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ABSTRACT

We call a group G an SP-group if there exist an integer n > 1 and distinct
words u and v in the semmigroup (X,, X | XY= X.') such that the complexes
w(H,,.... ) and v(Hy,...,H,) are cqual; this may then be thought of as an
identity on the subgroups of G. It is shown here that a finitely generated soluble
S P-group is nilpotent by finite, and that any SP-group is either of restricted width

or satisfies an identity in three variables.
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NOTATION

The following notation is used in the text of this thesis:

H | K, the wreath product of H and K

H x K, the split extension of H by K

G' = [G,G), the derived subgroup of G

G the a*? term of the derived series of G

((G), the centre of G

¢(G), the ith term of the upper central series of G, (Co(G) = 1)
v:(G), the 1** term of the lower central series of G, (M(G) = G)
maz, the maximal condition on subgroups

maz-n, the maximal condition on normal subgroups

Cg(H), the centralizer of H in G

NgG(H), the normalizer of H in G

vil



INTRODUCTION

We eall a group G an SP-group, for subgroup-permutable group, if there 1s
some non-trivial identity on the subgroups of ¢ one like (Hy H2)? = (H2Hy )2
for all H,, H, < G. Our interest is in classifying groups which have identities
on their subgroups but, in the context of this thesis, restrct ourselves to the case
that €& is finitely generated and soluble.

If w and ¢ are distinet words the semgroup <,\'| ...... X, | X? .\’.>,
we sny G € SP({u}, {v}) if u(Hy,...,Hy) = v(H,,...,Hy) for all sequences of
subgroups Hy, ..., H, < G. The somewhat cumbersome notation 1s maintained
in this text because this problem is easily generalized in the fcllowing manner:
classify groups G for which there exist finite disjoint scts U and V' of words C
(X, Xa | X.* = X,) such that G € SP(U,V). In this greater generality, G
€ SP(U,V) means that for every n-tuple of subgroups (Hi,.--, H,) there exist
w € U and v € V such that the complexes u(H,,...,Hn) and v(Hy, .. ., H,) are
cqual.

It should be emphasized here that throughout, when we write of identities on
subgroups we mean indeed that the complezes are equal, not the weaker condition

that the subgroups generated by u(Hy, ..., H,) and v(H,,...,H,) are equal.

The foundations of study of groups of this nature are due to Philip Hall,
who considered groups with elliptically-embedded subgroups; certain such groups
have the more restrictive property that for some integer n, (HK)" = (KH)" for
any subgroups H and K. Finitely generated and soluble groups of this property
have recently been studied, albeit in more generality, by A.H. Rhemtulla and J.S.

Wilson, ([3], [6]) who found them to be finite-by-nilpotent.
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In this thesis we study the variation that G satifies an identity involving more
than two subgroups at a time: groups G ¢ SP({u},{v}) for which u and v are
words in at least three letters

In Chapter One, we reaffirm the aotions introduced here, and prove some
preliminary results;in particular it turns out that any grcup satisfying a subgroup
identity satisfies one i at most three variables, and we exhibit such anadentity
on subgroups of the nfinite dihiedral group. Unfortunately D, 1> not finite by
nilpotent, so we aim to show that SI” groups have the weaker property of being
nilpotent- by finite.

The second chapter deals with a par of key lemmas which ane used to elun
inate certain classes of groups, and therefore allow us a better picture of the
structure and rank of SP-groups. These lemmas are then employed in the tinal
chapter, which consists primarily of a proof by induction on its solubility length

that our S P-group is nilpotent-hv-finite.



CHAPTER ONE

KXAMPLES AND PRELIMINARY RESULTS

In thin chapter, we give an example of an SP-group which is not finite by-
nilpotent  and we prove a number of preliminary results which are applicable to
with identities on their subgroups. We begin, however, by formal

general grovps

1zing the coneepts previously introduced.

(1.1] Definition: A subgroup H of a group G is said to be eiitptically embedded
i G if. for every K < G there exists an integer n such that (H, I\') = (HK)".
Groupe all of whose subgroups are clliptically embedded are said to be of restricted

undth.

Examples of groups of restricted width are the so-called quasi-hamiltonian
groups, that is groups G with the property that if H K < G then HK = KH.
These quasi-hamiltonian groups are, in fact, examples of groups of restricted width
which have the further property that there exists an integer n such that (KH)"
= (HK)" for all pairs H and K < G. It is this further property that we care to

generalize, the following manner:

(1.2) Definition: Let G be a group, then we say G € SP({u},{v}) for words
u = WX, Xz2,....Xn) = X;,---X,, and v = (X1, X2, .., Xn) = Xy, - X,
i. u # v but the complexes u(H,...,Hy) and v(Hy,. .., Ha) are equal for all
sequences of subgroups (Hi,...,Ha); to guarantee that u and v are essentially

differeat we further insist that i # ie41 and je # jes, throughout. We refer to G

3



as an SP-group if theare exist u and v with G € SP({u},{v}).

Therefore, pacticular examples of SP groups are quast hanultoman groups
and groups of restricted width which have bounded ellipticity It 15 our aim i
tLis thesis to show that if G is a finitely generated and soluble SP group then G

is nilpotent by-finite; we begin with the following

(1.3] Lemma. Let (i be a group, and suppose there crists an mtegern such that
G € SP({u}, {v}) for some u = u(X;, Xy, ..., X,) and v = o(Xy, Xoy oo X.),

w # v, If nae the least such integer, thenmn - 2 or 3

Proof: Assume n > o, "nd define
u, (X X X X..) 1(\' X 1, .\ X
NI EEEEERLT RS RILY R S R A ] .S R T IR RN R 3 R A VA

Write each u, in canonical form, replacing X,z by X, throughout.
By the minimality of n, we have that u, and v, are identically equal for all ¢
we ciaim this implies u = v or, equivalently, that there is a unique word w =

w(.\’,,Xg,...,X,,) such that w, =y, fort =1...n

Let vy = Xml,l‘\ml.l e X"‘l,l(n)
u2 = 4lelxmz., .. -sz’I(7)
U;; = 4¥ma'1X'n3’2 b .Amﬁ,l(il)

Ug = Xy Xmas Xmyo,, Ctcctera,

and let w = X4, X, ... Xa, have the property w, = u, for all 1.



(44}

We give the following algorithm to reconstruct w from the given set {w;} :

uy =>a; =lora; = M
ug =>4 = 2oray = ma;
uz =>a; = Jora; = My,

and thene three cor-itions determine a; uniquely. Consid~r now ua,, and we see
that az = ma,1- Henceforth, we proceed iteratively: to determine a; given a,—1
and a, _9, consider two rows other than u,,_, and u,,_,, say ur and u,. Let X,
and X,,, respectively, be the first terms of u, and u, whose position in w has not
been determined. Then a; = (ry or r) and (s; or s); this defines a; uniquely
unless s = r; and r = s;. In this case, check the first term of u,, following the term
Xa,_,- Itisclear that these three conditions determine a; uniquely, and hence that
the pre-image, w, of the “projections” is unique. Therefore u = v, contrary to the

requirement that u # v if G € SP({u}, {v}).

We illustrate the algorithm as follows:

Let u; = X2X3X4
Ug = X1X3X4
Uz — X1X2X1X.‘

Uy — X)X2‘Y1X3

I u(X;,X2,X3,X4) = Xa,Xa,---Xa,, then u; tellsus ay € {1,2} (as does
u7), while u3 determines that a; = 1.

Consider now u;, and we see that az = 2. Now we look at both u; and uy
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to see that a3 is in both {3,1} and {4,1}, that is we must have a3 = 1. Finally
we look again at u; and uy to see that aq is in both {3,4} and {4,3}. Thisis
inconclusive, so we check ug for the first entry not accounted for - in this case
X5. We continue in this manner to determine the unique word v = X, XX X3X,

whose “projection by ¢” is, in each case, u;.

[1.4]Remark: If G is finitely-generated and soluble, and G € SP({u},{v}) for
some words u and v in two variables, then G is of restricted width. The result of
Rhemtulla (3] implies, therefore, that G is finite-by-nilpotent. We apply a result
due to P. Hall ([8], part I, p.117) wh h states that if for a group G there exists an
integer i such that v,(G) is finite, then there is an integer j such that |G : (,(G)|
is finite. We clearly have an ascending central scries to (,(G), so G is nilpotent-
by-finite.

Therefore, we have in particular that finite-by-nilpotent groups are nilpotent-
by-finite, and it follows that so too are finitely generated soluble S P-groups in the
case that our words are in two variables. Thus, we necd here address only the case

that u and v are words in three variables.

[1.5]Lemma. Let G € SP({u}, {v}), with w(X,, X2, X3) = X, X, - Xi,and
v(X,,X2,X3) = X, X;, - X;,. Then we may assume that each of Xy, X2 and

X3 appear the same number of times in the ezpressions for u and v.

Proof: Without loss, assume that X, appears more often in u(X;, X2, X3) than
in v(X1,X2,X3). Then u(X), X2, X3) # v(X1, X2, X2), (veplacing X7 by X,
throughout,) so if we let u'(X,,X2) = u(X1,X2,X2), and similarly v'(X,, X2) =
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v(X1,X2,X2) then G € SP({u'},{v'}). Therefore G is of restricted width, so by

the previous remark G is nilpotent-by-finite.

Corollary: If G is an S P-group for words u(Xl,Xg,Xg)z X, Xi;, - Xim and

v(X1, X2, X3)= X;, X5z Xja then G is nilpotent-by-finite or m = n.

A similarly simple but useful result is

[1.6]Lemma. Let G € SP({u},{v}) with u(X,,X:,X3) = X, Xi, - Xia and

(X1, X2, X3) = X;, X5, .-+ Xj,. Then we may assume that i, = j1 and i, = Jn-

Proof: Consider the casc that iy # ji. Without loss of generality, assume that i,
= 1 and j; = 2. Once again if we let u'(X,,X2) = u(X1, X2, X2), and v'(X1,X2)
= v(X1, X2, X2) and replace X3” with X7 as required, we find that v'(Xi, X2) #
v'(X), X2) and that G € SP({u'},{v'}); hence, G is of restricted width, and is

thercfore nilpotent-by-finite.

We now prove the following result, which will be applied to prove that the
infinite dihedral group is an §P-group:
[1.7]Lemma. Let G = Do = (a,b] a® = a1, =1). If H is ¢ subgroup of G

which is not normal, then H = (a",a“b) for some integers r1 and s

Proof: Let R={r€ Z|a" € H},and § = {s € Z|a*b€ H}. We have that 0
€ R, so R is non-cmpty, and S is non-empty for otherwise H 4 G.
Now {a" | r € R} < H, so there exists some r, € R with {a" | r € R} =

(a"). If ry = 0then H = (l,a"b) and we are done. Otherwise, let sy, s2 € S;



then a*tba’?b € (a"), SO

81— 82 = O(modrl)

If, on the other hand, s; € S and s = s,(modr) then s € S. Therefore given any

s, € S, S then equals {s € Z | s = s1(mod r1)}. From this we infer that
H = (a"‘,a"b) = (a"))d{l,a"b}.

This completes the proot of [1.7]

[1.8]Lemma. There ezist words u and v such that Do, € SP({u}, {v}).

Proof: Let 2
u(X1, X2, X3) = (X1 X2) X3(X1X2),

v(X1,X2,X3) = (XIXZ)XS(X1X2)2;

we claim Dy € SP({u},{o}). Let G = D, and let H,, H; and H3 be any
three subgroups of G. If any of the Hi is normal in G, then clearly u(H,, Hy, H3)
= v(H,, Ha, H;). Therefore we may assume no H, is normal in G.

We must show that u(Hy, Hz,H3) = v(H,, Hy, Hy) in the case that cach H,
= (a")x{l,a“b}. We do this by showing first that we may assume each H, has
order two. Denote A; = (a"), B; = {1,a* b}, then H; = A;Bi. Now each A, 4G
and, if any H; is of infinite order we may replace G by G/A; and cach i, by
H;A;/A;. 1t suffices therefore to show that u(B,, B2, B3) = v(DB,, B, DBj3) - that
is, we need only to prove the result for assuming our subgroups are of order 2.

We show here that u(B;, Bz, By) C v(B)1, B2, Bs ), for the proof of the converse
is similar:

Let U and V denote u(By, B;, B3) and v(B,, Bz, Bs), respectively. Consider
a word w = b by b, byb3b'b) € U, with each bg") € Bj,forn € {0,1,2}. If by =1
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then w € V, so we may assume that b3 = a**b; moreover, by by b b, is necessarily

in B, B, except in the cases:

(1)

by = 1, by = a’?b, b} = a’'b, by =1
by = 1, by = a’?b, b} =a’'b, b, =a"b
by = a®'b, by = a’?b, b, =ab, by =1

by = a®'h, by = a’?b, b = a®'b, by =a’?b

We shall make use of the following identity:

Therefore, in the case

a®?ba’ ba®?*b = a**ba’ ba’?b.

(i) bybyb,bybs By By = a**ba® ba**bB1 By

= a®*ba’' ba®*bB, B,

C By(B1B2)*.

(1) bybybibyb3 By Be = a®?ba’ ba®*ba’*bB, B,

= a®?ba*3ba’*ba’' b, B,
C a*? b(l’3 ba”bBl Bz

C B, By(B1B,)*.

(iif) bybyb,bybs By B, = a*ba’*ba® ba**bB, B

C a*'bB3(B) B;)?, using (i)

C ByB;(B,B:)*.
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(iv) b1bdibyb3 B1 B2 = a*'bBy Ba(B) B2)?, using(i1)

C By By B3(B,B2)*.

In each case, we have bbby 0403 By B2 C B;Bng(B,Bg)z, thatis,U C V. The
proof of the opposite inclusion is similar. Therefore u(H,, Ha, H3) = v(H,, Hy, H,)
for all subgroups H,, Ha, and H;.

Therefore, there exist words u and v such that Doo € SP({u}, {v}). One will
note, however, that Do is nilpotent-by-finite, but is not finite-by-nilpotent; hence,
it is an example of a group which satisfies an identity on its subgroups, but for

which not all subgroups are elliptically embedded.



CHAPTER TWO
RESTRICTING THE STRUCTURE OF SP-GROUPS

In this chapter we establish a pair of key lemmas to consider the structure of
§P-group:. Tn Chapter Three we shall make inferences about the rank of G from
Lenma [2.2],which states that our S P-groups are minimax. To prove this lemma

we make use of the following theorem due to P.H. Kropholler [2].

[2.1)Theorem. If G 15 a finitely generated soluble group, and if for no prime p

does G have a section isomorphic to Cp1Coo, then G 1s minimaz.

[2.2]Lemma. If G is o finstely generated soluble group, and G € SP({u},{v})

for some u # v then G 1s minsmaz.

Proof: By the Kropholler’s theorem, it is sufficient to show that G has no sec-
tion isomorphic to Cp 1 Coo; however, because G € SP({u},{v}) is a quotient-
and subgroup-closed property it suffices to <how that for distinct words u and v,
Cp1Co ¢ SP({u},{v}) -

Assume that Cp 1 C € SP({u}, {v}) for u(X, , X2,X3) =X Xi, - Xin and
v(Xy, X2,X3) = X;, X5, X With no loss in generality we may further assume
that 1, = 51 = L

We claim first that Cp | Coo is isomorphic to Fp<:c> X (t), where r and t are
of infinite order and the action of ¢ on a(z) € Fp(:z:> is multiplication by z.

We begin by she ing that the base group B of Cy1C is isomorphic to

Fp(:c>. For each r € {0,...,p—1} and each s € Z, define a permutation 8, , of

11



Cp X Coo in the following manner: for (af,u™) € Cp x Co,

s m : .
e my __ ((1 WP ) if 10 == s
01-,.1(0 y“' ) - { (al,/t"') lf m f s

The set of all 6, , generates the base group, which s clearly abelian., Let
B = (9,., |re{0,...p - 1},s € 7).

Define ¢:B — Fp(x> by ¥(8r, s, - - Orn.sn) = St Itas immediate that

i=1

1y is onto and homomorphic, while the facts that B is abelian and that 8, ,- 6, , =

By +v,» together yield that ¢ is well-defined and one-to-one. Therefore B = F,,(r).

For integers v define o, € Cpl Cooby oo(al,p™) = (a’, ™ "). Then (au |

v E Z) = (01) and, by definition of the wreath product,
CPICOO ':—:J Bx(al)

Note that (8,,)°% = Ors4v. I we extend Y to ¢'s CplCo— Fp(z) 2 (t) by

y'(o,) = t", then we have our desired isomorphism from C) @ U, 1o F,,(J:) x (t)

For ai(z) € Fp(z) and ¢; = (ai(z)(1 - ™), t™™) € Cpl Coo, denote

Ci= (c.'> = {(a,-(:r)(l —ghimagy k) |k € Z}

Consider a general term, w, of C,Ci, -+~ Ci,:
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w = (a.,(:r)(l _ ghmi ),t—-hm-‘, )(G.‘,(I)(l _ rkami; ),t_k’""i) .
(@)1 - TR )
-k‘""n—k?'"i;)

= (a'l(I)(l - ‘tklmll ) + Ik"""a.z(:t)(l - Ikzm'7 )at

e . (a.l(I)(l _ Ik’""l )‘ t—k,m.l)

(g ()1 = By

+ Iklm.‘+..,+k1_lm.l_la'l(x)(l _ Ikl"l-,)’t—kl"lr‘u-—klm-‘)

Let us denote 377_, kymy, by d(s), (with d(0) = 0), and, for f € {1,2,3} define
I, = {r ¢ Z|e«, =a¢}. Consider now the component of w in the base group; it

equals

a;(.’r) Z (Id(j—l) —x‘(j))+a2(x) Z(xd(j—l) _Id(J)) +a3(a:) Z (xd(j-—l) _Id(j)).

yeh J€lha JEIs

Choose primes py, pz2, P3, P4 with pg > p3 >p2>p1 > m, and let m; =
P2P3P4, M2 = P1P3Pa, M3 = P1P2P4 and a;(z) =1, a2(z) = e+ ay(x) = P2t
Take ky = ... = ky = 1, and let kj, b - ki, be such that

Z a,-(z)Z(:c‘“‘”-z“”) = Z a..(x)z(fd(j—l)_xd (1)
i=1,2,3 JEI i=1,2,3 jel

where the d', I' and k' of the right-hand side are analogous to the d, I; and k of

the left.
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We aim first to show that there are 2m powers «{ 1 appearing in the left sum;
certainly there are no more than 2m terms.

If there is to be cancellation, we must have a term r” which is expressed
as both ag,(z)z%*) and al,(z)x‘(‘). Let ap (r) = 1% and ag (r) - % where
bi,bj e {1,;pp+1,p2 + 1}. Now d(t) = d(s) = 0 (mod pq) implies b, = b, (mod py).
The inequality ps > ps > p2 > P > 1 implics further that ag (r) - ap, (1)

Moreover d : {0,...,m} — N is monotonically increasing, so d(s) d(t)
implies s = t. Therefore a term ag,(z)z%?) can be cancelled only by subt. cing
ag,(z)z4*), but the assumption 1y # t¢4y rules out this possibility. The, of e,
there are precisely 2m powers of z appearing in the sum on the el

Note that pg divides each of the powers d(j) and that the a,(r) have powers

incongruent mod py. It follows that, for each 1,

Y (240D - i)y = § (240D - 4 D)

jel; JEI

We wish to show now that we must have ky = k; = ... = K, =1and 1= je
for £ = 1...n. It suffices to show that d(€) = d'(€) for £ =1...m.
Assume, by way of contradiction, that ki # 1; however —a,(r)z“'(” appears

in the right-hand expression, so for some ¢t > 1 we have d'(1) = d(t), 1e.,
mikl =my +m,, +...+m,,.

Now i, # 1, and p;, divides m;, if 1¢ # 12, If B is the number of b < t for which
m;, = m,,, then we have

m.-,ﬁ =0 (mod pz)

However ged(mi,,pi,) = 1 and p;, > 820 imply 8 = 0. Hence mk; = m,.

This implies that k¥ = 1 and that d(1) = d'(1). Conversely if d(1) = (1) and



15

d(1) = d'(t) then, because there is no canceilation on the left hand side and d 1s

imonotonically increasing, we must have t = 1.

We proceed by induction as follows:

Assume for r € {1,...,s} that
d(r) = d(t) €= r ot
Now d'(s + 1) = d(t) forsomet > s + 1.
Els i 1) ds) oy Keyy ) b R

Therefore my,, Ky = (Mg, + 00y, oo+ my). I jegr = e then py,

divides m,,,,. Our approach is as with the case k} = L:

divides (1+ 14 ...+ 1)m,,,, >t=s+1

—’

Pisga

S~

<t
Therefore kK, =1 and ja41 = ta1

If on the other hand jo41 # ts41, we proceed similarly:
Pioyy divides mi ((1+...+ 1) so mj,,, ki, =0, and therefore ky,q = 0. In this
Case

(@50 (2)(1 = Forimse) g R ) = 1

and we have fewer than 2m powers of T appearing on the right-hand side.

Therefore mj, ., = m,,,,. By induction, we have j, = t, fors =1,...,n.
This implies that u(X,,Xg,X;,) = v(X1, X2, X3), as required. We conclude that
for all u and v we have Cp 1 Coo ¢ SP({u}, {v}).

We will make use of the following lemma, which is a slight modification of

Lemma 4 of [4] and its corollary:



16

[2.3]Lemma. Let ¢ be a non-zero algebraic number such that for some fized

the equation

a™ :k_(tx’i...ia'\"‘ =f

has solutions in rational integers Ay, ..., Am together unth the following further
property: For a given solution, if A 1s the set of those A, for which a* does not
appear as many times with positive as negative coeffic:ent, then A - mazr{), € A}
takes on arbitrarily large positive values. If a a . all its non-zero integral powers

satisfy these hypotheses, then o 1s a root of unity.

Proof: As in ([4], Lemma 4) we have that for every absolute value | |, of Q(a),

m, if v archimedean;

lale < folm) = {

-1 .
maz{|rle” ,r=1,...,m}, v non-archimedean.

Now |a*|, < fu(m) for all non-zero integers k, so taking k'® roots and letting
k — oo we find that |a], < 1 for every absolute value of Q(a); however taking k
—+ —o0o we find that |a], > 1 for every absolute value of Q(a). It is a classical
result of algebraic number theory that if a is algebraic and is not a root of unity
then there exists an absolute value such that |al, # 1. (See for example (1], p.109)

Therefore a is a root of unity, as desired.

[2.4]Lemma. Let a be algebraic over Q, and let G, = Q{a) » (t) with the
action of t on an f(a) € Q(a) being multiplication by a. If G < G, is a subgroup
containing Z{a) % (t), and G € SP({u},{v}) for some u and v, then some power

of t centralizes G.
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Proof: The proof follows similar lines to the proof of [2.2]. We assume that

G .S'I’({u},{n}) for some u(.\'l,Xg,X:,)r Xy X, X, and U(X],X'z,X;;) =

X, N, X, ; without loss of generality we again assume that ¢y, = ) = 1.

) AT V]

For fi(a) < Q(u) and ¢, = (fila)(1 - ﬂm'),t—m') € G , denote

C = <(‘-l> = {(f.(a)(l '('k'm.)*t—_k'm.) | ki € Z}

.Chy:

We consider a general term, w, of C,, Cy, .-

ak‘m.l ),t—klm" )(f,,(a)(l _ akgm.2 )’t—kzntlz) .

w (f|l((l)(1 —
(fll(a)(l ‘(YA“"'I )‘t kl'"'l)

(] ((l)(] _ (!hm" ) + J‘"""‘l(f.-,(a)(l _ ak’m'?),t_hm'l—k""'?)

T (fu(a)(l - aklm.l )’t_hm")

= (fo, (@) (1 = aktma) 4oL
+ ak‘m.~l+... thkeoami, fi‘ (a)(l _ ak‘m‘l ), t—kl my—...- -klm.'l)
We maintain the notations for d, I;, k, d', I/ and k' from the proof of Lemma [2.2].

In partcular, d(s) = Z;=1 k;m,,, and the general form of the coraponent of win

Q(a)s:

fi(a) Z(nd(’ﬂ)—ad(’))-{‘fg(a) Z(ad(i~l)_ad(j))+f3(a) Z (Qd(j—l)_ad(j)).

1€, J€EI, 1€ls

We assume that for a choice of integers k,, ...k, and elements fi(a), fa(a),

fa(a) of Q(a) there exist integers kj, ...k} such that

Y (@) Y (@00 —at) = 3 fi(@) T (0D - ad0)
1=1,2,3 €l +=1,2,3 jEl:
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For a given ki, ...kn fix ki, ... k! and set

pi(r) = }: f-(f)Z(;r‘“"”-:“(’)) — Z f.(-r)i:(!d'“ 1 Jd’(;))

»=1,2,3 J€El, 1 1,2,3 )€l

We use the expression @y to remind ourselves that ¢ is dependent upon ow
choice of the ky.

In our proof of Lemma (2.2] we showed that if we choose ky =0 kg 1,
and our f, appropriately then the corresponding ¢x(r) is identically zero if and
only if k| = ...= ki, =1, viz. u(X,, X2, X3) = v(Xy, X, X3); however inspection
of the proof of [2.2] shows that we may relax our hypothesis somewhat:

Given primes pg > p3 > P2 > p1 > T4 choose n integers k, cach of the forn
1 + b,p1p2p3pa for integers b;.

G contains Z(a) ¥ (t), and in particular contains 1, aPr ! and aP:t!; there
fore, take fi(z) =1, f2(z) = Pt fa(z) = zP?t If the corresponding k() 18
identically zero then u(Xi, X2,X3) = v(X,, X2, X3)-

In particular if we choose any integers b; with1 < by < ... < b, and set k, =
1 + bp1p2p3Pa, then we cannot have @i(z) identically zero. Every pi(a) = 0, and
clearly as we take arbitrarily large values for the b, we fird the powers appearing
in ¢:(z) to grow aibitranly large. Therefore, a meets the requirements of the
hypotheses of Lemma [2.3].

Furthermore, for every non-zero { we find that a’ satisfies the hypotheses
of this lemma: if G < Q{a) x (t) is an SP-group, then so too will be G ()
Q(a’) » (t’). If we now mimic the proof that o satisfies the hypotheses of the
aforementioned lemma, we find that af does, too.

Therefore, by Lemma [2.3] a is a root of unity. As the action of t on Q(a) is

multiplication by a, it follows that a power of ¢ centralizes G.



CHAPTER THREE
SP-GROUPS ARE NILPOTENT-BY-FINITE

In this chapter we prove by induction on its solubility length that a finitely-
generated SP-group is nilpotent-by-finite. We begin with a number of lemmas

which will be employed in the course of the main proof.

(3.1]Lemma. Let H be a torsion-free nilpotent group. Then ((H) 1is isolated.

(i.e., H/C(H) 1s torsion-free.)

Proof: Assume gP € ((H),let (3 < (2 <... < H be the upper central series of H,

and let i be the least integer such that [g,(;] # 1. Take z € (; so [g,z] # 1. Then
1=[g%2) = (9.1 [9,2])

but

(9, 2] € Gi-1, so[g,2])° = l9,z).

Now 1 = [g,z]? and the fact that H is torsion-free together imply that [g,z] = 1.

Therefore ¢ € ((H).

An immediate corollary is that if H is torsion-free, then every central factor

of H is torsion-free.

[3.2]Lemma. Let H be a torsion-free finitely-generated nilpotent group. Then H

has a central series with infinite-cyclic factors.

Proof: Consider the upper central series for H. By lemma [3-1], each factor is

torsion-free; moreover H satisfies maz, so the upper central factors are in fact

19
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finitely-generated and torsion-free abelian. We refine this series to get one with

infinite cyclic factors.

[3.3]Lemma. IfG isa polycyclic group, then G is poiy( Coo)-by-finite.

Proof: Let 1 = Go a Gy a --- a G, G br » finite serie= with cyclic factors. The
proof is by induction on r, with the case r =1 holding true trivially

Assume that K is a poly(Coo) norn ! subgroup of Gr_-; with G,-1/K finite.
Let K° = (\,ec K?» the core of K in G. Then G,_/K° is fini* ~nerated.
torsion and soluble, so it is finite.

If G,/G,-, is finite, then the fact that K is poly(Cs) impls w WO s
poly(Coo) and certainly K° < G, so K° is a poly(Ce) group of finite index in G.
If, alternatively, G,/Gr-1 = Cco, write G/G,-1 = (zG,.._l).

Now G,_;/K° is finite, and so too must Aut(G,_/K?) be finite. Fach
element of {z, 22, ...} induces an automorphism of G,_,/K®, so z™ centralizes
G,_1/K° for some positive m. Let L = (:c"‘,K°>, then L 4 G. Considering the
Hirsch lengths we see that G /L is finite, and that L/K? is infinite cyclic. Therefore

G contains a poly(Coo) group of finite index, as required.

[3.4]Lemma. Let A be a torsion-free abelian group of finite rank, and consider

an SP-group G = A X (t) Then (((A,t‘)) NA # 1 for some £ > 0.

Proof: Extend the action of (t) on A toV = A®z Q. We write the action of
t on A ®z Q as multiplication, that is given any f(t) € Q(t), themapa®1 —
(a®1)- f(t) is an endomorphism of A®2 Q. Therefore A®z Q is a Q(t)-module.

Let V; = A, ®zQ be an irreducible Q(t)-submodule of V. By Schur’s Lemma,
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' = End Q (z)Vl is a division ring, finite dimensional over Q. Considered as ele-
ments of EndqVi, (t) spans EndQ<‘>V;, so T is commutative. It is therefore an
algebraic number field.

V, is one-dimensional as a I-space as it 1s irreducible, so we may identify
conjugation of V; by (t) with multiplication by an algebraic number, 7. We may
now think of A, as a subgroup of Q(7) under addition.

Moreover A; is an SP-group, so by Lemma [2.4] there is an integer ¢ such

that ¢ centralizes A,. Therefore 4, C C((A,tl)) (N A. Hence, C((A,t’)) NA#1,

as was required.

[3.5]Thecorem. Let G be a finitely-generated soluble group, G € SP({u}, {v}) for

some u and v, then G is nilpotent-by-finite.

Proof: We proceed by induction on the solubility length of G, with the result
holding trivially for abelian groups. Assume that G has solubility length £, and let
A = G-V Now G/A is finitely-generated and soluble, and G/A € SP({u}, {v})
because the property of being an S P-group is quotient closed. By the induction
hypothesis, G/A is nilpotent-by-finite. Therefore, G is abelian-by- (nilpotent-by-
finite). We wish to show G is nilpotent-by-finite, so no harm is done in coming
down to a subgroup of finite index in G — that is, we assume G is abelian-by-
nilpotent. Therefore G/A is nilpotent and finitely generated, from which it follows
([9], p-132) that G/A is polycyclic.

We now invoke the theorem of P. Hall that finitely generated abelian-by-
polycyclic groups satisfy maz-n.

If G were not nilpotent-by-finite then there would exist B 4 G maximal sub-

ject to G/B not being nilpotent-by-finite, but every proper quotient of G/B is
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nilpotent-by-finite. However, G/ B .s finitely generated, soluble, and an S P-group,
so it suffices to prove that G/B is nilpotent-by-finite; equivalently we may assume

hereafter that every proper quotient of G is nilpotent-by-finite. Now G is soluble

and minim- . Lemma [2.2]) so G has finite rank. This follows from the fact
that polycy nd Cernikov groups have finite rank, which is an extension-closed
property.

Let p(A) denote the torsion subgroup of A. Now p(A) is finite because G
has finite rank and A is abelian. Therefore Ca(p(A)) is of finite index in G, <o
no harm is done if we come dowr. o Ca(p(A)) — assume that p(A) C ¢(G). As
the torsion elements are all central, clearly G is nilpotent-by-finite if and only if
G/p(A) is, too.

Conveniently, we need only condider the case that the subgroup A is torsion-
free. Meanwhile G/A is polycyclic so by Lemma [3.3] we may convolute the finite
pieces to the top and consider G/ A as poly(Coo) -by-finite. Once again come down
to a subgroup of finite index to assume G/A is torsion-free and nilpotent, as well
as finitely-generated. Therefore by Lemma [3.2], there is a set of clements S =

{s1,-..8,} of G such that
A= GO < (GO1SI> =Gl <. < <Gr—ly3r> = Gr =G.

is a central series with infinite cyclic factors. v~ interrupt our induction on ¢ to
proceed by induction on r.

Ifr = 1, then G, = G = (4,s,). By lemma [3.4], we have that C({4,s1))
is non-trivial for some ¢; > 0. If we set D = AN C((A,sf‘)), then D is a non-
trivial normal subgroup of G, so G/ D is nilpotent-by-finite; moreover D centralizes
(A,s{‘ which is of finite index in G. Therefore, G is indeed nilpotent-by-finite.

It suffices now to prove the result for r = d if the result holds for all r < d.
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Now G4-; is nilpotent-by-finite and Gy =G = (G.g_.l,sd). For some ¢; > 0 we
have that H = (A,G;‘_l) is a normal, nilpotent subgroup of <H,sd>. Let M =
(H,sq) and Y = A () C(H), then Y is normal in M. Moreover, considering the
Hirsch length we see that M is of finite index in G. Using lemma [3.4] we have, for
some € >0, D =Y C((Y, sfi’ )isa non-trivial subgroup of G which centralizes
(H,s&).

MNow P = (H,sfj) is of finite index in G, so it contains a subgroup N of finite
index in G and normal in 7

This follows from the fact that P < Ng(P)
-Gy= G = (Ga-1,54)

implies that |G : Ng(P)| is finite. Therefore P
has a finite number of conjugates in G, say P, (H,s54) e,
..., Pa, (where cach P; is of finite index in G.)
Using |G : AN B| < |G : Al|G : B| iteratively, H
we find that N = N, P is a normal subgroup
of G of finite index. [ *
Finally D a N, so N/D is nilpotent-by- ty=ANCU £1
finite. In fact D is central, so N must in fact | )
be nilpotent-by-finite; N is of finite index in G,
1y

though, so we have finally that G is nilpotent-
by-finite, as desired.
Therefore if G is a finitely-generated soluble group and G € S P({u}, {v}) for

words u and v, then G is nilpotent-by-finite. Q.E.D.
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