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Abstract—Real-time transient stability simulation is of para-
mount importance for system security assessment and to initiate
preventive control actions before catastrophic events such as
blackouts happen. Transient stability simulation of realistic power
systems involves the solution of a large set of nonlinear differen-
tial-algebraic equations in the time-domain which requires signif-
icant computational resources. Exploitation of parallel processing
techniques can provide an efficient and cost-effective solution to
this problem. This paper proposes a fully parallel method known
as instantaneous relaxation (IR) for real-time transient stability
simulation. To validate the proposed method, two test systems have
been implemented on an advanced PC-cluster-based real-time
simulator. A comparison of the captured real-time results with
those from the PSS/E software shows high accuracy.

Index Terms—Iterative methods, parallel algorithms, power
system transient stability, real-time systems, relaxation methods.

I. INTRODUCTION

EAL-TIME digital simulation has become an integral

part of the planning and design of power systems. It is
also playing an important role in the operation of power systems
by providing a true-to-life platform for online training of power
system operators. The application of real-time simulators spans
the entire spectrum of traditional power system studies ranging
from steady-state to dynamic, and further to high-frequency
electromagnetic transient studies. Computations that took
significant time using traditional offline software programs
can now be executed.n real-time providing a realistic view
of system behavior under changing conditions. In particular,
when a new device such as a controller or relay needs to be
tested and tuned in the hardware-in-the-loop (HIL) scenario for
eventual implementation in the field, there is no alternative to a
real-time simulator: Analog scaled-down simulator, also known
as transient network analyzers (TNAs), were the predecessors
of fully digital real-time simulators. However, realization of
large-scale power systems with a high level of complexity,
nonlinearity, and sophisticated dynamic elements using TNAs
is practically impossible [1].
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The objective of this paper is to revisit the application of
real-time digital simulators to the transient stability problem.
Transient stability simulation of realistic-size power systems
involves computationally onerous time-domain solution of
thousands of nonlinear differential algebraic equations (DAEs).
Furthermore, from the point of view of dynamic security
assessment which is required for safe system operation and
control, several transient stability cases.need to be run in a
short period of time to initiate preventive control actions.
Currently available commercial real-time simulators such as
RTDS [2],RT-LAB from OPAL-RT Technologies, Inc. [3], and
Hypersim [4] address these needs to a large extent by using
multiple.racks or clusters of multiprocessor architectures. The
question that arises, however, is whether this approach is the
most efficient and cost-effective, given the prevalent practice
of using a real-time simulator, originally designed and built
for electromagnetic transient studies, for transient stability
simulations: This is done, of course, using simpler models
and larger time-steps. For example, nominal-pi models are
used instead of frequency-dependent models for transmission
lines, and the simulator time-step is chosen to be in the range
of milliseconds instead of microseconds. Nevertheless, there
is underlying sequentiality in the electromagnetic transient
simulation algorithm [5] that precludes an efficient utilization
of the hardware resources for transient stability simulation.
By exploiting parallelism inherent in the transient stability
problem, a parallel solution algorithm can be devised to max-
imize the computational efficiency of the real-time simulator.
This would reduce the cost of the required hardware for a given
system size or increase the size of the simulated system for a
fixed cost and hardware configuration.

In this paper we propose a fully parallel instantaneous relax-
ation (IR) method for real-time transient stability simulation.
The idea of using relaxation-based solution of DAE:s is certainly
not new and has been explored before. The waveform relaxation
(WR) method was first introduced in [6] for VLSI circuit sim-
ulation. Then in [7] this method was applied to the power sys-
tems area and used comprehensively for offline transient sta-
bility simulation [8]. The classical model of the synchronous
machine was used in these simulations. Although this algorithm
was implemented sequentially, it was predicted that it will accel-
erate the simulation by exploiting parallel processors [9]. Later
in [10] the WR method was implemented on parallel computers.

As will be shown later, although the WR method is a par-
allel method successfully implemented for offline simulations,
there are inefficiencies that surface when it is implemented in
real-time. Therefore the IR method which overcomes these lim-
itations is proposed for real-time implementation. To evaluate
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this method, two test cases are presented. PTI’s PSS/E soft-
ware package has been used to validate the real-time simula-
tion results. The detailed model of the synchronous generator in-
cluding AVR and PSS is used to demonstrate that the IR method
converges even in the case of complex system models.

The paper is organized as follows: in Section II, there is a
brief overview of the transient stability study in power systems
with a discussion about methods for simulation of large-scale
systems, and the WR technique is presented. The limitations of
the WR method for real-time implementation are also discussed
in this section. The algorithm of the proposed IR method is ex-
plained in Section III, and the approach for partitioning a power
system for using the IR method is discussed in Section I'V. Prac-
tical real-time simulation results and their comparative analysis
with offline simulations using PSS/E are shown in Section V.
Section VI presents the conclusion.

II. BACKGROUND

A. Transient Stability Simulation

A widely used method for detailed modeling of synchronous
generator for transient stability simulation is to use Park’s equa-
tions with an individual dq reference frame fixed on the gen-
erator’s field winding [11]. The network, including transmis-
sion lines and loads, is modeled using algebraic equations in
a common D reference frame. Representation of AVR and
PSS increases the number of differential equations and hence
the complexity of the model. However, the validity.of the dy-
namic response in a network with a lot of interconnections and
in a time frame of few seconds highly depends on the accuracy
of the generator model and other components which can have ef-
fects on the dynamics of the system. The general form of DAEs,
which describe the dynamics of a multimachine power system
assuming single-phase, positive sequence, and fundamental fre-
quency behavior, is given as

% = £V, 1) )
0=g(x,V,1) 2)
X(to) =Xp (3)

where x isthe vector.of state variables, xg is the initial values of
state variables; and V' is the vector of bus voltages. In this work
the detailed model (the Appendix) of synchronous generator in-
cluding AVR and PSS is used. Therefore, each generating unit
consists of nine state variables. In a power network with m syn-
chronous generators and n buses, x is a 9m X 1 vector and V
is a 2n x 1 vector. The time frame of interest for the simulation
of a transient stability event is in the order of 3-5 s following
the disturbance. This time span may increase up to 10-20 s in
the case of very large networks [12]. Typically a time-step in the
range of milliseconds is chosen for simulation.

B. Solution of Large-Scale Systems

A common approach for time-domain simulation of a
system, described by a set of nonlinear DAEs, consists of
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three steps: an integration method (e.g., trapezoidal rule) for
discretizing the differential equations, an iterative method (e.g.,
Newton—Raphson) for solving the nonlinear algebraic equa-
tions, and a linear equation solver such as Gaussian elimination
and back substitution. This approach is referred to as the stan-
dard or direct simulation approach [13]. Both the storage and
cpu time required by the standard approach grow rapidly as the
size of the system, measured in terms of its components (i.e.,
generators in the case of a power system), increases. Moreover,
in a large system of DAEs, different variables change at various
rates. In the standard approach, the integration method is forced
to discretize all the differential equation with the same time-step
which must be small enough to capture.the fastest dynamics
in the system. As such, simulating realistic-size large-scale
systems using the standard approach became very time con-
suming. To address this problem, a family of techniques known
as domain decomposition was developed. Domain decomposi-
tion refers to any technique that divides a system of equations
into several subsets that can be solved individually using
conventional numerical methods. Parallel processing can be
exploited to find the solution of a large equation set. To solve a
set of nonlinear DAEs, domain decomposition can be applied at
any of the three levels of equations, i.e., differential equations,
nonlinear algebraic equations, and linear algebraic equations.
Two different approaches were proposed in the literature to
perform domain decomposition: tearing and relaxation. Tearing
(introduced as the diakoptics method by Kron [14]) is the ap-
proach that takes advantage of the block structure of the system
of equations. To describe the structure of a system, the notion of
the dependency matrix (D) is used. For a system with n equa-
tions and n unknown variables, D is an n X m matrix whose
elements are 1 or 0. If the <th equation involves the jth vari-
able, then D(i, ) is 1; otherwise, D(4,5) = 0. For a system
of equations in which the dependency matrix is sparse, i.e., D
has a small percentage of 1’s, tearing can be used to achieve de-
composition while maintaining the numerical properties of the
method used to solve the system. The bordered blocked diag-
onal (BBD) form is one specific structure suitable for this ap-
proach. Tearing decomposition at the level of linear algebraic
equations can be implemented as the block LU factorization
method, and at the level of nonlinear algebraic equations as the
multilevel Newton—Raphson method [15]. It should be noted that
the computational efficiency of this approach over the standard
approach depends critically on the structure of the system, and
it does not increase when system dependency matrix is dense.
Relaxation [16] is an approach which is not restricted to a
particular system structure. In this approach, the system is par-
titioned into a number of subsystems based on either the system
equations or component connectivity. Solving these subsystems
is always easier than solving the original system. Therefore,
the complexity will be reduced regardless of the system spar-
sity. Two well-known types of relaxation decomposition are the
Gauss—Seidel and Gauss—Jacobi methods [17]. The application
of this approach for nonlinear algebraic equations can be found
in [18] and [19]. Relaxation can be used at the level of differ-
ential equations as well. In this case, the system is broken into
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subsystems in a way that the components inside of each sub-
system are strongly interdependent while the dependency be-
tween components in two different subsystems is weak enough
to ignore their interconnection. In other words, the subsystems
can be relaxed. Therefore, each part of the system is still a
system of differential equations but with a smaller size that can
be solved in the time-domain using the standard approach. The
relaxation approach applied to the differential equations’ level
has been known as the waveform relaxation (WR) method. As
will be shown in Section II-C, the efficiency of the WR method
is significantly reduced when implemented in real-time. It is re-
quired to alter this technique to make it suitable for real-time
simulation. To explain the reason for these changes, the WR
method is briefly described using a simple example.

C. Waveform Relaxation

Consider a first-order two-dimensional system described by
the following differential with known initial values:

z1(0) = 219 4
x2(0) = 20 (5)

jjl :.f1($17$27t)7

fb? :fg(il?]_,.’l?Q,t),

where z(t) € R? and t € [0, T). To solve this set of equations by
the WR method, first (4) is solved for z (¢) as a one-dimensional
differential equation for all ¢ € [0, 7] with x2(t) fixed. Simi-
larly, (5) is solved for z2(t) with z () fixed for all¢ &€ [0, 7.
The next iteration begins with the substitution of #5(¢) obtained
from (5) in the previous iteration into (4), and z1(t) obtained
from (4) in the previous iteration into (5). This procedure is re-
peated until differences between waveforms obtained from two
consecutive iterations is less than a small preset number. Further
details about this method and its convergency conditions can be
found in [13].

Within each subsystem, the variables to be solved are called
internal variables, e.g., 3 (t) in (4)'and xo(%) in (5), while the
other variables which are fixed during each iteration are called
external variables, e.g., za(t) in (4) and z1(t) in (5). This
algorithm is known as the Gauss—Jacobi waveform relaxation
(GJWR), because in all subsystems, for each new iteration,
external variables from the previous iteration are being used. If
in each iteration, after finding the solution of each subsystem,
the external variables are updated for other subsystems, the
method is known as. the Gauss—Seidel waveform relaxation
(GSWR). It is clear that GTWR method is an inherently parallel
method that can be implemented on parallel hardware. Unlike
other methods which are parallel only in the sense of numerical
task partitioning for solving the nonlinear or linear algebraic
equations, the parallelization existing in the GJWR method
appears in the whole body of the algorithm. Another advantage
of this method is that it allows the simulator to exploit the
stiffness of the system. Each subsystem can be discretized
with an individual time-step determined based on the fastest
dynamic in that subsystem [8]. Therefore the GIWR method is
chosen in this paper for real-time simulation. The WR method,
however, has some caveats for real-time implementation as
discussed below.
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D. Limitations of Waveform Relaxation for
Real-Time Simulation

The outstanding difference between the WR and other clas-
sical decomposition methods for solving linear and nonlinear
algebraic equations is that in this method, during each iteration,
each subsystem is analyzed for the entire time interval, [0, T'].
In other words, elements in this technique are waveforms of the
variables rather than their instantaneous values. In each iteration
of the WR method, each subsystem is solved by using the three
basic steps of the standard approach for all ¢ € [0, T7.

It was discussed in [9] and [20] that the WR method works
well for a certain interval, but'it is inacecurate outside of this
span. So, instead of applying the method in each iteration over
the whole simulation time, i.e., [0, 77, it is more effective to di-
vide the simulation time into £ small intervals or windows, i.e.,
[0, T1], [T, Ts], . . < [Tk, T, and solve equations piece by piece
within each interval. This technique, known as windowing, de-
creases the number of iterations required within each interval
for achieving required-accuracy [13]. Furthermore, windowing
reduces the required memory space, because the iterative wave-
forms need to be stored only for small time intervals instead of
the whole simulation time.

The waveform-based property of the WR method is one issue
that needs to be changed for real-time simulation. There are two
reasons. First,/in real-time simulation and specifically in hard-
ware-in-the-loop simulation, the instantaneous value of each
variable at each time-step is required and not the complete wave-
forms. Second, if waveforms are going to be used as numerical
elements, all waveforms of the variables such as bus voltages
or generator angles must be computed for the entire simulation
interval, say, 20 s, in the first time-step of the simulation, say,
1 ms. Clearly, this is not practical for a large-scale system with
thousands of variables. To overcome this restriction, the win-
dowing technique can be used. So, the whole simulation time
is divided into small intervals, and each interval is computed in
one time-step. The time intervals must be small enough so that
the computation tasks can be performed during one time-step.
Although windowing can help maintain the waveform property,
however, working with waveforms in real-time is not as efficient
as in offline simulation.

Suppose the simulation interval [0, T']s is divided into & win-
dows of length m X h milliseconds, h being the time-step. When
the simulation starts, all waveforms for the interval of the first
window must be computed during the first time-step. Then, there
are two options. In the first option (Fig. 1), the real-time sim-
ulator is idle during the remaining length of the first window,
i.e., for (m — 1) x h milliseconds, when it just sends out instant
values of variables at each time-step. After this period, simulator
resumes computation for the interval of the second window, and
again becomes idle. This process is repeated until the end of sim-
ulation time. In the second option, depicted in Fig. 2, the simu-
lator continues the computation for each window in the subse-
quent time-steps while it also sends out the instantaneous values
of variables at each time-step. Therefore, the computation fin-
ishes in k consecutive time-steps, and after that, the simulator
becomes idle when it sends out instant values at each time-step.
It can be concluded that in both options, the simulator performs
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Fig. 1. Real-time implementation of the WR method: Option 1.
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Fig. 2. Real-time implementation of the WR method: Option 2.

the entire computation in k time-steps and then remains-idle for
(m — 1) x k time-steps. In other words, the computation load
has not been distributed among the time-steps equally. Thus,
real-time implementation of the native WR method can be inef-
ficient from resource utilization point of view.

III. INSTANTANEOUS RELAXATION FOR REAL-TIME
TRANSIENT STABILITY SIMULATION

To overcome the limitations of the WR for real-time imple-
mentation, we propose the point-wise Or IR technique. It is
simply the WR-method with a window length of one time-step,
i.e., m = LIt has been verified in the offline implementation
of WR method that the smaller the length of window, the faster
the convergence.On the other hand, if the window is made
too small, the overall communication time among subsys-
tems increases which causes a loss of the advantages of the
WR method. However, the communication latency between
computation nodes in currently available real-time simulators
is in the order of a few microseconds. This latency is small
compared to the time-step required for transient stability and
can therefore be neglected. Based on the previous experience
with the WR method and the arguments made in this paper,
it can be concluded that the IR method not only inherits the
advantages of the WR method but is also efficient from the
real-time simulation point of view.

To apply relaxation methods at the level of differential equa-
tions, the preliminary step is clustering variables into groups
which can be solved independently. This will be specifically dis-
cussed for the transient stability application in Section I'V. After
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partitioning the system into n subsystems, the set of DAEs equa-
tions [i.e., (6) and (7)] are prepared to describe the dynamics of
each subsystem as follows:

X' =f'(x', V', 1) (6)

0=g'(x',V',1) @)

x'(to) =xo' 3

where 1 = 1,2, ..., n indicates the subsystem. Discretizing (6)

results in a new set of nonlinear algebraic equations. In this work
we used the trapezoidal rule as the implicit integration method
to discretize the differential equations as follows:

0=x'— EL (B, VP, Vit —h)] (9
where h is the integration time-step. Equations (7) and (9) can
be linearized by the Newton—Raphson method (for the jth iter-

ation) as

J (i) Azt = —F' (z}_,) (10)
where J is the Jacobian matrix, z° = [x!, V'], Az’ = 7 —

. . J
z;_4, and F* is the vector of nonlinear function evaluations.

Equation (10) is a set of linear algebraic equations that can be
solved with Gaussian elimination and back substitution method.
Benchmarking revealed that a majority of execution time in a
transient stability simulation is spent for the nonlinear solution.
By using the IR method, however, and by distributing the sub-
systems over several parallel processors, a large-scale system
is divided into individual subsystems whose matrix sizes are
smaller, resulting in faster computations.

To clarify the differences between the WR and IR methods,
the flowcharts of both algorithms are shown in Figs. 3 and 4,
respectively. Practically in the WR method, it does not seem
efficient to perform several iterations of the Newton—Raphson.
Let the exact solution of a waveform be x(.), and the result of
the kth iteration of the WR method be z*(.). Depending on the
length of window, some iterations will be required for z*(.) to
converge to x(.); however, the starting iterations for z*(.) are
poor approximations of z(.). Thus, it is superfluous to perform
Newton—Raphson iterations for computing a close approxima-
tion to x*(.) which itself is a poor approximation of x(.). The
convergence rate of the IR method is higher than that of WR,
because its window length is minimum. Therefore, performing
several iterations of Newton—Raphson, as shown in Fig. 4, in-
creases the accuracy of IR.

Following the convergence of iterative solutions in all subsys-
tems, the state and algebraic variables calculated from the last
time-step are updated. The state variable description of gener-
ators used in this work is defined in the Appendix. These state
variables and voltages of generator buses must be exchanged
between all interconnected subsystems.
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Fig. 3. Flowchart of the WR method for the duration of [0, T'] which is divided
into k& window intervals. n: the total number of subsystems; Itr: counter of iter-
ations in each window; M a4, : the maximum allowable number of iterations
in each window; win: counter for windows.

IV. COHERENCY-BASED SYSTEM PARTITIONING
FOR INSTANTANEOUS RELAXATION

One way to partition a power system for parallel processing
is to distribute equal numbers of generators and buses among
the processors. However, this is not an efficient method because
the network buses have different connectivity and the gener-
ator models vary in both size and complexity. This gives rise
to the load balancing problem in a parallel multiprocessor sim-
ulator architecture. Another option is to split the computation
burden among processors based on the total number of equa-
tions; however, this approach will increase both the program-
ming and communication complexity. A more efficient method
is to partition the system by considering the complexity of the
generator models and the connectivity of the buses. In this case,
different number of generators and buses are assigned to par-
allel processors, and the computation burden is roughly even;
however, the drawback of this method is that it cannot be used
for a general-purpose program, at least in the offline sense [21].
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Fig. 4. Flowchart of the proposed IR method for the duration of [0, 7] with
a time-step of h. j: counter for iterations of the Newton-Raphson; Max ;..
the maximum allowable number of iterations for the Newton—Raphson in each
time-step.

The primary requirement for successfully using the relaxation
methods at the level of differential equations is to divide the
system into subsystems in which tightly coupled variables are
grouped together. In [13], it was shown that the WR method
will converge for any chosen partitioning scheme; however, the
rate of convergence is highly dependent on the method of par-
titioning [9]. In spite of all that, it is important to ask this ques-
tion: is transient stability simulation of a large-scale network
by either IR or WR methods restricted by this prerequisite? In
other words, whether the partitioning scheme’s dependence on
system modeling or the characteristics of the disturbance such
as its severity or location, will influence the convergence of the
IR or WR methods.

Determination of tightly coupled variables or simply par-
titioning the system can find a physical meaning from the
power system point of view. Following a large disturbance in
the system, some generators lose their synchronism with the
network. Thus, the system is naturally partitioned into several
areas in which generators are in step together while there are
oscillations among the different areas. Generators in each of
these areas are said to be coherent. The coherency charac-
teristic of the power system reflects the level of dependency
between generators. Coherent generators can be grouped in
the same subsystem which can be solved independently from
other subsystems with the WR or IR methods. The partitioning
achieved using the coherency property has two characteristics
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Fig. 5. Configuration of the real-time simulator.

which make it appropriate for our study. The coherent groups
of generators are independent of: 1) the size of disturbance
and 2) the level of detail used in the generators. Therefore, the
linearized model of the system and the simple classical model
of generators can be used to determine coherency. Furthermore,
slow coherency-based grouping is insensitive to the location of
disturbance in the power system [22]. These features of slow
coherency lead us to use this partitioning method in-this paper.

V. EXPERIMENTAL RESULTS

In this section, we will demonstrate results to verify the effi-
ciency of the IR method for real-time simulation. To do so, we
have chosen two case studies. One is the Kundur’s four-machine
and 11-bus system found in [23]. The other case study is the
IEEE 39-bus New England test system [24].The real-time re-
sults for these case studies have been validated using the PSS/E
software program.

A. Real-Time Simulator Structure

A PC-cluster-based. real-time simulator (Fig. 5) in the
RTX-LAB at the University of Alberta is used for the imple-
mentation. The Host'computer running on Windows XP is used
as the console for result visualization and online parameter
control. The IR method is coded in C and compiled using
MATLAB’s Real-Time Workshop and OPAL-RT’s RT-LAB
software [25]. The executable code is loaded onto the Target
Cluster nodes to run in real-time. Each cluster node consists of a
dual Intel® Xeon™ shared-memory PC running at 3.0 GHz on a
real-time Linux operating system. The inter-node communica-
tion is through InfiniBand with a 10 Gb/s data transferring rate.
The target nodes are capable of eXtreme High Performance
(XHP) mode execution, in which one CPU is dedicated entirely
to program execution while the other CPU is running operating
system tasks and managing the communication schedules with
the host computer and other target nodes. The host computer
and the target cluster are connected using Gigabit ethernet.

As shown in Fig. 5, a study system can be partitioned and
distributed among the cluster nodes. In the case of using mul-
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Genl 1 7 110km 8 110km 2 11 Gen3
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Fig. 6. One-line diagram for Case Study 1.

tiple nodes, one node is the Master and other nodes operate as
Slaves. The real-time results can be recorded on an oscilloscope
connected to the FPGA-based I/O card on the target node or they
can be visualized on the host computer screen.

B. Case Study 1

Fig. 6 illustrates the test system used as the first case study.
Each synchronous generator is equipped by an exciter and PSS.
A set of six differential equations model mechanical rotation,
field winding, and three damper windings of each synchronous
generator. The complete system can be described by 36 non-
linear differential and eight algebraic equations. Since genera-
tors {1,2} and {3, 4} are coherent, the system can be partitioned
into two subsystems. This coherency relation can also be ob-
served later in'the simulation results. These two subsystems are
distributed across two cluster nodes as seen in Fig. 7. The simu-
lation time-step is chosen to be 1 ms. Using the IR method, once
the steady-state has been reached, a three-phase fault at Bus 8
is imposed at ¢ = 5 s and is cleared in 80 ms. The real-time
simulation results are recorded on an external oscilloscope and
saved. The relative machine angles are shown in Fig. 8 in which
Gend’s angle is selected as the reference. The real-time results
are superimposed on the results found from PSS/E. As can be
seen, the IR method is quasi-stable during the steady-state of the
system, i.e., t < 5 sec. During the transient state and also after
the fault is cleared, the real-time results closely follow the re-
sults from PSS/E. The maximum discrepancy between real-time
simulation and PSS/E was found to be 0.93%, based on the fol-
lowing:

max [6pss/p — O1R|

Es =

1D
épss/E
where dpss/p and 0rr were defined as the relative machine
angles from PSS/E and IR method, respectively. It can be further
observed from Fig. 8 that following the fault, the oscillations of
Gen4 are closer to the oscillations of Gen3 rather than to those
of Genl or Gen?2. If the reference generator is switched to Genl
or Gen2 instead of Gen4, it was found that the oscillations of
Genl are closer to the oscillations of Gen2 rather than to those
of Gen3 or Gen4. This observation practically demonstrates the
coherency relation existing in this system.

To investigate the effect of the fault location and the parti-
tioning scheme on the performance of the IR method, the fol-
lowing scenario was simulated. Suppose that the fault happens
at Bus 5. Two different patterns of partitioning have been ap-
plied for this case. The first is based on the coherency property
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Fig. 7. Distribution of subsystems of Case Study 1 among cluster nodes of the
real-time simulator.
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Fig. 8. Comparison of relative machine angles collected from real-time simu-
lator and PSS/E simulation for Case Study 1: 6; 4 = 6; — 6431 =1,2,3.

of the system, i.e., {1, 2} and {3, 4}. The second pattern is based
on the fact that'since (1 is the closest generator to the fault
location, it will accelerate faster than other generators in the
system; therefore, the system is divided into two subsystems:
{1} and {2,3,4}« These two patterns have been simulated in
real-time using the IR method, and then the results were com-
pared with those of PSS/E. Results of both patterns are close
to those from PSS/E, but the maximum error in the second pat-
tern is larger than the maximum error when coherency-based
partitioning was used. Several other combinations of fault loca-
tion and partitioning patterns have also been examined in this
system, and it was concluded that slow coherency partitioning-
based IR method are the closest to the PSS/E’s results.

Table I shows the timing performance of Master and Slave
nodes of the real-time simulator running under the XHP execu-
tion mode during one time-step (1 ms). This table shows that
the tasks of computation and communication are done in less
than 60 us. These execution times were sampled across many
time-steps, and it was found that the idle times of the processors
were uniform throughout those time-steps.
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TABLE 1
PERFORMANCE LOG FOR REAL-TIME SIMULATION OF CASE STUDY 1

Duration (us)

Task Master  Slave
Computation 47.91 47.20
Communication  11.55 8.12
Idle Time 939.45 940.07
Other 1.09 4.61
Total Step Size 1000 1000

Gen9%

Genl% 37
? 2_5T T ‘l [ 29||

g 1_8?4_5 i T

3 16 Gen6
- 1

E O\ ﬂ
I N e s

el DT T T X
b 20 36
Gen2 10 T Gen7
34
Gen3 Gen5 Gen4

Fig. 9. One-line diagram for Case Study 2.

H

Genl0 6

C. Case Study 2

The one-line diagram of IEEE’s New England test system
is shown in Fig. 9. As in the previous case study, all gener-
ator models are detailed and equipped with AVR and PSS. The
complete system can be described by 87 nonlinear differential
and 20 algebraic equations. Using the partitioning pattern men-
tioned in [24], the system has been divided into three subsys-
tems: {1,8,9}, {2,3,4,5,6,7}, and {10}. These three subsys-
tems were distributed on three cluster nodes of the real-time
simulator: one Master and two Slaves. A question which may
arise here is about the uneven loading of CPUs. Although it is
possible to add {10} to subsystem 1 and to use only two compu-
tation nodes, our intent in this study was to demonstrate the im-
plementation of IR in three parallel cluster nodes. Several fault
locations have been tested and the results were compared with
those of PSS/E; in all cases, results from the IR method match
very well. In this section, a sample of these results are presented.
A three-phase fault happens at Bus 21, at¢ = 1 s and itis cleared
after 100 ms. Genl0 is the reference generator and the relative
machine angles are shown in Figs. 10 and 11. The maximum de-
viation of IR real-time simulation result from the PSS/E result
based on (11) is 1.51%.

Table II shows the timing performance of Master and two
Slave nodes in the real-time simulation during one time-step
(1 ms). Again the sampled idle times were found to be uni-
form across several time-steps. In the PC-cluster architecture,
the Master node is responsible for communicating with the host
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Fig. 10. Comparison of relative machine angles collected from real-time sim-
ulator and PSS/E simulation for Case Study 2: 6; 10 = 6; — 61052 =1...5.
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Fig. 11. Comparison of relative. machine angles collected from real-time sim-
ulator and PSS/E simulation for Case Study 2: 6; 16 = 6; — 6105t =6...9.

computerand also for organizing the communication among the
Slaves. This explains why the Master’s communication time
in Tables I and II is larger than Slaves’ communication time.
Moreover, it can be seen that the computation time in both case
studies is not very high, since the computation load is distributed
equally among all time-steps. From the idle time duration in
both tables, it is concluded that larger subsystems can be imple-
mented on each node, and that faster-than-real-time simulation
is also possible.

The accuracy of the IR method is analyzed by varying the
time-step and calculating the error in (11). The results are pre-
sented in Table III. As expected, when the time-step increases,
the computation error increases as well. Nevertheless, it can be
predicted that with larger time-steps, larger systems can be sim-
ulated on this hardware using the IR method. It can however be
seen that the maximum error depends not only on the time-step
but also on the size of the system. For instance, the time-step of
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TABLE II

PERFORMANCE LOG FOR REAL-TIME SIMULATION OF CASE STUDY 2

Duration (us)

Task Master Slavel Slave2

Computation 212.77  348.13 17.27

Communication 13.44 7.30 4.51

Idle Time 770.93  631.73 974.12

Other 2.86 12.84 4.1

Total Step Size 1000 1000 1000
TABLE III

RELATION BETWEEN TIME-STEP AND ACCURACY OF THE IR METHOD

Maximum error 5%
Time-Step (ms) | Casestudy 1] Case study 2
1 0.93 1.51
2 1.04 1.70
5 1.32 3.29
10 1.88 4.2

5 ms results in the maximum error of 1.32% and 3.29% in the
four- and ten-generator systems, respectively. This dependence
of computation error on-the system size is counterintuitive and
needs to be verified for larger test cases.

D. Speed-Up Comparison

In this section, we evaluate the speed-up achieved by the
IR method in comparison with the standard method. To do so,
a test_program based on the standard approach discussed in
Section II-B was created and its total simulation time was com-
pared with that of the IR method. Since the standard method
is sequential, to make a fair comparison, the IR method was
also implemented sequentially. Fig. 12 lists steps of these two
methods to be run on a 2.5-GHz quad-core AMD Phenom CPU
supported by 4 GB of RAM. Except the hardware, the specifi-
cations of test case studies are the same as explained in the pre-
vious sections. The time-step of both methods is 1 ms. The stan-
dard and IR methods total time to simulate a duration of 15 s for
the two case studies are summarized in Table IV. Speed-up is de-
fined as the ratio between the computation time of the standard
method to that of the IR method. The maximum error defined by
(11) for both methods is similar. This comparison revealed two
results: 1) on the same simulator hardware, the serial IR method
is faster than the standard method for transient stability study,
and 2) the speed-up of the serial IR method increases with the
size of the system.

VI. CONCLUSION

This paper presents a parallel method known as IR for the
real-time transient stability simulation of power systems. Al-
though it is possible to utilize real-time simulators based on the
electromagnetic transient simulation approach to perform tran-
sient stability analysis, the size and cost of the simulator is usu-
ally prohibitive, especially for simulating large-scale systems.
The motivation behind this work is to test the real-time feasi-
bility of a fully parallel method that could alleviate these limita-
tions. The WR method was investigated in this paper for imple-
mentation in real-time. It was, however, found that WR method
has some restrictions for real-time simulation due to the fol-
lowing reasons:
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System Initialization ; System Initialization ;

Start Timer ; System Partitioning;

Do for each time step: Start Timer;

Repeat until converged: Do for each time step:

Discretizing Solve Subsystem 1;

NR & Linear Solution; Solve Subsystem 2;

Updating; i
! Solve Subsystem n;

End of Repeat;

Updating;
End of Do ; End of Do ;
Stop Timer ; Stop Timer ;

Fig. 12. Pseudo code for sequential implementation of (left) standard and
(right) IR methods for transient stability computations.

TABLE 1V
SPEED-UP COMPARISON

Total time (s)

Case study Standard IR Speed-up
method method

1 8 3 2.67

2 85 25 3.4

* The WR method provides a set of values in the form of a
complete waveform. However, real-time simulation; espe-
cially hardware-in-the-loop simulation, requires instanta-
neous values of variables.

* Implementation of the WR causes uneven computation
loads among the time-steps. This results in execution time
overrun in some time-steps and excessive idling time in
the others. An overrun, which describes a situation when
the simulator requires a larger time-step.than the specified
fixed time-step to finish its task, is not acceptable in hard
real-time systems.

These problems are overcome by the proposed IR method. It
inherits all the advantages of the WR method but is also effi-
cient for real-time implementation. The two main differences
between the IR and WR methods are as follows:

¢ In the IR method, the instantaneous values of the variables
are being used and not their waveforms.

* To achieve the required accuracy, several iterations of the
Newton—Raphson within each time-step are performed.

To demonstrate the performance of the IR method, two case

studies have been implemented on a PC-cluster-based real-time
simulator and the results are validated by the PSS/E software.
Several comparisons verified the accuracy and efficiency of the
IR method. To verify that the efficiency of the proposed method
is not mainly due to the computing capacity of the PC-cluster,
a sequential implementation of the IR method was compared
with respect to the standard method. This evaluation revealed
significant speed-up of the IR method for both case studies. In
addition, the performance of the slow coherency method as the
partitioning tool was analyzed, and it was concluded that for
different fault locations in the system, results derived from this
method had lower amounts of error.
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APPENDIX
SYSTEM REPRESENTATION FOR THE TRANSIENT
STABILITY ANALYSIS

The detailed model of a synchronous generator used in this

paper is given here.

1) Equations of motion (swing equations or rotor mechanical
equations): In transient stability studies, it is assumed that
mechanical torque (7,,) is constant during the transient
phenomena, and is the negative of the steady-state value
of the electrical torque (7, = —7.(0)). Therefore, the
turbine and governor systems are not modeled for the tran-
sient duration:

[To(t) + T — D.Aw(t)]. (12)

T2H

2) Rotor electrical circuit equations: This model includes
two windings on.the d axis (one excitation field and one
damper) and two damper windings on the ¢ axis:

13)

3) Excitation system: Fig. 13 shows a bus-fed thyristor exci-
tation system, classified as type ST/A in the IEEE standard
[26]. This system includes an AVR and PSS:

) 1
01 (t) = -[ue(t) — o (2)]
R
. 1
02(t) = Kstap-Aw(t) — T—vg(t)
. 1 .
’U3(t) = ?[Tlvg(t) + ’Ug(t) — ’Ug(t)]. (14)
2
4) Stator voltage equations:
ea(t) = — Raia(t) + Lqiq(t) — Eg(t)
eq(t) = — Raia(t) — Lgia(t) — E{ (1) (15)
where
Y1 | P 2}
E'=L,, |2+ + 2=
¢ ! {qu Lq2
Yra | YPar
" — rJja rat
E; =Laa |:Lfd + oo | (16)
5) Electrical torque:
T. = _(d)adiq - q/jaqid) an
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Terminal voltage Vier
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Fig. 13. Excitation system with AVR and PSS.
where
. 2/ . P fd Va1
Vad =Laa | Tt g T
fd dl
. 2/ . dqu '@Z}q2
s [—zq g Yy Yun (1)
q1 q2

where WR, H, D, Rfd, R1d7 qu, R2qs Ras Lfds Ldls qus
" " " "
LqQ» d> Lq7 L(ld7 L(l,q’ ad’ TR» ﬂl)a Tl» TZ’ and

aq’
K 14p are constant system parameters whose definition can

be found in [23].
According to this formulation the vector of state variables in
(1) and (2) of the synchronous generator is

r=[6 Aw tpa Pra Piqg P2 v1 ¥e vzl (19
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