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Abstract

Spinal cord injury (SCI) not only leads to motor and sensory dysfunction, but

just as debilitating are secondary consequences of SCI such as bowel disorders, neu-

roinflammation, immune suppression, pain and psychiatric disorders. In this thesis,

I explore multiple aspects of recovery after SCI in attempt to promote both phys-

ical and psychological well-being. In chapter 2, I show that an incomplete cervical

SCI alters the composition of the gut microbiome (termed dysbiosis) and increases

anxiety-like behaviour in rats. Using a fecal microbiota transplant (FMT) from unin-

jured donor rats to prevent SCI-induced dysbiosis also prevented the development of

anxiety-like behaviour, suggesting a link between these two consequences of injury. I

then wanted to determine whether optimal donor selection would influence the efficacy

of FMT treatment for SCI. This was explored in chapter 3, where I show that FMT

from uninjured rats with increased anxiety-like behaviour was unable to prevent SCI-

induced dysbiosis. Furthermore, recipients of this inferior FMT displayed increased

anxiety-like behaviour, increased intestinal permeability, and long-term alterations in

local and systemic inflammation. Independent of treatment group, this study showed

a global downregulation of plasma cytokines and chemokines chronically after in-

jury. I found in chapter 4 that treatment with the antibiotic and anti-inflammatory

drug, minocycline, can prevent this SCI-induced suppression of systemic inflamma-

tory markers. In chapters 2, 3 and 4 we explore the complicated relationship between

the microbiome, immune system and mental health after SCI. A potential link be-

tween these systems is through the bacterial endotoxin, lipopolysaccharide (LPS).

LPS can enter circulation through a leaky intestinal barrier (which can be modulated

by the microbiome as shown in chapter 3), where it induces an intense inflammatory

response. Although increased inflammation is commonly associated with secondary

damage following SCI, in certain circumstances inflammation can promote neural

plasticity. I explore this dichotomous role of manipulating inflammation after SCI in

ii



chapter 5, where rats were given LPS in the subacute period following SCI. Although

LPS significantly improved functional motor recovery of the ipsilesional forelimb, it

also induced a chronic anxiety-like state. The results of this thesis show that manip-

ulating the microbiome and inflammation following SCI may be a therapeutic tool to

promote both physical and mental well-being, and that considering multiple aspects

of recovery in preclinical models is imperative to determine potentially detrimental

treatment side effects.

iii



Preface

This thesis is an original work by Emma Doolin (pseudonym Schmidt). The

research project, of which this thesis is a part, received research ethics approval from

the University of Alberta Research Ethics Board (ACUC), Project Name: “Repairing

the injured spinal cord”, AUP00000254, December 22, 2020.

Most of the chapters and appendices of this thesis have appeared in published

articles. The chapters as they appear have been slightly altered from the published

formats to integrate into the thesis. All raw data that has appeared in publications

can be found at the Open Data Commons for Spinal Cord Injury.

Chapter 2 and Appendix A: Schmidt, E. K. A., Torres-Espin, A., Raposo, P. J.

F., Madsen, K. L., Kigerl, K. A., Popovich, P. G., Fenrich, K. K., and Fouad,

K. (2020b). Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after

spinal cord injury in rats. PLOS ONE, 10.1371/journal.pone.0226128

I was responsible for the majority of the in vivo experiments, data analysis and

interpretation, and manuscript preparation. Dr. Torres-Espin was responsible for the

analysis of the microbiota data. Ms. Raposo assisted with the in vivo experiments

and tissue processing. Dr. Madsen provided her expertise in microbiota research. Dr.

Kigerl and Dr. Popovich also provided their expertise in microbiota research following

spinal cord injury. Dr. Fenrich performed the spinal cord contusions. Dr. Fouad was

the principal investigator and was involved in the concept of the project and surgical

procedures. All authors reviewed and edited the manuscript. Data used for figure 2.7

was a separate experiment that did not appear in the published manuscript.

Chapter 3: Schmidt, E. K. A., Raposo, P. J. F., Madsen, K. L., Fenrich, K. K.,

Kabarchuk, G., and Fouad, K. (2021). What makes a successful donor? Fecal trans-

plant from anxious-like rats does not prevent spinal cord injury-induced dysbiosis.

Medical Biology, 10.3390/biology10040254

iv

https://scicrunch.org/odc-sci


I was responsible for the majority of the in vivo experiments, tissue processing, data

analysis and interpretation, and manuscript preparation. Ms. Raposo assisted with

the in vivo experiments and tissue processing. Dr. Madsen’s team assisted in the

intestinal permeability assay and microbiota bioinformatics. Dr. Fenrich performed

the spinal cord contusions. Ms. Kabarchuk analyzed the single pellet grasping videos.

Dr. Fouad was the principal investigator and was involved in the concept of the

project and surgical procedures. All authors reviewed and edited the manuscript.

Chapter 4 and Appendix C: Schmidt, E. K. A., Raposo, P. J. F., Torres-Espin, A.,

K. A., Fenrich, K. K., and Fouad, K. (2021). Beyond the lesion site: minocycline

augments inflammation and anxiety-like behavior following SCI in rats through action

on the gut microbiota, 10.1186/s12974-021-02123-0

I was responsible for the majority of data analysis and interpretation, manuscript

preparation and parts of the in vivo experiments. Ms. Raposo was responsible for

the majority of in vivo experiments and tissue processing. Dr. Torres-Espin was

responsible for the analysis of the microbiota data. Dr. Fenrich performed the spinal

cord contusions. Dr. Fouad was the principal investigator and was involved in the

concept of the project and surgical procedures. All authors reviewed and edited the

manuscript.

Chapter 5: Schmidt, E. K. A., Raposo, P., Vavrek, R., and Fouad, K. (2020a).

Inducing inflammation following subacute spinal cord injury in female rats: A

double-edged sword to promote motor recovery. Brain, behaviour, and Immunity,

10.1016/j.bbi.2020.12.013.

I was responsible for the majority of the in vivo experiments, tissue processing, data

analysis and interpretation, and manuscript preparation. Ms. Raposo assisted with

the in vivo experiments and tissue processing. Ms. Vavrek was responsible for a

large part of the in vivo experiments. Dr. Fouad was the principal investigator and

v



was involved in the concept of the project and performed the surgeries. All authors

reviewed and edited the manuscript. Data used for Figure 5.9 was obtained during a

lab rotation (NEURO501) in Dr. Bennett’s laboratory. For this project, Mr. Sanelli

performed the spinal cord injuries, Ms. Black assisted in the EMG recordings, and

Dr. Bennett was the supervisor involved in project conceptualization.

vi



Acknowledgements

First and foremost I would like to thank my outstanding supervisor, Dr. Karim

Fouad. Dr. Fouad has been the most encouraging and inspiring mentor throughout

the tenure my graduate degree, and I attribute my own success to his supervision.

The novel research presented in this thesis has required thoughtful scientific rigour,

creative thinking and at times a good sense of humour, all of which are qualities that

make Dr. Fouad a first-class supervisor. Dr. Fouad has also created a cooperative

and enjoyable laboratory atmosphere, where each member has helped me throughout

my graduate degree. Without the help of Pamela Raposo, many aspects of this thesis

would not have succeeded. Her diligent work ethic, genuine scientific curiosity and in

vivo expertise are unparalleled. I would also like to thank Romana Vavrek, who has

also been an integral part of the success of many of the experiments in this thesis. I

would like to thank Dr. Keith Fenrich for always keeping his door open and being

more than happy to offer his expert advice. Dr. Abel Torres-Espin has also inspired

me greatly for his enthusiasm for science and ability to work with large amounts of

data. Next I would like to thank Dr. Ana Lucas Osma for her inspirational work

ethic and for brightening my day every time she is in the laboratory. Thank you to

my fellow graduate student peers, Nick Batty and Carmen Ng, for being by my side

throughout my degree. I would like to acknowledge the help of my expert supervisory

committee, Dr. Bradley Kerr and Dr. Ian Winship, for their advice throughout my

doctoral studies. I would also like to thank the Craig H. Neilsen Foundation and

Wings of Life Spinal Cord Research Foundation for funding parts of this thesis.

Finally, thank you to me entire family, mom, dad, Hannah, Kirstyn and Evan, for

your continual support. To my fiance and best friend, Callum, I could not imagine

my life without you and cannot wait to see what the future holds for us. Lastly, I

would like to thank my little buddy, Lucifer.

vii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction 1

1.1 Introduction to spinal cord injury . . . . . . . . . . . . . . . . . . . . 1

1.2 Therapeutic approaches to treat spinal cord injury . . . . . . . . . . . 2

1.3 The dual role of inflammation following spinal cord injury . . . . . . 4

1.4 Systemic inflammation and chronic immune suppression . . . . . . . . 8

1.5 Gut microbiota and the gut-brain axis . . . . . . . . . . . . . . . . . 9

1.6 Gut microbiota involvement in CNS diseases and disorders . . . . . . 12

1.7 Mental health after spinal cord injury . . . . . . . . . . . . . . . . . . 14

1.8 Incomplete cervical spinal cord injury . . . . . . . . . . . . . . . . . . 16

1.9 Chapter aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Fecal transplant prevents dysbiosis and anxiety-like behaviour fol-

lowing spinal cord injury 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

viii



2.2.2 Surgical procedures . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Behavioural testing . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Fecal collection . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 Bacterial culture . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.6 Fecal microbiota transplant . . . . . . . . . . . . . . . . . . . 26

2.2.7 Fecal transplant from SCI rats into uninjured rats . . . . . . . 27

2.2.8 16s rRNA analysis . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.9 Perfusion and lesion analysis . . . . . . . . . . . . . . . . . . . 27

2.2.10 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.11 OTU analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.12 PICRUST analysis . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 An incomplete unilateral cervical SCI induces anxiety-like be-

haviour and alterations in gut microbiota . . . . . . . . . . . . 31

2.3.2 Fecal microbiota transplant prevents SCI-induced dysbiosis and

anxiety-like behaviour . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Fecal microbiota transplant reduces anxiety-like behaviour in

the elevated plus maze and light-dark box . . . . . . . . . . . 33

2.3.4 Fecal microbiota transplant did not affect functional recovery

or lesion severity . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.5 Fecal microbiota transplant prevents SCI-induced dysbiosis . . 37

2.3.6 Spinal cord injury-induced changes in the microbiota metage-

nomic functional pathways are abolished with a fecal microbiota

transplant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Optimal donor selection is critical for successful fecal transplant fol-

lowing spinal cord injury 53

ix



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Experimental timeline . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Single pellet grasping training . . . . . . . . . . . . . . . . . . 56

3.2.4 Spinal cord injury . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.5 Behavioural testing . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.6 Fecal collection and transplantation . . . . . . . . . . . . . . . 59

3.2.7 16s rRNA sequencing . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.8 Blood collection . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.9 Cytokine analysis . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.10 Intestinal permeability assay . . . . . . . . . . . . . . . . . . . 61

3.2.11 Perfusion and tissue cutting . . . . . . . . . . . . . . . . . . . 62

3.2.12 Lesion analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.13 Microglia analysis . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.14 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Fecal microbiota transplant from anxious donors . . . . . . . . 64

3.3.2 FMT from anxious rats did not prevent dysbiosis after SCI . . 66

3.3.3 FMT from anxious rats did not affect functional recovery from

SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.4 FMT from anxious donors increased anxiety-like behaviour . . 71

3.3.5 Temporal profile of plasma analytes following spinal cord injury 71

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Minocycline treatment alters inflammatory and microbiota profiles

following spinal cord injury 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

x



4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Drug administration . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.3 Spinal Cord Injury . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.4 Behavioural Testing . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.5 Fecal collection . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.6 Blood collection . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.7 Cytokine analysis . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.8 Multivariate analysis of plasma analytes . . . . . . . . . . . . 86

4.2.9 16s rRNA analysis . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.10 Multivariate analysis of microbiota composition . . . . . . . . 87

4.2.11 Perfusion and tissue cutting . . . . . . . . . . . . . . . . . . . 88

4.2.12 Lesion analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.13 Immunohistochemistry . . . . . . . . . . . . . . . . . . . . . . 89

4.2.14 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.15 PICRUSt2 analysis . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.16 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Minocycline treatment did not affect lesion size . . . . . . . . 90

4.3.2 Minocycline altered microglial density and morphology . . . . 91

4.3.3 Minocycline promoted affective but not motor recovery follow-

ing SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.4 Minocycline prevented SCI-induced suppression of inflammatory

cytokines/chemokines . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Inducing inflammation following subacute spinal cord injury: a

double-edged sword to promote motor recovery 112

xi



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.2 Single pellet reaching and grasping training . . . . . . . . . . 115

5.2.3 Single pellet reaching and grasping high speed analysis . . . . 115

5.2.4 Spinal cord injury . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.5 LPS administration . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.6 Behavioural Testing . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.7 Corticospinal tract tracing . . . . . . . . . . . . . . . . . . . . 118

5.2.8 Perfusions and tissue processing . . . . . . . . . . . . . . . . . 119

5.2.9 Immunohistochemistry . . . . . . . . . . . . . . . . . . . . . . 119

5.2.10 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.11 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.12 Neuronal excitability experiment . . . . . . . . . . . . . . . . 122

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.1 Systemic LPS administration in the subacute stage of spinal

cord injury induces a transient sickness response . . . . . . . . 123

5.3.2 Inducing inflammation in subacute SCI promotes recovery in a

reaching and grasping rehabilitative training task . . . . . . . 124

5.3.3 Subacute LPS treatment enhances recovery in an untrained task 125

5.3.4 Subacute LPS treatment did not affect lesion size or CST fibre

sprouting into the cervical grey matter . . . . . . . . . . . . . 127

5.3.5 LPS induces a long-term increase in anxiety-like behaviour . . 130

5.3.6 Subacute LPS treatment attenuates the expression of IBA1 and

GFAP around the lesion site . . . . . . . . . . . . . . . . . . . 132

5.3.7 LPS reduces neuronal excitability . . . . . . . . . . . . . . . . 134

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xii



6 Conclusion 144

6.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Potential mechanisms and future directions . . . . . . . . . . . . . . . 145

6.2.1 lipopolysaccharide translocation . . . . . . . . . . . . . . . . . 145

6.2.2 The kynurenine pathway as a potential mechanism underlying

treatment results . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.3 The dichotomous role of inflammation-induced plasticity . . . 150

6.2.4 Limitations and future direction . . . . . . . . . . . . . . . . . 151

6.3 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Bibliography 154

A Appendix 202

B Appendix 206

C Appendix 209

xiii



List of Figures

1.1 Microbiota-immune axis following spinal cord injury . . . . . . . . . . 12

2.1 Cervical spinal cord injury in rats induces anxiety-like behaviour and

alterations in gut microbiota . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Experimental Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Treatment with a fecal microbiota transplant following spinal cord in-

jury reduced anxiety-like behaviour . . . . . . . . . . . . . . . . . . . 36

2.4 Fecal microbiota transplant did not affect open field behaviour or lesion

pathology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Analysis of stool samples by 16s rRNA sequencing . . . . . . . . . . . 40

2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Functional analysis of the ‘microbiota composition’ by PICRUST at 3

days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 FMT from rats with SCI to uninjured rats does not affect behaviour . 45

3.1 Experimental Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Uninjured FMT donor rats displayed altered baseline levels of anxiety-

like behaviour and proportions of fecal Lactobacillus . . . . . . . . . . 65

3.3 FMT from anxious donors did not prevent gut dysbiosis following SCI 67

xiv



3.4 FMT from anxious rats did not significantly affect motor recovery fol-

lowing spinal cord injury . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 FMT from anxious donors reduced microglial density caudal to the

injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 FMT from anxious donors resulted in a chronic increase in anxiety-like

behaviour after SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Heatmap of plasma markers over time following SCI . . . . . . . . . . 73

3.8 SCI induced time-dependent changes in plasma cytokines and chemokines 74

3.9 FMT from anxious donors increased intestinal permeability . . . . . . 76

4.1 Minocycline treatment had no effect on lesion size . . . . . . . . . . . 91

4.2 Minocycline treatment altered microglial density and morphology

around the lesion site . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Minocycline treatment did not affect motor recovery in the open field

or cylinder task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Minocycline treatment attenuated spinal cord injury induced anxiety-

like behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Minocycline treatment prevented spinal cord injury-induced long-term

changes in plasma cytokines . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Minocycline prevents spinal cord injury induced suppression of plasma

cytokines and chemokines . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Minocycline treatment attenuated spinal cord injury induced anxiety-

like behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.8 Minocycline treatment altered the gut microbiota composition . . . . 102

4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.9 Top 10% most relative abundant PICRUSt pathways . . . . . . . . . 104

4.10 Number of PICRUSt pathways significantly different between groups 105

xv



5.1 Systemic LPS administration induces a transient sickness response . . 124

5.2 Inducing inflammation in subacute SCI promotes recovery in rehabili-

tative training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Subacute LPS treatment enhances recovery in the untrained cylinder

task without affecting locomotion or mechanical sensitivity . . . . . . 128

5.4 Subacute LPS treatment did not affect lesion size or CST fibre sprout-

ing into the cervical grey matter . . . . . . . . . . . . . . . . . . . . . 129

5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 correlation between CST sprouting and rehab success . . . . . . . . . 131

5.6 Subacute LPS treatment induces a long-term increase in anxiety-like

behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.7 Subacute LPS treatment resulted in a long-term decrease in microglia

and astrocyte density around the lesion site . . . . . . . . . . . . . . 133

5.8 Subacute LPS treatment did not have a significant long-term effect on

microglial morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.9 LPS decreased the monosynaptic reflex following sacral SCI . . . . . 135

5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.1 Light-dark box data at baseline and 1 week post injury . . . . . . . . 202

A.2 non-metric multidimensional scaling at the Phylum, Order, Class,

Family and OTU levels . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.3 functional pathways that contribute to the second principal component 204

A.4 functional pathways that contribute to the first principal component . 205

B.1 body weights over time . . . . . . . . . . . . . . . . . . . . . . . . . . 207

B.2 body weights over time . . . . . . . . . . . . . . . . . . . . . . . . . . 208

C.1 body weights over time . . . . . . . . . . . . . . . . . . . . . . . . . . 209

C.2 Non-metric multidimensional scaling at the species level . . . . . . . . 210

xvi



C.3 Non-metric multidimensional scaling at the genus level . . . . . . . . 210

C.4 Non-metric multidimensional scaling at the family level . . . . . . . . 211

C.5 Non-metric multidimensional scaling at the class level . . . . . . . . . 211

C.6 Non-metric multidimensional scaling at the order level . . . . . . . . 212

xvii



Chapter 1

Introduction

1.1 Introduction to spinal cord injury

Spinal cord injury (SCI) has devastating physical, socioeconomic and vocational

consequences. There are an estimated 12500 new cases of SCI each year in North

America, and the lifetime cost of a SCI patient is an estimated 2.35 million dollars

[Hachem et al., 2017]. The majority of these cases are traumatic SCI, which are

caused by an external impact such as from motor vehicle accidents, falls, sports-

related injuries and violence [Gedde et al., 2019]. Non-traumatic SCI is less common

and occurs when an internal process (such as intrasprinal tumours, ischemia or infec-

tion) injures the spinal cord [Scivoletto et al., 2011]. SCI cases are classified as either

functionally complete, meaning there is a complete loss of motor and sensory function

below the level of injury, or functionally incomplete in which there is some residual

function [Kirshblum et al., 2011]. The location and severity of the lesion determines

the extent of deficits, with the cervical level being the most commonly affected

(50-60% of cases) [Hachem et al., 2017]. Traumatic SCI is further broken down into

the acute stage (less than 48 hours), the subacute stage (48 hours to 14 days), the

intermediate stage (14 days to 6 months) and the chronic stage (over 6 months)
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[Ahuja et al., 2017]. The primary injury (the initial mechanical insult to the spinal

cord) damages neurons and glial cells, disrupts the vasculature and impairs the blood-

brain barrier [Ahuja et al., 2017]. These immediate results of the primary injury

initiate a secondary injury cascade of multiple cellular, molecular, and vascular events

that can last for months to years after injury [Oyinbo, 2011, Anwar et al., 2016].

Spinal tracts below the levels of injury lose their brain-body connection through im-

pairment of ascending sensory and descending motor pathways [Alizadeh et al., 2019].

In addition to the sensorimotor deficits caused by the primary and secondary in-

jury events, SCI is also associated with various systemic complications that can

greatly effect the well being of patients such as spasticity, pain, bladder and bowel

dysfunction, sexual dysfunction, autonomic dysreflexia and mental health disor-

ders [Adams and Hicks, 2005, Siddall and Loeser, 2001, Benevento and Sipski, 2002,

Krassioukov et al., 2003, Post and van Leeuwen, 2012, Kennedy and Rogers, 2000].

Such system-wide consequences of SCI are not only detrimental to quality of life

after injury but can also lead to decreased life expectancy and increased mortality

rate [Soden et al., 2000, Savic et al., 2017]. Considering these multiple aspects of

recovery following SCI is therefore vital to further understand the response to injury

and promote comprehensive treatment options.

1.2 Therapeutic approaches to treat spinal cord

injury

Although there is currently no cure for SCI, various therapeutic approaches exist to

treat different aspects of SCI pathology. The majority of these interventions have been

primarily studied in preclinical animal models, however numerous case reports and

clinical trials are ongoing. Therapeutic interventions used in the acute period follow-

ing SCI focus on promoting neuroprotection and mitigating secondary damage, largely
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through attenuation of the acute inflammatory response (which will be discussed

in more detail in section 1.3) [Ulndreaj et al., 2017, Lambrechts and Cook, 2020].

While reducing the spread of damage following the initial insult to the spinal cord is

important, substantial research is also focused on regeneration and repair of severed

axons to repair damaged pathways [Tsai and Tator, 2005]. Since CNS axons do not

regenerate as well as peripheral nerve fibres, this area of research offers a particular

challenge to scientists and clinicians [Zurn and Bandtlow, 2006, Chen et al., 2007].

While peripheral nerves spontaneously regenerate and re-innervate appropriate

targets, central nervous system (CNS) axons retract and their growth cones

collapse [Chen et al., 2007, Dontchev and Letourneau, 2003, Abe et al., 1999,

Schwab, 1996]. The fact that the local CNS environment contributes to the

limited ability of CNS axons to regenerate was first described in 1981 by David

and Aguayo, pioneers in the field of CNS regeneration, who showed that CNS

axons could regenerate in the injured spinal cord through peripheral nerve ”bridges”

[David and Aguayo, 1981]. This discovery inspired countless studies on promoting

regeneration either by enhancing growth-promoting molecules (such as brain-derived

neurotrophic factor (BDNF), mTOR, and neurotrophin (NT)-3) or by neutraliz-

ing growth-inhibitors (such as NOGO-A and chondroitin sulphate proteoglycans)

[Keefe et al., 2017, Weishaupt et al., 2012, Kanno et al., 2012, Merkler et al., 2001,

Bradbury et al., 2002]. In addition to axon regeneration, recovery following SCI

can be due to plasticity within the CNS; plasticity is a term that encapsulates

every adaptive change such as synaptic changes, sprouting of new connections,

loss of existing connections, changes in cellular properties and cortical map re-

organization [Onifer et al., 2011, Wieloch and Nikolich, 2006, Ding et al., 2005].

The ability of the nervous system to adapt as such is integral to recovery fol-

lowing SCI and other CNS injuries. In fact, injury to the CNS itself can en-

hance neural plasticity, which may involve interaction with the immune system
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[Wieloch and Nikolich, 2006, Ding et al., 2005, O’Reilly and Tom, 2020]. How-

ever, plastic changes are not always beneficial and may have detrimental conse-

quences such as neuropathic pain, spasticity, autonomic dysfunction and mental

health disorders [Weaver et al., 2001, Brown and Weaver, 2012, Tan et al., 2012,

Deumens et al., 2008, Kays et al., 2012]. Potential negative side effects of promoting

plasticity are therefore an important caveat to consider when exploring therapeutic

strategies.

1.3 The dual role of inflammation following spinal

cord injury

Neutrophils are the first peripheral responder to SCI and enter the spinal cord within

hours and are cleared rapidly (within days to weeks) [Kigerl et al., 2006]. The first

central responders following SCI are the resident CNS cells [David and Kroner, 2011].

Microglia (the resident macrophages of the CNS), astrocytes and oligodendro-

cytes release proinflammatory cytokines and chemokines which trigger an in-

flammatory cascade including the recruitment of blood-borne monocytes to the

lesion [David et al., 2012]. Within 3 to 7 days post-injury, blood-borne mono-

cytes enter the spinal cord where they differentiate into macrophages and adopt

a phenotype almost indistinguishable from activated microglia (often referred

to as microglia/macrophages) [David and Kroner, 2011]. This acute inflamma-

tory response at the lesion coincides with increased blood-brain-barrier perme-

ability within the first week of SCI [Whetstone et al., 2003]. Vascular perme-

ability is further enhanced upon upregulation of pro-inflammatory cytokines

such as TNFα and IL-1β [Pan et al., 2011]. In addition to the release of cy-

tokines, activated neutrophils and microglia/macrophages can release free radi-

cals, neurotoxic enzymes, eicosanoids, nitric oxide and proteases that can cause
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further cell death [Brady et al., 2006, Chandler et al., 1995, Chao et al., 1992,

Liu et al., 2006, Liu et al., 2006, Shamash et al., 2002]. Within weeks, reactive

astrocytes in addition to microglia and oligodendrocyte precursors form to cre-

ate a physical and molecular barrier around the lesion known as the glial scar

[Leal-Filho, 2011, Yuan and He, 2013]. For decades, the glial scar was thought to

be a primary inhibitor of SCI recovery. Indeed, reactive astrocytes in the glial scar

release various axonal growth inhibiting proteins such as chondroitin sulfate proteo-

glycans, which, when degraded, can promote substantial axonal growth following

SCI [Bradbury and Carter, 2011, Fouad, 2005, Yang et al., 2020].

Multiple methods to inhibit the inflammatory response in acute SCI have

had some beneficial yet controversial outcomes. Methylprednisolone is a glu-

cocorticosteroid which has anti-inflammatory and immunosuppressive activity

[Short et al., 2000]. It has been shown to protect against secondary injury, in-

hibit the release of interleukins, and improve neurological recovery in preclinical

animal models [Akhtar et al., 2009]. Given these promising results, Methyl-

prednisolone treatment for acute SCI was evaluated in multiple clinical trials

and became a standard of care in many hospitals throughout the United States

[Bracken et al., 1990, Bracken, 1991]. However, given the severe side effects (such

as increased infections, gastrointestinal hemorrhages, sepsis and pneumonia), ab-

sence of reproducible results, and inappropriate use of statistical tests, steroid

treatment for SCI is no longer recommended [Short et al., 2000, Hurlbert, 2000].

An anti-inflammatory drug with much less side effects and a long safety record in

humans, minocycline, has more recently been considered for acute SCI therapy.

Minocycline, an antibiotic tetracycline derivative, has been shown to reduce lesion

size and promote functional recovery in preclinical models of SCI, attributed to the

drug’s direct anti-inflammatory and microglial inhibiting properties [Wells, 2003a,

Lee et al., 2003, Stirling, 2004, Shultz and Zhong, 2017, Festoff et al., 2006]. Re-
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sults from phase I/II clinical trials suggest that minocycline produces modest, yet

insignificant improvements for patients with acute SCI [Casha et al., 2012]. An-

other anti-inflammatory therapeutic target that has displayed beneficial effects in

preclinical models of SCI is Etanercept, a TNFα inhibitor. Several experimental

studies in rodents showed that Etanercept attenuated inflammation, reduced tissue

injury, and promoted functional motor recovery after SCI [Genovese et al., 2006,

Marchand et al., 2009, Esposito and Cuzzocrea, 2011, Chen et al., 2011]. A myriad

of other studies have reported neuroprotective effects of anti-inflammatory treatment

for SCI [Bao et al., 2004, Mabon et al., 2000, Zhou et al., 2009, Song et al., 2015,

Machova Urdzikova et al., 2015, Arnold and Hagg, 2011], however clinical trials have

been less successful [Casha et al., 2012, Bracken, 1991]. Although inflammation is

a contributor to secondary damage following SCI, it is too simplistic to conclude

that inflammation is inherently detrimental to recovery. In fact, a proper immune

response is critical to promote healing [Koh and DiPietro, 2011], and as we will see

throughout this thesis, can play a dual role in the recovery following SCI.

A straightforward example of the dichotomous role of inflammation is the polar-

ization model of macrophage function. Although criticized for being an oversimplifi-

cation (a fact the original authors admit to), this models provides a useful framework

for considering different qualities of inflammation [Mills et al., 2000]. This concept

was first proposed by Mill et al., and suggested two distinct macrophage groups

(designated M1 and M2) that influence whether a Th1 (release of pro-inflammatory

cytokines) or Th2 (release of anti-inflammatory cytokines) inflammatory response

occurs [Mills et al., 2000]. Both subsets of macrophages are present at the lesion site

within the first week following SCI, however only M1 macrophages persist for longer

[Kigerl et al., 2009]. M2 macrophages have been associated with neuroprotection

and regeneration of spinal tissues after injury, whereas M1 macrophages generally are

considered neurotoxic [Kigerl et al., 2009, Kong and Gao, 2017]. As mentioned pre-
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viously, this generalization is likely overly simplistic and more recent views suggest a

spectrum of macrophage activation [Nahrendorf and Swirski, 2016]. Evidence of the

reparative properties of macrophages comes from optic nerve injury. Oncomodulin, a

macrophage-derived growth factor, plays a critical role in retinal ganglion cell regener-

ation following optic nerve injury [Yin et al., 2009, Yin et al., 2006, Yin et al., 2003].

Macrophages have also been associated with recovery after SCI, since transplantation

of peripheral nerve stimulated macrophages into the injured spinal cord promoted

tissue repair and motor recovery [Schwartz et al., 1999b, Rapalino et al., 1998].

Activated macrophages and microglia may promote tissue repair and protection

via release of various neurotrophic factors (including NGF, BDNF and NT-3),

modulating glutamate excitotoxicity, and clearing myelin debris in the lesioned

environment [Dougherty et al., 2000, Chen et al., 2008, Krenz and Weaver, 2001,

Vinet et al., 2012]. Further evidence on the link between inflammation and plasticity

has been shown in a chronic model of SCI, where inducing inflammation systemically

with lipopolysaccharide (LPS) augmented sprouting of corticospinal tract (CST)

axons and enhanced motor recovery [Chen et al., 2008, Torres-Esṕın et al., 2018a].

These promising preclinical results highlight the therapeutic potential of aug-

menting the beneficial aspects of neuroinflammation following SCI. However,

because of the dichotomous role that inflammation can play on damage and repair

[Hohlfeld et al., 2007], further research on the complex interaction between the

immune and nervous systems is required to optimize the therapeutic potential while

mitigating damage.
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1.4 Systemic inflammation and chronic immune

suppression

The CNS and immune systems are integrated to regulate homeostasis [Marques et al., 2016].

These two complex systems functionally communicate via the autonomic ner-

vous system and the hypothalamic-pituitary-adrenal (HPA) axis [Dantzer, 2018].

The autonomic nervous system consists of the parasympathetic nervous system

(PNS), the sympathetic nervous system (SNS), and the enteric nervous system

[Waxenbaum et al., 2020]. The enteric nervous system that controls gastroin-

testinal processes has extensive two-way communication with the CNS, but is

capable of autonomous functions and thus not directly affected following SCI

[Waxenbaum et al., 2020]. SCI can directly and indirectly disrupt the function

of the autonomic nervous system, which can have profound effects on the im-

mune system. Not only does SCI increase local inflammation within the spinal

cord [Popovich et al., 1997], there is also an increase in systemic inflammation

as indicated by elevated concentrations of various pro-inflammatory cytokines in

circulation [Bloom et al., 2020, Hayes et al., 2002]. However, in certain cases SCI

can lead to a paradoxical chronic immune suppression [Riegger et al., 2007]. Fol-

lowing upper thoracic and cervical SCIs, sympathetic preganglionic neurons of the

SNS are disconnected from supraspinal control. Thus, when something happens

below the level of injury (e.g., bladder extension, constipation, or simply a sun

burn), an automatic reaction of the sympathetic nervous system ensues, resulting in

increased blood pressure, release of norepinephrine from lymphoid organs and gluco-

corticoids from the HPA axis [Weaver et al., 2006, Eldahan and Rabchevsky, 2018].

Furthermore, physical or psychological stress in general can activate the HPA

axis, leading to additional glucocorticoid release [Tsigos and Chrousos, 2002]. In

the case where preganglionic neurons have been disconnected from supraspinal
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control, this response is unable to be properly modulated by the CNS and is

termed autonomic dysreflexia [Weaver et al., 2006]. The result of excessive or

uncontrolled circulating catecholamines can lead to immune suppression and sub-

sequent risk for infection [Zhang et al., 2013]. Non-neurogenic mechanisms of

immune suppression following CNS damage have also been proposed, including the

compensatory anti-inflammatory response syndrome following a systemic inflamma-

tory response [Adib-Conquy and Cavaillon, 2009, Meisel et al., 2005]. Regardless

of the cause, chronic immune suppression significantly impacts the well being of

SCI patients since acute infection is the leading cause of death following SCI

[DeVivo et al., 1989, Thietje et al., 2011].

1.5 Gut microbiota and the gut-brain axis

A fundamental and interconnected relationship exists between the immune system

and the gut microbiota [Belkaid and Hand, 2014]. Microbiota is the term used to

describe the complex community of microorganisms that inhabits the surface of the

body, and in this thesis will be focusing on the bacterial community within the lower

intestine. The microbiota degrades dietary substances to enhance host metabolic

efficiency while supplying nutrients to the microbes [Belkaid and Harrison, 2017].

Over millions of years, this symbiotic relationship has evolved past simple diges-

tive efficiency to a complex and poorly understood microbiota-host interaction

[Bercik et al., 2012]. The host immune system has co-evolved with the microbiota

to protect the host from pathogens (which can have health implications from

inflammation to sepsis) and to foster a diverse microbial community for various

metabolic benefits [Lee and Mazmanian, 2010, Fung et al., 2017]. One of the earliest

advancements in the study of the gut came in the 1800’s when a gunshot wound

to Canadian fur-trader, Alexis St. Martin, left him with a fistula, or open window,
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into his intestines [Beaumont, 2009]. At the cost of discomfort to his patient, his

doctor William Beaumont took this opportunity to study digestion in real time by

placing food in St. Martin’s stomach and examining it later. Beaumont also made

the fascinating observation that the emotional state of his patient greatly affected

digestion [Beaumont, 2009]. Ivan Pavlov, famous for his studies on classical condi-

tioning, was directly inspired by Beaumont’s work and scientific method. Together

with Carl Ludwig they developed the Pavlov pouch, an externalized intestine to

study dog digestion (believed to be one of the first chronic animal experiments).

In these studies, Pavlov described the cephalic phase of digestion in which sensory

perception of food triggers gastric secretions [Wood, 2004]. An early pioneer in

the concept that host microbial partners from the gut can influence human health

was Élie Metchnikoff. Although perhaps best known for describing phagocytosis in

1883, Metchnikoff believed that toxic bacteria were the cause of aging and therefore

drank sour milk every day to prolong his life. Although Metchnikoff died at the

age of 71, his probiotic consumption corresponded with improvements in his mood

[Underhill et al., 2016]. Observations from scientists such as Beaumont, Pavlov and

Metchnikoff alluded to the existence of a “gut-brain-axis”. Although the earlier work

on the gut-brain-axis focused on digestion and satiety, more recently higher-order

processes have been considered, such as neurological and psychiatric conditions,

which will be discussed further in section 1.6.

The mechanisms of how the gut microbiota influences the CNS and host be-

haviour remain largely unknown, however there are multiple potential pathways

involved. The bidirectional communication of the gut-brain axis involves the brain,

spinal cord, ANS, immune system, and the HPA axis [Cryan et al., 2019] (Fig.

1.1). Gut microbiota interact with the gut-brain axis through modulation of the

intestinal barrier, producing local neurotransmitters (for example GABA, sero-

tonin, melatonin and histamine), producing short-chain-fatty-acids, and influencing
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mucosal immune activation [Bercik et al., 2012]. The vagus nerve, which makes

up the majority of the PNS branch of the ANS, is the fastest and most direct

route of communication between the gut and the brain [Bonaz et al., 2018]. A

critical non-neuronal route of communication between the gut and the CNS is

the HPA axis [Carabotti et al., 2015]. In response to physical or psychological

stress, the paraventricular nucleus of the hypothalamus secretes corticotropin-

releasing hormone, which initiates the release of adrenocorticotropic hormone

from the anterior pituitary into circulation. Once in the bloodstream, this hor-

mone travels to the adrenal cortex of the adrenal glands, leading to the release

of glucocorticoids [Herman and Seroogy, 2006, Tsigos and Chrousos, 2002]. Glu-

cocorticoids can have a variety of effects on the body, most notably the “fight

or flight” response (in addition to suppression of the immune system), but

also initiate a negative feedback loop to inhibit further glucocorticoid release

[Gjerstad et al., 2018]. A link between the microbiota and the HPA axis was first

shown in germ free mice, who are reared in sterile environments and thus lack a

microbiota [Yi and Li, 2012]. Germ-free mice have impaired innate lymphoid cell and

organ function, reduced production of interleukins, immature microglia phenotype,

and are generally more susceptible to infection, all of which highlight the importance

of the gut microbiota in proper immune function [Round and Mazmanian, 2009,

Sprinz et al., 1961, Östman et al., 2006, Kennedy et al., 2018]. In response to

stress there is an increase in gut permeability (or “leaky gut”), which can

cause the translocation of bacteria and bacterial matter (such as LPS) across

the epithelial barrier and trigger an immune response, which ultimately acti-

vates the HPA axis [Söderholm et al., 2002, Ilchmann-Diounou and Menard, 2020,

Ghosh et al., 2020, de Punder and Pruimboom, 2015]. In germ free animals, this

HPA response to stress is exaggerated, indicated by elevated plasma corticosterone

[Sudo et al., 2004, Neufeld et al., 2011]. Although there is still much to learn about
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Figure 1.1: Microbiota-immune axis following spinal cord injury

the gut-brain axis, there is clearly a strong link between the function of the micro-

biota and the host nervous and immune systems, and alterations of this homeostasis

can cause or exacerbate various diseases and disorders.

1.6 Gut microbiota involvement in CNS diseases

and disorders

A disturbance to the composition of the microbiota, termed dysbiosis, causes intesti-

nal inflammation and has been linked to irritable bowel syndrome and inflammatory

bowel disease [Kaur et al., 2011, Chassard et al., 2012]. More recently, the role of

the microbiota in the etiology of diseases involving organs distal to the intestines

has been explored. As a striking example, germ-free mice do not develop symptoms
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of spontaneous experimental autoimmune encephalomyelitis (EAE, a widely used

animal model of multiple sclerosis) [Lee et al., 2011]. Furthermore, administra-

tion of the probiotic Lactobacilli has been shown to alleviate symptoms of EAE

through regulation of cytokine responses [He et al., 2019]. The role of the microbiota

has also been suggested in autism spectrum disorder based on observations that

children with autism have imbalanced proportions of various intestinal bacteria

[Pulikkan et al., 2019, Pulikkan et al., 2018]. Psychiatric disorders in general have

been widely studied for their strong connection to both the microbiota and in-

flammation [Carlessi et al., 2021]. Multiple studies in both humans and animals

have correlated depression and anxiety symptoms with gut dysbiosis and increased

systemic inflammation [Stevens et al., 2018, Sun et al., 2019, Cheung et al., 2019,

Luo et al., 2018]. Probiotic treatment, particularly those containing species in

the Lactobacillus genus, has shown efficacy for treatment of depressive-like symp-

toms in animals and humans [Desbonnet et al., 2010, Pinto-Sanchez et al., 2017,

Pirbaglou et al., 2016, Rudzki et al., 2019, Hadizadeh et al., 2019, Chong et al., 2019].

The link between microbiota and mental health was clearly shown in a study by

Li et al. in which mice received a fecal microbiota transplant (FMT) from control

mice or mice with high levels of anxiety-like and depressive-like behaviour. The

FMT not only colonized the recipient mice with a microbiota composition similar

to the donors, but the recipient mice also adopted the behaviours of the donors

[Li et al., 2019]. That is, mice that received the FMT from anxious- and depressive-

like donors displayed increased levels of anxiety-like and depressive-like behaviours

themselves [Li et al., 2019]. Furthermore, these mice also displayed increased inflam-

matory cytokines and upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) in the

hippocampus [Li et al., 2019]. A similar and just as fascinating study by Kelly et al.

showed that FMT from humans diagnosed with major depressive disorder (MDD)

to rats induced depressive-like and anxiety-like behaviours in the recipient animals
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[Kelly et al., 2016]. Results from studies such as these suggest that the microbiota is

involved in the development of depression and anxiety, which likely involves interac-

tion with the host immune system. Although gut dysbiosis has been suggested as a

contributing factor to the development of mental health disorders, this is obviously

not the case for traumatic CNS injuries (for which gut dysbiosis is a symptom and not

the cause). However, recent evidence suggests that dysbiosis may be a disease modi-

fying factor in stroke since treating dysbiosis with probiotics or FMT improved stroke

outcome in animal experiments [Chen et al., 2019, Akhoundzadeh et al., 2018]. Sim-

ilarly in experimental SCI research, Kigerl et al. recently showed that treatment

with probiotics improved locomotor recovery and reduced the lesion size following

a thoracic SCI in mice [Kigerl et al., 2016a]. Although the interaction between

the microbiota and CNS diseases and disorders is a novel and constantly evolving

field, the microbiota offer extraordinary therapeutic potential that deserves further

exploration.

1.7 Mental health after spinal cord injury

Early research on psychological disorders following SCI considered depression

to be a necessary part of the grieving process in order to cope with the injury

[Holmes, 1975, Boekamp et al., 1996]. More recently, research has supported that

not all individuals with a SCI develop depression or anxiety disorders, with an

estimated prevalence around 30% [Kennedy and Rogers, 2000]. Although studies

report that most individuals with a SCI do not develop diagnosable psycholog-

ical disorders, the rates of depression and anxiety are still significantly higher

than the general population [the SCIRE Research Team et al., 2009]. There has

been extensive research investigating mood disorders following SCI in the human

population. Although multiple meta-analyses and longitudinal studies show a
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significant and clear increased risk of mental health disorders following SCI, the

etiology and mechanisms underlying comorbid psychological disorders has not

been elucidated [the SCIRE Research Team et al., 2009, Kennedy and Rogers, 2000,

Bonanno et al., 2012, Craig et al., 2009]. Some studies report that depression

and anxiety scores decrease with time after injury and particularly after dis-

charge, whereas others report that there is little resolve of these disorders

over time [Craig et al., 1994a, Hancock et al., 1993, Kennedy and Rogers, 2000,

Cairns et al., 1996]. Not surprisingly, although perhaps under appreciated, is the

consensus that individuals with comorbid mood disorder following SCI have less adap-

tive coping strategies, poorer subjective health, more difficulty in daily functioning,

increased risk of developing pressure ulcers, urinary tract infections and cognitive im-

pairment [Bombardier et al., 2004, Bonanno et al., 2012, Malec and Neimeyer, 1983,

Craig et al., 2017, Krueger et al., 2013, Herrick et al., 1994, Dorsett and Geraghty, 2004].

Given the detrimental impact of mood disorders on both psychological and phys-

ical recovery following SCI, it is concerning that mood disorders are both under

appreciated and under treated in adults with SCI [Fann et al., 2011].

Experimental animal studies have confirmed the clinical data indicating an

increased prevalence of anxiety-like and depressive-like behaviours following SCI

[Brakel and Hook, 2019, Luedtke et al., 2014]. Furthermore, given the complicated

nature of mental health, animal studies exclude socioeconomic factors and provide the

opportunity to study neurophysiological factors contributing to mental health disor-

ders. In humans, the diagnostic and statistical manual of mental disorders is used by

healthcare providers to classify and diagnose psychiatric disorders including MDD and

generalized anxiety disorder (GAD) [American Psychiatric Association, 2013]. The

criteria for MDD is to display at least 5 of the following symptoms: depressed mood,

loss of interest/pleasure (known as anhedonia), weight loss or gain, changes in sleep,

fatigue, psychomotor agitation/retardation, feeling worthless, decreased concentra-

15



tion, and thoughts of suicide or death [American Psychiatric Association, 2013].

GAD is highly comorbid with MDD with the primary symptom being excessive

worry in addition to restlessness, fatigue, impaired concentration, irritability, dif-

ficulty sleeping and muscle tension [American Psychiatric Association, 2013]. Of

course, it is impossible to ask a rodent how they are feeling or diagnose them with

a human mental health disorder. Instead, scientists use sensitive behavioural tests

to measure different aspects of depression and anxiety, and subsequently determine

whether the animals exhibit various ”depressive”-like or ”anxiety”-like behaviours.

Common tests for depressive-like behaviour in rodents include the forced-swim

test, tail suspension test, sucrose preference test (SPT), and social interaction

test [Yankelevitch-Yahav et al., 2015, Castagné et al., 2011, Willner et al., 1987a,

D’Aquila et al., 1994]. Common tests for anxiety-like behaviours in rodents in-

clude the open-field test, elevated plus maze (EPM) and light/dark box (LDB)

[Hogg, 1996, Seibenhener and Wooten, 2015, Kulesskaya and Voikar, 2014]. In this

thesis, the forced-swim test was not used as it can cause excessive stress, and the tail

suspension test was not used as it is only appropriate in mice due to their small size

[Can et al., 2011].

1.8 Incomplete cervical spinal cord injury

The model of spinal cord injury used in this thesis is a dorsal unilateral in-

complete cervical contusion or transection injury. Not only are incomplete cer-

vical injuries the most common SCI and therefore clinically relevant to study

[Hachem et al., 2017], but this injury model does not significantly affect gross loco-

motion and long-term motor deficits are only detected with sensitive skilled reaching

tasks [Siegenthaler et al., 2007, Garćıa-Aĺıas et al., 2015]. This is important for

the interpretation of many of the sensitive behavioural tests used throughout this
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thesis which rely on the rat’s locomotor abilities. The incomplete cervical injury

model damages the corticospinal tract (CST) as well as parts of the rubrospinal

tract, reticulospinal tract and grey matter, ultimately leading to impairments in

skilled reaching of the ipsilesional paw [Lawrence and Kuypers, 1968]. Cell bod-

ies of the CST predominantly originate in the motor cortex and descend to the

pyramids in the medulla. There, 90% of the axons decussate and travel through

the contralateral ventral part of the dorsal column (in rodents) and 10% remain

ipsilateral and form the anterior corticospinal tract [Canty and Murphy, 2008]. The

majority of CST axons innervate the grey matter of the cervical spinal cord where

they synapse onto motor neurons to orchestrate skilled movements of the forelimbs

[Asanuma and Rosen, 1972, Kleim et al., 1998, Rasmussen and Penfield, 1947]. Al-

though the CST is critical for fine motor control of the hand in primates, rats

display a great amount of recovery when the CST is lesioned [Whishaw et al., 1998,

Kanagal and Muir, 2008, Kanagal and Muir, 2009]. This recovery of fine motor skills

may be due to plasticity of CST axons or compensation of spared descending motor

pathways [Fouad et al., 2001, Oudega and Perez, 2012, Garćıa-Aĺıas et al., 2015]. In

the rat, the rubrospinal tract likely plays a more important role than it does in

humans and, if spared, may compensate for loss of function following damage to

the CST [Nathan and Smith, 1982, Whishaw et al., 1998, Raineteau et al., 2001].

The reticulospinal tract is an anatomically diverse and somewhat poorly de-

fined bundle of axons which originates in the gigantocellular zone of the reticular

formation and descends in the ventral and lateral white matter [Wang, 2009].

Given its location, the reticulospinal tract is at least partially preserved follow-

ing an incomplete dorsal SCI and may serve as a relay for injured CST neurons

[Garćıa-Aĺıas et al., 2015, Ballermann and Fouad, 2006]. Promoting regeneration

or plasticity of CST axons and other descending motor systems using various

cell transplantation techniques, increasing growth-promoting molecules, inhibit-
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ing growth inhibitors, or simply through rehabilitative training has been widely

studied in experimental SCI [Girgis et al., 2007, Fouad, 2005, Merkler et al., 2001,

Li and Lepski, 2013, Weishaupt et al., 2012]. Often, therapeutic interventions are

most (or only) effective when combined with rehabilitation [Weishaupt et al., 2013,

Torres-Esṕın et al., 2018a, Garćıa-Aĺıas et al., 2009, Kubasak et al., 2008], which is

why rehabilitative training is included in this thesis.

1.9 Chapter aims

The overall aim of this thesis is to investigate multiple systemwide consequences of

SCI. Although we do aim to enhance motor recovery of the ipsilesional forepaw, this

is not the only goal and I believe that it is important to consider the whole body and

mind when examining potential therapeutics for CNS injuries or diseases.

In chapter 2 our aims were two fold. First, we wanted to determine whether using

a (relatively) mild cervical SCI would elicit changes in anxiety-like behaviour as well

as changes in the gut microbiota. Second, given the link between dysbiosis and men-

tal health disorders in uninjured populations, we aimed to determine whether there is

a link between gut dysbiosis and the development of anxiety-like behaviour following

SCI using a fecal transplant from uninjured donors. Next, in chapter 3 we wanted

to determine whether optimal donor selection would influence the efficacy of FMT

for SCI treatment. In chapter 4 we again manipulate the microbiota following SCI,

however this time using minocycline. Although minocycline has been widely studied

for its anti-inflammatory properties, its impact on the gut microbiota and systemic

inflammation following SCI is unknown. Furthermore, in chapters 3 and 4 we mon-

itor systemic inflammatory markers over time following SCI to evaluate both acute

and chronic changes and how treatments targeting the gut microbiota alter systemic

inflammation. Finally in chapter 5, we investigate the dual role that inflammation
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can play by systemically injecting the bacterial product LPS in the sub-acute time

point following SCI to determine what effect this has on rehabilitative training. In

each experiment, we assess not only lesion size and functional recovery, but (perhaps

just as important), we monitor anxiety-like and depressive-like behaviours as well.
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Chapter 2

Fecal transplant prevents dysbiosis

and anxiety-like behaviour

following spinal cord injury 1

2.1 Introduction

In addition to physical and sensory impairments, SCI is associated with an increased

prevalence of anxiety and depression, and a reduced quality of life [Lim et al., 2017,

Kennedy and Rogers, 2000]. As a result, suicide is a leading cause of death follow-

ing SCI [Thietje et al., 2011, DeVivo et al., 1989]. It is therefore crucial to determine

safe and effective treatments, or preferably prophylactic strategies, to improve men-

tal well-being following SCI. To do this, the link between SCI and affective disorders

must be further elucidated. Given the drastic lifestyle changes and complications

such as pain and autonomic dysfunction associated with SCI, it is likely that psy-

chosocial factors are involved in the etiology of depression and anxiety after injury

[Post and van Leeuwen, 2012]. However, evidence suggests that biological changes

1This chapter has appeared in ”Fecal transplant prevents gut dysbiosis and anxiety-like behaviour
after spinal cord injury in rats” [Schmidt et al., 2020b]
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caused by central nervous system injury can also contribute to the development of

mood disorders [Fenn et al., 2014, Maldonado-Bouchard et al., 2016a].

Research in animal models confirmed the association between SCI and the

prevalence of mood disorders observed in humans. After a thoracic spinal contusion,

Luedtke et al. showed that rats displayed various depressive-like behaviours, which

were reversed by treatment with the antidepressant Fluoxetine [Luedtke et al., 2014].

These depressive-like behaviours following SCI have been associated with in-

creased inflammation [Luedtke et al., 2014, do Esṕırito Santo et al., 2019]. Out-

side of SCI research, depression and anxiety have also been associated with

pathological alterations of the gut microbiota (dysbiosis) [Dantzer et al., 2008,

Foster and McVey Neufeld, 2013]. Microbiota changes have recently been shown af-

ter SCI in both human and rodent studies [Gungor et al., 2016, Kigerl et al., 2016a,

O’Connor et al., 2018]. In mice, dysbiosis caused by a severe thoracic SCI was associ-

ated with increased intraspinal inflammation and reduced functional recovery, both of

which could be reversed with chronic oral probiotic treatment [Kigerl et al., 2016a].

Given the profound effect that intestinal dysbiosis can have on behaviour, the micro-

biota may be a key player in reduced mental well-being following SCI. However, it is

currently unknown whether SCI-induced gut dysbiosis is involved in the etiology of

anxiety and depression following SCI.

In the present study, we show that an incomplete unilateral cervical SCI in-

duces dysbiosis and long-term changes in anxiety-like behaviours. This model of

SCI has negligible effect on the rat’s locomotor ability, thus minimizing the effect of

reduced locomotion on behavioural outcomes. A relationship between anxiety-like

behaviour and dysbiosis was demonstrated by administering a fecal microbiota trans-

plant (FMT) at the time of injury and for two consecutive days after SCI. The FMT

attenuated gut dysbiosis and alleviated SCI-induced anxiety-like behaviour. The
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present study shows for the first time that the development of anxiety-like behaviour

after SCI in a rodent model is linked to gut dysbiosis.

2.2 Methods

2.2.1 Animals

All animal use was approved by the animal care and use committee for Health Sciences

at the University of Alberta and complies with the Canadian Council for Animal Care

and ARRIVE guidelines. Experiments were performed using adult female Lewis rats

(Charles River Laboratories, Montreal, QC Canada) weighing 180 to 220 g. Upon

arrival, rats were handled daily (5 min per rat) for one week prior to behavioural test-

ing. Rats were group housed (5-6 rats per cage) and kept in a 12 h light/dark cycle

(lights on at 08:00 h) with ab libitum access to standard chow and water. Exper-

imental groups were housed separately to avoid cross-colonization by coprophagia.

Behavioural testing and analyses were performed by an experimenter blind to the

group assignment. The first experiment consisted of two groups: (1) a sham operated

group (n = 6) and (2) a group that received a cervical contusion SCI (n = 6). For

the second experiment, two cohorts of rats were used and randomly divided into four

experimental groups (n = 45): (1) healthy (n = 10); (2) sham (n = 11); (3) SCI with

control gavage (n = 10); and (4) SCI with FMT (n = 14). Both cohorts underwent

identical experimental conditions but only the second cohort of rats were used for the

16s rRNA gene analysis (healthy n = 10, SCI-FMT n = 10, sham n = 5, SCI n = 5).

The healthy group served as the donor animals for the FMT.

2.2.2 Surgical procedures

Surgeries were conducted under isoflurane anesthesia (5% for induction; 2.5% for

maintenance) supplied with a 50:50 air/oxygen mixture. The dorsal neck was shaved
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and disinfected with 10% chlorhexidine digluconate. Eye drops were applied to pre-

vent corneal dehydration and body temperature was maintained with a heating blan-

ket. The cervical vertebra was exposed and a laminectomy of C5 was performed. The

animal was placed in the Infinite Horizons impactor (Precision Systems & Instrumen-

tation, Lexington, KY) at an angle of 15 degrees using a customized frame to induce

a unilateral injury on the right side (1.25mm off of midline). The impactor tip was

lowered until just in contact with the spinal cord, raised 2.5 mm, and the force was

set at 125 kdyns (with the mean measured force of 137.65 kdyn, the mean displace-

ment of 1015.7 µm and a velocity of 124.04 mm/s). Muscles were sutured with 5-0

vicryl and the skin closed 9 mm stainless steel clips. Buprenorphine was injected s.c.

immediately post-op (0.03 mg/kg) and again 8-12 hours later (0.02 mg/kg) for anal-

gesia. Animals were hydrated with 4 ml saline s.c. immediately postoperatively and

a 2 ml dose the day after surgery. Bladders were manually expressed when necessary

(evidence of wet abdomen and full bladder) until voiding was re-established.

2.2.3 Behavioural testing

Behavioural testing was performed during the light cycle (08:00 - 20:00 h). With the

exception of the cylinder test (as this was a measure of physical function and not

anxiety-like behaviour), behavioural testing did not take place within 24 hours of fe-

cal collection to avoid any potential interaction between these tests and performance

outcome. Behavioural apparatuses were cleaned between sessions with odourless de-

tergent and dried with paper towel. The light-dark box, elevated plus maze and open

field tests were never performed on the same day to avoid interference between these

outcome measures.
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Light-dark box

The light-dark box was made of white and black opaque Plexiglas (21×21×21 cm

light chamber, 21×21×21 cm dark chamber). The light (100 lux) and dark (0 lux)

chambers were connected by a 7x7 cm door. Animals were placed in the middle

of the dark chamber facing away from the door and allowed to freely explore the

chambers for 10 minutes while video recorded from above. Offline video analysis

was performed to analyze the time spent and latency to enter the light chamber.

Increased number of entries and time spent in the light chamber as well as decreased

latency to enter the light chamber is associated with decreased anxiety-like behaviour

[Bourin and Hascoët, 2003]. This test was performed once before SCI, then again 1

and 4 weeks after SCI.

Cylinder test

The cylinder test is used to measure forelimb asymmetry following unilateral injuries

in rodents [Schallert et al., 2000, A Geissler, 2013]. Rats were placed in a transparent

Plexiglas cylinder (21x25 cm) and recorded as they explore the vertical environment

with their forepaws for three minutes or a minimum of ten rears. The number of

left and right paw placements on the cylinder wall were recorded at baseline, 1 and

3 weeks after injury. Any contralateral bias in forepaw placements (i.e., increased

reliance on the uninjured paw) is associated with physical deficits and expressed as a

percentage of right paw placements.

Sucrose preference test

Rats had access to two bottles in their home cage (same treatment group per cage),

one with water and the other with a 2% sucrose solution. The amount of sucrose

solution or water consumed over 48 hours was determined by weighing the bottles.

The location of the bottles was switched at 24 hours to avoid any side preference.
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Decreased consumption of the sucrose solution is associated with anhedonia-like be-

haviour (a symptom of depression in humans) [Willner et al., 1987b]. This test was

performed twice before SCI and weekly for 3 weeks thereafter. The first week of the

sucrose preference test was used to allow the rats to acclimatize to the sugar water

and was thus excluded from analysis. Sucrose consumption was analyzed as a percent

of total fluid consumed over 48 hours and expressed as a percent change from baseline

values.

Elevated plus maze

3 weeks after SCI, rats were placed in the junction of two open arms and two closed

arms, facing towards an open arm and allowed to explore the arena for ten min

(100x100 cm and elevated 65 cm above ground). Percent time spent and entries

into the open and closed arms as well as the total distance travelled were recorded

from above as measures of anxiety-like behaviour [Pellow et al., 1985]. This test

was used only once to avoid habituation to the maze, known as “one-trial toler-

ance” [Albrechet-Souza et al., 2009, Bertoglio and Carobrez, 2002, File et al., 1990,

Rodgers and Shepherd, 1993, Zhou et al., 2015]. Offline video analysis was performed

using customized software.

Open field

Rats were placed in the center of a rectangular Plexiglass enclosure 100×80x30

cm) and videotaped from above for five minutes as they freely explored the arena

[Prut and Belzung, 2003]. Customized motion-tracking software was used to mea-

sure the distance traveled and the percentage of time spent in the inner 60% of the

arena versus the periphery (along the wall and in corners). This test was performed

once before, 1 and 3 weeks following surgery.
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2.2.4 Fecal collection

Fecal pellets were collected during the dark cycle to ensure the fastest defecation

time. No fecal collection occurred within 48 hours of the sucrose preference test.

Fecal pellets were immediately collected in individual sterile eppendorf tubes and

stored at -80°C until further processing. For bacterial cultures, fecal pellets were

collected weekly before and after injury. For 16s rRNA sequencing, fecal collection

was performed at three time points: one week prior to injury, 3 days post-injury and

4 weeks post-injury. For the microbiota transplant, fecal pellets were immediately

collected from healthy donor rats and processed to make a slurry solution.

2.2.5 Bacterial culture

Stool samples were homogenized in phosphate-buffered saline (PBS), filtered to 40 µm

and diluted to 104 in PBS. 100 µl of solution was plated on CHROMagar orientation

plates and incubated at 37 °C for 48 hours.

2.2.6 Fecal microbiota transplant

Fresh fecal matter from healthy uninjured rats was diluted to a concentration of 1:10

in PBS (10%), L-cysteine HCL (0.05%), glycerol (20%) and sterile water (60%) and

filtered to remove fiber content (with a filter size of 100 µm). Vehicle treated rats

(Sham and SCI groups) received a filtered solution without fecal content. All rats

(with the exception of the Healthy group) were fed via an oral gavage once a day

on the day of injury and for 2 days after with 500 µl of either the fecal slurry or

control solution. Although less common than the lower gastrointestinal tract route,

upper gastrointestinal tract administration of an FMT has also been proven effective

in humans [Chapman et al., 2016, Kassam et al., 2013].
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2.2.7 Fecal transplant from SCI rats into uninjured rats

A total of 10 rats were used for this experiment (Uninjured n = 5, Uninjured + FMT

n = 5). Fecal matter was collected from rats 3 days post SCI and processed to make

the transplant solution as described above. 3 weeks following the FMT rat behaviour

was assessed in the light-dark box, EPM and open field.

2.2.8 16s rRNA analysis

Frozen fecal samples were shipped on dry ice to Microbiome Insights Inc. (Vancouver,

Canada) for sequencing and bioinformatics. Bacterial 16S rRNA gene V4 amplicons

from fecal samples were generated on an Illumina MiSeq and quality-filtered and

clustered into 97% similarity operational taxonomic units (OTUs) using the mothur

software package [Schloss et al., 2009]. 1.558896 x 106 high quality reads were ob-

tained and the resulting dataset had 39427 OTUs with a read range of 3423 and

3.4401 x 104. The potential for contamination was addressed by co-sequencing DNA

amplified from fecal samples and from four each of template-free controls and ex-

traction kit reagents processed the same way as the samples. Two positive controls,

consisting of cloned SUP05 DNA, were also included (number of copies = 2*106).

OTUs were considered putative contaminants and removed if their mean abundance

in controls reached or exceeded 25% of their mean abundance in specimens.

2.2.9 Perfusion and lesion analysis

All rats were euthanized 5 weeks post-SCI with a lethal dose of Sodium Pentobarbital

(100mg/kg) and transcardially perfused with saline containing 0.02 g heparin/l fol-

lowed by 4% paraformaldehyde (PFA) in 0.1M phosphate-buffered with 5% sucrose

as fixative. Spinal cords were removed, post-fixed in 4% PFA overnight at 4 °C and

cryoprotected in 30% sucrose for 5 days. 1 cm cervical spinal cord blocks with the
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lesion in the center were embedded in O.C.T., mounted onto filter paper and frozen

in 2-methylbutane (-40 °C). Serial cross sections of the spinal blocks were cut at a

thickness of 25 µm on a NX70 cryostat (Fisher Scientific), staggered across eight sets

of slides and stored in a -20 ◦C freezer until further processing. Two sets of slides

were stained with 0.5% cresyl violet and imaged under a light microscope to analyze

lesion size. Total lesion volume was calculated as the percentage of damaged tissue

using ImageJ software (National Institute of Health, USA).

2.2.10 Data Analysis

Statistical analysis

GraphPad prism 7 (GraphPad Software Inc., La Jolla, CA) was used for all statistical

analysis, excluding microbiota data. The Shapiro-Wilk and D’Agostino & Pearson

tests were used to assess normality. When the assumption of normality was complied,

one and two-way ANOVAs were used for single and longitudinal tests (with repeated

measures), respectively followed by Tukey’s multiple comparisons post hoc test. When

the assumption of normality was rejected, the non-parametric Kruskal-Wallis test (for

multiple groups) or Mann-Whitney t-test was applied appropriately. An α of 5%

was used as statistical cutoff. Values in results are expressed as mean ± standard

deviation.

2.2.11 OTU analysis

Microbiota data were analyzed using R through Rstudio by an analyst blind to

the experiment [Team, 2013, RStudio, 2018]. OTU tables extracted (see 16s rRNA

analysis section) were read, managed and analyzed using the phyloseq R package

[McMurdie and Holmes, 2013], an R extension for analyzing microbiome census data.

Shannon index of alpha diversity, a measure of the number of different OTUs (gener-
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ally Genus/Species) present in each sample, was obtained using the phyloseq package

before OTU filtering. Linear mixed model (LMM) was fitted for statistical inference

considering group, time and their interaction as fixed effect terms and the animal as

a random effect. For the determination of the number of significantly different genus-

species frequency representation within (Fig. 5B) and between (Fig. 5C) groups,

limma method implemented in the limma package was used [Ritchie et al., 2015].

We applied limma as a multivariable linear model with empirical bayes correction

[Phipson et al., 2016]. Before fitting the model, the OTU table was aggregated by

the estimated genus and species that each OTU represents, their relative frequencies

were calculated and a logarithmical (log (x + 1)) transformation applied. Then a

factorial model was fitted using limma with the genus-species relative frequency as

the response and the group, time and their interaction as explanatory terms. After

empirical bayes regulation of the coefficients, the different contrasts were tested, and

the p value computed and adjusted for controlling false discovery rate using the Ben-

jamini & Hochberg method. To reduce the chances of false positive with respect to

the standard type 1 error of 5%, we set a cut-off of significance at 1% (an adjusted

p-value<0). The same algorithm was used for the OTU, family, class, order and

phylum aggregated taxonomical level determination. Unsupervised ordination was

conducted blinded to the experimental condition by Non-metric Multidimensional

Scaling (NMDS) using the phyloseq package. The transformed data (see above) were

used and a NMDS computed over the centered Bray-Curtis dissimilarity restricted

to 5 dimensions. A stress of 0.086 was reached after 20 iterations. A permutation

analysis of variance (PERMANOVA) was computed using the vegan package over the

Bray-Curtis dissimilarity matrix to test the hypothesis of whether the centroids of

the multivariate space were different by the terms of group, time and their interaction

[Oksanen et al., 2013]. Beta dispersion was used to test the multivariate homogeneity

of variance.
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2.2.12 PICRUST analysis

The functional inferences of each library were performed using the PICRUST algo-

rithm (Phylogenetic Investigation of Communities by Reconstruction of Unobserved

States), based on 16S rRNA gene data present in the Greengenes database and the

KEGG database [Langille et al., 2013]. A total of 328 inferred functional pathways

were categorized. Limma was used as described above to detect the functional path-

ways statistically over- or down-represented within and between groups considering

adjusted p value <0.05 as cutoff for significance. After standardization (data centered

and divided by the standard deviation) across pathways for each animal, a hierarchi-

cal cluster analysis was performed with all the pathways that showed a main group

effect in limma at any time point. That same dataset was then analyzed by principal

component analysis (PCA) to establish the ‘functional microbiota composition’ as the

principal components (PC) and the loadings and scores were computed. Scree plot

was used as diagnostic for number of PC selection and an absolute loading (inter-

pretable as a correlation) higher than 0.6 was considered important. The scores for

PC1 and PC2 were used as response variable in hypothesis testing by Kruskal-Wallis

test followed by a Conover tests with Bonferroni adjust of p value. PC1 and PC2 were

also used to compute a second PCA together with the behavioural data to determine

the relationship of the ‘functional microbiota composition’ components and the per-

formance of the animals at the multivariate ‘behavioral testing’ space. In both PCAs,

stability of the loadings to outliers was analyzed by iteratively running the PCAs with

the data of one animal out each time (aka leave-one-out cross-validation). Then the

computed leave-one-out PCs were compared with the original (all animals) PCs by

Pearson correlation, and the averages and 95% confidence interval for r calculated.
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2.3 Results

2.3.1 An incomplete unilateral cervical SCI induces anxiety-

like behaviour and alterations in gut microbiota

Our first goal was to determine whether rats develop anxiety-like behaviours in par-

allel to gut microbiota changes after a cervical spinal contusion injury. To assess

anxiety-like behaviour, rats were tested in the elevated plus maze (EPM) task 3

weeks following SCI or sham operation (Fig. 2.1 A). Increased time spent and en-

tries into the open arms of the maze indicates reduced anxiety-like behaviour. To

determine whether the SCI had an effect on locomotion in the EPM, the total dis-

tance the rat moved within the open and closed arms of the maze was calculated.

There was no significant difference in the total distance moved in the maze between

sham or SCI rats (Fig. 2.1 B). However, rats with a SCI spent significantly less time

in the open arms compared to sham animals, suggesting a SCI-induced increase in

anxiety-like behaviour (Fig. 2.1 C.). To assess whether SCI rats also develop changes

in microbial composition in parallel with anxiety-like behaviours, fecal samples were

plated on CHROMagar orientation plates prior to injury, 3 days following injury, and

weekly after SCI. Qualitative analysis showed a clear change in the composition of

bacteria, with maximal changes observed at 3 days after SCI (Fig. 2.1 D). These data

confirm that after an incomplete unilateral cervical SCI, rats display a rapid onset

and persistent alteration in the gut microbiota and a later increase in anxiety-like

behaviour.
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Figure 2.1: The elevated plus maze, shown in (A), was tested 3 weeks following spinal
cord injury (SCI). (B) There was no difference in the total distance travelled between
SCI and sham operated groups. Sham = 4869 px ± 1579, SCI = 4536 px ± 1713.
(C) After SCI, rats spent significantly less time in the open arms compared to sham
animals (Mann-Whitney test, p = 0.0043; Sham = 13.37% ± 8.26, SCI = 0.50% ±
1.23) (D) Fecal matter from SCI rats were collected at various time points, filtered and
diluted with PBS using sterile techniques, and plated onto CHROMagar orientation
plates to assess bacterial growth over 48 hours. Immediately following injury (time
0) there was clear alterations in microbial growth, with maximal changes seen 3 days
after injury. **p<0.01.
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2.3.2 Fecal microbiota transplant prevents SCI-induced

dysbiosis and anxiety-like behaviour

We next tested whether there was a link between the observed alterations in mi-

crobial composition and increased anxiety-like behaviour after SCI. Rats were given

an FMT from healthy (i.e., uninjured), non-anxious-like donor rats at the time of

injury and for two consecutive days after SCI. Experimental groups consisted of rats

that had surgery but no SCI (Sham), a group that received a cervical SCI but no

fecal transplant (SCI), a group that received an SCI and a fecal microbiota transplant

(SCI-FMT), and a group that did not undergo any operation and served as the donors

for the FMT (Healthy). Upon arrival, rats were allowed one week to acclimatize to

the new environment before any testing took place. Fecal collection for microbiota

analysis took place prior to, 3 days and 4 weeks following surgery. All experimental

groups underwent a battery of behavioural tests before and for 4 weeks after surgery,

followed by perfusions and lesion analysis (2.2).

2.3.3 Fecal microbiota transplant reduces anxiety-like behaviour

in the elevated plus maze and light-dark box

Rats were tested in the EPM 3 weeks following surgery (Fig. 2.3 A). Differences

between groups emerged in the total distance travelled in the EPM. Healthy animals

travelled significantly further than SCI and Sham animals (Fig. 2.3 B). There was no

difference in the total distance travelled between Sham, SCI and SCI-FMT groups.

There was also no significant difference in the distance travelled between SCI-FMT

and Healthy animals. The most robust behavioural results were seen in the percent

time spent in the open arms. Compared to SCI rats that spent most of their time

in the closed arms, SCI-FMT and Healthy groups spent significantly more time in

the open arms, indicating reduced SCI-induced anxiety-like behaviour in the EPM.
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Figure 2.2: Upon arrival, rats were allowed one week to acclimate to their environ-
ment before testing. Prior to injury, baseline measures were obtained in the cylinder
test, open field, light-dark box and sucrose preference tests. With the exception of
the healthy group, all rats were gavaged with a fecal slurry (FMT: fecal microbiota
transplant) or control solution at the time of injury and for 2 days following injury
or sham surgery. Stool samples were collected for 16s rRNA sequencing prior to, 3
days and 4 weeks following surgeries. After surgeries, rats were tested weekly on a
battery of behavioural tests followed by perfusions (5 weeks following surgeries) and
tissue analysis.

There was no difference in the percent time spent in the open arms between SCI-FMT

and Healthy groups (Fig. 2.3 C.). A similar trend between groups was found in the

percentage of open arm entries (Fig. 2.3 D.). To further assess anxiety-like behaviour,

rats were tested in the light-dark box (LDB) at baseline (pre-injury) then again at 1

and 4 weeks after surgery. There were no significant differences between the groups in

the time spent in the light compartment at baseline or 1 week after surgery (Appendix

A.1.). 4 weeks following SCI, FMT treated rats displayed decreased anxiety-like

behaviour, spending significantly more time in the light compartment compared to

both SCI and Healthy groups (Fig. 2.3 E.), a trend that was also seen in the latency to

enter the light chamber (Fig. 2.3 F.). To assess depressive-like behaviour, the sucrose

preference test was used at baseline and once a week for 3 weeks following injury (Fig.

2.3 G). There was no difference between the groups in the percent of sucrose water
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consumed after surgery, indicating that our model of a unilateral cervical SCI did not

induce anhedonic behaviour in the sucrose preference test.

2.3.4 Fecal microbiota transplant did not affect functional

recovery or lesion severity

To supplement data from the EPM task, rat movement was tested in an open field

(Fig. 2.4 A). There, the total distance travelled and the distance travelled in the

inner 60% of the arena were measured to quantify overall activity and anxiety-like

behaviour, respectively. 1 week following surgeries, both SCI groups travelled signif-

icantly less distance than Sham and Healthy animals (Fig. 2.4 B.). By three weeks,

all groups had declined in their overall locomotion and there were no differences be-

tween the groups in the total distance travelled. We next measured the proportion of

distance travelled in the inner arena as an indicator of anxiety-like behavior. At both

time points tested (1 and 3 weeks) following surgeries, there were no significant differ-

ences between groups (Fig. 2.4 C). To determine whether the FMT had an effect on

lesion pathology, total rostral-caudal lesion extent and the percent area of damaged

tissue per spinal cord cross section were analyzed. Consistent with the finding that

the FMT did not improve locomotor recovery, there were no significant differences in

lesion extension or total lesion area between SCI and SCI-FMT groups (Fig. 2.4 E).

Forepaw function was assessed using the cylinder test and expressed as a percentage

of ipsilesional paw placements. Sham and healthy animals did not display forepaw

asymmetry at any time point, and there were no significant differences in forepaw

asymmetry between any groups pre-injury (Fig. 2.4 F). 1 and 3 weeks following SCI,

both SCI and SCI-FMT groups displayed forepaw asymmetry, making significantly

more contralesional forepaw placements compared to uninjured animals. 1 one week

after injury, SCI-FMT rats made significantly fewer ipsilesional paw placements com-

pared to the untreated SCI group, however this difference was gone 2 weeks later.
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Figure 2.3: (A) Representative images from the motion tracking software used to
analyze the elevated plus maze. (B) Healthy animals travelled significantly further
than the SCI group (one-way ANOVA; p = 0.0014) and sham group (p = 0.0469). (C)
SCI rats spent significantly less time in the open arms compared to FMT treated and
Healthy groups (one-way ANOVA; SCI vs. SCI-FMT p = 0.0119; SCI vs. Healthy
p = 0.0027. (D) Similarly, SCI rats displayed a reduced percentage of open arm
entries compared to healthy rats (one-way ANOVA; p = 0.0267; SCI vs. Healthy p
= 0.027). Although not significant, SCI rats also displayed a reduced percentage of
open arm entries compared to sham (p = 0.1352) and SCI-FMT rats (p = 0.0909).
(E) 4 weeks after injury, rats were tested in the light-dark box with increased time
and reduced latency to enter the light component indicating decreased anxiety-like
behaviour. FMT treated animals spent significantly more time in the light component
compared to the SCI group as well as the Healthy group (Two-way repeated measures
ANOVA; SCI vs. SCI-FMT p = 0.01, SCI-FMT vs. Healthy p = 0.03). (F) FMT
rats displayed a reduced latency to enter the light compartment compared to the SCI
group, although this failed to reach significance (two-way repeated measure ANOVA;
p = 0.0843). (G) There were no differences between groups in the percentage of
sucrose water consumed at any time point tested. Error bars indicate standard error
mean. *p<0.05, **p<0.01, ***p<0.001
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Together these results indicate that acute FMT treatment did not affect lesion size

and did not improve functional recovery.

2.3.5 Fecal microbiota transplant prevents SCI-induced

dysbiosis

In the first experiment (Fig. 2.1) gross changes in fecal microbiota content were

observed 3 days after SCI. For a more comprehensive analysis of bacteria present in

the gut, 16s rRNA sequencing was performed from fecal samples obtained before SCI,

then again 3 days and 4 weeks after SCI. Shannon index of alpha diversity (Jost, 2007)

was used to evaluate bacterial diversity and showed that bacterial diversity was similar

between groups at baseline. A time effect was observed with an increase in bacterial

Figure 2.4: Caption on next page
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Figure 2.4: (Previous page) Rats were tested in the open field before surgeries, then
again 1 week and 3 weeks following later. (A) Representative image from the motion
tracking software used to analyze the movement of rats in the open field. (B) 1 week
following injury, both SCI and SCI-FMT groups travelled less distance compared to
baseline than sham and healthy animals Repeated measure two-way ANOVA: Sham
vs SCI p = 0.026, Sham vs. SCI-FMT p = 0.007, SCI vs. Healthy p = 0.036, SCI-
FMT vs. Healthy p = 0.011). By 3 weeks following injury there was no difference
in the distance travelled in the open field relative to baseline between groups. (C)
We next assessed the percent distance travelled in the inner 60% of the arena relative
to baseline. At both 1 and 3 weeks following injury there was no difference between
groups in the percent inner distance travelled. (D) Representative images of the
maximum lesion site from SCI-FMT and SCI groups stained with cresyl violet. (E)
There was no significant difference between SCI and SCI-FMT groups in the lesion
progression (Mann-Whitney test; p = 0.3688). The average maximum lesion severity
for SCI group was 32.67% and 32.95% for SCI-FMT groups. The average lesion
extension was 4.06 mm for the SCI group and 3.886 mm for the SCI-FMT group.
(F) Sham and Healthy rats did not show any forelimb asymmetry at any time point.
Prior to SCI, rats did not display any contralateral bias in their paw placements in
the cylinder test. 1 week post-injury, SCI and SCI-FMT rats made significantly fewer
ipsilesional (right) paw placements than Healthy and Sham animals. At one week
post injury, the SCI-FMT group had a more significant contralateral bias in their
paw placements than the SCI group (SCI vs. SCI-FMT p = 0.0008). 3 weeks after
injury, the differences between SCI and SCI-FMT groups were abolished, with all SCI
animals making fewer ipsilesional paw placements than uninjured groups (Sham vs.
SCI p = 0.0001 (1WPI & 3WPI), sham vs. SCI-FMT p < 0.0001 (1WPI & 3WPI),
SCI vs. Healthy p = 0.0015 (1WPI) p = 0.0013 (3WPI), SCI-FMT vs. Healthy p <
0.0001 (1WPI & 3WPI). Error bars indicate standard error mean.*p<0.05, **p<0.01,
**p<0.001

diversity 3 days after surgery in all four groups (Fig. 2.5 A. LMM: group effect p

= 0.37, group x time interaction p = 0.052, time effect p < 0.001). Taken together,

these data indicate that the mean bacterial diversity between groups was comparable

at each time point tested. Next, we analyzed the effect of injury on the microbiota

composition by contrasting the relative abundance of each genus-species aggregated

operational taxonomic unit (OTU) at 3 days and 4 weeks post-injury with respect

to baseline (pre-injury) (Fig. 2.5 B). Animals in the Healthy group did not show

changes in the genus-species frequency over time. Looking at the overall microbiota

composition, 3 days after injury SCI rats presented 112 statistically different OTUs
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(adj. p value <0.01). FMT reduced the total number of altered genus-species OTUs

(12 at 3 days post injury vs. baseline), which suggests a prevention of SCI-induced

dysbiosis. By 4 weeks after injury, the number of significantly different genus-species

OTUs was reduced compared to baseline in all groups with respect to those observed

at 3 days, indicating a normalization of the microbiota composition. To further

explore the time-dependent changes in the microbiota composition following SCI,

pairwise comparisons were performed between groups at each time point (Fig. 2.5

C). At 3 days after injury, major changes were observed in Healthy vs. SCI groups

(155) and SCI-FMT vs. SCI groups (153), but not between Healthy and SCI-FMT

groups (9). When analyzing the overlap of OTUs between the Healthy vs. SCI group

and the SCI-FMT vs. SCI group, 138 OTUs were the same. This supposes a 90.2%

overlap with respect to the 153 OTUs changing by SCI-FMT treatment, suggesting

that FMT treatment overrides changes in the microbiota composition induced by

SCI to a “healthy” composition. By 4 weeks after injury, most differences between

groups were reduced. To explore the microbiota composition at the multivariate

space, an unsupervised ordination was performed by non-metric multidimensional

scaling (NMDS) at the genus-species level (Fig. 2.5 D and E, see Fig. A.2 for all

other taxonomic levels). This analysis further indicates the proximity of Healthy

and SCI-FMT animals across time. We also observed a deviation of the microbiota

composition in SCI animals from the Healthy multivariate space at 3 days after SCI.

There were significant main effects of group and time (group effect R2 = 0.079 p

<0.001; time effect R2 = 0.091 p <0.001) as well as a time-group interaction (R2

= 0.112 p <0.001). These differences can be observed when the NMDS scores are

plotted by timepoints (Fig. 2.5 E). These differences are also confirmed at the OTU

and family levels (Appendix A.2.).
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Figure 2.5: Caption on next page

40



Figure 2.5: (Previous page) (A) Shannon index of alpha diversity was calculated from
the operational taxonomic unit (OTU) table (see methods) and a LMM was fitted
revealing no statistical differences between groups. A significant time effect was found
with an increase in alpha diversity at 3 days and normalization by 4 weeks. (B) The
number of differentially represented OTUs at the genus-species level (measured by the
limma method) between 3 days and pre-injury was higher in SCI group, followed by
Sham, and SCI-FMT groups. Healthy animals did not show significant differences at
the specified cutoff (adj. p<0.01), indicating the stability of the microbiota in healthy
rats over the course of the experiment. By 4 weeks the number of differences were
highly reduced demonstrating the normalization of the microbiota composition by the
end of the follow up. (C) Pairwise comparisons were performed between groups at
each time point by contrasting the coefficients of the limma model. When comparing
between groups, major differences were observed at 3 days post-injury, especially
between SCI and Healthy, and SCI and SCI-FMT groups. Notice that the number
of differentially represented genus-species comparing Healthy vs. SCI-FMT was the
smallest of all, confirming the proximity of these two groups. (D) Unsupervised
ordination was performed over all the samples by NMDS and Bray-Curtis dissimilarity
of the genus-species OTUs level (stress of 0.084 after 20 iterations). Considering group
and time, the 2D-plot of the NMDS two first components shows a cluster cloud of
the ‘microbiota composition’ and the deviation of the SCI animals from that cluster
at 3 days post-injury. The big points represent the 2D centroids of each group and
timepoint, and the lines join the time trajectory for each group. A PERMANOVA was
used to perform hypothesis testing in the Bray-Curtis dissimilarity matrix between
groups, timepoints and their interaction (group effect R2=0.079 p<0.001; time effect
R2=0.091 p<0.001; interaction R2=0.112 p<0.001). Notice that only around 30%
of the variance is explained by group, time and their interaction, indicative that
other factors might contribute to the big individual differences. Nonetheless, the
dispersion between groups, especially SCI compared to Healthy and SCI-FMT can
be appreciated when that same analysis is plotted by timepoints (E). Dotted lines in
(E) represents the 2D distance of each animal with the respective centroid at each
timepoint in the NMDS space.

2.3.6 Spinal cord injury-induced changes in the microbiota

metagenomic functional pathways are abolished with a

fecal microbiota transplant

PICRUSt [Langille et al., 2013] was used to infer the functional potential of gut mi-

crobial communities after SCI and as a result of FMT. Confirming the results of the

microbiota composition analysis, major changes in the metagenomic functional path-
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ways between groups were observed at 3 days (Fig. 2.6), but not at baseline or 4 weeks

after injury. Hierarchical clustering analysis clearly show the Healthy and SCI-FMT

groups cluster together and have an inverted relationship with SCI and Sham groups

(Fig. 2.6 A). To determine the pathways that contribute to major variance and their

interrelation, a principal component analysis (PCA) was performed. The score plots

for the first and second PCA components show clustering of Healthy and SCI-FMT

animals on one side, and SCI and Sham rats on the other side (Fig. 2.6 B). The

first component of the PCA statistically distinguished between these two binomials

(Healthy and SCI-FMT vs. SCI p<0.001) (Fig. 2.6 D). The loadings (relative contri-

bution of each variable into a given PC) for the first component are presented in Fig.

2.6 C (see Appendix A.3 and A.4 for the complete list). The functional pathways in

the microbiota at 3 days post-injury that are more likely over- (positive loadings) or

under- (negative loadings) represented in SCI and Sham rats are inversely represented

in Healthy and SCI-FMT animals. Finally, a second PCA was used to study whether

the overall functional microbiota components were associated with behavioural out-

comes (Fig. 2.6 E). Component one, which distinguishes between Healthy/SCI-FMT

and SCI/Sham animals (Fig. 2.6 D), was inversely associated with increased time

spent in the open arms of the EPM and light component of the LDB, as well as with

decreased latency to enter the LDB at one week after injury. The second component

of the functional microbiota was inversely associated with decreased anxiety-like be-

haviour in the EPM and LDB. This indicates that anxiety-like behaviour contributes

to variance for both functional components of the PCA, while distinguishing between

groups (Fig. 2.6 B and D). Taken together, the analysis of the microbiota composition

after SCI and FMT treatment, both at the composition and metagenomic functional

levels, confirmed that a cervical SCI induces transient dysbiosis that can be prevented

by a FMT. Moreover, functional microbiota changes correlate with the behavioural

differences observed between groups.
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Since we have shown that FMT from healthy rats improves anxiety-like behaviour

following SCI, we aimed to determine whether FMT from injured rats would induce

Figure 2.6: Caption on next page
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Figure 2.6: (Previous page) Of the 328 functional pathways found by the metage-
nomic analysis of the 16s RNA by using PICRUST, 86 were found differentially repre-
sented between groups (determined by limma method and cutoff of adj.p<0.05). (A)
Hierarchical clustering with these 86 functional pathways was performed, demonstrat-
ing the proximity between SCI and Sham, and Healthy and SCI-FMT. This analysis
revealed two clusters of functional pathways that followed different direction between
the SCI/Sham binomial and the Healthy/SCI-FMT pair, with over-representation and
under-representation of these pathways respectively and vice versa. (B) A PCA was
performed to determine the major components of functional pathways that explains
the observed variance between animals in a unsupervised manner. The 2D plot of the
animals’ scores for the two first components (explaining 56% of the variance) shows
a clear differentiation between the aforementioned group pairs, PC1 being he com-
ponent that distinguish between SCI/Sham and Healthy/SCI-FMT. Leave-one-out
cross-validation demonstrated high stability of the PCA results (Pearson’s PC1 r =
0.99 ± 0.0003; PC2 r = 0.99 ± 0.0029). (C) List of the most important (—loading—
<0.6) functional pathways that contribute to PC1. (D) Hypothesis testing of the PC1
and PC2 scores by Kruskal-Wallis showed statistical differences between groups in the
scores (PC1 p<0.0001, PC2 p<0.01). Conover test for multiple comparisons revealed
that PC1 scores were statistically different between SCI and Healthy and SCI-FMT
(p<0.001) but not between SCI and Sham (p=0.56). PC2 scores were statistically
different comparing Sham animals and SCI-FMT rats (p<0.01). (E) A second PCA
between the first and second components of the ‘functional microbiota PCA and the
behavioural analysis was conducted to study the interrelation of the microbiota and
the animal performance. This second PCA shows how the ‘functional microbiota PC1
correlated with the performance on the cylinder test and the LDB 4 weeks post in-
jury, while ‘functional microbiota PC2 was associated with EPM and LDB at 1 week.
The direction of the loadings scores ‘functional microbiota PC1 was invers to EPM
distance, EPM % time in the open arms and EPM time in the open arms absolute
value. That can be interpreted as higher score in ‘functional microbiota PC1 (point-
ing to SCI/Sham in B) being associated with less distance and open arm time in
the EPM. Similar interpretation can be done for the ‘functional microbiota PC2 and
the LDB at four weeks. Overall this second PCA shows an association between the
functional pathway composition of the metagenomic microbiota and the behavioural
outcomes. Leave-one-out cross-validation also showed stability of the second PCA
(Pearson’s PC1 r = 0.96 ± 0.025; PC2 r = 0.95 ± 0.029). In D *** p<0.001. In E *
—loading—<0.4

anxiety-like behaviour in healthy rats. To test this, uninjured rats received either

FMT from SCI rats (fecal matter collected 3 days post injury) or a vehicle solution

and their behaviour was assessed 3 weeks later. FMT from SCI to uninjured rats had

no significant effect on behaviour in the light-dark box, EPM or open field (Fig. 2.7
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Figure 2.7: The number of entries (A) and time spent (B) in the light component of
the light-dark box. (C) Percentage of time spent in the open arms of the elevated plus
maze. (D) Total distance travelled in the open field. Error bars represent standard
error mean.
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A - D). Since healthy uninjured rats have a stable microbiota composition (as shown

in this study), they are likely less susceptible to perturbations in their microbiota and

subsequent behavioural changes.

2.4 Discussion

The present results show that a unilateral cervical spinal contusion in rats induces

a transient change in the microbiota composition (measured 3 days following injury)

that returns to baseline within 4 weeks. We show that this SCI-induced gut dysbiosis

is involved in the development of anxiety-like behaviour following SCI, since both

gut dysbiosis and anxiety-like behaviours were significantly reduced following treat-

ment with an FMT. Functional analysis of the microbiota composition confirmed this

treatment effect, and showed an inverse relationship between SCI-FMT/Healthy and

SCI/Sham groups. Together these data demonstrate that acute onset SCI-induced

intestinal dysbiosis can have profound long-term behavioural consequences, which

are preventable by FMT treatment in the acute post-injury period. Targeting the

gut microbiota may therefore provide a novel therapeutic target to treat multiple

consequences of SCI.

It is unclear how the relatively mild SCI used in the present study induced

gut dysbiosis. Alterations of the intestinal microbiota may occur for a va-

riety of reasons, including psychological or physical stress [Galley et al., 2014,

Myers and Hawrelak, 2004]. In addition, disruption of the autonomic nervous system

following SCI can alter gut and immune function and thus indirectly impact the

gut microbial communities through alterations in gut motility [Krassioukov, 2009,

Carabotti et al., 2015, Lucin et al., 2007, Zhang et al., 2013, Lynch et al., 2000,

Pop et al., 2014, Bik and Relman, 2014]. Another possible contributor to gut dys-

biosis following SCI are surgeries per se. Supporting this idea, animals that received
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a sham SCI displayed an altered microbiota composition 3 days after surgery.

Although not as significant as the changes seen in SCI animals, sham operated

rats also displayed minor behavioural abnormalities compared to healthy animals.

Specifically, sham rats travelled significantly less distance in the EPM than healthy

animals, which cannot be explained by locomotor deficits. These findings indicate

the acute effects of surgery had an effect on both microbiota composition with lasting

changes in behaviour. Results from both experimental stroke and SCI corroborate

our findings. For example, it has been shown that a sham stroke in mice induced in-

testinal dysbiosis, although to a lesser extent than a severe stroke [Singh et al., 2016].

Following a sham SCI, Esṕırito Santo et al. found that rats displayed increased

depressive-like behaviour in the sucrose preference test, again to a lesser extent

than the SCI group [do Esṕırito Santo et al., 2019]. Although our results and others

suggest that surgery alone can induce both dysbiosis and behavioural changes, these

effects were more severe following SCI. It is therefore likely that multiple factors are

involved in the development of gut dysbiosis following SCI.

Our results indicate that changes in the microbiota are linked to the development

of anxiety-like behaviour after SCI. Although it is unknown what triggers these

behavioural changes following SCI, the relationship between the microbiota and

mental health in the uninjured population is becoming increasingly clear. Initial

experiments on the link between the microbiota and stress-related behaviours found

that germ-free mice have an exaggerated stress response and a reduced anxiety-like

phenotype [Sudo et al., 2004, Neufeld et al., 2011]. Since then, many animal studies

have strengthened the connection between microbiota changes and behaviour, and

have shown that treating dysbiosis can improve anxiety or depressive-like behaviours

[Foster and McVey Neufeld, 2013, Huang et al., 2016, Desbonnet et al., 2010]. Sim-

ilar results have been shown in humans, finding significant correlations between de-

pression and the composition of the intestinal microbiota [Naseribafrouei et al., 2014,
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Valles-Colomer et al., 2019]. The gut microbiota can influence brain and behaviour

via the gut-brain axis, which involves the nervous, autonomic, endocrine and im-

mune systems [Alam et al., 2017]. Pathological alteration of the gut microbiota

together with compromised intestinal barrier function can influence immunity and

inflammation and thus have a profound effect on the health and behaviour of

the host [Foster and McVey Neufeld, 2013, Fung et al., 2017, Smith, 2015]. Both

human and animal studies have found that increased blood levels of proinflam-

matory cytokines are linked to anxiety and depression [Dantzer et al., 2008,

Dowlati et al., 2010, Zorrilla et al., 2001, Miller et al., 2009, O’Donovan et al., 2010],

and various anti-inflammatory treatments have antidepressant and anxiolytic effects

[Köhler et al., 2014]. Given the acute and chronic inflammatory state associated

with SCI [Popovich and McTigue, 2009, Schwab et al., 2014], it is likely that in-

flammation plays a role in the etiology of mental health disorders following SCI

[Maldonado-Bouchard et al., 2016a]. Currently, however, it is unclear whether SCI-

induced systemic inflammation is the cause or result of dysbiosis and breakdown of

the intestinal barrier.

Kigerl et al. showed that SCI increases intestinal barrier permeability [Kigerl et al., 2016a],

which would allow bacteria or microbial components (e.g. endotoxins) to enter the

circulation, leading to increased systemic inflammation [Berg, 1992]. Indeed, one

study found that after a thoracic SCI in rats, there is a significant increase of

the bacterial endotoxin LPS in circulation [Liu et al., 2004a]. This increase in

circulating endotoxin can further compromise the integrity of the intestinal barrier

[O’Dwyer, 1988, Guo et al., 2013]. In addition to increasing intestinal permeability

and causing an acute systemic inflammatory response, systemic injection of LPS into

rodents is an established model of depression [Yirmiya, 1996a, Frenois et al., 2007],

further supporting the evidence that inflammation is critically involved in mental

health disorders [Miller et al., 2009]. Recent studies highlight the role that in-
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flammation plays in the development of anxiety- and depressive-like behaviour

after SCI. Maldonado-Bouchard et al. found that SCI-induced depression-

and anxiety-like behaviour was associated with increased peripheral (serum)

and central (spinal cord and hippocampus) levels of pro-inflammatory cytokines

[Maldonado-Bouchard et al., 2016a]. Similarly, do Esṕırito Santo et al. also showed

that depression-like behaviour following SCI is associated with increased plasma

concentrations of pro-inflammatory cytokines [do Esṕırito Santo et al., 2019]. Simi-

lar results have been shown in animal models of the chronic inflammatory disease,

multiple sclerosis, where increased hippocampal inflammation was associated with

increased anxiety-like behaviour [Peruga et al., 2011]. These findings indicate that

multiple injuries and diseases of the central nervous system, which involve active

neuroinflammation and systemic inflammation, also affect well-being. Therefore, we

hypothesize that treating intestinal dysbiosis after SCI may improve the integrity of

the intestinal barrier and reduce systemic inflammation, preventing the subsequent

development of mental health disorders. However, future research is required to

determine the mechanisms of the relationship between SCI-induced dysbiosis and

mental health disorders.

Although we showed that SCI-FMT rats adopted a similar reduced anxiety-like

behaviour as their uninjured donors, the reverse was not true. That is, when FMT

was transferred from acute SCI rats to uninjured rats, we did not observe any be-

havioural differences in the recipients. Since stool samples were not analyzed in this

preliminary study, we cannot confirm whether the fecal transplant from SCI donors

perturbed the microbiome of uninjured rats. Indeed, healthy adults typically have

a stable and resilient microbiome composition [Lozupone et al., 2012]. If the FMT

was successful in perturbing the healthy microbiome state, this suggests that some

other consequence of injury, for example increased inflammation, is critical for the

interaction between the microbiome and anxiety-like behaviour. In support of this,
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there is a temporal discrepancy between the gut dysbiosis observed at 3 days and

the behavioural changes observed at 3 weeks after SCI. As hypothesized above, the

FMT from uninjured rats may indirectly affect behaviour by reducing both systemic

and central (i.e., brain) inflammation, which may take weeks to progress. If central

inflammation is critical for the development of anxiety-like behaviour (as has been

shown by [Maldonado-Bouchard et al., 2016a] and [do Esṕırito Santo et al., 2019]), it

is possible that the FMT from SCI did not produce lasting central inflammation and

thus did not induce anxiety- or depressive-like symptoms.

In the present study, acute FMT treatment did not improve functional recovery

in the open field or the cylinder test, and there was no difference in lesion size be-

tween SCI and SCI-FMT groups. On the other hand, a study in experimental stroke

found that treating intestinal dysbiosis had neuroprotective effects, likely through an

anti-inflammatory mechanism [Singh et al., 2016]. Furthermore, following a thoracic

SCI in mice, Kigerl et al. showed that treating dysbiosis with probiotics increased

functional recovery and reduced secondary damage [Kigerl et al., 2016a]. Possible

reasons why we did not find neuroprotective effects of treating dysbiosis include the

mild cervical SCI used does not induce significant long-term deficits in locomotion or

lasting gut dysbiosis. Second, to ensure permanent colonization of the gut by benefi-

cial microorganisms in the FMT, repeated administrations may be needed to realize a

lasting benefit of FMT. Indeed, Kigerl et al. gave daily doses of probiotics for 35 days

following SCI, whereas our rats received an FMT for only 3 days [Kigerl et al., 2016a].

Thus, using a more severe injury model or extending the period of treatment may

have a greater influence on recovery. Nonetheless, the finding that FMT treated and

untreated rats did not differ in the distance travelled in the open field or EPM makes

it easier to interpret the behavioural differences between groups as being independent

of locomotor deficits due to SCI. Indeed, Luedtke et al. showed that depressive-like
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signs did not correlate with motor recovery following a thoracic contusion in rats

[Luedtke et al., 2014].

We found clear results in both the time spent and entries into the open arms of

the EPM that both SCI-FMT and Healthy animals displayed significantly reduced

anxiety-like behaviour compared to SCI animals. However, in the LDB only the

SCI-FMT group displayed a reduced anxiety-like phenotype, with no differences be-

tween Sham, SCI or Healthy groups. A potential reason for this is that the LDB

was tested at multiple time points, which may reduce sensitivity to the appara-

tus as shown with the EPM [File, 1990]. We also did not find any differences be-

tween groups in their behaviour in the inner area of the open field. This may be

due to the reduced sensitivity of the open field to assess anxiety-like behaviour

[Prut and Belzung, 2003, Carola et al., 2002]. Finally, we did not find any differ-

ences between groups in the sucrose preference test, suggesting that our model of

SCI does not induce anhedonia, which is indicative of depressive-like behaviour. This

is in contrast to both Luedtke et al. [Luedtke et al., 2014] and Esṕırito Santo et

al. [do Esṕırito Santo et al., 2019], who found a reduction in sucrose water intake

following a thoracic SCI. These confounding results may be due to differences in

lesion severity, lesion level or subtle differences in the methods of testing sucrose con-

sumption. Therefore, since we did not find differences between groups in the sucrose

preference test, we cannot conclude whether rats experience depressive-like behaviour

following the present model of SCI. Additional tests such as the forced swim test so-

cial interaction test would be needed to confirm whether or not the present model of

SCI induces a depressive-like phenotype.

These data show for the first time that a fecal transplant following SCI in rats

prevents the development of anxiety-like behaviour. Future work is required to deter-

mine the mechanisms of SCI-induced dysbiosis, such as measuring intestinal barrier

function, levels of systemic proinflammatory markers and microbial metabolites, as
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well as to determine whether lesion level and size have an effect on the severity of

dysbiosis and anxiety-like behaviour. Taking central, peripheral and psychological

consequences into consideration will provide a more comprehensive treatment ap-

proach not only for SCI, but other central nervous system diseases as well.
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Chapter 3

Optimal donor selection is critical

for successful fecal transplant

following spinal cord injury 1

3.1 Introduction

In chapter 2 we prevented SCI-induced dysbiosis by transferring fecal matter from

uninjured donor rats into recipient rats immediately after SCI. This fecal micro-

biota transplant (FMT) from uninjured, non-anxious-like rats not only successfully

re-established a healthy microbiota composition after injury, but also improved symp-

toms of anxiety-like behaviour [Schmidt et al., 2020b]. Clinically, FMT is defined

as the administration of fecal matter solution from a healthy donor into the in-

testinal tract of a recipient [Bakken et al., 2011, Smits et al., 2013]. Unfortunately,

the definition of a healthy donor is less straightforward. Currently, donors are se-

lected primarily to exclude known pathogens and mitigate the risk of transferring

infectious diseases [Duvallet et al., 2019, Paramsothy et al., 2017, Bafeta et al., 2017,

1This chapter has appeared in “What makes a successful donor? Fecal transplant from “anxious”
rats does not prevent spinal cord injury-induced dysbiosis”
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van Nood et al., 2013]. While ensuring recipient safety is a priority above all, research

on optimal donor selection beyond the exclusion of transmissible pathogens is still at

an early stage [Duvallet et al., 2019, Barnes and Park, 2017]. Although the choice of

donor does not influence the efficacy of FMT to treat Clostridium difficile infections

(currently the only FDA approved use of FMT [Administration, 2013]), it is unknown

how critical donor selection is to treat diseases and disorders with more complex host-

microbiota interaction, such as SCI [Kassam et al., 2013, Osman et al., 2016].

In this chapter, we aimed to determine whether the mental state of FMT donor

rats would influence the therapeutic benefits of FMT after SCI. Rats who displayed

naturally reduced baseline activity levels and increased anxiety-like behaviour (re-

ferred to as anxious donors) were selected as FMT donors. Notably these rats were

uninjured and had a diverse microbial community, which has been shown to be an

indicator of FMT success for treatment of ulcerative colitis and Clostridium Difficile

infections [Barnes and Park, 2017, Kump et al., 2018]. We therefore hypothesized

that FMT from anxious rats would yield similar therapeutic benefits as FMT from

non-anxious rats as in the previous chapter [Schmidt et al., 2020b]. Here, rats in

the experimental groups received either vehicle or FMT treatment for 3 days follow-

ing a cervical contusion SCI and underwent 7 weeks of rehabilitative training in a

reaching task targeting their impaired forearm. Fecal matter and plasma were col-

lected throughout the experiment, and anxiety- and depressive-like behaviours were

assessed at the end of the rehabilitation period. The inherently increased anxiety-

like behaviour of the FMT donors was associated with a decreased abundance of

Lactobacillus in their stool and thus in the FMT solution. Contrary to our hypoth-

esis, FMT from anxious donors did not prevent SCI-induced gut dysbiosis and even

resulted in some negative side effects. Rats which received the FMT displayed chron-

ically increased anxiety-like behaviour, minor but long-term alterations in local and

systemic inflammation, and increased intestinal permeability. These results indicate
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that donor selection is critical for successful FMT following SCI and possibly other

CNS injuries and diseases as well.

3.2 Methods

3.2.1 Animals

40 female adult Lewis rats (Charles River) were group housed (n = 5 per cage,

experimental groups housed separately) on a 12 hour light-dark cycle and received

ad libitum access to standard rat chow and water. During training periods, rats were

food restricted to 10g per rat per day. Behavioural testing and all analyses were

performed by an experimenter blinded to the experimental groups. Three groups of

rats were used: SCI + vehicle (n=15), SCI + FMT (n=15), and FMT donors (n=10).

The two cages which displayed the highest baseline anxiety-like behaviour in the open

field were chosen as uninjured age and sex matched fecal donors and were not trained

in the single pellet grasping (SPG) training. SCI + vehicle and SCI + FMT groups

were chosen to average each group’s pre-injury success rate in the SPG task.

3.2.2 Experimental timeline

Prior to SCI, rats in the two experimental groups were pre-trained on the SPG task

and underwent baseline testing on the open field and von frey tests. Immediately

following SCI and for two consecutive days thereafter, rats were gavaged with FMT

solution or a vehicle control solution. Following 7 weeks of rehabilitative training on

the SPG task, rats underwent behavioural testing. Fecal matter was collected for 16s

rRNA analysis at baseline, on the day of injury, 3, 7, 14 and 56 days post-SCI. Blood

was collected to measure inflammatory plasma analytes at baseline, 3, 21 and 77 days

post-SCI (Fig. 3.1).
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Figure 3.1: Experimental Timeline

3.2.3 Single pellet grasping training

The SPG protocols and equipment were used as previously described [Torres-Esṕın et al., 2018b].

Rats were first acclimatized to the SPG double-window enclosure and each rat’s

preferred paw was established by manually counting the number of left and right

reaching attempts for a sucrose pellet. Once the preferred paw was established,

the pellet dispenser was positioned so the rat could only reach the pellet with its

preferred paw. Rats were trained to reach for a pellet on one side of the enclosure

and then travel to the opposite end where another pellet was dispensed, and so on.

Training consisted of 10 minutes per rat per day, 5 days a week for 6 weeks prior

to SCI. Rehabilitative training began 10 days following SCI and continued for 7

weeks. Training sessions were video recorded and analyzed offline. The total number

of attempts made (rat reached towards the pellet) and number of successes (rat

successfully reached, grasped and consumed the pellet) were quantified. Success rate

was defined as the total number of successful attempts divided by the total number

of attempts multiplied by 100.
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3.2.4 Spinal cord injury

SCI cervical contusions were performed as previously described [Schmidt et al., 2020b].

Rats were anesthetized with isoflurane (5% induction; 2.5% maintenance; 50:50

air/oxygen mixture) and the dorsal neck was shaved and disinfected with 10%

chlorhexidine digluconate (Sigma-Aldrich). The Infinite Horizons impactor (Preci-

sion Systems & Instrumentation) was used to deliver a 125 kdyn unilateral contusion

1.25mm lateral to the midline (on the side of the preferred paw) at an angle of

15 degrees (towards midline) at cervical level 5. Synthetic braided sutures were

used to suture the muscles and the skin was closed using 9mm stainless steel clips.

Buprenorphine was injected immediately after SCI and again 8 hours after (0.03

mg/kg; subcutaneous; WDDC). Saline was injected (4 ml, subcutaneous) post

operatively and bladders were manually expressed until voiding was re-established

(within 2 days post SCI).

3.2.5 Behavioural testing

Light dark box

Rats were placed in the light component of a customized light-dark box apparatus

(dark compartment 0 lux; light compartment 100 lux; each chamber 30 cm long x

30 cm wide x 30 cm high) and allowed to freely explore for 10 minutes while video

recorded from above. The time spent in the light component was analyzed as measures

of anxiety-like behaviour.

Elevated plus maze

Rats were placed in the center of the elevated plus maze apparatus (2 closed arms:

each 50 cm long x 10 cm wide x 50 cm high, and 2 open arms: each 50 cm long x

10 cm wide x 1 cm high) and video recorded from above for 10 minutes. Customized
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tracking software (https://github.com/cdoolin/rat-apps) was used to quantify the

percent time spent in the open arms and the total distance travelled. This test was

used only once to avoid one-trial tolerance [18].

Sucrose preference test

Rats were exposed to two water bottles in their home cage: one with a 2% sucrose

solution and one with regular drinking water. The percentage of sucrose water con-

sumed over 48 hours was calculated as a measure of anhedonia. The location of the

bottles was switched at 24 hours to avoid side preference.

Open field

Rats were placed in the center of an open field arena (100 cm long x 80 cm wide x

30 cm high) and video recorded from above for 5 minutes. Offline video analysis was

performed using customized tracking software (https://github.com/cdoolin/rat-apps)

to quantify the total distance travelled.

Cylinder

Rats were placed in an acrylic cylinder (21 cm diameter x 23 cm high) with mirrors

located behind so that the rat could be observed from all sides using one camera. Each

rat was video recorded for 3 minutes and offline analysis was used to quantify the

number of left and right paw placements made on the side of the cylinder. Forepaw

asymmetry was expressed as the percentage of ipsilesional paw placements.

Von Frey Test

Rats were acclimatized to the testing chamber (IITC Life Science, CA, USA) prior

to testing. Tactile sensitivity was assessed on both forepaws (when the animal was

weight-bearing on its forepaws). A rigid probe connected to the automated Von
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Frey apparatus was applied in increasing pressure until the rat displayed a defined

nociceptive response (paw retraction, licking) and the maximum pressure that elicited

a withdrawal was recorded. This was repeated 3 times per paw, with a minimum of

3 minutes between measures. The average of the 3 measures per paw was used for

analysis.

Social Interaction

The test rat was placed in the open field apparatus with an unfamiliar, uninjured rat

for 10 minutes while video recorded from above. The time spent in active interac-

tion (sniffing, nipping, grooming, following, mounting, kicking, boxing, wrestling,

jumping on, and crawling) was recorded as a measure of anxiety-like behaviour

[File and Hyde, 1978].

3.2.6 Fecal collection and transplantation

Fecal samples were collected as previously described [Schmidt et al., 2020b]. During

the dark cycle, rats were placed into individual sterile cages. Fecal pellets were im-

mediately collected, placed into sterile eppendorf tubes and stored in a -80 ◦C freezer

until further processing. For the fecal transplant solution, pellets were collected from

uninjured FMT donors (pooled from all 10 rats) and immediately processed to make

the transplant solution. The fresh fecal matter was diluted 1:10 in sterile PBS (10%),

L-cysteine HCL (0.05%), glycerol (20%) and sterile water (60%) and passed through

a 100 µm filter. The solution was frozen at -20 ◦C and thawed at room temperature

for 12 hours prior to use (the use of frozen fecal matter for FMT has proven to be

effective [File, 1990]). The SCI + vehicle group received the filtered solution that did

not contain fecal matter. 2 hours after SCI and for 2 consecutive days after, rats were

gavaged with 500 µl of either FMT or vehicle solution.
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3.2.7 16s rRNA sequencing

DNA was extracted as previously described [Laffin et al., 2019]. Fecal microbial DNA

was extracted with AquaStool solution (Multitarget Pharmaceuticals LLC, Colorado

Springs, USA) as per the manufacturer instructions. Briefly, 100mg of mouse fecal

pellet was homogenized in the AquaStool solution with 0.1mm beads at 0.6m/s for

40s. AquaRemove was added to remove potential PCR inhibitors per manufacturer’s

instruction followed by ethanol/NaCl precipitation for further purification. DNA

Samples were sent to Genome Quebec (McGill University, Montreal, Canada) for

Illumina Miseq sequencing. V3-V4 region of universal 16S rRNA primers with 341

forward primer: 5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG

CCT ACG GGN GGC WGC AG-3’ and 805 reverse primer: 5’- GTC TCG TGG

GCT CGG AGA TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA

ATC C-3’ were used.

Demultiplexed paired-end sequences were merged and performed quality control

implementation (mean sequence quality score 000 30) and features table construction

(amplicon sequences variants, ASVs) via DADA2 [Callahan et al., 2016] plugin in QI-

IME2 (version 2019.10) [Bolyen et al., 2019]. An even sequence depth of 9,452 reads

per sample was used to conduct microbiome diversity and composition analyses. Tax-

onomy assignments from the phylum to genus levels were conducted by a pre-trained

Naive Bayes classifier [Bolyen et al., 2019] (Silva 132 99% OTUs database) and the

q2-feature-classifier function in QIIME2. Alpha-diversity of Shannon index and com-

munity balance of Pielou’s evenness index, and beta-diversity analysis (unweighted

unifrac emperor distance) were conducted using the QIIME2.

3.2.8 Blood collection

The area over the tarsal joint was shaved and the saphenous vein was punctured

using a sterile needle. Blood was collected into a microvette CB300 capillary tube
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(Sarstedt Inc, Nümbrecht, Germany) and immediately centrifuged for 5 minutes at

3000 rpm. Plasma was then pipetted into sterile microcentrifuge tubes and stored at

-80 ◦C freezer until further processing.

3.2.9 Cytokine analysis

Frozen plasma samples were sent to Eve Technologies (Calgary, Canada) and di-

luted 2-fold for the Rat Cytokine 27-Plex discovery assay. Cytokines and chemokines

measured were: Eotaxin, EGF, Fractalkine, IFN-gamma, IL-1a, IL-1b, IL-2, IL-4,

IL-5, IL-6, IL-10, IL-12(p70), IL-13, IL-17A, IL-18, IP-10, GRO/KC, TNF-alpha,

G-CSF, GM-CSF, MCP-1, Leptin, LIX, MIP-1alpha, MIP-2, RANTES, and VEGF.

GRO/KC values are not reported as they were out of range in our samples. For

heatmap visualization, plasma analytes were expressed as a change from baseline (x2

- x1 / x1).

3.2.10 Intestinal permeability assay

Once the uninjured FMT donor rats had completed all of their baseline testing and

fecal collections, they were used to assess intestinal permeability. These rats were

randomly divided into an SCI + vehicle group (n = 5) and an SCI + FMT group

(n = 5) and received identical treatment as the original treatment groups (2 hours

after SCI and for 2 consecutive days after, rats were gavaged with 500 µl of either

FMT or vehicle solution). The day before injury and again 7 days following SCI, rats

were fasted for 4 hours and then gavaged with 0.6g/kg FITC dextran (4 kD, Sigma-

Aldrich) diluted in sterile PBS. Blood was collected 4 hours later via the saphenous

vein and plasma was collected as described above. Plasma samples were diluted 1:10

with sterile PBS and transferred to an opaque-bottom 96-well plate. Samples were

run in duplicates and a PBS blank and standard curve measurements were measured

on the same plate. Fluorescence was determined at 530 nm with an excitation at 485
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nm on a plate reader (SpectraMax, Molecular Devices). Intestinal permeability was

quantified as a fold change from baseline levels.

3.2.11 Perfusion and tissue cutting

At the end of rehabilitative training and all final behavioural assessments, rats were

euthanized with sodium pentobarbital (240 mg/kg). Rats were transcardially per-

fused with saline containing 0.02 g heparin/L followed by 4% paraformaldehyde in

0.1 M phosphate-buffered saline (PBS) and 5% sucrose. Spinal cords were extracted

and post-fixed in 4% paraformaldehyde 4 ◦C for 4 hours and transferred to a 30%

sucrose solution for 5 days. A 1 cm block around the lesion site was embedded in

O.C.T. (Sakura Finetek, USA), mounted onto filter paper and frozen at -40 ◦C in

2-methylbutane. A NX70 cryostat (Fisher Scientific) was used to section the cord at

a thickness of 25 µm. Every second section was kept and staggered across eight slides

and stored at -20 ◦C.

3.2.12 Lesion analysis

Frozen slides were thawed for 1 hour at 37 ◦C and washed in TBS (2 x 10 min). Slides

were placed into 0.5% cresyl violet for 3 minutes, rinsed with filtered water and serially

dehydrated in EtOH (2 minutes in 50%, 75%, and 99%). Slides were then placed in

xylene (2 x 2 minutes) and coverslipped with Permount™. Images of the entire lesion

extension were taken with an epifluorescence microscope (Leica DM6000B, camera

Leica DFC350 FX) at 5x magnification and analyzed using ImageJ (National Institute

of Health, USA). Lesion size was calculated as the percent of damaged tissue divided

by the total area of the spinal cord cross section. IBA1
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3.2.13 Microglia analysis

Sections were thawed at 37 ◦C for 1 hour and rehydrated in PBS (2 x 10) minutes

followed by PBS with 0.3% Triton™ X-100 (PBS-T) (1 x 10 min). Blocking buffer

consisting of 5% normal donkey serum in PBS-T was applied 1 hour at room temper-

ature. Sections were incubated overnight at room temperature in rabbit-anti-IBA1

(1:500, Wako) antibody with blocking buffer. The next day, sections were washed

with PBS (3 x 10 minutes) and incubated with donkey-anti-rabbit AF488-conjugated

(1:500, Life Technologies) antibody in the blocking buffer solution for 2 hours. Sec-

tions were then rinsed in PBS (2 x 10 min) and cover slipped with Fluoromount™.

Images were captured with an epifluorescence microscope (Leica DM6000B, camera

Leica DFC350 FX) and analyzed using ImageJ (National Institute of Health, USA).

5x magnification images were taken to visualize the entire spinal cord cross section

0.25cm rostral to the lesion, at the lesion epicenter, and 0.25cm caudal to the lesion.

The IBA1 optical density per spinal cord cross section was quantified and expressed

as a percentage area of positive staining.

3.2.14 Statistical analysis

Statistical analyses were performed using GraphPad Prism 8 (San Diego, CA) and an

alpha value of 5% or less was considered significant. Normality was analyzed using

the D’Agostino-Pearson omnibus test. Data at a single time point was analyzed using

an unpaired parametric t-test for two groups and an ordinary one-way ANOVA for

three groups (non-parametric tests were used for data that did not pass normality).

Data with multiple time points was analyzed using an ordinary repeated measures

two-way ANOVA followed by Sidak’s multiple comparison test.
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3.3 Results

3.3.1 Fecal microbiota transplant from anxious donors

Although the rats used in the present experiment are genetically identical, there is

a natural variability in their baseline levels of anxiety-like behaviour, which can be

further influenced by environmental stressors. To determine how important optimal

donor selection is, the two cages of rats who naturally displayed decreased baseline

activity in the open field (as an indicator of anxiety-like behaviour [Russell, 1973,

Gould et al., 2009]) were chosen as the FMT donors (p = 0.0052) (Fig. 3.2A). This

altered behavioural phenotype was associated with significantly reduced levels of Lac-

tobacillus in the FMT donor’s stool compared to the experimental groups (SCI +

Vehicle and SCI + FMT) at baseline (p = 0.0006) (Fig. 3.2B). Reflecting the lack

of Lactobacillus in the donor stool, the FMT solution also contained a lack of Lac-

tobacillus (Fig. 3.2B). FMT donors displayed a similar alpha diversity (the bacterial

variance within the samples) as the experimental groups, which was also reflected

in the FMT solution (Fig. 3.2C). Compared to previously successful FMT donors

(which, when transferred to rats after SCI, prevented both SCI-induced dysbiosis

and anxiety-like behaviour [Schmidt et al., 2020b]), anxious FMT donors spent sig-

nificantly less time in the open arms of the elevated plus maze, confirming their

increased anxiety-like phenotype (p = 0.0002) (Fig. 3.2D). anxious FMT donors

also displayed significantly lower proportions of Lactobacillus compared to the non-

anxious FMT donors described in chapter 2 (p < 0.0001; [Schmidt et al., 2020b])

(Fig. 3.2E). These data suggest that, although the FMT donors were uninjured and

had a diverse microbiota composition, they had an increased anxiety-like phenotype

and reduced proportion of the genus Lactobacillus, a commonly prescribed probiotic

[Sanders and Klaenhammer, 2001, Maragkoudakis et al., 2006, Lebeer et al., 2008].
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Figure 3.2: (A) Fecal microbiota transplant (FMT) donors travelled significantly
less distance in the open field compared to the SCI + vehicle and SCI + FMT treat-
ment groups in the present experiment (measured at baseline prior to SCI). (B) Fecal
matter from FMT donors had significantly decreased baseline proportions of Lacto-
bacillus, which is also reflected in the decreased amount of Lactobacillus found in the
FMT solution. (C) All groups had similar baseline levels of baseline alpha diversity,
including the FMT solution. (D) FMT donors in the current study displayed signif-
icantly increased anxiety-like behaviour in the elevated plus maze (indicated by the
percent of time spent in the open arms) and (E) had significantly less fecal proportion
of Lactobacillus relative to successful FMT donor rats from previous experiments. *
p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. Gold star represents the FMT
solution (A single value and therefore not included in statistical analysis). Error bars
represent standard error mean.
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3.3.2 FMT from anxious rats did not prevent dysbiosis after

SCI

Fecal samples were collected prior to injury, on the day of injury, then 3, 7, 14 and

56 days after SCI for 16s rRNA sequencing. The differences in microbial abundance

between the fecal samples was visualized using beta diversity plots. On the day

of injury, 3- and 14-days post-SCI there was a deviation in the samples away from

baseline values, confirming our previous results that a cervical SCI induces acute

dysbiosis. At 7- and 56-days post-SCI, the samples clustered closely with baseline

values (Fig. 3.3A). When looking at the beta diversity of the two treatment groups

across all time points, there was no difference between FMT or vehicle treated groups

(Fig. 3.3B). Although SCI resulted in acute dysbiosis visualized in the beta diversity

plots, there was no significant effect of injury or FMT on the alpha diversity (Fig.

3.3C). Next, we looked at the four most abundant bacteria at the Phylum level:

Bacteroidetes, Firmicutes, Cyanobacteria and Proteobacteria. There was no effect

of SCI or FMT in the proportion of Bacteroidetes or Firmicutes (Fig. 3.3D & E).

The proportion of Proteobacteria was increased on the day of injury and 3 days post

injury (Fig. 3.3F) and the proportion of Cyanobacteria was increased 3 days post-SCI

(p<0.0001 for both) (Fig. 3.3G), however there were no significant effects of FMT

treatment. The proportion of the genus Lactobacillus, a common bacteria present in

probiotics [26], was reduced chronically after SCI in both FMT treated and untreated

groups (p<0.0001) (Fig. 3.3H). There was no significant difference between groups in

any bacteria at the genus level (Figs. B.1 and B.2). These results indicate that the

FMT from anxious donor rats was not successful in preventing SCI-induced dysbiosis.
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Figure 3.3: (A) PCoA plot of beta diversity shows the diversity between fecal samples
over time on the day of injury (DOI), 3-, 7-, 14- and 56-days post-injury (DPI). (B)
The same PCoA plot is shown with the colors representing the groups instead of
timepoints. Axis 1 and 2 explain 4.683% and 8.724% of the variance between samples,
respectively. (C) There was no effect of injury or treatment on the alpha diversity.
The four most abundant operational taxonomic units at the phylum level also show
no differences between experimental groups in the proportion of (D) Bacteroidetes,
(E) Firmicutes, (F) Proteobacteria and (G) Cyanobacteria. (H) The proportion of
the genus Lactobacillus was reduced after SCI but not affected by FMT. Red lines
represent baseline values. Error bars represent standard error mean.

67



3.3.3 FMT from anxious rats did not affect functional

recovery from SCI

10 days following SCI, rats began 7 weeks of rehabilitative therapy in the SPG task

which targeted their impaired forepaw (Fig. 3.4A). There was no difference between

FMT or vehicle treated rats in the number of attempts made to reach for the pellet,

indicating that the FMT did not influence participation in rehabilitation (Fig. 3.4C).

There was a significant decrease in success rate following SCI, which gradually im-

proved for both vehicle and FMT groups throughout the rehabilitation period (Fig.

3.4D). To prevent compensatory pellet-scooping strategies, rats were tested in a mod-

ified task where a gap was introduced between the pellet and the training chamber

(Fig. 3.4B). Rats which received an FMT performed better in the gap test at the

end of the rehabilitation period, however this did not reach statistical significance (p

= 0.089) (Fig. 3.4E). FMT treatment did not alter mechanical sensitivity, however

both groups experienced reduced sensitivity of the ipsilesional forepaw at 1- and 9-

weeks post injury (Fig. 3.4F). At the end of the rehabilitative training period, rats

were tested in the cylinder task to measure forepaw asymmetry and in the open field

to assess locomotor activity; there were no differences between groups in either of

these tests (Fig. 3.4G & H). Although there was no significant treatment effect in

the efficacy of rehabilitative training or motor recovery following SCI, treatment with

FMT from anxious donors resulted in a chronic (11 weeks post injury) decrease in

the density of microglia caudal to, but not rostral to or at, the lesion site compared

to vehicle controls (Fig. 3.5A-F). This decreased microglial density was not due to

differences in injury size, as the lesion extension and area were similar between groups

(Fig. 3.5G-I).
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Figure 3.4: (A) Image of a rat in the regular single pellet grasping apparatus,
reaching through a narrow opening for a food pellet. (B) Image of a rat reaching in
the single pellet grasping apparatus that has been modified to include a gap between
the pellet and the opening of the chamber (to eliminate compensatory pellet scooping
behaviour). (C) There was no difference between FMT and vehicle groups in the
number of attempts or (D) the success rate in rehabilitative training. (E) The success
rate in the modified gap task was measured once at baseline and again at the end
of the rehabilitation period. There were no significant differences between FMT and
vehicle treated groups in the von frey test (quantified as the force required to elicit a
withdrawal response, expressed as a percentage of baseline values) (F), the cylinder
test (G) or the distance travelled in the open field (H). Error bars represent standard
error mean.
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Figure 3.5: Representative images of IBA1 positive cells in the cervical spinal cord
immediately rostral to the injury (A), at the injury epicenter (B) and immediately
caudal to the injury (C). The percent area of IBA1 positive staining rostral to, at and
caudal to the lesion is quantified in (D-F), respectively. Immediately caudal to the
injury, SCI + FMT rats displayed a significantly reduced density of IBA1 positive
cells compared to vehicle controls. Representative cross sections of the maximum
injury site for SCI + Vehicle and SCI + FMT groups are shown in (G) and (H),
respectively. (I) Quantification of the rostral (negative measurements) to caudal
(positive measurements) extension of the lesion area was expressed as a percentage
of lesioned tissue. * p < 0.05. Error bars represent standard error mean.
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3.3.4 FMT from anxious donors increased anxiety-like

behaviour

Nine weeks after SCI, at the end of rehabilitative training, rats were tested for

depressive- and anxiety- like behaviours. Rats that received an FMT from anxious

donors spent significantly less time in the open arms of the elevated plus maze (p =

0.0341), although both groups travelled a similar total distance (Fig. 3.6A-C). SCI +

FMT groups also spent less time in the light component of the light-dark box (Fig.

3.6D) and drank significantly less sucrose solution (p<0.0001) (Fig. 3.6E) compared

to vehicle controls. Both FMT and vehicle groups spent a similar amount of time

interacting in the social interaction test (Fig. 3.6F).

3.3.5 Temporal profile of plasma analytes following spinal

cord injury

To determine the effect of both SCI and the FMT on acute and chronic systemic

inflammation, plasma analytes were measured before SCI, then 3, 21 and 77 days

after injury. There was an overall trend of increased levels of all plasma analytes at 3-

and 21-days post SCI, and a drastic downregulation by 77 days in both experimental

groups (Fig. 3.7). Looking at the concentrations of each plasma analyte over time,

rats which received the FMT displayed significantly increased concentration of LIX

at 77 days (p = 0.009), reduced levels of RANTES at 21 days (p = 0.012) and

higher levels of RANTES by 77 days post injury (p = 0.023) (Fig. 3.8B). There

was no significant treatment effect in any of the other chemokines, cytokines or other

analytes measured (growth factors, glycoproteins and the hormone leptin) (Fig. 3.8A

& C).

3.7 FMT from anxious donors increased intestinal permeability
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Figure 3.6: At the end of rehabilitative training, rats were tested for anxiety-like and
depressive-like behaviours. (A) Schematic of a rat in the open arm of the elevated plus
maze. (B) SCI + FMT rats spent significantly less time in the open arms compared
to untreated rats. (C) Both groups of rats travelled a similar amount of distance in
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Figure 3.8: (A) Temporal profile of plasma cytokines 3 days post injury (3DPI), 3
weeks post injury (3WPI) and 11 weeks post injury (11WPI) for SCI + Vehicle and
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** p < 0.01. Error bars represent standard error mean.
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Increased intestinal barrier permeability has previously been shown in mice 7 days

following a thoracic SCI, which can allow bacterial and other matter to translocate

across the impaired epithelial tight junctions [Kigerl et al., 2016a, Ghosh et al., 2020].

To test whether a cervical contusion SCI in rats also triggers an increase in intestinal

permeability, rats were gavaged with FITC-dextran and the concentration of FITC

was measured in blood 4 hours later (Fig. 3.9A). This test was performed before SCI

and again 7 days later and expressed as a fold change from baseline to account for

individual differences. SCI alone did not alter intestinal permeability, however FMT

from anxious donors increased intestinal permeability by nearly 20% compared to

baseline (Fig. 3.9, SCI + Vehicle vs. SCI + FMT p = 0.043). This increased intestinal

permeability was not due to differences in lesion size (Fig. 3.9C). To determine

whether differences in intestinal permeability between groups was associated with

changes in systemic inflammation at the same time, plasma cytokines/chemokines

were analyzed in these rats 7 days post injury. There was no difference between FMT

or vehicle controls in plasma concentrations of cytokines, chemokines, or other growth

factors, glycoproteins and hormones (Fig. 3.9D – F).

3.4 Discussion

The use of healthy human stool to treat diseases has been documented in Chinese

medicine for over 1700 years [Zhang et al., 2012]. However, the first report of FMT

treatment in modern Western medicine was not until 1958 [Eiseman et al., 1958], and

it was not until 2013 that FMT was included in the treatment guidelines for recurrent

Clostridium difficile infections [Surawicz et al., 2013]. The popularity of FMT as a

treatment is increasing rapidly for various other diseases, such as: irritable bowel

disease, irritable bowel syndrome, obesity, autism, Parkinson’s disease, multiple scle-

rosis, metabolic syndrome, stroke and SCI [Schmidt et al., 2020b, Sun et al., 2018,
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Figure 3.9: (A) The FITC-dextran test for intestinal permeability was performed at
baseline prior to spinal cord injury and again 7 days after injury. (B) SCI + FMT rats
displayed significantly increased intestinal permeability relative to vehicle controls.
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Xue et al., 2020, Xu et al., 2019]. Aside from excluding donors with known fecal mat-

ter pathogens, the selection of FMT donor does not appear to influence the success of

treatment for Clostridium difficile infection [Kassam et al., 2013, Osman et al., 2016].

However, the same is not necessarily true for other disorders, especially those with

more complicated microbiota-disease interactions such as SCI. Donor selection crite-

ria beyond the exclusion of known pathogens is therefore a crucial area of research

that is still in its infancy [Duvallet et al., 2019, Barnes and Park, 2017].

In chapter 2 we showed that FMT from uninjured, non-anxious rats prevented

both acute dysbiosis and the development of anxiety-like behaviour following SCI

[Schmidt et al., 2020b]. Contrary to our hypothesis, here we show that optimal

donor selection is essential for successful (i.e. prevents SCI-induced dysbiosis) FMT

treatment following SCI. Critically, the FMT donor rats in the present study were un-

injured, free of pathogens and are genetically compatible to the recipients and would

likely have passed screening criteria used clinically for FMT donors. In FMT trials,

potential donors undergo a preliminary interview to rule out potential risk factors

such as drug use and medical history [Duvallet et al., 2019, Barnes and Park, 2017,

Bibbò et al., 2020, Woodworth et al., 2017, Wilson et al., 2019]. Individuals who

pass the preliminary interview then undergo blood and stool testing to exclude the

risk for transferring infectious diseases [Duvallet et al., 2019, Barnes and Park, 2017,

Bibbò et al., 2020, Woodworth et al., 2017]. Although a history of psychiatric con-

ditions is a risk factor for potential FMT donors [Cammarota et al., 2017], it is often

not considered for donor screening [Duvallet et al., 2019, Barnes and Park, 2017,

Bibbò et al., 2020, Woodworth et al., 2017, Wilson et al., 2019]. This is partic-

ularly relevant for studies on the efficacy of FMT for depression and anxiety.

While there are relatively few human studies on FMT for treating psychiatric

disorders, the existing results show short-term success but inconsistent long-term

improvement [Mizuno et al., 2017, Kurokawa et al., 2018, Mazzawi et al., 2018,
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Paramsothy et al., 2015, Huang et al., 2019]. The results of the present study in

rats suggest that even minor behavioural abnormalities can impact the success of

FMT and may help explain the inconsistent long-term results of FMT treatment for

psychiatric disorders. Indeed, multiple animal studies show that the behaviour of

the FMT donor can be transferred to the recipient [Li et al., 2019, Lv et al., 2019,

Siopi et al., 2020, Kelly et al., 2016, Zhao et al., 2020].

In the present study, the FMT donors had increased baseline levels of anxiety-like

behaviour which was associated with a significant reduction in the proportion of

Lactobacillus in their stool. Supporting this association is the finding that humans di-

agnosed with major depressive disorder have reduced levels of Lactobacillus compared

to controls [Aizawa et al., 2016]. Furthermore, Lactobacillus is one of the most fre-

quently used probiotic bacteria and has been shown to improve anxiety and depression

in multiple preclinical studies [Liu et al., 2016, Liang et al., 2015, Bravo et al., 2011]

and clinical trials [Slykerman et al., 2017, Lew et al., 2019, Wallace and Milev, 2017].

In a recent double-blind, randomized, placebo controlled study, treatment with the

probiotic Lactobacillus was shown to significantly reduce kynurenine concentrations

in patients with major depressive disorder [Rudzki et al., 2019]. The kynurenine

pathway can be activated by inflammation and is thought to play a significant

role in the pathogenesis of depression [Ogyu et al., 2018, Savitz, 2016]. Reducing

kynurenine concentrations by blocking indoleamine 2,3-dioxygenase (the rate-

limiting enzyme in the kynurenine pathway of tryptophan metabolism [Savitz, 2020])

has also been shown to block LPS induced depressive-like behaviour in rodents

[O’Connor et al., 2009]. The kynurenine pathway may therefore be an important

player in the microbiota-immune-brain axis involved in the pathogenesis of depres-

sion and anxiety following SCI. The lack of Lactobacillus present in the FMT donor

stool may indicate alterations in the kynurenine pathway and be, at least, partly

responsible for the unsuccessful FMT. However, there were no significant differences
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between FMT and vehicle groups in the proportion of Lactobacillus following SCI at

the time points measured. This may be because both groups displayed no detectable

amounts of Lactobacillus at 3 days post SCI, presenting a floor effect. Furthermore,

more detailed sequencing may be required to detect differences at the species level, as

there are over 260 metabolically unique Lactobacillus strains and only some species

are used in probiotics [Maragkoudakis et al., 2006, Zheng et al., 2020]. Nonetheless,

sequencing at the Phylum level indicated a global acute shift in the microbiota

composition on the day of injury and 3 days post-SCI, similar to previously reported

[Schmidt et al., 2020b]. However, in the present study, using FMT from anxious

donors with low levels of Lactobacillus was unsuccessful in preventing SCI-induced

dysbiosis.

Although the FMT from anxious donors used in the present study did not

improve SCI-induced dysbiosis, there were some long-term effects on inflammation

and anxiety-like behaviour. There is a strong link between increased inflamma-

tion and the development of mental health disorders. In rodent models of SCI,

increased local (brain and spinal cord tissue) and systemic inflammation have

been associated with the development of anxiety and depressive-like behaviours

[do Esṕırito Santo et al., 2019, Maldonado-Bouchard et al., 2016a, Wu et al., 2014].

Here, rats that received the FMT from anxious donors displayed increased anxiety-

like behaviour, which may suggest an increased inflammatory phenotype. In support

of this, FMT from anxious donors resulted in increased intestinal permeability of the

FMT recipient rats, which can allowed bacterial matter such as LPS to translocate

across the impaired epithelial tight junctions [Kigerl et al., 2016a, Drewe et al., 2001].

Once in circulation, LPS triggers a strong immune response that can reach the central

nervous system and last for months after exposure [Lu et al., 2008, Qin et al., 2007].

An important caveat to the intestinal permeability assay was that the study was

done in rats with increased baseline levels of anxiety-like behaviour, which may
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have also affected their baseline intestinal permeability levels. This may also ex-

plain why we did not observe a SCI-induced change in intestinal permeability, as

has been shown by others [Kigerl et al., 2016a]. Although we did not measure

systemic LPS, the chemokines LIX and RANTES (both of which are upregulated

by LPS [Li et al., 2016, Nonaka et al., 1999, Arima et al., 2000]) were significantly

increased in FMT treated rats 77 days after injury, suggesting a chronic increased

inflammatory state compared to vehicle controls. However, in both groups, we

observed a significant increase in both pro-inflammatory and anti-inflammatory

cytokines and chemokines at 3 and 21 days after SCI. This is likely due to the

acute systemic inflammatory response initiated following trauma to the spinal cord

[Bloom et al., 2020, Gris et al., 2008]. By 77 days, both FMT and vehicle groups

displayed a drastic downregulation in the majority of inflammatory cytokines, which

may reflect a symptom of SCI-induced immune depression [82]. This immune

depression is hypothesized to be triggered by sympathetic dysregulation associated

with upper thoracic and cervical SCIs and generally takes time to develop following

injury [Riegger et al., 2007, Zhang et al., 2013].

In conclusion, these results highlight the importance of optimal donor selection for

successful FMT treatment following SCI. Although the FMT donors were otherwise

healthy and pathogen free, they displayed naturally increased anxiety-like behaviour

and reduced proportions of Lactobacillus. FMT from these anxious donors did not

prevent SCI-induced dysbiosis and had some negative side effects including increased

intestinal permeability, increased anxiety-like behaviour, and chronic alterations in

both local and systemic inflammation. While recipient safety must prevail above

all, vigilant donor selection beyond the exclusion of known pathogens is essential to

improve the success of FMT as shown here in the context of SCI.
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Chapter 4

Minocycline treatment alters

inflammatory and microbiota

profiles following spinal cord injury

1

4.1 Introduction

Minocycline is a synthetic tetracycline derivative with anti-inflammatory and neuro-

protective properties [Wells, 2003a, Smith and Leyden, 2005, Garrido-Mesa et al., 2013].

Numerous animal studies have shown that minocycline has anti-inflammatory, anti-

oxidative and direct neuroprotective effects after SCI [Lee et al., 2003, Wells, 2003a,

Stirling, 2004, Teng et al., 2004, Festoff et al., 2006, Yune et al., 2007, Shultz and Zhong, 2017].

These positive preclinical results, coupled with minocycline’s long safety record in

humans [Goulden et al., 1996], resulted in a phase II placebo-controlled random-

ized clinical trial to test the therapeutic effects of minocycline treatment for acute

1This chapter has appeared in “Beyond the lesion site: minocycline augments inflammation and
anxiety-like behavior following SCI in rats through action on the gut microbiota”
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SCI [Casha et al., 2012]. Results from the trial showed modest, though not sta-

tistically significant, motor recovery in SCI patients that received minocycline

treatment [Casha et al., 2012]. Beneficial effects of minocycline have also been

shown in amyotrophic lateral sclerosis, stroke, multiple sclerosis, and Parkin-

son’s disease [Brundula et al., 2002, Thomas and Le, 2004, Gordon et al., 2007,

Matsukawa et al., 2009]. The pharmacological effects of minocycline have pri-

marily been attributed to modulation of neuroinflammation [Elewa et al., 2006,

Soczynska et al., 2012]. However, some studies have failed to reproduce the neuro-

protective effects of minocycline treatment following SCI, Parkinson’s disease and

Huntington’s disease [Diguet et al., 2004, Scott et al., 2018, Lee et al., 2010].

Minocycline is also a broad-spectrum antibiotic, modulating the composition of

the intestinal microbiota [Hasebe et al., 2019, Schmidtner et al., 2019]. Recently,

an imbalanced intestinal microbiota composition (dysbiosis) has been linked to

impaired functional recovery and increased anxiety-like behaviour following SCI

[Kigerl et al., 2016a, Schmidt et al., 2020b]. Bidirectional communication between

the microbes that colonize the gastrointestinal tract and the central nervous system

can have a profound impact on disease progression and likely involves interac-

tions with the host immune system [Fung et al., 2017, Fung, 2020]. Although

the local tissue response to minocycline treatment for SCI has been well char-

acterized, minocycline’s (and antibiotics in general) impact on the microbiota-

immune axis following SCI is unknown. This is particularly relevant since

93.2% of SCI patients receive antibiotic treatment in the first week after injury

[Geisler et al., 1991, Geisler et al., 2001b, Geisler et al., 2001a]. Given the broad

influence of modulating the intestinal microbiota and systemic immune response,

these systemwide effects of antibiotics could help explain the contradicting evidence

of minocycline’s efficacy as a treatment for SCI.
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The aim of the present study is to elucidate multiple systemwide changes induced

by minocycline treatment in a rodent model of cervical SCI. Four groups of rats were

used: uninjured, uninjured + minocycline, SCI, and SCI + minocycline. We show, for

the first time, that minocycline treatment for SCI has a profound acute effect on the

fecal microbiota diversity and composition, and subsequently prevents SCI-induced

suppression of cytokines/chemokines and attenuates anxiety-like behaviours.

4.2 Methods

4.2.1 Animals

All animal use was approved by the Animal Care and use Committee for Health

Sciences at the University of Alberta. Adult female Lewis rats (Charles River, n = 40)

were group housed with five rats per cage (experimental groups housed separately).

Rats were kept on a 12 h light/dark cycle (lights on at 08:00) and they received ad

libitum access to standard rat chow and water. Behavioural testing and analyses were

performed by an experimenter blind to the experimental groups. Rats were divided

into four groups; four rats were excluded (one died after surgery, one had no lesion,

one had a lesion size greater than 50%, and one was a multidimensional outlier for the

plasma and microbiota analysis) for a total of 36 rats: uninjured n = 10, uninjured

+ minocycline n = 10, SCI n = 8, SCI + minocycline n = 8.

4.2.2 Drug administration

50 mg/kg minocycline (Sigma Aldrich) was dissolved daily in sterile water and ad-

ministered via oral gavage daily for 7 days beginning 2 hours after SCI. Rats that

did not receive minocycline were gavaged with 0.5 ml sterile water daily for 7 days

beginning 2 hours after SCI.
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4.2.3 Spinal Cord Injury

Surgeries were performed similarly to previously described [Schmidt et al., 2020b].

Under isoflurane anesthesia (5% induction; 2.5% maintenance, supplied with a 50:50

air/oxygen mixture) the dorsal neck was shaved and disinfected with 10% chlorhex-

idine digluconate (Sigma-Aldrich). A 125 kdyn unilateral contusion was performed

1.25 mm right of midlien at an angle of 15 degrees (pointed towards midline) at C5

using an Infinite Horizons impactor (Precision Systems & Instrumentation). Mus-

cles were sutured with synthetic braided sutures and the skin was closed with 9

mm stainless steel clips. Buprenorphine (0.03 mg/kg, WDDC) was injected subcu-

taneously immediately post-op and again 8–12 hours later. Animals received 4 ml

saline (subcutaneous) for hydration immediately after surgery. Bladders were manu-

ally expressed when necessary (evidence of wet abdomen and full bladder) until the

animal re-established bladder control.

4.2.4 Behavioural Testing

Open field

Rats were placed in the centre of an open field arena (100 x 80 x 30 cm) for 5

minutes while video recorded from above [Walsh and Cummins, 1976]. Offline video

analysis of the distance travelled was performed using customized tracking software

(https://github.com/cdoolin/rat-apps).

Elevated plus maze

Rats were placed in the junction of two open arms and two closed arms (each arm is 50

cm long and 10 cm wide) elevated 65 cm above the ground while being video recorded

from above for 10 minutes [Walf and Frye, 2007]. Offline video analysis was performed

using customized motion tracking software (https://github.com/cdoolin/rat-apps) to
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analyze the time spent in the open arms and total distance travelled. Entries into

the open and closed arms of the elevated plus maze (EPM) were counted when all 4

paws were located in the arm.

Cylinder

Rats were video recorded while they explored the walls of a clear plexiglass cylinder

(21 cm diameter x 25 cm height) for 5 minutes [Schaar et al., 2010]. Number of left

and right paw placements were recorded and expressed as a percentage of ipsilesional

paw placements.

Light dark box

Rats were placed in the dark compartment of the light dark box (LDB) (dark com-

partment 0 lux, light compartment 100 lux) and video recorded from above for 10

minutes [Bourin and Hascoët, 2003]. Total distance travelled and the integer number

of entries (considered when all 4 paws enter the light box) into the light compartment

were recorded using custom software.

Sucrose preference test

Rats received access to 2 water bottles in their home cage; one with a 1% sucrose

solution and the other with regular drinking water [Liu et al., 2018]. The percentage

of sucrose water consumed over 2 hours was recorded during the dark cycle when the

rats were more active. The location of the water bottles was switched after 1 hour to

control for side preference.

4.2.5 Fecal collection

To collect fresh fecal matter for 16s rRNA analysis, rats were placed in indi-

vidual sterile cages at the beginning of the dark cycle as previously described
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[Schmidt et al., 2020b]. Fecal pellets were collected in sterile eppendorf tubes and

immediately placed in a -80 ◦C freezer until further processing.

4.2.6 Blood collection

Animals were gently restrained and the area over the tarsal joint was shaved. The

saphenous vein was punctured using a sterile needle and blood was collected into a

microvette CB300 capillary tube (Sarstedt Inc, Nümbrecht, Germany) and kept on

ice. Blood samples were then centrifuged for 5 minutes at 3000 rpm at 4 ◦C, plasma

was pipetted into sterile microcentrifuge tubes and transferred to a -80 ◦C freezer

until further processing.

4.2.7 Cytokine analysis

Frozen plasma samples were shipped on dry ice to Eve Technologies (Calgary, Canada)

for analysis. Samples were diluted 2 fold and run on the Rat Cytokine 27-Plex and Rat

Stress Hormone 2-Plex discovery assays that measured: Eotaxin, EGF, Fractalkine,

IFN-gamma,IL-1a, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12(p70), IL-13, IL-17A,

IL-18, IP-10, GRO/KC, TNF-alpha, G-CSF, GM-CSF, MCP-1, Leptin, LIX, MIP-

1alpha, MIP-2, RANTES, VEGF, corticosterone and melatonin. All plasma analytes

were normalized to baseline (before injury) values for analysis.

4.2.8 Multivariate analysis of plasma analytes

The fold increase respect to baseline was used to normalize the expression of each ana-

lyte to its respective pre-injury levels. A multivariate analysis of variance (MANOVA)

considering repeated measures was used to test the hypothesis that the mean vector

of the groups, and their interaction over time, were different in the plasma analytes

variable space. Wilks test was used to determine significance. To study temporal
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patterns, Multiple Factor Analysis [Thurstone, 1931] was computed using the Fac-

toMiner R package [Lê et al., 2008] to extract the multivariate scores of each animal

in the plasma analyte landscape, and the loadings of each analyte at different time

points. Each time point constituted a group of variables of plasma analytes using

the fold increase with respect to baseline. We considered the first 2 dimensions for

further analysis, explaining 24.3% and 12.4% of the total variance by dimension 1

and dimension 2, respectively. Linear mixed model (LMM) was fitted for dimension

1 for statistical inference considering group, time and their interaction as fixed effect

terms and the animal as a random effect using the lme4 and lmerTest R packages

[Bates et al., 2015, Kuznetsova et al., 2017].

4.2.9 16s rRNA analysis

Frozen fecal samples were shipped on dry ice to Microbiome Insights Inc. (Vancouver,

Canada) for sequencing and bioinformatics. 16Sv4 amplicons were generated from

the fecal samples and MiSeq-generated Fastq files were quality filtered and clustered

into 97% similarity operational taxonomic units (OTUs) using the mothur software

package (v. 1.39.5) [Schloss et al., 2009]. The resulting dataset consisted of 184614

OTUs with an average of 33185 reads per sample. OTUs were removed if their mean

abundance in controls reached or exceeded 25% of their mean abundance in specimens.

Alpha diversity was estimated with the Shannon index on raw OTU abundance tables

after contaminants were filtered out. Putative contaminants were described as OTUs

whose mean abundance in controls was equal to or greater than 25% of their mean

abundance in the sample specimens.

4.2.10 Multivariate analysis of microbiota composition

OTU data was analyzed using R through Rstudio [Team, 2015]. Abundance tables for

each time point were normalized with respect to each animal’s value at baseline. Unsu-
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pervised ordination of the normalized abundance table was conducted (for each of the

aggregated taxonomic levels: species, genus, family, class, order and phylum) blinded

to the experimental condition by Non-metric Multidimensional Scaling of the Bray-

Curtis distance between animals using the vegan R package [Oksanen et al., 2019]

with a maximal of 20 iterations and keeping the first 5 dimensions. A permutation

multivariate analysis of variance (PERMANOVA) was computed using the vegan

package over 999 permutations of the Bray-Curtis dissimilarity matrix to test the

hypothesis of whether the centroids of the multivariate space were different by the

terms of group, time and their interaction. Pairwise comparisons were performed us-

ing the pairwiseAdonis R package [Martinez Arbizu, 2020], adjusting p-values using

Bonferroni’s correction.

4.2.11 Perfusion and tissue cutting

Animals were euthanized 5 weeks post-SCI with a lethal dose of Sodium Pentobar-

bital (240 mg/kg). Rats were perfused transcardially with saline containing 0.02 g

heparin/l followed by 4% paraformaldehyde in 0.1 M phosphate-buffered saline (PBS)

with 5% sucrose. Spinal cords were extracted and post-fixed overnight in 4% PFA at

4 ◦C followed by 30% sucrose for 5 days. The lesioned spinal cord (1cm block) was

embedded in O.C.T. (Sakura Finetek, USA) mounted onto filter paper and frozen

in 2-methylbutane (-40 ◦C). Serial cross sections of the spinal blocks were cut at a

thickness of 25 µm on a NX70 cryostat (Fisher Scientific), staggered across eight sets

of slides and stored at -20 ◦C until further processing.

4.2.12 Lesion analysis

Tissue was stained with cresyl violet acetate solution and imaged using a light mi-

croscope. Frozen sections were thawed for 1 hour at 37 ◦C and rehydrated in TBS

(2 x 10 minutes). Slides were placed in 0.5% cresyl violet for 3 minutes and serially
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dehydrated in EtOH (50%, 75%, 99%) for 2 minutes each, followed by xylene (2 x 2

minutes) and coverslipped with Permount™. The total rostral-caudal extension of the

lesion was imaged and quantified using ImageJ software (National Institute of Health,

USA). Lesion size was expressed as a percentage of the total cross section area.

4.2.13 Immunohistochemistry

Frozen sections were thawed at 37 ◦C for 1 hour and rehydrated in PBS for 2 x 10

minutes followed by PBS with 0.3% Triton™ X-100 (PBS-T) for 10 minutes. 5%

normal donkey serum in PBS-T was applied as a blocking buffer for 1 hour at room

temperature. Sections were then incubated overnight at 4 ◦C in rabbit-anti-IBA1

(1:500, Wako) antibody with blocking buffer. The next morning, sections were washed

with PBS (3 x 10 minutes) and incubated with donkey-anti-rabbit AF488-conjugated

(1:500, Life Technologies) antibody in blocking buffer for 2 hours at room temper-

ature. Sections were then rinsed 3 x 10 minutes in PBS and cover slipped with

Fluoromount™.

4.2.14 Image analysis

Images were captured using an epifluorescence microscope (Leica DM6000B, camera

Leica DFC350 FX) and analyzed using ImageJ. Images were acquired at 5x magni-

fication to visualize the entire spinal cord cross section 0.25cm rostral to the lesion,

at the lesion epicenter, and 0.25cm caudal to the lesion. IBA1 optical density was

quantified and expressed as a percentage area of positive staining using thresholding.

To assess microglial morphology, 40x magnification images were taken of the ven-

tral horn of the grey matter on both the ipsilesional and contralesional side rostral

(0.25cm), at, and caudal (0.25cm) to the lesion. 3 representative cells per image were

chosen and the process length and number of endpoints per cell were measured using

the ImageJ plugin NeurphologyJ (Ho et al., 2011).
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4.2.15 PICRUSt2 analysis

PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unob-

served States) software was used following the developer’s instructions to predict the

functional abundances based on the 16s rRNA gene sequences [Langille et al., 2013,

Douglas et al., 2019]. The relative abundance was calculated by dividing the abun-

dance of each pathway by the total abundance of all pathways per sample. The top

10% most abundant pathways were used for analysis and presented as a fold change

from baseline values.

4.2.16 Statistical analysis

Behavioural, tissue and plasma statistical analysis was performed using GraphPad

Prism 8 (San Diego, CA). A 5% or less alpha value was considered significant.

Time-course data was analyzed using a repeated-measure two-way ANOVA with the

Geisser-Greenhouse correction followed by Tukey’s multiple comparison post hoc test,

with individual variances computed for each comparison. For data with only one time

point, a one-way ANOVA was used followed by Fisher’s LSD test. All summary values

in the text represent mean ± standard deviation if not otherwise stated.

4.3 Results

4.3.1 Minocycline treatment did not affect lesion size

To determine whether minocycline treatment reduced lesion size following SCI, the

rostral to caudal extension of the lesioned area in the coronal plane was analyzed 5

weeks after injury. There was no difference between minocycline treated or untreated

rats in the size (SCI: 27.74% ± 11.48%; SCI + minocycline: 31.38% ± 10.07%) or
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Figure 4.1: Representative images of the maximum lesioned area for the SCI group
(A) and SCI + minocycline group (B). (C) The rostral (negative numbers) to caudal
(positive numbers) extension of the lesion was quantified and expressed as the per-
centage of lesioned area for each coronal section. Error bars represent the standard
error of the mean.

extension (SCI: 3.25 mm ± 0.89 mm; SCI + minocycline: 3.75 mm ± 0.56 mm) of

the lesion (Fig. 4.1A, B and C).

4.3.2 Minocycline altered microglial density and morphology

The density and distribution of the microglia marker, IBA1, was analyzed around

the lesion site at C4, C5 (at the maximum injury location) and at C6 (Fig.

4.2A-D). It is well characterized that SCI results in the activation of microglia

[David and Kroner, 2011], which was confirmed by the increased area of IBA1 stain-

ing in all SCI rats relative to uninjured groups. Minocycline treatment following SCI

resulted in an increased area of IBA1 immunoreactivity rostral to the injury at C4

(ipsilesional: p = 0.003) and caudal to the injury at C6 (contralesional: p = 0.048,

ipsilesional: p = 0.0001) compared to untreated SCI rats (Fig. 4.2E-G). There was
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no effect of minocycline treatment between uninjured groups in the area of IBA1

staining at any location measured.

Microglial morphology was further assessed in the ventral grey matter by quan-

tifying the length of the microglial processes and the number of endpoints per cell

(Fig. 4.2H-K). Increased process length and endpoints suggests a ramified microglial

morphology, whereas a reduction in the length and number of endpoints indicates

a more activated state [Davis et al., 1994]. SCI resulted in a significant increase in

the activation of microglia characterized by increased process length (Fig. 4.2L-N)

and increased number of endpoints (Fig. 4.2O-Q) per cell. Focusing on the effect

of treatment within injury groups, rats that received minocycline displayed a general

increase in the process length, which was significant between uninjured groups at C4

(Fig. 4.2L, ipsilesional: p = 0.032). Similarly, minocycline treatment resulted in an

overall increase in the number of endpoints per cell in both uninjured and injured

groups. This was significant between uninjured groups at C5 (ipsilesional: p = 0.027)

and C6 (ipsilesional: p = 0.008, contralesional: p = 0.025) and between SCI groups

at C6 (ipsilesional: p = 0.035). In summary, 7 days of minocycline treatment induced

a more ramified spinal microglial morphology in both uninjured and SCI rats relative

to untreated control groups measured 28 days after the offset of treatment.

4.3.3 Minocycline promoted affective but not motor recovery

following SCI

Rat behaviour was assessed at baseline (prior to SCI) and for 4 weeks following injury.

Both SCI and SCI + minocycline groups had a drop in body weight following injuries

which returned to uninjured values by 4 weeks (time x group effect p < 0.0001, time

effect p < 0.0001, group effect p = 0.006). Uninjured rats that received minocycline

consistently had the highest body weight (Fig. C.1). At 7 days post-injury, both SCI

groups travelled significantly less distance in the open field compared to uninjured
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Figure 4.2: (A) IBA1 immunohistochemical marker was used to visualize microglia
in the cervical spinal cord at C4, at the maximum lesion site (C5), and caudal to the
lesion site at C6. Representative spinal cord images are shown from each group at
C4 (B), C5 (C), and C6 (D). Quantification of the area of IBA+ staining is shown at
C4 (E), C5 (F) and C6 (G) on the contralesional (left graphs) and ipsilesional (right
graphs) spinal cord. Microglial morphology in the ventral grey matter was assessed
by quantifying the length and number of endpoints per cell. (H) Image of a ramified
microglia and (I) the automated analysis shows the soma in blue, processes in red and
the endpoints in green. (J) Image of an activated microglia and (K) the corresponding
output of the analysis. Quantification of the average process length per cell is shown
at C4 (L), C5 (M) and C6 (N) on the contralesional (left graphs) and ipsilesional
(right graphs) spinal cord. Quantification of the average number of process endpoints
per cell is shown at C4 (O), C5 (P) and C6 (Q) on the contralesional (left graphs) and
ipsilesional (right graphs) spinal cord. Error bars represent the standard error of the
mean. Scale bar represents 1mm. *p<0.05, **p<0.01. ***p<0.001, ****p<0.0001.
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rats (Fig. 4.3A-B; time x group effect p < 0.0001, time effect p < 0.0001, group

effect p = 0.001). By 14 days post-injury, untreated SCI rats travelled significantly

less distance than uninjured + minocycline animals. By 28 days post-SCI, all groups

regardless of injury had declined in the overall distance travelled in the open field (Fig.

4.3A and B). SCI resulted in significantly reduced use of the ipsilesional forepaw in

the cylinder test, with no effect of minocycline treatment (time x group effect p <

0.0001, time effect p < 0.0001, group effect p < 0.0001) (Fig. 4.3C and D).

A single testing session 3 weeks post-SCI was used for the EPM and LDB to avoid

one-trial tolerance [Bertoglio and Carobrez, 2002, File, 1990]. There was no difference

between all four experimental groups in the total distance travelled in the EPM (Fig.

4.4A and B). Similar to previous studies reporting SCI-induced anxiety-like behaviour

in the EPM [Schmidt et al., 2020b], untreated SCI rats spent less percent time in

the open arms and made significantly fewer open arm entries than both uninjured

groups (uninjured vs. SCI p = 0.047, uninjured + minocycline vs. SCI p = 0.028)

(Fig. 4.4C and D). Paralleling the SCI-induced anxiety-like behaviour observed in

the EPM, untreated SCI rats spent the least amount of time in and entries into

the light compartment of the LDB (Fig. 4.4E, F and G). SCI + minocycline rats

made significantly more entries into the light compartment compared to untreated

SCI rats, indicating a reduced anxiety-like behavioural state (p = 0.022). Anhedonic

behaviour was assessed in the sucrose preference test 7 days post-injury (at the offset

of minocycline treatment). SCI + minocycline rats consumed the least amount of

sucrose water; however, this did not reach significance (Fig. 4.4H). Taken together,

results from these behavioural tests suggest that minocycline treatment had a long-

term (i.e. at least 2 weeks after the offset of treatment) attenuation of anxiety-like

behaviour in the LDB but did not promote motor recovery following SCI.
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Figure 4.3: (A) Image shows a rat in the center of the open field apparatus. (B)
Both SCI and SCI + minocycline groups travelled significantly less distance than
uninjured rats in the open field at 7 days post-SCI. (C) The cylinder test was used to
assess forepaw use asymmetry. (D) SCI resulted in decreased use of the ipsilesional
paw compared to uninjured rats. Error bars represent the standard error of the mean.
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Top asterisks represent uninjured +
minocycline groups vs. SCI (green) and SCI + minocycline (purple). Bottom asterisk
represent uninjured vs. SCI (green) and SCI + minocycline (purple).
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Figure 4.4: (A) Rat in the open arm of the elevated plus maze. (B) The total
distance travelled in the maze. (C) Percent time in the open arms was calculated as a
percentage of the time spent in the open arms divided by the total time spent in the
maze. (D) Percent open arms entries was calculated as a percentage of the number
of open arm entries divided by the total open and closed arm entries. (E) Schematic
shows a rat entering the light component of the light-dark box. (F) The amount of
time spent in the light component and (G) the number of entries made into the light
component of the light-dark box. (H) The percent of sucrose water consumed where
each data point represents a cage. Error bars represent the standard error of the
mean. *p<0.05
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4.3.4 Minocycline prevented SCI-induced suppression of

inflammatory cytokines/chemokines

A total of 29 plasma analytes (cytokines, chemokines and hormones) were measured

at 5-, 14- and 28-days post-SCI and expressed as a fold change from baseline values.

Multivariate analysis of variance resulted in a significant group by time interaction

(MANOVA group x time p=0.005), indicative of differences across groups and time

at the overall profile of the 29 plasma analytes. Multiple factor analysis was used to

study the multidimensional relationship between plasma analytes, group and time.

Global scores show differences between groups across time, particularly in dimension

1 (Fig. 4.5A). When looking at the dimension 1 scores at each time point measured,

there is a deviation of untreated SCI rats from uninjured groups by 28 days post-injury

(Fig. 4.5B). Minocycline treatment prevented this SCI-induced long-term change in

the plasma analyte composition. Looking at the relationship of the individual plasma

analytes with multidimensional dimension 1, all plasma markers (with the exception

of G-CSF and corticosterone) moved towards the same positive direction (Fig. 4.5C).

Given that SCI + minocycline and uninjured groups are mostly positive in dimension

1, this indicates that there is a correlation between these groups and the changes in

plasma analytes, which is opposite in direction to the untreated SCI group. Looking at

individual plasma analytes, there was a substantial downregulation in the majority of

analytes at 5 days post injury in all groups (Fig. 64.6). By 14 days post-injury, there

were minimal differences between treatment groups in levels of plasma analytes (Fig.

64.6). By 28 days post-injury, SCI induced a significant suppression of the majority of

plasma cytokines and chemokines, which was normalized with minocycline treatment

(Fig. 64.6). Figure 4.7 shows the univariate adjusted p-values for individual plasma

analytes that were significantly different between groups. At 5 days post-injury, the

only significant difference between groups was an increase in Leptin in uninjured rats

relative to uninjured + minocycline and SCI + minocycline groups, which remained
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Figure 4.5: (A) Multiple factor analysis of plasma analytes (measured with respect
to baseline values) shows the relationship of each subject with the multidimensional
factors 1 and 2 across all time points. (B) Scores in multidimensional factor 1 are
shown for each group over time. (C) The importance of each plasma analyte to
multidimensional factor 1 is shown over time using their loadings. Ellipses in A
represent the 50% bivariate distribution. Error bars represent the standard error of
the mean.
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Figure 4.6: Heatmap shows the relative change of plasma analytes at 5-, 14- and
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significant at 14 days post-SCI for the SCI + minocycline group. By 14 days post-

injury, melatonin was significantly reduced in uninjured rats compared to all other

groups. The majority of statistically significant differences were observed between SCI

rats and all other groups at 28 days post-injury. Compared to the uninjured group,

SCI rats had reduced plasma levels of IL-12, Eotaxin, MIP-1a, IL-6, IL-5, MCP-1,

VEGF and Fractalkine. Compared to uninjured + minocycline rats, SCI animals had

significantly reduced plasma levels of LIX, IL-17a, IL-12, GM-CSF, Eotaxin, TNFa,

MIP-1a, IL-4, IL-6, IL-5, IL-18, MCP-1 and Fractalkine. Finally, compared to SCI

+ minocycline rats, SCI animals had decreased levels of MCP-1, Eotaxin, GM-CSF,

MIP-1a, IL-6, TNFa and Fractalkine. 28 days post-injury, there were no differences

between uninjured vs. uninjured + minocycline as well as uninjured + minocycline
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vs. SCI + minocycline groups. Uninjured vs. SCI + minocycline rats only differed in

plasma levels of melatonin. Together these results show that SCI induced a relative

reduction of blood levels of various cytokines and chemokines over time compared

to uninjured rats, and that acute minocycline treatment prevented this SCI-induced

suppression of inflammatory cytokines/chemokines.

To determine the spectrum of microbiota changes induced by both SCI and

minocycline, fecal samples were collected and 16s ribosomal RNA (rRNA) gene se-

quencing was performed at baseline, on the day of injury (DOI), 5, 14- and 28-days

post-injury (DPI) and expressed relative to baseline values. Minocycline treatment

for 7 days resulted in a significant decrease in the Shannon index of alpha diver-

sity (Fig. 4.8A). This reduction in bacterial diversity lasted longer in uninjured +

minocycline rats (reduced alpha diversity on the first day of treatment, 5 and up to

14 days), and was shorter but more severe in SCI + minocycline rats (significantly

decreased relative to all other groups at 5 days post-injury) (time x group effect p <

0.0001, time effect p < 0.0001, group effect p < 0.0001). The ratio of firmicutes to

bacteroidetes (the two major bacterial phyla) was differentially affected by minocy-

cline treatment and SCI (Fig. 4.8B). Minocycline treatment resulted in a transient

but significant decrease in the firmicutes/bacteroidetes ratio that lasted up to 14 days

post-SCI in both uninjured + minocycline and SCI + minocycline rats compared to

untreated uninjured rats. SCI alone (without minocycline treatment) also decreased

the firmicutes/bacteroidetes ratio relative to untreated uninjured rats, which reached

statistical significance at 28 days post injury (time x group effect p < 0.0001, time

effect p = 0.004, group effect p = 0.002).

Non-metric multidimensional scaling (NMDS) was used to extract the landscape

space of the microbiota composition at each taxonomic level. Focusing on the phylum

level, minocycline resulted in a significant alteration of the microbiota composition

beginning on the first day of treatment (on the day of injury) regardless of whether
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Figure 4.7: Minocycline treatment attenuated spinal cord injury-induced suppression
of cytokines/chemokines. Table shows plasma analytes that are significantly different
between groups at each time point measured following SCI. P value was calculated us-
ing Tukey’s multiple comparison test following a repeated measures two-way ANOVA.
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the animals received a SCI or were uninjured (Fig. 4.8C-E) (NMDS1 p = 0.0016).

The difference between minocycline treated and untreated groups is seen primarily

in NMDS component 1, which was maximal at 5 (Fig. 4.8 F–H) and 14 days (Fig.
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Figure 4.8: (Previous page) (A) The Shannon index of alpha diversity and (B) the
Firmicutes/Bacteroidetes ratio are shown over time for each treatment group. (C-N)
Non-metric multidimensional scaling (NMDS) was used to visualize the overall micro-
biota composition at the Phylum level. (C) 2D plot of the NMDS first 2 components
shows the centroid of each group (large points) and each individual rat (small points)
on the day of injury. Individual NMDS 1 scores (D) and NMDS 2 scores (E) are
shown for each group on the day of injury. Similar plots of shown for 5 days post
injury (F-H), 14 days post injury (I-K) and 28 days post injury ((L-N). All data is
normalized to baseline values. Error bars represent the standard error of the mean.
*p<0.05, **p<0.01, ***p<0.001.

4.8I-K) post injury, and was reduced but still significant by 28 days post injury (21

days after the offset of minocycline treatment) (Fig. 4.8L-N) (5DPI p < 0.0001;

14DPI p < 0.0001; 28DPI p < 0.0001). Significant differences between groups in

NMDS component 2 emerged beginning at 14 days and were maximal by 28 days

post injury, when uninjured and SCI + minocycline groups moved in the opposite

direction to uninjured + minocycline and SCI groups (Fig. 4.8N) (NMDS2 p =

0.002). NMDS plots for all other taxonomic levels can be found in Appendix C.

Looking at the family, class and order taxonomic levels, untreated SCI rats deviated

from all other groups at 28 days in NMDS component 2. Although there was a

significant effect of SCI at 28 days post injury in NMDS component 2 at multiple

taxonomic levels, minocycline treatment accounted for the majority of changes in the

microbiota composition regardless of injury. A similar trend is seen in the functional

gene profile of the microbiota composition (Fig. 4.9). Looking at the top 10% most

relatively abundant genetic pathways, the majority of differences were observed at

5 days post-injury between minocycline treated and untreated groups regardless of

injury, suggesting that minocycline treatment also had a significant acute effect on

the microbiota functional profile (Fig. 4.10).
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Figure 4.9: Top 10% most relative abundant PICRUSt pathways with respect to
baseline values.
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Figure 4.10: The number of pathways significantly different between groups (out of
the top 10% most abundant PiCRUST pathways). On the day of injury, differences
were only observed within minocycline group. At 5 days, minocycline treatment
accounted for the majority of differences between groups. By 28 days, the majority
of differences were between SCI vs. uninjured and SCI vs. SCI + minocycline groups.

4.4 Discussion

Minocycline has been widely studied for its direct anti-inflammatory and neuro-

protective properties for central nervous system diseases and injuries including

amyotrophic lateral sclerosis, stroke, multiple sclerosis, Parkinson’s disease and SCI

[Wells, 2003a, Shultz and Zhong, 2017, Thomas and Le, 2004, Gordon et al., 2007,

Matsukawa et al., 2009, Brundula et al., 2002]. However, minocycline’s impact on

the intestinal microbiota and systemic immune response following SCI has not yet

been investigated. Using a comprehensive analysis of plasma inflammatory analytes

and fecal microbiota, we show for the first time that minocycline treatment has a

profound acute effect on the microbiota composition followed by the prevention of

SCI-induced suppression of inflammatory cytokines/chemokines. Although minocy-
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cline did not reduce lesion size or improve motor recovery, it did have a potential

anxiolytic effect after SCI.

In addition to being a broad spectrum antibiotic, minocycline is highly lipid

soluble and can pass through the blood-brain barrier to produce a variety of anti-

inflammatory, anti-oxidative and neuroprotective effects [Shultz and Zhong, 2017,

Festoff et al., 2006, Elewa et al., 2006, Yong et al., 2004]. Minocycline has been

shown to inhibit caspase-1, caspase-3 and microglial activation, protect neurons

from oxidative stress and free radicals, prevent glutamate-induced apoptosis,

and protect blood-brain barrier integrity [Garrido-Mesa et al., 2013, Wells, 2003a,

Shultz and Zhong, 2017]. These promising preclinical results prompted a phase

II placebo-controlled randomized clinical trial of minocycline to treat acute SCI

[Casha et al., 2012]. Although recognized for its lack of adverse side effects, there

was no statistically significant effect of minocycline efficacy for motor recovery after

SCI [Casha et al., 2012]. Furthermore, a pivotal animal study reporting neuroprotec-

tive benefits of minocycline for cervical SCI was unable to be replicated in a follow

up study [Pinzon et al., 2008]. Another group found no behavioural or histological

benefits of minocycline treatment for cervical contusion in rats [Lee et al., 2010].

Contradicting results of minocycline treatment have also been implicated in stroke,

Parkinson’s and Huntington’s diseases [Diguet et al., 2004, Scott et al., 2018]. In

line with these studies, we found no beneficial effect of minocycline treatment

on lesion size or motor recovery after SCI. However, the utilized motor tests in

the present study may not have been sensitive enough to detect changes in fine

motor skills. We did confirm the inhibitory properties of minocycline treatment

on microglial activation in the spinal cord of both injured and uninjured rats

[Yune et al., 2007, Festoff et al., 2006, Marchand et al., 2009]. Curiously, SCI rats

treated with minocycline also displayed an increased density of IBA1 immunore-

activity above and below the injury site, which has not been reported previously.
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Although IBA1 is upregulated upon activation of microglia [Sasaki et al., 2001],

we showed that the observed increased area of IBA1+ cells in SCI + minocycline

rats above and below the injury site was not due to increased microglial activation.

This was determined by the increased complexity (i.e., increased process length and

number of endpoints), indicating a ramified (less activated) microglial phenotype in

rats that received minocycline. The increased density of IBA1 immunoreactivity in

SCI + minocycline rats may otherwise be due to the observed increase in length

and number of microglial endpoints or a general increase in the number of microglial

cells.

Many of the anti-inflammatory properties of minocycline have also been stud-

ied for their beneficial effects on depression and anxiety [Soczynska et al., 2012,

Rosenblat and McIntyre, 2018, Reis et al., 2019]. For example, minocycline can

block LPS-stimulated inflammatory cytokine secretion, sickness behaviour and

anhedonia [Henry et al., 2008]. On the other hand, minocycline is also an an-

tibiotic, and antibiotic treatments have been shown to increase the risk for

depression and anxiety [Guida et al., 2018, Lurie et al., 2015]. Multiple other

treatments that target the gut microbiota have also been shown to modulate af-

fective behaviours, which was also highlighted in Chapter 2 [Pirbaglou et al., 2016,

Zheng et al., 2016, Schmidt et al., 2020b]. We show similar results in this exper-

iment such that rats with SCI displayed increased anxiety-like behaviour, which

could be partly alleviated with minocycline treatment. Anxiolytic and anti-

depressive effects of minocycline have been previously shown, mainly attributed to

the drug’s anti-inflammatory properties [Schmidtner et al., 2019, Reis et al., 2019,

Zhang et al., 2019a, Camargos et al., 2020].

Minocycline’s anti-inflammatory and neuroprotective effects have been well char-

acterized for a variety of diseases/injury conditions; however, little is known about

minocycline’s antibiotic effects on the gut microbiota following SCI and how this
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would influence other outcome measures. Additionally, looking at the microbiota

composition provides a measure of the efficacy of minocycline’s dose and route of

administration. Here we show that 7 days of minocycline treatment had a significant

effect on the microbiota diversity and composition regardless of injury, proving that

the drug was effective. In addition to transiently reducing the alpha diversity, minocy-

cline treatment also significantly decreased the ratio of Firmicutes to Bacteroidetes.

Interestingly, a relative decrease in the abundance of Firmicutes and decreased abun-

dance of Bacteroidetes has been shown in humans with major depressive disorder

[Jiang et al., 2015]. However, we did not find minocycline to induce depressive- or

anxiety- like symptoms, which may be because the decreased Firmicutes to Bac-

teroidetes ratio was not permanent. By 28 days post-injury (21 days after the offset

of minocycline treatment), the differences between minocycline treated and untreated

groups were reduced, and untreated SCI rats began to display an altered microbiota

composition (particularly in the firmicutes/Bacteroidetes ratio, estimated functional

gene profile, and at the order, family and class taxonomic levels). Research in mice

also found significantly altered microbiota composition 28 days after a thoracic SCI

[Kigerl et al., 2016a]. Although we did not observe significant differences between

SCI and uninjured rats at 5- or 14-days post-injury, it is possible that there was an

acute SCI-induced dysbiosis between the day of injury and 5 days post-injury, as

previously reported in Chapters 2 and 3 [Schmidt et al., 2020b].

Although minocycline treatment had a profound effect on the fecal microbiota

composition and diversity, a different trend and time course was observed in the

systemic inflammatory markers. At 5- and 14-days post-injury, there were minimal

differences between groups in the relative change in systemic cytokine/chemokine

levels. There was a distinct trend in the plasma analytes such that there was a

decrease in the majority of cytokines/chemokines measured relative to baseline in

all groups at 5 days post-SCI, including uninjured rats. This may be a result of
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the stress of surgeries and/or gavaging having a greater acute impact on systemic

inflammation than the SCI itself, since stress is known to affect the inflammatory

response [Rohleder, 2014, López-López et al., 2016]. Nevertheless, the majority of

differences in plasma analytes were observed at 28 days, when untreated SCI rats

displayed a reduction in plasma cytokines/chemokines relative to baseline compared

to both uninjured groups and SCI + minocycline rats. Although SCI results in a

local inflammatory cascade at the injury site [Stammers et al., 2012], it has been

shown that the temporal systemic (i.e. plasma) and local spinal cytokine profiles

can be entirely different [Mukhamedshina et al., 2017]. One study also found a gen-

eral SCI-induced downregulation of blood levels of cytokines, which was greater

in cervical SCI compared to thoracic SCI [Hong et al., 2018]. This long-term sup-

pression of cytokines and chemokines may indicate a symptom of SCI-induced im-

mune suppression syndrome. SCI-induced immune suppression is hypothesized to

be caused by autonomic dysreflexia triggered by upper thoracic and cervical SCIs

[Riegger et al., 2007, Zhang et al., 2013]. Accordingly, minocycline treatment has

been shown to reduce the severity of autonomic dysreflexia after SCI, which may

explain how minocycline prevented SCI-induced suppression of inflammatory cy-

tokines/chemokines in the present study [Squair et al., 2018]. Squair et al. report

that, although minocycline treated rats had no observable differences in motor re-

covery, they had increased preservation of sympathoexcitatory axons and improved

cardiovascular control measured 8 weeks following SCI [Squair et al., 2018]. This

chronic setting is when autonomic dysreflexia typically manifests (around 3-6 months

after SCI in humans). Similarly, in the present study we did not observe SCI-induced

suppression of plasma cytokines until the latest time point measured at 28 days post-

SCI. Results from chapter 3 corroborate this result and showed even more drastic

downregulation of blood levels of cytokines/chemokines at 11 weeks after a cervical

contusion SCI. Complications due to infection are a leading cause of death follow-
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ing SCI [Soden et al., 2000], therefore preventing immune suppression may mitigate

the risk of infection and thus reduce mortality rate. However, future work would

be needed to determine whether the observed SCI-induced reduction of systemic

cytokines/chemokines is indeed a symptom of immune suppression, and whether

minocycline can indeed prevent SCI-induced immune suppression.

The present results point towards a temporal relationship between minocy-

cline’s effects on the fecal microbiota followed by the reduction in systemic cy-

tokines/chemokines and attenuation of anxiety-like behaviour. The gut microbiota

plays a critical role in the host immune system, and modulation of the microbiota

can have a profound influence on the body’s response to infection and disease

[Fung, 2020, Fung et al., 2017, Thaiss et al., 2016, Ma et al., 2019]. Research in

germ free mice (i.e., without any microorganisms) has revealed the vital interplay

between the gut microbiota and immune homeostasis [Wu and Wu, 2012]. For

example, germ free mice have altered macrophage and microglia phenotypes, are

neutropenic, and have an impaired innate immune response [Ohkubo et al., 1990,

Mikkelsen et al., 2003, Erny et al., 2015]. Germ free mice and mice given an-

tibiotics have also been shown to have a significantly attenuated severity of au-

toimmune encephalomyelitis via modulation of the peripheral immune response

[Ochoa-Repáraz et al., 2009, Lee et al., 2011]. Furthermore, ongoing research on

the gut microbiota strongly suggests a causal link between intestinal dysbiosis

and the development of anxiety and depressive-like behaviours [Zheng et al., 2016,

Wong et al., 2016, Valles-Colomer et al., 2019, Pearson-Leary et al., 2020].

Although our present results are descriptive in nature, they highlight two im-

portant concepts. First, although minocycline has direct local anti-inflammatory

properties, its impact on the microbiota may also affect the systemic immune and

affective consequences of SCI. Second, changes in plasma cytokine/chemokine levels

were preceded by minocycline-induced changes in the fecal microbiota composition,
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suggesting that the microbiota may be involved in the suppression of inflammatory

cytokines/chemokines following SCI. In conclusion, our work underscores the impor-

tance of the microbiota-immune axis for recovery following SCI, which should be

considered when investigating potential therapeutics that may modulate this axis,

such as minocycline. The results of the present study are critical for a comprehensive

understanding of the full spectrum of minocycline activity beyond the lesion site.

This is particularly relevant for the potential clinical application of minocycline to

treat acute SCI in humans.

111



Chapter 5

Inducing inflammation following

subacute spinal cord injury: a

double-edged sword to promote

motor recovery 1

5.1 Introduction

In chapters 2, 3 and 4, we augmented the immune system either indirectly (through

the microbiota) or directly (through minocycline’s direct anti-inflammatory mecha-

nisms) in the acute and subacute stages of SCI. In chapter 3, we showed that FMT

from anxious donors increased intestinal permeability and exacerbated anxiety-like

behaviour following SCI. These negative effects of the FMT may have been due to

a translation of LPS across the impaired intestinal barrier and subsequent increase

in inflammation, as evidenced by increased concentrations of chemokines associated

with LPS in rats that received the FMT from anxious donors. However, as discussed

1This chapter has appeared in “Inducing inflammation following subacute spinal cord injury in
female rats: a double-edged sword to promote motor recovery” [Schmidt et al., 2020a]
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in section 1.3, inflammation can also play a beneficial role in regeneration and plas-

ticity of the CNS. Further exploring the dichotomous role that inflammation can play

following SCI is the purpose of this chapter.

Rehabilitation is currently one of the most effective treatment options to promote

motor recovery following incomplete spinal cord injury (SCI), with early intervention

generally providing more favourable outcomes [Nam et al., 2017, Norrie et al., 2005,

Scivoletto et al., 2005, Sumida et al., 2001]. This observation corroborates research

indicating that the acute injury environment increases the capacity for plasticity

[Biernaskie, 2004, Ding et al., 2005, Scivoletto et al., 2005, Sumida et al., 2001].

Neuroinflammation likely plays a role in this process, as early components of

the inflammatory process have been shown to be beneficial for the natural but

limited repair process following SCI [Anderson et al., 2016, Arnett et al., 2001].

Indeed, Chen et al. showed that over-expression of neurotrophin-3 promoted

sprouting of CST axons in the acutely lesioned, but not chronically lesioned or

unlesioned spinal cord [Chen et al., 2006]. This enhanced growth of the CST

is important for motor recovery as the CST is critical for fine motor control

[Martin, 2005, Piecharka et al., 2005]. Neuronal sprouting of the CST could be re-

established in the chronically lesioned spinal cord by triggering an immune response

with LPS, implicating immune activation as a key component of neurotrophin-3

induced axonal growth [Chen et al., 2008]. More evidence for the link between

injury-induced inflammation and plasticity comes from research in the optic nerve.

Using a model of optic nerve crush, Benowitz et al. showed that oncomodulin, a

protein released from macrophages, is a formidable growth promoting signal from

the immune system [Yin et al., 2009]. Further support of the association between

inflammation and neuronal plasticity is the finding that the window of opportunity

for effective rehabilitative training can be reopened by injecting LPS in rats with

chronic SCI [Torres-Esṕın et al., 2018a]. LPS treatment resulted in increased CST
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sprouting and a robust increase in rehabilitative training-induced motor recovery

[Torres-Esṕın et al., 2018a]. This points towards a dichotomous role of inflammation

as it can both exacerbate tissue damage and yet is an essential promotor of plasticity

following SCI [Gensel and Zhang, 2015, Jones et al., 2005, Rust and Kaiser, 2017].

Although the above evidence suggests that the acute neuroinflammatory response

may promote plasticity, there is also substantial research implicating inflammation

as a key factor in secondary damage following SCI [Gris, 2004, Zhou et al., 2014].

We therefore hypothesized that enhancing inflammation in the subacute stage of SCI

using LPS, at a time point when the lesion environment is still in a proinflammatory

state [Popovich et al., 1997], would not have the same beneficial effect as chronic

administration. To test this, rats received a systemic injection of LPS 10 days

following a mild cervical SCI to trigger an immune response followed by 6 weeks of

rehabilitative training.

5.2 Methods

5.2.1 Animals

Adult female Lewis rats (n=60 in 2 cohorts, Charles River Laboratories) were group

housed (n=5 per cage, treatment groups housed separately) with ad libitum access

to water and 12h on-off light cycle. Rats were food restricted during training periods

(10g per rat per day) and otherwise had ad libitum access to standard rat chow. The

study was approved by a local animal care and use committee (Health Sciences) at

the University of Alberta and complies with the guidelines of the Canadian Council

for Animal Care.
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5.2.2 Single pellet reaching and grasping training

The single pellet grasping (SPG) enclosure, motorized pellet dispenser and training

protocols were used as previously described [Torres-Esṕın et al., 2018b]. First, the

rat’s preferred paw was established by manually presenting a pellet and recording the

number of left and right paw attempts. Once the preferred paw had been established,

the pellet dispenser was positioned in a way to enable the rat to only use this paw. A

high-intensity dual-window enclosure system was used to train the rats; once the rat

had completed an attempt on one side of the enclosure, a pellet was presented on the

other side, and so forth. Training consisted of 10 min sessions per rat per day, 5 days

a week for 6 weeks before SCI. Ten days following SCI, rats received intraperitoneal

injections of LPS/saline (see below for details) and rehabilitative training started 4

days after (14 days post-SCI). After 6 weeks of training the final assessment was

conducted. Performance on the SPG task was analyzed once a week from video

recordings. At the offset of rehabilitative training, rats were tested in a modified

SPG task with a 7 mm wide gap between the pellet and the opening of the enclosure.

This set up prevented ‘scooping’ of the pellet into the mouth, which is a common

compensatory strategy. The parameters used to analyze the SPG task (both regular

and gap) were the number of attempts the rat made to reach for a pellet and the

success rate. Success rate was defined as the number of successful attempts divided

by the total number of attempts, expressed as a percentage. An attempt was defined

as each time the rat reached for a pellet, and a success as an attempt that resulted

in the pellet being eaten.

5.2.3 Single pellet reaching and grasping high speed analysis

At the offset of pre-training (baseline) and at the offset of rehabilitative training after

SCI, the pattern of movements to successfully grasp and retrieve a pellet was analyzed

as previously described [Metz and Whishaw, 2000]. Rats were placed in the training
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enclosure and 3 successful reaching attempts were recorded at high speed (120 fps,

Panasonic DMC-FZ200; resolution of 1280 × 720 pixels). These 3 successful attempts

were scored and averaged for each animal. This skilled reaching analysis consisted

of 11 components each rated from 0 (movement is absent), 0.5 (movement is present

but abnormal) to 1 (movement is normal).

5.2.4 Spinal cord injury

Rats were anaesthetized using isoflurane (3% in 50:50 air:oxygen mix) and their dor-

sal neck shaved and cleaned with 10% chlorhexidine digluconate (Sigma-Aldrich). An

incision was made in the skin above vertebrae C2-C5, the muscles above C3-C4 were

split and a laminectomy was performed at C4. A dorsolateral quadrant SCI was per-

formed at C4 on the side of the preferred paw using custom made blades. The muscle

layers were sutured with 5-0 Vicryl and the skin was stapled with 9mm surgical clips.

Animals received 4 ml saline for hydration and 0.2ml of buprenorphine (0.03mg/ml)

as analgesic immediately postoperatively and a second dose of 0.1ml buprenorphine

(0.03mg/ml) was given 8 h after injury.

5.2.5 LPS administration

LPS was derived from Escherichia coli endotoxin (serotype 055:B5, Sigma-Aldrich)

and dissolved in sterile saline for injection. Rats received a single intraperitoneal

dose of 0.5mg/kg LPS or saline 10 days following SCI. Skin temperature, weight and

general sickness behaviour (piloerection, social isolation and reduced activity) was

monitored pre-injection, 4, 8, 24, 36, 48 and 72 h after injection.
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5.2.6 Behavioural Testing

Open Field Activity

Animals were placed in the centre of a black acrylic open field arena (100 x 80 x 30

cm) and video recorded from above for 5 minutes. The total distance moved was

analyzed using custom motion-tracking software. This test was performed at baseline

(before SCI), after SCI (before LPS/saline injections), 1- and 3-days post LPS/saline

injections, and again at the offset of rehabilitative training.

Horizontal Ladder Task

Rats were filmed as they traversed a horizontal ladder (100 cm long, 12 cm wide, 12

cm high, 3 mm diameter cross bars spaced between 2 and 3 cm with a 45° mirror

underneath). If a rat paused or turned around, the trial was considered invalid. 6

continuous ladder crosses per rat (3 per side) were used for analysis and the average

between the three videos was used for each animal. For each paw, the total number

of correct paw placements, paw slips (the paw contacted the ladder rung but slipped)

and paw misses (the paw did not make contact with the ladder rung) were calculated.

The final outcome measure was the percentage of correct paw placements for each

paw. This test was performed at baseline, after SCI (before LPS/saline injections)

and at the offset of rehabilitative training.

Cylinder Test

Rats were placed in an acrylic cylinder (21 cm wide x 23 cm tall) and video recorded

for 3 minutes or until a minimum of 10 rears were made. The number of left and

right forepaw placements were counted, and forepaw asymmetry was expressed as a

percentage of ipsilesional paw placements.
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Von Frey Test

Rats were acclimatized to the testing chamber prior to testing (IITC Life Science, CA,

USA). Tactile sensitivity was assessed on both forepaws; if the rat was placing weight

on the forepaw the score was not recorded. The Von Frey rigid tip probe was applied

gradually in increasing pressure until the rat displayed a defined nociceptive response

(paw retraction, licking) and the maximum pressure that elicited a withdrawal was

noted. This test was repeated 3 times per paw, with a minimum of 3 minutes between

measures. For each rat the average of the 3 measures for each paw was used for

analysis.

Elevated Plus Maze

Anxiety-like behaviour was assessed in the elevated plus maze (EPM) four weeks

after LPS or saline injections in the second cohort of rats (n=14 per group included

regardless of participation in rehabilitative training). Rats were placed in the junction

of two open arms and two closed arms, facing towards an open arm and allowed to

explore the arena (100 x 100 cm and elevated 65 cm above ground) for 10 min. Time

spent and entries into the open and closed arms as well as the total distance travelled

were recorded from above as measures of anxiety-like behaviour. This test was used

only once to avoid habituation to the maze. Offline video analysis was performed

using customized software.

5.2.7 Corticospinal tract tracing

At the offset of rehabilitative training and after all behavioural testing, the antero-

grade tracer biotinylated-dextran amine (10% BDA; 10 000 MW, Life Technologies,

New York, USA) was injected into the contralesional forelimb motor cortex to trace

the ipsilesional corticospinal tract (CST). Using a dental drill, a 1.5 mm square win-

dow over the motor forelimb cortex was made (1-2.5 mm rostral and 1-2.5 mm lateral
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to bregma). Three injections of 1 µl BDA were made at a depth of1.5 mm into

the cortex using a Hamilton syringe. Following tracing, the skin was sutured with

5-0 Prolene and the animals received 0.1ml buprenorphine (0.03mg/ml). Rats were

euthanized and perfused 12 days following tracing surgeries.

5.2.8 Perfusions and tissue processing

Twelve days following CST tracing, rats were euthanized with Sodium Pentobarbital

(240mg/kg) and transcardially perfused with saline containing 0.02 g heparin/l fol-

lowed by 4% paraformaldehyde (PFA) in 0.1M phosphate-buffered with 5% sucrose as

fixative. Spinal cord and brain tissue were extracted, post-fixed in 4% PFA overnight

at 4 °C and cryoprotected in 30% sucrose for 5 days. Spinal cord tissue was cut into

a 0.5cm block above the injury (cervical levels 2-3, C2-C3) and a 0.5cm block around

the lesion site (cervical level 4, C4). Spinal cord blocks were embedded in O.C.T.

and frozen in 2-methylbutane at -50°C. Spinal cord cross sections were cut at 25µm

on a CryoStar™ NX70 cryostat (Thermo Scientific) and stored at -20°C until further

processing.

5.2.9 Immunohistochemistry

To visualize BDA traced CST axons, frozen sections were acclimatized at 37°C for 1

hour and rehydrated in TBS (2 x 10 min) and TBS-TX (TBS with 0.5% Triton X-

100) (2 x 10 min). The sections were incubated for 2 hours at room temperature with

1:200 Streptavidin, Alexa Fluor™ 488 conjugate (Invitrogen) diluted in TBS-TX. The

sections were then washed in TBS (4 x 10 min) and coverslipped with Fluoromount

(Southern Biotech). For lesion analysis, slides were thawed at 37°C for 1 hour and

rehydrated in TBS (2 x 10 min). Slides were then placed in 0.5% Cresyl Violet solution

for 3 min followed by a serial dehydration in 50%, 75%, and 99% EtOH for 2 min each.

Slides were then cleared in Xylene for 2 x 2 min and coverslipped using Permount

119



mounting media. For IBA1 and GFAP analysis, slides were thawed for 1 hour at 37°C

and rehydrated in TBS for 10 minutes followed by TBS with 0.3% Triton™ X-100

(TBS-T) for 10 minutes. A blocking buffer of 5% normal goat serum in TBS-T was

applied for 1 hour at room temperature. Sections were then incubated overnight at

room temperature in rabbit-anti-IBA1 (1:500, Wako) and mouse-anti-GFAP (1:500,

Sigma) antibodies with blocking buffer. 20 hours later, sections were washed with

TBS (3 x 10 minutes) and incubated with goat-anti-rabbit AF488-conjugated (1:500,

Life Technologies) and goat-anti-mouse AF555-conjugated (1:500, Life Technologies)

antibodies in blocking buffer for 2 hours at room temperature. Sections were then

rinsed in TBS-T (2 x 10 minutes) followed by TBS (2 x 10 minutes) and cover slipped

with Fluoromount™.

5.2.10 Image analysis

For lesion analysis, Cresyl Violet stained sections were imaged with an epifluores-

cence (Leica DM6000B, camera Leica DFC350 FX) microscope. The maximum le-

sioned area was calculated as the percentage of damaged tissue using ImageJ software

(National Institute of Health, USA). For BDA analysis, a confocal (Leica DMi8 and

TCS SP8) microscope was used and 5 spinal cord sections from the C2-C3 block and

5 sections from the C4 block were imaged to quantify the total number of traced

CST axons and CST collaterals using imageJ software. The number of descending

BDA+ CST axons were manually counted and the BDA+ CST collaterals in the

grey matter were manually outlined in each image. All of the images were aligned

with one another and the xy coordinates of the BDA+ pixels were extracted using

customized ImageJ macros. Then, using a customized R script, the xy coordinates

were summed for each group and heat maps were generated using the kde2d function

in the R MASS package [Team, 2013]. The number of BDA+ pixels divided by the

number of labelled descending CST axons (for each respective spinal segment) was
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calculated as a measure of normalized CST sprouting into the grey matter. IBA1 and

GFAP stained sections were imaged with an epifluorescence microscope immediately

rostral to the injury, at the maximum injury site, and immediately caudal to the

injury. 10x magnification was used to image the entire spinal cord cross section and

imageJ was used to quantify the IBA1 and GFAP optical density, calculated as the

percentage area of positive staining in the selected ROI area. 40x magnification was

used to image microglia cells in the ventral grey matter for morphological analysis.

6 representative microglia cells per cross section (3 ipsilesional and 3 contralesional

were chosen and the number of endpoints and process length were measured using

the imageJ plugin NeurphologyJ [Ho et al., 2011].

5.2.11 Statistical Analysis

Graphpad prism (version 8.0.0 for Mac, GraphPad Software, California USA) was

used for statistical analysis. Normality was assessed using the D’Agostino-Pearson

omnibus test. For time-course data, a repeated measures two-way ANOVA was used

followed by Sidak’s multiple comparison test, with a single pooled variance. For

the high-speed analysis of reaching and grasping movements, an ordinary two-way

ANOVA was used. A parametric unpaired t-test was used for data analyzed at

a single time point. 20 animals were excluded based on lack of participation in

rehabilitative training. 9 animals were excluded based on deviation of pre-defined

lesion size (spared corticospinal tracts and rubrospinal tract). 3 animals died following

SCI. Final analysis included 13 animals in the LPS group and 15 animals in the

saline group. One rat in the LPS group did not participate in the gap test (made no

attempts) and therefore was excluded from that particular analysis.
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5.2.12 Neuronal excitability experiment

In a separate experiment, neuronal excitability of the tail was assessed in chronically

spinalized Sprague-Dawley rats (n = 5) before and after LPS treatment.

Spinal cord injury

Under sterile conditions, rats received general anesthetic (sodium pentobarbital, 58.5

mg/kg) and a laminectomy was performed on the L2 vertebrae to expose the S2 spinal

cord. A transverse split in the dura was made and 0.1 to 0.3 ml of Xylocaine (1%)

was topically applied. SCI was performed under a surgical microscope; the pia was

held with fine forceps and a fine suction tip was used to suck under the pia (suction

tip made by heating and pulling a 1 ml syringe to a 0.1 to 0.2 ml tip). Following

injury, the dura was closed with two 8-0 silk sutures and the muscle layers and skin

were securely sutured.

LPS Administration

LPS was derived from Escherichia coli endotoxin (serotype 055:B5, Sigma-Aldrich

Canada, Ltd., Canada) and administered i.p at a concentration of 0.4 mg/kg.

Measuring Spasms in Awake Rats

Tail muscle spasms were measured with Cooner wires (AS631) wires on 23g needles

that were inserted into the tail muscles while the rat was in a Plexiglass tube and

the tail was restrained from moving. Stimulation wires were placed at the base of the

tail and EMG wires were placed in the mid-tail with a ground wire in between. All

wires were separated by at least 1 inch and placed on opposite sides of the tail (one

dorsal, one ventral). Threshold was determined as the minimal stimulus intensity to

elicit a motor response. Stimulation with 0.2 ms current pulse at 1-2x threshold was

recorded for 3 seconds every 40 seconds at a latency of 200 ms. EMG recording lasted
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a minimum of 60 minutes for each rat and the first 30 minutes (45 sweeps) were used

for analysis.

EMG and Statistical Analysis

Offline EMG analysis was performed using Clampex version 9.0. Tail EMG activity

was segmented into 2 reflexes with respect to the stimulation pulse at 200 ms (time

0): An M-wave was seen immediately following the stimulation followed by an h-

reflex (monosynaptic) at a 10 - 20 ms latency. The polysynaptic reflex was analyzed

between 20 and 40 ms. All data was transformed to absolute value (rectified) and the

mean amplitude area was calculated for each reflex. An ordinary one-way ANOVA

was used to analyze the raw EMG data and follow up multiple comparisons were used

to compare each time point after LPS administration to baseline values.

5.3 Results

5.3.1 Systemic LPS administration in the subacute stage of

spinal cord injury induces a transient sickness response

Rats received a cervical SCI that selectively impaired the reaching and grasping abil-

ity of their preferred forepaw. Ten days after injury rats received either saline or

LPS injection and were monitored for sickness behaviour, weight and temperature

immediately prior to injection and 4, 8, 24, 48, and 72 hours later. LPS treatment

resulted in visible sickness behaviour beginning at 4 hours and lasting up to 36 hours

post-injection (time x treatment effect (F (6, 156) = 125.0, p<0.0001), time effect

(F (6, 156) = 125.0, p<0.0001) and treatment effect (F (1, 26) = 517.4, p<0.0001))

(Fig. 5.1 A). This sickness behaviour was accompanied by a significant reduction

in weight relative to saline controls between 24 and 72 hours post injections (time

x treatment effect (F (7, 182) = 43.30, p<0.0001), time effect (F (4.003, 104.1) =
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Figure 5.1: (A) Sickness behaviour was scored on a scale from 1 (no sickness be-
haviour) to 3 (full sickness response visually characterized by piloerection, isolation
and immobility) following LPS or saline injection. LPS rats showed sickness symp-
toms for up to 36 hours post LPS injection relative to Saline rats. (B) LPS rats lost
weight relative to saline treated controls that lasted up to 72 hours post injections.
(C) There were no differences in body temperature between Saline or LPS rats. Error
bars indicate SEM. *p<0.05, **p<0.01, ****p<0.0001.

86.51, p<0.0001) and treatment effect (F (1, 26) = 8.947, p=0.001) (Fig. 5.1 B).

There were no significant differences measured in body temperature between LPS or

saline groups (Fig. 5.1 C).

5.3.2 Inducing inflammation in subacute SCI promotes

recovery in a reaching and grasping rehabilitative

training task

One week following SCI, all rats experienced a drastic (approximately 40%) reduction

in success rate in the SPG task when compared to baseline/preinjury (Fig. 5.2 A).

After receiving LPS or saline injections and beginning rehabilitative training, both

groups followed a similar trend and exhibited an improved success rate over the first

3 weeks of training. However, at this same time point the saline group plateaued

in their recovery, whereas in weeks 4 through 6 the LPS treated group showed a

modest increase in success rate compared to the saline group (Fig. 5.2 A). There

was a significant effect of treatment over time (F (6, 156) = 2.716, p=0.016), as

well as a significant time effect (F (4.161, 108.2) = 28.76, p<0.0001) (Fig. 5.2 A).
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There were no differences between LPS or saline groups in the number of attempts

made to reach for the pellet throughout the rehabilitative period (Fig. 5.2 B). To

discriminate between compensatory strategies and true functional recovery, a gap was

introduced in the pellet dispenser at the offset of rehabilitative training to prevent

the rats from scooping the pellets into their mouths (Fig. 5.2 C). Once this compen-

satory behaviour was eliminated, it revealed that the LPS treated animals performed

significantly better than the saline group (p=0.046) (Fig. 5.2 D). To further analyze

the skilled reaching and grasping pattern, these movements were decomposed and an-

alyzed in 11 components (Fig. 5.2 E). Prior to SCI, both LPS treated and untreated

groups displayed a similar reaching and grasping pattern (Fig. 5.2 F). At the offset

of rehabilitative training, rats that received LPS had generally better performance

in the grasping, supination and release movements compared to rats that received

saline only (significant treatment effect F (1, 275) = 5.397, p=0.021) (Fig. 5.2 G). In

summary, these results reveal that untreated rats develop compensatory strategies to

improve their success rate in the SPG task, whereas rats that received a single dose

of LPS 10 days after SCI recovered true grasping ability of their uninjured paw.

5.3.3 Subacute LPS treatment enhances recovery in an

untrained task

Non-trained behavioural tasks were used to determine whether subacute LPS treat-

ment had an effect outside of the trained SPG task. There was no effect of LPS

treatment on performance in the horizontal ladder (Fig. 5.3 A), however rats that

received LPS injections showed significantly improved recovery in the cylinder test

relative to saline controls (p = 0.015) (Fig. 5.3 B and Fig. 5.3 C). To assess general

locomotor activity, the distance travelled in an open field arena was analyzed at base-

line, 1 week post SCI (before LPS or saline treatment), 1 day, 3 days and 6 weeks after

treatment. As a result of the LPS-induced sickness response, rats in the LPS group
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Figure 5.2: Rats underwent 6 weeks of rehabilitative training on the SPG task.
(A) Rats that received a single LPS injection 10 days post-SCI showed modest but
insignificant improvement in success rate relative to saline controls. (B) There was
no difference between groups in the number of attempts made to retrieve the pellet.
(C) To discriminate between compensatory strategies (scooping) and true functional
recovery, rats were tested at the offset of rehabilitative training in a modified SPG
task with a gap (indicated by the arrow). (D) LPS treated rats had a significantly
higher success rate compared to Saline controls in the gap SPG task. (E) Reaching
and grasping movements were broken down and analyzed into 11 sequences. Repre-
sentative frames from high speed video recording show the rat’s paw advancing and
the digits opening (i), initiating a grasp (ii), supination (iii) and release (iv). (F)
There were no differences between treatment groups at baseline before SCI. (G) At
the offset of rehabilitative training there was a significant main treatment. Error bars
indicate SEM. *p<0.05. *p<0.05
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travelled significantly less distance in the open field compared to the saline group on

day 1 post treatment; this difference became insignificant by 3 days and there was

no difference in activity in the open field by 6 weeks (p<0.0001 at 1 day, time x

treatment effect (F (4, 104) = 6.779, p<0.0001)) and time effect (F (3.251, 84.54) =

38.06, p<0.0001) (Fig. 5.3 D). There was an effect of injury on mechanical sensitiv-

ity such that the contralesional forepaw had increased sensitivity and the ipsilesional

forepaw had reduced sensitivity (Post op: saline p=0.041, LPS p=0.043; Post LPS:

saline p=0.0002, LPS p=0.0009; Offset (6 weeks post LPS): saline p<0.0001, LPS

p=0.0003), however there was no effect of LPS (Fig. 5.3 E).

5.3.4 Subacute LPS treatment did not affect lesion size or

CST fibre sprouting into the cervical grey matter

To determine whether subacute LPS treatment induced plasticity of the injured CST,

BDA was injected into the contralesional forelimb motor cortex and the sprout-

ing of CST fibres into the grey matter was normalized to the number of BDA la-

belled descending CST axons (Fig. 5.4 A) [Bareyre et al., 2004, Lindau et al., 2014,

Mitchell et al., 2016, Torres-Esṕın et al., 2018a]. The density of BDA+ CST axon

collaterals projecting into the cervical grey matter was quantified rostral to the lesion

site (C2-C3, Fig. 5.4 B) and immediately above the maximum lesioned area (C4,

Fig. 5.4 C). Both saline and LPS groups displayed a reduction of CST collaterals

extending into the grey matter at the injury site compared to above the lesion at C2

– C3 (Fig. 5.4 D, F, E, G). The overall density of CST collaterals projecting into the

cervical grey matter was not significantly different between groups above (Fig. 5.4 L)

or at the injury site (Fig. 5.4 M). There was no correlation between the grey matter

CST density and success rate in training (Fig. 5.5). To determine whether there

were statistical differences between groups in the distribution of CST projections,

the grey matter was sectioned into 75 µm2 bins. Differences were observed between
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Figure 5.3: (A) Rats were tested on the horizontal ladder at baseline (top), post
op (middle) prior to LPS injections, and a final assessment (bottom) at the offset
of rehabilitative training. There were no differences between LPS or Saline groups
at any time tested. (B) Depiction of a rat in a clear cylinder making a paw place-
ment. (C) LPS treated rats showed significantly greater recovery in the cylinder
task compared to Saline controls. (D) General locomotor activity was analyzed in
the open field. (E) Mechanical sensitivity was assessed using an electronic Von Frey
apparatus. Following SCI, the ipsilesional forepaw required greater force to elicit a
withdrawal response, while the contralesional forepaw required less force to elicit a
response regardless of treatment group. Error bars indicate SEM. *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001.
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groups both above (Fig. 5.4 H) and at the injury site (Fig. 5.4 I). However, there

were a similar number of bins where either the saline or LPS group was significantly

increased, suggesting no overall increase of one group over another. To further ana-

lyze the distribution of CST projections in a different manner, the grey matter was

sectioned into 7 evenly spaced rings originating at the center of the spinal cord and

propagating outwards. In both groups, the density of CST collaterals was highest in

Figure 5.4: Caption on next page
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Figure 5.4: (Previous page) (A) At the offset of rehabilitative training, the CST was
labelled by injecting BDA into the contralesional forelimb motor cortex. Two weeks
later the labelled CST axons were analyzed in two separate spinal cord blocks: above
the lesion site (C2 - C3) and at the lesion site (C4). Grey matter CST fiber density
was normalized to the total number of traced descending CST axons. Representative
images of the labelled CST axons are shown (B) above the lesion site and (C) at the
lesion site. An overlay of all of the outlined collaterals above and at the injury site are
shown for saline (D, E) and LPS (F, G) groups. Statistically different areas of CST
collateral density above and at the lesion site are shown in (H) and (I), respectively.
Colours denote which group is significantly increased. To further examine CST axonal
projections, the grey matter was split into 7 sections of rings propagating from the
center of the spinal cord. Quantification of BDA+ pixel area above the lesion site (J)
and at the lesion site (K) show that the majority of CST collaterals project to the
intermediate grey matter. Quantification of the total normalized CST density above
(L) and at the lesion site (M) revealed no significant differences between groups. (N)
The lesioned area was calculated as a percentage of the total cross-sectional spinal
cord area. LPS treatment had no effect on the lesion size. Error bars represent SEM.

the first few ring sections closest to the central canal. Compared to the saline group,

rats that received LPS displayed decreased density of CST collaterals near the central

canal above the injury site, but a slightly increased density of axons at the lesion site

in the first ring section (Fig. 5.4 J and 5.4 K). Overall, these data indicate that there

was no significant effect of LPS treatment on CST projections into the cervical grey

matter. Furthermore, there was no difference in lesion severity between saline or LPS

treated animals (Fig. 5.4 N).

5.3.5 LPS induces a long-term increase in anxiety-like

behaviour

Because inflammation has frequently been linked to anxiety and depression

[Dantzer et al., 2008, De La Garza, 2005, Raison et al., 2006, Vogelzangs et al., 2013,

Yirmiya, 1996b], we wanted to determine whether enhancing inflammation in the

subacute stage after SCI had any long-term consequences on anxiety-like behaviour.

Therefore, rats were tested in the EPM 4 weeks following LPS or saline injections
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Figure 5.5: (A) There was no correlation between the CST grey matter density
rostral to the injury (cervical level C2 – C3) and the success rate in rehabilitative
training with or without a gap. (B) There was no correlation between the CST grey
matter density at the maximum injury site (C4) and the success rate in rehabilitative
training with or without a gap.
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Figure 5.6: Rats were tested in the EPM 4 weeks following LPS or Saline injection.
(A) Depiction of the elevated plus maze apparatus with a rat in an open arm. (B)
LPS rats travelled significantly less distance in the EPM than Saline treated animals.
(C) LPS rats spent significantly less percentage of time in the open arms of the maze,
suggesting increased anxiety-like behaviour compared to Saline controls. (D) LPS
rats made significantly fewer percentage of open arm entries compared to Saline rats.
Error bars represent SEM. *p<0.05.

(Fig. 5.6 A). LPS treated rats travelled significantly less distance in the maze

compared to saline controls (p=0.015) (Fig. 5.6 B). Rats that received LPS spent

significantly less time in (p=0.027) and made less entries into (p=0.028) the open

arms of the maze (Fig. 5.6 C and Fig. 5.6 D). Thus, a single dose of LPS in

the subacute period following SCI induces a long-lasting increase in anxiety-like

behaviour.

5.3.6 Subacute LPS treatment attenuates the expression of

IBA1 and GFAP around the lesion site

10 weeks following SCI, IBA1 and GFAP expression was assessed immediately rostral,

at the lesion epicenter and immediately caudal to the injury (Fig. 5.7 A–I). Rats that

received LPS displayed significantly reduced density of IBA positive cells rostral to

the lesion (p = 0.016) and at the maximum injury location (p = 0.009) (Fig. 6J,

L). Caudal to the injury, LPS treated rats also displayed reduced IBA1 expression,

however this did not reach significance (Fig. 5.7 N). There was no effect of LPS on
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Figure 5.7: IBA1 optical density was assessed immediately rostral to the injury (A),
at the lesion epicenter (B) and immediately caudal to the injury (C). GFAP optical
density was assessed immediately rostral to the injury (D), at the lesion epicenter
(E) and immediately caudal to the injury (F). (G-I) Composite images of IBA1 and
GFAP staining. Quantification of the percent area of IBA1 positive cells rostral (J),
at (L), and caudal (N) to the injury show reduced IBA1 density in LPS treated rats.
Quantification of the percent area of GFAP positive cells rostral (K), at (M) and
caudal (O) to the injury show reduced GFAP density in LPS treated rats. Scale bar
represents 1mm. Error bars represent SEM. *p<0.05, **p<0.01.
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Figure 5.8: (A) and (B) show representative images of an IBA1 positive microglia
cell in saline and LPS groups respectively. The images below show the output of
the automated analysis used to quantify the number (green) and length (red) of
microglia process (C & D). The number of microglia endpoints were quantified 8
weeks after a single intraperitoneal LPS injection immediately rostral (E), at (F)
and immediately caudal (G) to the injury at cervical level 4. The average length of
microglial processes per cell was quantified -immediately rostral (H), at the injury
epicenter (I) and immediately caudal (J) to the injury. Error bars represent SEM.
*p<0.05.

the morphology of the microglia, assessed by the length of microglial processes and

number of process endpoints per cell (5.8). LPS treatment also resulted in a long-term

decrease of GFAP expression rostral, at (p=0.003) and caudal to the lesion (p=0.002)

(Fig. 5.7 K–O). These data suggest that a single dose of LPS 10 days after SCI can

attenuate immune cell expression long-term (i.e., 8 weeks) after injection.

5.3.7 LPS reduces neuronal excitability

In a separate experiment, we aimed to determine whether inducing inflammation with

LPS had any long term effects on neuronal excitability. To test this hypothesis, we

used chronically injured rats in which the S2 sacral spinal cord was completely tran-

sected. This injury eliminates all ascending and descending inputs from supraspinal
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levels, leaving the circuitry within the sacral spinal cord intact. This allows us to mea-

sure tail muscle spasms in the awake rat using electromyography (EMG). The base of
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Figure 5.9: Caption on next page
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Figure 5.9: (Previous page) (A) Schematic of tail spasm in awake chronic sacral SCI
rat. Wires are placed in a homonymous configuration: stimulation wires are placed
at the base of the tail and recording wires are placed in the middle of the tail. (B)
Schematic of monosynaptic reflex. Electrical stimulation of 1a afferents causes a re-
action of muscles in their innervating nerves. (C) Representative images of decreased
monosynaptic (H reflex) reflex 3 and 14 days following administration of LPS in the
chronic spinalized rat. Yellow highlight indicates the H reflex 10-20 ms following elec-
trical stimulation, followed by a polysynaptic response. (D) Quantification showing
LPS significantly decreased the monosynaptic (h-reflex) and is maintained for up to
28 days. (E) There was no statistically significant change in the polysynaptic reflex.
Error bars represent SEM.

the tail was stimulated briefly (0.2 ms) at 2x motor threshold and the monosynaptic

(h-reflex) and polysynaptic EMG activity was recorded (Fig. 5.9 A & B). A single

injection of LPS resulted in a significantly reduced amplitude of the h-reflex 3, 14,

and up to 28 days after injection (p = 0.05, p = 0.041, p = 0.022, respectively) (Fig.

5.9 C & D). There was no effect on LPS treatment on the polysynaptic reflex (Fig.

5.9 E).

5.4 Discussion

Previously we have shown that inducing inflammation with LPS 8 weeks after

SCI amplifies the efficacy of rehabilitative training, which is often less effec-

tive in these chronic stages of injury [Norrie et al., 2005, Scivoletto et al., 2005,

Sumida et al., 2001, Torres-Esṕın et al., 2018a]. In the present study we sought to

determine whether LPS treatment earlier after SCI would also be able to increase

training efficacy. We initially hypothesized that enhancing inflammation at this

subacute time point would not have the same effect as chronic application since

levels of inflammation and the capacity for motor recovery are already relatively

higher [Popovich et al., 1997, Scivoletto et al., 2005, Sumida et al., 2001]. Contrary

to our hypothesis, we found that a single dose of LPS given 10 days following SCI

had a beneficial effect on improving functional recovery of the injured forepaw that
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translated beyond the trained grasping task. Paradoxically, inducing inflammation

with LPS resulted in a chronic decreased expression of microglia and astrocytes

around the injury site. The beneficial effects of LPS came at a cost however, since

LPS treatment induced a long-term increase in anxiety-like behaviour.

Although we found similar effects of inducing inflammation in both the current

study and our earlier work (chronic SCI, [Torres-Esṕın et al., 2018a]), there were some

important differences in the methods and results. First, a single injection of LPS was

used for the subacute time point (10 days post injury), however two injections were

given in the chronic setting (8 and 11 weeks post-injury) [Torres-Esṕın et al., 2018a].

Our results suggest that a single injection is sufficient to produce a treatment effect.

However, in comparison to chronic administration, LPS given in the subacute time

point had a more modest effect on training efficacy. This may be due to the lack

of a second injection, the subacute time point being less effective as inflammation is

still present, and/or the saline group displaying a more robust recovery due to the

earlier training onset. Regardless, inducing inflammation in either the subacute or

chronic stages of SCI promoted the restoration of grasping function of the ipsilesional

forepaw. In the present study, the beneficial effects of LPS were not associated with

significant changes in CST sprouting rostral to injury. When applied chronically after

SCI, LPS treated rats displayed increased CST collateral density and further projec-

tion of CST collaterals into the cervical grey matter both at the lesion site and one

to two spinal segments rostral to the lesion site [Torres-Esṕın et al., 2018a]. Since we

did not observe such structural plasticity of the CST fibres, the beneficial effects of

subacute LPS treatment on rehabilitative training could otherwise be due to func-

tional plasticity (ex. synaptic plasticity) or modification of other descending motor

tracts such as the rubrospinal and reticulospinal tracts [Morris and Whishaw, 2016].

One of the most robust effects of LPS treatment was its ability to produce mean-

ingful, functional recovery of the rat’s forepaw. This finding was demonstrated at the
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end of rehabilitative training when a gap was introduced into the pellet dispenser to

discourage compensatory scooping of the pellet. Rats that did not receive LPS per-

formed poorly in this task, displaying a similar success rate as they did immediately

following SCI. This suggests that the saline group’s improved success rate over the 6

weeks of rehabilitative training was largely due to learning a compensatory strategy.

In comparison, rats that received LPS treatment in either the subacute or chronic

setting after SCI displayed restorative grasping and supination movements to retrieve

the pellet, without relying on compensatory movements [Torres-Esṕın et al., 2018a].

Notably, when applied in the subacute setting, LPS treatment promoted recovery

in the cylinder test. Therefore, LPS-induced motor recovery was not task-specific

and effectively translated to an untrained task. This finding is significant as it indi-

cates that LPS-induced motor recovery increased injury-induced recovery likely via

enhanced neuroplasticity.

It is well recognized that upon binding to the CD14/TLR4/MD2 receptor com-

plex on immune cells in the periphery, LPS triggers an immune response therefore

promoting the secretion of nitric oxide, reactive oxygen species and pro-inflammatory

cytokines [Lu et al., 2008, Qin et al., 2007]. Once LPS-induced inflammation reaches

the brain, it initiates a self-propagating process that can last for months after periph-

eral injection [Qin et al., 2007]. This LPS-induced neuroinflammation is character-

ized by the activation of macrophages and microglia, and the upregulation of a variety

of proinflammatory factors such as tumor-necrosis factor alpha, IL-1β, nuclear fac-

tor kappa B, nitric oxide and cyclooxygenase-2 [Zhao et al., 2019]. There is extensive

literature on the destructive nature of neuroinflammation, and many immunosuppres-

sive therapies have been shown to be effective for central nervous system disorders and

damage including multiple sclerosis, Parkinson’s disease, depression, stroke, and SCI

[Kohler et al., 2016, Liebigt et al., 2012, Rocha et al., 2015, Thompson et al., 2018,

Wells, 2003b]. However, neuroinflammation and adverse CNS outcomes do not go
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hand-in-hand, and multiple studies report significant benefits of neuroinflammation

[Schwartz et al., 1999a, Schwartz et al., 1999b, Yong et al., 2019]. For example, se-

rial prophylactic injections of LPS can promote a reactive and neuroprotective mi-

croglia phenotype that promotes recovery and protects against neuronal loss following

SCI [Freria et al., 2020]. Furthermore, transplantation of peripheral nerve-activated

macrophages into the injured spinal cord has been shown to promote tissue repair and

functional recovery [Rapalino et al., 1998, Schwartz et al., 1999b]. The reparative ef-

fects of macrophages may be dependent upon oncomodulin, as this macrophage-

derived protein has been shown to promote regeneration of retinal ganglion cells

[Yin et al., 2009]. Immune cells other than macrophages have also been implicated in

the promotion of CNS repair. Leukocytes and microglia are well known to promote

the secretion of a variety of neurotrophic factors that are important for neurogenesis

and remyelination [Sousa-Victor et al., 2018, Yong and Rivest, 2009]. The role of the

LPS receptor, TLR4, which is found on a variety of cell types including dendritic cells,

neutrophils, mast cells, macrophages, microglia and neurons, has also been implicated

in CNS repair. Antagonizing TLR4 inhibited neurological recovery following intrac-

erebral hemorrhage in a rat model, while another group found that agonizing TLR4

improved Alzheimer’s pathology in mice [Lei et al., 2016, Michaud et al., 2013]. His-

tamine may also play a role in the neuromodulator effects of LPS. LPS stimulates

an increase in mast cells which can pass the blood brain barrier and release his-

tamine [Silverman et al., 2000, Wang et al., 2020], which has been shown to modulate

neuronal and central inflammatory circuits [Coslovich et al., 2018, Dong et al., 2014,

Wei et al., 2016, Zhu et al., 2014].

There is strong evidence that peripheral inflammation leads to increased neuronal

excitability [Riazi et al., 2008]. In culture, activation of the TLR4 receptor evokes

sensory neuron excitability and hyperalgesia, and this effect can be reversed by a

TLR4 antagonist [Due et al., 2012]. We therefore did not expect to see a decrease in
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excitability of the h-reflex following peripheral inflammation induced by LPS. How-

ever, it is important to note that the animals used for this study had spasticity of

the tail and thus have hyperexcitability of spinal reflexes and potentially an altered

environment than intact animals [D’Amico et al., 2014]. Increased spasticity results

in unwanted movements which may impede rehabilitative training. Therefore, the

improvement of training efficacy following LPS may not be to increased excitability,

rather increased inhibition which may modulate neural activity in an adaptive manner

when combined with rehabilitative training. There is little evidence of inflammation

reducing neuronal excitability, however Hellstrom et al., [Hellstrom et al., 2005] found

that, in CA1 pyramidal neurons, exposure to LPS resulted in an increased action po-

tential threshold and an increase in synaptic GABAergic input. Therefore, LPS may

decrease neuronal excitability through GABAergic mechanisms in the presynaptic

neuron which may result in the observed reduction in EMG amplitude of monosy-

naptic reflexes.

We have previously shown in chronic SCI that LPS enhances the expression of mi-

croglia at the lesion site within hours after administration [Torres-Esṕın et al., 2018a].

Although LPS-induced acute microglia and astrocyte activation is well characterized

[Ryu et al., 2019], we describe a novel finding in which LPS resulted in a chronic (i.e.

measured 8 weeks after injection) attenuation of microglia and astrocyte expression.

This result may or may not be particular to SCI, in which immune cells can persist at

the lesion site chronically [Beck et al., 2010, Fleming et al., 2006, Sroga et al., 2003].

It is possible that exposure to LPS following SCI resulted in a compensatory

anti-inflammatory response syndrome, whereby excessive inflammatory stimuli

produces an adaptive immune suppression [Adib-Conquy and Cavaillon, 2009,

Vergadi et al., 2018]. The beneficial effects of LPS for treatment following subacute

SCI may therefore be due to the promotion of immune resolution at the lesion

site, which has previously been associated with improved recovery following SCI
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[Francos-Quijorna et al., 2017]. The improvements in motor recovery with LPS

treatment took time to develop (approximately 4 weeks following injection) in both

subacute and chronic applications [Torres-Esṕın et al., 2018a]. This time point may

coincide with the resolution of inflammation observed in LPS treated rats, however

future work would be required to support this hypothesis.

There is a strong link between inflammation and mental health disorders

[Miller and Raison, 2016, Raison et al., 2006]. Increasing evidence shows that this

holds true after SCI, which causes a drastic post-traumatic immune response,

prolonged neuroinflammation, and an increased prevalence of depression and anx-

iety [Hausmann, 2003, Williams and Murray, 2015]. This has been shown to be

independent of lesion severity or location, and does not necessarily improve over

time after injury [Craig et al., 1994b, Dryden et al., 2005]. Reducing levels of

blood proinflammatory cytokines with a 12 week anti-inflammatory diet is effec-

tive in decreasing symptoms of depression after SCI, implicating inflammation

as a key factor in the development of mental health disorders in the context

of SCI [Allison and Ditor, 2015]. Further evidence from preclinical SCI research

in rodents has shown an association between anxiety- and depressive-like be-

haviours and increased levels of inflammation in the brain, spinal cord and blood

[do Esṕırito Santo et al., 2019, Maldonado-Bouchard et al., 2016b, Wu et al., 2014].

Furthermore, alterations in the intestinal microbiota composition and a leaky

gut (which can allow bacterial matter such as LPS to enter the circulation

[Fukui, 2016, Liu et al., 2004b, Valentini et al., 2014]) have been linked to motor

outcome and the development of anxiety-like behaviour following SCI in rodents

[Kigerl et al., 2016b, Schmidt et al., 2020b]. Outside of SCI research, inducing in-

flammation with LPS is commonly used as a model for anxiety- and depressive-like

behaviour in rodents [De La Garza, 2005, Yirmiya, 1996b]. Following intraperitoneal

LPS administration, rats display sickness behaviour characterized by decreased mo-
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tor activity, decreased appetite, and social isolation. This LPS-induced behavioural

response is considered acute and transient and is therefore studied within 24 hours

after injection [Nava and Carta, 2001, Salazar et al., 2012]. Indeed, in the present

study, rats experienced decreased locomotion in the open field, weight loss and

sickness behaviour lasting up to 3 days after LPS injection. More importantly, in our

study a single injection of LPS elicited long-term (i.e. 4 weeks after LPS) effects on

anxiety-like behaviour in the EPM. It is unclear whether uninjured rats would have

a similar long-term increase in anxiety-like behaviour following LPS administration.

It is possible that the combination of SCI and LPS acted similar to the two-hit

hypothesis suggested for other mental health disorders, where previous immune

activation can prime the immune system to be more susceptible to a second adverse

event [Feigenson et al., 2014]. Nonetheless, LPS-induced anxiety-like behaviour did

not interfere with the rat’s ability or motivation to participate in rehabilitation

training as evidenced in the similar attempt rates between groups. Furthermore, in

line with research indicating that LPS causes mechanical allodynia only in male but

not female rats [Sorge et al., 2011], our female rats did not experience LPS-induced

pain behaviours. However, the von frey test may not have been an appropriate

method of testing allodynia of the forepaws , and additional pain assays may be

necessary. Nonetheless, given the sex differences in response to the LPS-induced

inflammatory response [Kuo, 2016], the present research should be replicated in

males.

We show that triggering an immune response in the subacute period following SCI

in combination with rehabilitative training can enhance functional recovery. This

recovery may in part be due to the paradoxical chronic resolution of neuroinflam-

mation at the lesion site following subacute LPS treatment. However, inflammation

can be a double-edged sword and therefore its manipulation should be considered

cautiously. Although eliciting inflammation with LPS promoted functional recovery
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following SCI, it also caused a long-term increase in anxiety-like behaviour. Induc-

ing neuroinflammation with LPS may generally enhance the plasticity of a variety

of neural substrates, as evidenced by LPS-induced changes in the limbic system,

pain sensitivity, and motor recovery [Calil et al., 2014, Guo and Schluesener, 2006,

Torres-Esṕın et al., 2018a, Yirmiya, 1996a]. Given the widespread immune response

triggered by LPS, future research should explore the temporal systemic and local

immune response to LPS treatment for SCI. Furthermore, the timing of treatment

intervention may still be an important factor. Although we have shown that induc-

ing inflammation 10 days or 8 weeks following SCI both have a beneficial effect on

functional recovery without exacerbating lesion size, it is very likely that inducing a

systemic immune response in the acute (i.e., within days) lesion environment would

have a detrimental effect on SCI pathology. Future work should be considered to

optimize inflammation-induced plasticity by separating its beneficial aspects from

detrimental behavioural consequences.
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Chapter 6

Conclusion

6.1 Summary of results

In this thesis, we investigated various therapeutics targeting the microbiota-immune

axis to augment multiple aspects of recovery following SCI in rats. In chapter 2, we

first showed that an incomplete cervical SCI induced acute intestinal dysbiosis and

a long-term increase in anxiety-like behaviour. We next showed that there was a

link between these two consequences of SCI, since preventing SCI-induced dysbiosis

with a FMT also prevented the development of anxiety-like behaviour. We showed

in chapter 3 that optimal FMT donor selection is critical for successful transplant

following SCI. FMT from rats with increased baseline levels of anxiety-like behaviour

and reduced stool proportions of Lactobacillus (which we will term inferior FMT)

was not only unsuccessful in preventing SCI-induced dysbiosis, but the recipient rats

also displayed increased intestinal permeability, adopted an increased anxiety-like be-

havioural state and displayed altered local and systemic inflammation. Furthermore,

we showed that an incomplete cervical SCI resulted in a chronic suppression of sys-

temic inflammation (reflected by the decreased concentration of plasma cytokines and

chemokines). In chapter 4, we showed that treatment with the antibiotic and anti-
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inflammatory drug minocycline can prevent this SCI-induced suppression of plasma

cytokines and chemokines. This suppression of circulating inflammatory markers was

preceded by minocycline’s drastic impact on the microbiota composition, suggesting

a temporal relationship between these events. Finally in chapter 5 we used the bac-

terial endotoxin, LPS, to show the dichotomous role that inflammation can play in

recovery after injury. Although LPS treatment enhanced motor recovery, it also had

a long-term negative effect on anxiety-like behaviour following SCI.

6.2 Potential mechanisms and future directions

6.2.1 lipopolysaccharide translocation

In chapter 2, we show striking results from successful FMT treatment (i.e., FMT from

non-anxious-like donors successfully prevented SCI-induced dysbiosis), however the

mechanisms of how this treatment worked remain elusive. We hypothesize (as one

possibility) that preventing SCI-induced dysbiosis also prevents a leaky gut, which

would allow the translocation of bacterial matter such as LPS across the impaired

epithelial tight junctions [Ghosh et al., 2020]. Once in circulation, LPS initiates a

potent inflammatory response which has been strongly linked to the development

of mental health disorders [Yirmiya, 1996a, De La Garza, 2005, Raison et al., 2006].

Therefore, optimal FMT treatment may protect against a leaky gut via modula-

tion of the microbiota and prevent the subsequent increase in inflammation from

endotoxin translocation, thus preventing the development of anxiety-like behaviour

following SCI. Although we did not test this directly, we showed that FMT is able

to modulate the intestinal barrier, since inferior FMT treatment enhanced intesti-

nal permeability. Although in this experiment, untreated SCI rats did not display a

change in intestinal permeability following SCI, it is possible that a leaky gut may

have been observed at different timepoints as tight junctions are highly dynamic and
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can open or close rapidly [Chelakkot et al., 2018]. Furthermore, the intestinal perme-

ability assay was run in rats with increased baseline levels of anxiety-like behaviour.

Since stress itself can induce a leaky gut [Zheng et al., 2017], this may explain why

we did not observe a change in intestinal permeability following SCI in control rats.

Further evidence that the negative effects of inferior FMT treatment were a result

of endotoxin translocation are the parallels between LPS and inferior FMT treat-

ment. Both LPS and inferior FMT treated rats displayed improved motor recovery

in the modified gap test (although this did not reach significance for inferior FMT

rats). Furthermore, both inferior FMT and LPS treated rats displayed a seemingly

paradoxical chronic reduction in microglial density around the lesion site, which may

suggest a compensatory anti-inflammatory response following systemic inflammation

[Adib-Conquy and Cavaillon, 2009]. Interestingly, we found similar (yet opposite)

results from minocycline, such that direct anti-inflammatory treatment with minocy-

cline resulted in an increase in microglial immunoreactivity around the lesion site.

These confounding results suggest that manipulating systemic inflammation after SCI

can disrupt the balance of the immune system that can have long-term repercussions

within the CNS.

Going back to potential mechanisms of FMT treatment, both intestinal perme-

ability and systemic LPS concentrations should be measured at various timepoints

following SCI and with optimal FMT treatment. Since we show that both adminis-

tration of LPS or increasing intestinal permeability (with the inferior FMT) results

in a long-term increase in anxiety-like behaviour, it is possible that similar mecha-

nisms are responsible for the development of anxiety-like behaviour observed in these

studies. If optimal FMT treatment does reduce the translocation of LPS across the

intestinal barrier, it would be important to consider that this may have a detrimental

effect on rehabilitative training and reduce the opportunity for plasticity. In support

of this, successful FMT treated animals performed significantly worse in the cylinder

146



task compared to untreated SCI rats. Clearly there is a complicated relationship

between the microbiota and systemic inflammation, and it is important to consider

these interactions when testing potential therapeutics. It is unknown whether LPS

will be able or proven safe enough to be used clinically, so determining downstream

mechanisms of LPS induced plasticity will be important to minimize the negative side

effects such as long-term increases in anxiety-like behaviour. On the other hand, it

will also be important to consider potential negative side effects of anti-inflammatory

treatment such as reducing the opportunity for beneficial plasticity following injury.

6.2.2 The kynurenine pathway as a potential mechanism

underlying treatment results

The kynurenine pathway of tryptophan metabolism may play a role in the treatment

effects of FMT, minocycline and LPS observed throughout this thesis, whether bene-

ficial or detrimental. Tryptophan is a dietary essential amino acid whose metabolites

are integral to a variety of physiological and immune functions [Le Floc’h et al., 2011].

Less than 5% of tryptophan is metabolized into serotonin [Michael et al., 1964]; the

majority of tryptophan is metabolized into kynurenine via the rate-limiting enzymes

tryptophan-2,3-dioxygenase and indoleamine-2,3-dioxygenase (IDO) [Bender, 1983].

Tryptophan-2,3-dioxygenase is localized in the liver and is activated by increased

glucocorticoid concentrations induced by stress [Danesch et al., 1983]. IDO is widely

distributed throughout the periphery and CNS and is induced by inflammatory stimuli

such as LPS and pro-inflammatory cytokines [Moreau et al., 2005, Dinel et al., 2014].

Not only does activation of the kynurenine pathway reduce the bioavailability of tryp-

tophan and subsequent synthesize into serotonin, kynurenine metabolites can have

drastic effects on inflammation, neuronal activity and behaviour [Terness et al., 2002,

Lapin, 1978, Lapin, 1983]. The two most widely studied kynurenine metabolites are

kynurenic acid and quinolinic acid. Kynurenic acid acts as an NMDA receptor antag-
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onist and has been proposed to be neuroprotective and suppress multiple inflamma-

tory pathways [Savitz, 2016]. On the other hand, quinolinic acid acts as an NMDA

receptor agonist and exerts various neurotoxic effects such as inhibiting astrocytic glu-

tamate reuptake, disrupting the BBB, destabilizing the cytoskeleton of cells and in-

ducing apoptosis [Lugo-Huitrón et al., 2013]. These opposing roles of the kynurenine

pathway may help explain the dichotomous role that inflammation can play. Kynure-

nine metabolites have been shown to be essential for LPS-induced depressive-like

behaviour; for example, blockade of IDO activation with minocycline prevents LPS-

induced depression without interfering with sickness behaviour or cytokine activation

[O’Connor et al., 2009, Dantzer, 2017]. Combining minocycline with LPS treatment

may therefore prevent some of the negative side effects of inducing inflammation on

mental health while still activating some immune pathways which may promote plas-

ticity. Furthermore, minocycline’s prevention of SCI-induced suppression of systemic

inflammation observed in chapter 4 may be mediated through inhibition of IDO, since

kynurenine and its metabolites can be immunosuppressive and downregulate the in-

flammatory response to LPS [Kimura et al., 2009, Bessede et al., 2014]. On the other

hand, kynurenine can stimulate cell proliferation and growth [Chalisova et al., 2019],

which may in part explain LPS-induced motor recovery.

In addition to the many routes of communication between the gut and the

brain, the gut microbiota can modulate circulating tryptophan and kynurenine,

which are able to pass through the BBB through large amino acid transporters

where their metabolites can cause a variety of neuroactive effects in the CNS

[Fukui et al., 1991, Wiedlocha et al., 2021]. Administration of Lactobacillus in rats,

non-human primates and humans can attenuate IDO activity and the kynure-

nine pathway, which, as previously mentioned, have been associated with de-

pression and anxiety-like behaviours [Rudzki et al., 2019, Valladares et al., 2013,

Vujkovic-Cvijin et al., 2015, Rudzki et al., 2019]. This may explain why the in-
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ferior FMT was not effective in preventing SCI-induced anxiety-like behaviour,

as it did not contain Lactobacillus. In the case where inflammation is produced

centrally, such as in SCI, the majority of kynurenine is produced locally by microglia

and astrocytes [Kita et al., 2002, Guillemin et al., 2005]. Although the kynurenine

pathway is relatively understudied in the context of SCI, existing studies suggest

that targeting this pathway may provide multiple therapeutic benefits such as

neuroprotection and improved mood. For example, blocking the metabolism of

quinolinic acid after SCI has been shown to reduce functional deficits associated

with the injury [Blight et al., 1995, Yates et al., 2006]. On the other hand, the

kynurenine pathway may also be a target of neuroprotection, since administration

of kynurenic acid into the spinal cord improves recovery of motor function after

SCI [Jacobs and Lovejoy, 2018, Wrathall et al., 1992]. Another study found that

increasing kynurenic acid synthesis in individuals with SCI (with gene transfer of

human KAT-II) improved bladder function, perhaps by blocking NMDA receptors in

the spinal cord [Wang and Liao, 2017]. Alterations in the kynurenine pathway may

also explain the increased rate of depression and anxiety in SCI patients; Allison

and Ditor found that the kynurenine/tryptophan ratio was significantly correlated

with depression scores in patients with SCI [Allison and Ditor, 2015]. Targeting

kynurenine 3-monooxygenase, which is the essential regulator of the metabolic fate of

kynurenine to either the neuroprotective kynurenic acid or the neurotoxic quinolinic

acid, may be a therapeutic target to mitigate the detrimental aspects of neuroinflam-

mation [Parrott and O’Connor, 2015]. For example, a recently discovered compound

termed KMO inhibitor 1 has shown unique potential for its ability to cross the BBB

(via a prodrug variant) and lower neurotoxic kynurenine pathway metabolites locally

[Zhang et al., 2019b]. Furthermore, since kynurenine metabolites act as endogenous

ligands to NMDA receptors, they may also be involved in inflammation-mediated

plasticity, however this hypothesis has yet to be explored. Nonetheless, the kynure-
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nine pathway likely plays a part in multiple aspects of SCI consequences, including

systemic inflammation, immune suppression, psychiatric disorders and neuronal

plasticity.

6.2.3 The dichotomous role of inflammation-induced plasticity

Throughout this thesis, we have eluded to the hypothesis that neuroinflammation

is a driving force behind plasticity that occurs following injury to the CNS, re-

gardless of whether that plasticity manifests as a beneficial or detrimental process.

One of the most infamous examples of neuronal plasticity was proposed in 1949

by Donald Hebb, who put forth the idea that ”neurons that fire together wire

together” [Donald Olding Hebb, 2005]. This theory of activity-dependent plastic-

ity was later proven by Bliss and Lomo, who demonstrated that high-frequency

stimulation of hippocampal afferents resulted in persistent increase in synaptic

strength, termed long-term potentiation [Bliss and Lømo, 1973]. Over 20 years

later it was shown that the pro-inflammatory cytokine IL-1 was critically in-

volved in maintaining long-term potentiation [Schneider et al., 1998]. Since then,

countless studies have verified the involvement of immune mediators in neural

plasticity, however the nature of this involvement and how it transitions from a

beneficial to detrimental role are poorly understood [Yirmiya and Goshen, 2011].

The fact that triggering an inflammatory response in a rodent paw increases

spinal dorsal horn neuron receptive field size and excitability associated with

hyperalgesia is a critical example of detrimental inflammation-induced neuronal

plasticity [Dubner and Ruda, 1992, Kitagawa et al., 2005]. After SCI, there is a

critical window where spontaneous plastic changes are observed at multiple levels

including cortical map changes, neuronal excitability changes, axon regeneration

and sprouting [Peruzzotti-Jametti et al., 2014, Carmichael, 2006, Endo et al., 2007,

Thomas et al., 2017, Houle and Côté, 2013]. However, this plasticity is a double
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edged sword; the same processes that foster recovery can also cause unwanted

plastic processes such as neuropathic pain, spasticity, depression, and potentially gut

dysbiosis [Hulsebosch et al., 2009, Adams and Hicks, 2005, Allison and Ditor, 2015,

Kigerl et al., 2016a, Miller and Raison, 2016]. Further manipulating the immune

response following SCI can exacerbate these processes; it is therefore prudent to

be cognizant of the dichotomous role inflammation-induced plasticity can have and

monitor multiple aspects of recovery when considering potential plasticity-promoting

therapeutics for CNS injuries.

6.2.4 Limitations and future direction

In many ways, the results presented in this thesis prompt more questions than they an-

swer, leading to numerous potential future studies. Primarily, how can we determine

the mechanisms that underly the results? For example, the kynurenine/tryptophan

ratio could be measured both systemically (i.e., in plasma) and locally (i.e., in spinal

cord and brain tissue) to delineate how this pathway is involved in the pathophysiol-

ogy of SCI. Inhibiting IDO1, the rate limiting enzyme of the kynurenine pathway, in

conjunction with LPS treatment may elucidate whether the kynurenine pathway is

involved in the deleterious effects of LPS on the development of anxiety-like behaviour

following SCI. The downstream role of TLRs following systemic LPS injection could

also be considered to determine whether the effects of LPS are mediated by TLR2

or TLR4 [Takeuchi et al., 1999]. Given that anxiety/depressive-like behaviours are

a main focus of this thesis and we do not look in the brain, there is a missing link

between the systemic and behavioural effects observed. Therefore, brain structures

associated with affective behaviours, such as the amygdala, hippocampus, anterior

cingulate-prefrontal cortex and striatum [Zhang et al., 2018], should be examined

both on a structural and functional level. In addition to looking at brain structures,

the role of the HPA axis in recovery following SCI could be examined as the HPA axis
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is involved in many of the topics covered in this thesis such as psychiatric disorders, in-

flammation and immune suppression [Tapp et al., 2019, Iob et al., 2020, Sudo, 2012].

SCI-induced immune suppression should be measured directly (for example by mea-

suring lymphoid organ atrophy and circulating leukocytes) and the role of the mi-

crobiota in the development of immune suppression should be considered. This is

especially important since immune suppression enhances the risk of infection, which

is a leading cause of death acutely following SCI [DeVivo et al., 1989]. In addition

to directly monitoring symptoms of immune suppression, assessing gut motility or

neurogenic bowel syndrome in our model of SCI would also be prudent to deter-

mine whether gut dysbiosis is a symptom or a cause of these clinically important

outcome measures. Another future direction would be to investigate probiotics as a

treatment for SCI-induced gut dysbiosis and anxiety-like behaviour. Indeed, probi-

otics may sound like an “easier pill to swallow” for patients. However, FMT would

likely be more effective as it is able to establish a durable alteration in the recipi-

ent’s microbiome [Grehan et al., 2010], whereas probiotics only temporarily colonize

the gut lumen [Tannock et al., 2000]. Furthermore, the efficacy of this transient

probiotic engraftment is highly variable between individuals based on their exist-

ing microbiome composition [Zmora et al., 2018]. Nonetheless, investigating the effi-

cacy of transferring specific strains of bacteria is a worthwhile venture to broaden

our understanding of how bacteria contribute to various disease states. Finally,

these studies should be replicated in males to determine what effect sex has on out-

come measures, especially since males have an altered inflammatory response to LPS

[Marriott et al., 2006, Sens et al., 2017]. Overall, the results presented in this the-

sis are largely descriptive in nature and could use further research to determine the

underlying mechanisms. This will be essential for clinical translation since both the

inferior FMT and LPS treatment had some negative side effects. In order for these
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treatments to be clinically viable, a deeper understanding of the factors mediating

both beneficial and harmful processes is essential.

6.3 Epilogue

The first documented case of SCI was approximately 2500 BC, where it was de-

scribed as ”an ailment not to be treated” [Hughes, 1988]. This therapeutic ni-

hilistic philosophy continued for millennia until the 20th century, when Dr. Donal

Munro refused this defeatist attitude and opened the first spinal cord unit in 1936

[Silver, 2005]. Dr. Munro had the unique perspective for his time that with attentive

care and a holistic treatment approach (including neurological, urological, orthope-

dic, psychological and social care), his SCI patients could live longer, better lives

[Bodner, 2009, Silver, 2005, Trieschmann, 1988]. Since then countless clinicians and

researchers have dedicated their careers to finding a treatment for the SCI. This thesis

contributes to this enormous undertaking and emphasizes the importance of consider-

ing the whole body and mind when investigating treatment options. As SCI impacts

almost every system in the body (from the acute damage of sensory and motor tracts,

to the commensal micro-organisms inhabiting the gut, to mental health), it is likely

that multiple therapeutic approaches targeting multiple aspects of recovery will have

to be utilized. Then, perhaps, SCI will be considered an ailment to be cured.
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(1983). Transcriptional regulation of the tryptophan oxygenase gene in rat liver by
glucocorticoids. Journal of Biological Chemistry, 258(8):4750–4753.

[Dantzer, 2017] Dantzer, R. (2017). Role of the Kynurenine Metabolism Pathway
in Inflammation-Induced Depression: Preclinical Approaches. Current Topics in
Behavioral Neurosciences, 31:117–138.

[Dantzer, 2018] Dantzer, R. (2018). Neuroimmune Interactions: From the Brain to
the Immune System and Vice Versa. Physiological Reviews, 98(1):477–504.

[Dantzer et al., 2008] Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W.,
and Kelley, K. W. (2008). From inflammation to sickness and depression: when the
immune system subjugates the brain. Nature Reviews Neuroscience, 9(1):46–56.

[D’Aquila et al., 1994] D’Aquila, P. S., Brain, P., and Willner, P. (1994). Effects of
chronic mild stress on performance in behavioural tests relevant to anxiety and
depression. Physiology & Behavior, 56(5):861–867.

[David and Aguayo, 1981] David, S. and Aguayo, A. (1981). Axonal elongation into
peripheral nervous system ”bridges” after central nervous system injury in adult
rats. Science, 214(4523):931–933.

[David and Kroner, 2011] David, S. and Kroner, A. (2011). Repertoire of microglial
and macrophage responses after spinal cord injury. Nature Reviews Neuroscience,
12(7):388–399.

[David et al., 2012] David, S., Zarruk, J. G., and Ghasemlou, N. (2012). Inflamma-
tory Pathways in Spinal Cord Injury. In International Review of Neurobiology,
volume 106, pages 127–152. Elsevier.

[Davis et al., 1994] Davis, E., Foster, T., and Thomas, W. (1994). Cellular forms and
functions of brain microglia. Brain Research Bulletin, 34(1):73–78.

[De La Garza, 2005] De La Garza, R. (2005). Endotoxin- or pro-inflammatory
cytokine-induced sickness behavior as an animal model of depression: focus on
anhedonia. Neuroscience & Biobehavioral Reviews, 29(4-5):761–770.

[de Punder and Pruimboom, 2015] de Punder, K. and Pruimboom, L. (2015). Stress
Induces Endotoxemia and Low-Grade Inflammation by Increasing Barrier Perme-
ability. Frontiers in Immunology, 6.

[Desbonnet et al., 2010] Desbonnet, L., Garrett, L., Clarke, G., Kiely, B., Cryan,
J., and Dinan, T. (2010). Effects of the probiotic Bifidobacterium infantis in the
maternal separation model of depression. Neuroscience, 170(4):1179–1188.

[Deumens et al., 2008] Deumens, R., Joosten, E. A. J., Waxman, S. G., and Hains,
B. C. (2008). Locomotor Dysfunction and Pain: The Scylla and Charybdis of Fiber
Sprouting After Spinal Cord Injury. Molecular Neurobiology, 37(1):52–63.

163



[DeVivo et al., 1989] DeVivo, M. J., Kartus, P. L., Stover, S. L., Rutt, R. D., and
Fine, P. R. (1989). Cause of death for patients with spinal cord injuries. Archives
of Internal Medicine, 149(8):1761–1766.

[Diguet et al., 2004] Diguet, E., Fernagut, P.-O., Wei, X., Du, Y., Rouland, R.,
Gross, C., Bezard, E., and Tison, F. (2004). Deleterious effects of minocycline
in animal models of Parkinson’s disease and Huntington’s disease: Minocycline in
PD and HD. European Journal of Neuroscience, 19(12):3266–3276.
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Farland, K. C., Muñoz-Quiles, C., Roy, R. R., Edgerton, V. R., Ramón-Cueto, A.,
and Phelps, P. E. (2008). OEG implantation and step training enhance hindlimb-
stepping ability in adult spinal transected rats. Brain, 131(1):264–276.

174



[Kulesskaya and Voikar, 2014] Kulesskaya, N. and Voikar, V. (2014). Assessment of
mouse anxiety-like behavior in the light–dark box and open-field arena: Role of
equipment and procedure. Physiology & Behavior, 133:30–38.

[Kump et al., 2018] Kump, P., Wurm, P., Gröchenig, H. P., Wenzl, H., Petritsch,
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Appendix A

Appendix

Figure A.1: There was no significant difference in the time spent in light chamber
(A) or latency to enter the light chamber (B) before or one week post-injury (1WPI)
(repeated measure two-way ANOVA). Error bars indicate standard error mean.
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Figure A.2: Unsupervised ordination was performed by non-metric multidimensional
scaling (NMDS) and Bray-Curtis dissimilarity at the Phylum, Order, Class, Family
and OTU levels. Dotted lines represents the 2D distance of each animal with the
respective centroid at each timepoint in the NMDS space.This analysis indicates a
deviation in the microbiome composition three days post-injury, with fewer differences
between groups pre-injury and four weeks post-injury. The proximity between healthy
and SCI-FMT groups can be seen at the OTU, family and phylum levels.
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Figure A.3: Complete list of the functional pathways that contribute to the second
principal component (explaining 18.4% of the variance) of the PICRUST analysis
three days after spinal cord injury or sham operation (Fig. 6B). Pathways that are
more likely positively correlated to the second principal component are shown in red,
and pathways that are more likely negatively correlated are shown in blue.

204



Figure A.4: Complete list of the functional pathways that contribute to the first
principal component (explaining 37.9% of the variance) of the PICRUST analysis
three days after spinal cord injury or sham operation (Fig. 6B). Pathways that are
more likely positively correlated to the first principal component are shown in red,
and pathways that are more likely negatively correlated are shown in blue.
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Figure B.1: Proportion of bacteria at the genus level over time following spinal cord
injury. Error bars represent standard error mean.
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Figure B.2: Proportion of bacteria at the genus level over time following spinal cord
injury. Error bars represent standard error mean.
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Appendix C

Appendix

Figure C.1: Body weight was monitored at baseline and weekly following SCI.
SCI rats lost weight relative to uninjured animals that remained significant until 4
weeks post-injury, particularly in comparison to uninjured + minocycline rats that
consistently weighed slightly more than untreated rats. Error bars represent the
standard error of the mean. *p¡0.05, **p¡0.01, ***p¡0.001, ****p¡0.0001
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Figure C.2: Non-metric multidimensional scaling at the species level shows an effect
of minocycline treatment on the overall microbiota composition at 5 and 14 days.

Figure C.3: Non-metric multidimensional scaling at the genus level shows an effect
of minocycline treatment on the overall microbiota composition at 5 and 14 days.
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Figure C.4: Non-metric multidimensional scaling at the family level shows an effect
of minocycline treatment on the overall microbiota composition at 5 and 14 days.

Figure C.5: Non-metric multidimensional scaling at the class level shows an effect
of minocycline treatment on the overall microbiota composition at 5 and 14 days.

211



Figure C.6: Non-metric multidimensional scaling at the order level shows an effect
of minocycline treatment on the overall microbiota composition at 5 and 14 days.
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