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Abstract

Identifying spatial patterns of collisions is critical for improving the efficiency and

effectiveness of traffic enforcement deployment and road safety. Recently, many

studies have centred on finding locations with high collision concentration, so-

called hotspots. However, most of them only focus on the location information

of the collision data, without integrating the non-spatial attributes into analysis.

Taking non-spatial attributes into account opens opportunities to reveal attribute-

related hotspots that otherwise goes undetected, and can add valuable indicators

for explaining those hotspots. In this thesis, we address this problem. We pro-

pose a method for identifying the sets of non-spatial attribute-value pairs (AVPs)

that together contribute significantly to the spatial clustering of the corresponding

collisions. We call such AVP sets Spatial Co-Clustering Patterns (SCCPs). By ap-

plying our method on Edmontons collision data, we discovered larger numbers of

meaningful hotspot patterns than traditional methods did, and revealed the relevant

non-spatial indicators for explaining those hotspots.
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Chapter 1

Introduction

1.1 Motivation

A traffic collision, also known as a road collision, motor vehicle collision, car acci-

dent or automobile accident, is an unintentional collision between a moving vehicle

and any other vehicle, pedestrian, animal, or stationary obstruction, such as a hedge

or building. Traffic collisions have been a great threat to human life and impose

huge economic burden on the society. Although governments have been improving

traffic infrastructure and taking preventative measures, traffic collisions remain a

big problem worldwide. A report by the World Health Organization in 2004 [2]

stated that, globally, the number of people killed in road traffic crashes each year

was estimated at almost 1.2 million, while the number injured could be up to 50

million. Without increased efforts and new initiatives, these figures would increase

by some 65% between 2000 and 2020 [3, 4]. In 2009, the City of Edmonton’s Of-

fice of Traffic Safety reported 490 serious and 4,713 minor injuries [5]. Using the

cost components described in a collision cost study by Paul De Leur, Laura Thue

and Brian Ladd [6], collisions in the city of Edmonton cost over 0.5 billion each

year.

Identifying the spatial patterns of collisions is critical for improving road safety,

as well as improving the efficiency and effectiveness of traffic enforcement deploy-

ment. In traffic safety applications, geographic information system (GIS) technol-

ogy has been widely used to geo-code collision locations, leading to large amounts

of spatial data about collisions. Apart from location information, GIS software also
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enables us to store non-spatial attributes related to each collision occurrence, such

as the cause, severity, road surface condition, etc. And each attribute has a set of

possible values. Taking road surface condition as an example, the possible val-

ues can be ‘Dry’, ‘Wet’, ‘Snowy/Icy’, etc. All this plethora of information in the

collision data provides great potential for identifying patterns.

In recent years, many studies in traffic safety area have focused on finding col-

lision “hotspots”. Although there is an abundance of literature addressing hotspot

analysis, no universal definition of hotspots exists [7]. The concrete definition of

hotspots usually depends on the goal of our analysis and the specific method we use.

In traffic area, hotspots basically refer to locations with unusually high concentra-

tion of collision occurrences. The general purposes of collision hotspot analysis

may include: (1) finding clusters of collisions, and (2) identifying problematic lo-

cations for safety improvement. Up to now, a number of methods have been put

forward for identifying collision hotspots by advanced statistical analytics, for in-

stance, using density estimation [8] or spatial autocorrelation measures [9]. How-

ever, most of them only focus on the location information of the collision data,

leaving the abundant non-spatial attributes unutilized. Taking non-spatial attributes

into account, on the other hand, opens opportunities to reveal a larger number of

hotspot patterns, and can add valuable indicators for explaining certain collision

hotspots.

In this thesis, we address this problem. We propose a method which integrates

the non-spatial attributes of the collision data into hotspot analysis. In particular,

we investigate which non-spatial attribute-value pairs (AVPs) contribute together to

the spatial clustering of corresponding collisions. We call such an AVP set a Spatial

Co-Clustering Pattern (SCCP). The proposed method can be applied to historical

collision data. The detected SCCPs can: (1) lead to the discovery of a large number

of attribute-related hotspots, which allow the government to deploy its traffic en-

forcement resources more efficiently and effectively; (2) reveal the relevant AVPs

that contribute to those hotspots, which can help explain the frequent collision oc-

currence at those locations. All these results found have the potential to allow more

effecive and efficient strategies for deploying resources for traffic enforcement and

2



road safety.

1.2 Thesis Contributions

In this thesis, we propose a method to identify the sets of non-spatial attribute-value

pairs (AVPs) that together contribute significantly to the spatial clustering of the

corresponding collisions. Here we list four main contributions of this thesis.

Our first contribution is that we find a way to integrate non-spatial attributes

of the collision data into hotspot analysis, which leads to the full utilization of the

collision data and the discovery of larger numbers of hotspot patterns. Compared

to traditional hotspot analysis methods, which regard collisions as varying only on

one dimension, location, our method treats collisions as varying on both location

and non-spatial attributes, such as the cause, severity, road surface condition, etc.

Therefore, our method can discover larger numbers of hotspot patterns in the colli-

sion data than the traditional methods.

Another contribution of this thesis is that we put forward two objective crite-

ria for the interestingness of AVP sets for hotspot analysis. The first one is that the

AVP set leads to a spatial clustering of the corresponding collisions. And the second

one is that all subsets of the AVP set make a significant contribution to that spatial

clustering. Compared to the subjective criteria used in traditional hotspot analysis

methods which are based on domain knowledge, these criteria guarantee that (1)

the corresponding collisions of the AVP set are inherently clustered in space, and

(2) there is no subset of the AVP set that doesn’t make a significant contribution.

Therefore, the interestingness of the AVP set selected with these criteria is objec-

tively defined.

Following those criteria, we then introduce our concept of Spatial Co-Clustering

Pattern (SCCP), which represents an interesting AVP set. Each SCCP will lead to

the discovery of corresponding interesting “attribute-related” hotspots. We then

propose a method for efficiently discovering all SCCPs among all possible AVP

sets, with multiple techniques for computation reduction applied. This is our third

main contribution.
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Moreover, we also applied our method on Edmonton’s historical collision data

to discover the interesting hotspot patterns inside. The SCCPs discovered by our

method: (1) lead to the discovery of a large number of attribute-related hotspots,

which allow the government to deploy its traffic enforcement resources more effi-

ciently and effectively; (2) reveal the relevant AVPs that contribute to those hotspots,

which can help explain the frequent collision occurrence at those locations. All the

results found have the potential to allow more effective strategies for deploying

resources for traffic enforcement and road safety.

1.3 Thesis Outline

The rest of the thesis is organized as follows. We discuss traditional hotspot analy-

sis methods and their limitation in Section 2. Our concept of Spatial Co-Clustering

Pattern (SCCP) and our SCCP discovery method are presented in Section 3. In sec-

tion 4, we present our experimental setup and the results on Edmonton’s historical

collision data. Section 5 concludes with a summary and some directions for future

research.
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Chapter 2

Related Work

2.1 Traditional hotspot analysis methods

In the earliest studies, traditional collision hotspot analysis centred on road seg-

ments or specific junctions [10, 11], and considered collisions as individual points

on a map. Based on that, some researchers ranked locations according to accident

rate (accidents per driven vehicle kilometre), while others used accident frequen-

cies (accidents per road kilometre) [12]. Since the late 1970s, more sophisticated

statistical models have been applied to road collision analysis, such as Poisson re-

gression models [13, 14] and and negative binomial regression models [15, 16].

However, all of these methods above assume the occurrences of collisions on dif-

ferent road sections are independent [17]. The spatial dependence of collisions is

therefore ignored.

In recent years, GIS has been widely used to geo-code collision locations and

integrate disparate databases. Meanwhile, there are also increasing interest in the

spatial dependence of collisions in a similar area, and the association of spatial fac-

tors to road collisions. According to Anderson [12], this dependence of collisions is

argued to be the result of a shared common cause(s) among the collisions, albeit of

varying intensity [18, 19]. Under the circumstances, new methods that assume the

spatial dependence, such as kernel density estimation [8] and spatial autocorrelation

[9], have been put forward and used.

More detailed introductions of the traditional hotspot analysis methods are given

in the following three subsections.
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2.1.1 Hotspot analysis with statistical models

Count data consist of non-negative integer values and are encountered frequently in

modeling traffic-related phenomena. Examples of count data variables in traffic in-

clude the number of accidents observed on road sections during a period of one year,

the amount of vehicle exposure on road sections per years, etc. A common mistake

in traffic-related analysis is to model count data as continuous data by applying stan-

dard least squares regression(e.g.,multiple linear regression), which yield predicted

values that are non-integers or negative [20]. These results are inconsistent with

the real data and thus make standard regression analysis inappropriate for modeling

count data.

The unsatisfactory property of standard regression models has led to the inves-

tigation of a number of more sophisticated statistical models. The most popular

ones are Poisson and negative binomial regression models. Poisson and negative

binomial regression models are usually used to establish the relationship between

road collisions and geometric conditions of road sections, signalization, pavement

types, and so on. Maximum likelihood estimation is used to estimate the unknown

parameters of these models. When the relationship is well established, we obtain

a corresponding collision prediction model. To target collision hotspots, road sec-

tions are ranked according to a measure computed with the collision prediction

model, for instance, the expected number of collisions at each road section. Then

the top-ranked road sections are considered as hotspots.

About Poisson regression model and negative binomial model, more detailed

introductions are given in the following subsections.

Poisson regression model

The Poisson regression model is used to approximate the count data of events whose

occurrences are rare, such as road accident occurrences, failures in manufacturing

or processing, etc. To help illustrate the principal elements of a Poisson regression

model, consider a set of n intersections in a city. Let Yi be a random variable rep-

resenting the number of collisions on intersection i per year, where i = 1, 2, ..., n.

In a Poisson regression model, the probability of intersection i having yi accidents
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per year (where yi is a non-negative integer) is given by

P (Yi = yi) =
exp(−λi)λyii

yi!
(2.1)

This model assumes that Yi, i = 1, 2, ..., n, are independently and Poisson dis-

tributed with Poisson parameter λi, which is equal to the expected number of acci-

dents per year at intersection i, E(Yi). We estimate Poisson regression models by

specifying the Poisson parameter λi as a function of explanatory variables. In our

intersection accident example, the explanatory variables may include the geometric

conditions of the intersections, signalization, pavement types, etc. The relationship

between explanatory variables and the Poisson parameter is often approximated

with the log-linear model, given by

λi = exp(βχi) (2.2)

where χi is a vector of explanatory variables and β is a vector of parameters. Then

the expected number of accidents per year at intersection i is given by E(Yi) =

λi = exp(βχi). The regression parameters β of this model can be estimated using

the maximum likelihood estimation [21]. The likelihood function is given by

L(β) =
n∏
i=1

exp[− exp(βχi)][exp(βχi)]
yi

yi!
(2.3)

As with most statistical models, the estimated parameters can be used to make

inferences about the unknown population characteristics thought to influence the

count process [20].

Negative binomial regression model

One property of the Poisson distribution is that the mean of the count data equals

its variance. However, in many studies, the variance of the count data is signifi-

cantly larger than its mean, which is known as the overdispersion problem. One

major reason of the overdispersion problem in many studies is that certain variables

impacting the Poisson parameters across observations have been omitted from the

regression model [20]. For overdispersed count data, using Poisson regression mod-

els will lead to a biased parameter vector, unless corrective measures are taken. In

such cases, a negative binomial model is often used instead.

7



The negative binomial model is derived by rewriting Equation 2.2 such that, for

each observation i,

λi = exp(βχi + εi) (2.4)

where exp(εi) is a gamma-distributed disturbance term with mean 1 and variance α

[20]. The addition of this term allows the variance to differ from the mean as below

[20]:

V ar(Yi) = E(Yi)[1 + αE(Yi)] = E(Yi) + αE(Yi)
2 (2.5)

where α ≥ 0 and is usually referred to as dispersion parameter. From Equation

2.5 we can see that this model allows the variance to exceed the mean. Also, the

Poisson regression model can be regarded as a limiting model of the negative bino-

mial regression model as α approaches 0. The negative binomial distribution has

the form:

P (Yi = yi) =
Γ((1/α) + yi)

Γ(1/α)yi!
(

1/α

(1/α) + λi
)1/α(

λi
(1/α) + λi

)yi (2.6)

where Γ(.) is a gamma function. This results in the likelihood function:

L(λi) =
n∏
i=1

Γ((1/α) + yi)

Γ(1/α)yi!
(

1/α

(1/α) + λi
)1/α(

λi
(1/α) + λi

)yi (2.7)

Compared to the Possion regress model, the negative binomial regression model

is more general. But it requires more extensive computation to estimate model

parameters and to generate inferential statistics than the Poisson regression model

[17].

2.1.2 Hotspot analysis with kernel density estimation

The kernel density estimation (KDE) method is based on the assumption that road

collisions occurring in a similar area are spatially dependent. According to Tessa

[12], this dependence is argued to be the result of a shared common cause(s) among

the collisions, albeit of varying intensity [18, 19].

Compared to the above methods with statistical models, the main advantage of

KDE method lies in determining the spread of risk of an accident. The spread of

risk can be defined as the area around a defined cluster in which there is an increased

likelihood for an accident to occur based on spatial dependency.
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KDE is an interpolation technique, which generalizes collision locations to the

entire study region. To do the interpolation, a symmetrical surface, which is deter-

mined by the kernel, is placed over each collision location point. For each location

point in the study region, we sum the values of all individual surfaces over it, as its

density estimate for the distribution of accident points. This procedure is repeated

for all the successive points. A more detailed introduction of KDE can be found in

Silverman’s book [22].

The density estimate at the location (x, y) is given as:

f(x, y) =
1

nh

n∑
i=1

K(
di
h

) (2.8)

where n is the number of collisions, h is the bandwidth or kernel size, K is the

kernel function, and di is the distance between the location (x, y) and the location

of the ith collision (i = 1, 2, ..., n).

The effect of placing these kernels over the points is to create a smooth and

continuous surface of density estimates. Around each collision location point, a

circular area (the kernel) of pre-specified bandwidth is created, and the risk of the

collision occurrence at that point is spread into it according to the kernel function

(See Figure 2.1). Summing all of these values at all places, including those at which

no collisions were observed, gives a smooth and continuous surface of density esti-

mates. Then the locations with high density estimates will be the detected hotspots.

In the KDE method, a range of kernel functions are commonly used: uniform,

triangular, biweight, triweight, Epanechnikov, normal, and others. Although there

are various kernel functions to choose from, most agree that the kernel function will

not significantly impact results [22, 1]. However, the bandwidth h will impact the

resulting density map greatly. A very small bandwidth, for example, will lead to in-

adequate smoothing and simply highlight individual points[23]. If the bandwidth is

increased, there is a possibility that the circular neighbourhood would include more

collision location points, which finally results in a smoother density surface [22].

It often takes trial and error on the bandwidth in order to produce an appropriate

density surface.
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Figure 2.1: Diagram of how KDE method works, reproduced from Bailey and
Gatrell’s work [1]

2.1.3 Hotspot analysis with spatial autocorrelation

In its most general sense, spatial autocorrelation is concerned with the degree to

which objects or activities at some place on the earth’s surface are similar to other

objects or activities located nearby [24]. Its existence is reflected by Waldo Tobler’s

first law of geography: “everything is related to everything else, but near things are

more related than distant things.”[25]

The assessment of spatial autocorrelation involves measuring the degree to which

the value of a variable for each location co-varies with values of that variable at

nearby locations [18]. When the level of co-variation is higher than expected, con-

tiguous locations have similar values and the spatial autocorrelation is positive.

When the level of co-variation observed are negative, high values of the variable

are surrounded by low values and the spatial autocorrelation is negative. The lack

of significant positive or negative co-variation suggests the absence of spatial auto-

correlation [26].

To quantify the spatial autocorrelation, Geary’s Ratio and Moran’s I are two

popular indices that are generally used. Geary’s Ratio and Moran’s I combine the

measures of both attribute similarity and location proximity into a single index.

They measure and test if patterns of point distributions are clustered or dispersed

in space with respect to their attribute values. In traffic accident application, the

point can refer to the collision location point, and the attribute value is the number
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of collisions at each location point.

Geary’s Ratio and Moran’s I are used to assess the global spatial autocorrelation

over the entire study region. So they are also called global statistics. For instance,

Moran’s I index is often called Global Moran’s I index. Most analysts favor Global

Moran’s I as its distributional characteristics are more desirable and this index has

greater general stability and flexibility [26]. Global Moran’s I index is defined as:

I =
n

S0

∑n
i=1

∑n
j=1wi,j(xi − X̄)(xj − X̄)∑n

i=1(xi − X̄)2
(2.9)

where xi is the number of collisions at location point i, X̄ is the mean of all xi, wi,j

is the spatial weight between point i and j (e.g., inverse of the distance), n is the

total number of xi, and S0 is the aggregate of all the spatial weights:

S0 =
n∑
i=1

n∑
j=1

wi,j (2.10)

Given the number of collisions at each location, the Global Moran’s I index evalu-

ates whether the distribution of collisions at these locations is clustered, dispersed

or random in space. The distribution of collisions presents “a clustered pattern”

when high numbers and low numbers in the space are more spatially clustered than

would be expected if underlying spatial processes were random. In contrast, it

presents “a dispersed pattern” when high numbers and low numbers in the space

are more spatially dispersed than would be expected if underlying spatial processes

were random.

Possible values of Global Moran’s I range from -1 to 1. A positive value in-

dicates a clustered pattern and a negative value indicates a dispersed pattern. An

associated z-score [24] is calculated to evaluate the statistical significance of the

Global Moran’s I index. For statistically significant positive z-scores, the higher

the z-score is, the more pronounced the clustered pattern is, i.e., the less likely

the clustered pattern is generated by some random spatial process. For statistically

significant negative z-scores, the lower the z-score is, the more pronounced the dis-

persed pattern is, i.e., the less likely the dispersed pattern is generated by some

random spatial process.
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As stated above, Geary’s C Ratio and Moran’s I Index are global statistics since

they are measures of the entire study area. To investigate the accurate collision

hotspot locations, it is necessary to use local measures such as the local Moran’s I

index [27] and Getis-Ord Gi* statistic [28, 29]. These statistics are used to quanti-

tatively measure the level of spatial autocorrelation at the local scale. Particularly,

the Getis-Ord Gi* statistic is useful to identify cold/hot spots where low/high values

cluster spatially. The Getis-Ord Gi* statistic is defined as:

G∗i =

∑n
j=1wi,jxj − X̄

∑n
j=1wi,j

S

√
[n

∑n
j=1 w

2
i,j−(

∑n
j=1 wi,j)

2]

n−1

(2.11)

where xi is the number of collisions at location point i, X̄ is the mean of all xi, wi,j

is the spatial weight between point i and j (e.g., inverse of the distance), n is the

total number of xi, and S0 is the variance of all xi:

S =

√∑n
j=1 x

2
j

n
− (X̄)2 (2.12)

Similar to the Global Moran’s I index, the Getis-Ord Gi* statistic also has an as-

sociated z-score to indicate its statistical significance. Actually, since the Getis-Ord

Gi* statistic itself is a z-score, its associated z-score is itself. For statistically signif-

icant positive z-scores, the higher the z-score is, the more pronounced the clustering

of high numbers is, i.e., the less likely the clustering of high numbers is generated

by some random spatial process. For statistically significant negative z-scores, the

lower the z-score is, the more pronounced the clustering of low numbers is, i.e., the

less likely the clustering of low numbers is generated by some random spatial pro-

cess. Then the locations with z-scores higher than a pre-specified threshold (e.g.,

2.0) are targeted as the hotspots.

2.2 Limitation of traditional hotspot analysis meth-
ods

While the above traditional methods are commonly used in collision hotspot anal-

ysis, none of them utilize the abundant non-spatial attributes of collision data, such

as the cause and severity. As a result, they don’t differentiate collisions on their
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various attribute values, but treat all collisions as if they are the same, except for

location. In other words, they regard collisions as varying only on one dimension,

location (or two dimensions x, y coordinates).

Following is an example of using the traditional spatial autocorrelation method

to identify hotspots of Edmonton’s collisions in 2011:

Figure 2.2 displays the raw collision data of Edmonton in 2011. On the map,

each point represents a location where at least one collision happened in 2011.

Multiple collisions can be geo-coded at the same location.

Figure 2.2: Display of the raw collision data of Edmonton in 2011

In a traditional spatial autocorrelation method, we first get the count of collisions

at each point, disregarding their various non-spatial attributes. With these counts,

we further calculate for each point a spatial autocorrelation statistic, e.g., Getis-Ord
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Gi* statistic [28, 29]. After that, we label each point in different colours according

to its calculated statistic. If the statistic is higher than a pre-specified threshold (e.g.,

2.0), the point will be labeled in red and be considered as a hotspot. We can further

overlay the resultant hotspot map with other background layers to help identify the

concrete locations of the detected hotspots, as illustrated in Figure 2.3.

Figure 2.3: Hotspots of the overall collisions

From the above example, we see that traditional hotspot methods only focus on

the location information of collision data, and treat collisions with various non-

spatial information as the same. Therefore, they can only detect the “overall”

hotspots of all the collisions, regardless of their various attribute values. On the

other hand, if we investigate on certain specific types of collisions in terms of AVPs

(e.g., collisions with Day of the week =‘Saturday’ and Road surface condition =
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‘Dry’) and extract the corresponding collisions from the overall data, the hotspots

detected with the same traditional method as above (shown in Figure 2.4) would

vary greatly from the results in Figure 2.3. Such “attribute-related” hotspots are

also potentially interesting, because they reveal the concentration locations of some

specific types of collisions. In addition, the relevant AVPs of these hotspots can

also help explain the frequent collision occurrence at these locations.

Figure 2.4: Hotspots of the collisions with Day of the week =‘Saturday’ and Road
surface condition = ‘Dry’

Therefore, integrating non-spatial attributes into hotspot analysis is a promising

and rewarding avenue to improve traditional methods.
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Chapter 3

Our Methodology

3.1 Spatial Co-Clustering Pattern

In Section 2, we argued that some “attribute-related” hotspots as displayed in Fig-

ure 2.4 are also potentially interesting. To discover such “attribute-related” hotspots,

a simple approach is:

1. Select a combination of attribute-value pairs (AVPs) that is “interesting” to

us (probably based on domain knowledge), e.g., Day of the week =‘Saturday’

and Road surface condition = ‘Dry’. We call such a combination of AVPs an

“interesting” AVP set;

2. Obtain the corresponding collisions that satisfy the AVP set;

3. Detect the hotspots of those collisions with the traditional methods.

However, this approach has two obvious problems: (1) the interestingness of

the selected AVP set is subjective; (2) by only considering the selected AVP set as

interesting, we may miss many other interesting AVP sets.

To address these problems, in this section, we first set objective criteria for the

interestingness of AVP sets for hotspot analysis. Based on those criteria, we then

define a special pattern which represents an interesting AVP set, called Spatial Co-

Clustering Pattern (SCCP). Each SCCP will lead to the discovery of corresponding

interesting “attribute-related” hotspots. Then later, in the following section, we will

propose a method to discover all SCCPs among all possible AVP sets.
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3.1.1 The criteria for the interestingness of AVP sets

In the traffic safety area, hotspots refer to locations with high collision concentra-

tion. If the collisions are inherently not clustered in space, it is unlikely that we can

find some interesting hotspots inside.

For example, assume the distributions of two different types of collisions are

as shown in Figure 3.1. The two types of collisions correspond to two AVP sets,

denoted as AVP Set 1 and AVP Set 2. In Figure 3.1, each point represents a location

where one collision happened. We can see that collisions of AVP Set 1 are dispersed

in space, while collisions of AVP Set 2 are clustered spatially. In this case, it is

obvious that AVP Set 2 is more interesting for hotspot analysis.

Figure 3.1: distributions of two different types of collisions

Thus we set the following criteria for the interestingness of AVP sets:

Criterion 1: the AVP set must lead to a spatial clustering of the corresponding

collisions.

Even if an AVP set leads to a spatial clustering of the corresponding collisions,

we cannot guarantee that each of its subset makes a significant contribution to that

spatial clustering. If any of its subsets does not make a significant contribution,

we should not include this subset to this AVP set and report the whole AVP set

as interesting. For example, we can argue that the spatial clustering of collisions

with Day of the week =‘Saturday’ and Road surface condition = ‘Dry’ may be only

attributed to the first constituent AVP: Day of the week =‘Saturday’, and the second

constituent AVP does not make a significant contribution. If this is true, we should

only report {Day of the week =‘Saturday’} as an interesting pattern, and not include

the AVP set {Day of the week =‘Saturday’ and Road surface condition = ‘Dry’}.
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Therefore the second criterion for the interestingness of AVP sets is the follow-

ing:

Criterion 2: all subsets of the AVP set must make a significant contribution to

the spatial clustering of the corresponding collisions.

3.1.2 The definition of Spatial Co-Clustering Pattern

Let F : {f1, f2, ..., ft} be a set of instances of spatial feature f. Each spatial feature

f has a set of attributes A : {A1, A2, ..., An}. Each attribute Ai has a set of possible

values vi : {vi1, vi2, ..., vimi}.

For an AVP set s : {Ai = vip, Aj = vjq, ..., Ak = vkr}, its corresponding

instance set, denoted by F (s), is defined by F (s) = {f |f.Ai = vip, f.Aj =

vjq, ..., f.Ak = vkr}. F (s) is a subset of F . We call the number of instances in

F (s) its size.

Let s′ be a subset of s. Its corresponding instance set is denoted as F (s′).

Because s′ is a subset of s, we can derive that F (s′) is a superset of F (s).

For a certain s, if the instances of F (s) are spatially clustered 1, we say “F (s)

presents a clustered pattern” for short.

We call an AVP set s a Spatial Co-Clustering Pattern (SCCP) if and only if it

satisfies:

1. F (s) presents a clustered pattern;

2. For any subset s′ of s, the probability of obtaining a random subset from

F (s′), with the same size as F (s) and a clustered pattern more pronounced

than F (s), is low.

Above is the general definition of a SCCP. If an AVP set s satisfies Property (2),

we say the F (s) clusters “significantly better” than a random selection from F (s′).

In our application, the spatial feature f refers to “collision” specifically. Corre-

spondingly, s and s′ are two AVP sets of the collision data, and F (s) and F (s′) are

1In our application, this means: after aggregating instances geo-coded on the same location and
obtaining the number of instances at each aggregated location point, high numbers and low numbers
are respectively more spatially clustered than would be expected if underlying spatial processes were
random.
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their corresponding collision sets.

The two properties of SCCP are consistent with the two criteria given in the

previous subsection. Property (1) ensures Criterion 1 is satisfied. Property (2)

ensures that for any subset of s′ of s, F (s) is unlikely a random selection from

F (s′). This ensures that all subsets of the AVP set make a significant contribution

to the spatial clustering of the corresponding collisions, thus Criterion 2 is ensured.

In the next section, we will provide statistical methods to quantitatively test

whether an AVP set satisfies these two properties.

The following is an example of SCCP:

For the AVP set s: {Day of the week =‘Saturday’, Road surface condition

=‘Dry’}, the corresponding collisions of F (s) are spatially clustered. Moreover,

for its subsets s1: {Day of the week =‘Saturday’}, s2: {Road surface condition

=‘Dry’}, and s3: ∅ (empty set), F (s) clusters significantly better than a random

selection from any of F (s1), F (s2), F (s3), as shown in Figure 3.2. In this case, s

is a SCCP.

Figure 3.2: F (s) clusters significantly better than a random selection from any of
F (s1), F (s2), F (s3).
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3.2 Spatial Co-Clustering Pattern Discovery Method

In this section, we propose a method to discover SCCPs among all possible AVP

sets. Consistent with the two properties of SCCPs (see Section 3.1.2), our SCCP

discovery method consists of two steps:

• Step 1: find all AVP sets s whose corresponding collisions of F (s) are spa-

tially clustered;

• Step 2: for each s, test whether there exists a subset of s, s′, that satisfies:

F (s) does not cluster significantly better than a random selection from F (s′);

For Step 1, we use Global Moran’s I index and the associated z-score [24] (see

Section 2.1.3) to evaluate whether the overall distribution of collisions in F (s) is

clustered. Only when it is clustered, the corresponding s will be recognized as a

candidate for SCCP, and continues to undergo Step 2.

For Step 2, we use randomization tests [30] to check s against each of its subsets

s′, to determine whether F (s) clusters significantly better than a random selection

from F (s′).

More details are given in the following two subsections.

3.2.1 Step 1: find all AVP sets that lead to spatial clustering of
collisions

In Step 1, we use the Global Moran’s I index stated in Section 2.1.3 to evaluate

the overall distribution of collisions. Given the collision counts at each location,

the Global Moran’s I index evaluates whether the distribution of collisions at these

locations is clustered, dispersed or random in space. An associated z-score [24] is

calculated to evaluate the statistical significance of the Global Moran’s I index: a

positive z-score indicates a clustered pattern; and the higher the z-score is, the less

likely the expressed clustered pattern is generated by some random process, i.e., the

more pronounced the clustered pattern is.

In Step 1, we enumerate all possible AVP sets s, and only retain those whose

corresponding z-score of F (s) is higher than a pre-specified threshold γ (e.g., 5.0

in our experiment) as candidates for SCCP.
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Due to the combinatorial explosion, the number of possible AVP sets is very

large. So computing the Global Moran’s I index and the associated z-score for each

one is computationally expensive. To reduce the amount of computation, we ignore

those AVP sets that have only a small number of (e.g., less than 50) corresponding

collisions, and don’t calculate their Global Moran’s I indices and the associated z-

scores. We call such AVP sets “infrequent”. Since these AVP sets correspond to

collisions whose occurrences are so rare, they deserve less attention. To determine

whether an AVP set is infrequent or not, we pre-specify a threshold, called fre-

quency threshold. Only for a “frequent” AVP set whose corresponding collisions

are more than the frequency threshold, we need to obtain its F (s), and calculate its

Global Moran’s I index and associated z-score.

To judge whether an AVP set is frequent or not, we need to query its corre-

sponding collisions over the whole collision data, which is also computationally

expensive. When searching for frequent AVP sets, in order to reduce the queries

over the collision data, we adopt a technique which is similar to that in the Apriori

algorithm [31] for finding frequent itemsets. The basic intuition is that any subset of

a frequent AVP set must be frequent. Therefore, frequent AVP sets having k AVPs

can be generated by joining frequent AVP sets having k − 1 AVPs, and deleting

those that contain any subset that is not frequent. In this way, we can discard a large

number of infrequent AVP sets without querying their corresponding collisions over

the data. Therefore, the computation for querying is largely reduced. More details

about this technique will be given in the pseudocode of our algorithm at the end of

this chapter.

In summary, the Step 1 can be decomposed into the following two tasks:

(1) Find all frequent AVP sets with the above technique;

(2) For each frequent AVP set s, calculate the Global Moran’s I index and asso-

ciated z-score for its F (s). If the z-score is higher than the pre-specified threshold,

s continues to undergo Step 2; else, it is discarded.
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3.2.2 Step 2: test the contribution of each subset to the cluster-
ing of collisions

In Step 2, the randomization test we use is based on the probability model that the

collision counts (xi) are randomly assigned to the location points (i), which is called

a randomization model according to Lehmann [32]. When using randomization to

check s against one of its subset s′, the null hypothesis of interest is

H0: the z-score of F (s) is as the same as that of an equally sized random subset

from F (s′);

Now we test whether the above null hypothesis H0 should be accepted or re-

jected, given the pre-specified significance level α. Let the size of F (s) be m and

the size of F (s′) be n, then based on the randomization model stated above, there

are
(
n
m

)
(“n choose m”) ways to randomly get a subset of size m from F (s′). In

other words, there are
(
n
m

)
possible random subsets of sizem generated from F (s′).

Assume we can calculate the z-scores of all these random subsets. To test

whether F (s) is a random selection from F (s′), we compare the z-score of F (s)

(denoted as zF (s)) with those of all these random sets to see whether it is unusu-

ally large. If the probability of the z-scores of random subsets being as large as

or larger than zF (s) (which is called the p-value), is smaller than the pre-specified

significance level α, then the null hypothesis H0 is rejected; else, it is accepted.

For example, assume the histogram in Figure 3.3 shows the distribution of the

z-scores of all random subsets. The value of zF (s) is close to the right end of the

histogram, and only 1% of all z-scores are as large as or larger than zF (s), i.e., the

p-value is equal to 0.01. If we set the significance level α as 0.05, then the p-value

is smaller than α, and the null hypothesis H0 is rejected. In this case, F (s) is

considered to cluster significantly better than a random selection from F (s′);

In practice, calculating the z-scores of all these random subsets is computation-

ally not feasible: we need to first generate all the
(
n
m

)
random subsets from F (s′),

which is quite computational expensive; and then calculate the global Morans I in-

dex and associated z-score for each of them. One easy and very practical solution

to this problem is to use Monte Carlo sampling [30] to estimate the p-value. To do

so, we repeatedly and randomly select m collisions from the n collisions in F (s′)
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Figure 3.3: the distribution of z-scores of all random subsets

as a random subset. The z-scores of a few thousand random subsets are usually

sufficient to get an accurate estimate of the p-value, and sampling can be done with

or without replacement.

In Step 2, we check each s retained from Step 1 with the above mechanism. If

there exists a subset of s, s′, that satisfies: F (s) does not cluster significantly better

than a random selection from F (s′), then s is discarded; or else, it is a SCCP.

After finding all the SCCPs, we can further identify their respect hotspots with

the traditional methods stated in Section 2.1, e.g., using Getis-Ord Gi* statistic

[28, 29].

The pseudocode for our SCCP discovery algorithm is given below. Usual set

theoretic notation is employed. k-AVPS refers to a AVP set consisting of k AVPs.

Lk is the set of frequent k-AVPS. Ck is the set of candidate k-AVPS, which are

potentially frequent k-AVPS.
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Algorithm 1 SCCP discovery algorithm
Input: collision dataset F , frequency threshold ε, z-score threshold γ, significance
level α, number of Monte Carlo sampling runs N
Output: set of SCCPs

1: L1 ←{frequent 1-AVPS in F}
2: k ← 2
3: while Lk−1 6= ∅ do
4: Lk ← ∅
5: Ck ← {a ∪ {b}|a ∈ Lk−1 ∧ b ∈ ∪Lk−1 ∧ b /∈ a}
6: for all k-AVPS c ∈ Ck do
7: isEligible← True
8: for all (k − 1)-subsets s of c do
9: if s /∈ Lk−1 then

10: isEligible← False
11: break
12: end if
13: end for
14: if isEligible == True then
15: frequency ← number of corresponding collisions of c in F
16: if frequency ≥ ε then
17: add c into Lk
18: end if
19: end if
20: end for
21: k ← k + 1
22: end while
23: L← L1 ∪ L2 ∪ ... ∪ Lk
24: for all AVP set s ∈ L do
25: zF (s) ← z-score of F (s)
26: if zF (s) < γ then
27: delete s from L
28: end if
29: end for
30: for all AVP set s ∈ L do
31: zF (s) ← z-score of F (s)
32: for all subsets s′ of s do
33: generate N random subsets with the same size as F (s) from F (s′)
34: n← number of random subsets whose z-scores ≥ zF (s)

35: p← n/N
36: if p > α then
37: delete s from L
38: break
39: end if
40: end for
41: end for
42: Return L
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Chapter 4

Experiments and Discussions

To evaluate our proposal, we implemented our method using the Python program-

ming language and ArcGIS software, and applied it to Edmonton’s historical colli-

sion data. In the following sections, we will first introduce our experimental setup,

including the collision data we used, data pre-processing and parameter settings.

Following that, we will present our experimental results and discuss on them.

4.1 Experiment Setup

4.1.1 Data used

The collision data we used are obtained from the Motor Vehicle Collision Informa-

tion System (MVCIS) maintained by the Office of Traffic Safety, City of Edmonton.

From this system we extracted the 6 years of collision data available, from 2006 to

2011. This dataset is stored as a table. Each row is a record of a collision and

each column is an attribute of collisions. This table contains both spatial and non-

spatial information about collisions, including the geographic location information,

cause, severity, etc. Table 4.1 shows the column headings of this table and their

descriptions.

For each collision, its location is geo-coded with GIS technology and the ge-

ographic location information is stored in the X Coordinate and Y Coordinate at-

tributes. With GIS software, the spatial distribution of collisions can be displayed

on a map, where each collision can be represented by a point with a particular lo-

cation. For example, the spatial distribution of Edmonton’s collisions in 2011 is
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Table 4.1: column headings of the collision table

26



displayed in Figure 4.1.

Figure 4.1: The spatial distribution of Edmonton’s collisions in 2011

Apart from the geographic location information, the following non-spatial at-

tributes are available for analysis:

• Severity

• Cause

• Road surface condition
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• Traffic control

• Time

• Day of the week

• Date

Each attribute above has a set of possible values. Taking the attribute Road

Surface Condition as an example, its possible values are ‘Dry’, ‘Wet’, ‘Loose

Sand/Dirt/Gravel’, ‘Snowy/Icy’, and ‘Other’.

4.1.2 Data pre-processing
Cleaning collision data with missing information

In the data collection process of MVCIS, some information of collisions was miss-

ing. For some collisions, the location information was not reported. For some

others, certain non-spatial information was not collected, such as Cause, Time, etc.

Therefore, in our dataset extracted from MVCIS, a considerable amount of collision

records are incomplete.

For our Spatial Co-Clustering Pattern (SCCP) discovery method, we should

treat collisions with missing location information and missing non-spatial informa-

tion differently:

For collisions with missing non-spatial information, the missing values of cer-

tain non-spatial attributes will not affect the analysis of AVP sets which only con-

tains other non-spatial attributes. For example, if a collision’s Cause attribute value

is unknown but Day of the week and Road surface condition attributes are known,

then it can still be included for the analysis of AVP set Day of the week =‘Saturday’

and Road surface condition = ‘Dry’. However, the missing values of non-spatial

attributes will significantly affect the analysis of AVP sets that contains the same

non-spatial attributes. For example, if a collision’s Cause attribute value is un-

known, then it cannot be included for the analysis of AVP set Cause=‘Followed too

close’ and Day of the week =‘Saturday’. In order to produce reliable analysis re-

sults, it should be excluded from the analysis for that AVP set. Based on the above
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analysis, for missing values of attributes, we assign a special value ‘Unknown’ to

them. This special value is different from any other known values of this attribute.

Thus such collisions will be excluded from the analysis for AVP sets that contains

the same non-spatial attribute.

For collisions with missing location information, the treatment is different. They

cannot be used by our SCCP discovery method. The reason is that when we evalu-

ate the distribution of collisions with Global Moran’s I index, we must know every

collision’s location in order to calculate the distance between collisions. So we di-

rectly deleted these data from our dataset. Taking the collision data in 2011 as an

example, 1705 collision records with missing location information are deleted from

the overall 23442 records. The percentage is 7.27%.

Categorizing values for certain attributes

Since our SCCP discovery method need to enumerate all possible AVP sets and

evaluate each of them, the computation amount highly depends on the number of

possible AVP sets. Assume the collision table has a set of attributesA : A1, A2, ..., An,

the number of possible values (except the special value ‘Unknown’) forAi ismi(i =

1, 2, ..., n), then the number of all possible AVP sets is: m1×m2× ...×mn. For our

original collision data, the number of possible values of each non-spatial attribute

mentioned above is listed in Table 4.2

Attribute The number of possible values
Severity 3
Cause 26
Road surface condition 4
Traffic control 14
Time 1440
Day of the week 7
Date 2191

Table 4.2: the number of possible values of non-spatial attributes

From Table 4.2, we can calculate the number of all possible AVP sets of the

original data is: 3 × 26 × 4 × 14 × 1440 × 7 × 2191 = 96, 468, 503, 040, which
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is very large. In order to reduce the computation amount of the SCCP discovery

process, we need to decrease the number of possible AVP sets effectively.

Among the 7 non-spatial attributes listed in Table 4.2, the Time and Date at-

tributes have a particularly large number of possible values. For the Time attribute,

its values consist of 4 digits. The first two digits represent “hour” (ranging from

‘00’ to ‘23’) and the latter two represent “minute” (ranging from ‘00’ to ‘59’). For

example, a possible values of Time attribute is ‘0730’, which means the collision

happened at “7:30 am”. So the number of all possible values of Time attribute is:

24× 60 = 1440. For the Date attribute, its values consist of 8 digits. The first four

digits represent “year” (ranging from ‘2006’ to ‘2011’), the middle two digits rep-

resent “month” (ranging from ‘01’ to ‘12’), and the last two digits represent “day”

(ranging from ‘01’ to ‘31’). For example, a possible values of Date attribute is

‘20110322’, which means the collision happened on “March 22, 2011”. The num-

ber of possible values of Date attribute is 365 for the years 2006, 2007, 2009, 2010,

and 2011, and 366 for the year 2008. So the total number is: 365×5+366 = 2191.

In order to decrease the number of possible AVP sets, we categorized the values

of the above two attributes into a much smaller number of classes. For the Time

attribute, its values were categorized into the following 5 ranges : ‘0000-0659’

(Before Dawn), ‘0700-0959’ (AM Peak), ‘1000-1559’ (Working Hours), ‘1600-

1859’ (PM Peak), and ‘1900-2359’ (Evening). We created a new attribute called

Time segment, which has the above 5 values, and derived the values for the Time

segment attribute from the Time attribute. In this way, the 1440 possible values of

Time attribute were categorized into the 5 values of Time segment attribute. For the

Date attribute, we categorized its values according to the month it belonged to. In

light of this, we created a new attribute called Month, whose values range from 01

to 12, and transferred the values of the Date attribute into the corresponding values

of the Month attribute. In this way, the 2191 possible values of Date attribute were

categorized into 12 classes.

After categorizing the values of these two attributes, the number of all possible

AVP sets is decreased from 96, 468, 503, 040 to: 3 × 26 × 4 × 14 × 5 × 7 × 12 =

1, 834, 560. In this way, the computation amount of of SCCP discovery process can
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be reduced effectively.

After replacing the Time and Date attributes with the corresponding Time seg-

ment and Month attributes, the list of non-spatial attributes available for analysis

is:

• Severity

• Cause

• Road surface condition

• Traffic control

• Time segment (derived from the original Time attributes)

• Day of the week

• Month (transferred from the original Date attributes)

4.1.3 Parameter settings
Setting frequency threshold

As mentioned in Section 3.2.1, in Step 1 of our SCCP discovery method, the first

task is to find all “frequent” AVP sets. In order to reduce the computation amount

of the SCCP discovery process, we ignore those “infrequent” AVP sets whose cor-

responding set of collisions is too small, and don’t calculate their Global Moran’s I

indices and the associated z-scores.

To determine whether an AVP set is infrequent or not, we need to pre-specify

a threshold, called frequency threshold. If the numbers of corresponding collisions

of an AVP set is smaller than the frequency threshold, this AVP set is infrequent;

else, it is frequent.

To set a proper frequency threshold, we need to consider the total number of col-

lisions as well as the computation amount. On the one hand, we want the threshold

to be reasonably small compared to the total number of collisions, so that we may

not miss some potentially interesting AVP sets. On the other hand, we also want the

threshold to be large, so that we can ignore a larger number of infrequent AVP sets
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and reduce the computation amount more effectively. Therefore, we need to make a

trade-off between the risk of missing interesting patterns and the computation time

when setting the frequency threshold.

Taking Edmonton’s collisions in 2011 as an example, after cleaning collisions

with missing location information, the total number of remaining collisions is 21, 737.

After discussing with the Office of Traffic Safety (OTS) staff, we think it is reason-

able to set the frequency threshold below 500 (2.3% of the total number). AVP

sets that correspond to fewer than 500 collisions deserve less attention, and thus we

directly ignore them.

To investigate how different frequency thresholds will change the computation

amount and the results of the SCCP discovery process, we used 200 and 500 as two

sample frequency thresholds, and compared the computation time for finding all

frequent AVP sets as well as the number of the frequent AVP sets found when us-

ing different numbers of attributes. We first only used the following four attributes:

Severity, Cause, Road surface condition, Day of the week, and got the experimental

results in Table 4.3. Then we added the attribute Traffic control, and got the experi-

mental results in Table 4.4. Furthermore, we added the attribute Month, and got the

experimental results in Table 4.5. At last, we added another attribute Time segment,

and got the experimental results in Table 4.6.

Frequency threshold Computation time
(hour)

The number of frequent AVP
sets

500 0.22 122
200 0.49 253

Table 4.3: Experimental results on sample frequency thresholds when using 4 at-
tributes

Figure 4.2 and Figure 4.3 illustrate how the computation time for finding all

frequent AVP sets and the number of the frequent AVP sets found increase with

the number of attributes used when using 200 and 500 as the frequency thresholds.

From these figures we can see that when using the same number of attributes, a

larger frequency threshold leads to smaller computation time and a smaller number

of frequent AVP sets. Besides, when the number of attributes used increases, the
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Frequency threshold Computation time
(hour)

The number of frequent AVP
sets

500 1.33 252
200 4.77 581

Table 4.4: Experimental results on sample frequency thresholds when using 5 at-
tributes

Frequency threshold Computation time
(hours)

The number of frequent AVP
sets

500 3.27 382
200 29.22 1080

Table 4.5: Experimental results on sample frequency thresholds when using 6 at-
tributes

Frequency threshold Computation time
(hours)

The number of frequent AVP
sets

500 7.03 603
200 224.79 1947

Table 4.6: Experimental results on sample frequency thresholds when using 7 at-
tributes
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computation time and number of frequent AVP sets for a larger frequency threshold

increase much slower than those for a smaller frequency threshold.

Figure 4.2: Computation time for sample frequency thesholds when using different
number of attributes

In our following experiment on SCCP discovery, we use all the 7 available at-

tributes mentioned in Section 4.1.2. In order to keep the computation time at a

feasible level, we set the frequency threshold to 500. With this setting, the compu-

tation time is 7.03 hours and the number of the frequent AVP sets found is 603. In

the next step, we calculate the Global Moran’s I index and the associated z-score for

each of the 603 AVP sets, to evaluate whether its corresponding collisions cluster

well in space.

Choosing the distance function for spatial autocorrelation measures

In our Spatial Co-Clustering Pattern (SCCP) discovery method, we use Global

Moran’s I index to evaluate the clustering degree of collisions in Step 1. After

finding all the SCCPs, we further identify their respective hotspots with the tradi-

tional spatial autocorrelation methods stated in Section 2.1.3, e.g., using Getis-Ord

Gi* statistic [28, 29]. Both Global Moran’s I index and Getis-Ord Gi* statistic in-
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Figure 4.3: The number of frequent AVP sets for sample frequency thesholds when
using different number of attributes

volve distances in their calculations. For example, the expression of the Getis-Ord

Gi* statistic is restated here:

G∗i =

∑n
j=1wi,jxj − X̄

∑n
j=1wi,j

S

√
[n

∑n
j=1 w

2
i,j−(

∑n
j=1 wi,j)

2]

n−1

In this expression, wi,j is the spatial weight between location point i and j. It is

usually a function of the spatial distance di,j between point i and j, i.e, wi,j =

1
di,j

. (This is discussed in detail in the following subsection. ) Therefore, before

calculating Global Moran’s I index or Getis-Ord Gi* statistic, we must first decide

how to define the spatial distance di,j between point i and j.

Let the geographic coordinates of point i be (xi, yi), the geographic coordinates

of point j be (xj, yj). Then the spatial distance di,j is a function of xi, yi, xj, yj .

The two most common distance functions used in spatial statistics are Euclidean

distance and Manhattan distance.

Euclidean distance is calculated as:

di,j =
√

(xi − xj)2 + (yi − yj)2 (4.1)
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Manhattan distance is calculated as

di,j = |xi − xj|+ |yi − yj| (4.2)

Generally speaking, Manhattan distance is more appropriate than Euclidean dis-

tance when travel is restricted to a street network, which is the case in our applica-

tion on collision data analysis. In our application, the travel distance between two

collision locations is more appropriately the Manhattan distance between them. So

in our following experiment, we use Manhattan distance to calculate the spatial

weight between two location points.

Modeling spatial weights

In this section, we discuss how to model the spatial weight wi,j between point i and

j based on the spatial distance di,j between them. In the traffic area, the most com-

mon models include inverse distance, fixed distance band and zone of indifference.

A brief introduction of these three models is given as following:

(1) Inverse distance model:

This model uses the inverse distance as the spatial weight. The expression of

wi,j is given as:

wi,j =
1

dδi,j
(4.3)

where δ can be assigned any appropriate value such as 0.5, 1.0, 1.5, 2.0.

In this case, the farther away a neighbor is from a point, the smaller the impact

it has on this point. The relationship between the spatial weight and the spatial

distance under this model (with δ = 1.0) is illustrated in Figure 4.4.

(2) Fixed distance band model:

In this model, neighbors within a specified distance band d0 (e.g., 1 km) are

weighted equally, while features outside the specified distance don’t influence cal-

culations (their weight is zero). The expression of wi,j is given as:

wi,j =

{
1 if di,j ≤ d0

0 if di,j > d0
(4.4)

The relationship between the spatial weight and the spatial distance under this

model is illustrated in Figure 4.5.
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Figure 4.4: The relationship between the spatial weight and the distance under
inverse distance model (with δ = 1.0)

Figure 4.5: The relationship between the spatial weight and the distance under fixed
distance band model
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(3) Zone of indifference model:

This model is a combination of the above two models. Neighbors within the

specified distance band d0 (e.g., 1 km) are weighted equally. Once the specified

distance is exceeded, the level of influence (the weight) drops off quickly. The

expression of wi,j is given as:

wi,j =

{
1 if di,j ≤ d0

1
(di,j−d0+1)δ

if di,j > d0
(4.5)

where δ can be assigned any appropriate value such as 0.5, 1.0, 1.5, 2.0.

The relationship between the spatial weight and the spatial distance under this

model (with δ = 1.0) is illustrated in Figure 4.6.

Figure 4.6: The relationship between the spatial weight and the distance under zone
of indifference model (with δ = 1.0)

All the three models are implemented in the ArcGIS software we used. For a

specific application, the more realistically we model how features interact with each

other in space, the more accurate our results will be. In practice, we need to choose

the model that best fit our goal of analysis.

To better understand the difference between these three models, we did some ex-

periments on our collision data to compare their respective influences on the output

hotspot analysis results. Taking the collisions on Saturdays (Day of the week =‘Sat-

urday’) in 2011 as an example, when setting δ as 1.0 and d0 as 1 km, we obtained

different hotspot analysis results with the three models, presented in Figure 4.7.

38



Figure 4.7: hotspot analysis results on collsions that happened on Saturdays in
2011, with three spatial weight models used
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From the hotspot analysis results in Figure 4.7, we notice that the fixed distance

band model and the zone of indifference model lead to almost the same hotspot

analysis results on our collision data. Besides, we can see that the inverse distance

model lead to “pin-point” hotspots, while the fixed distance band model and the

zone of distance model leads to hotspot regions.

From the above discussion, we draw the following conclusion:

If we want to differentiate individual location points and get precise hotspot

points, then the inverse distance model is a better choice for us. However, if we

want to consider points within a neighborhood (e.g., 1 km) as a whole and not

differentiate between them, or if we want to find hotspot regions instead of points,

then the fixed distance band model or the zone of indifference model is a better

choice.

After discussion with the Office of Traffic Safety (OTS) staff in Edmonton, we

decided to use the fixed distance band model, based on the following reasons. First,

the OTS staff are more interested in the hotspots regions of various types of colli-

sions than hotspot points. Second, considering our large computation amount, the

fixed distance band model is preferable to the zone of indifference model because

it is simpler and involves less computation. So in our following experiment, we use

the fixed distance band model to calculate the spatial weight between two location

points.

Setting distance band

After determining the spatial weight model, we still need to set the distance band d0.

The distance band we choose determines the scale of our analysis. Its value depends

on the goal of a specific application. In collision hotspot analysis as an example,

we may be interested in hotspot patterns at different levels, such as neighborhood

patterns, regional patterns, city wide patterns, etc.

Figure 4.8 displays the hotspot analysis results on the same collision data with

various distance bands. The collision data used here is the set of collisions that

happened on Saturdays (Day of the week =‘Saturday’) in 2011. The spatial weight

model is the fixed distance band model.

40



Figure 4.8: hotspot analysis results on collisions that happened on Saturdays in
2011, with various distance bands used 41



When the distance band increases from 100m to 5000m, the scale of our anal-

ysis increases correspondingly. When the distance band is as small as 100m, only

neighbors within this small distance are involved in the evaluation for hotspots. As

a result, the output hotspot patterns are at a small neighborhood level. In contrast,

when the distance band is as large as 5000, all neighbors within this large distance

are involved in the evaluation of hotspots, and they are all equally weighted. As a

result, the output hotspot patterns are at a large regional level. In this extreme case,

only one large hotspot region is recognized, which is located in the middle of the

city.

After discussion with the Office of Traffic Safety (OTS) staff in Edmonton, we

think a distance band between 1 km and 1.5 km is most informative for our analysis.

In our following experiment, we use 1 km as the distance band.

4.2 Experimental Results and Discussions

With the experimental setup we described in Section 4.1, we applied our SCCP

discovery method to Edmonton’s historical collision data in 2011. In Step 1, with

the frequency threshold ε = 500 and the z-score threshold γ = 5.0, we found 52

frequent AVP sets that lead to spatial clustering of collisions. Then in step 2, with

the significance level α = 0.1, 14 of those 52 AVP sets passed the test to be SCCPs.

These 14 SCCPs are listed in Table 4.7.

These SCCPs revealed that collisions with certain attribute values clustered par-

ticularly well in space. In other words, certain specific types of collisions happened

particularly frequently at some particular locations (hotspots). As all subsets of

a SCCP were verified to contribute to the collision clustering, we also obtained

valuable information for explaining the frequent collision occurrences at certain

hotspots. After finding all the SCCPs, we then further identified their respective

hotspots with the traditional spatial autocorrelation method, using Getis-Ord Gi*

statistic.

In the following we present a few sample results of the detected SCCPs and

their corresponding hotspots from Edmonton’s collision data in 2011.
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The detected SCCPs from Edmonton’s collision data in 2011
{Day of the week =‘Saturday’}
{Severity =‘Property Damage Only’}
{Traffic control =‘No Control Present’}
{Time segment=‘1000-1559’ (Working Hours)}
{Cause=‘Failed to Observe Traffic Signal’}
{Cause=‘Struck Parked Vehicle’}
{Day of the week =‘Thursday’}
{Day of the week =‘Saturday’, Road surface condition =‘Dry’}
{Severity =‘Property Damage Only’, Time segment=‘1000-1559’ (Working
Hours)}
{Road surface condition =‘Dry’, Traffic control =‘No Control Present’}
{Cause=‘Followed too Close’, Traffic control =‘No Control Present’}
{Day of the week =‘Saturday’, Time segment=‘1600-1859’ (PM Peak)}
{Road surface condition =‘Dry’, Cause=‘Struck Parked Vehicle’}
{Cause=‘Followed too Close’, Traffic control =‘No Control Present’, Time
segment=‘0700-0959’ (AM Peak)}

Table 4.7: the detected SCCPs from Edmonton’s collision data in 2011

Example 1: the detected SCCP is {Day of the week =‘Saturday’, Road surface

condition =‘Dry’}. Its corresponding hotspots are displayed in Figure 4.9. The

major hotspot regions are tagged with geographic information.

From the analysis result in Figure 4.9, we see that the hotspots of collisions

under the scenario “Day of the week = ‘Saturday’, Road surface condition = ‘Dry’”

are mainly located at major shopping areas in Edmonton, such as West Edmonton

Mall, Southgate Mall and downtown area. In addition, the SCCP indicates that the

day of Saturday and the dry road surface are two significant contributing factors

to the clustering of such collisions, which can help explain the formation of those

hotspots. With the knowledge discovered above, the City of Edmonton’s Office of

Traffic Safety can, for example, assign more traffic police to the above five shopping

areas on a sunny Saturday to patrol and implement traffic enforcement, in order to

decrease the collisions in these hotspot regions.

Example 2: the detected SCCP is {Road surface condition =‘Dry’, Cause=‘Struck

Parked Vehicle’}. Its corresponding hotspots are displayed in Figure 4.10. The ma-

jor hotspot regions are tagged with geographic information.
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Figure 4.9: the hotspot analysis result for collisions with {Day of the week =‘Sat-
urday’, Road surface condition =‘Dry’}
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Figure 4.10: the hotspot analysis result for collisions with {Road surface condition
=‘Dry’, Cause=‘Struck Parked Vehicle’}
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From the analysis result in Figure 4.10, we see that the hotspots of collisions

under the scenario “Road surface condition = ‘Dry’, Cause=‘Struck Parked Vehi-

cle’” are mainly located in the downtown area and on Whyte Avenue in Edmonton.

In addition, the SCCP indicates that both the dry road surface and the cause ‘Struck

Parked Vehicle’ contribute to the clustering of those collisions significantly, which

can guide us to investigate the formation of those hotspots. With the knowledge

discovered above, the City of Edmonton’s Office of Traffic Safety can further sur-

vey the parking areas of these two regions and take proper measures to decrease

this type of collisions in future.

Example 3: the detected SCCP is {Cause=‘Followed too Close’, Traffic con-

trol=‘No Control Present’, Time segment=‘0700-0959’ (AM Peak)}. Its corre-

sponding hotspots are displayed in Figure 4.11. The major hotspot regions are

tagged with geographic information.

From the analysis result in Figure 4.11, we see that the hotspots of collisions un-

der the scenario “Cause=‘Followed too Close’, Traffic control=‘No Control Present’,

Time segment=‘0700-0959’ (AM Peak)” are mainly located at the two high-level

bridges and two intersections along the Yellowhead Trail. In addition, the SCCP in-

dicates that each of the three AVPs makes a significant contribution to the clustering

of those collisions, which can help explain the formation of those hotspots. With

the knowledge discovered above, the City of Edmonton’s Office of Traffic Safety

can, for example, improve the traffic control condition at these four hotspot loca-

tions or implement traffic enforcement there during the AM peak hours, in order to

decrease this type of collisions at these four locations.

In addition, by comparing the analysis results from each single year’s data, we

can also investigate the trend of the hotspots of a particular type of collisions. Tak-

ing the type of collisions in Example 3 as an example, its trend of hotspots is dis-

cribed in Example 4.

Example 4: hotspot analysis results for collisions with “Cause=‘Followed too

Close’, Traffic control=‘No Control Present’, Time segment=‘0700-0959’ (AM Peak)”

in the past years; results are displayed in Figure 4.12.

From Figure 4.12, we can see how the hotspots of collisions under the sce-
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Figure 4.11: the hotspot analysis result for collisions with {Cause=‘Followed
too Close’, Traffic control=‘No Control Present’, Time segment=‘0700-0959’ (AM
Peak)}
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Figure 4.12: the hotspot analysis results for collisions with “Cause=‘Followed
too Close’, Traffic control=‘No Control Present’, Time segment=‘0700-0959’ (AM
Peak)” in the past years 48



nario “Cause=‘Followed too Close’, Traffic control=‘No Control Present’, Time

segment=‘0700-0959’ (AM Peak)” changed in the past several years. For example,

for the hotspot region within the red circle in Figure 4.12, it seems to expand in the

recent years.

In summary, the results of our experiments show that our method can discover

a larger number of meaningful hotspot patterns in Edmonton’s historical collision

data than the traditional methods. Compared to the traditional methods which only

detect the hotspots of the overall collisions, our method discovers the hotspot pat-

terns of various specific types of collisions, which are most interesting according to

the criteria given in Section 3.1.1. In addition, our method also reveals the relevant

AVPs that contribute to the clustering of those collisions, adding valuable indicators

for explaining certain hotspots.
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Chapter 5

Conclusions and Future Work

Hotspot analysis methods are attractive for understanding the spatial patterns of

collisions, which is critical for improving the efficiency and effectiveness of traf-

fic enforcement deployment as well as road safety. However, most of the tradi-

tional hotspot analysis methods only focus on the location information of the colli-

sion data, without integrating the abundant non-spatial attributes into the analysis.

Taking non-spatial attributes into account, however, opens opportunities to reveal

attribute-related hotspots that may otherwise go undetected, and adds valuable in-

dicators for explaining certain hotspots.

In this thesis, we introduced the concept of a Spatial Co-Clustering Pattern

(SCCP), which is a set of non-spatial AVPs that together contribute significantly

to the spatial clustering of the corresponding collisions. Then we presented our

SCCP discovery method. By applying our method on Edmonton’s historical col-

lision data, we discovered a number of SCCPs. We then further identified their

respective hotspots with the traditional spatial autocorrelation method. The experi-

mental results showed that our method can discover a larger number of meaningful

hotspot patterns in Edmonton’s historical collision data than the traditional meth-

ods, and reveal relevant non-spatial indicators for explaining certain hotspots. These

discoveries have the potential to allow more effective and efficient deployment of

resources for traffic enforcement and road safety.

Though our method is implemented to analyze collision data, it can also be

applied to other spatial data with non-spatial attributes, such as crime data. Future

research will consider applying this method in other application areas. In addition,
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though we already applied some techniques to reduce the amount of computation,

the current method is still computationally expensive. In future, new techniques for

computation reduction should be investigated. Finally, our method can currently

only analyze static historical data. A future challenge is to design a mechanism for

incremental update of SCCPs.
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