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1. Introduction 18 

Due to the rapid development of the oil sands industry in northeastern Alberta, Canada, large 19 

quantities of tailings waste and oil sands process-affected water (OSPW) have been produced 20 
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over the past five decades (Chalaturnyk et al., 2002; Percy et al., 2012). Tailings waste is 21 

often temporarily stored in tailings impoundments called tailings ponds, however the ever-22 

increasing geographical footprints and the urgent demand to reclaim the disturbed landscape 23 

has prompted the construction of oil sands end pit lakes (EPLs) ( Hrynyshyn, 2012; Aubertin 24 

and McKenna, 2016). In EPLs, sand and clay tailings are placed in the bottom of mined-out 25 

pits and a water cap (made up of OSPW and fresh water from natural lakes or other healthy 26 

water bodies) is placed on top of the tailings (Hrynyshyn, 2012). The water cap is expected to 27 

develop into a thriving aquatic ecosystem capable of biodegrading chemicals of potential 28 

concern (Hrynyshyn, 2012). Base Mine Lake (BML) is the first commercial-scale 29 

demonstration EPL, which was commissioned by Syncrude Canada, Ltd. to support the 30 

development of this water capping technique for oil sands reclamation.  31 

Efforts have been made to bioremediate organic compounds in OSPW and oil sands tailings, 32 

such as BTEX (benzene, toluene, ethylbenzene and xylene) and naphthenic acids (NAs). The 33 

biodegradation of BTEX, n-alkanes (C14-C18) and naphtha (C3-C14) has been confirmed 34 

under methanogenic conditions by oil sands tailings microorganisms (Siddique et al., 2011, 35 

2007; Mohamad Shahimin and Siddique, 2017). NAs were known to be the major toxicity 36 

contributor in OSPW (Morandi et al., 2015), and its biodegradation tends to be more difficult 37 

where the utilization of chemical pre-treatment, such as advanced oxidation, has shown some 38 

success (Brown et al., 2013; Brown and Ulrich, 2015; Zhang, 2016; Zhang et al., 2018). 39 

Gamma irradiation treatment was also reported to stimulate the hydrocarbon degraders from 40 

the tailings microbial community (VanMensel et al., 2017).  41 

A less-studied aspect of EPLs is the bitumen in the tailings, left behind by the successive 42 

incomplete extraction processes. Bitumen remaining in the tailings after placement into the 43 

pit is carried upwards by biogenic gases (one of the proposed processes), and the viscous 44 
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liquid spreads over the water cap (Darling, 2011). This bitumen acts as a hydrocarbon source: 45 

as it migrates through the water cap, the hydrocarbons are released and subsequently 46 

biodegraded, a process which consumes dissolved oxygen and prevents the establishment of a 47 

healthy lake ecosystem. If the bitumen cannot be further degraded or mineralized in situ, the 48 

hydrocarbons can contaminate the aqueous environment and the nearby littoral zone.  49 

Hydrocarbon-degrading microbial isolates from sediments of the Athabasca River have been 50 

shown to grow on the lighter components of Athabasca bitumen (not on the recalcitrant 51 

asphaltene fraction) (Wyndham and Costerton, 1981). Microbial degradation of bitumen (up 52 

to 40% removal at 37 °C) was also reported in similarly polluted environments in other 53 

regions of the world (Wyndham and Costerton, 1981; Potter and Duval, 2001; Das and 54 

Chandran, 2011). Bitumen biodegradation can be enhanced by nutrient addition (nitrogen or 55 

phosphorus) and stimulated by addition of more easily biodegradable carbons (Das and 56 

Chandran, 2011). The most effective hydrocarbon degradation is usually accomplished under 57 

aerobic conditions, while nutrients and temperature are often the most important limiting 58 

factors of the process (Das and Chandran, 2011). Because bitumen is complex, and its 59 

biodegradation has been demonstrated to occur under various conditions, site-specific factors 60 

are important to the feasibility of in situ remediation.  61 

Our previous research showed (Yu et al., 2018), the addition of a proprietary blend of 62 

microbes, enzymes and organics to tailings resulted in significant reduction in the petroleum 63 

hydrocarbon fractions and tailings pore water toxicity. It was unclear whether these changes 64 

were caused by the indigenous microbial community or by the added microbes and organic 65 

carrier in the Cypher product. Therefore, the focus of this study was to investigate the ability 66 

of the microbial communities in BML to degrade bitumen, and the effectiveness of 67 
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biostimulation with acetate. The changes in community composition and community 68 

responses were assessed by comparing 16S rRNA gene sequence profiles.  69 

2. Materials and methods 70 

2.1 Materials  71 

All samples were transported to the laboratory in sealed buckets and stored at 4 °C prior to 72 

use (bitumen samples were stored for 6 months; water and tailings samples were stored for 73 

less than one month). Fluid fine tailings (FFT) were provided by Syncrude Canada Ltd. FFT 74 

was sampled at the depth of 12 m below the sediment:water interface at Platform 1 at BML. 75 

Extraction technique limitations cause unrecovered bitumen to end up in tailings; this 76 

residual bitumen can be observed upon commission of the BML (in this paper, ‘bitumen’ 77 

refers to the residual bitumen in the BML). BML bitumen used in this research was sampled 78 

directly from the BML surface. To eliminate moisture content, the bitumen was oven-dried at 79 

105 °C overnight. However, this drying process sacrificed any volatile and semi-volatile 80 

hydrocarbon that may have resided within the bitumen. Clays, sands and other small particles 81 

were retained, but vegetation and large stones were manually removed. BML cap water used 82 

in this research was sampled from the surface of BML at Platform 1. 83 

2.2 Chemical analysis 84 

CO2 was measured by a gas chromatography thermal conductivity detector. Dissolved 85 

organic carbon (DOC) was measured with a Shimadzu Model TOC-LCPH. Acetate was 86 

measured by Ion Chromatography. NAs were measured by gas chromatography flame 87 

ionization detector (GC-FID) or by reversed-phase chromatography paired with a linear ion 88 

trap-Orbitrap mass spectrometer. Detailed procedures and machine conditions for all methods 89 

above can be found in the supplementary data: CO2 measurement (Protocol S1), DOC 90 
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measurement (Protocol S2), acetate measurement (Protocol S3), and NAs measurements 91 

(Protocol S4). 92 

Petroleum hydrocarbons (PHC) are grouped into these fractions by using a Canada-Wide 93 

Standard: F1 (C6 - C10), F2 (C10 - C16), F3 (C16 - C34), F4 (C34 - C50), and F4G-SG (> 94 

C50) (CWS, 2003). F4 and F4G-SG fractions are classified into bitumen content in the Dean 95 

Stark extraction (industry accepted method) (Dean, E. W., 1920). F1 fractions were measured 96 

prior to submission to Maxxam Analytics and were non-detectable in all samples. All 97 

samples were mixed with organic solvent (toluene) and sonicated for greater homogeneity 98 

prior to submission to Maxxam. Maxxam then further homogenized the samples. One 99 

duplicate was submitted for analysis due to the sample size limitations.  100 

2.3 Microbial analysis 101 

2.3.1 Toxicity bioassay  102 

The toxicity of aqueous samples was analyzed using the Microtox® bioassay. The 81.9% 103 

Basic Test protocol was followed (Microtox® 500 Analyzer, Azur Environmental) with an 104 

incubation time of 5 min (Anderson et al., 2011). Light emission was measured with 105 

MicrotoxOmni software to determine inhibitory concentration 20% (IC20) or inhibitory 106 

concentration 50% (IC50) value. Toxicity units, derived from IC50 ( ), was 107 

used to visualize high-level toxicity trends.  108 

2.3.2 DNA extraction  109 

DNA was isolated from the tailings phase using the FastDNA™ SPIN Kit for Soil (MP 110 

Biomedicals). Up to 500 mg of tailings were used per extraction, following the DNA 111 

isolation protocol suggested by the manufacturer.  112 
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2.3.3 Bacterial population by qPCR assay  113 

The Bacterial population was determined by the qPCR amplification of the RNA polymerase 114 

beta subunit (rpoB) gene, utilizing rpoB 1698f (5’-AACATCGGTTTGCTCAAC-3’) and 115 

rpoB 2041r (5’-CGTTGCATGTTGGTACCCAT-3’) primers (Nava et al., 2011; Brown et al., 116 

2013). The qPCR assay was performed using a Bio-Rad CFX96 optical reaction module 117 

conversion of the C1000 Touch thermal cycler. All samples and standards were completed in 118 

triplicate, and the amplification data was analyzed using Bio-Rad CFX ManagerTM 3.0 119 

software. The reaction followed the protocol suggested by the manufacturer (detailed 120 

description can be found in Protocol S5). The qPCR assay was performed on DNA samples 121 

extracted from the tailings/solid phase at the start and end of the experiment. Each biological 122 

duplicate was measured three times (n = 6) for the end of the experiment, and the original 123 

tailings samples were measured six times (n = 6) to determine the initial bacterial population 124 

density for all groups. 125 

2.3.4 Microbial communities  126 

DNA samples were used for PCR amplification of the V4 hypervariable regions of bacterial 127 

16S rRNA genes, using the primers 515F (5‘-GTGCCAGCMGCCGCGGTAA-3‘) and 806R 128 

(5‘-GGACTACVSGGGTATCTAAT-3‘) (Caporaso et al., 2011). The PCR conditions were 129 

94 °C for 2 min; 30 cycles of 94 °C for 30 s, 50 °C for 30 s and 72 °C for 1 min of extension; 130 

72 °C for 6 min. The PCR products were purified and combined in equimolar ratios with the 131 

quantitative DNA binding method to create a DNA pool that was further used for sequencing 132 

from the adapter. The 16S rRNA gene fragments were sequenced using the Illumina MiSeq 133 

platform. The sequences were deposited in Sequence Read Archive (SRA) within the study 134 

with accession number SRP131750. Operational taxonomic units (OTUs) were constructed 135 

using an identity threshold of 97% and assigned to taxa using the UPARSE pipeline (Edgar, 136 
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2013). The community matrix was normalized with the DESeq package (Love et al., 2014). 137 

The bacterial communities were ordinated with non-metric multidimensional scaling based 138 

on the Bray-Curtis distance matrix using phyloseq (McMurdie and Holmes, 2013).           139 

2.4 Biodegradation experiments 140 

Aerobic conditions were used for the biodegradation experiments since the BML water cap is 141 

aerobic during the summer and fall season. A second benefit is because oxidative 142 

biodegradation is also considered more effective and occurs at higher rates than anaerobic 143 

biodegradation (Ait-Langomazino et al., 1991; Wolf and Bachofen, 1991). Experiments were 144 

set up in 500 mL Fisherbrand™ reusable glass media bottles with customized septum caps 145 

for sample withdrawal. All bottles were placed on a horizontal shaker at 150 rpm at room 146 

temperature (20 °C). Aerobic conditions were maintained by a sequential renewal of air (0.22 147 

µm filtered-sterile, every 10 d for the active groups and every month for control groups). 148 

Bottles, caps, and glass beads were sterilized by autoclave (121 °C, 100 kPa). Filtered BML 149 

water (500 mL), and glass beads (40 g) were used for all groups. When indicated, the 150 

following was also added: sodium acetate (250 mg measured as carbon), 10 g bitumen, and 151 

40 g FFT. FFT was used as the indigenous inoculation used in this study. The four test groups 152 

were BML-B, BML-BT, BML-BTC and BML-T (BML: 0.22 µm-filtered BML water, B: 153 

bitumen addition, T: tailings addition and C: sodium acetate addition). Two replicates were 154 

set up for each group. 155 

BML-B shows the effect of bitumen on water quality and how the bitumen composition 156 

changes over time with exposure to the BML water. BML-T contains tailings and BML water, 157 

to reflect the conditions of an oil sands end pit lake near the mud line level (presumably with 158 

little bitumen). BML-BT represents an area of a bitumen-impacted oil sands end pit lake 159 
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where bitumen accumulates over time. BML-BTC represents the situation described in BML-160 

BT with acetate biostimulation. 161 

3. Results and discussion 162 

3.1 CO2 and DOC 163 

Microbial degradation of an undefined and complex substrate (i.e. BML bitumen) can be 164 

quantified by monitoring CO2 production (Wolf and Bachofen, 1991). Biodegradation 165 

experiments were set up in sealed bottles with customized caps allowing for sample 166 

withdrawal. The pressure in the headspace was also measured to convert the CO2 167 

concentration within the sealed bottle to the concentration under the ambient atmosphere 168 

pressure. Air renewal introduced low amounts of CO2 into the system but did not 169 

significantly contribute to the CO2 concentration within the bottle. Headspace CO2 170 

concentration and DOC are shown in Fig. 1.  171 

The data indicate that CO2 production rates are 5.3‒58 times greater in the other three groups 172 

relative to the control (Fig. 1). BML-B and BML-T groups both had linear CO2 production 173 

with rates of 0.17 mg L-1 d-1 (R2 = 0.97) and 0.91 mg L-1 d-1 (R2 = 0.97), respectively. BML-174 

BTC and BML-BT had linear CO2 production during the first 10 d with rates of 9.97 mg L-1 175 

d-1 (R2 = 0.99) and 6.19 mg L-1 d-1 (R2 = 0.99), respectively. BML-BTC and BML-BT rates 176 

decreased rapidly and concentrations plateaued at 40 d with final concentrations of 177 

approximately 130 mg L-1 and 90 mg L-1, respectively.  178 

Studies have shown that co-oxidation can occur during petroleum hydrocarbon degradation 179 

(Herbes and Schwall, 1978; Atlas, 1981; Varjani, 2017). Large amounts of partially oxidized 180 

metabolites from petroleum hydrocarbon biodegradation accumulate instead of full 181 

mineralization of the parent compounds to CO2 (Herbes and Schwall, 1978; Atlas, 1981; 182 
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Varjani, 2017). As a result, CO2 production would grossly underestimate the degradation 183 

rates of the parent compounds (Herbes and Schwall, 1978).  184 

DOC decrease was only observed in the BML-BTC group (from approximately 500 mg L-1 to 185 

approximately 380 mg L-1). However, this decrease was not due to the presence of acetate 186 

(DOC in the form of acetate: from about 290 mg L-1 to about 320 mg L-1). Acetate might be 187 

utilized by indigenous microbes and also produced as a by-product during incubation. 188 

Therefore, the removal of DOC was more likely associated with the indigenous carbon 189 

source originating from BML water or tailings pore water via co-oxidation processes 190 

stimulated by the acetate addition.  191 

There were three possible sources of organic carbon in this experiment: DOC in BML water, 192 

DOC or particulate carbon in the tailings, and dissolved or particulate carbon in the added 193 

bitumen. DOC measurements only represent the soluble organic carbon originating from 194 

BML and tailings pore water. Previous research indicates that 80% of DOC in OSPW are 195 

NAs (Nelson et al., 1993; Allen, 2008). NAs contribute to the acute toxicity of OSPW, and 196 

remain recalcitrant to microbial degradation (Morandi et al., 2015). Therefore, removal of 197 

DOC including NAs is one target for remediation in BML. Slightly soluble or insoluble 198 

organics likely originate from the FFT and the added bitumen: organics leaching from 199 

bitumen usually have more complex chemical structures and lower solubility (Hayes et al., 200 

1972; Ait-Langomazino et al., 1991; Das and Chandran, 2011). Therefore, microbial 201 

degradation of these hydrocarbons often requires an increase in their bioavailability, for 202 

example via the secretion of polysaccharides by microbes that enhance adhesion and 203 

emulsify hydrocarbons (Wyndham and Costerton, 1981; Neu Thomas R., 1996). Although 204 

microbial colonization of bitumen surfaces has been demonstrated, microbial degradation of 205 
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bitumen has not yet been shown experimentally (Wyndham and Costerton, 1981). However, 206 

microbial activity was observed, and was further investigated in section 3.2.  207 

3.2 Non-aqueous phase organics 208 

Insoluble or slightly soluble hydrocarbons might also be microbially degraded or altered 209 

during incubation. Therefore, tailings samples were analysed for petroleum hydrocarbon 210 

composition. F2, F3, F4, and F4G-SG data are shown in Fig. 2.  211 

The BML-T group had the lowest concentrations of all hydrocarbon fractions. Bitumen was 212 

added to the other three groups. Heavier hydrocarbons were present in the bitumen than in 213 

the tailings. Bitumen addition greatly influenced the petroleum hydrocarbon distribution: 214 

BML-B, BML-BT and BML-BTC had a similar distribution of these four classifications: F2: 215 

1%, F3: 21‒22%, F4: 10% and F4G-SG: 67‒68%, while BML-T had a unique distribution of: 216 

F2: 5%, F3: 28%, F4: 12% and F4G-SG: 55%.  217 

Concentrations of all hydrocarbon fractions on day 100 followed a similar trend: BML-B > 218 

BML-BT, BML-BTC > BML-T. The decrease in hydrocarbon concentration in the BML-B 219 

group represents any baseline abiotic (desorption) and biotic (microorganisms could be 220 

attached to the bitumen surface) processes occurring in this fraction. The BML-T group 221 

displayed a > 90% removal of all hydrocarbon fractions. This is likely due to microbial 222 

degradation, since FFT is a known source of microorganisms. Greater reduction in 223 

hydrocarbon fractions was seen in the BML-BTC group (reductions: F2: 64%, F3: 58%, F4: 224 

58% and F4G-SG: 68%) when compared to the BML-BT group (reductions: F2: 23%, F3: 225 

26%, F4: 24% and F4G-SG: 35%). Due to the intrinsic complexity of the analysis, PHC 226 

change was more statistically significant for BML-BTC group, not in BML-B and BML-BT 227 

groups. The PHC results indicates that the addition of acetate may have triggered co-228 

metabolic processes and that more hydrocarbons were catabolized in the presence of acetate.  229 
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Removal of dissolved organics was not improved in the presence of acetate. Therefore, 230 

although acetate may have stimulated the degradation of heavier non-aqueous organic 231 

compounds from residual bitumen, it did not substantially affect the removal of dissolved 232 

organics as shown by DOC in Section 3.1. Previous studies have shown that acetate addition 233 

to oil sands tailings resulted in reduced anaerobic degradation of lower end PHCs (Stasik et 234 

al., 2015). The delay in biodegradation may be linked to pH reduction as a result of acetate 235 

accumulation and competition for limited nutrients and electron acceptors (Stasik et al., 236 

2015). However, this inhibition of acetate was not seen in this research, potentially because 237 

of the different redox level or because of different metabolic pathways of the various PHCs.  238 

3.3 AEOs and O2
- compounds   239 

Acid Extractable Organics (AEOs) were measured by GC-FID, which comprises a broad 240 

class of organic compounds (e.g., O2
- compounds, nitrogen‐containing species (NOn and 241 

N2On), and sulfur‐containing species (OnS and OnS2)), and AEOs include NAs as defined by 242 

O2
- compounds, which were more specifically measured with an Orbitrap mass spectrometer 243 

as described in Section 2.2.4 (Headley et al., 2011). Start and end data were shown in Fig. 3. 244 

NAs solubility is influenced by pH (Headley et al., 2002), so pH was also tracked. On day 0, 245 

pH was about 8.3 for all groups. After 100 d, pH was 8.15 ± 0.22, 7.53 ± 0.25, 7.70 ± 0.01, 246 

and 8.04 ± 0.03 for BML-B, BML-BT, BML-BTC, and BML-T respectively. This pH change 247 

is not significant enough to greatly influence NA solubility (Headley et al., 2002). Therefore, 248 

the main influence on NAs concentration changes should be physiochemical and biological 249 

processes.  250 

Unextracted bitumen has long been suspected a source of petroleum acids including NAs 251 

(Quagraine et al., 2005a). BML-B group demonstrated that bitumen was a source of AEOs 252 
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but not of O2
- compounds. 20-40% removal of O2

- compounds was observed in groups 253 

containing tailings (BML-BT, BML-BTC, BML-T), demonstrating the ability of indigenous 254 

microbes to remove both NAs and bitumen-sourced organic acids.  255 

3.4 Toxicity  256 

Liquid phase toxicity was measured on day 0, 48, and 100, as shown in Fig. 4. Day 0 samples 257 

were taken within 3 h of setting up the bottles. On day 0, differences could be observed: 258 

BML-B had the highest toxicity tested by Microtox®, indicating that bitumen may 259 

significantly contribute to toxicity. In the BML-T group, aqueous toxicity was reduced over 260 

100 d from 1.0 TU to about 0.2 TU, which indicates the aqueous phase could be detoxified 261 

by exposure to the native microbial activities in cap water. In other groups, bitumen was 262 

likely the primary cause of the increased toxicity over time.  263 

In BML-B and BML-BT groups, toxicity increased 3.5 times and 25 times, respectively. The 264 

higher final toxicity in the sample containing the tailings may have been caused by toxic 265 

metabolic intermediates produced by the microbial degradation of organics in the tailings. In 266 

the BML-BTC group, a different trend was observed: after 48 d, toxicity increased 8.3 times 267 

(10 TU, similar to BML-B and BML-BT) but did not significantly increase further after 100 268 

d (7.9 TU ± 4.2 TU). Different microbial degradation pathways may have resulted from the 269 

addition of acetate, which resulted in different metabolic intermediates, indicating that the 270 

addition of acetate could help detoxify bitumen-polluted aqueous environments. In previous 271 

research (Yu et al., 2018), the addition of a proprietary blend of microbes and organics 272 

allowed the detoxification of bitumen-containing cultures, suggesting that the addition of 273 

readily-degradable organic compounds could help detoxify bitumen-polluted aqueous 274 

environments in the presence of proper microbial communities.  275 

3.5 qPCR 276 
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DNA extraction from the BML-B group was not successful, suggesting low bacterial 277 

populations. DNA from other groups was extracted and rpoB gene copy numbers were 278 

measured by qPCR (Fig. 5). BML-BT had a 70% reduction in the bacterial density, while this 279 

group had the highest CO2 production. No DNA samples were tested between day 0 and day 280 

100, so it is unknown how the bacterial population changed over time. As shown in Fig. 4, 281 

the toxicity increased significantly over time, which might have caused the decrease in 282 

bacterial density (Fig. 5). Bacterial growth showed a reduction in the bacterial density in the 283 

presence of the bitumen. BML-BTC had a 3.8 times bacterial density increase, which was 284 

stimulated by the addition of acetate. Although complete mineralization of hydrocarbons 285 

(observed as CO2 generation) was less effective in the BML-BTC group, more effective 286 

removal of heavier hydrocarbons (Fig. 2) and more rapid population growth of bacteria was 287 

observed. BML-T group’s bacterial density remained relatively constant (1.3 times denser). 288 

BML-T group had the lowest available hydrocarbons, but also the lowest toxicity levels due 289 

to the lack of bitumen.  290 

3.6 Microbial community analysis 291 

Oxidative culture conditions were used in this study. Therefore, archaeal species, which have 292 

been reported to be mostly methanogens in oil sands tailings (Penner and Foght, 2010; 293 

Siddique et al., 2012), were rarely detected in this set of experiments (e.g., relative abundance 294 

about 0.1% in BML-T group). This discussion focuses on bacterial communities.  295 

Microbial community composition profiles, shown in relative abundance (%), of BML-T, 296 

BML-BT, BML-BTC groups and the original tailings microbial community (labeled as “Day 297 

0 Tailings”) are shown in Fig. 6. The microbial community composition profile in the Day 0 298 

Tailings sample represents the indigenous tailings microbial community, used as a reference 299 

for the other three groups. The change in the microbial community composition profile 300 
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during the experiment in groups BML-T, BML-BT and BML-BTC compared to Day 0 301 

Tailings represents the response of the indigenous microbial community under the conditions 302 

described in Section 2.4. Microbial communities in these three groups have changed 303 

significantly from the original tailings microbial community (Day 0 Tailings).   304 

Not surprisingly, the relatively more abundant species found in this study are well-known 305 

oil/hydrocarbon degraders which have been reported in a variety of oil-contaminated 306 

environments (Sánchez et al., 2006; Yakimov et al., 2007; Bartram et al., 2011; Gray et al., 307 

2011; Kostka et al., 2011; Siddique et al., 2012; Yergeau et al., 2012). These bacteria have 308 

also been reported to exist in oil sand tailings ponds and in the Athabasca River and its 309 

tributaries (Penner and Foght, 2010; Ramos-Padrón et al., 2011; Siddique et al., 2012; 310 

Yergeau et al., 2012; Chávez, 2014; Foght et al., 2017). Many of these species are facultative 311 

anaerobes. However, nitrate and sulphate levels were constant for these two electron 312 

acceptors, and methane in the headspace was below detection limit (< 1mg L-1) during the 313 

incubation period. 314 

Marinobacter was the most abundant genus found in the Time 0 Tailings (> 29%). 315 

Marinobacter has been found in many studies to be an effective oil degrader, and is 316 

recognized to play a role in the degradation of hydrocarbons from oil polluted marine waters 317 

(Sánchez et al., 2006; Yakimov et al., 2007; Gray et al., 2011; Kostka et al., 2011). However, 318 

the abundance of Marinobacter decreased in all three groups after 100 d, especially in the 319 

cultures with bitumen.  320 

In the BML-T group, the most abundant genera were Acidovorax (> 15%), Pseudomonas (> 321 

12%), Marinobacter (> 8%) and Parvibaculum (> 6%). The BML-T group showed a similar 322 

trend to those seen in previous investigations of West In-Pit (WIP) tailings and Mildred Lake 323 

Settling Basin (MLSB) tailings (Penner and Foght, 2010). WIP was a previous tailings 324 
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impoundment at the Mildred Lake Mine site, and was later commissioned as BML. It 325 

contains FFT mainly transferred from MLSB and water transferred from Beaver Creek 326 

Reservoir  (Dompierre and Barbour, 2016). Acidovorax spp. and Pseudomonas spp. are 327 

frequently detected in hydrocarbon-contaminated environments (Eriksson et al., 2003; Penner 328 

and Foght, 2010).  Acidovorax is a denitrifier and facultative lithoautotroph, which can use 329 

molecular hydrogen, and has been found in anaerobic sites contaminated with toluene 330 

(Aburto and Peimbert, 2011). This genus has also been found in mineral oil hydrocarbon-331 

contaminated soil (Popp et al., 2006). Pseudomonas spp. are found ubiquitously in natural 332 

soil environments as well as hydrocarbon-contaminated sites, and certain species are capable 333 

of degrading model and commercial NAs (Lai et al., 1996; Kato et al., 2001; Quagraine et al., 334 

2005; Del Rio et al., 2006; Popp et al., 2006; Whitby, 2010). Pseudomonas is also involved 335 

in biofilm formation, which provides advantages for growth in extreme environments (Golby 336 

et al., 2012).  337 

In the BML-BT group, Rhodoferax (> 28%), Acidovorax (> 23%), Pseudoxanthomonas (> 338 

18%), and Pseudomonas (> 7%) were detected at the highest abundance. Iron-reducing 339 

Rhodoferax spp. have been identified as effective hydrocarbon degraders and also are 340 

abundant in tailings pond or enriched oil sands tailings cultures (Penner and Foght, 2010; 341 

Aburto and Peimbert, 2011; Golby et al., 2012; Yergeau et al., 2012).  Pseudoxanthomonas 342 

spp. have been found in oil contaminated sites, and identified as benzene, toluene, 343 

ethylbenzene, and o-, m-, and p-xylene (BTEX) degraders. Members of this genus can also 344 

produce biosurfactants and degrade crude oil (Sánchez et al., 2006; Kim et al., 2008; Nayak 345 

et al., 2009; Mortazavi et al., 2013; Nopcharoenkul et al., 2013). There are no publications 346 

regarding Pseudoxanthomonas spp. in the context of oil sands tailings. The presence of this 347 

genus might be correlated with the high dose of the bitumen added in this group.  348 
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In the BML-BTC group, Pseudomonas (> 31%), Acidovorax (> 17%), Petrimonas (> 8%), 349 

and Rhodoferax (> 7%) were detected at the highest abundance. Acetate addition likely 350 

stimulated Pseudomonas spp., which dominated this group, and the growth of Pseudomonas 351 

may have contributed to the significant bacterial growth (qPCR results shown in Fig. 5) and 352 

the highest rate of removal of PHC in the BML-BTC group (shown in Fig. 2). Petrimonas 353 

has not been reported in environmental samples, however, this genus has been reported in 354 

previous bioreactor studies (Sun et al., 2015; Li et al., 2016). Intermittent anoxic conditions 355 

might have occurred in this group because of the rapid bacterial growth and effective removal 356 

of hydrocarbons.  357 

A recent study using metatranscriptomics correlated highly expressed genes with energy 358 

metabolism and hydrocarbon degradation from samples collected along the Athabasca River 359 

freshwater tributaries, and indicated that the expression of alkB (alkane monooxygenase) 360 

could potentially serve as a bioindicator gene for active hydrocarbon degradation potential 361 

(Reid et al., 2018). The alkB is responsible for aerobic hydrocarbon degradation in the oil-362 

polluted sites and abundantly distributed among bacteria belonging to Alpha-, Beta- and 363 

Gammaproteobacteria (Nie et al., 2014). Alpha- (>7% for BML-T), Beta- (>28% for BML-364 

BTC, >54% for BML-BT, >26% for BML-T) and Gammaproteobacteria (>31% for BML-365 

BTC, >27% for BML-BT, >39% for BML-T) were also the three most abundant classes 366 

found in this study. 367 

4. Conclusions  368 

Bitumen in the BML would significantly contribute to the PHC level, especially in the 369 

presence of tailings. Bitumen in this study increased the aquatic toxicity (measured by 370 

Microtox®) by four times when mixed with the BML water, and by 20 times when mixed 371 

with the BML water and tailings. Through the on-site monitoring program carried by 372 
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Syncrude, the acute toxicity of BML has been decreasing every year indicating that in situ 373 

remediation occurring (Syncrude Canada Ltd., 2017). Acetate addition mitigated this toxicity 374 

and effectively removed the PHC compounds. The quantitative increases in bacterial 375 

populations and the increase of the relative abundances of known oil-degrading bacteria 376 

indicated a strong selective response of indigenous microbial communities in the presence of 377 

the bitumen obtained from BML. Rhodoferax, Acidovorax, Pseudomonas and 378 

Pseudoxanthomonas were genera that were best able to tolerate bitumen-derived toxicity. 379 

Rhodoferax, Acidovorax and Pseudomonas spp. showed more potential for biostimulation 380 

treatment with acetate to remove PHC/bitumen. Pseudomonas spp. were the most 381 

significantly stimulated species by acetate and might serve as the biggest contributor to 382 

bitumen removal and toxicity mitigation.  383 
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Fig. 1 Microbial degradation of bitumen measured by CO2 production in the headspace and 1 

DOC concentration in the aqueous phase over a period of 100 d. For BML-BTC group, 2 

acetate carbon was also included. Results are presented as an average ± one standard 3 

deviation (n = 2). Black circles represent CO2, and star symbols represent DOC.  4 

Fig. 2 Petroleum hydrocarbon contents (F2, F3, F4 and F4G-SG) in all groups on day 0 and 5 

day 100. Different y axis scales were used. The white columns represent day 0 data, and 6 

shadow columns represent day 100 data. Results were based on one duplicate and the error 7 

bars represented the measurement uncertainty.  8 

Fig. 3 NAs in the liquid phase measured as AEOs (left) and O2
- compounds (right) on day 0, 9 

and after 100 d in all groups respectively. Results are presented as an average ± one standard 10 

deviation (n = 4 for all AEOs, n = 2 for BML-BT and BML-BTC O2
- compounds, n = 1 for 11 

Day 0, BML-BTC and BML-T O2
- compounds due to the limited volume). 12 

Fig. 4 Aqueous toxicity over a period of 100 d (day 0, day 48 and day 100). Results are 13 

presented as an average ± one standard deviation (n = 2). The open bars, shadow bars, and 14 

black bars represent day 0, day 48, and day 100, respectively. 15 

Fig. 5 qPCR results targeting at rpoB gene at time 0, and after 100 d in other three groups 16 

respectively. Results are presented as an average ± one standard deviation (n = 6). 17 

Fig. 6 Microbial community profiles of the original tailings microbial community (Day 0 18 

Tailings), and BML-BT, BML-BTC and BML-T microbial communities after 100 d 19 

incubation. Phylum, class and genus information is shown in bold black, black and grey text, 20 

respectively. The size of the bubble represents the relative abundance (%). The microbial 21 

community richness (n = observed operational taxonomic units (OTUs)) is shown.  22 
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Highlights  1 

Indigenous microorganisms removed PHCs (>58%) from bitumen. 2 

Bitumen addition increased tailings toxicity by 25 times.  3 

Acetate stimulated microbial growth and bitumen degradation.  4 

Pseudomonas, Acidovorax, and Rhodoferax were potential bitumen degraders. 5 

 6 


