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ABSTRACT 

 

The avian egg is an excellent source of nutrients, and consists of components with 

beneficial properties but there is a limited knowledge on the effect of various cooking 

methods and gastrointestinal digestion on antioxidant activity of eggs. The present study 

was focused on the effect of cooking and simulated gastrointestinal digestion on 

antioxidant activity of eggs by 3 assays; Oxygen radical absorbance capacity (ORAC) 

assay, 2, 2’-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) ABTS decolorization 

assay, and 1, 1-Diphenyl-2-picryl-hydrazyl (DPPH) assay. The results suggest that fresh 

egg yolk have higher antioxidant activity than fresh egg white and whole eggs. Cooking 

reduced but simulated gastrointestinal digestion increased the antioxidant activity. 

Boiled egg white hydrolysate showed the highest antioxidant activity; a total of 63 

peptides were identified, indicative of the formation of novel antioxidant peptides upon 

simulated gastrointestinal digestion. This study suggests the potential role of eggs as 

dietary source of antioxidants. 
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CHAPTER -1 LITERATURE REVIEW 

 

1.1 OXIDATIVE SUBSTANCES/FREE RADICALS  

Oxygen is essential for all aerobic organisms, but it can be a source of certain molecules 

capable of destroying cells (Haddad, 2002). As a result of essential biochemical 

reactions, certain highly reactive oxygen species (ROS) are continuously formed in the 

body (Serafini, 2006). These reactive oxygen species have a tendency to donate electrons 

to other substances, many of them are free radicals having one or more unpaired electrons 

and therefore unstable and highly reactive (Machlin & Bendich, 1987; Bagchi & Puri, 

1998). The free radicals are also derived from nitrogen, known as reactive nitrogen 

species (RNS) (Espey et al., 2000; Moini, Packer, & Saris, 2002; Turrens, 2003).  These 

ROS and RNS formed in the body function as signaling molecules and are well regulated 

in such a manner to maintain the homeostasis at the cellular level (Devasagayam et al., 

2004; Valko et al., 2007). Apart from these endogenous factors, certain exogenous factors 

like tobacco smoke, certain pollutants, ozone, X-rays, toxic chemicals etc., could also 

lead to the formation of free radicals (Church & Pryor, 1985; Bagchi & Puri, 1998). The 

superoxide anion radical (O2
-
) formed from cellular metabolism or physical irradiation 

is considered as a primary ROS, which can further interact with other molecules to 

generate secondary ROS (Valko, Morris, & Cronin, 2005).The various ROS includes 

superoxide( O2
-
),  hydroxyl radical ( OH), hydrogen peroxide (H2O2), which yields 

potent species like OH, peroxyl radical (ROO ), organic hydroperoxide (ROOH), 

singlet oxygen (
1
O2), and ozone (O3); while RNS consists of nitri c oxide (NO ), 

peroxynitrite (ONOO
-
), peroxynitrous acid (ONOOH) and nitrogen dioxide (NO2) 

(Devasagayam et al., 2004; Trachootham, Alexandre, & Huang, 2009). The etiology of 

many diseases as well as aging, have been associated with the excessive formation of free 

radicals and there is a surge of research in the areas related to prevention of diseases. 
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Figure 1.1:  Various pathways of Reactive oxygen species (ROS) formation (Modified 

from (Valko et al., 2007; Trachootham et al., 2009)) 

1. The main free radical O2
-
, the precursor for the formation of H2O2, is formed 

mainly by mitochondrial electron transport chain, the endoplasmic reticulum 

system and the Nicotinamide adenine dinucleotide phosphate (NAD(P)H) 

oxidase (NOX) complex (Dionisi, Galeotti, Terranova, & Azzi, 1975; Turrens, 

1997;  Liu, Fiskum, & Schubert, 2002; Trachootham et al., 2009).  

2. The redox reactions in mitochondrial electron transport chain component, 

Complex I (NADH dehydrogenase) and Complex III (semi-ubiquinone) plays 

important roles in the non-enzymatic formation of superoxide (Turrens, 1997; 

Droge, 2002). It was reported that the electrons possess a greater tendency 

towards oxygen and forms O2
-
 rather than jumping to next electron carrier in the 

chain (Cadenas & Davies, 2000). In addition to the direct extra mitochondrial 

release of superoxide, the premature leakage of electrons generated during 

energy transduction in the mitochondria also forms O2
-
 rather than getting 

reduced to water (Muller, Liu, & Van Remmen, 2004).  

3. The enzymatic reduction of molecular oxygen is also carried out by enzymes, 

NAD(P)H and xanthine oxidase, resulting in the formation of superoxide anion 
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radical (O2
-
 ) and it is then rapidly converted to hydrogen peroxide by the 

superoxide dismutase (SOD) (Turrens, 1997; Trachootham et al., 2009). 

4. The H2O2 may convert back to O2
-
 or to water by enzyme catalase 

(Trachootham et al., 2009). 

5. The enzyme glutathione peroxidase (GPx) also can act on H2O2 to form water 

(Cohen & Hochstein, 1963). For this reaction, enzyme GPx requires glutathione 

(GSH), which acts as antioxidant by donating the electron and then this oxidized 

glutathione (GSSG) is converted back to GSH by glutathione reductase (Gred), 

which in turn uses NAD(P)H as the electron donor. 

6. In the presence of reduced transition metals (e.g., Fe
2+

, Cu
+
 and others), the O2

-
  

and H2O2  provides substrate for the highly reactive hydroxyl radical ( OH) 

(Turrens, 2003). Normally, there exists a strict physiological limit with in cell 

linked to an iron (and copper) redox couple, ensuring there is no free intracellular 

iron. However, during stress conditions, increased level of superoxide radicals 

leads to abnormal release of free iron from those iron containing molecules. Also, 

during disease conditions like hemochromatosis, b-thalassemia, and hemodialysis 

availability of free iron from erythrocytes destruction may lead to the formation 

of hydroxyl radicals, resulting in deleterious effects (Valko et al., 2005).  

7. The hydroxyl radical, which is the neutral form of hydroxide ion, reacts with 

polyunsaturated fatty acids (LH) forming the carbon centered lipid radical (L ) 

and this will continue reacting with molecular oxygen to form lipid peroxyl 

radical (LOO ).  

8. Within the membrane, the presence of antioxidants like reduced Vitamin E (T-

OH) convert the LOO
 
 into lipid hydroperoxide (LOOH) and a Vitamin E 

radical (T-O ) (Gropper, Smith, & Groff, 2008).  

9. The Vitamin E is then regenerated back from T-O  by reduction using Vitamin 

C (the physiological form is ascorbate monoanion, AscH
-
) leaving an ascorbyl 

radical (Asc
-
). 

10. The Vitamin E radical (T-O ) can also be regenerated by GSH and then the 

oxidized glutathione (GSSG) and the Asc
- 
is converted back to GSH and AscH

- 

by dihydrolipoic acid (DHLA). 

11. DHLA is changed to α-lipoic acid (ALA), which is then reversed by the action of 

NAD(P)H. The ALA is a disulfide derivative of octanoic acid, and can cross 

blood brain barrier and be readily absorbed by the cells hence functions as 

‘‘metabolic antioxidant’’. The ALA and DHLA can acts antioxidants in the 

hydrophilic as well as lipophilic conditions (Moini, Packer, & Saris, 2002). The 

ALA protects the lipid cell membranes and exhibits antioxidant properties by 

metal chelation and as a scavenger of ROS; while the reduced DHLA, can 

regenerate the vitamin E, C, and glutathione, thereby enhances the function of 

endogenous antioxidants (Farris, 2007). The other mechanism to remove lipid 

hydroperoxides (LOOH) is the GPx system, which converts LOOH to alcohols 

and dioxygen with the help of the antioxidant GSH. The LOOH reacts with Fe
2+

 

and Fe
3+

 forming lipid alkoxyl radical (LO ) and LOO
 
respectively. The lipid 

peroxyl radical (LOO ) can undergo cyclisation reactions to form 

endoperoxides, with the end products malondialdehyde (MDA) and 4-

hydroxynonenal (HNE) (Martinez-Cayuela, 1995; Valko et al., 2007). 

12. In addition, nitric oxide (NO ) formed from arginine by nitric oxide synthase 

(NOS) can react with O2
-
 to form peroxynitrite (ONOO

-
), a very powerful 

oxidant (Poyton, Ball, & Castello, 2009; Trachootham et al., 2009). 
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The half life period of the free radicals vary, hydroxyl radical ( OH) is highly reactive 

with a very short in vivo half life of 10
-9

s. Alcoxyl radical (RO ) has a half life of 10
-6

 s, 

singlet oxygen 
1
O2 with 10

-5
 s; while peroxynitrite anion (ONOO

-
) has a half life of 0.05-

1 s, peroxyl radical (ROO ) with 7 s, nitric oxide    ( NO) a half life of 1- 10 days 

(Bergendi & Bene, 1999). 

1.1.1 Free radicals and oxidative damage 

The ROS have beneficial effects when produced in a steady state concentration. It plays 

important roles in cellular response; especially responses against infectious agents, 

thereby provides protection against pathogens. The neutrophils, known as phagocytic 

cells when stimulated by pathogens, recognizes the foreign material and start a cascade of 

reactions called a respiratory burst. NAD(P)H oxidase, the vital component of host 

defense present in the neutrophils produces O2
-
, which result in the invaders destruction 

(Decoursey & Ligeti, 2005). The O2
-
 and related ROS also regulates ventilation, 

controls erythropoietin production, smooth muscle relaxation, neuromuscular signal 

transduction, and enhances immune functions (Adler, Yin, Tew, & Ronai, 1999; Droge, 

2002). Among the various RNS, the NO  generated in biological tissues have important 

role in physiological processes, acts on cardiovascular, nervous and endocrine systems by 

regulation of blood pressure and vascular tone, signal transmission by the nerves and the 

neuroendocrine activity, and also contributes to defence mechanisms, relaxation of 

smooth muscles and regulation of the immune system (Bergendi & Bene, 1999). Hence, 

when present in normal concentration, the free radicals or their derivatives are involved 

in the regulation of various functions and enhancement signal transduction and thereby 

involved in establishing a redox homeostasis (Droge, 2002).  

The various harmful effects induced by the free radicals in the biological system are 

termed as oxidative stress and nitrosative stress (Turrens, 2003; Dalle-Donne et al., 2005; 

Poyton et al., 2009). This occurs as a consequence of imbalance between the producing 

and scavenging of ROS and RNS or due to deficiency of antioxidants in the system. The 

regulation of balance in the concentration of free radical production and their rates of 

removal by various antioxidants is termed redox homeostasis (Dorge, 2002).   

The reactive species at elevated level under pathophysiological conditions lead to 

oxidative stress, which in turn alters cell function and damage the cells, ultimately results 

in cell death (Sies, 1997; Droge, 2002). The increased production of ROS in the cell 

results either from mitochondrial electron transport or by extra stimulation of reduced 

form of nicotinamide adenine dinucleotide phosphate (NADP
+
) formed during oxidative 

stress.  

The free radicals act as the mediators to damage the cell components: nucleic acids, 

lipids, polysaccharides and protein. The ROS mainly attacks nucleic acids and alters the 

bases and the deoxyribose sugars resulting in nucleic acid destruction, leading to 

conformational changes in the DNA. The oxidative protein damage also decreases the 

efficiency of the DNA polymerase and repair enzymes (Wiseman & Halliwell, 1996; 

Dizdaroglu, Jaruga, Birincioglu, & Rodriguez, 2002; Cadet, Douki, Gasparutto, & 

Ravanat, 2003; Cooke, Evans, Dizdaroglu, & Lunec, 2003; Cadet, Douki, & Ravanat, 

2011). Free radical also targets lipids causing peroxidation of the membrane structures 

and thus changes the permeability (Cejas et al., 2004; Vera-Ramirez et al., 2011). The 

ROS oxidizes the monosaccharides and reacts with polysaccharides and can induce 

depolymerization (Martinez-Cayuela, 1995; Wiseman & Halliwell, 1996; Poyton et al., 

2009). Oxidation of proteins subsequently increases its hydrophobicity and sensitivity to 

proteolysis and ROS reaction with amino acids results in cross linking and aggregation 
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(Castro, Demicheli, Tórtora, & Radi, 2011; Grimm, Hoehn, Davies, & Grune, 2011; 

Quiney, Finnegan, Groeger, & Cotter, 2011).  

1.1.2 Free radicals in diseases and ageing     

Free radical’s roles in the pathology of certain human diseases were validated using 

biomarkers of oxidative damage. Mutation of the genetic material is the initial step in the 

etiology of carcinogenesis. The free radical induced nuclear DNA damage leads to the 

breakage of the DNA strands, alteration of purine, pyrimidine or deoxyribose, and may 

lead to cross linking of the DNA, which in turn results in either inhibition or stimulation 

of pathways associated with signal transcription, altering the replication process (Marnett, 

1999). The malondialdehyde (MDA), which is formed due to lipid peroxidation process, 

reacts with nucleic acid bases to form mutagenic multiple adducts. There is a dose 

dependent effect that exists between the oxidative stress and the etiology of disease, 

ranging from tumors, mutation, and finally to the initiation of apoptosis or necrosis (Feig, 

Reid, & Loeb, 1994). There are reports stating that there is an increased occurrence of 

colorectal and lung cancer due to the iron induced oxidative stress (Stayner, Dankovic, & 

Lemen, 1996; Valko, Morris, Mazur, Rapta, & Bilton, 2001). Recent reports states the 

effect of both intracellular and extracellular oxidative stress on the pathogenesis of breast 

cancer (Vera-Ramirez et al., 2011). The increased ROS generation in the cancer cells 

enhances genetic instability by promoting irregular signaling pathways which results in 

the abnormal proliferation of neoplastic cells. They may lead to change in the growth 

factors, receptor mechanisms, error in the signals to the nuclear membrane, which might 

affect the entire cell cycle process, alter drug sensitivity and develop drug resistance 

(Pelicano, Carney, & Huang, 2004; Wu, 2006; Valko et al., 2007). 

The free radicals can stimulate the disease conditions in which cell injury is involved, 

including those affecting multi organs, as well as inflammatory immune responses (Cross 

et al., 1987). Oxidatant-mediated lung injury can lead to necrosis with subcellular 

disintegration, cytoplasmic swelling, membrane rupture and random cell death or 

apoptosis with hetero-chromatization and fragmentation, mitochondrial dysfunction, 

membrane blebbing and apoptotic bodies’ formation and finally cell suicide and 

dismantling (Haddad, 2002).  

Free radicals can be instrumental for cardiovascular tissue injury, leading to various 

cardiovascular diseases, such as atherosclerosis, ischemic heart disease, hypertension, 

cardiomyopathies, cardiac hypertrophy, and congestive heart failure (Hoeschen, 1997; 

Parthasarathy, Khan-Merchant, Penumetcha, & Santanam, 2001; Bassenge, Schneider, & 

Daiber, 2005). Increased production of superoxide radical, hydroxyl radical, and nitric 

oxide affects the cardiac and vascular myocytes; brings drastic changes in the subcellular 

organelles, and promotes the sarcoplasmic reticular (SR) Ca
2+

 release by the interaction 

with the cardiac and skeletal SR Ca
2+

 release channels (ryanodine receptors) leading to a 

critical Ca
2+ 

overload, which results in myocardial dysfunction (Stoyanovsky, Murphy, 

Anno, Kim, & Salama, 1997; Dhalla, Temsah, & Netticadan, 2000). Endothelial 

dysfunction acts as the key variable in pathology and complications of atherosclerosis 

and it eventually lead to congestive heart failure (Bonetti, Lerman, & Lerman, 2003; 

Davignon & Ganz, 2004). Oxidative modification of LDL also plays an important role in 

the progression of artherosclerosis (Witztum & Steinberg, 1991; Steinberg, 2009); 

oxidization of lipids yields products including aldehydes which react with lysines and 

tyrosines of the apo-lipoprotein B-100, altering their functions; even minimal 

modification of LDL could result in pro-atherogenic effects (Berliner et al., 1990; 

Berliner & Watson, 2005). The involvement of the oxidized LDL in foam cell formation, 
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endothelial cell damage and inflammation, plaque formation and rupture and further 

complications leading to thrombosis, infarction and ischemia was reported (Niki, 2011).  

Furthermore, the oxidation of the cardioprotective high density lipoprotein (HDL) affects 

its inherent anti-atherogenic properties (Shao, Oda, Oram, & Heinecke, 2009).  White et 

al. (2010) stated the relation between the decrease in the estrogen level and the oxidative 

stress in old women. This study reported an increased NOS production of superoxide 

radicals in the body, which in turn results in vasodilation due to decrease in NO and thus 

an increased risk of cardiovascular diseases. 

The pathogenesis of rheumatoid arthritis is associated mainly with the free radicals as it 

directly damages the articular constituents or indirectly acts by generating irregular 

induction of redox sensitive signaling pathways at inflammatory locations like joints and 

the tissues around the joints (Hadjigogos, 2003). Imbalance in the free radical and 

antioxidant levels lead to an adverse effect on vascular permeability, smooth muscle 

contraction, and excessive mucus secretion in the respiratory pathways, thus aggravating 

an asthmatic condition (Nadeem, Masood, & Siddiqui, 2008).  

Other clinical manifestations like diabetes have complications associated with oxidative 

stress, as hyperglycemia stimulates the formation of ROS from oxidative 

phosphorylation, glucose autooxidation, and by triggering superoxide over production, 

activation of poly (ADP-ribose) polymerase and depletes NAD
+
 concentration hence 

slow down the rate of glycolysis (Giugliano, Ceriello, & Paolisso, 1996; Ceriello, 2003). 

Also, it has been reported that the diabetes alters the mitochondrial site of superoxide 

formation from complex I and the ubiquinone–complex III interface to complex II 

(Nishikawa et al., 2000). Studies have proven that the production of reactive oxygen 

species reduce both enzymatic and non enzymatic antioxidants, leading to accumulation 

of free radicals persuading further cell damage (Valko et al., 2007). Reports also suggest 

the potential role of oxidative stress in the dysfunction of pancreatic beta cells and 

endothelium (Ceriello & Motz, 2004). 

Several neurodegenerative diseases results from oxidative stress, as the most susceptible 

organ to oxidative injury is the brain, due to its increase demand for oxygen, large 

amount of polyunsaturated fatty acids, and the presence of the transition metals and 

comparatively low antioxidant capacity (Noseworthy & Bray, 1998). Tretter et al. (2004) 

reported the effect of oxidative stress in the pathogenesis of Parkinson’s disease are the 

free radicals; it contributes a series of incidences, leading to the degeneration of the cells 

of substantia nigra that produce the neurotransmitter called as dopamine, resulting with 

the disease symptoms. 

The role of free radicals in the aging process was first explained by Denham Harman, in 

1956. It is a well established fact that species with long life span have more competent 

antioxidant mechanisms (Perez-Campo, Lopez-Torres, Cadenas, Rojas, & Barja, 1998). 

The plausible explanation for the aging process is associated with the ROS induced 

mitochondrial damage (Cadenas & Davies, 2000; Raha & Robinson, 2000; Barja, 2004). 

Mitochondrial oxidative damage advances with more mitochondrial ROS production, 

coupled with decline in mitochondrial function as well as the oxidative damage imparted 

to the DNA, proteins, and lipids (Lapointe & Hekimi, 2010). It was reported that along 

with the decline in repair activity, the extensive destruction of mitochondrial DNA will 

finally kills the mitochondria, leading to cell death (Gredilla, 2011). The recent research 

showed that of Vitamin E supplementation prevents the hippocampus and frontal cortex 

mitochondrial damage in aged rats (Navarro, Bandez, Lopez-Cepero, Gómez, & Boveris, 

2011). 
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1.2 ANTIOXIDANTS  

Antioxidants are molecules that protect biological systems either by inhibiting or 

preventing the oxidation of substrate by free radicals (Serafini, 2006). Enzymatic 

antioxidants include the most important intracellular superoxide dismutase (SOD), 

glutathione peroxidase (GPx), which protects against low levels of oxidative stress and 

catalase (CAT), and the non enzymatic antioxidants like ascorbic acid (Vitamin C), α-

tocopherol (Vitamin E), glutathione (GSH), carotenoids, flavanoids (Perez-Campo, 

Lopez-Torres, Rojas, Cadenas, & Barja, 1994; Thannickal & Fanburg, 2000; Nordberg & 

Arnér, 2001; Valko et al., 2006). Antioxidants protect cells not only by scavenging the 

deleterious free radicals, but also regulating the gene expression by modulating the signal 

pathways, regulating normal cell cycle, restraining the neoplastic cell proliferation, 

hindering tumor invasion and angiogenesis, activating the immune system, reducing 

inflammatory oxidative conditions, and thereby promoting immunity (Matés, Pérez-

Gómez, & De Castro, 1999; Valko et al., 2007). 

1.2.1 Sources of antioxidants 

The antioxidant properties of the natural sources were attributed during the increased free 

radical production by either reducing or scavenging the reactive species, quenching 

singlet oxygen, or by chelating with pro-oxidant metals (Pratt, 1992). Antioxidants are 

present in various natural sources like plants, animals, microbes, etc. Naturally occurring 

antioxidants generally originate from plant based ingredients like fruits, vegetables, 

cereals, and nuts. However, animals also forms source of antioxidants, for example, 

muscle tissues with carnosine, a dipeptide with metal a chelating and free radical 

scavenging property (Shahidi, 2000). Certain vitamins, minerals, and enzymes also serve 

as an antioxidant.  

1.2.1.1 Antioxidants from plants sources 

Plants, such as fruits, vegetables, oil seeds, nuts, cereals, spices, herbs, grains, etc., are a 

natural source of many antioxidants. The phytochemicals possess certain biological 

activities, mainly by their antioxidative properties (Peterson, 2001). Shahidi et al. (2000) 

reported that tocols exhibiting similar Vitamin E antioxidant activity occur widely in 

plant tissues and in edible oils.  Kalt (2005) stated that vitamin C, carotenoids, and 

phenolics form the rich source of antioxidants in fruits and vegetables, while tocopherols 

and tocotrienols are the phytochemical antioxidants present mainly in nuts and grains. 

There were early reports on the antioxidant activity of soyabean and soyabean derived 

oils (Hayes, Bookwalter, & Bagley, 1977), and the increased presence of the polyphenols 

was responsible for the desired antioxidative property (Chen, Muramoto, Yamauchi, & 

Nokihara, 1996).    

Increased presence of phenolic compounds in vegetable oils, for example in olive oil, 

adds to its increased antioxidant activity (Papadopoulos & Boskou, 1991; Baldioli, 

Servili, Perretti, & Montedoro, 1996; Owen et al., 2000; Visioli, Poli, & Gall, 2002). The 

presence of flavonoids and other phenolics in fruits and berries possess a remarkably 

improved role in scavenging free radicals (Kahkonen et al., 1999).         

Anthocyanin rich fruits and vegetables, like blue berries, sweet cherries, and red onion 

cales have high antioxidative activities (Velioglu, Mazza, Gao, & Oomah, 1998). Wang 

et al. (2000) reported that berry crops posses’ high ascorbic acid levels. They exhibit 
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antioxidant activities against superoxide radicals, hydrogen peroxide, hydroxyl radicals, 

and singlet oxygen and thus contribute to the increased protective activity of fruit crops. 

Cereals, like oats, contain phenolic compounds and a series of cinnamic acid conjugates 

called avenanthramides, which possess antioxidant activity (Dimberg, Theander, & 

Lingnert, 1993; Zielinski & Kozlowska, 2000; Peterson, 2001; Peterson, Hahn, & 

Emmons, 2002). The presence of ferulic acid, which forms the major phenolic acid in rye 

and wheat also show antioxidant activity (Kikuzaki, Hisamoto, Hirose, Akiyama, & 

Taniguchi, 2002). 

Studies have shown that the culinary and medicinal herbs possess antioxidant property 

and there exists a positive correlation between the phenolic content and radical 

scavenging property; even though Cantharanthus roseus showed the greatest antioxidant 

activity among medicinal herbs, the culinary herbs Poliomintha 

longiflora, Origanum × majoricum, and O. vulgare ssp. hirtum showed much higher 

antioxidant activity than medicinal herbs (Zheng & Wang, 2001).  

1.2.1.2 Antioxidants from animal sources 

Based on the origin of the food from biological tissues, there exists antioxidative 

functional variation as free radical scavengers, metal chelators, singlet oxygen quenchers, 

and antioxidant enzymes (Kitts & Weiler, 2003; Ribaya-Mercado & Blumberg, 2004; 

Descalzo & Sancho, 2008; Korhonen, 2009). The milk protein casein and casein-derived 

peptides exhibit antioxidant properties by inhibiting enzymatic and nonenzymatic lipid 

peroxidation (Rival, Boeriu, & Wichers, 2001). Caesinophosphopeptides derived from 

tryptin digestion of milk protein casein possess both hydrophilic and lipophilic 

antioxidant activity due to the metal chelating and free radical scavenging property (Kitts 

& Weiler, 2003; Díaz & Decker, 2004). Pihlanto (2006) also reported that the peptides 

derived from the digestion of milk protein showed antioxidant activity. 

Carnosine is a naturally occurring histidine containing dipeptide found in the skeletal 

muscles of vertebrates. It’s a potent hydrophilic antioxidant that scavenges singlet oxygen 

and free radicals in vitro (Boldyrev, Dupin, Bunin, Babizhaev, & Severin, 1987; 

Boldyrev, Koldobski, Kurella, Maltseva, & Stvolinski, 1993; Kang et al., 2002). The 

presence of carnosine and anserine in the chicken essence and meat contributes to 

antioxidative property (Wu, Pan, Chang, & Shiau, 2005; Intarapichet & Maikhunthod, 

2005). Studies on the antistress effect of chicken essence in mice also indicated the role 

of carnosine and anserine as antioxidants (Kurihara et al., 2006). The increase in plasma 

level of carnosine after beef consumption showed its bioavailability as an potent 

antioxidant (Park, Volpe, & Decker, 2005).The hydrolysates obtained from porcine 

myofibrillar proteins after treatment with protease (papain or actinase E) exhibited 

antioxidant activity (Saiga, Tanabe, & Nishimura, 2003). Liu et al. (2009) reported that 

porcine plasma protein hydrolysates exhibits antioxidant activity. Antioxidant proteins 

and associated peptides derived from eggs are listed in Table 1.1. 

1.2.1.3 Antioxidants from fish/marine sources 

Hoki (Johnius belengerii) skin gelatin trypsin hydrolysate exhibited high antioxidant 

activity by scavenging superoxide radicals (Mendis, Rajapakse, & Kim, 2005). The 

hydrolysates of skin gelatin obtained from the Jumbo flying squid (Dosidicus eschrichitii 

Steenstrup) was studied for the antioxidant activity and those treated with properase E 

and pepsin showed the potent radical scavenging property (Lin & Li, 2006). Klompong et 
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al. (2009) reported that peptides derived from yellow stripe trevally (Selaroides 

leptolepsis) could serve as an alternative for natural antioxidants. A novel antioxidative 

peptide identified as Leu-Val-Gly-Asp-Glu-Gln-Ala-Val-Pro-Ala-Val-Cys-Val-Pro (1.59 

kDa), obtained by in vitro gastro intestinal digests of sea mussel (Mytilus coruscus) was 

reported to possess antioxidative activity higher than that of ascorbic acid and the alpha-

tocopherol against polyunsaturated fatty acids (PUFA) (Jung et al., 2007). Suetsuna 

(2000) isolated antioxidative peptides from the muscles of prawn (penaeus japonicas) 

and identified amino acid structures as Ile-Lys-Lys, Phe-Lys-Lys, and Phe-Ile-Lys-Lys. 

Purified dark muscle peptides obtained from bigeye tuna (Thunnus obesus) have 

protective activity on free radical-mediated oxidative systems (Je, Qian, Lee, Byun, & 

Kim, 2008). Hydroxyl radical scavenging activity and  linoleic acid peroxidation 

inhibiting activity of the purified peptides from Alaska pollack (Theragra 

chalcogramma) frame protein hydrolysate showed its potential antioxidant property (Je, 

Park, & Kim, 2005). 

1.2.1.4 Antioxidants from microbial sources  

Many studies were conducted in order to find out the antioxidant activity of the 

substances derived from various fungi. The edible beefsteak fungus (Fistulina hepatica) 

derived lyophilized aqueous extracts exhibited a concentration dependent antioxidant 

activity and displayed ability to act as superoxide radical scavenger and XO inhibitor, 

explaining its potential use as an easily assessable natural antioxidant (Ribeiro, Valentão, 

Baptista, Seabra, & Andrade, 2007). Another fungus, Inonotus obliquus (persoon) has 

been studied and identified seven phenolic components with antioxidant activity. Among 

other medicinal fungi (Agaricus blazei Mycelia, Ganoderma lucidum and Phellinus 

linteus), persoon showed the most potent activity in terms of both superoxide and 

hydroxyl radicals scavenging properties (Nakajima, Sato, & Konishi, 2007). 

1.3 EFFECT OF COOKING/PROCESSING ON ANTIOXIDANT ACTIVITY OF 

FOOD 

The role of the proper diet in human health has been studied over the decades and many 

reports have proven the antioxidant properties of food. However, it is relevant to consider 

the effect of food processing on the beneficial properties of food. Nicoli et al. (1999) 

reported that most of the developments in the food processing have promoted the 

nutritional studies pertaining to that food, in order to ensure that the availability of the 

beneficial properties stay intact. The food processing may not always affect the 

antioxidant activity; naturally occurring antioxidant concentration sometimes remain 

unchanged or the loss of natural antioxidants will be balanced by the simultaneous 

formation of novel or improved compounds. However, the possible outcome on the 

changes in overall antioxidant activity includes the loss of naturally occurring 

compounds, formation of novel compounds possessing antioxidant or pro-oxidant 

activities, and the interactions among various compounds present in the food, for example 

lipids and natural antioxidants, as well as lipids and Maillard reaction products (Nicoli, 

Anese, & Parpinel, 1999). 

Kalt (2005) reported that the domestic, as well as commercial level of processing affects 

the structural integrity of food. Various methods like maceration, heating, and other 

separation steps may result in oxidation, thermal deprivation, oozing, and other events; 

which eventually reduces antioxidants in processed food in comparison to fresh foods. 

Processing procedures cause the changes in certain antioxidants like carotenoids and 

thereby convert it to more bioavailable active antioxidant form (e.g. trans-isomers of 
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lycopene in tomato converts to cis-isomers) to improve gastrointestinal absorption (Shi & 

Maguer, 2000). 

The effect of cooking allocation of antioxidants components in vegetables was 

investigated both qualitatively and quantitatively with an emphasis on the phenolics, 

ascorbic acid, as well as carotenoids (Zhang & Hamauzu, 2004). It was reported that the 

total antioxidant activity, as well as phenolic antioxidant activity, decreased during 

conventional and microwave cooking (Zhang et al. 2004). Zhang et al. (2004) thus 

concluded that there is a heavy loss of antioxidant activity during the cooking process. 

The radical scavenging activity of the water soluble components were studied in 

mushrooms (Psalliota campestris), onions (Allium cepa), white cabbage (Brassica 

oleracea var. alba), and yellow bell peppers (Capsicum annuum). It was found that the 

mushrooms subjected to thermal treatment possess greater antioxidant activity, 

suggestive of a thermolabile component as the major component responsible for 

antioxidant activity. Onions and white cabbage were relatively insensitive to thermal 

treatment and it was reported that there was a partial increase in activity of white cabbage 

juice (Racchi et al., 2002). 

Assessment of the antioxidant activity of vegetables based on the storage, processing, and 

cooking of peas showed a statistically significant difference in the antioxidant activity, 

ranging from fresh peas with greater activity followed by frozen, and then canned and 

jarred peas with the lowest antioxidant activity (Hunter & Fletcher, 2002). Fresh spinach 

showed that the highest level of antioxidant activity, followed by frozen leaf, frozen 

chopped, and then canned products (Hunter & Fletcher, 2002). A study examining 

microwave cooking of peas showed no significant loss of water or lipid soluble 

antioxidant activities; it was also found that boiling resulted in a small loss of both water 

and lipid soluble antioxidant activities, but overcooking resulted in a greater reduction in 

the water soluble antioxidant activity (Hunter & Fletcher, 2002). Microwave cooking of 

spinach had no significant effect in the water and lipid soluble antioxidants, but it was 

reported that there was a large increase in the small lipid soluble antioxidant activity, 

which the study concluded to be due to the further disruption of the cellular components 

and the subsequent release of more carotenoids compounds (Hunter & Fletcher, 2002). 

Due to cooking an increased loss in the water soluble antioxidant activity was observed in 

green leafy vegetables (Hunter & Fletcher, 2002; Ismail, Marjan, & Foong, 2004;   Kuti 

& Konuru, 2004; Oboh, 2005). 

1.4 ANTIOXIDANT ACTIVITY OF EGGS  

Avian egg is an excellent source of  nutrients, containing high quality proteins, lipids, 

such as triacylglycerols, phospholipids and cholesterol, minerals and vitamins, mainly E, 

A, B12, B2 and folate (Herron& Fernandez, 2004; Kovacs-Nolan, Phillips, & Mine, 2005; 

Surai & Sparks, 2001). The egg shell, including the shell membranes between the 

albumen and the inner shell surface forms 9.5 % of the whole egg, while the egg white 

forms 63% and the yolk constitutes 27.5% (Cotterill & Geiger, 1977; Li-Chan, Powrie, & 

Nakai, 1995). Egg shell forms a rich source of inorganic salts, mainly calcium carbonate, 

and traces of magnesium carbonate and tricalcium phosphate (Li-Chan et al., 1995; Mine, 

2002). Approximately 75% of an egg is composed of water, proteins and lipids contribute 

12 % each, and rest is of the egg is comprised of carbohydrates and minerals (Burley & 

Vadehra, 1989; Li-Chan et al., 1995). Thus, eggs can have an important role in the human 

diet as a balanced source of essential amino acids and fatty acids and are cost effective 

when added to a diet (Fisinin, Papazyan, & Surai, 2008).  
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Eggs serve as an excellent source of protein, which is present in the egg white and the 

yolk, with a limited amount of protein in egg shell and membrane. Ovalbumin is a 

glycoprotein that forms the major portion constituting 54-58% (w/w) of the total egg 

white; consists of sequence with 386 amino acids and with a molecular mass of 45 kilo 

Dalton (kDa) (Li-Chan et al., 1  5  Huntington   Stein, 2  1  L pez-Exp sito et al., 

2008). Second major protein is ovotransferrin (12-14 %, w/w) consists of sequence with 

686 amino acid residues and with molecular mass of 78 kDa.  It is a disulfide rich single 

chain glycoprotein and belongs to transferrin family with strong iron binding capacity 

(Li-Chan et al., 1995; Williams, Elleman, Kingston, Wilkins, & Kuhn, 1982). 

Ovomucoid, a serine protease inhibitor is another major egg white protein (Kato et al., 

1987). Other components include lyzozyme, avidin, cystatin, ovoinhibitor, ovostatin, 

ovoglycoprotein, ovoflavoprotein, and G2 and G3 globulin are found in the egg white 

and contain minor levels of carbohydrates, minerals and lipids (Li-Chan et al., 1995; 

Mine, 2002). The egg yolk forms 36% of the weight of fresh whole avian egg (Anton, 

2  7). The egg yolk protein consists of spovitellenin, phosvitin, α and β lipovitellin 

apoproteins, α livetin (serum albumin), β livetin (α2 glycoprotein), γ livetin (γ globulin) 

and traces of biotin binding protein (Li-Chan et al., 1995; Mine, 2002). The key portion 

of yolk lipids exists in the form of lipoproteins. The lipids are made up of triglycerol, 

phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, 

sphingomyelin, and cholesterol (Li-Chan et al., 1995; Mine, 2002). Carotenoids are 

natural pigments present, giving the yellow pigmentation to the yolk, and include mainly 

carotene and xanthophylls (lutein, cryptoxanthin and zeaxanthin) (Anton, 2007). The 

composition, physiochemical properties and biological activities of egg white and yolk 

was shown in Table 1.2 and 1.3 respectively. 

1.4.1 Inherent antioxidants in eggs 

Beyond the role as a major nutritional source, egg components especially protein and the 

egg derived peptides possess certain bioactivities. Ovalbumin, the major egg white 

protein has potential scavenging effect on the hydroxyl and superoxide radicals and hence 

exists as a natural source of nontoxic antioxidant (Xu, Shangguan, Wang, & Chen, 2007). 

Earlier reports show the protective effect on lipid peroxidation and antioxidant activity of 

ovalbumin-polysaccharide conjugates (Nakamura, Kato, & Kobayashi, 1992).Studies 

conducted on the ovalbumin hydrolysates showed the antioxidant activity of the egg 

white derived peptides; a significant reduction in ROS production and subsequent age 

related damage in the serum and liver of aged mice (Xu, Shangguan, Wang, & Chen, 

2007). Graszkiewicz et al. 2007 reported that the egg white protein precipitate obtained 

as byproduct from industrial isolation of cystatin and lysozyme when hydrolysed with 

trypsin yielded bioactive peptides with free radical scavenging property. The enzymatic 

hydrolysates of duck egg white showed inhibitory activity on lipid peroxidation, 

scavenging of superoxide radicals and strong iron chelating effect (Yi-Chao, His-Shan, 

Cheng-Taung, & Fu-Yuan, 2009). The pepsin hydrolysates of crude egg white produced 

the peptide Tyr-Ala-Glu-Glu-Arg-Tyr-Pro-Ile-Leu with strong antihypertensive as well as 

high radical scavenging activity in vitro (Davalos, Miguel, Bartolome, & Lopez-Fandino, 

2004). 

Ovotransferrin, the second major protein in the egg is a disulfide rich glycoprotein, 

capable to induce intracellular oxidative response, and involved in redox linked signals 

and oxidative stress (Ibrahim & Hoq, 2007). It is a metal ion binding protein from the 

transferrin family that can reversely bind with iron and other metal ions, including toxic 

metals (Guérin-Dubiard, Castellani, & Anton, 2007). It has been reported that the radical 
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scavenging activity of ovotransferrin is specific to the superoxide anion (Ibrahim & Hoq, 

2007). The cysteines holding the two sensitive disulfide domains make it a protein that 

responds to redox homeostasis (Ibrahim, Haraguchi, & Aoki, 2006). During embryonic 

development the ovotransferrin serves to prevent oxidative damage and thus play an 

important role in the defense system (Ibrahim & Hoq, 2007). 

Lysozyme, the defensin present in egg white, provides protection against the acute and 

chronic oxidant injury. Lysozymes bind with the advanced glycation end products (AGE) 

that produces free radicals and thus suppresses the reactive oxygen species and the 

oxidative stress genes. This also helps to elevate level of antioxidant reserves in 

transgenic mice (Liu et al., 2006). The pro-oxidant derivatives formed from protein and 

fat rich diets like AGE or advanced lipoxidation end products (ALE) contributes to the 

extra oxidant load in the body    (Miyata, Kurokawa, & Vanypersele, 2000; Goldberg et 

al., 2004). Lysozymes enhance the removal of AGEs by serving as an opsonizing factor 

and subsequent detoxification (Mitsuhashi, Li, Fishbane, & Vlassara, 1997).  

Chicken egg white cystatin, a small protein of approximately 13 kDa molecular weight, is 

a potent competitive inhibitor of cysteine proteinases (Colella, Sakaguchi, Nagase, & 

Bird, 1989). Vray et al. (2002) suggested cystatin has immunomodulatory properties by 

stimulating the synthesis of NO  production in interferon γ –activated murine 

macrophages. As it was reported that modulated high level of NO  provide protection 

without inducing damage to the cell (Joshi & Ponthier, 1999); it also provides protection 

against free radicals by NO  induced gene up regulation of  protective proteins and 

prevents H2O2 induced toxicity (Kim, Bergonia, & Lancaster, 1995). Recent research 

postulates the role of NO  in eliciting the adaptive response to oxidative stress as it 

stimulates the NO -mediated sulfiredoxin (Srx) up-regulation transcription factor/ Srx 

antioxidant pathway in the macrophages (Abbas et al., 2011). Hence the role of cystatin 

in inducing antioxidant activity along with immunomodulatory cannot be denied.  

Frenkel et al. (1987) reported the possible role of chicken ovoinhibitor in preventing the 

ROS formation by polymorphonuclear leukocytes during inflammatory response. The 

egg yolk contains significant amount of unsaturated fatty acids and iron, which are 

susceptible to lipid oxidation (Hartmann & Wilhelmson, 2001), but the presence of 

antioxidants prevent the oxidization in the egg itself (Yamamoto et al., 1990).The egg 

yolk protein hydrolysates also showed antioxidative effect by preventing the oxidation of 

cookies with linoleic acid and inhibiting the lipid oxidation of beef and fatty tuna 

homogenates (Sakanaka, Tachibana, Ishihara, & Raj Juneja, 2004; Sakanaka & 

Tachibana, 2006). 

Egg yolk phosphoglycoprotein, phosvitin with strong cation binding ability, was reported 

to inhibit oxidative reactions, especially to inhibit Fe
2+

-catalyzed phospholipid oxidation. 

Phosvitin serves as potentially natural antioxidant in eggs (Lu & Baker, 1986; Lu & 

Baker, 1987; Guérin-Dubiard et al., 2007). Ishikawa et al. (2004) reported that egg yolk 

phosvitin have antioxidative properties against iron-catalyzed hydroxyl radical formation, 

as well as protective properties on genetic material against oxidative damage induced by 

Fe
2+

 and H2O2 and are suggested to be used in iron medicated oxidative stress related 

pathological conditions like colorectal cancer. Studies conducted on the mouse dorsal 

homogenate for ultra violet light induced lipid peroxidation in the presence of iron ions, 

suggested that egg yolk phosvitin has a protective effect against the formation of free 

radicals (Ishikawa, Ohtsuki, Tomita, Arihara, & Itoh, 2005). 
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Egg yolk phospholipids like sphingomyelin (SPH), lysophosphatidylcholine (LPC), 

phosphatidylcholine (PC), and phosphatidylethanolamine (PE) exhibit antioxidant 

activity in a refined salmon oil model system, and also demonstrated that the presence of 

nitrogen improved the antioxidant activity of phospholipids (King et al., 1992). Choline 

and the ethanolamine with two functional groups a basic amino group and an alcoholic 

hydroxy group was present in the side chain moieties of phospholipids; which might have 

contributed to the inhibition of free radicals (Saito & Ishihara, 1997). Sugino et al. (1997) 

reported the antioxidant activity of phospholipids in the egg yolk and also suggested that 

the antioxidant property is influenced by the degree of saturation of the fatty acyl chain. 

The egg normally contains 200 to 300 µg of carotenoids dispersed in the lipid matrix of 

the egg yolk, which improves their bioavailability (Handelman, Nightingale, 

Lichtenstein, Schaefer, & Blumberg, 1999). The incorporation of the natural carotenoids 

in the layer diet helps the transfer of those pigments and hence imparts the yellow 

pigmentation of the egg yolk (Karadas, Grammenidis, Surai, Acamovic, & Sparks, 2006).  

Lutein and zeaxanthin reacts with singlet oxygen generated in water phase and function 

as antioxidants; they accumulate in the macular surface membranes of the retina (Herron 

& Fernandez, 2004; Ribaya-Mercado & Blumberg, 2004). They decrease the oxidation 

rate, minimizing oxygen permeability through the membrane, thereby reducing damage 

and protecting the retina from increased oxidative metabolism (Herron & Fernandez, 

2004). Lutein exhibits radical scavenger properties against peroxynitrite formed from 

nitric oxide and superoxide in vivo (Panasenko, Sharov, Briviba, & Sies, 2000).  

The presence of the vitamins E, A along with the minerals such as selenium also 

improves the antioxidant activity of the eggs (Burton, Cheeseman, Doba, Ingold, & 

Slater, 1983; Sparks, 2006; Fisinin et al., 2008). Selenium functions as an antioxidant 

nutrient and present in antioxidant enzymes, such as glutathione peroxidases and 

thioredoxin (Burk, 2002; Weiss & Landauer, 2003). The antioxidants derived from egg 

were shown in Table 1.3. 

1.4.2 Enriched antioxidants in eggs 

Food derived antioxidants can modulate free radical to a balanced state and reduce 

oxidative stress. During the last few decades, research has been focused on enhancing the 

nutritional quality of the egg by enriching eggs with n-3 fatty acids, like docosahexaenoic 

acid (DHA, 22:6n-3), vitamin E, carotenoids and  minerals such as selenium and iodine. 

Lewis et al. (2000) reported that the n-3 PUFA enriched eggs improved the n-3 status in 

the Canadian consumers; and suggested the use of n-3 PUFA enriched eggs as a source to 

meet the Canadian Recommended Nutrient Intake (CRNI) recommendations. A 

comparison of the nutrients showing antioxidant property in enriched eggs and table eggs 

is illustrated in Table 1.4. 

1.4.2.1 n-3 enriched eggs 

The diet rich in n-3 polyunsaturated fatty acids was reported for their possible role in 

reducing the risk of fatal ischemic heart disease in older adults (Hu et al., 1999; Lemaitre 

et al., 2003; Albert et al., 2005). Among the n-3 fatty acids, the alpha linolenic acid 

(ALA) serves as a precursor for eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA); these n-3 fatty acids are not produced by the body hence it has to be 

supplemented by diet (Covington, 2004). The n-3 fatty acids was also reported to have 

potent hypotriglyceridemic property as it reduces the plasma triglyceride levels 

(Rambjør, Wålen, Windsor, & Harris, 1996). The dietary supplementation of EPA/DHA 
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along with antioxidants helps to improve the health of schizophrenic patients 

(Arvindakshan, Ghate, Ranjekar, Evans, & Mahadik, 2003). Studies conducted in 

diabetic patients with a combined treatment of antidiabetic drug and n-3 fatty acids 

showed decrease in the lipid peroxidation as well as increase in GPx activity (Kesavulu, 

Kameswararao, Apparao, Kumar, & Harinarayan, 2002). Among functional foods, 

enriched eggs serve as an ideal delivery source for n-3 fatty acids (Surai, Speake, & 

Sparks, 2001). The fatty acid profile of the egg can be manipulated through changes of 

the hen diet by directly feeding fish oil or indirectly by incorporating the n-3 PUFA 

precursor in the form of flax seeds, linseeds or oils from these seeds (Sparks, 2006). 

1.4.2.2 Vitamin E enriched eggs 

Vitamin E functions as a primary antioxidant, as it is involved in breaking the chain in 

the free radical reaction (Burton et al., 1983). Several animal model studies have shown 

the cancer preventing effects of Vitamin E on skin, oral cavity and mammary gland 

(Shklar, 1982; Perchellet, Owen, Posey, Orten, & Schneider, 1985; Kline, Yu, & Sanders, 

2004). Dietary supplementations of micronutrient antioxidants, like vitamin E, have an 

effect on the lung function (Britton et al., 1995). Meluzzi et al. (2000) reported that a 

formulated diet with dietary supplements increases the demand of designer eggs with 

enriched vitamin E. 

1.4.2.3 Carotenoid enriched eggs 

Carotenoids react with singlet oxygen and function as antioxidants (Hiramatsu,  

Yoshikawa, &  Inoue, 1997; Paiva & Russell, 1999). Natural carotenoids present in the 

eggs include lutein and zeaxanthin (Handelman, Nightingale, Lichtenstein, Schaefer, & 

Blumberg, 1999). Carotenoids derived maternally help the developing embryo to 

maintain redox homeostasis during the embryonic development and the initial days post 

hatching (Costantini & Moller, 2008). These oxygenated carotenoids, lutein and 

zeaxanthin, play an important role in the maintenance of normal vision and reduce the 

risk of progressive eye condition called age related macular degeneration (AMD) 

(Moeller, Jacques, & Blumberg, 2000; Richer et al., 2004). Also these carotenoids can 

absorb the ultraviolet light and protect the lens of the eye from oxidative damage 

(Goodrow et al., 2006). The avian egg consists of readily available lutein and zeaxanthin 

and reports suggested that increased intake of eggs resulted in increased circulatory 

concentration of carotenoids (Krinsky, Landrum, & Bone, 2003; Goodrow et al., 2006). 

Leeson and Caston (2004) enhanced the lutein level in egg yolk by dietary 

supplementation. Increased bioavailability was reported from lutein enriched eggs than 

from other sources such as lutein, lutein ester supplements, and spinach (Chung, 

Rasmussen, & Johnson, 2004).  

Surai et al. (2000) reported that the consumption of designer eggs enriched with vitamin 

E, lutein, and DHA increased significantly the plasma levels of all the enriched 

compounds (1.88 fold increase of lutein content). A recent study showed an enhanced 

serum lutein level following the intake of n-3 fatty acid enriched eggs and organic eggs 

(Burns-Whitmore et al., 2010). 

1.4.2.4 Selenium enriched eggs  

Selenium (Se) level in the body is associated with the many physiological functions, as 

well as the maintenance of the immune status of the body. Selenium deficiency 

contributes to the development of various disease conditions; while an increased Se level 

http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Midori+Hiramatsu%22
http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Toshikazu+Yoshikawa%22
http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Toshikazu+Yoshikawa%22
http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Masayasu+Inoue%22
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in the body has anti-carcinogenic effect and has a vital protective role against free radical 

induced diseases (Fisinin et al., 2008). Selenium enriched eggs contain up to 30 µg Se per 

egg, making these enriched eggs capable of providing 50% of Se Recommended Dietary 

Allowance (RDA) (Fisinin et al., 2008; Fisinin, Papazyan, & Surai, 2009). Eggs enriched 

with Se have a protective role against oxidative stress in the body as it increases the level 

of Se-dependent glutathione peroxidase (Se GSH-Px), a potent antioxidative enzyme 

(Surai, 2000). A direct link between the scarcity of dietary Se and oxidative stress was 

even reported (Sakuma, Matsuoka, Honda, Matsumoto, & Endo, 2008). Apart from this, 

Se plays an important role in the process of detoxification of xenobiotics, as well as some 

toxic metals (Bourre & Galea, 2006). 

1.4.2.5 Iodine enriched eggs 

Iodine assists in antioxidant activity and iodide, as a primitive antioxidant, is involved in 

many physiological functions (Venturi & Venturi, 1999; Venturi et al., 2000; Venturi & 

Venturi, 2007). Recent studies showed that hen dietary supplementation may improve 

iodine level in eggs; and consumption of iodine enriched eggs may help to solve the 

iodine deficiency (Bourre & Galea, 2006; Charoensiriwatana, Srijantr, Teeyapant, & 

Wongvilairattana, 2010). Iodine enriched eggs help to meet the dietary requirements for 

iodine. Bourre and Galea (2006) reported that designer eggs provide additional RDA 

amounts of n-3 fatty acid ALA, DHA, vitamin D, vitamin E, folic acid, lutein, 

zeaxanthin, and minerals like iodine and selenium. Research in the evaluation of iodine 

enriched egg consumption confirms the significant increase in bioavailability of iodine in 

the consumers (Charoensiriwatana, Srijantr, Teeyapant, & Wongvilairattana, 2010).  

1.4.3 Effects of cooking and preparation on antioxidants in eggs  

Cooking causes temperature-time related alternation in the physical and chemical 

property of the food, resulting in variation in the moisture, flavor, colour, texture, fat 

percent, and the overall nutrient level (Collison, 1993). Earlier reports showed an 

increased antioxidant activity in heated skim milk and suggested that heating has exposed 

sulfhydryl groups from cysteine (Taylor & Richardson, 1980). Elias et al. (2007) reported 

thermal processing of β lactoglobulin at  5
o
C for 15 min exhibited high peroxyl radical 

scavenging capacity and lipid oxidation inhibiting property, despite the decrease in the 

iron chelation property and free sulfhydryl concentration. The general antioxidant activity 

of proteins was dependent on their structure and the exposure of amino acids increases 

the antioxidant activity (Levine, Mosoni, Berlett, & Stadtman, 1996).  The structural 

disruption improves the accessibility of the amino acid residues for radical scavenging 

(Elias, McClements, & Decker, 2007); also synergistically influences the activities of 

amino acids such as tyrosine, tryptophan, phenylalanine and sulfur-containing cysteine, 

methionine from which hydrogen is easily abstracted as well as chelation of endogenous 

transition metals (Elias, McClements, & Decker, 2007; Elias, Kellerby, & Decker, 2008). 

Thus, the alterations due to cooking and processing may influence the total antioxidant 

activity of the egg proteins. Ovotransferrin was most thermolabile protein of all egg white 

proteins (Watanabe, Nakamura, Xu, & Shimoyamada, 2000). Castellani et al. (2004) 

reported that thermal treatments at 60 
o
C will not alter the iron binding capacity of 

phosvitin and food processing treatments with 90
o
C for 1h will not change its antioxidant 

property. Processing egg yolk phosvitin at high temperature, such as autoclaving, 

decreases the antioxidant activity, while induction of a Maillard reaction, using a 

polysaccharide conjugate, maintain the inhibitory capacity of iron-catalyzed lipid 

oxidation (Nakamura, Ogawa, Nakai, Kato, & Kitts, 1998). 
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Studies on ovalbumin derived peptides exhibited antioxidant activities. Ovalbumin 

hydrolysates significantly prevented the decrease of the superoxide dismutase (SOD) 

activity in aged mice model dose-dependently (Xu et al., 2007). It was also noticed that 

the hydrolysates could reduce lipid peroxidation in a linolenic acid model system better 

than the control (Xu et al., 2007). Jing et al. (2009) evaluated the effect of chemical 

modification by Maillard reaction on the antioxidant activity of egg proteins. 

Incorporation of Maillard reaction products could improve the functional property of the 

egg proteins, as the heated protein sugar mixtures exhibited increased scavenging activity 

towards the DPPH radicals (Sun et al., 2006; Jing, Yap, Wong, & Kitts, 2009).  

Delipidated egg yolk protein is a major by-product after lecithin extraction in the 

processing industry, and this upon enzymatic digestion using alcalase and protease N 

produces egg yolk peptides with antioxidative stress properties (Young, Fan, & Mine, 

2010). The egg yolk peptides help to boost the GSH level in red blood cells and increase 

other antioxidant enzyme activities, especially catalase and glutathione S-transferase 

activities. The egg yolk peptides also reduce the oxidation of protein and lipid in the 

intestinal tract of piglets subjected to intraperitoneal infusions of hydrogen peroxide 

(Young, Fan, & Mine, 2010). It was concluded that the peptides derived from egg yolk 

could reduce oxidative stress, especially intestinal stress (Young, Fan, & Mine, 2010). 

The phosphopeptides (PPPs) prepared from egg yolk phosvitin, using enzyme trypsin 

showed strong antioxidant activity in Caco-2, the human intestinal epithelial cells 

(Katayama, Ishikawa, Fan, & Mine, 2007). In another study, H2O2 induced IL-8 secretion 

from Caco-2 cells was inhibited by PPPs, but the phosvitin was not able to perform the 

protective activity. This indicates the bioactivity of the phosvitin was improved upon 

enzymatic digestion (Katayama, Xu, Fan, & Mine, 2006). 

Several studies have been conducted to determine the antioxidant activity of eggs, but 

there exists a paucity of information on the affect of different cooking methods along 

with simulated gastrointestinal digestion. Hence the specific objective of this research 

were 

 To determine the effect of domestic cooking methods, including boiling and 

frying on the antioxidative activity of egg samples. 

 To determine the affect of simulated gastrointestinal digestion on the antioxidant 

activity of cooked eggs. 

 To purify the egg protein hydrolysates by sequential chromatographic 

separations. 

 To characterise the peptide sequences derived from most potent fractions with 

antioxidant activity.  
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Table 1.1 Antioxidant proteins and associated peptides derived from egg.  

Egg 

components 

Enzyme 

treatment/ 

Preparation 

Identified 

peptides 

References 

Ovalbumin Trypsin, Pepsin, 

Ovalbumin-

polysaccharide 

conjugate 

Tyr-Ala-Glu-

Glu-Arg-Tyr-

Pro-Ile-Leu 

 

 

Nakamura, Kato, & 

Kobayashi, 1992; Davalos, 

Miguel, Bartolome, & Lopez-

Fandino, 2004; Graszkiewicz, 

Zelazko, Trziszka, & 

Polanowski, 2007; Xu, 

Shangguan, Wang, & Chen, 

2007. 

Ovotransferrin Thermolysin, 

thermolysin–

pepsin 

Trp-Asn-Ile-

Pro, Gly-Trp-

Asn-Ile 

Huang, Majumder, & Wu, 

2010; Shen et al., 2010. 

Lysozyme Alcalase  Liu et al., 2006; You, 

Udenigwe, Aluko, & Wu, 

2010 

 

Ovoinhibitor   Frenkel, Chrzan, Ryan, 

Wiesner, 

 & Troll, 1987 

Cystatin   Colella,Sakaguchi,Nagase,& 

Bird, 1989 

Phosvitin Trypsin, 

Phosvitin-

polysaccharide 

conjugate 

 Nakamura, Ogawa, Nakai, 

Kato, & Kitts, 1998; Ibrahim 

& Hoq, 2007; Xu, Katayama, 

& Mine, 2007 

Egg yolk 

Phospholipids  

  Sugino et al., 1997 

Egg yolk protein Proteinase  Sakanaka, Tachibana, 

Ishihara, & Raj Juneja, 2004; 

Sakanaka & Tachibana, 2006 

Lecithin free 

egg yolk protein 

Alcalase Leu-Met-Ser-

Tyr-Met-Trp-

Ser-Thr-Ser-

Met, Leu-

Glu-Leu-His-

Lys-Leu-Arg-

Park, Jung, Nam, Shahidi, & 

Kim, 2001 
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Ser-Ser-His-

Trp-Phe-Ser-

Arg-Arg. 

 

Carotenoids  

(Lutein and 

zeaxanthin) 

  Handelman, Nightingale, 

Lichtenstein, Schaefer, & 

Blumberg, 1999; Nelson, 

Bernstein, Schmidt, Von 

Tress, & Askew, 2003; 

Karadas, Grammenidis, Surai, 

Acamovic, & Sparks, 2006. 

Egg shell 

membrane 

protein 

Alcalase   Huang, Zhou, Ma, Cai, & Li, 

2010. 

 

Table 1.2 Composition, physiochemical properties, and biological activities of major egg 

white proteins (Li-Chan et al., 1995; Mine, 2002; Kovacs-Nolan, Phillips, & Mine, 2005; 

Miguel & Aleixandre, 2006). 

Egg White 

Proteins 

(relative 

%,w/w) 

Molecular 

Weight 

(kDa) 

Isoele-

ctric 

point 

Physio 

chemical 

property 

Biological activity 

Ovalbumin 

(54) 

44.5 4.5 Phospho 

glyco 

protein 

(Ibrahim, 
1997 ) 

Immunomodulatory activity due 

to release of alpha tumor 

necrosis factor (TNF) (Fan, 

Subramaniam, Weiss, & 
Monnier, 2003)  

Antibacterial activity exhibited 

by ovalbumin derived peptides 

(Pellegrini, Hulsmeier, 
Hunziker, & Thomas, 2004)  

Vasorelaxing activity due to 

chymotrypsin digestion derived 

peptide, ovokinin (Matoba, Usui, 

Fujita, & Yoshikawa, 1999)  

Antihypertensive property 

(Matoba et al., 1999) 

Ovotransferr

in (12) 

77.7 6.1 Metal 

binding 

monomeric 

glycoprotein 

(Guerin-

Antioxidant activity due to the 

metal chelating property 
(Ibrahim & Hoq, 2007) 

Antibacterial activity, by altering 
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Dubiard et 
al., 2007) 

permeability of bacterial 

membranes, and subsequent 

changes in electrical potential 

(Aguilera, Quiros, & Fierro, 
2003) 

Antiviral (Giansanti et al., 2002), 

Antifungal (Valenti, Visca, 

Antonini, & Orsi, 1985) , 

Immunomodulatory activity 

(Xie, Huff, Huff, Balog, & Rath, 

2002) 

 Antihypertensive property 

(Miguel & Aleixandre, 2006; 
Miguel et al., 2007) 

Ovomucoid 

(11) 

28 4.1 glycoprotein

, cross-

linked by 

intra domain 

disulfide 

bonds (Kato, 

Schrode, 

Kohr, & 

Laskowski 

Jr, 1987) 

Immunomodulatory activity by 

inducing T cell secretion of 

cytokines Serine protease 

inhibitor (Kato et al., 1987) 

Target delivery of drug, act as 

biospecific ligand (Plate, 

Valuev, Sytov, & Valuev, 2002) 

Ovomucin 

(3.5) 

5.5-8.3 x 

10
3
 

4.5-5.0 Glycosylate

d 

glycoprotein 

(Itoh, 

Miyazaki, 

Sugawara, & 

Adachi, 

1987) 

Provides 

viscosity to 

the egg 

white 

(Tsuge, 

Shimoyama

da, & 

Watanabe, 

1997) 

Immunomodulators, stimulates 

macrophages in vitro (Tanizaki, 
Tanaka, Iwata, & Kato, 1997)  

Antimicrobial and antiviral 

(Tsuge, Shimoyamada, & 

Watanabe, 1996; Tsuge et al., 
1997) 

 Antiadhesive, antitumor 

property (Watanabe, Tsuge, 

Shimoyamada, Ogama, & Ebina, 

1998) 

Lysozyme 

(3.4) 

14.3 10.7 Mucopeptid

e, N-

acetylmuram

yl hydrolase 

(Salton, 

Suppresses the ROS and 

oxidative stress genes (Liu et al., 

2006) Antimicrobial activity, 

bacteriolytic activity by 

hydrolyzing the linkage between 

N-acetylmuraminic acid and N-
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1957) acetylglucosamine of 

peptidoglycan, the structural 

component of bacterial cell walls 

(Salton, 1957; Banks, Board, & 

Sparks, 1986) Antiviral activity, 

reportedly associated with its 

charge (Oevermann, Engels, 

Thomas, & Pellegrini, 2003) 

Immune-modulating and 

immune-stimulating agent, 

Enhances immunoglobulin 

productivity (Sava, Benetti, 
Ceschia, & Pacor, 1989) 

 

Ovoinhibito

r (1.5) 

 

46.5* 5.1 serine 

proteinase 

inhibitor 

(Tomimatsu, 

Clary, & 

Bartulovich, 

1966; Davis, 

Zahnley, & 

Donovan, 
1969) 

Antioxidant activity as well as  

Anti inflammatory activity 

inhibits formation of active 

oxygen species by 

polymorphonuclear leucocytes 

(Frenkel, Chrzan, Ryan, 
Wiesner, & Troll, 1987)  

Antiviral activity (Yolken, 

Willoughby, Wee, Miskuff, & 

Vonderfecht, 1987) 

Ovomacro- 

globulin/ovo
statin (0.5) 

650** 4.5 glycoprotein 

with four 

subunits 

joined in 

pairs by 

disulfide 

bonds 

(Kitamoto, 

Nakashima, 

& Ikai, 
1982) 

Antimicrobial property due to 

proteinase inhibitory action 

Inhibits serine, cysteine,thiol and 

metallo protease inhibits kinin 

generating proteases (Kitamoto 

et al., 1982; Molla, Matsumura, 

Yamamoto, Okamura, & Maeda, 
1987; Wu et al., 2001) 

Cystatin 

(0.05) 

13*** 5.1 Inhibits 

most 

cysteine 

proteases 

(Kato et al., 
2000) 

Antimicrobial (Korant, Brzin, & 

Turk, 1985) Antitumor activity 

(Abrahamson, Alvarez-

Fernandez, & Nathanson, 2003) 

Immunomodulatory activity, 

stimulates cytokines (Vray, 

Hartmann, & Hoebeke, 2002; 

Abrahamson et al., 2003) 

Prevents bone degeneration 

(Abrahamson et al., 2003) 
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Avidin 

(0.05) 

68.3 10 Tetrameric 

glycoprotein

, high 

affinity with 

biotin 

(Laitinen et 

al., 2002) 

Antimicrobial activity, inhibits 

growth of biotin requiring 

bacteria (Korpela, Salonen, 

Kuusela, Sarvas, & Vaheri, 

1984) Drug delivery, due to 

strong biotin binding and signal 

amplification property (Penichet, 

Kang, Pardridge, Morrison, & 
Shin, 1999) 

* (Tomimatsu et al., 1966) ** (Donovan, Mapes, Davis, & Hamburg, 1969), ***(Colella, 

Sakaguchi, Nagase, & Bird, 1989) 

Table 1.3. Composition, physiochemical properties and biological activities of major egg 

yolk components (Kovacs-Nolan et al., 2005). 

Egg yolk 

components 

Physiochemical 

property 
Biological activity 

Immunoglobulin 

(Ig)Y 

Similar in function 

to Ig G (Carlander, 

Kollberg, Wejaker, 
& Larsson, 2000) 

Antimicrobial, antiadhesive activity , 

antitumor activity (Carlander et al., 

2000) 

Phosvitin Highly 

phosphorylated 

protein (Ishikawa, 

Ohtsuki, Tomita, 

Arihara, & Itoh, 

2005) 

Antioxidant activity (Lu & Baker, 

1986; Lu & Baker, 1987; Guérin-

Dubiard et al., 2007), Antibacterial 

activity (Khan et al., 2000), Increases 

calcium solubility (Jiang & Mine, 
2001) 

Sialyloligosaccharides 

and 
sialyglycopeptides 

 Antiadhesive property (Sugita-

Konishi et al., 2002) 

Yolk lipids, 

Lipoproteins  

 Antioxidant activity (Yamamoto, 

Sogo, Iwao, & Miyamoto, 1990; 

Sugino et al., 1997) 

Immunomodulatory activity, 

Antibacterial activity (Brady, Gaines, 

Fenelon, Mcpartlin, & O'Farrelly, 
2002) 

Phospholipids  Functions in brain development 

(Masuda, Kokubu, Yamashita, Ikeda, 

& Inoue, 1998) Reduces serum 

cholesterol (Masuda et al., 1998) 

Antioxidant activity (King, Boyd, & 

Sheldon, 1992) 
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Cholesterol  Normal component of cell 

membranes (Makrides, Hawkes, 
Neumann, & Gibson, 2002) 

Fatty acids  Antibacterial activity (Brady et al., 

2003) 

 

 

Table 1.4 Comparison of antioxidants in the designer eggs and table eggs (Adapted from 

(Surai & Sparks, 2001)) 

Nutrient in the 

enriched egg 

Amount in enriched 

egg (mg) 

Amount in table 

eggs (mg) 

% Recommended 

dietary allowances 

(RDA) 

Vitamin E 19.3 0.72 150 

DHA 209 32.4 100 

Selenium 0.032 0.004 50 

Lutein 1.91 0.12 Not known 

Iodine  0.093.57 - .097.76* 0.0312** 150 

*(Charoensiriwatana et al., 2010) ** (Travnicek, Kroupova, Herzig, & Kursa, 2006) 
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CHAPTER-2 EFFECT OF COOKING AND SIMULATED DIGESTION 

ON THE TOTAL ANTIOXIDANT ACTIVITY OF EGGS  

2.1 INTRODUCTION: 

Oxidation of the biomolecules occurs continuously within the body due to the 

formation of free radicals during normal metabolic reactions involved in the 

respiratory chain, degradation of lipids, the catecholamine response under stress, 

and inflammatory responses or from external sources such as radiations, cigarette 

smoking, air pollutants and industrial chemicals (Bagchi & Puri, 1998). The free 

radicals formed in the body are regulated by the antioxidant defenses in the body 

to maintain a balance in the redox homeostasis (Valko et al., 2007). When free 

radical formation exceeds the protective capacity of the antioxidant defense 

system it may lead to serious diseases, including cancer, atherosclerosis, malaria, 

and rheumatoid arthritis and neurodegenerative diseases (Aruoma, 1998). The 

antioxidative compounds can either prevent the harmful effects of free radicals or 

protect the biological system from the excessive damage induced by the free 

radicals (Arnao, 2000). Various endogenous antioxidants in the body such as 

superoxide dismutase (SOD), glutathione (reduced; GSH), GSH peroxidases, 

glutathione reductase, catalase, as well as exogenous source of antioxidants 

derived from vegetables, fruits, herbs, spices, cereals, nuts, meat, fish and eggs, 

constitute the principal antioxidant defense system in the body (Fang, Yang, & 

Wu, 2002; Pokorný, Yanishlieva, & Gordon, 2001). Dietary antioxidants that 

occur naturally surpass the use of their synthetic alternatives, because of the 

protective effects and reduction in side effects.  

Antioxidant activity from many plant food commodities has been extensively 

studied (Nicoli, Anese, & Parpinel, 1999). Previous studies shows the presence 

of tocols with vitamin E like property in certain plant tissues and edible oils 

(Peterson, 2001), vitamin C, carotenoids, and phenolics in fruits and vegetables 

(Kalt, 2005), polyphenols in soyabean and soyabean derived oils (Hayes, 

Bookwalter, & Bagley, 1977), tocopherols and tocotrienols in nuts and grains 

(Kalt, 2005), phenolic components in cereals like oats and herbs posses 

antioxidant activity (Peterson, 2001; Peterson, 2001; Zheng & Wang, 2001). On 

the other hand, antioxidants from animal food commodities are less studied. 

Several well-known antioxidants from animal food products are carnosine 

(Shahidi, 2000), milk protein casein (Rival, Boeriu, & Wichers, 2001) and fish 

muscle derived peptides (Je, Qian, Lee, Byun, & Kim, 2008. The avian egg is 

considered as an excellent dietary source of nutrients, includes proteins, lipids, 

vitamins, minerals, embryonic growth factors, and various components to protect 

from pathogens (Kovacs-Nolan, Phillips, & Mine, 2005). Studies on egg 

revealed the presence of biological components with antioxidant activities 

(Davalos, Miguel, Bartolome, & Lopez-Fandino, 2004). Several egg white 

protein, ovalbumin (Nakamura, Kato, & Kobayashi, 1992), ovotransferrin 

(Ibrahim & Hoq, 2007), lyzozyme (Mitsuhashi, Li, Fishbane, & Vlassara, 1997), 

phovitin (Lu & Baker, 1986), were reported to have antioxidant activities. Egg 

yolk contains various antioxidants, such as phospholipids (Lu & Baker, 1986; 
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Sugino et al., 1997), carotenoids such as lutein and zeaxanthin (Lu & Baker, 

1986; Ribaya-Mercado & Blumberg, 2004; Sugino et al., 1997), and free 

aromatic amino acids (Nimalaratne et al., 2011).   

Cooking or food processing are known to affect antioxidants from fruits and 

vegetables by either increasing or decreasing the antioxidant activity (Nicoli, 

Anese, & Parpinel, 1999). Antioxidant peptides from animal proteins such as milk 

proteins (Rival, Boeriu, & Wichers, 2001), fish muscle derived peptides (Je, Qian, 

Lee, Byun, & Kim, 2008), as well as egg proteins (Park, Jung, Nam, Shahidi, & 

Kim, 2001; Davalos, Miguel, Bartolome, & Lopez-Fandino, 2004; Sakanaka, 

Tachibana, Ishihara, & Raj Juneja, 2004; Xu, Shangguan, Wang, & Chen, 2007; 

Xu, Katayama, & Mine, 2007; Huang, Majumder, & Wu, 2010) were reported. As 

a protein rich food commodity, release of peptides in the human gut might further 

breakdown to antioxidant peptides that impart to human health. However, there is 

limited knowledge on the effect of cooking and gastrointestinal digestion on the 

antioxidant activity of eggs. The objectives of this study were to determine the 

effects of cooking methods and simulated gastrointestinal digestion on the 

antioxidant activity of eggs. 

Spurred by various reports on the release of bioactive peptides from the parent 

protein upon action of the digestive enzymes increased the interest to study the 

effect of cooking and enzyme treatment on egg samples. Moreover food derived 

antioxidants pave the way for potential therapy against diseases ranging from 

aging to cancer and coronary heart disease by mitigating oxidative damage with 

related health impacts (Kalt, 2005). 

2.2 MATERIALS AND METHODS: 

2.2.1 Materials 

Fresh white-shell eggs were obtained from Poultry Research Centre of the 

University of Alberta (Edmonton, AB, Canada). The enzymes, pepsin (porcine 

gastric mucosa) and pancreatin (porcine pancreas), were purchased from Sigma-

Aldrich (Oakville, ON, Canada). Trolox (6-hydroxy-2, 5, 7, 8-

tetramethylchroman-2-carboxylic acid) was obtained from Acros-Organics 

(Morris Plains, NJ, USA) and AAPH (2, 2’-azobis (2-amidino-propane) 

dihydrochloride and fluorescein (FL) (Na salt) were obtained from Aldrich 

(Milwankee, WI, USA). L-Tryptophan was obtained from Sigma-Aldrich 

(Oakville, ON, Canada). Randomnly methylated β- cyclodextrin (RMCD) 

(Trappsol) (pharmacy grade) was obtained from Cyclodextrin Technologies 

Development Inc. (High Springs, FL, USA).  

2.2.2 Preparation of egg samples  

For preparing fresh egg samples, egg white was separated manually from egg 

yolk; whole egg was prepared by homogenization after breaking. For preparing 

boiled eggs, fresh eggs were placed in a saucepan with water one inch above the 

shell and then boiled for 10 min. After boiling, the eggs were placed under 
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running water for 5 min, peeled, and then each egg white and yolk was separated. 

Boiled whole eggs were prepared from homogenizing boiled egg whites and egg 

yolks. For preparing fried whole eggs samples, separated egg white or egg yolk 

and/or homogenized whole egg, were transferred to preheated frying pan  (350
o
F) 

cooked each side for 40 s. All the samples were freeze dried for further analysis. 

2.2.3 Preparation of egg hydrolysates 

Freeze-dried egg samples were mixed with distilled water to 5% slurry (w/v, dry 

weight) and were kept in the water bath at 80°C for 15 min with continuous 

shaking. The temperature was adjusted to 37°C by adding ice cubes into the water 

bath, and the pH of the slurry was adjusted to 2 with 1 N HCl. After stabilized, 

pepsin (2% w/w of protein) was added to initiate digestion and the conditions 

were maintained constantly for a period of 3 h. Then the pH of the slurry was 

adjusted to 7.0 and pancreatin (2%, w/w of protein) was added to initiate another 

3 h of digestion. The digestion was terminated by increasing the temperature to 

95°C for 15 min, and centrifuged at 10,000 x g for 25 min. The supernatant was 

collected, freeze dried, and stored for further analysis. The digestion was carried 

out using Titrando (Metrohm, Herisan, Switzerland) and a circulating water bath 

was used for maintaining constant temperature. 

2.2.4 Optimization of solvent concentration and extraction time  

Freeze dried egg yolk samples (50 mg) were extracted with 10 mL of 

hexane/dichloromethane (1:1) vortexed for 1 h at room temperature at 600 rpm, 

followed by centrifugation at 3000 rpm for 5 min. The hexane/dichloromethane 

layer was collected, and dried under nitrogen to prepare the lipophilic fraction. 

The residues were dried, and extracted at various solvent concentrations (20, 40, 

60, 80 % ethanol and absolute alcohol for 1 h) and extraction time (0.5, 1, 2, 4, 6, 

8 and 24 h) with on an orbital shaker at 600 rpm. The extracted samples were then 

centrifuged at 3000 rpm for 5 min and the supernatants were collected for 

antioxidant analysis. 

2.2.5 Measurement of antioxidant activity 

All the freeze dried egg yolk or whole egg samples were extracted with1 mL of 

hexane/dichloromethane (1:1) followed by centrifugation 600 rpm and H/D  layer 

was collected, and was evaporated under nitrogen to prepare the lipophilic 

fraction. The residue was dried and extracted with 80 % ethanol for 1 h with on an 

orbital shaker at 600 rpm. The extracted samples were then centrifuged at 3000 

rpm for 5 min and the supernatants were collected for hydrophilic antioxidant 

analysis.  

The antioxidant activity was determined using three different methods: oxygen 

radical absorbance capacity (ORAC) assay, 2, 2’-azino-bis (3-

ethylbenzthiazoline-6-sulphonic acid) ABTS decolorization assay, and 1, 1-

Diphenyl-2-picryl-hydrazyl (DPPH) assay with slight modifications. 
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For the lipophilic antioxidant assays, the dried hexane/dichloromethane extract 

was dissolved in 250 µL of acetone and then diluted with 750 µL of a 7 % RMCD 

solution (50% acetone/50% water, v/v). The 7 % RMCD acts as a water solubility 

enhancer for lipophilic antioxidants (Huang, Ou, Hampsch-Woodill, Flanagan, & 

Deemer, 2002), and was used for dissolving Trolox standards, as well as used the 

blank. All further dilution was made with the 7% RMCD solution. 

For the hydrophilic antioxidant assay, any further dilutions of the hydrophilic 

fraction were made with phosphate buffer (75 mM, pH 7.4). All samples were 

extracted in duplicate and assayed in triplicate. 

2.2.5.1 Oxygen radical absorbance capacity (ORAC) assay  

ORAC was measured using the method explained by Davalos et al., (2004), with 

slight modifications for estimating the antioxidant activity. Fluorescein was used 

as fluorescent probe. 80 mM AAPH and 200 nM fluorescein in 75 mM phosphate 

buffer at pH 7.4 were prepared. 100 µL of Trolox standard solutions, at final 

concentrations of 1 to 8 µM, were placed in a 96 well microplate, followed by 

addition of 50 µl of the fluorescein solution. The mixture was preincubated for 15 

min at 37
o
C. 50 µL of AAPH was added rapidly using a multichannel pipette. The 

microplate was immediately placed in a Fluoroskan Ascent microplate reader with 

485-P excitation and 538-P emission filters and the fluorescence recorded every 

minute for 100 min. Reaction mixtures were prepared in duplicate and the 

readings were recorded for three individual runs for each sample. All readings 

were recorded using Fluoroskan Ascent software. The area under the curve of 

fluorescence decay (AUC) was calculated using Graphpad prism software (trial 

version). After the fluorescence measurements, readings were normalized to that 

of a blank curve (no antioxidant). The following equation was used for the 

calculation of area under the fluorescence decay curve (AUC) using the 

normalized curves.  

 

                     i=100 

AUC = 1 + Σ fi/ f0 

                        i=0 

f0 is the initial fluorescence reading at the time of 0 min; fi is the fluorescence 

reading at time i. 

Using the difference between the blank AUC with that of the sample, the net 

AUC for each sample was calculated. Regression equations between AUC and 

antioxidant concentrations were calculated for all the samples. The ORAC value 

was calculated by dividing the slope of sample regression curve by the slope of 

Trolox regression curve. The final ORAC values were expressed as µmol of 

Trolox equivalent/mg of sample. 
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2.2.5.2 2, 2’-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) ABTS 

decolorization assay  

ABTS
+
 decolorization assay was based on Strljbe, Haenen, Berg, & Bast (1997) 

with slight modifications. ABTS radical cation was generated by mixing 7 mM 

ABTS and 2.45 mM potassium persulfate and diluted 13 fold with an assay buffer 

(3 mM phosphate buffer at pH 7.5 containing 150 mM NaCl for hydrophilic 

ABTS or 95% ethanol for lipophilic ABTS) immediately before use. For each run, 

20 µL of sample and 80 µL of phosphate buffer or 95% ethanol were placed in 

wells of a 96-well microplate, followed by addition of 100 µL of the ABTS 

radical solution. Absorbance was monitored at 734 nm after 5 min of incubation 

at 37
 o

C. A Trolox regression equation between absorbance and Trolox 

concentrations was calculated and used to calculate the Trolox equivalent 

antioxidant capacity (TEAC) value for all the samples. The TEAC value is 

expressed as µmol of Trolox equivalent/mg of sample. 

2.2.5.3 1, 1-Diphenyl-2-picryl-hydrazyl (DPPH) assay  

DPPH radical scavenging capacity forms the basis for DPPH antioxidant assay 

(Bersuder, Hole, & Smith, 1998). 20 µL of antioxidant and 80 µL of water for 

hydrophilic DPPH or 95% ethanol for lipophilic DPPH were placed in the wells 

of 96-well microplate, followed by addition of 100 µL of 0.2 mM DPPH in 95% 

ethanol solution. Absorbance was monitored at 517 nm after 45 min of incubation 

at 37
 o

C. A Trolox regression equation between absorbance and the standard 

(Trolox) concentrations was calculated and the DPPH radical scavenging activity 

was estimated for all the peptides. The results were expressed as µmol of Trolox 

equivalent/mg of sample. 

2.2.6. Statistical analysis 

All analysis were performed in triplicates and comparisons among the treatment 

groups were carried out by one-way analysis of variance (ANOVA), grouped by 

Duncan’s multiple range test and Tukey’s studentized range test using Statistical 

Analysis System Software, SAS version 9.0 (SAS Institute, Cary, NC). Groups 

were considered to be significantly significant when P ≤  . 5 and results were 

reported as mean ± SEM. 

2.3 RESULTS AND DISCUSSION: 

2.3.1 Effect of solvent concentration and extraction time on the antioxidant 

activity 

The antioxidant activity of the lipophilic extract is 0.028 ± 0.05 µ mol TE/mg. 

Table 2.1 illustrates the effect of solvent concentrations on the scavenging 

property. Ethanol was used due to its nontoxic nature and environment friendly 

properties (Arnold & Choudhury, 1962; Wu, Duckett, Neel, Fontenot, & 

Clapham, 2008; Jang & Xu, 2009). A gradual increase in the antioxidant activity 

was observed up to 80% and there was a decline at 100% ethanol. A similar trend 

was reported when ethanol was used beyond 70% for the antioxidant activity of 



 

48 

 

extracts of Jerusalem Artichoke (Ling-Ling, Hai-Ying, Han, & Tao, 2009). The 

ethanol concentration influences the properties of the components by increasing 

the solvent to solid ratio and thereby increases the rate of diffusion of the 

compounds from the solid to the solvent (Cacace & Mazza, 2003). The presence 

of diverse compounds with different polarity might have contributed to the altered 

antioxidant property of the hydrophilic fraction of egg yolk samples. Our study 

showed extraction at 80% ethanol concentration has the highest antioxidant 

activity. Extraction time had significant effect on the antioxidant activity while 

the activity was not increased at prolonged extraction time. Studies on ethanolic 

extracts of defatted borage (Borago officinalis L.) seeds in a meat model system 

showed neither short (15 min) nor long (105 min) extraction times are suitable for 

the optimum antioxidant activity and reported a maximum free radical scavenging 

activity at 62 min (Wettasinghe & Shahidi, 1999). Our results showed the 

optimum time was 1 h (Table 2.2). The decrease in the antioxidant activity 

noticed after 1h may be because of the oxidation of the antioxidative compounds 

due to the increased oxygen exposure over the time (Chirinos, Rogez, Campos, 

Pedreschi, & Larondelle, 2007). As reported by Chew et al. (2011), the time of 

extraction plays an important role in the reduction of energy as well as extraction 

process; hence it is well recommended to select least time with maximum 

extraction. In the study, 80% ethanol was chosen as the solvent for extraction and 

1 h as the extraction time.  

Based on the solubility of antioxidants, they were grouped as hydrophilic 

antioxidants, for example, vitamin C, and lipophilic compounds, such as vitamin 

E and carotenoids (Huang, Ou, Hampsch-Woodill, Flanagan, & Deemer, 2002). 

Hydrophilic antioxidants circulate in the body, while lipophilic antioxidants can 

penetrate the lipoprotein cell membrane with increased bioavailability and serve 

as an in vivo free radicals chain breaking antioxidant (Burton, Cheeseman, Doba, 

Ingold, & Slater, 1983). It is difficult to determine the exact amount of lipophilic 

components in food, as the antioxidants components were of chemical diversity 

and were differentially localized. In eggs, the functional property is 

contributed by peptides derived from egg white proteins, as well as certain 

components in the egg yolk like phosvitin, carotenoids, phospholipids, etc. 
Therefore, extraction of the lipophilic and hydrophilic fractions helps to 

determine the total antioxidant activity of the egg sample. 

2.3.2 Effect of cooking and simulated digestion on the antioxidants  

Effects of cooking methods on the antioxidant activity of eggs were determined 

using hydrophilic and lipophilic ORAC assays (Table 2.3). Among the egg white 

samples, the fresh samples showed higher antioxidant activity than the fried 

samples. But the fresh and boiled egg white samples did not show significant 

difference. The water-soluble amino acids and proteins possess the antioxidant 

activity by their metal chelating property (Lu & Baker, 1986), and may contribute 

to the antioxidant activity of the fresh egg samples. Wu et al. (2008) reported that 

cooking can alter the proteins, denature and degrade or reduce the antioxidant 

activity of compounds, especially the hydrophilic compounds. The digested egg 
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white samples exhibited much higher (P < 0.05) antioxidant activity than the 

undigested ones (Table 2.3). This is due to the release of peptides and amino acids 

during digestion. Amino acids can act as primary antioxidants, possess synergistic 

action (Flaczyk, Amarowicz, & Korczak, 2003), and the increased radical 

scavenging activity after digestion results from the breakdown of protein into 

peptides and free amino acids (Sakanaka, Tachibana, Ishihara, & Raj Juneja, 

2004). Amino acids’ antioxidative property is due to the reaction of amino or 

sulfur groups with the lipid peroxides in the free radical chain reaction, resulting 

in the formation of less reactive byproducts (Pokorný, Yanishlieva & Gordon, 

2001). A positive correlation exists between the amount of peptides and the 

antioxidant activity (Wu, Chen, & Shiau, 2003).   

Fresh egg yolk showed higher antioxidant activity than fresh egg white. The 

higher antioxidant activity of the egg yolk may be due to the presence of natural 

antioxidants present in the fresh sample. The egg yolk is a rich source of 

unsaturated fatty acids and iron (Hartmann & Wilhelmson, 2001), and in order to 

prevent the lipid peroxidation there exist an antioxidant system within the egg 

yolk (Yamamoto, Sogo, Iwao, & Miyamoto, 1990). The presence of egg yolk 

components like phosvitin, egg yolk phospholipids such as sphingomyelin, 

lysophosphatidylcholine, phosphatidyl choline, phosphatidylethanolamine, 

carotenoids like lutein and zeaxanthin with reported antioxidant activity 

contributes to the overall radical scavenging activity of the egg yolk samples 

(King, Boyd, & Sheldon, 1992; Ribaya-Mercado & Blumberg, 2004; Guérin-

Dubiard, Castellani, & Anton, 2007). It was also noticed that cooking reduced the 

antioxidant activity, which might be due to the destruction or degradation of the 

antioxidant components during cooking. Simulated gastrointestinal digestion led 

to significant increase in the antioxidant activity. The boiled egg yolk samples 

treated with pepsin followed by pancreatin showed higher antioxidant activity 

than the other treated groups. These results suggest the release of antioxidant 

peptides or amino acids in the body during digestion.  

Antioxidant activity of the fresh whole egg samples was much lower than the 

fresh egg yolk. This may be due to either an inefficient extraction of antioxidants 

from whole egg using one solvent, or the total antioxidant activity was masked by 

the interaction between proteins and carotenoids, similar to the masked effect was 

reported for the interaction between proteins and tea flavanoids (Arts et al., 2002). 

Interestingly, our results showed that antioxidant activity of whole egg samples 

increased after cooking; this may be due to decreased protein and carotenoid 

interaction during cooking, leading to improved extraction of carotenoids from 

the samples. Possible synergistic or addictive antioxidant activity was not 

observed in fresh whole egg samples and the decrease observed in the 

homogenized whole egg samples might be due to the interaction between the 

components present in the egg white and egg yolk, thereby reducing the free 

radical scavenging property. Similarly, simulated gastrointestinal digestion of 

whole egg samples also increased the antioxidant activity in a similar trend as 

above.  
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DPPH radical scavenging activity and ABTS assay showed similar trends as that 

of ORAC (Tables 2.4 and 2.5). DPPH is a very strong chromogen and the 

presence of the antioxidants and an electron or hydrogen donor in a sample, 

results in the discoloration of the radical chromogen (Arnao, 2000); except in egg 

yolk samples this activity was not reduced by cooking and was significantly 

increased upon digestion of cooked eggs. ABTS assays showed slight difference 

in the activity among fresh and cooked egg white samples, as well as whole egg 

samples, but not in egg yolk samples. But it was noticed that boiled samples 

treated with pepsin and pancreatin showed significant higher antioxidant activity 

than the fried pepsin and pancreatin treated samples. Among the whole egg 

samples, boiled samples showed no different from the fried samples (Table 2.4). 

The present study showed the presence of antioxidants in eggs, and the 

antioxidant activity increased upon simulated digestion. All the assays showed an 

increase in antioxidant activity subjected to digestion; these findings coincide 

with other observations on the increased antioxidant activity of peptides derived 

from egg yolk (Young, Fan, & Mine, 2010; Xu, Katayama, & Mine, 2007; 

Katayama, Ishikawa, Fan, & Mine, 2007) and egg white (Davalos et al., 2004). 

Thus, this study shows the potential role of egg in the diet as a source of 

antioxidants that might contribute to the prospective benefits of egg consumption. 

2.4 CONCLUSIONS: 

Antioxidants are present both in egg white and egg yolk; fresh egg yolk shows 

higher antioxidant activity than the fresh egg white and the whole egg samples. 

The antioxidant activity of the egg samples tested by different assays resulted in 

similar trends on the effect of cooking and simulated gastrointestinal digestion. 

Cooking reduced antioxidant activity of egg yolk more than egg white and whole 

egg. Simulated gastrointestinal digestion increased significantly the antioxidant 

activity of all egg samples, which indicated the contribution of released peptides 

and amino acids. Insight of this study, further investigation into the identification 

of novel antioxidant components released could be of considerable interest. 
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Table 2.1 Optimization of extraction conditions for determining hydrophilic 

ORAC (H-ORAC) of fresh egg yolk using different solvent concentrations. 

Extraction solvent 

(Ethanol %) 

H-ORAC 

(µ mol TE/ mg) 

Total ORAC 

(µ mol TE/ mg) 

 

Phosphate buffer (pH 7.5) 0.012 ± 0.04
c
 0.031± 0.05

d
 

20 0.003± 0.03
 d
 0.040 ± 0.07

c
 

40 0.047± 0.04
 b
 0.075 ± 0.09

b
 

60 0.043± 0.03
 b
 0.071 ± 0.04

b
 

80 0.066± 0.02
 a
 0.094 ± 0.02

a
 

100 0.045± 0.04
 b
 0.073 ± 0.05

b
 

*The total antioxidant activity was calculated as the sum of H-ORAC and the lipophilic ORAC 

(L-ORAC) values. The statistical analysis of data was done using one-way analysis of variance 

(ANOVA) and was grouped using Duncan’s multiple range test  different letters (a, b, c, d) 

denotes significant difference with the treatment groups (P <0.05). 

Table 2.2 Optimization of the extraction conditions for determining hydrophilic 

ORAC (H-ORAC) of fresh egg yolk using different time of extraction. 

Extraction time 

(h) 

 

H-ORAC 

(µ mol TE/ mg) 

Total ORAC 

(µ mol TE/ mg) 

0.5 0.042 ± 0.04
d
 0.070 ± 0.07

d
 

1 0.067 ± 0.03
a
 0.095 ± 0.05

a
 

2 0.043± 0.04
 d

 0.071 ± 0.09
d
 

4 0.044± 0.03
 d

 0.072 ± 0.04
d
 

6 0.059± 0.02
 b

 0.087 ± 0.02
b
 

8 0.048± 0.04
 c

 0.076 ± 0.05
c
 

24 0.057± 0.04
 b

 0.085 ± 0.05
b
 

*The total antioxidant activity was calculated as the sum of H-ORAC and the lipophilic ORAC 

(L-ORAC) values. The statistical analysis of data was done using one-way analysis of variance 

(ANOVA) and was grouped using Duncan’s multiple range test  different letters (a, b, c, d) 

denotes significant difference with the treatment groups (P <0.05). 
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Table 2.3 Total antioxidant (lipophilic and hydrophilic) activity of the egg 

samples, using ORAC assay. 

Samples H-ORAC 

(µ mol TE/  mg) 

L-ORAC 

(µ mol TE/mg) 

Total ORAC 

(µ mol TE/mg) 

 

Egg white     

Fresh - No enzyme 0.058 ± 0.32
i
 - 0.058 ± 0.32

l
 

Boiled - No enzyme 0.056 ± 0.12
i, j

 - 0.056 ± 0.12
l
 

Pepsin 0.129 ± 0.01
c,d

 - 0.129 ± 0.01
g
 

Pepsin+ Pancreatin 0.197 ± 0.10
a
 - 0.197 ± 0.10

a
 

Fried - No enzyme 0.052 ± 0.04
j
 - 0.052 ± 0.04

m
 

Pepsin 0.115 ± 0.03
e
 - 0.115 ± 0.03

h
 

Pepsin+Pancreatin 0.151 ± 0.04
b
 - 0.151 ± 0.04

e
 

Egg yolk    

Fresh - No enzyme 0.065 ± 0.04
h
 0.027 ± 0.05

e
 0.092 ± 0.08

i
 

Boiled - No enzyme 0.059 ± 0.14
i
 0.020 ± 0.07

f
 0.079 ± 0.12

j
 

Pepsin 0.117 ± 0.05
 e
 0.030 ± 0.04

d
 0.147 ± 0.09

f
 

Pepsin+Pancreatin 0.120 ± 0.09
e
 0.059 ± 0.12

a
 0.179 ± 0.08

c
 

Fried - No enzyme 0.055 ± 0.02
i, j

 0.021 ± 0.09
f
 0.076 ± 0.02

j
 

Pepsin 0.102 ± 0.13
g
 0.031 ± 0.04

d
 0.133 ± 0.18

f
 

Pepsin+ Pancreatin 0.105 ± 0.07
g
 0.061 ± 0.12

a
 0.166 ± 0.04

d
 

Whole egg    

Fresh - No enzyme 0.038 ± 0.05
k
 0.026 ± 0.12

e
 0.064 ± 0.07

k
 

Boiled - No enzyme 0.055 ± 0.11
i,j

 0.023 ± 0.07
f
 0.078 ± 0.04

j
 

Pepsin 0.142 ± 0.04
c
 0.022 ± 0.12

f
 0.164 ± 0.09

d
 

Pepsin+Pancreatin 0.129 ± 0.07
c, d

 0.052 ±0.03
b
 0.181 ± 0.13

b
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Fried - No enzyme 0.052 ± 0.04
j
 0.025 ± 0.09

e
 0.077 ± 0.02

j
 

Pepsin 0.111 ± 0.05
f
 0.018 ± 0.03

g
 0.129 ± 0.06

g
 

Pepsin+ Pancreatin 0.120 ± 0.10
e
 0.042 ± 0.02

c
 0.164 ± 0.13

d
 

*The statistical analysis of data was done using one-way analysis of variance 

(ANOVA) and was grouped using Tukey’s studentized range test  alphabets 

denotes significant difference with the treatment groups (P <0.05). Data represent 

mean ± SEM; n=3 
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Table 2.4 Total antioxidant (lipophilic and hydrophilic) activity of the egg 

samples, using DPPH assay. 

Samples H-DPPH 

(µ mol TE/mg) 

L-DPPH 

(µ mol TE/mg) 

Total DPPH 

(µ mol TE/ mg) 

Egg white     

Fresh - No enzyme 0.019 ± 0.09j - 0.019 ± 0.09i 

Boiled - No enzyme 0.023 ± 0.04i - 0.023 ± 0.04g 

Pepsin 0.045 ± 0.12e - 0.045 ± 0.12e 

Pepsin+ Pancreatin 0.058 ± 0.09d - 0.058 ± 0.09d 

Fried - No enzyme 0.026 ± 0.19h - 0.026 ± 0.19f, g 

Pepsin 0.056 ± 0.03d - 0.056 ± 0.03d 

Pepsin+ Pancreatin 0.053 ±0.07d,e - 0.053 ± 0.07d 

Egg yolk    

Fresh - No enzyme 0.017±0.02k 0.004 ±0.002c 0.021 ± 0.02h 

Boiled - No enzyme 0.017±0.01k 0.001±0.001d 0.018 ± 0.07i 

Pepsin 0.035±0.02f 0.010±0.021b 0.045 ± 0.04e 

Pepsin+Pancreatin 0.046±0.02e 0.011±.001a 0.057 ± 0.02d 

Fried - No enzyme 0.019±0.02j 0.001±.004d 0.020 ± 0.09h 

Pepsin 0.020±0.02i 0.003±0.002d 0.023 ± 0.14g 

Pepsin+Pancreatin 0.028±0.02g 0.002±0.001e 0.030 ± 0.22f 

Whole egg    

Fresh - No enzyme 0.016±0.02k 0.002±0.01e  0.018 ± 0.05i 

Boiled - No enzyme 0.025±0.02h 0.002±0.003e 0.027 ± 0.17f, g 

Pepsin 0.068±0.02c 0.001±0.011d 0.069 ± 0.28c 

Pepsin+ Pancreatin 0.077±0.02a 0.001±0.009d 0.078 ±0.04a 

Fried - No enzyme 0.023±0.02i 0.002±0.001e 0.025 ± 0.07f, g 

Pepsin 0.052±0.02d,e 0.004±0.002c 0.056 ± 0.33d 

Pepsin+Pancreatin 0.069±0.02b 0.004±0.01c 0.073 ± 0.21b 
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*The statistical analysis of data was done using one-way analysis of variance 

(ANOVA) and was grouped using Tukey’s studentized range test  alphabets 

denotes significant difference with the treatment groups (P <0.05). Data represent 

mean ± SEM; n=3 

 

 

Table 2.5 Total antioxidant (lipophilic and hydrophilic) activity of the egg 

samples, using ABTS assays. 

Samples H-ABTS 

(µ mol TE/ 

mg) 

L-ABTS 

(µ mol TE/mg) 

Total ABTS 

(µ mol TE/mg) 

Egg white     

Fresh - No enzyme 0.049 ± 0.05
i
 - 0.049 ± 0.05

l,m
 

Boiled - No enzyme 0.051 ± 0.11
i
 - 0.051 ±0.11

k, l
 

Pepsin 0.103 ± 0.07
c
 - 0.103 ± 0.07

f
 

Pepsin+Pancreatin 0.116 ± 0.20
b
 - 0.116 ±0.20

c
 

Fried - No enzyme 0.045 ± 0.04
j
 - 0.045 ±0.04

m
 

Pepsin 0.086 ± 0.15
d
 - 0.086 ±0.15

h
 

Pepsin+Pancreatin 0.126 ± 0.03
a
 - 0.126 ±0.03

a
 

Egg yolk    

Fresh - No enzyme 0.050 ± 0.09
i
 0.034 ± 0.01

c, d
 0.084 ±0.11

h
 

Boiled - No enzyme 0.018 ± 0.02
n
 0.029 ± 0.07

e
 0.047 ±0.08

m
 

Pepsin 0.061 ± 0.06
h
 0.046 ± 0.01

a
 0.107 ±0.02

e
 

Pepsin +Pancreatin 0.032 ± 0.03
m

 

 

0.096 ±0.05
g
 

 

0.128 ± 0.03
a 
 

Fried - No enzyme 0.039 ± 0.02
l
 0.028 ± 0.07

e
 0.067 ±0.09

j
 

Pepsin 0.067 ± 0.10
g
 0.032 ± 0.11

d
 0.099 ±0.13

g
 

Pepsin+Pancreatin 0.062 ± 0.02
h
 0.046 ± 0.02

a
 0.108 ±0.04

e  
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Whole egg    

Fresh - No enzyme 0.044 ± 0.02
k
 0.035 ± 0.04

c
 0.079 ±0.06

k
 

Boiled - No enzyme 0.044 ± 0.02
k
 0.040 ± 0.04

b
 0.084 ±0.06

h
 

Pepsin 0.069 ± 0.05
f,g 

0.028 ± 0.02
e
 0.097 ±0.07

g
 

Pepsin+Pancreatin 0.076 ± 0.09
e
 0.045 ±0.04

a
 0.121 ±0.14

b
 

Fried - No enzyme 0.039 ± 0.02
l
 0.029 ± 0.03

e
 0.068 ±0.05

j
 

Pepsin 0.070 ± 0.12
f
 0.036 ± 0.03

c
 0.106 ±0.32

e
 

Pepsin+Pancreatin 0.071 ± 0.06
f
 0.040 ± 0.01

b
 0.111 ±0.07

d
 

*The statistical analysis of data was done using one-way analysis of variance 

(ANOVA) and was grouped using Tukey’s studentized range test  superscripts of 

alphabets denotes significant difference with the treatment groups (P <0.05). Data 

represent mean ± SEM; n=3 
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CHAPTER-3 PURIFICATION AND CHARACTERISATION OF 

ANTIOXIDANT PEPTIDES DERIVED FROM BOILED EGG WHITE 

ENZYMATIC HYDROLYSATE 

3.1 INTRODUCTION: 

Free radicals may exhibit physiologic roles by functioning as signaling and 

regulatory molecules that are involved in the signal transduction, gene 

transcription, cellular regulation, and also pathogen destruction (Lander, 1997; 

McCord, 2000; Zheng & Storz, 2000), or pathologic roles in causing mammalian 

cell damage and pathogenesis of chronic diseases (Fridovich, 1999; McCord, 

2000). Free radicals also exert deleterious impact on food, and are the major cause 

for the quality deterioration through lipid peroxidation and protein oxidation 

(Coupland & McClements, 1996; Elias, Kellerby, & Decker, 2008).  Antioxidants 

play an important role in providing protection against the free radical induced 

oxidation (Elias et al., 2008). The antioxidant enzymes like superoxide dismutase, 

glutathione peroxidases, glutathione reductase, catalase and antioxidant nutrients 

like Vitamin E forms an important line of defense against free radicals (Fang, 

Yang, & Wu, 2002).  

The potential role of the dietary protein in disease prevention is of greater interest 

these days. The possible capability of a protein as an efficient food antioxidant 

additive is attributed by various mechanisms including inactivation, reduction and 

removal of free radicals, chelation of transition metals and physical alteration of 

food particles (Amarowicz, 2008; Elias et al., 2008). Upon ingestion of proteins, a 

cascade of degradation occurs elicited by various gastrointestinal enzymes. These 

proteolytic activities result in the release of a mixture of amino acids and small 

peptides which in turn proficiently absorbed by small intestine enterocytes 

(Erickson & Kim, 1990). Those breakdown products of proteins within 3-20 

amino acids per peptide have bioactive function after released from the parent 

protein source, and hence termed as ‘bioactive peptides’ (Pihlanto   Korhonen, 

2003; Kitts & Weiler, 2003). The amino acid sequence of these peptides have 

significant role in determining the bioactive properties (Pihlanto & Korhonen, 

2003). The amino acids such as Cys, Met, Try, Tyr, Phe and His were reported to 

have antioxidative properties (Elias et al., 2008).  

Several in vivo and in vitro antioxidant studies on peptides hydrolyzed from 

animal and plant sources have been reported (Pihlanto & Korhonen, 2003). The 

pepsin and trypsin hydrolysates of fish protein was identified with antioxidant 

peptides such as Leu-Asn-Leu-Pro-Thr-Ala-Val-Tyr-Met-Val-Thr and His-Gly-

Pro-Leu-Gly-Pro-Leu (Je, Qian, Lee, Byun, & Kim, 2008; Mendis, Rajapakse, & 

Kim, 2005). Various antioxidant peptides were purified from milk including 

potent superoxide scavenging peptide, Tyr-Phe-Try-Pro-Glu-Leu from pepsin 

digest of milk protein casein (Suetsuna, Ukeda, & Ochi, 2000). Short peptides 

with strong antioxidant activities from whey protein, soya protein, maize zein, 

canola protein hydrolysates were also reported (Chen, Muramoto, Yamauchi, & 

Nokihara, 1996; Cumby, Zhong, Naczk, & Shahidi, 2008; Kong & Xiong, 2006; 
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Peng, Xiong, & Kong, 2009). These studies show potential role of enzymatically 

modified proteins as a natural source of antioxidants. 

Egg is an excellent source of protein and many bioactive components (Kovacs-

Nolan, Phillips, & Mine, 2005). Research on egg derived peptides shows its 

alternative role as a natural antioxidant source. Earlier reports on the antioxidant 

activity of pepsin digest of crude egg white identified Tyr-Ala-Glu-Glu-Arg-Tyr-

Pro-Ile-Leu with strong radical scavenging activity from ovalbumin, the major 

egg white protein (Davalos, Miguel, Bartolome, & Lopez-Fandino, 2004). 

Ovalbumin pepsin hydrolysate was reported for inhibitory action on superoxide 

anion, hydroxyl radical and linoleic acid oxidation in vitro (Xu, Shangguan, 

Wang, & Chen, 2007). Antioxidant peptides were also characterized from 

ovotransferrin, the second major egg white protein (Huang, Majumder, & Wu, 

2010; Shen et al. 2010). Other renowned components with antimicrobial and 

antiviral properties like lyzozyme and ovoinhibitor were found to have 

antioxidant activity (Frenkel, Chrzan, Ryan, Wiesner, & Troll, 1987; Liu et al., 

2006; You, Udenigwe, Aluko, & Wu, 2010). Egg yolk protein hydrolysates were 

also identified with antioxidant properties (Sakanaka, Tachibana, Ishihara, & Raj, 

2004). Sugino et al. (1997) reported the antioxidant activity of the egg yolk 

phospholipids. The tryptic digest of egg yolk phosvitin showed strong inhibiting 

property on lipid oxidation in linoleic acid system and efficient radical scavenging 

activity. The presence of His, Met and Tyr was suggested as responsible for the 

strong antioxidant activity of those phosvitin peptides (Xu, Katayama, & Mine, 

2007). Alcalse hydrolysates of lecithin free egg yolk and egg shell membrane 

protein were studied for antioxidant property (Huang, Zhou, Ma, Cai, & Li, 2010; 

Park, Jung, Nam, Shahidi, & Kim, 2001). Furthermore the presence of 

carotenoids such as lutein and zeaxanthin improves the antioxidant capacity of the 

egg yolk (Handelman, Nightingale, Lichtenstein, Schaefer, & Blumberg, 1999; 

Karadas, Grammenidis, Surai, Acamovic, & Sparks, 2006; Nelson, Bernstein, 

Schmidt, Von Tress, & Askew, 2003).  Latest research reports the presence of two 

aromatic amino acids Try and Tyr in egg yolk extracts as the major contributor to 

its antioxidant activity (Nimalaratne, Lopes-Lutz, Schieber, & Wu, 2011).  

In spite of several studies conducted on antioxidative property of egg-derived 

peptides, there exists a paucity of information about the effect of cooking as well 

as gastrointestinal digestion on the antioxidative activity of eggs. In our study on 

the effects of different cooking methods on the antioxidant activity, the boiled egg 

white subjected to pepsin and pancreatin enzymatic hydrolysis possessed the 

highest antioxidant activity. Hence the boiled egg white hydrolysate was further 

purified and characterized for the study of antioxidant peptides. 

3.2 MATERIALS AND METHODS: 

3.2.1 Materials 

Fresh white-shell eggs were obtained from Poultry Research Centre of the 

University of Alberta (Edmonton, AB, Canada). The enzymes, pepsin (porcine 

gastric mucosa), pancreatin (porcine pancreas) were purchased from Sigma 
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(Oakville, ON, Canada). Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-

carboxylic acid) was obtained from Acros-organics (Morris Plains, NJ, USA) and 

AAPH (2, 2’-azobis (2-amidino-propane) dihydrochloride and fluorescein (FL) 

(Na salt) were obtained from Aldrich (Milwankee, WI). Ammonium acetate, 

ammonium carbonate, HPLC-grade acetonitrile, and trifluoroacetic acid (TFA) 

were obtained from Fisher Scientific Canada (Ottawa, ON, Canada). 

3.2.2 Preparation of boiled egg white hydrolysate 

Fresh eggs were boiled for 10 min in a saucepan with sufficient water covering 

the eggs, cooled the eggs by keeping under running water for 5 min and then 

peeled and separated the egg white. A 5 % of the boiled egg white slurry (w/v, dry 

weight) was prepared in the distilled water and then kept in the water bath at 80°C 

for 15 min with continuous shaking. The temperature of Lauda (A103) water bath 

(Brinkman, Missisauga, ON, Canada) was then adjusted to 37°C and transferred 

the egg sample to jacketed beaker and adjusted the pH to 2 with 1 N HCl. After 

the pH was stabilized, the proteolysis was initiated by the addition of pepsin (2% 

w/w of protein) at consistent temperature of 37 °C. After 3 h digestion, the 

hydrolysis was terminated by increasing the pH to 7. Then the temperature was 

increased to 40°C and pancreatin (2%, w/w of protein) was added for another 3 h 

digestion. And then the reaction was stopped by increasing the temperature to 

95°C and kept it for 15 min. The enzyme hydrolysate was then centrifuged at 

10,000 x g for 25 min, the supernatant was collected, freeze dried and stored for 

further analysis. The hydrolysate preparation was carried out using Titrando 

(Metrohm, Herisan, Switzerland) and circulating water bath to maintain consistent 

pH and temperature during the course of digestion.  

3.2.3 Measurement of peptide concentration  

Modified Lowry’s protein assay (Lowry et al., 1 51) was used to determine the 

protein concentration of the fractions from cation and anion exchange 

chromatography, and bovine serum albumin (BSA) was used as the standard. 

3.2.4 Measurement of antioxidant activity 

The antioxidant activity was determined using three different methods.  

3.2.4.1 Oxygen radical absorbance capacity (ORAC) assay  

ORAC assay was performed according to Davalos, Gomez-Cordoves, & 

Bartolome (2004) with slight modifications, using fluorescein as a fluorescent 

probe. 100 µL of trolox standard solutions at final concentrations ranging from 1 

to 8 µM or the egg white hydrolysate samples from the chromatographic fractions 

(serial dilutions) were placed in wells of a 96 well microplate, followed by 

addition of 50 µl of the fluorescein solution. The mixture was preincubated for 15 

min at 37
o
C. And then 50 µL of AAPH was added rapidly using a multichannel 

pipette. The microplate was immediately placed in a Fluoroskan Ascent 

microplate reader with 485-P excitation and 538-P emission filters and the 

fluorescence recorded every minute for 100 min. All readings were recorded 
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using Fluoroskan Ascent software. The area under the curve of fluorescence 

decay (AUC) was calculated using Graphpad prism software (trial version). 

Regression equations between AUC and antioxidant concentrations were 

calculated for all the samples. The ORAC value was calculated by dividing the 

slope of sample regression curve by the slope of Trolox regression curve. The 

following equation was used for the calculation of area under the fluorescence 

decay curve (AUC) using the normalized curves.  

 

 i=100 

AUC = 1 + Σ fi/ f0 

 i=0 

f0 is the initial fluorescence reading at time,0 min; fi is the fluorescence reading at 

time i. The final ORAC values were expressed as µmol of Trolox equivalent/mg 

of peptide.  

3.2.4.2 2, 2’-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) ABTS 

decolorization assay  

ABTS
+
 decolorization assay was based on the method of Strljbe, Haenen, Berg, 

& Bast (1997) with slight modifications. ABTS radical cation was generated by 

mixing 7 mM ABTS with 2.45 mM potassium persulfate, and diluted 13 fold with 

assay buffer (3mM phosphate buffer at pH 7.5 containing 150 mM NaCl) 

immediately before use. For each run, 20 µL of the egg white hydrolysate samples 

from the chromatographic fractions (serial dilutions) and 80 µL of phosphate 

buffer were placed in wells of a 96-well microplate, followed by addition of 100 

µL of the ABTS radical solution. Absorbance was monitored at 734 nm after 5 

min incubation at 37
 o

C.  A Trolox regression equation between absorbance and 

Trolox concentrations was calculated and used to calculate the Trolox equivalent 

antioxidant capacity (TEAC) value for all the samples. TEAC value is expressed 

as µmol of Trolox equivalent/mg of peptide. 

3.2.4.3 1, 1-Diphenyl-2-picryl-hydrazyl (DPPH) assay  

Scavenging of DPPH radical assay was performed according to Bersuder, Hole, & 

Smith (1998). 20 µL of the egg white hydrolysate samples from the 

chromatographic fractions (serial dilutions) and 80 µL of water were placed in 

wells of 96-well microplate, followed by addition of 100 µL of 0.2 mM DPPH in 

95% ethanolic solution. Absorbance was monitored at 517 nm after 45 min of 

incubation at 37
 o

C. A Trolox regression equation between absorbance and the 

standard (Trolox) concentrations was calculated and the DPPH radical scavenging 

activity was estimated for all the peptides. The results were expressed as µmol of   

Trolox equivalent/mg of peptide. 
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3.2.5 Purification of antioxidant peptides from hydrolysate 

The boiled egg white hydrolysate was dissolved in 10 mm ammonium acetate (pH 

4) buffer and then filtered the sample by using 3000 Da ultra filtration membrane. 

Fractionation of hydrolysate was performed using a HiPrep 16/10 SP FF cation 

exchange column (16 x 100 nm, GE Healthcare Sweden) coupled with an AKTA 

explorer 10XT system. The column was equilibrated with 10 mM ammonium 

acetate (pH 4) and eluted with 0.5 M ammonium carbonate buffer at a flow rate of 

5 mL/min. The injection volume was 4 mL and the elution was detected at 280 

nm. The most potent fraction collected in the unadsorbed fraction was further 

applied to HiPrep Q FF 16/10 anion exchange column (16 x 100 nm, GE 

Healthcare Sweden). The column was equilibrated with 10 mM ammonium 

acetate (pH 8.5) and eluted with 10 mM ammonium carbonate and 1 M NaCl 

buffer at a flow rate of 5 mL/min. The fractions exhibiting the most potent 

antioxidant activity was further purified by reverse-phase-high-performance-

liquid chromatography (RP-HPLC) on a Xbridge C18 column (10 mm x 150 mm, 

0.5µm, Waters Inc, Milford, MA, USA) coupled with a guard column (40 x 10 

mm, Waters Inc, Milford, MA, USA) attached to Waters 600 HPLC system, 

under the control of the software of Empower Version 2 for the instrument control 

and data acquisition. Sample was injected automatically at 500 µL by Waters 

2707 autosampler, and was eluted using a linear gradient starting from 100% 

solvent A (HPLC-grade water containing 0.1% TFA) to 40 % solvent B (HPLC-

grade acetonitrile with 0.1% TFA) over 40 min at a flow rate of 5 mL/min, 

followed by washing the column at 100% solvent B for 10 min before next run. 

The elution was monitored at a wavelength of 220 nm using Waters 2998 

photodiode array. Fractions were collected at 2 min intervals from 3 min to 50 

min (19 fractions), concentrated using vacuum-rotary evaporator at 35°C, and the 

antioxidant assays (ORAC, DPPH and ABTS) of each were determined. 

3.2.6 Liquid chromatography-Tandem Mass Spectrometry (LC-MS/MS)  

Identification of the peptides in the most antioxidant active fractions from the RP- 

HPLC separation was carried out by liquid chromatography tandem mass 

spectrometry (LC-MS/MS). The analysis was carried out by Waters ACQUITY 

UPLC system connected online to Waters (Micromass) Q-TOF Premier (Milford, 

MA, USA). Peptides were separated by Waters Atlantis dC18 (75 μm x 150 mm, 

3 μm) UPLC column (Milford, MA, USA). The separation was carried out using 

solvent A, 0.1% formic acid in optima LC/MS grade water and solvent B, 0.1% 

formic acid in optima grade acetonitrile. Samples in Solvent A (5 μL) was 

injected to the 5 μm trapping column for 2 min at a flow rate of 10 L/min using 

99% solvent A, followed by a gradient from 99% A to 90% A over 5 min, to 70% 

A over 30 min, to 60% A over 3 min and 5% A over 1 min at a constant flow rate 

of 0.350 L/min, increased the flow rate to 0.500 μL/min and held at 5% A for 2 

min, with subsequent increased to 98% A over 1 min, held for another 27 min, 

and then decreased the flow rate to 0.350 L/min over 1 min. Further ionization 

was performed by electrospray ionization technique (ESI) by NanoLockspray 

ionization source in a positive ion mode (capillary voltage at 3.80 kV and the 
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source temperature at 100
o
C). Quadrupole Time-of-Flight (Q-TOF) analyzer 

operated in a positive ion MS/MS mode was used for peptide mass detection. A 

MS/MS full-scan was performed for each sample with an acquisition m/z range of 

0-1000 Da. Instrumental control and data analysis were executed using MassLynx 

software (Micromass U.K. Ltd., Wythenshawe, Manchester, U.K.). Peaks Viewer 

4.5 (Bioinformatics Solutions Inc., Waterloo, ON, Canada) was used in 

combination with manual de novo sequencing to process the MS/MS data and to 

perform peptide sequencing. The peptide sequences were identified from the 

respective monoisotopic mass. 

3.2.7 Statistical analysis  

The results were analyzed by one-way analysis of variance (ANOVA) using 

statistical analysis system software (SAS, version 9.0, SAS Institute, Cary, NC). 

The estimated the significant differences using Duncan’s multiple range test at p 

<0.05 (Duncan, 1955). 

3.3 RESULTS AND DISCUSSION: 

3.3.1 Fractionation of antioxidant peptides from boiled egg white hydrolysate  

Cation exchange chromatography of boiled egg white hydrolysate gave 3 major 

peaks (A, B and C) and a minor peak (D) as shown (Fig. 3.1). The antioxidant 

activity was determined for all the fractions using ORAC, ABTS and DPPH 

assays as shown in Table 3.1. The fraction A showed the most potent antioxidant 

activity was then subjected to anion exchange chromatography. Five fractions 

were collected and the antioxidant activity was estimated (Table.3.2). The most 

potent fraction B was then subjected to further purification using an Xbridge C18 

RP-HPLC column. 19 fractions were collected and the antioxidant activity of each 

fraction was shown in Table.3.3; Fractions 1, 5, 8 and 14 exhibited main 

antioxidant activity were used for further analysis by LC MS/MS. Fraction 12 

showed the highest peptide concentration was also subjected for characterization. 

3.3.2. Identification of peptide sequences 

MS spectrums of each fraction and one representative peptide MS/MS 

interpretation from each fraction were shown in Fig 3.4. Peptides having intensity 

above the cutoff of 40% were sequenced using Peaks Viewer 4.5 (Bioinformatics 

Solutions Inc., Waterloo, ON, Canada) in combination with manual de novo 

sequencing to process the MS/MS results (Table 3.4). A total of 63 peptides 

derived from boiled egg white were identified:  10 peptides from F1, 11 from F5, 

13 from F8, 16 from F12, and 13 from F14 with amino acid residues ranging from 

3 to 10 (Table 3.4).  

Ovalbumin, contributing to 54-58% (w/w) of the total egg white protein, contains 

386 amino acids sequences with a molecular weight of 45 kilo Dalton (kDa), 

(Huntington & Stein, 2001; Li-Chan et al., 1995; Lopez-Exposito et al., 2008). 18 

peptides identified from the pepsin and pancreatin hydrolysate of boiled egg white 

were derived from ovalbumin. Several studies revealed the presence of 
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antihypertensive peptides like RADHPFL (Matoba, Usui, Fujita, & Yoshikawa, 

1999), YAEERYPIL (Davalos, Miguel, Bartolome, & Lopez-Fandino, 2004), and 

IVF present in the egg white from enzymatic hydrolysates (Miguel, Recio, 

Gómez-Ruiz, Ramos, & López-Fandiño, 2004). YAEERYPIL was also 

characterized as a potent radical scavenging peptide (Davalos et al., 2004).  

Ovotransferrin, the second major protein (12-14 %, w/w) in egg white, consists of 

686 amino acid residues with a molecular mass of 78 kDa.  This is a disulfide 

bond rich single chain glycoprotein that has been reported to have involvement in 

the redox linked signals and response to free radicals and specifically attacks 

superoxide radicals (Williams, Elleman, Kingston, Wilkins, & Kuhn, 1982; Li-

Chan et al., 1995; Ibrahim, 1997). A total of 19 antioxidative peptides identified 

from boiled egg white hydrolysate were derived from ovotransferrin. LGFEYY 

(residues 339-344) characterized from the study was also reported from our 

previous study as a potent antioxidant peptide (Shen et al., 2010). Antioxidant 

peptides were also released from lyzozyme (5 peptides), ovostatin (6), ovomucoid 

(1), ovomucin α (7) and β (4) subunits and flavoprotein (3). The lyzozyme has a 

role in protecting against the oxidative damage in the body (Liu et al., 2006). 

Ovomucin was reported for its immunomodulatory property (Tsuge, 

Shimoyamada, & Watanabe, 1997); it is interesting to note a total of 11 peptides 

were characterized from ovomucin in the study. Ovostatin was reported as an 

antimicrobial protein (Molla, Matsumura, Yamamoto, Okamura, & Maeda; 1987); 

our study showed its derived peptides also possess antioxidant activity.  

It was recently reported that peptide containing Pro (P), Asp (D), Tyr (Y), Trp 

(W) or His (H) tends to show greater antioxidant activity (Park et al., 2001; Ren et 

al., 2010). Pyrrolidine ring present in the proline has remarkably low ionization 

potential and forms charge transfer complex with 
1
O2 and proline forms stable 

radicals with OH under hydrogen abstration (Matysik et al., 2002); Thus proline 

acts as a scavenger of 
1
O2 and OH, in addition to its reaction to H2O2 induced 

stress (Young, Martin, Feriozi, Brewer, & Kayser, 1973; Wondrak, Jacobson, & 

Jacobson, 2005; Krishnan, Dickman, & Becker, 2008); 27 peptides identified in 

the study contain proline (Table 3.4). The presence of indole group in Trp (W) 

and phenol group in Tyr serves as potent hydrogen donors and helps in converting 

the reactive oxygen species to more stable and less active indoyl and phenoxyl 

radicals (Park et al., 2001; Hernández-Ledesma et al., 2005). The presence of Trp 

was found in peptides from ovotransferrin (RIQWCAVGKD, SAGWN), 

ovalbumin (WTSSN) and ovostatin (GWIESPS). Tyr, another amino acid with 

antioxidant property was present in peptides from ovalbumin (2), ovotransferrin 

(3), ovmucin (2) and lyzozyme (2). Recent quantitative structure and activity 

relationships of antioxidant peptides indicated that a peptide with a hydrophobic 

amino acid at N-terminus, a basic amino acid residue at C-terminus, and a 

hydrophilic amino acid residue next to C terminus shows greater antioxidant 

activity (Li et al., 2011). Hydrophobic amino acid residues such as Val or Leu at 

the N terminus were also reported to increase the antioxidant activity (Park et al., 

2001; Li, Li, He, & Qian, 2011). The ovalbumin derived peptides LQPSSVD and 

VLQPSSVD, and flavoprotein-derived peptide VAQ and VPN, contain Val or 
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Leu at their N termini, suggestive of increased antioxidative property (Park et al., 

2001). Among the total 10 peptides identified from F1, 6 peptides (VPGAT, 

LHPI, LVELI, VKYNV, VLLPDEV, and LVLLPDEV) possess Val or Leu as the 

N terminus. The imidazole ring in His contributes to the antioxidant activity as a 

proton donor and a metal chelator (Chen et al., 1995; Park et al., 2001; Li et al., 

2011). It was reported previously that the removal of the histidine from the C 

terminus could decrease the antioxidant activity of the peptides (Chen, Muramoto, 

Yamauchi, & Nokihara, 1996). Tsuge et al. (1991) reported 3 peptides (AHK, 

VHH, and VHHANQN) from egg proteins containing His and Val residues with 

strong antioxidant property. In this study, histidine containing peptides, AAHAV, 

LAEVPTH and VAAH from ovotransferrin, and AVHAAH from ovalbumin, 

were identified. Amino acid residues such as Ile, Phe, Ala and Lys at the N 

terminus also increase antioxidant activity (Guo, Kouzuma, & Yonekura, 2009). 

17 peptides identified in the study contain one of these amino acid residues, which 

might contribute to the antioxidant activity of the peptides. 

3.4. CONCLUSIONS: 

Boiled egg white protein hydrolysate was fractionated using ion exchange 

chromatography and reverse-phase high performance liquid chromatography, five 

fractions showing potent antioxidant activities were subjected to LC-MS/MS 

characterization. A total of 63 peptides were identified, mainly from ovalbumin, 

ovotransferrin, ovomucin, lysozyme, and ovostatin. Our previous study has shown 

the presence of antioxidative aromatic amino acids in egg yolk; results from the 

present study implied that gastrointestinal digestion of egg white proteins could 

further enhance the antioxidant activity of egg by releasing a number of 

antioxidant peptides from egg proteins. Further research on the antioxidant 

activity of each peptide in vivo will help to understand the most potent peptide 

from the boiled egg white hydrolysates. 
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Figure 3.1: Cation exchange chromatogram of boiled egg white hydrolysate using 

HiPreP 16/10 SP FF cation exchange column as described in materials and 

methods.  

 

 Table 3.1: Antioxidant activity of fractions from cation exchange 

chromatography using DPPH, ABTS and ORAC assays. 

 DPPH 

 (µmol TE/mg of 

protein) 

ABTS 

(µmol TE/mg of 

protein) 

ORAC 

(µmol TE/mg of 

protein) 

 

Fraction A 

 

1.04 ± 0.04
a
 1.09 ± 0.24

a
 2.38 ± 0.04

a
 

Fraction B 0.93 ± 0.02
b
 0.94 ± 0.12

b
 1.94 ± 0.34

b
 

Fraction C 0.52 ± 0.15
c
 0.55 ± .03

c
 1.22 ± 0.01

c
 

Fraction D 0.01 ± 0.04
d
 0.15± .03

d
 0.23 ± 0.07

d
 

The statistical analysis of data was done using one-way analysis of variance 

(ANOVA) and was grouped using Duncan’s multiple range test  different letters 

(a, b, c, d) denotes significant difference with the treatment groups (P <0.05). 
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Figure 3.2: Anion exchange chromatogram of Fraction A, which exhibited the 

most potent antioxidant activity using HiPrep Q FF 16/10 anion exchange column 

as described in 3.2.5. 
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Table 3.2: Antioxidant activity of fractions from anion exchange chromatography 

using ORAC, DPPH and ABTS assays. 

     

 

DPPH 

 (µmol TE/mg 

of protein) 

ABTS 

(µmol TE/mg of 

protein) 

ORAC 

(µmol TE/mg of 

protein) 

 

Fraction A 

 

1.39 ± 0.92
b
                   

 

2.19 ± 0.06
b
 

 

2.45 ± 0.86
b 

Fraction B 2.84 ± 0.38
a
  

 

2.88± 0.08
a
 

 

3.06± 0.10
a
  

 

Fraction C 1.25 ± 0.05
d
  1.65 ±0.05

c
 2.16 ± 0.05

c 

 

Fraction D 

 

1.03 ± 0.04
c
  0.92± 0.01

d 

 

1.10 ± 0.05
d  

 

Fraction E   1.38 ±0 .35
b
 0.80±0 .01

d
 0.90 ± 0.08

d 

 

The statistical analysis of data was done using one-way analysis of variance 

(ANOVA) and was grouped using Duncan’s multiple range test  different letters 

(a, b, c, d) denotes significant difference with the treatment groups (P <0.05). 
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Figure 3.3: RP-HPLC chromatogram of fraction B in Figure 3.3 by Xbridge C18 

column (10 mm x 150 mm, 0.5 M) under linear gradient condition of 100% 

solvent A (0.1%TFA in water) to 40% solvent B (0.1% TFA in acetonitrile) over 

40 min at a flow rate of 5 mL/min. 

Total of 19 fractions were collected at 2 min interval and antioxidant activity were 

determined.  
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Table 3.3: The antioxidant activity of HPLC fractions determined by DPPH, 

ABTS and ORAC assay 

 DPPH(µmol 

TE/mg of peptide) 

ABTS(µmol 

TE/mg of peptide) 

ORAC(µmol 

TE/mg of peptide) 

Fraction 1 2.13 ± 0.09 2.99 ± 0.06 4.92 ± 0.32 

Fraction 2 0.12 ± 0.03 0.14 ± 0.02 0.13 ± 0.10 

Fraction 3 0.10 ± 0.14 0.09 ± 0.03  0.11 ± 0.05 

Fraction 4 0.73 ± 0.06 0.82 ± 0.06 0.81 ± 0.07 

Fraction 5 1.80 ± 0.10 2.13 ± 0.04 3.37 ± 0.11 

Fraction 6 0.12 ± 0.02 0.23 ± 0.12 0.10 ± 0.03 

Fraction 7 0.99 ± 0.06 1.36 ± 0.05 1.53 ± 0.04 

Fraction 8 2.04 ± 0.04 2.76 ± 0.05 3.44 ± 0.02 

Fraction 9 0.10 ± 0.03 0.09 ± 0.07 0.09 ± 0.04 

Fraction 10 0.45 ± 0.10 0.90 ± 0.05 0.55 ± 0.21 

Fraction 11 1.04 ± 0.04 1.99 ± 0.06 2.08 ± 0.14 

Fraction 12 0.74 ± 0.12 0.98 ± 0.10 1.58 ± 0.08 

Fraction 13 0.10 ± 0.18 0.09 ± 0.09 0.09 ± 0.06 

Fraction 14 1.70 ± 0.11 2.93 ± 0.12 2.80 ± 0.03 

Fraction 15 0.12 ± 0.05 0.28 ± 0.01 0.24 ± 0.20 

Fraction 16 0.09 ± 0.04 0.09 ± 0.13 0.08 ± 0.22 

Fraction 17 0.10 ± 0.14 0.07 ± 0.04 0.06 ± 0.15 

Fraction 18 0.12 ± 0.03 0.09 ± 0.09 0.09 ± 0.19 

Fraction 19 0.39 ± 0.07 1.54 ± 0.16 1.47 ± 0.22 

Data presented as means ± standard deviations (n = 3; each with duplicate 

measurements) 
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Figure 3.4: LC-MS spectra of fractions from RP-HPLC. The dashed line represents the 

cutoff ion intensity (40 %) of selected parent ions in the peptide sequencing. One 

candidate peptide was shown as de novo sequencing by using their MS/MS spectra by 

monoisotopic mass of the amino acids. 

 

 

 A (a) Fraction 1(1-10 parent ions); A (b) Interpretation of LC-MS/MS spectrum of the 

ion m/z 784.45, derived from ovalbumin peptide VLLPDEV. 
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B (a) Fraction 5 (1-11 parent ions); B (b) Interpretation of LC-MS/MS spectrum of the 

ion m/z 303.36, derived from lyzozyme peptide AGVG. 
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C (a) Fraction 8 (1-13 parent ions); C(b)Interpretation of LC-MS/MS spectrum of the 

ion m/z 766.41, derived from ovotransferrin peptide LAEVPTH. 
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D (a) Fraction 5 (1-16 parent ions); D(b)Interpretation of LC-MS/MS spectrum of the 

ion m/z 977.5, derived from ovotransferrin peptide TVNDLQGKT. 
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E (a) Fraction 5 (1-13 parent ions); E (b) Interpretation of LC-MS/MS spectrum of the 

ion m/z 1036.49, derived from ovalbumin peptide ITKPNDVYS. 
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Table 3.4: Sequence of peptides identified by LC- MS/MS in the potent 

antioxidant fractions. 

 Molecular ion 

(m/z) selected for 

MS/MS Charge) 

 

Sequence  Source     Fragment (f) 

 

Fraction 1 

  

1) 334.2 (1) SGGI Ovotransferrin f (524 -527) 

2) 444.22 (1) VPGAT Ovotransferrin f (180-184) 

3) 479.44 (1) LHPI Ovostatin f (608-611) 

4) 520.75 (2) YAEERYPIL Ovalbumin f ( 107-115) 

5) 528.8 (2) RIQWCAVGKD Ovotransferrin f (363 -372) 

6) 585.66 (1) LVELI Ovomucin  α unit f (1457-1461) 

7) 622.46 (1) VKYNV Ovomucin  β unit f ( 33-937) 

8) 784.45 (1) VLLPDEV Ovalbumin f (244 -250) 

9) 897.5 (1) LVLLPDEV Ovalbumin f (243-250) 

10) 927.89(1) RNAPYSGY Ovotransferrin f (203 -210) 

Fraction 5 
  

1) 303.26 (1) AGVG Lysozyme f (15 -178) 

2) 349.18 (1) ACR Ovomucin β unit f (345-347) 

3) 371.2    (1) AGHS Ovostatin f (1099-1102) 

4) 428.48 (1) PGKK Ovotransferrin f (307-310) 

5) 533.52 (1) SAGWN Ovotransferrin f(241-245) 

6) 589.41 (1) ASNGIQ Ovomucin β unit f (97- 102) 

7) 633.21 (1) QTAADQ Ovalbumin f (135-140) 

8) 719.3 (1) KVEQGAS Ovomucoid f (136-142) 

9) 755.58 (1) YCGVRAS Lysozyme f (54-60) 

10) 771.64 (1) RAAAARGV Flavoprotein f (3-10) 

11) 919.72 (1) IESGSVEQA Ovotransferrin f (162-170) 

 

Fraction 8 

  

1) 346.18 (2) LGAKDST Ovalbumin f (44-50) 

2) 465.25 (1) CQGGT Lysozyme f (24-28) 

3) 468.29 (1) AAHAV Ovotransferrin f (267-271) 

4) 481.26 (1) FDVT Ovostatin f ( 221-224) 

5) 553.24(1) ASGTMS Ovalbumin f (236-241) 

6) 565.2 (1) TGEIK Ovostain  f (496-500) 

7) 584.2 (1) VCGLVP Ovotransferrin f (423-428) 

8) 594.36 (1) WTSSN Ovalbumin f (268-272) 

9) 691.36 (1) LGAKDST Ovalbumin f (44-50) 

10) 766.4 (1) LAEVPTH Ovotransferrin f (605-611) 

11) 791.2 (1) LGFEYY Ovotransferrin f (339-344) 

12) 815.56 (1) QESKPVQ Ovalbumin f (204-210) 

13) 826.65 (1) DVFSSSAN Ovalbumin f (305-312) 
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Fraction 12 
  

1) 317.14 (1) VAQ Flavoprotein f (64-66) 

2) 329.2 (1) VPN Flavoprotein f (258-260) 

3) 345.2 (1) GAVV Ovomucin  α unit f (882-1885) 

4) 371.22 (1) PAGT Ovomucin  α unit f (35 -353) 

5) 397.1 (1) VAAH Ovotransferrin f (267-269) 

6) 432.07 (1) LKDG Ovotransferrin f (207-210) 

7) 445.19 (1) PTDI Ovomucin  α unit f (663-665) 

8) 488.74 (2) TVNDLQGKTS Ovotransferrin f (124-132) 

9) 522.5 (2) YNAGV Lysozyme  f (173-177) 

10) 524.26 (2) TVNDLQGK Ovotransferrin f (124-131) 

11) 569.14 (1) VVVDP Ovotransferrin f (613-617) 

12) 590.73 (1) AGLAPY Ovotransferrin f (86-91) 

13) 597.2 (1) TKSDF Ovotransferrin f (297-301) 

14) 642.5 (1) LVEPEG Ovostatin f (886-888) 

15) 798.4 (1) QITKPND Ovalbumin f (90-96) 

16) 977.47 (1) TVNDLQGKT Ovotransferrin f(124-132) 

 

Fraction 14 

  

1) 471.38 (1) KPGAV Ovomucin α unit f (188 -1884) 

2) 518.75(2) ITKPNDVYS Ovalbumin f (91-99) 

3) 532.16 (1) KGGISA Lysozyme f (167-172) 

4) 542.7 (1) ATALAP Ovomucin α unit f (1362-1367) 

5) 579.27 (1) PFASGT Ovalbumin f (234-239) 

6) 604.52 (1) AVHAAH Ovalbumin f (317-322) 

7) 622.66 (1) YAPGDT Ovomucin β unit f (336-341) 

8) 688.6 (1) GWIESPS Ovostain f ( 423-428) 

9) 745.59 (1) LQPSSVD Ovalbumin f (162-168) 

10) 765.38 (1) ETTQGMS Ovomucin α unit f ( 66-972) 

11) 845.4 (1) VLQPSSVD Ovalbumin f (161-168) 

12) 913.9 (1) QITKPNDV Ovalbumin f (90-97) 

13) 1036.49 (1) ITKPNDVYS Ovalbumin f (91-99) 
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CHAPTER- 4 FINAL REMARKS  

 

4.1. IMPORTANCE OF DIETARY ANTIOXIDANTS  

Antioxidants play an important role in providing protection against free radicals, 

the harmful by products generated during normal physiological process and 

environmental pollution (Ames, Shigenaga, & Hagen, 1993). There exists 

mounting scientific evidences which shows the importance of free radicals in the 

pathogenesis of degenerative diseases such as cancer, cardiovascular disease, 

immune-system decline, brain dysfunction, and cataracts. Over the decades, there 

is an increase in consumer attention to the health and nutritional aspects in order 

to maintain the antioxidant status of the body. The role of antioxidants in the body 

and the antioxidants derived from various food sources have been studied 

intensively. Dietary intake of antioxidants may help to maintain the antioxidant 

status in the body (Fang, Yang, & Wu, 2002). Recent studies shows that 

functional foods such as fruits, vegetables, milk and eggs acts as natural source of 

exogenous antioxidants (Shahidi, 2000).  Chemical diversity of the antioxidants 

makes it difficult to quantify the individual components in most of the food 

commodities. Research conducted on tomato derivatives and coffee shows 

although there was a significant reduction of natural antioxidants during thermal 

treatments, the total antioxidant properties were either maintained or even 

enhanced due to the development of novel products (Nicoli, Anese, Parpinel, 

Franceschi, & Lerici, 1997).  Although the intake of antioxidants as supplements 

have been increased in Canada (Singh & Levine, 2006; Wilson, Bray, Temple & 

Struble, 2010); randomized clinical trials revealed that intake of vitamin 

supplements with claims ‘rich in antioxidants’ resulted in increase of about 5-6 % 

all cause mortality (Bjelakovic, Nikolova, Gluud, Simonetti, & Gluud, 2007; 

Bjelakovic, Nikolova, Gluud, Simonetti, & Gluud, 2008). So it is highly 

recommended to eat healthy food rather than depending on the supplements to 

meet adequate amount of antioxidants in the body. Therefore, the dietary intake of 

the natural food enriched with bioavailable antioxidants plays an important role as 

a potential source and helps to avoid the use of synthetic antioxidants. 

 

4.2. EGGS AS A NATURAL SOURCE OF ANTIOXIDANTS: A 

SUMMARY OF PRESENT RESEARCH 

 

Egg is an excellent source of macro and micro nutrients and beyond that it helps 

in providing beneficial properties. Recent studies have shown that many of the 

egg derived peptides have antioxidant activity; some of them were identified from 

the major egg white proteins; ovalbumin and ovotransferrin and from egg yolk 

derived peptides (Yamamoto, Sogo, Iwao, & Miyamoto, 1990; Davalos, Miguel, 

Bartolome, & Lopez-Fandino, 2004; Shen, Chahal, Majumder, You, & Wu, 

2010). In the present study with fresh samples, we noticed that egg yolk have 

higher antioxidant activity than egg white and the whole egg. Our study also 

found that cooking has decreased antioxidant activity of the egg white and yolk 

samples. Cooking followed by mimic gastrointestinal digestion enzymatic 

digestion increased the antioxidant activity of egg samples. The results suggested 
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though there was either denaturation and or inactivation of antioxidant 

components on thermal treatments. New antioxidants were further released upon 

gastrointestine simulated enzymatic digestion leading to increased antioxidant 

activity.  Among the 21 different treatments, the boiled egg white treated with 

pepsin and pancreatin showed the maximum antioxidant activity. In the further 

study using boiled egg white pepsin and pancreatin hydrolysate, we identified 63 

peptide sequences from ovalbumin, ovotransferrin, ovomucin, lyzozyme and 

ovostatin. YAEERYPIL (residues 107-115), also identified from crude egg white 

pepsin hydrolysate, was reported to show both angiotensin I-converting enzyme 

(ACE) inhibitory activity and potent radical scavenging property  (Davalos et al., 

2004). Our study showed that gastrointestinal digestion of egg white is capable of 

generating of a number of antioxidant peptides, thus could improve the 

antioxidant status.  Bioactive peptides, with 2-10 amino acid residues can exhibit 

more potency than longer peptides and could augment various functions and they 

can easily been absorbed through the gastrointestinal tracts (Yoshikawa et al., 

2000; Kitts & Weiler, 2003; Korhonen & Pihlanto, 2003). The characterization of 

the peptides from the boiled egg white revealed the peptides ranging from 3 to 10 

amino acid residues. That shows the capability of those peptides to execute the 

functions as bioactive peptides in the body. The presence of the hydrophobic 

amino acids, Val and Leu at the N terminal of the amino acid sequence and the 

other amino acids like Try, Pro, Asp, or His with greater antioxidant activity was 

noticed in the identified peptide sequences (Ren et al., 2010). In conclusion, the 

effect of various cooking methods and enzyme treatment on the antioxidant 

activity of the egg white, yolk and whole egg were studied and found that 

simulated gastrointestinal digestion of boiled egg white improved the antioxidant 

activity due to the release of bioactive peptides.  

 

4.3. INFERENCES OF THE PRESENT STUDY  

 

Recent changes in the perspective concerning the relation between food and 

health have increased the consumption of functional foods and nutraceuticals with 

various health benefits. Over the decades, there is an increase in the study related 

to role of antioxidants in preventing various degenerative diseases, aging and 

cancer. Most of the food sources such as fruits, vegetables, milk, egg and soya 

function as good sources of antioxidants. Effects of cooking and digestion on the 

antioxidant activities of food commodities have not been fully understood. The 

protein fragments with specific biofunction derived from the intact parent protein 

after breakdown with proteases in the gastrointestinal tract are often referred to 

bioactive peptides (Kitts & Weiler, 2003). The present study showed that 

antioxidant activitiy of boiled egg white enhanced after simulated gastrointestinal 

digestion, and identified 63 antioxidant peptides. This study helps to understand 

the beneficial use of egg as dietary source of antioxidant and thereby helps to 

promote awareness about the benefits of egg consumption among the health 

conscious consumers.  
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4.4. RECOMMENDATIONS FOR FUTURE RESEARCH  

 

 To fully characterize the antioxidants in eggs, antioxidants in egg yolk 

should be identified in the future.  

 A continued research is essential to understand the mechanisms of 

antioxidative property of the boiled egg white derived peptides and to 

identify their possible roles in the elimination, suppression or inhibition of 

reactive oxygen species. Subsequent analysis of the protective role using 

cell cultures and animals models in order to effectively differentiate the 

most rational and effective use of the egg derived antioxidants is highly 

recommended.  

 The synthetic peptides with similar amino acid residues of identified egg 

white peptides merit more studies to confirm their antioxidant functions. 

 Further research of these peptides in vivo will provide the scientific 

evidence for the use of eggs as antioxidants in the functional foods and 

nutraceuticals. 
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