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1. Introduction

Due to the rapid development of the oil sands itrgius northeastern Alberta, Canada, large

guantities of tailings waste and oil sands proadtscted water (OSPW) have been produced
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over the past five decades (Chalaturnyk et al.22B8@rcy et al., 2012). Tailings waste is
often temporarily stored in tailings impoundmerdfiex tailings ponds, however the ever-
increasing geographical footprints and the urgemahd to reclaim the disturbed landscape
has prompted the construction of oil sands enthfés (EPLS) ( Hrynyshyn, 2012; Aubertin
and McKenna, 2016). In EPLs, sand and clay tailargsplaced in the bottom of mined-out
pits and a water cap (made up of OSPW and fresérraim natural lakes or other healthy
water bodies) is placed on top of the tailings (yshyn, 2012). The water cap is expected to
develop into a thriving aquatic ecosystem capableaalegrading chemicals of potential
concern (Hrynyshyn, 2012). Base Mine Lake (BMLjhs first commercial-scale
demonstration EPL, which was commissioned by Syte@anada, Ltd. to support the

development of this water capping technique fosaiilds reclamation.

Efforts have been made to bioremediate organic comgs in OSPW and oil sands tailings,
such as BTEX (benzene, toluene, ethylbenzene dededyand naphthenic acids (NAs). The
biodegradation of BTEX, n-alkanes (C14-C18) andtiagn (C3-C14) has been confirmed
under methanogenic conditions by oil sands tailmggoorganismgSiddique et al., 2011,
2007; Mohamad Shahimin and Siddique, 2017). NAeWweown to be the major toxicity
contributor in OSPW (Morandi et al., 2015), andhitsdegradation tends to be more difficult
where the utilization of chemical pre-treatmentlsas advanced oxidation, has shown some
success (Brown et al., 2013; Brown and Ulrich, 2(Atang, 2016; Zhang et al., 2018).
Gamma irradiation treatment was also reportedimouate the hydrocarbon degraders from

the tailings microbial community (VanMensel et aD17).

A less-studied aspect of EPLs is the bitumen intdimgs, left behind by the successive
incomplete extraction processes. Bitumen remaimrige tailings after placement into the

pit is carried upwards by biogenic gases (one efiftoposed processes), and the viscous
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liquid spreads over the water cap (Darling, 20Thjs bitumen acts as a hydrocarbon source:
as it migrates through the water cap, the hydran@slare released and subsequently
biodegraded, a process which consumes dissolvegkaxand prevents the establishment of a
healthy lake ecosystem. If the bitumen cannot biadén degraded or mineralized in situ, the

hydrocarbons can contaminate the aqueous envirdranerthe nearby littoral zone.

Hydrocarbon-degrading microbial isolates from sezhis of the Athabasca River have been
shown to grow on the lighter components of Athabdstumen (not on the recalcitrant
asphaltene fraction) (Wyndham and Costerton, 198icrobial degradation of bitumen (up
to 40% removal at 37 °C) was also reported in sirtyilpolluted environments in other
regions of the world (Wyndham and Costerton, 1%8ftter and Duval, 2001; Das and
Chandran, 2011). Bitumen biodegradation can bererdtbby nutrient addition (nitrogen or
phosphorus) and stimulated by addition of morelyasidegradable carbons (Das and
Chandran, 2011). The most effective hydrocarbomattgion is usually accomplished under
aerobic conditions, while nutrients and temperatuwesoften the most important limiting
factors of the process (Das and Chandran, 201thlBe bitumen is complex, and its
biodegradation has been demonstrated to occur wmadeus conditions, site-specific factors

are important to the feasibility of in situ remetba.

Our previous research showed (Yu et al., 2018)atitktion of a proprietary blend of
microbes, enzymes and organics to tailings resuftsgynificant reduction in the petroleum
hydrocarbon fractions and tailings pore water tipxidt was unclear whether these changes
were caused by the indigenous microbial communityyathe added microbes and organic
carrier in the Cypher product. Therefore, the foolthis study was to investigate the ability

of the microbial communities in BML to degrade biten, and the effectiveness of
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biostimulation with acetate. The changes in comtywomposition and community

responses were assessed by comparing 16S rRNAsggnence profiles.

2. Materials and methods

2.1 Materials

All samples were transported to the laboratoryeialed buckets and stored at 4 °C prior to
use (bitumen samples were stored for 6 months;naate tailings samples were stored for
less than one month). Fluid fine tailings (FFT) &provided by Syncrude Canada Ltd. FFT
was sampled at the depth of 12 m below the sedimatdr interface at Platform 1 at BML.
Extraction technique limitations cause unrecovdriagnen to end up in tailings; this

residual bitumen can be observed upon commissitimeoBML (in this paper, ‘bitumen’

refers to the residual bitumen in the BML). BMLbiten used in this research was sampled
directly from the BML surface. To eliminate moistwontent, the bitumen was oven-dried at
105 °C overnight. However, this drying processiiaed any volatile and semi-volatile
hydrocarbon that may have resided within the bitan@ays, sands and other small particles
were retained, but vegetation and large stones maraially removed. BML cap water used

in this research was sampled from the surface of BMPlatform 1.

2.2 Chemical analysis

CO, was measured by a gas chromatography thermal covithudetector. Dissolved

organic carbon (DOC) was measured with a ShimadadeITOC-lcpn. Acetate was
measured by lon Chromatography. NAs were measwyrgab chromatography flame
ionization detector (GC-FID) or by reversed-phds@matography paired with a linear ion
trap-Orbitrap mass spectrometer. Detailed procedamd machine conditions for all methods

above can be found in the supplementary data: r@€asurement (Protocol S1), DOC



91 measurement (Protocol S2), acetate measuremend¢Br&3), and NAs measurements

92 (Protocol S4).

93 Petroleum hydrocarbons (PHC) are grouped into tirasgons by using a Canada-Wide

94 Standard: F1 (C6 - C10), F2 (C10 - C16), F3 (CD34), F4 (C34 - C50), and FAG-SG (>
95 C50) (CWS, 2003). F4 and FAG-SG fractions are ladsnto bitumen content in the Dean
96 Stark extraction (industry accepted method) (D&wy., 1920). F1 fractions were measured
97  prior to submission to Maxxam Analytics and wera-detectable in all samples. All

98 samples were mixed with organic solvent (tolueme) sonicated for greater homogeneity

99  prior to submission to Maxxam. Maxxam then furthemogenized the samples. One

100 duplicate was submitted for analysis due to thepdasize limitations.
101 2.3 Microbial analysis

102 2.3.1 Toxicity bioassay

103 The toxicity of aqueous samples was analyzed ubed/licrotox® bioassay. The 81.9%
104 Basic Test protocol was followed (Microtox® 500 Aymer, Azur Environmental) with an
105 incubation time of 5 min (Anderson et al., 2011ight emission was measured with
106  MicrotoxOmnisoftware to determine inhibitory concentration 2Q0@) or inhibitory

107  concentration 50% (I&) value. Toxicity units, derived from k(T U = 100 + IC;,), was

108 used to visualize high-level toxicity trends.

109 2.3.2 DNA extraction

110 DNA was isolated from the tailings phase usingfaetDNA™ SPIN Kit for Soil (MP
111 Biomedicals). Up to 500 mg of tailings were usedesdraction, following the DNA

112 isolation protocol suggested by the manufacturer.
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2.3.3 Bacterial population by gPCR assay

The Bacterial population was determined by the gR@Rlification of the RNA polymerase
beta subunitrfpoB) gene, utilizing'poB 1698f (5-AACATCGGTTTGCTCAAC-3’) and

rpoB 2041r (5-CGTTGCATGTTGGTACCCAT-3’) primers (Nava al., 2011; Brown et al.,
2013). The gPCR assay was performed using a BiocFa(B6 optical reaction module
conversion of the C1000 Touch thermal cycler. Alinples and standards were completed in
triplicate, and the amplification data was analymsihg Bio-Rad CFX Managgf 3.0
software. The reaction followed the protocol suggg$¥y the manufacturer (detailed
description can be found in Protocol S5). The qR&8say was performed on DNA samples
extracted from the tailings/solid phase at thet stiad end of the experiment. Each biological
duplicate was measured three times (n = 6) foetiteof the experiment, and the original
tailings samples were measured six times (n = @etermine the initial bacterial population

density for all groups.

2.3.4 Microbial communities

DNA samples were used for PCR amplification ofWehypervariable regions of bacterial
16S rRNA genes, using the primers 515F (5-GTGCCMBLTCGCGGTAA-3') and 806R
(5'-GGACTACVSGGGTATCTAAT-3Y) (Caporaso et al., 20LThe PCR conditions were
94 °C for 2 min; 30 cycles of 94 °C for 30 s, 50fo€30 s and 72 °C for 1 min of extension;
72 °C for 6 min. The PCR products were purified aaohbined in equimolar ratios with the
guantitative DNA binding method to create a DNA pibat was further used for sequencing
from the adapter. The 16S rRNA gene fragments segeenced using the lllumina MiSeq
platform. The sequences were deposited in Sequeeaeé Archive (SRA) within the study
with accession number SRP131750. Operational tamanonits (OTUs) were constructed

using an identity threshold of 97% and assigndadxa using the UPARSE pipeline (Edgar,
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2013). The community matrix was normalized with BfeSeq package (Love et al., 2014).
The bacterial communities were ordinated with natria multidimensional scaling based

on the Bray-Curtis distance matrix using phyloddgNlurdie and Holmes, 2013).

2.4 Biodegradation experiments

Aerobic conditions were used for the biodegradagiwperiments since the BML water cap is
aerobic during the summer and fall season. A sebenéfit is because oxidative
biodegradation is also considered more effectivceaacurs at higher rates than anaerobic
biodegradation (Ait-Langomazino et al., 1991; Waid Bachofen, 1991). Experiments were
set up in 500 mL Fisherbrand™ reusable glass nimatibes with customized septum caps
for sample withdrawal. All bottles were placed ohagizontal shaker at 150 rpm at room
temperature (20 °C). Aerobic conditions were man@d by a sequential renewal of air (0.22
um filtered-sterile, every 10 d for the active grewgmd every month for control groups).
Bottles, caps, and glass beads were sterilizeditockave (121 °C, 100 kPa). Filtered BML
water (500 mL), and glass beads (40 g) were usedlfgroups. When indicated, the
following was also added: sodium acetate (250 mgsmed as carbon), 10 g bitumen, and
40 g FFT. FFT was used as the indigenous inoculatsed in this study. The four test groups
were BML-B, BML-BT, BML-BTC and BML-T (BML: 0.22um-filtered BML water, B:
bitumen addition, T: tailings addition and C: saodiacetate addition). Two replicates were

set up for each group.

BML-B shows the effect of bitumen on water qualtyd how the bitumen composition
changes over time with exposure to the BML wat@&LBT contains tailings and BML water,
to reflect the conditions of an oil sands end gl near the mud line level (presumably with

little bitumen). BML-BT represents an area of aibien-impacted oil sands end pit lake
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where bitumen accumulates over time. BML-BTC repnés the situation described in BML-

BT with acetate biostimulation.

3. Results and discussion
3.1 CQ and DOC

Microbial degradation of an undefined and complassrate (i.e. BML bitumen) can be
guantified by monitoring C@production (Wolf and Bachofen, 1991). Biodegramiati
experiments were set up in sealed bottles withoooiged caps allowing for sample
withdrawal. The pressure in the headspace wasvassured to convert the €O
concentration within the sealed bottle to the cotregion under the ambient atmosphere
pressure. Air renewal introduced low amounts of, @@ the system but did not
significantly contribute to the CQxoncentration within the bottle. Headspace,CO

concentration and DOC are shown in Fig. 1.

The data indicate that G@roduction rates are 5:38 times greater in the other three groups
relative to the control (Fig. 1). BML-B and BML-Traups both had linear GQ@roduction

with rates of 0.17 mgtd* (R* = 0.97) and 0.91 mgtd® (R? = 0.97), respectively. BML-
BTC and BML-BT had linear C&production during the first 10 d with rates of Brég L*

d* (R = 0.99) and 6.19 mgtd* (R? = 0.99), respectively. BML-BTC and BML-BT rates
decreased rapidly and concentrations plateaued @tvth final concentrations of

approximately 130 mgtand 90 mg L}, respectively.

Studies have shown that co-oxidation can occundysetroleum hydrocarbon degradation
(Herbes and Schwall, 1978; Atlas, 1981, Varjani, 20 Large amounts of partially oxidized
metabolites from petroleum hydrocarbon biodegradaticcumulate instead of full

mineralization of the parent compounds to,GBerbes and Schwall, 1978; Atlas, 1981;
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Varjani, 2017). As a result, G@roduction would grossly underestimate the dedranla

rates of the parent compounds (Herbes and Schi4l8).

DOC decrease was only observed in the BML-BTC giérgm approximately 500 mgtto
approximately 380 mgt). However, this decrease was not due to the pcesefnacetate
(DOC in the form of acetate: from about 290 nifjth about 320 mgt). Acetate might be
utilized by indigenous microbes and also produced bBy-product during incubation.
Therefore, the removal of DOC was more likely asgged with the indigenous carbon
source originating from BML water or tailings pavater via co-oxidation processes

stimulated by the acetate addition.

There were three possible sources of organic carbtims experiment: DOC in BML water,
DOC or particulate carbon in the tailings, and algsd or particulate carbon in the added
bitumen. DOC measurements only represent the sbriglnic carbon originating from
BML and tailings pore water. Previous researchaatdis that 80% of DOC in OSPW are
NAs (Nelson et al., 1993; Allen, 2008). NAs contitid to the acute toxicity of OSPW, and
remain recalcitrant to microbial degradation (Matieet al., 2015). Therefore, removal of
DOC including NAs is one target for remediatiorBMIL. Slightly soluble or insoluble
organics likely originate from the FFT and the atld@umen: organics leaching from
bitumen usually have more complex chemical strestand lower solubility (Hayes et al.,
1972; Ait-Langomazino et al., 1991; Das and Chamd2811). Therefore, microbial
degradation of these hydrocarbons often requiresaease in their bioavailability, for
example via the secretion of polysaccharides byabes that enhance adhesion and
emulsify hydrocarbons (Wyndham and Costerton, 18&1; Thomas R., 1996). Although

microbial colonization of bitumen surfaces has béemonstrated, microbial degradation of



206 bitumen has not yet been shown experimentally (gnad and Costerton, 1981). However,

207 microbial activity was observed, and was furtherestigated in section 3.2.

208 3.2 Non-agueous phase organics

209 Insoluble or slightly soluble hydrocarbons migtgaabe microbially degraded or altered
210 during incubation. Therefore, tailings samples waralysed for petroleum hydrocarbon

211 composition. F2, F3, F4, and FAG-SG data are showig. 2.

212 The BML-T group had the lowest concentrations bhgtirocarbon fractions. Bitumen was
213 added to the other three groups. Heavier hydrocarb@re present in the bitumen than in
214  the tailings. Bitumen addition greatly influencée fpetroleum hydrocarbon distribution:
215 BML-B, BML-BT and BML-BTC had a similar distributioof these four classifications: F2:
216 1%, F3: 2122%, F4: 10% and FAG-SG:-638%, while BML-T had a unique distribution: of

217 F2:5%, F3: 28%, F4: 12% and F4G-SG: 55%.

218 Concentrations of all hydrocarbon fractions on #@§ followed a similar trend: BML-B >
219 BML-BT, BML-BTC > BML-T. The decrease in hydrocambconcentration in the BML-B
220 group represents any baseline abiotic (desorpéind)biotic (microorganisms could be
221 attached to the bitumen surface) processes ocgurrithis fraction. The BML-T group
222 displayed a > 90% removal of all hydrocarbon fraasi. This is likely due to microbial
223 degradation, since FFT is a known source of migamisms. Greater reduction in

224  hydrocarbon fractions was seen in the BML-BTC gr{ngpluctions: F2: 64%, F3: 58%, F4:
225 58% and F4G-SG: 68%) when compared to the BML-Bilugr(reductions: F2: 23%, F3:
226 26%, F4: 24% and FAG-SG: 35%). Due to the intricsimplexity of the analysis, PHC
227 change was more statistically significant for BMI<B group, not in BML-B and BML-BT
228 groups. The PHC results indicates that the adddfacetate may have triggered co-

229 metabolic processes and that more hydrocarbonsaagéabolized in the presence of acetate.

10
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Removal of dissolved organics was not improvedhegresence of acetate. Therefore,
although acetate may have stimulated the degradatibeavier non-aqueous organic
compounds from residual bitumen, it did not sulisady affect the removal of dissolved
organics as shown by DOC in Section 3.1. Previtudiess have shown that acetate addition
to oil sands tailings resulted in reduced anaerdbgradation of lower end PHCs (Stasik et
al., 2015). The delay in biodegradation may bedthto pH reduction as a result of acetate
accumulation and competition for limited nutrieatsl electron acceptors (Stasik et al.,
2015). However, this inhibition of acetate was s&&n in this research, potentially because

of the different redox level or because of différemetabolic pathways of the various PHCs.

3.3 AEOs and @ compounds

Acid Extractable Organics (AEOs) were measured GyRID, which comprises a broad

class of organic compounds (e.ge, @mpounds, nitrogeoontaining species (N&and

N2Op), and sulfurcontaining species (S and QS;)), and AEOs include NAs as defined by

O, compounds, which were more specifically measurigal an Orbitrap mass spectrometer
as described in Section 2.2.4 (Headley et al., RAtart and end data were shown in Fig. 3.
NAs solubility is influenced by pH (Headley et &Q02), so pH was also tracked. On day 0,
pH was about 8.3 for all groups. After 100 d, pHs\w8al5 + 0.22, 7.53 £ 0.25, 7.70 = 0.01,

and 8.04 + 0.03 for BML-B, BML-BT, BML-BTC, and BMHI respectively. This pH change
is not significant enough to greatly influence N#\ubility (Headley et al., 2002). Therefore,
the main influence on NAs concentration changesilshime physiochemical and biological

processes.

Unextracted bitumen has long been suspected aesotipetroleum acids including NAs

(Quagraine et al., 2005a). BML-B group demonstréted bitumen was a source of AEOs

11



253 but not of @ compounds. 20-40% removal oy @ompounds was observed in groups
254  containing tailings (BML-BT, BML-BTC, BML-T), demastrating the ability of indigenous

255 microbes to remove both NAs and bitumen-sourcedrocacids.

256 3.4 Toxicity

257 Liquid phase toxicity was measured on day 0, 48,200, as shown in Fig. 4. Day 0 samples
258 were taken within 3 h of setting up the bottles.day O, differences could be observed:

259 BML-B had the highest toxicity tested by MicrotoxiRdicating that bitumen may

260 significantly contribute to toxicity. In the BML-@roup, agueous toxicity was reduced over
261 100d from 1.0 TU to about 0.2 TU, which indicaties aqueous phase could be detoxified
262 by exposure to the native microbial activities apavater. In other groups, bitumen was

263 likely the primary cause of the increased toxicwer time.

264 In BML-B and BML-BT groups, toxicity increased 3ifnes and 25 times, respectively. The
265 higher final toxicity in the sample containing tiadings may have been caused by toxic
266 metabolic intermediates produced by the microbegirddation of organics in the tailings. In
267 the BML-BTC group, a different trend was observaifter 48 d, toxicity increased 8.3 times
268 (10 TU, similar to BML-B and BML-BT) but did notgmificantly increase further after 100
269 d (7.9 TU + 4.2 TU). Different microbial degradatipathways may have resulted from the
270 addition of acetate, which resulted in differenttat®lic intermediates, indicating that the
271 addition of acetate could help detoxify bitumenhpi@d aqueous environments. In previous
272 research (Yu et al., 2018), the addition of a petpry blend of microbes and organics

273 allowed the detoxification of bitumen-containindtates, suggesting that the addition of
274  readily-degradable organic compounds could helpxifgtbitumen-polluted aqueous

275 environments in the presence of proper microbiadroainities.

276 3.5gPCR

12



277 DNA extraction from the BML-B group was not sucdesssuggesting low bacterial

278 populations. DNA from other groups was extracted rquoB gene copy numbers were

279 measured by gPCR (Fig. 5). BML-BT had a 70% reducin the bacterial density, while this
280 group had the highest G@roduction. No DNA samples were tested betweernOdayd day
281 100, so it is unknown how the bacterial populatbanged over time. As shown in Fig. 4,
282 the toxicity increased significantly over time, whimight have caused the decrease in
283 Dbacterial density (Fig. 5). Bacterial growth shoveecduction in the bacterial density in the
284 presence of the bitumen. BML-BTC had a 3.8 timegdy&l density increase, which was
285 stimulated by the addition of acetate. Although ptate mineralization of hydrocarbons
286 (observed as C{yeneration) was less effective in the BML-BTC grpmore effective

287 removal of heavier hydrocarbons (Fig. 2) and maped population growth of bacteria was
288 observed. BML-T group’s bacterial density remaingdtively constant (1.3 times denser).
289 BML-T group had the lowest available hydrocarbdns,also the lowest toxicity levels due

290 to the lack of bitumen.

291 3.6 Microbial community analysis

292 Oxidative culture conditions were used in this gtutherefore, archaeal species, which have
293 been reported to be mostly methanogens in oil sildsgys (Penner and Foght, 2010;
294 Siddique et al., 2012), were rarely detected ia $eit of experiments (e.g., relative abundance

295 about 0.1% in BML-T group). This discussion focusashacterial communities.

296 Microbial community composition profiles, shownrglative abundance (%), of BML-T,
297 BML-BT, BML-BTC groups and the original tailings amobial community (labeled as “Day
298 0 Tailings”) are shown in Fig. 6. The microbial amumity composition profile in the Day 0
299 Tailings sample represents the indigenous tailmgsobial community, used as a reference

300 for the other three groups. The change in the rhiat@ommunity composition profile

13
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during the experiment in groups BML-T, BML-BT an/B-BTC compared to Day 0
Tailings represents the response of the indigenoabial community under the conditions
described in Section 2.4. Microbial communitieshase three groups have changed

significantly from the original tailings microbiabmmunity (Day O Tailings).

Not surprisingly, the relatively more abundant seedound in this study are well-known
oil/hydrocarbon degraders which have been repantedvariety of oil-contaminated
environments (Sanchez et al., 2006; Yakimov eR80;7; Bartram et al., 2011; Gray et al.,
2011; Kostka et al., 2011; Siddique et al., 2012rgéau et al., 2012). These bacteria have
also been reported to exist in oil sand tailingsdsoand in the Athabasca River and its
tributaries (Penner and Foght, 2010; Ramos-Padrah,011; Siddique et al., 2012;
Yergeau et al., 2012; Chavez, 2014; Foght et @L72 Many of these species are facultative
anaerobes. However, nitrate and sulphate levele warstant for these two electron
acceptors, and methane in the headspace was beteutidn limit (< 1mg [*) during the

incubation period.

Marinobacter was the most abundant genus found in the Time Iih@ai(> 29%).
Marinobacter has been found in many studies to be an effecthaegrader, and is
recognized to play a role in the degradation ofrbgdrbons from oil polluted marine waters
(Sanchez et al., 2006; Yakimov et al., 2007; Gtegl.e2011; Kostka et al., 2011). However,
the abundance dflarinobacter decreased in all three groups after 100 d, espeanathe

cultures with bitumen.

In the BML-T group, the most abundant genera vwerdovorax (> 15%),Pseudomonas (>
12%),Marinobacter (> 8%)andParvibaculum (> 6%). The BML-T group showed a similar
trend to those seen in previous investigations esW¥h-Pit (WIP) tailings and Mildred Lake

Settling Basin (MLSB) tailings (Penner and Foglt1@). WIP was a previous tailings

14
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impoundment at the Mildred Lake Mine site, and Vedsr commissioned as BML. It

contains FFT mainly transferred from MLSB and watansferred from Beaver Creek
Reservoir (Dompierre and Barbour, 201&jidovorax spp andPseudomonas spp are
frequently detected in hydrocarbon-contaminatedrenments (Eriksson et al., 2003; Penner
and Foght, 2010)Acidovorax is a denitrifier and facultative lithoautotrophhiah can use
molecular hydrogen, and has been found in anaesitiei® contaminated with toluene

(Aburto and Peimbert, 2011). This genus has also i@und in mineral oil hydrocarbon-
contaminated soil (Popp et al., 200B3eudomonas spp. are found ubiquitously in natural

soil environments as well as hydrocarbon-contarashattes, and certain species are capable
of degrading model and commercial NAs (Lai etE96; Kato et al., 2001; Quagraine et al.,
2005; Del Rio et al., 2006; Popp et al., 2006; \Mhi2010).Pseudomonas is also involved

in biofilm formation, which provides advantages fwowth in extreme environments (Golby

etal., 2012).

In the BML-BT group Rhodoferax (> 28%),Acidovorax (> 23%) Pseudoxanthomonas (>
18%),andPseudomonas (> 7%) were detected at the highest abundanceréucing
Rhodoferax spp. have been identified as effective hydrocadegraders and also are
abundant in tailings pond or enriched oil sandsgs cultures (Penner and Foght, 2010;
Aburto and Peimbert, 2011; Golby et al., 2012; ¥arget al., 2012)Pseudoxanthomonas
spp. have been found in oil contaminated sites jdentified as benzene, toluene,
ethylbenzene, and o-, m-, and p-xylene (BTEX) deégres Members of this genus can also
produce biosurfactants and degrade crude oil (%mehal., 2006; Kim et al., 2008; Nayak
et al., 2009; Mortazavi et al., 2013; Nopcharoer&dl., 2013). There are no publications
regardingPseudoxanthomonas spp. in the context of oil sands tailings. Thespree of this

genus might be correlated with the high dose obihenen added in this group.
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In the BML-BTC groupPseudomonas (> 31%),Acidovorax (> 17%) Petrimonas (> 8%),
andRhodoferax (> 7%) were detected at the highest abundanceafecatdition likely
stimulatedPseudomonas spp., which dominated this group, and the grovitARseudomonas
may have contributed to the significant bacterralhgh (QPCR results shown in Fig. 5) and
the highest rate of removal of PHC in the BML-BT@wp (shown in Fig. 2Petrimonas

has not been reported in environmental samplesebenythis genus has been reported in
previous bioreactor studies (Sun et al., 2015t lale 2016). Intermittent anoxic conditions
might have occurred in this group because of th&lraacterial growth and effective removal

of hydrocarbons.

A recent study using metatranscriptomics correlaigtlly expressed genes with energy
metabolism and hydrocarbon degradation from sangalscted along the Athabasca River
freshwater tributaries, and indicated that the esgion ofalkB (alkane monooxygenase)
could potentially serve as a bioindicator geneaftiive hydrocarbon degradation potential
(Reid et al., 2018). ThalkB is responsible for aerobic hydrocarbon degradatidhe oil-
polluted sites and abundantly distributed amongdvecbelonging to Alpha-, Beta- and
Gammaproteobacteria (Nie et al., 2014). Alpha- (¥@6#8ML-T), Beta- (>28% for BML-
BTC, >54% for BML-BT, >26% for BML-T) and Gammapeatbacteria (>31% for BML-
BTC, >27% for BML-BT, >39% for BML-T) were also thieree most abundant classes

found in this study.

4. Conclusions

Bitumen in the BML would significantly contribute the PHC level, especially in the
presence of tailings. Bitumen in this study incesbthe aquatic toxicity (measured by
Microtox®) by four times when mixed with the BML ves, and by 20 times when mixed

with the BML water and tailings. Through the oresmonitoring program carried by
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Syncrude, the acute toxicity of BML has been desirgpevery year indicating that in situ
remediation occurring (Syncrude Canada Ltd., 20A¢tate addition mitigated this toxicity
and effectively removed the PHC compounds. The tifaéime increases in bacterial
populations and the increase of the relative abucetaof known oil-degrading bacteria
indicated a strong selective response of indigenaiasobial communities in the presence of
the bitumen obtained from BMIRhodoferax, Acidovorax, Pseudomonas and
Pseudoxanthomonas were genera that were best able to tolerate bitesheeired toxicity.
Rhodoferax, Acidovorax andPseudomonas spp. showed more potential for biostimulation
treatment with acetate to remove PHC/bitunf®seudomonas spp. were the most
significantly stimulated species by acetate anchirsgrve as the biggest contributor to

bitumen removal and toxicity mitigation.
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Fig. 1 Microbial degradation of bitumen measured by.@éduction in the headspace and
DOC concentration in the aqueous phase over agefid00 d. For BML-BTC group,
acetate carbon was also included. Results arergegsas an average + one standard

deviation (n = 2). Black circles represent £-@nd star symbols represent DOC.

Fig. 2 Petroleum hydrocarbon contents (F2, F3, F4 and§&&in all groups on day 0 and
day 100. Different y axis scales were used. Thaentolumns represent day 0 data, and
shadow columns represent day 100 data. Resultshasexl on one duplicate and the error

bars represented the measurement uncertainty.

Fig. 3 NAs in the liquid phase measured as AEOs (left) @1 compounds (right) on day O,
and after 100 d in all groups respectively. Resariéspresented as an average + one standard
deviation (n = 4 for all AEOs, n = 2 for BML-BT ai@ML-BTC O,  compounds, n = 1 for

Day 0, BML-BTC and BML-T @ compounds due to the limited volume).

Fig. 4 Aqueous toxicity over a period of 100 d (day Oy d8 and day 100). Results are
presented as an average + one standard deviato@)(irhe open bars, shadow bars, and

black bars represent day 0, day 48, and day 16pectively.

Fig. 5 qPCR results targeting gioB gene at time 0, and after 100 d in other threemgo

respectively. Results are presented as an average standard deviation (n = 6).

Fig. 6 Microbial community profiles of the original tailgs microbial community (Day 0
Tailings), and BML-BT, BML-BTC and BML-T microbiaiommunities after 100 d
incubation. Phylum, class and genus informatisgh®wyn in bold black, black and grey text,
respectively. The size of the bubble representsala¢ive abundance (%). The microbial

community richness (n = observed operational tarooanits (OTUS)) is shown.
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Proteobacteria

Phylum, Class, Genus Relative abundance (%)

o o0 @2 @

Verrucomicrobia, Verrucomicrobiae Prosthecobacter 4
Bacteroidetes, Sphingobacteriia Lewinella
Pseudoxanthomonas - . . . .
) { Pseudomonas - 6] ‘ ) o
— Gammaproteobacteria
Thiohalophilus - © . Q @
Marinobacter o o (@] .
- Deltaproteobacteria P Haliangium
Unknown, unknown Saccharibacteria - . . o B
- Hydrogenophaga - ° ° o Y
Thiobacillus 4 © o e} [®]
— Betaproteobacteria - Sulfuritalea - o ° o o]
Acidovorax - O (@] O o
L, Rhodoferax{ @@ o] o °
Bacteroidia, Bacteroidia Petrimonas
~ Brevundimonas - . . ° °
—  Alphaproteobacteria - Litorimicrék_}ium | | [ T T
Roseospirillum 4 . . o °
~ Parvibaculum 4 . . [ [e]
Actinobacteria, Actinobacteria Chryseoglobus -

BML-BT BML-BTC BML-T Day 0 Tailings
Richness (#OTUs): n=258 n=339 n=252 n=220



Highlights

Indigenous microorganisms removed PHCs (>58%) from bitumen.

Bitumen addition increased tailings toxicity by 25 times.

Acetate stimulated microbia growth and bitumen degradation.

Pseudomonas, Acidovorax, and Rhodoferax were potential bitumen degraders.



