University of Alberta

Stability of Multilateral Haptic Teleoperation Sgsts
by

Victor H. Mendez

A thesis submitted to the Faculty of Graduate ®sidind Research
in partial fulfilment of the requirements for tdegree of

Master of Science
in
Control Systems

Department of Electrical and Computer Engineering

©Victor H. Mendez
Spring 2013
Edmonton, Alberta

Permission is hereby granted to the University liefta Libraries to reproduce single copies of thisis
and to lend or sell such copies for private, salylar scientific research purposes only. Wherethesis is
converted to, or otherwise made available in digitam, the University of Alberta will advise potial users

of the thesis of these terms.

The author reserves all other publication and otiglits in association with the copyright in thegfs and,
except as herein before provided, neither the shemi any substantial portion thereof may be pdiote
otherwise reproduced in any material form whatspewthout the author's prior written permission.



This thesis is dedicated to Nicole, Andreas, Luzjamd Norma.



Abstract

Multilateral systems involving haptic informatiohasing between several users
have recently found interesting applications in perative haptic teleoperation
and haptic-assisted training. It is intuitively enstood that some tasks are
performed more effectively with two hands or thrbugpllaboration than one
hand or individual operation. By using multiple useterfaces (“masters”) and
one remote robot (“slave”) or more, multilaterdeteooperation systems enable
haptic information sharing and collaboration infpening a task in a remote
environment between multiple userBespite the aforementioned benefits,
research in this area is still in its initial stagrefact, the only multilateral system
that has been thoroughly investigated is the masicbone: the bilateral

teleoperation system involving teleoperation betwaee master and one slave.

As with any other robotic system, stability of nilakeral haptic
teleoperation systems is of paramount importan¢edySof stability of such
systems must consider the fact that the human aserpart of the closed-loop
system and thus affect the stability. However, todel the human operator is
practically impossible, imposing great difficultie® the system’s stability
analysis. This thesis presents a novel criteriostudy the stability of multilateral
teleoperation systems based on passivity. Thisr@it provides researchers with
an analytical, closed-form, necessary and sufficaamdition to investigate the
stability of multilateral haptic teleoperation systs. The thesis also proposes a

numerical method for investigation of absolute Bitstof trilateral teleoperators.
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Chapter 1

Introduction

1.1 Motivation

One of the five senses the human has is the sdnseiah. It is that sense that
allows us to explore and manipulate an object kslirfg it and sensing its
roughness, size, stiffness, etc. When an objecintend to manipulate is not
physically reachable, we use tools as extensiomsitcarms. Now, imagine that
the extension tool is capable of recreating fothessense of touch. In that case,
we are able to manipulate remote objects and “faglif we are in direct contact
with them. The described scenario is realized bytibaeleoperation systems.
These systems are made up of one (or more) hunmexatop(s) couple to one (or
more) master robot(s) in order to control the moeetmof a remote slave to

perform a task on a remote environment.

The key motivation for this research is to estéibticriterion for investigating the
stability of multilateral haptic teleoperation systs, which can be modeled ras
port networks. The realization of taleoperatorinvolve one or moremaster
robots (i.e., user interfaces), one or mgleverobots (i.e., remote robots), control
units, and communication channels between the msasted the slaves. A
multilateral teleoperation systers formed once the above teleoperator is coupled
to human operators in one end and to external @mwients in the other end
naturally, human operators are coupled to the masthile the environments

interact with the slaves. The multilateral tele@p®n system is said to provide
1



haptic feedback if all of the slave/environmentemaction forces are reflected

back to the human operators via the masters.

Figure 1.1 shows a multilatert¢leoperation systemnade up ofn robots. One
potential scenario for Figure 1.1 is thatl master’s robots are sharing the
execution of a task in a remote environment byataltatively controlling the
movement of a slave robot [5], [6], [7], [8], [9In Figure 1.1, each human
operator/master interaction is denoted Dby, Fi=1,...,n-1, and the
slave/environment interaction is denoted RyAfso, Vi, Ve, Femi, and ks are the
masters’ and the slave’s velocities and controhalgy respectively. Impedances
Zni and Z denote the dynamic characteristics of the humamabpes and the
remote environment, respectivelyn&and 4 denote the linear impedances of the
masters and the slave, respectively. Moreovgt,dnd F* are the operators’ and

the environment’s exogenous input forces.

A valid question one can ask is “why do we needibtg criteria for multilateral
teleoperation systems?” The answer is that staliliteria can give researchers
formal and accurate information on the trade-ofé&sween performance and
stability of the multilateral teleoperation systdror a better understanding of this
statement, consider a teleoperation task invol¥iipping the three-way switch
shown in Figure 1.2. Assume that the human opetatstbeen asked to move the

switch from state 1 to state 2 but not to state 3.

The teleoperation system should exhibit a suffityesatisfactory performance so
that the human operator can flip the switch byapeération of the slave robot
through the master robot; for this, the slave robot’s overshoot should be no more

than the position difference between states 2 ard this example, it is evident
that master-slave position error, which is a measofr teleoperation system
performance, directly affects the performance @& thsk by the operator. To
achieve a small enough master-slave position eherslave’s position controller
gains have to be selected large. However, selettingarge a controller gain

2



risks making the system non-passive or even ures{@8l, [39], [40].The upper
limit on the controller gains before stability isst is what can be determined
using the passivity and absolute stability critedaveloped in this thesiFhe
theoretical passivity and absolute stability crééedeveloped in this thesis are,
therefore, valuable results that allow for obtagnmaximum performance in the

stable region.

In practice, the upper limit imposed on the congain for ensuring stability may
restrict the performance to the extent that taskfopmance is severely
undermined. For example, in the same 3-way swaek,tone may find that the
highest slave’s controller gain for which the systeemains stable is still not high
enough to complete the task successfully (espgdfatie switch is sticky and the
position difference between states 2 and 3 is $raaén though the same task is
done readily under direct touch. Therefore, it isoainformative to study if
successful completion of this task is possible lataad this study can be

facilitated using the passivity and absolute sitytiriteria proposed in this thesis.
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Figure 1.1. A multilateral haptic teleoperatiostgyn consisting afi-1 master
robots and one slave robot.

Figure 1.2. A three-way switch

The central problem when studying the stabilityteleoperation systems is that

human operators and environments are part of teedtoop system and thus
4



their models are necessary for stability analysis.practice, however, such
models are next to impossible to acquire. For m#athe dynamics of a human

operator changes according to the task at hand4[3],

For the simplest case — a bilateral haptic telesdmer system (Figure 1.3) that can
be modeled as a 2-port network (Figure 1.4) — tearst well-known methods to
investigate the stability. Such a study of stapilt valid when the 2-port network
is connected tanknownterminations (human operator and environment) dnat
passive. These methods are known as Llewellyn’slatesstability criterion and
Raisbeck’s passivity criterion [11]. We will dedwzi these criteria later in this
chapter. A method to study the stability of mutBlal teleoperation systems

beyond the bilateral case, which is the subjethisfthesis, is still in demand.

Teleoperator

Figure 1.3. A bilateral teleoperation system cosipg a human
operator, a teleoperator (consisting of a mastsiq\ze,
controllers, and a communication channel), andrasr@xment.

II Iz
—: ~— 1 2-Port n
Port1 Vv, Network V, Port2

Figure 1.4. A 2-port network.



1.2 Emerging Applications for Multilateral Teleoperation

Systems

Multilateral teleoperation systems beyond the erat one can offer greater
advantages: They can be used to haptically traoplpein performing remote

tasks, they can increase task efficiency wherelpshto use two hands instead of
one, they can help to perform a task in cooperaaomong several human

operators, etc.

Multilateral teleoperation systems can be categdras single-master/multi-slave
(SMMS), multi-master/single-slave (MMSS), and mutaster/multi-slave
(MMMS) systems. All of them are subjects of intemesearch nowadays due to
their potential applications. Next, some interggtapplications of such systems
are listed.

Single-master/multi-slave (SMMS). In this configuration, an operator coupled

to a single master controls multiple slave robégsplications of such systems
include multiple slave robots capable of performiogperative manipulation and
grasping of a common object [19], semi-autonomelsoperation on remote or
inaccessible environments [20], formation contrbihmbile robots teleoperated
by a human operator [21], and haptic-assisted mmaropulation with improved

human operability [22]. In the SMMS configuratighe slave robots are designed

with systems that avoid collisions among them.

Multi-master/single-slave (MMSS). In this configuration, multiple human

teleoperators control a single slave robot to perfea task on a remote
environment. Applications of this configuration lunde tele-rehabilitation [23]
and surgical training where an experienced surgeentors a trainee surgeon

through shared control of a surgical robot [24].

Multi-master/multi-slave (MMMS). In these systems, multiple masters control
6




multiple slave robots. Applications of MMMS can foeind in teleoperation tasks
performed in large-scale environments where theabdveystem is made up of
individual subsystems working in tele-cooperati@b][ remote pick-and-place
tasks [26], and shipping of hazardous materialyesilance sensor networks, and

rescue [27].

1.3 Literature Survey

While the applications of multilateral haptic syste are expanding rapidly, a
guestion we have to ask is, what stability critenia there in order to investigate
the stability of multilateral teleoperation syst@nkhe stability analysis of am
lateral teleoperation system is equivalent to ¢fi@nn-port network, whera can
be equal or greater than 2. The key difference éetva multilateral teleoperation
system (withn > 2) and a bilateral teleoperation system (with 2) is that the
former cannot be modeled as a 2-port network (retgood critical review for
absolute stability of 2-port networks is given 2]). Consequently, conventional
theories for absolute stability or passivity analysf 2-port networks can be
applied to bilateral teleoperation systems but tootmultilateral teleoperation
systems withn > 2. Unfortunately, existing research on this ¢opas not given

satisfactory results from a practical perspective.

In finding conditions for stability oh-port networks, a researcher will face the
decision of whether to use the theory of passiwityestablish a criterion for
stability or to find an absolute stability conditioNote that, as elaborated later,
passivity implies absolute stability in the senkattif an n-port network is

passive, then it is also absolutely stable.

The few attempts to find a criterion for absolutabdity of n-port networks can
be categorized based on whether they involve comdit on immittance

parameters or scattering parameters. The follovairegthe existing criteria for
7



passivity and absolute stability ofport networks, to the best of the author’s

knowledge.

Passivity criteria for n-ports

In 1954, Raisbeck wrote a paper proposing a gewmlefatition of passivity of a
network [29]. His definition is considered genetacause it goes beyond
“realizable networks” and assumes neither ratityador reciprocity. Raisbeck
only presented a criterion limited to the invediiga of passivity of 2-port
networks known as Raisbeck’s passivity criterioe.diid not extend this criterion

for the general case ofport networks whera can be an integer larger than 2.

In 1959, Youla et al. published the first formaktjication of the passivity
definition for n-port networks based on Raisbeck’s general pagsdefinition

(with minor differences) [31]. The paper presentedgorous theory of passive
LTI n-port networks but is fairly involved and stops ghaf proposing a passivity

criterion.

Another interesting work on the passivity eport networks has been presented
by Wyatt et al. [32]. This paper is another riggs@ttempt to present a definition
for passivity ofn-ports departing from energy considerations. ltsgmethe level
of expressing necessary and sufficient conditiamnspassivity of several classes
of n-ports such as resistive-ports, capacitive/inductive-ports, linearn-ports
(using state space representation), etc. Like thgiqus case, this paper stops

short of proposing a passivity criterion feport networks.

In [33], Anderson and Spong utilized concepts froavatwork theory and

introduced a tool for checking the passivity of iport network based on the
singular value of the scattering matrix of the rmiw They showed that a
network is passive if and only if the norm of itaering operator is less than or

equal to one. The scattering operé&&os defined as

F—v=S8F +v) (1.1)
8



and maps effort plus flow into effort minus flow (1.1),F is the effort measured
across the network’s ports amdis the flow entering the network’s ports. In
relation to haptic teleoperation systems, the effariable is equivalent to force
and the flow variable is equivalent to velocity.rilation to electrical networks,

effort is equivalent to voltage and flow is equesal to current.

In the Laplace domain, (1.1) becomes

F(s)—=V(s) =S(s)(F(s) +V(s)) (1.2)

According to [33], ther-port network is passive if and only if

ISllee <1 (1.3)

This is equivalent to
sup,A/2(S*(jw)S(jw)) < 1 (1.4)

where 4 denotes the eigenvalue of a square matrixjenotes the complex
conjugate transpose, anadis the frequencyCondition (1.4) is difficult to verify
in the general case especially without knowledgthefmodel parameters for the

robots and the controllers, making it not suitdblecontrol synthesis.

Absolute stability criteria for n-ports

For absolute stability analysis afi-port networks, researchers have used
techniques involving impedance parameters, scatfgrarameters, and graphical
analysis as shown in [13], [34], [35], and [36]] ptoposed methods have issues
some are too complex in order to have a practippli@ation and some others

make oversimplifications.

In [16], Ku proposes two methods to study the $itglmf non-reciprocaln-port

9



networks using impedance parameters. In the fiezhod, he studies the stability
of the nonreciprocah-port by finding a reciprocat-port network which has the
same stability characteristics as the nonrecipnogadrt network in question. This
approach is limited to nonreciprocal n-port netvgotkat do have an equivalent
reciprocal network and have a certain structuree $&cond approach uses the
impedance matrix of a nonreciprocal 3-port netwankl reduces it into a 2-port
network by terminating the™3port in a fixed reactance. It is obvious that by
terminating any %8 port in a fixed reactance, the stability conditicaare the same
as stability conditions of 2-port networks. Thigpegach works as follows: Let
port 2 be terminated in a fixed reactance and §tability conditions between
port 1 and port 3. Then, let port 3 be terminated ifixed reactance and find
stability conditions between port 1 and port 2tHis case, for different values of
fixed reactances, a family of circles is obtaindoy (using the bilinear
transformation of the input impedance) whose charestics define the region of
stability. The fixed reactance can take on diffenalues, which make for a long

and iterative process. Thus, the analysis in [8@pinsiderably involved.

In [35], Boehm and Albright presented a solutiontfte case of 3-port networks.
The stability analysis is done by using scattepagameters and investigating the
absolute stability of 2-port networks resultingrfréerminating the 3-port network
to a fixed termination at thé%ort. This makes the method rather complex since
for each termination, three stability conditionsatving its reflection coefficient
need to be consideredonsequently, the necessary conditions for stgholit3-

ports result in a total of nine equations.

Graphical solutions have also been proposed baseteftection coefficients,
scattering parameters, and stability plots using &mith Chart. In [36], Tan
presents a simplified graphical analysis based-por2stability criterion using a
single parametep. The criterion establishes that a 2-port netwarlalhsolutely

stable if and only if the geometrically derived aeten satisfies

10



1—|sq44|?
= l | >1 (1.5)
|522 — AsT4||512524]

wheres; are the elements of the scattering mafandA is the determinant &
Tan postulates that a 3-port network arbitragntinated at one of its ports can
be reduced to a 2-port network whose absolutelgyaban be investigated by
using (1.5). Condition (1.5) results in stabilitjots that are mapped into the
Smith Chart. Like previous cases, this method dha¢propose a general solution
for absolute stability ofi-port network; on the contrary, by restricting one of the
ports to an arbitrary value, it transforms the Btpwetwork into many 2-port
networks.

In conclusion, tools known so far to evaluate thesivity and absolute stability
of n-port networks are still in their infancy and maeesearch has to be done in

order to find a complete analytical solution to gneblem.

1.4 Contribution of the Thesis

The contributions of this thesis are twofold. Finstpresents a closed-form and
practically-useful criterion for passivity of-port networks 1§ equal or greater
than 2), which can be used to investigate the Igtalmf multilateral haptic
teleoperation systems. Second, it gives a procefiurelirect investigation of
absolute stability of trilateral haptic teleopeoati systems. In this case, an
analytical expression needed to assess the abstédliéty of three port networks
is derived. The numerical evaluation of such anresgion gives information

regarding the stability of trilateral haptic telepation systems.

1.5 Thesis Synopsis and Organization

The following is a summary of each chapter of tiests.

11



Chapter 2 presents an overview of passivity andlates stability of 2-port
networks. The intention of this chapter is to faanize the reader with the most
important characteristics and issues of 2-port osgtwstability analysis. By
studying the work done so far for the case of biltsystems (2-port networks),
the reader will gain the necessary knowledge reduito understand the
complexity of multilateral haptic systems beyonde thilateral one. This

knowledge will be crucial and necessary for thelgtof n-port network stability.

In Chapter 3, a novel method to investigate thesigag of n-port networks,
based on immittance parameters of the networkgsemted. The method is given
as a closed-form criterion for passivity fport networks and can be used to
investigate the stability of multilateral haptidet@peration systems. This criterion,
which is necessary and sufficient for passivityaafn-port network, imposes
conditions on the immittance parameters of the agktwand another set of
conditions on the residues of the immittance patarseat their imaginary-axis

poles.

Chapter 4 discusses a method for investigationbsblate stability of 3-port
networks. The chapter departs from the fundamed#dinition of absolute
stability as it applies to 3-port networks and\gs at an expression that can be
evaluated iteratively and numerically for assessroéstability of trilateral haptic

teleoperation systems.

In chapter 5, the passivity and absolute stabdfty dual-user haptic system for
control of a single teleoperated robot (i.e., kateral haptic teleoperation system)
are investigated through simulations in order tofyehe findings in Chapters 3

and 4. Chapter 6 presents the conclusions of ¢sisarch as well as directions for

future research.

12



Chapter 2

Passivity and Absolute Stability of

Bilateral Teleoperators

2.1 The Bilateral Teleoperation System and the 2-port Btwork
Representation

2-port networks are overwhelmingly the method afick for modeling a bilateral
teleoperation system, which consists of a slavetrabhd a master user interface.
The human operator controls the slave and is peavidith haptic feedback
concerning slave/environment contact forces thrahghmaster. Figure 2.1 shows
the equivalent electrical circuit representatioradfilateral teleoperation system.

Usually, only the linear dynamics of the master slagle are considered as in

fm + o = Mpiim, fs = fo = Mg (2.1)

In the above, the hand/master interaction is dehoby f, and the
slave/environment interaction is denotedf©ylso, My, Ms, Xm, %, fm, andfs are

the master’s and the slave’s inertias, positiond,@ntrol signals, respectively. In
Fig 2.1, impedances, and Z. denote the dynamic characteristics of the human
operator’'s hand and the remote environment, relseéctMoreover,F, andF,’

are the operator's and environment’s exogenous tiffpuces, which are

independent of the teleoperation system behavior [1

13



Teleoperator

Figure 2.1. A 2-port network model of a bilaterebperation system.

II Iz
_— -
¥ 2-Port n
Port1 VvV, Network V, Port2

Figure 2.2. A general 2-port network.

Figure 2.2 shows a general 2-port network, in whieh pair (1, V,) is the input
current and voltage and the paip, (M2) is the output current and voltage.
Depending on which combination of these four questi(h, I, Vi, and \b) are
chosen as independent and dependent variable pixrsdifferent ways for
modeling the 2-port network exist. Table 2.1 showese six possible

representations of a 2-port network [11].

Table 2.1. Different representations of a 2-potivoek.

Indep_endent Dep_endent Parameter Type
Variables Variables
l1, 12 Vi, Vs Open-circuit impedanceg)(
Vi1, Vo [, I2 Short-circuit admittancey)
l1, Vo Vi, | Hybrid parametersh
Vy, Io l1, Vo Inverse hybrid parameterg)(
Vo, Iz Vi, I Chain parameter#\( B, C, D)
Vi, 11 Vo, |2 Inverse chain parametets, (%, ¢, D)

14



For instance, using the impedance parameters,-gogthetwork can be modeled
as

il _ 1211 Zi2)[hL
Vz] B [221 Zzz] 12] (2:2)

Accordingly, the impedance model of the bilateedédperation system in Figure
1 is given by [15]

Fal 1711 Z121| X
Fe] - [Z21 Zzz] [_Xsl (23)

2.2 Criterion for Absolute Stability and Passivity of a 2-port
Network with Unknown Terminations

2.2.1 Preliminaries

Closed-loop stability is crucial for safe teleopgema. For instance, when a
surgeon remotely guides a robot to operate on i@rgastability is of ultimate
importance. For the analysis of closed-loop stigbif a teleoperation system,
according to Figure 2.1, the knowledge of the hunaperator and the
environment dynamics are needed in addition todh#te teleoperation system’s
immittance parameterg&, y, h,or g). In practice, however, the models of the
human operator and the environment are usuallyawknuncertain, and/or time-
varying. This makes it impossible to use converatidechniques to investigate
the closed-loop stability of a teleoperation system

Assuming thaZ,(s) andZg(s) in Figure 2.1 are passive, we might be able &wdr
stability conditions that are independent of themho operator and the
environment. Two well-known methods have been dgperl to investigate the

stability of a 2-port network that is connecteduttknown terminations. These

15



methods are known as Llewellyn’s absolute stabititjerion and Raisbeck’s

passivity criterion. Both criteria work under th&samption that both the operator
and the environment are passive. The following rdgdins are needed before
presenting these criteria.

Definition: Passivity [11]

A 2-port network is passive if, for all excitatigribe total energy delivered to the
network at its input and output ports is non-negatiHence, passivity is a
property of the 2-port network which establisheattit cannot deliver more
energy than what is delivered to it. Assuming ttheg 2-port network has zero
energy stored at time= 0, the network is said to be passive if it sassf

E() = [, (i@, (D) + i,(@)v, (1) dT 2 0 (24)

wherei;(t) andv;(t) are the instantaneous values of the current alidges at
port i with i=1,2, andE(t) represents the total energy exchange for the 2-por

network.

Definition: Activity [11]

If a network is not passive, then it is active.

Definition: Positive realness[11]
A rational functionF (s) is positive real if and only if, in addition toibg real for
reals, it meets the following conditions:
a. F(s) has no poles neither zeros in the right half pl@&teP),
b. Any poles of F(s) on the imaginary axis are simple with real and
non-negative residues, and
c. Re{F(jw)} =0, Vw.

Definition: Absolute stability

The following definitions are equivalent:
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A. A 2-port network is absolutely stable if it remastable under all possible

uncoupledoassive terminations.

B. A 2-port network is absolutely stable if, when ceated to a passive
termination at one of its ports, the other portlvdisplay a passive

behavior.

C. A 2-port network is absolutely stable if the pauntrents are zero at all real

frequencies for all passive terminations.

Definition: Potential instability [11]

A 2-port network is potentially unstable if it i®gsible to find uncoupled passive
terminations that, when connected to the netwarcyce an unstable system. If

a 2-port network is not absolutely stable, thaa giotentially unstable.

Theorem: Equivalence between positive realness and passivity for LTI systems
[29]

Consider a linear time invariant systéindefined byHx = h * x, whereh has a
Laplace transform that has no poles in the righttglane. Systent is passive if
and only if Re{H(jw)} =0, for all real frequenciess, where H(jw) is the

Fourier transform oh(t).

This theorem establishes that an LTI system isiypastand only if its transfer
function is a positive real function. This theoremstated for a 1-port network. Its

extension ta-port networks is presented later in Chapter 3.

2.2.2 Relationship between input/output impedance ral absolute

stability

What follows is a simple proof of the assertiontth&-port network is absolutely
stable if its input and output impedance for pasgerminationsz, andz; are

positive real functions. Figure 2.3 shows a 2-pwtwork driven by a voltage

17



sourcel; and with terminationg, andz,. The system can be represented by the

following equation

IR e | 25)

The transfer function for this system is the ratfaesponse to excitation and is

given as

I z
== = (2.6)
Vo (211 +21)(Z22 + 22) — 21221
I1 |2

. 4>; 211 Zi2

ool 2
-1 2 I

Zinl
Figure 2.3. A double terminated 2-port network.

For the system to be stable, the transfer funatemot have poles in the right

half of the complex frequency plane. The poleshef double terminated 2-port

network are the roots of the characteristic equatio

(211 + 21) (222 + 23) — 212251 = 0 (2.7)

With some manipulations, equation (2.7) can betemiin any of the following

two equivalent forms

Zl + Zinl = 0 or ZZ + Zinz = 0 (2.8)

with Z;,,; andZ;,, given as:
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Zipn = Z11 —

Zing = Z33 —

Z12Z31 _ Z11Zp * Z11Z35 — Z12Z1

Z22

+ z,

Zyy + 25

Z12Z31  ZppZ1 t Z11Z33 — Z12221

Z11t+ 24

Z11 + 24

| 211

Zinl

Figure 2.4. A nonreciprocal 2-port network termethat port 2.

I

+
Port1l V,

71 I»

I

212
+
S v, Port2 22

Figure 2.5. A nonreciprocal 2-port network termethat port 1.

Re[Z(s)] =0 for

Zy

73]

Z12

Zy ‘

satisfy the following two conditions

Zin2

Z(s) is real when s is real

Re[s] =0

(the same argument applies to positive realnegs,of.

19

(2.9)

(2.10)

On the other hand, E(s)is any arbitrary positive real function, th&(s) has to

(2.11)

As previously stated, a positive real function a@nnave poles or zeros in the
right half of thes-plane; poles or zeros along the imaginary axisaiosved only

if they are simple. Next, the argument for positrealness o¥;,, is presented



The first equation in (2.8) represents another wéywriting the system’s
characteristic equation, thus

Zy+ Zipn =0 2 (291 +21) (222 +23) — 21325, =0 (2.12)

If z, is passive then it is positive real. #;,, is also positive real, meaning that
Re(Zin1) =0, thenz, + Z;,1, Which represents the total impedance of port 1
loop, is positive real as well; thus, + Z;,; cannot have zeros in the right half
plane. Zeros of, + Z;,; are the zeros of the characteristic equation (2vF)ch

in turn are the poles of the system’s transfer tioncgiven in (2.6). In conclusion,
the 2-port network is absolutely stable if the ihpupedanceZ;,,; is a positive

real function. The same proof can be applied fercghse of;,,, m

2.2.3 Llewellyn’s absolute stability criterion

If p represents any of the four immittance parametersy,(h, § of a 2-port
network, the criterion establishes that the netwsribsolutely stable if and only
if [11]:

1. p;;, andp,, have no poles in the right-half plane (RHP),

2. Any poles ofp;; andp,, on the imaginary axis are simple with real and

positive residues,

3. For all real values of frequencies we have
Re(p;1) =0
Re(pzz) =0
2Re(p11)Re(P22) — Re(P12021) — |P12P21] = 0 (2.13)

wherefRe(*) denotes the real part of a complex number.

If any of the above conditions is not satisfiederththe 2-port network is

potentially unstable. As mentioned before, the athge of using absolute
20



stability in haptic teleoperation systems is thabdels of the operator and

environment will not be needed for stability anays

Proof of Llewellyn’s criterion for absolute stability:

A simple proof of Llewellyn’s criterion for absokitstability can be offered by
using the properties of bilinear transformationd][3Recall that, by definition, a
2-port network is absolutely stable if its inpuhdaoutput) impedance for any
passive load (and source) impedance is a posigae function. The following
derivation applies to any of the four immittancergmaeters (zy, h, g of a

nonreciprocal 2-port network.

Using impedance parameters (which is one the foossiple choices of
immittance parameters), the relation between veiagnd current in the 2-port
network of Figure 2.6 can be written as

il 1211 Zi21[h
Vz] B [221 Zzz] Iz] (214)

where all the impedance parameters are complexitjgarof the form

Zij = rij +]XU (215)
I R A | Z12 ﬂ—lz
Port1 v, * 4: v, Port2
= 7 I

Figure 2.6. A general nonreciprocal 2-port network.

Equations (2.9) and (2.10) from the Section 2.h@wsthatZ,,,and Z;,, are
bilinear transformations of the terminations and z,, respectively. A bilinear

transformation transforms circles into circles witinaight lines as limiting cases
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[16]. The borderline of passivity in thg complex plane is theofaxis meaning
that any impedance to the right of tiegxis is passive and any impedance to the

left is non-passive (active).

Bilinear

) Zin-plane
N Transformation in"P

Im Im

% R Re

Figure 2.7. The input impedangg,, as a bilinear transformation f.

In Figure 2.7, for all passive,, Z;,; is transformed into a circle centeredCat

with radiusr;where

212221
C, = _— 2.16
1= 211 2Re(Zyy) ( )
and
Z12Z
_ 12122211 (2.17)

= 2Re(z,5)

In Section 2.2.1, we established that a 2-port agtvis absolutely stable if the
input impedanceZ;,; (and Z;,,) is a positive real function. This fact is

represented by the two inequalities (2.18) and9(2.1

Re(Z;,1) =0 for all passivez, (2.18)
22



and
Re(Z;,2) = 0 for all passivez; (2.19)

For the nonreciprocal 2-port network to be abstyuseable, condition (2.18) and
condition (2.19) must be satisfied.
Condition (2.18) means that

Re(C,) —1, = 0 (2.20)

Substituting (2.16) and (2.17) into the conditi@2Q) yields

2Re(z11)Re(z,2) — Re(212221) — 1212254 ] >0

et (2.21)

Also for all passivez;, Z;,, is transformed into a circle centeredCatvith radius

r,. Following the same procedure as gy, , condition (2.19) yields

2Re(z11)Re(z22) — Re(212221) — 1212254 >

e(r) 0 (2.22)
Furthermore,

Re(z11) =0 (2.23)
and

Re(z,,) =0 (2.24)

are necessary conditions for the stability sinaeythepresent conditions (2.18)

and (2.19) under open circuit terminations.
From (2.21) to (2.24), we have
SRe(le) >0
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Re(z,2) =0

2Re(z11)Re(zy2) — Re(z12221) — 12122211 = 0 (2.25)

which is Llewellyn’s criterion for absolute stalyli[18].

2.2.4 Raisbeck’s passivity criterion

The necessary and sufficient conditions for pagsndi a 2-port network with the

immittance parametgrare [11]:
1. Thep-parameters have no RHP poles.

2. Any poles of thep-parameters on the imaginary axis are simple, bad t
residues of thep-parameters at these poles satisfy the following
conditions:

If k;j denotes the residue p§ and k;,-* is the complex conjugate &,
then

kyy =0
ko, =0
ki1koy — kioko1 =0 with kyy = ki, (2.26)
3. The real and imaginary part of tlpeparameters satisfy the following
conditions for all real frequencies
Re(p11) =20
Re(pz2) 2 0
4Re(p11)Re(p22) — (gﬁe(Pn) + iRe(p21))2 - (7"1(2912) —
Im(ps1))’ = 0 2.27)
whereIm(*) denotes the imaginary part of a complex expression
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Proof of Raisbeck’s passivity criterion of 2-pogtworks will not be shown here.
Instead, a full proof of passivity ofport networks as an extension of Raisbeck’s

criterion will be presented in the next chapser.

2.2.5 Comparison of stability vs. passivity: The sbility—activity

diagram

As mentioned previously, the advantage of usingigayg in haptic teleoperation
systems is that models of the operator and enviemmnare not needed for
stability analysis. However, stability conditiongadn from passivity are
conservatives compared to absolute stability. Therene case in which the
passivity and absolute stability criteria overldipis when the 2-port network
representing the teleoperator is reciprocal. Bynitedn, a 2-port network is said
to be reciprocal if the ratio of response to exmwtais invariant to an interchange
of the locations of the excitation and the respofs¢éerms ofz-parametersa 2-

port network is reciprocal #;, = z,;.

A comparison between the aforementioned criteria pfassivity and absolute
stability of 2-port networks shows that Raisbecigassivity criterion implies
condition 1, condition 2, and the first two sub-ditions of condition 3 of
Llewellyn’s absolute stability criterion. The difence between the two criteria
indeed lies in the last sub-condition of conditidhsFor absolute stability, this

condition can be written as [10]

H2 g (2.28)
V111722

wherer;,; is the real part ofyz,,z,, while r;; andr,, are the real part of;;

andz,,, respectively. Moreover, for passivity, the lashdition can be written as
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r1221 N (Iz12] = |Zz1|)2

<1 (2.29)
11722 4111752

Obviously, absolute stability and passivity coirecidhenz,, = z,;.

Equations (2.28) and (2.29) can be representetianstability-activity diagram

shown in Figure 2.8 by plotting ||2212r|_\/|_:21” \/:12_; . The graph shows the
11722 11722

boundary between the regions of passivity and iagtis the first quadrant of a

circle of unit radius. The boundary between theéamrsg of absolute stability and

potential instability is represented by the velitloee at\/% = 1. It is observed

T11722
from the graph that the condition for passivity lrap the condition for absolute
stability; however, the condition for absolute stability does necessarily imply
the condition for passivity. Consequently, passieéworks are absolutely stable

but not all absolutely stable networks are passive.

By using this graph, one can easily determine ttabilgy of a bilateral
teleoperator. The immittance matrix representing Hilateral teleoperator in
guestion will be a function of frequency £ jw). Thus, by running from 0 tocw
a curve can be plotted on the stability-activitggtam. If the curve is completely
inside the passive region, the teleoperator isipasand, therefore, absolutely
stable. If the curve lies anywhere inside the alisbl stable region, the

teleoperator is absolutely stable but not necdgspaissive. If any point of the

curve lies to the right of the vertical Ii@é% = 1, the teleoperator is potentially

11722

unstable, meaning that there is at least one catibm of passive environment

and passive operator for which the system is ufestab
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||Z1z|—|Zz1|| |
24111792 i
. | ,
Active | Active and
and abs. | potentially
stable i unstable
|
|
|
1
|
1 l
1
|
|
1
} 7121
1 V11722

Figure 2.8. The stability-activity diagram.

2.3 Transparency of a Bilateral Teleoperation System

Besides stability, a main goal of teleoperationtoans transparency. Although
not a subject of this research, a brief descriptibtransparency is provided next.
Transparency is the ability of a teleoperation eysto present the undistorted
dynamics of the remote environment to the humamadpe[2], and requires the
master and the slave positions and interactiomsaizh regardless of the operator

and environment dynamics. Mathematically, it carekgressed as

fo=Ter Xm=xs (2.30)

The hybrid representation of the teleoperator shiowkigure 2.1 is given by

=T Z;zHX] (231



Using hybrid parameters, full transparency is gotaed if
h11 = 0, h12 = 1, h21 = _1, hzz =0 (232)
where theH-matrix componenth; can be interpreted as

hy; = Fh/Xm|F o input impedance when the slave is in free motion
hi, = Fn/Felx,_,: force tracking when the master is in locksation

hy, = —XS/Xm|Fe=0: - velocity tracking when the slave is in freasp

h,, = —XS/Fe|Xm=O: output admittance when the master is in locked onoti
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Chapter 3

Passivity of Multilateral Teleoperators

3.1 Introduction

An n-port network can be defined as a network contginipairs of terminals for
external connections. Each pair of terminals regressa port to which an external
network can be connected (Figure 3.1). The extebaddavior of then-port
network can be determined if all thecurrents and/; voltages are known. If for
any given port the product of current and voltagepositive, then power is
entering that port.

] 1 ~ P i
v, Vi
] N — Port
2

> Network

+
V, ) I,
¢
Va

Figure 3.1. A general-port network.

As a natural extension from 2-ports, passivity mhgport network is a sufficient

condition for the stability of the network when pbed to passive termination. An
29



attractive feature of passivity is that it appliees both linear and non-linear
networks and it is based on simple energy concéptbis chapter, the necessary

and sufficient conditions for passivity of arport network are presented.

3.2 Passivity Conditions for Linear n-port Networks

By analogy with the case of 2-port networks, wergefinn-port network to be
passive if, for all excitations, the total energgange at the network’s input and
output ports is non-negative. Assuming that theo2-petwork has zero energy

stored at time t = 0, this passivity definitioreigpressed as

E(t) = fot(il(r)vl (@) +i,(Dv (1) + .. + i, (D, (7)) dT = 0 (3.1)

whereE (t) is the total energy delivered to theort network.

Based on (3.1) for the casemt= 2, Raisbeck found the necessary and sufficient
conditions for passivity of 2-port networks [29]eWecall here that in the case of
linear and time invariant networks, passivity amdipve realness are equivalent,
which explains why Raisbeck arrived to the conduosthat a necessary and
sufficient condition for a network to be passivehat its impedance function has

to be a positive real function.

The n-port network passivity theorem that we proposerlat this chapter holds
for any of the four immittance parameters yet for brevity it is written only in
terms of impedance parameters. The proof for therthm is given in Section 3.3.
Using the impedance parameters of thport network, the relation in the

domain between voltages and currents is given by
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Vi(s) 211(8)  z12(8) - z1n(S)][L1(S)
Vz.(s) — 221.(5) Zzz.(s) Zzn'(s) Izgs)

: : : . (3.2)
Vn(s) an(S) an(S) Znn(s) In(s)

which can be compactly describedlas- ZI (note thatl is the vector of current
and not the identity matrix). In the proof of thiseorem, we will need the

following definitions.

Definition: Hermitian matrix

A Hermitian matrixH is a square matrix with complex elemehgsfor which the
following property holds:h;; = hj;. Consequently, a Hermitian matrif{ is

equivalent to its own conjugate transpose.

The eigenvalues of a Hermitian matrix are alwayd-valued. Another important
attribute of a Hermitian matriHl is that it is always possible to find a square
unitary matrixU (i.e., U*U is the identity matrix) such tha&t*HU is adiagonal
matrix with the eigenvalues & on its diagonal. Hence, it is always possible to

diagonalize a Hermitian matrix.

Definition: Hermitian form

A Hermitian form is an expression of the fopivk;;a; a; in which the coefficients

h;; are the complex elements of a Hermitian mahkix

Definition: Reduced row-echelon form
A reduced row-echelon form is a matrix form thas ktize following properties:
» The first nonzero number in a row is a 1 (leadipg 1

= All rows made up entirely of zeros are grouped togeat the bottom of
the matrix.

= The leading 1 in the lower row occurs farther te tight than the leading
31



1 in the higher row.

= Each column that contains a leading 1 has zeraywhere else.

Theorem 1. Passivity of an n-port network.
The necessary and sufficient conditions for pagsofiann-port network are
A. Thez-parameters have no RHP poles.

B. Any poles of thez-parameters on the imaginary axis are simple, and

the residue%;; of thez-parameters at these poles satisfy the following

conditions:
1. kiiZO i=1,2,...,n
ki1ky, — kiok
2. 11122 12121 2 0
kll
k11k33 - k12k21 (k11k23 - k21k13)(k11k32 - k31k12)
3. — >0
kll kll(kllkZZ - k12k21)
N kpp — 20w |2kl = 0 Vu;; withi <j (3.3)

where

* k;; denotes the residue gf; .

* The termsy;; are the elements of an upper triangular malkix

used to diagonalize the residues maKiaccording toU*K'U =

K , with U*being equal to the transpose complex conjugaté of

» The coefficientst;; are the elements of the diagonal maifix
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C. The complexz’-parameters satisfy the following conditions fdrrahl
frequencieso

A A ! !
2 211222 — 212271

!
Z11

! ! ! ! ! ! ! ! ! ! ! !
3 211233 — 213231 (211233 — 231213) (211235 — 231215) >0
) ! ! ! ! ! ! -
Z11 211 (211237 = 215257)

N. Zpn — 2t winl?zi = 0 YV w;j withi <j (3.4)

where
oz = %(Zij + z;) are the elements of the mat#k

» The termsw;; are the elements of an upper triangular mat¥ix
used to diagonalize the matrik according tdV*Z"'W = Z', with

W*equal to the transpose complex conjugati/of
* The elements;; are the entries of the main diagonal maZix

Note: Z is the impedance matrix representing thgort network.Z’ is equal to

half the sum ofZ and the transpose of its complex conjugmte.
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3.3 Proof of Theorem 1

Previously in Chapter 2 it was shown that for Ly$tems, passivity and positive
realness of the network’s transfer function areietiant. Hence, for the simple
case of a 1-port network (= 1) the energy requirement in (3.1) in thdomain

is equivalent to

Re{Z(s)} =0 for Re{s} =0 (3.5)

whereRe{} denotes the real part adds) represents the input impedance of the

1-port networkZ(s) can be expressed as

V()

=1

(3.6)

where V(s) is the voltage across the 1-port ah@) is the current flowing

through the port. By manipulating (3.6) as

V() V()I'(s) V(s)I'(s)

Y021 ST Te) - TP @7
equation (3.5) is equivalent to
Re{V(s) I"(s)} =0 for Ref{s} =0 (3.8)

where I*(s) is the complex conjugate of(s). Notice that|I(s)|?in the

denominator of (3.7) is always positive.

By analogy with (3.8), (3.1) is equivalent to tledwing condition

Re{Vi(S)I; + Vo, ()L -V (s)I;} =0 for Re{s} >0 3.9
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Eliminating the voltages in (3.9) by using (3.2) ¥ind that then-port network

passivity is equivalent to

Re{F(s)} =0 for Re{s} =0 (3.10)
where

Re{F(s)} = Re{z11 ()1 (1 (S) + -+ + 21 () [($) 11 (8) + 221 ()1 ()7 (s) +
Zon () ()13 (8) + -+ + 21 ()L () R (S) + -+ + 2y () () [n (5)} (3.11)

On the other hand, we know that the rational flmcH(s) is positive real (i.e.,
(3.10) holds) if and only if, in addition to beimgal for reals, F(s) meets the

following conditions:

1. F(s) has no poles in the right half plane (RHP)

2. Any poles of F(s) on the imaginary axis are simple with real and-non
negative residues

3. Re{F(jw)}=0 Vw

For condition1, we require that none of tteeparameters of tha-port network
have any poles in the RHP. To investigate condifipassume thaF(s) has a
simple pole ak = jw, with a residué,. Let k4, k13, ", ky1 -k, denote the
residues ofzy4, 215, **, 221 *** Znn , respectively, at this pole. ExpandiR¢gs) in a
Laurent series abowt = jw, and keeping only the dominant terms in the

immediate neighborhood of the pole, we get

ko _ k11(wo) I jwo) I7 (jwo) I kinGwo) I (jwo) 17 (fwo) 4o

s — jwy s —jwo S = Jwo
ko Gio) I G I (o k.o (Gjws) L (Fwn) I(Fw
+ nl(l O) 1(]. 0) n(l O)+...+ nn(] O) n(]. 0) n(] O) (3.12)
s — jwy § = JWo

35



which is equivalent to

ko = k11(jwo) I Gwo) I jwg) + -+ + kin(fwo) I (fwo) I wo) + -+

+hn1 (o) I (jwo) In(jwo) + -+ + kpp(jwo) In(jwo) In(fwo) 8.13)

In (3.13),k, must be a real and non-negative number to sattsfdition2. Terms
k; for i =1,2,...,n are real and positive since the impedanggsre positive
real functions. Also/;(jw,) I; (jw,) is real and positive. Note that in the pairs
kij(wo) I jwo) If jwo) + kjiGwo) I;fwo) I} (jwo), sincel;(jw,) I} (jwy) and

I;(jw,) I} (jwo) are complex conjugatek;; andk;; are also complex conjugates.

Since the right side of (3.13) is a Hermitian fo(with h;; = k;;), it can be
diagonalized with respect to the Hermitian matrixhveoefficientsk;;. To do so,

(3.13) can be written in matrix form as

ki1 kip - kin] [
ko= I3 i | sz vk 2 sk 314
knl an knn In

The K-matrix is diagonalizable and we want to find aeln transformation
U'K'U = K whereK' is a diagonal matrixt/ is an upper triangular matrix, and

U* (the transpose complex conjugatd/ofis a lower triangular matrix.

uj; 0 0 0 [kil 0 0 0 ‘l Upp Upp Ugz o Ugg
u, us;, 0 - 0|0 kj) O - 0| | 0 Uy Uy - u2n|
Uz Uz Ui 0llo 0 ki o100 0 u; o ous,
luin Us, Ui, u,*mJ 0 0 0 - kr'mJ 0 0 0 - unnJ
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[kn ki kiz - kln]

|k21 k22 k23 k2n|
:|k31 k32 k33 h k37’l| (3.15)
knl an kn3 knnJ

which represents the systdifiK’'U = K. Solving for K’ and U will lead us to

expressions for eadt]; as a function ok;; elements. The solution will follow.

The left hand side of system (3.15) can be writgen

- 21,7 * I * 14 * I
luqq|“k1q Uy k112 Uy k113 o Uik
n
* ! 21,1 21,7 * ! * ! * !
Uikiiuyr  ugal®kig + luga %k, UypkyiUyz + Uzykpaunz §  Upkugy,
=1
n
* 14 * 14 * 12 21,7 21,7 21,7 * 14
UiskiiUyn UizkiqUyg + Usskgotay ugs|®kiy + lugsl®ky, + lussl®kss - § , 1ui3kiiuin
i=
* I * 0 * ’ 21,1
UgpkiiUsg Z Ui Kjiip Z Ui kiU Z [win|“ki;
- =1 =1 =1 -
(3.16)

for all u;; andu;; with i < j. In (3.16), we useds;; u;; = |u;;| 2.

Remarks: In (3.16), in elements;;, the first sub-index represents the row-

ijs
location and the second sub inderepresents the column-location. However, in

*

elementsy;;, the first sub-index represents the column-location and the second

sub-indexj represents the row-location.
Equation (3.15) is equivalent to the following gystof equations:
luiq|?kis = kqs

* r_
Uy Ug2Ky = Koy
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* 1
UjiUizkis = Kq3
* ! —_—
UppU1K1g = koq
27,1 2 5,0
lusa|“kiq +usky, = ko
21,1 21,1 2 ! —
lussl kg + lugsl®ky, + usskss = kas

n
Z luinl?ki; = knn V u;j and u;; with i < j (3.17)
i=1

Solution to the system of equation (3.17) is striyward:

k14

ki, =———

H luqq]?
K. = ki1kzz — kqzkoq

22 |uzzl%kqq
K. = ki1ksz — kizkaq _ (ki1kyz — koikq3)(kq1ksy — k3qkq7)

33 |uzz|?kqq lugs|kqq (k11kop — Ki2ky1)
kan = knn — Z?gllluinlzszi v Ui withi < j (3.18)

Now, (3.14) can be rewritten as

ko = I'KI = I'U*K'UI = (UD*K' (UI) (3.19)

implying thatk, will be non-negative and equivalently condit®nn the theorem

holds iff k;; in (3.18) are all non-negative. The expressiontgherright hand side
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of (3.18) are all divided by coefficients of thefo|u;;|?. Those coefficients are

clearly positive and, hence, conditiok§ > 0 become

1. kiiZO i=1,2,...,n
ki1koo — kqok
2. 11122 12121 2 0
kll
3 k11k33 - k12k21 _ (k11k23 - k21k13)(k11k32 - k31k12) > 0
. kll k11(k11k22 - k12k21) -
N kpn — 20w |2kl = 0 Y u;; withi <j (3.20)

Therefore, it is established that condition 2 hatd&.3) holds.

By representing theJ matrix in the reduced row-echelon foim;; =1, V i =

Jj) the calculations of conditior@ are greatly simplified. System (3.20) shows the

reduced row-echelon equivalent of system (3.15).

==

R~

[N
(@]
o

[ 1»= 0 0 0][ 1 [1 Uiz Uqz Uin]
[uiz 1 0 0] | 0 k3, O 0[]0 1 ‘uy Upp |
ujiz uzz 1 0|| 0 0 ki ollo o 1 Usy,
luin wn usn o o o kllo o o 1

[kn kiz kiz kin

ka1 kap ko3 kon

= |k3y kap ks k3p (3.21)
LCnl an kn3 knn

whereu;; =u; =1, Vi =j.
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Regarding conditioB, the real part ofF (jw) can be obtained from
Re{F (jw)} = 3 [F(jw) + F* (jw)] (3.22)
whereF (jw) is given as

Fjw) = z11(jw); (o)l (jw) + -+ z1n(jw) I, jw) ] (jw)
+ 21 ()L (o) Z(jw) + -+ + Zpn(jo) I, (jw)I; (jw)

+ 2z )L (o) (o) + -+ + Zpn () [ () [ (o) (3.23)

andF*(jw) is given as

F'(jw) = z1;(jo) [ (), o) + -+ z{, o) [ o) [ jw)
231 () f jw) (o) + - + 23, o) [; o) I, (jw)

+ zp (o) [ o) [, (jw) + -+ + 25 o) [ jw) I, o) (3.24)

Substituting (3.23) and (3.24) in (3.22) we have

Re(F(j0)} = ;1211 () ) () + -+ + z1 () ln )T ()

+ z1 (o) (o) ;(jw) + -+ Zyn(j) I, jw)I; (jw)
+ cee +
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+ zp1 )L (w) (o) + -+ + Zpy () I, (8) I fw)
+ zi, (o) (o) (o) + -+ z{, (o) [;w) ] (w)
+ 231 (w)(w) + -+ + 23, () [ jw) ;)

+ .-+
+ Zp ) [ (jw) + -+ + zpn (jw) [ jw) I, (w)] (3.25)

By using z;; = %[zij + zj;|, Re{F(jw)} can be written as

Re{F(jw)} = 213 ()L () I{ (o) + - + 21, o) I, jw) ] jw)
+ 2;1(j) L) 5(w) + - + Zz, ) I o) I3 (jw)

+ zn )L (o) (o) + -+ + zpp ) [ () [ (o) (3.26)
or equivalently as

Re{F(jw)}=I"Z"1 (3.27)

where

z11(w)  zi,(jw) - zip(jw)
7' = Zél(j“’) Zéz(.jw) Zéngw)

24(w) (@) -~ Zim(w)
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z11(w) + z1:(w)  z1;(w) + 23:.(w) - zZ1p(w) + 2y (jw)

_1|z21(w) + z1;(Jw)  zp(jw) +25;(w) - Zop(jw) + Zp (Jw)
2 ; : :
Zn1 (](‘)) + Zikn(]'(‘)) Zn2 (](‘)) + Z;n(]'(‘)) Znn(j(‘)) + Z:Ln(]'(‘))
(3.28)

In general, the-parameters have complex values, izg.= 1;; + jx;; wherer;;

is the real part ang;; is the imaginary part of;; .

It is easy to see that (3.26) is a Hermitian folising a procedure similar to

(3.14)-(3.19), which was for the residue matrixe thatrixZ’' can be expressed as
Z'=W"Z"W whereZ" is a diagonal matrix and¥ is an upper triangular

matrix. The reduced row-echelon system is

1 0 0

. 0” 0 ][1 Wiz Wiz 0 Win]
wiz 1 0 = 00 z; 0 - O ||0 1 wpg o wyy
wiz wi;z 1w 0llo 0 =z ollo o 1~ ws,
Win Wan Wi - 1 [0 0 0 z,';nHO 0 0 1J

Zi1 Zip Z13 v Zin
Zp1 Zy Zaz v Zon

= lz31 23 733 - z3, (3.29)
Zni Zna Zp3 v Zmn

The solution to (3.29) is

no__
Z11 = Z11

1A 1A 1A !
o 211222 — Z12Z21
22 = 7
Z11
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! 1A 1A 1A A 1A 1A ! ! A A !
no_ %11433 7 213231 (Z11233 — 231213) (211232 — 231713)

233 - ] ] ] [ [ ]
Z11 711(211235 — Z1225,)

Z‘rllln = Z‘r’m - Z?z_lllwinlzzili, Wij with i Sj (3'30)

Now, (3.27) can be rewritten as
Re(F(jw)y=I"Z'I1=I"W*Z"WI = (WI)*Z"(WI) (3.31)

ThereforeRe{F(jw)} = 0,V w (i.e., condition 3) holds iff th&"-parameters in
(3.30) are non-negative (this also impligs > 0,255 =0,:,2,, = 0).
Therefore, condition 3 holds iff (3.4) holds.

In summary, conditiong\, B and C are necessary and sufficient for (3.10) or
equivalently (3.9), which defines timeport network passivity. This concludes the

proof. m

Remarks: In Chapter 2, it was stated that for the caseTdfdystems, positive
real transfer functions represent passive systétaace, we could also present
another proof of Theorem 1 by using the definitioih positive real transfer

functions as it is shown below.

Definition: Positivereal transfer function [37]

Consider an n-port network with anx n proper transfer function matrig(s).

G(s) is positive real if
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» Poles of all elements ofi(s) are inRe{s} <0

* For all realw for whichjw is not a pole of any element 6fs), the matrix
G(jw) + GT(—jw) is positive semidefinite.

* Any pure imaginary polg¢w of any element o&(s) is a simple pole and
the residue matrix lim,,;,(s — jw)G(s) is positive semidefinite

Hermitian.

In the above conditions;” (—jw) denotes the transpose complex conjugate of

G(jw).

In our proof, we usedV = ZI which is a compadiorm of system (3.2). Clearly
the transfer functioi (s) is then x n impedance matri€. The second condition
above, i.e.G(jw) + GT(—jw) being positive semidefinite, is the same as (3.27)
being positive semidefinite. The third conditioroab leads to the conditions for

the residueg;;.

3.4 Case Study: Passivity Conditions of a 2-port Netwdr

In this section, the special case of passivity o2t networks is considered. We
will proceed the same way as we did when we arratetie passivity Theorem 1.
The result will be compared with the well-known $tsck’ Criterion. The

network has been modeled using the impedance pteeas shown in (3.32).

il 1211 Zi21[L4
VZ]_[221 ZZZ] 12] (3.32)

Assuming that the-parameters have no RHP poles, we move into thysasaf

the residues for which Equation (3.15) has to Ibeesbfor the case ofi = 2. The

system is represented below:
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0] [kll ] 1 Uqp kll klZ]
3.33
s, el Tl ko (3:33)

It is easy to see that solving (3.33) results in
Wz = kiz/kyy and uj, = ka1 /kqy

and

kb, = >0 (3.34)

Therefore, it is straightforward that conditiBrin Theorem 1 is same as condition
2 in Raisbeck’s criterion. Also, in the followingevshow that solving (3.29) for

= 2 results in condition 3 in the Raisbeck’s craar

Writing z;; as rj; + jx;; wherer;; is the real part ang;; is the imaginary part of

z;;, we have

1 J
z11(w) z1;(w)] _ "1 ;(7"12 +11) + §(x12 — X31)

’ . 1] . = |1 j
21(w) 23, (jo) 5(7"12 +131) — > (X12 — X21) T2

(3.35)

Using (3.29) for the case af= 2 the following system is formed:

[ 0][211 ]1 Wiz) = [Zn Ziz] (3.36)
Wi, Zyy Zy1  Zpp

Solving (3.36) results in:

— ! ! * 14 12
Wip = Z15/711 and wi, = zy,/74;.
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and

"no_
Z11—21120

! ! ! !
211222 — 21274
Zyy = - >0 (3.37)
711

By usingz;; = %(zij + z;;), the second condition in (3.37) reduces to:

4ry11yy — (rp +131)% — (012 —%21)2 =0 (3.38)

with rij= iRe(Zij) andxij = gm(Zl]) with l,] = 1, 2
Inequality (3.37) is the same as the last of cami8 in Raisbeck’s criterion with

Tij= ‘.Re(pl]) and Xij = f]m(pu)

We conclude that for 2-ports, by using similar guare as the one used for
finding conditions of passivity of n-port networkbge final result is the same as
Raisbeck’s criterion. In the future, one does navehto go through all these
calculations; on the contrary, we have presented Theorem 1 walichwvs for

direct investigation of passivity of-port networks whera can be any positive

integer number equal or larger than 2.
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Chapter 4

Absolute Stability of Trilateral

Teleoperators

4.1 Introduction

A 3-port network can be defined as a network coimgi 3 pairs of terminals for
external connections. Each pair of terminals regressa port to which an external
network can be connected (Figure 4.1). 3-port ndisv@an be used to model
trilateral haptic system used in applications sagldual-user haptic teleoperation
(two masters and one slave robots) and triple-as#laborative haptic virtual
environments in which three users perform a tagietteer. As it has been
previously stated, for closed-loop stability anaysf such systems, the model of
the human operator and environment is requireddditian to the model of the
teleoperation systemmmitanceparametergz, y, h,or g). In practice, the human
operator and environment models are usually unknawcertain, and/or time-
varying. Hence, the discussion of stability of 3tpoetworks is done under the
assumption that the human operator and environteeminations are passive but

otherwise arbitrary.

This chapter discusses a method for direct invastig of absolute stability of 3-
port networks. The derivation of the method is dasm the fundamental

definition of the absolute stability of 3-port netsks from which an analytical
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stability condition is derived. Numerical evaluatiof this condition for a given
network can be used for evaluation of its stability

Il I3
4R Hi

y ¥ 3—Port + y

! Network - ’

Figure 4.1. A 3-port network.

4.2 Absolute Stability Condition for 3-port Networks

In this section, a step-by-step method for analgéimbsolute stability of a 3-port
network is introduced. Any of the four immitanceqraeterqz, y, h,or g) can be
used and, therefore, without loss of generality,ztparameters have been chosen.
Using the impedance parameters, the 3-port neteamibe modeled as

4} Z11 Z12 Z13|[Lh
Vol = 1221 Z22 Za23||l; (4.1)
|7 Z31 Z3p Z33]ll;3

As it was explained in Chapter 2 (although for tiase of 2-port network), a 2-
port network is absolutely stable if the input irdpaceZ;,,, when one of the ports
is connected to a passive termination, is a pasit@al function. Hence, we will

look for conditions of absolute stability of a 3rpaetwork by investigating the

48



positive realness of its input impedance when tivthe ports are connected to

passive terminations.

By leaving port 1 open (arbitrary choice) and terating ports 2 and 3 to passive
terminationsz, andz; respectively, the input impedance looking intotdors the
ratio between the voltage across that pép) @nd the current flowing through
that port (,):

4}
Zin = A (4.2)
1
From (4.1) we have
Vi = 71111 + 21305 + 74313 (4.3)
and
I, = ‘Z—‘f and I = ‘Z—‘f (4.4)

Substituting (4.4) in (4.3) and after some manipaikes, an expression fdk,, can

be found as shown below:

Z1 1 {( Z33> Z33 }
Ziw =211 ———=31+—)2,y ——2Z
in 11 % E Z3 21 Z3 31

Z13 1 {( Z22> Z37 }
z3 E Zy 1 Zy 21 (4-5)

whereE is a function of the network impedance and theiteation impedances

z, andzs:

A z Zy9Z23 — Z93Z
E=1+£+£+ 22733 23732 (4.6)
Z3 Z3 ZyZ3
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Equation (4.5) can be written as

azz +ﬁZ2 + 6

= +z 4.7
ZyZzs+a'zy + B'z3+y 1 (47)

in

with a, 8,v,6,a’, andB’ being dependent only on the 3-port network impedan

Zij:

A = —Z12771

B = —21323;

Y = 232233 — Z3Z33

0 = 212231223 + 221213232 — Z12221233 — Z13231%22
!

a = Z33

B’ = zy;

Equation (4.7) indicates thdt, is a bilinear transformation of; (or z,). This
fact can become clearer if we divide the numerata denominator of (4.7) by
z, + B’ in order to have the standard expression of adal transformation.

Hence, (4.7) becomes

r)=+ (E57)

OC'ZZ-I-]/
Z3+(Zz+ﬁ')

Zin = +Z14 (4.8)

By choosingd = ( u ) B = (ﬁ22+9), andD = (“’22”),

z+B' z3+p’ zy+p’
Equation (4.8) becomes
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_AZg"‘B
M z;4+D

+ Z11 (49)

Notice that in (4.9), the coefficients B, andD are all function of both the 3-port

network impedance parametefs and the termination impedangg

By extending the definition of absolute stabilityChapter 2 to the case of 3-port
networks, a 3-port network is absolutely stablg;if is a positive real function for
all passive terminationg, andz;. Then, the stability of the 3-port network is

equivalent tdRe{Z;,,} = 0 for all passive terminations, andz;.

The input impedance;, is clearly a complex quantity and as such it cen b
graphed in the complex plane. Recall tigt as given in (4.9) is a bilinear
transformation of the termination impedange Also notice thaZ;,, is dependent

on z, and this will be considered later in our analysis.

Bilinear

In ~ Transformation Im

Zi-plane

/ Re Re

Figure 4.2. The input impedangg as a bilinear transformation .

Hence, for all passive terminations (i.e., for all impedances; in the right half

of the complex plane};, is transformed into a circle — see Figure 4.2. fitst
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term in the right hand side of (4.9) represents thicle while the second term
(the impedance parametey;) represents a shift of the circle. Figure 4.2 show

the circle without the shift caused by;.

With a circle with centreC; and radiusr; being the result of the bilinear

. Az3+B . . . .
transformatlon% for all passive terminations, it can be shown that
3

AD — B

Ci= A= 55D (4.10)
and

_ 14D~ B| 411

" = 2 Re(D)] (4.11)

For the nonreciprocal 3-port network defined inlj4to be absolutely stable,

conditionRe{Z;,} = 0 must be satisfied, which means that we need te hav

Re(C,) — 1, + Refz,,} =0 (4.12)

Equation (4.12) shows that the stability conditi®e{Z,,,} = 0, which represents
the entire Right Half Plane (RHP) in the impedamoenplex plane, simply
requires the disk with centrg and radius; to be entirely in the RHP. According
to Equation (4.12), for the 3-port network to bes@htely stable the sum of the
centreC; plusz;; both projected onto the real axes minus the ragfiuke disk
has to result in a positive real number, whichums$ means that every point of
the shifted disk has to be in the RHP. The t&afz,,} in (4.12) can be any real
number (negative, zero, or positive). A graphicéipretation of Equation (4.12)

is shown in Fig 4.3, assumife{z;,} positive.
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‘ Bilinear Transformation
z3-plane

e

|
5
L

v

Figure 4.3. The input impedangg as a bilinear transformation of and shifted
by the impedance parametgy .

Substituting (4.10) and (4.11) into condition (4.¥2Ids

R + Re{z;,} =0 (4.13)

o

4 AD —B) |AD — B|
{ B ZiRe{D}} "~ 2|Re{D}|

Equation (4.13) is the final condition for absolstability of a 3-port network.
This condition can be used for analysis of stabdit trilateral haptic systems, in
which case the numerical evaluation of either Equaf4.13) or Equation (4.9)

will tell if the system is stable or not for a giveontroller.

4.3 Procedure for Numerical Evaluation of the Stability

Condition for Trilateral Systems

Equation (4.9) showsZ;, as a bilinear transformation in the termination

impedancez;. The coefficientsd = (Z fﬁ,), B = (%), andD = (aZ Zj;,y) are
2 2 2

also bilinear transformations but in the terminatimpedancez,. Consequently,
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(4.9) represents three bilinear transformationszgf nested inside a bilinear
transformation ofz;. The following pseudo-code is a procedure thatlmmsed
for numerical evaluation of the proposed absoltébikty condition of a 3-port
network. The nested loops of the pseudo-code care direct consequence of

the nested nature of Equation (4.9).

Pseudo-Code
forw=0 - oo {
computela, B,v,0,a’, B’} (complex numbers)
for all passivez, find circles{4, B, D} (in terms of radii and centres)
for each point in circled {
for each point in circled {

for each point in circleD {

If Re {A - + Ref{z,,} <0,

AD-B } _ |AD—B]|
2%Re{D} 2|Re{D}|

theetwork is not absolutely stable.

}

The above procedure was tested for two differes¢€as discussed below.

Case 1: An absolutely stable trilateral network

Youla proved that, for reciprocal n-port networksict passivity and absolute
stability are the same [28]. In termszparametersa 3-port network is reciprocal
if z;; = z; foriandj =1,2,3. Hence, ifZ represents the impedance matrix of a
reciprocal trilateral network, then the networlalssolutely stable if and only if it

is strictly passive

Consider the matri¥ shown in (4.14), which represents the impedandeixaf
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a reciprocal 3-port network.

3 1+s 3-—2s
Z=|1+s 1 2 (4.14)
3—2s 2 8

wheres = jw. Note that Z(jw) + ZT (—jw) is positive definite because all the

principal minors ofZ(jw) + ZT (—jw) are positive real numbers (6, 8, and 56).

6 2 6
Z(jw) + ZT(—jw) = [2 2 4] (4.15)
6 4 16

The matrixZ is strictly passive and, due to its symmetry, aliety stable. Now,
to test the absolute stability of the 3-port nekwatfia Equation (4.12), a
MATLAB code can be implemented to pléf, at different frequencies according

to the previously-described pseudo code. We compyieat three different

rad rad

frequencies= {0.17,17,10 %} and for a rather large number of points

inside each of thé, B, andD circles. In Figure 4.4, Figure 4.5, and Figure, 4.6
plots ofZ;,, at the three different frequencies show that #a parts ofZ;,, are

always in the right half plane.
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0.5~

Imaginary of Zin
o
T

0 0.5 1 15 2 2.5 3
Real of Zin

rad

Figure 4.4. Plot of;,, of an absolutely stable 3-port networkwat= 0.1 —

151

-0.5~

Imaginary of Zin
o
T

0 0.5 1 15 2 2.5 3 3.5 4 45 5
Real of Zin

rad

Figure 4.5. Plot of;,, of an absolutely stable 3-port networkwat= 1—.
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Imaginary of Zin

-40-

-60-
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-100 1 1 1 1 1 1 1 1 1 1 |
0 20 40 60 80 100 120 140 160 180 200 220

Real of Zin

rad

Figure 4.6. Plot of;,, of an absolutely stable 3-port networkwat= 10 —

Case 2: A potentially unstable trilateral network

The impedance matrix of a potentially unstable pexgal trilateral network is

shown below:

0.3 1+s 3-—2s

Z=|1+s 1 2 (4.16)
3—2s 2 8
wheres = jw.
We note that
06 2 6
Z(jw)+ZT(—jw)=|2 2 4 (4.17)
6 4 16

has principal minors of 0.6, -2.8, and -30.4, mgkime matrixZ not positive real
and, therefore, not passive. Due to the symmeti, of is therefore potentially

unstable. On the other hand, we compBitgZ;,} at two different frequencies
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rad rad

w={0.1 —~ 1—1}. Plots ofZ;,, atw = 0.1% show that all real parts @t,, are

N

negatives. Fow = 1”;—'1, the real parts af;,, are located in both the left and the

right half plane.
1.5
Al
£
N
5 0.5~
>
g
£
g o
E
-0.51
R 1 1 1 1 1 1 1 1 |
&.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Real of Zin

rad

Figure 4.7. Plot of;, of a potentially unstable 3-port networkaat= 0.1 —

Imaginary of Zin

R I | I | I | |
l'§1 -0.5 0 0.5 1 15 2 25

Real of Zin

rad

Figure 4.8. Plot of;,, of a potentially unstable 3-port networkaat= 1 —

Previously, it was mentioned that in the case oéaprocal network, absolute
stability and strict passivity are equivalent. THat allowed us to validate
Equation (4.13) as a condition for absolute stabiif trilateral networks. It is
now possible to use the proposed condition foryamalbof general non-reciprocal

trilateral networks.
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Chapter 5

Application of Passivity and Absolute
Stability Criteria to a Dual-User Haptic

Teleoperation System

5.1 Introduction

In this chapter, the Passivity Criterion proposedChapter 3 and the Absolute
Stability Condition proposed in Chapter 4 will bged in order to find passivity

conditions and evaluate the stability of a trilatdraptic teleoperation system. For
both cases, the 3-port network is representedshiynppedance matrix. This 3-port
network is a dual-user haptic teleoperation systemjhich two master robots for

two operators share the control of one slave robgterform a task in a remote
environment. This configuration has many real-wodgdplications such as

training a trainee to do a task under haptic guwiddrom a mentor. In Section 5.2,
the impedance matrix of the dual-user haptic tedeapon system is found by

using the so-called four-channel multilateral sbdasentrol architecture proposed
in [14]. Section 5.3 is devoted to finding passiwbnditions of such a trilateral

haptic system. Lastly, Section 5.4 is concernet wiinulations of both passivity

and absolute stability of the dual-user hapticapération system.
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5.2 A Dual-User Shared Haptic Control Teleoperation Sytem

In a dual-user haptic teleoperation system, the igothat two users coupled to
two master robots (one user per one master robbdgboratively control a slave
robot to perform a task in a remote environmentsAswn in [14], the desired
position and force for each robot are weighted sahmositions and forces of the
other two robots, with the weights being determifgda parametexr whose
value ranges from O to 1 — see Figure 5.1. Foamt#, ifa = 1, the slave robot
will be fully controlled by User 1 and User 2 onlsceives large force feedback
urging him/her to follow User 1's motions. On thtaer hand, the same parameter
a can be given a value of 0, in which case the stabet is fully controlled by
User 2, allowing User 1 to assess the skill levdlgser 2 by feeling the reflected
forces. Lastly, if0 < a < 1, then the two users collaborate and each conésbut
to the position command while receiving some fofeedback. This provides

“hand-over-hand” training using haptic assistance.

ENVIRONMENT

Figure 5.1. A dual-user haptic teleoperation system.
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Consider the four-channel multilateral shared adrdrchitecture given in [14]
and depicted in Figure 5.2. Under the assumptiahdéhch user is interfaced with
his/her master robot and the slave is in conta¢h wihe environment, the

dynamics of the two masters and slave can be mdelquency domain as

ZmiVh1 = Fp1 + Fena
Zm2Vha = Fua + Femp

ZsVe = Fo + Fgs (5.1)

In 5.1), Zn1 = MyyS, Zpmy = Myyps and Z; = Mgs are the models of the two
masters and the single slave, respectively. Algo, F;,, andF, are the contact
forces between each master and its human opeaahetween the slave and its
environment, respectively. Lastly,, V;,, andl, are the velocities of the two
users and the environment respectively. In Fig 5.2, Fr> , andFe are the two
operator’s and environment’s exogenous input foredsch are independent of

the teleoperation system behavior.[1]

The controller outputs in the 4-channel architeztane

Fem1 = —CmiVhi — Cam1Vhia + Com1Fn1 — ComiFhria
Femz = —CmaVhz — Cam2Vhza + Com2Fnz — ComaFh2a
Fog = —CsVe + CiVeq + CsF, + C5F,y (52)

fori =1,2. C,,; andC, are local position controllers, ardy,,; and Cs are local
force controllers for the two masters and the eslanespectively. Also, the
controllers C;, C,; are position compensators similar © and C,,;,
respectivelyC,,,; and C; are feedforward force terms for the two mastetstae
slave, respectively. Lastly,;; andV,,; are the desired positions, afgl; and

F,4 are the desired forces for the two masters andléwe, respectively.
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Figure 5.2. A dual-user haptic teleoperation systeder four-channel control.

As mentioned before, in this 3-robot shared con#amihitecture, the desired
velocity and force of each robot is a function loé tvelocities and forces of the
other two robots, as the following set of equatistage:

Vg = aVe+ (1 — a) Vi,

Viaa = (1= )V, + a Vyy

Vea = aVpy + (1 — a) Vi,

Fpig = afy + (1 — @)Fp,

Frog = (1 —a)F, + a Fpy

Fed = th1 + (1 - (Z) th (53)
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wherea € [0, 1] is the weight parameter specifying the relativéhatrity that each
operator has over the slave and the correspontizuge ©f force feedback he/she

receives.

Position-error based (PEB) control is a speciakaafsdual-user shared control
architecture, which does not need any force sensemsurements. The PEB
controller works by minimizing the difference beemethe weighted master and
slave positions, thus reflecting a force relatethis difference to each user once
the slave makes contact with an object. In the RIBBtrol architecture the
following choices are madé€; = Cs = Cypm1 = Comz = Cemi1 = Comz = 0. Also,
for good position tracking the common choice & = C,, C4n1 = —Cpn1 @nd

Cym2 = —Cpo. Here, we have

Kpml + Kvmls

Cn1 = S
Kpmz + Kvmzs
e
K,s + K,ss
C,=—2F = (5.4)

S

By using (5.1), (5.2), (5.3), and (5.4), the impsaka matrix of the closed-loop

multilateral system in

Fpy Z11 Zi2 Z13) [V
Fpo| =221 222 Zas| |Via (5.5)
F, Z31 Z3z Z33] LV,

is found as

Z1 = (Mmls2 + Kym1S + Kpml)/s

Zyy = (_Kvmls + Kpm1@ + Kymsa — Kpml)/s
Zy3 = (—Kvmlsa — Kpmla)/s
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Zy, = (—Kvmzsa — Kpmza)/s

Zyz = (My25? + KymaS + Kym2)/s

Zy3 = (—Kvmzs + Kpm2@ + Kympsa — Kpmz)/s
Z31 = — (Kvssa + Kpsa)/s

Z3y = (—Kvss + Kpsa + Kygsa — Kps)/s

Z33 = (MSSZ + Kvss + KPS)/S (5'6)

5.3 Applying Passivity Criterion to the Dual-User Sharel
Haptic Control Teleoperation System

The passivity criterion ofi-port networks formulated in Chapter 3 reduceshto t

following conditions for the case of a 3-port netiwo

A. Thez-parameters have no RHP poles.

B. Any poles of thez-parameters on the imaginary axis are simple, hed t

residuesk;; of the zparameters at these poles satisfy the following

conditions:
1. kiiZO i=1,2,3
k11k22 - k12k21 0
kll
ki1kzz — kiok ki1ko: — koqk ki1kzo — kaqk
3. 11733 12721 _( 11723 21 13)( 11732 31 12) 2 0 (57)
kll k11(k11k22 - k12k21)

C. The complexz’-parameters satisfy the following conditions for r&al

frequencieso
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1.z, >0 i=123

! ! ! !
211222 — 212271
2. - >0
Z11

A A ! ! A A A ! A ! ! A
3 211233 — 213231 (211233 — 231213)(21123; — Z31215)

! ! A ! ! A
Z11 711(21123; — Z17251)

>0  (5.8)

1
wherez; = - (zij + z};).

Analysis of (5.6) shows that all the elements @& 8iport network impedance
matrix have only a simple pole on the imaginarysatius fulfilling conditionA.

Analysis of the residues (conditi@) leads to the following conditions:

kll = Kpml = 0 (59)
kzz = Kpmz 2 O (510)
k33 = Kps 2 0 (5.11)

k11k22 - k12k21
kll

= (1= a+ a®)Kpm1Kpmz = 0 (5.12)

k11k33 - k12k21 _ (k11k23 - k21k13)(k11k32 - k31k12) —
kll kll(kllkZZ - k12k21)

0 (5.13)

The inequality (5.12) always holds @s— a + a?) > 0 for all a € [0, 1].

Analysis of the impedance matrix according to CbadiC leads to the following

conditions on the controllers’ gains:

Kymy = 0 (5.14)
Kymz = 0 (5.15)
K,s=>0 (5.16)
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4’Kvleva - (Kvml - aKvml + aKva)z

2
_ (Kpm1 — aKpmi + aKpmz)” 0

w2

(5.17)

Condition (5.17) will be fulfilled for all real figuenciesw if the gains of the PD

controllers satisfy:

Bomi @
Komz 1-—a (5.18)
4Kvm1Kvm2 - (Kvml - aKvml + aKva)z =0 (5-19)

Using (5.18) in the last condition @f (condition 3 of (5.8)), we get the following

inequality:

2
__1 (Kpml - Kps) [Kvml(]- - a)Z(Z - a) + Kvmzaz(l + 0()] + (1 - Za)szml
w? 2a a?

+ (Kpm12 - Kpsz)(l - 205)(1 - a)[aszmZ + (0( + Z)Kvml]}
2a

+{(1 + CZ)(Z - a)Kvlevmszs - a2(2 - a)Kvmszs(Kvmz + Kvs)
_(1 —a+ az)Kvleva [(1 - a)Kvml + aKva]

—(1 - a)*(1 + &)Kym1 Kps(Kym1 + Kis)} =0 (5.20)

Equation (5.20) will be fulfilled for all real fregpnciesw if the controller’s gains
and parametear satisfy the following conditions:
Kpml = Kpmz = Kps
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Kym1 = Kymz = Kys

a=1/, (5.21)

As a conclusion, the dual-user haptic teleoperatimtem is passive if the set of
equations (5.21) holds. Notice that (5.21) is digdeht, frequency-independent,
and compact condition for passivity of the PEB eusgr haptic teleoperation
system described in Section 5.2.

5.4 Simulation Study: The Dual-User Shared Haptic Contol

Teleoperation System

5.4.1 Simulation study: Passivity conditions

In this section, the passivity conditions for tHeBPdual-user haptic teleoperation
system found in Section 5.3 will be verified via MAAB/Simulink simulations.
The simulation is done assuming no time delay & dcbmmunication channels

between the three robots.

According to Equation (3.1) and assuming that tiergy stored in the system for

t < 0 is zero, the 3-port network is passive if and ahly

E(t) = fot(il(T)vl(T) + (D2 (1) + i3(Dv3(1)) dT 2 0 (5.22)

whereE(t) is the total energy delivered to the 3-port nekww@uch apassivity

observeris incorporated in the simulations in order toleate (5.22).

In the simulations, all ports of the 3-port netwaie connected to the passive
terminations with a transfer functiqé; . An inputF,; in the form of a sine wave

is applied by the Master 1's operator. The thrdeot® are modeled by masses
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Mml = 0.7, Mmz = 0.9, andMs = 0.5

According to the previous section, the dual-usestibateleoperation system is
passive if the set of equations (5.21) holds. Table shows two sets of

controllers’ gains used for these simulations, e is in agreement with

conditions given in (5.21), thus representing sspastrilateral system. The other

set violates (5.21), representing a non-passiviesyd-or all simulationss 1/2 .

Table 5.1 Controllers’ gains for (A) passive an{l iBn-passive PEB trilateral system.

System Master 1's Master 2’s Slave’s
controller controller controller
(A) Passive Kpm1 =5 Kpymz =5 Kps =5
K,m1 = 10 Kymo = 10 K,s =10
(B) Non-Passive Kym1 =5 Kpmz = 100 K,s =5
Kvml —10 Kvmz —10 K‘US :10
1 T T T T T T T T T
é | | | | | | | | |
S 09——---—--— === 4= === = === === === === - +-—— == 4 - == —— - === === -——== —
E | | | | | | | | |
B e e - e e il Bl mmmm- Foo-- -
(] | | | | | | | | |
£ 07-—----- t-—-——= 4= === |- —=—=== -—==== F-——== - 4= == - I—= == == === —
o | | | | | | | | |
T E e ety - i e Eaiaintely Rl - P —
8 o - M S o I R I N R S -
[ N R S o R T Y L e
> | | | | | | | | |
je)) | | | | | | | | |
o 93 ————- Too oo T T (e [ r----- T~ - T T (I [ —
C | | | | | | | |
ool oo Lo Qo] I [ T _ __ Lo d_ [P [ _
E | | | | | | | |
R ooaf----- e — e e R R R S —
o ! 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Time in second

Figure 5.3. Passivity observer: Total energy dedideto a

system.

passive trilateral

Figure 5.3 shows that choosing the controllershgaiccording to the conditions

found in previous section results in a passiveesysito which positive energy is

delivered at all times). Figure 5.4 clearly shohatta violation of such conditions

may result in a non-passive system (the energyeteld to the network is not
always positive).
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Total Energy Delivered to the Network

Time in second

Figure 5.4. Passivity observer: Total energyveeéd to a non-passive trilateral
system.

5.4.2 Simulation study: Absolute stability conditon

In this section, the stability condition found ihapter 4 will be used for stability
analysis of the PEB dual-user haptic teleoperatigstem. Results from this

analysis will be verified via MATLAB/Simulink simations. The three robots are

modeled by masseéd,,; = 0.7, M, = 0.9, andM; = 0.5, ander = 1/,.

Our research group has recently found sufficiesbhlie stability conditions for
the PEB dual-user haptic teleoperation system. dHesquency independent

conditions are all functions of the controllersirgaas it is shown below:

Kpmi >0 (5.23)
Kymi > 0 (5.24)
K,s>0 (5.25)
Kys >0 (5.26)

fpm1 _ fpm2 (5.27)
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K, . K
5-2v6 <2 % <54 2V6

vml Dps

(5.28)

In the simulation study, we use the stability cdiodi presented in Chapter 4 for
the analysis of two different cases: One case iithwthe controllers’ gains meet
the conditions (5.23)-(5.28) thus resulting in d@sdautely stable system, and
another case in which the controllers’ gains weh®sen so as to have a
potentially unstable system. Values for the cofdrsl gains are shown in Table
5.2.

Table 5.2 Controllers’ gains for (A) absolutelyldtaand (B) potentially unstable PEB

trilateral teleoperator.
System Master 1's Master 2's Slave’s
controller controller controller
(A) Absolutely Stable Kym1 = 2 Kymz = 20 K,s =50
Kym1 = 10 Kymz = 100 K,s = 120
(B) Potentially Unstable  K,,; = 10 Kpmz = 130 K,s =8
Kym1 =15 Kymz =30 K,s =70

A MATLAB code was written to testRe{Z;,} = 0 according to (4.13). An

explanation of results will follow.

The system’s impedance matrix (5.6) developed cti@e 5.2 was evaluated by
using the controllers’ gains given in Table 5.2gufe 5.5 and Figure 5.6 show
plots ofZ,, for system (A) of Table 5.2, which is absolutelglde as controller’s
gains meet conditions (5.23)-(5.28). Both plots tf@b different frequencies)
show that the real parts 4f, are all in the right half plane, confirming thaeth

trilateral teleoperator is indeed absolutely stable
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Figure 5.6. Plot of;,, for an absolutely stable 3-port networkwat= ST'

Figure 5.7 and Figure 5.8 show plotsZyf for system (B) of Table 5.2, which is
potentially unstable. Both plots (at two differdrequencies) show that the real
parts ofZ;, are in both the right and left half plane, meanihgt the trilateral

teleoperator is potentially unstable.
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The last step is verification of the above resylsimulation (via Simulink) of the

system. In this simulation, port 2 and port 3 wiereninated to passive loads with
transfer functionsli while the input energy at port 1 of the trilateteleoperator

was monitored. For a fair comparison, the samercbhets’ gains given in Table
5.2 were used. According to the definition of absslstability (Chapter 2), the
trilateral system in question is absolutely stabénd only if at all timeg > 0 we
have [29]
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E,@®) = [[(4(@vi () dr > 0 (5.29)
whereE; (t) represents the input energy at port 1.

Figure 5.9 is the plot representing the energyodt p for system (A) of Table 5.2.
The plot shows that the energy is positive at iatles t > 0, consequently it
shows that the system is absolutely stable. Thisiaconsistent with the result

found by applying our proposed absolute stabiést to the same system.
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Figure 5.9. Input energy at port 1of an abstyustable 3-port network.

Figure 5.10 is the plot representing the energgoat 1 for system (B) of Table
5.2. The plot shows that the energy is sometimgatinee and consequently the
system is potentially unstable. This result is atsagreement with the one found

by applying the proposed absolute stability teshtosame system (B).
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Figure 5.10. Input energy at port 1 of a potentiathstable 3-port network.

Overall, these simulation results are consistetit Wiose found when using the

proposed absolute stability test.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

This thesis presents two novel methods for stgbditalysis of n-port networks
with passive terminations. The proposed methodsbeansed for either analysis
and design (in the case of the proposed passiutgrion) or analysis (in the case
of the proposed absolute stability test) of mutiital systems involving haptic
information sharing between a number of users. mlagr contributions of the

thesis are summarized below:

= A passivity theorem for investigation of passivdf n-port networks is
proposed. The theorem gives the necessary ancisuofficonditions for
passivity of the n-port network based on the imanite parameters of the
network. The use of immittance parameters is pabler compared to
more complex techniques found in the literaturejctvhare based on
scattering parameters and reflection coefficientsreover, the literature
has tried to investigate the passivity of 3-portwueks by assuming one
known/fixed termination, thus reducing the 3-partoi a 2-port network
whose passivity analysis has been known for a tong. In contrast, the
closed-form conditions given in this thesis makpassible to investigate
the passivity ofn-port networks (thus not necessarily limited rie3)
directly and without resorting to using any knowrgfl terminations,

assuring a complete general solution to the problem
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» A mathematical expression for testing the absokittbility of 3-port
networks is also proposed in this thesis. The nteihdased on evaluation
of the real part of the driving point impedanceled 3-port network under
investigation. The numerical evaluation should lmmelin a range of
frequencies of interest. Due to the nature of tteppsed technique, the

evaluation of such expression is useful for stgbénalysis purposes only.

6.2 Future Directions

The following is a list of potential future work.

1. The passivity theorem and absolute stability caodigiven in this thesis
have been developed in the frame of 1 degree etfltnem (DOF) systems.

A step forward would be its extension to 2- and@fDsystems.

2. The proposed stability condition is an excellenol téor analysis of
stability of 3-port networks. The numerical evalaatof such condition
can be used to determine frequency ranges ovehwviécsystem is stable.
Extension of this condition from 3-port networks4tgort networks would
be very beneficial.

3. A study to compare the level of conservatism ofoalie stability versus
passivity would be very beneficial. It is expectbdt, similar to bilateral
teleoperation systems, the absolute stability moiteis less conservative
than the passivity criterion and that the two c@decome the same when

the trilateral system is represented by a recipnoetavork.
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