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Abstract

Selective extensions, also known as selective deepening, is a means of enhancing
the normal af search algorithm where a fixed search depth is adopted. There are many
ways for making the search horizon variable, and so make the search effort more
worthwhile. In this thesis, we experiment with some of the most promising selective
extension heuristics in the domain of Chinese Chess. The heuristics being explored
include knowledge extensions (check evasions, recaptures, king-threats, piece-evading
moves and strictly forced moves), singular extensions (PV-singular moves and fail-high
singular moves), null move search (full-width null move search and null move quies-
cence search) and futility cutoffs (in all search phases wherever applicable). The Abyss
Chinese Chess playing program was developed to carry out a series of experiments. The
results of these experiments are presented and discussed in this thesis. The best combina-
tion of these heuristics for micro-ranged computers is also proposed. We conclude that
these search extension heuristics successfully carry over from chess to a game like
Chinese Chess. However, some of them certainly perform better than the others and are

thus preferred.
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Chapter 1

Introduction

1.1 Selective Extensions

For most of today’s chess playing programs, a brute-force af search algorithm is
still adopted for move selections, yet almost all of them apply some criteria to extend
particular moves during the search, and so make the effort spent more worthwhile. The
reason is obvious: no matter how deep the search goes, moves beyond the game tree hor-
izon may still be neglected. Selective extensions provide a means to alleviate this prob-

lem.

Generally speaking, such extensions can be divided into two categories: those which
use domain specific knowledge and those which are based on information gathered from
the search itself, For instance, chess playing programs usually extend the search by an
extra ply when the side to move is in check, since checking usually forms a serious
threat. The safety of a deeper search is worth the extra-cost, which isn’t high since the
number of replies to a checking move is small. This is one example of using domain-
specific knowledge to extend the search depth. Other approaches include extending on
recaptures [Ebeling 1987, pp. 101-102], pawn moves to the 6th and 7th rank in chess
[Kaindl 1982, Scherzer et al. 1990], moves near the territory of the opponent’s king
[Anantharaman 1991}, strictly forced moves (say if one side has only one legal move)
[Uiterwijk 1991] and certain piece evading moves to bring a piece out of the opponent’s
attack (an ad hoc heuristic tried in Abyss). The latter two have not yet been adequately
explored in the computer chess literature, but both have been exploited in some of the
chess and Chinese Chess playing programs. All these can be categorized as knowledge

extensions.

However, using static knowledge for extensions may not be enough to cover all the

interesting cases and such extensions can sometimes lead you astray. A mote powerful



(%]

search extension heuristic called Singular Extensions was thus introduced and proved to
be a great successt in the chess playing program ChipTest (predecessor of Deep Thought
[Hsu et al. 1990]) [Anantharaman et al. 1988). The idea of singular extensions is to use
information gathered from the search itself to extend the search whenever one mave is
significantly better than the sibling moves. There are other heuristics that also fall in this
category, e.g., the Null Move Quiescence Search [Palay 1983, Beal 1989]. Null moves
provide a cheap means to detect threats. It is possible that by using the null move, one

can control and shape the search toward those lines which are more worthy of considera-

tion.

All the above mentioned extension heuristics have been implemented in the existing
chess (Chinese Chess) playing programs and some of them have proved to be successful
in practice. However, it is not clear whether the relative importance of these heuristics
and the bést combination have been revealed. Since the rationale for most of the heuris-
tics is domain specific, such a conclusion can hardly be drawn on the pure basis of exist-
ing theories; therefore it can only be obtained from experiments through practice. This
thesis attempts to carry out a series of experiments and determine the relative importance

and best combination of these heuristics.

1.2 Chinese Chess and Computer Chinese Chess

Chinese Chess is an ancient game, yet the history of computer Chinese Chess is still
short. Initial research on Computer Chinese Chess started in the early 80’s [Zhang 1981,
Huang 1986], however, a Chinese Chess playing program didn’t appear until 1986, as
reported by Tsao [1988]. Further, although the play of the best chess playing program
has already achieved the grandmaster level, the best Chinese Chess playing programs are
still a long way from such a goal.

1 However, later experiments show that such a success can hardly be attributed to singular exten-
sions alone [Anantharaman 1991},



There are several reasons for this problem. First is hardware speed. Most of today’s
best chess playing programs run on mainframes or exploit specially-built hardware for
move generation and even tree searches. In contrast, the performance of most of today’s
Chinese Chess playing programs is based on microcomputers. Speed, if not dominant, is
the major hindrance to improving the performance of the current Chinese Chess playing

programs.

Second is the complexity of the game itself; such as the repetition rules and the
greater tactical nature. Compared with chess, the repetition rule of Chinese Chess is more
complicated and none of today’s Chinese Chess playing programs can claim that they
implement every rule correctly. Conceptually, such a problem can be solved if efficiency
is not taken into account. In this thesis, we propose an approximate solution to the treat-
ment for repetition rules. Yet we still have to face a more serious problem: writing an
accurate static evaluation function. Because the king in Chinese Chess is confined to only
nine squares (therefore more vulnerable than in chess) and because there is no way to
block pawns, Chinese Chess is like an open chess game and so it is extremely difficult to
take every aspect of the game into account precisely. Also, because there are no pawn
promotions, and therefore all games have to be won by a direct attack on the opponent’s
king, the endgame knowledge (endgame databases) plays a more important role than in

chess.

Third is enhancements to selective search extensions. It is possible that by employ-
ing the right set of selective extensions, we will shape the search tree in such a way that
more time is spent on interesting lines than those less likely to be relevant. So better per-

formance is possible when better selective extension algorithms are adopted.

To develop special hardware for Chinese Chess move generation, to build endgame
databases and to write a knowledgeable static evaluation function is not a part of this

thesis. Some experiments on evaluation function have already been done by Jacobs



[1989] and Tsao et al. [1990). The thesis concentrates on an alternate way to make a pro-

gram play stronger, enhanced selective extensions.

1.3 The Abyss Chinese Chess Program

To carry out a series of experiments on search extension heuristics, a Chinese Chess
playing program Abyss was developed as a test-bed. Abyss started as a graduate course
project ("Heuristic Search” by Prof. Tony Marsland) in March 1990. It adopts most of the
structure from its predecessor ParaBelle [Marsland and Popowich 1985], a chess playing
program used for testing parallel search algorithms and later revised by Breitkreutz to run
under NMP [Marsland er al. 1991]. However, the program has been modified dramati-
cally since then. Abyss participated in the Chinese Chess tournament of the 3rd Computer
Olympiad in Maastricht, The Netherlands, in August 1991 and tied for the first place with

one other program.

Abyss was developed using C (C++ and X11 for the X-Window interface) under the
UNIX? operating system (particularly SunOS). The program is about 10,000 lines of
source code and the compiled running file occupies about 150K memory space (both
excluding the X-Window interface). It includes most of the search extension heuristics
discussed in this thesis and the common features like opening book and time-control
mechanisms for such a program (c.f. Chapter 2). The program (without the X-Window
interface) has been compiled on different UNIX operating systems such as SunOS, Sys-

tem V, Ultrix and UMIPS, so it is also portable.

1.4 Notations, Test Data and Measurement

For convenience, throughout this thesis, the Chinese Chess board will be
represented by 9 vertical lines (files) from a to i and 10 horizontal lines (ranks) from 0 to
9. The two players of the game are given the name Red (the one to move first) and

+ UNIX is a trademark of Bell Laboratories.



Black. There are altogether 16 pieces for each side. The name and the number for each

piece on the initial board (in brackets) are listed below:

King (1): or General or Shui for Red and Jiang for Black;
Rook (2): or Warrior or Ju;

Knight (2): or Horse or Ma;

Cannon (2): or Gunner or Pao;

Guard (2): or Assistant or Shi;

Bishop (2): or Elephant or Xiang;

Pawn (5): or Soldier or Bin.

The first name for each piece will be used in the thesis, though other names can be seen
elsewhere. To represent a move, we adopt a method similar to the algebraic notation from
chess (as used in Xian [Jacobs 1989)), i.e., a move is represented by a from-to square
pair. The rules of Chinese Chess can be found in a variety of books (e.g., Lau [1985] and
Jacobs [1989]) and are also briefly summarized in Appendix 1 of this thesis.

To carry out our experiments, we use 50 Chinese Chess middle-game positions
extracted from a standard work [Tu 1985]. Most of these positions are tactical problems
and only a few of them are purely strategic. In most of the positions, the side to move has
a chance to launch a tactical blow on the opponent and win material eventually. In some
other cases, the side to move has to find a combination to equalize. All the 50 positions

and their solutions can be found in Appendix 2 of the thesis.

There are two experimental measures that are of interest. First is the total nodes
searched for a given search depth against a particular position. This is used as a basis for
comparison with the efficiencies of different extension heuristics. Second is the success

rate, i.e., the proportion of the correct moves found in the SO middle-game positions.

However, there is one problem associated with the calculation of the correct move

for each position. It has been noticed by Ye and Marsland [1992] that using only the



move returned by the search is not sufficient; the move can be suggested for a wrong rea-
son. Since it is too time-consuming to manuaily examine the correctness of every move
(to see whether a correct principle variation is also provided), we decide to use an
approximate method to automate this examination. For each position, we manually calcu-
late the expected score of the position based ori the lines provided in the annotation for
each position. Only if the move returned by the search is the same as the one suggested,
and if the score returned by the search falls into a window (defined as three pawns’
value) around the expected score, do we say that the move found is correct. Throughout

this thesis, the success rate is calculated based on such a definition of correct moves.

The hardware used for running the tests is a Silicon Graphics machine (IRIX
Release 4.0.1 System V; named innisfree) in the Department of Computing Science at
University of Alberta. It has 4 CPUs, each of which is roughly equivalent to that of a
SPARCstation IPC. The time referred to will be CPU time, computed using the time

measuring facilities provided in UNIX.

1.5 The Organization of the Thesis

The thesis opens with a brief description of the Chinese Chess playing program
Abyss; its move generator, evaluation function and search algorithms. Some space is also
devoted to the discussion of the implementation of the repetition rule in Abyss as well as
features such as opening book and time utilizations (c.f. Chapter 2). This is followed by
some experimental results for basic enhancements to the af algorithm. These enhance-
ments include heuristics for interior move orderings, transposition table management,
null move search and futility cutoffs. The purpose of this suite of experiments, as in
Chapter 3, is to give a general feeling for the framework of Chinese Chess before we go

further to the more complicated selective search extension heuristics.

A discussion is then initiated in Chapter 4 about the knowledge extension heuristics

like check evasion, recaptures, piece-evading moves, king-threat moves and strictly



forced moves. Some of the implementation details are shown and the experimental
results on these heuristics are presented and compared. A method to compare the relative

importance of these extension heuristics is introduced and the test results are presented.

The discussion is carried over on two other extension heuristics which use informa-
tion gathered from the search to decide whether to search deeper. They are singular
extensions and null move quiescence search. The basic algorithms and the experimental
results are presented in Chapter 5, followed by an analysis based on the selected test
results. Then a series of experiments is carried out to decide their relative performance
when combining all the heuristics mentioned in the thesis. The same method for such a

comparison as introduced in Chapter 4 will again be adopted.

The thesis closes with our conclusions on selective search extensions in the domain

of Chinese Chess and some potential areas for further work.



Chapter 2
The Abyss Chinese Chess Playing Program

2.1 Introduction

is this chapter, we give an overview of the Abyss Chinese Chess playing program;
its move generator, evaluation function, search framework and other miscellancous
features like opening book and time utilization. From the algorithmic point of view, since
Chinese Chess differs most from chess in its repetition rules, some discussion is also

devoted to that matter.

We start by giving a description of the Chinese Chess playing program Abyss. As
we have mestioned earlier, Abyss inherits most of the data structure from its predecessor
ParaBelle [Marsland and Popowich 1985] but has been changed to suit the special needs
for a Chinese Chess playing program. The major difference between Abyss and Para-
Belle lies in the evaluation function and the search algerithms. Other modifications to
Abyss are necessary (for example, the move generator), but remain the same in structure
as ParaBelle. To prepare for the Chinese Chess tournament of the 3rd Computer Olym-
piad, two new features (opening book and time control) were added to meet with the

tournament requisement.

2.2 The Move Generatort

The move generator is responsible for providing a set of pseudo-legal moves [Han-
mann 1989] available in a given board configuration for a particular side to move. The
same method as ParaBelle is used for the move generation in Abyss, i.c., Shannon's
Method [Frey 1983). There are still other methods (excluding hardware move genera-
tors) like Array Generator [Zielinski 1976, Bitmap Method [Frey 1983, Cracraft 1984]

+ This section is based on the CMPUT 507 ("Heuristic Search” by Prof. Tony Marsland) course
project paper by Chun Ye, May-Yew Wee and Steve Dai.



and Table Method [Bell 1984). To speedup the development of the program, a few
changes have been made to the existing move generator of ParaBelle, though it is possi-
ble that other methods (such as the table method) may be more efficient in the domain of

Chinese Chess.

We use 90 computer words to define the board with each word representing one
square of the board. The squares are numbered from O to 89 starting from the upper-left
corner. Each piece is given a number (+1 for red pawn, -1 for black pawn, ..., -7 for black
king) and these numbers will be stored in the word representing the square on which the

piece resides. An empty square is represented by 0.

To detect the edges of the board, a 16-bit (12 bits are actually used) direction mask
is assigned to each square. The mask is organized into 4 groups with 3 bits each, starting
from the least significant bit. The 4 groups represent the directions Up, Down, Left and
Right. Before generating a move, the direction of the move is ANDed with the mask of
the current square. If the result is 0, then the move is valid. A similar mask is required to

detect the edges of the palace.

Legal moves from any position can be determined by simply noting the mathemati-
cal relationship among the squares. For pieces with fixed moves (i.e., king, knight,
bishop, guard and pawn), the move generation can be done by adding the offsets of the
destination squares to the current square. A move is pseudo-legal if there is no friendly
piece on the destination square and the direction mask is 0. The knight and bishop would
require extra checks to see if they are blocked. Also, it is necessary to see if a pawn has
passed the river (the center two ranks in the Chinese Chess board) so that sideways

moves can be generated.

For pieces with sliding moves (i.e., rook and cannon), the moves for each direction
are generated one square at a time starting from the closest square. At each square, a

move is generated when the direction mask is 0 and a friendly piece is not occupying that
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square. If the square is empty, the same process goes on to the next square. For cannon
however, after encountering an occupied square (by any side), the sliding process has to

be carried on until an enemy piece is reached for capture moves.

A pseudo-legal move doesn’t guarantee that it is legal. It could expose the king to
the enemy’s check, and in Chinese Chess, it could oppose its own king to the enemy’s
king with no pieces intervening (which is illegal in Chinese Chess). However, this detec-
tion of legality is delayed until a move is actually made on the board during the search.
Such a treatment will be more efficient since not all the pseudo moves generated will be

actually examined during the search.

2.3 The Evaluation Function

Since the quality of the evaluation function directly affects the performance of the
program, the evaluation function is a major component in a (Chinese) chess playing pro-
gram. However, compared with the move generator, the evaluation function can be
highly empirical, although some method for automatic tuning is possible {Marsland
1985, Hartmann 1989, Tunstall-Pedoe 1991]. Because we lack a large database of
Chinese Chess games for such an optimization, and we are more interested in the search
extension heuristics in this thesis, the values for the different notions that are used in
Abyss's evaluation function were hand-picked based on the existing work and the

author’s Chinese Chess knowledge.

In this section, we discuss the notions that are used in Abyss’s evaluation function.
Apart from the description for the static positional evaluation, we also discuss some

improvements to Abyss’s capture search from ParaBelle’s.

2.3.1 Positional Evaluation

The game phase plays an important role in deciding the relative importance of some

components of the evaluation function, so in Abyss we separate the game into four stages
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as opening game, early middle game, middle game and end game before initiating a
searcht. The game stage is kept in a special variable and is used to decide whether some
notions of the evahuation should be included and what the weight of a particular notion

should be.

The following Chinese Chess knowledge has been included in the current version of

Abyss:
Material Balance

The material balance is the difference between total piece values for the two sides
on the board. Two special evaluations are considered, for pawns beyond the river
and the increment/decrement of the values for knights/cannons. Since pawns that
pass the river gain the extra sideways moves, the value of a passed (the river) pawn
is doubled in Abyss. Cannons need supporters to junap over for capture moves and
the values for cannons decrease as the game goes on siice fewer pieces will be left
on the board to serve as such supporters. Contrary to cannons, knights can be
blocked but have more mobility in the endgame when fewer picces are left on the
board. In Abyss, the values for cannons and knights are decreased and increased
respecting game phase, until by the endgame, the values for the two pieces are
reversed. Table 2.1 gives the ranking for each piece and their values as used in

Abyss's cvaluation function.

Tablg 2.1: Initial Piece Values Used in Abyss
eCeS 1N, 00 annon 1 D wh

Values | 7000 | 1800 900 800 300 300 100

Board Control

Abyss doesn’t have a mobility term in its evaluation function. Instead, an approxi-
mate method is used for the board control. A piece placement table is predefined for

t+ It may be beuer 10 have more game phases as well as to allow the game phase to be changed dur-
ing the search for a more accurate evaluation. '



each type of piece and the board control is the difference between the total piece
placement values for two sides. Abyss inherits its same piece placement tables from
those presented by Tsao et al. {1990}, but with some modifications: the placement
for guard and bishop are also included, and the values for the cannon are updated in
the endgame to bring the cannon back near its own king (where the guards and

bishops can be used a< s:ioporters to attack the opponent’s king).
King Safety

Two approximate terms are considered in Abyss’s evaluation of king safety. First,
we introduced the term of head-cannoa and side-cannon which refers to such a pat-
tern where a cannon is on the same line (file or rank) as the opponent’s king and
there is no piece in between. Such a setup is advantageous for the cannon side dur-
ing the early stages of the game and occurs frequently in Chinese Chesst. To calcu-
late accurately such a term, we need not only to assign a bonus for the head-cannon
or side-cannon side, but also to give a [ snalty when the king moves out of such a
situation, since otherwise the king move will be considered as an easy defense to
building a head-cannon or side-cannon position. The other term for king safety is
the number of squares near the king attacked by epponent’s pieces. Abyss adopts an

approximate way in which this attack term is calculated incrementally when a piece

moves.
Special Scoring for Openings

Some special scorings are considered in Abyss"s evaluation function during the
opening stage. The: term tempo is defined as the number of pieces that have left their
original squares and is computed for each side in the evaluation function. Abyss
also gives a penalty to a side who moves the same piece consecutively as well as for

1 To justify such a statement, please notice that the side-cannon position appeared in both of the
games between Abyss and Surprise during the 3rd Computer Olympiad.
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capturing a pawn by a cannon during the opening stage if no check results from

such a capture.

Compared to what has been done in the evaluation function for some existing chess and
Chinese Chess programs, the evaluation in Abyss is perhaps crude and less knowledge-
able. However, knowledge and search have always come to a compromise in the design
of a chess (Chinese Chess) program. Here, we believe the mechanisms used in Abyss’s

search region should somehow compensate for the lack of knowle ze in its evaluation.

2.3.2 Capture Search

Capture search [Gillogly 1978, Bettadapur and Marsland 1988] serves as a means to
reducc the errors in the static position evaluation. Abyss’s capture search has been
improved from its predecessor ParaBelle in the following ways: first, there is no depth
limit for the capture search in Abyss since the savings are marginal when the depth for
capture search goes beyond 8 [Bettadapur and Marsland 1988]; second, the static value of
the board is used to raise the lower bound « to yield more possible savings [Schriifer
1989]; and third, the search only extends if the new material balance after a capture is
better than the current best score [Slate and Atkin 1977, Schriifer 1989].

2.4 Search Algorithms

Abyss uses minimax enhancement like aff pruning [Knuth and Moore 1975), itera-
tive deepening (Gillogly 1978, Slate and Atkin 1977), minimal window search [Fishbum
1984, Pearl 1980, Marsland and Campbell 1982, Reinefeld 1983] and aspiration search
{Baudet 1978, Finkel et al. 1980] for its search algorithm; as well as heuristics like tran-
sposition iable [Greenblatt et al. 1967, Slate 1977), refutation table [Akl and Newborn
1977, Marsland 1983), history heuristic [Schaeffer 1986, Schaeffer 1989) for its interior
move orderings. In addition, Abyss also tries other two heuristics that involve some risk,

null move heuristic [Goetsch and Campbell 1990} and furility cutoffs [Schaeffer 1986),
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for better search efficiency. All these heuristics are aimed to reduce the search effort with
little or no chance of deteriorating the performance. We shall see the results of some

experiments on these basic minimax search enhancements in Chapter 3.

There are other heuristics used to enhance the performance. These are mainly selec-
tive search extensions like check evasions, recaptures, king-threats, piece-evading moves,
strictly forced moves, singular extensions and null move quiescence search (also named
as second order quiescence search). These selective extensions provide a way to control
the shape of the search tree towards those lines that need more consideration and there-
fore make the time spent on search more worthwhile. Please refer to Chapter 4 and

Chapter S for a more detailed discussion on these heuristics.

2.5 The Impact of the Chinese Chess Repetition Rule

Although similar to chess, Chinese Chess differs significantly in its repetition rule.
For example, repetition check is considered a draw in chess, but such a repetition is not
allowed in Chinese Chess. In general, the rules of Chinese Chess disallow the use of cer-
tain repetitions after a threat move (even so there are exceptions). Three types of moves
are considered as threats; checking moves, moves that threaten to win material, moves
that threaten to mate. However, the rule allows certain repetitions via a threat, provided
the current position is a repetition and is reached by a threat move as well (again there are

exceptions to this).

Since the repetition rule of Chinese Chess is so complicated, none of the current
Chinese Chess programs can claim that they handle all situations correctly. Tsao et al.
[1990] proposed a means for their program Chess Master to handle most of the com-
monly occurring situations. The commercial Chinese Chess program Xian [Jacobs 1989]
guarantees never to make an illegal repetitive move, but still lacks the knowledge to han-
dle cases when a repetition would be legal and in some cases it allows the opponent to

make an illegal repetitive move. Another program, Surprise [Wu 1991], a participant at
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the 3rd Computer Olympiad, allows certain illegal repetitions when it finds that all alter-
natives are significantly worse (as evidenced by some pre-tournament testings and casual

plays against Surprise during the 3rd Computer Olympiad).

2.5.1 The Repetition Check Algorithm in Abyss

In Abyss, we tried a more general repetition detection algorithm, differentiating
between detection in the root and during interior nodes. The scenario behind this is to

use a more strict rule for the root node but be generous to internal nodes.

For internal nodes, some approximation is made and only check repetition and some
simple piece-winning threats are considered. Two positions are considered identical if
their transposition table locks [Zobrist 1970, Marsland 1987] are the same. A stack
(sequential table) is used to store all such locks from the first move in each game, but no
count of the number of repetitions is kept. If a repetition under such a definition is
detected, we determine not only whether the move reaching this position is a check, or a
threat to win a lone piece, but also that the previous move is not such a simple threat. If
the preceding move was not a threat, then a threatening move leading to a repeated posi-
tion is assigned an illegal score (almost as poor as a mate score). Any other combination
of moves to a repeated position is given a draw score and in both cases there is no further
search. The reason for using an illegal score is because the definition of repetition here is
approximated, and so we might miss the only possible defense if an illegal score is no

hetter than a mate score.

Nevertheless, at the root node an illegal move will be disallowed, so a more strict
repetition check algorithm is adopted. For each move being considered at the root, we
check backwards to see if this position is being repeated for the third time. If so, and the
move that reaches this position falls in the category of threat (as defined in Section
2.5.2), we backup to see if the previous position is also a repetition (not necessarily for

the third time) and whether the move reaching that position is also a threat. If the test of
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the second position fails (the position is not repeated or the move to it is not a threat), we
assign the value of the current move as forbidden, a score worse than mate. In all other
cases when a threefold repetition is detected, a draw score is assigned. We think such an
approach can correctly handle many of the difficult repetition conditions in Chinese
Chess. Also, it provides a conceptually sound base for further improvements and should

be able to manage even more repetitions when the definition of threat is refined.

2.5.2 The Definition of Threat
In Abyss a threat is defined as a:
Checking threat

If a move delivers check, it is a threat. This is the simplest case.

Mate threat

If after one side has made a move, the opponent can be mated by a series of check-
ing moves, the first move is considered to be a mate threat. In Abyss, an approxima-
tion is adopted. We do a search to a depth of 3, considering only checking moves
and replies to check, and assume that there is a mate if a mate score is returned for
this search. To reduce the search cost to a reasonable level, detection of a mate-in-n
(n > 3) threat is temporarily not considered, although according to rules, all mate
threats should be equally treated. For faster hardware however, it may be better to
search to unlimited depth, terminating only when a repetition {of any kind) or a

mate is seen or when there are no more checking moves.

Piece-winning threat

Again some simplifications are made, and we only consider those moves that
threaten to win an unprotected piece (pawns that pass the river and all minor and
major pieces in Chinese Chess). The expense of threat detection isn’t as large as it

seems, because the operations above are only carried out when a third-time-
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repetition is seen, and the test is only done once during the search.

Figure 2.1 summarizes our treatment on how to distinguish a legal repetition from an ille-
gal one. Further work is required to consider more backward positions when a repetition
is found. At the moment we can handle some difficult repetition situations, e.g., two
threats over two threats (a draw) or two threats over one threat (a loss). Also, because of
time limits, search to some predefined fixed depth might be required to detect whether a
side has a piece-winning threat. By restricting the moves to only captures, checking
moves and replies to checks (an extended quiescence search), we can do a search after
making a null move (in this case making two consecutive moves for the side causing the
repetition). If the value returned exceeds a certain amount (the threat margin), the first

move can be thought of as a threar and can be treated accordingly.

Previous
Position

Figure 2.1: Legal and Illegal Repetitions
2.6 Other Miscellaneous Features

In this section, we give some descriptions of two other features which are imple-
mented in Abyss: time control and opening book. These functions were newly added to

Abyss to suit the needs of the 3rd Computer Olympiad.
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2.6.1 Opening Book

There are many reasons for using an opening book for a computer chess playing
program. First, the moves are made almost instantly, thus saving time for considering
subsequent moves. Second, no mistakes will be made by the program on book-opening
moves provided their correctness have been checked carefully. Because of these, we sel-

dom see a chess playing program without an opening book.

Many different strategies can be used to store the opening moves in the computer
memory, but normally, moves are stored in two ways: either as complete chess positions
with best moves attached or as move strings {White 1990]. Although the former method
has the advantage of allowing programs to stay in the book after transpositions, it has the
drawbacks of using large memory space as well as the need for auxiliary programs to
encode the positions and moves [Levy 1985, White 1990). This is perhaps why the latter

method is preferred, especially for microcomputer programmers.

The opening book of Abyss follows the same method called the amateurs’' opening
book as described by White [1990] which is based on storing move strings. This method
was adopted because of the need to modify our opening book frequently to test what
opening variations best suit our program’s style, and the limit of time available before the
3rd Computer Olympiad. To make it work, the opening moves are first stored in the
memory in the from-to notation (see Table 2.2). Notice one opening variation is split
over several lines for improved readability. The "#" character is added for comments and
delimiting different opening lines (as based on observations of the opening book for Gnu

Chesst).

The above mentioned file for move strings is then compressed using the method

described by White {1990). During the opening, the line in the book is read in and used

t Gnu Chess is a public chess playing program distributed by Free Software Foundations, Inc.
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| Table 2.2: Samgle Og_gning Book Lines

# Center Cannon vs. Screen Knights
h2e2 h9g7

h0g2 i%h9

i0h0 b9c7

hOh6 h7i7

#

h2e2 h9g?

h0g2 i%h9

g3g4 h7i7

#

h2e2 h9g7
h0g2 i%h9
iOhO g6g5
hOh6 b9¢7

to match the actual move sequence. If this move sequence is in the opening book line, the
leftmost move in the line that is not matched with the actual moves will be selected as the
response. Since the board of Chinese Chess is symmetric, special effort is made to
exploit this fact. We view one opening book as two with moves in one book representing
reflective moves in the other. Therefore, if a move sequence is not found in the book
first, we would then reflect all the moves in the book and search one more time. Only if
neither search finds the move sequence, do we call the search routine and "“think" on our

own.

2.6.2 Time Utilizations

The other major improvement added to Abyss is a feature which lets the program
utilize dme more efficiently. Searching to a fixed depth during the todmament is either
dangerous if the depth is set too great, resulting in a time-forfeit before reaching the
required time-limit, or it can be conservative if the depth is too shallow, leaving much
idle time. One way to alleviate this is to choose different depths for different game
phases and the depth increases as the game goes on. But, a far better way is to allocate a

certain amount of time on each move.
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Suppose we have to make n moves in a certain time C (usually C is 2 hours or 7200
seconds and n is 40 from the beginning of a game). Experience has told us to use the fol-
lowing formula to calculate the amount of time ¢ (seconds) to spend on each move:

t=(C-0)/n.

Here O (usually 15 minutes or 900 seconds) is the operation time which is predefined to
reflect the time spent on making the moves on the board and hitting the clock. As the
game goes on, the values of 2, C and O should all be modified to reflect the remaining

status and the new time to spend on a move be obtained.

Abyss uses a slightly different formula to calculate the time 1. We use a new param-
eter R which represents the actual time remaining on the clock. So we can use the follow-

ing simpler formula to decide :
t=R/n.

Whenever Abyss makes a move, it will prompt the operator to make the move on the
board, hit the clock and then hit the return key indicating the completion of a move. The
interval from starting the search to hitting the return key will be subtracted from R. Also
at any time when it is the opponent’s tum to move, the operator is allowed to reset R
according to the time remaining on the clock. We feel that in this way both the possible

wasted time and the chances of over-stepping the time control will be insignificant.

However, no matter how you obtain your time to spend on each move, you always
come up with the problem of how to treat the current move and score when the time is
up. Do you accept the current best move or do you want to search a bit deeper hoping to
find some even better moves? Some innovation on time utilization has already been
introduced by Hyatt [1984] for the chess playing program Cray Blitz [Hyatt et al. 1990].
In Abyss, the solution is to accept the move as long as the score of the best move in the
current iteration is no less than the score of the best move from the previous iteration

minus some tolerance (set to 1/10th of a pawn value initially and increases as the game
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goes on), or when the program is in time trouble (defined as whether it has entered the
last S minutes in the time control). However, if such a condition is not met, we search a
maximum of 10 more moves in the hope that a better move can be found. Here, a second
alarm has to be set (amount usually equal to which has been spent already on the current
move; or less when we are close to the time controf) to avoid the possibility that the pro-

gram may step out of the time controlt.

There is also another way that Abyss tries to utilize the time more efficiently; it will
keep the program busy by "thinking” when it is the opponent’s turn to move. Generally
speaking, two strategies may be used to implement such a feature. One is to simply think
for the opponent and fill the results in the transposition tables, storing the information
useful for the next search. The other is to think about an assumed move to be made by the
opponent (found in the principal variation refutation table). The second way is better and
is adopted because the chances that the opponent makes our guessed move is high and we

can search deeper in this case.

All the time utilization functions have been implemented in Abyss using the signal
facilities (signal, alarm, setjmp and longjmp) and the file control facility

(fcnt 1 to open the keyboard in an asynchronous mode) provided in UNIX.

1 Because of our failure to do this, we lost the second game to Surprise during the Chinese Chess
tournament at the 3rd Computer Olympiad.



Chapter 3

Minimax Search in Chinese Chess

3.1 Introduction

Here, we present experimental results on four different essential minimax enhance-
ments; they are: heuristics for interior move orderings, transposition table management,
null move search and futility cutoffs. The purpose of this suite of experiments is to give

some basic feelings for the efficiencies of these minimax enhancements in the domain of

Chinese Chess.

3.2 Heuristics for Interior Move Ordering

The following heuristics are used for interior move orderings in Abyss (the relative
importance is given in that order); they are the transposition tables (+t ra), the refutation
tables (+ref), the captures move ordering (largest material gain first; +cap) and the
history heuristic (+his). The experiments to test the relative efficiencies of these heuris-
tics and their results are presented in Table 3.1. For these experiments, the transposition
table consists of 32K entries and the size for the history table is 8100 entries (the Chinese
Chess board is 9X10). In the table, nodes stands for the total nodes (interior nodes plus
capture nodes) searched for a particular experiment (ordering) over 50 test positions and
ratio is the node ratio for one experiment over the original experiment (with captures
move ordering only). Using the definition of correct moves and correct move scores in
Section 1.4, the move quality for these experiments can be represented by both success
rate (percentage of correct moves found with correct score) and correct move hits (per-
centage of correct moves found no matter what scores are). A more general term scores

is introduced to reflect this move quality and it is presented in the following form:

score = % success rate (% correct move hits);

22
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with a score reflecting the predicted outcome. For later experiments throughout the

thesis, the same terminology will be used wherever applicable.

Table 3.1: Experiments on Interior Move Orderings I

. Depth =3 Depth =4 Depth =3

Orderings nodes | ratio nodes ratio nodes ratio
+cap 263085 | 1.00 | 1978554 | 1.00 | 8883580 | 1.00
+cap+ref 236363 | 090 | 1867159 | 0.94 | 7925428 | 0.89
+cap+his 182961 | 0.70 | 1025896 | 0.52 | 6467181 | 0.73
+cap+tra 209638 | 0.80 | 1403093 { 0.71 | 5452502 | 0.61
+cap+ref+his 167348 | 064 | 953147 | 048 | 5872280 | 0.66
+cap+tra+ref 207375 | 0.79 | 1398513 | 0.71 | 5429484 | 0.61
+captra+h’s. 158359 | 060 | 788646 | 040 | 4238259 | 0.48
+capHra+ref+his | 157352 | 0.60 | 787382 | 040 | 4153931 047

scores | 6(18) | 16(30) I 22(34)

From the results in Table 3.1, we see the scores improve as the search depth
increases. But for each depth, some correct moves is found for a "wrong” reason, i.c., the
value of the move (c.f. Section 1.4) doesn’t fall within the window of the expected posi-
tion score. Obviously, all these positions are beyond the search horizon and the correct
moves are returned only ¢n strategic concerus. Regarding search efficiencies, we see that
history heuristic, in terms of memory occupan:y ‘shout 16K bytes), performs well at
shallow search depth but is outperforied by transposition tables at depth 5 (compare
experiment +cap+his with +cape:ei, +cep’. e amd even +cap+tra+ref).
This is also true for experiment +cap+tra ané +na; +ref+his where the former is
less efficient at shallow depth but becomes bettst whi'a the search depth is deep (Depth =
5). One reason that makes the transposition ts™¥# riore «fficicut only at deep search
depth can be explained as lacking enough wznspe: tions &. . iliow depth, since not like
history heuristic, which exploits information across the whoi¢ game tree, information
stored in transposition tables can only be used by those positicns seen previously.
Another reason is that transposition ables, apart from their function i move ordering,
also provide a means for some forward prunings to the encountesed positions. Therefore,

although transposition tables ca+ :zsult in great total search efficiency, in the perspective



24

of memory occupancy and move orderings iione, history heuristic proves to be the best.
Combining all these heuristics gives evi:a better search efficiency and a total of 53%
node count saving (defined as 1 ~ rqt.:) is achieved at depth 5 (+cap+tra+ref+his).
It can be seen that all the inicrior wvave ordering heuristics that perform well for chess
also perform well here for Chiri¢«s: Ch-ss. Also it can be obtained from Table 3.1 that the
average branching factort (as compared with nodes at different search depths) is around
5 which again shows the efficiencies of these interior move ordering heuristics and the

search algorithms implemented in Abyss.

3.3 Transposition Table Management

A transposition table [Greenblatt et al. 1967, Slate and Atkin 1977] is a large hash
table used to store the useful information during the search. The information usually
represents the nodes (positions) during the search like its associated score, move and
depth. Since a transposition is frequent in Chinese Chess as in chess, such information
can help reduce the search effort if the position has already been encountered. Also, the
transposition table serves as a means for move reordering, especially when combining

other minimax search enhancement like iterative deepening.

In Abyss, the transposition table is implemented using the method as described by
Marsland and Campbell [1982] with a 32-bit hash keyt+ and a depth-based replacement
algorithm to handle collisions. Further improvements are possible, e.g., dividing the
nodes in the tree into privileged nodes, which are replaced only by deeper results, and
non-privileged nodes, which are replaced in simple FIFO order [Ebeling 1987]. The ran-
dom numbers used to calculate the lock [Zobrist 1970] are obtained with the UNIX
+ A better way to calculate the branching factor is introduced in Chapier 5 when discussing the

null move quiescence search.

+1 1t has been proved that a 32-bit hash key is inadequate for larger trees (depth equals to 6 or
greater) searched by today's faster processors (Wamock and Wendroff 1988). In our experiments
however, no such problems were experienced, because the trees searched here are relatively small-
er (a maximum depth of 5 is reached).
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pseudo random number generator random(). Notice for these random numbers, a
good distribution of 1's and 0’s is essential to the performance of a transposition table.
The experimental results show that the random numbers generated here meet with this
property.

For Chinese Chess, it is also possible to exploit the board symmetry when calculat-
ing locks (two symmetrical positions should be treated as identical), but the chance of
such symmetries is too rare to occur in the whole game (except in the opening stage since
the initial board configuration is symmetrical) to make it worth being included in the

transposition table.

Here we give some experimental results for using the transposition table during the
search. All the positions are search to a fixed depth 5 with different transposition table

sizes. The experimental results are presented in Table 3.2.

Table 3.2: Transposition Tables with Different Sizes
size nodes time hits t-stores | overs % | est.overs | est. %

2K | 5090307 | 3613 | 61503 | 415542 | 293355 | 706 | 317454 | 7eat !
4K | 4711910 | 3272 | 82502 | 390690 | 201001 | 514 | 224765 | S7.% !
8K | 4446413 | 3065 | 100105 | 374505 | 123489 | 330 | 139835 | 373 .
16K | 4235483 | 2880 | 113334 | 357099 | 65834 | 184 75314 | 211
32K | 4153931 | 2808 | 121376 | 349564 | 33891 | 9.7 39306 | 112
64K | 4116806 | 2800 | 126126 | 346580 | 17238 | 5.0 20188 58
128K | 4092139 | 2822 | 128645 | 344146 8700 | 2.5 10166 30
256K | 4047571 | 2769 | 130203 | 343038 4465 | 13 5108 15
512K | 4041773 | 2708 | 130734 | 342314 255 ] 07 2558 0.7
1024K | 4036961 | 2702 | 131008 | 342111 1160 | 0.3 1281 04

In Table 3.2, the size for the transposition tables is represented in thousands of
the count of positions that are found in the transposition table whem tewieving. The
actual overwrites (overs) is the count of updating an already occupied transposition table
entry; and the number of estimated overwrites (est. overs) for each search problem is cal-

culated using the following formula (as given by Feldmann et al. [1992]):

overs = stores - size * (1 - ((size - 1) / size) ” stores)



5200000

5050000-]
4900000~
4750000
Nodes 4600000~
4450000
4300000
4150000

T T ) Y T T Y !
2k 4K 8K 16K 32K 64K 128K 256K 512K 1024K

Table Size (entries)
Figure 3.1: Total Nodes Searched versus Transposition Table Size

100.0
90.0-
80.0 --8---8-- Est-Overs (%)
70.0-% '« —&—— s Real-Overs (%)
60.0-

Overs (%) 50.04

40.0
30.0-
20.0-
10.0

00

2K 4K 8K 16K 32K 64K 128K 256K SI2K 1024K

Table Size (entries)
Figure 3.2: Overwrite Percentages versus Transposition Table Size

Here stores is a frequency count of the writings of the transposition table happened dur-
ing the search on each particular problem. The total stores (¢-stores) is the sum of all
stores over 50 test positions. The percentage of actual overwrites (%) and percentags sf
estimate overwrites (est. %) are relative to the total stores (¢-stores) which occurred dur-

ing the search,
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There are two results we are interested in: the total number of nodes searched and
the overwrites of the transposition table during the search, and they are presented in Fig-
ure 3.1 and Figure 3.2 respectively. In both figures, Nodes stands for the total number of
nodes expanded for each transposition table size (in entries); "Real-Overs (%)" and
"Est.-Owvers (%)" are percentages of actual and estimated overwrites relative to the total
stores occurring during the search for the 50 test positions. The results provided in Fig-
ure 3.1 and Figure 3.2 show that the transposition tables perform equally well for Chinese
Chess as for the optimal implementation of this heuristic in Abyss, although a search to
depth 5 may seem inadequate to fully expose the relative efficiency of a transposition

table.

3.4 The Null Move Heuristic

The null move heuristic [Goetsch and Campbell 1990] is a means of improving
search speed with little risk. Abyss tries a null move search in the internal nodes with a
depth reduction of 1 ply before it starts sparching legal moves. If the value returned
exceeds the B bound, the value is accepted as a true cutoff; otherwise, the value is used to

improve the o bound.

It is straightforward to add the null move heuristic in the normal af search algo-
rithm and a«C-like pseudo code is illustrated in Figure 3.3. Here, function repetition() is
used to decide whether a position has been seen before and returns a value to indicate
whether a repetition is legal (a positive score) or illegal (a negative score). Function
check(side, position) determines whether the king of side in the position is in check.
Notice function generate() here generates a list of legal moves instead of pseudo legal
moves as described in Section 2.2 and the details for checking this legality as well as the

treatment for leaf node (where no legal move exists) are omitted.

For the experiments, the interior move ordering heuristics tested in Section 3.2 are

all enabled. The results of adding the null move heuristic are given in Table 3.3. Two
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Table 3.3 Experimental Results for Null Move Heuristics

. Dépth=3 Depth=4 Depth=5
Ext ents nodes | ratio | scores | nodes | ratio | scores nodes ralio | scores
-null 157352 | 1.00 | 6(18) | 787382 | 1.00 | 16(30) | 4153931 | 1.00 | 22(34)
+null_all 137854 | 0.88 | 6(18) | 751018 | 095 | 16(30) | 3042999 | 0.73 | 18(30)
+null _jrom 133220 | 0.85 | 6(18) | 706844 | 090 | 16(30) | 2563303 | 0.62 | 18(30)
int pvs(side, position, @, P, depth)
int side, position(90], o, B, depth;
{
int successor([90], merit, rept, num moves, p, score, lower;
struct { int from, to:; )} moves[MAX MOVES]:
if (rept = repetition(side, position)) /* position duplicated? */
return((rept > 0)? DRAW: ILLEGAL);
else if (depth <= () /* horizon node? */
return(evaluate (side, position, a, B)); /* capture search */

merit = —oo;
if (depth > 1 && !endgame(position) && !check(side, position)) |{
/* ncll move search */
merit = -pvs(!side, position, -f, -, depth-2);
if (merit >= B) {
score = merit;
goto out;
}
}
lower = max (0, merit);

/* normal of search */
num _moves = generate(side, position, moves):;

/* details of special case (num moves == () omitted */
successor = make (moves{0], position):; /* first move */

score = -pvs(!side, successor, -B, ~-lower, depth-1):

for(p = 1; p < num_moves; p++) |
if (score >= B)
goto out;
successor = make (moves[p], position);

lower = max(lower, score): /* fail-soft condition */

merit = -pvs{!side, successor, -lower-l, -lower, depth-1l):
if (merit > score)
if (merit > o && merit < P && depth > 1)
score = -pvs(!side, successor, -B, -merit, depth-1);
else
score = merit;
}

out:
return(score):

Figure 3.3: Principal Variation Search with Null Move Heuristic
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different experiments were carried out to determine whether to apply the null move at all
interior nodes (+null all), or only before frontier nodes (a layer before horizon nodes
[Marsland 1992]; +null_front). The terms for nodes, ratio and scores [success rate

(correct move hits)] are as defined in Section 3.2.

As we can see in Table 3.3, the heuristic of using the null move except frontier
nodes (null_front) performs better than the heuristic that applies the null move at all
interior nodes (null_all). This difference comes from search at frontier nodes where
search after making a null move and search after making a legal move both finally lead to
a capture search, and therefore a null move search (with depth reduction) can hardly be
more efficient since it doesn’t give as much savings as it does before frontier nodes. The
average savings (the arithmetic sum of savings, defined as 1 — ratio, over all depths) are
21% (+null_front) and 15% (+null_all) respectively. Also, both implementa-
tions yielded a same result on success rate, and a drop of 4 percentage points (the differ-
ence of success rate between the experiment with the null move search and the one
without the null move search) occurred at depth 5. One reason for this deterioration could
be the shallow depth for the null move search. Also it may be relevant to our particular
implementation here where null move search is applied recursively (Figure 3.3), resulting
a higher chance of inaccuracies when more null move searches are possible for deeper
total search depth. Notice for Hitech, null move search is not used recursively and, as
well, the searches below depth 5 are done by hardware, which guarantees at least a 5-ply
search after making a null move. Even with that help, a small error was still observed

[Goetsch and Campbell 1990].

3.5 Futility Cutoffs

The idea of futility cutoffs isn’t new. Similar ideas have already appeared in the
computer chess literature, e.g., the Gamma Algorithm by Newborn [1975, pp. 177-178],

the razoring technique by Birmingham and Kent {1977] and some special forward
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pruning methods used in Chess 4.5 [Slate and Atkin 1977]. All these heuristics are gen-
erally applicable but using them involves some risk. A safer variation is the heuristic
which Jonathan Schaeffer calls the futility cutoffs [Schaeffer 1986, pp. 33-34]. The futil-
ity cutoffs differs from the above heuristics in the following: first, use of a futility-cutoff
is restricted to the layer before the frontier nodes in the search tree. Second, material
merit is used to decide whether to stop the search or not, but here the total value of the
material merit and the maximum positional value is used. Third, the search doesn’t stop
when such a criterion is met, instead, it uses this information to forward prune most of
the moves and only considers those which bring the material merit into the current win-
dow; this consists of all checking moves and some of the captures. In other words, the
futility cutoffs is a low risk transformation of nodes near the frontier into tip nodes when
certain criteria are met. Although this heuristic is often mentioned, only Schaeffer [1986]

provides some quantitative data to show its effectiveness.

To give an illustration of using the futility cutoffs in the af search algorithm, we
show our implementation of this heuristic in the C-like pseudo code in Figure 3.4. Func-
tion value(side, position) returns the static value (material balance) of position plus a
maximum positional score for side which is used to determine whether to apply the futil-
ity cutoffs or not. The experimental result on using the futility cutoffs heuristic (+ fcut)
can be found in Table 3.4. The result of using both the futility cutoffs and the null move

heuristics (+ fcut+null) is also included.

Table 3.4: Experiments on Futility Cutoffs
Depth =13 Depth=4 Depth=35
nodes | ratio | scores | nodes | ratio | scores node ratios | scores
-null-fcut 157352 | 1.00 | 6(18) | 787382 | 1.00 | 16(30) | 4153931 | 1.00 | 22(34)
+null-fcut 133220 | 0.85 | 6(i8) | 706844 | 0.90 | 16(30) | 2563303 | 0.62 | 18(30)
-null+fcut 115169 | 0.73 | 6(18) | 706245 | 0.90 | 16(30) | 2392147 | 0.58 | 20(34)
+null+fcut 104234 | 0.66 | 6(18) | 641469 | 0.81 | 16(30) | 1887356 | 045 | 18(30)

Experiments

It can be seen from Table 3.4 that the heuristic of futility cutoffs does slightly better

here than the null move heuristic since the average savings across depth 3, 4 and 5 for the
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int pvs(side, position, @, B, depth)
int side, position[90], a, B, depth;

{
int successor([90), merit, rept, num moves, p, score, lower, fcut;

struct { int from, to; } moves[MAX MOVES];

if (rept = repetition{(side, position))
return((rxept > 0)? DRAW: ILLEGAL):
else if (depth <= 0)
return(evaluate (side, position, a, P));

/* decide whether we should apply futility cutoffs;
* value() is material balance plus maximum positional score.
*/

fcut = (depth == 1) && (value(side, position) <= @);

num_moves = genecate(side, position, moves);
score = -eo; p = 0;

while(p < num moves && score == =) {
successor = make (moves[p], position);

if('fcut || value(side, successor) > & || check(!side, successotf))
score = -pvs(!side, successor, -B, -, depth-1);
pt+;

}

while(p < num_moves) {
if (score >= B)

goto out;
successor = make (moves|[p], position);
if ('fcut || value(side, successor) > & || check(!side, successor))

{
lower = max(Q, score);
merit = -pvs(!side, successor, -lower-l, -lower, depth-1);
if (merit > score)
if (merit > o && merit < B && depth > 1)

score = -pvs(!side, successor, -, -merit, depth-1);
else
score = merit;
}
pt+;
}
out:

return(score);

}

Figure 3.4: Principal Variation Search with Futility Cutoffs
futility cutoffs is 26% (-null+£fcut), as compared to 21% (+null-fcut) of the nuil

move heuristic. Also, the success rate at depth 5 for futility cutoffs dropped from 20% to
18% of the null move heuristic. This deterioration in success rate comes partly from the
nature of these two heuristics themselves but it could depend to the test suite we choose

as well; using different test positions may yield different results. Combining both
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heuristics (+null+fcut) gives even greater savings (an average of 36%) without
deteriorating the performance any further. For this reason, both the null move heuristic
and the futility cuteffs are included in the current version of Abyss and will be enabled

for all the later experiments in the thesis unless otherwise stated.



Chapter 4
Extensions With Domain Specific Knowledge

4.1 Introduction

With today’s faster hardware and enhanced search algorithms, it is possible for the
best chess playing programs to search to a formidable depth (say 9-ply or even deeper)
during most of the middle game. Even for those programs, moves beyond the game tree
horizon may still be neglected. To alleviate this problem, a more promising approach is
adopted viz., selective extencions, increasing the search by an extra ply (plies) when cer-

tain criteria are met.

For instance, chess playing programs will usually extend the search by an extra ply
when the side to move is in check, since checking usually consists of a serious threat. The
safety of a deeper search is worth the extra cost, which isn’t high since the number of
replies to a checking move is small. This is one example of using domain-specific
knowledge to extend the search depth. Other approaches include extending on recaptures
(Ebeti:.g 1987, pp. 101-102}, pawn moves to the 6th and 7th rank in chess [Kaindl 1982,
Scherzer et al. 1990], moves near the territory of the opponent’s king [Anantharaman
1991), strictly forced moves (say if one side has only one legal move) [Uiterwijk 1991]
and certain piece evading moves to bring a piece out of the opponent’s attack (an ad hoc
heuristic tried in Abyss). The latter two have not yet been adequately explored in com-
puter chess literature, but are nonetheless two important aspects that are worth consider-
ing in extensions when using domain specific knowledge. Here, we shall provide the
descriptions of these heuristics with experimental results, and share our experience in

implementing them in the Abyss Chinese Chess playing program.

Using domain specific knowledge is one means to carry out selective extensions.

Because of its simplicity in implementation and efficiency in performance, most chess
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playing programs adopt such an extension heuristic to some extent.

Note that the implementation of these heuristics is simple and straightforward. Sup-
pose we have a function called forcing({move, position) which indicates whether the
move, if made on the current position, falls in the definition of a forcing move (either a
check evasion move, a recapture, a king-threat move, a piece evading move or a strictly
forced move), the brute-force o search algorithm can be easily modified to suit this new
need (Figure 4.1). So the remaining task is how to define such a forcing move and

whether it should be used for extension during the search.

int pvs(side, position, «, B, depth)
int side, position{90], @, B, depth;

{
int successor(90], merit, ndepth, num _moves, p, score, lower;
struct { int from, to: } moves[MAX MOVES]:

if (depth <= 0)
return(evaluate (side, position, a, B)):

num_moves = generate(side, position, moves):
successor = make (moves({0], position);
if (forcing (moves{0], position))

score = -pvs(!side, successor, -B, -0, depth);
else

score = -pvs(!side, successor, -B, -a, depth-1);

for(p = 1; p < num _moves; p++) |
if (score >= B)
goto out;
lower = max(Q, score);
successor = make (moves(pl, position);
if (forcing(moves({p]l, position))
ndepth = depth
else
ndepth = depth - 1;
merit = -pvs(!side, successor, -lower-l, -lower, ndepth):;
if (merit > score)
if (merit > o && merit < P)
score = -pvs(!side, successor, -f, -merit, ndepth);
else
score = merit;
)

}

out:
return (score);
}

Figuié 4.1: Principal Variation Search with Extension on Forcing Moves
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As one might have noticed from Figure 4.1, the function forcing() here slightly
deviates from the definition of forcing moves. For example, in the check evasion case,
forcing(move, position) retumns true if move is a check, therefore all nodes expanded in
this layer (where the opponent’s king is all in check) will be searched without a depth
reduction. Of course, this is only one way of adding the extension heuristics on forcing

moves. Other implementations are also possible.

4.2 Check Evasions

Because of its simplicity and efficiency, check evasion is perhaps the most com-
monly found feature in chess programs. A checking move usually forms a major threat
and is a forcing move, therefore a one ply deeper search might reveal some tactics that
are beyond the original horizon. The situation is of course substantially the same in

Chinese Chess, so one can expect a similar benefit from adding such a heuristic.

The experimental results on the check evasion heuristic can be found in Table 4.1.
The terms for nodes, ratio and scores have been defined in Section 3.2. For all the exper-
iments throughout this chapter, the null move heuristic and futility cutoffs are both used
as an enhancement for the af search algorithm. Also, the result from the original experi-

ment (without any knowledge extensions) is included as a basis for comparisons.

Table 4.1: Experiment on Check Evasions '
Depth =3 Depth =4 Depth =35

Extensions

nodes | ratio | scores { nodes | ratio | scores | nodes | ratio | scores

~check 104234 | 1.00 | 6(18) | 641469 | 1.00 | 16(30) | 1887356 | 1.00 | 18(30)
+check 121842 | 1.17 | 20(32) | 659071 | 1.03 | 24(38) | 2684653 | 1.42 | 32(50)

Our results confirm the benefits of adding this heuristic (see Table 4.1) since,
although adding the check evasions heuristic increased the nodes being searched (an
average of 21% over depths 3 to 5), the cost is worthwhile because the success rate is
increased (an average of 12 percentage points) as well as the correct move hits (an aver-

age of 14 percentage points).
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4.3 Recaptures

Capturing is the essence of tactics in chess (and Chinese Chess), and a capture
search [Bettadapur and Marsland 1988] forms the kernel part of quiescence search. In the
exhaustive search region, some captures are more or less forced, e.g., recaptures, as
defined by Carl Ebeling [1987, pp. 101-102]. Therefore it might be worthwhile to extend

one more ply on recaptures with the hope that some deep tactics can be revealed.

Note that extending all recaptures could be expensive since a capture doesn’t restrict
the move choices by the opponent, therefore care is necessary to avoid a search explo-
sion. In Abyss, we adopt the same rule as in Hitech [Ebeling 1987, Berliner 1989]; only
recaptures that bring the material merit into a window of the initial root value are con-

sidered.

_ Table 4.2: Experiment on Recaptures
. Depth=3 Depth=4 Depth=5
Extensions nodes | ratio | scores | nodes | ratio | scores nodes ratio | scores

—recapture | 104234 | 1.00 | 6(18) | 641469 | 1.00 | 16(30) | 1887356 | 1.00 | 18(30)
+recapture | 111711 | 1.07 | 6(22) | 661337 | 1.03 | 16(28) | 2290755 | 1.21 | 18(34)

Our experiments show that adding the recaptures alone doesn’t improve the success
rate (it however does improve the correct move hits by an average of 2 percentage
points). Later we shall see how well the recaptures perform when combining other exten-

sion heuristics like check evasions (see Section 4.7).

4.4 King Threats

It has already been mentioned that the king threat heuristic can be used to alleviate
the problem that computer chess playing programs normally lack the knowledge of
recognizing the long-term threats against the king [Anantharaman 1991]. In Chinese
Chess, the king is perhaps more vulnerable to attack than in chess, since it is confined to
only nine squares (called palace). Since there is no pawn promotion rule, the chance is

higher that the king is assaulted by the opponent. In fact, there is an adage in Chinese
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Chess which says "Three pieces beside (the opponent’s palace) wins the game”; there-

fore, it is more reasonable to use the king-threat heuristic in Chinese Chess.

Although, for simplification, the palace can be naturally used as the squares around
one side’s king, such a treatment might cause evaluation inaccuracies. In Abyss the same
definition as in Deep Thought {Anantharaman 1991] is adopted. We consider the king is
in jeopardy if the number of squares around cne side’s king (exactly one square away)
that are under the opponent’s attack exceeds a certain threshold (3 is chosen) and we

extend the search for one more ply in this case.

The experimental results of adding the king-threat heuristic can be found in Table
4.3 (solely the king-threat). We have set up two different experiments to test the effec-
tiveness of adding this heuristic. The:.* are mainly aimed to decide how many plies (1 or
2 plies) we should extend in the case that a king-threat is detected, as well as to decide
whether we should consider all the positions where the squares around one side’s king
exceed the threshold (+all.1 and +all.2) or only consider it when such a position
occurs after making a move (+third.1 and +third.2) but not so before the move is

made.

Table 4.3: Experiment on King-Threats

) Depth=3 Depth=4 Depth=$
Extensions nodes | ratio | scores | nodes | ratio | scores nodes | ratio | scores
-king 104234 | 1.00 | 6(18) | 641469 | 1900 | 16(30) | 1887356 | 1.00 | 18(30)
+all.l 144057 | 1.38 | 8(24) | 774636 | 1.21 | 16(30) | 2613998 | 1.39 | 20(32)
+all.2 214165 | 2.05 | 8(24) | 1136650 | 1.77 | 16(30) | 4050674 | 2.15 | 22(34)
+third.1 144948 | 139 | 8(24) 802759 | 1.25 | 16(30) | 2890065 | 1.53 | 22(34)
+third.2 155539 | 1.49 | 8(249) 871982 | 1.40 | 16(30) | 3630385 | 1.92 | 22(34)

From the results shown in Table 4.3, we achieve an average improvement in the
success rate (2 percentage points) and correct move hits (3 percentage points) but the
nodes being searched also increase dramatically {a node ratio of 2.15 in the worst case
(all.2 at depth 5)). Notice that all implementations yield .the same resuits on move

selections except one case (all.1 atdepth 5). It seems the best result comes from using
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the king-threat extension only for one ply, and only considering the situation where the
squares around the king exceeds a threshold after one side has made a move
(+third.1). Using this implementation, the same improvements on move quality can
be maintained but with a moderate node increase (an average of 39% across depth 3, 4
and 5). Therefore, such a method will be chosen in Abyss as well as in the later experi-
ments when king-threats are included. Further experiments on combining king-threats

with other heuristics will be presented in Table 4.6 in Section 4.7.

4.5 Piece Evading Moves

Another possibility is to extend the search for moves that bring to saft¢; a piece
under attack. This may be viewed as a generalized case of the check evasion heuristic,
since otherwise the piece under attack will be capturcd by the @::wonent on the next
move, resulting in a material deficit. Moving the piece to safiis 75 i sfeere where it is
mo st wader the opponent’s attack or is protected by pieres of its own side) is
somehow iGiced.

The other reason for using this ad hoc extension heuristic in the search algorithm in
Abyss stems from consideration of the repetition rule of Chinese Chess. Null moves can
usually be used to detect threats, but not all threats identified by the null move follow the
rules of Chinese Chess, and the expense of such a detection is high. Therefore, some sim-
plification to restrict the type of moves which are considered "threats" is made in Abyss
(see Section 2.5 for more details about the repetition check algorithm). As a byproduct
of detecting a piece evading move, which reveals one certain type of threat, we gain

knowledge about how to distinguish a legal repetition from an illegal one.

In Abyss, a simplified version of this heuristic is included; it only considers moving
a major piece out of attack, since including all types of pieces proved to be too expensive.
Two experiments were conducted; in the first case (+evade. 1), we try to check whether

there is at least one opponent’s piece under attack after one side has made a move
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(including discovering attacks). In the second case (+evade. 2), we restrict the pieces

being attacked to only those attacked by the last piece moved by the opponent.

Table 4.4: Experiment on Piece Evading Moves

Depth=3  Depth=4 | Depth=5 |
nodes | ratio | scores | nodes | ratio | scores nodes | ratio | scores
-evade 104234 | 1.00 | 6018) | 641469 | 1.00 | 16(30) | 1887356 | 1.00 | 18(30)

+cvade.l | 125612 | 1.21 | 8(20) | 786182 | 123 | 20(32) | 4185770 | 2.22 | 26(4G)
+evade2 | 124867 | 1.20 | 8(18) | 705624 | 1.10 | 18(30) | 2420428 | 1.28 | 24(34)

Extensions

The average node increase of using the evade.l and evade.2 extension
heuristics are 55% and 19% respectively, with the average success rate being increased
by 5 and 3 percentage points (the correct move hits increased by 4 and 2 percentage
points). In all our experiments, we see an improvement on move selections with a
moderate ratio increase, except one case (+evade.1 at depth 5), where a node ratio of
2.22 was observed. Although the former implementation (+evade. 1) yields a better
performance in terms of success rate, we think the cost is perhaps not worthwhile since
the search ratio is too high, although results from further experiments may reveal whether
such a high ratio should still maintain at deeper search depth. For further experiments in
the thesis, we shall use only the second implementation (+evade.2) for the piece-

evading move heuristic (considering those pieces attacked by the last moved piece only).

4.6 Strictly Forced Moves

There is still another heuristic which can be used for extensions, strictly forced
moves. This heuristic has been implemented in the chess playing program Touch
{Uiterwijk 1991). If there is only one legal move in a position, it is of course forced and
a less turbulent and more reliable value may be returned after searching by an extra ply.
Such a heuristic is especially useful in situations where one side can make a move which
leads to a decisive advantage (like a mate threat) but the opponent can "thwart” this threat
by making some delaying moves like checks. By disregarding these moves, it is possible

that we can avoid being "fooled" into missing the threat. Notice that when there is only
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one legal move in a particular position, this usually means the king of the sivie to move is
under check. Therefore a total of two extra plies will be extended when combining with

the check evasion heuristic, searching deeper in a forced line without giving too much

€xtra cost.

Table 4.5: Experiment on Strictly Forced Moves
. Depth=3 Depth=4 | Depth=$
E ons nodes | ratio | scores | nodes | ratio | scores nodes ratio | scores

-strict 104234 | 1.00 | 6(18) | 641469 | 1.00 | 16(30) | 1887356 | 1.00 | 18(30)
+strict 107812 | 1.03 | 6(18) | 678275 | 1.06 | 16(30) | 2013468 | 1.07 | 18(36)

The heuristic for strictly forcing moves is implemented in Abyss and the result can
be found in Table 4.5. No success rate increase was achieved in this case (although
correct move hits increased by 6 percentage points at depth 5) with an average node
increase of 5%. This is probably what we have expected, since the chance of having only
one legal move is rare in the middle games. This heuristic was introduced to supplement
the check evasion heuristic we have just discussed. It is possible that the extension on

strictly forced moves may perform better when combined with check evasions (see Sec-

tion 4.7).

However, such a heuristic might not be worth implementing at all wher. other search
extension heuristics like singular extensions are included; a strictly forced move
represents one special case for a PV-singular move (the only move is also the "signifi-

cantly” best move). Please refer to Chapter S for discussions on singular extensions.

4.7 Combining Extensions With Domain Specific Knowledge

The experimental results of different combinations of search extensions with
domain specific knowledge have been provided here in Table 4.6 (also used to support
Table 4.8), based on the extension combinations provided in Table 4.7.

To decide the relative importance of each knovledge extension heuristic and their

combinations, we have to compare not only the performance measures, but also the
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Table 4.6: Experimental Results for Different Knowledge Extensions

Depth=3 A Depth=4 — Depth=5
nodes | ratio | scores nodes ratio | scores nodes ratio | scores
104234 | 1.00 | 6(18) | 641469 | 1.00 | 16(30) | 1887356 | 1.00 | 18(30)
121842 | 1.17 | 20(32) | 659071 | 1.03 | 24(38) | 2684653 | 1.42 | 32(50)
11711 | 107 | 6(22) | 661337 | 1.03 | 16(28) { 2290755 | 1.21 | 18(34)
144948 | 139 | 8(24) | 802759 | 1.25 | 16(30) | 2890065 | 1.53 | 22(34)
125612 | 1.21 6(18) | 705624 | 1.10 | 20(32) | 2420428 | 128 | 24(34)
107812 | 1.03 | 6(18) | 678275 | 1.06 | 16(30) | 2013468 | 1.07 | 18(36)
127350 | 1.22 | 18(32) | 658167 | 1.03 | 22(36) | 3062946 | 1.62 | 30(48)
155909 | 1.50 | 18(30) | 869377 | 136 | 26(42) | 4493750 | 238 | 30(52)
167284 | 1.60 | 24(34) | 759998 ! 1.18 | 24(38) | 3510887 | 1.86 | 34(50)
10 136747 | 1.31 | 18(30) | 854828 | 133 | 24(42) | 3645802 | 1.93 | 36(50)
11 167878 | 1.61 | 16(30) | 893620 | 139 | 24(40) | 5309546 | 2.81 | 36(52)
12 166342 | 1.60 | 22(34) | 784635 | 122 | 22(36) | 4040137 | 2.14 | 32(46)
13 144298 | 1.38 | 16(30) | 855107 | 1.33 | 24(42) | 4467591 | 237 | 36(50)
14 214200 | 2.05 | 22(32) | 1033796 | 1.61 | 24(40) | 6248260 | 3.31 | 38(52)
15 190384 | 1.83 | 16(30) | 1104580 | 1.72 | 30(46) | 6693856 | 3.55 | 42(54)
16 195093 | 1.87 | 20(32) | 1140422 | 1.78 | 26(42) | 7364632 | 390 | 38(52)
| 7 249328 | 2.39 | 22(32) | 1632788 | 2.55 | 30(46) | 11574022 | 6.13 | 44(58)

I Table 4.7: Kez to Different Combinations for Knowledge Extensions |

Exp. No. Combinations

no extensions at all

check evasions

recaptures

king-threats

evading moves

strictly forced moves

check evasions + recaptures

check evasions + evading moves

check evasions + king-threats

check evasions + strictly forced moves

check evasions + recapture + evading moves

check evasions + recapture + king-threats

check evasions + recapture + strictly forced moves

check evasions + recapture + king-threats + evading moves

check evasions + recapture + strictly forced moves + evading moves
check evasions + recapture + strictly forced moves + king-:hrzats
check evasions + recapture + strictly forced moves + evading moves + king-threats

g
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search efficiency. Since the relative importance increases as the success rate increases,
but decreases as the node ratio increases, a funtion defined as success rate over node ratio
can be used. As a secondary factor, we should also consider the number of correct moves
found (disregarding the scores), since this number shows the move quality as well.

Therefore, to measure the relative importance R/ of one particular extension heuristic, the



__Table 4.8: Relative Importance of Knowledge Extensions
Depth=3 Depth=4 Depth=5

BN I Tsm T ®m [ R [ s@ | & | ® | sa |’ A&N
100 | 6(18) | 1500 | 1.00 | 16(30) | 31.00 | 1.00 | 18(30) | 33.00 | 26.33
117 | 20(32) | 30:77 | 1.03 | 24(38) | 41.75 | 142 | 32(50) | 40.14 | 37.55
107 | 6(22) { 1589 | 1.03 | 16(28) | 29.13 | 1.21 | 18(34) | 2893 | 2465
139 | 8(24) | 1439 | 125 | 16(30) | 2480 | 1.53 | 22(34) | 2549 | 21.56
121 | 6(18) | 1240 | 1.10 | 20(32) | 3273 | 128 | 24(34) | 3203 | 25.72
103 | 6(18) | 14.56 | 1.06 | 16(30) | 29.25 | 1.07 | 18(36) | 3364 | 2582
122 | 18(32) | 27.87 | 1.03 | 22(36) | 38.83 | 1.62 | 30(48) | 3333 | 33.34
1.50 | 18(30) | 22.00 | 136 | 26(42) | 34.56 | 238 | 30(52) | 2353 | 26.70
160 | 24(34) | 2562 | 1.18 | 24(38) | 3644 | 186 | 34(50) | 31.72 | 3126
10 131 | 18(30) | 25.19 | 1.33 | 24(42) | 33.83 | 1.93 | 36(50) | 31.61 | 3021
11 1.61 | 16(30) | 1925 | 1.39 | 24(40) | 31.65 | 2.81 | 36(52) | 2206 | 24.32
12 1.60 | 22(34) | 2437 | 1.22 | 22(36) | 32.79 | 2.14 | 32(46) | 25.710 | 27.62
13 138 | 16(30) | 2246 | 1.33 | 24(42) | 3383 | 237 | 36(50) | 25.74 | 2734
14 205 | 22(32) | 1854 | 1.61 | 2440) | 27.33 | 331 | 38(52) | 1934 | 21.74
15 1.83 | 16(30) | 1694 | 1.72 | 30(46) | 30.81 | 3.55 | 42(54) | 1944 | 2240
16 1.87 | 20(32) | 19.25 | 1.78 | 26(42) | 2640 | 390 | 38(52) | 1641 | 20.69
17 239 | 22(32) | 1590 | 2.55 | 30(46) | 20.78 | 6.13 | 44(58) | 1191 16.20

VOO~ B WN -

following formula is proposed:
RI=(S+H/2)/R.

Here, § stands for the success rate, H is the correct move hits, and R represents the node
ratio as compared to that case when no extensions are used (i.e., compare to Experiment
No. 1). Using the above formula, the results of all the extensions experimented are

presented in Table 4.8, where Avg. RI stands for average RI's across depth 3, 4 and §.

Although the criterion used here to calculate relative importance is crude, these
statistics provide evidence to support use of certain extension heuristics. From Table 4.8,
it can be seen that check evasion is the heuristic with the highest relative importance,
both among those with a single extension heuristic and when the extensions are com-
bined. Using more than two extension heuristics leads to too many nodes being searched
without improving the success rate significantly. Also, we see that when combining only
two extension heuristics, the combination of check evasions plus recaptures performs
best, although the other two combinations, check evasions plus king-threats and check

evasions plus strictly forced moves, are not far behind (based on average R/I’s). This is
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also true for depth 5, a depth we are more interested in, since a search to depth 5 is
perhaps the deepest level that a micro-ranged chess (Chinese Chess) program can
achieve. Notice the R/ values for Experiraent 5 and 6 at depth 5 are also high, but nether

is recommended because of their poorer move qualities.

There is another interesting phenomenon from Table 4.8. For most experiments
with selective extensions, we see the relative importance increases from depth 3 to depth
4 but drops from depth 4 to depth 5. Perhaps this is related to the odd even search depth
that is used. It could also be the effect of the law of diminishing returns on adding these
extension heuristics. Sezzching to depth 6 (or deeper) may make us further understand

and explain this phenomenon.

We can draw some conclusions from the experiments of using knowledge exten-
sions. First, check evasion (Experiment 2) performs well in all cases and should be
included in the chess playing programs when adopting selective extensions. Second,
combining more than one extension heuristic yields a better success rate and correct
move hits, but it is perhaps not worthwhile to combine more than two of them since the
excessive nodes searched neutralizes the performance (e.g., Experiment 17). Third, when
combining two extension heuristics, the best choice is to use check evasions plus recap-
tures (Experiment 7; already the most popular choice in chess playing programs design),
although further experiments may be necessary to see whether the other two choices,
check evasions plus king-threats (Experiment 9) and check evasions plus strictly forced

moves (Experiment 10), can possibly improve the strength of the play.



Chapter §

Extensions Without Domain Specific Knowledge

5.1 Introduction

Using domain-specific knowledge to extend search to a variable depth has proved to
be beneficial, based on the experimental results in the previous chapter. Although exper-
iments [Hyatt er al. 1990, Ye and Marsland 1992) show that a n-ply search enabled with
extension heuristics still performs no better than a (n+2)-ply exhaustive search, it outper-
forms (n+1)-ply exhaustive search in two ways: first, it searches fewer rc des (time) and

second, the move quality is better.

Nevertheless, there are two problems when adopting the selective extensions with

domain-specific knowledge. As Anantharaman et al. [1988] state:

"First, it is difficult to provide enough knowledge to cover all or most of the
interesting cases. Second, the knowledge is usually based only on the static
features of the moves without taking into account the dynamics of the position,
and the search extensions based on such knowledge may be grossly irrelevant
and wasteful."

A more powerful search extension heuristic called Singular Extensions was presented by
Anantharaman et al. [1988]. Initially it was thought to be a major advance, although later
experiments on singular extensions show that this heuristic is not as promising as it first
appeared [Anantharaman 1991]. The idea of singular extensions is to use information
gathered in the search itself to extend the search whenever one move is significantly

better than the sibling moves.

Apart from applying the singular extensions, there is still another promising way to
extend the search without using any domain-specific knowledge: the Null Move Quies-
cence Search (or Second-order Quiescence Search) as proposed by Beal [1989]. Origi-
nally, the null move quiescence search serves as a means to reduce the errors in the nor-

mal quiescence search phase. However, it we view this approach from another angle, we
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see that null move quiescence search provides an excellent means of extending the search
based on the information gained from the search itself (the null move value from the
first-order quiescence search). The search will thus be divided into three phases as the

full-width search, the null move quiescence search and the normal quiescence search.

In this chapter, we give the descriptions of these search extension heuristics, as well
as the implementation details from program Abyss. The experimental results are

presented, together with a brief analysis of the performance.

5.2 Singular Extensions

There are two types of singular moves which are considered during the search; they
are Singular PV moves and Singular Fail-high moves, the former applies to PV moves
and the latter applies to non-PV moves. The principle of the singular extensions is to
extend the search by an extra ply whenever a move is found to be "significantly” better
than the sibling moves. Both extensions are implemented in the current version of Abyss

and will be discussed in this section.

5.2.1 Extensions on Singular PV Moves

As defined by Anantharaman et al. [1988], "A move m is singular at some depth d
if the value returned by a d-ply search of m is better than all siblings of m by a signrificant
amount S, referred to as the singular margin." A minimal window search with the win-
dow (V - S) can be used to test the singularity, which costs nothing extra if the test finally
succeeds. However, a re-search with the correct minimal window is necessary if the test
fails. Another problem related to implementing the PV-singular extension is how to treat
the new score returned from the extended search. If the new score drops more than the
singular margin (in which case some other moves may be best), a re-search of all the

siblings is required.
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A more detailed discussion on the implementation issues can be found elsewhere
[Anantharaman 1991]. In Figure 5.1, we give our illustrative algorithm of the function
pvs() with consideration of the PV-singular extension. Here, S represents the singular
margin and is chosen as 1/4 of a pawn’s value. The functions in_smoves() and
add_smove() are used for re-search purposes: in_smoves() detcrmines whether a move

has already been found PV-singular and extended; and add_smove() records every move

that has been found PV-singular.

The result of adding solely the PV-singular extension heuristic can be found in
Table 5.1. Two experimental results are presented in Table 5.1: (a) use the PV-singular
extension only (+spv-chk) and (b) combine PV-singular extension with check evasions
(+spv+chk). As mentioned earlier, the null move heuristic and the futility cutoffs are

both turned on when carrying out these experiments.

Table 5.1: Experimental Results.for PV-Singular Extensions

Depth=3 Depth =4 Depth=35

nodes | ratio | scores nodes | ratio | scores nodes | ratio | scores
-spv—chk | 104234 | 1.00 [ 6(18) | 641469 | 1.00 16(30) | 1887356 | 1.00 | 18(30)
+spv—chk | 184719 | 177 | 6(24) | 1195163 | 1.86 18(30) | 3600092 | 191 | 18(32)

-spv+chk | 121842 | 117 | 20(32) | 659071 | 1.03 | 24(38) | 2684653 | 142 32(50)
+spvichk | 254201 | 244 | 20(32) | 1390137 | 2.17 | 24(36) | 5741655 | 3.04 34(50)

Experiment

It can be seen from Table 5.1 that adding the PV-singular extension brings little
improvement in terms of success rate (a 2 percentage points increase was noticed in both
experiments; -chk, depth4and +chk, depth 5) and the node increase is huge (an aver-
age increase of 85% and 134% for each experiment as compared with the version without
the PV-singular extension). One reason may be the search depth chosen here (maximum
5) is too shallow to discover deep tactics. Further experiments will be carried out to

determine whether adding the singular extensions can improve the play of the program

(see Section 5.3).
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#define Spv 25 /* PV singular margin (1/4 pawn) */

int pvs(side, position, a, B, depth)
int side, position[90}, «, B, depth;
{
int successor([90], merit, num moves, p, score, bscore;
boolean pv_singular, no_move;
struct { int from, to; } moves{MAX MOVES}, bmove;
struct { int moves[MAX_MOVES]; int num moves = 0; } smoves;

if {depth <= 0)
return (evaluate(side, position, a, B)):

num_moves = generate(side, position, moves);
bscore = -~oo;

re-search: /* first move or re-search after singular extension */

p = -1; score = -w; pv_singular = no_move = TRUE;
while(++p < num_moves && score == -w)

if (!in_smoves (moves(p], &smoves)) { /* found a move? */

successor = make(moves[p], position);
score = -pvs(!side, successor, -B, -, depth-1};
bmove = moves(p]; no_move = FALSE;

}

vwhile (++p < num_moves) {
if (score >= B)
goto out;
if ('in_smoves (moves([p], &smoves)) {
successor = make (moves(p], position);
if (pv_singular) { /* test PV singularity, assumed true initially
merit = -pvs(!side, successor, —-score-1+Spv, -score+Spv, depth-1);
if ((score - merit) <= Spv) {
/* test fails, search with correct window */
merit = -pvs(!side, successor, -score-l, -score, depth-1);

pv_sinqgular = FALSE; /* current PV can’t be PV singular
}
else
merit = -pvs(!side, successor, -score-1l, -score, depth-1);
if (merit > score) { /* possible singular PV move

score = -pvs(!side, successor, -B, -merit, depth-1);
bmove = moves[p}; pv_singular = TRUE;
}
)
}

if (pv_singular && !no_move) { /* is best move PV singular?
successor = make (bmove, position):
merit = -pvs(!side, successor, -B, -a, depth); /* PV extension
if (merit > score || (score - merit) <= Spv) /*not fail low?
score = merit; /* accept the new score
else |

add_smove (bmove, &smoves);
bscore = score;
goto re-search; /* re-search discounting the current best move

}

else if(no_move) /* no moves, accept the previous best score
score = bscore;

out:
return (score);

*/

*/
*/
*/

Figure 5.1: Principal Variation Search with PV Singular Extension
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5.2.2 Extensions on Singular Fail-high Moves

In the previous section, we have discussed the extension on PV-singular moves and
its experimental results. In this section, we shall discuss the other way to apply the singu-

lar extensions to non-PV moves, i.e., Fail-high Singular Extension.

As defined by Anantharaman et al. [1988), "A fail-high move h is fail-high at depth
d with a test reduction factor of r if the present PV value v is better than the (d-r)-ply
values of all siblings of & by a significant amount Sh, referred to as the singular fail-high
margin."

The method for determining the fail-high singular moves is illustrated in Figure 5.2.
The fail-high margin Sh is chosen as 75 points (3/4 of a pawn’s value) and the reduction
factor is fixed at 2 for all search depths. The experimental results are presented in Table
5.2 (only considering fail-high singular moves) and Table 5.3 (considering both PV-
singular moves and fail-high singular moves). Two experimental results are presented in
Table 5.2: (a) extend with fail-high singular moves only (+sfh-chk) and (b) combine

fail-high singular extension with check evasions (+s fh+chk).

Table 5.2: Experimental Results for Fail-high Singular Extensions

Depth =3 Depth=4 Depth=5

nodes | ratio | scores | nodes | ratio | scores | nodes | ratio | scores
~sfh—chk | 104234 | 1.00 | 6(18) | 641469 | 1.00 | 16(30) | 1887356 | 1.00 | 18(30)
+sfh-chk | 176352 | 1.69 | 6(24) | 1216168 | 1.90 | 18(28) | 3585024 | 1.90 | 18(30)
-sfthechk | 121842 | 1.17 | 20(32) | 659071 | 1.03 | 24(38) | 2684653 | 142 | 32(50)
+sth+chk | 220643 | 2.12 | 20(28) | 1278800 | 1.99 | 22(34) | 5001444 | 2.65 | 34(54)

Experiment

Like PV-singular extension, adding fail-high singular extension briags little
improvement in terms of success rate. Up to 2 percentage points improvement was
observed with an average node increase of 83% (-sfh-chk vs. +sfh-chk) and 105%
(-sfh+chk vs. +sfh+chk) as compared with the version without fail-high singular
extensions. Notice the 2 percentage points drop when combining the fail-high singular

extension with check evasions, but we think this is perhaps more attributable to the non-
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#define Sh 75 /* fail-high singular margin (3/4 pawn) */

int pvs(side, position, &, B, depth)
int side, position[90), a, B, depth;
{

o8
~e

int successor(90), t_posn[90], score, merit, value, num moves, p,
boolean fail high;
struct { int from, to; } moves[MAX MOVES];

if (depth <= 0)
return (evaluate (side, position, @, P));

num_moves = generate(side, position, moves);
successor = make (moves{0], position); /* first move */
score = -pvs(!side, successor, -B, -a, depth-1);

for(p = 1; p < num_moves; p++} |
if{score >= f)
goto out;
successor = make(moves(p], position);
merit = -pvs(!side, successor, -score-l, -score, depth-1l):;
if (merit > score && merit > @ && merit < B) {
fail _high = TRUE; /* assume it is fail-high singular */
for(i = p + 1; i < num moves && fail _high; i++) {
/* test fail-high singularity, depth reduction 3 is chosen */
t_posn = make(moves{i], position);
value = -pvs(!side, t_posn, -score-1+Sh, -score+Sh, depth-3);
if((score - value) <= Sh) /* test fails */
fail_high = FALSE;

if (fail_high) { /* new PV move is fail-high singular? */
value = -pvs(!side, successor, -B, -merit, depth);
if (value > score) /* not fail low after extension? */

score = value;
}
else
score = -pvs('side, successor, -B, -merit, depth-1);

}
else if (merit > score)

score = merit;

)

out:
return(score);
}

Figure 5.2: Principal Variation Search with Fail-high Singular Extension

perfect success rate calculation method rather than to the heuristic of fail-high singular
extension itself. Further experiments will be carried out to determine whether singular

extensions can improve the play of the program (see Section 5.3).
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5.2.3 Experimental Resuits on Singular Extensions

In the above sections, we have presented our initial experimental results on adding
the singular extensions heuristics in Abyss where the PV-singular moves and the fail-high
singular moves were considered separately. In this section, we shall give our resuits of
combining both PV-singular and fail-high moves together with some other knowledge
extension heuristics like check evasions and recaptures. The results for these experiments

can be found in Table 5.3 and the experiment setups can be found in Table 5.4.

Table 5.3: Experimental Results for Singular Extensions
Exo. No " Depth=3 Depth =4 Depth =§

p. e nodes | ratio | scores | nodes | ratio | scores | nodes | ratio | scores
104234 | 100 | 6(18) | 641469 | 1.00 | 16(30) | 1887356 | 1.00 | 18(30)
184719 | 1.77 | 6(24) | 1195163 | 1.86 | 18(30) | 3600092 | 1.91 | 18(32)
176352 | 1.69 | 6(24) | 1216168 | 1.90 | 18(28) | 3585024 | 1.90 | 18(30)
188481 | 1.81 6(24) | 1201698 | 1.87 | 18(30) | 3551248 | 1.88 | 18(34)
121842 | 117 | 20(32) | 659071 | 1.03 | 24(38) | 2684653 | 1.42 | 32(50)
254201 | 2.44 | 20(32) | 1390137 | 2.17 | 24(36) | 5741655 | 3.04 | 34(50)
220643 | 2.12 | 20(28) | 1278800 | 1.99 | 22(34) | S001444 | 2.65 | 34(54)
258545 | 248 | 20(32) | 1400774 | 2.18 | 24(36) | 5683926 | 3.01 | 34(50)
268708 | 2.58 | 20(32) | 1411165 | 220 | 24(36) | 5764677 | 3.05 | 34(50)
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Table 5.4: Experiment Setup for Singular Extensions
Exp. No. Combinations

- PV-singular extensions ~ Fail-high singular extensions - check evasions - recaptures

+ PV-singular extensions - Fail-high singular extensions - check evasions - recaptures

- PV-singular extensions + Fail-high singular extensions - check evasions - recaptures

+ PV-singular extensions + Fail-high singular extensions - check evasions - recapturcs
- PV-singular exter:sions — Fail-high singular extensions + check evasions — recaptures

+ PV-singular extex:.sions — Fail-high singular extensions + check evasions - recaptures
- PV-singular extensions + Fail-high singular extensions + check evasions - recaptures
+ PV-singular extensions + Fail-high singular extensions + check evasions - recaptures
+ PV-singular ex{ensions + Fail-high singular extensions + check evasions + recaptures

O O~ O\ WH WA

Table 5.3 shows that adding the singular extensions hardly improves the success
rate in our experiments (no improvement comparing Experiment 1 with Experimeni 4
and a total of 2 percentage points comparing Experiment 5 with Experiment 8). Also,
adding recapture to the suite of both singular extensions and check evasions (Experiment
9) yields no performance improvement. One explanaticr s that the test positions chosen

are too sophisticated to be understood by a search to depth 5. Not including ali the
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enhancements for singular extensions is another reason. Also, the results could be related
to the quality of the evaluation function. Nevertheless, it is still possible the program
with singular extensions will play better. Therefore, two supplementary experiments were

conducted below for further comparisons.

We decide to let the two versions of Abyss, Abyss+SIN (with singular extensions)
and Abyss-SIN (without singular extensions), play a certain number of games. In both
programs, the extensions for check evasions and recaptures are turned on. We randomly
choose 12 frequently-occurring opening positions (5 to 8 moves from the start) and let
two programs play each other with one opening exactly twice (one with red and one with
black). This gives a total of 24 games. We believe the number 24 is large enough to

reduce any abnormalities that may occur during the play.

To make the comparison "fair" for each version with different extension heuristics,
we decide to spend a fixed amount of time on each move. Two time intervals were
chosen: (1) 30 seconds per move, which normally guarantees a depth 4 search; and (2)
100 seconds per move, which normally guarantees a depth S search. When time is up, the
best move found so far is chosen and there are no further searches. Also, the game is
adjudicated by the author after 150 moves to save time on the meaningless plays by the
programs. With all these conditions, a total of 48 games were played and the results can
be found in Table 5.5. The opening positions that are used to play these 48 games can be
found in Appendix 3.

In Table 5.5, a wis counts for 1 poir::. 2 draw 0.5 point and a loss O point. It can be
seen that the version with sir;v ar exrensions performs consistently better than the one
witheut this heuristic (the margins are 3 and 5 pxi:s or a winning ratc of 56% and 60%
respectively). Many other enhancements [Ananiiiaraman 1991] can possibly make the
search effort even more worthwhile. Nevertheless, even with our basic implementation of

the singular extensions, the improvement is still obvious enough to suggest that it is



| Table 5.5: Game Play Scores Between Two Different Versions of Abyss
Openings 30 sec. per move 100 sec. per move
Abyss+SIN | Abyss-SIN |[ Abyss+SIN | Abyss-SIN
1 0 2 1 1
2 1 1 0.5 1.5
3 1.5 0.5 1.5 0.5
4 2 0 1.5 0.5
5 1.5 0.5 1 1
6 1.5 0.5 1 1
7 0.5 1.5 1 1
8 1 1 2 0
9 1 1 2 0
10 1 1 0.5 15
11 1 1 2 0
12 1.5 0.5 0.5 L5
" Towls || 135 10.5 14.5 9.5

worthwhile to include these extensions. Although for microcomputers, it may be more

efficient to consider only one of them (e.g., PV-singular extensions only).

5.3 Null Move Quiescence Search

Null Move Quiescence Search, or Second-Order Quiescence Search [Beal 1989]
provides a different means of carrying out a selective search. Defining the usual quies-
cence search (e.g., capture search) as the first-order quiescence search, this second-level
quiescence search is able to discover as many tactical threats as the full-width search
witiiout adding any more special domain-specific knowledge. Since null move quies-
cence search provides a cheaper means of detecting tactics in chess (or Chinese Chess), a
new search framework can be introduced. We shall be able to do a full-width to some
shallower depth (as compared with solely full-width search) using the second-order
quiescence for its terminal nodes. A slower static evaluation function can be installed in
this case. In the extreme, we shall be able to do a 1-ply full-width search with posizional

factors being considered and then null move quiescence search considering only materi-
als [Beal 1991].
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5.3.1 Basic Implementation Issues

Some implementation issues of the null move quiescence search are discussed here.
These are mainly the enhancements with the transposition table management, the itera-
tive deepening and the futility cutoffs. All these heuristics provide a means to increase

the search efficiency.

5.3.1.1 Transposition Table Management

When implementing the null move quiescence search, transposition tables can not
only be used in the full-width search, but in the null move quiescence search as well.
However, since different criteria are used in the two different search phases, some con-

siderations have to be made to correctly and efficiently utilize the transposition tables.

The difference between the information stored in the two transposition tables is that
the first-order quiescence search (capture search) has been used to either raise the lower
bound or give cutoffs. In other words, the value obtained from the second-order quies-
cence search is different (or less reliable) than the value returned from a full-width
search. Hence, the value returned from a second-order quiescence search cannot be used

as a valid value or to update bounds in the full-width search.

The content of each transposition table entry can be found in Figure 5.3. Notice two
depth values are stored in the transposition table: one for full-width search (fdepth; stored
as flength) and the other for null move quiescence search (gdepth; stored as glength).
Figure 5.4 shows how the two search depths correspond to the search phases. The
pseudo codes for implementing the transposition table are illustrated in Figure 5.5 and
Figure 5.6, (function pvs() is for full-width search and function nmgs() is for second-
order quiescence search). Here we use the standard treatment originally given by Mars-

land and Campbell [1982] and later refined by Marsland [1992).

In function pvs(), the values stored in the transposition table can only be used when



struct {
unsigned long lock:
short move: /* best move for the current position */
short score; /* score for the current position */
char flength; /* depth for full-width search */
char qlength; /* depth for quiescence search */
char flag; /* either VALID or LBOUND or UBOUND */
}

Figure 5.3: Information Stored in Transposition Tables

the two depths for the previously searched sub-tree are no less than that of the current
sub-tree. In function nmgs(), however, we shall accept the values stored in the table
whenever the sum of the depths from the table is no less than that for the current position.
Since full-width search is more reliable than null move quiescence search, we should be
able to use the value from a full-width search to a null move quiescence search. For
function pvs(), two sub-tree depths are used; fdepth is for the depth in the full-width
search phase and, gdepth is for null move quiescence search. However, only one sub-tree
depth (gdepth) is provided for function nmgs(), since nmgqs() is called at the tip node of
pvs(), therefore the full-width search depth is always zero for the null move quiescence

search and thus can be omitted.

quiescence search
full-width search

— fdepth :J: qdepth ——;J
Figure 5.4: Depths Used for Null Move Quiescence Search
There is another possibility of utilizing the transposition tables when applying the

null move quiescence search, i.e., the value for the first-order quiescence search (capture
search). However, it should be noted that some different treatment is necessary if a tran-
sposition table is to be used for this purpose, since a capture search, unlike a full-width

search, considers capture moves only and therefore some information stored in the
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int pvs(side, position, a, B, fdepth, qdepth)
int side, position[90], a, B, fdepth, qdepth:
{

int successor([90], score, merit, lower, num moves, p,
flength, qlength, flag:;
struct { int from, to; ) moves([MAX MOVES], tmove;

if(retrieve(position, &merit, &flag, &tmove, &flength, é&qlength))
if(legal(tmove) && flength >= fdepth && qlength >= qdepth) {
switch(flag) |{
case VALID:
return(merit);
case LBOUND:
a = max(a, merit); break:;
case UBOUND:
B = min(B, merit); break;

if (a >= B)
return(merit):
}

if (fdepth <= 0) /* horizon node in full-width search? */
return(nmqgs (side, position, «, B, qdepth)); /* null move search */

score = =oo;
if (legal (tmove)) { /* move found in transposition table? */
successor = make(tmove, position); bmove = tmove;

score = -pvs(!side, successor, -B, -a, fdepth-1, gdepth);
if (score >= B)

goto out;
}

num_moves = generate(side, position, moves);
for(p = 0; p < num moves; p++)
if (moves[p] != tmove) {
successor = make (moves[p], position);
lower = max(a, score); '
merit = -pvs(!side, successor, -B, -lower, fdepth-1l, gdepth);
if (merit > score) {
score = merit;
bmove = moves(p):

if (score >= B)
goto out;
}

out:

if (fdepth >= flength && gdepth >= glength && score > =-ew) {
flag = (score >= B)? LBOUND: (score <= @)? UBOUND: VALID;

store(score, flag, bmove, fdepth, qdepth);
}

return(score);

Figure 5.5: Transposition Tables in Full-width Search
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int nmqs(side, position, a, B, qdepth)
int side, position[90], «, ﬁ, qdepth;

int successor[90], score, merit, lower, num moves, p,
flength, qlength, flag,
struct { int from, to; } moves[MAX_MOVES], tmove;

if (retrieve(position, &merit, &flag, &tmove, &flength, &glength))
if (legal (tmove) && (flength + gqlength) >= gdepth) {
awitch(flag) {
case VALID:
return(merit});
case LBOUND:
0 = max(x, merit); break;
case UBOUND:
= min(B, merit); break;

if(ax >= B)
return(merit) ;
}

if (gdepth <= 0) /* horizon node in null move quiescence search? */
return(evaluate(side, position, a, B)); /* capture search */

score = =co;
if (legal (tmove)) { /* search transposition table move first */
successor = make (tmove, position); bmove = tmove:
score = -nmqs (!side, successor, -f§, -a, qdepth-1) ;
if (score >=B)
goto out;

/* null move quiescence search */
merit = -evaluate(!side, position, -B, -max(a, score)):
if (merit > score) |
score = merit;
if (score >= B)
goto out;

num moves = generate(side, position, moves):;
for{p = 0; p < num moves; p++)
if (moves[p] != tmove) {
successor = make (moves{p], position):
lower = max{(0, score);
merit = -nmqs(!side, successor, -B, -lower, qdepth-1);
if (merit > score) |
score = merit;
bmove = moves{p]:

}
if (score >= B)
goto out;

out:

if (qdepth >= (flength + glength) && score > -w) o
flag = (score >="f)? LBOUND: (score <= a)? UBOUND: VALID:
store(score, flag, bmove, 0, gdepth);

/* full-width search depth for current sub-tree is zero */
}

return(score);

Figure 5.6: Transposition Tables in Null Move Quiescence Search
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transposition table, like bounds for a position, cannot be efficiently exploited. The current

version of Abyss doesn’t include this enhancement and it will be left for future work.

5.3.1.2 Iterative Deepening

It has been pointed out by Beal [1991] that when implementing the null move quies-
cence search, it is necessary to use iterative deepening to keep the cost to a reasonable
level. In practice, three alternative ways may be considered. Suppose we are doing a
search with full-width depth of d and null move quiescence depth of ¢, and we represent
each iteration with the pair (full-depth, quiescence-depth). The first approach is to finish
the null move quiescence search with the shallowest full-width depth and then keep on
incrementing the full-width depth with the deepest null move quiescence depth; i.e., the
iterations will go like (1, 1), (1,2), ... (1, q), (2, q), ... (d, @).

The second approach is to finish the fuli-width search with the shallowest quies-
cence depth first before going deeper in the null move quiescence search; i.e., the itera-
tions will go like (1, 1), (2, 1), ... (d, 1), (d, 2), ... (d, q). Both of these approaches have
been implemented in Abyss and are illustrated in Figure 5.7 and Figure 5.8, respectively.
In both figures, fdepth stands for the maximum full-width search depth and gdepth is the

maximum null move quiescence search depth.

; d <= fdepth; d++) {
)

q = qdepth;
while(q <= gdepth) {
pvs(a, B, 4, q

-y

}
}

Figure 5.7: Iterative Deepening on Null Move Quiescence Search First
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for(d = 1; d <= fdepth:; d++) |
1f(d < fdepth)

q=1
else
g = gdepth;

for(i = 1; i <= q; i++) |
pvsi{a, B, 4, i);
G

}
}

Figure 5.8: Iterative Deepening on Fﬁli:;i'idth Search First

There is also a third way of adding the iterative deepening, i.e., the internal iterative
deepening. In this case, the iterative deepening applies not only to the root, but to the tip
node for full-width search (root for null move quiescence search) as well. However, no
experiments were carried out on this implementstion because we believe the difference

lies only in search efficiency and it should have little effect on move selections.

From Table 5.6, we can see the difference is obvious: the iterative deepening on null
move (quiescence) search first searches more nodes as well as yielding a poorer success
rate. In the subsequent experiments, we shall use the second implementation of the null

move quiescence search, i.e., iterative deepening an full-width search first.

Table 5.6: Iterative Deepening in Null Move Quiescence Search

d.q) Tierative deepening on null move scarch first | licrative deepening on full-width search first
@.q nodes ratio scores nodes ratio scores
@0 196059 1.00 4(22) 190724 0.97 2(20)
2.2) 955020 1.00 18(32) 890854 0.93 18(34)
2,3) 2227904 1.00 20(32) 2129815 0.96 20(36)
2.4) 9363120 1.00 36(44) %240188 0.88 4((48)
2,5) 30344799 1.00 38(50) 17992862 0.59 40(48)

5.3.1.3 Futility Cutoffs

In Chapter 3, we show that the heuristic of futility cutoffs has proved to be success-
ful in the full-width search. In the case where null move quiescence search is adopted, it

is still possible to exploit this heuristic as an atterpt to reduce some unsuccessful node
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expansions. Alithough the heuristic is best applied at the frontier nodes (in the null move
quiescence search phase), it is possible that such a heuristic could also be worth trying at
all nodes in the quiescence search. There is even another possibility, i.e., to use futility
cutoffs at frontier nodes of the full-width search, but the chance for success here seems
intuitively to be doomed since this will mainly discard the moves that cover the threats

found by the null move quiescence search.

Further discussion may be necessary, but the best solution is through practice. Here
we provide our experimental results on the possible improvements of null move quies-
cence search when futility cutoffs are used (Table 5.7); they are, applying the futility cut-
off only at the frontier nodes of the quiescence search (+fut_front) and at all nodes of
the quiescence search (+fut_all). In all experiments, a fixed depth (1-ply) for full-
width search is adopted and the depth for null move quiescence search is represented as

Qdepth.

Table 5.7: Futility Cutoffs in Null Move Quiescence Search
Qdepth ~fut +fut_front o +fut_all
P nodes ratio | scores nodes ratio | scores nodes ratio | scores
1 44615 | 1.0 4(16) 44615 | 1.0 4(16) 44615 | 10 4(16)
2 160107 | 1.0 2(12) 158634 | 099 | 2(12) | 158634 | 099 | 2(12)
3 498790 | 1.0 | 12(24) | 496286 | 099 | 12(24) | 479815 | 0.96 | 10(24)
4 1196771 | 1.0 | 12(26) | 1185584 | 0.99 { 12(26) | 1118394 | 0.93 | 12(24)
S 3456981 | 1.0 | 30(46) { 3443252 { 1.0 | 30(46) | 3126651 | 0.90 | 28(44)
6 7699981 | 1.0 | 34(48) | 7647224 | 0.99 | 34(48) | ©911076 | 0.90 | 30(46)

From Table 5.7, it can be concluded that adding futility cutoffs in the null move
quiescence search brings little success. If applying the futility cutoffs at all nodes during
the null move quiescence search, a maximum node account saving of 10% is possible but
the success rate also deteriorates (up to 4 percentage points). Using the futility cutoffs
only at frontier nodes gives almost no savings in node account (up to 1%) but preserves
the success rate. This is because the game-tree of null move quiescence search naturally
shrinks to avoid searching those "non-tactical" moves and explains why no futility cut-

offs will be used in all the following experiments.



5.3.2 Experimental Results on Null Move Quiescence Search

The experimental results on null move quiescence search are presented in Table 5.8.
A total maximum depth of 7 is chosen, bringing the maximum node count close to that of
the full-width search, so further cross-comparisons with different extension heuristics are
possible. Some experiments with full-width search depth of 2 are also carried out. In all
the experiments, positionai evaluations are only considered in the full-width search but
not in the null move quiescence search and the capture search. In Table 5.8, Deprh and
Qdepth are the search depth for full-width and null move quiescence search respectively.
The average branching factors (a.bf.) between two consecutive quiescence search depths
are also calculated (which is the geometric average on every single branching factor).

The node ratio is obtained from comparing two searches with the same total search depth.

Table 5.8: Experiments on Null Move Quiescence Search
Depth =1 Depth =2
Qdepth nodes ratio | a.b.f. | scorcs Qdepth nodes ratio | a.b.f. | scores
1 44615 | 1.00 | 1.00 | 4(16) 0 74565 | 1.67 | 1.00 2(22)
2 160107 | 1.00 | 3.80 | 2(12) 1 192764 | 1.20 | 3.57 2(20)
3 498790 | 1.00 | 296 | 12(29) 2 890854 | 1.79 | 4.41 | 18(34)
4 1196771 | 1.00 | 240 | 12(26) 3 2227904 | 186 | 2.52 | 20(36)
5 3456981 | 1.00 | 2.55 | 30(46) 4 8240188 | 238 | 3.03 | 40(48)
6 7699981 | 1.00 | 2.07 | 34(48) 5 17992862 | 2.34 | 2.05 | 40(48)

From Table 5.8, we can see null move quiescence search performs well in terms of
success rate reiative to the node count. For instance, a null move quiescence search with
depths (1, 5) yields a success rate of 30(46) with a total node count of 3456981. On the
other hand, a full-width search at depth 5 when not considering any extensions only gives
a success rate of 22(34) with a total node count of 4153931 (Table 3.1). This clearly
shows the effectiveness of the null move quiescence search in detecting tactics. In the
above case, a total depth of 6 is achieved when using the null move quiescence search,

and fewer nodes are expanded as compared to a full-width search at depth 5.
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5.3.3 Combining Other Extensions

When using the null move quiescence search, it is also possible to add other selec-
tive extension heuristics like knowledge extensions and singular extensions as we have
discussed previously. In this section, we consider experiments with one particular exten-
sion heuristic, the check evasions. Adding other extension heuristics is worth trying but

will be left for future work.

In Table 5.9, we present experimental results on adding the check evasions when
implementing the null move quiescence search. Two more experiments are done: (a) to
add check evasions only in null move quiescence search (—chk1l+chk2) and (b) add
check evasions in both full-width and null move quiescence search (+chk1+chk2). The

two depths for full-width and null move search are presented in a depth pair (d, g).

Table 5.9: Adding Check Evasions in Null Move Quiescence Search

No extensions [ Extensions in null move search | Extensions for both phases
d.q -chk1-chk2 —~chkl+chk2 +chk1+chk2
nodes ratio | scores nodes ratio | scores nodes ratio | scores

aPn 44615 | 1.00 | 4(16) 45611 1.02 4(16) 45611 | 1.02 | 4(16)
(1,2 160107 | 1.00 | 2(12) 158322 | 099 2(18) 170317 | 1.06 | 6(18)
(1,3) 498790 | 1.00 | 12(24) 523382 | 105 | 14(30) 567449 | 1.14 | 16(28)
(1,4) | 1196771 | 1.00 | 12(26) 1427207 | 1.19 | 26(46) | 1608529 | 1.34 | 30(44)
(1,5) | 3456981 | 1.00 | 30(46) 3951971 114 | 32(54) | 4481973 | 1.30 | 34(50)
(1,6) | 7699981 | 1.00 | 34(48) | 12316527 | 1.60 | 36(56) | 13751614 | 1.79 | 38(52)
2.1 190724 | 1.00 | 2(20) 186890 | 0.98 | 10(34) 201980 | 1.06 | 16(36)
(2,2 890854 | 1.00 | 18(34) 966927 | 1.09 | 28(40) | 1009684 | 1.13 | 28(40)
(2,3) | 2227904 | 1.00 | 20(36) 2743197 | 123 | 38(50) | 3055821 | 1.37 | 38(48)
(2.4) | 8240188 | 1.00 | 40(48) 9096365 | 1.10 | 40(60) | 10264895 | 1.25 | 42(58)
(2,5) | 17992862 | 1.00 | 40(48) | 26591660 | 148 | 42(62) | 31619370 | 1.76 | 42(60)

The extension on check evasions, as in the full-width search, combines well with the
null move quiescence search. The experiments of adding the check evasions solely in the
null move search phase gives an average success rate increase of 5 percentage points
(mostly comes from the search at a total depth of 5) with a node count increase of 17%.
Including the check evasions at full-width search gives a further 2 percentage points

increase on success rate with an average node increase of 29%. We can thus conclude
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that the check evasion heuristic performs well when combined with null move quiescence
search. Also, for searches with the same total depth, the one with a deeper full-width
search depth performs significantly better than the other but also yields a higher node
ratio. However, the encouraging result is that with a deeper full-width search depth (2
here), a search with a shallower null move search depth can outperform a search with a
shallower full-width search depth but a deeper total search depth. For example, compare
experiments with check evasions and search depths (2, 4) and (1, 6): the former performs
clearly better both in terms of node count and success rate. Further, we see little
improvement on success rate from search depths (2, 4) to (2, 5). This could be tem-
porary; searching to deeper depths may result in a better success rate, but we think this
can be more related to the nature of null move quiescence search itself. As pointed out by
Newborn when discussing the Gamma Algorithm [Newborn 1975}, most of the tactical
threats in chess can be detected by a 4-ply full-width search. Null move quiescence
search should be able to detect threats more efficiently, but loses its benefit when its
depth goes beyond 4. Perhaps the full-width search depth should be deep enough to hold
this assumption and that’s why we don’t see such a phenomenon for a shallower full-

width search depth.

Apart from the check evasions, there are of course other possibilities for adding
extension heuristics in the null move quiescence search. Knowledge extensions, as
described in Chapter 4, and singular extensions can all be included for better perfor-
mance. Further experiments are necessary to determine which heuristics work well in the
null move quiescence search. Also, we may search to a deeper full-width depth to further

reveal the impacts of differarit depth combinations.

5.4 Relative Importance of Extension Heuristics

In the earlier sections of this thesis, we have discussed the selective extension

heuristics and presented our experimental results. The heuristics we are interested in
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include knowledge extensions, singular extensions and null move quiescence search. We
have shown the effectiveness of adding these heuristics to the normal af search frame-
work. Yet we have to determine the relative importance among these hedistivs and this

will be carried out in this section.

According to Marsland and Rushton [1973], Gillogly [1978], Thompson [1982] and
Schaeffer [1986], there are two traditional techniques for comparing two programs
without human intervention. They are: (1) let two programs play a certain number of
games, using some standard opening positions; (2) measure the performance of two pro-
grams on a benchmark and compare the number of correct solutions found by each pro-
gram. The former technique is perhaps the more accepted way nowadays, but it has a
drawback of demanding too much time. We have already used this technique as a supple-
mentary way to compare the program with singular extensions against the program
without singular extensions in Section 5.2.3. However, since we are carrying out the
experiments in a new domain, we are interested not only in the performance of different
extension heuristics, but also in their relative search efficiencies. To keep consistency,

only the latter technique (measure the performance on a benchmark) is used.

In the previous experiments, we have compared the performance on an average
basis. Here, we shall only compare a heuristic if it achieves a success rate better than
30%, excluding those with a node count more than triple the one with no extensions at all
(ratio less than 3.0). For full-width search, such a success rate can be achieved by a
search to depth 5 when combining at least check evasions. The depth S is critical for
microcomputers where a search only to depth S can be acquired under normal tournament
conditions (40 moves per 2 hours). Null move quiescence search with a total depth of 5
can achieve the same result when combining check evasions, but with one difference, it
searches fewer nodes. Notice the results on singular extensions will not be included

under this design since the node ratios all exceed the required bound (Table 5.3).
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The same formula introduced in Section 4.7 to calculate relative importance will be
used here. The results of these calculations can be found in Table 5.10. Apart from the
total nodes and the items used to calculate the relative importance, the rank for each
heuristic combination is also appended. All combinations excluding Null Move (which
refers to null move quiescence search) are full-width searches to a depth 5 with the exten-
sions shown in the table. If it is a null move quiescence search, two depths are given in
brackets, indicating the depth for full-width search and null move quiescence search. The
check evasion combinations for null move quiescence search are described either as
2nd-order (only in null move quiescence search) or Both (in both full-width search and
null move quiescence search), if they are enabled for one experiment. Rate and hits stand

for success rate and correct move hits, respectively.

__Table 5.10: Relative Importance of Different Extensions

Combination nodes ratio | rate | hits RI rank
No extensions 1887356 | 1.00 | 18 | 30 | 33.00 6
Check Evasions 2684653 | 142 | 32 | 50 | 40.14 3
Check Evasions & Recaptures 3062946 | 162 | 30 | 48 | 33.33 5
Check Evasions & Piece Evasions 4493750 | 238 | 30 | 52 | 2353 14
Check Evasions & King-Threats 3510887 | 1.8 | 34 | SO | 31.72 7
Check Evasions & Forced Moves 3645802 | 193 | 36 | SO | 31.61 8

Check Evasions & Recaptures & Picce Evasions | 5309546 { 2.81 | 36 | 52 | 2206 | 15
Check Evasions & Recaptures & King-Threats | 4040137 | 214 | 32 | 46 | 2570 | 12
Check Evasions & Recaptures & Forced Moves | 4467591 | 237 | 36 | SO | 2574 | 11
Null Move (1, 5) & No Extensions 3456981 | 183 | 30 | 46 | 2896 9
Null Move (1, 5) & Check Evasions 2nd-order 3981971 [ 209 | 32 | 54 | 2823 | 10
Null Move (2, 3) & Check Evasions 2nd-order 2743197 | 145 | 38 | 50 | 4345 2

Nuil Move (1, 4) & Check Evasions Both 1608529 | 085 | 30 | 44 | 61.18 1
Null Move (1, 5) & Check Evasions Both 4481973 | 237 | 34 | S0 | 2489 ] 13
Null Move (2, 3) & Check Evasions Both 3055821 | 1.62 | 38 | 48 | 38.27 4

Table 5.10 clearly shows that null move quiescence search, when combined with
other extensions like check evasions, performs much better than other heuristics in terms
of success rate and node count [Null Move (1, 4) & Check Evasions Both, ranking 1st;
Null Move (2, 3) & Check Evasions 2nd-order, ranking 2nd). It also shows that search-
ing with more than 1 ply in the full-width phase can increase the success rate [an 8 per-

centage points increase from Null Move (1, 4) & Check Evasions Both to Null Move (2,
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3) & Check Evasions 2nd-order]. If we only consider full-width search, check evasions
(ranking 3rd) is the most important extension heuristic and check evasions plus recap-
tures (ranking Sth) is next, though in terms of success rate, check evasions plus king-
threat (ranking 7th) and check evasions plus strictly forced moves (ranking 8th) are rela-

tively better.

However, we still have to solve the problem of determining the relative playing
strength. Since the strength of null move quiescence search is on tactics, it is possible
that a program with null move quiescence search will play positionally worse than a pro-
gram with only full-width search. Another related problem is how to implement the
time-control routine for null move quiescence search if we want to spend a fixed amount
of time on each move, because we have two depths to increase now. Should we finish a
full-width search to a fixed depth first (e.g., full-width search to depth 2 and then null
move quiescence search forever until the alarm rings)? Or should we finish a null move
quiescence search to a fixed depth first (e.g., null move quiescence search to depth 4 with
1-ply full-width search and then full-width search forever)? Or should we increase both

depths in turns? Certainly, further experiments are required to answer these questions.



Chapter 6

Conclusions

In this thesis, we have experimented with the selective search extension™euristics as
well as the enhancements on the of search algorithm in the domain of (Meinese Chess.
The extensions include knowledge extensions such as check evasions, reamptures, king-
threats, piece-evading moves and strictly forced moves, singular extensions and null
move quiescence search. The results for af enhancements like interior move ondering
heuristics (transposition tables, refutation tables and history heuristic), null move search
and futility cutoffs are also presented as a basis for the experiments on selective exten-

sions. The following conclusions are based on the experimental results as presented in

the previous chapters.

First, we conclude that the af enhancements successfully carry over from chess to a
game like Chinese Chess. The interior move ordering heuristics experimented proved to
be as efficient as for chess and more than a half node count saving was achieved when
combining heuristics such as transposition tables, refutation tables and history heuristic
(Section 3.2). Null move search and futility cutoffs can decrease the node count although
they slightly lower the move qualities sometimes. However, as our experiments show, the
savings for the null move heuristic [Goetsch and Campbell 1990) in Chinese Chess is not
as great as for chess. This could be a property of the test suite we chose for the experi-
ments, but it also could be attributed to the difference between the two games. Because of
the more tactical nature of Chinese Chess, it is possible that heuristics like null move
seerch and futility cutoffs perform less efficiently and error-free. Nevertheless, because

of their great savings, even for Chinese Chess, it is still worthwhile to include them as an

enhancement for normal af search.

Second, we show that check evasion is the heuristic with the highest relative impor-

tance; it proved to be most search efficient with most improvement on move qualities.

66
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Also, when combining all extension heuristics together (excluding null move quiescence
search), we see that it is possible to have better move selections when adding more exten-
sions. However, combining all of them proved to be not worthwhile, as this brings the
node count to a level higher than that of a brute-force search with a deeper search depth.
Adding one more carefully chosen extension heuristic to check evasions can improve the
performance and we see that check evasion plus recaptures is the best combination in this
case, although two other combinations, check evasion plus king-threats and check eva-

sion plus strictly forced moves, are both worth trying (Section 4.7).

Third, using the basic implementation of singular extensions didn’t prove to be effi-
cient in terms of correct moves found relative to node count: the nodes searched
increased dramatically with a marginal performance improvement. Further experiments
show that adding singular extensions can reasonably make the program play stronger
(Section 5.2.3) and therefore it is still worthwhile to consider them in the chess (Chinese
Chess) playing programs.

Finally, among all the selective search extensions in our experiments, null move
quiescence search with check evasions proves to be the most efficient means of carrying
out a selective search. Usually, null move quiescence search is able to search at leas 2
ply deeper than the normal af search and this extra depth is crucial for revealing more
tactics. Regarding the implementation issues of null move quiescence search, we see that
most of the o} enhancements like transposition tables, iterative deepening and extension
heuristics like check evasions all successfully carry over. And, when applying iterative
deepening to null move quiescence search, finishing iterations on full-width seaich
(nodes before null move quiescence search is amplied) first and then iterating on null
move quiescence search with the maximum ful, idth search depth provides a higher

search efficiency.

There is however some work remaining to be done. First, the experimental results
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achieved in this thesis are obtained by a search to a maximum depth 5 (or equivalent to
depth 5 for nuli move quiescence search). While depth 5 is the normal search depth for
microcomputers under tournament conditions, it is probably not enough to show that the
same conclusions drawn in the thesis will stand for deeper searches. Because of
hardware limitations, we were only able to complete the search to depth S: search to

deeper depth is recommended when faster hardware or software (e.g., a better move gen-

erator) is available.

Also, although we have concluded null move quiescence search does well in finding
tactics, we still have to show how it can play equally well against a program that employs
the best full-width search model (normal o search with best selective extensions exclud-
ing null move quiescence search). When implementing a program that adopts null move
quiescence search, some experiments are necessary to decide what depth combination
and means of depth increment should be used if a fixed amount of time is allocated for
each move selection. Still other experiments may be required on considering more exten-
sion heuristics (like singular extensions and other knowledge extensions) for null move

quiescence search.
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Appendix 1
The Basics of Chinese Chess

In this appendix, we give a brief description of the game of Chinese chess, its
outlook (board and pieces), rules, relative value of each piece and the notation used to
record a game. A more detailed description can be found in a variety of books on
Chinese Chess (e.g., H-t. Lau, Chinese Chess, Charles E. Tuttle Co. Inc., Japan, 1985).

1.1. Board and Pieces
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Initial Chinese Chess Board Configuration
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The Chinese chess board consists of 9 vertical lines and 10 horizontal lines. There
are two horizontal lines in the middle of the board called river which separates the two
sides. Each of the two players (called either Red or Black), starts the game with 16
pieces: one King, two each of Guards, Bishops, Knights, Rooks and Cannons, and five
Pawns. Unlike chess, the pieces are placed at intersections rather than squares. The nota-
tion used in this thesis is algebraic: vertical lines are denoted by the letters a to i, from
left to right; horizontal lines are denoted by the numbers 0 to 9, from bottom to top.
Using this notation, it is easy to present each move with its from square and to square,
i.e., b2e2 means the b2 Cannon moves horizontally to the center file (e-file) in the start-
ing position. The initial board setup is shown in the above figure. It can also be
represented in co-ordinates below:

Initial Board Position
Red:

K(e0), R(a0, i0), C(b2, h2), N(b0, h0), B(c0, g0), G(d0, f0), P(a3, c3, €3, g3, i3)
Black:

K(e9), R(a9, i9), C(b7, h7), N(b9, h9), B(c9, g9), G(d9, 19), P(a6, c6, 6, gb, i6)



73

1.2. Rules of Chinese Chess
In Chinese chess, each piece moves identically as follows:
King, or General

The King moves either vertically or horizontally in a confined area called Palace
(marked by diagonals on a Chinese Chess board). It is illegal to move the King into
a position that makes it oppose the enemy’s King in the same line without any inter-
vening pieces. When the King is in check and cannot avoid being captured in the
next move, it is said to be checkmated and the side who gets checkmated loses the
game. A player also loses the game if he has no legal moves left on the board; there
is no stalemate rule as in chess.

Rook, or Warrior
The Rook has exactly the same properties as the Rook in chess.
Cannon, or Gunner

The Cannon is a special piece in Chinese chess. It moves similarly to a Rook, except
when it captures an enemy’s piece. When capturing, and only when capturing, a
Cannon jumps over one piece, of either side, which must be between the cannon and
the piece captured. The piece captured must be in the same line as the Cannon and
the jumped piece.

Knight, or Horse

The Knight's move resembles the Knight in chess, with an important difference that
a Knight cannot jump over pieces (it can be blocked). To determime whether a
Knight is blocked or not, we can separate the Knight’s move into two steps: first it
moves one unit parallel to a board edge, and then it diagonally moves across one
square; the intermediate point must be vacant for the move to be legal.

Pawn, or Soldier

The Pawn always moves one square at a time. While still on its own side of the
river, it can only move directly forward. Once it crosses the river, it gains extra
moves and it can move sideways as well. The Pawn doesn’t promote as in chess so
placing a Pawn on the opponent’s back rank offers no special advantage.

All the above mentioned pieces except the King are called atracking pieces because they
can cross the river. The following two pieces, Bishop and Guard, can only remain in their
own territories and thus are called defensive pieces.

Bishop, or Elephant

A Bishop moves from one corner to the opposite corner of a 2X2 rectangle. It can-
not jump over a piece, so if the center of the rectangle is occupied, the move cannot
be made. There are only seven points that a Bishop can go to.

Guard, or Assistant

The Guard is another defensive piece. It moves diagonally across one square, and
must stay inside the Palace. There are only five points that a Guard can reach.

Chinese chess has no artificial exceptions to the general move rules necessary in chess
(pawn promotion, castling, stalemate and en passant captures). It does however have one
special rule: it is illegal to play a move that repeats the position for the third time if the
move is a threat (either a check, threat to mate, or threat to win material by forced
moves). There are however some exceptions to this repetition rule. Besides, different
Chinese Chess associations in the world have their own definitions of this special rule
and it is hard to say which one is most correct. However, it is usually safe to count the
number of threat moves between two repetitive positions for both sides and determine the
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legalness of the last threat move; it is illegal to make a threat move for a side if this
makes his total number of threat moves exceed the opponent’s. Please refer to Section
2.5 for a more detailed discussion on the repetition rule in the thesis. A game of Chinese
Chess ends by a checkmate (win or loss depending on who gets checkmated), a legal
third-time-repetition (draw), or if no capture is made in a consecutive 60 moves (draw).

1.3. Piece Rankings

It is difficult to give a precise value to each piece in a particular position. However,
they can be ranked roughly as follows:

Piece Ranking  Value used in Abyss

King o 7000

Rook 9 1800

Cannon 4.5 900 in opening, 800 in endgame
Knight 4 800 in opening, 900 in endgame
Bishop 2 300

Guard 2 300

Pawn 1 100

The values given here are only static values. Some positional factors like head-
cannon, side-cannon, passed pawns and three-pieces-beside (king) have to be considered
in the evaluation function to make the board assessment more accurate.
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Appendix 2
The Fifty Middle Game Positions Used for Experiments

In this appendix, we present the SO middle game positions used for the experiments
in the thesis and their solutions. These positions are extracted from a standard work by
Tu Jing-ming [Chinese Chess Dictionary, pp. 105-124, Shanghai Cultural Press,
Shanghai, P.R.C., 1985]. The Chinese Chess board is represented by all the existing
pieces and their corresponding squares (in brackets). The piece names used are K for
King, R for Rook, N for Knight, C for Cannon, B for Bishop, G for Guard and P for
Pawn. Each square is defined by a file number (vertically from a to A) and a rank number
(horizontally from 0 to 9).

Position #1
Red: K(e0), R(d9, b0), C(a9, a2), B(e2, g0), G(f0), P(a4, c4, i3)
Black: K(e8), R(b6, c3), C(b4), N(g5), B(g9, €7), P(i6, e5)
Solution: 1. b0d0 b6b8 2. a9a8 black has to sacrifice his rook or he gets mated.

Position #2
Red: K(e0), R(c8), C(b9, c2), N(g2), B(a2, e2), G(el, f0), P(13, 3, g3, i3)
Black: K(e9), R(d4), C(e8, i7), N(g7), B(c9, €7), G(d9, 19), P(a6, €6, i6, g5)
Solution: 1. a2c4 e8d8 2. c8¢9 with a winning attack.

Position #3
Red: K(e0), R(b0), C(d1), N(f6, g4), B(e2, g0), G(el, f0), P(c4, a3, i3)
Black: K(e9), R(bS), C(b2), N(f5, d3), B(g9, €7), G(d9, e8), P(a6, c6, i6)
Solution: 1. eid2 d3f4 2. f6g8 e919 3. dif1 b2b3 4. d2el red should win a piece.
Position #4
Red: K(e0), R(d8), C(h6, b2), N(b8), B(cO, g0), G(d0, f0), P(g4, a3, i3)
Black: K(e9), R(b7), C(d9), N(i7, f4), B{c9, £9), G(f9, e8), P(a6, €6, gb, i6, d3)
Solution: 1. b2e2 fde2 2. h6e6 e817 3. cde2 and 4. d8d9, red wins a piece.

Position #5
Red: K(e0), R(d8), C(e2, d1), N(a2, g2), B(c0, g0), G(d0, f0), P(a4, e4, g4, c3)
Black: K(e9), R(a6), C(b7, i5), N(g7, bS), B(c9, 7), G(d9, e8), P(e6, g6, i6, c5)
Solution: 1. ada$ a6a$ 2. dlai b5a3 3. e2e3 b7a7 4. d8a8 red should win a piece.
Position #6
Red: K(e0), R(d4), C(g4, g2), N(c2), B(e2, g0), G(d0, f0), P(a3, i3)
Black: K(e9), R(bS), C(c7, i7), N(d5), B(e7, g5), G(f9, e8), P(a6, i6)
Solution: 1. g4hd i7h7 2. hdhS b5cS 3. c2b4 ¢7d7 4. d4dS red wins a piece.
Position #7
Red: K(¢0), R(d6, b2), C(e4, c2), N(g2), B(g4, e2), G(dO, f0), P(c6, a4, i3)
Black: K(e9), R(c3, f1), C(g9, g3), N(g7), B(c9, ¢7), G(d9, e8), P(a6, g6, i6)
Solution: 1. d6d3 c3c4 2. d3e3 cdc6 3. e3g3 red wins a piece.
Position #8
Red: K(e0), R(d8, c0), C(c2, e1), N(e2, g2), B(a2, g0), G(d0, f0), P(a3, €3, g3, i3)
le:)sck: K(e9), R(b4, c4), C(e7, b3), N(c7, £5), B(c9, g9), G(d9, 19), P(ab, €6, i6, c5,

g
Solution: 1. elbl c4d4 2, d8d4 bdd4 3. c2¢7 red wins a piece.
Position #9
Red: K(e0), R(h4, b0), C(b2, €2), N(b4, g2), B(c0, g0), G(el, f0), P(a4, c3, i3)
Black: K(e9), R(a9, g3), C(e7, e3), N(c7, g7), B(c9, £9), G(d9, 19), P(a6, c6, 6, g6,
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i6)
Solution: 1. bdd5 c7a8 2. g2e3 e7e3 3. b2b3 pin, red skould win a piece.
Position #10
Red: K(e0), R(f6), C(e2), N(e3, c2), B(c0), G(e1, d0), P(a3, c3)
Black: K(e9), R(g5), C(i3), Ntc7, 5), B(g9, €7), G(d9), P(a6, i6, c5)
Solution: 1. e2eS g5eS5 2. e3g4 fork, red should win a piece.
Position #11
Red: K(e0), R(fS5, f1), C(b4, €2), N(h3, c2), B(c0, g0), G(dO0, f0), P(c4, a3, 3, i3)
Black: K(e9), R(h8, g4), C(bS, h5), N(c7, d4), B(g9, e7), G(d9, e8), P(a6, 6, i6, c5)
Solution: 1. c2d4 bSf5 2. d4fS gdcd or g4g6 3. f5d6 e8d7 4. c4c5 red has more
pawns3. £5d6 c4d4 4. d6¢8 d4d8 5. bdb9 red wins.
Position #12
Red: K(e0), R(fS, f1), C(c7, a2), N(c2), B(e2), G(e1), P(c4, a3, e3)
Black: K(e9), R(h9, g0), C(i0), N(f0), B(c9, €7), G(d9, 9), P(a6, c6, €6, i6)
Solution: 1. 59 h919 2. 19 e9f9 3. e2g0 red maintains material advantage.
Position #13
Red: K(e0), R(b0), C(g1), N(e6), B(e2, g0), G(d0, f0), P(i4, a3, e3)
Black: K(e9), R(eS), N(dS5, b4), B(g9, e7), G(d9, £9), P(a$5, ed)
Solution: 1. e6¢5 e7c5 2. b0bd ede3 3. glel equal.
Position #14
Red: K(e0), R(h9), C(g0), N(f2), B(e2, c0), G(el, d0), P(f5, a3, i3)
Black: K(e9), R(g6), C(f7), N(bS), B(c9, e7), G(d9, 19), P(a6, €6, i6)
Solution: 1. f2g4 e7gS 2. g4i5 double attack, red wins the exchange.
Position #15
Red: K(e0), C(g6, h5), N(g8, a2), B(e2, c0), G(el, d0), P(e4, g3)
Black: K(e8), C(i3, b1), N(b7, i6), B(g9, €7), G(d9, 19), P(e6, g5)
Solution: 1. g6g7 b7cS 2. g7i7 e8d8 3. i7i3 red wins a piece.
Position #16
Red: K(e0), R(h4, a0), C(b4, e2), N(g2), B(c0, g0), G(d0, f0), P(g4, a3, 3, i3)
Black: K(e9), R(a9, h9), C(h7, b5), N(c7), B(c9, £9), G(d9, 19), P(a6, e6, i6, c2)
Solution: 1. a0a2 c2b2 2. bded c9¢7 3. a2b2 with initiative.
Position #17
Red: K(e0), R(h6), C(eS, d2), N(d3, g2), B(e2, c0), G(el, d0), P(e3, i3)
Black: K(e9), R(f5), C(f7, c3), N(a7, 6), B(g9, €7), G(f9, e8), P(c6, a5)
Solution: 1. g2hd4 £5f1 2. d2d1 f1f4 e3ed red should win a piece.
Position #18
Red: K(e0), R(e4, i0), C(h2), N(ad, c2), B(e2, c0), G(el, d0), P(g4, a3, i3)
Black: K(e9), R(i9, b5), C(e5), N(h9, c7), B(c9, 29), G(d9, 19), P(a6, g6, i6)
Solution: 1. c2d4 bSdS 2. adb6 d5d6 3. b6c8 d6d8 4. e3ed f9e8 5. h2h8 red wins.
Position #19
Red: K(e0), R(c0), C(eS5), N(e3, i2), B(e2, g0), G(f2, d0), P(a3, i3)
Black: K(e9), R(bS), C(e4, h2), N(f5), B(g9, a7), G(d9, 19), P(a6, i6)
Solution: 1. f2el b5eS 2. e3g4 red wins back the piece, equal.
Position #20
Red: K(e0), R(d6, h0), C(e2, c1), N(e5, a2), B(i2, c0), G(d0, f0), P(g4, €3, i3)
Black: K(e9), R(h6, c4), C(d7, h3), N(g7, d5), B(c9, €7), G(d9, e8), P(ab, €6, i6, c5)
Solution: 1. gdgS e7g5 2. d6dS e6eS 3. clc3 h3h4 4. e2c2 hded 5. e3ed cded 6.
d0el still threatening mate therefore red wins material.
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Position #21
Red: K(e0), C(d2, £2), N(f5, g2), B(i2, c0), G(el, d0), P(a4, e3)
Black: K(e9), C(g7, g3), N(bS, d5), B(g9, €7), G(f9, e8), P(a6, g6, i5)
Solution: 1. i2g4 g6g5 2. f5g7 dSe3 3. f2e2 red wins a piece.

Position #22
Red: K(e0), R(c6), C(d2, €2), N(c2, g2), B(c0, g0), G(el, d0), P(g4, a3, €3, i3)
Black: K(e9), R(f8), C(b7, €7), N(g7, d5), B(g9, a7), G(d9, 19), P(a6, €6, g6, i6)
Solution: 1. c2d4 d5f6 2. c6¢7 f8b8 3. d2b2 g7e8 4. c7e7 b7c7 5. €717 b8b2 6.
e2e6 e8¢c9 7. f7c7 red wins a piece.

Position #23
Red: K(e0), R(eS, h3), C(e2), N(a2, 0), B(c0, g0), G(el, d0), P(a4, g4, i3)
Black: K(e9), R(h9, b3), C(h4, g3), N(g7), B(g9, 7), G(f9, €8), P(a6, g6, i6)
Solution: 1. e2e3 hdad or g3gl 2. e3e7 and 3. h3b3 2. h3g3 red wins a piece.

Position #24
Red: K(e0), R(b9, h0), C(h6, d2), N(g2, al), B(e2, g0), G(el, d0), P(g4, a3, i3)
Black: K(e9), R(c8, h8), C(e7, b4), N(g7, d5), B(g9), G(d9, 8), P(a6, €6, g6, i6)
Solution: 1. h6e6 threatening mate therefore wins material.

Position #25
Red: K(e0), R(f6), C(e4), N(a2, g2), B(e2, c0), G(el, d0), P(a4, c3, €3, i3)
Black: K(e9), R(b2), C(g3), N(h8, a?), B(c9, €7), G(f9, e8), P(a6, i6, c5)
Solution: 1. f6f8 h8g6 2. f8f3 g3g5 3. 35 €9d9 4. f5d5 d9e9 5. £5gS red wins a
piece.

Position #26
Red: K(e0), R(h4, a0), C(b4, d2), N(f5, d4), B(e2, g0), G(d0, f0), P(c4, a3, €3)
Black: K(e9), R(a9, h6), C(g5, i3), N(c7, h5), B(g9, €7), G(f9, 8), P(a6, c6, €5)
Solution: 1. bdbl i3i8 2. b1h1 i8h8 3. f5g3 red should win a piece.

Position #27
Red: K(e0), R(g6), C(c4, d2), N(h6, g0), B(e2, c0), G(d0, f0), P(d6, a3, e3, i3)
Black: K(€9), R(h5), C(c8, b6), N(e8, g7), B(c9, ¢7), G(d9, 19), P(a6, €6, i6, g3)
Solution: 1. d6¢6 c8a8 2. d2d8 e8g9 3. d8h8 h5g5S 4. g6gS e7g5 S. <4c9 d9e8 6.
h8a8 red wins a piece.

Position #28
Red: K(e0), R(f3), C(g2), N(c2, h0), B(e2, c0), G(e1, d0), P(c4, e4, g4, i4, a3)
Black: K(e9), R(c3), C(d3), N(c7, i7), B(g9, €7), G(9, e8), P(a6, c6, €6, g6, i6)
Solution: 1. ¢2b0 c3a3 2. b0a2 rhreatening 3. g2g3, red should win a piece.

Position #29
Red: K(e0), R(f6), C(c6, €2), B(i2, c0), G(el, f0), P(a3, i3)
Black: K(e9), R(h3), C(g7), N(h4), B(c9, €7), G(d9, €8), P(a6, i6, c4, g3)
Solution: 1. f617 g7g6 2. 7e7 e818 3. e7ed with counterplay.

Position #30
Red: K(e0), R(c7, b5), C(e4, a2), N(c2), B(g4, c0), G(el, d0), P(c4, a3, €3, i3)
Black: K(e9), R(h9, a8), C(g7, i0), N(f4), B(c9, g9), G(d9, 19), P(a6, c6, i6, f2)
Solution: 1. b5eS a8e8 2. e5hS e8h8 3. c7e7 d9e8 4. e7g7 c9¢7 S. hSh8 hoh8 6.
elf2 red wins a piece.

Position #3}
Red: K(el), R(d2), C(b8, c8), N(c6), G(f0), P(a3, e3, g3, i3)
Black: K(e9), R(c0), C(i7), N(c7, g1), B(c9, €7), G(f9), P(a6, €6, i6, g5, £2)
Solution: 1. eldl cOcl 2. d1d0 gle2 3. f0el f9¢8 4. b8bI e8d9 5. d2d9 mate.
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Position #32
Red: K(e0), R(h1), C(g6, c2), N(b4, g2), B(e2, g0), G(d0, f0), P(a3, €3, i3)
Black: K(e9), R(h5), C(i5, h3), N(a7, g3), B(c9, e7), G(d9, e8), P(a6, e5)
Solution: 1. e2gd e7g5 2. bdc6 819 3. c2c9 d9e8 4. c6a7 winning.
Position #33
Red: K(e0), R(b6, h4), C(g6, €2), B(c0, g0), G(d0, f0), P(a3, i3)
Black: K(e9), R(d9, c7), C(b7, g2), B(g9, €7), G(f9, e8), P(a6, i6)
Solution: 1. f0el b7b9 2. g6a6 b9a9 3. b6g6 red should win a piece.
Position #34
Red: K(e0). R(h3), C(gd), N(f6, a2), B(c0, g0), G(d0, f0), P(e5, c3, i3)
Black: K(e9), R(d1), C(e3), N(f5, a3), B(g9, e7), G(f9, e8), P(i6, a5, c5)
Solution: 1. a2b0 d1b1 2. h3h2 bld1 3. h2f2 and 4. f2f3, red should win a piece.
Position #35
Red: K(e0), R(g6, d3), C(b2), N(c2, g2), B(e2, g0), G(d0, f0), P(c4, e4, a3, i3)
Black: K(e9), R(h8, £7), C(g7, b6), N(c7), B(c9, €7), G(d9, 19), P(a6, c6, €6, i6, g5)
Solution: 1. d3b3 eliminating threat b6b8 and b8g8 by black b6b2 2. b3b2 equal.
Position #36
Red: K(e0), R(d6), C(b2, €2), N(e3, g2), B(c0, g0), G(d0, f0), P(c4, a3, g3, i3)
Black: K(e9), R(h9), C(a7, h7), N(c7, 6), B(g9, €7), G(d9, 9), P(a6, i6, c5, €5, g5)
Solution: 1. b2b6 e6g7 or h7h6 2. b6e6 2. e2e5 9e8 3. cdcS with initiative.
Position #37
Red: K(e0), R(h4, b0), C(b8, g6), N(d4, f4), B(e2, c0), G(el, f0), P(a3, €3, i3)
Black: K+ :9), R(i9, a8), C(f7, g7), N(c7, €7), B(g9, c5), G(d9, 19), P(a6, i6, €5, g5)
Solution: 1. f4e6 c7e6 2. dde6 716 3. e6¢S e7g6 4. cSd7 e9e8 5. d7f6 g7f7 6. hdh6
g6f8 7. b818 since e8f8? 8. h6h8 mate, therefore red wins a piece.
Position #38
Red: K(e0), R(f6, d3), N(c6, d5), B(e2, g0), G(el, d0), P(a4, c4, e3)
Black: K(€9), R(i3, c1), C(f7), N(c7, £5), B(g9, €7), G(9, e8), P(a6, €6, i5)
Solution: 1. d5b6 e8d7 2. f617 fShd 3. b6c8 e9e8 4. f7h7 threatening mate there-
fore red wins a piece.
Position #39
Red: K(f0), R(b7, f6), C(e2, g2), B(g4, c0), P(a3, i3)
Black: K(e9), R(d9, e3), C(el, d0), B(e7, i7), G(f9, 8), P(a6, i6, c5)
Solution: 1. f619 819 2. b7e7 f9e8 3. e7e8 mate.
Position #40
Red: K(e0), R(e5), C(e4, d2), N(h6), B(e2, c0), G(el, d0), P(h5, e3)
Black: K(e9), R(f6), C(c9, h7), N(c3), B(g9, €7), G(f9, e8), P(i6, a3)
Solution: 1. ede7 g9¢7 2. e5e7 h7hS 3. h6g8 618 4. d2d8 c3dS 5. e7eS c9¢S 6.
e5dS e8d7 7. eScS threatening 8. c5¢9 therefore red wins a piece.
Position #41
Red: K(e0), R(f8, h1), C(g4), N(g6), B(e2, c), G(d0, 0), P(a5, c4, i3)
Black: K(e9), R(i9, c3), C(d8), N(c7), B(g9, e7), G(f9, e8), P(c6, €6, i6)
Solution: 1. g6e7 d8f8 2. e7g8 g9i7 3. g8i9 red wins a bishop.
Position #42
Red: K(e0), R(f6), C(e7, d4), N(c2), B(e2, c0), G(d0, f0), P(c4, a3, e3, i3)
Black: K(f9), R(i9), C(f8, {7), N(c7, g7), B(g5), G(d9, 8), P(a6, c6, €6, i6, g3)
Solution: 1. e7g7 816 2. g7¢7 i9i8 3. c7¢c9 918 4. d4d8 red should win a piece.
Position #43
Red: K(e0), R(d8, b3), C(bS), N(f4), B(g0), G(f0), P(c4, g4, a3, i3)
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Black: K(e9), R(b7, g1), C(d9, i0), B(g2, €7), G(e8), P(a6, 6, g6, i6)
Solution: 1. bSeS b7b3 2. d8e8 e99 3. eBe9 fI8 4. f4g6 1817 S. eI mate.

Position #44
Red: K(f1), R(f8, b6), N(f3), G(el, d0), P{a3, c3)
Black: K(e9), R(h5), C(c0), N(i6, c1), B(g9, €7), G(f9, e8), P(ab)
Solution: 1. f3e5 e7¢9 2. e5d7 ¢9d9 3. b6d6 e8d7 4. d6d7 d9e9 5. f8f9 e9e8 6.
d7d9 red mates once opponent stops repetition checks.

Position #45
Red: K(e0), R(c6), C(e5, ¢3), N(c5), B(c0, g0), G(d0, f0), P(c4, a3, i3)
Black: K(e9), R(f2), C(d7, i7), N(h1), B(g9, 7), G(f9, e8), P(a6, i6)
Solution: 1. ¢6¢9 d7d9 2. ¢3d3 £210 3. e0el f0d0 4. c5d7 i7d7 5. c9d9 mate.

Position #46
Red: K(d0), R(d1), C(e6, e2), N(a2), B(c0, g0), G(el, f0), P(a4, e4, c3, i3)
Black: K(e9), R(g4), C(a9, 7), N(g7), B(c9, £9), G(f9, €8), P(a6, i6, c5)
Solution: 1. e2b2 a9h9 2. a2b4 b9a9 3. bdc6é a9b9 4. c6a7 red should win a piece.

Position #47
Red: K(e0), R(h4), C(a2, g1), N(g6), B(c0, g0), G(dO, f0), P(c4, €3, i3)
Black: K(e9), R(h9), C(a3), N(c7, i7), B(g9, €7), G(f9, €8), P(c6, a5, €5, i5)
Solution: 1. g6i7 h9h4 2. i7g8 €9d9 3. gid1 hdhl 4. dOel and a2d2 mate.

Position #48
Red: K(e0), R(i1), C(e5), N(b5, d5), B(e2, g0), G(d0, f0), P(c4, a3)
Black: K(e9), R(i4), C(b7, 13), N(h9), B(e7, g5), G(f9, e8), P(a6, i6, £3)
Solution: 1. dSb6 b7bS or €949 2. ild] b7d7 3. b6d7 e8d7 4. d1d7 mate 2. b6d7
€9d9 3. e5d5 mate.

Position #49
Red: K(e0), R(i6, b0), C(eS, d3), N(d5, c2), B(e2, c0), G(el, f0), P(c4, a3, e3)
Black: K(e9), R(b7, h0), C(f7, g7), N(i7, g5), B(a7, €7), G(f9, €8), P(a6, {2)
Solution: 1. b0b7 f7b7 2. d5e7 since g5i6 3. e7c8 €949 4. e5d5 mate, so red at least
wins a bishop.

Position #50
Red: K(e0), R(f2), C(e6, c1), N(c5, g2), B(c0, g0), G(el, d0), P(a3, €3, i3)
Black: K(e9), R(h3), C(e7, g7), N(c7, i7), B(g9, a7), G(d9, ¢8), P(a6, g6, i6, c4)
Solution: 1. ¢5d7 g7d7 2. e0f0 mating.
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Appendix 3
The Twelve Openings Used for Experiments

Here we present 12 openings that are used to play 48 games between two versions
of Abyss with different extension heuristics. These randomly chosen openings are mostly
5 to 8 moves away from the initial position and are common in Chinese Chess. For one
opening position, which is reached by using an opening book limited with only those
moves in bold font, we play 2 games each between two different programs at a different
time control, so we have altogether 4 games played by 4 different programs. The follow-
ing names will be used for the programs being tested: Abyss+SIN’ 30—Abyss with singu-
lar extensions at 30 seconds per move, Abyss—SIN’30—Abyss without singular extensions
at 30 seconds per move, Abyss+SIN’ 100—Abyss with singular extensions at 100 seconds
per move and Abyss-SIN’ 100—Abyss without singular extensions at 100 seconds per
move. Notice for all programs, the extension heuristics of check evasions and recaptures

are always included. Apart from the opening moves, the non-drawn game scores are also
included in this appendix.

Opening #1:
ab cd e f g h i
o | 0——©0-0-6-9-0—
|
7 ——@-—@
6 | @ e
5 i :
4 ®
|
3 1 & —
2 \\ C
1 —+—

5> ¢

Position #1

Abyss+SIN’ 30—Abyss-SIN’30: 1, h2e2 h9g7 2. hOg2 b9¢7 3. i0h< 9h9 4. c3cd gbgs S.
bOc2 h7h3 6. b2bd c9e7 7. g3g4 gSg4 8. bdgd (Position #1) a9b9 9. a0b0 b7b5 10. f0el
g7f5 11. g2f4 h9h4 12. gdg2 hdfd 13, hOh3 f4gé 14. h3h2 f5h4 15. elf2 hdg2 16. gi2
gdc4 17. e2g2 bSeS 18. e0f0 e5f5 19. f0e0 f5e5 20. e0f0 e5f5 21. f0e0 b9bO 22. c2b0
c4c0 23. b0c2 £3e5 24. e0f0 e5£5 25. f0e0 £5¢5 26. e0f0 f9e8 27. h2h6 €55 28. f0e0 f5e5
29. e0f0 e5£5 30. f0e0 cOc1 31. h6i6 f5e5 32. dOel c6¢S 33. e3ed clcO 34. ¢2d0 eSdS 35.
g2g7 €7c9 36. i6i9 d5g5 37. g7h7 e8f9 38. i9g9 g5f5 39. h7h9 £5£7 40. h9f9 c9e7 41.
g919 d9e8 42. fIf8 e8fY 43. i9i7 f9e8 44. 719 89 45. i3i4 c5c4 46. i4i5 c4d4 47. 19i7
198 48. i7i9 €819 49. i9i7 f9e8 50. i7i9 e8f9 51. f8b8 dded 52. b8b7 ede3 53. 19i7 f7f3
54. b7e7 c7dS 55. e7a7 £3h3 56. i7d7 cOc5 57. d7d6 d5f4 58. i5i6 c5i5 59. i6h6 i5i2 60.



81

dOb1 i2i0 61. e1f0 h3g3 62. h6g6 g3g0 63. f0el ggS 64. e1f0 g5¢0 65. fOel g0g3 66.
e1f0 i0il 67. bld2 e3e2 68. d2c4 ilcl 69. cab2 clc2 70. d6b6 g3e3 71. e0d0 c2d2 72.
b2d1 €2f2 73. b6b9 €9¢8 74. b9 d2dd 75. f9f4 daf4 76. fOel €8d8 77. eld2 e3d3 78.
g6£6 £2¢2 79. d0e0 d3d1 80. f6e6 fded 81. e6f6 e2d2 82. eOf0 edf4 83. f0eO f4£6 84. a7i7
f6e6 85. €0f0 d8e8 86. i7i1 d1h1 87. ili5 (0- 1)

Abyss-SIN’30—Abyss+SIN'30: 1. h2e2 h9g7 2. hOg2 b9¢7 3. i0h0 i9h9 4. c3cd g6g5 5.
bOc2 h7h3 6. b2bd c9e7 7. g3g4 g5g4 8. bdgd a9b9 9. a0b0 b7b1 10. c2b4 blal 11. hOhl
c6cS 12, e2b2 b9b4 13. gdbd cScd 14. bdb6 h3g3 15. hlal g3g0 16. f0el £0i0 17. e0f0
h9hO 18. fOf1 hOh1 19. £1f0 h1h0 20. fOf1 hOh1 21. f1f0 higl 22. b2c: glg0 23. fOfl
i0d0 24. bOb2 g0g2 25. b6i6 g7i6 26. albl g2gl 27. f1f2 c7d5 28. e1d0 gig3 29. bldl
g3f3 30. f2e2 f3e3 31. €212 €33 32. f2e2 d5f4 33. b2a2 £3i3 34. €2f2 i3f3 35. £2¢2 f3a3
36. e2e1 ade3 37. c2e2 cdd4 38. d1d4 fag2 39. eld1 d9e8 40. d4d6 i6g5 41. a2a6 e3d3
42. d6d3 g210 43. €2¢0 e8d7 (1 - 0)

Abyss+SIN' 100—Abyss-SIN’ 100: 1. h2e2 h9g7 2. h0g2 b9¢7 3. i0h0 i9h9 4. c3c4 g6gs
5. bOc2 h7h3 6. b2b4 c9¢7 7. g3g4 gSgd 8. bdgd a9b9 9. gdg6 b7b2 10. gbc6 bIb6 11.
g2f4 b6c6 12. e2b2 c6¢4 13. hOh3 hOh3 14. f4h3 c4c2 15. b2b0 c2c3 16. h3f2 c3e3 17.
fOel €3i3 18. f2g4 i3b3 19. cOe2 c7d5 20. bOcO d9e8 21. a0al g7f5 22. a3a4 d5f4 23.
cOc6 fSh4 24. ald1 i6i5 25. c6cd b3a3 26. d1d4 f4d3 27. d4d6 hdg2 28. cdc2 g2f4 29.
g4h6 e8d7 30. d6a6 d3cl 31. e0f0 a3d3 32. a6a9 e9e8 33. a9a8 e8e¢9 34. a8a9 eJe8 35.
a9f9 d3f3 36. elf2 cla2 37. ada$ a2b4 38. c2d2 h4d3 39. h6f5 £3g3 40. a5b5 e6es 41.
d2d7 f4g2 42. fOf1 g3h3 43. f5g7 e8d8 44. f9f8 d8d7 45. f8h8 (0 - 1)

Abyss-SIN’ 100—Abyss+SIN’ 100: 1. h2e2 h9g7 2. g2 b9c7 3. i0h0 i9h9 4. c3c4 g6gs
5. bOc2 h7h3 6. b2b4 c9¢7 7. g3gd g5g4 8. bdgd ab9 9. gd4g6 b7a7 10. a0al a6a5 11.
alfl d9e8 12. f0el b9c9 13. g2f4 h3h4 14. c0a2 hdh2 15. gbcb c7a6 16. c4cS a6es 17.
¢6b6 c5d7 18. b6d6 h2c2 19. hOh9 g7h9 20. d6i6 c2b2 21. a2c0 c9c0 22. eld2 b2b0 23.
f1bl b0d0 24. eOel a7a3 25. b1b9 d7c9 26. b9b3 a3a0 27. e2e6 cOcl 28. ele2 clc4 29.
f4hS a0g0 30. b3bS a5a4 31. bSgS cdc3 32. e3ed c3e3 33. ebe3 e7gS 34. i6i4 ada3 35.
ede5 d0a0 36. eSfS gSe7 37. i4i9 €9d9 38. e3h3 a0a2 29. e2el gOhO 40. h3h9 hOh9 41.
h5g7 hoh1 42. g7e8 c9d7 43. e8g7 d7c5 44. g7 c5b3 45%. eld]l a2c2 46. i3i4 c2c7 47.
f5f6 c7d7 48. dlel b3d2 49. i4i5 a3b3 50. f6e6 d2f3 S1. €}e0 h1fl 52. g7 d9d8 53.
g7hS b3c3 54. h5g3 flal 55. e6d6 f3gl 56. elel d7b7 57. eld1 c3d3 58. d1d0 b7b0 59.
g3e4 b0b4 60. d0d1 (0- 1)

Opening #2:

Abyss+SIN’ 30—Abyss-SIN’ 30: 1. h2e2 h9g7 2, h0g2 i%9h9 3. c3c4 gheS 4. b0c2 b9c7 5.
i0il c9e7 (Position #2) 6. c2d4 h7h6 7. b2c2 b7b8 8. ddc6 a9c9 9. a0b0 b8a8 10. c6d4
a8a3 11. b0b3 a3a4 12. b3b4 a6aS 13. dde6 g7e6 14. e2e6 c7eb 15. c2c9 €7¢9 16. fOel
h6g6 17. bab5 e6f4 18. g2f0 adal 19. e1d2 ala0 20. ilal gbe6 21. d2el f4h3 22. b5€5
a0b0 23. ala$ h3gl 24. £5f1 bOb1 25. flgl blgl 26. aSeS e¢6e8 27. e5e6 c9e7 28. ebif
e8e3 29. c0e2 €33 30. i6d6 3i3 31. cdcS 1310 32. c5c6 h9h3 33. d6d3 f9e8 34. c6¢7 i0i3
35. c7c8 i3g3 36. d3d6 g3f3 37. d6d4 glifl 38. e1f2 h3g3 39. c8d8 g3g0 40. dOel g5gd
41. e0d0 gOg1 42. d8d9 e8d9 43. d4d9 eJe8 44. d9d8 e8e9 45. d8d9 e9e8 46. d9d8 e8e9
47. f0d1 f1d1 48, d8d1 £3f9 49. d1d8 g4g3 50. d8d6 glfl 51. d66 g3g2 52. f6f7 f1hl 53.
f78 g2f2 54. elf2 h1f1 55. d0e0 e7c9 56. f8f5 c9e7 57. 53 9f2 58. e2cd e9e8 59. cda2
e8e9 60. a2c0 e9e8 61. f3g3 flc1 62. g3g8 £2f8 €3. cle2 c1c9 64. e0f0 c9f9 65. fOf1 e8d8
66. flel f8e8 67. g8g6 e7gS 68. e2g4 g5¢7 69. gde2 e8e9 70. g6cb e7g5 71. c6e6 d8d9
72. e6e4 92 73. edeS f2e2 74. elf1 e2e5 75. £1£2 (0 - 1)

Abyss~SIN’ 30—Abyss+SIN’30: 1. h2e2 h9g7 2. h0g2 i9h9 3. c3c4 gbg5 4. bc2 bIc7 5.
i0il c9e7 6. c2d4 h7h6 7. b2c2 b7b8 8. ddc6 a9¢9 9. a0b0 b8a8 10. c6d4 a8a3 11. b0b3
a3ad 12. c4cS adcd 13. b3c3 cde2 14. c3c2 e7c5 15. c2c5 g9e7 16. c5c4 h6hd 17, ddc6
g7£5 18. i1f1 hdh5 19. c4hd cT7e8 20. c6b8 c9c8 21. e2e6 £5g3 22. hdb4 hoh6 23, baf4s
g3f5 24. f4h4 h6e6 25. hahS e8g7 26. h5h3 c8b8 27. f1f4 f9e8 28. g2h4 b8bS 29. flel
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Position #2

bSe5 30. cOe2 a6aS 31. h3f3 g5g4 32. fagd eSe3 33. f3e3 e6e3 34. hdgé e3eb 35. g6i7
e6e3 36. i7g8 €99 37. g4g6 e3e6 38. gbgd g7h5 39. i3id eBd7 40. e0f0 h5i3 41. gdgb
i3h1 42. g6gl hli3 43. glgb e6g6 44. g8e7 9e9 45. €7g6 i3g2 46. fOf1 aSad 47. elf2
f5h6 48. g6eS d7e8 49. eSc4 h6i4 50. c4b6 adbd 51. b6dS bab3 52. dSb6 €99 53. b6dS
i4g3 54. flel i6i5 55. d5e3 g2i3 56. eld1 g3ed 57. f2el b3c3 58. e3c4 c3c2 59. cde3 c2cl
60. d1d2 i5i4 61. g0i2 i3g2 62. e1f2 e8d7 63. i2g4 i4h4 64. g4i2 hdh3 65. e2g0 h3g3 66.
d2e2 g3f3 67. e2d2 f3e3 68. i2g4 €33 69. d2e2 f3£2 70. e2el £2f1 71. ele0 f1f0 (0 - 1)

Abyss+SIN’ 100—Abyss-SIN' 100: 1, h2e2 h9g7 2. hg2 i9h9 3. c3cd gbg5 4. bOc2 b7
5. i0i1 c9¢7 6. c2d4 h7h3 7. b2c2 hoh4 8. ild1 a9a8 9. c2c6 b7b2 10. d1d2 b2b3 11. cdcS
b3g3 12. d4b5 cTb9 13. d2d6 g3g0 14. fel g0i0 15. e2e6 g7e6 16. c6e6 e 17. e0f0
h4h6 18. e6g6 h3h0 19. fOf1 hOcO 20. alal g5gd 21. g20 i0g0 22. g6f6 a8d8 23. d6a6
c0c2 24. b5c3 d8d2 25.¢3e2 (0 - 1)

Abyss—SIN’ 100—Abyss+SIN’ 100: 1. h2e2 h9g7 2. h0g2 i9h9 3. c3cd g6g$s 4. b0c2 bc7
5.10i1 c9e7 draw after 143 moves.

Opening #3:

Abyss+SIN’ 30—Abyss-SIN' 30: 1. h2e2 h9g7 2. h0g2 i9h9 3. i0h0 b9¢7 4. c3c4 gbgs S.
hOh6 h7i7 6. h6h9 g7h9 7. blc2 (Position #3) b7b3 8. c2d4 b3g3 9. g0i2 a9b9 10. b2c2
c9e7 11. d4e6 c7e6 12. e2e6 d9e8 13. e6a6 bIb4 14. cOe2 bdb2 15. a0cO g3a3 16. flel
a3a0 17. c2c6 b2e2 18. g2f4 e2e3 19. a6a9 a0b0 20. cOb0 €9d9 21. c6c9 d9d8 22. b0bS
d8d7 23. b8b1 d7d8 24. bldl e8d7 25. d1bl i7i8 26. a99 h9g7 27. fIf8 e3i3 28. fdg6
d8e8 29. b1b8 e8e9 30. c9¢8 i8c8 31. b8cB i3i2 32. gbe7 g7hS 33. f8i8 g9e7 34. i8i2
£5g4 35. i2e2 €7g5 36. c8c9 e9e8 37. c9c6 i6i5 38. e2eS h5g3 39. e5i5 g3i2 40. c6e6
¢8d8 41. c4cS gdg3 42. e6gb gSe7 43. i5d5 d8e8 44. g6g8 e8e9 45. g8d8 e7c5 46. d8d7
e9e8 47. d5i5 12g1 48. e0f0 c5e7 49. i5eS e7g9 50. d7g7 gle2 51. g7g9 g3f3 52. g9g8
e8e7 53. e5a5 e€2d4 54. a5a7 f3e3 55. g8g7 e7e8 56. gTg4 d4bS 57. gded e8d8 58. edbd
b5a7 59. b4b8 d8d9 60. b8b7 d9d8 61. b7a7 e3e2 62. a7a8 d8d7 (1 - 0)

Abyss—SIN’30—Abyss+SIN’30: 1. h2e2 h9g7 2. h0g2 i9h9 3. i0h0 bc7 4. c3c4 gbgs 5.
hOh6 h7i7 6. h6h9 g7h9 7. b0c2 draw after 150 moves.
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Position #3

Abyss+SIN' 100—Abyss-SIN’ 100: 1. h2e2 h9g7 2. h0g2 i9h9 3. i0h0 bc7 4. c3c4 g6gS
5. hOh6 h7i7 6. h6h9 g7h9 7. blc2 draw after 63 moves.

Abyss-SIN’ 100—Abyss+SIN’ 100: 1. hZeZ h9g7 2. h0g2 i9h9 3. i0h0 b9c7 4. c3cd gbgs
5. hOh6 h7i7 6. h6h9 g7h9 7. b0c2 b7b3 8. c2d4 b3g3 9. g0i2 a9b9 10. a0b0 h9g7 11.
d4c6 c9e7 12. b2b6 d9e8 13. cdcS e7cS 14. bbe6 gTe6 15. bObI c7b9 16. e2e6 e8f7 17.
e6a6 g3a3 18. a6i6 a3i3 19. c6e5 b9d8 20. i6f6 i3h3 21. cOe2 £7e8 22. dOel i7e7 23. i2g0
h3g3 24. f6b6 d8e6 25. e3e4 8f7 26. b6b9 f7e8 27. bIb6 e7c7 28. g2e3 c7e7 29. e5c6
e6d4 30. c6e7 c5e7 31. e3c4 g3h3 32. b6b4 d4c6 33. bdb2 h3h4 34. ede5 g5g4 35. c4d6
g4g3 36. b2b0 h4ah8 37. b0b9 g3f3 38. eSe6 c6d4 39. bbb f3g3 40. d6ed g3g2 41. e6f6
h8h0 42. edg3 d4b3 43. e0d0 hOh8 44. g3i4 h8hS 45. 14h6 h5dS5 46. d0e0 g2g1 47. b6ab
g1f1 48. a6a9 b3cl 49. e0d0 d5d8 50. e2c0 e8d7 51. eld2 c1b3 52. f6e6 b3d2 S3. cOe2
d2b3 54. e6d6 d8d6 55. h6f7 e9e8 56. f7e5 b3d4 57. d0e0 dde2 58. e5g4 déeb 59. flel
flel 60. e0f0 €2f4 61. a9g9 (0 - 1)

Opening #4:

Abyss+SIN’ 30—Abyss-SIN’ 30: 1. h2e2 h9g7 2. h0g2 i9%9 3. i0h0 c6¢S 4. hOh4 b9c7 S.
b0a2 c9e7 6. c3c4 (Position #4) cScd 7. hdcd g7e8 8. cdid b7b6 9. i4i6 gbgs 10. i6id
h7h4 11. b2bl b6b4 12. i4i5 bdb2 13. g2el b2b3 14. a2cl b3g3 15. e2h2 h4f4 16. h2e2
g3gl 17. i5i4 f4f1 18. a0a2 flcl 19. i4b4 a%9a8 20. a2d2 h9h3 21. elc2 glbl 22. bdbl
clhl 23. d2d7 g5g4 24. e2e6 a8a7 25. b1b4 gdg3 26. e3ed h3i3 27. ede5S h1h7 28. d7d8
h7h8 29. d8d7 i3i5 30. bde4 h8h7 31. d7d8 c7e6 32. eSe6 h7hQ 33. edd4 i5e5 34. d0el
a7a9 35. e0d0 e8g7 36. d8d9 a9d9 37. d4d9 e9e8 38. e6f6 g3g2 39. d9d8 e8e9 40. d8d9

e9e8 41. d9d8 e8e9 42. d8d9 98 43. f6f7 g7fS 44. d9d8 e8e9 45. 78 e5dS 46. d8d5
f9e8 47. d5d8 e8d7 48. d8d7 £5d6 (1 - 0)

Abyss-SIN' 30—Abyss+SIN’30: 1. h2e2 h9g7 2. hOg2 i9h9 3. i0h0 c6c5 4. hOh4 b7 S.
b0a2 97 6. c3cd cScd 7. hdcd g7e8 8. cdid b7b3 9. g3gd h9i9 10. alal h7g7 11. fOel
i9i8 12. b2c2 a9b9 13. a2c3 i6i5 14. idhd b3b4 15. hah6 g7gd 16. g0i2 gdgS 17. alcl
b4b6 18. a3ad g5g3 19. c3e4 g6gS 20. h6hd g3f3 21. e4d6 e8g7 22. hdcd gf5 23. c2b2
b6c6 24. cdc6 bIb2 25. g2h4 gSgd 26. i2g4 i8d8 27. décd b2b7 28. hdgh d8dd 29, gdi2
£5e3 30. g6iS b7bd 31. cdb6 £3f7 32. clc3 e3fS 33. iSh7 g9i7 34. h7f6 ddds 35. c3cd
b4bl 36. cdcl b1b3 37. clc3 b3bl 38. c3cl blb3 39. clc3 b3c3 40. c6c3 d8d6 41. c3b3
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e6e5 42. b6c8 d6d8 43. c8a7 c7a8 44. b3f3 eSed 45. e2f2 £5d4 46. £2d2 d8h8 47. a7c8
h8c8 48. 3d3 c8c4 49. f6ed dde6 50. edc3 e6fd S1. c0a2 c4ad 52. d3d8 ada3 53. c3bS
a3h3 54. d8a8 h3h0 55. e1f0 hOf0 56. eOel f4g2 S7. eldl fOf1 58. dOel flel 59. d1d0
g2e3 60. d2d3 f7f5 61. i2g4 £5d5 62. b5d4 d5d3 63. gde2 ele2 64. a8a6 e2el 65. a6a3
d3d2 66. a3e3 ele3 67. i3i4 ¢7g9 68. d4c2 e3c3 69. c2b0 (0 - 1)

Abyss+SIN’ 100—Abyss-SIN’ 100: 1. h2e2 h9g7 2. h0g2 i9h9 3. i0h0 c6¢cS 4. hOhd b9c7
S. b0a2 c9e7 6. c3c4 a9a8 7. c4cS e7c5 8. hdh6 c7bS 9. b2b7 h7b7 10. h6h9 g7h9 11.
e2e6 aBi8 12. a2c1 b7g7 13. cle2 gbgS 14. dOel i8f8 15. a3a4 h9i7 16. ada5 bSc7 17.
e6e3 f8h8 18. eed g5gd 19. e2d4 a6a5 20. dde6 cTe8 21. ebg7 e8g7 22. g3g4 h8h3 23.
a0a5 h3c3 24. gle2 17h9 25. a5a6 i6iS 26. abe6 9e8 27. e6i6 cS5e7 28. i6iS c3c6 29. eSas
h9i7 30. a5a9 c6c9 31. a9a2 i7g6 32. i5d5 g7e6 33. d5d6 g6f8 34. a2a8 e8M 35. edeS
€929 36. d6d8 d9e8 37. eSe6 f8e6 38. d8d6 e6g7 39. d6g6 g7h9 40. g6ab a9b9 41. a8a9
b9b3 42. a6c6 b3a3 43. c6c9 e8d9 44. cIb9 fJe8 45. e0d0 a3d3 46. d0e0 d3a3 47. g2f4
a3a4 48. f4dS ada7 49. d5f6 g9i7 S0. e0d0 a7a9 51. b9a9 i7g9 52. i3i4 h9g7 53. i4i5 €919
54. g4g5 g7e6 55. i5hS e6c7 56. g5g6 199 57. f68 €9 58. a9a5 e8f7 59. g6f6 f7e8 60.

?ng f9f8061. f6e6 e8f7 62. e6e7 d9¢e8 63. €2c4 g9i7 64. e7e8 cTeB 65. g8i7 e8d6 66. i7g6
f9(1-0)

Abyss-SIN’ 100—Abyss+SIN’ 100: 1. h2e2 h9g7 2. hOg2 i9h® 3. i0h0 c6cS 4. hOhd b9c7
5. b0a2 c%e7 6. c3cd draw after 45 moves.

Opening #5:

Abyss+SIN’ 30—Abyss-SIN’30: 1. h2e2 b9¢7 2. h0g2 h9i7 3. iOh0 i9h9 4. c3cd c9e7 5.
b0c2 b7bS 6. g3gd (Position #5) h7g7 7. hOh9 i7h9 8. c2d4 g7g8 9. dde6 a%a7 10. b2b4
g8e8 11. e6d4 b5d5 12. dOel a7b7 13. a0b0 c7eb 14. e2e6 e8eb 15. g2f4 e6d6 16. d4c2

dSfS5 17. c4cS d9e8 18. c5c6 d6e6 19. c6d6 e66 20. f4dS b7c7 21. c2d4 £5eS 22. e3ed

c7c4 23. edeS c4dd 24. d6e6 f6f1 25. g0i2 f1il 26. cOe2 dded 27. dSb6 i1i0 28. i2g0 eddd
29. b0d0 d4d0 30. e0d0 e8d7 (1 - 0)

Abyss-SIN’ 30—Abyss+SIN’30: 1. h2e2 b9¢7 2. hOg2 h9i7 3. i0h0 i9h9 4. c3c4 c9e7 §.
blc2 b7bS 6. g3g4 draw after 150 moves.
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Position #5

Abyss+SIN’ 100—Abyss-SIN’ 100: 1. h2e2 b9¢7 2. h0g2 h9i7 3. i0h0 i9h9 4. c3cd c9e7
5. b0c2 b7H5 6. g3g4 i6i5 7. hOh6 h7g7 8. 1:6h9 i7hS 9. g2f4 g6g5 10. g0i2 b5a5 11. b2a2
g3g4 12. a2a5 a6a5 13. e2e6 cTe6 14. iz gdhd 15, c2dd g7i7 16. e3e4 a9cO 17. edeS
17i3 18. a3a4 a5a4 19. a0a4 i5i4 20. ada6 i3c3 21. i2g0.49e8 22. a6b6 h9i7 23. b6b3 c3i3
24. b3b6 i3c3 25. b6b3 c3c1 26. b3b6 i7g6 27. eSf5 hdgd 28. €516 g6f4 29. e6f4 gafd 30.
f0el clc3 31. e0f0 i4h4 32. b6bd c9d9 33. dde6 hdgd 34. f66 d9d6 35. bab9 e8d9 36.
ebg5 e7g5 37. gbg7 gSe7 38. bIb8 gdg3 39. g7¢8 9e8 40, b8HY c3f3 41. bIb6 d6g6 42.
829 g3g2 43. g0i2 gbh6 44. i2g0 h6hO 45. f0e0 h0gD 46. e1f0 g2f2 47. dOel £2f1 48.
919 e819 49. che2 £3i3 50. e0d0 i3i1 51. b6c6 ilel 52. dOd1 gOf0 53. c6d6 9e8 54. cdcS
f4£3 55. ¢5d5 f0c0 56. d6a6 cOc1 57. d1d0 ele0 58. a6c6 clcb 59. d5cS c6d6 60. c5d5 (0
-1)

Abyss-SIN’ 100—Abyss+SIN’100: 1. h2e2 b9¢7 2. h0g2 h9i7 3. i0h0 i9h9 4. c3cd c9e7
5. b0c2 b7bS 6. g3g4 i6i5 7. hOh6 h7g7 8. h6h9 i7h9 9. g2f4 g6g5 10. g0i2 b5a5 11. c0a2
g5g4 12. i2gd g7h7 13. fde6 h7h0 14. f0el c7e6 15. e2e6 d9e8 16. e0f0 h9g7 17. e6gb
a9b9 18. b2b0 hOh6 19. a3a4 aSg5 20. bOb6 h6i6 21. b6b4 i6i3 22. g6a6 g7f5 23. a2c0
f5g3 24. a0b0 b9b5 25. a6a9 gSh5 26. g4i2 g3i2 27. bab2 i2h0 28. cOe2 b5£5 29. e1f2 (0 -
1)

Opening #6:

Abyss+SIN’ 30—Abyss-SIN’ 30: 1. h2e2 h9g7 2. h0g2 i9h9 3. i0h0 b9c7 4. g3g4 c6cS 5.
b0a2 a6a$ 6. b2d2 h7hS (Position #6) 7. hOh4 a9b9 8. d2c2 c7b5 9. c2c5 b5a3 10. g2f4
b7e7 11. f0el aSa4 12. f4e6 h5f5 13. h4h9 g7h9 14. e6c7 b9a9 15. alal d9e8 16. aldl
a%a7 17. d1d5 £5c5 18. d5c5 e7e2 19. c0e2 c9e7 20. c5c6 a7b7 21. e3ed b7b2 22. c6ab
€8d9 23. abad b2a2 24. c7b5 a2al 25. ada3 aldl 26. ede5 h9g7 27. a3a6 g7h9 28. a6gb
i6i5 29. g6i6 h9g7 30. i6i5 f9e8 31. e5d5 d1d3 32. i3i4 d3d1 33. d5d6 d1d3 34. c3c4
g7h9 35, i5€5 h9g7 36. f5e5 g7i6 37. i4i5 i6h8 38. d6e6 d3b3 39. b5d6 b3f3 40. c4c5
h8g6 41. e5d5 €99 42. cSc6 e8d7 43. c6c7 d7e8 44. i5hS f3f7 45. e6e7 gbe7 46. d5g5
f716 47. g5g9 198 48. d6b5 f6b6 49. g9g5 b6f6 50. g5g7 €7dS 51. gdgs f6b6 52. b5d4
b6b4 53. d4fS bdf4 54. cTc8 dSe3 55. £5d6 46 56. g7g8 f8f9 57. g8g9 fOf8 58. g9g6
f6g6 59. g5g6 €3g2 60. gbg7 g2f4 61. eOf0 £3f9 62. hihs f9e9 63. g7g8 f4dS 64. g8f8
d5f6 65. c8dS8 f6d7 66. f8g8 d7f6 67. g&h8 f6hS5 68. fied) h5f4 69. h8g8 fde6 70. d8c8
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¢6f4 71. c8d8 f4e6 72. d6b7 e6f4 73. b7c5 €99 74. e0f0 99 75. h6h7 f4g2 76. f0e0 €99
77. d8d9 g2h4 78. h7g7 h4f5 79. g8g9 918 80. c5e6 f5e7 81. g7g8 £8f7 82. e6g5 (1 - 0)

Abyss-SIN’30—Abyss+SIN’30: 1. h2e2 h9g7 2. h0g2 i9h9 3. i0h0 b9c7 4. g3g4 c6¢5 5.
b0a2 a6as 6. b2d2 h7hS draw after 90 moves.

Abyss+SIN’ 100—Abyss—SIN’ 100: 1. h2e2 h9g7 2. h0g2 i9h9 3. i0h0 b9¢7 4. g3g4 c6¢c5
5. b0a2 a6aS 6. b2d2 h7hS 7. e3e4 c9e7 8. a0al aSad 9. a3ad4 a9a4 10. alfl aded 11.
d2c2 hS5e5 12. d0el h9h0 13. g2h0 edad 14. f1f8 b7bl1 15. a2b0 adal 16. f8d8 a0b0 17.
d8d0 b0a0 18. gdgS g6gS 19. c3c4 b1b0 20. c4cS g7e8 21. c5c6 b0dO 22. e0d0 alcO 23.
d0d1 cOc2 24. c6c7 e8¢c7 25. h0g2 c2cl 26. d1d2 clcd 27. d2d1 c4d4 28. eld2 e5d5 29.
dlel d5d2 30. g2e3 d4d3 31. e3f5 d3i3 32. f5d4 g5g4 33. eldl i3d3 34. d4c6 d2b2 35.
€2d2 b2b8 36. c6b4 d3d4 37. bac6 d4d3 38. c6b4 d3b3 39. bdc6 b3bl 40. d1d0 b1b0 41.
d0d1 b8c8 42. c6d4 bOf0 43. g0i2 fOf1 44. d1d0 f1£2 45. d0Od1 f2i2 46. d2e2 e6eS 47.
d1d0 c8d8 48. d0e0 c7d5 (0 - 1)

Abyss-SIN’ 100—Abyss+SIN’ 100: 1. h2e2 h9g7 2. h0g2 i9h9 3. i0h0 b9c7 4. g3gd c6¢5
5. b0a2 a6aS 6. b2d2 h7hS 7. e3ed c9e7 8. a0al a5a4 9. a3a4 a9a4 10. alfl aded 11.
hOh4 h5e5 12. dOe1 h9h4 13. g2h4 eSe2 14. cOe2 edad 15. a2cl gbg5 16. flgl adal 17.
elf2 g5g4 18. glgd alcl 19. gdg7 clc3 20. hdi6 c3i3 21. i6h8 c7d5 22, g7g4 i3h3 23.
h8g6 h3f3 24. g4d4 d5c7 25. d4b4 b7b5 26. f2el d9e8 27. gb6f4 e6e5 28. f4g6 £3f6 29.
g6h4 b5b6 30. hdg2 c7a6 31. bdd4 bb4 32. d4gd bab0 33. d2c2 bOb4 34. c2b2 bded 35.
€0d0 a6b4 36. b2d2 bdc2 37. d0eO f6a6 38. d2d0 a6a0 39. gded eSed 40, g2i3 c2b4 41.
i3g4 b4d3 42. d0cO cSc4 43. g4h6 cdc3 44. g0i2 c3c2 45. e0d0 €9d9 46. h6g8 c2cl 47.
g8h6 clc0 48. e2c0 a0cO 49. dOd1 e4d4 50. d1d2 cOc2 51. d2d1 d3b2 52. i2g0 c2c6 53.
did2 (0-1)

Opening #7:

Abyss+SIN’ 30—Abyss-SIN’ 30: 1. h2e2 h9g7 2. h0g2 b9c7 3. i0h0 i9h9 4. b0a2 c6cS §.
b2c2 c7bS 6. hOh6 c9e7 7. alal (Position #7) draw after 44 moves.

Abyss-SIN'30—Abyss+SIN’30: 1. h2e2 h9g7 2. h0g2 b9¢7 3. i0h0 i%h9 4. b0a2 c6c5'5.
b2c2 c7bS 6. hOh6 c9e7 7. alal bSa3 8. c2c1 gbgS 9. albl a9b9 10. b1b3 gSg4 11. g3g4
b7b6 12. h6h0 f9e8 13. b3a3 h7h6 14. dOel bbbl 15. a3a4 bib3 16. hOh1 i6i5 17. g2f4
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h6h4 18. h1h3 a6a5 19. add4 g7f5 20. dded hOh6 21. gdg5 hded 22. h3h6 ede2 23. cOe2
€725 24. h6e6 g5e7 25. f4d5 b3b5 26. d5f6 bSb8 27. e6b6 f5h6 28. c1bl a5a4 29. b1bs
a4a3 30. a2b0 h6f7 31. f6gd £7g5 32. b0c2 a3a2 33. e2c0 b9a9 34. b8bY e7c9 35. gdi5
a2al 36. b6bS g3e6 37. b5b4 a9a5 38. i5h7 g9i7 39. h7f6 aSa7 40. bded a7a6 41. c2al
i7g5 42. 13i4 a6b6 43. i4i5 g5i7 44. b9a9 b6ab 45. alc2 i7g9 46. a9a8 €919 47. a8c8 a6d6
48. ede5 d6b6 49. f6g8 c9a7 50. e5f5 e8f7 51. £57 e6f8 52. f7a7 b6c6 53. c8a8 c6g6 54.
a7b7 gbc6 S55. aBad c6c9 56. a%b9 g9i7 57. b7i7 f8g6 S58. i7f7 g6f8 59. g8f6 cOb9 60.
f6d7 b9b8 61. d7b8 d9e8 62. f716 e8f7 63. £6£7 f9e9 64. £7£8 c5c4 65. c3cd (1 - 0)

Abyss+SIN’ 100—Abyss-SIN’ 100: 1. h2e2 h9g7 2. h0g2 b9c7 3. i0h0 i9h9 4. b0a2 c6e5
5. b2¢2 ¢7bS 6. hOh6 c9e7 7. alal bSa3 8. c2c] g6g5 9. c1hl a3c2 10. alfl h7hl 11,
e2e6 d9%e8 12. h6h9 2949 13. flcl g7h9 14, clc2 h9g7 15. e6f6 g7h5 16. c2cl hidl 17.
clbl d9d2 18. g2il d2a2 19. b1b7 a2a3 20. f6f3 c5c4 21. b7cT cdd4 22. c7c6 hSg3 23.
i1g2 d1d3 24. £3f6 a6a5 25. f6e6 €9d9 26. e6g6 g5gd 27. g6d6 d9e9 28. d6e6 dded 29,
g0e2 gdf4 30. e3e4 gled 31. c6c9 d3d9 (0- 1)

Abyss-SIN’ 100—Abyss+SIN’100: 1. h2e2 h9g7 2. h0g2 b9c¢7 3. i0h0 i9h9 4. b0a2 c6¢S
5. b2c2 ¢7b5 6. hOh6 c9¢7 7. alal b5a3 8. albl b7d7 9. c2b2 a9b9 10. h6g6 bob3 11.
bld1 f9e8 12. b2bl h7h8 13. g6f6 h8g8 14. f0el g8g3 15. g2il g3c3 16. a2c3 c5c4 17.
e2e6 g7e6 18. f6e6 cdc3 19. blal a3bl 20. dicl h9hl 21. elf2 hlcl 22. alcl ¢3d3 23.
e6a6 d3e3 24. a6i6 b3c3 25. clhl b1d2 26. eQel d2¢0 27. i6d6 cOb2 28. d6e6 €89 29.
ele0 d7a7 30. e6a6 a7d7 31. i3i4 c3d3 32. f2el d7¢7 33. a6¢6 c7a7 34. c6a6 a7cT 3S.
a6c6 c7a7 36. c6a6 a7b7 37. abb6 b7c7 38. elf0 b2c4 39. b6bl cd4d2 40. bid1 d2f3 41.
d&d3 f3g1 42. e0el g1f3 43. elf1 e3d3 44. i4i5 €7g5 45. i1h3 £3d2 46. f12 d3e3 47. gle2
0-1)

Opening #8:

Abyss+SIN’ 30—Abyss-SIN’30: 1. h2e2 h7e7 2. h0g2 h9g7 3. i0h0 i9i8 4. b0a2 a6as 5.
b2c2 b9a7 6. a0b0 a9b9 7. hOh6 (Position #8) g6g5 8. h6f6 g9i7 9. b0b6 b7d7 10. b6b9
a7b9 11. c2c6 b9a7 12. c6¢5 f9e8 13. e2c2 d7d6 14. f6f4 d6a6 15. cSc7 e8d7 16. f4f7
g719 17. c7e7 c9e7 18. {715 abe6 19. £5a5 £7¢9 20. c2c6 a7c6 21. aSc5 i8c8 22. a3ad c9e7
23. c5d5 f9g7 24. ada5 c8f8 25. aSb5 f8f2 26. bSb6 f2g2 27. b6c6 d7e8 28. g3g4 g2gd
29. d5d3 g4g0 30. a2b4 g0g3 31. bad5 i7g9 32. i3i4 g3g4 33. c6c7 gdi4 34. cOe2 i4i3 35.
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d5b4 g7f5 36. c7c8 i3e3 37. elel e3e4 38. badS g5g4 39. c8d8 i6i5 40. d5c7 £5d4 41.
eldl gafd 42. .3c4 i5i4 43. c7b5 d4c6 44. d8d9 €99 45. bSd6 ede2 46. d6e8 I8 47.
e8c7 e2c2 48. d3d8 f8f7 49. d8d6 c2c1 50. d1d2 c6a5 51. dée6 clc2 52. d2d1 c2cl 53.
d1d2 a5b3 54. d2e2 clc2 55. e2el c2cl 56. ele2 b3d4 57. e2d2 d4e6 58. c7e6 clcd 59.
fOel fded 60. e1f2 cdc6 61. ebg7 ede3 62. d2d1 e3e2 63. dOel c6d6 64. e1d2 d6d2 (0 - 1)

Abyss—SIN’30—Abyss+SIN’30: 1. h2e2 h7e7 2. h0g2 h9g7 3. i0h0 i9i8 4. b0a2 a6a5 5.
b2c2 b9a7 6. a0b0 a9h9 7. hOh6 g6g5 8. bOb6 g7f5 9. e2e6 d9e8 10. h6f6 £5d4 11. c2c6
d4c6 12. b6c6 b7b6 13. c6b6 bIb6 14. c3c4 bbeb 15. gle2 a7b5 16. f0el b5a3 17. e0f0
€9d9 18. a2c3 a3c2 19. e3e4 c9a7 20. g2il1 c6d6 21. c4cS5 a7cS 22. ede§ e7e5 23. cla2
c2e3 24. a2c0 d6d3 25. e6ec6 g9e7 26. f6f3 i6i5 27. i1g2 816 28. c6¢8 i6eh 29. ¢8a8 d3c3
30. f3e3 c3e3 31. g2e3 c6f6 32. f0e0 (0 - 1)

Abyss+SIN' 100—Abyss-SIN’ 100: 1. h2e2 h7¢7 2. h0g2 h9g7 3. i0h0 i9i8 4. b0a2 a6as5
5. b2c2 b9a7 6. a0b0 a%h9 7. hOh6 gbg5 8. h6g6 g9i7 9. c2c6 b7b6 10. gbg7? a7c6 11.
e2c2 i8c8 12. c3c4 b6b7 13. cdcS bIb8 14. g7g6 c6eS5 15. gbeb e5cd 16. c0e2 c4d2 17.
e0el c8c5 18. c2c9 e9e8 19. e6g6 e8d8 20. cOf9 c5f5 21. g6d6 e€7d7 22. 919 £5f2 23.
g2h0 f2h2 24. d6d2 h2h0 25. 19i8 b8b9 26. b0cO hOh1 27. ele0 d8e8 28. d2d7 hial 29.
c0c8 e8e9 30. d7h7 b7b0 31. e2c0 d9e8 32. i8i9 b9b1 33. h7h9 i7g9 (1 - 0)

Abyss—SIN’ 100—Abyss+SIN’100: 1, h2e2 h7e7 2. hOg2 h9g7 3. i0h0 i9i8 4. b0a2 a6as
5. b2c2 b9a7 6. a0b0 a9b9 7. hOh6 gbg5 8. h6g6 g9i7 9. c3c4 i8b8 10. gli2 bsf8 11.
dOel f9e8 12. c2c6 f8f5 13. b0b6 b7d7 14. b6b9 a7b9 15. e2e6 g7e6 16. gbeb d7a7 17.
e6i6 f5e5 18. c6ab e7e3 19. g2e3 e5e3 20. i6i7 a7e7 21. a6a9 e3c3 22. e1d0 c3c4 23. i7g7
ajad 24. a9%¢9 c4c9 25. a3ad e7e6 26. g7g9 e8f9 27. g9g6 e6e8 28. gbb6 c9cS 29. i2g0
b9¢c7 30. b6b4 c7d5 31. bdb2 dSe3 32. flel e3g2 33, elf0 g2i3 34. b2h2 cSeS 35. dOel
eJe3 36. g0e2 e3g3 37. ada5 i3g2 38. e0d0 g3d3 39. d0e0 d3g3 ‘0. €0d0 g2f0 41. h2h4
e8el 42. hdf4 f0g2 43. f4f1 g3h3 44. aSbs elal 45. flgl ala0 46. a2b0 h3b3 47. glg2
b3b0 48. €2g0 bObS 49. cOe2 b5d5 50. dOe0 a0a8 51. g2g3 a8e8 52. e2c0 e8e6 53. elel
d5c5 54. g0i2 cSe5 55. elf1 e6f6 56. cOe2 eSe2 57. g3g5 e2e3 58. g5g2 (0- 1)

Opening #9:
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Abyss+SIN’ 30—Abyss-SIN’ 30: 1. n2e2 h7e7 2. i0il h9g7 3. h0g2 i9h9 4. ild1 h9h3 §.
c3cd (Position #9) h3g3 6. b0c2 g3g2 7. d1d7 b7a7 8. d7b7 £2g0 9. b2b9 g0g3 10. a0b0
a7a8 11. b7d7 f9e8 12. d7c7 g3i3 13. c7c9 819 14. c9c6 d9e8 15. bObS i3i4 16. c6cO
€8d9 17. b8d8 e7e3 18. c2e3 a9b9 19. cb9 (1 - 0)

Abyss-SIN'30—Abyss+SIN’30: 1. h2e2 h7e7 2. i0il h9g7 3. h0g2 i9h9 4. ild1 h9h3 §.
¢3c4 h3g3 6. b0c2 g3g2 7. e2e6 g7e6 8. b2g2 e6fd 9. ge2 fae2 10. ghe2 b7c7 11. di gl
c6c5 12. glgb f9e8 13. g6g9 e8f9 14. c2el c5c4 15. e2cd e7el 16. f0el c7i7 17. £9g6
i73 18. g6i6 i3h3 19. e3ed d9e§ 20. a0b0 b9c7 21. edeS h3h0 22. i6c6 a9a7 23. cde2
hOh7 24. e5e6 h7i7 25. b0b4 i7i6 26. e6e7 i6i2 27. bded i2i0 28. e7e8 f9e8 29. c6i6 e9d9
30. i6i0 8d7 31. i0i9 d9d8 32. i9c9 a7a8 33. c9c7 aba5 34. ed4d4 d8e8 35. c7d7 e8f8 36.
d4h4 £8e8 37. hded 818 38. d7e7 819 (1 - 0)

Abyss+SIN’ 100—Abyss-SIN' 100: 1. h2e2 h7¢7 2. i0il h9g7 3. h0g2 i9h9 4. ild1 h9h3
S. c3cd h3g3 6. d1d6 c9a7 7. d6¢c6 a6a5 8. b2c2 b7c7 9. alal e7e8 10. c2a2 e8c8 11. c6d6
c7c0 12. dOel b9c7 13. d6d8 a9c9 14. d8d7 g7h9 15. e2e6 e9e8 16. gle2 cOc3 17. e3ed
c8a8 18. albl ¢c3b3 19. g2e3 b3b5 20. e6c6 a8c8 21. b1bS c8c6 22. bSeS5 e8f8 23. eShS
f9e8 24. h5h8 £3f9 25. d7g7 99 26. a2a5 e8fY 27. aSeS5 g3f3 28. g7g8 318 (1 - 0)

Abyss-SIN’ 100—Abyss+SIN’ 100: 1. h2e2 h7e7 2. i0i1 h9g7 3. h0g2 i9h9 4. ild1 h9h3
S. c3c4 h3g3 6. d1d6 bTc7 7. d6c6 gbgs 8. cdcS gSgd 9. c5d5 e7e8 10. c6b6 c7e7 11.

b6b8 cgﬂ 12. g2el e8e3 13. g0i2 g3f3 14. b2b3 e3ed 15. b8b7 g9e7 16. b3bS gafa 17.
bi.7(0-1)

Opening #10:

Abyss+SIN’ 30—Abyss-SIN’ 30: 1, h2e2 b7e7 2. h0g2 b9¢7 3. b0c2 h9i7 4. a0b0 a9b9 §.
b2b6 (Position #10) d9e8 6. c3c4 i9h9 7. i0i1 c7a8 8. b6bl h7g7 9. g2el a8c7 10. e2i2
b9b3 11. i2i6 g7g3 12. i3i4 €7e3 13. c2e3 b3e3 14. i4iS5 g3a3 15. gle2 a3d3 16. elc2 e3ed
17. blcl d3h3 18. c1h1 h3d3 19. hicl d3h3 20. c1hl h3d3 21. b0b7 d3d1 22. hiel ede2
23. b7c7 g9e7 24. ili2 e2i2 25. i6i2 d1d7 26. i2e2 d7d5 27. ele6 €9d9 28. e2d2 d5e5 29.

c2d4 eS5dS 30. d2d5 h9h3 31. e6a6 h3h4 32. a6a9 c9a7 33. d4fS hded 34. f0el edeS 35.
f5¢7 d9d8 36. e7c6 eSel (1 - 0)

O = N W A W NN 0 O

o




——@—9—&\%&9——@
W

00" eo
0-®-© e—©

Q = N W A W AN 0 O

Position #10

Abyss-SIN’30—Abyss+SIN’30: 1. h2e2 b7e7 2. h0g2 b9¢7 3. blc2 h9i7 4. aOb0 a%b9 5.
b2b6 d9e8 6. c3c4 i9h9 7. i0il c7a8 8. b6b8 h7h2 9. c2d4 h2e2 10. cOe2 h9h2 11. ili2
h2i2 12. g0i2 e7a7 13. d4e6 a7a3 14. e6d8 b9a9 15. bBH3 a8c7 16. d8c6 ce7 17. b3c3
c7e6 18. g3g4 a3a2 19. g2h4 a2a3 20. c3c0 a3i3 21. hdi6 e6f4 22. b0b2 a9d9 23. e3ed
i3c3 24. c6b8 d9d4 25. b8a6 dded 26. eQel fag2 27. ele c3e3 28. e2g0 e3h3 29. dOel
edgd 30. b2b9 ¢8d9 31. a6c7 g4d4 32. cOc2 fIe8 33. 20e2 g2e3 34. c2c0 h3h6 35. b9h3
h6h0 36. i2g0 e3d5 37. c7d5 d4dS 38. b3b7 hOh7 39. b7b4 h7ho 40. i6h4 i7hS 41. hag2
h6i6 42. c0a0 d5a5 43. a0d0 €7c9 44. g2h4d g9e7 45. g0i2 aSe5 46. bdb2 eSe4 47. hdfs
h5f4 48. i2g0 i6i0 49. £5h6 f4e2 50. dOd1 e2cl 51. h6g8 e9f9 52. b2f2 edf4 (1 - 0)

Abyss+SIN' 100—Abyss-SIN’ 100: 1. h2e2 b7e7 2. h0g2 b9¢c7 3. bOc2 .. 4. a0b0 a9b9
5. b2b6 draw after 80 moves.

Abyss-SIN’ 100—Abyss+SIN’ 100: 1. h2e2 b7e7 2. h0g2 b9¢7 3. bic2 h9i7 4. a0b0 a%b9
S. b2b6 d9e8 6. g3g4 h7hS 7. c3c4 i9h9 8. i0hO a6as 9. c2d4 hSe5 10. h0Oh9 i7h9 11. d4c6
c7a8 12. b6b8 eSe2 13. cOe2 e7c7 14. dOel h9g7 15. c6as c7f7 16. c4cS c9e7 17. c5c6
£718 18. b8b7 f8f3 19. g2f4 a8c9 20. e3e4 b9a9 21. aSc4 c9b7 22. b0b7 a9a6 23. b7b9
e8d9 24. b9b3 £3f1 25. c6bb6 aba7 26. f4g6 £1g1 27. b6b7 a7a8 28. b7b8 a8a6 29. g6h4
a6a7 30. b8c8 f9e8 31. c8d8 a7d7 32. b3b8 d7d3 33. hdi2 glhl 34. i3i4 €99 35. i2h4
d3i3 36. d8e8 g7e8 37. b8d8 99 38. e0d0 e8g7 39. d8d9 e9e8 40. d9d8 8¢9 41. hdg6
i3h3 42. d8d9 e9e8 43. a3a4 h3b3 44. d0eO g9i7 45. c4d6 e8f8 46. d9d8 87 47. d8g8
b3b0 48. ¢1d0 (1 - 0)

Opening #11:

Abyss+SIN’ 30—Abyss-SIN’ 30: 1. g3g4 h7g7 2. b0c2 §6g5 3. h0i2 g5g4 4. b2b4 c6¢S 5.
bdad (Position #11) b7a7 6. aded g9¢7 7. h2e2 gdf4 8. edbd f4f3 9. i2g1 £3£2 10. e2e6
d98 11. bdid h9i7 12, g1f3 £2f1 13.i0i1 i6i5 14. ided i7g6 15. i1f1 g7g0 16. eOel gb6f4
17. e6e5 i9h9 18. flgl g0i0 19. glgd hohl 20. figl i0il 21. ele0 ilgl 22. a0al c5c4 23.
algl hlgl 24. gdgl f4h3 25. gifl cdc3 26. e5hS €9d9 27. f1d1 a7d7 28. edad c9a7 29.
h5h9 e7g9 30. c2al ¢3d3 31. d1h1 h3f2 32. hifl f2g4 33, f1f8 a9a8 34. e3ed g4i3 35.
h9f9 b9c7 36. £8f3 i3h1 37. f9f8 eB8f9 38. edeS i5i4 39. alb3 i4h4 40. f8f4 a8b8 41. b3d4
a6as 42. adcd d3d2 43. fded f9e8 44. dde6 cTbS 45. c4hd d2d1 46. hah9 g9e7 47. £319
d9d8 48. 9f1 d1d0 49. cOc! b8b7 50. f1h1 bSa3 S1. e4d4 d7c7 52. e5dS c7d7 53. dScs5
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Position #11

d7c7 54. d4d1 d8d9 55. e6d4 d9e9 56. h9i9 aSad 57. h1h9 e8f9 58. h9h2 Me8 59. h2h9
e8f9 60. h9h6 fIe8 61. c5c6 c7c9 62. h6h9 e8f9 63. h9h6 Me8 64. elfl c9i9 65. h6h9
e8f9 66. diel e7g9 67. d4e6 e9d9 68. e6c7 bcT 69. c6c7 :9i2 70. cOe2 a3c2 71. h9g9
c2el 72. g9f9 d9d8 73. f9f4 a7c9 74. flel i2i6 75. f4ad d8e8 76. aded e8f8 77. e2g4 i6i7
78. ede8 £3f9 79. e8¢9 198 80. €9c9 i7i1 81. c9d9 dOcO 82. c7c8 i1i8 83. c8dS i8g8 84.
d8e8 gB8e8 85. d9d8 819 86. d8e8 c0dO (1 - 0)

Abyss—SIN’30—Abyss +SIN’ 30: 1. g3g4 h7g7 2. b0c2 g6g$ 3. h0i2 g5g4 4. b2bd c6¢S §.
bdad b7a7 6. c2al aTad 7. a3ad b9c7 8. gle2 gdf4 9. alc2 c7b5 10. i0g0 bSc3 11. g0g6
e6e5 12. g6e6 g9¢7 13. e6eS h9f8 14. h2f2 f8g6 15. eSf5 gbhd 16. £567 £4f3 17. f1g7 £312
18. i2g3 a%b9 19. c2el i9i8 20. g7g4 i8h8 21. elgl c3d1 22. a0a3 bob1 23. flel f2e2 24.
g3e2 c9a7 25. e2gl b1b8 26. g1f3 b8g8 27. f3e5 g8g4 28. eSg4 c5cd 29. e3ed d1b2 30.
a3b3 b2d1 31. b3b6 dic3 32. b6a6 h8g8 33. g0h2 cdb4 34. adaS a7c9 35. a6h6 hdg2 36.
ede5 g8aB 37. a5a6 a8i8 38. h6b6 bdad 39. b6c6 c3d1 40. a6b6 adbd 41. b6b7 g2f4 42.
b7c7 19e8 43. c7c8 dle3 44. c8d8 e8d7 45. c6c8 d7e8 46. c8c9 i8h8 47. gdf6 €919 48,

h2f3 h8h0 49. e1f0 hOh3 50. f3gl h3h! 51. gIf3 hifl 52. f6e8 bdad 53. e8g7 fOf8 54.
¢9d9 f1£0 55. e0f0 (1 - 0)

Abyss+SIN’ 100—Abyss-SIN’ 100: 1. g3g4 h7g7 2. b0c2 g6g5 3. h0i2 g5g4 4. b2b4 c6¢cS
S. b4ad b7a7 6. h2e2 b9c7 7. a0al h9i7 8. i0R0 i9h9 9. c2e1 h9hO 10. i2h0 a7a4 11. a3ad
a9b9 12. alcl ¢7d5 13. c1d1 d5f4 14. e2a2 g7e7 15. a2a6 e7e3 16. elg2 fig2 17. hOg2
e3g3 18. gle2 g3f3 19. d1d6 g4g3 20. d6e6 c9e7 21. g2e3 £3i3 22, e3f5 g3f3 23. f5¢7
g9e7 24. ¢6i6 i3c3 25. i6i7 €7c9 26. f0e1 bIbS 27. abe6 bSb6 28. e6eS bbeo 29. i7f7 33
30. e0f0 c6d6 31. £719 e9e8 32. ada5 d6d1 33. e5hS d1dS 34. h5h8 e3d3 35. 94 c9e7 36.
a5a6 d3d6 37. a6a7 d6d7 38. a7a8 d3e3 39. a8b8 c3a3 40. f418 e8e9 41. b8c8 d9e8 42.
h8h9 e8f7 43. f8f7 a3a7 44. {719 e9e8 45. 198 e8e9 46. c8d8 d7d8 47. 548 (1 - 0)

Abyss—SIN’100—Abyss+SIN' 100: 1. g3g4 h7g7 2. b0c2 g6gS 3. h0i2 gSgd 4. b2b4 c6¢5
S. bdad b7a7 6. gle2 a7a4 7. a3a4 gdg3 8. h2hd4 g3g2 9. i2h0 g2h2 10. i0i1 a9a8 11. a0b0
b9c7 12. hdid h917 13.i1g1 a8g8 14. g1g4 i6iS 15. i4i7 i9i7 16. g4hd g7g2 17. c2el g2g3
18. hah2 g3c3 19. h2i2 i7d7 20. i3i4 g8d8 21. elc2 d7d2 22. b0b2 d8h8 23. hOg2 i5id 24.
i2i4 c3c0 25. e2c0 d2g2 26. b2a2 d9e8 27. dOel g2g5 28. ided c9e7 29. cOe2 h8h3 30.
a2b2 e6e5 31. e4bd g5g2 32. e3ed g2e2 33. edeS5 h3c3 34. bab7 ¢7d9 35. ¢2d0 e2e$ 36.
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b2b6 c5c4 37. b6a6 c3a3 38. a6a8 cdc3 39. b7a7 e7c9 40. a7g7 g9e7 41. g7g3 d9¢7 42.
a8a9 €9d9 43. g3g6 c7bS 44. gbg2 b5d4 45. a9a6 d9e9 46. g2d2 d4f3 47. d2f2 f3g5 48.
f2i2 ~3d3 49. 12¢2 d3e3 50. e2f2 a3a0 51. £2g2 gSe4 52. a6d6 €3f3 53. g2gl ala2 54.
dObi a2b2 55. glgd b2bl 56. gded eSed 57. adaS v4ad 58. d6dS adal 59. e1d0 £3£2 60.
fOe1 £2f1 61. e1f0 e7cS 62. a5a6 a0a6 63. d0el f10 64. 10 (0 - 1)
Opening #12:
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Abyss+SIN' 30—Abyss-SIN’ 30: 1, g0e2 h7e7 2. h0g2 h9g7 3. i0h0 i9h9 4. bOc2 h9h3 5.
¢3c4 (Position #12) h3g3 6. c2d4 g3i3 7. a0al i3g3 8. d4c6 e7c7 9. f0el gbg5 10. h2h6
c9e7 11. h6g6 g3f3 12. c6d4 f3f1 13. b2bl f1f6 14. hOh6 b7b6 15. d4c6 f6f7 16. cbe7
£9¢7 17. gbbb gSg4 18. h6g6 gafd 19. c4cS b9d8 20. c5dS a9a8 21. d5d6 e6eS 22. d6d7
c7a7 23. gbe6 f7£5 24. e6g6 f5hS5 25. g6g7 hSh6 26. b6b4 h6d6 27. d7c7 d8c6 28. bdad
d6f6 29. b1b9 e7c9 30. aldl a7g7 31. d1d9 e9e8 32. ada8 f6g6 33. d9e9 e8f8 34. e9f9
f8e8 35. c7d7 g7g9 36. b9b8 (1 - 0)

Abyss—SIN’'30—Abyss+SIN'30: 1. gle2 h7e7 2. h0g2 h9g7 3. i0h0 i%9h9 4. b0c2 h9h3 §.
¢3c4 draw after 66 moves.

Abyss+SIN' 100—Abyss-SIN’ 100: 1. g0e2 h7e7 2. hOg2 h9g? 3. i0h0 i9h9 4. b0c2 h9h3
5. c3cd h3i3 6. g3g4 i3i4 7. b2bd i4iS 8. g2hd g6gS 9. hagt i5hS 10. gdgs hSg5 11. gbe7
c9¢7 12. h2h7 b7c7 13. a0a2 a%8 14. hOh6 i6iS 15. fOel g5d5 16. eOF0 g7£5 17. h6hO
a8h8 18. h7h1 £5g3 19. h1h6 i5i4 20. f0e0 c7d7 21. bdb6 De8 22. bbe6 bICT 23. ¢6f6
g3f5 24. h6hS d5d6 25. e3ed d6f6 26. edeS £5g3 27. e5e6 f6e6 28. €2g4 ¢6h6 29. h0h3
h6h5 30. h3g3 hSg5 31. cOe2 h8h0 32. ¢1f0 hOh1 33. dOel c6c5 34. cdcS g5cS 35. g3d3
c7d5 36. d3b3 i4h4 37. b3b9 cSc3 38. b9hS d5f4 39, gdi2 fae2 40. a2al e2g1 41. ¢0dO
c3d3 42. ald1 d7d1 43. c2b4 d3b3 44. a0l gle2 45. bdd3 b3d3 (0- 1)

Abyss—SIN’ 100—Abyss+SIN’ 100: 1. gle2 h7¢7 2. hOg2 h9g7 3. i0hO i9h9 4. bOc2 h9h3
§. ¢3c4 draw after 130 moves.
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