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Abstract 

The non-classical mechanical behavior of an elastic membrane of two independent 

bending rigidities has been studied. The major interest focuses on the case when the 

ratio of the Gaussian bending rigidity to the common flexural rigidity falls within the 

non-classical ranges which cannot be covered by a classical elastic plate with an 

admissible positive Poisson ratio. In this work, variational method is applied to derive 

the governing equation and boundary conditions for a non-classical elastic membrane 

characterized by two independent bending rigidities. Mechanical responses of 

rectangular and circular non-classical elastic membranes with different boundary 

conditions have been analyzed systematically and compared with those of a classical 

elastic plate with an admissible positive Poisson ratio under otherwise identical 

conditions. 

For a rectangular non-classical membrane with two opposite free edges, it is shown that 

its deflection under a uniform transverse pressure could be considerably (even more 

than twice) larger than a classical elastic plate under otherwise identical conditions, 

while its lowest fundamental frequency and critical buckling force could be 

considerably (even more than 50%) lower than a classical elastic plate under otherwise 

identical conditions. These unexpected results suggest that, unlike classical elastic plates 

whose actual mechanical behavior are often not sensitive to the exact value of the 

admissible positive Poisson ratio, actual mechanical behavior of such a rectangular non-



iii 

 

classical elastic membrane is very sensitive to the ratio of the Gaussian bending rigidity 

to the common flexural rigidity. In particular, the overall mechanical stiffness of such a 

rectangular non-classical membrane could be vanishingly low when the bending rigidity 

ratio approaches its upper limit 0. 

On the other hand, the mechanical behavior of a hinged circular non-classical elastic 

membrane monotonically depends on the bending rigidity ratio even in the two non-

classical ranges. Actually, its overall mechanical stiffness becomes vanishingly low 

when the bending rigidity ratio approaches its lower limit -2, while its overall 

mechanical stiffness is higher than a classical elastic plate with an admissible positive 

Poisson ratio under otherwise identical conditions when the bending rigidity ratio goes 

to its upper limit 0. 

For both rectangular and circular non-classical elastic membranes studied in this work, 

the obtained results indicate that the exact value of the Gaussian bending rigidity could 

be crucial, and only knowing the values of the flexural rigidity and Poisson ratio is 

insufficient for accurate prediction of mechanical modeling of such non-classical elastic 

membranes (such as biomembranes and atom-thick graphene membranes). 
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Preface 

Chapter 2 and 3 of the thesis have been published as Luxia Yu & C.Q. Ru, “Non-

classical Mechanical Behavior of an Elastic Membrane of an Independent Gaussian 

Bending Rigidity,” Mathematics and Mechanics of Solids, 2015. I was responsible for 

math derivation, obtaining results and writing manuscript. Dr. C.Q. Ru was the 

supervisory author who proposed the topic, checked the results and revised the 

manuscript. 

Chapter 4 of the thesis is expected to be submitted for publication soon. I am 

responsible for math derivation, obtaining results and writing manuscript. Dr. C.Q. Ru 

is the supervisory author who proposed the topic, checked the results and revised the 

manuscript. 
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Chapter 1 

Introduction 

1.1 Motivation 

Recently, the study of the mechanical properties of graphene sheets and biomembranes 

has attracted vast attention due to the rapid development of the nanoelectromechancial 

systems. For these two dimensional “soft” sheets/plates, the bending stiffness defined as 

the resistance to bending is quite low but still crucial to the modeling of their bending 

behavior. Generally, for an elastic membrane or plate, bending strain energy density is 

determined by the contribution of the mean curvature and Gaussian curvature

                    

1
= * *

2
gU D MeanCurvature D GaussianCurvature

                             

(1.1) 

where D is the common flexural rigidity, and Dg is the Gaussian bending rigidity. 

In classical elastic plate theory, the common flexural rigidity D is defined as 

3

212(1 )

Eh
D





,    (1.2) 

where E is the Young’s modulus of isotropic materials, v is the Poisson ratio of a 

linearly isotropic elastic material, and h is the thickness. There isn’t a formula like 

equation (1.2) to determine the (negative) Gaussian bending rigidity Dg so far. But for 
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isotropic and homogeneous elastic plates, the Gaussian bending rigidity Dg is related to 

the flexural rigidity D through the Poisson ratio v, and the ratio is Dg/D=(v-1) . 

However, for some membrane-like materials such as lipid membranes and atom-thick 

graphene sheets (see Figures 1.1 and 1.2), which are not a homogeneous elastic 

continuum layer through its thickness, the Gaussian bending rigidity and the flexural 

rigidity can be two independent parameters. In addition, the flexural rigidity D cannot 

be defined as in equation (1.2) and the actual value of the flexural rigidity D could be 

very much different than equation (1.2) even by a few orders of magnitude. This 

discrepancy stems from the fact that these membrane materials are not a continuum 

layer through its thickness and even the thickness is hard to be uniquely defined. 

Therefore, for such non-classical elastic membranes, the Gaussian bending rigidity is 

independent of the flexural rigidity, and the classical elastic plate relation Dg/D=(v-1) 

even cannot hold approximately. Some published values of the flexural and Gaussian 

bending rigidities and Poisson ratio of various kinds of membranes obtained by  

                             

Figure 1.1 Flat atom-thick graphene.                          Figure 1.2 Biomembrane. 

experiments or simulation are reported. The ratio Dg/D of a single-layered graphene 

membrane is reported to be about -0.43, where the Dg and D are -1.12×10-19J and 
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2.57×10-19J, respectively (Koskinen and Kit, 2010). Wei et al. (2013) reported that the 

Gaussian bending rigidity of single-layered graphene membranes (about -2.43×10-19J) is 

independent of the flexural rigidity (2.31×10-19J) and the Poisson ratio. A range of the 

flexural rigidity D of the monolayer graphene is given as 1.28~2.56×10-19J and Poisson 

ratio is about 0.17 (Berinskii, 2014). For lipid monolayers, the ratio Dg/D is reported as 

-0.83±0.08, with the Gaussian bending rigidity -0.31×10-19J (Marsh, 2006). And the 

Poisson ratio of lipid membranes generally falls within the range 0.39~0.54 (Jadidi et al. 

2014). Specially, the Gaussian bending rigidity of some lipid membranes is of the order 

10-21J (Deseri and Zurlo, 2013), which is two orders of magnitude higher than the 

flexural rigidity (5×10-19J, Harmandaris, 2006). In addition, the range (-0.35, -0.2) of 

the ratio Dg/D has been reported for some surfactant films (Ennis, 1992). Some 

parameters of lipid membranes and graphene materials are listed in Table 1.1. 

Table 1.1 Parameters of non-classical elastic membranes. 

Material                   Dg (J) D (J) Dg/D v v-1 

 -0.31×10-19 - -0.91   

Lipid membrane       -10-21 5×10-19 -0.002 0.54 -0.46 

 - - -0.2   

      Graphene -1.12×10-19 2.57×10-19 -0.43   

 -2.43×10-19 1.28×10-19 -1.89 0.17 -0.83 

For such non-classical elastic membranes, Helfrich (1973) developed a theoretical 

model for bending behavior of biomembranes of two independent bending rigidities. In 
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Helfrich membrane model, the positive definiteness of bending strain energy density 

requests the ratio of the Gaussian bending rigidity Dg to the flexural rigidity D to be 

within (-2, 0). Obviously, the range [-0.5, 0) of the ratio Dg/D, which is admissible for 

such non-classical Helfrich-like membranes, is inadmissible for any classical elastic 

plate with an admissible Poisson ratio (-1, 0.5] (which corresponds to the range (-2, -

0.5] of the ratio Dg/D). What’s more, the range (-2, -1] of the ratio Dg/D corresponds to 

the classical elastic plate with an admissible but negative Poisson ratio, which is an 

unlikely case for most natural and engineering materials. To the best of our knowledge, 

the mechanical behavior of a Helfrich-like elastic membrane in the non-classical ranges 

[-0.5, 0) and (-2, -1] of the ratio Dg/D has not been well addressed in the existing 

literature. In particular, it is unclear whether setting Dg=0 or assuming Dg/D=(v-1) given 

by the flexural rigidity and Poisson ratio could cause substantial errors. 

 

1.2 The objectives and outline 

The mechanical behavior of non-classical elastic membranes when the bending rigidity 

ratio Dg/D falls within the non-classical ranges has not been well studied in the existing 

literature. Therefore it is of great interest to investigate this significant topic. In the 

thesis, the major objectives are: 

1) Derive the general governing equation and boundary conditions for Helfrich-like 

membranes of two independent bending rigidities; 
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2) Study the mechanical behavior of such non-classical elastic membranes when the 

bending rigidity ratio Dg/D falls within the non-classical ranges, and compare the results 

with that of a classical elastic plate of an admissible positive Poisson ratio. 

Specifically, the thesis includes: 

1) In Chapter 2, the governing equation and boundary conditions for such a non-

classical elastic membrane of two independent bending rigidities are derived using a 

variational method. 

2) In Chapter 3 and 4, the non-classical mechanical behaviors, including deflection, 

vibration and buckling of a rectangular membrane with two opposite free edges and a 

hinged circular membrane are studied, respectively. 

3) In Chapter 5, major conclusions are summarized and future work is recommended. 
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Chapter 2* 

Formulation of a non-classical membrane of two 

independent bending rigidities 

In thin plate theory, two types of bending behavior are distinguished by comparing the 

out-of- plane deflection w to its thickness h: 

1) Small deflection (Linear theory)-the deflection is smaller than its thickness. 

2) Large deflection (Nonlinear theory)-the deflection is larger than or comparable to the 

thickness. 

In the thesis, we shall only focus on the small deflection case (linear theory). Therefore, 

all the assumptions of the small deflection theory is still valid in the present work. 

 

2.1 Bending strain energy 

For an isotropic elastic membrane or plate, bending strain energy is determined by the 

contribution of mean curvature and Gaussian curvature. Specifically, it is a quadratic 

function of two invariants of the curvature tensor (C) and characterized by the common  

 

 

 

 

 

 

*This chapter is adapted from the published paper “Non-classical Mechanical Behavior of an Elastic 

Membrane of an Independent Gaussian Bending Rigidity,” Mathematics and Mechanics of Solids, 2015. 
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flexural rigidity (D) and the (negative) Gaussian bending rigidity (Dg). 

Elastic membranes of two independent bending rigidities. For an isotropic  

elastic membrane of two independent bending rigidities, the Helfrich membrane model 

gives (Helfrich, 1973): 

                                           

where U is the bending strain energy density, D and Dg are the flexural rigidity and 

Gaussian bending rigidity, respectively, and C is the curvature tensor given by the 

curvatures kxx, kyy, and kxy: 

 =
xx xy

yx yy

k k
C

k k
, (2.2) 

2 2 2

2 2
, ,xx yy xy yx

w w w
k k k k

x y x y

  
      

   
.                       (2.3) 

The trace (tr(C)) and determinant (det(C)) are the two invariants of the curvature tensor 

C. 

Classical elastic plates. For a uniform isotropic elastic plate, the bending strain 

energy density U  is (Timoshenko and Woinowsky-Krieger, 1959) 

 21
= [ ( )] ( 1)det( )

2
U D tr C D C  . (2.4) 

where v is the Poisson ratio within the admissible range (-1, 0.5]. 

Comparing the bending strain energy of the classical elastic membranes/plates (see 

equation (2.4) and that of a Helfrich-model (see equation (2.1)), it can be easily seen 
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that the common flexural rigidity D and Gaussian bending rigidity Dg are dependent for 

classical elastic membranes/plates, and the ratio Dg/D is given by (v-1). But for 

Helfrich-like membranes, the flexural and Gaussian bending rigidities are two 

independent parameters, and obviously, the relation Dg/D=v-1 cannot hold for such non-

classical membrane-like materials (e.g. lipid membranes and atom-thick graphene 

sheets) as they are not a homogeneous elastic continuum layer through its thickness. 

Also as shown in Table 1.1, for non-classical membranes of two independent bending 

rigidities, the ratio Dg/D of the Gaussian bending rigidity to the flexural rigidity can be 

quite different from (v-1). Taking the single-layered graphene sheet as example, the 

ratio Dg/D is reported as -0.43 (Koskinen and Kit, 2010), with a Poisson ratio about 0.17 

(Berinskii et al. 2014). Therefore, assuming Dg/D=v-1 could cause unacceptable errors 

for accurate prediction of mechanical behavior of such non-classical elastic membranes. 

 

2.2 Positive definiteness of the bending strain energy 

In the classical linear elasticity, it is well known that the positive definiteness of strain 

energy density requests the admissible Poisson ratio v to be within the range (-1, 0.5] 

and hence the bending rigidity ratio Dg/D varies from -2 to -0.5. 

For Helfrich-like elastic membranes of two independent bending rigidities, the bending 

strain energy density is positive-definite 
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2 2 2 2 2
2 2

2 2 2 2
( ) + [ ( ) ]

2

+ 0

[ ] + 0 0

0 0 2

g

g xx

xx yy xy g yy

g xy

D w w w w w
U D

x y x y x y

D D D k

k k k D D D k

D k

    
  

     

   
   

    
   

   

, (2.5) 

if and only if  

 0; 2 / 0gD D D    .  (2.6) 

Thus the admissible range of the ratio Dg/D for such non-classical elastic membranes 

falls within (-2, 0), containing a non-classical range [-0.5, 0) of Dg/D which cannot be 

covered by any classical elastic plate/membrane with an admissible Poisson ratio. 

Furthermore, the range (-2, -1] of the ratio Dg/D is inadmissible for any classical elastic 

plate/membrane with an admissible positive Poisson ratio. Some examples of “non-

classical” elastic membranes for which the ratio Dg/D falls in the ranges (-2, -1] or [-0.5, 

0) have been reported in the literature (see Table 1.1). Such examples include surfactant 

films, for which the ratio of Dg/D varies from -0.35 to 0.2 (Ennis, 1992). The 

mechanical behavior of such a Helfrich-like elastic membrane in the two non-classical 

ranges (-2, -1] and [-0.5, 0) of the ratio Dg/D is the major topic of the thesis. 

 

2.3 Contribution of the Gaussian curvature 

As mentioned, the bending strain energy consists of the contribution of the mean 

curvature and Gaussian curvature. This section will discuss the contribution of the 
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Gaussian curvature to the bending strain energy of non-classical Helfrich-like elastic 

membranes. 

The bending strain energy U of non-classical elastic membranes which occupies the 

domain of the (x-y) plane is 

 

2 2 2 2 2
2 2

2 2 2 2

1
( ) [ ( ) ]

2
g

w w w w w
U D dxdy D dxdy

x y x y x y
 

    
   

       . (2.7) 

Assuming the domain   is of an arbitrary shape, see Figure 2.1: 

 

Figure 2.1 An elastic membrane of any arbitrary shape. 

n and s represent the normal and tangent directions along the boundary  ;  is the 

counter-clockwise angle between the outer normal of the boundary curve and x direction. 

By using the Green theorem and the transformation relations between the Cartesian and 

curvilinear coordinates, the Gaussian curvature term in the domain   (the surface 

integral) is converted to the line integral along the boundary  : 
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2 2 2 2 2
2

2 2 2
[ ( ) ] =

(cos sin ) ( sin cos )

w w w w w w w
dxdy dx dy

x y x y x x y x y

w w w w
ds

n s s n s
   

  



      
 

        

    
  

    

  



.  

  (2.8) 

According to equation (2.8), we conclude that the Gaussian curvature term makes no 

contribution to the bending strain energy of non-classical elastic membranes in the 

following two cases: 

a) when the boundary is clamped ( 0 ( / =0); / 0w w s w n      ), the Gaussian 

curvature term vanishes. 

b) when the boundary is piecewise straight and hinged ( 0( / 0); 0nw w s M     ), the 

Gaussian curvature term vanishes. 

The conclusions are consistent with those of Langhaar (1952) and Zhu et al. (1989). 

Therefore, the Gaussian bending rigidity Dg does not affect bending behavior of the 

membrane when all of its edges are either clamped or straight and hinged. 

 

2.4 Governing equation and boundary conditions 

To get the general governing equation and boundary conditions for the non-classical 

membrane, the variational method based on the minimum potential energy (W) principle 

is applied. 

For the given prescribed external forces, the external work V in the Cartesian 

coordinates is given by 
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2 21 1
( ) ( )

2 2

o o

x y

o o o

xy n n

w w
V qwdxdy N dxdy N dxdy

x y

w w w
N dxdy M ds V wds

x y n

  

  

 
     

 

  
   
  

  

  

, (2.9) 

where q , o

xN ,
o

yN  and 
o

xyN  are the applied transverse load, in-plane tensile pre-forces 

and shear pre-force (per unit length) prior to bending, respectively; o

nM  is the applied 

bending moment per unit length and 0 /o o

n n nsV Q M s    is the Kirchhoff-type effective 

transverse shear force, where o

nQ  and o

nsM  are the shear force and twisting moment per 

unit length. 

Applying the variational method 

 0W U V     , (2.10) 

where 

 
, , , , , , , ,

, , , , , ,

( )

( 2 )

xx xx xx yy yy xx yy yy

g yy xx xx yy xy xy

U D w w w w w w w w dxdy

D w w w w w w dxdy

    

  

    






, (2.11) 

and 

 

, , , ,

, , , , , ,

( )o o o o

n n n ns s x x x

o o o

y y y xy x y xy y x

V q wdxdy M w ds Q M wds N w w dxdy

N w w dxdy N w w dxdy N w w dxdy

    

  

   

  

     

 

   

  
, (2.12) 

it can be verified that the general equation of equilibrium for static deflection of an 

elastic membrane of two independent bending rigidities is (for detailed derivation, see 

Appendix A) 

 
2 2 2

4

2 2
2 0o o o

x y xy

w w w
D w q N N N

x yx y

  
     

  
. (2.13) 
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where 4 is the biharmonic differential operator. In dynamic case, equation (2.13) 

contains an added term 2 2/m w t   on left-hand side, where m  is the mass density of 

the membrane per unit area and t is time. 

Furthermore, the boundary conditions for a non-classical elastic membrane of two 

independent bending rigidities are given by 

2 2 2
2 2 2

2 2
[ ( sin 2 sin cos cos ) ] 0o

g n

w w w w
D w D M ds

x x y y n


   



   
     

     , 

  (2.14)

 

3 3 3 3 2

3 2 3 2 2

2 2
2 2

2

[( ) cos ( )sin ] [(

)sin cos (sin cos )] cos 0

sin sin cos

g

o

x

o
o o o o ns
y xy xy n

w w w w w
D D

x y x y x y s x

w w w
N wds

y x y x

Mw w w
N N N Q

y x y s

 

     

  



      
     

       
 
   

     
    

   
    

     



    

.

 (2.15) 

In particular, as already known (equation (1.10) of Bulson, 1969), it is seen from 

equation (2.13) that the Gaussian bending rigidity Dg does not explicitly appear in the 

governing equation (2.13). For this reason, some works (Helfrich, 1973) have suggested 

to set Dg=0. However, as shown in the present thesis, actual value of the Gaussian 

bending rigidity Dg can play a crucial role in mechanical behavior of an elastic 

membrane of two independent bending rigidities through the boundary conditions. 

Specifically, three typical types of boundary conditions are 

 : 0; 0
w

Clamped w
n


 


, (2.16) 
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2 2 2

2 2 2

2 2
: 0; ( sin 2 sin cos cos ) 0g

w w w
Hinged w D w D

x x y y
   

  
     

   
,(2.17) 

2 2 2
2 2 2

2 2

3 3 3 3

3 2 3 2

2 2 2
2 2

2 2

( sin 2 sin cos cos ) 0;

: [( )cos ( )sin ]

[( )sin cos (sin cos )] 0

g

g

w w w
D w D

x x y y

w w w w
Free D

x y x y x y

w w w
D

s x y x y

   

 

   

  
    

   

   
   

     

   
   

    

.(2.18) 

It is noticed that the derived boundary conditions (equations (2.16-2.18)) will reduce to 

the known form for a classical elastic plate of arbitrary shape when Dg/D=v-1 (see for 

example, equation (n) on p.91 & equation (116) on p.88 of Timoshenko et al., 1959, 

equations (12.6) & (12.7) on p.49 of Landau and Lifshitz, 1970). What’s more, it is seen 

from equations (2.16)-(2.18) that the Gaussian bending rigidity Dg does not appear on 

the boundary conditions for any clamped edge or straight hinged edge. This is in 

agreement with the conclusions obtained in Section 2.3 regarding the contribution of the 

Gaussian curvature to the bending strain energy. Hence the study on Dg-effect should 

focus on the case when at least part of the boundary of a non-classical elastic membrane 

is either free or curved and hinged. In view of its practical significance, the present 

work focuses on two important cases: a rectangular non-classical elastic membrane with 

two opposite free edges (see Chapter 3), and a circular non-classical elastic membrane 

with hinged edges (see Chapter 4). 
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Chapter 3* 

Mechanical behavior of a rectangular non-classical 

elastic membrane 

Mechanical behavior of classical elastic plates with various boundary conditions has 

been extensively studied in the literature (Timoshenko et al., 1959, Leissa, 1973, Kang 

et al., 2001, Yu, 2008), especially elastic plates of rectangular shape. Recently two 

dimensional membrane sheets have attracted considerable research attention. To 

mention a few of elastic membrane models applied to graphene sheets, for example, 

Atalaya et al. (2008) studied mechanical responses of clamped graphene membrane 

resonators in both linear and nonlinear cases using continuum elastic membrane model; 

Chen (2011) formulated a continuum theory for dislocation and buckling in graphene 

membranes. As stated, unlike classical elastic plates/membranes for which the Gaussian 

bending rigidity is related to the flexural rigidity by Poisson ratio, the Gaussian bending 

rigidity Dg of a single-layered graphene membrane is independent of the flexural rigidity 

and the Poisson ratio. For example, it is reported (Wei et al., 2013) that Dg of single-

layered graphene membranes is about -2.43×10-19J while the values of the flexural 

rigidity of single-layered graphene membranes reported in literature (Berinskii et al., 

 

*This chapter is adapted from the published paper “Non-classical Mechanical Behavior of an Elastic 

Membrane of an Independent Gaussian Bending Rigidity,” Mathematics and Mechanics of Solids, 2015. 
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2014) vary from 1.28 ~2.56×10-19J which gives a ratio of Dg/D ranging from -1.89 to -

0.95, falling in the non-classical range (-2, -1]. Koskinen and Kit (2010) observed the 

ratio Dg/D of -0.43 and Ennis (1992) gave the range of ratio Dg/D of some surfactant 

films within (-0.35, -0.2). Therefore it is of great interest to investigate the mechanical 

behavior of elastic membranes of two independent bending rigidities when the bending 

rigidity ratio Dg/D falls outside the classical range. 

For the purpose of comparison, a rectangular (a×b) Helfrich-like elastic membrane 

whose two opposite edges parallel to the y direction are simply supported and the other 

two edges are free was considered with different aspect ratio (b/a=0.5, 1, 2), see Figure 

3.1. Three important mechanical behaviors, i.e. deflection, vibration and buckling, of a 

rectangular non-classical membrane are studied systematically in this chapter. 

 

Figure 3.1 A rectangular membrane with edges (x=0, a) simply supported. 

For a rectangular non-classical membrane with two opposite hinged edges as shown in 

Figure 3.1, the famous Levy method (Timoshenko et al., 1959) is applied: 
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1

( )sin( )m
m

m
w f y x

a






  , (3.1) 

where fm(y) are some unknown functions of y; m is the arbitrary positive integer; and a 

is the length of the membrane in the x direction. The boundary conditions at x=0, a are 

automatically satisfied. According to equation (2.18), the boundary conditions at the 

two free edges y=0, b in Cartesian coordinates give 

 
2 2

2 2
( ) 0g

w w
D D D

y x

 
  

 
,  (3.2) 

 
3 3

3 2
( ) 0g

w w
D D D

y x y

 
  

  
. (3.3) 

It is noticed that the free-edge conditions (equations (3.2) and (3.3)) will reduce to the 

known form for a classical elastic plate when Dg/D=v-1 (see equation (2.2) on p.27 and 

equation (2.25) on p.35 of Bulson, 1969). 

 

3.1 Deflection 

3.1.1 Formulation 

Assuming the only transverse load q is constant and uniformly distributed (i.e. 

0o o o
x y xyN N N   ), the governing equation (2.13) reduce to 

 4 =D w q . (3.4) 

The solution for deflection function w (equation (3.1)) which satisfies the governing 

equation (3.4) is of the form 
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 1

4

5 5

[ cosh h h

2
cosh (1 cos )]sin

m m m
m

m

m y m y m y m y
w A B sin C sin

a a a a

m y m y qa m x
D m

a a aDm

   

  








   

 


, (3.5) 

where Am, Bm, Cm and Dm are unknowns to be determined by the edge conditions at the 

two free edges y=0, b. 

Substituting equation (3.5) into boundary conditions (3.2) and (3.3) yields a system of 

equations: 

 

5 5

4

5 5

2
(1 ) (1 cos )

0

2
(1 ) (1 cos )

0

g

m

m

m g

m

D
m

A D m

B qa
Coefficient matrix

C D D
m

D D m







 
   

  
      
   
   
 
 

, (3.6) 

where the 4×4 coefficient matrix is 

 

2

0 0

cosh 2cosh sinh

sinh 2sinh sinh cosh

0 0

2

sinh 2sinh cosh

cosh 2cosh cosh sinh

g

g g

g g g

g g

g g

g g g

D

D

D D

D D

D D D

D D D

D D

D D

D D

D D

D D D

D D D

   

    

   

    







 


  







 


 
 . (3.6a) 
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The unknowns Am, Bm, Cm and Dm for each m can be determined by solving equation 

(3.6), and hence the deflection w is obtained in terms of the two independent bending 

rigidities. 

 

3.1.2 Result and discussion 

In deflection case, in order to obtain more accurate results, we take ten terms (N=10) of 

the series even though the series starts to converge well after N=3. Figure 3.2 presents 

how the dimensionless deflection wD/qa4  at the center of the membrane with different 

aspect ratio varies as the ratio Dg/D changes from -2 to 0 (which is equivalent to the 

classical elastic plate when Poisson ratio varies within -1<v<+1). 

In all of the figures shown below including those in Chapter 4, the obtained curves are 

distinguished into three cases, corresponding to the three ranges of the bending rigidity 

ratio Dg/D: 

a).Dg/D falls within (-2,-1] (which is equivalent to a classical elastic plate/membrane 

with a negative but admissible Poisson ratio within (-1, 0], an admissible but unlikely 

case for most natural and engineering materials); 

b).Dg/D falls within [-1, -0.5] (which is equivalent to a classical elastic 

plate/membrane with an admissible positive Poisson ratio within [0, 0.5], a classical 

case valid for most natural and engineering materials); 

c).Dg/D falls within [-0.5, 0) (which is equivalent to a classical elastic plate with an 

inadmissible Poisson ratio in [0.5, 1), a case impossible for all real isotropic linearly 

elastic membranes). 
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Figure 3.2 Transverse deflection of a rectangular non-classical membrane. 

It is seen from Figure 3.2 that, overall speaking, the dimensionless deflection wD/qa4 in 

the two cases a) and c) can be considerably (even more than twice) larger than that in 

case b) of a classical elastic plate of admissible positive Poisson ratio, which suggests 

that rectangular elastic membranes of two independent bending rigidities (such as some 

biomembranes or graphene sheets) could deflect considerably more than a classical 

elastic plate under the same transverse loading and geometrical conditions. In addition, 

the dimensionless deflection wD/qa4 in the two non-classical cases a) and c) is quite 

sensitive to the ratio Dg/D, while wD/qa4 is very much insensitive to the ratio Dg/D in 

case b) of a classical elastic plate of admissible positive Poisson ratio. 

In particular, as stated before, since the Gaussian bending rigidity Dg does not explicitly 

appear in the governing equation (2.13), some works have suggested to set Dg=0. 
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However, as shown in Figure 3.2, the deflection of the rectangular non-classical elastic 

membrane studied here diverges when the Gaussian bending rigidity Dg approaches 

zero. Therefore, setting Dg=0 could cause unacceptable errors even for simpler 

rectangular membranes when part of its boundary is free. What’s more, assuming 

Dg/D=v-1 for a rectangular non-classical elastic membrane could lead to inaccurate 

results. For example, the ratio of two independent bending rigidities of a single-layered 

membrane (Koskinen and Kit, 2010) has been reported to be -0.43, but the Poisson ratio 

of such membranes is 0.17 (Berinskii et al., 2014). The dimensionless deflection of the 

two different bending rigidity ratios is completely different. 

Here, it’s worth to mention that the deflection wD/qa4 given in Figure 3.2 well agrees 

with the results shown in Timoshenko’s book (1959), see Table 3.1. The symbol “star” 

circled in all the figures including those in Chapter 4 represents the comparisons with 

the existing literature. 

Table 3.1 Comparison of transverse deflection of a rectangular non-classical membrane 

at Dg/D=-0.7. 

_ b/a wD/qa4 

 

This work 

0.5 0.0137 

1 0.0131 

2 0.0129 

Timoshenko 

(Table 47, v=0.3) 

0.5 0.01377 

1 0.01309 

2 0.01289 
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3.2 Vibration 

3.2.1 Formulation 

For free vibration we have 0o o o
x y xyq N N N    . The differential equation of 

motion becomes 

 
2

4

2
0

w
D w m

t


  


. (3.7) 

Assuming the deflection function w as 

 ( , ) i tw W x y e  , (3.8) 

where W(x, y) is the mode shape function, then substituting equation (3.8) into (3.7) 

gives a differential equation for the mode shape function W(x, y) 

 
2

4 0
m

W W
D


   . (3.9) 

The expression of W(x, y) which satisfies the equation (3.9) is given by (Leissa, 1973) 

 ( , ) ( cosh( ) sinh( ) cos( ) sin( ))sin
m x

W x y A y B y C y D y
a


       , (3.10) 

or 

 ( , ) ( cosh( ) sinh( ) cosh( ) sinh( ))sin
m x

W x y A y B y C y D y
a


       , (3.11) 

where A, B, C, and D are undetermined constants; ,  ,   are defined as 

 
2 2 2 2 2 2

2 2 2
; ;

m m m m m m

D D Da a a

  
           . (3.12) 
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Equation (3.10) is applied when 2 2 2/ /m D m a  , but otherwise equation (3.11) is 

used. Substituting equation (3.10) or (3.11) into equations (3.2) and (3.3) for two free 

edges yields a system of four homogeneous linear equations for the four constants A, B, 

C and D: 

   0

A

B
Coefficient matrix

C

D

 
 
  
 
 
 

, (3.13) 

where the 4×4 coefficient matrix is 
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 
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 
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D Dm m
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 (3.13a) 

when equation (3.10) is applied, but otherwise 
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. (3.13b) 

The four unknowns A, B, C, and D cannot be all zero, then the determinant of the 

coefficient matrix must be zero, which gives a characteristic equation to determine the 

natural frequency for each m. 

 

3.2.2 Result and discussion 

For free vibration, the dimensionless frequency parameter 2 /a m D  with m=1 

(which means there is only one half wave in x direction) is shown in Figures 3.3 and 3.4 

for the two lowest frequencies, respectively, with two vibration modes (1, 1) and (1, 2), 

where the second number in the above mode codes denotes the number of half waves in 

y direction. 
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Figure 3.3 Fundamental frequency of a rectangular non-classical membrane. 

 

 

Figure 3.4 Frequency of a rectangular non-classical membrane in mode (1, 2). 
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Firstly, it is seen from Figure 3.3 that the dimensionless lowest fundamental 

frequency 2 /a m D  in the two cases a) and c) can be considerably (even more than 

50%) lower than in case b) of a classical elastic plate of any real material, which 

suggests that rectangular elastic membranes of two independent bending rigidities could 

be considerably more compliant than a classical elastic plate under the same geometrical 

conditions. In addition, the dimensionless lowest fundamental frequency 2 /a m D  in 

the two cases a) and c) is quite sensitive to the ratio Dg/D, while 2 /a m D  is very 

much insensitive to the ratio Dg/D in case b) of a classical elastic plate of admissible 

positive Poisson ratio. Clearly these conclusions are consistent with those obtained in 

Section 3.1 for static deflection. Both suggest that the overall stiffness of rectangular 

elastic membranes of two independent bending rigidities could be considerably lower 

(even vanishing when Dg tends to zero) than a classical elastic plate of admissible 

positive Poisson ratio, and also is much more sensitive to the bending rigidity ratio Dg/D 

than a classical elastic plate of admissible positive Poisson ratio. On the other hand, it is 

seen from Figure 3.4 that these conclusions cannot hold for the second lowest frequency 

associated with the mode (1, 2). 

Here, it is noticed that the results shown in Figures 3.3 and 3.4 well agree with those 

reported in Leissa (1973) and Kang et al. (2001), see Table 3.2. 

Table 3.2 Comparison of frequencies of a rectangular non-classical membrane. 

 

— 

 

mode 

 

b/a 

Dg/D 

-1  -0.7 -0.5 
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This work (1,1) 0.5 9.8696 9.7362 9.3798 

1 9.8696 9.6314 9.0793 

(1,2) 0.5 12.2287 11.6845 10.8692 

1 17.8821 16.1348 14.3516 

Lessia (Table 

2,v=0, 0.3, 0.5) 

(1,1) 1 98696 9.6314 9.0793 

Kang 

(Table 6, 7&8, 

v=0, 0.3, 0.5) 

(1,1) 0.5 9.870 9.736 9.380 

1 9.870 9.631 9.079 

(1,2) 0.5 12.23 11.68 10.87 

1 17.88 16.13 14.35 

 

3.3 Buckling 

3.3.1 Formulation 

Considering buckling under a uniform uniaxial compressive load o
xN P  (P>0) 

applied on the two simply supported edges, the buckling is governed by 

 
2

4

2
0

w
D w P

x


  


. (3.14) 

Substituting the assumed deflection function w (3.1) into the governing equation (3.14) 

yields a characteristic equation for fm(y). Putting the solution of fm(y) back to equation 

(3.1), the deflection function w which satisfies the governing equation (3.14) is obtained. 
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Actually, the deflection function in buckling case shares the same formulas with 

equations (3.10) and (3.11) but with different definitions of  ,  ,  

 ( ); ( ); ( )
m m P m P m m m P

a a D a D a a a D

     
        . (3.15) 

We use equation (3.10) if / /P D m a , but otherwise equation (3.11) will be 

employed. Similarly, after applying the boundary conditions (equations (3.2) & (3.3)) at 

two free edges to equation (3.10) or (3.11), a system of four homogeneous linear 

equations for the four constants A, B, C and D is obtained. The formulas of coefficient 

matrixes ((3.13a) & (3.13b)) in free vibration case remain valid in buckling case. Under 

the buckling state, the unknowns A, B, C and D cannot be all zero, thus the determinant 

of the coefficient matrix must also be zero as the vibration case. Hence the buckling 

force for each m can be determined by solving the characteristic equation. 

 

3.3.2 Result and discussion 

Similar to free vibration, the dimensionless buckling force Pa2/D with m=1 (which 

means there is only one half wave in x direction) is shown in Figures 3.5 and 3.6 for the 

two lowest buckling forces, respectively, with two buckling modes (1, 1) and (1, 2) 

where the second number in the above mode codes denotes the number of half waves in 

y direction. 
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Figure 3.5 Critical buckling force of a rectangular non-classical membrane. 

    

Figure 3.6 Buckling force of a rectangular non-classical membrane in mode (1, 2). 
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Clearly, from Figure 3.5, the dimensionless critical buckling force Pa2/D in the two 

non-classical cases a) and c) can be considerably lower than in case b) of a classical 

elastic plate of any real material, which suggests that rectangular elastic membranes of 

two independent bending rigidities could be considerably more compliant than a 

classical elastic plate under the same geometrical conditions. In addition, the 

dimensionless critical buckling force Pa2/D in the two cases a) and c) is quite sensitive  

to the ratio Dg/D, while it is very much insensitive to the ratio Dg/D in case b) of a 

classical elastic plate of admissible positive Poisson ratio. 

It can be easily found that the results shown in Figure 3.5 for buckling are similar to 

those shown in Figure 3.3 for free vibration. Both consistently suggest that the overall 

stiffness of rectangular elastic membranes of two independent bending rigidities could 

be considerably lower than a classical elastic plate of admissible positive Poisson ratio 

and is much more sensitive to the bending rigidity ratio Dg/D than a classical elastic 

plate of admissible positive Poisson ratio. In particular, the overall mechanical stiffness 

of the non-classical rectangular membrane could be vanishingly low when the Gaussian 

bending rigidity approaches zero. Also similarly, it is seen from Figure 3.6 that these 

conclusions cannot hold for the second lowest buckling force associated with the 

buckling mode (1, 2). 

Here, it is noticed that the results shown in Figure 3.5 well agree with those shown in 

Kang (2005) and Yu (2008), see Table 3.3. (Comparison is not available for Figure3.6). 
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Table 3.3 Comparison of critical buckling force of a rectangular non-classical 

membrane. 

 

— 

 

b/a 

Dg/D 

-1  -0.7 -0.5 

This work 0.5 9.8696 9.1682 9.3798 

1 9.8696 9.3989 9.0793 

2 9.869 9.6047 8.9143 

Kang (Table 4, 

v=0, 0.3, 0.5) 

0.5 9.870 9.168 9.380 

1 9.870 9.399 9.079 

2 9.868 9.605 8.915 

Yu (Table 3, 

v=0, 0.3, 0.5) 

0.5 - - - 

1 - 9.400 - 

2 - 9.604 - 

 

3.4 Conclusions 

Basic mechanical behavior of a rectangular elastic membrane of two independent 

bending rigidities is examined, with particular interest in the case when the ratio of the 

Gaussian bending rigidity to the common flexural rigidity falls within the non-classical 

ranges which cannot be covered by any classical elastic plate/membrane with an 

admissible positive Poisson ratio within [0, 0.5]. The conclusions are: 

1. The overall mechanical stiffness of such a rectangular elastic non-classical 

membrane could be much lower than a classical elastic plate and become even 
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vanishingly low when the ratio of the Gaussian bending rigidity to the common 

flexural rigidity approaches zero. 

2. The overall mechanical stiffness of such a rectangular non-classical elastic 

membrane is very sensitive to the ratio of the Gaussian bending rigidity Dg to the 

common flexural rigidity D in the non-classical ranges, although it is insensitive 

within the classical range (-1, -0.5) covered by an elastic plate of an admissible 

positive Poisson ratio. 

3. The present results suggested that actual value of the Gaussian bending rigidity 

Dg can have a crucial effect on mechanical behavior of such rectangular non-

classical elastic membranes although it does not explicitly appear in the governing 

equation, and setting Dg=0 or assuming Dg/D=v-1 given by the flexural rigidity and 

Poisson ratio could cause unacceptable errors. 

These conclusions could be helpful to explain observed scattering of the data on 

mechanical behavior of non-classical elastic membranes of two independent bending 

rigidities, such as some biomembranes and atom-thick graphene membranes. 
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Chapter 4 

Mechanical behavior of a circular non-classical elastic 

membrane 

In Chapter 2, we discussed the bending strain energy of non-classical elastic membranes, 

especially the contribution of the Gaussian curvature to the bending strain energy. As 

stated, the Gaussian curvature term vanishes when all edges of a plate/membrane are 

either clamped or piecewise straight and hinged. To study the Dg-effect on the 

mechanical responses of the Helfrich-like elastic membrane, our attention focuses on 

two practically important cases: a rectangular membrane with two opposite free edges, 

and a hinged circular membrane. The rectangular membrane case has been studied in 

Chapter 3. In this chapter, similar to the rectangular case, the deflection, vibration and 

buckling of a hinged circular elastic membrane will be investigated systematically with 

an emphasis on the non-classical ranges ((-2, -1] & [-0.5, 0)) of the ratio Dg/D. 

To this end, a hinged circular membrane of radius r   is considered in this chapter on 

using the polar coordinate system (  ,  ). The general governing equation (2.13) and 

boundary conditions (equations (2.16)-(2.18)) obtained in Chapter 2 have to be 

transferred into the polar coordinate system. The governing equation in polar 

coordinates is 

 
2 2 2

4

2 2 2

1 1 1
( ) 2 ( ) 0

2

o o ow w w w w
D w q F F F m

t
  

      

     
       

    
. (4.1) 



34 

 

where the biharmonic differential operator is 

 
2 2

4 2

2 2 2

1 1
( )

   

  
   

 
; 

and q is the applied transverse load; oF , 
oF  and oF  are constant in-plane tensile 

forces and shear force. The three standard boundary conditions in polar coordinates are 

 : 0; 0
w

Clamped w



 


, (4.2) 

 
2

2

1
: 0; ( ) 0g

w w
Hinged w D D D

 

 
   


, (4.3) 

 
2 2

2

2

1 1 1
: ( ) 0; ( ) ( ) 0g g

w w w w
Free D D D D w D

        

     
      

     
.(4.4) 

It is noticed that the governing equation (4.1) is well known in many textbooks (e.g. 

Reddy, 1999). Also the boundary conditions (4.2-4.4) reduce to the known form of a 

classical circular elastic plate when Dg/D=v-1 (equation (12.11) on p.51 of Landau and 

Lifshitz, 1970, equation (5.2.15a) on p.183 of Reddy, 1999). 

 

4.1 Deflection 

4.1.1 Formulation 

In deflection case, similar to the rectangular membrane, only a constant transverse load 

q is considered. Due to the axisymmetry of the boundary conditions and the applied 

transverse load (i.e. the deflection w is a function of  ), the governing differential 

equation becomes 
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2

2

2

1
( )

d d
D w q

dd  
  . (4.5) 

In this case, the general solution for deflection w which satisfies the governing equation 

(4.5) is 

 
4

2
1 2

64

q
w A A

D


   , (4.6) 

where the unknown constants A1 and A2 can be determined by the hinged boundary 

conditions (4.3) at r  . Then we obtain 

 

2 2 4

2 2

6 /
( )(1 )
2 / 64

g

g

D D qr
w

D D Da a

 
  


. (4.7) 

For the purpose of comparison, the deflection of the membrane at the center is 

 

46 /
( )
2 / 64

g

g

D D qr
w

D D D





. (4.8) 

 

4.1.2 Result and discussion 

Figure 4.1 shows how the dimensionless deflection 64Dw/qr4 at the center of a hinged 

non-classical circular membrane varies as the ratio Dg/D changes from -2 to 0. The 

entire range of the ratio Dg/D is divided into three cases as in Chapter 3: 

a).Dg/D falls within (-2,-1] (which is equivalent to a classical elastic plate/membrane 

with a negative but admissible Poisson ratio within (-1, 0], an admissible but unlikely 

case for most natural and engineering materials); 

b).Dg/D falls within [-1, -0.5] (which is equivalent to a classical elastic Dg/D falls 

within [-1, -0.5] (which is equivalent to a classical elastic plate/membrane with an 
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admissible positive Poisson ratio within [0, 0.5], a classical case valid for most natural 

and engineering materials); 

c).Dg/D falls within [-0.5,0) (which is equivalent to a classical elastic plate with an 

inadmissible Poisson ratio in [0.5, 1), a case impossible for all real isotropic linearly 

elastic membranes). 

It is seen from Figure 4.1 that, unlike the rectangular case studied in Chapter 3, the 

dimensionless transverse deflection 64Dw/qr4 of the circular membrane monotonically 

depends on the ratio Dg/D in the entire range (-2, 0). The dimensionless deflection in the 

non-classical case a) can be much (even more than a few times) larger than that of a 

classical elastic plate of admissible positive Poisson ratio under the same transverse 

loading and geometrical conditions. On the other hand, the dimensionless deflection in 

the non-classical case c) is slightly lower than that of a classical elastic plate. In addition, 

 

Figure 4.1 Transverse deflection of a hinged circular non-classical membrane. 
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the deflection of the hinged circular membrane diverges when the bending rigidity ratio 

Dg/D goes to the lower limit -2, while similar divergence happens for the rectangular 

membrane studied in Chapter 3 when the bending rigidity ratio Dg/D approaches the 

upper limit 0. 

Here, it is worth to mention that the dimensionless deflection 64Dw/qr4 is 4.076 when 

the ratio Dg/D is -0.7, which well agrees with the value 4.07 given by (Kanthan, 1958) 

for a classical hinged elastic circular plate with the Poisson ratio v=0.3. 

 

4.2 Vibration 

4.2.1 Formulation 

For free vibration of a hinged circular non-classical elastic membrane, the equations 

(3.7)-(3.9) remain valid. The mode shape function W(  ,  ) which satisfies the 

governing equation and no-singularity conditions at the center (  =0) is given by (Lessia, 

1969) 

 1 n 2 n=[B J ( )+B I ( )]cosW n   , (4.9) 

where = /m D  ; B1, B2 are two unknown constants to be determined by the 

boundary conditions (4.3) at r  ; Jn and In are the first kind of Bessel functions and 

the modified Beseel functions, respectively. The subscript n denotes the number of 

nodal diameters. Using equation (4.9) in boundary conditions (4.3) at r   gives a 

system of linear equations for B1, B2. The unknowns B1 and B2 cannot be all zero, thus 

the determinant of the coefficient matrix must be zero: 
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

   
, (4.10) 

which yields an equation to solve for the dimensionless frequency 2 /r m D . 

 

4.2.2 Result and discussion 

For free vibration of a hinged circular non-classical membrane, the dimensionless 

frequency parameter 2 /r m D  with n=0 (which indicates that the only nodal diameter 

is the boundary circle) is shown in Figures 4.2 and 4.3 for two lowest frequencies, with 

one or two nodal circles, respectively. 

Firstly, like the deflection case in Section 4.1, it is seen from Figures 4.2 and 4.3 that the 

 

Figure 4.2 Fundamental frequency of a hinged circular non-classical membrane. 
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Figure 4.3 Frequency of a hinged circular non-classical membrane with two nodal 

circles. 

dimensionless frequency 2 /r m D  monotonically depends on the ratio Dg/D. The 

dimensionless fundamental frequency in the non-classical case a) can be much (even a 

few times) lower than that of a hinged classical elastic circular plate of an admissible 

positive Poisson ratio under otherwise identical conditions, while the dimensionless 

fundamental frequency in the non-classical case c) is slightly higher than that of a 

hinged classical elastic circular plate. This suggests that a hinged non-classical circular 

elastic membrane of two independent bending rigidities could be considerably more 

compliant than a classical elastic plate when the bending rigidity ratio falls within (-2, -

1]. In particular, it is seen from Figure 4.2 that the dimensionless fundamental frequency 

2 /r m D  is vanishingly low when the bending rigidity ratio Dg/D goes to the lower 
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limit -2, while 2 /r m D approaches a certain value slightly higher than that of a 

hinged classical elastic circular plate when the ratio Dg/D approaches the upper limit 0.  

Clearly, these results are consistent with those obtained in Section 4.1 for static 

deflection. Both suggest that the overall stiffness of a hinged circular elastic membrane 

of two independent bending rigidities could be considerably lower than a classical 

elastic plate of admissible positive Poisson ratio when the bending rigidity ratio Dg/D 

falls within the range (-2, -1], while its overall mechanical stiffness could be even 

slightly higher than a classical elastic plate when the bending rigidity ratio Dg/D falls 

within the non-classical range [-0.5, 0). However, it is seen from Figure 4.3 that these 

conclusions do not hold for the frequency associated with two nodal circles. 

Here, it is worth to mention that the dimensionless frequency 2 /r m D  shown in 

Figure 4.2 and 4.3 well agrees with those given in Reddy (1999) and Lessia (1969) for a 

hinged classical circular plate with the Poisson ratio v=0.3, see Table 4.1. 

Table 4.1 Comparison of frequencies of a hinged circular non-classical membrane at 

Dg/D=-0.7. 

 

— 

Nodal circle 

1 2 

This work 4.9351 29.7200 

Lessia (v=0.3) 4.977 29.76 

Reddy (Table 

5.5.2,v=0.3) 

4.977 29.76 
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In addition, the values of the dimensionless fundamental frequency obtained by the 

present work for Dg/D=-0.75 and -0.667, which are equivalent to a classical elastic 

plate/membrane with the Poisson ratio v=0.25 and 0.333, respectively) are in agreement 

with those reported in literature (Lessia, 1969). 

 

4.3 Buckling 

4.3.1 Formulation 

Now let us consider buckling of a hinged non-classical circular membrane under a 

uniform radial compression load -P* (per unit length, P*>0) applied along the circular 

boundary, then *=o oF F P     and the buckling is governed by 

 
2 2

4 *

2 2 2

1 1
( + ) 0

w w w
D w P

   

  
   

 
. (4.11) 

The deflection function w which satisfies the governing equation (4.11) and the no-

singularity conditions at the center of such a circular membrane are 

 1 2[ ( ) ( ) ]cosn
nw C J C n    , (4.12) 

where *= /P D . C1, C2 are two unknown constants to be determined by the boundary 

conditions (4.3) at r  ; Jn is the first kind of Bessel functions, and n still denotes the 

number of nodal diameters. Substituting equation (4.12) into the boundary conditions 

(4.3) at r   gives a system of linear equations for C1, C2. The unknowns C1, C2 

cannot be all zero, thus the determinant of the coefficient matrix must be zero, which 

yields an equation to solve for the buckling force: 
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1( ) ( ) 0n g nD rJ r D J r    .                                        (4.13) 

 

4.3.2 Result and discussion 

Similar to free vibration of a hinged circular membrane, the dimensionless buckling 

force */r P D  with n=0 (which indicates that the only nodal diameter is the boundary 

circle) is shown in Figures 4.4 and 4.5 for two buckling forces with one or two nodal 

circles, respectively. 

 

 

Figure 4.4 Critical (lowest) buckling force of a hinged circular non-classical membrane. 
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Figure 4.5 Buckling force of a hinged circular non-classical membrane with two nodal 

circles. 

It is seen from Figure 4.4 that the dimensionless critical (lowest) buckling force 

* /r P D
 
monotonically depends on the ratio Dg/D. The dimensionless critical 

buckling force in the non-classical case a) can be much (even a few times) lower than 

that of a classical elastic plate of an admissible positive Poisson ratio under otherwise 

identical conditions, while the dimensionless critical buckling force in case c) is slightly 

higher than that of a classical elastic plate. Consistent with the results obtained in free 

vibration, this also suggests that a hinged circular elastic membrane of two independent 

bending rigidities could be considerably more compliant than a classical elastic plate 

under the same geometry conditions when the bending rigidity ratio falls within the 

range (-2, -1]. 



44 

 

Clearly, the results shown in Figures 4.4 and 4.5 for buckling are similar to those shown 

in Figures 4.2 and 4.3 for free vibration. Both consistently suggest that overall stiffness  

of a hinged circular elastic membrane of two independent bending rigidities could be 

considerably lower than a classical elastic plate of admissible positive Poisson ratio 

when the bending rigidity ratio falls within the range (-2, -1], while its overall stiffness 

could be slightly higher than a classical elastic plate under otherwise identical 

conditions when the bending rigidity ratio falls within the range [-0.5, 0). 

In particular, it is seen from Figure 4.4, that the overall stiffness of a hinged circular 

non-classical elastic membrane could be vanishingly low when the ratio Dg/D 

approaches the lower limit -2, while it approaches a certain value slightly higher than 

that of a hinged classical elastic circular plate when the ratio Dg/D approaches the upper 

limit 0. Similarly, it is seen from Figure 4.5 that these conclusions do not hold for the 

bucking force associated with two nodal circles. 

Here, it is noticed that the results shown in Figures 4.4 agree with some known results. 

For example, when the ratio Dg/D= -0.7, which is equivalent to a classical elastic 

plate/membrane with the Poisson ratio ν=0.3, the value shown in Figure 4.4 is 2.0489, 

in good agreement with Najafizadeh et al. (2002) who gave a value of 2.0480. 

 

4.4 Conclusions 

Mechanical behavior of a hinged circular elastic membrane of two independent bending 

rigidities is examined, with particular interest in the case when the ratio Dg/D of the 
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Gaussian bending rigidity to the common flexural rigidity falls within the non-classical 

ranges which cannot be covered by any classical elastic plate/membrane with an 

admissible positive Poisson ratio within [0, 0.5]. The main conclusions are summarized 

as follows: 

1. The overall mechanical stiffness of a hinged circular non-classical elastic 

membrane monotonically depends on the ratio Dg/D of the Gaussian bending 

rigidity to the common flexural rigidity for the entire admissible range (-2, 0) of 

the ratio Dg/D. The overall stiffness could be much lower than a classical elastic 

plate of admissible positive Poisson ratio when the ratio Dg/D falls within the range 

(-2, -1], while it approaches a certain value slightly higher than that of a classical 

elastic circular plate when the ratio Dg/D approaches the upper limit 0. 

2. In particular, the overall stiffness of a hinged circular non-classical elastic 

membrane could be vanishingly low when the ratio Dg/D approaches the lower 

limit -2. In this limit case, the deflection under a uniform transverse pressure 

becomes infinitely large, and the lowest fundamental frequency and critical 

buckling force become vanishingly low. 

3. Based on these results and those obtained in Chapter 3 for a rectangular 

membrane, it is concluded that the actual effect of the Gaussian bending rigidity 

depends on the geometrical shape and boundary conditions of the non-classical 

elastic membranes, and the actual value of the Gaussian bending rigidity Dg could 

play an important role in mechanical behavior of such non-classical elastic 

membranes although it does not explicitly appear in the governing equation. 
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Therefore, setting Dg=0 or assuming Dg/D=v-1 given by the flexural rigidity and 

Poisson ratio could cause unacceptable substantial errors. 
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Chapter 5 

Conclusions and future work 

5.1 Conclusions 

Basic mechanical behavior of a non-classical elastic membrane of two independent 

bending rigidities is studied, with particular interest in the cases when the ratio Dg/D of 

the Gaussian bending rigidity to the common flexural rigidity falls within the non-

classical ranges (-2, -1] and [-0.5, 0) which cannot be covered by any classical elastic 

plate/membrane with an admission positive Poisson ratio within [0, 0.5]. A rectangular 

membrane with two opposite free edges and a hinged circular membrane are examined 

systematically. The major conclusions are summarized below: 

1. For a rectangular non-classical elastic membrane of two independent bending 

rigidities, its mechanical behavior is a non-monotonic function of the ratio Dg/D. 

The results indicated that the overall mechanical stiffness of such a rectangular 

elastic membrane in the non-classical ranges of the ratio Dg/D is much lower than 

that of a classical elastic plate/membrane with an admissible positive Poisson ratio 

under otherwise identical conditions. In addition, the overall mechanical stiffness 

of such rectangular membranes in the non-classical ranges is much more sensitive 

to the ratio Dg/D than a classical elastic plate of an admissible positive Poisson 

ratio. 
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2. On the other hand, the mechanical behavior of a hinged circular non-classical 

membrane monotonically depends on the ratio Dg/D even in the two non-classical 

ranges, and its overall stiffness increases monotonically as the ratio Dg/D increases 

from -2 to 0 in the entire admissible range of Dg/D. Specifically, the overall 

stiffness of a hinged circular non-classical elastic membrane in non-classical range 

(-2, -1] could be much lower than a classical elastic plate of admissible positive 

Poisson ratio, while the overall stiffness in non-classical range [-0.5, 0) is higher 

than a classical elastic plate of admissible positive Poisson ratio under otherwise 

identical conditions. 

3. In particular, the overall mechanical stiffness of a rectangular non-classical 

membrane with two opposite free edges could be vanishingly low when the ratio 

Dg/D approaches its upper limit Dg/D=0, while the overall mechanical stiffness of 

a hinged circular non-classical membrane could be vanishingly low when the ratio 

Dg/D approaches its lower limit Dg/D=-2. 

4. For both cases, the present results suggested that the actual effect of the 

Gaussian bending rigidity depends on the geometrical shape and boundary 

conditions of the non-classical elastic membranes, and the actual value of the 

Gaussian bending rigidity Dg plays a crucial role in mechanical behavior of such 

non-classical elastic membranes although it does not explicitly appear in the 

governing equation. Therefore setting Dg to be zero or assuming Dg/D=v-1 given 

by the flexural rigidity and Poisson ratio could cause unacceptable substantial 

errors. 
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The general governing equation and boundary conditions of non-classical membrane of 

two independent bending rigidities derived in the present work can be used for the 

future study of mechanical behavior of such non-classical elastic membranes, like some 

biomembranes and atom-thick graphene monolayers. And some results obtained in the 

present thesis could provide plausible explanation and useful insight for some 

mechanical behavior of such non-classical elastic membranes reported in the literature. 

 

5.2 Future work 

In the thesis, we only deal with the small deflection problems of non-classical elastic 

membranes of two independent bending rigidities. A major topic for future work is the 

large deflection bending behavior of such non-classical elastic membranes of two 

independent bending rigidities. In that case, the governing equations would be nonlinear 

and the effect of the Gaussian bending rigidity on mechanical behavior is expected to be 

quite different than the linear small deflection case studied in the present thesis. 
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Appendix A 

The detailed derivation of the governing equation (2.13) and boundary conditions (2.16-

2.18) given in Chapter 2 are summarized in the Appendix A. 

The variational formulation of the bending strain energy is 
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and the external work is 
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The first term of (A.1) is 
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The transformation relations are 
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Apply (A.4) into (A.3) and integrate by parts, we have 
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(A.5) 

the term marked in (A.5) is zero since the boundary curve is closed. Similarly, 

, ,

4 3 2

2 2 2 2

4 2
2

2 2 2

2 3

2 2

[ ]

sin

( sin cos ) sin

xx yy

w w w w
w w dxdy wdxdy dx

x y x y x y

w w w
wdxdy ds

x y x n

w w
wds w ds

s x x y


 


 

    

  

 

 

   
  

     

  
 

   

  
 

   

  

 

 
;      (A.6) 

 



55 

 

, ,

4 2
2

2 2 2

2 3

2 2

cos

( sin cos ) cos

yy xx

w w w
w w dxdy wdxdy ds

x y y n

w w
wds wds

s y x y


  

   

  

 

  
 

   

  
 

   

  

 

;      (A.7) 

, ,

4 2
2

4 2

2 3

2 3

sin

( sin cos ) sin

yy yy

w w w
w w dxdy wdxdy ds

y y n

w w
wds w ds

s y y


  

    

  

 

  
 

  

  
 

  

  

 

;            (A.8) 

, ,

4 2

2 2

2
2 2

3 3

2 2

2 2 2 sin cos

[ (sin cos )]

cos sin

xy xy

w w w
w w dxdy wdxdy ds

x y x y n

w
wds

s x y

w w
w ds w ds

x y y x


   

  

   

  



 

  
 

    

 
 

  

 
 

   

  



 

;          (A.9) 

The terms related to the in-plane forces in (A.2) give 
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Substitute the equations (A.5)~(A.12) into (A.1) and (A.2) and apply the variational 

method, we have 
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(A.14) 

Combine the surface and line integrals in (A.13), respectively, we find 
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Therefore, the governing equation (2.13) is obtained from (A.15), and the boundary 

conditions (2.16-2.18) are obtained from (A.16) and (A.17). 


