Molar Refractivity and Oxygen Solubility

by

Adriana Andreina Rivolta

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

In

Chemical Engineering

Department of Chemical and Materials Engineering

University of Alberta

©Adriana Andreina Rivolta, 2020

Abstract

This study dealt with two experimental topics. One topic evaluated the relationship between molar refractivity and the experimentally measurable parameters refractive index, density and molar mass. The other topic dealt with an experimental method to determine oxygen solubility in hydrocarbons.

The objective of the molar refractivity study was to determine which of the different equations that correlate molar refractivity, refractive index, density, and molar mass better express the empirical data. Molar refractivity is a temperature invariant property, therefore, the best correlation would be the one in which the calculated molar refractivity is least temperature-dependent. To evaluate these correlations, high precision, and accurate temperature-dependent data for refractive index (0.000001 readability), and density (0.000001 g/cm³ readability) of pure components were measured. The data were collected for different groups of reagents, namely: alkanes, alkenes, alkynes, cyclic compounds, alkyl aromatics, 1-alcohols, carboxylic acids and sulfur compounds of different compound classes. For each model compound, the measurements were performed nine times for each temperature condition. Measurements were obtained at five different temperatures when possible, depending on the boiling and melting point of the sample.

Once the data were collected, it was found that the molar refractivity calculated with the correlation by Eykman $\left(R_M = \left(\frac{n^2-1}{n+0.4}\right) \cdot \frac{M}{\rho}\right)$ was the least temperature-dependent. The Eykman correlation performed best for all of the model compounds, except propionic acid and butyric acid.

The average first derivative $(dn/d\rho)$ of refractive index with respect to density of alkanes (0.598 ± 0.003) , alkenes, (0.604 ± 0.002) , and alkynes (0.587 ± 0.005) were roughly the same as the value of 0.6 reported in literature for hydrocarbons. For the selected 1-alcohols and carboxylic acids, the $dn/d\rho$ increases with the increase of the carbon chain length and the decrease of the polarity, due to the presence of oxygen, which suggested that the $dn/d\rho$ could be used to track changes in chemical composition. In sulfur-containing compounds $dn/d\rho$ appeared to depend more on the hydrocarbon nature than in the position of the sulfur.

On the other hand, for the study of dissolved oxygen in hydrocarbons, the goal was to find or develop an experimental method to determine oxygen solubility in hydrocarbons, and to use the experimental measurement to calculate Henry's constant. The first method involved oxygen determination by titration, but could not be successfully adapted for use with hydrocarbons. The second method determined oxygen concentration from the pressure difference resulting from oxygen dissolving in the liquid hydrocarbon. Results from this method compared favorably with measurements reported in the literature.

Preface

(Mandatory due to collaborative work)

The molar refractivity study (Chapters IV to VIII) was done in collaboration with Dr. Natalia Montoya and Dr. Arno De Klerk. I was responsible for design of experiments, data collection and interpretation, and manuscript composition. Dr. Natalia Montoya was involved in the design of experiments, and reviewing the manuscript.

The dissolved oxygen study was done in collaboration with Dr. Muhammad Siddiquee and Dr. Arno De Klerk. I was responsible for design of methodology, data collection and interpretation, and manuscript composition. Dr Muhammad Siddiquee collaborated with design of methodology, data collection, and reviewing the manuscript.

The whole project was done with the supervision of Dr Arno De Klerk, he was involved in concept formulation, data interpretation and reviewing the manuscript.

To my parents and my sisters for their never ending support. To Raunil for making me laugh even when I wanted to cry

Acknowledgements

I want to express my gratitude to my supervisor Arno De Klerk for all his support and guidance through this project. Thanks for your advice, and for the fun conversations. I feel fortunate to have had you as my supervisor.

Thanks to Natalia and Muhammad for all their help and guidance with this project. Thanks to you guys this project was completed on time.

I want to thanks my research group colleagues for their feedback and care. I want to specially thank Shruthi and Priscila for their advices and a little push when I needed it, moreover thanks for all the laughs and the coloring. Thanks to Garima for her contagious cheerfulness. Thanks to Cloribel for her unconditional support and friendship.

I would also like to thank Mariangel for her advice, and Astrid for her help. And thanks to Raunil for his company.

Thanks to CNOOC International Ltd, NSERC and Alberta Innovates for funding this project

Thanks ©!

Table of Contents

CH	A	PTER	R I – INTRODUCTION TO A FUNDAMENTAL STUDY OF MOLA	R
RE	FF	RACT	IVITY AND OXYGEN SOLUBILITY	1
1.	E	Backg	round	1
1	.1	Re	fractive Index and Molar Refractivity	1
1	.2	Ox	xygen solubility for hydrocarbons	4
2.	Р	roble	m formulation	4
2	2.1	Cu	urrent Situation	4
	2	.1.1	Refractive index and molar refractivity	4
	2	.1.2	Oxygen solubility in hydrocarbons	5
2	2.2	De	esired Situation	5
	2	.2.1	Refractive index and molar refractivity	5
	2	.2.2	Oxygen solubility in hydrocarbons	5
3.	C)bject	ive	5
4.	S	cope	of work	6
4	.1	Re	fractive index and molar refractivity	6
4	.2	Ox	xygen solubility in hydrocarbons	6
4	.3	Or	ganization of the thesis	6
5.	R	Refere	nces	8
СН	A	PTER	R II – LITERATURE REVIEW OF A FUNDAMENTAL STUDY OF MOLA	R
RE	FF	RACT	IVITY AND OXYGEN SOLUBILITY 1	1
1.	Iı	ntrodı	action1	1
2.	R	Refrac	tive index scientific background1	1
2	2.1	De	efinition1	1
	2	.1.1	Refractometer operation principles1	3

4	2.2	Rel	ationship between refractive index and polarizability	. 14
-	2.3	Mo	lar refraction	. 17
	2.3	5.1	Atomic refraction and group contribution.	. 18
,	2.4	Der	nsity	. 19
	2.4	.1	Density and refractive index relationship	. 19
	2.4	.2	Density meter operation principles	. 20
-	2.5	Stu	dy of asphaltenes precipitation using refractive index measurement	. 20
3.	Ox	ygen	solubility and Henry's law	. 21
-	3.1	Def	inition	. 21
	3.1	.1	Henry's law derivation	. 22
	3.1	.2	Henry's constant temperature-dependence	. 25
-	3.2	Vaŗ	por-liquid equilibrium	. 25
-	3.3	Dis	solved oxygen determination - Previous works	. 26
4.	Re	feren	ces	. 27
CF	IAP	ΓER	III – PLANNING OF EXPERIMENTAL WORK FOR A FUNDAMENT	AL
ST	UDY	C OF	MOLAR REFRACTIVITY AND OXYGEN SOLUBILITY	. 30
1.	Int	rodu	ction	. 30
2.	Re	fracti	ive index and molar refractivity	. 30
,	2.1	Cor	npound groups selection	. 30
4	2.2	Crit	teria to model compound selection	. 31
	2.3	Equ	ipment selection	. 32
	2.4	Pro	cedure to collect refractive index data	. 33
4	2.5	Me	thodology to collect refractive index data	. 33
	2.5	5.1	Water check	. 34
	2.5	5.2	Data accuracy verification	. 35

2	.6	Pro	cedure to collect density data	. 36
2	.7	Me	thodology to collect density data	. 36
	2.7	.1	Air and water checks	. 38
	2.7	.2	Data accuracy verification	. 40
2	.8	Cal	culations	. 40
	2.8	.1	Molar refractivity	. 40
	2.8	.2	Atomic refraction, and group contribution	. 41
3.	Me	asur	ement of oxygen solubility in hydrocarbons	. 42
4.	Ret	feren	ces	. 43
CH	АРТ	FER	IV - FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY WITH LINE	AR
AL	KAN	NES	AS MODEL COMPOUNDS	. 44
1.	Inti	rodu	ction	. 45
2.	Exp	perin	nental	. 45
2	.1	Ma	terials	. 45
2	.2	Equ	ipment, procedures, methodologies, and calculations	. 46
3.	Res	sults		. 46
4.	Dis	scuss	ion	. 50
4	.1	Ass	essment of data accuracy	. 50
4	.2	Firs	t derivative of refractive index vs. density	. 52
4	.3	Mo	lar refractivity	. 53
4	.4	Atc	mic refraction & group contribution	. 57
5.	Co	nclu	sions	. 59
6.	Ret	feren	ces	. 60
CH	АРТ	FER	V - FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY WITH LINE	AR
AL	KEN	NES	& ALKYNES AS MODEL COMPOUNDS	. 61

1.	Intr	oduc	ction	62
2.	Exp	perin	nental	63
2	.1	Mat	terials	63
2	.2	Equ	ipment, procedures, methodologies, and calculations	64
3.	Res	sults.		64
4.	Dis	cuss	ion	70
4	.1	Prec	cision and accuracy of the data	70
4	.2	Firs	st derivative of refractive index vs. density	71
	4.2	.1	Alkenes	71
	4.2	.2	Alkynes	72
	4.2	.3	Comparing alkanes, alkenes, and alkynes	73
4	.3	Mo	lar refractivity	74
	4.3	.1	Alkene	74
	4.3	.2	Alkyne	77
4	.4	Ato	mic refraction & group contribution	80
	4.4	.1	Alkene	81
	4.4	.2	Alkyne	82
5.	Cor	nclus	sions	83
6.	Ref	feren	ces	84
СН	APT	ER	VI - FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY	WITH
CY	CLI	СH	YDROCARBONS MODEL COMPOUNDS	85
1.	Intr	oduc	ction	86
2.	Exp	perin	nental	86
2	.1	Mat	terials	86
2	.2	Equ	ipment, procedures, methodologies, and calculations	88

3.	Res	ults	88
4.	Dis	cussion	95
4	.1	Precision and accuracy of the data	95
4	.2	First derivative of refractive index vs. density	95
	4.2.	1 Cyclic compounds	95
	4.2.	2 Alkyl aromatics	96
	4.2.	3 Comparing alkanes, alkenes, alkynes, alkyl aromatic and cyclic compounds	98
4	.3	Molar refractivity	98
	4.3	1 Cyclic	98
	4.3	2 Alkyl aromatics	101
4	.4	Atomic refraction & group contribution	104
	4.4	1 Cyclic	105
	4.4	2 Alkyl aromatics	106
5.	Cor	nclusions	107
6.	Ref	erences	108
СН	APT	ER VII - FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY V	VITH
AL	COF	IOL AND CARBOXYLIC ACID MODEL COMPOUNDS	109
1.	Intr	oduction	110
2.	Exp	perimental	110
2	.1	Materials	110
2	2	Equipment, procedures, methodologies, and calculations	111
3.	Res	ults	112
4.	Dis	cussion	118
4	.1	Precision and accuracy of the data	118
4	.2	First derivative of refractive index with respect to density $(dn/d\rho)$	118

	4.2.1	1-Alcohols	
	4.2.2	Carboxylic Acids	120
	4.2.3	Comparing alkanes, alkenes, alkynes, carboxylic acid, and 1-alcohol	compounds
			121
4	.3 Mo	olar refractivity	122
	4.3.1	1-Alcohols	122
	4.3.2	Carboxylic Acids	125
4	.4 At	omic refraction & group contribution	129
	4.4.1	1-Alcohol	130
	4.4.2	Carboxylic Acids	
5.	Conclu	usions	
6.	Refere	nces	133
СН	APTER	R VIII - FUNDAMENTAL STUDY OF MOLAR REFRACTIVI	TY WITH
SUI	LFUR C	CONTAINING COMPOUNDS AS MODEL COMPOUNDS	134
1.	Introdu	action	135
2.	Experi	mental	
2	.1 Ma	aterials	
2	.2 Eq	uipment, procedures, methodologies, and calculations	136
3.	Results	S	136
4.	Discus	sion	
4	.1 Pro	ecision and accuracy of the data	
4	.2 Fir	rst derivative of refractive index with respect to density	
	4.2.1	Comparing alkanes, alkenes, alkynes, alkyl aromatic, cyclic, carboxylic	acid, and 1-
	alcoho	l compounds	141
4	.3 Mo	olar refractivity	
4	.4 At	comic refraction & group contribution xii	

5.	Co	onclusions	146
6.	Re	ferences	147
		FER IX - FUNDAMENTAL STUDY OF OXYGEN SOLUBILITY OCARBONS – TITRATION METHOD (1 st METHOD)	
1.	Int	roduction	149
2.	Ex	perimental	149
2	2.1	Materials	149
2	2.2	Procedure	150
2	2.3	Methodology	
2	2.4	Calculations	
2	2.5	Chemical reactions	
3.	Re	esults	
4.		scussion	
	L.1	Discussion of the results	
	I.1 I.2	Effect of the volume of the sample	
	I.2	Assumption made while adapting the methodology	
5.			
		onclusions	
6.		ferences	
		FER X - FUNDAMENTAL STUDY OF OXYGEN SOLUBILITYOCARBONS – EQUILIBRIUM LIQUID-VAPOUR (2 nd METHOD)	
1.		roduction	
2.		perimental	
2	2.1	Materials	159
2	2.2	Equipment	160
2	2.3	Procedure	161

2	2.4	Methodology	
	2.4	4.1 Leak check	
2	2.5	Calculations	
	2.5	5.1 Oxygen solubility equations	
	2.5	5.2 Henry's constant	
3.	Res	esults	
4.	Dis	iscussion	
4	.1	Assumptions	
4	.2	Precision	
4	.3	Accuracy	
5.	Co	onclusions	171
6.	Ret	eferences	
~			
CH	API	TER XI – CONCLUSION TO A FUNDAMENTAL STUDY C	OF MOLAR
		TER XI – CONCLUSION TO A FUNDAMENTAL STUDY C ACTIVITY AND OXYGEN SOLUBILITY	
	FRA		174
RE	FRA Inti	ACTIVITY AND OXYGEN SOLUBILITY	174 174
RE 1. 2.	FRA Inti	ACTIVITY AND OXYGEN SOLUBILITY	174 174 175
RE 1. 2. 2	FRA Inti Coi	ACTIVITY AND OXYGEN SOLUBILITY	174 174 175 175
RE 1. 2. 2	FRA Intr Cor	ACTIVITY AND OXYGEN SOLUBILITY troduction onclusions Refractive index and molar refractivity Oxygen solubility in hydrocarbons	174 174 175 175 176
RE 1. 2. 2	FRA Intr Co 2.1	ACTIVITY AND OXYGEN SOLUBILITY troduction onclusions Refractive index and molar refractivity Oxygen solubility in hydrocarbons 2.1 First method	174 174 175 175 176 176
RE 1. 2. 2	FRA Intr Coi 2.1 2.2 2.2 2.2	ACTIVITY AND OXYGEN SOLUBILITY troduction onclusions Refractive index and molar refractivity Oxygen solubility in hydrocarbons 2.1 First method	174 174 175 175 176 176 176
RE 1. 2. 2 2 3.	FRA Intr Coi 2.1 2.2 2.2 2.2	ACTIVITY AND OXYGEN SOLUBILITY troduction onclusions Refractive index and molar refractivity Oxygen solubility in hydrocarbons 2.1 First method 2.2 Second method	174 174 175 175 176 176 176 176
RE 1. 2. 2 3. 3	FRA Intr Cor 2.1 2.2 2.2 2.2 Fut	ACTIVITY AND OXYGEN SOLUBILITY troduction onclusions Refractive index and molar refractivity Oxygen solubility in hydrocarbons 2.1 First method 2.2 Second method ture work recommendations	174 174 175 175 176 176 176 176 176
RE 1. 2. 2 3. 3	FRA Intr Cor 2.1 2.2 2.2 2.2 Fut 3.1 5.2	ACTIVITY AND OXYGEN SOLUBILITY	174 174 175 175 176 176 176 176 176 176 177

List of Tables

Table 2.1. Molar refractivity calculated with different correlations. 18
Table 2.2. Atomic refraction constants for Lorentz-Lorenz equation. 18
Table 3.1. Instruments used in the refractive index research
Table 3.2. Refractometer ultra-pure water check at (20.00 ± 0.01) °C
Table 3.3. Density meter ultra-pure water check at (20.000 ± 0.001) °C
Table 3.4. Density meter air check at (20.000 ± 0.001) °C
Table 4.1. Linear alkanes used in the present research
Table 4.2. Density of selected linear alkanes at different temperatures
Table 4.3. Refractive index at different temperatures of the selected linear alkanes
Table 4.4. Slope of the linear function of refractive index vs density for the selected linear alkanes
Table 4.5. Molar refractivity of selected linear alkanes calculated with equations 2.IX-2.XII 53
Table 4.6. Hexane molar refractivity reported in the literature. 55
Table 4.7. Average molar refractivity and its standard deviation for the selected linear alkanes 56
Table 4.8. Atomic refraction and group contribution for Eykman
Table 4.9. Comparison between Rm calculated with the experimental data and Rm calculated with
atomic refraction and group contribution for the correlation by Eykman
Table 5.1. Model compounds used in the present chapter 63
Table 5.2. Density at different temperatures of selected alkenes and alkynes
Table 5.3. Refractive index at different temperatures of the selected alkenes and alkynes 67
Table 5.4. Slope $(dn/d\rho)$ of the linear tendency of refractive index vs density for the selected
linear alkenes
Table 5.5. Slope $(dn/d\rho)$ of the linear function of refractive index vs density for the selected
alkynes
Table 5.6. Average slope $(dn/d\rho)$ of the linear function of refractive index vs density for alkanes,
alkenes, and alkynes compound classes
Table 5.7. Molar refractivity of selected linear alkenes calculated with equations 2.IX-2.XII 74
Table 5.8. Average molar refractivity and its standard deviation for the selected linear alkenes 76

Table 5.9. Molar refractivity of alkyne model compounds calculated with equations 2.IX-2.XII
from Chapter II
Table 5.10. Average molar refractivity and standard deviation for the selected alkynes
Table 5.11. Atomic refraction and group contribution for Eykman
Table 5.12. Comparison between Rm calculated with the experimental data and Rm calculated
with AR and GC for the selected alkenes for the correlation by Eykman
Table 5.13. Comparison between Rm calculated with the experimental data and Rm calculated
with AR and GC for the correlation by Eykman for alkyne model compounds
Table 6.1. Selected model compounds 87
Table 6.2. Average density at different temperatures of selected model compounds
Table 6.3. Average refractive index at different temperatures of the selected model compounds91
Table 6.4. Slope of the linear trend of refractive index vs density for the selected cyclic compounds
Table 6.5. Slope $(dn/d\rho)$ of the linear function of refractive index vs density for the selected alkyl
aromatics
Table 6.6. Molar refractivity of selected cyclic compounds calculated with equations 2.IX-2.XII
Table 6.7. Average molar refractivity for the selected cyclic compounds 101
Table 6.8. Molar refractivity of alkyl aromatic compounds, calculated with equations 2.IX-2.XII
from Chapter II
Table 6.9. Average molar refractivity of the selected alkyl aromatic compounds
Table 6.10. Atomic refraction and group contribution for Eykman
Table 6.11. Rm calculated with the experimental, AR and GC for the selected cyclic compounds
for the correlation by Eykman
Table 6.12. Molar refractivity calculated with the experimental data, AR and GC for the correlation
by Eykman for alkyl aromatic model compounds
Table 7.1. Selected carboxylic acid and 1-alcohol compounds 111
Table 7.2. Average density at different temperatures of selected model compounds
Table 7.3. Average refractive index at different temperatures of selected model compounds 115
Table 7.4. First derivative of refractive index with respect to density $(dn/d\rho)$ for selected 1-
alcohol compounds

Table 7.5. First derivative of refractive index with respect to density $(dn/d\rho)$ for selected
carboxylic acids
Table 7.6. Molar refractivity of selected alcohols calculated with equations 2.IX-2.XII 122
Table 7.7. Average molar refractivity for the selected 1-alcohol compounds
Table 7.8. Molar refractivity the selected carboxylic acids, calculated with equations 2.IX-2.XII
from Chapter II
Table 7.9. Average molar refractivity of the selected carboxylic acids
Table 7.10. Orientation polarization of propionic acid at different temperatures 128
Table 7.11. Atomic refraction and group contribution for the correlation by Eykman
Table 7.12. Rm calculated with the experimental, AR and GC for the selected 1-alcohols for the
correlation by Eykman
Table 7.13. Rm calculated with the experimental data, AR and GC for the correlation by Eykman
for the selected carboxylic acids
Table 8.1. Selected model compounds 135
Table 8.2. Average density at different temperatures of selected model compounds 136
Table 8.3. Average refractive index at different temperatures of selected model compounds 138
Table 8.4. Slope $(dn/d\rho)$ of the linear trend of refractive index vs density for the selected sulfur
compounds
Table 8.5. Molar refractivity of selected sulfur compounds calculated with equations 2.IX-2.XII
Table 8.6. Average molar refractivity for the selected sulfur compounds
Table 8.7. Atomic refraction and group contribution for the correlation by Eykman 145
Table 8.8. Rm calculated with the experimental, AR and GC with the correlation by Eykman for
the selected model compounds
Table 9.1. Reagents used in determination of oxygen solubility in hydrocarbons 150
Table 9.2. Volume of sodium thiosulfate (standardized) added to the aqueous phase during the
titration process
Table 9.3. Concentration of oxygen in <i>n</i> -heptane
Table 10.1. Reagents used in the present chapter. 160
Table 10.2. Instruments used in the oxygen solubility determination 160
Table 10.3. Room conditions 166

Table 10.4. Experimental data collected for each of the aliquots	
Table 10.4. Experimental data collected for each of the aliquots. Continuation	
Table 10.5. Experimentally determine solubility and Henry's constant of O_2 d	issolved in n-
dodecane	
Table 10.6. Solubility and Henry's constant of O_2 dissolved in <i>n</i> -dodecane at 20 °C of	calculated with
literature data	

List of Figures

Figure 1.1. Viscosity change of a product from bitumen visbreaking after reaction at 250 °C 2
Figure 1.2. Refractive Index change of a product from bitumen visbreaking after reaction at 250
°C3
Figure 2.1. Refraction of a light beam passing from medium 1 to medium 2
Figure 2.2. Refractometer Abbemat 500 functional scheme 14
Figure 2.3. Density meter, DMA TM 5000 M, U-tube measuring cell
Figure 2.4. Henry's law representation
Figure 2.5. Solute fugacity (f_1) vs. solute mole fraction (x_1)
Figure 3.1. Comparison between experimental and literature ⁶ refractive index of water at 20 °C
and 589 nm
Figure 3.2. Density meter, sample injection specifications
Figure 3.3. Comparison between experimental and literature density of water at 20 °C 40
Figure 4.1. Density of hexane at different temperatures, experimental and literature data 50
Figure 4.2. Refractive index of hexane at different temperatures, experimental and literature data.
Figure 4.3. Density vs refractive index of <i>n</i> -hexane, <i>n</i> -heptane, and <i>n</i> -octane of literature and
experimental data
Figure 4.4. Refractive index vs. density of the selected linear alkanes
Figure 5.1. Refractive index vs. density of the selected linear alkenes
Figure 5.2. Refractive index vs. density of the selected linear alkynes
Figure 5.3. Refractive index vs. density of different compound classes
Figure 6.1. Refractive index vs. density of the selected cyclic compounds
Figure 6.2. Refractive index vs. density of the selected alkyl aromatics
Figure 6.3. Refractive index vs density of different compound groups
Figure 7.1. Refractive index vs. density of the 1-alcohol model compounds
Figure 7.2. Refractive index vs. density of the selected carboxylic acids
Figure 7.3. Refractive index vs density of different compound groups 122
Figure 8.1. Refractive index vs. density of the selected sulfur compounds
Figure 8.2. Refractive index vs density of different compound classes

Figure 9.1. Equipment used for the determination of dissolved oxygen by McKeown et al. (1956)	
	150
Figure 9.2. Experimental set-up adapted from McKeown et al.	151
Figure 10.1. Experimental set-up	161
Figure 10.2. P&ID of the experimental set-up used to indirectly measure oxygen so	olubility 162
Figure 10.3. Mol fraction of oxygen in <i>n</i> -dodecane vs. temperature	

CHAPTER I – INTRODUCTION TO A FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY AND OXYGEN SOLUBILITY

This chapter introduces the research topic. The current and desired situations around the topic are presented, as well as the objectives, and scope of the project.

1. Background

Two topics were investigated in this study, namely, (i) the relationship between molar refractivity, refractive index, density and molar mass, and (ii) the experimental determination of oxygen solubility in hydrocarbons. These two topics are related only by their fundamental nature.

Fundamental research means experimental or theoretical work carried out to create knowledge or deepen the understanding of foundations or basic principles of a given topic, without an immediate or direct application on view.^{1,2} An example of fundamental research is the atom discovery when in 1808 Dalton discovered the atom and called the smallest unit in nature.³ Then, Rutherford found out that inside of the atom there is a nucleus, changing the atom pre-existing definition, which continued to change until the one that is known today.³

As previously described, knowledge evolves, and fundamental studies are the means for that evolution to happen. Inspired by this, the present fundamental research analyzes and deepen the knowledge of refractive index use, and devised an experimental method to measure oxygen solubility for the determination of Henry's constant for hydrocarbons.

1.1 Refractive Index and Molar Refractivity

Asphalt, fuels, and newspaper ink are a few of the everyday products derived from bitumen and heavy oils. To obtain such products, these heavy feedstocks have to undergo transportation, upgrading, and refining processes. Bitumen and heavy oils are difficult to analyze during these processes due to their complex composition, high viscosity, high average molecular weight, and low volatility. Bitumen or heavy oil, are characterized by techniques, however, most techniques cannot be used to record or track small changes during bitumen conversion.

To make the point, an example taken from literature⁴ is given. Figure 1, which presents the change in viscosity of a visbroken product as a function of the temperature, illustrates the difficulty in the detection of change often experienced during characterization of products from bitumen conversion.

Figure 1.1. Viscosity change of a product from bitumen visbreaking after reaction at 250 °C.4

Figure 1 shows that the viscosity values at 20, 30, and 40 °C, could be considered the same, due to the high standard deviation shown by the error bars. Although it appears as if the error becomes less at lower viscosity values, the relative standard deviation remained of the same order.

However, figure 2 shows that the standard deviation is quite smaller for refractive index vs temperature data of the same visbreaking product. The low variability (small standard deviation) of refractive index measurements makes this technique an attractive one for bulk analysis. The present research aims to deepen the fundamental knowledge and understanding of refractive index so that in the future, it can be used by industry to analyze complex mixtures such as bitumen or bitumen derived products to infer composition related information.

Figure 1.2. Refractive Index change of a product from bitumen visbreaking after reaction at 250 °C.⁴

Nowadays, refractive index has been used as an indirect measure of the onset of asphaltenes precipitation.^{5–7} It has also assisted in the detection of small changes of composition during conversion,⁸ and has been used as a convenient measure to approximate physical,^{9–11} and chemical properties of heavy petroleum, including wax content,¹² paraffin/naphthenes/ aromatic composition,¹³ and elemental analysis.¹⁴

Significant progress to establish relationships between composition and refractive index was made. However, no much progress on the study of refractive index measurement as a tool to indirectly determine the composition of complex mixtures has been made since the 1960s. Some fundamental aspects, which can unlock practical applications, remain not fully resolved. Therefore, the objective of this research is to revisit and resolve some of the fundamental aspects related to refractive index, specifically about molar refractivity.

Molar refractivity is a temperature invariant and intrinsic property, which can be related to chemical composition. However, in the literature¹⁵, there are different equations that correlate molar refractivity to refractive index, density, and molar mass. Which of these correlations better express the empirical data is not clear from the literature¹⁵.

To resolve this uncertainty, refractive index and density data sets at 5 different temperatures were experimentally measured for seventy two model compounds. The data was collected at atmospheric pressure. Afterward, the data was analyzed and compared with the data available

in the literature^{16,17} and employed to evaluate equations to correlate molar refractivity to refractive index, molar mass, and density.

1.2 Oxygen solubility for hydrocarbons

Oxygen (O₂) transport from gas-phase to organic liquids plays an important role in different oxidation processes such as liquid-phase oxidation to produce petrochemicals and oxidative degradation of organic effluents by aerobic microorganism.^{18–21} To calculate the solubility of O₂ in a liquid, Henry's constant of that specific gas on the desired liquid must be known. The majority of the methods used to calculate this constant involved an aqueous liquid phase.

Therefore, for many hydrocarbons, Henry's constant is not available in the literature. This is commonly solved by approximating the desired constant to one of a similar molecule, creating uncertainty in further calculations. The main objective of this research is to find an experimental method to determine oxygen solubility in organic liquids to calculate Henry's constant for hydrocarbons.

In the present research, two methods to measure oxygen solubility in organic liquids were explored. The first one, a modification of the method of Anderson and Hibbard²², which corresponds to an iodine titration, was done at room temperature and atmospheric pressure. While the second method developed as part of this thesis was done at a pressure slightly higher than atmospheric, approximately 8 psi, and room temperature.

2. Problem formulation

2.1 Current Situation

2.1.1 Refractive index and molar refractivity

There are different relationships in the literature that correlates refractive index, and density with molar refractivity. In addition, the data used to formulate these relationships were collected a long time ago, when the equipment available to measure these properties were not as precise as those available now, making it difficult to discriminate between the correlations. Nowadays, these correlations are used indiscriminately.

2.1.2 Oxygen solubility in hydrocarbons

Oxygen solubility has not been measured and Henry's constant has not been calculated for many hydrocarbons, and methods to experimentally determine oxygen solubility are mostly available when the liquid phase is aqueous and not organic.

2.2 Desired Situation

2.2.1 Refractive index and molar refractivity

Knowing which correlation best expresses the relationship between refractive index, density, and molar refractivity. This will enable the correlation of refractive index to chemical composition in the future, as well as the derivation of appropriate mixing rules for refractive index.

2.2.2 Oxygen solubility in hydrocarbons

Having a method to experimentally measure oxygen concentration in organic liquids, and to calculate the Henry's constant for hydrocarbons, which will improve the calculations of gas-liquid mass transfer and diffusivity in hydrocarbons.

3. Objective

Generate accurate engineering data. Improve the fundamental knowledge of refractive index, by finding the correlation between refractive index, density, molar mass, and molar refractivity that best expresses the empirical data; and Henry's constant for hydrocarbons, by finding an experimental method to measure oxygen solubility in organic liquids at room temperature.

4. Scope of work

4.1 Refractive index and molar refractivity

• Select 8 compound groups and 9 model compounds per group, to analyze the correlations between refractive index, density, and molar refractivity.

• Create data sets of refractive and density vs temperature with the selected model compounds, to find the best correlation

• Observe the difference between the refractive index and density of the different functional groups, to understand the effect of chemical nature in these properties and to analyze the relationship between refractive index and density.

• Calculate for the best correlation the group contribution, and elemental refractivity, to gain more knowledge about this correlation.

4.2 Oxygen solubility in hydrocarbons

- Develop a new experimental method or modify an existing one to measure the dissolved O₂ in a liquid hydrocarbon.
- Choose a hydrocarbon, which oxygen solubility is reported in the literature, as a model compound to test the selected methods.
- Measure oxygen solubility and calculate Henry's constant and compare it to the literature values to validate the experimental method.

4.3 Organization of the thesis

The present work will be divided into 11 chapters. The present chapter contains the introduction of the research topic, objectives, and scope of the project. Chapter II comprises the literature review. Chapters III to VIII deal with molar refractivity, while chapter IX and X with oxygen solubility. Lastly, chapter XI contains conclusions and recommendations.

The work presented in Chapters IV-VIII evaluates the performance of different correlations, available in literature, to calculate molar refractivity. Although, each chapter deals with different compound groups, the evaluation of such correlations is done in a similar way. As a result, the reader will encounter some similarities in the introduction to each chapter

5. References

 Collins English Dictionary. Definition of "fundamental research" https://www.collinsdictionary.com/dictionary/english/fundamental-research (accessed Nov 12, 2019).

(2) European Commission. Community Framework for State Aid for Research and Development and Innovation. *Off. J. Eur. Union* **2007**, *92* (5), 1286–1298.

(3) The Editors of Encyclopaedia Britannica. Atomic Theory https://www.britannica.com/science/atomic-theory (accessed Nov 12, 2019).

(4) Yañez Jaramillo, L. M.; De Klerk, A. Partial Upgrading of Bitumen by Thermal Conversion at 150-300 °C. *Energy and Fuels* 2018, 32 (3), 3299–3311. https://doi.org/10.1021/acs.energyfuels.7b04145.

(5) Buckley, J. S.; Hirasaki, G. J.; Liu, Y.; Von Drasek, S.; Wang, J. X.; Gill, B. S. Asphaltene Precipitation and Solvent Properties of Crude Oils. *Pet. Sci. Technol.* **1998**, *16* (3–4), 251–285. https://doi.org/10.1080/10916469808949783.

(6) Castillo, J.; Gutierrez, H.; Ranaudo, M.; Villarroel, O. Measurement of the Refractive Index of Crude Oil and Asphaltene Solutions: Onset Flocculation Determination. *Energy and Fuels* 2010, *24* (1), 492–495. https://doi.org/10.1021/ef900861d.

(7) Bayat, M.; Sattarin, M.; Teymouri, M. Prediction of Asphaltene Self-Precipitation in Dead Crude Oil. *Energy and Fuels* **2008**, *22* (1), 583–586. https://doi.org/10.1021/ef700536z.

(8) Zachariah, A.; De Klerk, A. Thermal Conversion Regimes for Oilsands Bitumen. *Energy and Fuels* **2016**, *30* (1), 239–248. https://doi.org/10.1021/acs.energyfuels.5b02383.

(9) Wang, F.; Evangelista, R. F.; Threatt, T. J.; Tavakkoli, M.; Vargas, F. M. Determination of Volumetric Properties Using Refractive Index Measurements for Nonpolar Hydrocarbons and Crude Oils. *Ind. Eng. Chem. Res.* **2017**, *56* (11), 3107–3115. https://doi.org/10.1021/acs.iecr.6b04773.

(10) Yarranton, H. W.; Okafor, J. C.; Ortiz, D. P.; Van Den Berg, F. G. A. Density and Refractive Index of Petroleum, Cuts, and Mixtures. *Energy and Fuels* **2015**, *29* (9), 5723–5736. https://doi.org/10.1021/acs.energyfuels.5b01376.

(11) Hosseinifar, P.; Jamshidi, S. Development of a New Generalized Correlation to Characterize Physical Properties of Pure Components and Petroleum Fractions. *Fluid Phase Equilib.* **2014**, *363*,

189–198. https://doi.org/10.1016/j.fluid.2013.11.043.

(12) Eghbali, M. H.; Nazar, A. R. S.; Tavakoli, T. A Simple Method for Oil Content Determination of Petroleum Waxes by Refractive Index Measurement. *Pet. Sci. Technol.* 2014, *32*(7), 856–861. https://doi.org/10.1080/10916466.2011.601504.

(13) Modarress, H.; Vakili-Nezhaad, G. R. A New Characterization Factor for Hydrocarbons and Petroleum Fluids Fractions. *Oil Gas Sci. Technol.* **2002**, *57* (2), 149–154. https://doi.org/10.2516/ogst:2002011.

(14) Goossens, A. G. Prediction of the Hydrogen Content of Petroleum Fractions. *Ind. Eng. Chem. Res.* **1997**, *36* (6), 2500–2504. https://doi.org/10.1021/ie960772x.

(15) Kurtz, S. S. Physical Properties and Hydrocarbon Structure. In *The chemistry of petroleum hydrocarbons. Vol 1*; Reinhold Publishing Corporation: New York, 1954; pp 275–331.

(16) Devi, R.; Gahlyan, S.; Rani, M.; Maken, S. Thermodynamic and Acoustic Properties of Binary Mixtures of Diisopropyl Ether, Benzene and Alkanes at 298.15, 308.15 and 318.15 K: Prigogine-Flory-Patterson Theory and Graph Theory. *J. Mol. Liq.* **2019**, *275*, 364–377. https://doi.org/10.1016/j.molliq.2018.11.045.

(17) Kashyap, P.; Rani, M.; Gahlyan, S.; Tiwari, D. P.; Maken, S. Volumetric, Acoustic and Optical Properties of Binary Mixtures of 2-Propanol with n-Alkanes (C6-C10) from 293.15 K to 303.15 K. *J. Mol. Liq.* **2018**, *268*, 303–314. https://doi.org/10.1016/j.molliq.2018.07.043.

(18) Chen, K. C.; Wu, J. Y.; Liou, D. J.; Hwang, S. C. J. Decolorization of the Textile Dyes by Newly Isolated Bacterial Strains. *J. Biotechnol.* **2003**, *101* (1), 57–68. https://doi.org/10.1016/S0168-1656(02)00303-6.

(19) Nigam, P.; Banat, I. M.; Singh, D.; Marchant, R. Microbial Process for the Decolorization of Textile Effluent Containing Azo, Diazo and Reactive Dyes. *Process Biochem.* 1996, *31* (5), 435–442. https://doi.org/10.1016/0032-9592(95)00085-2.

(20) Siddiquee, M. N.; De Klerk, A.; Nazemifard, N. Application of Microfluidics to Control Product Selectivity during Non-Catalytic Oxidation of Naphthenic-Aromatic Hydrocarbons. *React. Chem. Eng.* **2016**, *1* (4), 418–435. https://doi.org/10.1039/c6re00010j.

(21) Siddiquee, M. N.; De Klerk, A. In Situ Measurement of Liquid Phase Oxygen during Oxidation. *Ind. Eng. Chem. Res.* 2016, 55 (23), 6607–6618. https://doi.org/10.1021/acs.iecr.6b00949.

(22) Mckeown, A. B.; Hibbard, R. R. Determination of Dissolved Oxygen in Hydrocarbons. Anal.

Chem. 1956, 28 (9), 1490–1492. https://doi.org/10.1021/ac60117a044.

CHAPTER II – LITERATURE REVIEW OF A FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY AND OXYGEN SOLUBILITY

In this chapter, the relevant information about refractive index, oxygen solubility in hydrocarbons and Henry's law are introduced; in addition, points of interest for the current investigation will be explained.

1. Introduction

The present literature review is divided into two major sections dealing with: first section: refractive index, and second section: oxygen solubility in hydrocarbons and Henry's law. The first section of the review, which corresponds to refractive index, explores the scientific background of this property, with emphasis on its relationship with density and molar refractivity. Moreover, previous studies are analyzed, highlighting their similarities and differences with the present research.

The second section reviews the definition and formulation of the determination of dissolved oxygen content in hydrocarbons and Henry's law. This section also presents some of the previous research done to determine dissolved oxygen content and calculate Henry's constant.

At the end of this chapter, it is expected that the reader will have the general knowledge and understanding of the scientific background of this study.

2. Refractive index scientific background

2.1 Definition

Refractive index measures the change in angle (θ) when light passes from one medium to another due to the relative change in the speed of light (See Figure 2.1).^{1,2} From a fundamental point of view, the speed of light changes due to the density, and the interaction with the species

present in the medium. In fact, the interaction of the light with the species in the medium is the origin of the composition dependence of refractive index.

Figure 2.1. Refraction of a light beam passing from medium 1 to medium 2.³

The relationship between the refractive index (n_j), the angle (θ_j), and speed of light (u_j) in each medium (j) is given by the Snell's Law.³

$$\frac{n_2}{n_1} = \frac{u_1}{u_2} = \frac{\sin\theta_1}{\sin\theta_2}$$
Snell's Law
(2.1)

In addition, the refractive index of a substance can be calculated by the speed of light in vacuum (c) divided by the speed of light through the medium j (See equation 2.II).^{2,3}

$$n = \frac{c}{u_j}$$
(2.II)

The refractive index of light in vacuum is 1 because $u_{vacuum} = c.^2$ However, for practical reasons, refractive index is not commonly measured using vacuum. It is more convenient to measure refractive index of light of a specific wavelength (λ) relative to air. The most commonly used wavelength is the sodium D-lines, $\lambda = 589$ nm.^{1,2,4} It is not clearly stated in the

literature why is this wavelength commonly used, however, it is interesting that its wavelength its almost at the middle of the wavelengths of visible light range (400 nm to 700 nm)⁵. Also, the sodium D-lines have a bright wavelength doublet at 589 nm and 589.6 nm.^{1,2} Some studies in the literature compare the refractive index measured for sodium D-lines (yellow light), and compare it to the refractive index measured for red ($\lambda = 652.3$ nm), green ($\lambda = 486.1$ nm) and violet ($\lambda = 434.0$ nm) hydrogen lines.⁶ The refractive index using the sodium D-lines in air (nD) is related to the refractive index in vacuum (n_{vacuum}) through equation 2.III.³

$$n_{\text{vacuum}} = 1.00027 \text{ n}_{\text{D}} \tag{2.III}$$

Some variables that affect the refractive index of a compound are temperature, pressure, and wavelength of light used for the measurement.^{1,2} Wavelength and temperature are usually controlled variables during measurement. These are often indicated as part of the symbol used to denote refractive index, e.g. nD^T, where D refers to the sodium D-line and T to the temperature. Pressure is usually not controlled and although the assumption is often made that atmospheric pressure is invariant, it is not, and for careful experimental work, the atmospheric pressure at the time of measurement must be recorded.

2.1.1 Refractometer operation principles¹

Figure 2.2 presents a schematic of the refractometer used in the present study. It uses reflected light to measure the refractive index. For this, the sample on top of the prism is irradiated by a light-emitting diode (LED). When the beam of light interacts with the sample, the beam is refracted into the sample or reflected back into the prism. The reflected beam is detected by a series of sensors. With this, the instrument calculates the angle of reflection, which is used to determine the refractive index of the sample. The instrument measures the refractive index relative to air at 1013 mbar and 50% relative humidity.

Figure 2.2. Refractometer Abbemat 500 functional scheme.¹

2.2 Relationship between refractive index and polarizability ^{2,4}

Refractive index as a property, although simple to measure, is more complex in its origin. As stated before, the refraction of light caused by a medium is due to the interaction of the light with the medium. This interaction is related to the polarizability of the medium and the electromagnetic properties of the light interacting with the medium. To understand how polarizability and refractive index are related, it is useful to look at the polarization of a substance in an electric field.

A substance can be affected in three different ways when placed in a constant electric field:

(a) Orientation polarization (P_O), the electric field causes a force that acts on any permanent dipoles present in the molecule causing orientation of the molecule with respect to the field.

(b) Distortion polarization (P_D), the molecular skeleton may be deformed by the electric field.

(c) Electronic polarization (P_E), the electric field may cause displacement of the average position of electrons relative to the nuclei in the substance to cause additional polarization.

The polarizability of a substance reflects all three types of polarization. It is a property that can be measured under the influence of a constant electric field.^{2,4} The polarizability of a substance *j* is expressed as the dielectric constant (ε_j) of the substance, which is the ratio of the capacitance of the substance (C_j) divided by the capacitance of vacuum (C_{vacuum}) given by equation 2.IV. Capacitance is the ability of a substance to store an electrical charge.⁷

$$\varepsilon = \frac{C_j}{C_{\text{vacuum}}}$$
(2.IV)

The amount of time that is required for each of these polarization processes to occur is different. The slowest process is the orientation polarization because it requires movement of molecules within the medium and must also compete with random movements that are affected by temperature. Distortion polarization is faster because it requires only the relative movement of nuclei within the molecule. The fastest process is electronic polarization, which acts only on electrons within the molecule.

Refractive index as measured by light in the visible spectrum, such as the sodium D-line, is an indirect measure of only electronic polarization. Light, which is electromagnetic radiation, is oscillatory in nature, and the frequency at which the electric field changes depends on the wavelength of the radiation. The frequency of light in the visible region of the spectrum is so high, 10^{14} – 10^{15} Hz, that only electrons can respond fast enough to the change in the electric field.^{2,4} The interaction of visible light with the medium which is passing through will cause only a change in the electronic polarization.

Maxwell showed that the refractive index and the dielectric constant (ϵ) of a substance measured with a capacitor at the same frequency are related when measured at a visible light frequency (See equation 2.V).

$$\varepsilon = n^2$$
 (2.V)
Maxwell

Another useful observation that was made, was related to the molar polarization of nonpolar compounds. It was found that for nonpolar compounds the molar polarization was temperature invariant when the molar polarization (P_M) was expressed in terms of the dielectric constant (ϵ), molar mass (M), and density (ρ) through equation 2.VI.⁸

$$P_{M} = P_{O} + P_{D} + P_{E} = \frac{\varepsilon - 1}{\varepsilon + 1} \cdot \frac{M}{\rho}$$
(2.VI)

Mosotti–Clausius⁸

For polar substances, molar polarization (P_M) was not constant, but a linear relationship related to reciprocal temperature (1/T).⁸ The temperature dependence was due to the presence of permanent dipoles.⁸ A theoretical treatment of the temperature dependence was given by Debye.⁸ The orientation polarization (P_O) was expressed as a function of the temperature (T), dipole moment (μ), Avogadro number ($N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$) and Boltzmann constant ($k = 1.381 \times J \cdot K^{-1}$) (See equation 2.VII).⁸

$$P_0 = \frac{4\pi}{9} \cdot \frac{N_A}{k} \cdot \frac{\mu^2}{T}$$
Debye⁸
(2.VII)

The Mosotti–Clausius equation, although clothed on a theoretical basis, is *not* fundamental. The original relationship was derived from fitting empirical data and there are various assumptions even in the subsequent theoretical development.
2.3 Molar refraction

Molar refractivity is an intrinsic property, which does not depend on temperature (T) nor pressure (P), i.e., it is a constant number for a specific substance.⁸ Molar refractivity can also be expressed as the relationship between molar volume ($V_m=M/\rho$) and a refractive index function, *f*(n), as shown by equation 2.VIII.⁸

$$R_{M} = P_{E} = \left(\frac{n^{2}-1}{n^{2}+2}\right) \cdot \frac{M}{\rho}$$
(2.VIII)

This expression for molar refraction (R_M) can be derived in analogous terms to molar polarization (P_M) by using the Maxwell relationship (Equation 2.V) to express the Mosotti– Clausius equation (Equation 2.VI) in terms of refractive index instead of the dielectric constant.⁸

Since refractive index is measured using visible light, only the electronic polarization component of molar polarization is measured and it should be temperature invariant.⁸ However, this expression of molar refraction builds on the assumptions made in relation to polarization.

Several expressions for calculating molar refraction in terms of refractive index, density, and molecular mass were proposed in the literature.⁹ For example, expressions were proposed by Berthelot, Gladstone & Dale, Lorentz and Lorenz, and Eykman.⁹

$$R_{M} = (n^{2} - 1) \cdot \frac{M}{\rho}$$
Berthelot⁹
(2.IX)

$$R_{M} = (n-1) \cdot \frac{M}{\rho}$$
Gladstone & Dale⁹

$$(2.X)$$

$$R_{M} = \left(\frac{n^{2}-1}{n^{2}+2}\right) \cdot \frac{M}{\rho}$$
(2.XI)

Lorentz – Lorenz⁹

$$R_{M} = \left(\frac{n^{2}-1}{n+0.4}\right) \cdot \frac{M}{\rho}$$
(2.XII)
Eykman⁹

Despite attempts to provide theoretical meaning to these relationships that were proposed for molar refraction, the correlations of the refractive index relationship to molar refraction are empirical. In addition, Table 2.1 shows that the numerical value of molar refractivity varies depending on the equation used to calculate it.

Substance	Tomporatura (°C)		Correlation	
Substance	Temperature (°C)	Gladstone & Dale	Lorentz-Lorenz	Eykman
	14	48.78	29.76	65.24
Hexane	44.95	48.67	29.83	65.26

Table 2.1. Molar refractivity calculated with different correlations.⁹

2.3.1 Atomic refraction and group contribution.⁹

In principle, all the contributions due to the electronic polarization effects of all the bonds for a species are captured by the molar refractivity of the species.² Knowing the structure and relating it to the molar refractivity is valuable because there is a theoretical basis for relating the bonds in the species to molar refractivity. Literature⁹ reports the atomic refraction of some elements and uses it to calculate the molar refractivity.

Developed by	Carbon	Hydrogen	Double Bond	Triple Bond
Bruhl	2.501	1.051	+1.707	+2.10
Eisenlohr	2.418	1.100	+1.733	+2.398
Vander Hulst	2.590	1.025		
Van Nes & Van Westen	2.400	1.114		

Table 2.2. Atomic refraction constants for Lorentz-Lorenz equation.

The atomic refraction assumes that all bonds are single and then correct only for cases where it is not. Table 2.2 shows the atomic refractions for carbon (C), hydrogen (H), and double and triple bonds for Lorentz–Lorenz correlation.⁶ The equation to calculate molar refractivity using the atomic refraction is the following:⁹

$$R_{M} = b_{B} \cdot A_{D} + b_{T} \cdot A_{T} + \sum_{i=1}^{N} (A_{i} \cdot k_{i})$$
(2.XIII)

Where,

- N: quantity of elements present in the reagent structure
- k_i: number of times that the element i is in the reagent structure
- A: atomic refraction (cm³/mol)
- b: number of j bonds present in the structure
- $_{\rm D}$: double bond
- T: triple bond

To evaluate if the assumption done for the atomic refraction is valid, molar refractivity can also be calculated with group contribution. To calculate molar refractivity using group contribution the equation is the following:⁹

$$R_{\rm M} = \sum_{i=1}^{\rm y} (G_i \cdot x_i) \tag{2.XIV}$$

Where,

y: quantity of groups present in the reagent structure

x_i: number of times that the group i is in the reagent structure

 G_i : group contribution of the group i (cm³/mol)

2.4 Density

Physical property defined as mass per unit of volume of a substance at a specific temperature.

2.4.1 Density and refractive index relationship

For hydrocarbons, Kurtz⁹ reports a relationship between refractive index and density (equation 2.XIII). This relationship can be used to predict refractive index at a small temperature change of 10 $^{\circ}$ C or less.⁹

$$\Delta n = 0.6\Delta \rho \qquad (2.XIII)^9$$

However, Kurtz⁹ does not report this relationship for non-hydrocarbons. Also, the questions arise if equation 2.XIII is valid for any hydrocarbon, because it then implies that

the density is linearly correlated with refractive index. This is not consistent with Equations 2.IX-XII.

2.4.2 Density meter operation principles¹⁰

The density meter used in this study is a digital one (See schematic in Figure 2.3). It has a U shaped glass tube which oscillates at a certain frequency depending on the sample filled in it. By determining the frequency, the density of the sample is calculated.

Figure 2.3. Density meter, DMATM 5000 M, U-tube measuring cell.¹⁰

2.5 Study of asphaltenes precipitation using refractive index measurement

For example, asphaltenes must remain in solution when bitumen is transported by pipelines because they could deposit and block the pipes.¹¹ To reduce the risk of pipeline fouling, the asphaltenes can be separated from the bitumen by onset precipitation, using *n*-heptane or *n*-pentane as solvents.¹²

Taylor, et al.¹³ studied the difference between the refractive index of bitumen, maltenes, and asphaltenes, and used this difference to estimate the bitumen volume fraction at which the

asphaltenes precipitation occurs. Wattana, et al.¹⁴ also made a similar research, they studied if the binary mixing rule followed the expected linear tendency for the bitumen and paraffin solvent (*n*-heptane or *n*-pentane) binary mixture. This research concluded that the refractive index of the mixture was equal to the linear combination of the refractive indexes of each of the compounds of the mixture.¹⁴ However, once the asphaltenes started to precipitate the refractive index of the mixture no longer followed the linear tendency, suggesting that refractive index could be used to predict the onset of asphaltenes precipitation.¹⁴

Even though this topic of application does not form part of the current study, it opens the door to questioning for what other applications could the refractive index be used.

3. Oxygen solubility and Henry's law

3.1 Definition

Henry's law, equation 2.XIV, states that the concentration of a gas dissolved in a liquid is proportional to the partial pressure of the gas upon the liquid when the system has reached equilibrium, see Figure 2.4.^{2,16,17} If there is only 1 gas present in the system, the partial pressure of the gas is equal to total pressure of the system.^{2,16,17}

$$s_g = H \cdot p_g$$
 (2.XIV)
Henry's law^{16,18}

Where,

H: Henry's constant (mol / kPa·m³)

 s_g : solubility of the gas in the liquid (mol / m³)

pg: partial pressure of the gas (kPa)

Equation XIV is a way to quantify the solubility of a gas in a liquid at a certain temperature, however, the Henry's constant must be known.^{16,18} Moreover, Henry's law can only be used for systems with gas concentration in the liquid below 1 mol % and partial pressure under 200 kPa.^{18,19} Figure 2.4 shows that if more molecules of the gas (higher partial pressure) are present

the concentration of the gas in the liquid will increase proportionally, illustrating the foundation of Henry's law.¹⁶

Figure 2.4. Henry's law representation.¹⁶

3.1.1 Henry's law derivation²⁰

As mentioned before, Henry's law can only be used for systems at infinite dilution, this can be explained using Figure 2.5. This figure shows that Henry's law only overlaps with the behavior of a system at low concentration of the gas in the liquid.

Figure 2.5. Solute fugacity (\hat{f}_1) vs. solute mole fraction (x_1) .²⁰

For a better understanding, the derivation of Henry's constant is shown in the following. Henry's constant is defined as the slope of Henry's law linear representation in Figure 2.5:

$$H \equiv \lim_{x_1 \to 0} \frac{\hat{f}_1}{x_1} \tag{2.XV}$$

Where,

x₁: solute mole fraction in the liquid-phase

 \hat{f}_1 : fugacity of the solute in solution

This definition applies for a temperature T, and pressure equal to the vapor pressure of the pure solvent (P_2^{sat}) .

The activity coefficient of the solute (γ_1) at infinite dilution is defined as

$$\lim_{x_{1\to 0}} \gamma_1 = \lim_{x_{1\to 0}} \frac{\hat{f}_1}{x_1 f_1} = \frac{1}{f_1} \lim_{x_{1\to 0}} \frac{\hat{f}_1}{x_1}$$
(2.XVI)

Where,

 γ_1 : activity coefficient of the solute

 f_1 : fugacity of pure solute

Combining equations 2.XV and 2.XVI

$$f_1 = \frac{H}{\gamma_1^{\infty}} \tag{2.XVII}$$

Where,

 $^{\infty}$: infinite-dilution.

Because of H and γ_1^{∞} are evaluated at P_2^{sat} , the same pressure applies to f_1 . However, pressure does not have a significant effect on liquids fugacity, therefore it might be neglected. The γ_1 can be expressed by the following equation,

$$\gamma_1 \equiv \frac{\hat{f}_1}{x_1 f_1} = \frac{y_1 P \hat{\emptyset}_1}{x_1 f_1}$$
 (2.XVIII)

Where,

 $^{\infty}$: infinite-dilution.

 $\widehat{\varnothing}_1$: fugacity coefficient of solute in solution

y1: solute mole fraction in the vapour-phase

P: absolute pressure (kPa)

Combining 2.XVII and 2.XVIII,

$$\gamma_1 = \frac{y_1 P \hat{\emptyset}_1 \gamma_1^{\infty}}{x_1 H} \tag{2.XIX}$$

Rewriting the previous equation,

$$y_1 = \frac{x_1(\gamma_1/\gamma_1^{\infty})H}{P\widehat{\emptyset}_1}$$
(2.XX)

For the solvent,

$$y_2 = \frac{x_2 \gamma_2 P_2^{sat}}{P \phi_2} \tag{2.XXI}$$

Knowing that,

$$y_1 + y_2 = 1$$
 (2.XXII)

Combining equations 2.XX, 2.XXI, and 2.XXII

$$P = \frac{x_1(\gamma_1/\gamma_1^{\infty})H}{\widehat{\emptyset}_1} + \frac{x_2\gamma_2P_2^{sat}}{\emptyset_2}$$
(2.XXIII)

The treatment applied to γ_1 , it is also applied to γ_1^{∞} . For vapor-liquid equilibrium:

$$\hat{f}_1 = \hat{f}_1^{\ l} = \hat{f}_1^{\ v} = y_1 P \widehat{\emptyset}_1$$
 (2.XXIV)

Dividing by x_1

$$\frac{\hat{f}_1}{x_1} = P\hat{\emptyset}_1 \frac{y_1}{x_1} \tag{2.XXV}$$

Combining 2.XV and 2.XXV

$$H = P_2^{sat} \widehat{\emptyset}_1^{\infty} \lim_{x_1 \to 0} \frac{y_1}{x_1}$$
(2.XVI)

Finally,

$$H \equiv \frac{y_1}{x_1} \tag{2.XXVII}$$

3.1.2 Henry's constant temperature-dependence

This constant is temperature-dependent and it is different for each gas-liquid system.^{16,19} Literature^{16,19} reports that at higher temperature the solubility of the gas in the liquid decreases. However, Carroll²¹ states that this is not always the case and that the effect of the temperature on the gas solubility depends on the nature of liquid and the gas.^{21,22}

3.2 Vapor-liquid equilibrium

As mentioned before, Henry's constant is applicable when the system that is being studied has reached vapor-liquid equilibrium.^{16,19} Therefore, it is important to define when a system reaches equilibrium. This occurs when no more changes occurred between the phases (in the case of study: gas and liquid phases) that comprise the system.¹⁹ Some of the characteristics of a system in equilibrium are:

- The temperature of the phases are equal.¹⁹
- The concentration of the gas in the liquid is no longer changing.¹⁹
- The pressure of the system is constant.¹⁹

In addition, when a liquid-vapor system reaches equilibrium, then the liquid is saturated with the gas.¹⁸

3.3 Dissolved oxygen determination - Previous works

As shown in equation 2.XIV, to calculate Henry's law the partial pressure upon the liquid and the concentration of the gas in the liquid phase must be known.^{2,16} Measuring the first one can be done with an absolute pressure gauge. Measuring the second one requires a method to quantify the amount of gas in the liquid.

Most of the methods to determine Henry's constant reported in the literature are for gases dissolved in water or aqueous phases.^{22–28} For example, Mohebbi, et al. performed measurements and calculated Henry's constant for light hydrocarbons gases, such as methane and propane, in water.²² The literature also reports methods to measure dissolved gas and then calculate Henry's constant for gases dissolved in hydrocarbons.^{29–32} Most of these methods are not explained in detail, making it difficult to use them to measure dissolved gas to determine Henry's constant for other hydrocarbons or gases. McKeown and Hibbard have a somewhat detailed methodology which the present research will study, modify, and apply to the determination of dissolved oxygen in hydrocarbons (See chapter IX).³²

4. References

(1) AntonPaar. Service Manual Abbemat 3200 Abbemat 3100 Abbemat 3000; 2017.

(2) Atkins, P. W. Physical Chemistry, 3rd ed.; Oxford University Press: Oxford, 1986.

(3) Bueche, F. J.; Hecht, E. General Physics, 10th ed.; Mc Graw Hill, 1997.

(4) Alberty, R. A.; Daniels, F. Physical Chemistry, 3ed ed.; Wiley: New York, 1966.

(5) Arnon, S. *Visible Light Communication*; Cambridge University Press, 2015. https://doi.org/10.1017/CBO9781107447981.001.

(6) Gouw, T. H.; Vlugter, J. C. Physical Properties of Fatty Acid Methyl Esters. III Dispersion. J. Am. Oil Chem. Soc. **1964**, 41 (7), 514–515. https://doi.org/10.1007/BF02670037.

(7) Li, J.; Heath, J. An Introduction to Capacitance Spectroscopy in Semiconductors. In *Capacitance spectroscopy of semiconductors*; Tainan, 2018; pp 1–22.

(8) Glasstone, S.; Lewis, D. Elements of Physical Chemistry, 2nd ed.; Macmillan: London, 1960.

(9) Kurtz, S. S. Physical Properties and Hydrocarbon Structure. In *The chemistry of petroleum hydrocarbons. Vol 1*; Reinhold Publishing Corporation: New York, 1954; pp 275–331.

(10) AntonPaar. Service Manual: DMATM 4100/4500/5000 M SCU, DSATM 5000 / SDATM M SCU;
2018.

(11) Ting, P. D.; Gonzales, D. L.; Hirasaki, G. J.; Chapman, W. G. Application of the PC-SAFT Equation of State to Asphaltene Phase Behavior. In *Asphaltenes, heavy oils and petroleomics*; Springer: Texas, 2007; Vol. 53, pp 1689–1699. https://doi.org/10.1017/CBO9781107415324.004.
(12) Nahar, S. N. Phase - Separation Characteristics of Bitumen and Their Relation to Damage - Healing, Wöhrmann Print Service, Zutphen, 2016.

(13) Taylor, S. D.; Czarnecki, J.; Masliyah, J. Refractive Index Measurements of Diluted Bitumen Solutions. *Fuel* **2001**, *80* (14), 2013–2018. https://doi.org/10.1016/S0016-2361(01)00087-4.

(14) Wattana, P.; Wojciechowski, D. J.; Bolaños, G.; Fogler, H. S. Study of Asphaltene Precipitation Using Refractive Index Measurement. *Pet. Sci. Technol.* **2003**, *21* (3–4), 591–613. https://doi.org/10.1081/LFT-120018541.

(15) Angle, C. W.; Long, Y.; Hamza, H.; Lue, L. Precipitation of Asphaltenes from Solvent-Diluted Heavy Oil and Thermodynamic Properties of Solvent-Diluted Heavy Oil Solutions. *Fuel* **2006**, *85* (4), 492–506. https://doi.org/10.1016/j.fuel.2005.08.009.

(16) Cengel, Y. A.; Boles, M. A. Termodinámica, 7th ed.; Mc Graw Hill: Mexico D.F, 2012.

(17) Poling, B.; Prausnitz, J.; O'Connell, J. *The Properties of Gases and Liquids*, 5th ed.; Mc Graw Hill, 2001.

(18) Smith, J. M.; Van Ness, H. C.; Abbott, M. M. Introduction to Chemical Engineering *Thermodynamics*, 7th ed.; Mc Graw Hill, 2005.

(19) Carroll, J. J. What Is Henry's Law? Chem. Eng. Prog. 1991, 9, 48-52.

(20) Perry, R.; Green, D. Perry's Chemical Engineer's Handbook; Mc Graw Hill, 1999.

(21) Carroll, J. J. Henry's Law Revisited. Chem. Eng. Prog. 1999, 1, 49-56.

(22) Mohebbi, V.; Naderifar, A.; Behbahani, R. M.; Moshfeghian, M. Determination of Henry's Law Constant of Light Hydrocarbons Gases at Low Temperature. *J. Chem. Thermodyn.* 2012, *51*, 8–11. https://doi.org/10.1016/j.jct.2012.02.014.

(23) Nirmalakhandan, N.; Brennan, R. A.; Speece, R. E. Predicting Hernry's Law Constant and the Effect of Temperature on Henry's Law Constant. **1997**, *31* (6), 1471–1481.

(24) Costa Gomes, M. F.; Grolier, J.-P. Determination of Henry's Law Constants for Aqueous Solutions of Tetradeuteriomethane between 285 and 325 K and Calculation of the H/D Isotope Effect. *Phys. Chem. Chem. Phys.* **2001**, *3*, 1047–1052. https://doi.org/10.1039/b008755f.

(25) Kutsuna, S. Experimental Determination of Henry's Law Constants of Difluoromethane (HFC-32) and the Salting-out Effects in Aqueous Salt Solutions Relevant to Seawater. *Atmos. Chem. Phys.* **2017**, *17* (12), 7495–7507. https://doi.org/10.5194/acp-17-7495-2017.

(26) Levy, J. B.; Hornack, F. M.; Levy, M. A. Simple Determination of Henry's Law Constant for Carbon Dioxide. *J. Chem. Educ.* **1987**, *64* (3), 260–261. https://doi.org/10.1021/ed064p260.

(27) Hiatt, M. H. Determination of Henry's Law Constants Using Internal Standards with Benchmark Values. J. Chem. Eng. Data 2013, 58 (4), 902–908. https://doi.org/10.1021/je3010535.

(28) Vendruscolo, F.; Rossi, M. J.; Schmidell, W.; Ninow, J. L. Determination of Oxygen Solubility in Liquid Media. *ISRN Chem. Eng.* **2012**, *2012*, 1–5. https://doi.org/10.5402/2012/601458.

(29) Fischer, K.; Noll, O.; Gmehling, J. Experimental Determination of the Oxygen Solubility in Benzene. *J. Chem. Eng. Data* **2001**, *46* (6), 1504–1505. https://doi.org/10.1021/je010163i.

(30) Yaffe, D.; Cohen, Y.; Espinosa, G.; Arenas, A.; Giralt, F. A Fuzzy ARTMAP-Based Quantitative Structure-Property Relationship (QSPR) for the Henry's Law Constant of Organic Compounds. *J. Chem. Inf. Comput. Sci.* **2003**, *43* (1), 85–112. https://doi.org/10.1021/ci025561j.

(31) Dias, A. M. A.; Bonifácio, R. P.; Marrucho, I. M.; Pádua, A. A. H.; Costa Gomes, M. F. Solubility of Oxygen in N-Hexane and in n-Perfluorohexane. Experimental Determination and Prediction by Molecular Simulation. *Phys. Chem. Chem. Phys.* **2003**, *5* (3), 543–549. https://doi.org/10.1039/b207512c.

(32) Mckeown, A. B.; Hibbard, R. R. Determination of Dissolved Oxygen in Hydrocarbons. *Anal. Chem.* **1956**, *28* (9), 1490–1492. https://doi.org/10.1021/ac60117a044.

CHAPTER III – PLANNING OF EXPERIMENTAL WORK FOR A FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY AND OXYGEN SOLUBILITY

In this chapter, the criteria to select the model compounds used in the present investigation are explained. In addition, the specifications of the instruments used for the refractive index and density studies are shown, highlighting the reasons to use these particular instruments.

1. Introduction

"Every minute you spend in planning saves 10 minutes in execution..."¹. Before starting the experimental work, the selection of reagents, and instruments was done, and the experimental procedure was developed.

The criteria used to select the instruments and reagents are explained in this chapter, as well as the experimental methodologies, which are common to more than one chapter. The current section is not part of the experimental work, but it presents all the work done in preparation for the experimental work.

The planning for the molar refractivity study, as well as the dissolved oxygen determination research, will be explained.

2. Refractive index and molar refractivity

2.1 Compound groups selection

As mentioned in chapter I, the objective of this study is to work with 8 different compound groups. To select these compound groups, the following parameters were considered:

- **Presence in the bitumen:** using compound classes generally found in bitumen as the first screening criterion.²
- **Relevance to the petrochemical industry:** if a compound class that is not present in the bitumen is of interest for the petrochemical industry, it was also considered.
- **Safety:** if a compound class fulfills any or both of the previous criteria but is highly toxic, it was excluded from the study.

The compound groups considered at first instance were: alkanes, alkenes, alkyl aromatics, sulfur compounds, nitrogen compounds, cyclic compounds, and carboxylic acids because they can be found in bitumen.^{2,3} Alkynes were chosen to study the effect of single, double, and triple bonds on the density and refractive index.

However, some nitrogen compounds, such as pyridine, can be harmful to human life if not properly handled, therefore, this compound class was excluded from the final list of compound groups.⁴ Instead, alcohols were chosen because of their relevance to organic chemistry, and their chemical flexibility: they can be formed from different compounds and also transform into many others.⁵

Finally, the selected groups were: alkanes, alkenes, alkynes, alkyl aromatics, cyclic compounds, carboxylic acids, sulfur compounds, and alcohols.

2.2 Criteria to model compound selection

The criteria used to choose specific reagents, in order of selection, were the number of carbons, purity, physical properties, price, safety, and availability. The method of selection was sequential, for example, does the number of carbons fall in the range six to sixteen carbons? If the answer was positive, the next criterion was tested.

• Number of carbon was chosen to be in the range of six to sixteen carbons when possible.

• Purity, reagents should have an assay of 95% or above.

• Melting and boiling point, model compounds in liquid state in the temperature range of study were preferred.

- Price, the reagents must have an affordable price.
- Safety, a highly important criterion, carcinogenic reagents were avoided when possible.

• Availability, due to time constraint and the long lead times that take for ordered reagents to reach the laboratory, reagents available in the laboratory were given preference

9 model compounds were selected per compound group. They are listed in their corresponding chapters.

2.3 Equipment selection

To accomplish the objective of this project, the data collected for refractive index and density must be highly precise, therefore the criterion used to select the instruments to measure these properties was the lowest readability available in the market for the instruments. Table 3.1 shows the instruments selected and their readability.

Equipment	Description	Temperature (°C)	
Density meter	Brand: Anton Paar Model: DMA TM 5000 M. Readability: (\pm 0.001) kg/m ³	Range: -25.000 – 100.000 Readability: ±0.001	
Refractometer	Brand: Anton Paar Model: Abbemat 500 Readability: (± 0.000001)	Range: 4.00 – 85.00 Readability: ±0.01	
Sonicator	Brand: Branson Model: 2800 Frequency: 40 kHz	-	

Table 3.1. Instruments used in the refractive index research

In addition, the density meter and the refractometer shown in table 3.1 were used exclusively for the present research.

2.4 Procedure to collect refractive index data

The aim was to collect refractive index highly precise data at 5 different temperatures for each model compound. The data for the model compounds were collected at the same temperatures so that it can be compared. The selected temperatures were 10, 25, 45, 65 and 85 °C. The main constraints to select these temperatures were the temperature range of the refractometer $(4.00 \pm 0.01 \text{ to } 85.00 \pm 0.01)$ °C, and the water condensation that was observed in the measuring cell at approximately 5 °C.

On the other hand, time was also a constraint, it was preferred to start and finish the measurements of one model component on the same day to ensure that room conditions, such as pressure, temperature, and humidity were as constant as possible throughout the whole experiment. Room conditions were recorded using a digital barometer, Fisherbrand Traceable®. Because the density meter takes a long time to stabilize when a new temperature is set, it was considered that 5 temperatures were the maximum practical number of measurements that could be done in one day. This will be explained in more detail in Section 2.6.

It is important to mention that, it was not possible to measure the properties at all the desired temperatures for all the model compounds, due to their boiling and freezing point. To measure density with the instrument indicated in Table 3.1, a liquid sample is required. In addition, all the measurements were done with a wavelength of 589 nm.

2.5 Methodology to collect refractive index data

The refractometer measurement cell and lid were cleaned with approximately 0.5 mL of ethanol and dried with clean and dry soft tissue paper. After, the cell and lid were cleaned with 0.5 mL of the model compound that was going to be measured and dried with clean and dry soft tissue paper. Then, the desired lowest temperature of analysis, (10.00 ± 0.01) °C, was set. When the equipment reached the desired temperature, 1 mL of the model compound was placed on the measurement cell and covered with the lid. The refractive index is not volume sensitive,

however, to keep the measurements as comparable as possible a 1 mL volume was set as a fixed value. The volume of the sample was measured using a micropipette of 1 μ L of capacity, Cat No: S902432H from Fisher Scientific, and the same tip was used until all the refractive index measurements were finished for the model compound being analyzed.

The analysis was started and the first value measured by the instrument was discarded, to allow the equipment to stabilize. The next three values measured by the instrument were recorded. Three values were recorded to account for the equipment error. After these three measurements, the cell was dried using a clean and dry soft tissue paper. Then, a new 1 mL aliquot of the model compound was placed on the measuring cell. Three measurements were recorded for the second aliquot, and the cell was dried again. This methodology was repeated a third time, to account for researcher variability.

In the end, three aliquots were used and nine values of refractive index were recorded for one model compound at (10.00 ± 0.01) °C. Once all the measurements at (10.00 ± 0.01) °C were completed, the equipment was set at (25.00 ± 0.01) °C, and the methodology was repeated. Consecutively, the same was done at (45.00 ± 0.01) , (65.00 ± 0.01) and (85.00 ± 0.01) °C. The temperature was changed from lower to higher to optimize the stabilization time of the instrument.

2.5.1 Water check

To check that the numerical values of this instrument were not just precise but accurate, a water check was done to ensure that the equipment was calibrated. For this check, ultra-pure water, provided by Anton Paar, was used. The measuring cell was cleaned first with ethanol and then with ultra-pure water, following the steps explained before. Then, ultra-pure water was placed on the cell and the first measuring was done. The refractive indices of three aliquots were measured.

In Table 3.2, the average result per check is shown for all the checks done for the present research. A first check was done before starting the measurements, afterward, checks were done periodically after every 18 reagents were analyzed.

Check Number	Average refractive index measured (n ± 0.000002) nD	Average measured deviation ^a (Δn ± 0.000003) nD	Barometric pressure (Patm±2) (mb)
1	1.333001	0.000014	924
2	1.333000	0.000013	943
3	1.332999	0.000012	933
4	1.333002	0.000015	945
5	1.333005	0.000018	934

Table 3.2. Refractometer ultra-pure water check at (20.00 ± 0.01) °C.

^a Refractive index reference value for ultra-pure water: (1.332987 ± 0.000001) nD at (20.00 ± 0.01) °C.

In Table 3.2, it is shown that the deviation is smaller than 0.000100 nD, which is the maximum deviation defined by the equipment, and smaller than 0.000050 nD, which is the maximum acceptable deviation defined by the researcher. Therefore, the calibration of the instrument was not required.

2.5.2 Data accuracy verification

To verify the accuracy of the data, the measured refractive index of water at (20.00 \pm 0.01) °C was compared to the data available in the literature⁶. Figure 3.1 shows the average value of each set of data, plotted with their standard deviation.

Figure 3.1. Comparison between experimental and literature⁶ refractive index of water at 20 °C and 589 nm.

As can be seen in the previous figure, the experimental value has low standard deviation and it overlaps with the literature⁶ data. It is important to mention that only the

literature⁶ data measured at experimental conditions, 20 °C and 589 nm, was considered. Also, the literature⁶ does not specify which water was used, distilled, ultra-pure, or some other type, which could explain the relatively large standard deviation of the literature⁶ data.

2.6 Procedure to collect density data

Similar to the refractive index procedure, the objective was to collect very accurate density data at 5 different temperatures for each model compound. The temperatures used were the same as the refractive index, to enable the data correlation. The selected temperatures were 10, 25, 45, 65 and 85 °C, which are within the temperature range of the density meter (-25.000 \pm 0.001 – 100.000 \pm 0.001) °C.

As mentioned before, time was also a constraint, the density meter takes between 1 h to stabilize at (10.000 ± 0.001) °C, to approximately 2 h to stabilize at (85.000 ± 0.001) °C. The methodology was developed from low to high temperatures to minimize its stabilization time, but due to the high accuracy data no measurement was taken until the instrument indicate that the desired temperature was reached (i.e. (10.000 ± 0.001) °C). Therefore, it was considered that density measurements at 5 temperatures were the maximum that could be done in one day.

It was not possible to measure the density of all the model compounds at all the desired temperatures, due to the reagents approaching their freezing or boiling point.

2.7 Methodology to collect density data

The sample tube was cleaned with approximately 2mL of ethanol by injecting the sample to equipment and moving the plunger of the syringe in and out several times to create air bubbles, which improved the cleaning action after the sample tube was dried with air. Once the sample tube was dried, a new syringe was used to clean the sample tube the sample following the same procedure as with the ethanol.

A third new syringe was used to inject 2mL of the sample, avoiding to inject air bubbles to the tube sample. The sample was injected, leaving approximately 1 cm of the sample in the waste tube, and 0.5 to 1 mL of sample in the syringe (See figure 3.2). The column of liquid before and after the sample tube helps to ensure that there is no air in the sample tube.

Figure 3.2. Density meter, sample injection specifications.

Then, it was checked that air bubbles were not present in the sample tube. If bubbles were located in the sample tube, a new 2 mL aliquot was injected after drying the sample tube. If bubbles were still present, the sample was put on a close jar on a sonicator for 5 min. to remove the air of the sample. After, using the third syringe, a new 2 mL aliquot of the sample was injected. The sonicator was often used for the alcohols and carboxylic acids compound classes, while for the other groups it was rarely used.

When the instrument reached exactly (10.000 ± 0.001) °C, the first measurement was discarded, to allow the equipment to stabilize. The following three measurements were collected, to account for the instrument error. After the next temperature, (25.000 ± 0.001) °C was set, and when the equipment reached the desired temperature, the measurements were taken following the previous steps. This was repeated with (45.000 ± 0.001) , (65.000 ± 0.001) and (85.000 ± 0.001) °C. When all the measurements were done, the remaining sample in the syringe was injected, the syringe was removed and the sample tube was dried with air.

Using the third syringe, a second aliquot was injected in the sample tube, and the measurements were done. A third aliquot was placed in the sample tube, and the methodology

was repeated to account for researcher variability. In the end, three aliquots were injected, and nine values of density were recorded for one model compound at each one of the temperatures.

2.7.1 Air and water checks

To check that the numerical values of the density meter were not just precise but accurate, water checks were done to ensure that the equipment was calibrated. In addition, air checks were done to verify if the tube sample was clean and in good conditions.

Water check

Ultra-pure water, provided by Anton Paar, was used to do the water check following the method explained in section 2.7. First, the sample tube was cleaned with 2 mL of ethanol and, dried with air. Then the sample tube was cleaned with 2 mL of ultra-pure water and dried. After, 2 mL of ultra-pure water was injected into the sample tube. At last, the check was done recording three measurements per aliquot, three aliquots were analyzed.

In Table 3.3, the average result per check is shown for all the checks done for the present research. As done for the refractive index, a first check was done before starting the data collection, afterward, the check was done periodically after every 18 reagents were analyzed.

Check number	Average density measured	Measured deviation	
Check humber	$(\rho \pm 0.000002) (g/cm^3)$	$(\Delta \rho \pm 0.000003) \ (g/cm^3)^a$	
1	0.998207	0.000004	
2	0.998205	0.000002	
3	0.998204	0.000001	
4	0.998203	0.000000	
5	0.998199	0.000004	

Table 3.3. Density meter ultra-pure water check at (20.000 ± 0.001) °C

^a Density reference value for ultra-pure water: 0.998203 g/cm^3 at (20.000 ± 0.001) °C.

In table 3.3, it can be seen that the deviations are less than 0.000005 g/cm^3 , and smaller than the maximum deviation defined by the equipment 0.000050 g/cm^3 . Therefore, the calibration of the instrument was not required.

Air check

For the air check, the sample tube was cleaned with ethanol and dried with air for approximately 5 min, ensuring that the sample tube was completely dry. Then the check was done. After air was blown through the sample tube, and a second measurement was done. This was repeated a third time. An average density and deviation were calculated per check. The results are shown in table 3.4. As done for the previous check, a first check was done before starting the measurements, afterward, checks were done periodically after the analysis of every 18 reagents.

12) deviation $(\Delta \rho \pm \text{ pressure (Patm \pm 2)})$
(0.00002)(-(3))
$0.000003) (g/cm^3)$ (mb)
0.000001 924
0.000003 943
0.000004 933
0.000000 945
0.000000 934
; ; ; ;

Table 3.4. Density meter air check at (20.000 ± 0.001) °C

As it can be seen in table 3.4, the deviation between the measured and reference air density values are lower than 0.000005 g/cm^3 , while the maximum deviation accepted by the equipment is 0.000050 g/cm^3 . Therefore, the calibration of the equipment was not required.

2.7.2 Data accuracy verification

To verify the accuracy of the data, the measured density of water at (20.00 ± 0.001) °C was compared to the data available in the literature⁶. Figure 3.3 shows the average value of each set of data, plotted with their standard deviation.

Figure 3.3. Comparison between experimental and literature⁶ density of water at 20 °C.

As can be seen in the previous figure, the experimental value has low standard deviation and it overlaps with the literature⁶ data.

2.8 Calculations

In this section, the calculations done to process the data are shown.

2.8.1 Molar refractivity

The molar refractivity is an intrinsic and temperature invariant property. However, there is not one but four correlations in the literature⁷ used to calculate the molar refractivity. These equations are formulated as a function of refractive index, density, and molar mass. The aim of this research is to use the high precision data collected to verify which correlation better expresses the empirical data. The molar refractivity calculated with the best equation would be constant or the least temperature invariant.

The correlations to be analyzed are equations 2.IX, 2.X, 2.XI, and 2.XII from chapter II, for ease of reference they are repeated in this chapter.

$$R_{\rm M} = (n^2 - 1) \cdot \frac{M}{\rho} \tag{2.IX}$$

Berthelot⁷

Where,

R_M: molar refractivity (cm³/mol) n: refractive index (nD) M: molar weight (g/mol) ρ: density (g/ cm³)

$$R_{\rm M} = (n-1) \cdot \frac{M}{\rho} \tag{2.X}$$

Gladstone & Dale^{7,8}

$$R_{\rm M} = \left(\frac{{\rm n}^2 - 1}{{\rm n}^2 + 2}\right) \cdot \frac{{\rm M}}{\rho} \tag{2.XI}$$

Lorentz – Lorenz ⁷

$$R_{M} = \left(\frac{n^{2}-1}{n+0.4}\right) \cdot \frac{M}{\rho}$$
(2.XII)
Eykman⁷

2.8.2 Atomic refraction, and group contribution

The molar refractivity of a sample can also be calculated as a weighted sum of refractivities of the elements or groups present in it. The refractivity of an element (i.e. C) is called atomic refraction, while that of a group (i.e. C-H) is known as group contribution.

Atomic refraction and group contribution were calculated only for the least bias correlation for molar refractivity found after processing of all the experimental data. The atomic refraction equation is the following,

$$R_{M} = b_{B} \cdot A_{D} + b_{T} \cdot A_{T} + \sum_{i=1}^{N} (A_{i} \cdot k_{i})$$
(2.XIII)⁷

Where,

N: quantity of elements present in the reagent structure

k_i: number of times that the element i is in the reagent structure

A: atomic refraction (cm³/mol)
b: number of j bonds present in the structure
D: double bond
T: triple bond

For group contribution the equation is the following:

$$R_{\rm M} = \sum_{i=1}^{\rm y} (G_i \cdot x_i) \tag{2.XIV}^7$$

Where,

y: quantity of groups present in the reagent structure
x_i: number of times that the group i is in the reagent structure
G_i: group contribution of the group i (cm³/mol)

These equations were solved using a system of two equations and two unknown variables, by using the molar refractivity of *n*-hexane and *n*-heptane the atomic refraction for C, and H was calculated; similarly the group contribution for C-H and C-C. The calculated refractivities were validated using the molar refractivity of the other model compounds.

3. Measurement of oxygen solubility in hydrocarbons

The oxygen solubility study was done to advance the research beyond the assumptions made in another study to calculate diffusion and mass transfer coefficients.⁹ Contrary to the refractive index and density study where a common materials and methodology were used throughout the research, the determination of oxygen solubility was done with two different approaches. Each approach will be explained separately in chapters IX and X.

4. References

- (1) Tracy, B. Quotable Quote https://www.goodreads.com/quotes (accessed Nov 23, 2019).
- (2) Strausz, O.; Lown, E. *The Chemistry of Alberta Oil Sands, Bitumen and Heavy Oil*; Alberta Energy Research Institute: Calgary, 2003.
- Montoya Sánchez, N.; de Klerk, A. Autoxidation of Aromatics. *Appl. Petrochemical Res.* 2018, 8 (2), 55–78. https://doi.org/10.1007/s13203-018-0199-4.
- (4) Magee, P. E. Nitrogen as Health Hazard. R. Swedish Acad. Sci. 2019, 6 (2), 123–125.
- (5) Simmonds, C. Alcohol. Its Production, Properties, Chemistry and Industrial Applications; London, 1919.
- (6) RELXGroup. Reaxys database https://www.reaxys.com/#/login (accessed Sep 20, 2005).
- Kurtz, S. S. Physical Properties and Hydrocarbon Structure. In *The chemistry of petroleum hydrocarbons. Vol 1*; Reinhold Publishing Corporation: New York, 1954; pp 275–331.
- (8) Gladstone, J. H.; Dale, T. P. Researches on the Refraction, Dispersion and Sensitiveness of Liquids. *Philos. Trans. R. Soc. A* 1863, 153, 317–343.
- (9) Siddiquee, M. N.; De Klerk, A. In Situ Measurement of Liquid Phase Oxygen during Oxidation. Ind. Eng. Chem. Res. 2016, 55 (23), 6607–6618. https://doi.org/10.1021/acs.iecr.6b00949.

CHAPTER IV - FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY WITH LINEAR ALKANES AS MODEL COMPOUNDS

In this chapter, the accuracy of the refractive index and density data collected for linear alkanes is established. Furthermore, the best molar refractivity correlation for the selected model compounds is found.

Abstract

The present chapter seeks to revisit and evaluate some of the unsolved fundamental issues about refractive index and molar refractivity. Literature reports different correlations to calculate the molar refractivity; hence, the main objective of this chapter is to evaluate such correlations using linear alkanes as model compounds.

To accomplish this, the first step was to compare the refractive index and density data to literature as an indirect indication of accuracy using *n*-hexane, as this compound has been widely studied before and there is data available in the literature. Once the experimental data was collected and a good agreement with the literature was established, the correlations to calculate molar refractivity

were evaluated. Concluding that the best correlation is that by Eykman $\left(R_{M} = \left(\frac{n^{2}-1}{n+0.4}\right) \cdot \frac{M}{\rho}\right)$.

Lastly, the atomic refraction and group contribution were calculated for the molar refractivity calculated by Eykman correlation, concluding that both of them can be used to calculate the molar refractivity of linear alkanes resulting in comparable values.

Keywords: *Alkanes, n-hexane, density, refractive index, molar refractivity, Eykman.*

1. Introduction

The fundamental aspect that the present research aims to revisit and resolve is related to molar refractivity. Molar refractivity is a temperature invariant and intrinsic property.

However, literature¹ reports different equations to correlate molar refractivity, refractive index, molar mass, and density. To assess these correlations, high precision and accurate refractive index and density data are required. The data should be collected at different temperatures so that the temperature invariability of the molar refractivity can be used as criteria to determine which correlation better expresses the empirical data.

As mentioned in Chapter III, data sets from different compound classes would be collected to analyze the molar refractivity correlations. Linear alkanes were selected as the first compound class to study. Alkanes comprise compounds exhibiting single bonds connecting carbon to carbon (C-C) and carbon to hydrogen (C-H) atoms.² In addition, literature^{3–5} about the refractive index and density of linear alkanes is widely available.

To sum up, the objective of this section is to assess the accuracy of the collected data by comparing it to literature^{3–5} data and to evaluate the available molar refractivity correlations to determine which one better expresses the empirical data.

2. Experimental

2.1 Materials

The selected alkanes are listed in Table 4.1. As can be seen, the selected alkanes are linear, branched alkanes were excluded with the aim of studying the effect of the length of the linear carbon chain.

Descent	CACDNa	S.4	Purity (w	rt %)	S
Reagent	CASRN ^a	Structure	Supplier ^b	FID ^c	Supplier
<i>n</i> -Hexane	110-54-3	$CH_3(CH_2)_4CH_3$	>99	99.2	Acros Organic
<i>n</i> -Heptane	142-82-5	$CH_3(CH_2)_5CH_3$	99.8	99.5	Fisher
<i>n</i> -Octane	111-65-9	$CH_3(CH_2)_6CH_3$	>99	99.7	Sigma-Aldrich
<i>n</i> -Nonane	111-84-2	$CH_3(CH_2)_7CH_3$	>99	99.6	Acros Organic
<i>n</i> -Decane	124-18-5	$CH_3(CH_2)_8CH_3$	>99	99.9	Sigma-Aldrich
<i>n</i> -Dodecane	112-40-3	$CH_3(CH_2)_{10}CH_3$	99	99.9	Sigma-Aldrich
<i>n</i> -Tetradecane	629-59-4	$CH_3(CH_2)_{12}CH_3$	>99	99.6	Sigma-Aldrich
<i>n</i> -Pentadecane	629-62-9	$CH_3(CH_2)_{13}CH_3$	>99	99.8	Aldrich
<i>n</i> -Hexadecane	544-76-3	$CH_3(CH_2)_{14}CH_3$	99	99.3	Sigma-Aldrich

Table 4.1. Linear alkanes used in the present research

^a CASRN: Chemical Abstracts Services Registry Number

^b Purity of the material guaranteed by the supplier; the material was not further purified.

° Purity calculated based on peak area obtained by GC-FID analysis

In Table 4.1, it can be observed that the only component that has a lower purity than the one indicated by the supplier was *n*-heptane.

2.2 Equipment, procedures, methodologies, and calculations

For details about any of the equipment, procedures, methodologies, and calculations refer to Chapter III, where these topics have been extensively explained.

3. Results

Table 4.2 presents the average densities per temperature for each of the alkane model compounds listed in Table 4.1. Each density value is an average of nine measurements, the average values are reported alongside with their corresponding standard deviation. It is worth to note that the calculated standard deviation is not higher than 0.000023 (g/cm³), and in some cases are as low as 0.000000 (g/cm³), which means that all repeat measurements were numerically the same at the readability of the instrument.

Model Compound	Temperature	Average density	Standard deviation
mouel Compound	(T ± 0.001) °C	$(\rho \pm 0.000003) \text{ g/cm}^3$	(g/cm ³)
	10.000	0.668620	0.000001
<i>n</i> -Hexane	25.000	0.655135	0.000002
	45.000	0.636622	0.000000
	10.000	0.692354	0.000001
	25.000	0.679622	0.000001
<i>n</i> -Heptane	45.000	0.662391	0.000000
	65.000	0.644616	0.000002
	10.000	0.710804	0.000003
	25.000	0.698756	0.000001
<i>n</i> -Octane	45.000	0.682421	0.000001
	65.000	0.665688	0.000000
	85.000	0.648450	0.000001
	10.000	0.725728	0.000002
	25.000	0.714101	0.000003
<i>n</i> -Nonane	45.000	0.697052	0.000020
	65.000	0.682394	0.000001
	85.000	0.666008	0.000001
	10.000	0.737626	0.000000
	25.000	0.726311	0.000001
<i>n</i> -Decane	45.000	0.711081	0.000007
	65.000	0.695626	0.000001
	85.000	0.679873	0.000001
	10.000	0.756203	0.000002
	25.000	0.745322	0.000001
<i>n</i> -Dodecane	45.000	0.730760	0.000000
	65.000	0.716066	0.000001
	85.000	0.701185	0.000001
	10.000	0.770037	0.000003
	25.000	0.759419	0.000001
<i>n</i> -Tetradecene	45.000	0.745289	0.000001
	65.000	0.731100	0.000001
	85.000	0.716799	0.000001

Table 4.2. Density of selected linear alkanes at different temperatures

Madal Common a	Temperature	Average density	Standard deviation
Model Compound	(T ± 0.001) °C	$(\rho \pm 0.00003) \text{ g/cm}^3$	(g/cm ³)
	10.000	0.775354	0.000005
	25.000	0.764818	0.000023
<i>n</i> -Pentadecane	45.000	0.750852	0.000013
	65.000	0.736866	0.000001
	85.000	0.722787	0.000002
	25.000	0.769943	0.000001
II 1	45.000	0.756102	0.000000
<i>n</i> -Hexadecane	65.000	0.742267	0.000000
	85.000	0.728375	0.000000

Table 4.2. Density of selected linear alkanes at different temperatures. Continuation

Table 4.3 shows the average refractive indices per temperature for each alkane model compound. The average is reported with their respective standard deviation. The highest standard deviation is 0.000075 nD, while the lowest 0.000001 nD. Same as the density, the average refractive indices are an average of nine measurements.

Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)
	10.00	1.380536	0.000005	
<i>n</i> -Hexane	25.00	1.361271	0.000002	95.2
	45.00	1.372317	0.000001	
	10.00	1.392841	0.000001	
u Hantana	25.00	1.385041	0.000006	05.7
<i>n</i> -Heptane	45.00	1.375270	0.000003	95.7
	65.00	1.364311	0.000012	
	10.00	1.402493	0.000001	
	25.00	1.395201	0.000002	
<i>n</i> -Octane	45.00	1.385375	0.000004	96.1
	65.00	1.375553	0.000003	
	85.00	1.365352	0.000006	

Table 4.3. Refractive index at different temperatures of the selected linear alkanes

Model Compound	Temperature (T ± 0.01) ℃	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)
	10.00	1.410283	0.000001	
	25.00	1.403253	0.000021	
<i>n</i> -Nonane	45.00	1.393727	0.000001	94.0
	65.00	1.384256	0.000001	
	85.00	1.374672	0.000002	
	10.00	1.416656	0.000021	
	25.00	1.409837	0.000002	
<i>n</i> -Decane	45.00	1.400410	0.000075	95.2
	65.00	1.391297	0.000021	
	85.00	1.381981	0.000021	
	10.00	1.426358	0.000025	
	25.00	1.419700	0.000002	
<i>n</i> -Dodecane	45.00	1.410898	0.000004	94.1
	65.00	1.402206	0.000013	
	85.00	1.393345	0.000007	
	10.00	1.433538	0.000004	
	25.00	1.427010	0.000003	
<i>n</i> -Tetradecane	45.00	1.418497	0.000002	94.3
	65.00	1.410279	0.000004	
	85.00	1.401579	0.000001	
	10.00	1.436345	0.000014	
	25.00	1.429954	0.000000	
<i>n</i> -Pentadecane	45.00	1.421409	0.000008	95.2
	65.00	1.413277	0.000008	
	85.00	1.404806	0.000006	
	25.00	1.432521	0.000003	
	45.00	1.424192	0.000018	0.5.0
<i>n</i> -Hexadecane	65.00	1.416126	0.000007	96.0
	85.00	1.407763	0.000002	

Table 4.3. Refractive index at different temperatures of the selected linear alkanes. Continuation

From Tables 4.2 and 4.3, it can be noticed that some reagents have values reported just at three or four temperatures due to their boiling point, for the hexane $(68 \text{ }^\circ\text{C})^3$ and heptane $(98.4 \text{ }^\circ\text{C})^3$, or their freezing point, hexadecane $(18 \text{ }^\circ\text{C})^3$.

4. Discussion

4.1 Assessment of data accuracy

The first step was to assess if the collected data is accurate. For this, the measured refractive index and density of *n*-hexane were compared to the data available in the literature³. Figure 4.1 shows that the measured density data (circular marker) overlaps with most of the data available in the literature³ (star marker), proving that the experimental density data has a good agreement with the literature.

Figure 4.1. Density of hexane at different temperatures, experimental and literature data.³

Similarly, figure 4.2 shows the experimentally measured refractive index of *n*-hexane plotted alongside with the refractive index data available in the literature³ for the same compound. Literature³ data seems to be more scattered in this figure than in figure 4.1. However, the literature³ data is concentrated around the experimental values and the two data sets overlap. This shows that both the refractive index and density data have good agreement with the literature³ data. Moreover, it validates the experimental method used to collect the data.

Figure 4.2. Refractive index of hexane at different temperatures, experimental and literature³ data.

To further confirm the accuracy of the data, figure 4.3 shows three plots of refractive index vs. density for *n*-hexane, *n*-heptane, and *n*-octane respectively. In each of these plots three series are shown, experimental, Devi et al.⁴, and Kashyap et al⁵. data.

Figure 4.3. Density vs refractive index of *n*-hexane, *n*-heptane, and *n*-octane of literature^{4,5} and experimental data.

The *n*-hexane plot shows that both of the literature^{4,5} series overlaps, while the experimental data has a similar slope, it does not overlap. For the *n*-heptane Kashyap et al. ⁵

and the experimental data seem to overlap, meanwhile, the Devi et al.⁴ data intercept the other series around 0.670g/cm³, the difference in the slopes explains why Devi et al.⁴ series do not overlap with the other series. At least, for *n*-octane, Devi et al.⁴ data overlap with the experimental data, while Kashyap et al.⁵ do not exhibit a linear trend. A linear trend is expected in refractive index vs. density plots for hydrocarbons,¹ the fact that Kashyap et al.⁵ data for *n*-octane does not follow the expected trend suggests an experimental problem with their data set.

4.2 First derivative of refractive index vs. density.

Literature¹ reports that refractive index vs. density for hydrocarbons follows linear tendency with a slope of 0.6, to verify if this applies to the studied alkanes, figure 4.4 shows a plot of refractive index vs. density and Table 4.4 lists the slope of each model.

Figure 4.4. Refractive index vs. density of the selected linear alkanes.

Figure 4.4 shows that the data of the studied linear alkanes follows a linear trend and that density and refractive index increase as the carbon chain length increased. As expected, the highest density and refractive index per each model compound were found at (10.00 ± 0.01) °C.

Table 4.4 shows that there is not a direct correlation between the slope and the carbon length of the selected alkanes.
	First derivative		
Model Compound	$(dn/d ho\pm 0.0005)$		
<i>n</i> -Hexane	0.6018		
<i>n</i> -Heptane	0.5943		
<i>n</i> -Octane	0.5951		
<i>n</i> -Nonane	0.5968		
<i>n</i> -Decane	0.6043		
<i>n</i> -Dodecane	0.5994		
<i>n</i> -Tetradecane	0.5981		
<i>n</i> -Pentadecane	0.5991		
<i>n</i> -Hexadecane	0.5943		
Average Slope	0.598		
Standard deviation	0.003		

Table 4.4. Slope of the linear function of refractive index vs density

Table 4.4 also shows that the average slope (0.598 ± 0.001) is nearly the same as reported by literature¹ (0.6). In addition, the low standard deviation (0.003) shows the low variation of the slope of refractive index with respect to density for alkanes from C₆ to C₁₆.

4.3 Molar refractivity

Table 4.5 shows the molar refractivity (Rm) at different temperatures for the alkane model compounds calculated with equations 2.IX, 2.X, 2.XI, and 2.XII from Chapter II, with the aim of evaluating the different correlations.

Table 4.5. Molar refractivity of selected linear alkanes calculated with equations 2.IX-2.XII

		Molar Refractivity (Rm) (cm ³ /mol)					
Model Compound	Temperature (T ± 0.01) °C	Berthelot (Eq. 2.IX)	Gladstone & Dale (Eq. 2.X)	Lorentz-Lorenz (Eq. 2.XI)	Eykman (Eq. 2.XII)		
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$		
	10.00	116.761	49.0482	29.8936	65.5763		
<i>n</i> -Hexane	25.00	116.188	48.9766	29.9203	65.5572		
	45.00	115.479	48.9055	29.9708	65.5658		

			Molar Refracti	vity (cm ³ /mol)	
Malal Campana	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman
Model Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(\mathbf{Rm} \pm 0.0003)$	$(Rm \pm 0.0007)$
	10.00	136.055	56.8591	34.5316	75.8878
<i>n</i> -Heptane	25.00	135.409	56.7742	34.5577	75.8576
<i>n</i> -neptane	45.00	134.851	56.7729	34.6538	75.9608
	65.00	133.902	56.6346	34.6775	75.8947
	10.00	155.399	64.6827	39.1732	86.2138
	25.00	154.745	64.6061	39.2097	86.1990
<i>n</i> -Octane	45.00	153.875	64.5077	39.2612	86.1864
	65.00	153.089	64.4438	39.3330	86.2209
	85.00	152.234	64.3599	39.3961	86.2343
	10.00	174.689	72.4766	43.7938	96.4982
	25.00	173.983	72.3947	43.8341	96.4827
<i>n</i> -Nonane	45.00	173.338	72.4132	43.9667	96.6354
	65.00	172.118	72.1895	43.9507	96.4649
	85.00	171.263	72.1208	44.0297	96.5041
	10.00	194.237	80.3741	48.4753	106.9198
	25.00	193.486	80.2902	48.5215	106.9082
<i>n</i> -Decane	45.00	192.329	80.1235	48.5539	106.8253
	65.00	191.399	80.0396	48.6313	106.8491
	85.00	190.426	79.9445	48.7040	106.8621
	10.00	233.014	96.0345	57.7554	127.5841
	25.00	232.085	95.9149	57.7967	127.5404
<i>n</i> -Dodecane	45.00	230.903	95.7747	57.8612	127.5075
	65.00	229.825	95.6723	57.9461	127.5241
	85.00	228.685	95.5502	58.0210	127.5184
	10.00	271.816	111.6956	67.0316	148.2464
	25.00	270.737	111.5518	67.0747	148.1860
<i>n</i> -Tetradecane	45.00	269.422	111.4006	67.1518	148.1564
	65.00	268.343	111.3326	67.2726	148.2328
	85.00	266.926	111.1459	67.3303	148.1621

Table 4.5. Molar refractivity of selected linear alkanes

calculated with equations 2.IX-2.XII. Continuation

		Molar Refractivity (cm ³ /mol)							
Model Compound	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman				
Model Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)				
		$(\mathbf{Rm} \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$				
-	10.00	291.249	119.5432	71.6816	158.6023				
	25.00	290.174	119.4153	71.7405	158.5688				
<i>n</i> -Pentadecane	45.00	288.678	119.2190	71.8032	158.4915				
	65.00	287.511	119.1373	71.9254	158.5589				
	85.00	286.096	118.9684	72.0013	158.5189				
	25.00	309.386	127.1873	76.3516	168.8306				
<i>n</i> -Hexadecane	45.00	307.925	127.0216	76.4400	168.8007				
<i>n</i> -nexadecane	65.00	306.676	126.9289	76.5654	168.8628				
	85.00	305.184	126.7501	76.6449	168.8187				

Table 4.5. Molar refractivity of selected linear alkanes

calculated with equations 2.IX-2.XII. Continuation

To check if the calculations were performed correctly, the *n*-hexane molar refractivity at 45.00 ± 0.01 °C was compared with the data available in the literature¹ (See Table 4.6).

	Tomporaturo	Molar	Refractivity (cm ³ /mol)	Delta N	/Iolar Refra (cm ³ /mol)	ctivity
Data source	Temperature (T) °C	Gladstone & Dale (Eq. 2.X)	Lorentz- Lorenz (Eq. 2.XI)	Eykman (Eq. 2.XII)	Gladstone & Dale	Lorentz- Lorenz	Eykman
Literature	14	48.78	29.76	65.24	0.11	0.07	0.02
Literature	44.95	48.67	29.83	65.26			
Experimental	45.00	48.9055	29.9708	65.5658	0.2355	0.1408	0.3058

Table 4.6. Hexane molar refractivity reported in the literature.¹

Comparing the data for *n*-hexane at 45.00 ± 0.01 °C from Table 4.5 and at 44.95 °C, from Table 4.6, it can be seen that the differences are not bigger than 0.5 cm³/mol for the molar refractivity regardless of the correlation used to calculate it. It can also be seen that only three of the four equations could be compared since Rm calculated with the correlation by Berthelot was not reported in the literature¹ that was consulted.

The next step was to find which correlation better expresses the empirical data for the selected linear alkanes. To accomplish this, the average molar refractivity was calculated per each correlation for each model compound, having a total of four average molar refractivities per compound (See Table 4.7).

This average was calculated using the Rm calculated at each of the different temperatures (See Table 4.6). However, as mentioned in Chapter II, Rm is an intrinsic property that does not depend on temperature. Therefore, the best correlation would be the one in which the calculated Rm varies the least with the change of temperature or in mathematical terms the one with the lowest standard deviation. The results of this analysis can be found in Table 4.7.

			Molar Refractivity	(cm ³ /mol)		
		Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman	Best
Model Compound		(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)	Correlation
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$	
	Av. Rm	116.143	48.9768	29.9282	65.5664	D -1
<i>n</i> -Hexane	S	0.642	0.0714	0.0392	0.0096	Eykman
TT 4	Av. Rm	135.054	56.7602	34.6052	75.9002	E 1
n-Heptane	S	0.912	0.0929	0.0713	0.0435	Eykman
	Av. Rm	153.869	64.5200	39.2747	86.21086	Eykman
<i>n</i> -Octane	S	1.264	0.1279	0.0906	0.0187	
) T	Av. Rm	173.078	72.3189	43.9150	96.51706	Eykman
<i>n</i> -Nonane	s	1.387	0.1545	0.0979	0.0679	
D	Av. Rm	192.403	80.1642	48.5824	106.8852	
<i>n</i> -Decane	s	1.580	0.1925	0.0841	0.0616	Eykman
	Av. Rm	230.902	95.7893	57.8761	127.5349	F 1
<i>n</i> -Dodecane	S	1.728	0.1917	0.1084	0.0300	Eykman
m . 1	Av. Rm	269.449	111.4253	67.1722	148.1967	
<i>n</i> -Tetradecane	s	1.927	0.2099	0.1272	0.0410	Eykman
<i>n</i> -Pentadecane	Av. Rm	288.741	119.2566	71.8304	158.5481	Eykman
<i>n</i> -remauccane	S	2.053	0.2270	0.1315	0.0434	Еукпап
<i>n</i> -Hexadecane	Av. Rm	307.293	126.9720	76.5005	168.8282	Eykman
n-mexauctant	s	1.789	0.1825	0.1302	0.0261	Eykindli

Table 4.7. Average molar refractivity and its standard deviation for the selected linear alkanes

Av. Rm: Average molar refractivity.

s: standard deviation.

Table 4.7 shows that even though the correlations are somewhat similar, the Rm calculated with each one of them is quite different, because of this the Rm calculated with one correlation cannot be compared to an Rm calculated with another correlation.

In addition, Table 4.7 also shows that for all of the alkanes model compounds the correlation by Eykman had the lowest standard deviation, lower by almost an order of magnitude compared to that one by Lorentz-Lorenz. The Lorentz-Lorenz correlation had the second-lowest deviation, followed by Gladstone & Dale correlation and at last, Berthelot had the biggest standard deviation.

The comparison presented in Table 4.6 indicated that the least difference in Rm calculated using literature¹ data at different temperatures, was the Rm calculated using the Eykman correlation (Eq. 2.XII). The results in Table 4.7 based on calculations using the data collected in this study, also found that the Eykman correlation resulted in the least difference in Rm values.

4.4 Atomic refraction & group contribution

In this section, the aim was to calculate the atomic refraction and group contribution for the correlation by Eykman, since in the consulted literature¹ the atomic refraction was calculated only for Lorentz-Lorenz correlation. With the Rm of *n*-hexane and *n*-heptane, the values of interest were calculated and are listed in Table 4.8.

	refraction ³ /mol)	Group cont (cm ³ /n	
Carbon	Hydrogen	C-H Bond	C-C Bond
6.770	1.782	3.474	3.38608

Table 4.8. Atomic refraction and group contribution for Eykman

Table 4.8 shows that the C atomic refraction almost doubles the group contribution of the C-H bond, which suggested that if the Rm was calculated with either of these methods, the values will be similar. To check this, the Rm was calculated for each model compound with the atomic refraction (AR) and the group contribution (GC) equations (See equation 2.XIII and

2.XIV from Chapter II), and then these Rm were compared with the Rm calculated using the correlation by Eykman, and the results are shown in Table 4.9.

	Γ	Molar Refractivit	Delta between average exp.	
Model Compound	refraction	l with atomic n and group ribution	Average calculated value with exp. data (Rm ± 0.0007)	Rm and Rm calculated with AR or GC (cm ³ /mol)
<i>n</i> -Hexane	AR	65.5655	65.5664	0.0009
<i>n</i> -nexalle	GC	65.5664	05.5004	0.0000
u Hautana	AR	75.8992	75.9002	0.0010
<i>n</i> -Heptane	GC	75.9005	75.9002	0.0003
<i>n</i> -Octane	AR	86.2328	86.2109	0.0219
<i>n</i> -Octane	GC	86.2346	80.2109	0.0237
<i>n</i> -Nonane	AR	96.5665	06 5171	0.0494
<i>n</i> -monane	GC	96.5686	96.5171	0.0516
<i>n</i> -Decane	AR	106.9001	106.8852	0.0149
<i>n</i> -Decane	GC	106.9027	100.8852	0.0176
<i>n</i> -Dodecane	AR	127.5674	127 5240	0.0325
<i>n</i> -Dodecane	GC	127.5709	127.5349	0.0360
<i>n</i> -Tetradecane	AR	148.2347	149 10/7	0.0380
<i>n</i> -1 etradecane	GC	148.2390	148.1967	0.0423
D (1	AR	158.5684	150 5401	0.0203
<i>n</i> -Pentadecane	GC	158.5704	158.5481	0.0224
TT 1	AR	168.9020	1(0,0000	0.0738
<i>n</i> -Hexadecane	GC	168.9020	168.8282	0.0738

 Table 4.9. Comparison between Rm calculated with the experimental data and Rm calculated with atomic refraction and group contribution for the correlation by Eykman

AR: atomic refraction

GC: group contribution

The difference between $|\text{Rm}_{exp} - \text{Rm}_{AR}|$ and $|\text{Rm}_{exp} - \text{Rm}_{GC}|$ does not differ by more than 0.0050 cm³/mol, therefore it appears that both, atomic refraction and group contribution, can be used to predict the molar refractivity of a linear alkane. It should further be pointed out that the numbers in Table 4.8 were calculated using the data from only two compounds, instead of by regression using the complete dataset. In the next chapter, it will be studied if double bonds, triple bonds, or heteroatoms make one method better than the other.

5. Conclusions

• The refractive index and density experimental data have a good agreement with the literature^{3–5} data, providing external validation of the experimental method used to collect the data.

• The average first derivate of refractive index vs. density for the selected linear alkanes was 0.598 ± 0.001 , showing that the collected data follows the same behavior as the literature¹.

• Eykman was the correlation with the least temperature-dependent variation of the Rm of linear alkanes.

•Both, atomic refraction and group contribution, resulted in comparable prediction of the molar refractivity of linear alkanes compared to the correlation by Eykman.

6. References

- Kurtz, S. S. Physical Properties and Hydrocarbon Structure. In *The chemistry of petroleum hydrocarbons. Vol 1*; Reinhold Publishing Corporation: New York, 1954; pp 275–331.
- (2) Strausz, O.; Lown, E. The Chemistry of Alberta Oil Sands, Bitumen and Heavy Oil; Alberta Energy Research Institute: Calgary, 2003.
- (3) RELXGroup. Reaxys database https://www.reaxys.com/#/login (accessed Sep 20, 2019).
- (4) Devi, R.; Gahlyan, S.; Rani, M.; Maken, S. Thermodynamic and Acoustic Properties of Binary Mixtures of Diisopropyl Ether, Benzene and Alkanes at 298.15, 308.15 and 318.15 K: Prigogine-Flory-Patterson Theory and Graph Theory. J. Mol. Liq. 2019, 275, 364–377. https://doi.org/10.1016/j.molliq.2018.11.045.
- (5) Kashyap, P.; Rani, M.; Gahlyan, S.; Tiwari, D. P.; Maken, S. Volumetric, Acoustic and Optical Properties of Binary Mixtures of 2-Propanol with n-Alkanes (C6-C10) from 293.15 K to 303.15 K. J. Mol. Liq. 2018, 268, 303–314. https://doi.org/10.1016/j.molliq.2018.07.043.

CHAPTER V - FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY WITH LINEAR ALKENES & ALKYNES AS MODEL COMPOUNDS

In the present chapter, the correlation to calculate the molar refractivity with least temperaturedependent variation for linear alkenes & alkynes model compounds is determined.

Abstract

The present chapter evaluated different correlations to calculate the molar refractivity reported in the literature using linear alkenes and alkynes as model compounds. To accomplish this refractive index and density high precision data were collected at different temperatures.

The collected data sets were used to evaluate the correlations to calculate molar refractivity. The correlation by Eykman $\left(R_{M} = \left(\frac{n^{2}-1}{n+0.4}\right) \cdot \frac{M}{\rho}\right)$ was the least biased for both of the compound classes. Then the atomic refraction and group contribution were calculated to estimate the molar refractivity calculated by Eykman correlation. It was found that both, atomic refraction and group contribution, can be used to predict the molar refractivity of linear alkenes and alkynes.

Keywords: Alkenes, alkynes, density, refractive index, molar refractivity, Eykman.

1. Introduction

The objective of the present chapter is to revisit and resolve fundamental aspects related to molar refractivity and refractive index. Molar refractivity is a temperature invariant and intrinsic property, but it is not clear in the literature¹ which correlation should be used to calculate it.

As mention in Chapter IV, literature¹ reports different equations to correlate molar refractivity, refractive index, molar mass, and density. High precision and accurate refractive index and density data at different temperatures are required to evaluate these correlations and discriminate between them. The data would be used to calculate molar refractivity with different correlations. The correlation in which molar refractivity is least temperature-dependent would better express the empirical data.

Data sets from different compound classes would be collected to analyze the molar refractivity correlations. Linear alkanes were studied in Chapter IV. The present chapter will study linear alkenes and alkynes. Alkenes are hydrocarbons with carbon to carbon single or double bonds (C-C or C=C), and carbon to hydrogen bonds (C-H).² The selected linear alkenes have only one double bond (C=C) in the first carbon.

Alkynes are also hydrocarbons with carbon to carbon single or triple bonds (C-C or C \equiv C), and hydrogen to carbon bonds (C-H).² Following the same analyzes as alkenes, the selected linear alkynes have only one triple bond (C \equiv C) in the first carbon. Making it possible to compare one compound class to the other.

To conclude, the collected data would be used to evaluate which molar refractivity correlation better expresses the alkenes and alkynes empirical data.

2. Experimental

2.1 Materials

The selected linear alkenes and alkynes are listed in Table 5.1. The selected model compounds are linear with the double (C=C) or triple (C=C) bond in the first carbon. Branched, cyclic, or compounds with multiple double or triple bonds were excluded.

Compound	Descent	C A CDNa	St	Purity (w	rt %)	Sl'
Class	Reagent	CASRN ^a	Structure	Supplier ^b	FID ^c	Supplier
	1-Hexene	592-41-6	$\mathrm{CH}_2 = (\mathrm{CH}_2)_4 \mathrm{CH}_3$	97	99.3	Aldrich
	1-Heptene	592-76-7	$\mathrm{CH}_2 = (\mathrm{CH}_2)_5 \mathrm{CH}_3$	97	98.6	Sigma-Aldrich
	1-Octene	111-66-0	$\mathrm{CH}_2 = (\mathrm{CH}_2)_6 \mathrm{CH}_3$	98	99.5	Sigma-Aldrich
	1-Nonene	124-11-8	$\mathrm{CH}_2 = (\mathrm{CH}_2)_7 \mathrm{CH}_3$	>95	95.8	TCI
Alkene	1-Decene	872-05-9	$\mathrm{CH}_2 = (\mathrm{CH}_2)_8 \mathrm{CH}_3$	95	96.2	Sigma-Aldrich
	1-Undecene	821-95-4	$\mathrm{CH}_2 = (\mathrm{CH}_2)_9 \mathrm{CH}_3$	97	99.7	Sigma-Aldrich
	1-Dodecene	112-41-4	$\mathrm{CH}_2 = (\mathrm{CH}_2)_{10}\mathrm{CH}_3$	95	96.7	Aldrich
	1-Tetradecene	1120-36-1	$\mathrm{CH}_2 = (\mathrm{CH}_2)_{12}\mathrm{CH}_3$	>99.8	99.9	Sigma-Aldrich
	1-Hexadecene	629-73-2	$\mathrm{CH}_2 = (\mathrm{CH}_2)_{14}\mathrm{CH}_3$	>98.5	99.9	Aldrich
	1-Hexyne	693-02-7	$CH_2 \equiv (CH_2)_4 CH_3$	97	98.9	Sigma-Aldrich
	1-heptyne	628-71-7	$CH_2 \equiv (CH_2)_5 CH_3$	98	99.2	Alfa Aesar
	1-octyne	629-05-0	$CH_2 \equiv (CH_2)_6 CH_3$	97	99.2	Alfa Aesar
	1-nonyne	3452-09-3	$\mathrm{CH}_2 \equiv (\mathrm{CH}_2)_7 \mathrm{CH}_3$	99	98.5	Sigma-Aldrich
Alkyne	1-decyne	764-93-2	$CH_2 \equiv (CH_2)_8 CH_3$	99	98.6	Sigma-Aldrich
	1-undecyne	2243-98-3	$CH_2 \equiv (CH_2)_9 CH_3$	97	99.2	Alfa Aesar
	1-dodecyne	765-03-7	$\mathrm{CH}_2 \equiv (\mathrm{CH}_2)_{10} \mathrm{CH}_3$	98	99.6	Sigma-Aldrich
	1-tetradecyne	765-10-6	$\mathrm{CH}_2 \equiv (\mathrm{CH}_2)_{12} \mathrm{CH}_3$	97	99.4	Sigma-Aldrich
	1-Hexadecyne	629-74-3	$\mathrm{CH}_2 \equiv (\mathrm{CH}_2)_{14} \mathrm{CH}_3$	90	95.2	Alfa Aesar

Table 5.1. Model compounds used in the present chapter

^a CASRN: Chemical Abstracts Services Registry Number

^b Purity of the material guaranteed by the supplier; the material was not further purified.

° Purity calculated based on peak area obtained by GC-FID analysis

Table 5.1 shows that the only components with lower purity than the one indicated by the supplier were 1-nonyne and 1-decyne.

2.2 Equipment, procedures, methodologies, and calculations

The details of the equipment, procedures, methodologies, and calculations are explained in Chapter III.

3. Results

Table 5.2 shows the density at different temperatures for the selected linear alkenes and alkynes. Each density value is an average of nine measurements. The density is reported with its standard deviation which is not bigger than ± 0.000025 g/cm³ and as low as ± 0.000000 g/cm³ showing the high repeatability of the measurement.

Compound Class	Madal Composed	Temperature	Average density	Standard deviation	
Compound Class	Model Compound	(T ± 0.001) °C	$(\rho \pm 0.000003) \text{ g/cm}^3$	(g/cm ³)	
		10.000	0.682513	0.000003	
	1-Hexene	25.000	0.668495	0.000003	
		45.000	0.649241	0.000003	
		10.000	0.706362	0.000011	
	1 11 4	25.000	0.693297	0.000012	
	1-Heptene	45.000	0.675493	0.000013	
		65.000	0.657140	0.000021	
		10.000	0.723386	0.000001	
Alkene		25.000	0.710994	0.000004	
	1-Octene	45.000	0.694198	0.000004	
		65.000	0.677005	0.000002	
		85.000	0.659296	0.000001	
		10.000	0.739363	0.000021	
		25.000	0.727474	0.000021	
	1-Nonene	45.000	0.711420	0.000021	
		65.000	0.695066	0.000023	
		85.000	0.678319	0.000024	

Table 5.2. Density at different temperatures of selected alkenes and alkynes

Compound Class	Model Compound	Temperature	Average density	Standard deviation
Compound Class	Woder Compound	(T ± 0.001) °C	$(\rho \pm 0.00003) \text{ g/cm3}$	(g/cm3)
		10.000	0.748622	0.000002
		25.000	0.737107	0.000004
	1-Decene	45.000	0.721599	0.000002
		65.000	0.705855	0.000003
		85.000	0.689808	0.000003
		10.000	0.759035	0.000007
		25.000	0.747774	0.000010
	1-Undecene	45.000	0.732662	0.000010
		65.000	0.717374	0.000012
		85.000	0.701858	0.000012
		10.000	0.765957	0.000002
	1-Dodecene	25.000	0.754952	0.000001
Alkene		45.000	0.740205	0.000000
		65.000	0.725323	0.000001
		85.000	0.710245	0.000001
		10.000	0.778312	0.000005
		25.000	0.767630	0.000007
	1-Tetradecene	45.000	0.753381	0.000007
		65.000	0.739061	0.000009
		85.000	0.724619	0.000008
		10.000	0.777593	0.000002
		25.000	0.763678	0.000002
	1-Hexadecene	45.000	0.788075	0.000001
		65.000	0.735755	0.000001
		85.000	0.749750	0.000001
		10.000	0.726055	0.000004
A 11	1 11.	25.000	0.711477	0.000004
Alkyne	1-Hexyne	45.000	0.691540	0.000004
		65.000	0.670881	0.000014

Table 5.2. Density at different temperatures of selected alkenes and alkynes. Continuation

Compound Class	Model Compound	Temperature	Average density	Standard deviation
Compound Class	woder Compound	(T ± 0.001) °C	$(\rho \pm 0.00003) \text{ g/cm3}$	(g/cm3)
		10.000	0.745628	0.000001
		25.000	0.732021	0.000001
	1-Heptyne	45.000	0.713539	0.000001
		65.000	0.694580	0.000001
		85.000	0.674949	0.000011
		10.000	0.757708	0.000003
		25.000	0.744834	0.000005
	1-Octyne	45.000	0.727433	0.000005
		65.000	0.709681	0.000006
		85.000	0.691453	0.000019
		10.000	0.768194	0.000011
		25.000	0.755880	0.000011
	1-Nonyne	45.000	0.739283	0.000013
		65.000	0.722433	0.000002
		85.000	0.705217	0.000010
Alkyne		10.000	0.774387	0.000006
		25.000	0.762488	0.000006
	1-Decyne	45.000	0.746496	0.000006
		65.000	0.730293	0.000007
		85.000	0.713846	0.000005
		10.000	0.781888	0.000003
		25.000	0.770314	0.000002
	1-Undecyne	45.000	0.754795	0.000003
		65.000	0.739122	0.000007
		85.000	0.723236	0.000016
		10.000	0.786579	0.000003
		25.000	0.775269	0.000003
	1-Dodecyne	45.000	0.760137	0.000003
	·	65.000	0.744885	0.000002
		85.000	0.729456	0.000001

Table 5.2. Density at different temperatures of selected alkenes and alkynes. Continuation

Compound Class	Model Compound	Temperature (T ± 0.001) °C	Average density ($\rho \pm 0.000003$) g/cm ³	Standard deviation (g/cm ³)	
		10.000	0.797443	0.000003	
		25.000	0.786486	0.000002	
	1-Tetradecyne	45.000	0.771890	0.000002	
		65.000	0.757236	0.000002	
Alkyne		85.000	0.742480	0.000003	
		25.000	0.794233	0.000001	
	1 11 1	45.000	0.780027	0.000005	
	1-Hexadecyne	65.000	0.765828	0.000006	
		85.000	0.751573	0.000004	

Table 5.2. Density at different temperatures of selected alkenes and alkynes. Continuation

Table 5.3 reports the refractive indices at different temperatures for the selected model compounds. Similar to the density (see Table 5.2), the refractive indices are also an average of nine measurements and the values are reported with their standard deviation. The standard deviation of the density was not higher than ± 0.000051 nD and as low as ± 0.000000 nD.

Table 5.3. Refractive index at different temperatures of the selected alkenes and alkynes

Compound Class	Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)
		10.00	1.393625	0.000007	
	1-Hexene	25.00	1.385079	0.000001	93.5
		45.00	1.373404	0.000012	
-		10.00	1.405279	0.000004	
	1 11 4	25.00	1.397483	0.000051	93.3
Alkene	1-Heptene	45.00	1.386677	0.000050	95.5
Alkene		65.00	1.375699	0.000014	
-		10.00	1.413997	0.000003	
		25.00	1.406189	0.000001	
	1-Octene	45.00	1.395983	0.000002	93.4
		65.00	1.385780	0.000005	
		85.00	1.375296	0.000001	

Compound	Model	Temperature	Average	Standard	Barometric
Class	Compound	(T ± 0.01) °C	Refractive Index	deviation (nD)	pressure
			$(n \pm 0.000003) nD$		(Patm±0.2) (kPa
		10.00	1.421656	0.000000	
		25.00	1.414415	0.000002	
	1-Nonene	45.00	1.404585	0.000003	93.2
		65.00	1.394787	0.000003	
		85.00	1.384911	0.000007	
		10.00	1.426333	0.000003	
		25.00	1.419417	0.000003	
	1-Decene	45.00	1.409782	0.000004	93.8
		65.00	1.400328	0.000003	
		85.00	1.390840	0.000001	
		10.00	1.431013	0.000014	
		25.00	1.423956	0.000025	
	1-Undecene	45.00	1.414719	0.000017	93.9
		65.00	1.405617	0.000002	
Alkene		85.00	1.396401	0.000004	
AIKCIIC		10.00	1.434701	0.000005	
		25.00	1.427991	0.000005	
	1-Dodecene	45.00	1.419208	0.000001	93.7
		65.00	1.410195	0.000002	
		85.00	1.401188	0.000007	
		10.00	1.440842	0.000006	
		25.00	1.434257	0.000005	
	1-Tetradecene	45.00	1.425547	0.000003	93.2
		65.00	1.417082	0.000004	
		85.00	1.408428	0.000010	
		10.00	1.445434	0.000002	
		25.00	1.439326	0.000005	
	1-Hexadecene	45.00	1.430720	0.000006	93.4
		65.00	1.422370	0.000014	
		85.00	1.413958	0.000010	

Table 5.3. Refractive index at different temperatures of the selected

alkenes and alkynes. Continuation

Compound Class	Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)	
		10.00	1.404446	0.000002		
	1 11	25.00	1.395847	0.000004	02.8	
	1-Hexyne	45.00	1.384280	0.000016	92.8	
		65.00	1.372375	0.000014		
		10.00	1.414497	0.000005		
		25.00	1.406490	0.000002		
	1-Heptyne	45.00	1.395600	0.000003	92.9	
		65.00	1.384771	0.000013		
		85.00	1.373494	0.000009		
		10.00	1.421719	0.000001		
		25.00	1.413982	0.000003		
	1-Octyne	45.00	1.403757	0.000009	93.4	
		65.00	1.393461	0.000021		
		85.00	1.383009	0.000011		
Alkyne		10.00	1.427420	0.000002		
		25.00	1.420377	0.000002		
	1-Nonyne	45.00	1.410390	0.000003	93.7	
		65.00	1.400588	0.000013		
		85.00	1.390680	0.000014		
		10.00	1.431828	0.000000		
		25.00	1.424690	0.000001		
	1-Decyne	45.00	1.415198	0.000004	93.6	
		65.00	1.405739	0.000022		
		85.00	1.396128	0.000004		
		10.00	1.435857	0.000003		
		25.00	1.428964	0.000003		
	1-Undecyne	45.00	1.419964	0.000009	93.3	
		65.00	1.410556	0.000018		
		85.00	1.401318	0.000009		

Table 5.3. Refractive index at different temperatures of the selected

alkenes and alkynes. Continuation

Compound Class	Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)
		10.00	1.439263	0.000002	
		25.00	1.432362	0.000001	
	1-Dodecyne	45.00	1.423318	0.000002	93.5
		65.00	1.414245	0.000002	
		85.00	1.405329	0.000005	
		10.00	1.444485	0.000006	
4 11		25.00	1.438179	0.000001	
Alkyne	1-Tetradecyne	45.00	1.429283	0.000004	93.6
		65.00	1.420825	0.000012	
		85.00	1.412062	0.000007	
-		25.00	1.442279	0.000004	
	1 77 1	45.00	1.433862	0.000005	02.0
	1-Hexadecyne	65.00	1.425459	0.000006	93.9
		85.00	1.417185	0.000008	

Table 5.3. Refractive index at different temperatures of the selected

alkenes and alkynes. Continuation

The aim was to measure the properties at 5 different temperatures (10, 25, 45, 65, and 85 °C). However this was not possible for all the reagents due to their boiling point, 1-hexene $(62 \ ^{\circ}C)^{3}$, 1-heptene $(93 \ ^{\circ}C)^{3}$, and 1-hexyne $(71 \ ^{\circ}C)^{3}$, or their freezing point 1-hexadecyne $(16 \ ^{\circ}C)^{3}$.

4. Discussion

4.1 Precision and accuracy of the data

The precision and accuracy of the experimental protocol were evaluated in Chapter IV.

4.2 First derivative of refractive index vs. density.

As mentioned in Chapter IV, literature¹ reports that refractive index vs. density for hydrocarbons follows a linear tendency with a slope of 0.6. In Chapter IV, it was shown that linear alkanes follow this tendency with a slope of 0.598 ± 0.001 . The aim of this section is to verify if linear alkenes and alkynes follow the same trend.

4.2.1 Alkenes

Figure 5.1 shows a plot of refractive index vs. density for linear alkenes, and Table 5.4 lists the slope of each one of the selected alkenes.

Figure 5.1. Refractive index vs. density of the selected linear alkenes.

Figure 5.1 shows that the data of the selected linear alkenes follow a linear trend. It also shows that density and refractive index increased as the carbon chain length increased.

Table 5.4. Slope $(dn/d\rho)$ of the linear tendency of refractive index vs density

for the selected linear alkenes			
Model Compound	First derivative $(dn/d\rho \pm 0.0005)$		
1-Hexene	0.6077		
1-Heptene	0.6016		
1-Octene	0.6027		
1-Nonene	0.6021		

Model Compound	First derivative $(dn/d\rho \pm 0.0005)$
1-Decene	0.6058
1-Undecene	0.6046
1-Dodecene	0.6013
1-Tetradecene	0.6030
1-Hexadecene	0.6033
Average	0.604
Standard deviation	0.002

Table 5.4. Slope $(dn/d\rho)$ of the linear tendency of refractive index vs density

for the selected linear alkenes. Continuation

As can be seen in Table 5.4, the average slope (0.604 ± 0.002) for the first derivative of refractive index with respect to density of the selected alkenes is nearly the same as reported by literature (0.6).¹

4.2.2 Alkynes

Figure 5.2 shows a plot of refractive index vs. density for the selected linear alkynes. Table 5.5 lists the slope of each linear alkynes.

Figure 5.2. Refractive index vs. density of the selected linear alkynes.

Figure 5.2 shows that the density vs refractive index of the selected linear alkynes follows a linear trend, which slope is reported in Table 5.5. As expected the density and refractive index increased as the carbon chain length increased.

Madal Commons d	First derivative
Model Compound	$(dn/d\rho \pm 0.0005)$
1-Hexyne	0.5808
1-Heptyne	0.5799
1-Octyne	0.5839
1-Nonyne	0.5851
1-Decyne	0.5893
1-Undecyne	0.5891
1-Dodecyne	0.5943
1-Tetradecyne	0.5907
1-Hexadecyne	0.5886
Average δn/δρ	0.587
Standard deviation	0.005

Table 5.5. Slope $(dn/d\rho)$ of the linear function of refractive index vs density for the selected alkynes.

Table 5.5 shows that the average slope (0.587 ± 0.005) is practically the same as reported by literature (0.6).¹

4.2.3 Comparing alkanes, alkenes, and alkynes

The average first derivative of refractive index with respect to density for the selected alkanes, alkenes and alkynes model compounds are listed in Table 5.6.

Table 5.6. Average slope $(dn/d\rho)$ of the linear function of refractive index vs density

for alkanes, alkenes, and alkynes compound classes.

Table 5.6 and Figure 5.3 show that the slopes of the studied compound classes are nearly the same. Implying that a double or triple bond in a linear hydrocarbon does not change the trend of the first derivative of refractive index with respect to density.

Figure 5.3. Refractive index vs. density of different compound classes.

4.3 Molar refractivity

4.3.1 Alkene

Table 5.7 shows the molar refractivity (Rm) of selected linear alkenes at different temperatures calculated with equations 2.IX, 2.X, 2.XI, and 2.XII from Chapter II. The uncertainty reported in the table next to each of the correlations was calculated by error propagation using the partial derivative method.

Table 5.7. Molar refractivity of selected linear alkenes calculated with equations 2.IX-2.XII

		Molar Refractivity (Rm) (cm ³ /mol)				
Model Compound	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman	
Model Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)	
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	(Rm ±0.0007)	
	10.00	118.969	49.7025	30.1784	66.3289	
1-Hexene	25.00	118.402	49.6430	30.2167	66.3290	
	45.00	117.639	49.5655	30.2706	66.3351	

			Molar Refracti	ivity (cm ³ /mol)	
Model Compound	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman
Model Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	(Rm ±0.0007)
	10.00	135.506	56.3370	34.0912	75.0611
1 11 4	25.00	134.966	56.2947	34.1429	75.0858
1-Heptene	45.00	134.149	56.2076	34.1967	75.0831
	65.00	133.365	56.1371	34.2616	75.1055
	10.00	155.064	64.2354	38.7720	85.4820
	25.00	154.291	64.1224	38.7921	85.4233
1-Octene	45.00	153.399	64.0236	38.8474	85.4126
	65.00	152.590	63.9581	38.9222	85.4472
	85.00	150.202	63.3238	38.6890	84.7657
	10.00	174.345	71.9943	43.3576	95.7071
	25.00	173.607	71.9045	43.3956	95.6822
1-Nonene	45.00	172.632	71.7927	43.4527	95.6628
	65.00	171.712	71.7025	43.5218	95.6727
	85.00	170.842	71.6346	43.6047	95.7146
	10.00	193.851	79.8926	48.0470	106.1385
	25.00	193.099	79.8120	48.0973	106.1321
1-Decene	45.00	191.950	79.6544	48.1380	106.0623
	65.00	190.952	79.5523	48.2089	106.0650
	85.00	190.009	79.4736	48.2937	106.1003
	10.00	212.997	87.6166	52.6205	116.3274
	25.00	212.048	87.4799	52.6479	116.2569
1-Undecene	45.00	210.899	87.3389	52.7059	116.2157
	65.00	209.872	87.2425	52.7879	116.2328
	85.00	208.835	87.1452	52.8704	116.2518
	10.00	232.576	95.5254	57.3077	126.7650
	25.00	231.684	95.4220	57.3594	126.7422
1-Dodecene	45.00	230.613	95.3258	57.4500	126.7656
	65.00	229.427	95.1902	57.5199	126.7416
	85.00	228.297	95.0765	57.6022	126.7478

Table 5.7. Molar refractivity of selected linear alkenes calculated

with equations 2.IX-2.XII. Continuation

			Molar Refract	ivity (cm³/mol)	
Model Compound	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman
Model Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$
	10.00	271.495	111.2301	66.6078	147.4842
	25.00	270.430	111.0933	66.6560	147.4327
1-Tetradecene	45.00	269.051	110.9240	66.7260	147.3812
	65.00	267.871	110.8241	66.8320	147.4181
	85.00	266.583	110.6875	66.9189	147.4114
	10.00	310.210	126.8529	75.8594	168.0962
	25.00	309.307	126.8000	75.9657	168.1630
1-Hexadecene	45.00	307.684	126.5814	76.0284	168.0672
	65.00	306.268	126.4333	76.1267	168.0604
	85.00	304.816	126.2723	76.2178	168.0392

Table 5.7. Molar refractivity of selected linear alkenes calculated

with equations 2.IX-2.XII. Continuation

The objective was to find which correlation better expresses the empirical data for the selected linear alkenes. The best correlation would be the one in which the calculated molar refractivity varies the least with the change of temperature, in other terms the one with the lowest standard deviation.

To discriminate between the equations, the average molar refractivity and its standard deviation were calculated per each correlation using the data reported in Table 5.7. Table 5.8 shows four average molar refractivities per model compound.

			Molar Refractivity	(cm ³ /mol)		
Model Compound		Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman	Best
Model Compound		(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)	Correlation
		$(\mathrm{Rm}\pm0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$	
1-Hexene	Av. Rm	118.337	49.6370	30.2219	66.3310	Eulemon
I-mexelle	S	0.668	0.0687	0.0463	0.0036	Eykman
1 11	Av. Rm	134.496	56.2441	34.1731	75.0839	D -1
1-Heptene	S	0.938	0.0894	0.0730	0.0182	Eykman

Table 5.8. Average molar refractivity and its standard deviation for the selected linear alkenes

Av. Rm: Average molar refractivity.

s: standard deviation.

			Molar Refractivity	(cm ³ /mol)		
Model Compound		Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman	Best
Model Compound		(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)	Correlation
		$(\mathrm{Rm}\pm0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$	
1 Octore	Av. Rm	153.109	63.9327	38.8045	85.3062	Entran
1-Octene	s	1.872	0.3561	0.0869	0.3033	Eykman
1	Av. Rm	172.628	71.8057	43.4665	95.6879	D -1
1-Nonene	s	1.409	0.1461	0.0990	0.0222	Eykman
1 D	Av. Rm	191.972	79.6770	48.1570	106.0996	F 1
1-Decene	s	1.557	0.1747	0.0967	0.0359	Eykman
	Av. Rm	210.930	87.3646	52.7265	116.2569	F 1
1-Undecene	s	1.661	0.1874	0.1029	0.0426	Eykman
1-Dodecene	Av. Rm	230.519	95.3080	57.4479	126.7524	Eykman
1-Douccene	s	1.712	0.1789	0.1188	0.0120	Lyxman
1-Tetradecene	Av. Rm	269.086	110.9518	66.7481	147.4255	Eykman
	S	1.959	0.2147	0.1274	0.0378	5
1-Hexadecene	Av. Rm	307.657	126.5880	76.0396	168.0852	Eykman
	s	2.193	0.2443	0.1391	0.0480	5

Table 5.8. Average molar refractivity and its standard deviation for the selected linear

alkenes. Continuation

Av. Rm: Average molar refractivity.

s: standard deviation.

Table 5.8 shows that the Rm calculated with one correlation cannot be compared to a Rm calculated with another correlation. The table also shows that the correlation by Eykman (Equation 2.XII) had the lowest standard deviation for all of the selected alkenes. The correlation by Lorentz-Lorenz (Equation 2.XI) had the second-lowest deviation, followed by Gladstone & Dale correlation (Equation 2.X) and at last, Berthelot (Equation 2.IX) which had the biggest standard deviation.

4.3.2 Alkyne

The same analysis was applied to the selected alkynes. Table 5.9 shows the molar refractivity (Rm) at different temperatures calculated with equations 2.IX, 2.X, 2.XI, and 2.XII from Chapter II.

			Molar Refractivit	y (Rm) (cm ³ /mol)	
	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman
Model Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$
	10.00	110.017	45.7558	27.6949	60.9701
1-Hexyne	25.00	109.486	45.6983	27.7293	60.9663
	45.00	108.828	45.6441	27.7890	60.9928
	65.00	108.162	45.5921	27.8522	61.0263
	10.00	129.082	53.4612	32.2640	71.1392
	25.00	128.514	53.4031	32.3044	71.1402
1-Heptyne	45.00	127.730	53.3186	32.3555	71.1350
	65.00	127.168	53.3180	32.4536	71.2392
	85.00	126.311	53.2172	32.5000	71.2214
	10.00	148.730	61.4153	36.9858	81.6429
	25.00	147.856	61.2497	36.9699	81.5088
1-Octyne	45.00	147.028	61.1657	37.0297	81.5119
	65.00	146.233	61.0970	37.0987	81.5370
	85.00	145.464	61.0420	37.1771	81.5832
	10.00	167.772	69.1154	41.5532	91.8082
	25.00	167.209	69.0839	41.6205	91.8541
1-Nonyne	45.00	166.213	68.9569	41.6658	91.8106
	65.00	165.352	68.8798	41.7382	91.8322
	85.00	164.517	68.8161	41.8194	91.8741
	10.00	187.478	77.0936	46.2894	102.3449
	25.00	186.707	77.0023	46.3322	102.3225
1-Decyne	45.00	185.714	76.8940	46.3963	102.3108
	65.00	184.783	76.8094	46.4735	102.3311
	85.00	183.826	76.7178	46.5479	102.3455
	10.00	206.774	84.8878	50.9085	112.6310
	25.00	205.978	84.8006	50.9601	112.6198
1-Undecyne	45.00	205.040	84.7284	51.0519	112.6614
	65.00	203.901	84.5867	51.1073	112.6179
	85.00	202.910	84.4995	51.1922	112.6454

Table 5.9. Molar refractivity of alkyne model compounds calculated

with equations 2.IX-2.XII from Chapter II

			Molar Refracti	vity (cm ³ /mol)	
Model Compound	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman
Model Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$
	10.00	226.522	92.8649	55.6363	123.1591
	25.00	225.587	92.7442	55.6778	123.1130
1-Dodecyne	45.00	224.428	92.6120	55.7471	123.0879
	65.00	223.276	92.4826	55.8177	123.0681
	85.00	222.267	92.4060	55.9169	123.1171
	10.00	264.823	108.3351	64.8039	143.5758
	25.00	264.021	108.2859	64.8961	143.6315
1-Tetradecyne	45.00	262.590	108.0936	64.9517	143.5480
	65.00	261.484	108.0144	65.0661	143.6074
	85.00	260.182	107.8672	65.1446	143.5835
	25.00	302.467	123.8463	74.1311	164.1810
1 II	45.00	301.074	123.7020	74.2299	164.1747
1-Hexadecyne	65.00	299.678	123.5551	74.3261	164.1657
	85.00	298.402	123.4502	74.4439	164.2111

Table 5.9. Molar refractivity of alkyne model compounds calculated

with equations 2.IX-2.XII from Chapter II. Continuation

Once the Rm was calculated for the different temperatures with each of the correlations (see Table 5.9). The next step was to define which correlation better expressed the empirical data. For this, an average molar refractivity with its standard deviation was calculated for each correlation. A total of four average molar refractivities per model compound were calculated (See Table 5.10).

As mentioned in the previous section, Rm is an intrinsic property that does not depend on temperature. Therefore, the best correlation was the one with the least standard deviation (See Table 5.10).

			Molar Refractivity	(cm ³ /mol)		
Madel Commonsed		Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman	Best
Model Compound		(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)	Correlation
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$	
	Av. Rm	109.123	45.6726	27.7664	60.9889	Б.1
1-Hexyne	s	0.805	0.0704	0.0692	0.0276	Eykman
	Av. Rm	127.761	53.3436	32.3755	71.1750	F 1
1-Heptyne	s	1.092	0.0930	0.0993	0.0509	Eykman
	Av. Rm	147.062	61.1939	37.0523	81.5568	F 1
1-Octyne	s	1.290	0.1461	0.0858	0.0566	Eykman
	Av. Rm	166.213	68.9704	41.6794	91.8359	F 1
1-Nonyne	s	1.327	0.1286	0.1032	0.0283	Eykman
	Av. Rm	185.702	76.9034	46.4078	102.3309	
1-Decyne	s	1.460	0.1494	0.1046	0.0149	Eykman
	Av. Rm	204.921	84.7006	51.0440	112.6351	F 1
1-Undecyne	s	1.553	0.1575	0.1134	0.0183	Eykman
	Av. Rm	224.416	92.6220	55.7592	123.1090	F 1
1-Dodecyne	S	1.712	0.1872	0.1120	0.0343	Eykman
	Av. Rm	262.620	108.1192	64.9725	143.5893	
1-Tetradecyne	s	1.874	0.1934	0.1352	0.0317	Eykman
1-Hexadecyne	Av. Rm	300.405	123.6384	74.2827	164.1831	Eykman
	s	1.755	0.1729	0.1337	0.0197	Букшап

Table 5.10. Average molar refractivity and standard deviation for the selected alkynes

Av. Rm: Average molar refractivity.

s: standard deviation.

As can be seen in Table 5.10, the results obtained for the alkynes are similar to those of the alkenes. Being the correlation by Eykman the one with the lowest standard deviation, followed by Lorentz-Lorenz correlation, then by Gladstone & Dale correlation and at last, Berthelot's correlation.

4.4 Atomic refraction & group contribution

In this section, the atomic refraction and group contribution for double and triple bonds for the correlation by Eykman were calculated. The atomic refraction (AR) of carbon (C) and hydrogen (H) and the group contribution (GC) of C-H and C-C bonds were calculated in Chapter IV. In the present chapter, AR and GC of double and triple bonds were calculated. The data of 1-heptene were used to calculate the AR and GC of the double bond (C=C), while 1-hexyne data were used to calculate the AR and GC of the triple bond (C=C) (See Table 5.11)

	Atomic refra	Group	contribution	n (cm³/m	ol)		
Carbon	Hydrogen	Double bond	Triple bond	C-H Bond	C-C Bond	C=C	C≡C
6.770	1.782	2.748	2.551	3.474	3.38608	9.517	12.705

Table 5.11. Atomic refraction and group contribution for Eykman

Table 5.11 shows that the values calculated for the double and triple bond atomic refraction are very different than those calculated for their group contribution. To test which method (AR or GC) would estimate the Rm with higher accuracy, Tables 5.12 for alkenes and 5.13 for alkynes show the Rm calculated per each model compound by AR and GC. And compared the results with the Rm calculated using the correlation by Eykman.

4.4.1 Alkene

	I	Molar Refractivit	_ Delta between average exp.	
Model Compound	Calculated with atomic refraction and group contribution		Average calculated value with exp. data (Rm ± 0.0007)	Rm and Rm calculated with AR or GC (cm ³ /mol)
1-Hexene	AR	64.7502	66.3310	1.5808
1-nexelle	GC	64.7498	00.5510	1.5812
1 Hantona	AR	75.0839	75.0839	0.0000
1-Heptene	GC	75.0839	/3.0839	0.0000
1-Octene	AR 85.4175	0.1114		
1-Octene	GC	85.4180	85.3062	0.1118
1-Nonene	AR	95.7512	95.6879	0.0633
1-Inonene	GC	95.7520	95.0879	0.0642
1-Decene	AR	106.0848	106,0006	0.0148
1-Decene	GC	106.0861	106.0996	0.0135
1	AR	116.4185	116 25 (0)	0.1615
1-Undecene	GC	116.4202	116.2569	0.1633
1 D. J	AR	126.7521	106 7504	0.0003
1-Dodecene	GC	126.7543	126.7524	0.0018

 Table 5.12. Comparison between Rm calculated with the experimental data and Rm calculated with AR and GC for the selected alkenes for the correlation by Eykman

AR: atomic refraction

GC: group contribution

]	Molar Refractivit	Delta between average exp.	
Model Compound	refractio	d with atomic n and group ribution	Average calculated value with exp. data (Rm ± 0.0007)	Rm and Rm calculated with AR or GC (cm ³ /mol)
1-Tetradecene	AR	147.4194	147.4255	0.0061
1-1 ettadecene	GC	147.4224	147.4255	0.0031
1-Hexadecene	AR	168.0867	168.0852	0.0015
1-mexadecene	GC	168.0906	100.0832	0.0054
$\Delta \mathbf{R}$ · atomic re	fraction			GC: group contribution

Table 5.12. Comparison between Rm calculated with the experimental data and Rm calculated with AR and GC for the selected alkenes for the correlation by Eykman. Continuation

AR: atomic refraction

GC: group contribution

The difference between $|\text{Rm}_{exp} - \text{Rm}_{AR}|$ and $|\text{Rm}_{exp} - \text{Rm}_{GC}|$ is not bigger than 0.0050 cm³/mol, implying that both, AR and GC, can be used to estimate the Rm.

4.4.2 Alkyne

Table 5.13. Comparison between Rm calculated with the experimental data and Rm calculatedwith AR and GC for the correlation by Eykman for alkyne model compounds

	l	Molar Refractivit	y (cm³/mol)	_ Delta between average exp.
Model Compound	refractio	d with atomic n and group ribution	Average calculated value with exp. data (Rm ± 0.0007)	Rm and Rm calculated with AR or GC (cm ³ /mol)
1-Hexyne	AR	60.9889	60.9889	0.0000
1-nexylle	GC	60.9893	00.9889	0.0004
1 Hontuno	AR	71.3225	71.1750	0.1476
1-Heptyne	GC	71.3234	/1.1/30	0.1484
1 Ostrina	AR 81.6562	0.0994		
1-Octyne	GC	81.6575	81.5568	0.1007
1 Nonzuo	AR	91.9898	91.8359	0.1540
1-Nonyne	GC	91.9916	91.8559	0.1557
1 D	AR	102.3235	102 2200	0.0074
1-Decyne	GC	102.3256	102.3309	0.0053
1 I.I. J	AR	112.6571	112 (251	0.0220
1-Undecyne	GC	112.6597	112.6351	0.0246
	AR	122.9908	122 1000	0.1182
1-Dodecyne	GC	122.9938	123.1090	0.1152
1 T (1)	AR	143.6581	142 5902	0.0688
1-Tetradecyne	GC	143.6620	143.5893	0.0727
AR: atomic re	fraction			GC: group contribution

AR: atomic refraction

GC: group contribution

	I	Molar Refractivit	Delta between average exp.	
Model – Compound	refractio	l with atomic n and group ribution	Average calculated value with exp. data (Rm ± 0.0007)	Rm and Rm calculated with AR or GC (cm ³ /mol)
1 Havadaarma	AR	164.3254	164,1831	0.1423
1-Hexadecyne	GC	164.3301	104.1831	0.1470

Table 5.13. Comparison between Rm calculated with the experimental data and Rm calculated with AR and GC for the correlation by Eykman for alkyne model compounds. Continuation

AR: atomic refraction

GC: group contribution

Similar to alkenes, the difference between $|\text{Rm}_{exp} - \text{Rm}_{AR}|$ and $|\text{Rm}_{exp} - \text{Rm}_{GC}|$ does not differ by more than 0.0050 cm³/mol, therefore atomic refraction and group contribution, it seems that AR and GC can be used indistinctly to predict the Rm of linear alkynes. In the next chapter, the effect of cyclic compounds will be studied.

5. Conclusions

• The average first derivate of refractive index vs. density for the selected linear alkenes was 0.604 ± 0.002 and for the selected alkynes was 0.587 ± 0.002 , showing that the collected data follows the same behavior as the literature (0.6).¹

• The average first derivate of refractive index vs. density for alkenes and alkynes also showed similar behavior to the selected alkanes studied in Chapter IV.

• The correlation by Eykman resulted in the least temperature-dependent for both, linear alkenes and alkynes.

• Atomic refraction and group contribution predicted the molar refractivity of linear alkenes and alkynes for the correlation by Eykman with high accuracy.

6. References

- Kurtz, S. S. Physical Properties and Hydrocarbon Structure. In *The chemistry of petroleum hydrocarbons. Vol 1*; Reinhold Publishing Corporation: New York, 1954; pp 275–331.
- (2) Yurkanis, P. Organic Chemistry; Pearson Education: California, 2006.
- (3) RELXGroup. Reaxys database https://www.reaxys.com/#/login (accessed Sep 20, 2019).

CHAPTER VI - FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY WITH CYCLIC HYDROCARBONS MODEL COMPOUNDS

In this chapter, the molar refractivity correlations found in the consulted literature are evaluated using cyclic and aromatic hydrocarbon model compounds, with the aim to find the least temperature-dependent correlation.

Abstract

As Chapters IV and V, the present chapter aims to revisit and evaluate a fundamental unsolved aspect of the molar refractivity. Molar refractivity is a temperature invariant, and intrinsic property. Different equations are reported in the literature which correlates molar refractivity, refractive index, and density. However, it is not clear which correlation better expresses the empirical data.

In this section of the study, the correlations were evaluated using cyclic and alkyl aromatic model compounds. It was found that the least temperature-dependent for these compounds was that one by Eykman $\left(R_{M} = \left(\frac{n^{2}-1}{n+0.4}\right) \cdot \frac{M}{\rho}\right)$. Moreover, when refractive index vs density was plotted, the model compounds showed a linear tendency as expected. The average slope for cyclic hydrocarbon compounds was (0.61 ± 0.02) showing good agreement with the literature, which reported a slope of 0.6 for hydrocarbons.

At last, atomic refraction and group contribution were evaluated. The molar refractivity estimated with atomic refraction was comparable to the one estimated with group contribution. In addition, for most of the model compounds the results were nearly the same as the molar refractivity calculated with the correlation by Eykman, with the exception of 1-methylnaphthalene which had a difference of 5.2 cm³/mol between the predicted and the experimentally determined molar refractivity.

Keywords: Cyclic hydrocarbon compounds, molar refractivity, refractive index, density, Eykman.

1. Introduction

The same methodology that was introduced and used in Chapters IV and V, was employed. In this chapter, the group of compounds investigated was cyclic hydrocarbons. Unlike the previous chapters, the analysis of the data was not based purely on compound class. It was of interest to see how increasing degrees of unsaturation in cyclic hydrocarbons affected refractive index and molar refractivity.

The selected hydrocarbons were separated into two groups, cyclic, and alkyl aromatic compounds. The selected cyclic compounds are alkanes or alkenes with a close structure call rings.¹ While the aromatics are cyclic compounds with double bonds that become stable due to the resonance of electrons π , for example, benzene (\bigcirc).² At last, the alkyl aromatics are aromatics molecules with alkyl substituents.

2. Experimental

2.1 Materials

Table 6.1 shows the selected cyclic and alkyl aromatic compounds. The cyclic compounds were selected to study the effect of double bonds and double rings in the refractive index and density of different cyclic carbon chains. Starting from cyclohexane, then cyclohexene and finally benzene. Indan to indene, and decahydronaphthalene to 1-methylnaphthalene. Notice that it was not possible to use naphthalene because its melting point is 80 °C.³ In the other hand, the alkyl aromatics seeks to study the effect of the length and position of the alkyl group in the properties of interest.

Compound	D (CACDNS	<u> </u>	Purity (w	vt %)	
Group	Reagent	CASRN ^a	Structure	Supplier ^b	FID ^c	Supplier
	Cyclohexane	110-82-7	\bigcirc	99.9	100.0	Sigma-Aldrich
	Cyclohexene	110-83-8	\bigcirc	99	99.0	Acros Organic
	Benzene	71-42-2	$\langle \rangle$	99	100.0	Alfa Aesar
	Indan	496-11-7		95	96.3	Acros Organic
	Indene	95-13-6		98	98.3	Aldrich
Cyclic	Decahydronaphthalene (Decalin)	91-17-8	$\bigcirc \bigcirc$	98	99.7	Acros Organic
	1,2,3,4 Tetrahydronaphthalene (tetralin)	119-64-2		99	99.3	Sigma-Aldrich
	1,2 Dihydronaphthalene	447-53-0		98	97.4	Sigma-Aldrich
	1-Methylnaphthane	90-12-0		96	98.7	Alfa Aesar
	Toluene	108-88-3	\bigcirc	99.9	100.0	Fisher
	<i>m</i> -Xylene	108-38-3	$\bigcup_{i=1}^{k}$	>99	99.8	Sigma-Aldrich
	Styrene	100-42-5	$\bigcirc \frown$	>99	99.9	Sigma-Aldrich
	Cumene	98-82-8		98	99.9	Acros Organic
Alkyl aromatics	a-methylstyrene	98-83-9		99	99.6	Aldrich
	Mesitylene	108-67-8		98	99.1	Sigma-Aldrich
	<i>p</i> -Cymene	99-87-6	$-\!$	99	99.7	Aldrich
	Hexylbenzene	1077-16-3	CH ₂ (CH ₂) ₄ CH ₃	97	99.0	Sigma-Aldrich
	1-Phenyldecane	104-72-3	CH ₂ (CH ₂) ₇ CH ₃	>98	100.0	TCI

Table 6.1. Selected model compounds

^a CASRN: Chemical Abstracts Services Registry Number

^b Purity of the material guaranteed by the supplier; the material was not further purified.

° Purity calculated based on peak area obtained by GC-FID analysis

Table 6.1 shows that the only component for which the purity determined using GC-FID analysis was lower than the one indicated by the supplier was 1,2 dihydronaphthalene.

2.2 Equipment, procedures, methodologies, and calculations

The equipment, procedures, methodologies, and calculations used in this chapter have been explained in detail in Chapter III.

For safety, the density meter and refractometer were placed inside the fume hood.

3. Results

Table 6.2 shows the average density data at different temperatures of the selected alkyl aromatic and cyclic model compounds. The values are reported alongside with their standard deviation. The low standard deviation (not higher than \pm 0.00005 g/cm³) showed the high repeatability of the density measurements.

Compound	Model Compound	Temperature	Average density	Standard deviation	
Group	Woder Compound	(T ± 0.001) °C	$(\rho \pm 0.00003) \text{ g/cm}^3$	(g/cm ³)	
		10.000	0.787906	0.000003	
	Cualabayana	25.000	0.773876	0.000002	
	Cyclohexane	45.000	0.754786	0.000002	
		65.000	0.735204	0.000002	
		10.000	0.820398	0.000009	
C 1	0 1 1	25.000	0.806268	0.000007	
Cyclic	Cyclohexene	45.000	0.787112	0.000004	
		65.000	0.767511	0.000004	
		10.000	0.873663	0.000009	
	D	25.000	0.889652	0.000007	
	Benzene	45.000	0.852159	0.000007	
		65.000	0.830306	0.000006	

Table 6.2. Average density at different temperatures of selected model compounds
Compound	Model Common d	Temperature	Average density	Standard deviation
Group	Model Compound	(T ± 0.001) °C	$(\rho \pm 0.00003)$ g/cm3	(g/cm3)
		10.000	0.967689	0.000003
		25.000	0.954929	0.000001
	Indan	45.000	0.937889	0.000001
		65.000	0.920767	0.000001
		85.000	0.903520	0.000004
		10.000	1.003628	0.000003
		25.000	0.990540	0.000003
	Inden	45.000	0.973139	0.000003
		65.000	0.955724	0.000003
		85.000	0.938252	0.000004
		10.000	0.887844	0.000002
	Decahydronaphthalene (Decalin)	25.000	0.876549	0.000002
		45.000	0.861493	0.000002
		65.000	0.846390	0.000003
Cyclic		85.000	0.831192	0.000001
		10.000	0.976765	0.000009
	1,2,3,4-	25.000	0.964870	0.000006
	Tetrahydronaphthalene	45.000	0.949013	0.000006
	(Tetralin)	65.000	0.933112	0.000005
		85.000	0.917108	0.000004
		10.000	1.012761	0.000033
		25.000	1.000558	0.000034
	1,2 Dihydronaphthalene	45.000	0.984339	0.000036
		65.000	0.968127	0.000046
		10.000	1.030815	0.000006
		25.000	1.019601	0.000001
	1-Methylnaphthalene	45.000	1.004663	0.000001
		65.000	0.989695	0.000000
		85.000	0.974655	0.000001

Table 6.2. Average density at different temperatures of selected model compounds. Continuation

Compound		Temperature	Average density	Standard deviatio	
-	Model Compound	-			
Group		(T ± 0.001) °C	$(\rho \pm 0.00003)$ g/cm3	(g/cm3)	
		10.000	0.876178	0.000002	
		25.000	0.862242	0.000002	
	Toluene	45.000	0.824420	0.000003	
		65.000	0.804923	0.000004	
		85.000	0.872675	0.000002	
		10.000	0.859824	0.000003	
		25.000	0.843487	0.000002	
	<i>m</i> -Xylene	45.000	0.842537	0.000003	
		65.000	0.824992	0.000003	
		85.000	0.807089	0.000003	
		10.000	0.847770	0.000006	
		25.000	0.866052	0.000004	
	Styrene	45.000	0.901862	0.000004	
		65.000	0.884053	0.000004	
		85.000	0.915139	0.000004	
Alkyl aromatic		10.000	0.805609	0.000004	
		25.000	0.823193	0.000003	
	Cumene	45.000	0.840501	0.000001	
		65.000	0.857605	0.000001	
		85.000	0.870346	0.000000	
		10.000	0.918467	0.000003	
		25.000	0.870335	0.000002	
	α -methylstyrene	45.000	0.905446	0.000002	
		65.000	0.887982	0.000001	
		85.000	0.852438	0.000001	
		10.000	0.873357	0.000001	
		25.000	0.861121	0.000001	
	Mesitylene	45.000	0.844682	0.000001	
		65.000	0.828022	0.000000	
		85.000	0.811061	0.000002	

Table 6.2. Average density at different temperatures of selected model compounds. Continuation

Compound Group	Model Compound	Temperature (T ± 0.001) °C	Average density (ρ ± 0.000003) g/cm ³	Standard deviation (g/cm ³)	
		10.000	0.864944	0.000001	
		25.000	0.852920	0.000000	
	<i>p</i> -Cymene	45.000	0.836814	0.000000	
		65.000	0.820549	0.000001	
		85.000	0.804053	0.000000	
	Hexylbenzene	10.000	0.867027	0.000005	
A 11 1		25.000	0.855635	0.000002	
Alkyl aromatic		45.000	0.840416	0.000001	
		65.000	0.825120	0.000001	
		85.000	0.809720	0.000002	
		10.000	0.862564	0.000002	
	1 DI 11	25.000	0.851986	0.000011	
	1-Phenyldecane	45.000	0.837914	0.000001	
		65.000	0.823824	0.000001	

Table 6.2. Average density at different temperatures of selected model compounds. Continuation

Table 6.3 shows the average refractive index at different temperatures of the alkyl aromatic and cyclic model compounds. Each value is an average of nine measurements. The values are reported with their standard deviation and the barometric pressure at which the experiment was conducted. The refractive index measurement had high repeatability (the standard deviation was lower than $\pm 0.000037 \text{ nD}$)

Table 6.3. Average refractive index at different temperatures of the selected model compounds

Compound Group	Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)
		10.00	1.432020	0.000000	
0.1	C 11	25.00	1.423629	0.000002	02.4
Cyclic	Cyclohexane	45.00	1.412311	0.000005	93.4
		65.00	1.400993	0.000008	

Compound Group	Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa
		10.00	1.452279	0.000002	
	0.11	25.00	1.443920	0.000004	02.2
	Cyclohexene	45.00	1.432715	0.000002	93.3
		65.00	1.421318	0.000019	
-		10.00	1.507739	0.000002	
	D	25.00	1.497947	0.000001	02 (
	Benzene	45.00	1.484775	0.000012	92.6
		65.00	1.471600	0.000008	
		10.00	1.541583	0.000002	
		25.00	1.533913	0.000004	
	Indan	45.00	1.523693	0.000002	93.2
		65.00	1.513606	0.000003	
		85.00	1.503424	0.000006	
-		10.00	1.580728	0.000001	
		25.00	1.572492	0.000001	
	Inden	45.00	1.561607	0.000003	92.7
		65.00	1.550799	0.000005	
		85.00	1.540050	0.000003	
Cyclic		10.00	1.478400	0.000002	
		25.00	1.471821	0.000002	
	Decalin	45.00	1.463049	0.000004	93.4
		65.00	1.454328	0.000021	
		85.00	1.445763	0.000017	
		10.00	1.546098	0.000002	
		25.00	1.538999	0.000001	
	Tetralin	45.00	1.529492	0.000003	93.4
		65.00	1.520126	0.000003	
		85.00	1.510752	0.000007	

Table 6.3. Average refractive index at different temperatures of the

selected model compounds. Continuation

Table 6.3. Average refractive index at different temperatures of the

selected model compounds. Continuation

Compound Group	Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)
		10.00	1.588869	0.000007	
	1,2 Dihydronaphthalene	25.00	1.581205	0.000005	93.2
		45.00	1.571034	0.000003	
		65.00	1.560946	0.000006	
Cyclic		10.00	1.621772	0.000003	
		25.00	1.614440	0.000002	
	1-Methylnaphthalene	45.00	1.604722	0.000007	93.1
		65.00	1.595071	0.000003	
		85.00	1.585378	0.000003	
	Toluene	10.00	1.502703	0.000001	
		25.00	1.494119	0.000005	
		45.00	1.482578	0.000001	94.0
		65.00	1.471036	0.000008	
		85.00	1.459255	0.000005	
		10.00	1.502574	0.000002	
		25.00	1.494685	0.000002	
	<i>m</i> -Xylene	45.00	1.484050	0.000003	93.0
		65.00	1.473421	0.000003	
Alkyl		85.00	1.462641	0.000007	
Aromatic		10.00	1.509004	0.000034	
		25.00	1.532513	0.000006	
	Styrene	45.00	1.520837	0.000006	93.1
		65.00	1.552854	0.000002	
		85.00	1.544129	0.000002	
		10.00	1.496557	0.000002	
		25.00	1.488818	0.000001	
	Cumene	45.00	1.478507	0.000006	94.8
		65.00	1.468129	0.000004	
		85.00	1.457554	0.000004	

Compound Group	Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)
		10.00	1.544567	0.000003	
		25.00	1.536155	0.000001	
	α -Methylstyrene	45.00	1.524894	0.000007	94.3
		65.00	1.513624	0.000009	
		85.00	1.502322	0.000020	
		10.00	1.504444	0.000002	
		25.00	1.496972	0.000001	
	Mesitylene	45.00	1.486896	0.000005	93.1
		65.00	1.476817	0.000012	
		85.00	1.466629	0.000006	
		10.00	1.495832	0.000009	
A 11 - 1		25.00	1.488535	0.000003	
Alkyl Aromatic	<i>p</i> -Cymene	45.00	1.478748	0.000010	94.3
Aromatic		65.00	1.468933	0.000037	
		85.00	1.459159	0.000004	
		10.00	1.491683	0.000001	
		25.00	1.484804	0.000001	
	Hexylbenzene	45.00	1.475585	0.000005	94.1
		65.00	1.466459	0.000019	
		85.00	1.457259	0.000032	
		10.00	1.487501	0.000002	
		25.00	1.481139	0.000003	
	1-Phenyldecane	45.00	1.472640	0.000004	02.0
		65.00	1.464282	0.000004	92.9
		85.00	1.455870	0.000006	

Table 6.3. Average refractive index at different temperatures of the

selected model compounds. Continuation

As mentioned in Chapter III, the aim was to measure the refractive index and density of each model compound at 5 different temperatures (10, 25, 45, 65, and 85 °C). However, it was not possible for some of the reagents due to their relative low boiling point, cyclohexane (80 °C)³, cyclohexene (83 °C)³, benzene (80 °C)³, and 1,2-dihydronaphthalene (89 °C)³.

4. Discussion

4.1 Precision and accuracy of the data

To evaluate the fundamental issues of molar refractivity, high precision, and accurate data were required. To ensure that the collected data complied with these requirements, they were evaluated in Chapter IV.

4.2 First derivative of refractive index vs. density.

Literature⁴ reports that refractive index vs. density for hydrocarbons follows a linear trend with a slope of 0.6. In Chapter IV and V, it was shown that linear alkanes, alkenes, and alkynes follow this tendency with an average slope of 0.598 ± 0.003 , 0.604 ± 0.002 , and 0.587 ± 0.005 respectively. The following section evaluates if alkyl aromatics and other cyclic compounds follow the same tendency.

4.2.1 Cyclic compounds

A plot of refractive index vs. density of the selected cyclic compounds is shown in Figure 6.1. In Table 6.4 reports the slope of the cyclic model compounds.

Figure 6.1. Refractive index vs. density of the selected cyclic compounds.

It can be seen in Figure 6.1 that all the cyclic model compounds follow a linear tendency and the slope appears to be similar.

Malal Gamman	First derivative
Model Compound	$(dn/d ho\pm 0.0005)$
Cyclohexane	0.5889
Cyclohexene	0.5852
Benzene	0.6092
Indan	0.5945
Indene	0.6223
Decalin	0.5768
Tetralin	0.5928
,2 Dihydronaphthalene	0.6257
1-Methylnaphthalene	0.6479
Average	0.61
Standard deviation	0.02

 Table 6.4. Slope of the linear trend of refractive index vs density

 for the selected cyclic compounds

Table 6.4 shows that the average slope (0.61 ± 0.02) for refractive index vs density of the selected cyclic compounds is roughly comparable to the value reported by literature (0.6).⁴ This table also shows that the slopes of the different components are not as closed as it was expected. In addition, for isostructural compounds, such as cyclohexane, cyclohexene, and benzene, there is a noticeable difference in slope between cyclohexane and cyclohexene on the one hand, and benzene on the other hand."

4.2.2 Alkyl aromatics

Figure 6.2 shows a plot of refractive index vs. density for the selected alkyl aromatics, most of the reagents have similar slopes, with the exception of styrene and α -methylstyrene. These two seem to have a higher slope (see Table 6.5) which can be due to the double bond present in the alkyl substituent.

Figure 6.2. Refractive index vs. density of the selected alkyl aromatics.

Table 6.5 lists the slopes of the model alkyl aromatic model compounds. This table shows the same behavior as in Figure 6.2.

Model Compound	First derivative	Average first	Standard
Widder Compound	$(dn/d ho\pm 0.0005)$	derivative (dn/dp)	deviation
Toluene	0.6097		
<i>m</i> -Xylene	0.6091		
Cumene	0.6021		
Mesitylene	0.6073	0.604	→ 0.004
<i>p</i> -Cymene	0.6029		
Hexylbenzene	0.6007		
1-Phenyldecane	0.5982		
Styrene	0.6507	0.645	
α -methylstyrene	0.6400	0.045	• 0.008
Average	0.61		
Standard deviation	0.02		

Table 6.5. Slope $(dn/d\rho)$ of the linear function of refractive index vs density for the selected alkyl aromatics

Table 6.5 shows that average $dn/d\rho$ of the compounds with an olefinic group that can benefit from resonance with the aromatic (styrene and α -methylstyrene) is 0.645± 0.008, whereas, the aromatics compounds with an unsaturated alkyl group have an average

 $dn/d\rho$ is 0.604± 0.004. This table also shows that the average slope for all the alkyl aromatic model compounds is 0.61± 0.02.

It can be seen, that the average $dn/d\rho$ of aromatics compounds with an unsaturated alkyl group is nearly the same as the slope reported by literature (0.6).⁴

4.2.3 Comparing alkanes, alkenes, alkynes, alkyl aromatic and cyclic compounds

Figure 6.3 is a plot of refractive index vs density of different compound groups. In this figure, cyclohexane and cyclohexene overlap with alkanes, alkenes, and alkynes, showing that regardless of the compound structure, cyclic or linear, it would be plotted in the same region. In addition, benzene overlaps with alkyl aromatics. Alkyl aromatics are benzenes with an alkyl substituent, therefore, it makes sense that benzene and these compound groups are plotted in the same region.

Figure 6.3. Refractive index vs density of different compound groups.

4.3 Molar refractivity

4.3.1 Cyclic

Table 6.6 shows the molar refractivity (Rm) of selected linear alkenes at different temperatures calculated with equations 2.IX, 2.X, 2.XI, and 2.XII from Chapter II.

		Molar Refractivity (Rm) (cm ³ /mol)					
Model Compound	Temperature (T ± 0.01) °C	Berthelot (Eq. 2.IX) (Rm ± 0.002)	Gladstone & Dale (Eq. 2.X) (Rm ± 0.0006)	Lorentz- Lorenz (Eq. 2.XI) (Rm ± 0.0003)	Eykman (Eq. 2.XII) (Rm ± 0.0007		
	10.00	112.228	46.1461	27.7060	61.2593		
Cyclohexane	25.00	111.657	46.0702	27.7290	61.2279		
	45.00	110.902	45.9734	27.7629	61.1938		
	65.00	110.211	45.9023	27.8116	61.1947		
	10.00	111.051	45.2848	27.0255	59.9537		
Cyclohexene	25.00	110.531	45.2268	27.0583	59.9433		
Cyclonexene	45.00	109.857	45.1581	27.1073	59.9422		
	65.00	109.181	45.0916	27.1585	59.9462		
	10.00	117.564	46.8803	27.5114	61.6246		
D	25.00	116.948	46.8177	27.5571	61.6182		
Benzene	45.00	116.112	46.7294	27.6158	61.6053		
	65.00	115.315	46.6559	27.6826	61.6129		
	10.00	168.098	66.1392	38.4095	86.5779		
	25.00	167.425	66.0737	38.4630	86.5732		
Indan	45.00	166.529	65.9864	38.5339	86.5676		
	65.00	165.694	65.9189	38.6143	86.5873		
	85.00	164.839	65.8454	38.6920	86.6013		
	10.00	173.460	67.2135	38.5577	87.5737		
	25.00	172.706	67.1358	38.6132	87.5574		
Inden	45.00	171.723	67.0370	38.6883	87.5417		
	65.00	170.763	66.9449	38.7659	87.5348		
	85.00	169.829	66.8607	38.8470	87.5387		
	10.00	184.626	74.4938	44.1090	98.2887		
	25.00	183.943	74.4160	44.1507	98.2695		
Decalin	45.00	183.026	74.3088	44.2038	98.2401		
	65.00	182.136	74.2102	44.2608	98.2223		
	85.00	181.335	74.1427	44.3338	98.2441		

Table 6.6. Molar refractivity of selected cyclic compounds

calculated with equations 2.IX-2.XII

		Molar Refractivity (Rm) (cm ³ /mol)					
Model Compound	Temperature Berthelo (T ± 0.01) ℃ (Eq. 2.IX (Rm ± 0.00		Gladstone & Dale (Eq. 2.X) (Rm ± 0.0006)	Lorentz- Lorenz (Eq. 2.XI) (Rm ± 0.0003)	Eykman (Eq. 2.XII) (Rm ± 0.0007)		
	10.00	188.186	73.9115	42.8629	96.6991		
	25.00	187.505	73.8500	42.9219	96.7020		
Tetralin	45.00	186.574	73.7596	42.9960	96.6961		
	65.00	185.707	73.6896	43.0797	96.7161		
	85.00	184.852	73.6243	43.1659	96.7433		
	10.00	195.974	75.6988	43.3140	98.5356		
1,2	25.00	195.203	75.6248	43.3765	98.5275		
Dihydronaphthalene	45.00	194.179	75.5258	43.4586	98.5165		
	65.00	193.182	75.4339	43.5433	98.5147		
	10.00	224.877	85.7728	48.5680	111.2275		
	25.00	224.041	85.6937	48.6367	111.2175		
l-Methylnaphthalene	45.00	222.944	85.5924	48.7296	111.2096		
	65.00	221.879	85.5002	48.8263	111.2137		
	85.00	220.805	85.4054	48.9219	111.2157		

Table 6.6. Molar refractivity of selected cyclic compounds

calculated with equations 2.IX-2.XII. Continuation

Table 6.6 shows that the Rm obtained with one correlation is different from the Rm calculate with other equations. To determine which equation is the least biased, the average Rm and its standard deviation were calculated and shown in table 6.7. The least bias correlation would be the one in which the calculated Rm varies the least with the change of temperature, the one with the lowest standard deviation.

		Mo	Molar Refractivity (cm ³ /mol)					
Model Compound		Berthelot	Gladstone & Dale	Lorentz- Lorenz	Eykman (Eq. 2.XII)	Best		
		(Eq. 2.IX) $(Rm \pm 0.002)$	(Eq. 2.X)	(Eq. 2.XI)	(Rm±	Correlation		
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	0.0007)			
Cualabayana	Av. Rm	111.250	46.0230	27.7524	61.2189	Eykman		
Cyclohexane	S	0.880	0.1071	0.0458	0.0313	Lykinan		
Contationer	Av. Rm	110.155	45.1903	27.0874	59.9464	D -1		
Cyclohexene	S	0.813	0.0837	0.0581	0.0052	Eykman		
D	Av. Rm	116.485	46.7708	27.5917	61.6152	Г 1		
Benzene	S	0.981	0.0985	0.0741	0.0082	Eykman		
T 1	Av. Rm	166.517	65.9927	38.5425	86.5815	F 1		
Indan	S	1.306	0.1175	0.1136	0.0133	Eykman		
T 1	Av. Rm	171.696	67.0384	38.6944	87.5493	F 1		
Inden	s	1.457	0.1418	0.1159	0.0161	Eykman		
	Av. Rm	183.013	74.3143	44.2116	98.2530	F 1		
Decalin	S	1.327	0.1439	0.0890	0.0262	Eykman		
	Av. Rm	186.565	73.7670	43.0053	96.7113	5.1		
Tetralin	s	1.340	0.1164	0.1211	0.0194	Eykman		
1,2	Av. Rm	194.635	75.5708	43.4231	98.5236	Eykman		
Dihydronaphthalene	s	1.216	0.1156	0.0996	0.0098	Lykillall		
1-	Av. Rm	222.909	85.5929	48.7365	111.2168	Eykman		
Methylnaphthalene	<u>s</u>	1.631	0.1469	0.1422	0.0067	Lyxinan		

Table 6.7. Average molar refractivity for the selected cyclic compounds

Av. Rm: Average molar refractivity.

s: standard deviation.

Table 6.7 shows that for all the cyclic compound, the correlation by Eykman (Equation 2.XII) had the lowest standard deviation. Followed by the correlation by Lorentz-Lorenz (Equation 2.XI), then by Gladstone & Dale correlation (Equation 2.X) and at last, Berthelot (Equation 2.IX) with the biggest standard deviation.

4.3.2 Alkyl aromatics

Table 6.8 shows the Rm of the selected alkyl aromatic compounds at different temperatures. Rm was calculated with equations 2.IX, 2.X, 2.XI, and 2.XII from Chapter II.

			Molar Refractivity (Rm) (cm ³ /mol)					
MILCI	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman			
Model Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)			
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$			
	10.00	132.305	52.8649	31.0713	69.5354			
	25.00	131.695	52.8020	31.1159	69.5281			
Toluene	45.00	130.870	52.7154	31.1741	69.5164			
	65.00	130.086	52.6445	31.2412	69.5265			
	85.00	129.286	52.5712	31.3085	69.5365			
	10.00	153.001	61.1376	35.9350	80.4181			
	25.00	152.369	61.0773	35.9862	80.4190			
<i>m</i> -Xylene	45.00	151.503	60.9905	36.0516	80.4137			
	65.00	150.680	60.9199	36.1260	80.4306			
	85.00	149.860	60.8532	36.2039	80.4554			
	10.00	160.623	62.9191	36.4113	82.2505			
	25.00	159.868	62.8378	36.4634	82.2309			
Styrene	45.00	158.878	62.7352	36.5354	82.2130			
	65.00	157.893	62.6350	36.6090	82.1999			
	85.00	156.893	62.5319	36.6821	82.1857			
	10.00	171.193	68.5717	40.3788	90.2653			
	25.00	170.499	68.5059	40.4353	90.2674			
Cumene	45.00	169.593	68.4256	40.5146	90.2809			
	65.00	168.694	68.3491	40.5964	90.3012			
	85.00	167.760	68.2631	40.6745	90.3125			
	10.00	177.184	69.7089	40.4803	91.2489			
	25.00	177.479	69.9796	40.7083	91.6657			
α-methylstyrene	45.00	176.382	69.8572	40.7791	91.6320			
	65.00	175.308	69.7433	40.8544	91.6107			
	85.00	174.264	69.6408	40.9361	91.6058			
	10.00	173.860	69.4208	40.7802	91.2920			
	25.00	173.201	69.3643	40.8403	91.3037			
Mesitylene	45.00	172.293	69.2805	40.9165	91.3105			
	65.00	171.424	69.2114	41.0009	91.3377			
	85.00	170.565	69.1491	41.0902	91.3761			

Table 6.8. Molar refractivity of alkyl aromatic compounds, calculated

with equations 2.IX-2.XII from Chapter II

		Molar Refractivity (cm ³ /mol)					
Model Compound	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman		
	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)		
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$		
	10.00	192.020	76.9363	45.3143	101.2854		
	25.00	191.300	76.8727	45.3777	101.2956		
<i>p</i> -Cymene	45.00	190.325	76.7826	45.4594	101.3040		
	65.00	189.365	76.6993	45.5450	101.3227		
	85.00	188.473	76.6413	45.6446	101.3755		
	10.00	229.289	92.0219	54.2682	121.2092		
	25.00	228.459	91.9425	54.3349	121.2110		
Hexylbenzene	45.00	227.327	91.8274	54.4188	121.2030		
	65.00	226.261	91.7350	54.5140	121.2245		
	85.00	225.173	91.6359	54.6059	121.2395		
	10.00	307.016	123.4233	72.8793	162.6572		
1 01 -11	25.00	305.987	123.3251	72.9621	162.6603		
1-Phenyldecane	45.00	304.583	123.1811	73.0647	162.6488		
	65.00	303.285	123.0723	73.1843	162.6818		

Table 6.8. Molar refractivity of alkyl aromatic compounds, calculated

with equations 2.IX-2.XII from Chapter II. Continuation

Similarly to the previous section, it is required to find which correlation better expressed the empirical data of the alkyl aromatic compounds. The best correlation would be the one least temperature invariant, with the lowest standard deviation. Table 6.9 shows the average molar refractivity with its standard deviation for each correlation.

Table 6.9. Average molar refractivity of the selected alkyl aromatic compounds

			Molar Refractivity	(cm ³ /mol)			
Model Compound		Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman	Best	
Ĩ		(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)	Correlation	
		$(\mathrm{Rm}\pm0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$		
Toluene	Av. Rm	131.239	52.7567	31.1506	69.5266	D -1	
Toluene	S	0.968	0.0967	0.0736	0.0078	Eykman	
w Vulana	Av. Rm	151.483	60.9957	36.0605	80.4274	Erdenon	
<i>m</i> -Xylene	S	1.262	0.1150	0.1075	0.0169	Eykman	
Stamona	Av. Rm	158.831	62.7318	36.5402	82.2160	Erdenon	
Styrene	S	1.494	0.1546	0.1089	0.0255	Eykman	
Av. Rm: Average n	nolar refrac	etivity.		s: sta	andard deviation.		

Model Compound		Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman	Best
Woder Compound		(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)	Correlation
		$(\mathrm{Rm}\pm0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$	
Cumene	Av. Rm	169.548	68.4231	40.5199	90.2855	Eykman
Cumene	s	1.373	0.1225	0.1192	0.0208	Eykillali
a motherlatemana	Av. Rm	176.123	69.7860	40.7516	91.5526	Eykman
a-methylstyrene	S	1.337	0.1336	0.1738	0.1714	
Maaitadama	Av. Rm	172.269	69.2852	40.9256	91.3240	Eykman
Mesitylene	S	1.325	0.1102	0.1237	0.0336	
C	Av. Rm	190.297	76.7864	45.4682	101.3166	E 1
<i>p</i> -Cymene	S	1.429	0.1210	0.1313	0.0356	Eykman
TT	Av. Rm	227.302	91.8325	54.4284	121.2175	F -1
Hexylbenzene	S	1.651	0.1550	0.1354	0.0146	Eykman
1 DI 11	Av. Rm	304.565	123.1909	73.0777	162.6703	E 1
1-Phenyldecane	S	2.029	0.1890	0.1680	0.0221	Eykman

Table 6.9. Average molar refractivity of the selected alkyl

aromatic compounds. Continuation

Av. Rm: Average molar refractivity.

s: standard deviation.

Table 6.9 shows that the correlation by Eykman is the least temperature-dependent for the selected alkyl aromatic compounds. Followed by the correlation by Lorentz-Lorenz correlation, Gladstone & Dale correlation, and at last, Berthelot's correlation, which has a higher standard deviation.

4.4 Atomic refraction & group contribution

Table 6.10 shows the atomic refraction (AR) of carbon (C), hydrogen (H), and double (C=C) bonds. This table also lists group contribution (GC) of C-H, C-C, and C=C bonds. These values were calculated in Chapter IV and V.

In the present section, Rm is estimated for alkyl aromatic and cyclic compounds using AR and GC.

Table 6.10. Atomic refraction and group contribution for Eykman

Atom	ic refraction (cm ³ /mol)	Group cont	ribution (cm ³	/mol)
Carbon	Hydrogen	Double bond	C-H Bond	C-C Bond	C=C
6.770	1.782	2.748	3.474	3.38608	9.517

4.4.1 Cyclic

		Molar Refractiv	_ Delta between average exp.	
Model Compound	Calculated with atomic refraction and group contribution		Average calculated value with exp. data (Rm ± 0.0007)	Rm and Rm calculated with AR or GC (cm ³ /mol)
Cyclohexane	AR	62.0019	61.21893276	0.7830
Cyclollexalle	GC	62.00448	01.21893270	0.7855
Cualabayana	AR	61.186619	59.94635425	1.2403
Cyclohexene	GC	61.186619	39.94033423	1.2403
Dangana	AR 59.556057		2.0592	
Benzene	GC	59.55465	61.61524446	2.0606
Indan	AR	86.993407	96 50146100	0.4119
Indan	GC	86.993407	86.58146189	0.4119
Inden	AR	86.178126	07 54007574	1.3711
Inden	GC	86.17836	87.54927574	1.3709
Desslin	AR	99.7729	08 252055(1.5199
Decalin	GC	99.77888	98.2529556	1.5259
T (1	AR	97.327057	06 711 20002	0.6157
Tetralin	GC	97.32905	96.71132082	0.6177
1,2	AR	96.511776	00.5005((0))	2.0118
Dihydronaphthalene	GC	96.51244	98.52356626	2.0111
1 3 6 4 1 1 4 1	AR	106.030145	111 01 (00 55	5.1867
1-Methylnaphthalene	GC	106.02991	111.2168057	5.1869

Table 6.11. Rm calculated with the experimental, AR and GC for the selected

cyclic compounds for the correlation by Eykman

AR: atomic refraction

GC: group contribution

Table 6.11 shows that Rm estimated with AR and GC differs from the Rm calculated with the experimental. The biggest difference between these Rm was 5.2 cm³/mol. This difference could be decreased if the AR and GC coefficients were calculated by regression.

In addition, the difference between $|\text{Rm}_{exp} - \text{Rm}_{AR}|$ and $|\text{Rm}_{exp} - \text{Rm}_{GC}|$ was not bigger than 0.0050 cm³/mol, implying that both, AR and GC, can be used indistinctly.

4.4.2 Alkyl aromatics

]	Molar Refractivit	Delta between average exp.	
Model Compound	refractio	d with atomic n and group ribution	Average calculated value with exp. data (Rm ± 0.0007)	Rm and Rm calculated with AR or GC (cm ³ /mol)
Toluene	AR	69.8897	69.5266	0.3631
Toluene	GC	69.8887	09.5200	0.3621
<i>m</i> -Xylene	AR	80.2234	80.4274	0.2040
	GC	80.2228	80.4274	0.2045
C to man a	AR	79.4081	92 21(0	2.8079
Styrene	GC	79.4062	82.2160	2.8098
Cumene	AR	90.5570	90.2855	0.2715
Cumene	GC	90.5569	90.2855	0.2714
α-	AR	89.7417	91.5526	1.8109
Methylstyrene	GC	89.7403	91.5520	1.8123
Magitulana	AR	90.5570	01 2240	0.7670
Mesitylene	GC	90.5569	91.3240	0.7671
C	AR	100.8907	101 21((0.4260
<i>p</i> -Cymene	GC	100.8910	101.3166	0.4257
TT 11	AR 121.5580	101 0175	0.3405	
Hexylbenzene	GC	121.5591	121.2175	0.3417
1 01 11	AR	162.8926	1(2(702	0.2223
1-Phenyldecane	GC	162.8955	162.6703	0.2252

Table 6.12. Molar refractivity calculated with the experimental data, AR and GC for the

correlation by Eykman for alkyl aromatic model compounds

AR: atomic refraction

GC: group contribution

Table 6.12 shows that the difference between $|\text{Rm}_{exp} - \text{Rm}_{AR}|$ and $|\text{Rm}_{exp} - \text{Rm}_{GC}|$ is not bigger than 0.0050 cm³/mol proving that Rm can be predicted indistinctly with atomic refraction and group contribution.

It was not possible to infer the difference of the refractive index contribution of $(C=C)_{aliphatic}$ compared to $(C=C)_{aromatic}$. Because tables 6.11 and 6.12 do not show a clear tendency with respect to which Rm has a higher value, the calculated with empirical data or the estimated with AR or GC.

5. Conclusions

• The average first derivate of refractive index with respect to density $(dn/d\rho)$ for the selected cyclic hydrocarbon compounds was 0.61 ± 0.02 . Moreover, it was noticed that the derivate increase with the increase of the saturation of the model compounds when comparing compounds with the same number of rings and the ring containing the same amount of carbons.

• For the alkyl aromatic model compounds the average $dn/d\rho$ was 0.61 ± 0.02 . However, it was found that alkyl aromatics with saturated alkyl chains had a higher average $\delta n/\delta \rho$ (0.645 ± 0.008) than those with unsaturated alkyl chains substituent (0.604 ± 0.004).

• The average $dn/d\rho$ of cyclic hydrocarbons (0.61 ± 0.02), and alkyl aromatics with saturated alkyl chains (0.604 ± 0.004) compounds were roughly the same as the slope $dn/d\rho$ (0.6) reported in the literature for hydrocarbons.

• The average $dn/d\rho$ alkyl aromatics with saturated alkyl chains (0.604 ± 0.004) and cyclic hydrocarbons (0.61 ± 0.02) compounds were roughly similar to the average $dn/d\rho$ of the selected alkanes (0.598 ± 0.003), alkenes (0.604 ± 0.002), and alkynes (0.587 ± 0.005).

• The correlation that better expressed the empirical data for alkyl aromatic and cyclic compounds was that by Eykman.

• Atomic refraction and group contribution gave comparable results when used to predict the molar refractivity of alkyl aromatic and cyclic compounds.

6. References

- Strausz, O.; Lown, E. *The Chemistry of Alberta Oil Sands, Bitumen and Heavy Oil*; Alberta Energy Research Institute: Calgary, 2003.
- (2) Yurkanis, P. Organic Chemistry; Pearson Education: California, 2006.
- (3) RELXGroup. Reaxys database https://www.reaxys.com/#/login (accessed Sep 20, 2019).
- Kurtz, S. S. Physical Properties and Hydrocarbon Structure. In *The chemistry of petroleum hydrocarbons. Vol 1*; Reinhold Publishing Corporation: New York, 1954; pp 275–331.

CHAPTER VII - FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY WITH ALCOHOL AND CARBOXYLIC ACID MODEL COMPOUNDS

Correlations available in the literature and that relate molar refractivity, refractive index, and density are evaluated using alcohol and carboxylic acid model compounds.

Abstract

Similar to Chapters IV, V, and VI, the objective of the present chapter is to evaluate the fundamental issues about molar refractivity. It was found that for most of the selected compounds the correlation proposed by Eykman $\left(R_{M} = \left(\frac{n^{2}-1}{n+0.4}\right) \cdot \frac{M}{\rho}\right)$ was the least temperature-dependent. In the case of propionic acid and butyric acid the correlation by Gladstone & Dale $\left(R_{M} = (n-1) \cdot \frac{M}{\rho}\right)$ was slightly better.

The orientation polarization $(8.5E^{-23} \text{ cm}^3/\text{mol})$ of propionic acid was calculated, and it was insignificant compared with the propionic acid molar refractivity $(38.5509 \pm 0.0007 \text{ cm}^3/\text{mol})$. Proving than the orientation polarization is negligible as suggested in the literature.

Keywords: Carboxylic acids, alcohol, molar refractivity, refractive index, density.

1. Introduction

Molar refractivity is an intrinsic and temperature invariant property. The literature¹ reports different equations that correlate molar refractivity, refractive index, and density, but it is not clear which is the best equation. The best correlation would be the one for which the calculated molar refractivity is the least temperature-dependent. These correlations have been evaluated in Chapter IV to VI using different hydrocarbons, for which the best correlation was that one by Eykman $\left(R_{M} = \left(\frac{n^{2}-1}{n+0.4}\right) \cdot \frac{M}{\rho}\right)$.

The present chapter aims to evaluate the correlations using alcohols and carboxylic acids and to determine, which of the correlations better express the alcohols and carboxylic acids empirical data. The alcohols are organic compounds with one or more hydroxyl groups (-OH) bonded to a carbon atom (C).² While the carboxylic acids are organic compounds with a carboxyl group (COOH).² These are polar compounds that would be used to verify whether only electronic polarizability plays a role in the calculated molar refractivity, as the literature suggested.

In addition, the first derivative of refractive index with respect to density is calculated for each of the selected model compounds and it is compared with the values obtained for alkanes, alkenes, alkynes, alkyl aromatic and cyclic compound classes studied in Chapter IV to VI. The molar refractivity is also estimated by atomic refraction and group contribution.

2. Experimental

2.1 Materials

The selected model compounds are listed in Table 7.1. The selected alcohols are linear with a hydroxyl group bonded to the first carbon, i.e. *n*-1-alcohols. The selected carboxylic acids are mostly linear, with the exception of isovaleric acid, and 2-methylvaleric acid. The objective was to study the effect of oxygen-containing compounds and carbon number in the molar refractivity.

Compound	D (CACDNS		Purity (w	rt %)	
Class	Reagent	CASRN ^a	Structure	Supplier ^b	FID ^c	Supplier
	Ethanol	64-17-5	CH ₃ CH ₂ OH	99	100.0	Commercial
	Emanor	04-17-5	Ch ₃ Ch ₂ Oh	<u>,,</u>	100.0	Alcohols
	1-Propanol	71-23-8	$CH_3(CH_2)_2OH$	95	100.0	Fisher
	1-Butanol	71-36-3	$CH_3(CH_2)_3OH$	95	100.0	Fisher
Alcohol	1-Pentanol	71-41-0	$CH_3(CH_2)_4OH$	99	100.0	Acros Organi
Alconol	1-Hexanol	111-27-3	$CH_3(CH_2)_5OH$	99	98.7	Alfa Aesar
	1-Heptanol	111-70-6	$CH_3(CH_2)_6OH$	98	99.9	Aldrich
	1-Octanol	111-87-5	$CH_3(CH_2)_7OH$	>99	99.8	Sigma-Aldric
	1-Nonanol	143-08-8	$CH_3(CH_2)_8OH$	98	99.9	Aldrich
	1-Decanol	112-30-1	$CH_3(CH_2)_9OH$	>98	99.6	Alfa Aesar
	Propionic Acid	79-09-4	CH ₃ CH ₂ COOH	99.5	100.0	Sigma-Aldric
	Butyric Acid	107-92-6	$CH_3(CH_2)_2COOH$	99	99.0	Aldrich
	Isovaleric Acid	503-74-2	$CH_3(CH_2)_3COOH$	99	98.5	Aldrich
Carlandia	Valeric Acid	109-52-4	$CH_3(CH_2)_3COOH$	99	99.7	Acros Organi
Carboxylic Acid	Hexanoic Acid	142-62-1	$CH_3(CH_2)_4COOH$	99	99.0	Aldrich
	2-Methylvaleric Acid	97-61-0	СН ₃ (СН ₂) ₅ СООН	98	99.1	Aldrich
	Heptanoic Acid	111-14-8	CH ₃ (CH ₂) ₅ COOH	97	98.9	Sigma
	Octanoic Acid	124-07-2	$CH_3(CH_2)_6COOH$	99	98.9	Sigma
	Nonanoic Acid	112-05-0	$CH_3(CH_2)_7COOH$	97	98.4	Acros Organi

Table 7.1. Selected carboxylic acid and 1-alcohol compounds

^a CASRN: Chemical Abstracts Services Registry Number

^b Purity of the material guaranteed by the supplier; the material was not further purified.

° Purity calculated based on peak area obtained by GC-FID analysis

Table 7.1 shows that for octanoic acid, isovaleric acid, and 1-hexanol the purity calculated with GC-FID analysis is lower than the one guaranteed by the supplier. However, the purity determined by FID did not take the lower response factor of oxygen-containing groups into account and is a purity based on uncorrected FID response area in the chromatogram.

2.2 Equipment, procedures, methodologies, and calculations

The equipment, procedures, methodologies, and calculations have been explained in detail in Chapter III.

3. Results

Table 7.2 shows the average density of the selected model compounds in the temperature range 10-85 °C. Density measurements were highly repeatable as shown by the calculated standard deviation which is as low as ± 0.000000 g/cm³ and not higher than ± 0.000050 g/cm³.

Compound Class	Model Compound	Temperature	Average density	Standard deviation
Compound Class	Model Compound	(T ± 0.001) °C	$(\rho \pm 0.000003) \text{ g/cm}^3$	(g/cm ³)
		10.000	0.798461	0.000003
	E4 1	25.000	0.785652	0.000002
	Ethanol	45.000	0.768163	0.000002
		65.000	0.749840	0.000002
-		10.000	0.811608	0.000001
		25.000	0.799655	0.000001
	1-Propanol	45.000	0.783278	0.000002
		65.000	0.766050	0.000001
		85.000	0.747511	0.000003
-		10.000	0.817123	0.000001
		25.000	0.805749	0.000000
1 4 1 1 1	1-Buthanol	45.000	0.790187	0.000001
1-Alcohol		65.000	0.773872	0.000001
		85.000	0.757438	0.000001
-		10.000	0.821792	0.000001
		25.000	0.810877	0.000002
	1-Pentanol	45.000	0.795948	0.000001
		65.000	0.780342	0.000000
-		85.000	0.763779	0.000001
		10.000	0.825855	0.000001
		25.000	0.815218	0.000001
	1-Hexanol	45.000	0.800685	0.000001
		65.000	0.785545	0.000002
		85.000	0.769568	0.000003

6	•	1			
Compound Class	Model Compound	Temperature	Average density	Standard deviation	
compound chass	mour compound	(T ± 0.001) °C	$(\rho \pm 0.00003)$ g/cm3	(g/cm3)	
		10.000	0.829204	0.000001	
		25.000	0.818757	0.000004	
	1-Heptanol	45.000	0.804517	0.000001	
		65.000	0.789734	0.000001	
		85.000	0.774222	0.000001	
		10.000	0.832327	0.000017	
		25.000	0.822025	0.000013	
	1-Octanol	45.000	0.808013	0.000012	
		65.000	0.793516	0.000010	
1-Alcohol		85.000	0.778372	0.000009	
		10.000	0.834424	0.000001	
		25.000	0.824211	0.000000	
	1-Nonanol	45.000	0.810363	0.000001	
		65.000	0.796078	0.000000	
		85.000	0.781221	0.000001	
		25.000	0.826258	0.000009	
		45.000	0.812526	0.000007	
	1-Decanol	65.000	0.798415	0.000008	
		85.000	0.783790	0.000007	
		10.000	1.004339	0.000031	
		25.000	0.988075	0.000035	
	Propionic Acid	45.000	0.966471	0.000036	
		65.000	0.944859	0.000037	
		85.000	0.923096	0.000036	
Carboxylic Acid		10.000	0.967535	0.000013	
		25.000	0.952602	0.000015	
	Butyric Acid	45.000	0.932751	0.000017	
		65.000	0.912888	0.000018	
		85.000	0.892903	0.000018	

Table 7.2. Average density at different temperatures of selected model compounds. Continuation

Compound Class	Model Compound	Temperature	Average density	Standard deviation
Compound Class	woder Compound	(T ± 0.001) °C	$(\rho \pm 0.000003) \text{ g/cm}^3$	(g/cm ³)
		10.000	0.948483	0.000001
		25.000	0.934751	0.000002
	Valeric Acid	45.000	0.916472	0.000002
		65.000	0.898163	0.000002
		85.000	0.879734	0.000002
		10.000	0.935178	0.000022
		25.000	0.921318	0.000021
	Isovaleric Acid	45.000	0.902865	0.000021
		65.000	0.884367	0.000021
		85.000	0.865731	0.000020
		10.000	0.931423	0.000003
		25.000	0.918298	0.000002
	2-Methylvaleric	45.000	0.900737	0.000001
	Acid	65.000	0.883057	0.000001
		85.000	0.865196	0.000001
		10.000	0.935889	0.000018
Carboxylic Acid	Hexanoic Acid	25.000	0.922828	0.000016
		45.000	0.905452	0.000017
		65.000	0.888051	0.000017
		85.000	0.870552	0.000017
		10.000	0.925954	0.000005
		25.000	0.913394	0.000005
	Heptanoic Acid	45.000	0.896707	0.000006
		65.000	0.880033	0.000005
		85.000	0.863298	0.000005
		25.000	0.905821	0.000000
		45.000	0.889707	0.000000
	Octanoic Acid	65.000	0.873631	0.000001
		85.000	0.857517	0.000000
		25.000	0.900674	0.000000
	N T	45.000	0.885001	0.000001
	Nonanoic Acid	65.000	0.869373	0.000002
		85.000	0.853726	0.000003

Table 7.2. Average density at different temperatures of selected model compounds. Continuation

Table 7.3 shows the average refractive index of the selected model compounds in the temperature range 10-85 °C. The standard deviation of the refractive index is also reported in this table, to show the high repeatability of the measurements. The standard deviation was not higher than ± 0.000050 nD and as low as ± 0.000000 nD.

Compound Class	Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)
		10.00	1.365531	0.000001	
	Ethanol	25.00	1.359303	0.000001	94.1
	Ethanoi	45.00	1.350951	0.000009	94.1
		65.00	1.342319	0.000022	
-		10.00	1.389099	0.000004	
		25.00	1.383066	0.000001	
	1-Propanol	45.00	1.374872	0.000001	93.8
		65.00	1.366262	0.000015	
		85.00	1.357053	0.000005	
-	1-Buthanol	10.00	1.403232	0.000004	
		25.00	1.397225	0.000003	
		45.00	1.389106	0.000002	93.4
1-Alcohol		65.00	1.380801	0.000008	
		85.00	1.371816	0.000008	
-		10.00	1.414026	0.000012	
		25.00	1.407890	0.000010	
	1-Pentanol	45.00	1.399838	0.000001	93.3
		65.00	1.391646	0.000002	
		85.00	1.383007	0.000006	
-		10.00	1.421994	0.000003	
		25.00	1.416382	0.000006	
	1-Hexanol	45.00	1.408205	0.000006	93.5
		65.00	1.400126	0.000025	
		85.00	1.391634	0.000008	

Table 7.3. Average refractive index at different temperatures of selected model compounds

Compound Class	Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)	
		10.00	1.428230	0.000002		
		25.00	1.422425	0.000019		
	1-Heptanol	45.00	1.414796	0.000002	94.2	
		65.00	1.406518	0.000005		
		85.00	1.398163	0.000010		
		10.00	1.433501	0.000003		
		25.00	1.427648	0.000005		
	1-Octanol	45.00	1.419987	0.000008	93.3	
		65.00	1.411913	0.000002		
1-Alcohol		85.00	1.403637	0.000012		
		10.00	1.437800	0.000001		
	1-Nonanol	25.00	1.431978	0.000001	93.2	
		45.00	1.424055	0.000002		
		65.00	1.416392	0.000008		
		85.00	1.408025	0.000001		
		25.00	1.435481	0.000009		
		45.00	1.427639	0.000003	92.9	
	1-Decanol	65.00	1.419964	0.000005		
		85.00	1.411718	0.000003		
		10.00	1.390790	0.000003		
		25.00	1.384446	0.000019		
	Propionic Acid	45.00	1.375888	0.000049	94.3	
		65.00	1.367425	0.000012		
Carboxylic		85.00	1.358868	0.000012		
Acid		10.00	1.402326	0.000005		
		25.00	1.395903	0.000006		
	Butyric Acid	45.00	1.387401	0.000004	94.5	
		65.00	1.378982	0.000003		
		85.00	1.370530	0.000013		

Table 7.3. Average refractive index at different temperatures of

selected model compounds. Continuation

Compound Class	Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)	
		10.00	1.412671	0.000001		
		25.00	1.406444	0.000002		
	Valeric Acid	45.00	1.398105	0.000006	93.6	
		65.00	1.389977	0.000005		
		85.00	1.381806	0.000006		
		10.00	1.407459	0.000011		
		25.00	1.401154	0.000005		
	Isovaleric Acid	45.00	1.392711	0.000002	93.5	
		65.00	1.384483	0.000005		
		85.00	1.376168	0.000007		
	2-Methylvaleric Acid	10.00	1.418225	0.000005		
		25.00	1.411738	0.000001		
		45.00	1.403476	0.000001	93.5	
Carlandia		65.00	1.395234	0.000003		
Carboxylic Acid		85.00	1.387086	0.000005		
Acid		10.00	1.420941	0.000004		
		25.00	1.414804	0.000004		
	Hexanoic Acid	45.00	1.406488	0.000002	93.7	
		65.00	1.398395	0.000004		
		85.00	1.390401	0.000003		
		10.00	1.427049	0.000002		
		25.00	1.421063	0.000005		
	Heptanoic Acid	45.00	1.412905	0.000006	93.8	
		65.00	1.404984	0.000006		
		85.00	1.396952	0.000002		
		25.00	1.426211	0.000010		
	Octanoic Acid	45.00	1.418411	0.000004	93.3	
	Octanoic Acid	65.00	1.410394	0.000048	73.3	
		85.00	1.402528	0.000003		

Table 7.3. Average refractive index at different temperatures of

selected model compounds. Continuation

Compound Class	Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)
	Nonanoic Acid	25.00	1.430518	0.000000	
Carboxylic		45.00	1.422539	0.000000	02.2
Acid		65.00	1.414683	0.000006	93.3
		85.00	1.406903	0.000016	

Table 7.3. Average refractive index at different temperatures of

selected model compounds. Continuation

The objective was to measure the refractive index and density at 5 different temperatures (10, 25, 45, 65, and 85 °C). However, it was not possible to do so for some of the model compounds because of their relatively low boiling point, ethanol $(78 °C)^3$, or their relative high freezing point, 1-decanol (6 °C), octanoic acid (16 °C), and nonanoic acid (9 °C)³

4. Discussion

4.1 Precision and accuracy of the data

The precision and accuracy of the data were evaluated in Chapter IV, where the experimental method was validated.

4.2 First derivative of refractive index with respect to density $(dn/d\rho)$

In Chapters IV to VI, the first derivative of refractive index with respect to density $(dn/d\rho)$ for all selected linear alkanes, alkenes, alkynes, alkyl aromatic, and cyclic compounds was calculated. The following section evaluates the $dn/d\rho$ for the selected carboxylic acid and 1-alcohol compounds.

4.2.1 1-Alcohols

Figure 7.1 presents the refractive index vs density of the selected 1-alcohols. All model compounds follow a linear relationship, which appears to have a similar slope

 $(dn/d\rho)$, although the slopes are numerically different. Table 7.4 lists the $dn/d\rho$ values of each selected 1-alcohol.

Figure 7.1. Refractive index vs. density of the 1-alcohol model compounds.

Table 7.4 shows that the $dn/d\rho$ values increase as the length of the carbon chain increases. This could be due to the decrease in polarity of the compounds with the increase of the carbon number.

Table 7.4. First derivative of refractive index with respect

Madal Carrierad	First derivative	
Model Compound	$(dn/d ho\pm 0.0005)$	
Ethanol	0.4772	
1-Propanol	0.4999	
1-Butanol	0.5241	
1-Pentanol	0.5336	
1-Hexanol	0.5411	
1-Heptanol	0.5471	
1-Octanol	0.5530	
1-Nonanol	0.5582	
1-Decanol	0.5880	

to density $(dn/d\rho)$ for selected 1-alcohol compounds

Table 7.4 shows that as the hydrocarbon character of the alcohols increase (with chain length), the value of the $dn/d\rho$ started to approach 0.6 and the values obtained for

the *n*-alkanes (0.598 \pm 0.003). In addition, it can be seen that the $dn/d\rho$ increases the most from 1-nonanol and 1-decanol.

This difference between the selected alcohols and hydrocarbons (≈ 0.6) dn/dp might be due to the presence of the hydroxyl group, and it could be used to track the change in composition. This will be further discussed in Section 4.2.3 of the present chapter.

4.2.2 Carboxylic Acids

Figure 7.2 presents the refractive index vs. density of the selected carboxylic acids. In all cases, a linear relationship is observed. Furthermore, the refractive index increases with the increase in the carbon number. Whereas, the density decreases with the increase in carbon number. It is worth to notice that the experimental data collected for C_5 and C_6 isomers, i.e. valeric and isovaleric acid, and 2-methylvaleric and hexanoic acids, overlap. It appears that the arrangement of the atoms does not affect the properties being studied as much as the carbon number.

Figure 7.2. Refractive index vs. density of the selected carboxylic acids.

Madal Compound	First derivative
Model Compound	$(dn/d ho\pm 0.0005)$
Propionic Acid	0.3931
Butyric Acid	0.4260
Valeric Acid	0.4491
Isovaleric Acid	0.4506
2-Methylvaleric Acid	0.4695
Hexanoic Acid	0.4683
Heptanoic Acid	0.4807
Octanoic Acid	0.4911
Nonanoic Acid	0.5030

Table 7.5. First derivative of refractive index with respect to density $(dn/d\rho)$ for selected carboxylic acids

Table 7.5 lists the values for the $dn/d\rho$ of the carboxylic acid model compounds. Same as in the case of the 1-alcohols (see Table 7.4), the value for the $dn/d\rho$ increases as the length of the carbon chain increases.

4.2.3 Comparing alkanes, alkenes, alkynes, carboxylic acid, and 1-alcohol compounds

Figure 7.3 shows a plot of refractive index vs density of different compound groups that had been studied. It appears that the compound groups occupied different regions, therefore, refractive index and density could be used to differentiate between them.

In addition, the selected carboxylic acids and 1-alcohols have a different $dn/d\rho$ when compared to the other compound classes due to the presence of oxygen. This difference in the slope could be used to detect online changes in composition. For example, it could be used to monitor a particular property of bitumen such as the acid content of bitumen.

Further experiments are required to test this hypothesis, and it is not part of the scope of the present project.

Figure 7.3. Refractive index vs density of different compound groups.

4.3 Molar refractivity

4.3.1 1-Alcohols

Table 7.6 shows the molar refractivity (Rm) of 1-alcohol model compounds in the temperature range 10-85 °C and calculated with equations 2.IX, 2.X, 2.XI, and 2.XII from Chapter II.

Table 7.6. Molar refractivit	y of selected alcohols calculated	with equations 2.IX-2.XII

			Molar Refractivit	olar Refractivity (Rm) (cm ³ /mol)			
Model Compound	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman		
Model Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)		
		$(\mathrm{Rm}\pm0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$		
	10.00	49.890	21.0906	12.9093	28.2580		
Ethanol	25.00	49.709	21.0692	12.9191	28.2548		
Ethanoi	45.00	49.483	21.0480	12.9365	28.2606		
	65.00	49.264	21.0320	12.9579	28.2748		
	10.00	68.826	28.8082	17.5147	38.4694		
	25.00	68.598	28.7855	17.5313	38.4718		
1-Propanol	45.00	68.298	28.7587	17.5562	38.4807		
	65.00	67.983	28.7301	17.5818	38.4897		
	85.00	67.653	28.7024	17.6107	38.5037		
	10.00	87.903	36.5770	22.1471	48.7475		
	25.00	87.597	36.5408	22.1638	48.7399		
1-Buthanol	45.00	87.200	36.4989	22.1904	48.7392		
	65.00	86.835	36.4729	22.2276	48.7616		
	85.00	86.299	36.3850	22.2311	48.7063		

		Molar Refractivity (Rm) (cm ³ /mol)					
	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman		
Model Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)		
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$		
	10.00	107.209	44.4107	26.8057	59.0998		
	25.00	106.769	44.3415	26.8120	59.0575		
1-Pentanol	45.00	106.268	44.2815	26.8385	59.0433		
	65.00	105.810	44.2416	26.8780	59.0576		
	85.00	105.338	44.2040	26.9221	59.0791		
	10.00	126.434	52.2026	31.4352	69.3934		
	25.00	126.088	52.1805	31.4737	69.4171		
1-Hexanol	45.00	125.429	52.0842	31.4909	69.3668		
	65.00	124.896	52.0373	31.5366	69.3818		
	85.00	124.342	51.9903	31.5857	69.4014		
	10.00	146.570	60.3610	36.2812	80.1706		
	25.00	146.078	60.3024	36.3081	80.1559		
1-Heptanol	45.00	145.519	60.2614	36.3648	80.1848		
	65.00	144.787	60.1643	36.3941	80.1468		
	85.00	144.150	60.1085	36.4488	80.1651		
	10.00	165.059	67.8277	40.7058	90.0239		
	25.00	164.474	67.7505	40.7298	89.9924		
1-Octanol	45.00	163.810	67.6905	40.7857	90.0063		
	65.00	163.051	67.6022	40.8290	89.9881		
	85.00	162.324	67.5328	40.8857	89.9983		
	10.00	184.515	75.6893	45.3659	100.4001		
	25.00	183.878	75.6082	45.3956	100.3710		
1-Nonanol	45.00	182.992	75.4899	45.4307	100.3214		
	65.00	182.331	75.4559	45.5126	100.3808		
	85.00	181.435	75.3458	45.5576	100.3496		
	25.00	203.172	83.4219	50.0350	110.6916		
	45.00	202.232	83.3040	50.0803	110.6521		
1-Decanol	65.00	201.474	83.2548	50.1640	110.7020		
	85.00	200.518	83.1431	50.2180	110.6782		

 Table 7.6. Molar refractivity of selected alcohols calculated with equations 2.IX-2.XII.

 Continuation

Table 7.6 shows that Rm calculated with one correlation cannot be compared to Rm calculated with another correlation. To determine which equation better expresses the

empirical data, the average Rm and its standard deviation are shown in Table 7.7. The best correlation would be the one which calculated Rm that is the least temperature dependent, in other words, the one with the lowest standard deviation.

Model Compound		Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman	Best
woder Compound		(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)	Correlation
		$(\mathrm{Rm}\pm0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(\mathbf{Rm}\pm0.0007)$	
Ethanol	Av. Rm	49.586	21.0600	12.9307	28.2620	Eykman
	S	0.272	0.0255	0.0213	0.0088	Еукшап
1-Propanol	Av. Rm	68.272	28.7570	17.5589	38.4831	Eykman
1-Propanol	s	0.469	0.0423	0.0385	0.0140	суктап
1-Butanol	Av. Rm	87.167	36.4949	22.1920	48.7389	E 1
	s	0.631	0.0732	0.0375	0.0204	Eykman
1.0. 1	Av. Rm	106.279	44.2958	26.8513	59.0674	Eykman
1-Pentanol	S	0.743	0.0819	0.0488	0.0221	
1 11	Av. Rm	125.438	52.0990	31.5044	69.3921	Eykman
1-Hexanol	S	0.853	0.0911	0.0582	0.0191	
1 Honton ol	Av. Rm	145.421	60.2395	36.3594	80.1646	Estemon
1-Heptanol	S	0.972	0.1025	0.0670	0.0145	Eykman
1-Octanol	Av. Rm	163.744	67.6808	40.7872	90.0018	D -1
I-Octanol	S	1.091	0.1169	0.0731	0.0141	Eykman
1.57 1	Av. Rm	183.030	75.5178	45.4525	100.3646	
1-Nonanol	s	1.221	0.1340	0.0804	0.0303	Eykman
	Av. Rm	201.849	83.2809	50.1243	110.6810	F 1
1-Decanol	S	1.127	0.1156	0.0822	0.0216	Eykman

Table 7.7. Average molar refractivity for the selected 1-alcohol compounds

Av. Rm: Average molar refractivity.

s: standard deviation.

Table 7.7 that Rm calculated with the correlation by Eykman (Equation 2.XII) had the lowest standard deviation. Therefore, Rm of the selected 1-alcohols calculated with the correlation by Eykman is the least temperature-dependent
4.3.2 Carboxylic Acids

Table 7.8 shows the Rm of the selected carboxylic acids at different temperatures calculated with equations 2.IX, 2.X, 2.XI, and 2.XII from Chapter II.

Table 7.8. Molar refractivity the selected carboxylic acids, calculated

			Molar Refractivit	y (Rm) (cm ³ /mol)	
Model Compound	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman
	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$
	10.00	68.914	28.8247	17.5161	38.4823
	25.00	68.728	28.8235	17.5475	38.5150
Propionic Acid	45.00	68.454	28.8118	17.5835	38.5461
	65.00	68.199	28.8073	17.6232	38.5867
	85.00	67.935	28.7997	17.6614	38.6242
	10.00	88.017	36.6384	22.1901	48.8355
	25.00	87.735	36.6186	22.2195	48.8527
Butyric Acid	45.00	87.367	36.5948	22.2597	48.8791
	65.00	87.020	36.5785	22.3036	48.9154
	85.00	86.674	36.5632	22.3482	48.9538
	10.00	107.208	44.4353	26.8312	59.1435
	25.00	106.865	44.4077	26.8634	59.1575
Valeric Acid	45.00	106.390	44.3641	26.9021	59.1678
	65.00	105.982	44.3442	26.9534	59.2084
	85.00	105.573	44.3246	27.0049	59.2504
	10.00	107.127	44.4982	26.9101	59.2698
	25.00	106.776	44.4688	26.9417	59.2822
Isovaleric Acid	45.00	106.290	44.4226	26.9797	59.2904
	65.00	105.875	44.4015	27.0309	59.3308
	85.00	105.446	44.3764	27.0802	59.3670
	10.00	126.130	52.1579	31.4431	69.3696
	25.00	125.610	52.0827	31.4575	69.3311
2-Methylvaleric Acid	45.00	125.060	52.0328	31.5032	69.3436
	65.00	124.529	51.9903	31.5529	69.3664
	85.00	124.056	51.9697	31.6147	69.4181

with equations 2.IX-2.XII from Chapter II

		Molar Refractivity (cm ³ /mol)					
Model	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman		
Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)		
		$(\mathbf{Rm}\pm0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$		
	10.00	126.485	52.2461	31.4711	69.4612		
	25.00	126.084	52.2131	31.5079	69.4755		
Hexanoic Acid	45.00	125.494	52.1481	31.5453	69.4684		
	65.00	124.984	52.1114	31.5974	69.4973		
	85.00	124.521	52.0922	31.6589	69.5494		
	10.00	145.717	60.0388	36.1002	79.7555		
	25.00	145.291	60.0113	36.1473	79.7837		
Heptanoic Acid	45.00	144.639	59.9437	36.1931	79.7827		
	65.00	144.077	59.9078	36.2552	79.8220		
	85.00	143.477	59.8580	36.3097	79.8445		
	25.00	164.629	67.8542	40.8095	90.1477		
	45.00	164.014	67.8191	40.8821	90.1966		
Octanoic Acid	65.00	163.289	67.7436	40.9326	90.1952		
	85.00	162.636	67.6938	40.9964	90.2268		
	25.00	183.828	75.6332	45.4302	100.4239		
NT ' A ' 1	45.00	183.013	75.5461	45.4848	100.4167		
Nonanoic Acid	65.00	182.246	75.4743	45.5465	100.4288		
	85.00	181.518	75.4156	45.6147	100.4581		

Table 7.8. Molar refractivity the selected carboxylic acids, calculated

with equations 2.IX-2.XII from Chapter II. Continuation

To determine which correlation better expresses the carboxylic acid data, the average Rm and its standard deviation were calculated for each model compound. A total of 4 average Rm were calculated per model compound. (See Table 7.9)

		Ν	Aolar Refractivity	y (cm ³ /mol)			
Model Compound		Berthelot (Eq. 2.IX) (Rm ± 0.002)	Gladstone & Dale (Eq. 2.X) (Rm ± 0.0006)	Lorentz-Lorenz (Eq. 2.XI) (Rm ± 0.0003)	Eykman (Eq. 2.XII) (Rm ± 0.0007)	Best Correlation	
	Av. Rm	68.446	28.8134	17.5863	38.5509	Gladstone &	
Propionic Acid	S	0.394	0.0107	0.0579	0.0563	Dale	
	Av. Rm	87.362	36.5987	22.2642	48.8873	Gladstone &	
Butyric Acid	S	0.538	0.0302	0.0635	0.0479	Dale	
	Av. Rm	106.403	44.3752	26.9110	59.1855		
Valeric Acid	s	0.657	0.0456	0.0695	0.0436	Eykman	
T 1	Av. Rm	106.303	44.4335	29.9886	59.3080		
Isovaleric Acid	S	0.675	0.0496	0.0682	0.0401	Eykman	
2-	Av. Rm	125.077	52.0467	31.5142	69.3658		
Methylvaleric Acid	S	0.827	0.0758	0.0707	0.0334	Eykman	
Hexanoic Acid	Av. Rm	125.514	52.1622	31.5561	69.4903	Esterra	
Hexanoic Acid	S	0.796	0.0658	0.0740	0.0357	Eykman	
TT 4 · 4 · 1	Av. Rm	144.640	59.9519	36.2011	79.7977	E 1	
Heptanoic Acid	S	0.902	0.0740	0.0835	0.0353	Eykman	
	Av. Rm	163.642	67.7777	40.9052	90.1916	Esterra	
Octanoic Acid	S	0.866	0.0725	0.0791	0.0327	Eykman	
Nonanoic Acid	Av. Rm 182.651 75.5173 45.5190 100.43	100.4319	Euleman				
INONANOIC ACID	S	0.994	0.0939	0.0795	0.0182	Eykman	

Table 7.9. Average molar refractivity of the selected carboxylic acids

Av. Rm: Average molar refractivity.

s: standard deviation.

Table 7.9 shows that the correlation by Eykman is the least temperature-dependent for most of the carboxylic acids, with the exception of propionic and butyric acids. For these two acids, the correlation by Gladstone & Dale has a slightly smaller standard deviation. It raises the question of why these two acids get the least temperature-dependent Rm with Gladstone & Dale equation. Propionic and butyric acid were the two most polar compounds in the study.

In Chapter II, it was shown that orientation (P_0) and distortion polarization (P_D) were neglected from Mosotti-Claussius equation (see Equation 2.VI), and therefore, they are not taken into account when calculating molar refractivity. Only the effects of electronic polarization are considered in the correlations available in literature to calculate molar refractivity. Propionic and butyric acids are the most polar model compounds used in the present investigation, which could explain why they do not follow the same trend as the rest of the compounds. In other words, it might be possible that the orientation polarization of these compounds have some impact on the overall value of the molar refractivity. The orientation polarization, denoted as P_o in equations 2.VI and 2.VII, of propionic acid was calculated to test this idea. Propionic acid was selected between the two acids in question since it is the most polar, and so it has the highest chance of showing if the P_o has an effect on R_M .

$$P_{\rm M} = P_{\rm O} + P_{\rm D} + P_{\rm E} = \frac{\varepsilon - 1}{\varepsilon + 1} \cdot \frac{M}{\rho} \qquad (2.\rm{VI})$$

Mosotti–Clausius⁸

Where,

PM: molar polarization (cm³/mol)

ε: dielectric constant

M: molar mass (g/mol)

$$P_{O} = \frac{4\pi}{9} \cdot \frac{N_{A}}{k} \cdot \frac{\mu^{2}}{T}$$
(2.VII)
Debye⁸

Where,

μ: dipole moment (C.m)

 $N_A\!\!:$ avogadro number $6.022{\times}10^{23}~\text{mol}^{\text{--}1}$

k: Boltzmann constant $1.381 \times J \cdot K^{-1}$

The calculated orientation polarization is reported in Table 7.10

T 11 7 10	\sim · · ·	1	•	. •	<u> </u>	•••	• 1
Table / In	()riontotion	nol	01170	tion	Δt	nronionio	0.01d
Table 7.10.	ULICIDATION	- 1 20 21	anza	пол	01		aciu
10010 / 1101	0110110001011	P • •			U 1	proprome	

at different temperatures					
Temperature (T ± 0.01) °C	Orientation polarization (P _O) (cm ³ /mol)				
10.00	8.5E-23				
25.00	8.5E-23				
45.00	8.5E-23				
65.00	8.5E-23				
85.00	8.5E-23				

Table 7.10 shows that the P_O of propionic acid (8.5E-23 cm³/mol) is significantly smaller than its corresponding Rm (38.5509± 0.0007 cm³/mol), suggesting that the P_O is negligible as the literature suggests.

It would be interesting to evaluate the molar refractivity correlations with acetic acid to verify if it follows the same trend, and the correlation by Gladstone & Dale gives the lowest standard deviation. Due to time constraints, it was not possible to include this experiment in the present work.

The differences between the standard deviation calculated by Gladstone & Dale and Eykman for propionic and butyric acids are low. Therefore, Eykman is the prefered correlation, since for most of the model compounds the correlation by Eykman is the least temperature-dependent.

4.4 Atomic refraction & group contribution

The atomic refraction (AR) and group contribution (GC) will be calculated for the correlation by Eykman. Table 7.11 shows the AR of carbon (C), hydrogen (H), and double (C=C) bonds. This table also lists GC of C-H, C-C, and C=C bonds. These values were calculated in Chapter IV and V.

In addition, Table 7.11 shows the AR of oxygen and the GC of C-OH, both calculated using ethanol data. And the GC of COOH, calculated with propionic acid data. For the AR it was consider the atom of oxygen connected to a carbon with a single bond (C-O), contributes the same to the Rm as an atom of oxygen connected to a carbon with a double bond (C=O) without the need of correction.

Atomic refraction (cm ³ /mol)			Gro	oup con	tributi	on (cm ³	/mol)	
Carbon	Hydrogen	Oxygen	C=C	C-H	C-C	C=C	C-OH	COOH
6.770	1.782	4.031	2.748	3.474	3.386	9.517	7.506	14.408

Table 7.11. Atomic refraction and group contribution for the correlation by Eykman

In the following sections, Rm of the selected carboxylic acids and 1-alcohols is estimated using AR and GC.

4.4.1 1-Alcohol

Table 7.12. Rm calculated with the experimental, AR and GC for the selected

		Molar Refractiv	Delta between average exp.	
Model Compound	refract	ted with atomic ion and group ntribution	Average calculated value with exp. data (Rm ± 0.0007)	Rm and Rm calculated with AR or GC (cm ³ /mol)
Ethanol	AR	28.2620	28.2620	0.0000
Ethanoi	GC	28.2620	28.2020	0.0000
1 Drononal	AR	38.5957	38.4831	0.1126
1-Propanol	GC	38.5961	30.4031	0.1131
1 Deetles and	AR	48.9293	49 7290	0.1904
1-Buthanol	GC	48.9302	48.7389	0.1913
1 D (1	AR	59.2630	50.0/74	0.1955
1-Pentanol	GC	59.2643	59.0674	0.1968
1 TT 1	AR	69.5966	(0.2021	0.2045
1-Hexanol	GC	69.5984	69.3921	0.2063
1 11 / 1	AR	79.9303	00 1 (4 (0.2344
1-Heptanol	GC	79.9324	80.1646	0.2322
10,11	AR	90.2639	00.0010	0.2621
1-Octanol	GC	90.2665	90.0018	0.2647
	AR	100.5976		0.2330
1-Nonanol	GC	100.6006	100.3646	0.2360
	AR	110.9312		0.2503
1-Decanol	GC	110.9347	110.6810	0.2537

1-alcohols for the correlation by Eykman

Table 7.12 shows that Rm estimated with AR and GC are nearly the same as the Rm calculated with the experimental. In addition, the difference between $|\text{Rm}_{exp} - \text{Rm}_{AR}|$ and $|\text{Rm}_{exp} - \text{Rm}_{GC}|$ was not bigger than 0.0050 cm³/mol, therefore, the Rm estimated with AR is comparable with the one estimated with GC.

4.4.2 Carboxylic Acids

		Molar Refract	Delte hetere en eren er	
Model Compound	Calcula	ted with atomic	Average calculated value	Delta between average exp. Rm and Rm calculated
Model Compound	refrac	tion and group	with exp. data (Rm ±	with AR or GC (cm ³ /mol)
	co	ntribution	0.0007)	
Propionic Acid	AR	39.0632	38.5509	0.5123
Fiopionic Acid	GC	38.5509	56.5509	0.0000
Butyric Acid	AR	49.3969	48.8873	0.5096
Butylic Acia	GC	48.8849	40.00/5	0.0024
Valeric Acid	AR	59.7305	59.1855	0.5450
valenc Aciu	GC	59.2190	59.1855	0.0335
Isovaleric Acid	AR	59.7305	50 2000	0.4225
Isovalette Acid	GC	59.2190	59.3080	0.0890
2-Methylvaleric	AR	70.0642	69.3658	0.6984
Acid	GC	69.5531	09.3038	0.1873
Hexanoic Acid	AR	70.0642	69.4903	0.5738
nexalioic Acid	GC	69.5531	09.4905	0.0628
Hantanaia Aaid	AR	80.3978	70 7077	0.6001
Heptanoic Acid	GC	79.8872	79.7977	0.0895
Octanoic Acid	AR	90.7315	90.1916	0.5399
Octanoic Acid	GC	90.2213	90.1910	0.0297
N	AR	101.0651	100 4210	0.6332
Nonanoic Acid	GC	100.5553	100.4319	0.1235

Table 7.13. Rm calculated with the experimental data, AR and GC for the correlation

1 1 1	C	.1 1	1 . 1	1	1.	• 1
by Hylzman	tor	tho co	lactad	CORDOVI	110	0.01 d.c.
by Eykman	IUI	LIIC SC	iccicu	Caluur		acius

In Table 7.13, it can be seen that the difference between $|\text{Rm}_{exp} - \text{Rm}_{AR}|$ and $|\text{Rm}_{exp} - \text{Rm}_{GC}|$ is bigger than 0.0050 cm³/mol, therefore, Rm_{AR} is not comparable to the Rm_{GC} . For all the selected carboxylic acids, the molar refractivity calculated with GC is more accurate than the one calculated with AR. This could be due to the assumption made for the AR. Where an oxygen atom from a C-O and C=O bond, contribute the same. Analyzing the data from Table 7.13, it appears that an oxygen atom from a C-O bonds contributes more than an oxygen in a C=O bond.

5. Conclusions

• The first derivate of refractive index with respect to density $(dn/d\rho)$ appears to decrease with the increase of polarity of the model compounds.

• The difference between $dn/d\rho$ of alkanes (0.598 ± 0.003), alkenes (0.604 ± 0.002), and alkynes (0.587 ± 0.005) and $dn/d\rho$ of carboxylic acids (0.46 ± 0.02) and 1-alcohols (0.54 ± 0.03) could be used to detect online changes in composition, for example, acid content in bitumen.

• The correlation that better expressed the empirical data for 1-alcohol model compounds was that by Eykman.

• The correlation by Eykman was the least temperature-dependent for most of the selected carboxylic acids, with the exception of propionic and butyric acids, for which the correlation by Gladstone & Dale was a slightly least temperature-dependent.

• The orientation polarization of propionic acid was calculated. The Po (8.5E-23 cm³/mol) was insignificant compare with the propionic acid molar refractivity (38.5509± 0.0007 cm³/mol). Proving than the Po is in negligible as suggested by the theory.

• Atomic refraction and group contribution gave comparable results when used to predict the molar refractivity of 1-alcohols.

• Group contribution was more accurate than atomic refraction when estimating the molar refractivity of most of the selected carboxylic acid, with the exception of isovaleric acid.

6. References

- Kurtz, S. S. Physical Properties and Hydrocarbon Structure. In *The chemistry of petroleum hydrocarbons. Vol 1*; Reinhold Publishing Corporation: New York, 1954; pp 275–331.
- (2) McMurry, J. Organic Chemistry, 5th ed.; Brooks/Cole: California, 200AD.
- (3) RELXGroup. Reaxys database https://www.reaxys.com/#/login (accessed Sep 20, 2019).

CHAPTER VIII - FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY WITH SULFUR CONTAINING COMPOUNDS AS MODEL COMPOUNDS

Different molar refractivity correlations are evaluated using sulfur-containing compounds as model compounds. The objective is to study the effect of sulfur compounds in the refractive index and molar refractivity

Abstract

Different equations are reported in the literature to calculate molar refractivity, but it is not clear which equation is the best one. These equations correlate molar refractivity, refractive index, and density. The present chapter seeks to evaluate these correlations and determine which equation better expressed the empirical data of the selected sulfur compounds.

Similarly to Chapters IV-VII, accurate and high precision refractive index and density data of the selected sulfur compounds were collected and used to evaluate the different correlations. The correlation by Eykman $\left(R_{M} = \left(\frac{n^{2}-1}{n+0.4}\right) \cdot \frac{M}{\rho}\right)$ was the least temperature-dependent for all the sulfur compounds.

The selected linear-non aromatic sulfur compounds overlap with the data of alkanes, alkenes, and alkynes model compounds in a refractive index vs density plot. In addition, it was observed that tetrahydrothiophene grouped with thiophenes and not with the non-cyclic thioethers.

Keywords: sulfur, molar refractivity, refractive index, density, Eykman.

1. Introduction

The methodology explained in Chapter IV was followed to evaluate the different molar refractivity correlations reported in the literature. Sulfur-containing compounds were selected as model compounds. As Chapter VI, the model compounds cannot be grouped in one compound class. The objective was to study the effect of sulfur heteroatoms in the refractive index and molar refractivity. The present investigation will be limited to hydrocarbons containing one sulfur atom (S).

2. Experimental

2.1 Materials

Table 8.1 shows the selected sulfur compounds and the purity of the reagents. For all the selected model compounds the purity calculated based on the peak area obtained by GC-FID analysis was higher than the purity guarantee for the supplier for all the selected sulfur compounds.

Reagent	CASRN ^a	Structure	Purity (w	/t %)	Supplier
Keagent	CASIN	Structure	Supplier ^b	FID ^c	11
Dimethyl Sulfide	75-18-3	$H_3C - S - CH_3$	>99	99.8	Sigma-Aldrich
Tetrahydrothiophene	110-01-0	$\langle \overset{s}{ ightarrow} \rangle$	>99	99.9	TCI
Thiophene	110-02-1	$\langle \rangle$	>99	99.8	Sigma-Aldrich
2,5-Dimethylthiophene	638-0-8	H ₃ C CH ₃	98.5	99.7	Acros Organic
Benzenethiol	110-06-5	SH	97	99.8	Sigma-Aldrich
Thioanisole	100-68-5	SCH3	>99	100.0	Sigma-Aldrich
Di- <i>n</i> -butyl sulfide	544-40-1	$H_3C(CH_2)_3 - S - (CH_2)_3CH_3$	97	100.0	Alfa Aesar
Diphenyl sulfide	136-66-2	S S S S S S S S S S S S S S S S S S S	98	99.4	Aldrich
1-Hexadecanethiol	2917-26-2	$CH_3(CH_2)_{15}SH$	>95	99.4	Aldrich

Table 8.1. Selected model compounds

^a CASRN: Chemical Abstracts Services Registry Number

^b Purity of the material guaranteed by the supplier; the material was not further purified.

° Purity calculated based on peak area obtained by GC-FID analysis

2.2 Equipment, procedures, methodologies, and calculations

The equipment, procedures, methodologies, and calculations have been explained in detail in Chapter III.

The density meter and refractometer were placed inside the fume hood to reduce exposure to the vapors while performing the measurements. Inhaling benzenethiol may cause respiratory irritation or even be fatal.¹

3. Results

Table 8.2 shows the average density at different temperatures of each one of the selected model compounds. The density values are reported with their standard deviation which is not higher than ± 0.000025 g/cm³ and as low as ± 0.000001 g/cm³, proving the high repeatability of the measurements.

Model Compound	Temperature (T ± 0.001) ℃	Average density ($\rho \pm 0.000003$) g/cm ³	Standard deviation (g/cm ³)
	10.000	0.842505	0.000014
Dimethyl Sulfide	25.000	0.860324	0.000014
	10.000	1.008452	0.000001
	25.000	0.994130	0.000006
Tetrahydrothiophene	45.000	0.974865	0.000007
	65.000	0.955319	0.000005
	85.000	0.935427	0.000004
	10.000	1.076212	0.000015
TTI: 1	25.000	1.058468	0.000003
Thiophene	45.000	1.034477	0.000003
	65.000	1.009978	0.000003

Table 8.2. Average density at different temperatures of selected model compounds

Madal Commoned	Temperature	Average density	Standard deviation
Model Compound	(T ± 0.001) °C	$(\rho \pm 0.000003) \text{ g/cm}^3$	(g/cm ³)
	10.000	0.995492	0.000003
2.5	25.000	0.980205	0.000002
2,5-	45.000	0.959761	0.000004
Dimethylthiophene	65.000	0.939143	0.000005
	85.000	0.918254	0.000015
	10.000	1.087125	0.000008
	25.000	1.072713	0.000010
Benzenethiol	45.000	1.053496	0.000010
	65.000	1.034210	0.000012
	85.000	1.014792	0.000013
	10.000	1.066744	0.000014
	25.000	1.052792	0.000015
Thioanisole	45.000	1.034191	0.000015
	65.000	1.015533	0.000016
	85.000	0.996766	0.000016
	10.000	0.846635	0.000004
	25.000	0.834349	0.000003
Di-n-butyl sulfide	45.000	0.817884	0.000002
	65.000	0.801273	0.000002
	85.000	0.784452	0.000003
	10.000	1.121196	0.000001
	25.000	1.108730	0.000003
Diphenyl Sulfide	45.000	1.092220	0.000001
	65.000	1.075792	0.000002
	85.000	1.059402	0.000001
	25.000	0.843443	0.000018
1-Hexadecanethiol	45.000	0.829549	0.000008
	65.000	0.815735	0.000003
	85.000	0.801958	0.000004

Table 8.2. Average density at different temperatures of selected model compounds. Continuation

Each average refractive index (see Table 8.3) and average density (see Table 8.2) are means of nine measurements.

Table 8.3 shows the average refractive index at different temperatures of the selected model compounds with its standard deviation. The standard deviation shows the high repeatability of the measurements. The deviation was not higher than ± 0.000070 nD and as low as ± 0.000000 nD.

		Average	Standard	Barometric	
Model Compound	Temperature	Refractive	deviation	pressure	
Woder Compound	(T ± 0.01) °C	Index (n ±	(nD)	(Patm±0.2)	
		0.000003) nD	(IID)	(kPa)	
Dimethyl Sulfide	10.00	1.441843	0.000002	93.7	
Dimetriyi Sunde	25.00	1.432089	0.000015	23.1	
	10.00	1.510203	0.000007		
	25.00	1.502339	0.000005		
Tetrahydrothiophene	45.00	1.491814	0.000005	93.4	
	65.00	1.481233	0.000010		
	85.00	1.470569	0.000025		
	10.00	1.535191	0.000008		
Thiophene	25.00	1.525657	0.000002	93.8	
Thiophene	45.00	1.512780	0.000000	55.0	
	65.00	1.499851	0.000005		
	10.00	1.518899	0.000002		
	25.00	1.510308	0.000003		
2,5-Dimethylthiophene	45.00	1.498831	0.000006	93.1	
	65.00	1.487347	0.000010		
	85.00	1.475847	0.000007		
	10.00	1.595949	0.000015		
	25.00	1.587165	0.000021		
Benzenethiol	45.00	1.575552	0.000003	94.4	
	65.00	1.564089	0.000056		
	85.00	1.552543	0.000030		
	10.00	1.592662	0.000005		
	25.00	1.584240	0.000050		
Thioanisole	45.00	1.572996	0.000004	93.5	
	65.00	1.561885	0.000018		
	85.00	1.550725	0.000069		

Table 8.3. Average refractive index at different temperatures of selected model compounds

Model Compound	Temperature (T ± 0.01) °C	Average Refractive Index (n ± 0.000003) nD	Standard deviation (nD)	Barometric pressure (Patm±0.2) (kPa)
	10.00	1.457625	0.000004	
	25.00	1.450705	0.000004	
Di-n-butyl sulfide	45.00	1.441337	0.000005	94.0
	65.00	1.431843	0.000006	
	85.00	1.422431	0.000003	
	10.00	1.638475	0.000018	
	25.00	1.630933	0.000003	
Diphenyl Sulfide	45.00	1.620874	0.000006	93.2
	65.00	1.611051	0.000006	
	85.00	1.601265	0.000007	
	25.00	1.460842	0.000009	
1-Hexadecanethiol	45.00	1.452677	0.000005	02.6
1-nexadecanetnioi	65.00	1.444681	0.000007	93.6
	85.00	1.436819	0.000005	

Table 8.3. Average refractive index at different temperatures of

selected model compounds. Continuation

As mentioned in Chapter III, the aim was to measure the refractive index and density at 5 different temperatures (10, 25, 45, 65, and 85 °C), but this was not possible for all the reagents due to their relative low boiling, dimethyl sulfide (35 °C), and thiophene (82 °C), or their relative high freezing point, 1-hexadecanethiol (20 °C). For the last one, it was required to heat it up to unfreeze the reagent, since it was frozen at room temperature.

4. Discussion

4.1 Precision and accuracy of the data

The accuracy of the data was checked in Chapter IV. It was found that the collected data is precise and has good agreement with the literature.²

4.2 First derivative of refractive index with respect to density.

Figure 8.1 shows a plot of refractive index vs density of the selected sulfur compounds. In this plot, the data of the compounds appear to be grouped depending on their structure. Linear, non-aromatic chains had the lowest refractive index and density, followed by heterocyclics, and, at last, sulfur-substituted aromatic compounds. And even though the tetrahydrothiophene is a heterocyclic thioether, but it is not aromatic, it resembles thiophenes more than non-cyclic thioethers.

Figure 8.1. Refractive index vs. density of the selected sulfur compounds.

Figure 8.1 also shows that the refractive index vs density of all the sulfur model compounds followed a linear trend. Table 8.4 shows the slope of the linear trend of each model compound. The slope of the linear sulfur compounds increased with the increase of the length of the carbon chain, while the sulfur aromatic compounds have a slope of nearly 0.6. For the thiophenes, the slope appears to increase with the absence of double bonds, when comparing tetrahydrothiophene (0.5429 ± 0.0005) with thiophene (0.5338 ± 0.0005).

Madal Compound	First derivative
Model Compound	$(dn/d ho\pm 0.0005)$
Dimethyl Sulfide	0.5474
Tetrahydrothiophene	0.5429
Thiophene	0.5338
2,5-Dimethylthiophene	0.5577
Benzenethiol	0.5998
Thioanisole	0.5993
Di-n-butyl sulfide	0.5669
Diphenyl Sulfide	0.6024
1-Hexadecanethiol	0.5791
Average	0.57
Standard deviation	0.03

Table 8.4. Slope $(dn/d\rho)$ of the linear trend of refractive index vs density

for the selected sulfur compounds

4.2.1 Comparing alkanes, alkenes, alkynes, alkyl aromatic, cyclic, carboxylic acid, and 1alcohol compounds

As mentioned in Chapter VII, the difference in the $dn/d\rho$ slope could potentially be used to detect changes following on reaction in complex mixtures.

In Figure 8.2 refractive index vs density of different compounds have been plotted. It can be seen that the studied compound classes appear to be organized in regions. The linear sulfur compounds overlap with the alkanes, alkenes, and alkynes. While the sulfur aromatic compounds are located close to the alkyl aromatic compounds.

Figure 8.2. Refractive index vs density of different compound classes.

4.3 Molar refractivity

Table 8.5 shows the molar refractivity (Rm) of sulfur model compounds at different temperatures calculated with equations 2.IX-2.XII from Chapter II.

		Molar Refractivity (Rm) (cm³/mol)				
Model	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman	
Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)	
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$	
Dimethyl	10.00	77.916	31.9086	19.1021	42.3031	
sulfide	25.00	77.496	31.8642	19.1308	42.2995	
	10.00	111.885	44.5722	26.1371	58.5724	
T-411	25.00	111.398	44.5174	26.1680	58.5582	
Tetrahydro-	45.00	110.751	44.4460	26.2101	58.5423	
thiophene	65.00	110.116	44.3795	26.2553	58.5339	
	85.00	109.493	44.3190	26.3042	58.5346	
	10.00	106.078	41.8421	24.3476	54.8151	
Thiophono	25.00	105.536	41.7856	24.3866	54.8053	
Thiophene	45.00	104.801	41.7074	24.4378	54.7901	
	65.00	104.099	41.6419	24.4964	54.7930	

Table 8.5. Molar refractivity of selected sulfur compounds calculated with equations 2.IX-2.XII

	Molar Refractivity (Rm) (cm ³ /mol)								
Model	Temperature	Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman				
Compound	(T ± 0.01) °C	(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)				
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$				
	10.00	147.303	58.4790	34.2003	76.7641				
25 D' (1-1	25.00	146.621	58.4076	34.2490	76.7526				
2,5-Dimethyl-	45.00	145.707	58.3102	34.3124	76.7353				
thiophene	65.00	144.810	58.2185	34.3786	76.7266				
	85.00	143.940	58.1378	34.4509	76.7335				
	10.00	156.808	60.4049	34.4856	78.5631				
	25.00	156.043	60.3141	34.5296	78.5253				
Benzenethiol	45.00	155.047	60.1996	34.5905	78.4830				
	65.00	154.104	60.1009	34.6584	78.4609				
	85.00	153.145	59.9972	34.7238	78.4338				
	10.00	178.902	69.0031	39.4354	89.7802				
	25.00	178.116	68.9239	39.4952	89.7654				
Thioanisole	45.00	177.056	68.8133	39.5717	89.7398				
	65.00	176.049	68.7187	39.6554	89.7349				
	85.00	175.036	68.6220	39.7380	89.7286				
	10.00	194.332	79.0729	47.1145	104.6129				
	25.00	193.664	79.0240	47.1829	104.6436				
Di- <i>n</i> -butyl	45.00	192.717	78.9393	47.2642	104.6616				
sulfide	65.00	191.733	78.8425	47.3393	104.6664				
	85.00	190.834	78.7777	47.4320	104.7138				
	10.00	279.874	106.0743	59.7435	137.2960				
	25.00	278.879	105.9998	59.8459	137.3154				
Diphenyl sulfide	45.00	277.515	105.8865	59.9743	137.3243				
	65.00	276.256	105.8027	60.1147	137.3691				
	85.00	275.003	105.7190	60.2542	137.4147				
	25.00	347.582	141.2451	84.0776	186.7874				
1-	45.00	345.991	141.0665	84.1771	186.7517				
Hexadecanethiol	65.00	344.507	140.9211	84.2913	186.7571				
	85.00	343.124	140.8080	84.4207	186.8032				

Table 8.5. Molar refractivity of selected sulfur compounds calculated

with equations 2.IX-2.XII. Continuation

Table 8.5 shows that the Rm calculate with one correlation is different from the Rm calculated with another correlation. To determine which Rm is least temperature-

dependent, the average Rm and its standard deviation were calculated and are shown in Table 8.6. The best correlation would be the one in which the calculated Rm has the lowest standard deviation.

Molar Refractivity (cm ³ /mol)							
Model		Berthelot	Gladstone & Dale	Lorentz-Lorenz	Eykman	Best	
Compound		(Eq. 2.IX)	(Eq. 2.X)	(Eq. 2.XI)	(Eq. 2.XII)	Correlation	
		$(Rm \pm 0.002)$	$(Rm \pm 0.0006)$	$(Rm \pm 0.0003)$	$(Rm \pm 0.0007)$		
Dimethyl	Av. Rm	77.706	31.8864	19.1164	42.3013	Eykman	
sulfide	S	0.296	0.0314	0.0203	0.0026	Еуктап	
Tetrahydro-	Av. Rm	110.729	44.4468	26.2149	58.5483	T-d	
thiophene	S	0.960	0.1019	0.0669	0.0167	Eykman	
This where	Av. Rm	105.128	41.7443	24.4171	54.8009	T-d	
Thiophene	S	0.863	0.0878	0.0645	0.0115	Eykman	
2,5-Dimethyl-	Av. Rm	145.676	58.3106	34.3182	76.7424	- 1	
thiophene	s	1.351	0.1379	0.1000	0.0155	Eykman	
	Av. Rm	155.029	60.2033	34.5976	78.4932		
Benzenethiol	s	1.466	0.1627	0.0960	0.0514	Eykman	
TTI: 1	Av. Rm	177.032	68.8162	39.5791	89.7498	F 1	
Thioanisole	S	1.551	0.1531	0.1212	0.0220	Eykman	
Di-n-butyl	Av. Rm	192.656	78.9313	47.2666	104.6597	F 1	
sulfide	s	1.414	0.1227	0.1253	0.0368	Eykman	
Diphenyl	Av. Rm	277.505	105.8965	59.9865	137.3439		
sulfide	s	1.957	0.1438	0.2044	0.0478	Eykman	
1-Hexadecane-	Av. Rm	345.301	141.0102	84.2417	186.7748	- 1	
thiol	s	1.919	0.1890	0.1479	0.0246	Eykman	

Table 8.6. Average molar refractivity for the selected sulfur compounds

Av. Rm: Average molar refractivity.

s: standard deviation.

Table 8.6 shows that Rm with the lowest standard deviation is the one calculated with the correlation by Eykman (Equation 2.XII). Therefore, the correlation by Eykman is the equation that better expresses the empirical data of the selected sulfur compounds.

4.4 Atomic refraction & group contribution

In this section, the molar refractivity calculated with the correlation by Eykman will be estimated by atomic refraction (AR) and group contribution (GC). Table 8.7 shows the AR contribution of carbon (C), hydrogen (H), and double (C=C) bonds. And the GC of C-H, C-C, and C=C bonds. These values were calculated in Chapter IV to VII.

Using dimethyl sulfide data the AR of sulfur (S), and the GC of C-S bond were calculated. In addition, using benzenethiol Rm the GC of S-H was calculated. (See Table 8.7)

 Table 8.7. Atomic refraction and group contribution for the correlation by Eykman

Atomic refraction (cm ³ /mol)				Gro	up con	tributio	on (cm ³ /i	mol)
Carbon	Hydrogen	Sulfur	C=C	C-H	C-C	C=C	C-S	S-H
6.770	1.782	18.070	2.748	3.474	3.386	9.517	10.729	11.68

Table 8.8 shows the estimated Rm of the selected sulfur compounds.

Table 8.8. Rm calculated with the experimental, AR and GC with the

		Molar Refractiv	Delta between average exp.	
Model Compound	Calculated with atomic refraction and group contribution		Average calculated value with exp. data (Rm ± 0.0007)	Rm and Rm calculated with AR or GC (cm ³ /mol)
Dimethyl Sylfide	AR	42.3013	42.3013	0.0000
Dimethyl Sulfide	GC	42.3013	42.3013	0.0000
T-4	AR	59.4050	50 5402	0.8567
Tetrahydrothiophene	GC	59.4076	58.5483	0.8593
T1 1	AR	57.7744	54 9000	2.9736
Thiophene	GC	57.7743	54.8009	2.9735
2,5-	AR	78.4417	76 7424	1.6993
Dimethylthiophene	GC	78.4425	76.7424	1.7001
	AR	77.6265	79 4022	0.8668
Benzenethiol	GC	78.4932	78.4932	0.0000
T1.:1-	AR	87.9601	20.7402	1.7897
Thioanisole	GC	87.9600	89.7498	1.7898
D: 1-(1-101	AR	104.3032	104 (507	0.3565
Di- <i>n</i> -butyl sulfide	GC	104.3058	104.6597	0.3539

correlation by Eykman for the selected model compounds

		Molar Refractiv	Delta between average exp. Rm and Rm calculated with AR or GC (cm ³ /mol)	
Model Compound	el Compound refraction and group contribution			
Diphenyl sulfide	AR	133.6189	137.3439	3.7250
Diplienyl sunde	GC	133.6186	137.3439	3.7253
1-Hexadecanethiol	AR	186.9724	186.7748	0.1976
1-Hexadecanethiol	GC	187.8458	100.7748	1.0709

Table 8.8. Rm calculated with the experimental, AR and GC with the correlation by Eykman for the selected model compounds. Continuation

Table 8.8 shows that Rm estimated with AR and GC are approximately the same as the Rm calculated with the experimental data. The highest difference between the Rm calculated with the Rm estimated is less than 4 cm³/mol. Moreover, the Rm estimated with AR is comparable with the one estimated with GC for most of the selected model compounds. Benzenethiol and 1-hexadecanethiol for which Rm calculated with GC were more precise than the ones calculated with AR.

5. Conclusions

• The first derivative of refractive index with respect to density $(dn/d\rho)$ for linear nonaromatic sulfur compounds increased with the increase of the carbon chain length.

• In a plot of refractive index vs density, the selected linear-non aromatic sulfur compounds overlap with the data of alkanes, alkenes, and alkynes model compounds. In addition, it was observed that tetrahydrothiophene grouped with thiophenes and not with the non-cyclic thioethers.

• The molar refractivity calculated with the correlation by Eykman was the least temperaturedependent for all the selected sulfur compounds.

• Atomic refraction and group contribution gave comparable results for most of the selected sulfur compounds, with the exception of benzenethiol and 1-hexadecanethiol. For the last two, the molar refractivity calculated with group contribution was more accurate.

6. References

Sigma-Aldrich.Co. Benzenethiol Safety Data Sheet www.sigmaaldrich.com (accessed Dec 1, 2019).

(2) RELXGroup. Reaxys database https://www.reaxys.com/#/login (accessed Sep 20, 2019).

CHAPTER IX - FUNDAMENTAL STUDY OF OXYGEN SOLUBILITY IN HYDROCARBONS – TITRATION METHOD (1st METHOD)

Evaluation of an adaptation of the titration method by McKeown et al. (1956)¹, for the determination of dissolved oxygen in hydrocarbons. The materials, procedure, results, and analysis of the experimental data are presented.

Abstract

The objective of the present chapter was to use a modified titration method to experimentally determine oxygen solubility in hydrocarbons by using *n*-heptane as a model hydrocarbon. The principle of this titration method was to convert ferrous to ferric ion and manganese (II) to manganese (III) ions proportional to the amount of oxygen dissolved in the *n*-heptane. The amount of ferric and manganese (III) ions produced were quantified by titration with standardized sodium thiosulfate. The experimental method did not successfully determine the oxygen solubility in *n*-heptane. This method could not replicate the literature results.

Keywords: Oxygen solubility, hydrocarbons, n-heptane, ferric ion, titration.

1. Introduction

As mentioned in Chapter I, oxygen (O₂) solubility in hydrocarbons is important for different oxidation processes such as liquid-phase autoxidation to produce organic chemicals and oxidative degradation of organic effluents by aerobic microorganisms.^{2–5} Winkler titration method is a commonly used method to determine dissolved oxygen in aqueous samples.⁶ But it is challenging to determine dissolved oxygen in hydrocarbons as titrants react with hydrocarbons.

McKeown et al. (1956)¹ proposed a technique (modified Winkler⁶ procedure) for the determination of dissolved oxygen of hydrocarbons. This method consists of mixing a hydrocarbon with an alkaline suspension of ferrous and manganous hydroxides. The ferrous and manganous hydroxide reacts with the dissolved oxygen in the hydrocarbon to form ferric hydroxide. Then neutralization of the system with hydrochloric acid and followed by the separation of the aqueous and organic phases. Then the addition of potassium iodide (KI) to the aqueous phase, and followed by the titration with standardized sodium thiosulfate. The amount of oxygen in the hydrocarbon, proportional to the ferric ion formed can be calculated.

The objective of the present chapter was to use a modified McKeown et al. $(1956)^1$ titration method to experimentally determine oxygen solubility in hydrocarbons. The McKeown titration method was modified by reducing the volume of the chemicals and the size of the required apparatus. *n*-heptane was used as model hydrocarbon to evaluate if the concentration of oxygen dissolved in the hydrocarbon can be experimentally determined accurately and precisely.

2. Experimental

2.1 Materials

The reagents used in the present Chapter are listed in table 9.1.

Reagent	CASRN ^a	Structure	Purity (wt %) ^b	Concentration (N)	Supplier
Ferrous ammonium sulfate	7783-85-9	$(NH_4)_2Fe(SO_4)_2$	-	0.25	Ricca
Hydrochloric acid	7647-01-0	HCl	-	5.0	Ricca
Manganous Sulfate	15244-36-7	MnSO ₄	>99.9	-	Sigma-Aldrich
<i>n</i> -Heptane	142-82-5	$CH_3(CH_2)_5CH_3$	99.8	-	Fisher
Potassium iodide crystals	7681-11-0	KI	>99	-	Fisher
Sodium hydroxide	1310-73-2	NaOH	-	2.5	Sigma-Aldrich
Sodium thiosulfate standardized	7772-98-7	$Na_2O_3S_2$	-	0.1	Alfa Aesar
Starch indicator	9005-84-9	-	-	-	Ricca

Table 9.1. Reagents used in determination of oxygen solubility in hydrocarbons

^a CASRN: Chemical Abstracts Services Registry Number

^b Purity of the material guaranteed by the supplier; the material was not further purified.

2.2 Procedure

The aim of this procedure was to form ferric ion (Fe³⁺) in proportion to the amount of oxygen dissolved in *n*-heptane. The procedure followed was an adaptation of McKeown et al. $(1956)^{1}$. The original set-up used by McKeown et al. (1956) (see in Figure 9.1), consisted in using an ampoule connected to an inert gas line, and a vacuum line. Also, they used a glass funnel to add the solutions to the ampoule. The present research decreased the amount of reagents used by 5 times, decreasing the size of the set-up. In addition, the original set-up was replaced by a three neck flask, connected to two lines, inert gas and vacuum, with the third mouth closed with a septum (see Figure 9.2). The reagents were added to the flask by injecting them through the septum using a glass syringe.

Figure 9.1. Equipment used for the determination of dissolved oxygen by McKeown et al. (1956).¹

It consisted of mixing a manganous-ferrous solution, NaOH and *n*-heptane. After 30 min of stirring, HCl was added to neutralize the NaOH. Afterward, the aqueous and organic phases were separated. Then potassium iodide crystals were added and the solution was left to rest. After, 45 min, the solution was titrated using starch indicator and sodium thiosulfate.

2.3 Methodology

n-Heptane was bubbled with air for three hours to saturate the sample with oxygen. While bubbling, a manganous-ferrous solution was prepared, containing equals parts of 0.2 N manganous sulfate, 0.2 N ferrous ammonium sulfate, and 0.2 N hydrochloric acid. (10.0 ± 0.5) mL of the manganous-ferrous solution, and a stirrer in a 3-neck round bottom flask. After, a mouth of the flask was closed with a septum and the other two with glass valves. One valve was connected to a vacuum line and the other to an inert gas line (see figure 9.2). Then, the solution was purged by making three cycles of vacuum and inert gas.

Figure 9.2. Experimental set-up adapted from McKeown et al.¹

Using a glass syringe the following solutions were injected through the septum: (4.0 ± 0.5) mL of NaOH, and (50.0 ± 0.5) mL of *n*-heptane. After the solution was stirred for 30 min. Then, (5.0 ± 0.5) mL of HCl 5 N was added.

The aqueous and organic phases were separated. One gram of potassium iodide (KI) was added to the aqueous phase. The solution was left to rest for 45 min. Afterward, it was titrated with 0.1 N sodium thiosulfate and starch indicator.

A blank run was done for each experiment. The blank was done following the previous methodology but bubbling the *n*-heptane with nitrogen to displace the oxygen from the sample. The first and second aliquots were done with (50.0 ± 0.5) mL of *n*-heptane while the third round used (250.0 ± 0.5) mL of hydrocarbon, increasing the amount of all the reagents by 5.

All the experiments were conducted at room temperature (20 ± 1) °C.

2.4 Calculations

To calculate the oxygen solubility of hydrocarbons the following equation was used,

$$C_0 = \frac{V_{\text{thiosulfate (sample-blank)} \cdot N_{\text{thiosulfate}} \cdot 5603}}{V_{\text{sample}}}$$
(9.I)¹

Where,

C₀: concentration of oxygen in the hydrocarbon (mL/L) V: volume (mL) N: normality (N)

2.5 Chemical reactions

The following reactions would occur simultaneously between the manganous-ferrous solution and NaOH:

$$Fe(NH_4)_2(SO_4)_2 + 4NaOH \rightarrow Fe(OH)_2 + 2Na_2SO_4 + 2(NH_3 \cdot H_2O)$$
 (9.II)

$$2MnSO_4 + 4NaOH \rightarrow 2Mn(OH)_2 + 2Na_2SO_4 \tag{9.III}$$

$$HCl + NaOH \rightarrow NaCl + H_2O$$
 (9.IV)

After the next reactions, between the reagents and the oxygen dissolved in the hydrocarbon, took place:

$$4Fe(OH)_2 + O_2 + 2H_2O \to 4Fe(OH)_3 \tag{9.V}$$

$$4Mn(OH)_2 + O_2 + 2H_2O \to 4Mn(OH)_3 \tag{9.VI}^6$$

When the KI was added to the aqueous phase the following reactions took place:

$$Fe(OH)_3 + I^- + 3H^+ \to Fe^{+2} + \frac{1}{2}I_2 + 3H_2O$$
 (9.VII)

$$Mn(OH)_3 + I^- + 3H^+ \to Mn^{+2} + \frac{1}{2}I_2 + 3H_2O$$
 (9.VIII)⁶

Finally, the titration reaction was,

$$2S_2 O_3^{2-} + I_2 \to S_4 O_6^{2-} + 2I^- \tag{9.IX}^6$$

Every 4 moles of $S_2 O_3^{2-}$ corresponded to 1 mole of O_2 .

3. Results

Table 9.2 shows the volume of sodium thiosulfate (standardized) used during the titration. For aliquots 1 and 3 the volume of sodium thiosulfate used for the air saturated sample is lower than the blank (nitrogen saturated sample). While aliquot 2 showed the contrary behavior.

Aliquot	Volume of the sample	Volume of sodium thiosulfate standard $(Vt \pm 0.1) \text{ (mL)}$		
number	$(V_s \pm 0.5) (mL)$	Air saturated	Nitrogen saturated	
1	50.0	0.4	0.5	
2	50.0	1.3	1.0	
3	250.0	14.6	18.6	

Table 9.2. Volume of sodium thiosulfate (standardized) addedto the aqueous phase during the titration process

4. Discussion

4.1 Discussion of the results

Contrary to what was expected, table 9.2 shows that for the first and third aliquots the volume of sodium thiosulfate used was higher when titrating the sample saturated with N_2 than the one saturated with air. These results implied that the reaction path showed in Section 2.5 of the present Chapter did not proceeded as expected.

Some undesired reactions that could be occurring are 9.X and 9.XI. If these reactions take place, $Fe(OH)_2$ and $Mn(OH)_2$ are consumed, becoming competitive reactions with reactions 9.V and 9.VI.

$$4Fe(0H)_2 + \frac{1}{2}O_2 \to 2Fe_2O_3 + 4H_2O \tag{9.X}$$

$$4Mn(OH)_2 + \frac{1}{2}O_2 \to 2Mn_2O_3 + 4H_2O$$
(9.XI)

Other possible reactions that could be taking place is the decomposition of manganous and ferrous hydroxides (see reaction 9.XII and 9.XIII).

$$2Fe(OH)_3 \to Fe_2O_3 + 3H_2O \tag{9.XII}$$

$$2Mn(OH)_3 \to Mn_2O_3 + 3H_2O \tag{9.XIII}$$

Any of these 4 reactions would decrease the amount of $Fe(OH)_3$ and $Mn(OH)_3$ available for reactions 9.VII and 9.VIII. Therefore, the amount of ferric ion (Fe³⁺) would not be proportional to the amount of oxygen dissolved in *n*-heptane.

4.2 Effect of the volume of the sample

Table 9.2 also shows that the volume of the third sample was 5 times bigger than the others. The increase in the volume was done to verify if the quantity of the reagents affected the method, which it should not. However, as tables 9.2 and 9.3 show the results were not better regardless of the volume.

Aliquot number	Concentration of oxygen (Co ± 0.01) (mL/L) ^a	Average concentration of oxygen (Co ± 0.01) (mL/L) ^a	Standard deviation of concentration (mL/L)	Concentration of oxygen reported in the literature ¹ (mL/L) ^b
1	-1.12	1.12	3.2	
2	3.36	1.12	5.2	61.8 ^b
3	-8.96	-	-	
^a : at (20.5	± 0.1) °C			

Table 9.3. Concentration of oxygen in *n*-heptane

^b: at 24 °C

The negative concentration of oxygen in *n*-heptane shown in table 9.3 is because the blank of those samples appeared to have more oxygen than the samples bubbled with air (see table 9.2). In addition, it can be seen that not even the concentration of oxygen in *n*-heptane for the second aliquot is close to the literature¹ data.

4.3 Assumption made while adapting the methodology

A possible reason why this adaptation of the methodology of McKeown et al. ¹ was not able to reproduce the results obtained by the literature¹ might be that the manganous-ferrous

solution was prepared with equal parts of 0.2 N ferrous ammonium sulfate, 0.2 N manganous sulfate, and 0.2 N hydrochloric acid, while the literature does not specify the proportion that these reagents should be mixed.

5. Conclusions

• A modified titration method of McKeown et al. $(1956)^1$ was applied to experimentally determine oxygen solubility in hydrocarbon (*n*-heptane).

• The oxygen concentrations in *n*-heptane was not successfully determined with the modified titration method of McKeown et al. $(1956)^1$

6. References

- Mckeown, A. B.; Hibbard, R. R. Determination of Dissolved Oxygen in Hydrocarbons. *Anal. Chem.* 1956, 28 (9), 1490–1492. https://doi.org/10.1021/ac60117a044.
- (2) Chen, K. C.; Wu, J. Y.; Liou, D. J.; Hwang, S. C. J. Decolorization of the Textile Dyes by Newly Isolated Bacterial Strains. J. Biotechnol. 2003, 101 (1), 57–68. https://doi.org/10.1016/S0168-1656(02)00303-6.
- (3) Nigam, P.; Banat, I. M.; Singh, D.; Marchant, R. Microbial Process for the Decolorization of Textile Effluent Containing Azo, Diazo and Reactive Dyes. *Process Biochem.* 1996, *31* (5), 435–442. https://doi.org/10.1016/0032-9592(95)00085-2.
- (4) Siddiquee, M. N.; De Klerk, A.; Nazemifard, N. Application of Microfluidics to Control Product Selectivity during Non-Catalytic Oxidation of Naphthenic-Aromatic Hydrocarbons. *React. Chem. Eng.* 2016, 1 (4), 418–435. https://doi.org/10.1039/c6re00010j.
- (5) Siddiquee, M. N.; De Klerk, A. In Situ Measurement of Liquid Phase Oxygen during Oxidation. Ind. Eng. Chem. Res. 2016, 55 (23), 6607–6618. https://doi.org/10.1021/acs.iecr.6b00949.
- (6) Jeffery, G. H.; Bassett, J.; Mendham, J.; Denney, R. C. Vogel's. Textbook of Quantitative Chemical Analysis, 5th ed.; Longman Scientific & Technical: New York, 1989.

CHAPTER X - FUNDAMENTAL STUDY OF OXYGEN SOLUBILITY IN HYDROCARBONS – EQUILIBRIUM LIQUID-VAPOUR (2nd METHOD)

In this chapter, a second method to determine oxygen solubility in hydrocarbons was developed and it is used to calculate the Henry's constant is studied. The methodology, calculations, results, and analysis of the experimental data are presented.

Abstract

Most of the methods available in the literature to determine oxygen solubility and Henry's constant are for aqueous systems. The aim of the present study is to develop and test a methodology to measure oxygen solubility and calculate Henry's constant that is suitable for hydrocarbons, using *n*-dodecane as a model compound. The method being evaluated consisted of monitoring the change in oxygen pressure in the gas-liquid system and using it to calculate the desired values. The experimentally determined dissolved oxygen concentration in *n*-dodecane at (20.5 ± 0.1) °C and (19.59 ± 0.01) psi_a ((135.07 ± 0.07) kPa absolute) was (13 ± 2) (mol/m³), and corresponding Henry's constant was (0.09 ± 0.01) (mol/m³·kPa). The relatively low standard deviation and good agreement of the results with the literature validated the experimental method.

Keywords: Oxygen solubility, hydrocarbons, n-dodecane, Henry's constant.

1. Introduction

As mentioned in Chapter I, oxygen (O_2) solubility in hydrocarbons is important for different oxidation processes such as liquid-phase oxidation to produce petrochemicals and oxidative degradation of organic effluents by aerobic microorganisms.^{1–4} Most of the methods used to calculate the solubility of O_2 in a liquid require Henry's constant of that specific system.⁵ Methods to experimentally determine both, oxygen solubility and Henry's constant, involved an aqueous liquid phase.

Finding an experimental approach that allows the determination of oxygen solubility in hydrocarbons and its Henry's constant was the main objective of this chapter. The approach used consisted in measured the concentration of oxygen dissolved in hydrocarbons once the system had reached the liquid-vapor equilibrium and then calculate the Henry's constant.

The hydrocarbon used to developed and verify the method was *n*-dodecane. The *n*-dodecane was put in contact with the oxygen and the pressure of the system was monitored. The change in the pressure was later on analyzed to finally calculate the concentration of O_2 dissolved in the *n*-dodecane, and its corresponding Henry's constant

2. Experimental

2.1 Materials

Table 10.1 presents the specifications of the reagents used in the present study. Reagents were used without further purification.

	CASRN ^a	Purity				
Reagent		Structure	Supplier ^b		FID ^c	Supplier
			(wt %)	(vol %)	(wt %)	
<i>n</i> -Dodecane	287-92-8	$CH_3(CH_2)_{10}CH_3$	99	-	99.9	Sigma-Aldrich
Oxygen	7782-44-7	O ₂	-	99.993	-	PRAXAIR

Table 10.1. Reagents used in the present chapter.

^a CASRN: Chemical Abstracts Services Registry Number

^b Purity of the material guaranteed by the supplier; the material was not further purified.

° Purity calculated based on peak area obtained by GC-FID analysis

Table 10.1 shows the high purity of the oxygen used, this ensured that the experiments were conducted in an oxygen atmosphere.

2.2 Equipment

The equipment used is listed in table 10.2.

Equipment	Description		
	Brand: Alpha Omega Instruments		
Oxygen and carbon dioxide gas analyzer	Model: Series 9600		
Versuine evene	Brand: Heidolph Instuments		
Vacuum pump	Model: ROTAVAC vario Pumping unit		
	Brand: Swagelok		
	Model: PTI-S-NG10-12AO		
Pressure Transducer (PT)	Readability: (± 0.001) psi		
	(± 0.006) kPa		

Table 10.2. Instruments used in the oxygen solubility determination

The vacuum pump was used to remove the air from the system, and the oxygen analyzer to monitor the level of oxygen in the experiment atmosphere by measuring the oxygen percentage of the exit gas stream. The pressure transducer was used to monitor the experimental pressure.
2.3 Procedure

The experimental procedure consisted of putting the hydrocarbon (*n*-dodecane) in contact with the oxygen (O_2) inside the reactor at approximately and pressurize it with O_2 . The O_2 would dissolve in the *n*-dodecane causing the pressure in the reactor to drop. The change in pressure can be used to quantify the moles of O_2 that dissolved in the hydrocarbon, allowing the calculation of O_2 solubility and Henry's constant. Figure 10.1 shows an image of the set-up used.

Figure 10.1. Experimental set-up.

It was considered that the hydrocarbon was saturated with O_2 when the system reached liquid-vapor equilibrium. It was assumed that when the reactor pressure variated less or equal than 0.075 psi_g (0.5 kPa) in 30 min the system had reached equilibrium.

To accurately measure the reactor pressure, PT-101 and PI-103 were used (see figure 10.2). The reactor was pressurized at approximately 8 psi_g (55 kPa gauge) because the PT could only work at pressures equal or lower to (10.000 ± 0.001) psi_g ((68.948 ± 0.007) kPa gauge). It is important to mention that the valves used to regulate the entrance of the oxygen to the reactor are hand valves, therefore pressurizing at exactly (8.000 ± 0.001) psi_g ((55.158 ± 0.007) kPa gauge) was not possible, but the exact pressure was recorded.

Figure 10.2. P&ID of the experimental set-up used to indirectly measure oxygen solubility.

2.4 Methodology

To understand the present methodology refer to figure 10.2, where the P&ID of the experimental set-up is shown. All the experiments were conducted at room conditions, these conditions were recorded for each experiment.

The reactor was removed from the set-up and purged with the model compound three times and dried with air. The reactor used for our work was a flow reactor with one side plugged, but in principle, any vessel capable of containing the pressure without leaking can be used.

After, the reactor was filled with (50.00 ± 0.05) mL of *n*-dodecane using a glass syringe. Once filled, the reactor was reconnected to the set-up, and the atmosphere of the system was purged. To accomplish this all the valves were opened with the exception of HV-101 and HV-107. Then, the vacuum pump was turned on for approximately 13 min, during which the system was at approximately $(-7.0\pm0.5) \text{ psig}((-48.3\pm3.5) \text{ kPa gauge})$, this was done to remove the air from the system. Afterward, HV-108 was closed, and then the pump was switched off. Continuing with the purge process, oxygen was supplied to the system by opening HV-101; HV-107 was also opened to allow the gases to exit the system. The flow of oxygen continued at approximately 4 L/min until the oxygen analyzer indicated that the oxygen percentage was 100 %, or after 5 h, and then the oxygen percentage was registered.

To end the purge process, HV-104, HV-105, HV-106, and HV-107 were closed. Then the pressure pump was pressurized at approximately 10 psig (69 kPa gauge) when the desired pressure was reached HV-101 was closed. After the pressure of the reactor was recorded. Subsequently, the reactor was pressurized. For this, HV-105 and HV-104 were opened, and the reactor was pressurized to approximately 8 psig (55 kPa gauge), then HV-104 was closed and after registering the pressure in the reactor, HV-105 was also closed.

Afterward, the pressure in the reactor was recorded every 30 min by opening HV-105 and closing it after the measurement. The experiment was considered over when the pressure in the reactor changed (0.075 ± 0.001) psi_g $((0.517 \pm 0.007)$ kPa) or less in 30 min.

This methodology was repeated twice, using two more aliquots of *n*-dodecane.

2.4.1 Leak check

To check for leaks, the whole system, with the reactor empty and dry, was pressurized at $(8.065 \pm 0.001) \text{ psi}_{\text{g}}$ ((55.606 ± 0.007) kPa), keeping HV-101, HV-105, HV-106, HV-107, and HV-108 and left for 48 h. After the time was past HV-105 was opened and the final pressured was (7.855 ± 0.001) psi_{\text{g}} ((54.158 ± 0.007) kPa).

The system lost a total of (0.210 ± 0.001) psi_g ((1.448± 0.007) kPa) in 48 h, showing that the leak is negligible since the experiments took a maximum of 4 h.

HV-105 was kept closed during the experiment due to a leak found in the connection between the tubing and PT-101, even though the leak was fixed, due to time constraints it was not possible to repeat the leak test, therefore it was preferred to keep HV-105 closed.

2.5 Calculations

To calculate the oxygen solubility of hydrocarbons and Henry's constant of the same system, the following equations were used;

2.5.1 Oxygen solubility equations

To calculate the oxygen solubility, the absolute pressure of the system is required. To calculate this pressure the following equation was used:

$$P_{abs} = P_g \cdot \frac{0\%}{100} + (P_{atm})$$
(10.1)⁶

Where,

Po,abs: oxygen absolute pressure (psia) Po,g: oxygen relative pressure (psig) Patm: atmospheric (psi) O%: percentage of oxygen

Knowing the absolute pressure of the system, the moles of oxygen in the gas phase was calculated using equation 10.II,

$$n_{02,gas} = \frac{P_{0,abs} \cdot V}{R \cdot T}$$
(10.II)⁶

Where,

V: volume (L) no2: moles of oxygen (mol) R ideal gas constant (1.206 L·psi/mol·K) T: temperature (K)

After the final moles of oxygen in the liquid phase were calculated as the moles of oxygen loss from the gas phase plus the initial moles of oxygen in the liquid (the ratio of $\frac{P_{i,react}}{P_{f,system}}$ was used to account for these moles) using the following equation,

$$n_{f,O2,liq} = \left(1 - \frac{P_{O,i,react}}{P_{O,f,system}}\right) \cdot \left(n_{i,O2,gas} - n_{f,O2,gas}\right)$$
(10.III)⁶

Where, f: final i: initial react: reactor

Knowing the final moles of oxygen in the liquid, the initial moles were calculated with equation 10.IV.

$$n_{i,O2,liq} = \frac{n_{f,O2,liq} \cdot P_{O,i,react}}{P_{O,f,system}}$$
(10.IV)⁶

Then, the total moles of oxygen in the liquid:

$$n_{T,02,liq} = n_{i,02,liq} + n_{f,02,liq}$$
 (10.V)

Where,

T: total

Finally, the solubility of oxygen in hydrocarbons was calculated with the following equation,

$$C_{0,liq} = \frac{n_{\rm T,02,liq}}{0.001 \cdot V_{\rm liq}}$$
(10.VI)

Where,

C: concentration (mol/m³)

2.5.2 Henry's constant

Henry's constant for oxygen dissolved in hydrocarbons was determined by using equation 10.VII.

$$H = C_{o,liq} / (6.89476 \cdot P_{0,f,system})$$
(10.VII)⁶

Where,

H: Henry's constant (mol/m³·kPa)

3. Results

In this section, the collected data is reported. Table 10.3 shows the room conditions at the time of the experiments. Room temperature and pressure are important values since the experiment was conducted at room temperature, and it is pressure-dependent due to the oxygen.

	Aliquot number		
	1	2	3
Temperature $(T \pm 0.1)$ (°C)	20.9	20.2	20.5
Pressure $(P_{abs} \pm 2)$ (mbar)	931	923	926
Humidity $(H \pm 2)$ (%)	21	18	19

Table 10.3. Room conditions

The pressure reported in table 10.3 was used to calculate the absolute pressure inside the reactor with equation 10.I. And the temperature was used to calculate the moles of oxygen in the gas using equation 10.II.

Table 10.4 shows the measured pressured at different intervals of times for each aliquot. It is important to notice that all the pressures were recorded with HV-101, HV-104, HV-106, HV-107, and HV-108 closed. In addition, HV-105 was opened immediately before taking the measurements and closed immediately after.

Aliquot number	Oxygen (%O±0.1) (%)	Time (min)	PI-101 ^a (P ₁ ± 0.5) (psi _g) ((P ₁ ±3) (kPa _g))	PI-102 (P2± 0.5) (psig) ((P2±3) (kPag))	PI-103 (P ₃ ± 0.001) (psi _g) ((P ₃ ±0.007) (kPa _g))	Mol of O ₂ in gas phase in the reactor (M±0.0005) mol
		0	8.2	9.2	0.264	0.0283
		0	(57)	(63)	(1.820)	0.0285
		1	6.5	7.5	6.535	0.0412
		1	(45)	(52)	(45.057)	0.0412
		20	6.5	7.5	6.444	0.0410
		30	(45)	(52)	(44.430)	0.0410
1	100.0	(0	6.4	7.4	6.316	0.0409
1	100.0	60	(44)	(51)	(43.547)	0.0408
		00	6.4	7.4	6.145	0.0404
		90	(44)	(51)	(42.368)	0.0404
		180	6.4	7.4	6.120	0.0404
			(44)	(51)	(42.196)	0.0404
		210	6.4	7.4	6.092	0.0402
		210	(44)	(51)	(42.003)	0.0403

Table 10.4. Experimental data collected for each of the aliquots

^a: PI-101 had an error of + 1 psi.

Aliquot number	Oxygen (%O±0.1) (%)	Time (min)	PI-101 ^a (P ₁ ± 0.5) (psig) ((P ₁ ±3) (kPag))	PI-102 (P ₂ ± 0.5) (psig) ((P ₂ ±3) (kPa _g))	PI-103 (P ₃ ± 0.001) (psig) ((P ₃ ±0.007) (kPag))	Mol of O ₂ in gas phase in the reactor (M±0.0005) mol	
		0	10.6	9.6	0.063	0.0277	
		U	(73)	(66)	(0.434)	0.0277	
		1	8.5	7.5	7.644	0.0430	
			(59) 8.6	(52) 7.6	(52.704) 7.545		
		30	(59)	(52)	(52.021)	0.0428	
_			8.6	7.6	7.402		
2	97.4	60	(59)	(52)	(52.035)	0.0425	
		90	8.6	7.6	7.201	0.0421	
		90	(59)	(52)	(49.649)	0.0421	
		180	8.6	7.6	7.157	0.0420	
		100	(59)	(52)	(49.346)	0.0420	
		210	8.6	7.6	7.122	0.0419	
			(59) 11.2	(52) 10.2	(49.104) 0.100		
		0	(77)	(70)	(0.689)	0.0278	
		1	8.9	7.9	8.001	0.0432	
		1	(61)	(54)	(55.165)	0.0432	
		30	8.9	7.9	7.911	0.0432	
		30	(61)	(54)	(54.544)	0.0152	
		60	8.9	7.9	7.746	0.0430	
3	94.3	00	(61)	(54)	(53.407)	0.0430	
5	J - .J	90	8.9	7.9	7.619	0.0427	
	90	90	(61)	(54)	(52.531)	0.0427	
		180	8.9	7.9	7.565	0.0424	
	180	(61)	(54)	(52.159)	0.0121		
	210	8.9	7.9	7.403	0.0420		
2	210	(61)	(54)	(51.042)	0.0420		
		240	8.9	7.9	7.376	0.0420	
		2-TU	(61)	(54)	(50.856)	0.0420	

Table 10.4. Experimental data collected for each of the aliquots. Continuation

^a: PI-101 had an error of + 1 psi.

Table 10.4 shows that the pressure changed only in the reactor section (measured by PI-103), where oxygen was expected to dissolve in the n-dodecane. PI-101 and PI-102 showed the pressure on the vessel, these pressures were not used in any calculation. This table also shows the moles of oxygen in the gas phase in the reactor.

4. Discussion

4.1 Assumptions

As table 10.4 shows, when the pressure in the reactor varies less or equal to (0.075 ± 0.001) psi_g ((0.517 ± 0.007) kPa) in 30 min, the experiment was stopped. In the last 30 min of the experiments, the delta moles of O₂ in the phase inside the reactor was equal to (0.0001 ±0.0005) mol. This can be interpreted as the system reached equilibrium liquid-vapor, proving that the experiment reaches equilibrium when the delta pressure is (0.075 ± 0.001) psi_g ((0.517 ± 0.007) kPa) or less in 30 min.

It was also assumed that the temperature of the hydrocarbon was equal to the room temperature. It was not possible to verify if this assumption was corrected with the current methodology. However, adding a thermocouple in the reactor to measure the liquid temperature can be done in the future. It was not possible to do this modification in the present research due to time constraints.

4.2 Precision

The precision of an experimental value can be estimated by calculating the uncertainty of the value. The uncertainty can be calculated trough error propagation, which considers the error of the instruments used for the direct measurement.^{7,8} Accounting only for systematics errors, and under the assumption that all of those errors were presented during the experiment at their maximum value, in other words, it gives the maximum uncertainty that could be generated due to systematic errors.^{7,8} The present research calculated error propagation using partial derivate (see equation 10.VIII). The resulting error is shown in the column headings.

$$\Delta f = \frac{\delta f}{\delta x} \Delta x + \frac{\delta f}{\delta y} \Delta y + \dots + \frac{\delta f}{\delta z} \Delta z$$
(10.VIII)

Where,

f: dependant variable

x, y, z: independent variables

 $[\]Delta$: error associate to a variable

The uncertainty can also be calculated with the standard deviation. Standard deviation, contrary to the error propagation, accounts for the variability of the value being measured or calculated.^{7,8} Therefore it considers systematic and random errors that could have occurred during the experimental phase.^{7,8} The standard deviation of the final results have been calculated in a column next to their corresponding value.

$$s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}}$$
(10.IX)⁹

Where,

s: sample standard deviation N: number of observations x_i : value of i \overline{x} : mean

Another difference between calculating the uncertainty through error propagation or standard deviation is that error propagation can be used even before starting the experiments, once the instruments have been selected.⁸ In contrast, the standard deviation requires at least two data points to be calculated.⁸

The concentration of oxygen in n-dodecane was calculated using equations from 10.I to 10.VI, and Henry's constant was calculated using equation 10.VII. The results with their respective uncertainties are shown in table 10.5.

Table 10.5. Experimentally determined solubility and Henry's constant of

\sim	1	1 1	•	1 1
()_	diago	Trad	110	n dodoono
()	01550			<i>n</i> -dodecane
~ 2				

Aliquot number	Concentration (C ± 15) (mol/m ³)	Average Concentration $(C \pm 15)$ (mol/m^3)	Standard deviation of the concentration (mol/m ³)	Henry's constant. (H ± 0. 1) (mol/m ³ ·kPa)	Average Henry's constant (H ± 0. 1) (mol/m ³ ·kPa)	Standard deviation of the average Henry's constant (mol/m ³ ·kPa)
1	10			0.0740		
2	14	13	2	0.0999	0.09	0.01
3	14			0.0997		

Table 10.5 shows that the average concentration can be expressed as $(13 \pm 15) \text{ (mol/m}^3)$, which uncertainty, calculated through error propagation, is bigger than the value, implying that the result is not precise due to the relatively high uncertainty. However, table 10.5 also shows that the concentration could be expressed as $(13 \pm 2) \text{ (mol/m}^3)$, where the uncertainty was calculated with the standard deviation.

The same analysis applies for the Henry's constant, which can be expressed as (0.1 ± 0.1) (mol/m³·kPa), error propagation, or (0.09 ± 0.01) (mol/m³·kPa), with standard deviation. Being the uncertainty calculated with the standard deviation the preferred one.

Because it is possible, in this study the uncertainty has been calculated and reported by the two methods, error propagation, and standard deviation. However, since standard deviation accounts for the variability of the value, it is considered more significant than the error propagation method.⁸

4.3 Accuracy

Once the precision of the data was studied, the accuracy of the data must be analyzed. To accomplish this, the results must be compared to literature¹⁰ data. Table 10.6 shows oxygen concentration and Henry's constant calculated from the mol fraction of oxygen dissolved in *n*-dodecane reported in the literature¹⁰. It is important to mention that the mol fraction shown in table 10.6 comes from theoretical calculations and not from empirical data. In addition, the mol fraction was extrapolated from a two points linear equation (See figure 10.3).

Table 10.6. Solubility and Henry's constant of O2 dissolved in *n*-dodecane at 20 °C

calculated	with	literature ¹⁰	' data
------------	------	--------------------------	--------

Mol fraction ¹⁰ (Adim)	Concentration (mol/m ³)	Henry's constant (mol/m ³ ·kPa)
0.002	8.8	0.087

Figure 10.3. Mol fraction of oxygen in *n*-dodecane vs. temperature.¹⁰

The difference between the concentration calculated from the experimental data, (13 ± 2) (mol/m³), and the calculated from literature¹⁰ is $\Delta C = 4.2 \text{ mol/m}^3$. While the difference between Henry's constant calculated from the experimental data (0.09 ± 0.01) (mol/m³·kPa) and the literature¹⁰ is $\Delta H = 0.003 \text{ mol/m}^3$ ·kPa. Both of the deltas were close to the uncertainty of the experimental data, showing good agreement with the literature¹⁰.

Since the experimental calculated data prove to be precise and accurate, it validates the experimental method used.

5. Conclusions

A new method to experimentally measure the dissolved oxygen in liquid hydrocarbon (*n*-dodecane) was developed. The key findings are:

• The standard deviation showed that the experimentally calculated oxygen solubility in *n*-dodecane and Henry's constant are precise.

• The experimentally calculated oxygen solubility in *n*-dodecane and Henry's constant are in good agreement with the literature¹⁰.

• The experimental method proved to be precise and accurate to determine oxygen solubility in *n*-dodecane and Henry's constant.

6. References

- Chen, K. C.; Wu, J. Y.; Liou, D. J.; Hwang, S. C. J. Decolorization of the Textile Dyes by Newly Isolated Bacterial Strains. J. Biotechnol. 2003, 101 (1), 57–68. https://doi.org/10.1016/S0168-1656(02)00303-6.
- Nigam, P.; Banat, I. M.; Singh, D.; Marchant, R. Microbial Process for the Decolorization of Textile Effluent Containing Azo, Diazo and Reactive Dyes. *Process Biochem.* 1996, *31* (5), 435–442. https://doi.org/10.1016/0032-9592(95)00085-2.
- Siddiquee, M. N.; De Klerk, A.; Nazemifard, N. Application of Microfluidics to Control (3) Non-Catalytic Oxidation Product Selectivity during of Naphthenic-Aromatic Hydrocarbons. React. Chem. 2016, 1 (4), 418-435. Eng. https://doi.org/10.1039/c6re00010j.
- (4) Siddiquee, M. N.; De Klerk, A. In Situ Measurement of Liquid Phase Oxygen during Oxidation. *Ind. Eng. Chem. Res.* 2016, 55 (23), 6607–6618. https://doi.org/10.1021/acs.iecr.6b00949.
- Ramesh, H.; Mayr, T.; Hobisch, M.; Borisov, S.; Klimant, I.; Woodley, J. M. Measurement of Oxygen Transfer from Air into Organic Solvents. *J Chem Technol Biotechnol* 2016, *91*, 832–836. https://doi.org/10.1002/jctb.4862.
- (6) Cengel, Y. A.; Boles, M. A. *Termodinámica*, 7th ed.; Mc Graw Hill: Mexico D.F, 2012.
- (7) Currell, G. *Scientific Data Analysis*; Oxford University Press: Oxford, 2015.
- (8) Francis, P. Standard Uncertainty, Standard Error and Standard Deviation; Australia, 2018.
- (9) Triola, M. F. *Elementary Statistics, Technology Update*, 11th Ed.; Pearson, Ed.; 2012.
- (10) Battino, R. Solubility Data Series: Oxygen an Ozone. Pergamon Press 1981, 7, 233.

CHAPTER XI – CONCLUSION TO A FUNDAMENTAL STUDY OF MOLAR REFRACTIVITY AND OXYGEN SOLUBILITY

This chapter concludes the research topics. The major conclusions and proposed future research are presented.

1. Introduction

Sometimes, to go forward we need to look at the beginning. This statement describes the work done in the present research, where some unsolved fundamental issues about refractive index and oxygen solubility in hydrocarbons were revisited and evaluated.

The molar refractivity study evaluated different equations that correlate molar refractivity, refractive index, molar mass, and density. These correlations are available in the literature,¹ however, it is not clear which equation better express the empirical data. To find the best correlation high precision and accurate refractive index and density data were collected for different model compounds. The data were used to test the correlations and to recommend the most appropriate correlation for relating refractive index, molar mass, and density to the molar refractivity, something that was not available in the literature.

On the other hand, the oxygen solubility study developed and tested a method to measure the concentration of oxygen dissolved in hydrocarbons. The dissolved oxygen concentration was used to calculate the Henry's constant. Two experimental methods were evaluated. The first was a modification of the titration method by McKeown et al. (1956),² and the second method was based on measuring the pressure change resulting from oxygen dissolved in the hydrocarbon.

The main conclusions of this study are presented in the following section. For ease of reference, the conclusions were separated based on topic.

2. Conclusions

2.1 Refractive index and molar refractivity

• The method to collect refractive index and density was validated by comparing the collected data to literature^{3–5} data. The collected data proved to be accurate and precise. The study contributed new measurements of the temperature dependent refractive index and density of a range of pure compounds.

• The average first derivative (slope) of the refractive index with respect to density of alkanes (0.598 ± 0.003) , alkenes, (0.604 ± 0.002) , and alkynes (0.587 ± 0.005) were roughly the same as the 'rule of thumb' value reported in literature¹ (0.6) for hydrocarbons. For other compound classes, there were larger differences.

• The molar refractivity calculated with the correlation by Eykman was the least temperature-dependent relationship between the molar refractivity and refractive index, molar mass, and density. Only two exceptions were noted, namely, propionic acid and butyric acid. For these acids, the correlation by Gladstone & Dale was slightly better than the Eykman correlation.

• The orientation polarization $(8.5 \times 10^{-23} \text{ cm}^3/\text{mol})$ of propionic acid was negligible when compared to its molar refractivity (38.5509± 0.0007 cm³/mol). The origin of the somewhat poorer performance of the Eykman correlation for propionic acid and butyric acid was left unresolved.

• The molar refractivity estimated with atomic refraction (AR) and group contribution (GC) were comparable. Both methods resulted in reasonable predictions of the molar refractivity based on structure.

2.2 Oxygen solubility in hydrocarbons

2.2.1 First method

• A modification of the titration method by McKeown et al. $(1956)^2$ was applied to experimentally determine the dissolved oxygen in *n*-heptane. However, the oxygen concentration was not successfully determined. This approach was abandoned.

2.2.2 Second method

• An experimental method to determine the dissolved oxygen in hydrocarbons based on the change in pressure resulting from oxygen dissolution was developed. The calculated oxygen solubility in *n*-dodecane and Henry's constant obtained by this method were in good agreement with the literature. It indicated that the experimental method was accurate. In addition, the low standard deviation of the experimentally calculated oxygen solubility in *n*-dodecane and Henry's constant, indicated that the method had good repeatability.

3. Future work recommendations

3.1 Refractive index and molar refractivity

The study employed only pure components as model compounds. Working with mixtures will deepen the knowledge of the topic. Binary mixtures would be the next step to enable the correlation of refractive index to the chemical composition in the future, as well as derivation of appropriate mixing rules for refractive index.

In addition, it could be verified if the difference between the first derivative of refractive index with respect to density of carboxylic acids and hydrocarbons could be used to detect online changes on bitumen acid content.

3.2 Oxygen solubility in hydrocarbons

The main limitation in this section of the study is that it was done at room temperature even though oxygen solubility and Henry's constant are temperature-dependent. In further work, a thermocouple and temperature control could be added to the system to enable the measurement of the oxygen solubility at different temperatures.

Secondly, only one model compound was used, further experiments could be conducted using different hydrocarbons.

4. References

- Kurtz, S. S. Physical Properties and Hydrocarbon Structure. In *The chemistry of petroleum hydrocarbons. Vol 1*; Reinhold Publishing Corporation: New York, 1954; pp 275–331.
- Mckeown, A. B.; Hibbard, R. R. Determination of Dissolved Oxygen in Hydrocarbons. *Anal. Chem.* 1956, 28 (9), 1490–1492. https://doi.org/10.1021/ac60117a044.
- (3) RELXGroup. Reaxys database https://www.reaxys.com/#/login (accessed Sep 20, 2019).
- (4) Devi, R.; Gahlyan, S.; Rani, M.; Maken, S. Thermodynamic and Acoustic Properties of Binary Mixtures of Diisopropyl Ether, Benzene and Alkanes at 298.15, 308.15 and 318.15 K: Prigogine-Flory-Patterson Theory and Graph Theory. J. Mol. Liq. 2019, 275, 364–377. https://doi.org/10.1016/j.molliq.2018.11.045.
- (5) Kashyap, P.; Rani, M.; Gahlyan, S.; Tiwari, D. P.; Maken, S. Volumetric, Acoustic and Optical Properties of Binary Mixtures of 2-Propanol with n-Alkanes (C6-C10) from 293.15 K to 303.15 K. J. Mol. Liq. 2018, 268, 303–314. https://doi.org/10.1016/j.molliq.2018.07.043.

BIBLIOGRAPHY

This is a consolidated bibliography listing all of the cited references in the thesis.

• Alberty, R. A.; Daniels, F. Physical Chemistry, 3ed ed.; Wiley: New York, 1966.

• Angle, C. W.; Long, Y.; Hamza, H.; Lue, L. Precipitation of Asphaltenes from Solvent-Diluted Heavy Oil and Thermodynamic Properties of Solvent-Diluted Heavy Oil Solutions. *Fuel* **2006**, *85* (4), 492–506. https://doi.org/10.1016/j.fuel.2005.08.009.

• AntonPaar. Service Manual Abbemat 3200 Abbemat 3100 Abbemat 3000; 2017.

• AntonPaar. *Service Manual: DMATM 4100/4500/5000 M SCU, DSATM 5000 / SDATM M SCU*; 2018.

• Arnon, S. *Visible Light Communication*; Cambridge University Press, 2015. https://doi.org/10.1017/CBO9781107447981.001.

- Atkins, P. W. Physical Chemistry, 3rd ed.; Oxford University Press: Oxford, 1986.
- Battino, R. Solubility Data Series: Oxygen an Ozone. Pergamon Press 1981, 7, 233.

• Bayat, M.; Sattarin, M.; Teymouri, M. Prediction of Asphaltene Self-Precipitation in Dead Crude Oil. *Energy and Fuels* **2008**, *22* (1), 583–586. https://doi.org/10.1021/ef700536z.

• Buckley, J. S.; Hirasaki, G. J.; Liu, Y.; Von Drasek, S.; Wang, J. X.; Gill, B. S. Asphaltene Precipitation and Solvent Properties of Crude Oils. *Pet. Sci. Technol.* **1998**, *16* (3–4), 251–285. https://doi.org/10.1080/10916469808949783.

- Bueche, F. J.; Hecht, E. General Physics, 10th ed.; Mc Graw Hill, 1997.
- Carroll, J. J. Henry's Law Revisited. Chem. Eng. Prog. 1999, 1, 49-56.
- Carroll, J. J. What Is Henry's Law? Chem. Eng. Prog. 1991, 9, 48-52.

• Castillo, J.; Gutierrez, H.; Ranaudo, M.; Villarroel, O. Measurement of the Refractive Index of Crude Oil and Asphaltene Solutions: Onset Flocculation Determination. *Energy and Fuels* **2010**, *24* (1), 492–495. https://doi.org/10.1021/ef900861d.

• Cengel, Y. A.; Boles, M. A. Termodinámica, 7th ed.; Mc Graw Hill: Mexico D.F, 2012.

• Chen, K. C.; Wu, J. Y.; Liou, D. J.; Hwang, S. C. J. Decolorization of the Textile Dyes by Newly Isolated Bacterial Strains. *J. Biotechnol.* **2003**, *101* (1), 57–68. https://doi.org/10.1016/S0168-1656(02)00303-6. • Collins English Dictionary. Definition of "fundamental research"

https://www.collinsdictionary.com/dictionary/english/fundamental-research (accessed Nov 12, 2019).

• Costa Gomes, M. F.; Grolier, J.-P. Determination of Henry's Law Constants for Aqueous Solutions of Tetradeuteriomethane between 285 and 325 K and Calculation of the H/D Isotope Effect. *Phys. Chem. Chem. Phys.* **2001**, *3*, 1047–1052. https://doi.org/10.1039/b008755f.

• Currell, G. Scientific Data Analysis; Oxford University Press: Oxford, 2015.

• Devi, R.; Gahlyan, S.; Rani, M.; Maken, S. Thermodynamic and Acoustic Properties of Binary Mixtures of Diisopropyl Ether, Benzene and Alkanes at 298.15, 308.15 and 318.15 K: Prigogine-Flory-Patterson Theory and Graph Theory. *J. Mol. Liq.* **2019**, *275*, 364–377. https://doi.org/10.1016/j.molliq.2018.11.045.

• Dias, A. M. A.; Bonifácio, R. P.; Marrucho, I. M.; Pádua, A. A. H.; Costa Gomes, M. F. Solubility of Oxygen in N-Hexane and in n-Perfluorohexane. Experimental Determination and Prediction by Molecular Simulation. *Phys. Chem. Chem. Phys.* **2003**, *5* (3), 543–549. https://doi.org/10.1039/b207512c.

• Eghbali, M. H.; Nazar, A. R. S.; Tavakoli, T. A Simple Method for Oil Content Determination of Petroleum Waxes by Refractive Index Measurement. *Pet. Sci. Technol.* **2014**, *32* (7), 856–861. https://doi.org/10.1080/10916466.2011.601504.

• European Commission. Community Framework for State Aid for Research and Development and Innovation. *Off. J. Eur. Union* **2007**, *92* (5), 1286–1298.

• Fischer, K.; Noll, O.; Gmehling, J. Experimental Determination of the Oxygen Solubility in Benzene. *J. Chem. Eng. Data* **2001**, *46* (6), 1504–1505. https://doi.org/10.1021/je010163i.

• Francis, P. Standard Uncertainty, Standard Error and Standard Deviation; Australia, 2018.

• Gladstone, J. H.; Dale, T. P. Researches on the Refraction, Dispersion and Sensitiveness of Liquids. *Philos. Trans. R. Soc. A* **1863**, *153*, 317–343.

• Glasstone, S.; Lewis, D. Elements of Physical Chemistry, 2nd ed.; Macmillan: London, 1960.

• Goossens, A. G. Prediction of the Hydrogen Content of Petroleum Fractions. *Ind. Eng. Chem. Res.* **1997**, *36* (6), 2500–2504. https://doi.org/10.1021/ie960772x.

• Gouw, T. H.; Vlugter, J. C. Physical Properties of Fatty Acid Methyl Esters. III Dispersion. J. Am. Oil Chem. Soc. **1964**, 41 (7), 514–515. https://doi.org/10.1007/BF02670037. • Hiatt, M. H. Determination of Henry's Law Constants Using Internal Standards with Benchmark Values. *J. Chem. Eng. Data* **2013**, *58* (4), 902–908. https://doi.org/10.1021/je3010535.

• Hosseinifar, P.; Jamshidi, S. Development of a New Generalized Correlation to Characterize Physical Properties of Pure Components and Petroleum Fractions. *Fluid Phase Equilib.* **2014**, *363*, 189–198. https://doi.org/10.1016/j.fluid.2013.11.043.

- Jeffery, G. H.; Bassett, J.; Mendham, J.; Denney, R. C. *Vogel's. Textbook of Quantitative Chemical Analysis*, 5th ed.; Longman Scientific & Technical: New York, 1989.
- •Kashyap, P.; Rani, M.; Gahlyan, S.; Tiwari, D. P.; Maken, S. Volumetric, Acoustic and Optical
- Properties of Binary Mixtures of 2-Propanol with n-Alkanes (C6-C10) from 293.15 K to

303.15 K. J. Mol. Liq. 2018, 268, 303–314. https://doi.org/10.1016/j.molliq.2018.07.043.

- Kurtz, S. S. Physical Properties and Hydrocarbon Structure. In *The chemistry of petroleum hydrocarbons. Vol 1*; Reinhold Publishing Corporation: New York, 1954; pp 275–331.
- Kutsuna, S. Experimental Determination of Henry's Law Constants of Difluoromethane (HFC-

32) and the Salting-out Effects in Aqueous Salt Solutions Relevant to Seawater. Atmos. Chem.

Phys. **2017**, *17* (12), 7495–7507. https://doi.org/10.5194/acp-17-7495-2017.

- Levy, J. B.; Hornack, F. M.; Levy, M. A. Simple Determination of Henry's Law Constant for Carbon Dioxide. *J. Chem. Educ.* **1987**, *64* (3), 260–261. https://doi.org/10.1021/ed064p260.
- Li, J.; Heath, J. An Introduction to Capacitance Spectroscopy in Semiconductors. In *Capacitance spectroscopy of semiconductors*; Tainan, 2018; pp 1–22.
- Magee, P. E. Nitrogen as Health Hazard. R. Swedish Acad. Sci. 2019, 6 (2), 123–125.
- Mckeown, A. B.; Hibbard, R. R. Determination of Dissolved Oxygen in Hydrocarbons. *Anal. Chem.* **1956**, *28* (9), 1490–1492. https://doi.org/10.1021/ac60117a044.
- McMurry, J. Organic Chemistry, 5th ed.; Brooks/Cole: California, 200AD.

• Modarress, H.; Vakili-Nezhaad, G. R. A New Characterization Factor for Hydrocarbons and Petroleum Fluids Fractions. *Oil Gas Sci. Technol.* **2002**, *57* (2), 149–154. https://doi.org/10.2516/ogst:2002011.

• Mohebbi, V.; Naderifar, A.; Behbahani, R. M.; Moshfeghian, M. Determination of Henry's Law Constant of Light Hydrocarbons Gases at Low Temperature. *J. Chem. Thermodyn.* **2012**, *51*, 8–11. https://doi.org/10.1016/j.jct.2012.02.014.

Montoya Sánchez, N.; de Klerk, A. Autoxidation of Aromatics. *Appl. Petrochemical Res.* 2018, 8 (2), 55–78. https://doi.org/10.1007/s13203-018-0199-4.

• Nahar, S. N. Phase - Separation Characteristics of Bitumen and Their Relation to Damage -Healing, Wöhrmann Print Service, Zutphen, 2016.

• Nigam, P.; Banat, I. M.; Singh, D.; Marchant, R. Microbial Process for the Decolorization of Textile Effluent Containing Azo, Diazo and Reactive Dyes. *Process Biochem.* **1996**, *31* (5), 435–442. https://doi.org/10.1016/0032-9592(95)00085-2.

• Nirmalakhandan, N.; Brennan, R. A.; Speece, R. E. Predicting Hernry's Law Constant and the Effect of Temperature on Henry's Law Constant. **1997**, *31* (6), 1471–1481.

• Perry, R.; Green, D. Perry's Chemical Engineer's Handbook; Mc Graw Hill, 1999.

• Poling, B.; Prausnitz, J.; O'Connell, J. *The Properties of Gases and Liquids*, 5th ed.; Mc Graw Hill, 2001.

• Ramesh, H.; Mayr, T.; Hobisch, M.; Borisov, S.; Klimant, I.; Woodley, J. M. Measurement of Oxygen Transfer from Air into Organic Solvents. *J Chem Technol Biotechnol* **2016**, *91*, 832–836. https://doi.org/10.1002/jctb.4862.

• RELXGroup. Reaxys database https://www.reaxys.com/#/login (accessed Sep 20, 2019).

• Siddiquee, M. N.; De Klerk, A. In Situ Measurement of Liquid Phase Oxygen during Oxidation. *Ind. Eng. Chem. Res.* **2016**, *55* (23), 6607–6618.

https://doi.org/10.1021/acs.iecr.6b00949.

• Siddiquee, M. N.; De Klerk, A.; Nazemifard, N. Application of Microfluidics to Control Product Selectivity during Non-Catalytic Oxidation of Naphthenic-Aromatic Hydrocarbons. *React. Chem. Eng.* **2016**, *1* (4), 418–435. https://doi.org/10.1039/c6re00010j.

• Sigma-Aldrich.Co. Benzenethiol Safety Data Sheet www.sigmaaldrich.com (accessed Dec 1, 2019).

• Simmonds, C. *Alcohol. Its Production, Properties, Chemistry and Industrial Applications*; London, 1919.

• Smith, J. M.; Van Ness, H. C.; Abbott, M. M. *Introduction to Chemical Engineering Thermodynamics*, 7th ed.; Mc Graw Hill, 2005.

• Strausz, O.; Lown, E. *The Chemistry of Alberta Oil Sands, Bitumen and Heavy Oil*; Alberta Energy Research Institute: Calgary, 2003.

• Taylor, S. D.; Czarnecki, J.; Masliyah, J. Refractive Index Measurements of Diluted Bitumen Solutions. *Fuel* **2001**, *80* (14), 2013–2018. https://doi.org/10.1016/S0016-2361(01)00087-4.

• The Editors of Encyclopaedia Britannica. Atomic Theory

https://www.britannica.com/science/atomic-theory (accessed Nov 12, 2019).

• Ting, P. D.; Gonzales, D. L.; Hirasaki, G. J.; Chapman, W. G. Application of the PC-SAFT Equation of State to Asphaltene Phase Behavior. In *Asphaltenes, heavy oils and petroleomics*; Springer: Texas, 2007; Vol. 53, pp 1689–1699.

https://doi.org/10.1017/CBO9781107415324.004.

• Tracy, B. Quotable Quote https://www.goodreads.com/quotes (accessed Nov 23, 2019).

• Triola, M. F. Elementary Statistics, Technology Update, 11th Ed.; Pearson, Ed.; 2012.

• Vendruscolo, F.; Rossi, M. J.; Schmidell, W.; Ninow, J. L. Determination of Oxygen Solubility in Liquid Media. *ISRN Chem. Eng.* **2012**, *2012*, 1–5. https://doi.org/10.5402/2012/601458.

• Wang, F.; Evangelista, R. F.; Threatt, T. J.; Tavakkoli, M.; Vargas, F. M. Determination of Volumetric Properties Using Refractive Index Measurements for Nonpolar Hydrocarbons and Crude Oils. *Ind. Eng. Chem. Res.* **2017**, *56* (11), 3107–3115.

https://doi.org/10.1021/acs.iecr.6b04773.

• Wattana, P.; Wojciechowski, D. J.; Bolaños, G.; Fogler, H. S. Study of Asphaltene Precipitation Using Refractive Index Measurement. *Pet. Sci. Technol.* **2003**, *21* (3–4), 591–613. https://doi.org/10.1081/LFT-120018541.

Yaffe, D.; Cohen, Y.; Espinosa, G.; Arenas, A.; Giralt, F. A Fuzzy ARTMAP-Based Quantitative Structure-Property Relationship (QSPR) for the Henry's Law Constant of Organic Compounds. *J. Chem. Inf. Comput. Sci.* 2003, 43 (1), 85–112. https://doi.org/10.1021/ci025561j.
Yañez Jaramillo, L. M.; De Klerk, A. Partial Upgrading of Bitumen by Thermal Conversion at

150-300 °C. Energy and Fuels **2018**, *32* (3), 3299–3311.

https://doi.org/10.1021/acs.energyfuels.7b04145.

• Yarranton, H. W.; Okafor, J. C.; Ortiz, D. P.; Van Den Berg, F. G. A. Density and Refractive Index of Petroleum, Cuts, and Mixtures. *Energy and Fuels* **2015**, *29* (9), 5723–5736. https://doi.org/10.1021/acs.energyfuels.5b01376.

• Yurkanis, P. Organic Chemistry; Pearson Education: California, 2006.

• Zachariah, A.; De Klerk, A. Thermal Conversion Regimes for Oilsands Bitumen. Energy and

Fuels 2016, 30 (1), 239–248. https://doi.org/10.1021/acs.energyfuels.5b02383.