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Logic programming is a new and exciting declaritive programming paradigm. Its most |

slow- exccgtlon spceds on conventional processors to a lack of appropnate sof(warc
e}gmecnng support. This thcsns is a study of the Prolog language from the softwarc
cngmcermg viewpoint. We outtine-the-features added to the Prolog languagc to make it

ﬁ suxtablc%or large software development. We also descnbc how these fcalurcs are

mtegratcd into a prototype graphi.cally oriented Prolog Programmx ng Enwronmem In

-designing this environment we paid particular attention to user interface issues. Thc

LN

. —"JJ«V._V o . ) . ] [ )
#more notable componcnts are assyntax directed editor that permits incremental

- and the lar

i
e

“construction of Prolog programs and provides static scmantlc checking, a prcdncatc‘
1

browsér for modularized code, and a graphical trace and spy dcbuggcr We also

describe I comment on the object-oriented architecture for both the graphical interface

uage interpreter. " .

» popular realization, Prolog, originally had several deficlencies mngipg from relatively ~

»



- nature of atomic events'.

The most beautiful and deepest experience a man can™

have is the sense of the mysterious. It is the underlying

. principle of religion as well as of all serious endeavor

.}% ’ " inartand in science'. . . . He who never had this experience
¢ . seems to me, if not dead, then at least blind. The

_sense that behind anythin that experienced there is

a somethin, t grasp-and whase
beauty and s l only indirectly a
feeble reflection, this dsness. In thi
’ am religious. To me it syffice nder at thes

and to attempt humbly to grasp with my mind a mer
" of the lofty structure of all that there is.

- Albert Einstein, 1932
The Cosmic Computer

Earth, s'\(/gtcr,' air arid fire: the fundamental components which Aristotelian' civilization
believcd“: to compose the universe.b Fortunately, through the work of Copernicus,
Kepler, Galileo, Newton, Einsteih and others, th.e‘ image of our universe ha§ shifted
dramatically from that primmvc v1ewp01nt Their use of mathcmatics as a tool for
describing the bchav1or of our universe by clasmfymg the principle particles that form -
our very existence has led to the discovery of quantum theory and the mathematical
P

4
An mtcrestmg metaphor, created by Heinz Pagcls bctwcen this study of the physics of

our universe and the modern computer is expressed in a term he coined, "the Cosmic

Computcr. 'l In this metaphor, the material things in the universe, the quantum

particles, are the objects created, destroyed, and manipu[atéd by the computer's

L

; Pagels, H. R., Perfect Symmeu-y The Search For The Beginning Of Tnmc, Bantam Books, 1985, p.
71-391
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"hardware". The loglcal rules these particles obey, the laws of nature, are the

"software", the executing "program" of the computer. o ‘ *

In this thesis, our upiverse is the computer. It is the environment which enforces the - |
laws that these objects must obey. Our laws of nature are defined by a progra: 1ming
'languaéc Kased on mathematical logic while the creation of the ijeéts (quan\pm) i'n the
cosmit computer is modelled by the use of an object-oriented programming paradigrﬂ‘i' '
The result is the dc’scription and analysis of a new world, a new pragramming
environme‘nt for logic programmmg that is 1mplcm<;nted using an objcct-oncntcd '

\ programmmg language

B@ckground )

5 . !
I assume the reader has some knowledge of conventional Prolog, logic programm\g,

and mathematical logic. Three texts that describe con;/entiona.l Prolog are [Sterling an
Shapiro 1986], [Clilrk and McCabe 1984], and [Clocksin and Mellish 1981]. )
(Kowalski 1979} is a paper that conccntratcs on logic programmmg without discussing
a parncula! implementation. Readings on mathcmancal logic are covered in [chcnc

1967] and [Hodges 1971].

~
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?

- ‘v_[Buxton 1987] Though natural language understandmg is an 1mportant toplc in-

S logtc programmmg language (Prolog) and a user-mteracuve development environme .

mvaluable durmg the software development process. -

.Amﬁcral Intelhgence research the use. of graphlcally onented 1nteract10ns as a

Ky

L
|
e
Ed e
g
]
tri
o=

.\»

'r -v'r

"What is the use of a book" thought Alzce
s wuhout pzcnlres or conversauons 2"

- Ahce S Adventures in Wonderland Chaptcr 1, Lewxs

s
-

‘WIth the avallablllty of hlgh performance workstatlons and b1t mapped graphlcal

dlsplays, programmmg envrronment desrgners are lookmg at a gesture onented

method of computer commumcatlon asan altemauve to "natural language approaches

L]

-

ta, K .“ .

computer s1gn language seems appealmg ) - . \\

5

In this thesns we wxsh to descnbeJhe mamage between a convenuonal batch onent

We behcve the graphlcal mteractwe capabllmes of smgle user workstatlons have not o

been fully uuhzed Not only do thc available mulnple wmdq.wmg systems create an

) effecnve env1ronment in Wthh to program but the graphlcal mampulatlon and

"representauon of code through syntax dxrected edxtors and module hrerarchles can prove

ThlS thesns also takes an in- depth look at the Prolog language and its 1nterpretat10n

mechamsm We will outlme an archltecture fora Prolog programmmg envnronment

Camoll |

v

. L
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designed for a graphrcally orrented single user workstatton We not only descnbe thts.',

. archttecture, but demonstrate how the envu‘onment ‘can’ be used to add software.

engmeermg features like modulanzatxon and strong typmg to the Prolog language W‘e

: ‘also beheve the debuggmg phase of Prolog program development can be tmproved

through graphrcal animation of the refutatron process. Both procedural and declaranve

debtfggtng algonthms can beneﬁt from the unpr0ved mterface designs.

Our goal is not to create yet another Prolog 1nterpreter butto formulate new concepts in -
_ mteractrve graphlcal programmmg envrronments that complement or enhance exrsttng /

-Prologt systems We descrrbe each aspect of our envrronment mcludr '

| modularrzauon typmg, open. world programmmg, and debuggmg We also argu hat 3 ',
R the object—onented desrgn methodology used in both the graphtcal interface ;rnd the -

mference engme provrdes a suitable foundation for the environment's archttec(ure

v . .

’When desxgmng a graphlcal 1nteracuve envrronment for Prolog, we kep} the followmg

/

in mmd )

'Every good computer mterface evolves over ume driven by
- vendors who see ways to stretch and extend the original -
- idea. Sometimes those ideas work; somettmes the dont
" But th1s isn't & holy war...!
, . .

for just those reasons: to

i

The resultmg prototype Prolog envrronmcnt was develop

expenment with ways of makmg a more logtcal appea}ing, and useahle envxronment '
) We swayed from the compellmg force to extend or modtfy/the Prolog language, or -

= mcrease the i mterpreters executron speed ‘We took the Wpproach that if Prgﬂog is a

- language to be taken serrously, it must be complemented wrth a powerful and useable
| S )

environment

s

! Seymour, Jim, "Despoilers of The Interface?", MacUser, Vol. 4, No. 8, Aug. 1988, p. 77-78.

o~ : :
\ \v ‘ b
. . 3 B




Our prototype was 1mplemented usmg the Smalltalk 8()l language [Goldberg and
vobson 1983] We chose thts language for several reasons.

* "The Smalltalk-80 system is ideally suited to exploratory programmmg,
software prototyping, simulation, modelmg, Al research, and the rapid.
development . oj sophisticated - interactive appltcanons Design and
implementation of apphcatlons can occur simultaneously, encouragmg
: expehmentauon and creative solutxons to complex problems "2 '

-+ The avaxlablhty of symbolxc debugging , automatlc garbage collection, and
incremental compilation facilities in. Smalltalk-80 will increase our
prototyping productivity. This will allow quick testing of new interface and
1nterpreter designs.

* The ablllty for future experimentation. Smalltalk 80 s a powerful language
“and has a powerful development enviropment. We wish to study the

- integration of Prolog within the. object~one ed programming parad:gm By
implementing our Prolog interpreter in Smalltalk, future ys,rslons can be
extended to unify these two paradlgms

» The ablllty for the Prolog envuonment to unhzgeﬁe yast a?mounts of code
available in the Smalltalk-80 system by creating user~déﬁnal§1e pnmmve
‘ clausqs whose bodies are Smalltalk-80 source codetg Ry

: 1 1 Loglc Programmmg A Brief Hnstory

'Hxstoncally, prOgramxmng languages were developed as a y .dge between the mmcate ;

’ ‘. workmgs of the machme and the abstract ideas of i its users 'When the feas1b111ty of

usmg computers\to do larger and more comphcated tasks became ev1dent a new means
was needed to map mcreasmgly complex algonthms into executable 1nstmctrons '
Programrmng languages tried to attam thts by abstractmg the computer's erlymg'
. ‘archltecture perrmtnng the developer to concentrate on what a. program must?o instead
of how at would be done Procedural languages like Fortran, Pascal and Ada3

' emerged and proved useful in codmg large softWare systems Unfortunately, due to

" thetr complex s,yntactxc and semantxc constructs, they were dlfficult to mampulate ina '

F

! Smalltalk .80 is a trademark of ParcPlace Systems, Inc.
Xerox Speexal Information Systems newsletter. Xerox is a trademark of Xerox Corporation.
3 Adais a regtstcred uademark of the U.S. Government (Ada Joint Program Oﬂ'lce)

N
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sound mathemancal manner (such as provmg program correctness) 'l‘he programmlng
language. Lxsp. based on Church s(lambda calculus, was one excepuon lt was created
for its mathemaucal elegance instead of efﬁcxent executton on von Neumann_
architectures. Thxs tendency towards elegance and sxmplrc:ty instead \of ad hoc: .
concoctions of syntactlc and semanue yﬁnstructs is a v1tal part of programmmg
." language des1gn For this reason, programmmg paradxgms based on mathematxcal

i

log1c have attracted consrderable attentlon over the last decade.

l

Logrcxans and mathemat1c1ans. in their study of mechamcal theorem provmg. have
opened a new area of programmmg language research by usmg techntques from
mathematical log1c to axxomauze a problem domam so-a computer can "reason" about h
‘the problem 1t is trying to solve 'I‘hls approach is far from being reahzed but an *
important step forward wa4 the mventxon of the resolutlon principle by Robinson
[Robmson 1965] wh1ch formled the basrs of many automated theorem provers. Further
developments ‘in automated theorem proving, usmg the resolution prlnclple, lard the'

foundatlon for the invention of Prolog; an acronym for Programrmn g in logic.

Prolog -was ﬁrst conceived by Alain Colmerauer and Robert Kowalski. It was based
’)’/ on a subset of ﬁrst order logic known as Horn Clause Logic!. Prolog isa declarauve
language The programmer descnbes known facts and relatlonshlps ‘within the problem
domam mstead of describing the sequence of steps needed to find a. soluuon It was
ongmally 1ntended as a natural language processmg system but lIS usefulness was
qurckly established through ‘the emergence of applxcatrons in. areas of planning
problems [Warren 1976] database query [Gallarre 1978] and natural language

processing [Walker et al. 1987]
4.

1 Hom Clause Logrc was ﬁrst studied by A. Horn in 1951 {Ref]. Formulas in clausal form contammg
at: most one posmve literal are consndered Homn clauses.
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'Development of logic programming interpreters-and compliers' has been‘ under way for
many years. While carly logic programmi ’R\nterprcters (i.e. Prolog mtcrpreters) were
inefficient m both processing time and memdry con@umptipn when compared to -
t':onventronal 1mperat1ve languages, fast 1mplcmentat10ns werez developed by being
coded directly in assembly language .An exarnple is- Waterloo-PROLOG created by
Roberts [Roberts 1977] at the UniVersity of Waterloo. Improved efﬁciency resulted by |
complhng Prolog prbcedures into an mtermedrate form and executing the comprled '
code. “This was demonstrated by Warren s DEC-10 Prolog comprler [Warren 1980].
Addmonal work by Clark and McCabe [Clark et al 1981] Melhsh [Mellish 1982], and

: Bruynooghe [Bruynooghe 1982] ‘have 1ncreased our understandmg of prolog.

rmplcmentauons. ‘ o o R 2
. ‘ -y

Sevcral Prolog 1mplementauons exist, Some are taxlored for fast cxecuudhiwhrle others
are experimental 1mplementatrons designed to detcrmrne the feasrbihty of Prolog as a
new prograruming language. Still othef been desrgned for exp i entmg wrth
extensions to make a general "loglc programmmg" language To expa d the scope of
logic programrmng 1mp1ementatron research, a movement from coding in a machme
'_speciﬁc language, such as assembly. languarge, into higher leuel languages emerged.
LM- Prolog [Kahn and Carlsson 1984]. Waterloo Umx Prolog [Cheng 1984], NU-
‘Prolog [Nalsh 1986] and others, wnttert in Lisp and C, have proved portable across
machmes. This allowed widespread use of the language among a variety of computer
systerns. Moreover,thesevarying design goals have produced z;n.al\)’tarndnnce of Prolo‘g..

interpreters.

_Gofls of po‘rtabi_lity. and efficiency pose formidable pro];ie_ms in Prolog interpreter

. “designs. Pioneering work by Warren in his design of the "Warren Abstract Machine”

(WAM) J[Warren ,198q3]’ proved tha,t. Prolog could be e)recuted in;tig;e and ,space _



- -

~ equivalent to other symbolfc languages. However, further efficiency. gains arc
necessary for Prolog to become the implementation languagc of the Japancse initiated -
Fifth Generation Compuung Systems (FGCS) prOJcct (ICOT 1982]. To ncrease

‘ cfficncncy, VLSI tcchnology cari be used to implement hngh level oomputer amhxtcctums
(for dlscussxons on thc dcsxgn of special p ]
[Tick and Wa_n'cn 1984] and [Mills 1986]).

e computers for logic programming see

\

~

‘Gcnerally;;it appcars that sequential Prolog implementations have becorpc as efficient as
possible. Therefore, to incréase performance fur;hcr. a movement from sc_qucntial to
parallel implemé’ntations is gaining m_oménum.. These implefncntaﬁons take advantage
of the ‘inhjcri.t parallelism available.in logic languages. Although suéh work is
intcrésting, in this thesis we .wish_ to deviate from thé issue of fast logic inference
engines and look 1n mpre detail at fhe software cnginecriné and user interface issues.

1.2. Logic Programmipg Envirohmenfs: The New Wave S

In contrast to developing faster Prolog interpreters, a se 6nd area of research is
associated with development environmcnts and how they ould support programmm g’

,in Prolog Development- environments deal with three dlstmct problcm arcas

pr grammmg—m ~the- -small, programmlng-m -the-large, and programmmg in- lhe many
[ ulch et al 1987] Programmmg in-the-small refers.to the construcuon, analysns

c mpllatlon execution, dcbuggmg, and testing of- modulcs in a softwarc systcm

ogrammmg-m -the-large is conccrncd with aSpccts of spcc:flcatlon. dc51gn :
integration and maintenance of software-systems. - Programmmg-m-thc-many is
concerned with multiple programmers v\/orking on a single project. Issues such as
access cbntrol,pmutual exclusion capab‘ilities, documentation, change 1ogs, nctwork.

/

/ .access,’ffd project management &c also of importance. The general goal of

e

/
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»
ddvclopmént environment rc’se"arch is increased produetivity of designei‘%ﬂ
programmcrs, integraters, and maintainers to.reduce costs of desngn,lmtcgratlon, and

matntenanee

~Increased computing power in the form of high perfomtancc" workstations equipped

with bit mapped displays and pointing devices has directed development environment

resecarch towards graphical user-iriteractivc techniques.- Sun! workstations and

Maclntosh? mlerocomputers have shown the usefulness of graphlcal human-computer
intérfaces in increasing developer producnvxty The result, is the mteg;anon of

programmmg languages and the computcrs graphlcal environment excmpllﬁed in,

: 'among othcrs the Smalltalk- 80 Mesa [Sweet 1985], and Intaﬁsp-D [Teitelman and

Masinter 1981} systems. '

As yet very ltttlc work has been done in studying the application of development_

environments to logxc programmmg This thesxs dcscnbes the results of a study of

dexelopment support for some-aspects of logic programmmg Prolog s global name

.space and non- determxmsttq, computatlonal model suggest two maJor areas for
' expioratxon orgamzatton of tiw,clause database and program debuggmg The need for

/,» al specnal purpose Prolog development tools has long been rccogmzed [Shapiro 1982],

/

[Perclra 1986] We try to extend these ideas by incorporating the features of
modulanzatxon typmg, open world programmmg, and graphlcally oriented debuggmg

into an lntcgrated Prolog programmmg environment. . "{he result 1s_'a prototype

environment named Godel3: a Graphically Oriented Development Environment for -

Logic programming.

1 Sun is a trademark of Sun Mlcrosystems Inc.
2 MacIntesh is a trademark of Apple Computer Corporation,

3 Also, the sumame of Kurt Godel (bom 1906), an Austrian mathcmauelan who formulated the

theorem (known as’ Gédel's theorem) that in logic and in mathemaucs there must be truc formulas
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'HFB*csides discussing featﬁures to make Proloéisuitable for large softWare projects, this
thesis describes the implenientation of a Prolog f.developmem environment using the
new and promising Object-Oriented Programming (OOP) paradigm. This paradigm is
the basis of languages like Smalltalk-80, C++ [Stroustrup l987] 'and Eiffel [Mcyer et

- al. 1987], and requlres a new way of thinking about the design and coding phases of

the software development life cycle Classing and mhentance are two features that

' make the Object-Oriented programming method a powerful tool for both prototype and

productiondevelopment of software systems. For this reason, a new architecture was

L ¢

" developed to incorporate the complex control flow of Prolog programs into the ob_|ect .

paradlgm Furthermore, the suitability of the object-oriented architecture for use in a
graphical user-interactive programming environment for Prolog is described and

analyzed,

1.3. Thesis Overview
A ~ o
Chapter two is an introduction to Prolog programming environments. It outlines some

4
v

deﬁcie'ncies of pure Prolog and argues for the software enginéen’ng features that Godel

adds to the Prolog language It also outlines Godel's graphical usc;' mtel‘face Wc

argue that the graphical represcntatlon of code and execution states ean en \ance thc
development of Prolog code. - Chapter three rs’a detailed descnpnon of Goclel s
syntax and semanncs of the declaranon system.

Chapter four is the first chapter describing Godel's implementation. Wc intro

Guide programmmg env1ronment and descnbe its Ob_]CCt oriented deTgn

describe how this object- onented archxtecture was mslmmenlal in Godel s designand .

;

consistency of such a system as arithmetic cannot be provcn within that system.

-

\

 neither provable nor disprovable, making mathematics essentially incomplete, and Lhc corollary|that the -




| : imblcmentation. We demonstrate how classing with inheritance enabled Godel to

 ‘exploit Guide's architecture.

!

' Chapter five is-a general description of Prolog interpretation. It serves as an

introduction to the unfamiliar reader and is used to describe important interpreter

‘ compodents It also pinpoints areas for optimizations. Chaptcr six builds on this

introduction by dcscnbmg the object-oriented design of Godel's inference engine. It

dcscnbcs thc interpreter's salxent features and compares and contrasts it to a procedural

_ design.

¥
Fmally. chapter seven concludes this dxscusswn with a summarization of our work. It

~also outlmes possxblc future cnhanccmcnt;

"& i,

ﬁéf’
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Good ord, X . ‘v Il good things.

- Edmund BINE, i Revolution®
' ) France

d

The concept of a Sofhf'are Development Environment (SDE) flas as many definitions as
there are people to interpret it. We dct‘;ne an SDE as thé collection of integrated tools
used to d’csign, code, and maintain a software sygtcm. 'ﬁvo im;)d'r"tant aspects of an -
SDE are the integration (communication) between teols and the scope of the tools.
" Here we are interested in the software coding”lcvel, where tl;c set of tools.arc often

termed a Progrémming Environment (PE). .

v

\“)‘m” .‘ . .o
We consider tightly coupléa (hxghly integrated) tools an important aspect of an
environment's archltccture Thxs chaptcr is a description of Godel's archuccturc,
outlining the system's componcnts and how we believe the subsystems must

communicate to portray a unified view of development to the user.
2.1. Programming Environments

The architecture of a prdgrammmg environment, independent of the language used, has
three kcy componcnts a source code manager, a compiler/interpreter, and a debugger.
Historically, these components were represented by a’loosely connected wcb of

independent tools with little communication between them. Usually, an cdnor



manipulated raw tet while a compiler coverted the raw text to exccutatile fory )

Vst \
. A

error occurred. then the edit/compilc cycle whs repeatéd. : . \\ LI

Y

The evolution of programming environments froma chaottc pool of mdepcndcnt tRols

to a set of interacting components shanng a common mtcrmedtatc program ? P

rcprcscntauon was a natural cvoluuonary step. This efﬂorcsccnce was stimylated by
the falling cdsts and increased capacnty of hardware,.an increase 'in the complcxtty of‘
| programs, and a better understanding of software development from both theorettcal

and practical standpoints; all leadmg to nchcr, more mbust cnvtronmcnts

-~

The evolution of programrmng cnwronmcnt rcsearch has encompasscd sevcral major -

classrcal" languages lncludmg 1mpcratulc languagcs like P, and AQa,mld
funcuonal languages like APL and Lisp. The xdca Was to m

environment that supported programrmng for a single languagc provrdcd atconbwtent
view of the development procéss, and mtcgratcd the funcnonaltty of vanous tools uséa

»

in the dcvclopmcnt process. ‘ K Vs A
: LS

s, .' v

Regardin g the cvolun(m of the in l\tcgrauon of softwarc dchlogmcnt environments, the
_best cxamples are the smgle languagc PE's of lnterLl ’and Smalltalk 80. The .
1ntcgranon of tools in a stnglc languagc PEis cons1dcred b; many asa key to‘enhaneed

productivity and cxprcssrvc power, and Logic Progral*mng Envnronmcnts (LPE).

generally lack such integration.

Two approaches'to uhﬁod LPEs are pojsrble 'l‘hc f'rrst approach is, an LPE written

ennrely in a loglc programmmg language 'I‘hts ts _analogous to thc Inteansp and

Smalkalk PEs ifi which all environment fuucn’ns are written in the language itself.

Dcveloping a programming environment for logic programming in 2 logic programming

language has advantages and disadvarltag)es; One advantage-ls tlpelconsistency gained
—. .: : . s s .

.
>, »

an xntcgratcd -

LY
iy
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’.

by having one dev;lt)pmcnt la‘néuage. "The editor, windowing system, module
suppott, and other aspects o‘f the PE could be comveniently and concisely expressed ih a
de'glamti'vé"mann«. Bxfcnsions And modiﬁcaﬁons to the environment would be as easy
m(d nan‘jrgl as rcgulfir logic prograrfiming dcvelo'p'm;ii(. A fundamental disadvan'tagc is
the newness of logic programming languages. Since they are young and evolving
languagcs, much ncedg_ to be leamed about their cf.t'cc‘givcncss for certain tasks. For
. cxample, there are no current sanéﬁrds for ngic iinplcmcmations of interactive
interfaces, and it is not clear if thpi;' vimplcmcntatio?zfis efficient enough with available

logic programming technology. L
. ) e . - f .

The second approéé'h is to implcin;t the LPE in a second l'anguagc'.' For example, the
, : ) . ~ v .

well established object-oriented design methodology and a corresponding object-

oriented langu»é'gc could be used. Although there are drawbacks to this approach, there

are several advantages: -

*» Object-oriented programming is designed for modular, reusable, modifiable
cade. Dul;i,ng experimentation, the ability to make changes and enhancements
to the existing source through class hierarchy changes is an assct. ¥

: _» The object-oriented methodology is well suited for a graphical, window
\-\ . .oriented application. architecture (van der Meulen 1987}, [Laursen and
¢ ..4Atkinson 1987), (Grossman and Ege 1987). This allows experimentation

""",,jwi“th the interaction between graphics and logic programming.

+ It is possible that thé‘object-oriented design of a logic programming inference
engine may provide new insights into implementation strategies. In this
thesis we will comment on the architecture of such™s design and describe
how it compares and contrasts to a standard procedural design.

» Object-oriented languages provide inheritance of class definitions. Similarly,
taxonomic hierarchies have been used in knowledge, representation. As in
LOGIN f[Ait-Kaci and Wasr 1986], this approach may provide an alternate

~ + varchitecture for combining inheritance into logic programnjing. )

The disadvantages of this approach are: .
. . . ‘ - 4‘ .
/ + In the long term, LPEs should be written in logic programming languages.
- The object-oriented approach does not directly contribute to this goal.

-
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+‘Object-oriented inlerprcter implcmcmations may be slower than comyentional
procedural designs. , , “\}7

We believe the advantages of an object-oriented axi:hitecture outweigh the disadvantages
at tﬁis pime. It is for this reason that we implcg::/tcd a prototype graphical logic
prx;gmmniing environment (Godel) using an objcct ented programming language and
environment (Smalltalk-80). It has borrowcd features from existing proccdural and
funcnonal environments, with the mmncmphasns being the following:

« It utilizes the hardware environment of a bit mapped graphical wmdowmg

orkstation; .

« It fakes the fundamental tool of the LPE an mtcracnvc editor;

« It provides editing. commands that reflect the syntax of a prograh;

« It provides syntactic and static semantic checking;

« It reflects the name binding structure of programs;

* It provides source:level debugging.

Ean ]

2.2. Prolog Environment Architeéture_

iThc architecture of existing/ Prolog intcrprctc} environmcnts consist of -three
independent components: a clause editor, an mtcrprctcr/compxlcr and a c;a)usc database
management system, Thls archxtccturc is standard among all loglc programming
‘systems, but interaction’ bctwccn cach has gencrally been kcpt to a minimum. For'

v cxamplc in the Unix! environment, tht clause cdnor is one of the available editors such

n

g

aVi %Emacs The i mtcrprcter isa completely separate software component that inputs
objects from the editor, acccpts user quencs, and outputs results. During the
debugging phase, if an ernons found in a clause description, the developer must exit
. the interpreter, enter the cdnor to makc changcs, re-enter the interpreter to reload the

clause definitions, and lastly to repeat the query and continue debugging. Thc number

»

/‘%

! Unix is a rademark of AT&T. N
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of "task" switches is numerous, and any reduction would decrease development

overhead. '

3

To combeat this, Prolog interpreters are usually equipped with three system predicates:
edit, clearAll,

consultl, The clause edit(AFileName) invokes a task switch from
while clearAll and consult (or mcon?lﬁ) are used to clear the

d,the changed clauses. While friction between editing and

interpreting to edit

internal databas¢/and re

creased, problems arise because of inconsistencies created when

reconsulting and loading files into the interpreter's workspace. If editing and
debugging operations acted on a central clause database, the edit/debug process would

be much simpler. ' l

The decomposition of Prolog program development into clause management,
interpretation, and debugging lends itself naturally to Godel's underlying architecture.
We wish a highly integrated .sct of operators (tobls) to act!aitl 2 clause base so a uniform
view of the system persists. Ouf design centers around;ihc cor;ccpt of a central clause
repository (persistent heap) that is directly accessible by all environment components.
The following\ is a list of :hc desirable features to include in a LPE. We do not claim
that these are the only necessary features, but are the ones we have chosen to describe
and implement: | At

* syntax directed editor

* modularization (clause /managemcnt) system

* typing system X

* graphically oriented procedural debugger
* open and closed world programming inference engine

,/;,

! The actual spelling of these clauses varics from system to system, but the general idca remains the
same.
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"The editor, mference engtne, and debuggmg mechamsm all have a consrstent view of

'~the claUsc ﬂeposttory Stmtlarly, through~a gmphtcal wmdowmg system the user has a f e

. COnststent v1ew of all the components w:thm the ethronment This'is represented in .

' _ figure 2.1.

o B A - ' U_ser=|‘

ity 2

]

- Centr"ali(Clafusej)' ’
Repository..

‘| Clause = . Inference Engine

‘Management - T

System - S . e
] ' Debugger
Editor . | -

} i

°

Figure 2.1: A component diagram of Godel.

fThe folloWing is a‘description of "Godel'sclause management system.“ the editing

subsystem. and the debuggmg subsystem wuh emphasrs on the mclusxon of these
features Detalled descnpttons of the clause database and mference engme @re in

separate chapters . . .
f\ . ’ i. : S \

,-_.zlz.l.Centlf'al Reposi.tory" 3 P o S | . ’&”’*

.

' The ce'ntral repository'is similar toa clause datab’ase' Con'ventional Prolog SyStems,

mamtamed the clause databasc in a set of files, consulung each ﬁle as clauses are
needed.' Our approach is to view- the ctaﬁse database as’ one ennty to aid-in-the

deveIOpment of a smgle program The reposxtory can be dmded into modules whtch ,

" are shared among programs The beneﬁts of a central v1ew of clauses is the abtltty for

separate progmms to re- USC qgmponents

’
[VEREN
X

Y
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: ,The re-use of components among programs. and more broadly 'projects. ’li one

T

Bt advantage ofa non-volanle fepository for comptled clauses ‘The reposttory eltminates R

the need for re-compllmg claus%s&by allowing them to exrst mdeﬁmtcly This affects
. \ : ~'.

: the desxgn of the editor and mfere'hge engine since they not only operate on a clause
base that is contmually evolvmg, but they also mampulate comptled clauses tnstead of ,

- the clauses textual counterparts 'é , &

o
ki

'Another advantage of the central repository is allcv1atmg what we term the "dependency ’
syndrome PEs must be capable of answ?nng quenes of the form "Where are all the |
E _ locauons that <anObJect> is used"" or "Where is <an0bject> deﬁned? " However, the
time taken to. locate declarattons (defmlttons of vanables, procedures, types (m :

1mperat1ve languages) functlons (in functronal languages,

_ languages)) increases as a software system becomes larger. "K’t fmabthty for the
development env1ronment to quickly answer; these quenes nog ﬂnly cnables faster
understandmg of the dependencres that existina large software system but also allows

the dcveloper to trace these dependencxes P o §
'-2.2.2. Modularimtion :

) Very large problems are bemg programmed with procedural languages hke Ada and
. Modula-2 through the use of modulanzatton, an abstractlon tcchmque ptoneered by
. Parnas: [Parnas 1972a 1972b] in whtch programs are decomposed tnto many
tndependent modules Wthh commumcate using small well—defined mterfaccs The
most common form of modulanzanon is data abstractron i which a data type and all 1ts :

operators are combmed in one module The rmplementatlon of these operattons is - |

'htdden from users of the modulc and the operators fonn the users" 1nterface "
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» The advantages of modulanzauon generally, and data abstracuon parucularly, are well o

known d have been drscussed by [Parnas 1972a, 1972b] For examplc. modules
- ‘provide opmg limitations so that names used locally in a module can be used
independi ’ ly in other modules They lnmt the propagauon of code changes smce ’

changes, to the 1mplementauon of a module do nét affect any other modules. They also

provide portability and a good mechanism for isolating errors.

One method of introducing modularization to Prolog is through an LPE. AnLPE can
'supenmpose a module structure on. the language without modrfymg the language itself.
-Inu'oducmg modulanzauon through an LPE has three distinct advantages over creatmg

anew language or modtfymg Prolog 'I'hey are:

. Smcc Prolog is widely used, there is a large body of existing code. Since code is
‘often re-used, a new language would lose this library of exi ng code. - .

~* The use of modulanzatton in logtc programmmg languages i is a new concept and
is not well understood. It will probably take some time before one modularization
technique is recogmzed as supenor Thus, it'is easier to experiment with an-
environment. . , . :
. There is no common‘syntax for Prolog, but a smgle environment can be
conﬁgured to generate code for any dialect.
Existing module 'systems for Prolog are mainly concerned with the division of the
predlcate name space The problem is that these systems are based & n the syntaetic
; v1ew of modules (i.e. the compxlers symbol table) mstead of the view that modules |
have a connecuon with the language § semantic theory Therefore, modulanzauon '
Ashould be geared towards constructing logic programs and must dxverge-from the-
standard view used by languages ltke Ada or Modula 2. The approach we take is based.
’ _:"on O'K}fe s algebraic formahzatmn of a module system where he deﬁnes vanous '

'""'operators used to construct programs out of preccs His idea is that

existing module systems are based’ on a 'straightjacket' view
of modules: that the function of a module system is to build -
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* very thick walls between modules and then let you Chlp uny
_little holes i m the wall§ [O'Keefe 1985] :

when in fact there should be varying degrees of module communication.

To deﬁne module commumcauon in an LPE"it is first necessary to understand the

ept of clause extensron Godel's interagtive environment rehes heavily on
remental compxlatton 'l‘hrs affects not only the design of the clause database and
mference engme, but also the mteractron between a developer $ actions and«Prolog"‘b
source code We define mcremental compilation in Prolog as the act of extendmg the
g clauses ina predlcate or procedure For example, if a pro%edure consrsts of the clause |

p(X) = p(l) A p(2) and‘the assertion p(1), then adding the assertion p(2) extends the

procedure p to include this new el’guse

In this thesisA,_A. two new modes of communication, or module operations, are introduced
to complement O'Kee,fe's union operations.t They are open incl,usion-- and closed
mclusron Each of these operatlons represents a certain amount of glue between

modules w1th umon creatmg the tightest bmdmg and closed mclusron the least.

/\pnion is deﬁned as combining all clause definitions in one module with 'all_deﬁnitions
in a second module. With modules M| and M3 represented as disk files, this is s1mtlar
to the conventlonal Prolog environment where a user can consult(Ml) and then

- consult(M3). Predtcates declarcd in M1 are mdrstmgulshable from predtcates in M2 '
Naturally, any extensions made by the user after the union operation will add clauses to
the existing procedures created dunngéﬁ union operation As v't/ill be described in
chapter three, union is a requtrement for meta- programm,mg and the all-solutions

predicates.
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*The nésy"open lnclusion_i‘ppcra,tion on modules M1 and M from within Ml.results‘in e
visible clauses in M3 being brought into Ml." Any conflicts resulting from identical
dcclaratidrl names existing between moclulés mﬁst be resolved during the inclllsion
operation. As wlth the union operation, any clauses added to M‘l cx_tg:nd the dclinitions

“of M». | : ' . “’l ‘

The last operanon is closed inclusion and it has the least "sxde effects” of the three
gluing opcrauons Closcd inclusion makcs all pubhc definitions in M2 avallablc for use,«
~ in M1, but MFtannot extend the defmmons in M2, nor can M2 see dcﬁnmons in M1,
This is similar to an unport declaranon in proccdural la.nguages where M1 wants to call

procedure P-in M2, but the implementation details of P are hidden.

The éperations of union, closed and open‘inclusion do not affect the semantics of
Prolog, but only constrain the \./i‘sibility of predicates dun'ng program d’c_velop.mem‘
. (speciﬁc exampleé will be described in chapjpr three). For thls reason, thc" gluir}g '
operations have a clear sg:rhalltics, making their implementation strgigth. _While
other modularization systems for Prolog could poésibly model these operations, it is
Godel's intcracti#e_ approach to error d1étc,ction and correction that makes this scheme

. {
unique.

2.2.3. Typing

‘Many non-procedural languages like Smalltalk [Goldberg and Robson 1983], Lisp
[Winston and Hom 1984] and Prolog [Clocksin and Mclhsh 1984] do not- support
compllexﬂme type chcckmg Paramcters to- methods (Smalltalk) argumems to
functions (Lisp) or terms in predicates (Prolog) not of the correct form are only detected
at run-time In large software systems, such argument mlsmatches may cause |

unexpccted €rTors o occur in sections of code only cxecutcd in unusual s:tuatlons‘ long

P,
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after product release Thrs is because comﬂkte path testmg of large systems is

impossible [Myers, 1979). | 5\

In the examples whiich follow, assume we have defined an ooerator. add, which adds
an object to a Set. Further assume a logic error has resulted in the invocation of this

operator in a situation where a constant is used as an argument instead of a Set.

. In Smalltalk, argument mismatch errors lead to an object receiving a messagethat is
not inits class's method dictionary ‘For example the Smalltalk express‘ion $a add: 1
'v results-in a notifier wmdow Whlch states that an instance of class Character ($a) docs
not understand the message add This results from the receiver of the message

A

, belongmg to the wrong class.

In the situation where the argument to a. message‘belongs to the wrong class, the error’
message is delayed until the tmplementatmn of a message causes another i 1nappropnate
message to be sent. For example, the expression Set new addAll: 1 which tnes to add
all the elements from its argument collection to a new Set results In an error nouﬁer
mdtcatmg that an mstance of the class SmaIIInteger (1) does not understand the“
message do:;. This is because the message addAlI sends the message do: to its
argument, 1, somewhere in its implementation and i instances of class Smalllnteger do
not understand the message do:. These errors are riot found at compile ttme as they

would be in a strongly typed language, but they are detected and reported at run-time.

In Lisp, if the number of arguments does not match the number of ‘parameters:
(impossible in Smalltalk or Prolog), it is reported when the function is invoked. Ifa
parameter is mismatched, then the error can'be reported when it causes an error in a

built-in function (whether it is reported depends on the dialect of Lisp). For example,

SRR

~
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(add a\xl/; could lead to an error when i in the xmplcmcntanon of add, the mtcrpreter L

*
checks if the atom 1 is in the atom 'a, which should have been a list.

In Prolog, the situation is worse. A rﬁr;-dme error will not appear since an argument
mismatch ’Qill result in a unification failure and .thc int_érprg:tcr will proceed. For
cxample.' add(1, a, NewSet) will simply fail when the terms inList(1, a) and |
6 notInLlst(l a) in its definition fall to unify (see Figure 2.2 for a definition of add usmg A
notInList and inList and Figure 2. 7 for dcfinmons of notIanst and inList). The user is

never warned of the type mxsma_tch.

N M add(AnOchct, ASct NewSct) is true if Nchet is ASet with AnObJect */

/* added to it. *

[ addToLlst(AnOchct, ASet, Nchct) is dcﬁncd in a List modulc */
/% For brevity, we have not included its definmon ' . ¥/
édd(’AnObJect, ASet, NewSet) & ‘

notInList(AnObject, ASet) » - -

addToList(AnObject, ASet,- Nchct)
add(AnObject, ASet, NewSet) «

inList(AnObject, ASet).

Figure 2.2: A Set addition predicate. o

We are not claiming that Prolog is more susceptible to argument mismatch errors, only
 that it is more sensitive to them, since such errors are harder to detect. For this reason,

it is essential to introduce some method of detecting argument n}ismatéh errors. -

The most straightforward solution is static type checking. This approach has been .
discussed by [Mycroft and O'Keefe 1984]. They proposed a péramctcﬁzcd
polymorphic typing scheme which types the following Prolog objects:

* Predicates

» Functors
» Constants
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For example the predtcate add/3 can be deﬁned as havmg three parameters of types:
oc List of o, and List of o, where o is a parameter Which has a type as a value
Tlns way, we can use add/3 to msert a Color into a List of Color, and retum the new - f
~ List of Color or we can use add/3 to insert an Animal into a List of Animal, and retum
the new List of Ammal The predrcates whtch use type parameters are said to have

polymorphic types

However exphclt variable type declaratlons are not. necessary in an LPE smce variable
types can be mferred when the predxcates whlch use those variables ane entcred into the
environment, For example, glven the predxcate declaration rsEmpt y}List) the
: envxronment can infer that the type of the argument variable, L, in the term lsEmpty(L)
is List. Thls means thata user need only declare types for functors, predtcatcs and -

constants., We have used this appmach for static type checkm g of Prolog in Godel

When lntroduci'ng types in a Prolog interpreter two questlons arise: should typing ‘be
strictly enforced so that 'type declarations must be in place before dcclat:ing clauses or
should typmg remain optional? In producnon software strong typing is a deslrablc
feature, while in prototype development the abandonment of strong typmg allows
greater flexibility at the expense of security. Therefore Godel supports the concept of

¥ a pseudo-strong typing system. This system allows a mixed state of wcll-typmg to

exist. Type information is specified interactively as the software is transformed from a

prototype to a production form.,

For example, a prototype projeet is developed without typing concerns. Whe =#

developer is convinced the design is appropriate, typing constraints are introdu
using type declarations the types of predicates, constants, and functions are de ”

Interactively, the developer can be notified of type inconsistencies within the code 9™
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allowing either reformulation of typing constraints, or reformulation of the otherwisge
ill-formed clause. We feel that a pseudo-strong typing system Sxakcs an LPE more
useful over a greater range of apblicatiqns, from prototypical work to production

development.

Although other Prolog systems have static type checkers, the interaCtive ability to ;nakc
a trankmon from untypcd to well-typed source code alleviates the burden of constant

mode sw1tchcs requ1rcd durmg the edit/compile loop of static typc checkers
2.24.Open World Logic Programming

[Komorowskx and Omori 1985] and [Scrgot 1983] havc described ‘a- programmmg
environment in whxch the user is prompted for more mformatlon if unificatin fails.

Spccxﬁcally, if thc environment is trying to unify’ an open predicate, P, and there is no

- - clause whose head will unify with P, thcn the user is gwcn the choxce of adding more

mformanon about P in the form of new clauses whose heads are P. Also, thcy haver'
provided a mechanism by which any existing predicate may be explicitly opened or

closed.

On one hand, after the definition of the predicate includes(List, Object) which checks to

. segif an 6bjcct is in a list, the predicate should be closed so that the environment does

not query the user when the end of the list is reached. On the other hand, consider the

situation in which the user enters the query grandmother(Who, John). Suppose that

during unification, the environment generates the goal mother(X, John) and cannot

unify this goal. If the predicate mother was open, then the environment could query the
user for more infoxmati‘on. If the user enters a clause which identifiés the mother of

John, then un,iﬁcatio/ would proceed.
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The ability to add new information when umﬁcanon fails is called the open world
assumption and is not commonly included in logic programming languages. The open
world assumption has two, practical advantagcs in logic programming. The first is that
it allows an applioation to operate with incomplete knowledge. and provides a simple
mcchanism fox.:, the application to gain knowledge from a user.‘ The second is that it is a
good interactive techmique for dcvclopmg applxcatlons since the ~programmer is

promptcd for missing: clauscs as then‘ ncccssxty is determined.

The open world assumption interacts with modularization in an mtc\snng way. Since
the 1mplcmentauon of n;odulcs xs pnvatc Nit'is not appropnatc for the user to supply .
new clauses to a medule, when using the module. This means that a programming
' ? environment which adds bpth modulariiation and mé open world assumptiort must be

able to close all predicates in the module.

In Godel, thcrc are two posmbxlmcs for usmg thc open world prdgramrmng method.

The ﬁrst is whcn a goal (thh aosoéxatcd open prcdxcatc) fails. Each predicate has an- |
' atmbute that specifies if it is opcn (cxtendablc). or closed (non cxtendAblc) In the case

of an open predicate, Godel crcatcjs a debuggcr window on thé failed predicate. This
. indicates to the user that more information may be entered to'satisfy that predicate (or
e . e \

The sccond possxblhty is thn no correspondmg clause exists for a prcdlcatc

H

execution can he merely continued).

g

_ declaratmn Although Godel's static scmannc chcckmg alleviates many possibilities for -

usmg an undcclared predicate, it does not addxcss the issue¢ of an undefined ptcdlcatc
| If a predicate has no correspondmg clause,'a debugging wmdow is opcncd on the
current refutatmn lughhghtmg the undefined predicate. The uscr can then use the codc

browser to enter more information and continue execution.
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2.3 Overvlew of Godel's User Interface ~ *. . = - ¥

- . * N

Wc bave described fcatures added to Prolog to make it suxtaBle for large- software

developmcnt. Our goal, tlpugh is the integration of thcsc feature wnthm a cohcrqnt.

doka 4/

cnvinonmcnt runmng ona sxnglc—uscr workstation that mcludcs a high resolunon rastcr

dt,sglay anda pomtmg dcvnct:l The following section is an overvncw of Godel's uscr‘

mtcrfap'b dc\;cnbmg the mfcracfbn pamdxgm between user and cnvxronmcnt.
t e L} # - -

23.L User lnie({ace Paradigm .
i & TR
e TR

The m\/estlg‘auon of the cffects of 3raph1cal user mterfaccs on programmmg

ey

cnvn'onmcnt dcsxgn has led to new 1cfeas abott thc use of graphics for representing,

cditing, and construcung pmgrgrno. The graphical rcprcscntauon of programs can’

" influence language dircctc’.‘cediting. approaches to’incremental cpmoilation, and,

dcpugging techniques. We have extended these ideas from the prooedural

programming gomain and will show their uScfulnéss in a logic programmin-g o .

cnvtronmcnt Many ideas developed here ongmalc from,cnvu'onmcm,s like PECAN

ﬁm:lss 1984], Magplc [Delisle 1984}, and GUIDE {Szafron and Wllkcrson l986a]

. .

Godel's mtcrfacc was designed with three concepts,in mind. "The first 1s thata .- -

consistent, single interface model should be available to the user. The 8blll(3}0 move
between components wnhout mental context sthches or. rcmcmbenng component

dependent commands is'seen as vnal in designing an effecuvc uscr mtcrfacc The

. second conccpt lS how to hand;%mcompletc and incorrect programs. We. takc thc

approach dcscnbcd in [Szafron and Wilkerson 198%; which the environment is

always kept scmanucaﬂy correct by usmg dialog wimdowys that house mformat;‘n that

A . . . - .
™ IR ™
. . R

1 Most workstation.poiniting devices are called a "mouse.” We will use this term throughout: ’

R

~ ",': -
. RO
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is either waiting initial entry into the system or {s semantically incorrect. The last
" concepws that a graphical intérface may affect the run-time environment. We wish to,
use graphical techniques to enhance the debugging of logic programs. The following is

a description of how the interface is designed to produce these ct:fccts.
4 - . ,
232. Interfacé Components . ‘ N

.

The developer interacts with Godel using a pointing device and a set of windows:
' ) ‘- * . & J «
Windows contain rectangular panes representing views onto aspects of the

environment. These views include clause definitions, type definitions, module
§tructures, and run-time traces. Windows can overlap each other, so navigation or
- .

context changes occur by simply moving the mouse from one window to another. The \
active window is a window with special status since no other window may overlap it.

It is denoted by a higﬁlightc;;i title bar. A window is made active by usihg~thc mouse to .
point to 1t and ;ﬁessin.g the mouse button. That same button selects character posftions

or stmctdircs within a pane. . ' G

v : v :. - .

|

Comman"dsv are entered using pdp-up menys. Each pan¢ fh a window has 2 menu

~ associated with it. The menus that appear are context sensitive in that their contents are

-paﬁiall;' determined by the current state of the pane and the fypes of structures visible or

selected. - N

A structure in a pane is selected by moving the mouse pointer over the structure and *°
- r

prcésing the mouse button. Selected structures are denoted by highlighting‘ them with a
contrasting background. Several structures may be sélcctcd by dragging: the mouse

while the button is pressed. Spccial ac;ions may bc performed on a structure by double

. -
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" clicking! the mouse button While over the structure. The action taken depends on the

current window and the selected structure, but usually an edit (dialog) box is opened
. =
- t . . ' ‘
on thatgtruc ure | - ~ | o~ Ta
2.3.2.1. Dialogs and Alerts '

. | R | 4

Dialogs are a class of windows used to convey or retrieve specific information, and are

-

classified into two catégories: modal and modeless TInside Ma?:;ntosh, 1985]. Modal
dial gs (also called alens) do not allow the user to switch contexts, but enforce explicit
acknow]edgement of the window's contents (message). In contrast, modeless
windows allow the user to switch bctwcep contexts without being constrhined té one

"mode" of operation. Modal dialogs usually contain error mformatlon or ask for
1mportant mformauon that is required before execution can continue. On the other
hand, modclcss dialogs contain information that does not have to been immediately

entered into the system (i.c. information that }s not required by anb;licf object).

K

In Godel, dialogs hold textual infermation that has yet to be accepted int'o the system or

that was excised because of semantic inconsistencies. A dialog has a title tab that

- displays the module name and the type of déclaration, plus window panes containing

text and associated labels indicating the text's typc (see ﬁgurc 2.3). By encapsulating

semanucally incorrect objects in dxalogs #he clause base can always be kept

scmanncally consistent. The main use of modal dialogs in Godel are as alert boxes (see _

figun: 2 4) that convey error messages to the user.

1 Double cllckmg is the action of pressnzg the mouse button twice within a speclﬁed timeperiod. This
time period is usually about 250 ms, but varies between implementations.

PR
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.o Collaction /. Code / Clausa
head InList(kam,[ Top|RastOfList))
tait InList(itam,RastOfList)

Flgure 23:A dialog window for entry of source code (a clause) in the module
, - Collection.

\/ }

The predlcate “InLIsts/2" has no declaration in this contaxt

Figure 24: An alert window for undeclared predicate inLists (instead of inList).

<

i

2.32.2. Language Directed Editing - ' L
. ' | . ‘
The divergence from conventional text editors to editors that reflect the syntactic and

. semantic nature of pr gra‘mmir\fg languages providc$ sgvcral advantages in the
programming qnvirénrm_:nt domain. - A syntax directed editor, as described in
[TietelB2um and Reps 1981]’, produces 11§'nguagc templates that ahcviatc the need for the

’ user to rt_:mcn;ber specific syntactic details. ‘Therefore, syntactic ®rrors can be
eliminated, or detected during code entry rather than at compile time.

*
x

The design philosophy of Godcl § editor is to dctcct and correct errors as- carly in the
dcvelopment cycle as possible. The edxtor compxlcs all new mput and pcrforms both
syntactic and static scmann,c analysi; on this irtput. This method differs from the batch
oriented compxlauon process of conventional i lntcrprctcrs in one major rcspcct Godel's
mcrcmental approach. Our editor provides user fcedback as changes are made to

clauses, withdut having to recompile the entire module ¢or file) where those clauses

reside. It is our be'ljef that this early error detection can increase developer productivity.

¥
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One problem assoctated with the destgn of syntax drrected edltors is the scopmg level

of syntacttc constructs That i is, how many syntactlc levels of the language should the

y

user be requtred to enter An example is.the IF statement -of ptpcedural languages ‘

(shown i in figure 2 5). Entenng an edrtor command (v1a control keys, menust or other

0’ g
needmg more information: the condmon and the body. The user may use syntax
dxrected commands to create the body of the IF, but itis too cumbersome to use sﬁtax

dxrected edmng on the condmoh of the IF. In such places, itis; des1rab1e to enter a "text ‘

L]

xq\v editing” mode where source code: can be entered dxrectly For example the condmon

I

v

operator <.

x < 10" could. be typed dtrectly into, the IF condmon template mstead of generatmg :

o

further templates for the tﬁwo expressrons (the vanable X and the eonstant 10) and the,"“

-

an] THEN|

3 .
AN P e

' Flgure 2. S: An IF template The outlmes show the selectable components of the

!

T o template The <condition> i isata scope where conventlonal text

edmng is smtable .

e

‘The problem of d1st1n gurshmg between usmg syntax dtrected edltmg and conventlonal»'. -

text edltmg 1s more pronounced in Prolog than some other convenuonal languages

because of Pr‘olog s use of Horn: clauses and the1r s1mple syntax The approach we

take is a combmauon of : stralght textual edmng and symax dlrected edltmg Smce there

are a few syntacuc constructs, syntax edmng of atoms wuhm a clause would produce

too much overhead On the other hand the abxllty to select clauses or parts of clauses:.
has a posmve pomt modules Can be kept semanttcally correct at all times by o

performmg semanuc checks on a copxed" or cut" stmcture before pastmg" it 1nto the

e

newmodule o TR T R -" A ’

) mput techmques) creates a template for an IF statement Now, there are two templates o

>



selectmg an object" to mean movrng the pomtmg devrce to that object and pmsﬂng the

1

, mouse s selecnon button To sclect a literal in a clause, selcct any part of that literal.
~k/‘*‘31?0 select the ennred)ody of a clause, select a lrteral in thé body and &rag the mouse | :‘ '
" while depressmg the mouse selecuon button. Altemately, select a conjuncuon sign o
between any two hterals in the body. To select an entire clause. select the clause s‘

‘ 1mp11catron symbol To select several clauses, select a sxngle clause and whnle

‘pressmg the mouse selecnon button, drag the mouse over those clauses. 'I‘hese

' selec,uon regrons are shown in figure 2. 6 o ; o ,

| (= al|
]Ma. |

\ o Iﬂamuf

Figure 2.6: Horn clause selection regions :the outlines show th’e selectable structtlres

| _ When entenng clauses textually, the user typ? drrectly into a dialog wmdow (ora tcxt _
window in the casf of i in- -line dlalogs descnbed in secuon 2.3. 24., In lme Dlalogs) 8

' Acceptmg the input allows the editor to make 1mmed1ate syntactlc and stauc semantic

| checks repo tg}errors to the user usmg an alert w1ndow If no errors occur the

 parse tree fop e clause is created and a printable representatlon of that tree is dlsplayed

ta I

“in the edit wmdow (see ﬁgure 2. 7) From then on the user can select and mampulate

halls

u(usmg the workstanon s pomtlng devrce) components of a clause. &

/ | o o 3 o o "":,‘m“}
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-, InList(item,[Item|RestOfList]).
InUist(ltém,[ Top|RestOflist]) «
inList{Itam, RastOfList).

notinList{item,[]).

notlnList(Item,[Top|HestOfList]) ¢

I o E o ten, Top O
notinList(Item,RestOfList).

S o

“Figure 2.7: A structurc editor: selecting an atom within a clause
2.3 2.3 Graphlcal Clausal Reprasentauons

- Languagc dlrccted cdxtmg ﬁts naturally into an mtcrpreted language like Prolog because

| all program clauses must be compxled mto an intermediate form for fast execution. By

edmng thc comp&led forms of clauses instead of their textual representatlon mcremental

- compllauon of Prolog programs is stralghtforward Not only does mcremental

compllatlon bcneflt from syntax directed cdltmg, but so does the graphxcal |

| *epresentation of Prolog programs.

Smce the editor knows about (and can mampulate) the syntax of clauses it can
- automaucﬂly format source by m)akmg its own syntactrc transformatmns Note
. however that we arc not claumng our schemc for clausal representauon 1s more readable

. than another scheme for this is a matter of taste What we' are trying to demonstrate is
. that the cdltor can be used to allevxate the burdcn of formattmg source code,

\

sxmultaneously allowmg thc addmon of Specxal syntacue constructs to the language

A pnmc cxample of thls 1s the 1f-then else construct gncorporated mto most Prolog |

languages If-then-else i is used asa sof& elurunatmg the the exphcu use of the cut/O ,

J»

predxcate by the programmer If-then else is someumes 1mplemented dlrectly into the

- .
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inference enginé, or can be defined using cut/0 and prove/1 (see section 3.2.1.2,, The
Meta-predicate Prove) as:

ifThenElse(X, Y, Z)&=  ifXthenYelse Z

- opove(X)A . PPOVE(X)A
cut A o cuta
prove(Y). : ‘ prove(Y)

ifThenElse(X, Y, Z) < - ifXthenYelse Z &

prove(Z). - prove(Z).

Historically, Prologs uscd a syntax like (<cond> -> <thenBody> ; <elseBody> ) to
reprcs,,ent the if-then-else. Aa eXampl‘c‘ofiwhcrc.ﬂan if-then-else wajld be used is in a
deterministic membefship predicate which is true if its ﬁrstrargumcnt is a member of the
collcctioh;r»epresqnted by its second argument. The implemcntor assumcs the ﬁrst
' a:gument is always ground and wants no. backtrack pomts to remain once membcrshlp .
w is satlsfied (for efficiency sake). This bchavxor can bé‘:mplcmentcd in at- leastgHrcp

 ways:

/* conventional definition for member */

member(Item, [Item | RestOfList]) « cut. :

member(Item, [Firstltem | RestOfost) = \ y.
notEqual(ltem, Firstlten@a - "
mcmbcr(Itcm, RcstOtLlst) ‘&i

/* conventional (i.e. CProlog) syntax for member using if-then- clse "'/
member(ligm, [Firstitem | RestOfList]) « =
( Item = Firstltem -> N
© true;
mcmbcr(Itcm RcstOlest) )

/* Godel syntax */ .
member(Item, [Firstltem | RestOlest]) =

. | Item = Firstltem THEN .
true

ELSE £
~ member(Item, RestOfList)
ENDIF : ‘
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We claim that the last version is more readable, and fits naturally into the languagc

| directcd editing paradlgn‘l that Godel supports. The editor stores the if-then-else in

clausal form which can be provcd via thc defining if-then-else clauscs,x

mcmbcr(ltcm [Fxrstlte.m | RestOfost])¢= '
1fI’hanlsc(-*(Item, [FirstItemiRestOfList]), .
true,
mcmber(Item. RestOlest)). :

\J’

However. itis dxsplaycd for editing in its expanded form. Th1s 1dea can be extended to

constructs such a repeat/fail loops See figure 2. d for an example.

inputLoop «

REPEAT ,
~readinput(Input) &
procesalnput(lnput)

» . ENDREPEAT.

member{Item, [FirstMem | RestOfList]) «
IF Itene= Firstitem THEN

true
ELSE

member(item, RestOstt)
. 'ENDIF. ‘

.

Flgure 2 8 If-thcn-elsc structurc cdmng (along with a repeat'construct).

The debate ’bn"th‘c use of if-,th<_:n-clsc and other procgadurai notations has raised some |
concerns over their nﬁefufnéss, or for that matter, their appropriateness. As Shapiro
pointcci outy[Shapiro 1982], the us;: of if-then-else is gca}rcd‘towar_ds an operational
rather Fhan ‘cigclaifaﬁ\;e reading of clauses, results in writing complex clauses, and needs

explicit equality calls to instantiate output variables. For these reasons, our ideas of

'lising syntax d‘irecvtéd' editing of these constructs should only be interpreted as follows: |

o

the use of prdccdural construéts are neither beneficial, hindering, 'or mandatory. Only

* that, if they are used, they should be treated procedurally.




232%In-line Dialogs ' » »

The goal of Godel's l'anguage directed editor is to keep the clause dutahasc semantically
_consistent at all times. Whe'n syntactic and semantjc errors occur during the: incremental
compilation of Prolog cla’uses. they cannot be acknowledged for lyater'modiﬁcat'ton. but
-must be refused acceptance into the system.’ This means that the user must re-submit
the incorrect information afterftaldng corrective measures. Where is this information

stored in the interim?

The solution we use is a variant deScribed in [’Szafron and Wilkerson 1986b] (and
itnplemented in GUIDE) wh@ the user is required‘to enter code and data through ‘ '!‘
| special dialog wmdows As c ect tnformatton is entered it is transferred from the ~
dialog toﬁanother wmdow holdmg a correct progﬁ.m vverston (called the program clausc ,
window).' This scherne is useful in solving the pre_vious problem of dealing with
 incorrect programs, although we have modified it slightly to allo;v‘a combination of :

conVentional text editing and dialog entry.

We mtroduce a thtrd type of dtalog called an in- lme dtalog Instead of creating a
separate. text entry window, the in-line dialog is embedded w1th1n the program clause
wmdow (see figure 2.9). The user initially selects (via a pomtmg device) the position
he vt/ants text entered° we call this position the inseftlon point If the insertion point lies
between extstmg structures, then typmg w1ll insert characters between those structures.
" The in- lme dlalog is represented by a thin lmed border sur'oundmg the mserted
characters Thts not only gives the user-the visual clue that new text is bemg entered
but also outltnes the text's extent. During this phase, the user is in text entry\rnode

where the selection of structures outsxde the bordered text’ is.not penntgted, although

within this border conventional text editing is possible. If accepting the text does not
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lcad to an error, thc in-line dialog disappears and the text is automancally reformatted.

If errors do occur, the user can makc changes and try rc-acccpung, or excise thc text

. into a conventional dialog to escape the in-line dialog mode. -

. o v , .\
The advantage of this approach is the ability to use the dialog entry paradigm while

rctaining the more famiiiar' text entry paradigm of conventional editors. - Also, the

.- context switch from editing the program clause wmdow to editing in a dialog is

alleviated, allowing more cdmng to be done in one wmdow

: inLlst(ltem,[ltemlBestOfList]).
inList(Item,[ Top|RestOfList]) «-
- InUist(item,RestOfList).
notinList(Item,[]).
| notinList(item,[ Top|RestOfList]) «

N notEqual(ltem,Top) &,
notlnLlst(Item RestOfList).

Figure 2.9: An in-line d1alog the border indicates the in-line dlalog start and stop.
The insertion carat mdlcatcs where typcd text is inserted.

Syntactic and semantic errors are important aspects of program entry. In Godel,
whether in-line or conventional dialogs ar't\: used, an error occurring during the

acceptance of text produces either an alert dialog containing a message describing the

type of error, or an error message inserted into the input text at the position where the

error occurred.. When an alert dialog is used, the text in the input dialog causing this

~error is highlighted to give a visual indication of the error's position.

2.3.2.5. Code Browsing ) “ | ' -

~ Godel provides access to program clauses ahd execution states through windows called

browsers. Browsers are used to navigate through the module hierarchy-or the

refutation tree to access and modify program clauses. The code browser contains panes
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to vie»'v: modules, the categories of, tnodules. clauses and declarations within a module.
) and the gluing constructs between modules. Thddebugger is a special browser thnt
dlsplays the computation state of a query and is the interface to Godel' 's debugging
“algorithms. The last browser, the workspace. displays the history of Prolog queries
and thexr variable bmdmgs Each module owns an instance of a workspace, where the

code of the module can be executed.

. The code browser contains six panes. The tgp left pane contains a hst of categories,
where each category has an associated list of modules Each module i in the system is
ass1gned a category so it can be located more efficiently. The modulc pane conttuns a
list of 'modules owhed by the currently selected modulc category By selectmg a
module within the module pane, the remammg ﬁve panes update their views to dlsplayl '
information partlcular to that selected module. Two panes display information
associated with module gluing Operauons The first pane contains a list of modules

used by the selected module either by union or 1nclu510n operanons ‘The second pane

dxsplays a'list of clauses and declarations v1s1ble 10 external modules. . -

The other three panes are associated’ w1th program clauses for the- selected module
They are the declaration protocol pane the declarauon pane, and the clause pane. The
declaration protocol pane is stmxlar to the module category pane. Itis used to classxfy
declarauons This allows efﬁcxcnt access to particular declaranons The declarauonﬂ

pane lists all declarauons for the selected module while the clause pane contains all of

\

~ the clause defmmons for the module The gencral desxgn of the clause browser is to

encapsulate in one window all mf/ormanon necessary to ﬁnd and update program source
. /P ‘/ ) '
efﬁcxently (see figure 2. lO) .
T lf"/ A l‘ )
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notEqual/2
na— ALIASED -
——————————— TO notEqual

T 2 LY Y

5

A

PREDICATE InList/2 UNIFIES WITH OBJECT,List .
PREDICATE notinList/2 UNIFIES WITH OBJECT,List

inList(Itam,[Itam|RastOfList]).

inList(ltem,[ Top|RestOfList]) «
InList(item,RestOfList).

notinList{item,[]).

notinList(ltem,[ Top|RestOfList]) «

~natFaialfitem. Tan) &

Figure 2.10: A clause browser: clockwise from the top left - module category pane,

ule pane, import pane, export pane, declaration pane, clause pane,
, declaration protocol pane. ’

The final browser, the workspace, is a conventional text edit window. Commands are
entered, executed, and the results from the execution are displayed within this window.
This replaces the usual screen prompt mode of conventional interpreters. -

2.3.2.6. Procedural Debugging ' D

s

)

- There are two separate approaches to dcbugging Prolog programs: procedural and

~

&(i);clarativc (or algorithmic). The procedural (or trace) method closely follows the
exécution'"'ordcr of the inference engine. In contrast, the declarative (or diagnostic)'
method searches through a program's 'computation tree and asks the user to verify "

predicates based on their currently instantiated variables. From this information,

erroncous program clauses can be uncovered. Two important works concerning the

declarative debugging formalism are [Shapiro 1982] and [Pereira 1986).

»~ -
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In Godel; we havc chosen to dcslgn and ‘implement a graphical procedural d;;bugger
rather than a declaranve debugger for three reasons. Fu'st. the procedural method is
easy to )ncorporate into the i mtcrpretcr This allows quick prototyping to determine the
feasibility of our ideas. Second, n is not clear if the declarative form of debuggmg is
suitable for lapgc programs since the dcbuggmg process is controlled by the system,
Thll‘d Because of the complexity of declarative debugging algorithms, it may prove
advantageous to 1mplemem(/ them as mcta-mtcrprctcrs in Prolog itself. Fuxurev
extensions to Godel could cxpcnment with incorporating declarative algorithms into the

4/

inference cngmc Tl'»s would provide a comparanvc basis for the two approaches.
.' K /,‘r’

2.3.2.6.1. mbuggithodeh

L
o

There are two cbmm:nly used modcls for proccdural debugging: the tree model and the
- box model. . These two models are dcs:gncd SO a programmer can casily trace and
_understand thcr complex cxecunon pattern of his program. Thc tree modcl relies on the
| refutation tree formed by the depth ﬁrst left toright computanon of purc log . From‘

this plctux(c itis easy to see how a goal is divided mtc{subgoals N

In conﬁ'agt the bdx model l;épresents the flow of control through each subgoal. This

model is smple clcgant casy to implement, and is used by numerous P :

1mplcmcntatlons It consists of four components, or corners of the box: call, fail, re
and exi. Call is when a goal is first tried. Fail is when the goal's subtree fails t
succeed. Redo is when.\’a goal is repeated (a backtrack point).bccausc. other candidates |
exist. Exit is when a ggal's subtree succccds The main drawback.is thalA most box
model debuggers are desngned for a line-oriented dlsplay dcvxcc Godel, on the fthcr

hand, is qcmgncd for a blt mappcd graphical display. For this reason, wc have

. transfomid the box model to utilize the workstation's graphxcal capabilities.



39
Godel's procedural dcbuggcr_‘cbm’;ists of four components: a run-time stack pane, a
" . code pane, a variable list pane, and execution buttons. The run-time stack pane
represents thc goals and thcnr associated subgoals produccd dunng a refutation. Thls

pane is the hlstory of the current refutation. By selecting clcmcnts from this list, the

~ user can pcck into the refutation's history to view clauses and their variable bindings.

The code pane is the link between the interpreter's stack: fré@;es and the user’s source
codc It comams actual source code instead of some mtcrmednatc representation of the

program If the debugger can highlight the currcntly\s‘awcd goal, itis easxcrfor the |

-
.

user to make the connection between the source and g point in the refutation tree.

‘The variable list is the link between the source code's actual variable names and thcin"'
bindings. This list consists of variables as they appea;' in the usér's source. This -
- . )

eliminates thc:nch for cryptic variuble identifiers like _123 whcln browsing.variable

bindings. Internal variable identifiers are still rcquired when viewing variables bound '

to structures who in turn have unbound vanablc componcnts For example, suppose

the list structure [Head | Tail] has its two vanablcs unbound Suppose also that the
- variables X and Y are bound to this structurc When browsmg variable bmdmgs wuhm
the debugger we need a v1sual clue that both X and Mund to the same list. In
‘Godel we superscnpt each variable with a unique numbcr to 1dent1fy unbound
vanablcs " We also pnnt thc variable name in a contrasting font. For example, X =

Godel's debugging model is a variant of the box model. We wish to display the four

~ actions of call, exit, fail, and redo. To do tbis; the debugger provides three buttons.

A

1 ‘This output representation has not yet been impléménted.

-
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Commands are sent to the debugger cither thrdugh pop-up menus or these buttons
The execution buttons. though, allow for faster command access. The step button is
used to proceed one umﬁcauon at a time. It allows the user to enter intoa subuee 'Fre
second button, call, is used to execute an entire goal sklppmg the subtmc rooted at that
goal. The last button is the fail button. It warns the ustr that the current operation
_ faxlcd From a fallcd node, the user can use the step‘button to step into the call and try

Q'
: (locatcd below the faxl message) to advance to the last backtrack pomt. An additional . )

S ‘*f‘“‘-' to find the section of that subtree that caused the fallurc, or he can press the redo button
button, proceed, js uscd to continue until a breakpoint is %achcd or the refutanon
completes

- 2.3.2.6.2. Breakpoints . : B .

.

~In a trace and spy Prolog dcbugge.r;'it ‘is necessary o set breakpoints in a variety of
ldcations. The user may wish to halt execution whcncvcr a successful unification
necurs 'wuh any clause head w1th1n a procedure. Thc usgr may also wish to set
brcakpomts betwsen-or dlrcctly on any dtom wuhm a particular clausc Inserting
brc;akpomts between atoms is analogous to adding a pnmmvc systcm prcdlcatc
breakPoint/0 whose body nonﬁcs the mmctcr that a breakpoint was reached. Thxs
" method, ‘though, requires the user to assume thcrc is a procedural and prcdcfmcd
ordermg of goals within the body of a clause, an unreahsuc assumpuon in a.true logic

programmm g languagc

We arguc that breakpointsw&et on atoms must spccify one of two conditions; break
. before attemptmg»to solve thc goal or after the goal is solved (denoted breakquore and’
) breakAfter) Godel wﬂl stop exccunon and display the current state of execution in the .

debug window when- en,countcnng' a breakpoint. Breakhmts are set by selocung an

-
r
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atom within a clause and selecting the "add breakpoint"' itcm from thc clause menu. B
Clauses thh breakpomts are displayed with a different font to give a visual clue of their -
presence. For example, in the clause grandfather(X, Y) « father(X, Y) a father(Y Z),
if the user sets abreakBefore on father(X, Y), he can examine the bindings for X and
Y, but Y will éill be unbound. If he sets a brcakAfter on father(X, Y), he can cxammc
Y's binding. = 7 - '

2.3.2.6.3. Execution Visualization

Figure 2.11 is an example debug window that provides a visual representation of the
execution state. The query notInList(5, [1, 2, 3,4)) was 1ssucd We have stepped to
the pomt where a comparison (notEqual) is being performed.

Collaction/ Procedural Debugger|

m---m-m-e--s anst(ltpm[!temlFlestOlest])
n:::?;z; | NinList(Item,[ Top|RestOfList]) «
(Primitive: #notEqus inList(ltem,RestOfList),

notinList notinList(Item,[]).
natEgqual notinList{item,[ Top|RestOfList]) €

notEqualilten, Top ) K3
notinList(item,RestOfList).

Step Call Failed | Proceed
q b 4 b q g

~======--==-TT3,4]

Figure 2.11: A procedural debugger

At this point, if the user selects the right pointer under the ¢all command, the highlight
will move from the atom notEqual(Item, Top) to notInList(Item, RestOfi,ist).

Alternately, if the user selects the right poihtcr under the step command, the source

AN
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_code pane changes to display {he defining clause for notEqual. When the recursive goal . |
notnList succeeds, an msemon carat is placed at the end of the clause. 'If a stap or call
is activated, execution rcturns to the clause's parent goal. In the original querics case,
this succcss exit.results in all variable bindings bemg displayed i in the debugger's
assoc:atcd workspace window. The left arrow under step \d call is used to step

backwards (this has not yet been implemented).

24. Summafy °

{

In this chapter we have degcri he components we belicve are nccdedﬁ for large

Prolog program developme | ization, typing, and open world programming.
Similarly, we have outlined the al architecture that our cnvironmcr6 must posscss;
the main component being the central clause repository. This rcpo,gitory can be
considered a global database (or knowledge base) that is used to construct modular

- programs. o -
*

Lastly, we introduced the concepts of Godel's user interface. We also showed how the
interface maﬁipulatcd the software engineering componénts described carlier. We
. introduced features that rely not only on the éraphical nature of the environment, but on
the environment'g underlying architecture. Since the editor manipulates a constantly
evolving clause base, features like language directed editing and incremental .

compilation fit naturally into Godel's overall design. N
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Prolog Development Envn‘onment Dosrgn Detalls
- | You can't invent a destgn You recognize it, '. '
in rhe fourth dimension. That is, with your blood and .
S Your bones,as well as with your eyes."

: Davrd Herbert Lawrence 1885 1930

From the prevrous chapter, the reader should have a strong grasp of éodel'
‘archrtecture from a user (user-mterface) pomt of view." In contrast, mxs chapter |
B descrlbes Godels desrgn from an 1mp1ementors pomt of view. It outlmes the

: semanucs of the modulanzauon system the syntax and semiantics of: the type inference

. : system and lastly briefly mtroduces the syntact cand statrc semantrc errors detectable -

: dunng mcremental compllanon of types and clauses.
_ SR . o

REE RS

5 3.1 Preliminary Deﬁniﬁ.OfﬁS o

n The followmg sectron 1s a bnef background on Herbrand Interpretatlons since they are -

by

used to explam Godel s module semantlcs Also, an introduction to the BNF notatxon_ 1: :

;

' used m deﬁmng Godel‘s type and clause declarauon syntax is descnbed

"3,1‘.'1‘.Her'brand-lnterpmtaﬁons‘ ST s%

= A first order language L is a set of hn formulas buflt from the alphabgt havmg the S

followmg classes of symbols B ‘ g

i




V: variables o : '
C: constants S S D
: * F: functions : h N

. P: predicates - '
- C: connectives: A,v,andc= p

QQuantxfiersav o S T

We : assume that from thrs alphabet the usual defimuons for terms, atomnc hterals. and

 well formed formulas are drawn For Prolog, a program 1s a database of well formed

"clauses Each cause is an expressron of the form H = Gl A Gz A« n Gp where H is
consrdered the head of the clause and Gl/\ AGp form the body of the clausc and cach "

) Gl is con31dered a goal A umt clause (assernon) is a fact'i in the database and has no

¥

goal in its body. A rule clause has at least one goal in its body A clause's head and |
goals are all atomic formulas (or atoms) of ‘the fonn p(tl, . tn) where p is an n-ary
predlcate and t1, o tn are vanables or terms. We ' use the notatton p/n to dcnotc a
, B prcdxcate of anty n. Terms are elther constants, vanables or functions of the form f(tl,
| | tn) where f is an {1 ary fanctor and 1y, ..., t, are terrns The actual syntax of a

. L ok
‘ clause varies from 1mplementat19n to 1mplementat10n O in th1s thesns we wnll use the

B I - ¢

1‘The Herbrand Umverse UL, is the set of all ground terms in L The Herbrand Base, -

T symbol ='to denote log1cal xmpllcatlon and the symbol 'a'to represent logtca&and

: /’BL, is the set of all ground atoms in L A Herbrand Interpretatlon isa subset of BL, ‘

"lth a ground atom A true in an mterpretatlon I'if and only if Ais an element of I.
Also glvan an,mterpnetatton 1 and a first’ order language L plus a closed formula F,

then“l isa model for F xf the truth value of Fis true m I

n the theory of loglc programmmg, models and Hcrbrand lnterpretauons are USed to

1

deﬁne the concept of a lcast Herbrand Model (denoted Mp) such that:
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p=(A € Bp: Alis alogical consequeace! of program P)

‘The lcast Herbrand model i 1s the set of elements in the Herbrand base that are a logrcal

conscqucncc of a program P Mp defincs thc mcamng of a logxc program P, but to

|
mtcrpretauon such that

v

 Tp(D = (A € Bp: A<=A1,\ ».nAp is 4 ground instance in P
~andI2 {A; Ay, . An]‘] :

This reprcscnts a smgle ddductlvc step for a- loglc inference engine. 'I‘herefore o

: dcﬁne the meamng of a program in terms of Tp, we must ﬁnd the least ﬁxpomt of. Tp

(whrch 1nc1dentally isMp: | ¥
Mp—lfp(TP) TpTco({})2

"' Tpta(l) = Tp(Tpta-1(I))
" Tpta(l) = Upcg TpTn(l)

This result g from [van Emden and Kowalski 1976] and can be found in [Lioyd 1984).
It représents. all the grounds facts that can be Obtained. from program Pina fmltc
{ o

numbcrofsteps 131!‘ : o SRR

3.1.2 BNF Notation 4

. The production syntax forff’y'peﬂ chlarations in this'chai)tcr follows closely the horatiori

for cxtcnded BNFdexcept tmmnal symbols are uppercasc 1dent1ﬁers or surroundcd by

o W

logical consequence of S if for cvcry mtcrprctamn I of L, Iis a model for S rmphes Iis a model for F

» _[Llogi 1984, p. 14). ‘ v A
-2 Nou: that @ is lhc first hmrt ordmal othcr lhan 0. o s ‘ ‘ ‘."\ o

: precrsely dcﬁnc thls mcamﬂg we nmst first dcﬁne a mapping, Tp, from i mterpretauon to

4

. smglc quotauon marks As wrth cxtcndcd BNF optronal categones are cnclosed g

1 Let S be a'ba‘( closod formulas and F bc aclosed formula of a first order language L. We say F isa .



a set of facts, I, and deduces new facts.

within brackets ([ and ') and altemauon (or) is represented by a vertical bar (‘l)

We use the symbol * to denotc the closure operator which represents one or mofe

~ occurrences of an expression,

3.2. Modularization in Logic Programming

. 'Fne standard irlterpfetaﬁon‘ for the meaning of a logic program is the least fixed point of ’

Tp which v1ews a progmm PQas a set of facts that loglcally follow from P. When a .

SRR

meaning of each of the modulés as 4 set of facts, but as a mapping that takes facts and ,

“deduces new facts from them. In this w3y, we can deﬁne the meamng of a set of

modules by deﬁmng th ir interactions. The mterpretauOn we take is the same as in

[O'Keefc 1985] and:s such that a module is a mapping from mterpretatmns to’

lnterpretauons deﬁned by
“M[ [P] ](I) = TpTa)(I) where Pisnowa program fragment (Jmodule)

This notauon assumes that M[ [P] ] is no longer"a set of facts buta funcuon that takes

3
*

1

' Modules for a programrmng language are used not only to create separate name spdces

%

for symbols in the language but'to prov1de an orgamzed means of construcung large
programs out of smaller plcces In the context of loglc programming, this construction

takes on adifferent view smce modules contam axloms and axioms describe what is

true or false i ina world By "glumg" axioms (modules) together, the meanmg of the

new module may not comcnde thh the meamng of the two independent modules ieit

nughtbethat -

. MIIMy U Ma] I(I) % M[ [My] Iy U M[ (Mg] ()

: ponents (modules), it does not sufficé 1o vnew the :
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For cxamplvc, if module My contajns axiop\s p < q and q < r while module M2
contains the fact r, then p is falsc in M[ [M4] (D) L. M[ (M23] ](I) Taking thc meamng
of My and M2 separatcly, p cannot be proven because r is not v151b1c within M1, buf’
taking M' = M1 Y My then pis true in M([ [M] ](I) It is the construction of é loglc

g{ogram out of fragments that can lead to the upexpected bchavxor of a program. By )

h‘a»ﬁ/ing a well defined interface between; moc\__iules, the programmer is able to have better

S ‘ . 5, 3 j

control over the interpretation of the program clauses.
321 Moq_;gle' Glue

N ‘T’

We w1sh thls well defined mterfacc to have a semanuc definition sumlar to the semantic

e dcﬁnmon for loglc pnogrammmg To do this, we w111 deﬁne the functions (opcranons)v

oy
that can be performcd on modules when glumg them together. Since modules are a
mappmg from mterpretatlon to mmr»prctauon it makes sense to compose two modules
together where the facts gencxgted, by one module are used by a sccond rﬁmdulc We

) Q‘a r
dcﬁne this operator as furictién composmon and denote it by - (ﬁrst introduced in

*

[O'Kecfe 1985]): o _ © '2;,,:
M) o'[Mzn=def‘M[[M‘1].]o'M[[Mzn . 4

This is the. sxtuatxon where. all the deﬁmnons in M2 are avaxlablc to Ml, but not in

. reverse. Wc also define the functxon rename(Py, ..., Py) tobe a mappmg that renames

'ns argumcnts 5o no name conflicts appear. Thus, the composition of rename(

) predxcatcs(S) YoM results in rcnammg each predlcate in module M that appears in’ the

-

- set of predicates denoted by pmdxcatcs(S).



48

. )
The opcratxons we wish to definc for a modularization system for Prolog are closed
o}

inclusion, Opcn xnclusnon. and union. Closed inclusion is dcﬁncd by the opemtor o

" such that

M[ [M1] °* [M2]] =def M[ [M'] = [ [M2] ]
whcre M' = rename( prcdxcates(Ml MN'M3)) . Mj

“
Closcd inclusion is the case where M can see all thc definitions in M5 but M» can sec

-nothmg in Ml Also, there must be no symbol confhcts between My and Mp, so we

‘require all the confhcung symbols to be renamed. By closed we mean that module M

can no't~ add facts or extend the definitions of clauses in'Mz Mjpisa closcd module).

Thc sccond opcranon we wish to define for gluing modules together is union and is

deﬂned by the opcmtor oY such that: -

-

MI [M1] - [M2] ] =gef M{ My U Ms]

- Union is the case where all the clauses in M are united with the clauses in'Mp, creéating

a larger database of clauses. M can extend the definitions 'in‘.M2 but without affecting

M>'s database.
Thc last operatlon we wish to define for gluing modules together is- opcn inclusion,

defined by the opcrator o+ such that: : I -

M[ M1] o+ [M2] ] =def M[ [M'] * [M3] ]
' where M' = rename( prcdig:atcs(Ml N Mj3) )M

This is-the situation where M| can see all the definitions in M,, and Mz can see all v

deﬁmtxons in Ml The difference bctwecn this and closed mclusxon is that clauscs in

" M2 can be extended by adding facts to My's database; without altenng Mz s databasc
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Open inclusion is used instead of union when the predicates declared in M must
remain distinct from predicates declared in M3. This produces the i‘g&icdqn that the o

set of declarations in M1 intersect with the Sc; of declarations in M, is the empty set.

| Closed inclusi.on‘parallels an abstract data type‘mo.dulc. For example, assume we have .
a module Set containin"g“ the type Set, and various prédicatcs that opcratc on sets
(addToSct/3 remochromeSct/3 createSet/1, etc.). A user of the Set module should -
not bc able to add deﬁnmons to a set predxcatc, nor should the user know thc internal
representation of a Set (is it a list, or a functor such as set(Lnst)") Closed inclusion

enforces this mformanon hiding. ' .

¥

In contrast, open inclusion would pcrrm; the user to extend the definitifi

example, the user may wish to add an additional addToSet/3 prediéate;t-li;t checks for a
-specific condition. In this way, 'Sevt's pfedicatcs are extendable. Although, when'
including the Set module, the system makes sure the including module does 'nc;t already
_have an addToSey/3 éredic_étc declaration. This is simply a security measure - the Set

. : : L
module needs to be extended, but notify theuser of any conflicts.

322 Non-logical Predicates

Non-logical prcdicatcs intcraét with a »Pixy'olog modularization system in a différent

manner than conventional predicates. The following is a description of the clause

database manipulati'on predicates assert and?c’tract,_ the méta predicate prove, the all-
solutions predicates, such as bagOf and setOf, and their interaction with GOdcl"s

-

modularization mechanism.

ofaset. For #"
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‘ '3.2.2.1. Assert and Retract

In procedural Ianguagcs. nib&ulé indépehdenée is ensured in tWo ways.\ First, modules
must communicate through the protocol determined by their imports and exports, so the

internal objects of & module may not be acgess%Sccondly, the contents of each

.module (code and declarations) is determine statically. That is, no code or

declarations are added at run time.

L |
For logic prOéfémming‘ languages, the second congition does not hold. At run-time,
new clauses can be asserted and old ones can be retracted. This means that “a further
constramt must be added to a modulanzatxon mcchamsm to ensure module
mdependencc That is, calls to the predicate assert must msult in the new clause being

added to the local clause-base of the module in whlch thc call appears. In addition,

_ calls to retract must be constrained to remove clauses only from the local clause-base.

3222. The Meta-predicate Pryve .

n'»- i

Meta predicates take on a vancty of forms. Some Prologs allow variables to appcar as

 literals in the antecedent of a clause while others do not allow the promotion of logical

~ variables to iitcrals. In the latter case, the system uses a call/1 or prove/1 predicate. In

the former, the logical variablc is intérprctéd as if it where the single paramc‘t_cr to the

call or prove préicate. The Scmantic,s of these predicates are that the predicate's singlc ‘

1

_ parametcr is mterprcted as lhough it was inserted directly as a goal in the currcnt

: mfutanon

Wlth a modulanzed Prolog systcm the single parameter provg:cdncatc is msufﬂcxcnt
Any call to a predlcate must also specify which module the préicate should be provcn

in. In Godel, the predxcate pnove(ACall) defaults to proving ACall in the modulc where |
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- the call predicate originated. To allow a more general scheme, we introduce the

S predncate prove(AModulc. ACall) which is true if AModulc can prove ACall If the

" prcdlcate provc/2 is used, the name bound to AModule must be visible thhm the
calling module. By visible, we mean it must be a module imported us;ng one of the
module gluing operations of union or inclusion. In this way, the prove predicate is
festricted since it cannot call predicates from arbitrary modules. If a call to a non-

I

visible predicate is ettempted. a run-time error occurs.
~ 3.2.2.3. All Solution Predicates

" Second order predicates such as bagOF and setOf are used to find muliple solutions to &
query. Their usual parameter sequence is a list of variables, a list of goals, and a list to
collect each instance of the first parameter when the list of gbals is satisfied. For
example, setOf([X, Y], pred(X, Y), AList) is true when AList is a list containirig caeh
- instance of X and Y such that pred(X, Y) is true.

Conventional implementations of all solutions predicates use the prove predicate. Ina
modularized Prolog. system with well defined communication paths between modeles

there are situations where setOf may fail. For i mstance suppose setOf is cefined in - |
module M and a module My wishes to use it. Suppose also that M5 calls setOf with
its second parameter bound to a predicate P in M2 Further suppose that M used the ‘
closed inclusion operation to "1mport" setOf. Mj can see the definitions of setOf and
when setOf executes it tries to prove P. However, P is not visible in Ml. It is for

these reasons that the use of highly protected abstract data type modules for P}olog are
| insufficient. The nnion operation defined earlier nemedies this problem by allowing the

definition of setOf to be made available to M and all definitions in My to be made

available to setOf. . -
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3.2.2.4. Negation as Failure

Godel uses the conventional definition for the not predicate. Since not uses the preve
'predicate, the same restrictions apply to it as to the all solutions predicates. To prove

the goal not(p), the predicate p must be visible from the module containing the not

predicate. Therefore, any module wishing to use the not predicate must union or .

. [T T
Mg
N

openly include not's module.

.)‘ ,‘x‘ :

not(X) ¢= |
- Prove(X) a
. cutaA -
Cfail.

3.3. Declai*gtions

Each module in Godel has associated type and clause declarations. A general
!

introduction to typing 1
encompassed both the declaration of type objects, the types of objects, and the types of

parameters to clauses. Here we will give a detailed description of our typing system,

outlining the syntactic definitions for typing, and some static semantic errors that our

» typing system detects. -

- Several proposals exist to add typing to logic programming (and Prolog). As described
earlier, Mycroft' and O'Keefe prop’oscd a parameterized »typc scheme in which type
definitions were predicates evaluated at compile time whose failure causes a com;;ilation
error ihstcad of a run-time error. [Mishra 1984] considered types as sets of terms
generated by a regulér tree grammar whicl';dcscribes the objects that a Prolog predicate

manipulates. In this way, no explicit type declarations are requir_éd,”‘ :

i logic prOgramming was described in a previous chapter. It
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structure and

- ;Thc availability of type dcﬁnmons as a means of understanding progr
behavior is why our lpproach rchcs on. explicit type declarations instead of type
inferencing. We bel'ievq that the type definitions in typed Prol_og programs ¢ used
in compile time analysis to improve compiled code and execution'speeds. Also,
is useful in debugging - instead of faxhng with the wrong type argument, it can provx
more descriptive run-time and complle umc errors. An obvious dxsadvantagc to this
approach is the ngcd to specify l:zes. As alludcd to earlier, this is fa‘vorablc during

pmduction‘devclopmcnt, but can bg an unrantcd burden during prototyping.

!
We dcfmcd four componcnts of a loglc language that we wished to type: functions,
predicates, constants, and vanét les. Although the type of a variable can be inferred,
there is only one way to typc fjncuons predxcatcs and constants and that is through
declaration statements. A fourth kind of dcclarauon xs that of types themselves. These
typc symbols can then be used by thg other dcclarauon statements. By pre- deﬁmng
type symbols, the problem of referencing an undeclared type during interactive editing
is alleviated. The typing of variables is described in section 3.4., Typing Extensions.
These four langu'fxge components are typed using the folloWing type statements:
<declaration> ::= <functionDeclaration> | , g
- <predicateDeclanation> | M
<constantDeclaration> . 1
<typeDeclaration> 5
The following are various housekeeping productions uséd in declaration definitions:,

<typeList> ::= <type> [ ',"<typeList> ]

<functionTypeList> :: <funcuonParameterType> [, <fpnctionTypeList> ]
<constantList> ::= <constant> [ ', <cOnstantList> ] }‘ ’
<functionParaméterType> ::= <constanit> | <type> ¥
(<functor>, <predicate>, <constant>) ::= <identifier> !

<type> ::= <identifier with first character uppercase> o

! We assume the general definition for <identifier>'s BNF, along with other basic constructs.

sk
e N . ’ .
- -
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‘There are two types of predicate declarations in Godel. The first type is a siﬁg}c
1o

‘ . v ®

declaration defining the name of the predicate and the type of its arguments. m

.. these types, the predicate's arity is determined. The second form of prcdiontc

declarations appear when the predicate is used as a non-standard compound term. A
compound term is a term of the form <fun05or> (* <termList> ')', where <termList> is

a scqucnce of terms separated by co

Most i’rologsystems introduce-fion-standard compound terms through operators and
their associated type and precedence. Operators are only a notational convcnicncc and
are used to express terms where the functor i is an mﬁx, prcﬁx. or postfix opcrator An
mfix functor appears between jts two arguments, a prefix operator appears before ns .

single argumcnt, and a postfix operator appears after its single argument.

'I-‘o-_disambiguate the parsing of arguments between the three kinds of functors,
prcccdencc numbers are assrgncd to each argumcnt In convcntlonal Prolog systcms.
the type of each functor coyld be dcﬁncd as xfx, xfy, and yfx for infix functors, fx and

fy for_ prefix functors, and xf and fy for‘ postfix functors. Here x denotes an argument

. of lower preccdcncc and y an’argument-of higher precedence. “For example, both

operators "y and '-' have type yfx thcrefore a-b+c is properly parsed as ((a- b)+c)

[whrch 1s cqulvalent to +(-(a, b),c) usmg compound term notauon]
¥ I ‘
In Godel, we wish to take advantage of declarations, syntax vcrboslty, and (hc~

graphrcal nature of the environment to combine the declaration of funuor xypcs and

prcccdcncc operators into a single constuct. The syntax for an opcmtor prcdlcatc is:.




55

redicateDeclaration> = <operatorPredicateDeclaration> | S
| <standardPredicateDeclaration> | s
<opemorPredicawDeclamm>
 PREDICATE gopempeclmuom@ucsbm <integer>,
| <smndardedncawDeomuon> := PREDICATE <predicate> UNIFIES WITH <typeList>.

<operatorDeclaration> ::m [<lype> <typc§ymbol>] <functor> {<typeSymbol> <type>]
<typeSymbol> ::= <= < '
Functwn decl ations follow the same format as prcdxcatc dcclaratlons There are two

types: conven onal functor declaranons that define the functor s argumcnt typcs plus
the functor's ljetum type, and funcnon declarations that define opcrators For operator

functors, thc prcccdcncc field is also mcludcd

<foncl.ionDeclara.ﬁon> ::=<operatorFunctjonDeclaration> |
. <standardFuncgonDeclaration>.

dn v
e

: f
For cxampl

a range function "../2 which dcﬁncs ara

[FUNCTION . '(Number Number) IS Number].

|
332 ExtuTm Declarations

| EE U DR

External Jcclaranons are used to define gcnenc predicates and mo?u'les A typlcal ST
| T 2008 NN U

example 1# the quickSort /2 proccdurc QurckSort can be dcﬁned Qn‘suvcly usmg a- -

partmon[/&t prcdxcag: In tum, the partition prcdlcate uses a co‘- b prcdxcatc to

determin t}lc sorting order Godcl's approach to incremental j_ ' pn and st,ati'o: A
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pmoedure like quickSort, we need to introduce s?e external dcclmtion Its purposc is

merely a placeholder unul a modulc glumg operation merges the formal definition to the

actual definition.

<externalPredicateDeclarations ::= EXTERNAL <predicateDeclaration>

\ L

The quickSon example would be codcd as:

" PREDICATE quickSort/2 UNIFIES WITH List, List
PREDICATE partition/4 UNJFTES WITH Object, List, List, List
EXTERNAL PREDICATE eompaxeﬂ UNIFIES WITH Object, Objoct
- QuickSort code omitted forbrevity */
. U““\‘ E N S
partition(Pivot, [, [], [1). : ,
partition(Pivot, [FirstObjectiRestToPartition], (FirstObjectIPartitionList1), Paru'tionl"sa) &
‘compare(FirstObject, Pivot) a
partition(Pivot, RestToPartition, PartitionList1, PartitionList2).
partition(Pivot, [FxrstObJecthcstToPamuon] PartitionList1, [FirstObject/PartitionList2) e
not(compare(FirstObject, Pivot)) a .
partition(Pivot, RestToPartition, PartitionList1, PanilionListZ). ¢
In a module using the panmon (or qmclchn)ftedlcate thc comparc predicate could'bo
deﬁncd in that 1mplcmentmg module (for examplc compan:(X Y) < lessThan(X, Y),
whcrc lessThan/2 is a "built-in"). The other approach is that compare can be directly

aliased! to the lessThan predicate.
3.3.3 Type Declarations -

Typing systems for Ptolog programs have existed for smgc time. The fxrst
implementations were snmllar to the Imt (program for the C programming language
where a "type checker" is executed with a source program as input. The next

. generation of typing systems added declarations to the Prolog source, so'whgzn the

-

! Aliasing is a mechanism described in [L:?movaz. et al.] that allows renaming predicales o avoid name
conflicts.



u&rpreter consulted a source file, these deﬁnmons éould be read and used to produce

"compile ume" error and waming messages We w1sh to take thxs a step further by
N '

allowmg type declaranons to CXISt in the envxronment durmg mitlal program entry..

iy Thts allows automaue detecnon, feedback and' correctlon of ermrs The' followmg .

section glves a bnef descnption of exnstmg type mference systems, and mtroduces the

o detaxls of Godels typtng system

' Some Prolog type systems use clauses to specxfy type declamtlons For example to
define a hst of a cenam type, the followmg clauses could be enfered and the system |

¥ nouﬁed that they are for typlng
/* hst of aspeclt‘ c type . ‘ - ; , o
S SN EETEC ‘ ; s SRR
‘ lsLtletType(ml Type) '
. lsLllenype(cons(Head. Taxl) Type) Type(Head) tsLnstOtType(Taxl Type)

: To type the predlcate 1ntMember (a member predlcatc only for mtegers) usmg thlS

scheme, the followmg deﬁmnons arc needed (where :- predlcateTypeDeclaratzon is a -

L’

compxler duecuve)

‘- predxcateTypeDeclarauon thember(X Llst) mteger(X) lSLlS[OfT ype(Llst, mteger)
_intMember(ltem, .cons(Item, RestOthst))
thember(Item cons(Top, RestOlLtst)) -thember(Item RestOlest)

T Slmllarly, a notatton devnatmg from Hom clauses could also be employed (sxmtlar to
_ W v :
O Keefe s notanon) ‘
SR /* hst of a specific type e
- -ypelistCType)=

il
: cons(’l‘ype. hst(Typc))

-

T"xs specxﬁes that the constdnt nil i 1s a llSt of Type, or’ the functlon cons whlch has
parameters Type and llSt of Type is also a llst of Type The thembers type o |

declarauoanuldbedeclaredas el SIPE



58 .
- predlcate'l‘ypeDeclamum intMember(inte@r. list(integ,ﬂ"))

1

Here Type 1s bound toa bullt-m type int er) and is used to define a hst ofa speciﬁc :_,
type 'I‘hxs allevrates the need for .second orde '

ates used in the first cxampl% by .

: mference engine.
Godel's approach to typ_ing is slightly different.;Aside'from thke‘ type declarations, for
predjcates and functions, we need the folloWi'ni declarations for constants and types:

| <constantDeclaration> ::= CONSTANT <constaniList> 1S <types
<typeDeclarauon> = TYPE <1denuﬁerLlst> [1s <|denuﬁer> ]

“

These deﬁmnons allow abstract types like Set Lxst or Integcr to bc declared They‘
- also allow constants to be declared Wnth these declaratlons and the ones- descnbed ‘

: earlrer we have all that is necessary to produce well typed Prolog programs

PN

» .For example, to well type the thember predxcate, the followmg decldrattons would be

R enteredmtoGodel o , . o ¢

B}
TYPE InegerList ' | R o
‘FUNCTION cons(INTEGER IntegerList) IS lmegerLtst : o
»CONSTANT ml IS IntegerList - . v
o PREDICATE thember/Z UNIFIES wmr lNTEGER InmgerLlst o
o The verbosny of these declaratlons does not impose srgmﬁcant programmer overhead

ol

- 'The use of dialog wmdows for declaratlon entry allows the user to type only what is

vnecessai’y For example the functlon declaratlon for cons is entered mto thc system by 3

e _sebectmg the funcnon declaratxdn menu 1tem in the browsers declaratlon pane From‘ Co

' ‘thexe in- lme or standard dlalogs are used to enter only the function name, 1ts argument

;/ types and its return type (see ﬁgures 3 1 and 3 2). When the declaratxon is accepted ;

Y
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into the systcm itis dxsplayed in 1ts cxpandéd fonﬁ‘ If futurc changcs are needcd only

thc non-tcrmmal constructs in the declarauon an: edxteq‘.
L

l R x '\V’

B ‘v TYPE lnte arList IS List - 1.
' Collaction / Dncjaration / Function declaration
CONSTANT

‘ J ame ‘ cons
'PREDICATE | J -

types - M| INTEGER,IntegerList

)

| return type | IntegerList.

| : . .
e - K 3 L g

- Figure 3. 1: Didl(_)g editing of a function declaration,

Y

| TYPE. lntagorList s List L ' -
| FUNCTION Lcons(lNTEGEH lntegerLlst,\] IS lntegerLlst B ‘
CONSTANT nil IS IntegerList] - . B
5 PHEDICATE thember/2 UNIFIES WITH INTEGEH IntegerLlst

Flgunc 3.2: In-line dnalog edmng of a function déclaration. The thin-lined border -
speclﬁcs the cxtent;pf the editing change. The insertion camt mdlcatcs where typed text
Pl 1stobcmsertcd :

e e T
: 3.3.4 Polymorphic Types_

A drawback to the curr&nt typc inference systcm @hc lack of polymorphlc type -

dcclaranons Fori m*xnnce, 1t would be: beneﬁcxal to dcclare thc fxmc;uon cons as a list

-

L 4 of a and the predlcatc thember to mstanuate a fo an mtegcr to wcll type the List

ofmtegqr. . - ’ ‘ B L

|

1

We take the approach that for readabxllty ‘and documentauon pUYPOSes, cxPhC“

dcclaratlons of Llst of o and Llst of B must be dcclared as type LlstOfa and‘

|

. : [ T
{ R .8
\ SRR
i

LlstOfB Howcver future versxons of - Godcl could bc modxficd to allow- vanables to

) .
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',,‘;_.:symbolwhen determmmgcorrecttypmg AR \ SN

M "
occur within type declarations. For instance, consider a binary tree data structure
defined as: '

FUNCTION tree( Tree('neeType). TreeTypc. 'l‘ree('l‘reoTYnc) )IS neeatpayps
CONSTANT nil IS Tree;

PREDICATE addT oTleeB UNIFIES WITH IN']EGER Tloe(lNTEGER) "llee(lNTEGER), .

Predrcate addToTree(Item Tree, NewTree) is true 1f NewTree i is Tree wrth ltem added
to 1t. 'I'he smgle parameter to type Tree is mstantmted to the built-in type INTEGER in
the declaratlon of addToTree/3 and deﬁnes a tree of mtegers ‘The difference between
this approach and other polymorphlc type systems for Prolog is the format of our

declaranons We wish to use verbose syntax and contrastrng fonts to create a vrsually ‘

appealmg and readable fotmat

, 3.3.5 Overloadihg' - ®

Pps
’.

: Overloadlng is where two functors or. constant’symbols can have drfferent types The |

_ prevrous examples overload the constant ml which can be elther a Llst ora Tree In

Godel overloadmg of functor and constant symbols is not perrmtted Godel wrll rssue

a warning message smce 1t isour bellef that multrply defined symbols usually indicate

¥

‘the program is not properly modulanzed and an abstract data type facrllty should be {l

considered. However Godel could be extended to allow mulnply defined symbols in.

~—

the same modulc The type mference system would then check each occurrende ogf a B

r

336 Additional'l’ype Dedarations e
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term, such as person(X, Y, Z), could beinterpreted as a three field record ,yvhere the

programmer asSigns meanings to each ﬁeld (for instance name, age and date of birth).

& Godel

A

“ &
¥

v ' For example, sn.% pose we define an abstract data type for a person. Bach person
“s

i**knows his name, 'Qge, and date of birth. The name 1s a string, the age an integer, and

I the date of birth an integer mple of month, day and year In Prolog, this record could

“The notion of a functor, as a record construct can be: uSed to add further declarations to”

‘ be defined by a functor person of arity three with the formal declaratlon bemg the

W
' followmg .
L

5 )}’ S ‘
1 TYPE%&? o - coo L
-g, FUNCHI dale(IN'I‘EGER INTEGER, wmcamrs Dae; ¢ :

TYPE Person > ' :
FUNC'PION person(STRING INTEGER, Date) IS Person; '

&
r) . &

8

However, to descnbe the mterpretauon for the functors date and person, we 1ntroduce a
7 record c;eclarauon This declarauon docs not change the semantxcs of Prolog, but only
'clanﬁe&’\ the programmers mtended mterpretauon ,The date and person records

: _(funcuous) could be a}rﬁmately dec_lared as:

. _ «FUNCTION person IS RECORD
o name :STRING
T -age : : INTEGER
o : ,:» - daeOfBirth : Date
s - ENDRECORD OF Person.

i-ﬁ'-';. i

. The extra 1dentlﬁer decl’aratlon ﬁelds for records are not needed but can be used to not
% ﬁ

- only adg documentauon to programs, but produce more readable error messages For

e

examplﬁ if the functor person was used mcomectly ina clause a message hke “The -

‘name of a Person myst ‘be of type _STRING", or if a field was omitted the message



6
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could read "A Person consxsts of a name, ‘age and datcOmeh Only two fields are

prescnt .

, T

Another declaratlon, a sub range, could be added to the declaration list and used to
$o.
catchecompile-time errors an_d Improve program documentation. As with the’ rccord
declaration, we do not wish a subrange to change the scmanncs of Pmlog An example
of subrange use would be in the Date declaration defined earlier:
- TYPE Month IS SUBRANGE [1. 12], : -
- TYPE Day IS SUBRANGE .31 . ‘
. FUNCTION dalclSRECORD
day : Day
month  : Month
_year :INTEGER - :
- END RECORD OF Date | .
Our original prbposal. was that the subrange declaration should not change the
semantics of Prolog. It would be useful, bhoWever, if the subrange bt'ype could be
- “extended to the inference engine so that run-time errors qﬁcur if a variable of a subrange

" type was instantiated to a object (number) outside the defined range. We have not

implemerited this, but future extensions to Gedel may include such operations.

In this section we have described two declarations, subranges ‘and records, that we
believe add to the readability and understandability of Prolog programs. They do’not
Cha@‘ge' the semantics of Prolog, fonly strengthen the imcndeg interpretation of a

programmer's data structures. /

34, Fyping Extensiqns |

. . //Y .
One reason for implementing Godel in Smalltalk-80 was to provide a development

regime that permitted cxpeﬁmenting with environment and interpreter changcs As an




.

g thts has been drscussed elsewhere

| thcsrs What WC dﬂ' argue is that.tll,e umform extendele. and mtegrated Smalltalk 80 >

63

1 L I

inheritance allowed us to experiment with modifications to both Godel's interprete_r and

inhentance was choscn for one major reason, Smce we have type

| &ﬁmuons of the form TYPE A IS B and TYPE B IS C, it seemed natural that we
‘ modtfy the unification algorithm so that objects of type A can umfy with objects of type

C The change to the rnterpreter is simple. Each variable mstance carries around
another field - its type. When a vanable unifies with an object the two types are
coerced to the least upper bound of those types. The variable's type is then set to this

upper bound

Add'ing» type inheritance to Goael‘tequired subtle changes to the parser. To declare the
type of a variable we extended the syntax of a yariable in the terms of a homn clause so
that variables can be followed by an idenﬁﬂer representing their type. For example, if |
we have a clt_tuse father(X, Y) such that the vsriablc X is of type Man and the variable Y

is of type Person, we can express this faclt by father(X : Man, Y : Person).

One example of type inherltance that displayed considerable speed-up in execution time
was a Prolog solution to Schubert s Stearnroller problem szafron and Pelletler 1988]

(see Appendix 1 for source listings). A factor of etght in execuuon time (for this

‘ pamcular problem) resulted from the addition of inheritance mto the umﬁcanon '

algonthm We will not go into detail on the beneﬁts of type mhentance m Prolog, as

v
»

' Smularly, we 30 nqlt‘wrsh to perform a detarled study of the ments of prototypmg in .

Y N ‘
Smalltalk 80 versus prototypmg g

"
. . B ' TR . Lo Wt :

jer systems, ‘for thxs is beyond the scope of thts,, )
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environment simplifies the software modiﬁca;ion process. This brief discussion will,

we hope, spark the imagination of the rqad,ér,fl - ' ’ L,

””‘*"3.5; Static sgmantic Error‘s

. L2
Thfi sggnon gives a brief overvxcw of some sYntacuc and static scmantxc errors and
their correspondmg error mes;%qs Several qrrors are dctected by Godel during the
programmmg process. These cmors can be grouped ito thrcc categories: errors when’
crcatmg type declarations, type errors when creatmg clauscs and scmanuc errors whcn :
gluing modules together. The format of these crror messagcs is that thc message text

appears in normal font, ..@‘\i'ly¥

context sensitive: componcnts are enclosed in anglc

* brackets ('<') and appear. m:ital'tcs s

- The following errors can be detected wh_cn,cr‘cating‘décl‘f"arﬂations:

(1] The type <type> has not been declared in this édhtext

[2] The [ <functzon>/<predzcate>/ <constam>/<type> ] has aJready been declared
.88 a <type> in thls context. &

when creating clauses are: : "‘;,_ o .

[1] The ldcnuﬁer <identifier> has not been dcclared as a typc in this context

[2] The variable <identifier> has been previously declared asatype <type>and
is being redeclared as type <type>. ; ‘,‘ v -

[3] Term <n-1 23...> of predlcate [ <predzcate> / <funetor> ]is dcclarcd asa
type <type> and contains a tenn of type <type>. | '

(4] Thc function <functor> has arity <n> but the formal dcclarauon has anty
<m>, as declared in thc context <context>. . S

[5] Thc predlcate <predzcate>/<predzcateAmy> has not bccn dcclarcd in this
contcxt ' : PR

- [6] A ‘vanablc "<van'able> has“ 6n1y been used once in this cl‘ |
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Semantic crrots that occur when gluing modules are:
[3) Module <module> s siready included in this context,
[2] The module <module> does not exist.

3.6. Summary R
This chapter was a detailed description of Godel's language design. We described
Godel's modularization system and showed how the gluing operations we‘re designcd
for bu:ldmg Prolog programs We also mtroduced the syntax and semantics of our

wh

_dcclaratlons Godel's graphical nature allowed us to experiment with various ways of

- gcncratmg self dpcumentmg, readable, and mfoxmatxve declaxatJon syntaxes.

We also introduced how new ‘type constructs can be added to both Godel and the
PrOlofg ianguagc to clarify the intended interpretation of data structures. We also
prescnted a simplo enhancement to the Prolog languagé and interpreter as an experiment
- | in modlfymg Godcl Lastly, we demonstrated &del‘s "proof readmg capabxlmcs by
‘outhmng some static sernantic errors. o
# - "
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Object Oriented Envirbnmént Design

o [

As Lewzs Carol mught have puit:

thte nght "People think that the lnheruance
, amecham of Smalltalk and other
Object-Oriented programming

: - languages provides significant
i . 1 Support for code level Software .

" Reuse or or .
Alice: “Or?"

White Km'ght "Or they don't" A ‘ o

¥

This chapter describes-Godel's obje_ct—on’eﬁtcd architecture. We first introduce the
. object-oriented design paradigm and define some terminology used in this chapter. We
then introduce the programming environment Guidée [Szafron and Wilkerson i986a]
and explain how its architecture was influenced by the object-oriented design
,‘. methodology. We then describe how Godel could re-use Guide's code by cxploiting
the class inheritance structure. Lastly, we give a detailed dcscription of the compilation

process for Prolog clauses and show how their compiled forms are represented in the

Godel environment.
Generally, this chapter is an introduction to the internal details of Godel. It servesasa

bridge between the s;ftwarc cngincedng/user-intérface aspects of Godel and the Prolog’

. interpreter (inference engine) described in Chapter six.

Neil Haddley - Lancaster, UK

G e A
s
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4.1, Objcct-Oriented Progranuning

Programmmg languages are classufied into "programming paradigms"; a term used to
describe a class of programming styles allowing a unique way of representmg‘
programmers' intentions. Common programmmg paradxgms includé Lxsp s function
oriented paradxgm Sma'ltalk's object oriented paradigm, Prolog's logic oriented
paradigm, and thé common procedure oriented paradigm. When building software
systems, the choice of a programmmg paradxgm (and language) w1ll affcct ‘how, ‘
knowledge is expressed. One paradigm may be more natural than another, but thls

dcpends on the form of the problcm and the &velopcr s view of the problem '

The developer's view when solving a problem i 1s a basnc aspect of software de51gn

Four methods commonly used in desxgmng problem solutions are: a control ori¢nted, a
data oriented, an object oriented, and a Tognconented methoo. The control one‘:tted
approach to programming anaiyzcs a problem as o'perations needed to completc a task. .
The control mechanism, proccdural and statement level control structures are desxgned

ﬁrst followcd by a definition of data- types manipulated by those control structures _

The data oriented approach uses the opposite order. The problem is analyzed to obtain
the required data structures, followed by the’deﬁt\ition of control structures that will
mampulatc this data. In contrast, the logic ba approach requires statements to be
created thai describe the data to be manipulated and their relationship. These are taken
together to declaratlvely specify the desired outcome. There is no definition of how to
solv_e the problem (this is lt:ft up'to the inference engih‘e), only a dcfinit‘ion of the
problem's logic. Overall, theee views of a software system are composed of a’
collection of data (the mformatlon manipulated by the software) and the pmccdures that

 manipulate the data.(a unit of software).

E

gt
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For example, 'in a windowing system implemerrtcd in a control or data orientéd manner,
the systcm would mcludc data representing the size, location, text, and title of each
,, wmdow * The control is rcprcscnted by procedures to move a window, create a
wmdow. and answcr 1f one window overlaps another.“The problcm with this nppmach

is the data and procedures are treated independently even though they are not.

' O.Bjcct.orientcd programmillg rectifies this problem by combining state and behavior
' inro a‘ single entity called an object. The notion of an object was first introduced in the
late 60'3; by the language Simula. However, object-oriented programming did not
emerge as a new programmmg paradxgm until the creation of Smalltalk in the late 70's.
.Since then, many languagc dc'hgns for object-onentcd programming havc cmergcd -

Some of these languages were designed from scratch. such as Trellis/Owl and Erffcl/‘

while others '\.avere conventional larrguages with object oriented concepts built o‘n top

(hxbrxd ianguagcs) such as C++ Flavors, Loops, and Objcctxve C. In these languages -

" “ the object is considered a self contained entity which has: [1] its own pnvatc data (statc)

and [2] a set of operatlons (behaviors) to mampu1ate that data.

T - .

In thc ObjCCt pamdxgm an Ob_]CCL, like data ‘can be mampulatcd but like a procedure, it
- also describes how that mampulanon is done. To i mmatc a behavior the system sends a
message to an object :alled the messagc $ recewer to mvokc‘that Ob_]BCt s behavior, A
message is.the name of the behawor (’Called a selector) possibly with some argumcnts
and descnbcs what the sender (vants to happen, not how it should happen. It is the
_ message scorrcspondmg method, owned by the receiver, which contains cxccu(ablc _
instructions much like @ procedure.in a, convcntlonal languagc A mcthud can only be

mvoked when an object receives a message whose scpé'ctor corrcsponds to that :

method's selector. — Cean ,
. . LIS R .4_:.’_‘.‘-_ ) .

T
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In the ndowing example mentioned carlier, an object oriented approach would‘be to
descri wmdows (opaque, rectangular areas on a display device) as a set of objccts -
one object for each window on the screen. A window object would have private
variables that contain its location or size plus methods d‘cscribing its behavior of
moving itself, displdying itself, erasing itself, or returning its size or location. Each
method would have an associated message sclccior such as move, display, delete,

boundingBox, and origin.

Another fca‘t(iif'g of object-oriented programming is the concept of a Class. A class
describes thc common features of a collection of ’rclatcd objects. An instance of a class
is an object that has its own state. Class descnpuons usually mcludc instance variables
(thc local state for each objmt) and the methods that manipulate class instances.
Thcrcforc, a class is a mechanism to encapsulatcythc state and behavior of a set of

‘objects.

%

Classes are related to each other through an inf:critance hicrarchy A subcl.ass is a
specialization of one or more superclasses. The subclass inherits state and bchav1or
from its superclasses. The subclass can, however modify the behavior of its
superclasses by fedeﬁning a method with the same messagc selector, overriding the
supefclass's behavior method. |

. Object-oriented design is considered a powerful representation (or programming

. : o :
methodology) for the construction of a variety of applications, including graphical user |

interfaces. The object-oriented windowing example is just one formalism for viewi

the constructioh of these interfaces. It is used extensively in the software architectu

of many fwindpwing systems and their underlying software components. Prime.

c;(amples include the Maclntosh's MagApp development environment and the
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Smalltalk 80 progranﬂung envxmnment Each of these software systemsvv{ews the

underlying apphcanon as a hierarchy of classcs. with each hlcmchy chnin deallng’with

a specific aspect of the application and interface. By organizing the gpphcation aga

collection of classes, considerable flexibility between the interaction of the applicatt%n\ ""

o ) ] .
and thie user interface is acquired. : , ’,

4.2. Guide Architecture

Thc goal of tkg Godel project was to create a prototype Prolog programmmg

cnvxronmqn 10 ald ,Prolog developers by using a hxghly interactive and graphical
mtprfac& Godcls qrchltccturc was strongly mﬂucnccd by two factors the Smalltalk-

‘80 languag_g and the G‘uldc project. Objcct-oncntcd programming fcaturcs like classmg

: ancﬁnhcng;mcc WCre the dnvmg force behind the abstract data types and hxcrarchlcal :

. ) .dc81gns of both Guide and Godcl The ability™to create subclasscs of existing classes

,)

aoa

Wbl - Y \/\7_
L ’Ihc'fu,r'_lfdamemal’,vbliilding Blocks of Guide are: ‘ .

'prbyed extremgly usef,pl in reducmg both thc design. and the development time of

Godel qTO funy unﬁerstand how thls was done, the followmg sections outline the
NIEPEE
sahent’ fgaturcs of Gmdc s mtcmal archnecturc and descnbc how Gode! exploited that

A ‘.r .‘15'
archlwcmre e H

€ g P'\

._ﬁal‘oq“

4 2 l Class Hlerarchy '

ta .'n. Ca V
» .

,° .The Browsers .
' * Environment Browscrs
. * Structure Browsers
* o The Structures
) * Parse Tree Nodes
' * Symbol Nodes
* The Parser -

70
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o belong to that class. Dtrectly under the class name (and mdented one tab stop), 1s the

Cinstl and mst2 1s represented as: Foo ( insti' '1nst2') .

T

Browsers are the graphtcal wmeWS used 1o vrew and modrfy aspects of the Gutde

o oy envrronment The symbol(ftable is a collectton of classes used to represent the symbols ‘

of a prograrnmmg language The parse tree isa collecuon of classes for representmg

s the mternal structure of comptled code tis used bxtenswely dunng tnCremental
o comptlatton The parser isa class that parsg&ththual representatron of parse tree

nodes S e Ty S

P
¢ ' -

The followmg sectlons descrtbe the claSses that form Gutdes burldmg blocks The

- notauon we- us‘e 10 re}gcsent classes and thelr relatxonshrps is borrowed from the
Smalltalk-80 language A class 1s an 1dent1ﬁer stamng wrth an uppercase letter

' Followmg the class name, and m brackets, is. a lxst of mstance vanables (slots) that

List of all the subclasses of that class For example, a class Foo wrth instance vanables

k)

¥

4

L

o

,, dependents The dependents of an obJect O are any other objects in the system who

&5 reference obJect 0. Gutde uses dependents to synchromze the" exrstence of entmes mx:?

orif each of tts dependent’s is successfully removed For example‘ a modeless edrt :

S

i a pmgrammmg envrronment

. “ ' - _.‘o“
A T : s
/

. >
Y

“gralog must als"‘ be removed Dependenctes are a powerful feature for mamtatmng N

" the envrronment. An object in the system can only be removed 1f 1t has no dependents, o

vjwmdow (dtalog) is opened on a structure, S That structure has the dtalog asits.

: dependent If for any reason structui‘e S 1s removed from the system 1ts dependent 8 "f{

h- H
NN L e
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i n
Gutde0b,|ect ('dependents) S
.. otherGutde classes o] S
4‘.2.2.Th‘e Interfaee‘.'-. P 1\ o

’ The abstract mterface of Godel relies on the Smalltalk class View and its vanous l

‘[.1 o subclasses Any wmdow on the dlsplay screen is an mstance of a View Snmlarly, the : :

| language dlrected edmng that Guide- supports is modeled by a specxal subclass of Vtew.f' R
- called a StructureVIew. A Structurthew dtsplays the graphtcal representauon of .'
program text. The followmg secuon descnbes the archttecture‘ of Gu)gle s wtf_} v

system It ﬁrst descrtbes the Model Vlew-Controller (MVC) pﬂtwgm

X A
‘.( mantpulate wmdows and then descnbes the relattOnshtp between structures, :

Stmcture}/xews,andlanguage dtrected edmng T
‘-"4.2.2._1;MVCParad_ig'tn U ;'.-' Lo SEERE ;

. ) :
A4 ®

The'Moch ~View- Controller paradtgm is used extenswely in the Smalltalk 80 system "
; wherl bulldtng user-mterfaces As the name suggests the‘MVC ltas three components

RN

‘v n )’

"oM Mo,del n:abjecttlta}t'ls,f";ﬂv

| represented gmvh ly U
"-.&V Vicwr Afibbiect that -information fremyhe model to the’ dtsplay -
o.eC- Controller An obpcgth:ft reads all user tnput and updates the model and
e .Fbr examgle",'atext edit wi'n'dowfha's'a ite mpdel an object(hat on request from the ',
B v1ew answers the stnng of text bemg cagy. Its vxew I‘S an mstance of the class Vlew |
g wh1ch dusplays the model's text Lts controller is an mstance'the class Controller that o
| acc7pts mouse selectton events and etthgg posxtton?s a cursor at the selectton pomt or, if
s o the mouse is dragged htghhghts the selected text The controller lS also responsnble for o _ L

"’" . noufymg the v1evtg‘and model of other user tnputs (for example keystrokes) l’*

L B A : . nm\ S L e S ' _' )
a




A shouldbe straxghtforward 2 SR

- .htghhght boundanes élunng language d1rected edmng

!

The MV.C paradigrn"ls particular 'only to the SmallL'il,k-SO PE. However, we, are in no

‘”way suggestmg that thxs mterfaqe V,paradxgm \must be, used in a producuon--. :

xmplomcntatlon of Godel “The mteracuon betvjeen Godel structures (1e Prolog )

| ‘ declaratlons and code) is absuacted enough that con \ersxon to other mterface paradxgms . .

\

- L ) e

422.2.Stru ureq 0

a

P
1‘(,.

Any object in Gutde that can be mampulated usmg the language dlrected edltor must be
- an xnstance of a GuldeStructure Each GurdeStructure has an mstance vanable that
: fdeﬁnes 1ts format A format is an mtcger palr that deﬁnes the stamng and stoppmg

. index of tl;p structure s prmtable representauon The format deﬁnes selection and, ,

>

GuldeStructure('scope' 'for‘rmt) e S - s
- GuideParseNode () R . e ’
‘GuideSymbol () . ‘ o S
* .- Lk« other structures ...] DRIRCI R LR
: 4.2;2.3..Structure Bri)"ivsfers‘: _

A
. ' o
X . R S

‘l
dtrected edltmg, Guide defines an abstract class called a StructureBrowser Each

J/-Structurelégv;r knows the progmm text 1t ts to mampulaté*plus the currently chosen .

L

: ' htghllghnng extent Otherw1se, an msem

_' Wmdow (see figure 4 l)

structure (currents tructure) “The selected structure is an 1nstance of a GurdeStructure_

o or a StructureLlstInsertlonPomt If a Gm?ctme is selected 1ts format deﬁnes its

carat is displayed in the kstruct?ure 'edxt_ _

R

. R

« ' - . - . ' : ! . : N - ‘ 3 ‘. ) !.‘
i R e v ' ' : L g E
R o B ‘ * @ .
ey . . o : 1 . _ _, e 3 L
LUy . L R M R S R : L . . .

fo. create an mterface between the textual representauon of programs and language o
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R
GmdeBrowser(myEnvm)nmcnt) ; fj.ip . i
' | . ‘ StructureBrowser (‘curmntStmcturc) TA TS -
A e (.. Other browsers in Guide g
'a" | ) B . ‘
: Scroll] Bar' Structure Browser D
® - - : _ [Instance of a View whose
. \ I g model is an instance of a
' e N ‘ — Sfruoturpnrovs’orl'-
finLizt{tam,[Itaem|fior0rLizt]) Current Structure
«1 .lingtance of a :
inLlst(ltem,[ToleestOlest]) | Gutdestructure] _
I Mk inLlst(ltem HestOlest) : ‘ >
’ . v . . i
T 1‘%"? [ R ,‘ lnsertlon pomt[lnstanco ofa StruetureLisiInsertiohPoint]
Fik N S e
¥

- List of GuxdeStructures Hhstance of a Strueturehst) B j‘.."

+ina pamcular languagc For cxamplc, ina proccdural languagc a Vanablc namcs( or'
proccdure name P'is an mstance of GundeSymbol Guxchymbols can be classcd into

,declar{auon symbols G.e. the vanable_X is a declared syml_)ol), ty-ped sy,mbols, un;yp:d
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comment staung the cnvu'onment's purpose and a hst of sub-cnvuonments (srmllar to o

'nested procedurcs) o
The class hierarchy for symbols is:

GuideSymbol ('name’ '1sTemplate)
GuideDeclarationSymbol CrsPub‘pc )
’ ~ GuideTy pedDeclaratlonSymbol (typc) ,
' GmdeUntypedDedarahonSymbolO . 0
GurdeEnvrmnnmtSymbd
o | (‘comment’ 'symboI*l‘able' 'envxroﬂmentLlst)
~ ) GuldeContextSymbol (declarationList")

¥M ., »GuideProjectSymbol ) . .
GuldeSystemSymbol() R %
L0 I SRR ] r‘: ‘r"'ff*f'.v!‘{?
wl .;&?.i S :
.,al?sve'rree@, ', N |
¢ o S ;

,,‘r\
R

E Thc parse tree is thc center oY uﬂi’g‘incremcntal compilation facxhty Every progla
-

. construét is an mstance of a Guﬂel’:arseN‘ode An enureoprogram consists of a

'collecnon of parse nodes In tIgr} way, secuons oTcgde m xbe copled cut, and pasted

‘ pasted in various environments: are scmanucally sound Smnlarly, edmng the mtcmal

representation of proggms ma1ntams syn%uc consrstency by never perrmttmg 11h

formed code fragments to exlst

N ° . . el
.w e

-\

'\
- while mamtaxmng semantxc cons1stency ThlS enforces thahhe parsg‘&dcs cugﬁr A

'v Thjre are several subclaasses of a GuldeParseNode The ones of mterest are -

GuldeEdltableNodes, GuldeCompo dNodes and Gu:deExpressnonNodes n
G xdeEdltableNodJs are program nodes that ¢an be mteracnvcly edfte&-usmg dlalogf' S

" _boxes GuldeCompoundNodes encapsulate one or more parse nodes. Thrs

cncapsulatron mcchamsm is how the edltor mampulates several nodes as a smgle -

. structure Lastly, _GurdeExpressxonNodes form expressrorfs" or e,w part of larger

f .



o | | - % o
expresslons For example, an amhmenc cxpressnon lxke (5 * (3 / 6)) is an mstancc of a -
. Guldel:xpr,essxonNode B IR : R A * |

. Overall, parse n%des are used to prpvxde an mtermcdlate mtemal representunon of .

- programs. We have only bnefly ou ined the key components that form the parse node

>

class hlerarchy We have purpo mltted examples of mappings bctween program » '

DArse nodes

- code and parse trees until after dlscussmg Godel's Prolog specxﬁc

GuideParseNode() {\;,;‘ " R 41
GuideEditableNode (1sTemplate ) e

: GuldeExpresslonNode 0
: @ uldaCompoundNode ( body)

""ﬁ & - : " "_!- "
' 4".2.5._ Parsei" W S

13 LA

-The class GuldeParser parses a gl iracters for a Spec1ﬁc, pnmmve syntactic.

-

object These primitive quantm “aid ‘ude standard lexames llke numbers and

. ’ 1dequfikrs The subclass of a GuldePal’ser is respons1b1e for parsmg the language

’ I, ’ . . [ ‘
An mstancc of a GurdeParser contams two objecl*tream and a comroller The« Co

o ¥ Cle

stream is the sequence of characters bemg pafse? The object retumed af(er a

specxﬁc tokens and §'yntax : B

, successful parse is an mstance of a G‘deParseNode Wthh is the l‘ntermedmte“
| representaugn of the stream s pamed text: If any errors afe détected the controller is

S sc?m& mé‘s% to dxsplay those; etrors int tlle program source wmdow oA

| Guldel’arser ('stream' 'controller') '. L L | S .
‘ \%‘ , ‘ [ language specific parser class 1 3 o
4.3 Godel Archltecturew s ‘.., C s

.
' J{ , ,‘ PR f: : 2 e e B
) - . o . -
- . M - -

' We have outhned"mde’s class hxcrarchy " We havc also descnbcd its m.un

components and how the‘y mteract “The follq..wr_ng ;vsecnon_s dcscpbc"(}qdel.sv.v,;_:i"._
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: T = P ' EO ':'-,“ o .' "1‘,
. . architccture Pamcul‘ ttcntion is pa:d'to thc notion of subclassing .anﬁ hqw Godcl
| o cxploxts Guidc's arch' turc o ' A m "'“-v;,,‘ S

.“- N ' " . . o ’ “ ;‘ ' Ib » . B .AM . - - . )
‘ . 43;1.»C|ass“Hierapchy‘ o o e
C o ! ’ ) . - . ' ) . e E o ‘ ‘
oo ‘ a ._;g
R : In Smalltalkr80 the root of the class hlcrarchy is the classﬁbject Thc class OBJect |

v £ ! ’ | .‘ ,encapsnlatcs the comnion behavxor of ev* ochct in the systcm Snrmlarly, the class

"G‘uldebbject defines the common bchﬁ*r among all Guide classes. Wc further Uy i§
mtroducc a class GodelObject which cncompasscs the common behavior of both, Godei\'\)

Gulde O jects.. In tlﬁs way, evm objcct assoclat

uqth Godcl shares a common -

CObjt o R T,

R GodelObJect , DI , |
L GuldeObject (de ndcnts) .

- B [... other Guide classe®.... e .

. - [-.. other Godel classes . ] . co . )
B L ﬁ. other Godel classcs N Lot " i
o : ke T . E

. 4b\Symbol1'able o I

b" . B . N

(and thc Prolog languagc) mstance, ,wé have declaratlon s/ymbols for c@tants o

. ‘ " A / .
[ funcuons and types A constant declaranon is modcled by a GodielConstantSymbol 0
. 'Thxs class inherigs the behavxor of a GodeITy%dDeclaratlonSymbol which in tum

. f:mhents thc behavwr of a GuldeDelcaratlonSymbol In thlS way a Godel constant
~ob,)ect can m-use code prevlously wntten for declaratmn symbols and typcd d‘cclarauonﬁ .
"symbols . ’ e o W” L g ;

Declarauon symbols contam various mstancc vanablcs Each declaranon symbol a

.«u f % »
’. contams a ﬂag, asPubhc whxch is true 1f the declarauon is visible outsg‘g}c its dcﬁmng”‘
o T L e e e, .

s : ke L

“,:v‘ . -’ -‘.‘r‘ '4v
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s modu‘mglarly. cach%md d&:laranon symbol has n mstance variable rype whlch

isan mstancc of a type symbol that specnﬂcs the declamuqn\yp\qu type »
t rew

"Type Symbols ﬁq cnther uscr dcfmed or are one of scve‘ral pre Beﬁncd base type

symbols. Among thcsc am n character typc, an mtcgcr or real t y ], and an objcct typc
,‘ Sk

ch pf thesc feprcscnt a specxﬁc "Uﬁlt -in typeﬁ"' Godel For cxample. assume we -

é

" have the buxlt-m types CHARACTER and IN'

ER whxch deﬁnc typcs for,smgle
? @a{agw 33{;1 gers A pmdxcatc ascuValue(ACharactcr. Anlnteger), which is true 1f

”AnIntegcr 1s 't‘hc. ascn value of ACharacter, can bc dcclarcd ,EI*REDICATE
&0 . -
ascuValuc/Z UNIFIES WITH CHARA.C’FER, IN'I'EGER] Bﬁermg Wﬁscfﬁog
oy b
ascuValuc(' ','b") mto,,Godel will produCe a compile umc error siube thc cﬁaracter b ‘
is not. of type INTEGER The assernon &ilValue('a 57) is correctly typcd "
' 1sTemplate) A
snonSymbol (‘module' 'symbo . <
elUnionSymbol , s '

_ GodelClosedInclus:onSymbol 0

il GodelQpenInclusuonSymbol 0 '
qucheclamuonSymbol o - ' '
. GodelPredicateSymbol umﬁcanonhst‘ 'arity’ 'ﬁrstCandxdatc)
GodelTypedDecl ‘ bol ('type) ’

‘ bol ( umﬁcanoanst‘ ‘anty %

y 0
- . GodelVarigbleSymbol (mdcx)
, GodelB&s(:e('il‘eyl'peSynd)yl?elS 0 0 ,A Co
S CodelntegerTypeSymbol 0~ T\
[ rest of thc bllll( in types .. e o

_..h’a.@cr S
The parsc trcc is- an mternal rcpresentatlon,for Godel's complled sourcc codq Each

construct in ;hc sourcc language 1s compxled into an instance of a GulcharseNodc T )

Each nadd has a umquc bchavnor whxch detc : ‘nes the. acnon it must perform at run-

- time t6 evaluatc 1tself gwcn a ccrtaln run-4 cont;xt (cnvnrogmcm) Bcforc we

e ) . . "‘ ' ) )

v ‘ B PR
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RS (S

descnbe the run time behavior of GodelParseNodes, (see chaptef six} We must descnbe

" the correspondence betWeen each pnrsc node class m@ its related syntacnc ‘construct in

a £ Prolog clause

,Prélbg clauscs xn be grduped into three categones horn clauses, primitive horn’

clauses. of % 1& A ﬁom clause 1s sxmply a wcll formed clause mh a head and a':

G

i

BRI Y

. body is S

TN

-~ e n%dy, o once the umﬁca'upn sucqceds the next goal in the umfymg proccdure must .‘
be attempteé'ﬂ'c do hot w1sh, to go mto;letalls abd jor |

- created based on thetr Behavxor)'

\QutdeParseNode () : ' . _
GuideEditableNode ('1sTemplqte ) ~ '
GodéIClauseNode (head" 'numbetOfV anables' 'nextClause ) Lt
4 AGodelAsseruonN od ) e '

MLIAUSE! Noge)
GodelStandardHornClauseNode (firstCall')

]

N ‘)'

In Prolog, the atoms (the heads of clauses and hterals in the body) are atomic formula

N ‘that consist; of a predtcate and a list of terms. Atoms are a specxal case of ﬁrst order -

3
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litefa‘ls in that they cannot be negated. Each aton;gcﬁuains a nextCall, an instance
variable used for lmking together atoms in a clause body. An object called a

\ Godeltheraﬁ.éemonNOdc”fepmsents an atom in the head of a clause, a literal node not
%n'g 3 ncxtCall mstance . . X

LS : ’
. N d. 5
GmdedetableNode (isTemplate') ¥ - ¢ v -
. GodelbnterdNod (predicate’ 'termList')
L GodeélAtomNode (nextCall’)
"GodelLiteral AssertionN eO

_‘An atom contains a list of terms whlch in turn are composed ‘of cither functions, ‘
.; constants, or vanables The class GodelFuncuOnNode models a function and its

arguments while variables are?nodeled by GodeIVanabIeSymbols encapsulated thhm
“'a GuldeSymbolNode Constants are rep,resented by GodelAtomchiteralNodes or

GodelConstantSymbols A GodelAtomchlteraINode encgpsulates constants hke

V -/". ‘

' numbcrs characters or stnngswhlle a GodelConstantSymbol represents g;c declared

P .. . -y. 5'% .

constants

IGuidel'ix _mgmd:d% . T. ‘

GodelFunctlonNode ('funcnon' 'tcrmLxst )

! " . ! GodelListNode ghead tail'
\ Gul eyteralNode (lit o
o _ GodetAtomicLi 0. }
o - GuldeSymboledc(symbol .
- / - o GodelSymbolNodeO _
o .

Ve

q |
‘\c have introduced the classes thxt constitute Godel's parse. tree. Here we will show

‘.how a Prolog prccedure is represented using these classes. Assume we are compiling

\}

( the pr?sdure grandfather(x Y) which is true if X is thc gmndfathcr of Y Thxs code
is represented by the predlcate définitidns in ﬁgure 4 2 These clauses are compllcd 3
mto an mtermedxate representanon shown in figure 4. 3 Thxs ﬁgure rcprcsems the
classcs ‘and thelr mstanccs that form the compllcd procedurc ' -

s Ny



1 a rolc se version of God ‘l ‘the funcuons and predJcate would be succmctly
12 e vpson o Go

L s
" object pointer needed to re;

" increasing execution s
s

., 9 g
1
TYPE {)crson
- PREDICATE ather UNIFIES WITH 'Pcrson. Person;
PREDICATE father UNIFIES WITH Person, Person;
grandfather(X, Z) w= | "
i father(X, Y)Ya ‘ : '
fathcr(Y VAN : i
- /* Included for completeness, but not shown in ﬁgure XX */ |
father(X, Y) = - - - ‘ ™ 3
parent(X, Y) A !
male(X), ‘ : - . ;
- o ¥
- ,,f;,, | thurc 4.2 Dﬁnmon of the grandfathcr predxcate )
4331, Parse Tree Opﬂmmmons o : B
Vr ;‘ h 7 ) . ) : .
The prcvibﬁs categotization'of syntactic constructs into indivi‘ is memory
mcffia&m‘ For cxampic #t is reasonable thas a literal assertiond ould contam -

‘fields (or slots) for each of its® tcrms The‘a%m father(X Z) would then be

rcprcscntcd by a three field objcct whose first slot is the predxcatc father; 'and S

subsequcnt slots are the tcrms X and Y. In our prototypc, we wished to dlstmgulsh

* these objccts‘or the following reason. Each objcct can rcspond dlfﬂarcntly to messages

v

‘sent to it. By havmg distinct objects, médification of data structures (class definitions)

\

localizes their, effects bccause only the method assocxated with the modified class needs"

.updatmg ~  ~ | ",5“.? - : <

:"f

[}
S

’ reprcs‘ente;d as an array for fapt argument access. This would diminish the number of -

esent Prol clfauscs‘, reducih'é memory requirements and

~ . v .
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> Figue 4.3: Class jrswisces of a'compiled Prolog piocedursr”
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434 Parser - o : .

| The GodelParser is 2 subclass of a GuideParser. Itinherits all lexeme parsing methods

« _ defined in the GuidcParser. In addition, methods are added to the GodelParser cfass to -

' -~ parse Prolog specific syntax. Each method corresponds to a BNF productiong
ed in

language. Thc parscr can parse infix, prcfix, and postfix opcrators as descri

. section 36 L Predwate and Function Declarations 0perators are simply instances of
a GodchunctionNode or GodelAtomNode, dependmg on their declaration. |
o During incremgit ta] compilation of clauses and declara'tions an instance of a Godel

Ty v
- parset is crcdt *‘lt drses the text string sent to it by the cdnor returning ap instance
P y

is to bc placed iffo. Itts at that time that semanuc errors are detcctcd

. . ..

ot
O

the -

. of a Gmchtructulc This structure is then sent a message to copy itself in thc context it

This chapter was devoted to the description of Guide (a General User Interéctivc ;

Dcvelopm'cnt Env iponmet) and how Godel could exploit Guide's architecture. We

conccntratcd on Guide's hxerarchlcal design and showcd how ;he object-oriented

‘/ archxtcpturc, classmg thh inheritance, is extremely useful in designing modlﬁablq and

' -
- Te- _usable code. Guide was dcsxgned w1th ¢ode reuse in mmd. Its classcs were abstract

. . cnough that subclasscs-could spccxahzc Lhzxr supcrclass s behavior. In thxs way, Godel

RReC s

-'{fbncﬂy lntrod'uccd the'MVC paradxgm Through tins we could introduce Godcl'

s

mtcrfacc archltecturc We mtroduccd the concept of a str\ucx_urc and showed how

L4

- coulgxc use vast amounts of GUIdC s conc base ﬁgmﬁcantly rcducmg both the code
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Prolog clauses are mstanccs of structures. Similarly, wa,g&plamcd how spccml vnews

: called Structurchcws cnable syntax directed cdmng of compiled Prolog clauses.

In contrast, the subsequent chapters will describe P'r'olog's;infcrcnce engine and show

how the objecggoriented architecture has produced a different way of designing and

. /”‘éOdll. 18 it.

.
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Prolog Interpretatlon
A Lo “; .+ To Logxc, Hobbes devoted a canstderable share af attentton
T~ ' - The peculiarity of his logical system lies in the theory,
P E I that reasoning: is merely a nwnencal calculatlon .
o ~ID. Morcll Hist. View Philbs. (ed. D1Li 95, 1874 o

. , ‘ R |
tThe basrc mterpretmg algonthm for (Brolog was mvented by A. Colmerauer and P :

‘t

R0usse1‘ It was a slow and memory mtenswe ALOGL—W 1mplcmentanon thch was

- . later tmproved and rewntten 1n FORTRAN by Battam and Melom [1973] Stnce then N ) L

many amcles have been" \Kntten descnbmg vanous forms of Prolog lmplementattons

‘ _.and more: specxﬂca]ly, nterpretmg algonthms This chapter isa general descnptxon of “ .
" the mam componcnts needed for i mtexpretmg Prolog programs and outltnes sevcral key a
| optlrmzanons that have cmerged durmg the evolutton of thesc algonthms This wtll o
‘ construct the bndge betwcen the high level dcscnpuons of Prolog mterpretanon and the '
_ mtncate detatls ofa specnﬁc 1mp1ementanon thh thts background the descriptmn of s

- the objcct-onented mterpreter desxgn wﬂl be better: understood Thls chapter is aimed at

L a readcr unfarmltar with Prolog mtcr%eter detatls For those more knowledgcablc, thcy

can proceed to chapter six. Ral
: R A

.The rcader should not mterpret this chapter asa statement that al> Prolog tnterprctcr s
- are 1mplementcd m the manncr we are about to descnbe There are, however, cenam
o sxmtlannes among lmplementatxons It 1s our goal to summanze these sxmxlantxes in -

‘order to pamt a clcar plCIUl‘C of the mterpretanon process For a more detaxled account SR

. 85 " '» . ‘_ . B Q’,A,

DR : o
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°f Prolog imcrl’rctatton and comptlatton see. [Watrea 1977], [Hogter 1984], and "
Lo ‘ Fid
“ [MaterandWarren 1988] S

JART B o -

S - |
_The followmg clauses represent the knowledge that Johtﬁs male and the parent of .

maty along wrth the dcﬁmnon of a father asa male parent

s t . . S / fow . ‘ ' . ~
S male(]ohn) . )

. parent(john, mary)
‘ father(x Y) P p\arent(X Y) A male(X)

..‘\/v

e

Gtven a qUery, fathc{(Who, mary), the }rolog 1nterpreters control mechamsm
. -

(mfetenctng usmg hnezz resolutton) mffts that i hn is the father of mary v

{Cohen 1985] We w1ll begm b§'l htghltghtmg the more tmportant aspects of hlS
descnpuon and use 1t as a basis: fbr descnbmg the fundamental components of a Prolog
mterpreter Thts algortthm w;rs chosen for descrtbmg general 1nfrpreter concepts for
several reason Ftrst it is /é conctse algonthm written ini a well known procedural o
manner Second becauée of 1ts snmphclty, it is stratghtforward to pmpomt areas
where optnmzatlons rn;tét be made Thmd because of the i 1mperat1ve language used it |

lS easy to make compansons between 1t and mterpretlve algonthms Wntten in other“
Y

languages Lastly,/we w1ll compare that destgn to the object-onented interpreter

I

~

descrtbed in the nexN:hapter i
f

-,5.1; Uniﬁcatio’n ST /

The van fes and terms tn the head o/f a clause are subject ta umficatlon dunng the
- cxecutt of‘Prolog pmgrams Untﬁcatton is one of- the fundamental concepts in loglc
pmgrﬁammmg lt enables procedunes (collecuons of clauses whose head have the same

predtcate and anty) to prowde input and output parameters for answer extracnon Italso

O Y



prov:des clause selection'dkpabilmes based ofta powerful pattem matching mechanism. _‘ :

P
)

'Iherulesforumfymgtwoob_]ectsam S S R 1’ L

'« if both objecx,s are atomic (i.c. numbers stnngs, etc) , they are oompttred for .

\equality ,
. 1f one object id an unbound vanable, it is changed to mference the other Ob_]CCt o
+ if both objects are unbénnd vartables, the younger one references the older

. one.

« if either object is a bound vanable, it s dereferenoed repeatedjy« . 4
« if both objects are compound, the functors are compared, and recurstvely each
of the terms are unified (for hstsl the head and tail are umﬁed)

If any of these tests. fatl the umficanon is said to faxi otherwrse a most gene‘t‘hl unifiér ‘

(mgu) is retumed consrstmg of a set of vanables and the objects they were umﬁed with,
) The occurs check isan 1mportant aspect of the untﬁcatxon algonthm Constder the case
where the goal f(Y, Y) lS to umfy with (X, g(X)). ‘The resultmg mgu is (X/Y,
Y/g(X)} ‘which simplifies to {X/g(X)} If we ever tned to print out the bmdtng for X, -
we get the mﬁmte sequence g(g(g( ))) However wrth an. occurs check Y would'
- never get bound to g(X). S . : o

The occurs check is neéessary if uniﬁcation is to function correctly, but an increase in - .

_the complexlty of the algonthm from O(n) to O(n2) results. ThlS is because both

objects betng unifted must be traversed Thercfore most 1mpiementauons choose to =

1gnore the occurs check at the sake of an unsound mterpreter There is, however. work .

being done to elxmmate the need for thns check. [Plarsted 1984] describes a meﬁod for.

- detecting when the o_ccurs check can be avoxded by domg global analysis of predtcates

)

L

N

1 Most Prolog 1mplementauons have a symactxc sugar for hsts Edinburgh Prolog uses brackes to

enclose lists of objects (e.g. [l 2, 3] is a list of 3 mtegers. [XIY] represents a list whose head is the'- .

variable X and whose il is the variable Y) while other P'rolf)gs use the "dot” nogation (c.g.
1.2 3.NIL) In this paper, the Edinburgh notation will be used S ®

K
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while work by [Fllgueu'as 1984] and the creators of Prolog II take a different approach
“by allowlng “infinite st,ructures" toexist. = . . ’ o -

52, Interpreting Algorithm' | . e

Umﬁcatton isa fundamental concept in logic programmmg, but the wcykhorse of an
mtcrpreter is the resolutton mferencmg mechamsm that acts on the clause database.
. Prolog ] mference engine is sngmﬁcantly less comphcated than a general resolutxon N
theorem prover due to the stnct use of Horn clauses and the execqtton order. Because
of thts a description of the i mterpretmg algorithm is straxghtforward leen a queryl to
a prplog'system.‘the Prolo,gh mference engme finds a refutatxon using the following
steps: | h ‘ |

“[1] Try a goal. Search the clause database fora matchmg clausehead.

[1.1] If found: The goal is unified with the head of a clauee and .

recursively each goal in the body is tried (left to right). If all the
body's goals succeed, the goal has succeeded. Thxs posmon in
the database is noted.. - - ‘
[1.2] Not found: The search failed, so backtracking to a prevmus goal
- with untried candidates is done. ‘
b [2] Re-try a goal: Reset any variables set by umﬁcanon and search the clause
database from the prev10us noted position.
Algonttlm 1.-,Pseudo-code. interpreter
Assuming a ptitrtiti\;e list répresentation for ciauses, the px'(e:w)ioue‘ ekarnple's facts are
represented by‘((male john)), ((parent john mary)), and ((t'ather X Y) (parent X Y)
(male X)) The avallabthty of a functlon head, that extracts the head of a ltst and a
" function, tatl that remms a new list cons1st1ng of everythmg but the héad of the input
list (sxmllar to the ¢ tar‘ and cdr funcuons in Lisp) is also assumed Also, the function

umfy is an tmplementanon of the prewously described unification algonthm. leen thc

. " . '\
ot \ L S '
. : . . N - . . ) : . . i * ;
7 — : S .

1'A query is the satne as the body of a clause. It is_qan" eﬁtisténdally quantified list of atoms.
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' rcpresentanon of a clause and the abovc three functions. a slmple Pasgal lnkc Prolog
" interpreting ﬁ\gonthm is prcscntedas algomhm 2 / |

Y

) PROCEDURE solve( th)lGoals LT, . -

.. * environment LIST; ‘ ' .
~ o - level _:INTEGER ) \ R
VAR ' “
~ index IN'I'EGER_' - .
. newenv :LIST: ' , o
BEGIN S o : :
IF listOfGoals < NIL THEN j C . S

FOR index := 1ton DO
newenv = unify( oopy(head(Rule[mde;]) level + 1), head(listOfGoals), environment );
IF newenv < nil THEN

Nsolve( append(copy(tml(Rule[mdch) level + l) tml(hsthGoals)).ncwchv level + 1)
E
_, ENDFOR
ELSE.
" pnntenv(envnronment)
ENDIF
END solve;

1

Algonthm 2 Prolog mtcrpretmg algonthm [Cohen 1985]

¥y
{The sirnplicity of this algorithm is due not only to,Pnolog's simple cxccution strategy,
but also to the algorithms recursive nature. The intemal FOR looocorrcspondsvto the
first step in"the pseudo-codes descnpuon - scarchlng the clause database for a
matchmg clause head. A march i is found when thc function unify returns a non-nil .
b1nd1ng env1ronmcnt - This environment is nothmg more than a data structure
contammg variables and their associated blndlngs, correspondmg to the most gencral
unifier dcsg:nbcd in section’5.1 Umficatlon ‘Thus, the variable newenv is set to thc .

1

new binding environment cncatod during umﬁcauon. ‘Note that the unify function itself
" néeds a copy of the current rule's head, indicated by the function copy as unify's first
argument. ThlS will dlstlngmsh betweéen mulnplc uses of a rccurswcly defined clausc
Sumlarly, the nesting leve],parameter (level) of the funcuon copy dlsnngunshes mulnplc
uses of the same vanablc ThlS is an inefficient cxample of a tcchmquc known as

structure copymg whxch will be dcscnbod in m{rc detail in the next section.

¢
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’ With the current goal successfully umﬁed aresursive: eell to solve appends the tail of

n the currently matchld’ clause to the rematmng goals-(at a new nesting level). and

/

proceeds‘to mterpret the temainmg goals (step 1.1, of algortthm 1). If ageal fails, the
/
tnternal FOR loop exhausts all posstble candidate clauses, qrts, and returns to thg

previous rectxrsxon level (inside the FOR loop) where the next goal is tned Thts

automatxcally takes care of backtrackmg In addmon. step 2 of algortthm 1 requrfes
resetung of bmdmg mformatton That i is, a‘backtrack operatlon occurs when a goal /

successfully unifies wrth the head of a clause but the clause's body could not be solved,

'so'the next clausé in the pnocedune must be tried It is necessary however to reset any

j variables i u; the goal to the unhound State they were in before unification with the faxhng

clause. Since thehbove code docs expllcn copyrng of hterals (using the copy functlon),

vanable resettmg is not needed

AY

5.3. Memo‘ry Organization - | ) | N

The executlon stack. (acttvatton records) created by the recursivecall to solve in -

| algonthm 2 stores all the necessary mformauon for backtrackmg and answer extracuon

Unfortunately, thxs naxve implementation is too tmemory' inefficient in practice, A

means is required to. store variable bmdmg and backtrack mformauon 1in a4 more efﬁcrent

'manner Extstmg Prolog 1mplementatrons obtam this efficient memory orgamzatlon ,

usmg several global stacks.

of these stacks the essenttal one is the executlon (or frame) stack. Each object on ‘this |

’ stack contatns enough tnfonnatton to record any bmdmgs that occur dunng unification,

Also, references to other objects on that same stack are recorded and used to determme

the comect env1ronment to revert to dunng a backtrack operauon Smce a goal umfymg :

“ﬂthh the head of a elause is analogous to a procedure call, the object that is pushed onto

7

.
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the exccution stack is stmllar to the activation mcord created during e recursive call in “
algorithm 2. If the clause body fails. backtracking‘occurs. and all th,pbjccts cteated ‘

-

since entering that clausc.can be POpped off the executibn stack

) ' “ ‘

Onc of tftc basnc componcnts of the objects pushcd and'\ poppcd from the execution

stack are vana'bles and their. assocxated bindings. When a goal unifies with*n clause *
\

1

head the most general umﬁer (binding envmonmcnt) contains variables agd the objccts ‘

)
Wthcy were lﬂ)und to. Backtrackmg requires the rcscttmg of these bindings sa that thc

old state of the computauon can bc re-created To remcmbcr which variables to reset,

thei mterpreter pushes all vanablcs ncedmg their valucs rcsct onto a global reset stack

and records in the correspondmg fraqc object on the execution staok the placc whcrc

these variables reside. Durmg backtrackmg, a frame objcct ts consultcd to find the
a

position in the reset stack: that dctermtncs'lthc - segment o@yanablcs whosc bmdmgs wnll

 be reset. _ %

For cxample,'\: figurc 5.1 thc cxccutton stack ts on the left while the reset stack is on
the right (each growing upwgrds) ‘Objccts in the execution stack have rcfcrcnccs to
posmons in the reset stack. When backtrackmg to objcct A, thc reset scgmcnt is the list

of variables from the top of the reset stack to the objcct A's reset stack rcfcrcncc point,~

’

Object A f=r
. L] - . B .
" Reset '
— ® . Segment ' A
g S ~ For Object A o
. Execution "~ Reset
Stack Stack *
Ve

Figure 5.1: Execution and Reset Statks with Referen¢e Pointer Orientation
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One of the goals of ea{rly Jl'olog interpmter desxgn was to miniqu the growth of the

) execution and reset stacks during a refuumg{\ Several optimizanon techniquex were

‘ , qevelpped to ehminate objects from these stacks (see sect:on 5 4, Interpreter

,N \‘n

‘ob_]ects dn the local stack. The rcason for this was to guarantee the absenc 0

Edmburgh Umversuy

Optimizatlons) ‘To accomplish this, the executmn Stack was dwnded mto two distinct

' enntk%cal and glqball The local stack contamed& bmdmg envxronment objects

Ny

"danﬁlmg" pointers durmg opnmlzanons When an object is deleted from a stack due

to an optimization; one does not want an object near the bottom of a stack tg reference

 the recent]y discarded stack object. By onenung reference pointers in a single

direction, such problems were eliminated.
" r

This ldcal/global stack structure is onlylneeded when a structure sharing mechanism is

used for bﬁilding terms during unification, The other approach to term construction is

* known as structure copying. This approach uses a copy stack to store explicit copies of

terms, replacing the global stack used i the structure sharing approach. Some believe
that stn:cture copying gives a better locality of reference while structure sharin'g has the
potential of severe thr;ghing in a paged virtual ﬁemoq system. [Bruynooghe 1982]
and [Meéllish 19'82], however. have cdmpared the felative merits of each of these

approaches ang no convincing results have emerged. _

I The two stack represcntauon was devcloped by David Warren for the DEC-10 PROLOG sysiem at

+

/

\\ . | o,




. 5.4, Interpreter Optimizations A
. Algorithm 2 is'a Succinct description of Prolog's inference ergine; very inefficient but
suitablg for explanation pux’poses The basic execution strategy can be lmpmved in

scvcral ways. The following is a descnpnon of several lmprovcments devé:d to

A Y
reduce memory requirements and to increase execution time.

e . :
Opurmzatlons to rcducc memory rcquxremcnts include last call optimization (LCO),
deterministic call optimization (DCO), and determmisnc/non-dctenmmsnc frame
dxstmctxons Last call optimization is performed whcn trymg to prove thc last goal in a
clause. If that goal is deterministic (only has one candidate clausc). then aftcr
unification the newly created node can be copied over the dctcrmxmsuc node on top of ’
the execution stack. The elimination of the extra frame transforms an otherwise
recursive call into a memory eéfficient iterative loop. In somc sxtuauons this saves

+

considerable amounts of memory.

!

A detcrmlmsnc computanon is the sntuauon where a Prolog goal has only one possible

4 umfymg clausl head. Here the interpreter can perform dctcnmmsuc call optimization;

relcasmg stack framc storage at computauon complenon However, this can. only be

done if thcre are no backtrack points (altcmate clauses) bctwccn the start and finish of

N
the computauon ' ) r

. Another common optimization for Prolog interpreters is known as indexing. When the

- { candidate clauses for a goal are being dctcnmncd by unifying the goal with each clausc
head in the candidate list, extra information must be recorded if future candidatc clauses

' exist.’ Naivc interpreters liké algorithm 2 do not check to see if the subsequent clguscs

are permissible future candidates. Indexing determines this by matching the first term

of the goal with the first term of each remaining clause head in the candidate list. If

[
§
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future andidatc’s are ‘ot popsible there is np need to create a backtrack point. This

reduces memory consumpnon -and exqcunon time.

s

5.5.Summgry‘ - ‘ | S

In this chaptcr‘ we have introduced a simple Prolog interpreter. We described both ‘its

cxi:cution chdraé\tcristics and .its deﬁciencics We then introduced some of the

\ )

optimizations techr\nqucs that wcre dcvcloped We will use this as a basis for thc/‘:,

“ description of our objéct-onented mtcrprctcr design in the next chaptcr

N
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Objeét;Oriented Interpreter Design

\ Part of this world of objects, this object-world,
) X is also part of the very self in question.

G.M. Hopkins, 1880, Scnnons & Devotional Writings I1.i.127 (1959)

The object oriented programmmg paradigm is another way of tackling the design and
implementation phases of a software project. It has proven useful in designing
graphical interactive wmdowmg applxcatlons and real-time simulations. To sludy the
cffccuvcncss of the object-oriented design methodology for a graphical interactive
. Prolog PE, we dcsngncd both the interface and the inference cngmc using thc object
design mcthod Our aim was twofold. First, we could use the object paradlgm for
- Godel's graph;cal interface. Second, we could experiment to sec what benefits are
gained by m.lplementmg a Prolog imcrprctcr in an object-oriented programming

language.

The p;r(?‘totypc_ implemcnta'tion. vehicle was the Smalltalk-80 language. We anticipated
sc-veral'advantagcs by usi}g Smalhalk-SO. First, we could utilize Smalltalk-80's
~ garbage collection 'facility. Garbage °col’r€tﬁon.\in Provlog is not a simple task
[Bruynooghe 1984]. If we itemize the objécts needcd’ by the Prolog fntcrpretér, we can
let th'e Smalltalk ga.bage céllector do our work. Second, the graphical interface .of
Smalltalk-80 i is sufﬁcncntly advanced and abstract to allow for cxpcnmcnung with a
vancty of interface techniques. We have already dcmonstratcd how -Godel's syntax

95
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directed editing takes adv;mage of this. Experimentation with, graphigil debugging
t8chniques should also benefit. Third, there has been some work on integrating Prolog .
into existing programming environments. Some of these include the Interlisp
enviroament [Kahn and Carlsson 1984}, and the Nial enyironment [Jenkins 1987].
Future versions of Godel can be airped at intcéming Prolog into the Smalltalk-80

environment.

In this chapter we describe the object-oriented design of Godel's intcrﬁrctcr. We
~ itemize the objects needed to interpret the Prolog language and describe Godel's

memory organization. -

6.1. Windowing Environments f i

‘ ‘ J

In a graphical windowing environment, it is not unusual that several windows view
. various aspects of source £tx 'é/and c_xcc‘ution states. In a non-graphical line-oriented
cn‘vimnmcnt. the freedonj to browse bct\'vccn contexts (windows) is severely restricted.
A natural cxtcnsionmis to move from a line-oriented screen to a raster display cohtaining
process windows. Each window houses a particular pméc;s like a text editor or an
executing interpreter!. In terms of an integrated programrﬁing environment, there are

two problems with this approach. First, the processes cannot communicate by shaﬁng

memory (i.c. *sidc effects). Second, code changes are difficult to synchronize.

For example, suppose four windows appear on a display. Two windows contain text
editor processes, with each window viewing a differen} part of a large source code file.
The other two windows contain an executing interpreter. A problem arises when

changes are made in both text windows, but only one window's changes are

Lg

! Similar to Sun Corporations Sunview environment.

4 é?;:,
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transferred to the interpreter process window. In this case, changes are lost. Similarly,

havinx several interpreter processes runnlng concurrently make; updlﬂng the
interpreter's program base difficult. °

Godcl's ‘approach is different than the windov;/-prooess solution. We have at our
disposal a central repository of program clauses. Similarly, we have an editor and
mfcme en:hse that can manipuhte the'central repository. There is no Feason to.
restrict the number of quenes that can be executed at one time. One wmdow may
contain a refutation at midpoint, while a second window contains a complcted query.
Also, there is no needsto reconsult tcxo\ﬁlcs when source changes are made because -
modxﬁcanons affc\ct the sharcd rcposnt For Prolog, thc.abilisy to have rpuhiple
queries executing concumntly allows a

- . “
re natural communication pattern between

user and envirorment. ‘ ~

For example, suppose one is debugging a quickSort predicate that calls an app’;hd
predicate. ‘Supposc the u.§cr is stepping through quickSort and learns append is not
functioning properly. The code browser can be used to edit changes to append, an(‘i
actually test append while quickSort is suspended. When append is operational, the

user jumps back to the quickSort trace and continues on.
4

6.2. Memory Organization: Intei'preter Objects

“How can several refutations exist at one time? In chapter five we introduced the
memory organization of Prolog interpreters. The execution stacks are tynihcally
allocated fixed amounts of storage. When allocated storage is exhausted, a stack
overflow cﬁor is issued. Therefore, to have more than one refutation executing at a

_time, each refutation must be allocated an address space and a set of stacks. On a



vmual‘memory system allocatmg drfferent stagks for each refutatxon is possrble, but

communication 1s mhrbtted. - . |
W . . . " ' 'b\‘ "

: V'I'o accomphsh the goals of a umﬁed envrronment that penmts muluple quenes to exrst

~we adOpt thc memory management techmque of the Smalltalk 80 PE We view. each

, tnterpreter data stmcture as an obJect that is allocated space vra a memory maﬁager

| 6.2.}: The ‘Obje_ct-Pool . :
In. terms of mam memory. and secondary storage orgamzatlons, the use of an Ob_]CCt o
: pool as an altemauve to paged vrrtual memory has recelved some attentron [Krasner
: 1983] l'n thrs approach objects rather than fixed srzed pages are transferred on ‘

dcmand betwecn marn storage and secondary storage There are two advantages to tlus

ﬁfm&ch F1r3t there isa drrect relauoﬂshlP between the ObJ“t'onemed programmmg

paradigm and the ObjCCt memory Second, there is the possxblllty for reducrng

secondary stomge transfer bandwrdth because of the absence of unused page segments ‘

rdurmg object transfer A crmcrsm of object pagmg 1s the overhead assoclatdd with

3 . N
U mmntmnrng obJect references That 1s the size of an object ‘canndt be too small or t00.
‘ =

large o

.The problcm of deterrmnmg opttmal object sizes is srgmﬁcant in the desrgn ofa Prolog

1nterpreter There are many entmes that can be classed as an object such as stack
fr;ames vanables and clauses The followmg is an 1termzat10n of i mterpreter obJects

- and Godel's resulung memory orgamzatlon

m ‘ 'mterpma-or‘)jec.ts;

L ‘, T ‘ \_

e

Thcre are three classes that deﬁne the ob]ects used in Godel s mterpreter clauses o

framcs and bmdmg envrronments The classes that deﬁne clauses were descnbed in.

L6 *f”t T
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- chapter. four and are mstances of GodelParseNodes 'I‘hey represent the comptled |
representatron of Prolog clauses Each clause object responds to executlon messages
. sentto. it, Frames are the "acuvauon records descrlbed in chapter five They represent e

- the current refutatron state for a query. Lastly. a GodeledingEnvlronment is an o o

B _ob]ect that models the behavror of a collectron of vanable bmdmgs It is used when

o .vanables are bound to ob_rects durmg the umficauon process
/ : 6.2.2.1.“ Frames
7 “Godel drvxdes frames into three drstmct classes: a GodelF‘rame a

l_ - ’ GodelDetermmlstncFrame and a GodelNonDetermmlstlcFrame A -/

| .,r‘; GodelDeteﬁmrmsucFrame 1s added to the ryn- ttme stack when a goal successfully e

umﬁes w1th the head of a determmrstlc clause (no other choice pomts exlst)
GodelNonDetemumstrcFrame is created when a goal umﬁes with the head of a wuse

A' and other candldates exist. In thls case backtrack mformatxon needs to be stored to :

E vrememberthose candrdates R o ~
" The final frame, aGodelFrame is used by thetpnoc'edural debugger. Iti

| nothing bita
\ ,v _ Xklaceholder for the represcntatlon of the run -time stack within the debu gger wmdow
b For ‘example, we have the predicate grandfather(X, Z) ¢=father( 'Y) - father(Y z)’ -
| 'whlch is true if X rs the grandfather of Z We also have the as rttons father(Joseph
dems) and father(dems, damel) The followmg frames wou be created for )he query |
:‘ grandfathcr(X Y) When grandfather(x Y) unrfies tzrth grandfather(x Z), a
: -determmlsuc frame is added to the stack When the fxrst goal of the grandfather
o procedure (father(X Y)) is called it umﬁes with fathcr(]oseph damel) addmg a non-'.
‘ determmlstrc frame to the run- trme stack (becahse other father predrcates exrst) When '

R the user steps once more, control returns to the second goal in thc grandfathcr




,procedure (fathcf(Y Z)) Here a GodelFrame is pushcd onto the stack In thrs way,

o _ the system knows whxch clause to htghhght in the code pane of the debugger wmdow,

permxttmg tlic user to easﬂy view the refutatmn 5 hxstory

GodelFrame ('parcntFramc' ‘variables' 'scope’ 'level )
E GodelDetenninisﬁcFrame (return’) .
SRR o (nextCandtdate' 'prevrousBacktrack’ 'resetVanablcs)

Each GodelFrame contams four mstance vanables parentFrame, vanables, scope, and
- level The parentFrame is an mstance of a Godchramc Iti Is a backpomter that

_mdtcatcs the posmon in the execuuon stack that control is: passed to when the current
. goal is sattsfied. We call the sxtuatmn when a goal is sausfied and thé xecutton stack

S
‘musf bé‘popped a success exu “The next mstance vanable,\za(tables, 1s_ an mstance of a

- Godeledngnvrronment It contams the vanables of the m<)st récently created stack |

—

frame. Scope i the atom (goal) in the current clause that cm"{ ';thts‘frame,..and,rsb |

- used by the graphlcal debugger for clause. hrghltghtmg

| The last instance variable is Ievel Iti 1s an mteger that definétsT the nestlng leve f“ thc‘

B current frame Ina stack based Prolog 1nterpreter absolmgxframe addresses are |
: compared to deterrmne tf one frame is lower in thc stack than another To allow for an
i ,Ob_]CCt based memory archrtecture that allows multiple execuung querres cach frame B

contams alevel (or frame depth). Le\(pl compansons occur when deterrmmng whrch- |

| vanables to. push onto the reset stack (1 e. vanables whose bmdmgs needxemng

‘ 'dunng a backtrack opcrauon) The advantage of this approach is that the 1nterprcter can

conunue executmg unul all memory 1s exhausted Also, this allows the memory,

“ manager to compact memory by movmg about frame obJects An obvrous drsadvantage |

R is the vextra word of memory needed for each frame object. s
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6222 Binding E_nvi.ronnients

A GodeledlngEnvnronment 1s an object that encapsulates a set of molecules ; -
| Molecules are bmdlng-context pairs represennng run time vapable bmdmgs, and are
- ,needed for Godel's structure sharing term representation A bmdmg envnrénment
. responds to messages that netneve orset-a vayable s bmdtng Some Prolog interpreters :

‘dmde vartables mto local and global A local vanable is allocated space on the run- ttme

stack whxle a global vanable is allocated space on the global stack In thts way, more |

vanable spacg can be retneved durmg a success exit. In Godel, we make no such

‘dlstmcnons All vanables are allocated in the bmdmg environment local to-each Stack

i
1

mechamsms A

frame However futnre versions could be extended to mcorporate this space savmg

6.2.3.. The Interprete ‘ : ’

Godel's obJect-onented archltecture allows for the’ dlstnbutxon of code among the -
obJects to be executed in this case clauses "The code to tnterpret clauses is assocnated

with each clause ob]ect (or parse node) ThlS is in contrast to 1nterprcters using

procedural desrgns whene there exists a centml procedure that givena clause base and a

' {(query, defines the actions to perform the refutanon

> In Godel, there 1s no central mterpretlng procedure Each object in the system knows = -

* what to do when rece1v1ng a message to execute 1tself ina glven context. The deﬁmng‘ '

[y

corftext for Prolog mterpretauon is represented by the class Godellntcrpreter A

R Godellnterpreter is an abstract data type contarnmg methods that set and return the

T~
~values of its mstance vanables It also contams methods to answer queries from the

debuggmg wmdow about the mterpreter s current state. Overall a Godellnterpreter is
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| the encapsulation of state vartables By havmg sleveral mstances of a GodelInterpreter,

several concument quenes can be executmg

Each Godellnterpreter contains ﬁve instance vanables a ,eltrremframe a curremCaII a
AextCandidate, and a mostRecemBacktrack The clcrreanrame pomts ‘to the top
execuuon stack object. The currentCall is an instance of a GodclAtomNod% and i is the
currently executmg goal in the refutation The nextCandidate is an mstance of a

GodelClauseNode and is the next clause i in a procedure that currentCaII will attempt

' . umﬂcauon The mostRecentBacktra Kk an instance of a GodelFrame and is set to the

-Iost recent non-determrmsuc run-ttme stack frame

¢

CurrentCaII is the plvcﬁ‘pbint whenk searching fcr a possible unifylng clause heads. ‘lhe,x ’

lrst of clauses that can poss1bly unify with curremCaIl (the candldate ﬂst) are searched

sequentrally untrl a clause head successfully unifies with currengC‘aHt )K thls point,

N

nextCandtdare is setto the clause immediately followmg that matched clause If there is -

a next candrdate -mostRecentBacktrack 1 0 pomt to the topmost xecunon stack

frame. This enables the interpreter to return to thrs state durmg backtracky g

| 63. Interpretation .

There are two fundamental componcnts of Prolog mterpretanon umﬁcatlon and clause

selection. The followmg secuons descrlbe the messages sent to vanous Godel objects

to unify terms together and to select clauses from the clause qatabase for unification

_-dunng the refutation process. ' . o w

63.1 Unification . __

"The umﬁcatron process descnbed in chapter ﬁve finds the most general umﬁer (mgu)

: _between two hsts of terms. For example, the term f(g(X), X) umﬁes wrth f(Y, 1)
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producmg the mgu {Y/g(X). X/l] In Godel, each term is represcnted bya distinct
object. Gnven the. representation of vanables in a clause as molecules ina binding ;
cnvmonment, each term object must rcspond to the message #in: Fra ¢ uniﬁerFor' '

anObJect ln. anObjectsFrame, where aFrame is the message receiver's envnmnmcnt

“and anObjectsFrame is the environment anObJecr is defined in.

For example, suppose we have the assertlon father(denis, daniel). Suppose further that

we 1ssue the query father(X, Y). Upon acceptin) thls qucry, the i interpreter crcates an

- environment frame fj. Thc interpreter then pushes a temporary framc f2 onto the

executlon stack and tnes to unify father(X; Y) with the candtdatc clausc father(denis, ; |

damel) To do this, the mterpreter sends the message [m' f1 unifierFor:

[fathcr(dems ,daniel)} in: fp] to the atom [father(X, Y)]. If thc unification fails the

' object False is retumed othermse True is returned-and a global umﬁcr (an instance of
— . class Umﬁer) is set to the collectton of bound vanablcs In thlS case (X/denis,

’ Y/damel} Example unification methods appear in figure 6. 1 Notc that Go@el does

o

not perform the occurs check



auiseNode> in; aFrarise unifierFor: anObject in: anObjectsFrame
"Answer true if my head can unify with anObject, otherwise
- answer false,” =

“head in: aFrame unifierFor: anObject in: anObJectsFramc

<GodelAtomNode> in: aFrame unifierFor: anObject i in: anObj jectsFrame
"Answer true if I can unify with anObject, otherwise answer false.
I can unify with anObjgct if we have the same predicate name and
if our terms can unify”

. (anObject isKindOf: GodelAtomNodc)
< ifTrue: :
[(predxcate unifiesWith: anObjcct)
ifTrue:

[tcrlest isNil
. ifTrue: [AMrue].
‘ ‘ "termList ‘
‘ : in: aFrame
unifierFor: anObject terms ®
in: anObjectsmee]] -

+

Malse I
Figure 6.1: Examplc unification methods for Godel pa'rsc‘ nodes.

~

There are three advantages to the object-oriented approach to unification.. First, the

distribution of code’among tcnri objects enables the abstraction of each object's

bchavnor (a constant Ob]CC[ umﬁcs with another object dlffercntly then a vanablc

: would) Sccond thc ability to mqfcnmcnt thh new object types without changing the

t'*

cxlsnng interpreter. Suppose,r a‘ new: object is addcd to the language, for example an

array object. thn crcaung the class that descnbcs the array's bchav1or one Just addsa

umﬂcatxon method that dcﬁncs how.the array is to unify with other objects.

The third advantagc of the object approach to uxiiﬁcation is the abilit’y‘for Godel to use

the existing Smalltalk object pool. Smalltalk comes equipped with many pre -defined

classes. The classes are structured in a tree rooted at the class Object. By addmg

unification methods to the class Object and its subclasses, each Smalltalk object can

respond to unification messages from”Prolog structures. Also, since we have deﬁhcd_



+

) prmntivc clauses (see sectxon 6.3. 2 1 Primltlves) whose bodies are Smalltalk 80

soumc, the user can write clauses that mampulate Smalltalk objects.

For example, Smalltalk's Collection classes encaps\llatc sequences of objects. It is

pbssible to write a predicate addToList(AnObject, AList) whérc AList is an instance of

a Collection instead of a Prolog list structure. Sxmxlarly, the Class View can be usedto

crcatc wmdows that Pmlog code wntes (or draws) in, providing a graphncal interface
for thc Prolog language. Ovcrall the combination of Smalltalk classes and" pnmmvc

clauses enables Godel to. mhem a sophlstlcated and powerful cnvu'onment

»

6.3.2. Clause Selection v

Prolog clauscs are reprcsented by instances of the class GodelHornCIauseNode or
GodeltheralNode A GodelCla useNode has subclasses
GodelPrlmmveHomClauseNode and GodelStandardHomClauseNode each of which
spcclahzes the behavior of the abstract class GodelClauseNode. By scparanngﬁ%olog

language constructs into classes that model the construct's bchav:or we were able to .

dlstnbute the mfercncc engme among these classes."

v Each clause. class can respond to the message #stepln anlmerpreter The smglc

argument, anlnterpreter is an 1nstance of a Godcllntzrprctcr When a horn clausc-
receives the #stepln. message, it performs all neccssary operations to cxccutc itself in
the context determmed by thc single argument, anlnterpreter The value xt returns

indicates whether it failed, succeeded, or succeeded and rcsults are to be dlspla)(cd.

,1'

For cxample, suppose we havc the grandfathcr and father prcdlcatcs as defined
prev1ously, along with the query grandfather(x Y). The interpreter's currentCall is th:b ‘
GodelAt_omNode grandfather(X, Y). The message #stepln is sent to the node

4
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grandfamcr(x Y) A GodelAtomNode's behavxor upon receiving this message is to
search fora pmcedurc whose predicate and arity matches its pndic((tc and arity. When
a claﬁne ls found that clause's head must be unified with current goal atom. If this

sucCecds, the interpreter updatcs the run-time stack and sets the currentCall to be the

“new clause’ s ﬁrst call (the first atom in its body) The #stepln -message is again sent to

thc new currcntCall fqthcr(x Y), This process continues until the refutation's success

ol.‘, failure.

6.3.2.1 Primitives.

v ' ”

_ Pnrmuvc clauses are specxal clauses whose bod§ are.not a con_;unct of atoms, but code

written l: a different language (usually the mtctprctc!’s 1mplemcntanon language). In
Godel's case, this is Smalltalk-80 codc 'I‘hcre arc»gwo -advantages to neadlly accessible
and modifiable primitive clause code. First, pxtstmg primitive mcthods can be
spcciﬁcally tailored by Godcl's users. Second, by l;sing Smalltalk-80's incrcmontal
compllanon facility, primitive clauses can be freely added to a Prolog application.

Although adding primitive clauses to Pmlog applications detracts from the clegancc of

havmg one xmplcmentanon language, it can be offset by the gains in efficiency. For an -

examplc of primitive clauscs, see figure 6.2.

—
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times(ANum, BNum, CNum) « . :
<primitive: times> - 4
primitive clousé |Collaction / Coda / Primitive Qausj
| head sum(ANum, BNum, ¥
tail . —
a 1 sum(ANum,BNum
lamtruo 11ANum- Sy

e ' aNumV-a v

Figure 6.2: anmvc clausés. The rimes pnmmvc is alread g ned. The
sum primitive is currently being edited within a dialog
window. Note the Smalltalk code in the body of the clausc

Associated with primitive methods are a collection of methods used to retrieve and set
the values of the primitive clause's instance variables. For example, thé sum p;ifnitivc
send; the message #valueOf: aVariableName to self (i.c. thepbject who dwns the sum
primitive method) to retrieve the value of the single ;;aramctcr aVariableName.
Simiiarly, the message #Valuedf : dVan‘abIeName put: anObject binds to the variable
aVariableName the, object anObjec\'\{ These messages, along with the specification of
Prolog term structures as distinct ilasses with well defined message interfaces,
provides the developer with the,i necessary tools for manipulating arbitrary Prolog

e " ba -
terms.

~

6.4 Summary

We have dcsigncd' Godel's interpreter in an object oriented manner. We have itemized
the objects reqmrcd for intcmrcﬁng the Prolog language. These include the frames, the
bin&ing environments, the interpreter abstraction, and the program.clauscs. We have
also outlined Godel's memory oréaﬁizdtibn. In the next chapter, we summarize the

results learned from designing, implementing, and using Godel.
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Conclusion | A .

Concepts withow facmal context are emply:.

sense data without concepts are blind . .
The undersjanding cannot see. The sense cannot think.
By their union only can knowledge be produced.
\

Immanuel Kant 1724-1804

, | = .
Godel is an experiment in creating a user-interactive (graplysﬂy oricnted) Prolog

programming environment. Our study spanned a wide spectrum; from modulanzmg
Prolog code to developing an interactive debugging formalism. We not only
mcorporatcd softwarc éngineering features to make F\rolog suitable for largc program
development, but designed and 1mplcmc.ntcd a prototype.environment thgt took

advantage of the graphical iﬁtcractivevture of modern workstations.

In this thesis, we argued for the addition of three compbnents to p Prolog environment:
modularizan"on,' typing, and open world programming. We demonstrated that, through
the use of a graphical'intcrface, n;:w wayS of representing program structure and state
are possible. We are not claumng that our approach is sacred, only that future work
can take advantagc and build upon our ongmal 1dcaks Moreover, we can experiment

with the "look and feel" aspects of the environment to suggest ;nhancements and

. hopefully .guidc future work. - ‘ (

108 -,
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In chapter two we described the general architecture of a Prolog PE. We argued that,

* for ineremental compilation of clauses, a modifiat;ie central clause rcpository is an
asset In the case of modulanzanon. we argued for a module structure geared towards
constructing logic program)s. We deﬁned the operauons of union, open inclusion.
closed in'clusion,‘ and demonstrated their usefulness. We also outlined Godel's
interface features _anddcscribcd how they affcot‘editing cianncs. browsing n'ioduics.
and debugging. In chapter three we introduced ovc«module semantics %&'e also
introduced our type dcclaranons and described the syntax directed cdmng and graphicd

representation of these dcclaratmns

Chapter four imroduced Godel's .objcct-oricn‘ted design. Chapter six cx;;andcd on this
by descvribing\ the interpretér's design. Various work is underway to study the effects
of the object-oriented design méthodo_logy in dgsigning large software systems. From
our description in chapter four, we hope the kadcr has gained some anprcciation of
how classing and inhcrit/ancc promotes cnde re-use. This can prove.invaluable when
designing lafge, modifisbic. and extendible systems. Howi:vcr, dra(tia‘cks crncrgc

when the object design is used at a finer level.

An cxampie is that of umficauon Our umficanon algorithm's pcrformancc can be
improved significantly if it were wmten in a table driven manner as opposed to scndlng

messages to‘individual objects. When the number of unifiable objects increase, s do
the number of messages, and therefore the number of method look-ups. The

procedural interpretation for unification seems more appropriate than the object based

method. However, the object based approach reveals its usefulness when cxtcnding‘

the "kinds" of unifiable objects. Recall the cxamplcs of adding an Array type, or
: unhzmg Smalltalk's class base by pcmnttmg arbitrary Smalltalk objects to unify with

Prolog variables and terms. In this case, no modlﬁcauons to the int&rpreter or

.
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unification algorithm occur. The only change is to add behavior methods to the new
object that define the actions that object takes to unify itself with other objects.

Graphically oriented interaction paradigms are deemed by most people to require
considerable amounts of effort in their design and devclopmc;n. In a practical sense,
where high spcéd. high performance applications are mandatory, this is true. But in a
research environment, where experiincnting with new ideas, new formalisms for
decreasing the communication barrier between user and computer, this is not the case. |
Smalltalk-80 is an environment that meets this demand. New ideas can be f@mulated,
designed, implemented, and tested far before proddcﬁon development is undertaken.
This means that increasingly ambitidus ideas can be realized, their utility tc‘stcd, and

results generated, without waiting for technology to close the gap.

As for the interpreter, 'why thc’ objec¥~orien‘}cd' d::;‘i.én? There are three reasons for this.
First, the utility Qf the objcct-oﬁcnt'ed programming paradigm for u’hc in developing
gra-;hical interfaces is well documented. By implementing the intcrprétcr in the ‘objcct
paradigm, we obtained a uniform ar.chitc(:turc between the graphical interface and the
inference engine. This permittcd the design of a highly integrated interpreter and

debugger. .

Second,' we wanted to experiment with the object design of a Pr‘l'bg interpreter. We
conclude that only cosmetic differences exist between the object-oriented interpreter and
a conventional interpreter. The message sending paradigm of Smalltalk permitted us to
distribute the inference engine among the various clause objects. However, the basic
execution strategy of Prolog must remain the same. The execution stack must be
present, variable bindings must be set, and backtrack points must be recorded. Even

when it comes to optimizations, the object-oriented approach ultimately performs the
. . : ! L4
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same task as a conventional interpreter. We are not saying the two designs are
1denncal There are subtle differences (i.c. the distributed codé) that permit Godel's

interpreter to behavnor suitably in a user-interactive environment.

Third, experimentation is needed between logic and user interfaces. In [Grossman and
Ege 1987] they formulate a systcm where the user interface mapagemem systcm Qbses
logic to declaratively specify andconn'ol the ways that objects are eomposed 1o create
interfaces. Their system relies on two components. An interpreter with intelligent
backtracking capabilities (for undo operations), anzi a system to digplay these graphical

objects. We believe Godel can provide a foundation for further work in this area.

Godel is an experimental test-bed for many issues: incremental compila(i;)n. gra’mp‘hical
debugging, modularization, and imcrprctation of Prolog programs. We have,
however, only scratched the surface of- many of these |ssucs Because of this
experimental naturc. we argued for its prototype dcvclopménft using the Smalltalk-80

programming environment.

.

Graphical debugging is one area that can benefit. In chapter two, we introduced a
prototype graphical‘tracewbuggcr. Although this debugger is currently
implemented for conventional Prolog execution, it cafl prove invaluable in debugging a
Prolog implementation that uses a more flexible execution strategy. For example,
[Naish 1985a and l985bfdcscribcs a Prolog systct% (NU-Prolog) that incorporates co-
routining directly into the inference engine. Co-routining was added to Prolog as a step
towards building a pure logic language (not rcquiring’non-logica! predicates like cut and

var).

This flexible execution strategy makes it very difficult to follow a program’s

movements, as goals are delayed if their input is not sufficiently instantiated. With a

o>
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graphical debugger, contrasting backgrounds and fonts can help to indicate" elayed

predlcates, execuung goals, and succeeded goals.. However, much work needs to be

L

" done to expenment w:th these 1deas Godel»protndes such an expenmental vehxcle S

iy Although the Smalltalk environment penmtted us to expenment w1th enhancmg the 7' e

r -%-lusabtlity of a Prolog PE through a graphtcaf mterface, there are performance issues to :

contend w1th Here we suggest three ways of 1mprovmg Godel's performance The = @

first is compllmg Prolog clauses dlrectly mto Smalltalk 80 source. Thxs has the"
L advantage that the Smalltalk 80 envuonment tools (browser and debugger) can be used o
= m debuggmg the compxlauon and executlon process A drawback would be the.

o dtfficulty m mterfacmg the compfled' code w1th Godel's graphlcal debugger

. The .second approach to mcreasmg performance is. to expenment with Smalltalk s user

e o .anmves User pmmttves are extenS1ons o Smalltalk's v1rtual machme (the Smalltalk ' -

-umterpreter) An mterface from the envrronment to this machlne enables the. deve10per o

" | 1mplement "high performance" methods 1n assembly language or C For example,
umﬂcatlon isa computatronally cxpenswe operatron If the umﬁcatlon methods were )

taken out of Smalltalk and placed mto pmmtlve methods, cons1derable performgncej .
.mcreases would occur A drawback is the extendablhty and modlﬁabllxty of Godel'

)

. -mterpreter is lost. e "v
"' The last approach is to’ compxle the Smalltalk 1mplementatron Work by [Atkmson

- 1986] has demonstrated that complhng a typed Smalltalk language is possrble where a

B 1‘s1gmﬁcant uzcnease in execuuon ume was obscrved A second approach is to transform S

";‘“

' ‘the Smalltalk 1mplementanon mto another c6mp11able objeet-orlented language [Cox

e | and Schmucker 1987] have desrgned a tool to conven Smalltalk-80 code mto Objectwe- _ o
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C Such a tool would prove mvaluablc in convernng Godel from a pmb;ype 40
: producuon state. = R 9«»5 ,

! ' . C a‘

[ IR

"With madequate tools, even the best. cny’tspers’oh:
(- must struggle to produce good work "
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Appendix 1: Horn Clause Solutions to Schubet{"s§teamroller
.- wolf(wolf); « , . a o
~fox(fox); . S W ‘ N
bird(bird); | N
L smul(snaxl), . '
-~ grain(grain);

catexpﬂlar(catcrpﬂlar), | ' | ,

“ animal(A) <- ‘
wolf(A);
animal(A) <-

[]
=
E
>
'\/

| grain(A);,
plant(food1(A)) <- _
caterpillar(A);
plant(food2(A)) <- ) : _ .
snail(A); ‘ - '

smaller(A, B) <-
caterpillar(A) & bmd(B)
smaller(A,B) <- ,
snail(A) & bird(B); v
smaller(A,B) <- - ‘
- bird(A) & fox(B);
smaller(A,B) <- .
fox(A) & wolf(B);

doesntEat(A,B) <-
wolf(A) & fox(B);
doesntEat(A,B) <-
" wolf(A) & gram(B)
doesntEat(A,B) <-
' bird(A) & snail(B);
doesntEat(C D) <-
animal(C) & plant(D) & ammal(A) & smallcr(C,A) & plant(B) &
doesntEat(A,C) & doesntEat(A,B); ,

- eats(A,B) <- .
bird(A) & catcrpxllar(B)
eats(A food1(A)) <- , ‘
caterpillarA); . . -
eats(A, food2(A)) <- ‘ ' L
snail(A); : ' S
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cats(A,C) <- » ‘
animal(A) & animal(C) & smaller(C,A) & plant(D) & cats(C.D) &
‘ gllnt(B) & doesntEat(A,B);
- cats(A,B) <- : ¢

animal(A) & plant(B) & animal(C) & smaller(C,A) &
doesntEat(A,C) & plant(D) & eats(C,D);

goﬁl(A.B,C) <-
- animal(A) & animal(B) & grain(C) & cats(A,B) & eats(B,C):

Listing 1: A Prolog Solution to Shubert's Steamroller



TYPE organism;
- TYPE :ﬁmal IS organism;

TYPE wolf IS animal;

TYPE fox IS animal;

- TYPE bird IS animal; -
TYPE : IS animal;

plam IS organism;

TYPEégaln IS plant;

FUNCTION food1 (caterpillar) IS plant;

FUNCTION food2(snail) IS plant;

PREDICATE smaller/2 UNIFIES WITH animal, animal:

smaller(X : caterpillar, Y : bird);
- smaller(X : snail, Y : bird); -

smaller(X : bird, Y : fox);

smaller(X : fox, Y : wolf);

PREDICATE doesntEat/2 UNIFIES WITH animal, organism;

- doesntEat(X : wolf, Y : fox). e
doesntEat(X : wolf, Y : grain). X
doesntEat(X : bird, Y : snail).
doesntEat(C : animal,D : plant) :-

smaller(C,A : animal),

doesntEat(A,C),

doesntEat(A, X : plant).

PREDICATE cats/2 UNIFIES WITH animal, organism;
ICATE ) x

eats¢X : bird, Y : caterpillar).
cats(X : caterpillar, food 1(X)).
eats(X : snail, food2(X)).
eats(A : animal, C : animal) :-
‘ smaller(C, A), -
. eats(C, V : plant), '
doesntEat(A,B : plant). _
eats(A : animal,B : plant) :- o ]
smaller(C : animal A), o -
doesntEat(A,C), -
eats(C, V : plant).

PREDICATE goal/3 UNIFIES WITH animal, animal, plant;
godl(A, B, C grain) :- ' '

- eats(A,B),
eats(B,C).

‘.'.

‘ ,
Listing 2: Godel's typed sofution to Shubert's Steamroller
ﬂ .
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