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Abstract 

Multilateral systems involving haptic information sharing between several users 

have recently found interesting applications in cooperative haptic teleoperation 

and haptic-assisted training. It is intuitively understood that some tasks are 

performed more effectively with two hands or through collaboration than one 

hand or individual operation. By using multiple user interfaces (“masters”) and 

one remote robot (“slave”) or more, multilateral tele-cooperation systems enable 

haptic information sharing and collaboration in performing a task in a remote 

environment between multiple users. Despite the aforementioned benefits, 

research in this area is still in its initial stage. In fact, the only multilateral system 

that has been thoroughly investigated is the most basic one: the bilateral 

teleoperation system involving teleoperation between one master and one slave. 

As with any other robotic system, stability of multilateral haptic 

teleoperation systems is of paramount importance. Study of stability of such 

systems must consider the fact that the human users are part of the closed-loop 

system and thus affect the stability. However, to model the human operator is 

practically impossible, imposing great difficulties in the system’s stability 

analysis. This thesis presents a novel criterion to study the stability of multilateral 

teleoperation systems based on passivity. This criterion provides researchers with 

an analytical, closed-form, necessary and sufficient condition to investigate the 

stability of multilateral haptic teleoperation systems. The thesis also proposes a 

numerical method for investigation of absolute stability of trilateral teleoperators.  
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Chapter 1Chapter 1Chapter 1Chapter 1    

    

    

Introduction Introduction Introduction Introduction     

    

1.1 Motivation 

 

One of the five senses the human has is the sense of touch. It is that sense that 

allows us to explore and manipulate an object by feeling it and sensing its 

roughness, size, stiffness, etc. When an object we intend to manipulate is not 

physically reachable, we use tools as extensions to our arms. Now, imagine that 

the extension tool is capable of recreating for us the sense of touch. In that case, 

we are able to manipulate remote objects and “feel” as if we are in direct contact 

with them. The described scenario is realized by haptic teleoperation systems. 

These systems are made up of one (or more) human operator(s) couple to one (or 

more) master robot(s) in order to control the movement of a remote slave to 

perform a task on a remote environment. 

The key motivation for this research is to establish a criterion for investigating the 

stability of multilateral haptic teleoperation systems, which can be modeled as n-

port networks. The realization of a teleoperator involve one or more master 

robots (i.e., user interfaces), one or more slave robots (i.e., remote robots), control 

units, and communication channels between the masters and the slaves. A 

multilateral teleoperation system is formed once the above teleoperator is coupled 

to human operators in one end and to external environments in the other end; 

naturally, human operators are coupled to the masters while the environments 

interact with the slaves. The multilateral teleoperation system is said to provide 
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haptic feedback if all of the slave/environment interaction forces are reflected 

back to the human operators via the masters.  

Figure 1.1 shows a multilateral teleoperation system made up of n robots. One 

potential scenario for Figure 1.1 is that n-1 master’s robots are sharing the 

execution of a task in a remote environment by collaboratively controlling the 

movement of a slave robot [5], [6], [7], [8], [9]. In Figure 1.1, each human 

operator/master interaction is denoted by Fhi, i=1,…,n-1, and the 

slave/environment interaction is denoted by Fe. Also, Vhi, Ve, Fcmi, and Fcs are the 

masters’ and the slave’s velocities and control signals, respectively. Impedances 

Zhi and Ze denote the dynamic characteristics of the human operators and the 

remote environment, respectively. Zmi and Zs denote the linear impedances of the 

masters and the slave, respectively. Moreover, Fhi*  and Fe*  are the operators’ and 

the environment’s exogenous input forces. 

A valid question one can ask is “why do we need stability criteria for multilateral 

teleoperation systems?” The answer is that stability criteria can give researchers 

formal and accurate information on the trade-offs between performance and 

stability of the multilateral teleoperation system. For a better understanding of this 

statement, consider a teleoperation task involving flipping the three-way switch 

shown in Figure 1.2. Assume that the human operator has been asked to move the 

switch from state 1 to state 2 but not to state 3. 

The teleoperation system should exhibit a sufficiently satisfactory performance so 

that the human operator can flip the switch by teleoperation of the slave robot 

through the master robot; for this, the slave robot’s overshoot should be no more 

than the position difference between states 2 and 3. In this example, it is evident 

that master-slave position error, which is a measure of teleoperation system 

performance, directly affects the performance of the task by the operator. To 

achieve a small enough master-slave position error, the slave’s position controller 

gains have to be selected large. However, selecting too large a controller gain 
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risks making the system non-passive or even unstable [38], [39], [40]. The upper 

limit on the controller gains before stability is lost is what can be determined 

using the passivity and absolute stability criteria developed in this thesis. The 

theoretical passivity and absolute stability criteria developed in this thesis are, 

therefore, valuable results that allow for obtaining maximum performance in the 

stable region.  

In practice, the upper limit imposed on the control gain for ensuring stability may 

restrict the performance to the extent that task performance is severely 

undermined. For example, in the same 3-way switch task, one may find that the 

highest slave’s controller gain for which the system remains stable is still not high 

enough to complete the task successfully (especially if the switch is sticky and the 

position difference between states 2 and 3 is small) even though the same task is 

done readily under direct touch. Therefore, it is also informative to study if 

successful completion of this task is possible at all and this study can be 

facilitated using the passivity and absolute stability criteria proposed in this thesis. 
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Figure 1.1.  A multilateral haptic teleoperation system consisting of n-1 master 
robots and one slave robot. 

 

 

Figure 1.2. A three-way switch. 

 

The central problem when studying the stability of teleoperation systems is that 

human operators and environments are part of the closed-loop system and thus 

1 2 3 
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their models are necessary for stability analysis. In practice, however, such 

models are next to impossible to acquire. For instance, the dynamics of a human 

operator changes according to the task at hand [3], [4]. 

For the simplest case – a bilateral haptic teleoperation system (Figure 1.3) that can 

be modeled as a 2-port network (Figure 1.4) – there exist well-known methods to 

investigate the stability. Such a study of stability is valid when the 2-port network 

is connected to unknown terminations (human operator and environment) that are 

passive. These methods are known as Llewellyn’s absolute stability criterion and 

Raisbeck’s passivity criterion [11]. We will describe these criteria later in this 

chapter. A method to study the stability of multilateral teleoperation systems 

beyond the bilateral case, which is the subject of this thesis, is still in demand. 

 

 

mX& sX&

∗
hF ∗

eF
hF eF

 
Figure 1.3. A bilateral teleoperation system comprising a human 
operator, a teleoperator (consisting of a master, a slave, 
controllers, and a communication channel), and an environment. 

 

 

 

Figure 1.4. A 2-port network. 
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1.2 Emerging Applications for Multilateral Teleoperation 

Systems 

 

Multilateral teleoperation systems beyond the bilateral one can offer greater 

advantages: They can be used to haptically train people in performing remote 

tasks, they can increase task efficiency where it helps to use two hands instead of 

one, they can help to perform a task in cooperation among several human 

operators, etc.  

Multilateral teleoperation systems can be categorized as single-master/multi-slave 

(SMMS), multi-master/single-slave (MMSS), and multi-master/multi-slave 

(MMMS) systems. All of them are subjects of intense research nowadays due to 

their potential applications. Next, some interesting applications of such systems 

are listed. 

Single-master/multi-slave (SMMS).  In this configuration, an operator coupled 

to a single master controls multiple slave robots. Applications of such systems 

include multiple slave robots capable of performing cooperative manipulation and 

grasping of a common object [19], semi-autonomous teleoperation on remote or 

inaccessible environments [20], formation control of mobile robots teleoperated 

by a human operator [21], and haptic-assisted micromanipulation with improved 

human operability [22]. In the SMMS configuration, the slave robots are designed 

with systems that avoid collisions among them.  

Multi-master/single-slave (MMSS). In this configuration, multiple human 

teleoperators control a single slave robot to perform a task on a remote 

environment. Applications of this configuration include tele-rehabilitation [23] 

and surgical training where an experienced surgeon mentors a trainee surgeon 

through shared control of a surgical robot [24]. 

Multi-master/multi-slave (MMMS).   In these systems, multiple masters control 
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multiple slave robots. Applications of MMMS can be found in teleoperation tasks 

performed in large-scale environments where the overall system is made up of 

individual subsystems working in tele-cooperation [25], remote pick-and-place 

tasks [26], and shipping of hazardous materials, surveillance sensor networks, and 

rescue [27]. 

1.3 Literature Survey 

 

While the applications of multilateral haptic systems are expanding rapidly, a 

question we have to ask is, what stability criteria are there in order to investigate 

the stability of multilateral teleoperation systems? The stability analysis of an n-

lateral teleoperation system is equivalent to that of an n-port network, where n can 

be equal or greater than 2. The key difference between a multilateral teleoperation 

system (with n > 2) and a bilateral teleoperation system (with n = 2) is that the 

former cannot be modeled as a 2-port network (note: a good critical review for 

absolute stability of 2-port networks is given in [12]). Consequently, conventional 

theories for absolute stability or passivity analysis of 2-port networks can be 

applied to bilateral teleoperation systems but not to multilateral teleoperation 

systems with n > 2. Unfortunately, existing research on this topic has not given 

satisfactory results from a practical perspective. 

In finding conditions for stability of n-port networks, a researcher will face the 

decision of whether to use the theory of passivity to establish a criterion for 

stability or to find an absolute stability condition. Note that, as elaborated later, 

passivity implies absolute stability in the sense that if an n-port network is 

passive, then it is also absolutely stable.  

The few attempts to find a criterion for absolute stability of n-port networks can 

be categorized based on whether they involve conditions on immittance 

parameters or scattering parameters. The following are the existing criteria for 



8 

 

passivity and absolute stability of n-port networks, to the best of the author’s 

knowledge. 

Passivity criteria for n-ports  

In 1954, Raisbeck wrote a paper proposing a general definition of passivity of a 

network [29]. His definition is considered general because it goes beyond 

“realizable networks” and assumes neither rationality nor reciprocity. Raisbeck 

only presented a criterion limited to the investigation of passivity of 2-port 

networks known as Raisbeck’s passivity criterion. He did not extend this criterion 

for the general case of n-port networks where n can be an integer larger than 2. 

In 1959, Youla et al. published the first formal justification of the passivity 

definition for n-port networks based on Raisbeck’s general passivity definition 

(with minor differences) [31]. The paper presented a rigorous theory of passive 

LTI n-port networks but is fairly involved and stops short of proposing a passivity 

criterion. 

Another interesting work on the passivity of n-port networks has been presented 

by Wyatt et al. [32].  This paper is another rigorous attempt to present a definition 

for passivity of n-ports departing from energy considerations. It goes to the level 

of expressing necessary and sufficient conditions for passivity of several classes 

of n-ports such as resistive n-ports, capacitive/inductive n-ports, linear n-ports 

(using state space representation), etc. Like the previous case, this paper stops 

short of proposing a passivity criterion for n-port networks. 

In [33], Anderson and Spong utilized concepts from network theory and 

introduced a tool for checking the passivity of an n-port network based on the 

singular value of the scattering matrix of the network. They showed that a 

network is passive if and only if the norm of its scattering operator is less than or 

equal to one. The scattering operator S is defined as  

 � − � = �(� + �)		 			 	 															(1.1)	
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and maps effort plus flow into effort minus flow. In (1.1), F is the effort measured 

across the network’s ports and v is the flow entering the network’s ports. In 

relation to haptic teleoperation systems, the effort variable is equivalent to force 

and the flow variable is equivalent to velocity. In relation to electrical networks, 

effort is equivalent to voltage and flow is equivalent to current. 

In the Laplace domain, (1.1) becomes 

 �(�) − 
(�) = �(�)(�(�) + 
(�))																											(1.2)	
 

According to [33], the n-port network is passive if and only if 

 

   ‖�‖� ≤ 1	 																																												(1.3)	
 

This is equivalent to  

                               		sup���/�(�∗(��)�(��)) ≤ 1	 																																			(1.4)	
 

where � denotes the eigenvalue of a square matrix, *  denotes the complex 

conjugate transpose, and ω is the frequency. 	Condition (1.4) is difficult to verify 

in the general case especially without knowledge of the model parameters for the 

robots and the controllers, making it not suitable for control synthesis. 

Absolute stability criteria for n-ports 

For absolute stability analysis of n-port networks, researchers have used 

techniques involving impedance parameters, scattering parameters, and graphical 

analysis as shown in [13], [34], [35], and [36]. All proposed methods have issues; 

some are too complex in order to have a practical application and some others 

make oversimplifications.  

In [16], Ku proposes two methods to study the stability of non-reciprocal n-port 
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networks using impedance parameters. In the first method, he studies the stability 

of the nonreciprocal n-port by finding a reciprocal n-port network which has the 

same stability characteristics as the nonreciprocal n-port network in question. This 

approach is limited to nonreciprocal n-port networks that do have an equivalent 

reciprocal network and have a certain structure. The second approach uses the 

impedance matrix of a nonreciprocal 3-port network and reduces it into a 2-port 

network by terminating the 3rd port in a fixed reactance. It is obvious that by 

terminating any 3rd port in a fixed reactance, the stability conditions are the same 

as stability conditions of 2-port networks. This approach works as follows: Let 

port 2 be terminated in a fixed reactance and find stability conditions between 

port 1 and port 3. Then, let port 3 be terminated in a fixed reactance and find 

stability conditions between port 1 and port 2. In this case, for different values of 

fixed reactances, a family of circles is obtained (by using the bilinear 

transformation of the input impedance) whose characteristics define the region of 

stability. The fixed reactance can take on different values, which make for a long 

and iterative process. Thus, the analysis in [16] is considerably involved. 

In [35], Boehm and Albright presented a solution for the case of 3-port networks. 

The stability analysis is done by using scattering parameters and investigating the 

absolute stability of 2-port networks resulting from terminating the 3-port network 

to a fixed termination at the 3rd port. This makes the method rather complex since 

for each termination, three stability conditions involving its reflection coefficient 

need to be considered; consequently, the necessary conditions for stability of 3-

ports result in a total of nine equations. 

Graphical solutions have also been proposed based on reflection coefficients, 

scattering parameters, and stability plots using the Smith Chart. In [36], Tan 

presents a simplified graphical analysis based on 2-port stability criterion using a 

single parameter µ. The criterion establishes that a 2-port network is absolutely 

stable if and only if the geometrically derived parameter µ satisfies  

 



11 

 

� = 1 − |���|�|��� − ∆���∗ ||������| ≥ 1																																						(1.5) 
where sij are the elements of the scattering matrix S and ∆ is the determinant of S. 

Tan postulates  that a 3-port network arbitrarily terminated at one of its ports can 

be reduced to a 2-port network whose absolute stability can be investigated  by 

using (1.5). Condition (1.5) results in stability plots that are mapped into the 

Smith Chart. Like previous cases, this method does not propose a general solution 

for absolute stability of n-port networks; on the contrary, by restricting one of the 

ports to an arbitrary value, it transforms the 3-port network into many 2-port 

networks.  

In conclusion, tools known so far to evaluate the passivity and absolute stability 

of n-port networks are still in their infancy and more research has to be done in 

order to find a complete analytical solution to the problem. 

1.4 Contribution of the Thesis 

  

The contributions of this thesis are twofold. First, it presents a closed-form and 

practically-useful criterion for passivity of n-port networks (n equal or greater 

than 2), which can be used to investigate the stability of multilateral haptic 

teleoperation systems. Second, it gives a procedure for direct investigation of 

absolute stability of trilateral haptic teleoperation systems. In this case, an 

analytical expression needed to assess the absolute stability of three port networks 

is derived. The numerical evaluation of such an expression gives information 

regarding the stability of trilateral haptic teleoperation systems. 

1.5 Thesis Synopsis and Organization  

 
The following is a summary of each chapter of the thesis. 
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Chapter 2 presents an overview of passivity and absolute stability of 2-port 

networks. The intention of this chapter is to familiarize the reader with the most 

important characteristics and issues of 2-port network stability analysis. By 

studying the work done so far for the case of bilateral systems (2-port networks), 

the reader will gain the necessary knowledge required to understand the 

complexity of multilateral haptic systems beyond the bilateral one. This 

knowledge will be crucial and necessary for the study of n-port network stability. 

In Chapter 3, a novel method to investigate the passivity of n-port networks, 

based on immittance parameters of the network, is presented. The method is given 

as a closed-form criterion for passivity of n-port networks and can be used to 

investigate the stability of multilateral haptic teleoperation systems. This criterion, 

which is necessary and sufficient for passivity of an n-port network, imposes n 

conditions on the immittance parameters of the network and another set of n 

conditions on the residues of the immittance parameters at their imaginary-axis 

poles. 

Chapter 4 discusses a method for investigation of absolute stability of 3-port 

networks. The chapter departs from the fundamental definition of absolute 

stability as it applies to 3-port networks and arrives at an expression that can be 

evaluated iteratively and numerically for assessment of stability of trilateral haptic 

teleoperation systems. 

In chapter 5, the passivity and absolute stability of a dual-user haptic system for 

control of a single teleoperated robot (i.e., a trilateral haptic teleoperation system) 

are investigated through simulations in order to verify the findings in Chapters 3 

and 4. Chapter 6 presents the conclusions of this research as well as directions for 

future research.  
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Chapter 2Chapter 2Chapter 2Chapter 2    

    

    

Passivity and Absolute Stability of  Passivity and Absolute Stability of  Passivity and Absolute Stability of  Passivity and Absolute Stability of  

Bilateral TeleoperatBilateral TeleoperatBilateral TeleoperatBilateral Teleoperatorsorsorsors    

    

2.1 The Bilateral Teleoperation System and the 2-port Network 

Representation 

 

2-port networks are overwhelmingly the method of choice for modeling a bilateral 

teleoperation system, which consists of a slave robot and a master user interface. 

The human operator controls the slave and is provided with haptic feedback 

concerning slave/environment contact forces through the master. Figure 2.1 shows 

the equivalent electrical circuit representation of a bilateral teleoperation system. 

Usually, only the linear dynamics of the master and slave are considered as in 

 

$% + $& = '%()% 	,										$+ − $, = '+()+																													(2.1)		
In the above, the hand/master interaction is denoted by fh and the 

slave/environment interaction is denoted by fe. Also, Mm, Ms, xm, xs, fm, and fs are 

the master’s and the slave’s inertias, positions, and control signals, respectively. In 

Fig 2.1, impedances Zh and Ze denote the dynamic characteristics of the human 

operator’s hand and the remote environment, respectively. Moreover, �&∗ and �,∗ 
are the operator’s and environment’s exogenous input forces, which are 

independent of the teleoperation system behavior [1]. 
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mX& sX&
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hF ∗
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hF eF

 

Figure 2.1. A 2-port network model of a bilateral teleoperation system. 

 

 

Figure 2.2. A general 2-port network. 

Figure 2.2 shows a general 2-port network, in which the pair (I1, V1) is the input 

current and voltage and the pair (I2, V2) is the output current and voltage. 

Depending on which combination of these four quantities (I1, I2, V1, and V2) are 

chosen as independent and dependent variable pairs, six different ways for 

modeling the 2-port network exist. Table 2.1 shows these six possible 

representations of a 2-port network [11]. 

 

Table 2.1. Different representations of a 2-port network. 

Independent 
Variables 

Dependent 
Variables Parameter Type 

I1, I2 V1, V2 Open-circuit impedances (z) 

V1, V2 I1, I2 Short-circuit admittances (y) 

I1, V2 V1, I2 Hybrid parameters (h) 

V1, I2 I1, V2 Inverse hybrid parameters (g) 

V2, I2 V1, I1 Chain parameters (A, B, C, D) 

V1, I1 V2, I2 Inverse chain parameters (A, B, C, D) 
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For instance, using the impedance parameters, the 2-port network can be modeled 

as 

       -
�
�. = /0��							0��0��							0��1 -2�2�.                                  (2.2)	
	

Accordingly, the impedance model of the bilateral teleoperation system in Figure 

1 is given by [15] 

-�&�, . = /0��							0��0��							0��1 3 45%−45+6                                (2.3)	

2.2 Criterion for Absolute Stability and Passivity of a 2-port 

 Network with Unknown Terminations 

   

2.2.1   Preliminaries 

Closed-loop stability is crucial for safe teleoperation. For instance, when a 

surgeon remotely guides a robot to operate on a patient, stability is of ultimate 

importance. For the analysis of closed-loop stability of a teleoperation system, 

according to Figure 2.1, the knowledge of the human operator and the 

environment dynamics are needed in addition to that of the teleoperation system’s 

immittance parameters (z, y, h, or g). In practice, however, the models of the 

human operator and the environment are usually unknown, uncertain, and/or time-

varying. This makes it impossible to use conventional techniques to investigate 

the closed-loop stability of a teleoperation system.  

Assuming that Zh(s) and Ze(s) in Figure 2.1 are passive, we might be able to draw 

stability conditions that are independent of the human operator and the 

environment. Two well-known methods have been developed to investigate the 

stability of a 2-port network that is connected to unknown terminations. These 
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methods are known as Llewellyn’s absolute stability criterion and Raisbeck’s 

passivity criterion. Both criteria work under the assumption that both the operator 

and the environment are passive. The following definitions are needed before 

presenting these criteria. 

Definition: Passivity [11]  

A 2-port network is passive if, for all excitations, the total energy delivered to the 

network at its input and output ports is non-negative. Hence, passivity is a 

property of the 2-port network which establishes that it cannot deliver more 

energy than what is delivered to it. Assuming that the 2-port network has zero 

energy stored at time t = 0, the network is said to be passive if it satisfies 

 

    7(8) = 9 (:�(;)��(;) + :�(;)��(;))<= >; ≥ 0                   	(2.4)	
 

where :@(8)	and �@(8) are the instantaneous values of the current and voltages at 

port i with i=1,2, and 7(8) represents the total energy exchange for the 2-port 

network. 

Definition: Activity [11]  

If a network is not passive, then it is active. 

Definition: Positive realness [11]    

A rational function 	�(�) is positive real if and only if, in addition to being real for 

real �, it meets the following conditions: 

a. �(�)	has no poles neither zeros in the right half plane (RHP), 

b. Any poles of 	�(�) on the imaginary axis are simple with real and 

non-negative residues, and 

c. ℜBC�(��)D ≥ 0,					∀	�.   

Definition: Absolute stability 

The following definitions are equivalent: 
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A. A 2-port network is absolutely stable if it remains stable under all possible 

uncoupled passive terminations.  

B. A 2-port network is absolutely stable if, when connected to a passive 

termination at one of its ports, the other port will display a passive 

behavior.  

C. A 2-port network is absolutely stable if the port currents are zero at all real 

frequencies for all passive terminations. 

Definition: Potential instability [11]  

A 2-port network is potentially unstable if it is possible to find uncoupled passive 

terminations that, when connected to the network, produce an unstable system. If 

a 2-port network is not absolutely stable, then it is potentially unstable.  

Theorem: Equivalence between positive realness and passivity for LTI systems 

[29]  

Consider a linear time invariant system H defined by F( = ℎ ∗ (, where ℎ	has a 

Laplace transform that has no poles in the right half plane. System H is passive if 

and only if ℜBHFI(��)J ≥ 0,		 for all real frequencies �, where FI(��) is the 

Fourier transform of ℎ(8). 
This theorem establishes that an LTI system is passive if and only if its transfer 

function is a positive real function. This theorem is stated for a 1-port network. Its 

extension to n-port networks is presented later in Chapter 3. 

2.2.2 Relationship between input/output impedance and absolute 

stability 

What follows is a simple proof of the assertion that a 2-port network is absolutely 

stable if its input and output impedance for passive terminations 0� and 0� are 

positive real functions. Figure 2.3 shows a 2-port network driven by a voltage 



18 

 

source 
+  and with terminations 0� and 0�. The system can be represented by the 

following equation 

/
+01 = /0�� + 0� 0��0�� 0�� + 0�1 -2�2�.																																				(2.5) 

 

The transfer function for this system is the ratio of response to excitation and is 

given as 

 2�
+ = 0��(0�� + 0�)(0�� + 0�) − 0��0�� 																													(2.6) 
 

z11 z12

z21 z22

I1I1 I2I2

z2

z2

 

Figure 2.3. A double terminated 2-port network. 
 
 

For the system to be stable, the transfer function cannot have poles in the right 

half of the complex frequency plane. The poles of the double terminated 2-port 

network are the roots of the characteristic equation 

 

      (0�� + 0�)(0�� + 0�) − 0��0�� = 0			              												(2.7)	
 

With some manipulations, equation (2.7) can be written in any of the following 

two equivalent forms 

 0� + M@N� = 0													or										0� + M@N� = 0		     													(2.8)	
 

with M@N� and M@N� given as: 
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M@N� = 0�� − 0��0��0�� + 0� = 0��0� + 0��0�� − 0��0��0�� + 0� 																				(2.9) 
M@N� = 0�� − 0��0��0�� + 0� = 0��0� + 0��0�� − 0��0��0�� + 0� 																		(2.10) 

 

z11 z12

z21 z22

I1I1 I2I2

V1V1 V2V2
++

--
++

-- Port 2
Port 2 z2

z2

 
Figure 2.4. A nonreciprocal 2-port network terminated at port 2. 

 
 

 

 

Figure 2.5. A nonreciprocal 2-port network terminated at port 1. 

 

On the other hand, If Z(s) is any arbitrary positive real function, then Z(s) has to 

satisfy the following two conditions 

 

                                                M(�)	is	real	when	�	is	real 
                                           ZB[M(�)\ ≥ 0					for							ZB[�\ ≥ 0       (2.11)		
As previously stated, a positive real function cannot have poles or zeros in the 

right half of the s-plane; poles or zeros along the imaginary axis are allowed only 

if they are simple. Next, the argument for positive realness of M@N� is presented 

(the same argument applies to positive realness of M@N�). 
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The first equation in  (2.8) represents another way of writing the system’s 

characteristic equation, thus 

 

           0� + M@N� = 0			 ≜ 		 (0�� + 0�)(0�� + 0�) − 0��0�� = 0          (2.12)	
 

If 0� is passive then it is positive real. If  M@N� is also positive real, meaning that ZB(M@N�) ≥ 0,			 then 0� + M@N�, which represents the total impedance of port 1 

loop, is positive real as well; thus, 0� + M@N� cannot have zeros in the right half 

plane. Zeros of 0� + M@N�	are the zeros of the characteristic equation (2.7), which 

in turn are the poles of the system’s transfer function given in (2.6). In conclusion, 

the 2-port network is absolutely stable if the input impedance M@N� is a positive 

real function. The same proof can be applied for the case of M@N�	■ 

2.2.3   Llewellyn’s absolute stability criterion 

If p represents any of the four immittance parameters (z, y, h, g) of a 2-port 

network, the criterion establishes that the network is absolutely stable if and only 

if [11]: 

 

1. _�� and _�� have no poles in the right-half plane (RHP), 

2. Any poles of _�� and _�� on the imaginary axis are simple with real and 

positive residues, 

3. For all real values of frequencies �, we have ℜB(_��) ≥ 0 ℜB(_��) ≥ 0            2ℜB(_��)ℜB(_��) − ℜB(_��_��) − |_��_��| ≥ 0                           (2.13) 
where ℜB(∗) denotes the real part of a complex number. 

If any of the above conditions is not satisfied, then the 2-port network is 

potentially unstable. As mentioned before, the advantage of using absolute 
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stability in haptic teleoperation systems is that models of the operator and 

environment will not be needed for stability analysis.  

Proof of Llewellyn’s criterion for absolute stability:  

A simple proof of Llewellyn’s criterion for absolute stability can be offered by 

using the properties of bilinear transformations [34]. Recall that, by definition, a 

2-port network is absolutely stable if its input (and output) impedance for any 

passive load (and source) impedance is a positive real function. The following 

derivation applies to any of the four immittance parameters (z, y, h, g) of a 

nonreciprocal 2-port network.  

Using impedance parameters (which is one the four possible choices of 

immittance parameters), the relation between voltages and current in the 2-port 

network of Figure 2.6 can be written as 

 

-
�
�. = /0��							0��0��							0��1 -2�2�.                                       (2.14)	
 

where all the impedance parameters are complex quantities of the form  

 z@a = b@a + �(@a                                                (2.15) 
 

 

Figure 2.6. A general nonreciprocal 2-port network. 

Equations (2.9) and (2.10) from the Section 2.2.2 show that M@N�and M@N� are 

bilinear transformations of the terminations 0� and 0�, respectively. A bilinear 

transformation transforms circles into circles with straight lines as limiting cases 
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[16]. The borderline of passivity in the 0� complex plane is the jω-axis meaning 

that any impedance to the right of the jω-axis is passive and any impedance to the 

left is non-passive (active). 

 

 

   

Figure 2.7. The input impedance M@N� as a bilinear transformation of 0�. 

In Figure 2.7, for all passive 0�,  M@N� is transformed into a circle centered at c� 

with radius b�where 

c� = 0�� − 0��0��2ℜB(0��)																																												(2.16) 

and 

b� = |0��0��|2ℜB(0��)																																																			(2.17) 
In Section 2.2.1, we established that a 2-port network is absolutely stable if the 

input impedance M@N�	(and	M@N�) is a positive real function. This fact is 

represented by the two inequalities (2.18) and (2.19). 

 ℜB(M@N�) ≥ 0			for all passive 0�                  (2.18) 
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and ℜB(M@N�) ≥ 0			for all passive 0�                  (2.19)	
 

For the nonreciprocal 2-port network to be absolutely stable, condition (2.18) and 

condition (2.19)  must be satisfied. 

Condition (2.18) means that 

 ℜB(c�) − b� ≥ 0																																											(2.20) 

 

Substituting (2.16) and (2.17) into the condition (2.20) yields 

 2ℜB(0��)ℜB(0��) − ℜB(0��0��) − |0��0��|2ℜB(0��) ≥ 0															(2.21) 
 

Also for all passive 0�, M@N� is transformed into a circle centered at c�with radius b�. Following the same procedure as for M@N�, condition (2.19) yields  

 2ℜB(0��)ℜB(0��) − ℜB(0��0��) − |0��0��|2ℜB(0��) ≥ 0															(2.22) 
 

Furthermore, 

ℜB(0��) ≥ 0																																																(2.23) 
and ℜB(0��) ≥ 0																																															(2. 24) 
 

are necessary conditions for the stability since they represent conditions (2.18) 

and (2.19) under open circuit terminations. 

From (2.21) to (2.24), we have 

     ℜB(0��) ≥ 0       
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                                                         ℜB(0��) ≥ 0																																																											 
      2ℜB(0��)ℜB(0��) − ℜB(0��0��) − |0��0��| ≥ 0              (2.25) 

 

which is Llewellyn’s criterion for absolute stability [18]. 

2.2.4   Raisbeck’s passivity criterion  

The necessary and sufficient conditions for passivity of a 2-port network with the 

immittance parameter p are [11]: 

1. The p-parameters have no RHP poles. 

2. Any poles of the p-parameters on the imaginary axis are simple, and the 

residues of the p-parameters at these poles satisfy the following 

conditions:  

If  kij denotes the residue of pij and kij
*  is the complex conjugate of kji, 

then 

 e�� ≥ 0 

e�� ≥ 0                                                         

e��e�� − e��e�� ≥ 0			f:8ℎ		e�� = e��∗ 																																									(2.26)	
3. The real and imaginary part of the p-parameters satisfy the following 

conditions for all real frequencies � 

 ℜB(_��) ≥ 0 

ℜB(_��) ≥ 0       

4ℜB(_��)ℜB(_��) − gℜB(_��) + ℜB(_��)h� − gℐj(_��) −
ℐj(_��)h� ≥ 0         (2.27) 

where ℐj(∗) denotes the imaginary part of a complex expression.     
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Proof of Raisbeck’s passivity criterion of 2-port networks will not be shown here. 

Instead, a full proof of passivity of n-port networks as an extension of Raisbeck’s 

criterion will be presented in the next chapter. ■ 

 

2.2.5 Comparison of stability vs. passivity: The stability–activity 

diagram 

As mentioned previously, the advantage of using passivity in haptic teleoperation 

systems is that models of the operator and environment are not needed for 

stability analysis. However, stability conditions drawn from passivity are 

conservatives compared to absolute stability. There is one case in which the 

passivity and absolute stability criteria overlap. It is when the 2-port network 

representing the teleoperator is reciprocal. By definition, a 2-port network is said 

to be reciprocal if the ratio of response to excitation is invariant to an interchange 

of the locations of the excitation and the response. In terms of z-parameters, a 2-

port network is reciprocal if	0�� = 0��.  

A comparison between the aforementioned criteria for passivity and absolute 

stability of 2-port networks shows that Raisbeck’s passivity criterion implies 

condition 1, condition 2, and the first two sub-conditions of condition 3 of 

Llewellyn’s absolute stability criterion. The difference between the two criteria 

indeed lies in the last sub-condition of conditions 3. For absolute stability, this 

condition can be written as [10] 

 b���√b��b�� ≤ 1																																																				(2.28) 
 

where b��� is the real part of  √0��0�� while b�� and b�� are the real part of 0�� 

and 0��, respectively. Moreover, for passivity, the last condition can be written as  
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b����b��b�� + (|0��| − |0��|)�4b��b�� ≤ 1																																	(2.29) 

 

Obviously, absolute stability and passivity coincide when	0�� = 0��. 

Equations (2.28) and (2.29) can be represented in the stability-activity diagram 

shown in Figure 2.8 by plotting   
l|mno|p|mon|l�√qnnqoo   vs. 

qnon√qnnqoo . The graph shows the 

boundary between the regions of passivity and activity is the first quadrant of a 

circle of unit radius. The boundary between the regions of absolute stability and 

potential instability is represented by the vertical line at 
qnon√qnnqoo = 1. It is observed 

from the graph that the condition for passivity implies the condition for absolute 

stability; however, the condition for absolute stability does not necessarily imply 

the condition for passivity. Consequently, passive networks are absolutely stable 

but not all absolutely stable networks are passive. 

By using this graph, one can easily determine the stability of a bilateral 

teleoperator. The immittance matrix representing the bilateral teleoperator in 

question will be a function of frequency (s = jω). Thus, by running ω from 0 to ∞ 

a curve can be plotted on the stability-activity diagram. If the curve is completely 

inside the passive region, the teleoperator is passive and, therefore, absolutely 

stable. If the curve lies anywhere inside the absolutely stable region, the 

teleoperator is absolutely stable but not necessarily passive. If any point of the 

curve lies to the right of the vertical line 
qnon√qnnqoo = 1, the teleoperator is potentially 

unstable, meaning that there is at least one combination of passive environment 

and passive operator for which the system is unstable.   
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b121√b11b22  

l|012| − |021|l2√b11b22  

 

Figure 2.8.  The stability-activity diagram. 

 
2.3 Transparency of a Bilateral Teleoperation System 

 

Besides stability, a main goal of teleoperation control is transparency. Although 

not a subject of this research, a brief description of transparency is provided next. 

Transparency is the ability of a teleoperation system to present the undistorted 

dynamics of the remote environment to the human operator [2], and requires the 

master and the slave positions and interactions to match regardless of the operator 

and environment dynamics. Mathematically, it can be expressed as  

 

$& = $, ,				(% = (+ 																																																		(2.30)		
The hybrid representation of the teleoperator shown in Figure 2.1 is given by 

 

- �&−45+. = -ℎ��							ℎ��ℎ��							ℎ��. -45%�, .																																							(2.31)	
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Using hybrid parameters, full transparency is guaranteed if  

 ℎ�� = 0,   ℎ�� = 1,   ℎ�� = −1,   ℎ�� = 0                     (2.32) 
 

where the H-matrix components hij  can be interpreted as 

 ℎ�� = �& 45%⁄ lstu=:       input impedance when the slave is in free motion  
 ℎ�� = �& �,⁄ |w5xyz:       force tracking when the master is in locked motion 

ℎ�� = – 45+ 45%⁄ lstu=:   - velocity tracking when the slave is in free space 

ℎ�� = – 45+ �,⁄ lw5xu=:    output admittance when the master is in locked motion 
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Chapter 3Chapter 3Chapter 3Chapter 3    

    

    

Passivity of  Passivity of  Passivity of  Passivity of  Multilateral TeleoperatorsMultilateral TeleoperatorsMultilateral TeleoperatorsMultilateral Teleoperators    

    

3.1 Introduction 

 

An n-port network can be defined as a network containing n pairs of terminals for 

external connections. Each pair of terminals represents a port to which an external 

network can be connected (Figure 3.1). The external behavior of the n-port 

network can be determined if all the I i currents and Vi voltages are known. If for 

any given port the product of current and voltage is positive, then power is 

entering that port.  

 

 

Figure 3.1. A general n-port network. 

  

As a natural extension from 2-ports, passivity of an n-port network is a sufficient 

condition for the stability of the network when coupled to passive termination. An 
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attractive feature of passivity is that it applies to both linear and non-linear 

networks and it is based on simple energy concepts. In this chapter, the necessary 

and sufficient conditions for passivity of an n-port network are presented. 

3.2 Passivity Conditions for Linear n-port Networks 

 

By analogy with the case of 2-port networks, we define an n-port network to be 

passive if, for all excitations, the total energy exchange at the network’s input and 

output ports is non-negative. Assuming that the 2-port network has zero energy 

stored at time t = 0, this passivity definition is expressed as 

 7(8) = 9 (:�(;)��(;) + :�(;)��(;) + … + :N(;)�N(;))<= >; ≥ 0    (3.1)  

 

where 7(8) is the total energy delivered to the n-port network.  

Based on (3.1) for the case of } = 2, Raisbeck found the necessary and sufficient 

conditions for passivity of 2-port networks [29]. We recall here that in the case of 

linear and time invariant networks, passivity and positive realness are equivalent, 

which explains why Raisbeck arrived to the conclusion that a necessary and 

sufficient condition for a network to be passive is that its impedance function has 

to be a positive real function. 

The n-port network passivity theorem that we propose later in this chapter holds 

for any of the four immittance parameters, yet for brevity it is written only in 

terms of impedance parameters. The proof for the theorem is given in Section 3.3. 

Using the impedance parameters of the n-port network, the relation in the s-

domain between voltages and currents is given by 
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                             ~
�(�)
�(�)⋮
N(�)� = ~0��(�)0��(�)⋮0N�(�)				
0��(�)0��(�)⋮0N�(�)				

……⋱…				0�N(�)0�N(�)⋮0NN(�)� ~2�(�)2�(�)⋮2N(�)�	             (3.2)	
 

which can be compactly described as � = �� (note that � is the vector of current 

and not the identity matrix). In the proof of this theorem, we will need the 

following definitions. 

Definition: Hermitian matrix 

A Hermitian matrix	� is a square matrix with complex elements ℎ@a for which the 

following property holds: ℎ@a = ℎa@∗ . Consequently, a Hermitian matrix � is 

equivalent to its own conjugate transpose.  

The eigenvalues of a Hermitian matrix are always real-valued. Another important 

attribute of a Hermitian matrix � is that it is always possible to find a square 

unitary matrix � (i.e., �∗� is the identity matrix) such that �∗��	 is a diagonal 

matrix with the eigenvalues of � on its diagonal. Hence, it is always possible to 

diagonalize a Hermitian matrix. 

Definition: Hermitian form  

A Hermitian form is an expression of the form ∑ ℎ@a�a �@∗ in which the coefficients ℎ@a are the complex elements of a Hermitian matrix	�.  

Definition: Reduced row-echelon form  

A reduced row-echelon form is a matrix form that has the following properties:  

� The first nonzero number in a row is a 1 (leading 1). 

� All rows made up entirely of zeros are grouped together at the bottom of 

the matrix. 

� The leading 1 in the lower row occurs farther to the right than the leading 
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1 in the higher row. 

� Each column that contains a leading 1 has zeros everywhere else. 

Theorem 1:  Passivity of an n-port network.  

The necessary and sufficient conditions for passivity of an n-port network are 

A. The z-parameters have no RHP poles. 

B. Any poles of the z-parameters on the imaginary axis are simple, and 

the residues e@a of the z-parameters at these poles satisfy the following 

conditions: 

 1.			e@@ ≥ 0                             : = 1, 2, … , } 

2.		 e��e�� − e��e��e�� ≥ 0 

3.		 e��e�� − e��e��e�� − (e��e�� − e��e��)(e��e�� − e��e��)e��(e��e�� − e��e��) ≥ 0 

⋮ 
⋮ 
}.		eNN − ∑ |�@N|�e@@� ≥ 0Np�@u�         ∀	�@a		with	: ≤ �            (3.3) 

         

where 

� e@a denotes the residue of 0@a . 
� The terms �@a are the elements of an upper triangular matrix � 

used to diagonalize the residues matrix �	according to �∗��� =� , with �∗being equal to the transpose complex conjugate of �. 

� The coefficients e@@	� are the elements of the diagonal matrix ��.  
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C. The complex 0�-parameters satisfy the following conditions for all real 
frequencies � 

 

1.			0@@� ≥ 0                             : = 1, 2, … , } 

2.		 0��� 0��� − 0��� 0���0��� ≥ 0 

3.		 0��� 0��� − 0��� 0���0��� − (0��� 0��� − 0��� 0��� )(0��� 0��� − 0��� 0��� )0��� (0��� 0��� − 0��� 0��� ) ≥ 0 

 

⋮ 
⋮ 
 

}. 		0NN� − ∑ |f@N|�0@@�� ≥ 0Np�@u�         ∀	f@a	with	: ≤ �            (3.4) 
 

where 

� 0@a� = �� g0@a + 0a@∗ h are the elements of the matrix ��. 
� The terms f@a are the elements of an upper triangular matrix � 

used to diagonalize the matrix 	��	according to �∗���� = ��, with �∗equal to the transpose complex conjugate of �. 

� The elements 0@@	�� are the entries of the main diagonal matrix	���.  
Note: 	� is the impedance matrix representing the n-port network. �� is equal to 

half the sum of  � and the transpose of its complex conjugate. ∎  
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3.3 Proof of Theorem 1 

 

Previously in Chapter 2 it was shown that for LTI systems, passivity and positive 

realness of the network’s transfer function are equivalent. Hence, for the simple 

case of a 1-port network (} = 1) the energy requirement in (3.1) in the s-domain 

is equivalent to  

         ℜB{M(�)} ≥ 0   for   ℜB{�} ≥ 0                               (3.5) 
 

where ℜB{} denotes the real part and M(�) represents the input impedance of the 

1-port network. M(�) can be expressed as  

 

M(�) = 
(�)2(�)                                                      (3.6) 

 

where 
(�) is the voltage across the 1-port and 2(�) is the current flowing 

through the port. By manipulating (3.6) as  

 

M(�) = 
(�)2(�) = 
(�) 2∗(�)2(�) 2∗(�) = 
(�) 2∗(�)|2(�)|�                             (3.7) 

 

equation (3.5) is equivalent to 

 ℜB{
(�) 2∗(s)} ≥ 0   for   ℜB{�} ≥ 0                          (3.8) 
 

where 2∗(s) is the complex conjugate of 2(�). Notice that |2(�)|� in the 

denominator of (3.7) is always positive. 

 

By analogy with (3.8), (3.1) is equivalent to the following condition 

 ℜB{
�(�)2�∗ + 
�(�)2� ∗ ⋯ 
N(�)2N∗} ≥0       for   ℜB{�} ≥ 0          (3.9)                    
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Eliminating the voltages in (3.9) by using (3.2), we find that the n-port network 

passivity is equivalent to 

 ℜB{�(�)} ≥ 0   for   ℜB{�} ≥ 0                              (3.10) 

where 

ℜB{�(�)} = ℜB{0��(�)2�(�)2�∗(�) + ⋯ + 0�N(�)2N(�)2�∗(�) + 0��(�)2�(�)2�∗(�) +0�N(�)2N(�)2�∗(�) + ⋯ +	0N�(�)2�(�)2N∗(�) + ⋯ + 0NN(�)2N(�)2N∗(�)D				       (3.11) 
 
On the other hand, we know that the rational function �(�) is positive real (i.e., 

(3.10) holds) if and only if, in addition to being real for real �, �(�) meets the 

following conditions: 

 

1. �(�)	has no poles in the right half plane (RHP) 

2. Any poles of 	�(�) on the imaginary axis are simple with real and non-
negative residues 

3. 	ℜBC�(��)D ≥ 0					∀	�    

 

For condition 1, we require that none of the z-parameters of the n-port network 

have any poles in the RHP. To investigate condition 2, assume that �(�) has a 

simple pole at � = ��= with a residue	e=. Let e��, e��, ⋯ , e�� ⋯ eNN	 denote the 

residues of 0��, 0��, ⋯ , 0�� ⋯ 0NN	, respectively, at this pole. Expanding F(s) in a 

Laurent series about � = ��=  and keeping only the dominant terms in the 

immediate neighborhood of the pole, we get  

 

e=� − ��= = e��(��=)	2�(��=)	2�∗(��=)� − ��= + ⋯ + e�N(��=)	2N(��=)	2�∗(��=)� − ��= + ⋯ 

+ eN�(��=)	2�(��=)	2N∗(��=)� − ��= + ⋯ + eNN(��=)	2N(��=)	2N∗(��=)� − ��= 													(3.12) 
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which is equivalent to 

 e= = e��(��=)	2�(��=)	2�∗(��=) + ⋯ + e�N(��=)	2N(��=)	2�∗(��=) + ⋯ 

+eN�(��=)	2�(��=)	2N∗(��=) + ⋯ + eNN(��=)	2N(��=)	2N∗(��=)            (3.13)	
 

In (3.13), e= must be a real and non-negative number to satisfy condition 2. Terms e@@		for  : = 1, 2, … , } are real and positive since the impedances 0@@ are positive 

real functions. Also, 2@(��=)	2@∗(��=)	is real and positive. Note that in the pairs e@a(��=)	2a(��=)	2@∗(��=) + ea@(��=)	2@(��=)	2a∗(��=), since 2a(��=)	2@∗(��=) and 2@(��=)	2a∗(��=) are complex conjugates, e@a 	and ea@ are also complex conjugates. 

 

Since the right side of (3.13) is a Hermitian form (with  ℎ@a = 	e@a), it can be 

diagonalized with respect to the Hermitian matrix with coefficients e@a. To do so, 

(3.13) can be written in matrix form as  

 

e= = [2�∗ 2�∗ 			⋯					2N∗\	~e�� e�� 			⋯					e�Ne�� e�� 			⋯					e�N⋮ 						⋮						⋱ 								 ⋮eN� eN� 			⋯					eNN
�	~2�2�⋮2N� = �∗��									(3.14) 

 

The �-matrix is diagonalizable and we want to find a linear transformation �∗��� = � where �� is a diagonal matrix, � is an upper triangular matrix, and �∗ (the transpose complex conjugate of	�) is a lower triangular matrix.  

 

���
�����∗ 0 0 ⋯ 0���∗ ���∗ 0 ⋯ 0���∗ ���∗ ���∗ ⋱ 0⋮ ⋮ ⋱ ⋱ ⋮��N∗ ��N∗ ��N∗ ⋯ �NN∗ ���

�� 	
��
��
�e��� 0 0 ⋯ 00 e��� 0 ⋯ 00 0 e��� ⋯ 0⋮ ⋮ ⋱ ⋱ ⋮0 0 0 ⋯ eNN� ��

��
�		

���
����� ��� ��� ⋯ ��N0 ��� ��� ⋯ ��N0 0 ��� ⋱ ��N⋮ ⋮ ⋱ ⋱ ⋮0 0 0 ⋯ �NN���

��
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=	
���
��e�� e�� e�� ⋯ e�Ne�� e�� e�� ⋯ e�Ne�� e�� e�� ⋱ e�N⋮ ⋮ ⋱ ⋱ ⋮eN� eN� eN� ⋯ eNN���

��
                              (3.15) 

 

which represents the system �∗��� = �. Solving for �� and 	� will lead us to 

expressions for each e@a�  as a function of e@a elements. The solution will follow. 

The left hand side of system (3.15) can be written as 

 

���
���
���
|���|�e��� ���∗ e��� ��� ���∗ e��� ��� ⋯ ���∗ e��� ��N���∗ e��� ��� |���|�e��� + |���|�e��� ���∗ e��� ��� + ���∗ e��� ��� ⋯ � �@�∗ e@@� �@NN

@u����∗ e��� ��� ���∗ e��� ��� + ���∗ e��� ��� |���|�e��� + |���|�e��� + |���|�e��� ⋯ � �@�∗ e@@� �@NN
@u�⋮ ⋮ ⋮ ⋱ ⋮��N∗ e��� ��� � �@N∗ e@@� �@�N

@u� � �@N∗ e@@� �@�N
@u� ⋯ � |�@N|�e@@�N

@u� ���
���
���	 

(3.16)	
for all �@a	and �@a∗  with : ≤ �. In (3.16), we used 	�@a∗ 	�@a = l�@al	�. 

 

Remarks: In (3.16), in elements �@a, the first sub-index : represents the row-

location and the second sub index � represents the column-location. However, in 

elements �@a∗ , the first sub-index : represents the column-location and the second 

sub-index � represents the row-location.  

Equation (3.15) is equivalent to the following system of equations: 

 

|���|�e��� = e�� 

���∗ ���e��� = e�� 
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���∗ ���e��� = e�� 

���∗ ���e��� = e�� 

|���|�e��� + ���� e��� = e�� 

⋮ 
|���|�e��� + |���|�e��� + ���� e��� = e�� 

⋮ 
� |�@N|�e@@�N

@u� = eNN										∀	�@a	and	�@a∗ 	with	: ≤ �																													(3.17) 
 

Solution to the system of equation (3.17) is straightforward: 

 

e��� = e��|���|� 

e��� = e��e�� − e��e��|���|�e��  

e��� = e��e�� − e��e��|���|�e�� − (e��e�� − e��e��)(e��e�� − e��e��)|���|�e��(e��e�� − e��e��)  

⋮ 
eNN� = eNN − ∑ |�@N|�e@@�Np�@u�            ∀	�@a		with	: ≤ �                (3.18) 

 

Now, (3.14) can be rewritten as 

 

e= = �∗�� = �∗�∗���� = (��)∗��(��)                 				(3.19)	
 

implying that e= will be non-negative and equivalently condition B in the theorem 

holds iff 	e@@�  in (3.18) are all non-negative. The expressions on the right hand side 
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of (3.18) are all divided by coefficients of the form |�@@|�. Those coefficients are 

clearly positive and, hence, conditions 	e@@� ≥ 0  become 

 

1.			e@@ ≥ 0                             : = 1, 2, … , } 

2.		 e��e�� − e��e��e�� ≥ 0 

3.		 e��e�� − e��e��e�� − (e��e�� − e��e��)(e��e�� − e��e��)e��(e��e�� − e��e��) ≥ 0 

⋮ 
⋮ 
}.		eNN − ∑ |�@N|�e@@� ≥ 0Np�@u� 								∀	�@a		with	: ≤ �                            (3.20) 

    

Therefore, it is established that condition 2 holds iff (3.3) holds. 

 

By representing the 	� matrix in the reduced row-echelon form (�@a = 1, ∀		: =�) the calculations of conditions C are greatly simplified. System (3.20) shows the 

reduced row-echelon equivalent of system (3.15). 

 

���
�� 1 0 0 ⋯ 0���∗ 1 0 ⋯ 0���∗ ���∗ 1 ⋱ 0⋮ ⋮ ⋱ ⋱ ⋮��N∗ ��N∗ ��N∗ ⋯ 1���

��	
��
���
e��� 0 0 ⋯ 00 e��� 0 ⋯ 00 0 e��� ⋯ 0⋮ ⋮ ⋱ ⋱ ⋮0 0 0 ⋯ eNN� ��

���		���
��1 ��� ��� ⋯ ��N0 1 ��� ⋯ ��N0 0 1 ⋱ ��N⋮ ⋮ ⋱ ⋱ ⋮0 0 0 ⋯ 1 ���

�� 

=			
���
��e11 e12 e12 ⋯ e1}e21 e22 e23 ⋯ e2}e31 e32 e33 ⋱ e3}⋮ ⋮ ⋱ ⋱ ⋮e}1 e}2 e}3 ⋯ e}}��

���                                  (3.21) 
where �@a = �a@∗ = 1, ∀		: = �. 
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Regarding condition 3, the real part of 	�(��) can be obtained from 

 ℜBC�(��)D = �� [�(��) + �∗(��)\                           (3.22)	
 

where �(��) is given as  

 �(��) = 0��(��)2�(��)2�∗(��) + ⋯ + 0�N(��)2N(��)2�∗(��) 
                              +	0��(��)2�(��)2�∗(��) + ⋯ + 	0�N(��)2N(��)2�∗(��) 

     + ⋯ + 

⋮ 
+	0N�(��)2�(��)2N∗(��) + ⋯ + 0NN(��)2N(�)2N∗(��)    (3.23)	

 

and �∗(��) is given as 

 �∗(��) = 0��∗ (��)2�∗(��)2�(��) + ⋯ + 0�N∗ (��)2N∗(��)2�(��) 
                                +0��∗ (��)2�∗(��)2�(��) + ⋯ + 0�N∗ (��)2N∗(��)2�(��) 

        + ⋯ + 

⋮ 
                       +	0N�∗ (��)2�∗(��)2N(��) + ⋯ + 0NN∗ (��)2N∗(��)2N(��)  (3.24) 

                  

 

Substituting (3.23) and (3.24) in (3.22) we have 

 

           ℜBC�(��)D = �� [0��(��)2�(��)2�∗(��) + ⋯ + 0�N(��)2N(��)2�∗(��) 
				+	0��(��)2�(��)2�∗(��) + ⋯ + 	0�N(��)2N(��)2�∗(��) 

+⋯ + 
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⋮ 
+	0N�(��)2�(��)2N∗(��) + ⋯ + 0NN(��)2N(�)2N∗(��) 
	+	0��∗ (��)2�∗(��)2�(��) + ⋯ + 0�N∗ (��)2N∗(��)2�(��) 

	+	0��∗ (��)2�∗(��)2�(��) + ⋯ + 0�N∗ (��)2N∗(��)2�(��) 

		+ ⋯ + 

⋮ 
                       +	0N�∗ (��)2�∗(��)2N(��) + ⋯ + 0NN∗ (��)2N∗(��)2N(��)\         (3.25)	
	
By using  0@a� = �� �0@a + 0a@∗ �,  ℜBC�(��)D	can be written as 

           	ℜBC�(��)D = 0��� (��)2�(��)2�∗(��) + ⋯ + 0�N� (��)2N(��)2�∗(��) 

+	0��� (��)2�(��)2�∗(��) + ⋯ + 0�N� (��)2N(��)2�∗(��) 

+⋯ + 

⋮ 
       +	0N�� (��)2�(��)2N∗(��) + ⋯ + 0NN� (��)2N(�)2N∗(��)       (3.26)	
 

or equivalently as 

 ℜBC�(��)D = �∗	��	�                                 (3.27)	
 

where       

�� = ~0��� (��) 0��� (��) ⋯ 0�N� (��)0��� (��) 0��� (��) ⋯ 0�N� (��)⋮ ⋮ ⋱ ⋮0N�� (��) 0N�� (��) ⋯ 0NN� (��)� 
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= �� ~0��(��) + 0��∗ (��) 0��(��) + 0��∗ (��) ⋯ 0�N(��) + 0N�∗ (��)0��(��) + 0��∗ (��) 0��(��) + 0��∗ (��) ⋯ 0�N(��) + 0N�∗ (��)⋮ ⋮ ⋱ ⋮0N�(��) + 0�N∗ (��) 0N�(��) + 0�N∗ (��) ⋯ 0NN(��) + 0NN∗ (��)�      

(3.28)       

    

In general, the z-parameters have complex values, i.e., 0@a = b@a + �(@a	 where b@a 
is the real part and (@a		is the imaginary part of	0@a 	. 
It is easy to see that (3.26) is a Hermitian form. Using a procedure similar to 

(3.14)-(3.19), which was for the residue matrix, the matrix �� can be expressed as �� = �∗	���	�  where ��� is a diagonal matrix and 	� is an upper triangular 

matrix. The reduced row-echelon system is 

 

���
�� 1 0 0 ⋯ 0f��∗ 1 0 ⋯ 0f��∗ f��∗ 1 ⋱ 0⋮ ⋮ ⋱ ⋱ ⋮f�N∗ f�N∗ f�N∗ ⋯ 1���

��
��
��
�0���� 0 0 ⋯ 00 0���� 0 ⋯ 00 0 0���� ⋱ 0⋮ ⋮ ⋱ ⋱ ⋮0 0 0 ⋯ 0NN�� ��

��
�
���
��1 f�� f�� ⋯ f�N0 1 f�� ⋯ f�N0 0 1 ⋱ f�N⋮ ⋮ ⋱ ⋱ ⋮0 0 0 ⋯ 1 ���

��
 

 

=   

��
��
�0��� 0��� 0��� ⋯ 0�N�0��� 0��� 0��� ⋯ 0�N�0��� 0��� 0��� ⋱ 0�N�⋮ ⋮ ⋱ ⋱ ⋮0N�� 0N�� 0N�� ⋯ 0NN� ��

��
�
                                (3.29) 

 

The solution to (3.29) is 

 

0���� = 0���                               

0���� = 0��� 0��� − 0��� 0���0���  
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0���� = 	 0��� 0��� − 0��� 0���0��� − (0��� 0��� − 0��� 0��� )(0��� 0��� − 0��� 0��� )0��� (0��� 0��� − 0��� 0��� )  

 

⋮ 
⋮ 
 

0NN�� = 0NN� − ∑ |f@N|�0@@��Np�@u�  						f@a	with	: ≤ �                                     (3.30) 
 

Now, (3.27) can be rewritten as 

 ℜBC�(��)D = �∗	��	� = �∗	�∗	���	�� = (��)∗���(��)         (3.31)	
Therefore, ℜBC�(��)D ≥ 0, ∀	� (i.e., condition 3) holds iff the z''-parameters in 

(3.30) are non-negative (this also implies		0��� ≥ 0, 0��� ≥ 0, ⋯ , 0NN� ≥ 0). 

Therefore, condition 3 holds iff (3.4) holds.  

In summary, conditions A, B and C are necessary and sufficient for (3.10) or 

equivalently (3.9), which defines the n-port network passivity. This concludes the 

proof.	∎ 

Remarks: In Chapter 2, it was stated that for the case of LTI systems, positive 

real transfer functions represent passive systems. Hence, we could also present 

another proof of Theorem 1 by using the definition of positive real transfer 

functions as it is shown below. 

Definition: Positive real transfer function [37] 

Consider an n-port network with an } × } proper transfer function matrix �(�). �(�) is positive real if  
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• Poles of all elements of  �(�) are in ℜB{�} ≤ 0  

• For all real ω for which jω is not a pole of any element of �(�), the matrix �(��) + ��(−��) is positive semidefinite.  

• Any pure imaginary pole �� of any element of �(�) is a simple pole and 

the residue matrix lim+→a�(� − ��)�(�) is positive semidefinite 

Hermitian. 

In the above conditions, ��(−��) denotes the transpose complex conjugate of �(��). 

In our proof, we used  � = �� which is a compact form of system (3.2). Clearly 

the transfer function �(�)	is the } × } impedance matrix �. The second condition 

above, i.e., �(��) + ��(−��)	being positive semidefinite, is the same as (3.27) 

being positive semidefinite. The third condition above leads to the conditions for 

the residues e@a. 

3.4 Case Study: Passivity Conditions of a 2-port Network 

 

In this section, the special case of passivity of 2-port networks is considered. We 

will proceed the same way as we did when we arrived at the passivity Theorem 1. 

The result will be compared with the well-known Raisbeck’ Criterion. The 

network has been modeled using the impedance parameters as shown in (3.32).  

 

-
�
�. = /0��							0��0��							0��1 -2�2�.                                  (3.32)	
 

Assuming that the z-parameters have no RHP poles, we move into the analysis of 

the residues for which Equation (3.15) has to be solved for the case of 	} = 2. The 

system is represented below: 
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                     - 1 0���∗ 1. -e��� 00 e��� . /1 ���0 1 1 = -e�� e��e�� e��.              (3.33) 
 

It is easy to see that solving (3.33) results in 

 ��� = e��/e��   and ���∗ = e��/e�� 

 

and 

 e��� = e�� ≥ 0                                                                             

e��� = e��e�� − e��e�� e�� ≥ 0                                                                       (3.34) 

 

Therefore, it is straightforward that condition B in Theorem 1 is same as condition 

2 in Raisbeck’s criterion. Also, in the following we show that solving (3.29) for n 

= 2 results in condition 3 in the Raisbeck’s criterion.   

Writing 0@a as  b@a + �(@a  where b@a is the real part and (@a  is the imaginary part of  0@a, we have  

 

-0��� (��) 0��� (��)0��� (��) 0��� (��). =   b�� �� (b�� + b��) + a� ((�� − (��)�� (b�� + b��) − a� ((�� − (��) b�� ¡                       
(3.35) 

 

Using (3.29) for the case of } = 2 the following system is formed: 

 

 - 1 0f��∗ 1. -0���� 00 0���� . /1 f��0 1 1 = -0��� 0���0��� 0��� .                 (3.36) 
 

Solving (3.36) results in: 

f�� = 0��� 0���⁄     and f��∗ = 0��� 0���⁄ . 
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and 

0���� = 0��� ≥ 0         
0���� = z��� z��� − z��� z���  z��� ≥ 0                                                                    (3.37) 

 

 

By using 0@a� = �� g0@a + 0a@∗ h, the second condition in (3.37) reduces to: 

 4b��b�� − (b�� + b��)� − ((�� − (��)� ≥ 0                   (3.38) 

 

with  b@au ℜB(0@a) and (@a = ℐj(0@a) with :, � = 1, 2    

Inequality (3.37) is the same as the last of condition 3 in Raisbeck’s criterion with  b@au ℜB(_@a)  and  (@a = ℐj(_@a). 

We conclude that for 2-ports, by using similar procedure as the one used for 

finding conditions of passivity of n-port networks, the final result is the same as 

Raisbeck’s criterion. In the future, one does not have to go through all these 

calculations; on the contrary, we have presented Theorem 1 which allows for 

direct investigation of passivity of n-port networks where n can be any positive 

integer number equal or larger than 2.   
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Chapter 4Chapter 4Chapter 4Chapter 4    

    

    

Absolute Stability of  Absolute Stability of  Absolute Stability of  Absolute Stability of  Trilateral Trilateral Trilateral Trilateral 

TeleoperatorsTeleoperatorsTeleoperatorsTeleoperators        

    

4.1 Introduction 

 

A 3-port network can be defined as a network containing 3 pairs of terminals for 

external connections. Each pair of terminals represents a port to which an external 

network can be connected (Figure 4.1). 3-port networks can be used to model 

trilateral haptic system used in applications such as dual-user haptic teleoperation 

(two masters and one slave robots) and triple-user collaborative haptic virtual 

environments in which three users perform a task together. As it has been 

previously stated, for closed-loop stability analysis of such systems, the model of 

the human operator and environment is required in addition to the model of the 

teleoperation system immitance parameters (z, y, h, or g). In practice, the human 

operator and environment models are usually unknown, uncertain, and/or time-

varying. Hence, the discussion of stability of 3-port networks is done under the 

assumption that the human operator and environment terminations are passive but 

otherwise arbitrary. 

This chapter discusses a method for direct investigation of absolute stability of 3-

port networks. The derivation of the method is based on the fundamental 

definition of the absolute stability of 3-port networks from which an analytical 
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stability condition is derived. Numerical evaluation of this condition for a given 

network can be used for evaluation of its stability. 

 

-

I1

I2

I3

V1 V3

-

+

-

+

V2

+ -

3 – Port 

Network

 
Figure 4.1. A 3-port network. 

4.2 Absolute Stability Condition for 3-port Networks 

 

In this section, a step-by-step method for analysis of absolute stability of a 3-port 

network is introduced. Any of the four immitance parameters (z, y, h, or g) can be 

used and, therefore, without loss of generality, the z-parameters have been chosen. 

Using the impedance parameters, the 3-port network can be modeled as 

 

 

      ¢
�
�
�£ = ¢0�� 0�� 0��0�� 0�� 0��0�� 0�� 0��£ ¢2�2�2�£                                  (4.1) 
 
 

As it was explained in Chapter 2 (although for the case of 2-port network), a 2-

port network is absolutely stable if the input impedance M@N, when one of the ports 

is connected to a passive termination, is a positive real function. Hence, we will 

look for conditions of absolute stability of a 3-port network by investigating the 
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positive realness of its input impedance when two of the ports are connected to 

passive terminations. 

By leaving port 1 open (arbitrary choice) and terminating ports 2 and 3 to passive 

terminations 0� and 0� respectively, the input impedance looking into port 1 is the 

ratio between the voltage across that port (
�) and the current flowing through 

that port (2�): 
M@N = 
�2� 																																																											(4.2) 

From (4.1) we have 


� = 0��2� + 0��2� + 0��2�                             			(4.3) 
and 

2� = 	p¤o¥o 			and			2� = p¤¦¥¦                                     (4.4) 
 

Substituting (4.4) in (4.3) and after some manipulations, an expression for M@N can 

be found as shown below: 

 

M@N = 0�� − 0��0�
17 §¨1 + 0��0� © 0�� − 0��0� 0��ª 																

− 0��0�
17 §¨1 + 0��0� © 0�� − 0��0� 0��ª																																						(4.5) 

where 7 is a function of the network impedance and the termination impedances 0� and 0�: 

 

7 = 1 + 0��0� + 0��0� + 0��0�� − 0��0��0�0� 																																	(4.6) 
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Equation (4.5) can be written as 

M@N = «0� + ¬0� + ­0�0� + «�0� + ¬�0� + ® + 0��																												(4.7) 
 

with «, ¬, ®, ­, «�,	 and ¬� being dependent only on the 3-port network impedances 0@a: 
 « = −0��0�� 

¬ = −0��0�� 

® = 0��0�� − 0��0�� 

­ = 0��0��0�� + 0��0��0�� − 0��0��0�� − 0��0��0�� 

«� = 0�� 

¬� = 0�� 

 

Equation (4.7) indicates that M@N is a bilinear transformation of  0� (or  0�). This 

fact can become clearer if we divide the numerator and denominator of (4.7) by 0� + ¬� in order to have the standard expression of a bilinear transformation. 

Hence, (4.7) becomes    

 

M@N = ¨ «0� + ¬�© 0� + ¨¬0� + ­0� + ¬� ©
0� + ¨«�0� + ®0� + ¬� © 		+ 0��																																												(4.8) 

 

By choosing ̄ = ° ±mo²³´µ, ¶ = °³mo²·mo²³´ µ, and ̧ = °±´mo²¹mo²³´ µ,  

Equation (4.8) becomes 
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M@N = ¯0� + ¶0� + ¸ 	+ 0��																																														(4.9) 
 

Notice that in (4.9), the coefficients ¯, ¶, and ̧ 	are all function of both the 3-port 

network impedance parameters 0@a		and the termination impedance	0�.  

By extending the definition of absolute stability in Chapter 2 to the case of 3-port 

networks, a 3-port network is absolutely stable if M@N is a positive real function for 

all passive terminations 0� and 0�. Then, the stability of the 3-port network is 

equivalent to ℜBCM@ND ≥ 0	for all passive terminations 0�	and 0�.  

The input impedance M@N is clearly a complex quantity and as such it can be 

graphed in the complex plane. Recall that M@N as given in (4.9) is a bilinear 

transformation of the termination impedance 0�. Also notice that M@N is dependent 

on 0� and this will be considered later in our analysis.  

 

 

Figure 4.2. The input impedance Zin as a bilinear transformation of 0�. 

Hence, for all passive terminations 0� (i.e., for all impedances 0� in the right half 

of the complex plane), M@N is transformed into a circle – see Figure 4.2. The first 
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term in the right hand side of (4.9) represents this circle while the second term 

(the impedance parameter 0��) represents a shift of the circle. Figure 4.2 shows 

the circle without the shift caused by 0��. 
With a circle with centre c� and radius b� being the result of the bilinear 

transformation 
ºm¦²»m¦²¼  for all passive terminations 0�, it can be shown that  

 

c� = ¯ − ¯¸ − ¶2ℜB{¸} 																																											(4.10) 

and  

b� = |¯¸ − ¶|2|ℜBC¸D|																																													(4.11) 

 For the nonreciprocal 3-port network defined in (4.1) to be absolutely stable, 

condition ℜBCM@ND ≥ 0 must be satisfied, which means that we need to have 

ℜB(c�) − b� + ℜBC0��D ≥ 0	                            (4.12)	
Equation (4.12) shows that the stability condition ℜBCM@ND ≥ 0, which represents 

the entire Right Half Plane (RHP) in the impedance complex plane, simply 

requires the disk with centre c� and radius b� to be entirely in the RHP. According 

to Equation (4.12), for the 3-port network to be absolutely stable the sum of the 

centre c�  plus 0�� both projected onto the real axes minus the radius of the disk 

has to result in a positive real number, which in turns means that every point of 

the shifted disk has to be in the RHP. The term ℜBC0��D in (4.12) can be any real 

number (negative, zero, or positive). A graphical interpretation of Equation (4.12) 

is shown in Fig 4.3, assuming ℜBC0��D positive. 
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ℜB{011} 

011  

ℜB(c1) 

 

Figure 4.3. The input impedance Zin as a bilinear transformation of 0� and shifted 
by the impedance parameter 0��. 

 

Substituting (4.10) and (4.11) into condition (4.12) yields  

 

ℜB §¯ − ¯¸ − ¶2ℜB{¸}ª − |¯¸ − ¶|2|ℜB{¸}| + ℜB{0��} ≥ 0																					(4.13) 
 

Equation (4.13) is the final condition for absolute stability of a 3-port network. 

This condition can be used for analysis of stability of trilateral haptic systems, in 

which case the numerical evaluation of either Equation (4.13) or Equation (4.9) 

will tell if the system is stable or not for a given controller. 

4.3 Procedure for Numerical Evaluation of the Stability 

Condition for Trilateral Systems 

 

Equation (4.9) shows M@N as a bilinear transformation in the termination 

impedance 0�. The coefficients ̄ = ° ±mo²³´µ, ¶ = °³mo²·mo²³´ µ, and ̧ = °±´mo²¹mo²³´ µ are 

also bilinear transformations but in the termination impedance 0�. Consequently, 
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(4.9) represents three bilinear transformations of 0�, nested inside a bilinear 

transformation of 0�. The following pseudo-code is a procedure that can be used 

for numerical evaluation of the proposed absolute stability condition of a 3-port 

network. The nested loops of the pseudo-code come as a direct consequence of 

the nested nature of Equation (4.9). 

 

Pseudo-Code 

for � = 0	 → ∞ C 
compute C«, ¬, ®, ­, «�, 	¬�D (complex numbers) 

for all passive 0� find circles C¯, ¶, ¸D (in terms of radii and centres) 

for each point in circle ̄ C 
 for each point in circle ¶ C 

   for each point in circle ̧  C 
    If ℜB ¾¯ − º¼p»�ℜ,C¼D¿ − |º¼p»|�|ℜ,C¼D| + ℜBC0��D < 0,	 
                                                then network is not absolutely stable. 

           D 
                       D 
          D 
           D 
 

The above procedure was tested for two different cases as discussed below.  

 

Case 1: An absolutely stable trilateral network  

Youla proved that, for reciprocal n-port networks, strict passivity and absolute 

stability are the same [28]. In terms of z-parameters, a 3-port network is reciprocal 

if 	0@a = 0a@ for :	and	� = 1, 2, 3. Hence, if M represents the impedance matrix of a 

reciprocal trilateral network, then the network is absolutely stable if and only if it 

is strictly passive.  
Consider the matrix Z shown in (4.14), which represents the impedance matrix of 
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a reciprocal 3-port network.  

 

 

� = ¢ 3 1 + � 3 − 2�1 + � 1 23 − 2� 2 8 £                               (4.14) 

 

 

where � = ��. Note that  M(��) + MÁ(−��) is positive definite because all the 

principal minors of M(��) + MÁ(−��) are positive real numbers (6, 8, and 56). 

 

 

		�(��) + ��(−��) = 	 ¢6 2 62 2 46 4 16£                           (4.15)	
 

 

The matrix Z is strictly passive and, due to its symmetry, absolutely stable. Now, 

to test the absolute stability of the 3-port network via Equation (4.12), a 

MATLAB code can be implemented to plot M@N at different frequencies according 

to the previously-described pseudo code. We compute M@N at three different 

frequencies = C0.1 qÂÃ+ , 1 qÂÃ+ , 10 qÂÃÄ D and for a rather large number of points 

inside each of the A, B, and D circles. In Figure 4.4, Figure 4.5, and Figure 4.6, 

plots of M@N at the three different frequencies show that the real parts of M@N  are 

always in the right half plane. 
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Figure 4.4.  Plot of M@N of an absolutely stable 3-port network at � = 0.1 qÂÃ+ . 
 

 

 

Figure 4.5.  Plot of M@N of an absolutely stable 3-port network at � = 1 qÂÃ+ . 
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Figure 4.6.  Plot of M@N of an absolutely stable 3-port network at � = 10 qÂÃ+  

 

 

Case 2: A potentially unstable trilateral network  

The impedance matrix of a potentially unstable reciprocal trilateral network is 

shown below: 

 

� = ¢ 0.3 1 + � 3 − 2�1 + � 1 23 − 2� 2 8 £                                 (4.16) 

 

where � = ��.  

We note that 

 

�(��) + ��(−��) = 	 ¢0.6 2 62 2 46 4 16£                            (4.17)	
 

 

has principal minors of 0.6, -2.8, and -30.4, making the matrix Z not positive real 

and, therefore, not passive. Due to the symmetry of Z, it is therefore potentially 

unstable. On the other hand, we compute ℜBCM@ND at two different frequencies 
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� = {0.1 qÂÃ+ , 1 qÂÃ+ }. Plots of M@N at � = 0.1 qÂÃ+  show that all real parts of M@N are 

negatives. For � = 1 qÂÃ+ , the real parts of M@N are located in both the left and the 

right half plane. 

Figure 4.7.  Plot of M@N of a potentially unstable 3-port network at � = 0.1 qÂÃ+ . 
 

 

Figure 4.8. Plot of M@N of a potentially unstable 3-port network at � = 1 qÂÃ+ . 
Previously, it was mentioned that in the case of a reciprocal network, absolute 

stability and strict passivity are equivalent. This fact allowed us to validate 

Equation (4.13) as a condition for absolute stability of trilateral networks. It is 

now possible to use the proposed condition for analysis of general non-reciprocal 

trilateral networks.  
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Chapter 5Chapter 5Chapter 5Chapter 5    

    

    

Application of  Passivity Application of  Passivity Application of  Passivity Application of  Passivity and Absolute and Absolute and Absolute and Absolute 

Stability Stability Stability Stability CriterCriterCriterCriteriaiaiaia    to to to to aaaa    DualDualDualDual----User Haptic User Haptic User Haptic User Haptic 

Teleoperation System Teleoperation System Teleoperation System Teleoperation System     

    

5.1 Introduction  

 

In this chapter, the Passivity Criterion proposed in Chapter 3 and the Absolute 

Stability Condition proposed in Chapter 4 will be used in order to find passivity 

conditions and evaluate the stability of a trilateral haptic teleoperation system. For 

both cases, the 3-port network is represented by its impedance matrix. This 3-port 

network is a dual-user haptic teleoperation system, in which two master robots for 

two operators share the control of one slave robot to perform a task in a remote 

environment. This configuration has many real-world applications such as 

training a trainee to do a task under haptic guidance from a mentor. In Section 5.2, 

the impedance matrix of the dual-user haptic teleoperation system is found by 

using the so-called four-channel multilateral shared control architecture proposed 

in [14]. Section 5.3 is devoted to finding passivity conditions of such a trilateral 

haptic system. Lastly, Section 5.4 is concerned with simulations of both passivity 

and absolute stability of the dual-user haptic teleoperation system. 
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5.2 A Dual-User Shared Haptic Control Teleoperation System 

 

In a dual-user haptic teleoperation system, the goal is that two users coupled to 

two master robots (one user per one master robot) collaboratively control a slave 

robot to perform a task in a remote environment. As shown in [14], the desired 

position and force for each robot are weighted sums of positions and forces of the 

other two robots, with the weights being determined by a parameter « whose 

value ranges from 0 to 1 – see Figure 5.1. For instance, if « = 1, the slave robot 

will be fully controlled by User 1 and User 2 only receives large force feedback 

urging him/her to follow User 1’s motions. On the other hand, the same parameter « can be given a value of 0, in which case the slave robot is fully controlled by 

User 2, allowing User 1 to assess the skill level of User 2 by feeling the reflected 

forces. Lastly, if  0 < 	«	 < 1, then the two users collaborate and each contributes 

to the position command while receiving some force feedback. This provides 

“hand-over-hand” training using haptic assistance. 

 

 

 

Figure 5.1.   A dual-user haptic teleoperation system.  
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Consider the four-channel multilateral shared control architecture given in [14] 

and depicted in Figure 5.2. Under the assumption that each user is interfaced with 

his/her master robot and the slave is in contact with the environment, the 

dynamics of the two masters and slave can be model in frequency domain as 

 	M%�
&� = �&� + �Å%� 

	M%�
&� = �&� + �Å%� 

									M+
, = �, + �Å+ 																																																							(5.1)	
	

In (5.1),		M%� = '%��, 	M%� = '%��		and M+ = '+�	 are the models of the two 

masters and the single slave, respectively. Also, �&�, �&� and �, are the contact 

forces between each master and its human operator, and between the slave and its 

environment, respectively. Lastly, 
&�, 
&�, and 
, are the velocities of the two 

users and the environment respectively. In Fig 5.2, Fh1
*, Fh2

*, and Fe
* are the two 

operator’s and environment’s exogenous input forces, which are independent of 

the teleoperation system behavior [1]. 

The controller outputs in the 4-channel architecture are 

 					�Å%� = −c%�
&� − cÆ%�
&�Ã + cÇ%��&� − c�%��&�Ã 

					�Å%� = −c%�
&� − cÆ%�
&�Ã + cÇ%��&� − c�%��&�Ã 

�Å+ = −c+
, + c�
,Ã + cÈ�, + c��,Ã                                      (5.2)	
 

for : = 1, 2. c%@ and c+ are local position controllers, and cÇ%@ and  cÈ are local 

force controllers  for the two masters and the slave, respectively. Also, the 

controllers c�,			cÆ@  are position compensators similar to c+ and c%@, 
respectively.	c�%@	and	c� are feedforward force terms for the two masters and the 

slave, respectively. Lastly, 
&@Ã and 
,Ã are the desired positions, and �&@Ã and �,Ã are the desired forces for the two masters and the slave, respectively.  
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Figure 5.2.  A dual-user haptic teleoperation system under four-channel control. 

 

As mentioned before, in this 3-robot shared control architecture, the desired 

velocity and force of each robot is a function of the velocities and forces of the 

other two robots, as the following set of equations state: 

 
&�Ã = «
, + (1 − «)	
&� 


&�Ã = (1 − «)
, + «	
&� 


,Ã = «
&� + (1 − «)	
&� 

�&�Ã = «�, + (1 − «)�&� 

�&�Ã = (1 − «)�, + «	�&� 

						�,Ã = «�&� + (1 − «)	�&�                                       (5.3)	
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where «	É	[0, 1\	is the weight parameter specifying the relative authority that each 

operator has over the slave and the corresponding share of force feedback he/she 

receives. 

Position-error based (PEB) control is a special case of dual-user shared control 

architecture, which does not need any force sensor measurements. The PEB 

controller works by minimizing the difference between the weighted master and 

slave positions, thus reflecting a force related to this difference to each user once 

the slave makes contact with an object. In the PEB control architecture the 

following choices are made: c� = cÈ = c�%� = c�%� = cÇ%� = cÇ%� = 0. Also, 

for good position tracking the common choice is 		c� = c+	, 	cÆ%� = −c%�	and cÆ%� = −c%�.  Here, we have 

 

		c%� = ÊË%� + ÊÌ%���  

		c%� = ÊË%� + ÊÌ%���  

c+ = ÊË+ + ÊÌ+�� 																																																					(5.4) 
 

By using (5.1), (5.2), (5.3), and (5.4), the impedance matrix of the closed-loop 

multilateral system in 

 

¢�&��&��, £ = ¢0�� 0�� 0��0�� 0�� 0��0�� 0�� 0��£	¢
&�
&�
, £                           (5.5) 
is found as 

0�� = g'%��� + ÊÌ%�� + ÊË%�h �⁄   

0�� = g−ÊÌ%�� + ÊË%�« + ÊÌ%��« − ÊË%�h �⁄   

0�� = g−ÊÌ%��« − ÊË%�«h �⁄   
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0�� = g−ÊÌ%��« − ÊË%�«h �⁄  

0�� = g'%��� + ÊÌ%�� + ÊË%�h �⁄                                       

0�� = g−ÊÌ%�� + ÊË%�« + ÊÌ%��« − ÊË%�h �⁄  

0�� = − gÊÌ+�« + ÊË+«h �⁄   

0�� = g−ÊÌ+� + ÊË+« + ÊÌ+�« − ÊË+h �⁄   

0�� = g'+�� + ÊÌ+� + ÊË+h �⁄                                                                          (5.6) 
5.3 Applying Passivity Criterion to the Dual-User Shared 

Haptic Control Teleoperation System 

 

The passivity criterion of n-port networks formulated in Chapter 3 reduces to the 

following conditions for the case of a 3-port network: 

A. The z-parameters have no RHP poles. 

B. Any poles of the z-parameters on the imaginary axis are simple, and the 

residues e@a of the z-parameters at these poles satisfy the following 

conditions: 

 

1.   e@@ ≥ 0                             : = 1, 2, 3 

2.  e��e�� − e��e��e�� ≥ 0 

3.  e��e�� − e��e��e�� − (e��e�� − e��e��)(e��e�� − e��e��)e��(e��e�� − e��e��) ≥ 0      (5.7) 

C. The complex 0�-parameters satisfy the following conditions for all real 

frequencies � 
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1.			0@@� ≥ 0                             : = 1, 2, 3 

2.		 0��� 0��� − 0��� 0���0��� ≥ 0 

3.		 0��� 0��� − 0��� 0���0��� − (0��� 0��� − 0��� 0��� )(0��� 0��� − 0��� 0��� )0��� (0��� 0��� − 0��� 0��� ) ≥ 0											(5.8) 
 

where 0@a� = �� g0@a + 0a@∗ h. 

 

Analysis of (5.6) shows that all the elements of the 3-port network impedance 

matrix have only a simple pole on the imaginary axis, thus fulfilling condition A. 

Analysis of the residues (condition B) leads to the following conditions: 

e�� = ÊË%� ≥ 0                                                                                     (5.9) 

e�� = ÊË%� ≥ 0                                                                                   (5.10)   

e�� = ÊË+ ≥ 0                                                                              (5.11)  

e��e�� − e��e��e�� = (1 − « + «�)ÊË%�ÊË%� ≥ 0																																	(5.12) 

e��e�� − e��e��e�� − (e��e�� − e��e��)(e��e�� − e��e��)e��(e��e�� − e��e��) = 0									(5.13) 
 

The inequality (5.12) always holds as (1 − « + «�) > 0 for all «	É	[0, 1\. 
 

Analysis of the impedance matrix according to Condition C leads to the following 

conditions on the controllers’ gains: 

 ÊÌ%� ≥ 0																																																																																																									(5.14) 
ÊÌ%� ≥ 0																																																																																																									(5.15) 
ÊÌ+ ≥ 0	                                                                                               (5.16) 
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4ÊÌ%�ÊÌ%� − (ÊÌ%� − «ÊÌ%� + «ÊÌ%�)� 

− gÊË%� − «ÊË%� + «ÊË%�h��
� ≥ 0																																																										(5.17) 

 

Condition (5.17) will be fulfilled for all real frequencies � if the gains of the PD 

controllers satisfy: 

 ÊË%�ÊË%� = «1 − «					 				(5.18)	
 4ÊÌ%�ÊÌ%� − (ÊÌ%� − «ÊÌ%� + «ÊÌ%�)� ≥ 0																(5.19) 
 

Using (5.18) in the last condition of C (condition 3 of (5.8)), we get the following 

inequality: 

 

−1�� ÎgÊË%� − ÊË+h�[ÊÌ%�(1 − «)�(2 − «) + ÊÌ%�«�(1 + «)\2« + (1 − 2«)�ÊÌ%�«�  

+ gÊË%�� − ÊË+�h(1 − 2«)(1 − «)[«�ÊÌ%� + (« + 2)ÊÌ%�\2« Ï 

+C(1 + «)(2 − «)ÊÌ%�ÊÌ%�ÊÌ+ − «�(2 − «)ÊÌ%�ÊÌ+(ÊÌ%� + ÊÌ+) 
−(1 − « + «�)ÊÌ%�ÊÌ%�[(1 − «)ÊÌ%� + «ÊÌ%�\ 
−(1 − «)�(1 + «)ÊÌ%�ÊÌ+(	ÊÌ%� + ÊÌ+)D ≥ 0                                            (5.20)	
	
Equation (5.20) will be fulfilled for all real frequencies � if the controller’s gains 

and parameter « satisfy the following conditions: 

 ÊË%� = ÊË%� = ÊË+ 



67 

 

ÊÌ%� = ÊÌ%� = ÊÌ+ 

			« = 1 2Ð   																																					(5.21)	
 

As a conclusion, the dual-user haptic teleoperation system is passive if the set of 

equations (5.21) holds. Notice that (5.21) is a sufficient, frequency-independent, 

and compact condition for passivity of the PEB dual-user haptic teleoperation 

system described in Section 5.2. 

5.4 Simulation Study: The Dual-User Shared Haptic Control 

Teleoperation System 

 

5.4.1   Simulation study: Passivity conditions 
 
In this section, the passivity conditions for the PEB dual-user haptic teleoperation 

system found in Section 5.3 will be verified via MATLAB/Simulink simulations. 

The simulation is done assuming no time delay in the communication channels 

between the three robots. 

According to Equation (3.1) and assuming that the energy stored in the system for 8 < 0 is zero, the 3-port network is passive if and only if 

 

                 7(8) = 9 (:�(;)��(;) + :�(;)��(;) + :�(;)��(;))<= >; ≥ 0          (5.22)	
 

where 7(8) is the total energy delivered to the 3-port network. Such a passivity 

observer is incorporated in the simulations in order to evaluate (5.22).  

In the simulations, all ports of the 3-port network are connected to the passive 

terminations with a transfer function 
��²+ . An input �&�∗  in the form of a sine wave 

is applied by the Master 1’s operator. The three robots are modeled by masses 
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'%� = 0.7, '%� = 0.9, and '+ = 0.5. 

According to the previous section, the dual-user haptic teleoperation system is 

passive if the set of equations (5.21) holds. Table 5.1 shows two sets of 

controllers’ gains used for these simulations, one set is in agreement with 

conditions given in (5.21), thus representing a passive trilateral system. The other 

set violates (5.21), representing a non-passive system. For all simulations, = 1 2Ð  . 

 

Table 5.1 Controllers’ gains for (A) passive and (B) non-passive PEB trilateral system. 

System Master 1’s 
controller 

Master 2’s 
controller 

Slave’s 
controller 

(A) Passive ÊË%� = 5 		ÊÌ%� = 10 

ÊË%� = 5 		ÊÌ%� = 10 

ÊË+ = 5 		ÊÌ+ = 10 

(B) Non-Passive ÊË%� = 5 ÊÌ%� =10 

					ÊË%� = 100 	ÊÌ%� =10 

ÊË+ = 5 	ÊÌ+ =10 

 

Figure 5.3. Passivity observer: Total energy delivered to a passive trilateral 
system. 

 

Figure 5.3 shows that choosing the controllers’ gains according to the conditions 

found in previous section results in a passive system (to which positive energy is 

delivered at all times). Figure 5.4 clearly shows that a violation of such conditions 

may result in a non-passive system (the energy delivered to the network is not 

always positive). 
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   Figure 5.4. Passivity observer: Total energy delivered to a non-passive trilateral 
system. 

 

5.4.2  Simulation study: Absolute stability condition 

In this section, the stability condition found in chapter 4 will be used for stability 

analysis of the PEB dual-user haptic teleoperation system. Results from this 

analysis will be verified via MATLAB/Simulink simulations. The three robots are 

modeled by masses '%� = 0.7, '%� = 0.9, and '+ = 0.5, and « = 1 2Ð . 

Our research group has recently found sufficient absolute stability conditions for 

the PEB dual-user haptic teleoperation system. These frequency independent 

conditions are all functions of the controllers’ gains as it is shown below:  

 

ÊË%@ > 0                                                                                             (5.23) 

ÊÌ%@ > 0         (5.24) 

ÊË+ > 0         (5.25) 

ÊÌ+ > 0         (5.26) ÊË%�ÊÌ%� = ÊË%�ÊÌ%� 																																																																																																	 (5.27) 
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5 − 2√6 ≤ ÊË%�ÊÌ%�
ÊÌ+ÊË+ ≤ 5 + 2√6																																																														(5.28) 

In the simulation study, we use the stability condition presented in Chapter 4 for 

the analysis of two different cases: One case in which the controllers’ gains meet 

the conditions (5.23)-(5.28) thus resulting in an absolutely stable system, and 

another case in which the controllers’ gains were chosen so as to have a 

potentially unstable system. Values for the controllers’ gains are shown in Table 

5.2.  

Table 5.2 Controllers’ gains for (A) absolutely stable and (B) potentially unstable PEB 
trilateral teleoperator. 

System Master 1’s 

controller 

Master 2’s 

controller 

Slave’s 

controller 

(A) Absolutely Stable ÊË%� = 2 		ÊÌ%� = 10 

ÊË%� = 20 		ÊÌ%� = 100 

ÊË+ = 50 		ÊÌ+ = 120 

(B) Potentially Unstable ÊË%� = 10 ÊÌ%� =	15 

					ÊË%� = 130 	ÊÌ%� =	30 

ÊË+ = 8 	ÊÌ+ =	70 

 

A MATLAB code was written to test ℜBCM@ND ≥ 0 according to (4.13). An 

explanation of results will follow. 

The system’s impedance matrix (5.6) developed in Section 5.2 was evaluated by 

using the controllers’ gains given in Table 5.2. Figure 5.5 and Figure 5.6 show 

plots of M@N for system (A) of Table 5.2, which is absolutely stable as controller’s 

gains meet conditions (5.23)-(5.28). Both plots (at two different frequencies) 

show that the real parts of M@N	are all in the right half plane, confirming that the 

trilateral teleoperator is indeed absolutely stable.  
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Figure 5.5. Plot of M@N for an absolutely stable 3-port network at � = 0.1 qÂÃ+ . 

 

 

 
Figure 5.6. Plot of M@N for an absolutely stable 3-port network at � = 5 qÂÃ+ . 

 

Figure 5.7 and Figure 5.8 show plots of M@N for system (B) of Table 5.2, which is 

potentially unstable. Both plots (at two different frequencies) show that the real 

parts of M@N	are in both the right and left half plane, meaning that the trilateral 

teleoperator is potentially unstable.  

 

10 15 20 25 30 35 40
-30

-25

-20

-15

-10

-5

0

5

Real of Zin

Im
ag

in
ar

y 
of

 Z
in

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Real of Zin

Im
ag

in
ar

y 
of

 Z
in



72 

 

 

    Figure 5.7. Plot of M@N of a potentially unstable 3-port network at � = 0.5 qÂÃ+ . 
 

 
Figure 5.8. Plot of M@N of a potentially unstable 3-port network at � = 5 qÂÃ+ . 

The last step is verification of the above result by simulation (via Simulink) of the 

system. In this simulation, port 2 and port 3 were terminated to passive loads with 

transfer functions 
��²+ while the input energy at port 1 of the trilateral teleoperator 

was monitored. For a fair comparison, the same controllers’ gains given in Table 

5.2 were used. According to the definition of absolute stability (Chapter 2), the 

trilateral system in question is absolutely stable if and only if at all times 8 ≥ 0 we 

have [29] 
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       7�(8) = 9 g:�(;)��(;)h<= >; ≥ 0                               (5.29) 

 

where 7�(8) represents the input energy at port 1. 

Figure 5.9 is the plot representing the energy at port 1 for system (A) of Table 5.2. 

The plot shows that the energy is positive at all times 8 ≥ 0, consequently it 

shows that the system is absolutely stable. This fact is consistent with the result 

found by applying our proposed absolute stability test to the same system.  

 
 

 
    Figure 5.9. Input energy at port 1of an absolutely stable 3-port network. 

 
Figure 5.10 is the plot representing the energy at port 1 for system (B) of Table 

5.2. The plot shows that the energy is sometimes negative and consequently the 

system is potentially unstable. This result is also in agreement with the one found 

by applying the proposed absolute stability test to the same system (B).  
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 Figure 5.10. Input energy at port 1 of a potentially unstable 3-port network. 

 

Overall, these simulation results are consistent with those found when using the 

proposed absolute stability test. 
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Chapter 6Chapter 6Chapter 6Chapter 6    

    

    

Conclusions and Future Directions  Conclusions and Future Directions  Conclusions and Future Directions  Conclusions and Future Directions      

    

6.1 Conclusions 

 

This thesis presents two novel methods for stability analysis of n-port networks 

with passive terminations. The proposed methods can be used for either analysis 

and design (in the case of the proposed passivity criterion) or analysis (in the case 

of the proposed absolute stability test) of multilateral systems involving haptic 

information sharing between a number of users. The major contributions of the 

thesis are summarized below: 

� A passivity theorem for investigation of passivity of n-port networks is 

proposed. The theorem gives the necessary and sufficient conditions for 

passivity of the n-port network based on the immittance parameters of the 

network. The use of immittance parameters is preferable compared to 

more complex techniques found in the literature, which are based on 

scattering parameters and reflection coefficients. Moreover, the literature 

has tried to investigate the passivity of 3-port networks by assuming one 

known/fixed termination, thus reducing the 3-port into a 2-port network 

whose passivity analysis has been known for a long time. In contrast, the 

closed-form conditions given in this thesis make it possible to investigate 

the passivity of n-port networks (thus not necessarily limited to n=3) 

directly and without resorting to using any known/fixed terminations, 

assuring a complete general solution to the problem.  
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� A mathematical expression for testing the absolute stability of 3-port 

networks is also proposed in this thesis. The method is based on evaluation 

of the real part of the driving point impedance of the 3-port network under 

investigation. The numerical evaluation should be done in a range of 

frequencies of interest. Due to the nature of the proposed technique, the 

evaluation of such expression is useful for stability analysis purposes only. 

6.2 Future Directions 

 

The following is a list of potential future work. 

1. The passivity theorem and absolute stability condition given in this thesis 

have been developed in the frame of 1 degree of freedom (DOF) systems. 

A step forward would be its extension to 2- and 3-DOF systems. 

2. The proposed stability condition is an excellent tool for analysis of 

stability of 3-port networks. The numerical evaluation of such condition 

can be used to determine frequency ranges over which the system is stable. 

Extension of this condition from 3-port networks to 4-port networks would 

be very beneficial. 

3. A study to compare the level of conservatism of absolute stability versus 

passivity would be very beneficial. It is expected that, similar to bilateral 

teleoperation systems, the absolute stability criterion is less conservative 

than the passivity criterion and that the two criteria become the same when 

the trilateral system is represented by a reciprocal network. 
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