solution, high ionic conductivity and appropriate pore size are required.67,70  

 

Figure 8. Schematic of zinc–air battery configuration and ice formation at low temperature. 

 

Based on the reaction equations mentioned below, zinc–air batteries need an open structure to 

react with oxygen. The zinc electrode works as an anode. There are two reaction steps on the 

zinc electrode; the first step is: 

 Zn + 4OH− ⟺ Zn(OH)4
2− + 2e−, 

(48) 

and the second step is: 

 Zn(OH)4
2− ⟺ ZnO + H2O + 2OH−. 

(49) 

The reaction on the air cathode is: 

 O2 + 2H2O + 4e− ⟺ 4OH−. 
(50) 
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Thus, the overall reaction is: 

 2Zn + O2 ⟺ 2ZnO. 
(51) 

Zinc–air batteries still have several unsolved drawbacks. For example, there are four major 

phenomena that can lower the performance of the zinc electrode: dendrite growth, shape change, 

passivation induced internal resistance, and hydrogen evolution. Firstly, zinc dendrites, sharp, 

needle-like metallic protrusions that cause a short-circuit between the cathode and anode, are 

electrochemically grown during battery operation.21,71–74 Secondly, the shape of the zinc 

electrode changes due to build-up of internal stresses. Thirdly, passivation of the zinc electrode 

by ZnO precipitation causes an increase of internal resistance. Fourthly, the hydrogen evolution 

reaction consumes some of the electrons provided during charging, resulting in less than 100% 

coulombic efficiency at the zinc electrode. Currently, blending additives into the electrolyte is an 

essential method to reduce the adverse effects from these drawbacks.75 For example, additives 

can adsorb onto active hydrogen evolution sites, resulting in a reduced solubility of Zn(OH)4
2− 

that leads to early ZnO precipitation.76 This method can improve the performance of the zinc 

electrode by increasing the efficiency of the anode reaction. 

Introducing nanoscale pores is also an important strategy in enhancing zinc–air battery 

performance. The performance of zinc electrodes is heavily dependent on their porous 

morphology that increases the surface area while maintaining efficient ionic transport.66 The 

nanoporous zinc structure presents a modified activation energy for electrochemical cycling. For 

example, the hierarchical nanoporous structure of the zinc electrode allows high surface area and 

efficient ion diffusion of zinc in alkaline mediums.77 In addition, the performance of the air 

cathode depends on the effective functioning of the air electrode porosity for air permeation. At 
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low temperatures, ice formation in these pores results in serious damage to the structure. So 

understanding the effect of the nanoporous structure on freezing of the electrolyte system of 

zinc–air batteries is of vital importance.  

The additives we choose in this study can be added to aqueous electrolytes to improve the 

performance of zinc–air batteries. Nanoporous structure can be found in the separator, zinc 

anode and air cathode; confinement of electrolyte can be found in these three places. At low 

temperature as shown in Figure 8, the nanoporous structure in the separator, zinc anode 

electrode, and air cathode electrode can alter the freezing behavior due to confinement of the 

aqueous electrolyte.70 When the temperature decreases, ice can form in the electrolyte, but a 

lower temperature is required for ice to form or propagate inside the pores of the separator or two 

electrodes than in the unconfined electrolyte. Here, we focus on investigating the thermodynamic 

properties that describe freezing behavior of the aqueous electrolyte with additives, both in bulk 

and in nanoscale confinement by pores in zinc–air batteries.   

 

3.2.2. Freezing point depression of electrolyte aqueous solutions with the multisolute osmotic 

virial equation 

To our knowledge, investigation of the freezing point of relevant electrolyte systems over a 

range of concentration with the effect of nanoscale confinement has not been done before. 

The freezing point depression of an aqueous solution confined in a pore can be expressed78 

(Chapter 2; Equation (37)) as a function of concentration and pore radius r 
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𝑇𝑚,1 − 𝑇 =

2𝑣1
𝑆𝜎𝑆𝐿𝑇𝑚,1cosθ

𝑟∆𝐻1
𝑓𝑢𝑠

(1 +
𝑅𝑇𝑚,1�̃�

∆𝐻1
𝑓𝑢𝑠 )

+
𝑅�̃�𝑇𝑚,1

2 /∆𝐻1
𝑓𝑢𝑠

1 + 𝑅�̃�𝑇𝑚,1/∆𝐻1
𝑓𝑢𝑠

 
(52) 

where 𝑇𝑚,1 is the melting point of pure water at the pressure of the bulk phase (i.e., liquid phase 

pressure 𝑃𝐿), T is the freezing point of the aqueous solution, 𝑣1
𝑆 is the molar volume of pure 

water in solid phase at 𝑇𝑚,1 and 𝑃𝐿, R is the universal gas constant, 𝜎𝑆𝐿 is the ice–solution 

interfacial tension, ∆𝐻1
𝑓𝑢𝑠

 is the molar enthalpy of fusion (latent heat of melting) for pure water 

at 𝑇𝑚,1 and 𝑃𝐿, 𝜃 is the contact angle between the ice–solution interface and the pore wall, and �̃� 

is the osmole fraction of the solution, (a function that describes solution thermodynamic 

nonideality). Equation (52) is a nonideal form of the Gibbs–Thomson equation. The properties of 

pure water at 𝑃𝐿 = 1 atm are shown in Table 3. 

Table 3. Properties of pure water at 𝑃𝐿 = 1 atm.79 

 𝑹(𝐉/(𝐦𝐨𝐥 𝐊)) 𝑻𝒎,𝟏(𝐊) ∆𝑯𝟏
𝒇𝒖𝒔(𝐉 𝐦𝐨𝐥⁄ ) at 𝑻𝒎,𝟏 𝒗𝟏

𝑺(𝐦𝟑 𝐦𝐨𝐥⁄ ) at 𝑻𝒎,𝟏 

Water 8.314 273.15 6010 1.963 × 10−5 

     

What remains is to describe the nonideality of the aqueous solution with the osmole fraction as 

a function of the mole fractions of solutes. The osmotic virial equation is an accurate, 

straightforward, predictive method used to represent osmole fraction as a polynomial in mole 

fraction.42 The single-solute osmotic virial equation for solute 𝑖 in the electrolyte is: 42,80 

 �̃� = 𝑘𝑖
∗𝑥𝑖 + 𝐵𝑖𝑖

∗ (𝑘𝑖
∗𝑥𝑖)

2 + 𝐶𝑖𝑖𝑖
∗ (𝑘𝑖

∗𝑥𝑖)
3 + ⋯ (53) 

where  𝑥𝑖 is the mole fraction of solute 𝑖, and 𝐵𝑖𝑖
∗  and 𝐶𝑖𝑖𝑖

∗  are the second and third mole-fraction-

based osmotic virial coefficients of solute 𝑖 (unitless), respectively. The second osmotic virial 

coefficient represents the interactions between two solute 𝑖 molecules; the third osmotic virial 

coefficient represents interactions between three solute 𝑖 molecules, etc. These coefficients are 
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zero if solute 𝑖 is thermodynamically ideal. For electrolyte solutes, solute concentration must be 

multiplied by an additional parameter, the mole-fraction-based dissociation constant of solute 𝑖, 

𝑘𝑖
∗. This dissociation constant accounts empirically for ionic dissociation and other electrolyte 

effects.80 The osmotic virial coefficients and the dissociation constants may be obtained by 

fitting the single-solute osmotic virial equation to single-solute solution data, with each solute 

having unique coefficients.  

The solution nonideality of multisolute solutions can be predicted from tabulated single-solute 

properties using the Elliott et al form of osmotic virial equation:42,81,82  

 
�̃� = ∑ 𝑘𝑖

∗𝑥𝑖 + ∑ ∑ [
(𝐵𝑖𝑖

∗ + 𝐵𝑗𝑗
∗ )

2
𝑘𝑖

∗𝑥𝑖𝑘𝑗
∗𝑥𝑗]

𝑧

𝑗=2

𝑧

𝑖=2

𝑧

𝑖=2

+ ∑ ∑ ∑[(𝐶𝑖𝑖𝑖
∗ 𝐶𝑗𝑗𝑗

∗ 𝐶𝑘𝑘𝑘
∗ )1/3𝑘𝑖

∗𝑥𝑖𝑘𝑗
∗𝑥𝑗𝑘𝑘

∗ 𝑥𝑘] + ⋯

𝑧

𝑘=2

𝑧

𝑗=2

𝑧

𝑖=2

 

where 𝑖, 𝑗, 𝑘 = 2 to 𝑧 represent the 𝑧 − 1 solutes in the solution. 

(54) 

 

3.2.3. Objectives of this work 

     In this chapter, we investigate the freezing behavior of single-solute and multisolute 

electrolyte systems in zinc–air batteries including the effects of nanoscale confinement. We start 

by obtaining osmotic virial coefficients and dissociation constants of relevant electrolytes by 

fitting single-solute freezing point data with the osmotic virial equation. Then, we plot freezing 

temperature as a function of concentration for unconfined and confined electrolyte systems. The 

effects of different pore radii and different amounts of additives are investigated. In order to 

conceptualize a quantitative picture of partially frozen electrolytes at equilibrium to benefit 
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battery designers, the mol% ice formed at a given temperature for specific electrolyte systems is 

calculated. This work provides theoretical predictions of the additive effect and ice–solution 

curvature effect on the freezing behavior of electrolyte systems in zinc–air batteries at low 

temperature, and can be extended to other low temperature secondary batteries containing 

different solutions.  

3.3. Osmotic virial coefficients for electrolytes of interest 

First we fit the osmotic virial equation to the freezing point data of unconfined single-solute 

electrolyte solutions and get the single-solute osmotic virial coefficients and dissociation 

constants. For unconfined electrolyte solutions where 𝑟 → ∞, Equation (52) can be expressed as: 

 
𝑇𝑚,1 − 𝑇 =

𝑅�̃�𝑇𝑚,1
2

∆𝐻1
𝑓𝑢𝑠

+ 𝑅�̃�𝑇𝑚,1

 
(55) 

Equation (55) can be rearranged to: 

 
�̃� =

(𝑇𝑚,1 − 𝑇)∆𝐻1
𝑓𝑢𝑠

𝑅𝑇𝑚,1𝑇
 

(56) 

Equation (56) is used to convert experimentally measured freezing points to osmole fractions for 

single-solute solutions. This data as a function of mole fraction can be fit to Equation (53) to 

yield values for the single-solute osmotic virial coefficients. 

   To determine the number of parameters to include in the fit (i.e., the order of the osmotic virial 

polynomial and whether or not to include a dissociation constant), in each case, we start with no 

parameters and progressively increase the number of parameters until the adjusted 𝑅2 increase 

becomes less than 0.005 upon addition of a new parameter (p equals 1 or 2 for the cases 

considered here). A regression-through-the-origin (RTO) form of adjusted 𝑅2 was used:42  
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𝑅𝑎𝑑𝑗.𝑅𝑇𝑂

2 = 1 −
∑(𝑦(𝑎) − �̂�(𝑎))

2
/(𝑛 − 𝑝)

∑(𝑦(𝑎))
2

/(𝑛)
 

(57) 

where 𝑦(𝑎) is the value of the 𝑎𝑡ℎ data point, �̂�(𝑎) is the fitted model prediction of the 𝑎𝑡ℎdata 

point, 𝑛 is the total number of data points, and 𝑝 is the number of parameters/coefficients in the 

model.  

An example of the fitting is shown in Figure 9 for KOH.  

 

Figure 9. Best fit of the mole-fraction-based osmotic virial equation to experimental data for the 

freezing of unconfined aqueous KOH solutions.79,83 Equation (56) and the properties in Table 3 

were used to convert the freezing point data from references79 and 83 into osmole fraction as a 

function of mole fraction. The data was then fit to Equation (53) yielding 𝑘𝐾𝑂𝐻
∗  and 𝐵𝐾𝑂𝐻

∗ . Here 

the number of parameters, p, is 2. 

 

The best fit parameters of the osmotic virial equation for different electrolytes commonly 

added to improve the performance of zinc–air batteries are shown in Table 4. For example, 
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K2CO3, K2HPO4, Na2CO3, Na3PO4, and Na2HPO4  are additives that can be added in the 

electrolyte to reduce zinc dissolution.68,84–86 Citric acid and H3PO4 are proposed to prevent 

dendrite growth and increase hydrogen overpotential.87,88 The maximum mole fraction of each 

data set is also given in Table 4. Care should be taken not to use the fit parameters in Table 4 

above the maximum range of the data fit since the extrapolated polynomial may not describe 

freezing behavior, for example, beyond a eutectic point.  

Table 4. Obtained osmotic virial coefficients 𝐵𝑖𝑖
∗  and dissociation constants 𝑘𝑖

∗ along with 95% 

confidence intervals for different electrolyte additives. n is the number of data points and p is the 

number of parameters used in the osmotic virial equation. Adjusted 𝑅2 of the fit and the 

maximum mole fraction of the data are also given.79,83  

 𝒏 𝒑 𝒌𝒊
∗  ± 𝟗𝟓% 𝑪𝑰 𝑩𝒊𝒊

∗  ± 𝟗𝟓% 𝑪𝑰 𝑹𝒂𝒅𝒋,𝑹𝑻𝑶
𝟐  

Max. mole 

fraction 

Molar mass 

(g/mol) 

KOH 13 2 1.259 ± 0.191 19.48 ± 6.940 0.99955 0.1367 56.1056 

K2CO3 21 2 1.369 ± 0.253 25.10 ± 11.36 0.99800 0.07989 138.205 

K2HPO4 13 1 2.174 ± 0.023 0 0.99966 0.008905 174.2 

Na2CO3 7 1 1.967 ± 0.06 0 0.99867 0.01072 105.9888 

Citric acid 21 1 1.088 ± 0.004 0 0.99992 0.03860 192.124 

H3PO4 26 2 0.8948 ± 0.0304 16.01 ± 1.530 0.99987 0.1091 97.99 

CH3OH 28 2 0.8786 ± 0.0329 3.574 ± 0.396 0.99964 0.4573 32.04 

Na3PO4 5 1 2.889 ± 0.197 0 0.99559 0.002807 163.94 

Na2HPO4 3 1 2.364 ± 0.237 0 0.99837 0.001929 141.96 

    

3.4. Predictions of the role of composition and confinement 

on the freezing point of electrolytes 

    Now that we have the required osmotic virial equation parameters, we can use them in 

Equation (52) to predict the freezing temperature of single-solute and multisolute electrolyte 

solutions as a function of pore radius and electrolyte composition and concentration. Here we 

wish to study the impact that curvature of the ice–solution interface makes on the freezing point. 

The porous geometry of electrodes in real zinc–air batteries may be complicated. We consider 
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confinement in an equivalent ice-wetting cylindrical pore, the contact angle, 𝜃, between the ice–

solution interface and the pore wall to be zero so that the pore radius gives the radius of 

curvature of the ice–solution interface. The results are relevant to real batteries so long as it is 

understood that the curvature of the ice–solution interface is determined by the contact angle that 

ice makes with the anode material and local dimensions between anode surfaces in a complicated 

geometry within which only an ice–solution interface with a specific curvature can be in 

equilibrium. There will be a range of relevant pore sizes. The lower the temperature, the smaller 

the pore in which ice can form or propagate as will be predicted in this work. For this work, we 

make the assumption that the interfacial tension between ice and unfrozen electrolyte solution is 

constant, i.e., independent of temperature and concentration, and is equal to 32 mJ/m2.  

Figure 10 shows the freezing point as a function of solute mole fraction predicted by Equation 

(52) for an unconfined aqueous KOH solution and aqueous KOH solutions confined in pores 

with a range of radii. When the pore radius is 1 μm or 100 nm, the freezing point of the KOH 

electrolyte is not appreciably different from that of the electrolyte without confinement. When 

the pore radius is reduced further down to 10 nm, the freezing point of the KOH electrolyte 

decreases significantly.  
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Figure 10. Predicted freezing point as a function of KOH mole fraction for an unconfined 

aqueous KOH solution and aqueous KOH solutions confined in pores with radii of 100 nm, 

10 nm, and 5 nm. (Predictions for a pore with a radius of 1 μm directly underlie predictions for 

the unconfined electrolyte.) Calculations are made with Equation (52) with 𝜃 = 0 and 𝜎𝑆𝐿 = 32 

mJ/m2, and with the osmotic virial equation parameters given in Table 4. 

 

    To examine the freezing point of multisolute electrolyte solutions, we note that in the 

freezing process, pure water freezes to ice, and the ratio of the mole fractions of any two solutes 

in the remaining unfrozen solution will remain constant. We are interested in the effect of 

particular additives to the KOH solution so we consider two-solute systems and define the ratio 

𝜼 between mole fraction of additive 𝒋 and mole fraction of KOH. 

 𝜂 =
𝑥𝑗

𝑥𝐾𝑂𝐻
 

(58) 
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    Substituting Equation (58) into Equation (54) for two solutes, and recognizing that for the 

solutes in Table 4 only terms up to second order are required, we get an equation for the osmole 

fraction of a solution with one additive and one main electrolyte solute. 

 �̃� = 𝑘𝐾𝑂𝐻
∗ 𝑥𝐾𝑂𝐻 + 𝑘𝑗

∗𝑥𝑗 + 𝐵𝐾𝑂𝐻
∗ (𝑘𝐾𝑂𝐻

∗ 𝑥𝐾𝑂𝐻)2 + 𝐵𝑗𝑗
∗ (𝑘𝑗

∗𝑥𝑗)
2

+ (𝐵𝐾𝑂𝐻
∗ + 𝐵𝑗𝑗

∗ )(𝑘𝐾𝑂𝐻
∗ 𝑥𝐾𝑂𝐻)(𝑘𝑗

∗𝑥𝑗) 

                     = (𝑘𝐾𝑂𝐻
∗ + 𝑘𝑗

∗𝜂)𝑥𝐾𝑂𝐻 

(59) 

                               +[𝐵𝐾𝑂𝐻
∗ (𝑘𝐾𝑂𝐻

∗ )2 + 𝐵𝑗𝑗
∗ (𝑘𝑗

∗)2𝜂2 + 𝑘𝐾𝑂𝐻
∗ 𝑘𝑗

∗(𝐵𝐾𝑂𝐻
∗ + 𝐵𝑗𝑗

∗ )𝜂](𝑥𝐾𝑂𝐻)2 

Substituting Equation (59) into Equation (52), and using the parameters in Table 4, we can 

predict the freezing temperature of the electrolyte with additives as a function of concentration 

and confinement pore radius. Here, we use K2CO3 as an example of an additive (the second 

solute) to show the effect of different amount of additives on the freezing point in zinc–air 

batteries. Based on experimental relevance, we make computations over a range of mole fraction 

ratio 𝜂 (between 0.1 and 1).89–91  

Figure 11 shows the freezing point of electrolyte systems as a function of total solute mole 

fraction. Total solute mole fraction is the sum of the mole fraction of KOH and the mole fraction 

of additive. Figure 11 shows the pore size effect on the freezing point of the electrolyte system 

for K2CO3:KOH=1:1 (ratio 𝜂 = 1).  

. 
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Figure 11. Predicted freezing point of KOH electrolyte with K2CO3 additive (𝑥𝐾2𝐶𝑂3
: 𝑥𝐾𝑂𝐻 =

1: 1) for unconfined electrolytes and for electrolytes confined in pores with radii of 10 nm, and 

5 nm, assuming 𝜃 = 0 and 𝜎𝑆𝐿 = 32 mJ/m2. (Note that predictions for 1 μm and 100 nm pores 

directly underlie the unconfined prediction.) 

 

    We then compare the effect of having different ratios between solute and additive by plotting 

the freezing point of electrolyte systems as a function of total solute mole fraction. Figure 12 

shows the effect of the amount of K2CO3 additive on freezing point of the electrolyte system for 

an unconfined solution and within a 5 nm pore.  
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Figure 12. Predicted freezing point for electrolyte systems with different additives ratio K2CO3: 

KOH =1:1 or 1:4 (𝜂 = 1, 0.25) confined within a 5 nm pore, compared with unconfined 

electrolyte systems. Predictions assume 𝜃 = 0 and 𝜎𝑆𝐿 = 32 mJ/m2. The predictions for KOH as 

the only solute (not shown) fall above the four lines. 

 

    Knowing the amount of ice at equilibrium in zinc–air batteries can shed light in estimating the 

performance of the batteries at low temperatures. Figure 13 shows schematically how the mol% 

of each phase can be determined from the predicted composition-dependent freezing point by the 

lever rule.41 In Figure 13, 𝑥𝑖 represents the initial total solute mole fraction before freezing, 

𝑇𝑔𝑖𝑣𝑒𝑛 represents the given temperature, and 𝑥𝑢𝑛𝑓𝑟𝑜𝑧𝑒𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 represents the mole fraction in 

the unfrozen solution at given temperature 𝑇𝑔𝑖𝑣𝑒𝑛.  
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Figure 13. Schematic of binary phase diagram showing the lever rule. 

 

Equation (60) can be used to calculate mol% ice at a given temperature for a given initial 

composition. 

 
mol% ice =

𝑁𝑖𝑐𝑒

𝑁𝑖𝑐𝑒 + 𝑁𝑤𝑎𝑡𝑒𝑟 + 𝑁𝑠𝑜𝑙𝑢𝑡𝑒 + 𝑁𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒
=

𝑎

𝑏

=
𝑥𝑢𝑛𝑓𝑟𝑜𝑧𝑒𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑥𝑖

𝑥𝑢𝑛𝑓𝑟𝑜𝑧𝑒𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100% 

(60) 

where N represents the number of moles, and 𝑎 and b are the line segment lengths shown on 

Figure 13. Based on Equation (60), if the given initial mole fraction 𝑥𝑖 increases, 𝑎 decreases and 

𝑏 is constant for a fixed 𝑇𝑔𝑖𝑣𝑒𝑛, and mol% ice decreases. For a constant given initial mole 

fraction 𝑥𝑖, if the given temperature 𝑇𝑔𝑖𝑣𝑒𝑛 decreases, 𝑥𝑢𝑛𝑓𝑟𝑜𝑧𝑒𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 increases, and mol% ice 

increases.  

    Figure 14 shows the mol% ice at a range of temperatures for four different electrolyte systems. 

Here, the combinations of two confinement conditions (unconfined vs. pore size r = 5 nm) and 

two solute concentrations (30 wt% KOH vs. 15 wt% KOH + 15 wt% K2CO3) are considered. The 
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curve shifts to the left (i.e., less ice formation at a given condition) when the pore size decreases 

and when additives are added into the KOH electrolyte. In drawing Figure 14, predictions were 

stopped when either the temperature goes below the KOH eutectic point temperature (−60.9 ℃) 

or the KOH concentration in the unfrozen solution goes above the eutectic point concentration 

(𝑥𝐾𝑂𝐻 = 0.1367).92  To further understand Figure 14, we can make cuts through this diagram at 

a given temperature or mol% ice (−60 ℃ and 1 mol% ice are shown on Figure 14). Several 

examples are given in Table 5 and Table 6.  

We choose a 30 wt% KOH electrolyte system as an example because the composition 

provides the maximum ionic conductivity for the single solute system. The mole fraction of 

additives should not exceed the maximum mole fraction listed in Table 4. Equation (61) and (62) 

can be used to convert weight percentages of KOH and additive j to mole fractions. 

 
𝑥𝐾𝑂𝐻 =

𝑤𝐾𝑂𝐻 𝑀𝐾𝑂𝐻⁄

𝑤𝐾𝑂𝐻 𝑀𝐾𝑂𝐻⁄ + 𝑤𝑗 𝑀𝑗⁄ + (1 − 𝑤𝐾𝑂𝐻 − 𝑤𝑗) 𝑀𝐻2𝑂⁄
 

(61) 

 
𝑥𝑗 =

𝑤𝑗 𝑀𝑗⁄

𝑤𝐾𝑂𝐻 𝑀𝐾𝑂𝐻⁄ + 𝑤𝑗 𝑀𝑗⁄ + (1 − 𝑤𝐾𝑂𝐻 − 𝑤𝑗) 𝑀𝐻2𝑂⁄
 

(62) 

 where 𝑤 represents the weight percentage and 𝑀 represents the molar mass of KOH or additive. 

Total mole fraction is the sum of the mole fractions of KOH and additive j. For three initial 

compositions: 30 wt% KOH, 15 wt% KOH + 15 wt% K2CO3, and 15 wt% KOH + 15 wt% 

CH3OH, −60 ℃ is chosen as the given temperature. For initial compositions of 20 wt% KOH + 

5% Na2CO3 and 20 wt% KOH + 5% K2HPO4, 𝑇𝑔𝑖𝑣𝑒𝑛 is the freezing point at the maximum mole 

fraction in Table 4. The initial total solute mole fraction is shown in Table 5 and Table 6. The 

mol% ice is calculated based on Equation (60). As is shown in Table 5, for constant given 

temperature, mol% ice in unconfined electrolytes is higher than for confined electrolytes. Table 6 
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reveals that the confined electrolytes require more cooling than unconfined electrolytes to obtain 

the same mol% ice. In other words, a smaller amount of ice formation is expected in the 

nanoporous environment of zinc electrode and the gas diffusion layers at equilibrium. 

 

Figure 14. Predicted mol% ice of electrolyte solutions, either unconfined or confined in a pore of 

r = 5 nm, for i) an initial wt% KOH of 30% or ii) an initial wt% KOH of 15% plus 15 wt% 

K2CO3. For the predictions, 𝜃 = 0 and 𝜎𝑆𝐿 = 32 mJ/m2 are assumed. Cuts through the diagram 

at −60 ℃ and 1 mol% ice are shown.  
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Table 5. Mol% ice at the given temperature in the four electrolyte systems.  

Electrolytes with initial wt% 

before freezing 

Initial 

mol% 

solute 

Ratio 

𝜼 =
𝒙𝒋

𝒙𝑲𝑶𝑯
 

Given 

temperature 

𝑻𝒈𝒊𝒗𝒆𝒏 (°𝑪) 

Mol% ice / mol% unfrozen water @ 𝑻𝒈𝒊𝒗𝒆𝒏 

Unconfined 𝒓 = 𝟓 𝒏𝒎 

30 wt% KOH 12.10% 0 −60 °C 11.21% / 76.69% 0% / 87.90% 

15 wt% KOH + 15 wt% K2CO3 8.821% 0.4060 −60 °C 31.13% / 60.05% 22.35% / 68.83% 

15 wt% KOH + 15 wt% CH3OH 15.92% 1.751 −60 °C 26.73% / 57.35% 16.98% / 67.10% 

20 wt% KOH + 5 wt% Na2CO3 8.841% 0.1323 −33.31 °C 3.61% / 87.55% 0% / 91.16% 

20 wt% KOH + 5 wt% K2HPO4 8.470% 0.08052 −49.71 °C 26.12% / 65.41% 17.47% / 74.06% 

 

Table 6. Freezing temperature to give 1 mol% ice in the four electrolyte systems.  

Electrolytes with initial wt% 

before freezing 

Initial total 

solute mole 

fraction 𝒙𝒊 

Ratio  

𝜼 =
𝒙𝒋

𝒙𝑲𝑶𝑯
 

Temperature (°𝑪) to form 1 mol% ice 

Unconfined 𝒓 = 𝟓 𝒏𝒎 

30wt% KOH 0.1210 0 −51.52 °C −60.78 °C 

15 wt% KOH+ 15 wt% K2CO3 0.08821 0.4060 −35.52 °C −45.45 °C 

15 wt% KOH+ 15 wt% CH3OH 0.1592 1.751 −39.74 °C −49.50 °C 

20 wt% KOH+ 5 wt% Na2CO3 0.08841 0.1323 −32.03 °C −42.12 °C 

20 wt% KOH+ 5 wt% K2HPO4 0.08470 0.08052 −32.62 °C −40.76 °C 

 

3.5.  Conclusions 

We studied the effect of solute compositions and nanoscale confinement on the freezing point 

and equilibrium amount of ice formed under low temperature conditions using our previously 

published confinement-dependent freezing point equation (Equation (52) and Equation (37) in 

Chapter 2)78 and the Elliott et al. form of the multisolute osmotic virial equation (Equation 

(54))81. The target electrolytes were KOH-based aqueous systems, which are the most commonly 

used for large-scale zinc–air batteries in energy grid applications. To keep the technological 

relevance to practical applications, the additive species we studied were chosen among those that 

are actively used in the field to improve the performance of the zinc electrode or for other 

reasons. The osmotic virial equation parameters were tabulated for various electrolytes. Due to 

the Gibbs–Thomson effect, the freezing point decreased as the radii of pores decreased. When 
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the ice–solution interface radius of curvature was reduced to the nanoscale, the decrease in 

freezing point became significant. In other words, confined electrolytes inside the nanopores of 

the zinc electrodes and the gas diffusion layer will require further undercooling to allow freezing, 

which suggests a relief to potential clogging or pore collapse problems under low temperature 

operations of batteries. Our results also emphasized the fact that the additives that improve the 

performance of zinc electrodes can also have additional effect on the freezing point of the 

electrolyte system. Such effect was illustrated in our calculations of the amount of ice formed in 

the electrolyte system based on the lever rule. This thermodynamic method can be further 

extended to other applications where aqueous solutions are used under nanoscale confinement, 

such as in water purification membranes, desalination facilities, and organ-on-chip applications. 

  

4. Conclusions 

    In this thesis, the thermodynamic equilibrium of multicomponent solid–liquid systems with 

curved solid–liquid interfaces is investigated.   

We start by giving a full derivation of the thermal, mechanical, and chemical equilibrium 

conditions for binary solid–liquid equilibrium, including the effects of radius of curvature of the 

solid–liquid interface and contact angle that the solid–liquid interface makes with a confining 

pore wall. This derivation was based on Gibbsian thermodynamics of composite systems 

together with geometric knowledge of volumes and areas. The derivation yields an equation for 

the equilibrium temperature as a function of mole fraction and radius of curvature. This 
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derivation highlights the equivalence of the general forms of the Gibbs–Thomson and Oswald–

Freundlich equations. 

    To show the effect of curvature, we first use the water/glycerol system as an example. A 

solid–liquid phase diagram was developed over the complete range of concentrations. A curved 

solid–liquid interface has an effect on both freezing of pure water and precipitation of pure 

glycerol. This curvature affected phase diagram is compared with the traditional flat interface 

phase diagram. The freezing point and precipitating point depression increases as the radius of 

curvature decreases. Nanoscale interface curvature has a significant effect on composition-

dependent freezing and precipitating process, eutectic point temperature and concentration. The 

calculation procedure in this thesis presents a way of combining chemical potential equilibrium 

with mechanical equilibrium to predict solid–liquid equilibrium in the presence of curved solid–

liquid interfaces in multicomponent systems over the complete range of concentration. 

Furthermore, the freezing point of the electrolyte is an important issue for operation of 

aqueous electrolyte batteries in cold climates. We apply the equation for the equilibrium freezing 

temperature as a function of concentration and interface curvature to investigate the freezing 

process of electrolytes in zinc–air batteries. We focus on the effect of composition and nanoscale 

confinement on the freezing of aqueous electrolytes in zinc–air batteries. First, osmotic virial 

equation parameters are tabulated by fitting literature experimental freezing point data for 

various electrolytes that are used in zinc–air batteries. Then, we use the parameters to calculate 

the freezing points of electrolytes with additives with and without nanoscale curvature. There is 

nanoporous structure on the separator, zinc anode and air cathode, and confinement of electrolyte 

can be found in these three places. Nanoscale confinement in the zinc–air battery further 

decreases the freezing point of the electrolyte. When the radius of pores is reduced to the 
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nanoscale, the decrease in freezing point becomes significant. When the temperature decreases, 

water will freeze in the bulk unconfined electrolytes, and electrolytes confined inside the 

nanopores will stay unfrozen until lower temperatures due to the confinement effect. The chosen 

additives can not only improve battery performance, but also have an effect on the freezing point 

of the electrolyte system. The effect of the amount of additive is also investigated. When the 

ratio between mole fraction of KOH and additive increases, the freezing point decreases for 

unconfined electrolytes and for constant pore size of confinement. The amount of ice formed in 

zinc–air batteries at a given temperature was calculated based on the lever rule. We plot the 

mol% ice at a range of temperatures for 4 electrolytes: the combinations of two confinement 

conditions (unconfined vs. pore size r = 5 nm) and two initial solute concentrations (30 wt% 

KOH vs. 15 wt% KOH + 15 wt% K2CO3). And we tabulated the mol% ice at a given 

temperature, and the freezing temperature for 1 mol% ice formation for different electrolytes 

with additives. The mol% ice formation decreases when the electrolyte is confined.      

There are some limitations in this thesis that can be enumerated. First, the Margules 

parameters used for the water/glycerol system were considered to be independent of temperature. 

Second, the interfacial tensions between each solid and aqueous liquid solution were taken to be 

constants, independent of curvature, concentration, and temperature. The equilibrium 

temperature depression predictions for both unconfined and confined conditions could be made 

more accurately using the methods described in this thesis if the glycerol solid–liquid interfacial 

tension were known. Last, we assume that the contact angle that the solid–liquid interface makes 

with capillary wall is zero.  

This thesis gives a promising theoretical method to predict thermodynamic properties of solid–

liquid equilibrium across a curved interface in nonideal multicomponent systems (binary system 
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of water/glycerol system in Chapter 2 and multicomponent case in Chapter 3). And has 

applications in many fields such as cryobiology, forestry, soil science, nanoporous materials and 

low temperature battery design. 
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