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Abstract — Since the paper was published in SIGGRAPH 2003, the graphcut textures has 

become a popular and important technique for both static and dynamic image texture synthesis. 

However, the discussion on the theoretic side of the graphcut textures appears lacking with little 

information provided in the original paper to convince the reader the correctness of the approach. 

This paper addresses the important theoretic issues related to the technique of graphcut textures 

using the complete −α expansion graph, which is an extension of the −α expansion graph. The 

main contribution of this paper is to correct or clarify some statements in the original graphcut 

textures paper and to give mathematical support and vigorous proofs for the approach. 

 

Index Terms—Labeling problem, graph cuts, complete −α expansion moves, graphcut textures. 

 

1  Introduction 

Image texture synthesis (i.e. texture synthesis in 2D space) is an active and important research 

topic in computer graphics. Given an input texture sample, the goal of texture synthesis is to 

generate a new image whose textures look similar to the input texture. Among the various 
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approaches, the patch-based texture synthesis technique [3, 5, 6] generates a synthesized image 

(output) by copying small patches from the input image to the output. The challenging problem 

in this approach is how to remove (or reduce) the visible seams between patches when they are 

placed into the output. As a popular and important patch-based texture synthesis technique, the 

graphcut textures method [5] treats the problem of image texture synthesis as a min-cost graph 

cut problem, and employs graph cuts (e.g. [2, 8]) to remove (or reduce) the visible seams 

between patches so that the output results can be refined as required. In fact, graphcut textures is 

a graph-based texture synthesis technique. 

Although the technique of graphcut textures has been successfully applied to image and 

video texture synthesis [5], there is a lack of a theoretical analysis of the technique, which is 

definitely desirable in both understanding and in using the technique for future research. We 

point out that it is not straightforward to give such a theoretical analysis. According to the 

general framework of graph cuts proposed by Boykov et al. [2, 8], depending on different 

problems (i.e. applications), each graph-based energy minimization method requires a different 

mathematical formulation of its graph in the sense that the energy function must be defined 

differently, and that the design of a proper energy function to encode the constraints of a problem 

is not trivial [2, 8]. In addition, the cuts and the min-cost cut of the graph have different 

mathematical properties for different problems, which play a crucial role in establishing the 
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equivalence relationship (i.e. the key to solving a graph cut problem [2, 8]) between the set of 

certain type of cuts and the set of all labelings of the graph. Furthermore, special consideration 

must be taken into account in assigning a correct cost for each edge in the graph as suggested by 

Veksler in her Ph.D. thesis [8]. For example, in the −α expansion graph, when assigning a cost 

to an edge, it is stated that “We had to develop a special trick for the case when the original 

labels for p and q do not agree ( qp ff ≠ ) in order to get the same effect that lemma 6 establishes 

for the simpler situation when qp ff = ” [8].  

More precisely, to give a theoretical analysis of graphcut textures, one has to address the 

following important issues: (1) what is the labeling problem of graphcut textures? Namely, what 

are the set of sites, the set of labels, the set of labelings, and the energy function of a labeling? 

(2) What type of graph is required for the labeling problem? (3) How to construct the graph? 

Namely, what are the vertices, the edges, and the costs of edges in the graph? (4) What 

mathematical properties a cut of the graph has? (5) What specific properties a min-cost cut has? 

(6) Given a cut, how to define its corresponding labeling? (7) Is it true that finding the optimal 

labeling is equivalent to finding the min-cost cut in the graph? 

Except for the limited information provided on how to construct the graph, none of the 

above important theoretical issues has been addressed (or well addressed) in the paper of 

graphcut textures [5] or in any other publicly available publications that we are aware of. 
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Furthermore, there are some mathematical errors and confusions in the statements made 

regarding the graphs of graphcut textures (see the next section for the details) in the original 

paper, which must be clarified.  

This paper addresses the above important issues in order to provide a complete and 

correct theoretical analysis of graphcut textures. The mathematical errors and confusions in 

Kwatra et al.’s original paper [5] are also clarified in this paper. To achieve this goal, we propose 

a new type of −α expansion graphs, called complete −α expansion graphs, which is an 

extension of the −α expansion graphs introduced by Boykov et al. [2, 8] . Using this new type of 

−α expansion graphs, all of the above important theoretical issues related to graphcut textures 

can be well formulated. It is shown that the objective of graphcut textures is to find an optimal 

labeling within a complete −α expansion move from the initial labeling  f. The major theorem 

proved in this paper to support the graphcut textures is as follows: in a complete −α expansion 

graph, there is a one to one correspondence between the set of all elementary cuts and the set of 

all labelings within one complete −α expansion move of an initial labeling. This theorem 

indicates that finding the optimal labeling of graphcut textures is equivalent to finding the min-

cost cut in a complete −α expansion graph, which can be efficiently computed by using graph 

cut techniques [1, 2, 4, 7, 8].  
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Another contribution of this paper is to provide a novel example of applying the general 

framework of the graph-based optimization methods proposed by Boykov, Veksler and Zabih [2, 

8] to solve an application-dependent problem.  

The rest of the paper is structured as follows. Section 2 provides the background 

knowledge on graph cuts and graphcut textures. Section 3 gives the mathematical analysis and 

proofs for graphcut textures using the complete −α expansion graphs. Finally, conclusions are 

drawn in Section 4. 

 

2  Background Knowledge 

2.1 Graph Cuts 

In this paper, we use >=< EVG ,  to represent a weighted graph, where V and E are the set of 

vertices and the set of edges, respectively. There are two special vertices (called the terminals) in 

the graph: the source and the sink. A cut EC ⊂  is a set of edges such that the terminals are 

separated in the induced graph >−=< CEVCG ,)( , and no proper subset of C separates the 

terminals in )(CG . The cost of a cut C, denoted by ||C , is defined as the sum of its edge 

weights. A min-cost cut in the graph is a cut with the smallest cost, which can be efficiently 

computed using the max-flow theorem [4, 7]. 
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Among the various optimization techniques of graph cuts [1], the methods introduced by 

Boykov, Vesler and Zabih [2, 8] have become popular for efficiently solving labeling problems 

in computer vision and computer graphics. In a labeling problem, a set of sites P  and a set of 

labels L are given, the objective is to find the global (or nearly global) optimal labeling f (a 

labeling is a map from P to L) which minimizes the energy of f.  In general, as indicated by 

Veksler in her Ph.D. thesis, “the design of a good energy function is not trivial” [8], and the 

energy function must properly incorporates the constraints of a problem [2, 8]. Another major 

difficulty in solving a labeling problem is that generally the problem is intractable. For example, 

for an image of size 3232 ×  (i.e. 1024 sites) with 256 gray levels (i.e. 256 labels) for each pixel, 

there are 1024256  labelings. Boykov, Vesler and Zabih [2, 8] have shown that graph cuts can be 

used to efficiently find the global or nearly global optimal solutions for labeling problems with 

energy functions that are everywhere smooth, piecewise constant, or piecewise smooth. The key 

idea of using graph cuts to solve a labeling problem is to construct a weighted graph in a way 

such that there is a one to one correspondence between the set of certain type of cuts in the graph 

and the set of all labelings that are in the move space of an initial labeling [2, 8]. With the one to 

one correspondence established, the labeling problem is converted to find the min-cost cut in the 

graph [2, 8]. However, both the construction of the graph and the establishment of the one to one 

correspondence are problem-dependent, and special tricks have to be developed as suggested by 
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Veksler [8]. In fact, there are similar difficult situations in graphcut textures [8], which are 

described below. 

 

2.2 Graphcut Textures 

The graphcut textures [5] is one of the state-of-art techniques in patch-based texture synthesis 

(e.g. [3, 6]). Given an input texture image, the patch-based texture synthesis generates an output 

texture image that is often larger than and looks similar to the input texture by copying small 

patches from the input to the output. Figure 1 gives an example of a simple patch-based texture 

synthesis, in which small patches are randomly chosen from the input and tiled together in the 

output. The problem of this simple method is that there are noticeable seams between the tiled 

patches (see Figure 1).  In fact, the main goal of the patch-based texture synthesis is to find 

techniques to remove (or reduce) the visible seams between patches when they are placed into 

the output. In graphcut textures [5], the technique of graph cuts proposed by Boykov et al. [2] is 

used to remove the visible seams between patches. 

 

 

 

Figure 1: An example of simple patch-based texture synthesis. 
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Instead of tiling along their boundaries, patches are placed into the output with overlaps, 

i.e., a new patch is placed into the output such that it partially overlaps with existing (i.e. old) 

patches. To ensure that the textures in the newly placed patch maximally agree with those in the 

existing patches in the overlap region, a minimum error path in the overlap region (i.e. a path 

through the pixels in the overlap region where the new and old patches have the smallest 

intensity difference, see Figure 2 (a)) is calculated and used as a cut line between the new and 

old patches.  

 

 

 

 

Figure 2: An example of graph formulation of finding the minimum error path. 

The problem of finding the minimum error path in the overlap region can be considered 

as a graph cut problem. Suppose a new patch B is inserted into the output that overlaps with an 

existing patch A. A simple graph can be constructed as shown in Figure 2 (b). The existing patch 

in the output is represented by a source node with label “patch A” in the left, and the new patch 
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node are called terminal nodes. For simplicity reasons, it is assumed that there are only 9 pixels 

in the overlap region between the new patch B and the existing patch A. 

For each edge pqe  in the overlap region, where p and q are the neighboring nodes 

connected by the edge, a weighted cost ),,,( BAqpw  is assigned to it, which is defined as: 

|)()(||)()(|),,,( qBqApBpABAqpw −+−= ,  (1) 

where )( pA  is the gray level of pixel p from patch A and )( pB  is the gray level of p from patch 

B. If an edge between a terminal node (A or B) and a non-terminal node is assigned an infinite 

cost ∞ , the non-terminal node will be forced to assume the label from the patch represented by 

the terminal node. For example, in Figure 2, both edges Ape and zBe  have ∞  costs, which imply 

that node p retains its old patch label and node z is assigned to the new patch B. The minimum 

error path in Figure 2 (a) is equivalent to the min-cost cut of the graph shown in Figure 2 (b), 

which can be calculated efficiently using standard graph cuts techniques (e.g. [4, 7]). 

The above graph cut problem does not consider the visible seams between the old patches 

(called old seams) in the output. To remove (or reduce) the old seams when laying down a new 

patch into the output, a different type of graph is constructed as illustrated in Figure 3. The old 

patches, which are already placed down in the output, are represented by the source node with 

the label “existing patches A”, and the new patch to be inserted is represented by the sink node 
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with the label “new patch B”. Let pA  represent the particular patch that a pixel p in the overlap 

region comes from. For each pair of neighboring pixels p and q in the overlap region, if 

qp AA ≠ (i.e. p and q come from different existing patches), then there is an old seam between p 

and q and a seam node s is created between p and q. Three edges pse , sqe  and sBe , are also 

created at node s each with different weights assigned to them, which are ),,,( BAqpw p , 

),,,( qABqpw , and ),,,( qp AAqpw (see Eq. 1 for the definition of (.)w ), respectively. For the 

case of qp AA = , no information is provided in Kwatra’s paper [5] . In fact, in this case, node p 

and q have the same initial patch label, and a weight of ),,,( BAqpw p  should be assigned to 

edge pqe  as discussed in the next section. 

 

 

 

 

Figure 3: An example of graph with seam nodes added to incorporate old seam constraints. 

For example, in Figure 3, there is an old seam between nodes p and q, then a seam node 

1s  is created between them. In addition, the seam node 1s  is connected to the sink node B by a 

weighted edge, whose weight is ),,,( qp AAqpw . The edge between p and 1s  is assigned a weight 
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),,,( BAqpw p , and the edge between 1s  and q is assigned a weight ),,,( qABqpw . There is no 

old seam between node x and y, which implies x and y come from the same old patch, denoted by 

yx AAA == , the weight for edge xye  should be |)()(||)()(|),,,( yByAxBxABAyxw −+−= . 

Other seam nodes shown in Figure 3 are 2s , 3s  and 4s  between nodes q and y, y and z, and v and 

w, respectively.   

Kwatra et al. [5] have argued that once the min-cost cut is calculated, some old seams 

(e.g. the one between node v and w in Figure 3) are removed from the graph. On the other hand, 

new seams (e.g. the ones between node q and r, y and z, y and v, and u and v in Figure 3) are also 

introduced into the graph by the min-cost cut. However, Kwatra et al. have not shown in their 

paper that the total seam cost (i.e. the overall intensity difference along the boundaries of 

patches) is reduced even with new seams introduced, which implies that the overall visible seams 

are reduced by the min-cost cut. Addressing the above problem requires the proof of the 

equivalence between the min-cost cut and the optimal labeling of the graph because the seam 

cost is represented as the energy of a labeling in the overlap region. 

In addition, there are some mathematical errors in the statements made regarding the 

graphs constructed for graphcut textures (see the last paragraph in Section 3.1 of the original 

paper [5]), which are misleading. First, Kwatra et al. claim that there exists an equivalence 

relationship between the seam cost and the min-cost cut of the graph, which is inaccurate. In fact, 
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as proved in Theorem 1 and Corollary 1 in the next section, there exists an equivalence 

relationship between the min-cost cut and the optimal labeling of the graph (not the seam cost), 

which indicates that the labeling problem in graphcut textures can be efficiently solved using 

existing graph cut techniques [1, 2, 4, 7, 8]. The relationship between the seam cost and the min-

cost cut of the graph is not meaningful. Furthermore, there is no theoretical support to 

demonstrate that the proposed method can efficiently solve the labeling problem in graphcut 

textures using graph cuts. 

 

 

 

 

 

Figure 4: An example to demonstrate the situation when a min-cost cut cuts the edges at 

a seam node. It is impossible for the min-cost cut C to cut any two edges at a seam node. 

Secondly, Kwatra et al. have made an incorrect comment on the min-cost cut which says 

that “picking two arcs originating from a seam node is always costlier than picking just one of 

them, hence at most one arc is picked in the min-cut”. The correct situation is that the min-cost 
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cut can never pick two arcs from the same seam node, not to mention picking one of the two 

candidate arcs. As an example shown in Figure 4, the min-cost cut C cannot cut any two (e.g. sqe  

and sBe ) of the three edges pse , sqe , and sBe  at the seam node s. In fact, as proved in Lemma 3 

and Lemma 4 in the next section, C can only cut either the single edge pse , or sBe , or none of the 

three edges at s, and cannot even cut sqe . 

Lastly, the graph constructed for graphcut textures is not equivalent to the one used in 

Boykov et al.’s work [2] as claimed by Kwatra et al. in their paper [5]. By simply following 

Boykov’s framework without reformulating the graph mathematically, one cannot prove the 

correctness of the graphcut textures, particularly the important equivalence relationship between 

the min-cost cut and the optimal labeling of the graph used in graphcut textures. In the next 

section, we show that the graph constructed as shown in Figure 3 is in fact a special type of 

−α expansion graph [2, 8], by which we call a complete −α expansion graph. We prove that 

there is a one to one correspondence between the set of all elementary cuts and the set of all 

labelings within one complete −α expansion move of the initial labeling f in the graph, and that 

the optimal labeling in graphcut textures is equivalent to the min-cost cut in the graph. The 

mathematical properties of the cuts, the min-cost cuts, the elementary cuts, and the 

corresponding labeling of a cut in a complete −α expansion graph are formulated in details in 

order to provide mathematical proofs for graphcut textures. 
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3  Mathematical Proofs 

The −α expansion graphs defined by Boykov et al. [2, 8] cannot be directly used to prove the 

correctness of the graphs constructed for graphcut textures. The reason is that the expansion 

space A in an −α expansion move can be any subset of the set of sites P. However, in graphcut 

textures, each time when a new patch is laid down over existing patches in the output, a complete 

subregion of the new patch, where there are no holes, is used to replace a part of the overlap 

region. In fact, we need a new type of −α expansion graphs that are constructed from complete 

−α expansion moves, whose definition is given below. As shown later in this section, this 

particular type of −α expansion moves plays an important role in defining the one to one 

correspondence between the set of elementary cuts and the set of all labelings of the graph 

constructed for graphcut textures. For clarity, the definition of −α expansion move, which is 

taken from Boykov et al.’s work [2, 8], is restated first. 

Definition 1 [2, 8] Let P be a set of sites, L be a set of labels, and F be the set of all 

labelings, where a labeling f is a map from P to L. Given a label L∈α , a pair FF ×∈′),( ff  is 

an −α expansion move if there exits PA ⊂  such that α=′pf  for Ap ∈ , and pp ff =′  for 

Ap ∉ . 
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One can see that f ′  can be obtained from f by switching all labels in A to α , and this 

means that the region of all sites with −α labels has been expanded by f ′ . We call f ′  one 

−α expansion move from f. 

Definition 2 Without the loss of generality, assume four-nearest neighborhood 

connections are used. An −α expansion move f ′  from f is complete if the set A is complete in 

the sense that both the set A and its complement APAc \=  are connected under four-nearest 

neighborhood connections. 

 

 

 

 

Figure 5: Examples of complete and non-complete sets. In all the figures, the set A is the set of 

all sites with black dots. The set A in (a) is complete, while the set A in either (b) or (c) is not 

complete. In (b), A is connected, but cA  is not. In (c), cA  is connected, but A is not. 

A set A is connected if any two sites in it are connected by a path using four-nearest 

neighborhood connections. Examples of complete and non-complete sets are shown in Figure 5. 

The set A in Figure 5 (a) is complete since both A and cA  are connected. In Figure 5 (b), A is 

(a) (b) (c)(a) (b) (c)
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connected, but cA  is not, thus the set A is not complete. Similarly, the set A in Figure 5 (c) is not 

complete either. The complete set defined in Definition 2 naturally corresponds to the complete 

subregion (where there are no holes) of a new patch to be placed in the output image during the 

synthesis of graphcut textures. 

With the complete −α expansion defined, the labeling problem in graphcut textures [5] 

can be stated as follows. Given a new patch α , a set of pixels P in the overlap region between 

the existing patches and the new patch, and an initial labeling  f , the task is to find an optimal 

complete −α expansion move from f. We assume an initial labeling f as the one shown in Figure 

3, where f always initializes some pixels in the overlap region (e.g. pixels r, z, and w in Figure 3) 

to the new patch. For any given labeling f, the energy of f, denoted by )( fE , is given by: 

∑
∈

=
N),(

),,,()(
qp

qp ffqpwfE ,    (2) 

where pf  is the label of pixel p that tells which patch p comes from, ),,( , qp ffqpw  is defined as 

in Eq. 1, and N  denotes the set of all neighboring pairs },{ qp  in the overlap region.  

The energy defined in Eq. 2 measures the seam cost as described in the previous section. 

In fact, if two pixels p and q come from different patches (i.e. qp ff ≠ ), then there is a seam 

between them. In this case, we want to know how closely the textures in the two patches match 

with each other at pixel p and q. This can be measured by the color difference between p and q, 

which is exactly ),,,( qp ffqpw according to Eq. 1 (note that a zero value of ),,,( qp ffqpw  
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means no difference in color, and thus it is a perfect match). If p and q come from the same patch 

(i.e. qp ff = ), then these is no seam between them, which implies that the measure  

),,,( qp ffqpw  should give a zero value. This is actually true by Eq. 1 and qp ff = .  

 

 

 

 

 

Figure 6: The structure of the graph built for graphcut textures. 

The structure of the graph >=< EVG ,  is shown in Figure 6. The set of vertices includes 

the terminals α  and α , as well as all the pixels P  in the overlap region, where α  represents the 

label for the new patch and α  stands for the old labels assigned to pixels in the overlap region 

by the initial labeling f.  For each pair of neighboring pixels p and q, if they have different labels 

(i.e. qp ff ≠ ), then an auxiliary node [2, 8] (called the  seam node in graphcut textures) pqss =  

is created, and we call pixels p and q the patch nodes of the seam node s. Therefore, the set of 

vertices is 
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An edge that connects a pixel Pp ∈  to one of the terminal nodes is called a t-link [2, 8] 

(e.g. edges peα  and αre  in Figure 6) and the set of all t-links is represented by T . For each pair 

of neighboring pixels N∈},{ qp  with qp ff = , we connect them by an edge pqe , which is called 

an n-link [2, 8]. For each pair of neighboring pixels N∈},{ qp  with qp ff ≠ , a triple of edges is 

created: 

},,{ αssqpspq eee=E ,     (4) 

where s is the seam node between p and q, the edge pse  connects p to s, sqe  connects s to q, and 

αse  connects s to α . Edges in },,{ αssqpspq eee=E  are called s-links. Thus the set of all edges in 

the graph >=< EVG ,  is: 
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Table 1: The weights assigned to edges in the graph shown in Figure 6. 

Edge Weight Comments 
T∈t  ∞  t-link 

pse  ),,,( αpfqpw  

sqe  ),,,( qfqpw α  

αse  ),,,( qp ffqpw

qp ffqp ≠∈ ,},{ N , s is the seam node  
between p and q, and α is the label  

for the new patch. 

pqe  ),,,( αpfqpw  qp ffqp =∈ ,},{ N  

 

By the requirement of the graphcut texture synthesis process [5], each t-link from a pixel 

Pp ∈  is assigned a weight of infinity, which prevents pixel p’s label from changing during 

complete −α expansion moves (see Definition 2). The weights of n-links and t-links in the graph 
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are assigned such that the results in Lemma 4 - Lemma 7 can hold, which are essential for the 

proofs of Theorem 1 and Corollary 1 described later. The weights for all edges in the graph are 

summarized in Table 1. 

 Lemma 1 Let s be a seam node in >=< EVG , , and p and q be the patch nodes of s. For 

any cut C in >=< EVG , , CC ∈⇒∈ αssq ee . 

 

 

 

Figure 7: The smallest subgraph of the graph shown in Figure 6 that contains the terminals, the 

node p, s, and q, and all the corresponding edges among the nodes. 

Proof: Let >=< 111 ,EVG  be the smallest subgraph of >=< EVG ,  that contains the 

terminals α  and α , the node p, s, and q, and all the corresponding edges among the nodes (see 

Figure 7). Now suppose C∈sqe , then C cannot contain pse . Otherwise, the cut C has a proper 

subset )\(}{ 11 ECC ∪= pse  that separates the terminals in the induced graph )(CG , which is a 

contradiction to the definition of a cut (see Section 2.1). On the other hand, since C is a cut in G, 

C must cut each path between the terminals, which implies that C∈αse . Thus, we have proved 

that CC ∈⇒∈ αssq ee . ■ 
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Lemma 2 Given a seam node s in >=< EVG , . Let p and q be its patch nodes, and pqE  

be the set of s-links at s. Any cut C in >=< EVG ,  satisfies exactly one of the three properties: 

(1) φ=∩ pqEC , (2) }{ pspq e=∩ EC , and (3) If C∈sqe  then },{ αssqpq ee=∩ EC , else 

}{ αspq e=∩ EC . 

Proof: Let >=< 111 ,EVG  is the subgraph of G as defined in the proof of Lemma 1 (see 

Figure 7). Suppose φ≠∩ pqEC , then at least one edge in },,{ αssqpspq eee=E  must be in C. If 

C∈pse , then C cannot contain any of sqe  and αse , and thus }{ pspq e=∩ EC . Otherwise there 

exists a proper subset )\(}{ 11 ECC ∪= pse  of  C  that separates the terminals in the induced 

graph )(CG , which contradicts the definition of a cut. If none of properties (1) and (2) is 

satisfied by C, then the last property must hold for C according to Lemma 1. ■ 

Given an initial labeling f for the pixels in the overlap region, the objective is to find an 

optimal complete −α expansion move from f. Now we prove that the optimal complete 

−α expansion move is just the min-cost cut in the graph >=< EVG , . Before proving this, we 

give the definition of an elementary cut in a graph. 

Definition 3 An elementary cut C in >=< EVG ,  is a cut that cuts at most one of the 

three s-links in },,{ αssqpspq eee=E  at any seam node s. 
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Lemma 3 Let s be a seam node in >=< EVG , , p and q be its patch nodes, and 

},,{ αssqpspq eee=E  be the set of s-links at s. Any elementary cut C in G  satisfies exactly one of 

the three properties: (1) φ=∩ pqEC , (2) }{ pspq e=∩ EC , and (3) }{ αspq e=∩ EC . Thus, any 

elementary cut C cannot contain the s-link sqe  in },,{ αssqpspq eee=E  at any seam node s. 

Proof: The results immediately follow from Lemma 2 and Definition 3. ■ 

Lemma 4 The min-cost cut C in >=< EVG ,  is an elementary cut. 

Proof: By Lemma 2, as a cut, the min-cost cut C satisfies exactly one of three properties: 

(1) φ=∩ pqEC , (2) }{ pspq e=∩ EC , and (3) If C∈sqe  then },{ αssqpq ee=∩ EC , else 

}{ αspq e=∩ EC . To prove C is an elementary cut, we only have to show that if C satisfies 

property (3), then }{ αspq e=∩ EC . Suppose this is not true (i.e. the “else” part does not hold for 

C), then the “if” part holds for C. Thus, we have },{ αssqpq ee=∩ EC , and this is impossible by 

the minimality of the cost of C and by the fact that the costs (see Table 1) of the three edges in 

pqE  satisfies the triangle inequality (note that the cost function (.)w  defined in Eq. 1 is metric), 

which implies that cutting two edges sqe  and αse  together in pqE  is costlier than cutting the third 

one (i.e. pse ).  ■ 

An elementary cut is not necessarily a min-cost cut. For example, in Figure 8, the cut 1C  

is an elementary cut, but not the min-cost cut, which is the cut 2C . In order to establish a one to 



 
 
 
 

22

one correspondence between the set of all elementary cuts and the set of all labelings within one 

complete −α expansion move of the initial labeling f, we define the corresponding labeling of a 

cut as follows.  

 

 

 

 

 

Figure 8: An example of an elementary cut 1C  that is not the min-cost cut. 

 

 

 

 
 

Figure 9: An example of two subgraphs αG   and αG  of >=< EVG ,  divided by cut C. 

For a given cut C (not necessarily an elementary cut), let >=< ααα EVG ,  and 

>=< ααα EVG ,  be the two subgraphs of G divided by C (i.e. the subgraphs after removing all 
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the edges in C from G, see Figure 9), the corresponding labeling Cf  of C can be defined as 

follows: 





∈
∈

=
α

α

α V
VC

p
pf

f p
p if,

if,
.   (6) 

In other words, a pixel p is assigned label α  if it belongs to the subgraph >=< ααα EVG , , 

otherwise, it retains its old label. 

Lemma 5 If N∈},{ qp  (N is the set of all neighboring pairs) such that qp ff = , then 

any cut C in the graph >=< EVG ,  satisfies ),,,(|}{| CCC qppq ffqpwe =∩ , where the function 

(.)w  is defined in Eq. 1. 

Proof: There are only two cases: (1) φ=∩ }{ pqeC  and (2) }{}{ pqpq ee =∩C . Let 

>=< ααα EVG ,  and >=< ααα EVG ,  be the two subgraphs divided by C as shown in Figure 9. If 

φ=∩ }{ pqeC , then p and q must belong to the same subgraph, i.e. either αV∈},{ qp  or 

αV∈},{ qp . In either case, we have CC
qqpp ffff ===  by Eq. 6, and this implies that 

),,,(),,,(0|||}{| CCC qpqppq ffqpwffqpwe ====∩ φ  by Eq. 1. If }{}{ pqpq ee =∩C , then p 

and q cannot belong to the same subgraph. Suppose αV∈p  and αV∈q , then we have pp ff =C  

and α=C
qf . From the weights shown in Table 1, we have ),,,(|||}{| αppqpq fqpwee ==∩C , 

which is equal to ),,,( CC
qp ffqpw  since pp ff =C  and α=C

qf . ■ 



 
 
 
 

24

Lemma 6 If N∈},{ qp  such that qp ff ≠ , then any elementary cut C in the graph 

>=< EVG ,  satisfies ),,,(|| CCEC qppq ffqpw=∩ , where pqE  is given in Eq. 4. 

 

 

 

Figure 10: The smallest subgraph that contains terminal α  and α , the node p, s, and q, and all 

the corresponding edges among the nodes. 

Proof: By Lemma 3, C satisfies exactly one of the three cases: (1) φ=∩ pqEC , (2) 

}{ pspq e=∩ EC , and (3) }{ αspq e=∩ EC . We give the proof for case 3, and the proofs for the 

other two cases are similar. Suppose }{ αspq e=∩ EC , let >=< 111 ,EVG  be the smallest 

subgraph as shown in Figure 10 that contains terminal α  and α , the node p, s, and q, and all the 

corresponding edges among the nodes. One can see that C cuts all the paths between the 

terminals in 1G . Let >=< ααα EVG ,  and >=< ααα EVG ,  be the two subgraphs of G divided by 

C as shown in Figure 9. Since C is a cut and }{ αspq e=∩ EC , it can only cut an edge after pixel 

q (see Figure 10), thus p and q must belong to the subgraph αG  , i.e. αV∈},{ qp . By Eq. 6, we 

have pp ff =C  and qq ff =C . On the other hand, by Lemma 3 and Table 1, we have 
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),,,(|||| qpspq ffqpwe ==∩ αEC , which is equal to ),,,( CC
qp ffqpw  since pp ff =C  and 

qq ff =C . ■ 

The results in Lemma 6 only hold for an elementary cut. For a non-elementary cut C, it is 

possible that C contains both s-links sqe  and αse  at a given seam node s. In that case, we have 

),,,(|| CCEC qppq ffqpw≥∩  rather than ),,,(|| CCE qppq ffqpwC =∩ . 

Lemma 7 For any cut C in the graph >=< EVG , , its corresponding labeling Cf  

defined in Eq. 6 is a complete −α expansion move from the initial labeling f.  Moreover, for any 

elementary cut C, its cost is equal to the energy of Cf , i.e. 

)(|| CC fE= ,       (7) 
 

where )( CfE  is given by Eq. 2. 

Proof: It is obvious that Cf  is an −α expansion move from the initial labeling f. As 

shown in Figure 9, both subregions  αV  and αV  are connected, thus by Definition 2, Cf  is 

complete. Now, suppose C is an elementary cut, its cost ||C  is calculated as follows: 

∑∑
≠∈=∈

∩+∩=
qpqp ffqp

pq
ffqp

pqe
,},{,},{

|||}{|||
NN

ECCC . (8) 

By Lemma 5, the first term in Eq. 8 is 

∑∑
=∈=∈

=∩
qpqp ffqp

qp
ffqp

pq ffqpwe
,},{,},{

),,,(|}{|
N

CC

N
C . 

 

By Lemma 6, the second term in Eq. 8 is 
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∑∑
≠∈≠∈

=∩
qpqp ffqp

qp
ffqp

pq ffqpw
,},{,},{

),,,(||
N

CC

N
EC . 

Plugging the above two equations into Eq. 8,  we have 

)(),,,(),,,(),,,(||
},{,},{,},{

C

qp
qp

ffqp
qp

ffqp
qp fEffqpwffqpwffqpw

qpqp

==+= ∑∑∑
∈≠∈=∈ N

CC

N

CC

N

CCC . ■ 

 

Now, we present our main result in the following theorem, and give a corollary of the 

theorem which proves that the optimal complete −α expansion move *f  from an initial labeling 

f is the min-cost cut in the graph >=< EVG , . 

Theorem 1 There exists a one to one correspondence between the set of all elementary 

cuts in >=< EVG ,  and the set of all labelings within one complete −α expansion move of the 

initial labeling f. Moreover, for any elementary cut C, the cost of C is equal to the energy of Cf , 

i.e. )(|| CC fE= . 

Proof: Let Ω  be the set of all elementary cuts in >=< EVG , , and F be the set of all 

labelings within one complete −α expansion move of the initial labeling f . We define a map 

between Ω  and F as follows: 

CCC
FΩ

f=
→

)(
:

ϕ
ϕ

a
   (9) 

where Cf  is defined in Eq. 6. We show that the map ϕ  is a one to one correspondence, i.e. both 

an injection and surjection.   
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We first prove that ϕ  is an injection, i.e. for any two distinct elementary cuts 1C  and 2C , 

we want to show that their corresponding labelings 1
1

Cff =  and 2
2

Cff =  are different, i.e. 

21 ff ≠ . Let >=< )(),()( 111 CECVCG ααα  and >=< )(),()( 111 CECVCG ααα  be the two 

subgraphs (see Figure 9 for an example) divided by 1C , and >=< )(),()( 222 CECVCG ααα  and 

>=< )(),()( 222 CECVCG ααα  be the two subgraphs divided by 2C . Since 21 CC ≠ , their 

corresponding subgraphs must be different, and this implies that )()( 21 CVCV αα ≠  and 

)()( 21 CVCV αα ≠ . Therefore, there exists at least one pixel p such that )( 1CVα∈p  and 

)( 2CVα∉p , which implies that )()( 21 pfpf ≠= α . Thus, we have proved that 21 ff ≠ . 

 

 

 

 

 

Figure 11: An example of how to construct an elementary cut C, given a complete 

−α expansion f ′  from the initial labeling  f. 

To prove ϕ  is a surjection, for any complete −α expansion f ′  from the initial labeling f, 

we need to show that there exists an elementary cut ΩC ∈  such that f ′=)(Cϕ . The elementary 

cut C can be constructed as follows. Since f ′  is a complete −α expansion, so the set of all 
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pixels with α  labels are connected, and the set of all pixels with old labels (i.e. α ) are also 

connected according to Definition 2. Let >=< ααα EVG ,  be the subgraph where all pixels have 

label α , and >=< ααα EVG ,  be the subgraph where all pixels have old labels (see the left 

figure in Figure 11). For each pair of neighboring pixels N∈},{ qp  where αV∈p  and αV∈q , 

let s be the seam node between p and q, then we define the set of all edges pse  as the required cut 

C (e.g. the set of all dashed lines in the right figure in Figure 11), i.e. 

},,},{},,,{|{ ααα VVNEC ∈∈∈=∈= qpqpeeeee ssqpspqpsps .  (10) 

Clearly, the cut C defined in Eq. 10 is an elementary cut, and satisfies ff ′=C , i.e. f ′=)(Cϕ . 

The “moreover” part of Theorem 1 has been proved in Lemma 7. ■ 

 As discussed in the beginning of this section, the objective of graphcut textures is to find 

an optimal labeling within a complete −α expansion move from the initial labeling f. The 

following corollary indicates that finding the optimal labeling is equivalent to finding the min-

cost cut in the graph, which can be efficiently computed by using graph cut techniques [2, 8]. 

Corollary 1 Let C be the min-cost cut in >=< EVG , . Then the optimal labeling 

)(min* fEargf
f

′=
′

 among f ′  is given by Cff =* , where f ′  is a complete −α expansion 

move from the initial labeling  f. 



 
 
 
 

29

Proof: Let }fromexpansioncompleteais|{ fff −′′= αF , and Ω  be the set of all 

elementary cuts in G. By Theorem 1, there exists a one to one correspondence between G and F. 

Since C is the min-cost cut in G, it is an elementary cut by Lemma 4, thus ΩC ∈ . The cost of C 

is )(|| CC fE=  again by Theorem 1 . The corresponding labeling Cf  of C is optimal since C is 

the min-cost cut, i.e. C

F
ffEargf

f
=′=

∈
)(min

'

* . ■ 

 

4  Conclusions 

Although the technique of graphcut textures [5] has been successfully used in image and video 

texture synthesis since it was introduced in 2003, the mathematical formulation and 

mathematical properties of the graphs for the labeling problem of graphcut textures are not well 

presented in the original paper, which make the technique unconvincing from the theoretical 

point of view. This paper gives the essential mathematical support and proofs for graphcut 

textures, and clarifies the mathematical errors and confusions in the original graphcut textures 

paper. We prove that the labeling problem (i.e. finding the optimal labeling) of graphcut textures 

is equivalent to finding the min-cost cut in a complete −α expansion graph. 
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