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ABSTRACT

Approximate solutions are presented for the linear
isothermal response to symmetric dynamic loading of viscously
damped thin homogeneous isotropic elastic plates and shallow
spherical shells having regular polygonal boundaries. Normal
modes of vibration are determined with the aid of the boundary
collocation technique, and modal partiéipation functions,
necessary for forced solutions; are calculated by emplojing
numerical integration. The solutions are applicable to
elastically built-in plates and shélis with time-dependent
edge conditions. Numerical solutions are provided for a
large number of polygonal plates and shells subjected to
uniform and central point loads for a varlety of edge
conditions. Theoretical and experimental results are
compared for a square plate and a shallow spherical shell

with an hexagonal boundary subject to blast loading.
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CHAPTER 1

INTRODUCTION

1.1 Objectives
The purposé of this theslis is to present approx-

imate theoretical solutions for the free and forted
linear transverse vibrations of thin homogeneous 1sotropic
elastic plates and spherical shells of constant thickness,
both having regular polygonal boundaries. The theory
gives the linear viscously damped response of these plates
and shells to arbitrary transient symmetrically distrib-
uted overpressures for a wide variety of homogeneous and
time-dependent edge conditions.

Theoretical frequencies, mode shapes and
modal participation functions for uniforﬁ loads and-cen-
tral point loads have been tabulated: for many different
simply supported and clamped polygonal plates. Since
the numericél application of this theory requires ex-
tensive use of a digital computer, it was impractical to
tabulate results for shallow shells having all of the geo-
metrical properties and edge conditions which might be of
interest. However, a sufficient number of different

shells have been analysed to establish some general



effects of variations in the shell geometrical proper-
ties and edge conditions-on the natural'frequenciés and
modal participation functions. Computer programs which
calculate free vibration and forced response of these
plates and shells are included. These programs are
written in Fortran IV language for use on IBM 360/67

and 1130 (with modifications) digital computers.

It is a major purpose of this thesls to pre-
sent detailed comparisons between transient experi-
mental and theoretical stress resultants (forces) and
stress. couples (moments), obtained from the response
to air blast overpressures of a s&uare plate and a
shallow shell with an hexagonal boundary. These com-
parisons reveal some of the limitations of the theory
and some of the difficulties which may be encountered
when an at@empt is made to correlate simultaneously
both magnitudes and frequencies of the sectional re-
sultants for practical applications. The effect of
variations in shell geometry from the ldeal, espec-
ially in radius of curvature, is considered to play an
important part in the forced response of thin shallow

shells.



1.2 Discussion of Literature for Plates

Literature representing some of the different
analytical approaches to the solution of the linear
transverse flexural vibrations of elastic plates 1is
summarized in this sectlon. From this survey it 1s
evident that while much work has been done on free
vibrations of plates, theoretical forced response has
been computed for only a few plate shapes and detailed
experimental results for the forced response charac=-
teristics of a complete plate are lacking.

1.2.1 Experimental Results. Lassiter and

Hess [1]! studied the response of a clamped rectangu-
lar plate to random acoustic loading, measuring straln
at one position only, at the middle of the short side.
They concluded that for flat panels there 1s a non=-
linearity involving a stiffening spring constant and
for curved panels the nonlinearity involves a de-
creasing spring constant. They found, also, that
combined structural and air dampling was independent

of panel thickness but increased rapidly with stress

at higher stress levels.

! Numbers in square brackets [ ] refer to references

in Bibliography.



L
Crocker [2,3] has studied the response of rect-
angular panels to normal and travelling sonic booms and
to step and oscillating shock waves. He  showed that:
contributions of higher modes to bending strains (in the
direction of the longest sides of length a) are sig-
nificant, particularly as the panel aspect ratio a/b
(where b is the length of the shortest sides) is increased.
He compared the experimental and theoretical center
transient bending strain of a clamped 4.5 x 2.5 in. panel
subjected to a N wave and found fair agreement. |
Arising from the present work, Walkinshaw and
Kennedy [4] have given the approximate theoretical sol-
ution for the forced response of polygonal plates subject
to homogeneous edge conditions and compared experimental
and theoretical transient central displacements and
moments at different positions for an elastically clamped
square plate subjected to air blast loads.

1.2.2 Exact Theoretical Solutions. Exact

solutions for the free linear vibrations of circular
plates have been obtained for various edge conditions.
Radially symmetric free vibrations were analysed first
by Poisson [5]. Later Kirchoff [6] calculated non-

axisymmetric frequencies for a circular\plate with free



edges. Airey [7] and Rayleigh [8] analysed free vi-
brations for various edge conditions. Mindlin [9]
showed the effect of neglecting rotatory inertia and
transverse shear, termed the thickness-shear mode effect,
on higher modes of vibration. Coupling of the thickness-
shear mode with the higher flexural modes is shown by
Deresiewicz and Mindlin [10] for the axisymmetric vi-
brations of a circular plate with free edges and by
Deresiewicz [11] for the axisymmetric vibrations of a
circular plate with clamped edges. Raju [12] calcu-
lated the natural frequencies of annular plates with a
variety of edge conditions at the inner and outer bound-
aries. Reid [13] analysed free vibration motion of a
circular plate subjected to an initial displacement

and velocity distribution and Harris [14] solved the

free vibrations of a circular plate having a lenticular
thickness variation.

Forced motion of circular plates undergoing
symmetrical deformation has been analysed by Sneddon
[15] for an artificial boundary condition using in-
tegral-transforms. Response of clamped circular

plates has been analysed by Flynn [16] for impulsive



loads and by Relsmann [17] for concentrated harmonic-
ally oscillating loads. McLeod and Bishop [18] have
calculated the forced symmetrical and nonsymmetrical
vibrations of circular plates subjected to a central
force or a line force at any radius and of annular
plates subjected to moment excitation at free and
pinned edges and force excitation at free and sliding
edges. Weiner [19] has analysed the forced motion
of an elastically built-in circular plate under con-
centric ring loading, central loading and uniformly
distributed loading. Reismann and Greene [20] have
analysed the forced motions of circular and annular
plates subject to general stationary or time-depend-
ent boundary conditions using the "improved theory"
which includes the effect of transverse shear de-
formation and rotatory inertila. Their comparison

of central displacements and central and edge moments
calculated by the classical and improved methods for
a clamped circular plate reveals the increasing im-
portance of the shear deformation with increasing
thickness-to-radius ratio h/a and decreasing ratilo

of central area uniformly loaded to plate area. They

concluded that the improved theory should be used for



uniformly loaded plates having a thickness ratio h/a >0.1
and showed that the central displacements predicted by
the classical theory will be too small both for statile
and dynamic loads.

Exact solutions for the linear vibrations of
rectangular plates with simply supported edges have been
given by Rayleigh [8] and Timoshenko [21]. Voight [22]
obtained an exact solution for the free vibration of a
rectangular plate simply supported along one pair of
parallel edges and free at the other two edges. Mindlin,
Shacknow and Deresiewicz [23] investigated the influence
of rotatory inertia and shear deformation on the flexural
vibrations of rectangular plates with all edges simply
supported and with two parallel edges simply supported
and the other two free.

1.2.3 Approximate Theoretical Solutionms.

Approximate solutions have been obtained for the linear
transverse flexural vibrations of elastic plates having
complex geometrical and material properties subject to
a variety of boundary conditions. A more complete
summary of approximate procedures than is presented by
this review is given by Desai [24] and expanded by

Meirovitch [25].



Ritz [26] introduced the energy approach, in
which the calculus of variations is used to find the
minimum of potential energy for self-adjoint systems,
for free vibrations of rectangular plates with edge
conditions other than having all sides simply supported.
Natural frequencies of a square plate with free edges
were found by Ritz [27] using the energy technique.
Using the energy approach, Iguchl extended his earlier
work [28] to find natural frequencies of rectangular
plates with various length-to-width ratios and edge
conditions [29]. Young [30] used the Ritz method to
calculate natural frequencies of rectangular plates
for various edge conditions and Ota and Hamada [31] used
this approach to obtain fundamental frequenciles of sim-
ply supported rectangular plates clamped along portions
of the edges.

Nowacki [32] analysed the free vibrations of
a clamped rectangular plate by obtaining an integral
equation from compatibility of a series of clamped
strips. Nowacki [33] has given a solution for the
linear forced flexural response of a rectangular plate
with simply supported edges subjected to uniform or
concentrated loads using Greene's function and the

orthogonality condition.



Tolke [34] introduced the boundary colloca-
tion technique, which can be used to satisfy arbitrary
edge conditions for plates of any shape, for the static
solution of square plates with clamped, simply suppor-
ted and free edges. This technique has been employed
by Conway [35], who introduced the nomenclature "point-
matching™, and by Leissa [36] to obtain the fundamental
frequencies of some regular polygonal plates. Conway
and Farnham [37] used this technique to obtain funda-
mental frequencies of some polygonal plates and Chen
and Pickett [38] have developed some computer programs
to obtain natural frequencies for plates of any shape
subject to any boundary conditions,

Free vibrations have been analysed using the
Ritz euergy method for rectangular and skew cantilever
plates by Barton [39], for triangular cantilever plates
by Anderson [40] and for some irregularly shaped plates
with square and circular holes by Rao and Pickett [411].

Reipert [42] extended the Levy method to
analyse vibrations of polygonal plates resting on el=
astie foundations subject to transverse and in-plane

loads and various boundary conditlonms.
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Solecki [43] employed Fourier transforms to ob-
tain the free vibrations of freely-supported four. sided
plates with two opposite parallel rectilinear sides and
two other sides of arbitrary shape.

Shahady, Passarelli and Laura [44] used com-
plex variable theory to map conformally varlious plate
shapes onto a unit circle to obtain the fundamental
frequencies of vibration of these plates.

Pandalal and Patel [45] analysed natural fre-
quencies of vibration of circular plates having diff-
erent material properties in the radial and circum-
ferential directions. Salzman and Patel [46] analysed
the asymmetric natural vibrations of orthotropic cir-
cular plates with variable thickness using the method
of Frobenius.

Dawe [47] applied the discrete element dis-
placement method to predict changes in natural fre-
quencies of lateral vibration due to axial and blaxial
in-plane loading for some simply supported and clamped

rectangular plates.

1.3 Discussion of Literature for Shallow Spherical Shells.

Literature representing some of the analytical



"solutions for the vibrations of shallow spherical shells
is summarized in this sectilon. A more extensive review
of the analytical methods of analysis for free vibration
and transient linear elastic response of general thin
shells is given by Kalnins [48]. It is evident that
although much work has been done on computing natural
frequencies of shallow spherical shells with circular
boundaries, theoretical forced response of these shells
has been computed for only a few different edge con-
ditions and thinness and shallowness parameters.

Since most available experimental verification of shell
frequencies and mode shapes have been done during
stability investigations, some literature on the buck-
ling of shallow spherical shells is included. Dis-
crepancies between the theoretical and experimental
results given for the buckling of shallow shells in-
dicate that the effects of imperfections in shell
geometry and the inability to satisfy idealized edge
conditions exactly should be studied experimentally

for linear vibrations. No detailed experimental and
theoretical comparisons for the linear forced response

of shallow shells could be found in the 1literature.



1.3.1 Linear Vibrations. An exact solution

for the asymmetric free vibrations of shallow shells
with clamped edges was formulated by Reissner [49] who
evaluated an approximate fundamental frequency using
the Rayleigh-Ritz procedure. Later, Reissner [50]
showed that longitudinal or in-plane inertia could be
neglected in solving for the transverse free vibra-
tions of shallow shells, thereby reducing the problem
to the solution of two simultaneous differential
equations involving a stress function and the trans-
verse displacement rather than three simultaneous
differential equations in the three displacement com-
ponents. Using this approximation, Relssner calcu=-
lated the frequencies of simply supported shallow
shells of rectangular plan with sliding edges.
Neglecting longitudinal inertia, Relssner [51] de-
termined axisymmetrical natural frequencies of
shallow shells with both clamped and free edges, and
forced vibrations of an infinite shallow shell with.

a point load at the apeXx. Free transverse vibra-
tions of shallow spherical shells with free edges were

analysed by Johnson and Reissner [52].
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Naghdi [53] derived the differential equations
for the linear response of thin shallow elastic shells
including the effect of transverse shear deformation,
Kalnins and Naghdi [54] gave an analysis for the
coupled longitudinal (torsionless) and transverse
asymmetric vibrations of shallow spherical shells. The
differential equations governing vibrations of shallow
spherical shells including the coupling effects of
longitudinal, transverse and rotatory inertia, and
transverse shear deformation were given by Kalnins
[55], who calculated the frequency equation for a
clamped shallow spherical cap from these differential
equations, Free nonsymmetric and axisymmetric
vibrations of clamped shallow spherical shells,
including some mode shapes, were computed by Kalnins
[56]. He showed that neglecting longitudinal inertia
resulted in the omission of an infinite number of
in-plane inertia modes but that transverse vibration
frequencies computed by the classical method were quite
accurate and essentially uncoupled from the in-plane
frequencies,

Van Fo Fy [57] introduced two auxillary
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functions for shallow spherical shells with longitudinal
inertia neglected, thereby reducing the two simultaneous
differential equations in stress function and transverse
displacement to two simpler uncoupled differential equa-
tions, the solution of which reduces to the solution ob-
tained by Reissner [50].

Lee [58] analysed the axisymmetric vibrations
of a shallow spherical shell with a heavy mass at the
apex and Pandalai and Dym [59] showed that for practical
purposes the transverse shear force can be neglected in
the calculation of the axisymmetric natural frequencies
of a shallow spherical cap.

Koplik and Yu [60] studied the axisymmetric
vibrations of homogeneous and sandwich shallow spheri-
cal caps with clamped edges including the thickness-
shear effect. They showed that the frequencies of the
higher modes of vibration of homogeneous and sandwich
caps can be calculated from the uncoupled equations of
clamped circular plates as the shell curvature affects
only the lower frequencies, and that the thickness-
shear effect can be ignored for homogeneous caps.

Koplik and Yu gave an approximate solution for the

axisymmetric vibrations of clamped spherical caps [61]
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and analysed the torsional vibrations of homogeneous
and sandwich spherical caps and plates with clamped
and free edges [62].

Lock, Whittier and Malcom [63] showed that
the nonsymmetric transverse vibrations of a clamped
shallow spherical shell depend upon a single shell
geometric parameter, and that the eigenvalues of the

higher modes converge to the clamped plate eigen-

-~
-

-

values.

The response of shallow viscoelastic
spherical shells to arbitrary time-dependent axl-
symmetric loads has been studied by Naghdi and
Orthwein [64]. Neglecting longitudinal inertia,
they solved the differential equations for unlimited
shallow shells and shallow shell segments using
Laplace and Hankel transforms. Van Fo Fy and Builbol
[65] obtained a solution for shallow spherical shells,
neglecting longitudinal inertia, subject to a harmonic
axisymmetric transverse load. Kraus and Kalnins [66]
derived a general solutlion for arbitrary elastic
shells subjected to time-dependent surface loads, for
which the free vibration characteristics are known,

using spectral representation or normal modes. They
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also showed that for a shallow spherical shell with
simply supported edges having a base circle-to-thickness
ratio of 20 and a half angle of opening of 15 degrees,
three symmetric modes usually are required for the
transient response to a suddenly applied uniform
pressure while for a hemispherical shell with the same
thinness parameter, fifteen modes are required. The
method of analysis for obtaining the response of
shallow spherical shells subjected to transient surface,
edge and thermal loads using spectral representation
has been outlined by Kraus [67]. Reismann and
Culkowski [68] have obtained a solution for a clamped
shallow spherical shell subjected to an impulse uni-
formly distributed over a central area including the
effect of shear deformation and rotatory inertia.

1.3.2 Buckling. Hossack [69], in the
course of an experimental investigation on the non-
linear behaviour of shallow spherical shells subjected
to static overpressures, suggested that shells manufac-
tured by spinning are subject. to residual stresses
and variations in thickness. He stated that the
clamped edge condition is almost impossible to achieve
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in practice and that attempts to attain it will induce
random forces and moments and, in any case, in most
engineering applications the behaviour of a shallow
cap would approximate that of a freely supported shell
even when some measure of restraint is provided.
Hossack found for some freely supported caps that exe-
perimental bending strains agreed more closely with
theory than did the membrane strains.

In experiments on dynamic buckling of
clamped shallow spherical shells under uniform press-
ure pulse loading, Humphreys, Roth and Zatlers [70]
found that maximum prebuckling deflections exceeded
the theoretical predictions of Budiansky and Roth
[71] by as much as 100 per cent.

Huang [72] suggested that when the shell
height-to-thickness ratio exceeds a certain value,
initial geometric imperfections or disturbances
during deformation would cause the axisymmetric de-
formation of clamped shallow spherical shells to bi-
furcate to asymmetric deformation at some prebuckling
pressure. Using this assumption, Huang, predicted
lower buckling pressures for these shells which,

however, were still not conservative in comparison to
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experimental values.

Archer and Famili [73] adopted the vibration
method of stability analysis to theoretically predict
static buckling pressures for clamped shallow spherical
shells. This method is based on the fact that the
frequency of the buckling mode, which can be predicted
by Huang's theory [72], diminishes from the free vibra-
tion values given by Kalnins [56] to zero frequency
when the shell 1is loaded at the buckling overpressure.
Okubo and Whittier [74] applied this nondestructive
method of determining the static buckling pressure to
some clamped shallow spherical shells. They found
that the experimental frequency of the axisymmetric
buckling mode, predicted as the failure mode by Huang,
was slightly lower than the value predicted by the
method of Archer and Famill at all static overpressures
for all shells tested. They suggested that radius of
curvature variations in the experimental shells as

well as thickness deviations might explain the dis-

crepancies,



CHAPTER 2

PLATE THEORY

2.1'Governing Eguations.

The fundamental differential equation of motion

given by Poisson [5] and Kirchoff [6] for thin elastic
plates subjected to linear isothermal deformation by a
normal dynamic massless loading function q(r,6,t) with
viscous damping included, neglecting the effects of
rbtatory inertia and transverse sheér, is

w(r,0,t) 3%w(r,6,t)

D V*w(r,0,t) + 2gm — + m = q(r,6,t).
ot at?

In this equation w is the transverse displacement of
the middle plane of the plate, ¢ is the coefficient of
viscous damping, m is the mass per unit area,

D = Eh?/[12(1 -~ v2)] is the flexural rigidity, h is the
plate thickness, E is the modulus of elasticity, v is

Poisson's ratio, r and 6 are the radial and angular

19

(2.1)

polar coordinates, t is time, and V* = — +— — 4 — —

when operating on w(r,0,t).

Introducing the dimensionless parameters

w r
n ==—and p = —, where a is the radius of the circle

a a
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circumecribing a regular polygonal plate, Eq. (2.1)

becomes
an(p,0,t) 32n(p,0,t)
D V*n(p,0,t) + 2zma® —— + ma" =
ot ot 2
= aSQ(p,e,t), ) (202)

32 19 1 32

where V2 = — 4 — — + — —— when operating on
3ap2  p 3p p? 262

n(p,0,t).

In the interest of obtaining the most
general solution, the possibility of time-dependent
nonhomogeneous edge conditions is included. A
solution of Eq. (2.2) for nonhomogeneous boundary
conditions which depend on functions of time &*(t) is

assumed in the form [25]

(]
n(p,0,t) = n (p,8,8) + ¥ & (p,0) E(t), (2.3)

2=1
where ¢ = 4 for a plate with interior and exterior
boundaries and ¢ = 2 for a plate possessing only an
exterior boundary. The functions g“(p,e) are chosen
to make the boundary conditions expressed in terms of
nl(p,e,t) homogeneous. Substituting Eq. (2.3) into

Eq. (2.2)yields



an (p,6,t) 32n_(p,0,t)
D V*n (p,0,t) + 2zma® —1—>2 " 4 ma* —21 22
1 at at?
2
c _2 2 c de (t)
= a’q(p,8,t)-D Y & (t) V'E (p,0)-2zma* y —
£=1 g=1 at
2

. f: d?e (t) z_( :
- ma —_— g (p,0).
£=1 dt?2 ?

2.2 Free Undamped Motion

2.2.1 General Solution. The homogeneous

equation of the undamped system

LY 2
ma* 3°n,(p,0,t)
v*n (p,6,t) + — -0
1 D ot?

21

L
E (D,e) -

(2.4)

(2.5)

can be solved by the separation of variables technique

n (p,8,t) = 7(p,8) exp(iwt),

where w is the undamped circular frequency. Sub-
stitution into Eq. (2.5) gives two simpler

differential equations of the form

1
o

(v? + k?) 31(0.6)

n
o
v

(vz - kz) ﬁz(p,e)

: /m'
k2 = 3% [— .
D

where

(2.6)

(2.7)
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For linear problems
(p,8) = 1 (p,8) + T (p,0).
Love [75] showed that solutions for. equations

of this type can be given as

@ . .
= 9) = v ‘cos nb <
n(p’ ) ngo n(p) {Sin no

Consequently the general solution of Eq. (2.3) is

given by

[0
i(p,0) = Y [A T (kp) +B I (kp) +C Y (kp) +
n=0 n n n n n n

+D K (kp)] {¢9s né (2.8)
n n sin no?

where An’ Bn’ Cn and Dn are integration constants,
Jn and Yn are Bessel functions of the first and second
kind, respectively, and In and K, are modified Bessel
functions of the first and second kind, respectively.
Restricting the solution to plates possessing no
interior boundaries yields

C =D =0

n n
and applying the solution to plates of regular polygonal
shape possessing p-ply rotational geometric periodicity

1
as shown in Fig. 2.1 yields for symmetric response

1This assumption of symmetric response restricts the
loading function to be of the form a(p,8,t) = q,3(p)cos pmd Q(t),

where q, is a reference pressure and m is any integer.



Plates with



.24
. a
7(p,8) = L [A J (kp) +B I (kp)] cos pné. (2.9)
n=0 pn pPn Pn pn
@ is 0 and w/p radians, respectively, along radial
lines which pass through the boundary center and
corners. Consequently, the response is symmetric
about these radial lines if n(8) is chosen to vary as

cos pn8, since 3n(p,0)/36 = 3n(p,n/p)/36 = 0.

2.2,2 Edge Conditionms. The homogeneous edge
conditions which must be satisfied for an elastically

built-in plate are

n(p,8) =0 (2.10a)
and -
L~ an(5,8)
M_ (p,0) = B ——, (2.10b)
vs 1 v

where p and @ are the coordinates of boundary points.
In Eq. (2.10b) MVS(E,ﬁ) is the flexural stress couple
vector tangential to the boundary and B, is the edge
spring constant of proportionality ranging from zero
for a simply supported plate to infinity for a clamped
plate. The boundary and interior coordinate systems
are shown in Fig. 2.2. The associated ' nonhomogeneous

time-dependent edge conditions will be dealt with in
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-

FIG. 2.2 Vector Diagram Showing Relation of Boundary Coordinates v, s to
Interior Coordinates r, 0
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Chapter 3.

Since at the present time an exact solution
for this problem is not avallable for the edge
restraints in Eq. (2.10a) and (2.10b), Tolke's
boundary collocation method [34] is employed, whereby a
rigorous satisfaction of the prescribed boundary
conditions is collocated for a number of discrete
points located on the boundary of:-one of the rotationally
periodic segments of the plate.

Expressing Eq. (2.10b) in polar coordinates

ylelds

M (,8) cos28 - M (p,8) sin20 + M (p,8) sin 26 =

ro or rr
an(p,8) . 1 an(p,8) -
= ———— ¢c0S 6 = — ——— sin © (2.10¢)
1 op p 36

The flexural stress couple components Mre

and M , the torsional stress couple components Mrr
er

and Mee and the transverse shear stress resultant
components F? and Fen’ which are shown in Fig, 2.3,
n
can be expressed by
D [32n /1l 3%2n 1 an (2.11a)
SRR PR A\ I
ro a Lap? p2 362 p 9p



a7 .

FIG. 2.3 Vector Diagram of Plate Element Showing Sectional Resultants
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Drl1 3n 1 9n 9%n
M = |— e—f —— ¢ V—|, (2.11b)
er a Lp2 362 p 3p ap?
D(1-v) [ 3 1 3n
rr 60 a op ' p 96
D 9
F = == —(V2n), (2.114)
™ a? 3p
D 9
F = = —— —— (727). (2.11e)
én pa? 26

Substitution of Egqs. (2.9) and (2.11) into Egs. (2.10a)
and (2.10c) produces linear homogeneous equations, the
solution of which will yield an infinite set of

eigenvalues k and their associated eigenvectors. Thus

i
Qo
WY ! .
n=0[Apn wl + Bpn wz] = 0, (2.10a%)
® 1 ia i a
LA (b -8 —¥)+B (b - 8; =¥,)1 = 0. (2.200%)
n=0 pn pn

The coefficients in the boundary equations (2.10a¥)

and (2.10c¥®) are

$ =J (i) cos pnd,
pn

I (fi) cos pna,
pn

<
"
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¢ =k J' (fi) cos ® cos pnd + 22 J ({i) sin 6 sin pné,
1 pn P bpn |

v =k I' (il) cos e cos pna +E22 1 (§) sin 8 sin an,

k - -~
v = =[k? T (D-vED2 3 () + v(2)I' (#)] cos?8 cos pnb +
s i pn P pn p pn

k - -~
+[vk; Jrr(y) - (gg)z J () + (:E)J' (#)] sin2%6 cos pné -
pn P pn f bpn

- (1 -v)[R2 g
~2

pn(ﬁ) - ki(gﬂ)J' (f)] sin 28 sin pné,
Y ¢]

pn

k - -~
v o= - [k2 I - vEH2 I (@) + (=) I' ()] cos®d cos pnd +
pn P pn ) pn

k - -~
+ [vki Iéﬁ(ﬁ) - (%3)2 Ipn(ﬁ) + (gl) Ién(ﬁ)] sin2%6 cos pné -

- (1 - v)[%% Ipn(H) - k, (25) Ién(ﬁ)] sin 28 sin pné,
P

where I = k. p.

2.3 Forced Motion

2.3.1 General Solution. The classical method of
spectral representation in which the dependent variables are
expanded in an infinite series of normal modes of free vi-

bration 1is assumed for nl(p,e,t), defined by Eq. (2.4), in the
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form
R 1 i
n (P, 0,t) = Y f#t(p,8) T-(t), (2.12)
i=1
where
=1 i i
7l(p,8) = Y [A® J (kyp) + B" I (kjyp)lcos pné  (2.13)
n=0 pn pn pn pn

and T1(t) is usually referred to as the modal particlpation
factor. Substituting Eq. (2.12) into Eq. (2.4) and

simplifying yields

o d2Ti(t) ati(e)
Y [——— + 2z, ——— + wITH(£)17(p,0) =
1=1 dt? 1 at |
Qg _ D 2
= 22 G(p) cos pmé Q(t) - —, T & (t) V'E'(p,0) -
ma ma' 2=1
2 ad*(t) Lo o) % a2&¥(t) Lo 0 211
- 2¢ z 8) - —_ 8%p,0). 2.1
iQ§£ at o &1 ez P )

Here it is assumed, as is done by Meirovitch [25], that

=1

the eigenvalues ki and the eigenvectors n~ assoclated with

the homogeneous equatidn of the undamped systém, Eq. (2.5),
satisfy the nonhomogeneous equation with viscous damping
included, Eq. (2.4) :

Multiplying both sides of Eq. (2.14) by 79 (p,8),
integrating over the plate characteristic segment area and
applying the condition of orthogonality of the eigenvectors

pointed out by Rayleigh [8] and shown in Appendix B.,1,
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yields
i
a2ri(e) ari(t) X; a
+2¢ + w2 Tl(t) = 22 q(¢) -
at? 1 at 1 x} ma
2 déz(t) x"'i 2 a2e¥(t) xf”i
- 2z - z T (2.15)
1 ¢=1 dt x} g=1 at? X,
where
cosbo
0o cosé
1 4 .
X, =f f oln (p,0)]2 ap de, (2.16)
0 0
cosfo
6o coso
i ‘ -
X, =f f pﬁ!(p,e) a(p) cos pm6 dp de, (2.17)
0} 0
cosfo
6o cosé6
& 1
x‘:”1= f f og (p,6) N (p,0) dp 4o (2.18)
0 0]
and
T
0 =-—,
°© p

Eq. (2.15) has been simplified by arbitrarily choosing
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2
g (p,8) as solutions of the biharmonic equation in the form.

@ - 3,2 pn 2,2 pn+2
E"(p,e) = ) [E "o +E »p ]cos pné , 2=1,2,,.(2.19)
n=0* pn pn . '

This is permissible since these auxiliary edge condition

functions are not unique, as Meirovitch [25] pbints out.

2.3.2 Initial Conditions. The solution of

Eq. (2.15) for © <w 1is
1 1

. 1 ratt(0) 1 a
T(t)--exp(-l;t){—g[ +;T(0)]sinmt+
i w, Lat i i

i d i 1
+ T (0) cos wit}+ [1/(0); xo)] [(qolma)lei'(t) -

2 2,1 2,1 2 2,1 2,1
- 2t Lglx’ G, (%) - z§1x= ¢, (81, (g.ze)
where t
i _ 2, 4d d
G1(t) = (wi/wi) f (1) exp[-l;i(t-‘r)] sin mi(t-‘r) dt, (2.21a)
0

de

t
2.1
G (t) = (w2/0®) JF
3 i 13
0

L2

(1) _
exp[-z (t-1)] x

dt i

x sin m:(t-t) dt, : (2.21b)
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t
2,1 . a a2e* (1)
G“ (t) = (wi/wi) IT exp[-t;i(t-‘t)] x

0

d
x sin o (t-1) dTt (2.21c)
i

d 2 2}
and wi = Jhi - ;1 is the damped circular frequency of

the i-th mode.
If the plate is initially assumed to be at

rest and to have undergone no transverse displacement,

then
n(p,0,0) =0, (2.22a)
ot

and the free part of the solution, Eq. (2.20), vanishes

leaving

() = [1/(u? x3)] [(q/ma) x] 6] (£) -

Y BBt - & 0N e 2.
i¢31 Xs 7 9;1 Xa Ta

2.3.3 Modal Participation Functions.

Substituting Egs. (2.13) and (2.19) into Egs. (2.16)
through (2.18) yields the expressions for the modal
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participation functions

1 1 i, N N
[AOJ ¢1 +[BO] ’2+2A° BO ¢3"-

>
]

@ 1 i - i 1
+ Y {ra 126 +([B 12¢_+2a B ¢ 3}, (2.24)
n=1 pn . pn s pn pn 1°
i 1 1 ) 1 1
x =A ¢ +B ¢ + Y [A ¢ +B ¢ 1, (2.24p)
1 o 7 o 8 p=1 pn ° pn !°
2,1 1,8 1 i 2,2 i i
X =E (A ¢ +B ¢ 1+E [A ¢ +B ¢ 1+
3 0 0 11 [ ] 12 0 0 13 0 14
© 1,8 1 i 2,2 1 1
+ Y{e'a ¢ _+8B ¢ 1+E  [A ¢ +B ¢ 1}.
n=1 pn pn 15 pn 16 pn pn 17 pn 18
(2.24¢)
i 2,1

In evaluating X, and Xy 3 terms involving
products of functions of different orders n have been
neglected. This simplification is exact only for
circular boundaries and introduces errors which will
increase in magnitude with the deviation of the nodal
lines from circles concentric about the plate center.
The accuracy of this simplification 1s checked for some

numerical examples in Chapter 4.
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Evaluation of the coefficients ¢1....b”
involves integration over p and 6. The integration
over p can be carried out exactly as shown by McLachlan
[76], for example, however the integration over 6 must
be carried out numerically. If the terms involving
products of functions of different orders.n had not
been neglected in Eq. (2.22), then formulas for their
associated %-coefficients suitable for polygqﬁal plates
with any number of sides could have been solved only by
numerically integrating over both coordinates p and 6.

For a load distributed uniformly over the

plate surface g(p) cospmb 1 and the coefficients

¢l...¢'18 are:

6o
cos260 dae
¢ =———f (3% (n ) + 320 )] ,
1 - cos?e
0
go
cos260 . i de
¢2 -—2—' f [Io(uo) - .Ix("-'o)] —
0
0o
cos 6o de
¢=—f [3,(u) T,Cu) + 3 () T ()]
3 ky cos 6°

0
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24 6o
CcOS o
o, = —— f (03" ()12 + 32 (u) [1-BH2 &
. 2 pn © Pn o k,
0

cos29 cos?pnéd
x ] dae,
cos260 cos?¢

0o

cos260 pn
b, = —— [ (-1 1t ) e B
2 pn pn © ki
0o

cos26 cos?pné
x ] dae,
cos?6o cos?e

00
cos?60

— f [Ipn(H) I0 (ug) = 5 (u ) I (u )] x
i

0

©
o
]

cos?pné

x ae,

cos 0

0o

cos 6o J (u)
¢ = —— -1 0o ge,

7 k cos 6

6o

cos 6o I (u)
¢, = fl_o.de
k cos 6
)
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© 0o
cos pn6
¢ = 2 cos: @ f J (wo) ——_ go-=
.9 ki a=0 (o] Pns2atl cos 6
0]
8o
2 @®
-— ¥ (a+l) f J (pg) cos pné de ,
k pn+20+2
i 4=0 0
0o
. 2 @ a r . cos pné
¢ =— Z(-l)cosejz u) a6 -
10y a=0 o pn+2at  cos 6
i 0
: 6o
2 ®
- — Z (=1)% (a+1) f I (ug) cos pné de ,
1 a=0 pn+2a+2
0
6o
cos 6o dae
‘b“ B ki ‘[ Jl(uo)cos o
4]
6o
cos 0o f (1) de
= —— I (p
12 k 17065 0
i o
0o 0o
cos36o : ae 2 . () ae
é =——-]J(u -—coseofJu
13 k 1 "% .0s% k2 2 "9 40529
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6o 6o
cos360 ) de 2 . ) de
P =___..qu - -—coseoqu
14 ky 1 9 6050 k; 2 cos20
0 0
pnt1 O
(cos 60) ( cos?pn6
¢ = j J H ) + ae
1s ki pn+1 © (cos )P ’
0
pn+1 6o
(cos 60) ) cos?pneé
16 ki pnt1 O (cos e)pn"" ’
0
pn+3 6o
(cos 60) () cos2pné 2
é = f J u 4 =— x
17 k pnt1 0 (cos 6)Pnt? ®
i 0 i
6o
, )pn+z () cos2pné
x (cos 8o f Jd u
pn+z  ° (cos 0)PT+2 ’
0
pn+3 8o
(cos 60) cos?pnb 2
¢ = f I (un ) de - — x
18 k pnél O (cos 6)PH3 k?
i 0 i
: 6o
( )pn+z ) cos?pné
x (cos 6o f I (u dae
pn+z° (cos 6)Pn+? ’

0
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cos 6o
where 4 =k .
(o] i cos ©

For a concentrated load P = POQ(t) at the
plate center, Po replaces q_ in Eq. (2.19) and the

coefficients for x} become
= ¢ = 2
¢7 ¢. 1/(2pa?) ,

¢ =¢ =0,

9 10

The values for ¢7 and 90 contain the divisor 2pa?

since xt is evaluated for the plate characteristic
segment area with a circumseribing radius of unity
rather than the complete plate area with a

circumseribing radius a.
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CHAPTER 3

SHELL THEORY

3.1 Governing Equations
The differential equations governing the llnear

transverse vibrations of shallow spherical shells sub-
jected to linear isothermal viscously damped deformation
by a normal dynamic massless load q(r,6,t), neglecting
the effects of transverse shear and rotatory and longl-

tudinal inertia, are

Eh
V*F(r,0,t) - = Vw(r,o,t) = 0, (3.1a)
. 1, dw(r,0,t)
D V*w(r,0,t)-+— V2F(r,0,t) + 2zm
R at
32w(r,0,t)
+ m —————— = q(r,o,t). (3.1b)
at?

In Eqs. (3.1la) and (3.1b) w is the transverse displacement,
F is the stress function, g 1s the coefficlent of viscous
damping, m is the mass per unit area, D = Eh® / [12(1-v?)]
is the flexural rigidity, E is the modulus of elasticity,
h is the shell thickness, v is Poisson's ratio, R 1s the
radius of curvature of the shell middle surface, r and ©
are radial and angular polar coordinatés, t is time and

. a2 2
g2 22 413 .1 3% hen operating on functions of r

ar? rar 1r? 362
and 6,
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Introducing the dimensionless parameters

w F r
no=2 g = Fha? and p = Y where a is the radius of the

circle circumseribing the shell's regular polygonal
base, Egs. (3.1la) and (3.1b) become
V*£(p,0,t) - %-vzn(p,e,t)-s o, (3.2a)

Eh an(p,6,t)
D V*n(p,6,t) +-§-a3vzg(p,e,t) + 2a‘ztm —— +

ot
., 2°n(p,8,t) .
+ ma —atz— = a q(p,egt)’ (302b)

32 19 1 232
where V2 = — + - — 4+ — —— yhen operating on
9p%2 p 3p p? 362
functions of p and 6.
A solution of Egs. (3.2a) and (3.2b) for non-
homogeneous boundary conditions which depend on

functions of time Ez(t) and fz(t) is assumed in the form

C
n(6,8,) = 1, (,0,8) + ¥ &(p,0)8(t), (3.32)

c- -
E(p,0,t) = E,(p,0,t) + ézlhz(p,e)fz(t), (3.3b)



P
where c=4 for a shell with interior and exterior
boundaries and c¢=2 for a shell possessing only an
exterior boundary. The functions Ez(p,e) and B*(p,0)
are chosen to make the boundary conditions expressed
in terms of n,6(p,8,t) and El(p,e,t) homogeneous.,

Substituting Eqs. (3,3a) and (3.3b) into Egs.
(3.2a) and (3.2b) yields

. a _, _ c _2 z_z
V%@Jﬁ)-EVmMJJ)--Zf(ﬂVh@J)+

2=1
a & _2 2
+= Y & (t)V3E (p,0), - (3.4a3)
R g=1
Eh an, (p,6,t)
D V*n (p,0,t) + — a'V2E (p,0,t) + 2a%zm ————— +
1 1l
R at
3%n,(p,0,t) c _g 2
+ ma* —————— = aq(p,8,t) - DY & (£)V*E (p,0) -
at? =1
Eh c _g ) ¢ ag*(t) 2
- —a?y £ (t)V*h (p,6) - 2a*zm ) g (p,6) -
R 2=1 g1 at
¢ aze¥(t) g
-ma* )y —— g(p,0). (3.4b)

251  dt?
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3.2 ' Free Undamped Motion

3.2.1 General Solution. The homogeneous

equations of the undamped system

V"El(p)e’t) - -:— vznl(p’e.t) = 0. (3.53)
Eh 32n,(p,0,t)
D V"ﬂl(p,e,t) + —_— a3 vzgl(p’e’t) + ma,. 1 t e - 0’
R 31:2
(3.5b)

can be solved by the separation of variables technique
nl(p,e,t) = n(p,0) exp(iwut), (3.62)
£,(p,0,t) = E(p,0) exp(iwt), (3.6b)

and by introducing the auxiliary functions used by
Van Fo Fy [57]

7(p,8) = V2[U(p,0) + AV(p,®)] , (3.72)

£(p,0) vwm)+%mmw, (3.7b)

where A=Eh/maRw? and w is the undamped circular
frequency. Substitution into Eqs. (3.5a) and (3.5b)

glives

Eh ‘
[1 - ] V*V(p,68) = 0, (3.8a)
mR2w?



Ly

V2[(V*- x*)U(p,0) + AV*V(p,0)] = 0, (3.8p)
a* Eh

where k* = — [mw?2 - —].
D R2

If k=0, then w= /Eh/mR?, A=R/a and Eq. (3.8a)
is identically satisfied for all V(p,0) while Eq. (3.8b)

reduces to
R
ve[u(p,0) + —V(p,8)] = 0, k=0, (3.9)
a
The solution of Eq. (3.9) for a shell having no interior
boundary and a regular polygonal exterior boundary

possessing p-ply rotational geometric periodicity is

R
U(p,0) + - V(p,0) =
a
[e 0]
cos pnb
n=0 pn pn

sin pné
where C;n and D;n are integration constants. Substi-

tuting Eq. (3.9) into Egs. (3.7a) and (3.7b) yields

- R\ @ pn,cos pné
n(p,8) = 4(-)}: (pn+l) C__p , k=0, : (3.11a)
a'n=0 pn

sin pné
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© pnt n os pnb :
E(p,0) = 20 [cpn 0 + D;n oF ] . iy k=0, (3.11b)
n= n pn
a 2 a1
where C =—2C and D = = D* ,
pn R Pn pn R pn

If k#0, then Eqs. (3.8a) and (3.8b) reduce to

two uncoupled differential equations in U and V

v*v(p,0) = 0, ~ (3.122)

V2[V* - k*]JU(p,B) = O. (3.12b)

The solution of Egs. (3.12a) and (3.12b) for a shell
having no interior boundary and a regular polygonai exterior
boundary possessing p-ply rotational geometric

periodicity is

a
n+ n cCOs pné
V(p,0) = Y [C pp 2+ E pp ]{ s (3.132)
n=0 L pn pn sin pné
D cos pnb
U(p,8) = ¥ [A T (kp) +B I (kp) + P ppn]{ ,
n=0 L Pn pn pn  pn pn sin pné
(3.13b)

where A E and Fpn are integration

pn? Bpn’ Cpn’ pn

constants and J n and I are Bessel functions of the

p pn

first kind of order pn.
Substituting Egqs. (3.13a2) and (3.13b) into
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Egs. (3.72) and (3.7b) and restricting the solution to

symmetric response! yields

@
itp,8) = ¥ [— k2A J (kp) + k2B I (kp) +
n=0 pn pn pn pn
+ 4a(pn+1)C ppn] cos pné, (3.14a)
pn
- o a a
E(p,0).= 2. [—-A J (kp) +=B I (kp) +
n=0 LR pn bpn R pn pn
+ C pP¥2 4 p ppn] cos pnb, (3.14b)
pn pn

These solutions for n(p,8) and £(p,0) are
valid for all k since they reduce to the solutions

given in Eqs. (3.11la) and (3.11b) for k = 0 where

a a
Dg=—A +—B +D and D2 =D for n3l.
R © R o ©° pn pn

1 fThe assumption of symmetric response restricts the
loading function to be of the form q = q_ a(p) cospm® Q(t),

where qo is a reference pressure and m is any integer.
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3.2.2 Boundary Conditions. The theoretical solution,

which is based on supplementing the force and moment equili-
brium equations by the force and moment compatibility rela-
tions, ylelds the transverse displacement and stress function.
In-plane displacements u, and ug must be determined by integra-
tion of the strain-displacement relations, This integration
ylelds expressions for the in-plane displacements in terms of
the stress function and integration functions which could not
be determined.! Consequently, edge conditions which could be
expressed in terms of the in-plane displacements if the alter-
nate theoretical approach [54] had been used, are expressed
in terms of other known functions.

Time-dependent edge conditions which can be satisfied
approximately by the collocation technique are:

(a) Elastically Clamped Edge?
L [n(3,8,8)] = n(5,8,t) = &'(t) , (3.15a)

! Tt was discovered at a late date that expressions for the
in-plane displacements had been obtained for static loads by
Reissner [97] and Fettahlioglu [98].

2 The edge conditions used for the stress function are
equivalent to satisfying us(B,a) = 0 but not uv(ﬁ,s) =0

as will be explained in Section 6.1,
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L[n(5,8,t)] = L,[n(5,6,t)] - 8L [n(5,8,t)] =

- an(5,0,t) , 3 ,t
=M (5,0,t) - B, - e2(t) - B,& (t) =& (¢t),
(3.15b)
L [£(5,8,6)] = F (B,8,t) = F (t), (3.15¢)
. VS
L [£(5,8,6)] = € (5,5,8) = F (). (3.154)
(b) Elastically Clamped Edge on Rollers
L1[n(5,§,t)] = él(t), (3.15a)
L¥In(5,8,8)] = & (%), (3.15b)
L,[E(5,8,8)] = F__(5,8,) = T (¢), (3.162)
L¥£(5,8,8)] = L [6(5,6,6)] + 8 L [£(5,8,t)] =
2
=F (p,0,t) + B.e (P,0,t) = (¢t) ¢
Vs SSs
- 2
+ 8, £ (t) = F (t). | (3.16b)

In Eqs. (3.15a) through (3.15d), (3.16a) and (3.16b)

MVS is the flexural stress couple vector tangential to
the boundary, Fvs is the in-plane shear stress resultant,
Fvv is the in-plane normal stress resultant, sss is the
in-plane normal strain tangential to the boundary and

p and 5 are the coordinates of boundary points. The

boundary and interior coordinate systems are shown in



Fig. 2.2, In Eq. (3.15b) B, ranges from zero for a
shell unrestricted against edge rotation to infinity

b9

for a shell completely restricted agalnst edge rotation.

In Eq. (3.16Db) B, ranges from zero for a shell
unrestricted against edge extension to infinity for a

shell completely restricted against edge extension. The

operators L, to L¢ are linear homogeneous operators of

order two or lower,

Expressing the functions in Egs. (3.15b) through

(3.15d), (3.16a) and (3.16b) in polar coordinates yields

an  9n 109n-
— = — ¢c088 = — — sin 6,
av ap p 96
F =F_ cos?0 +F sin?e + F sin 26,
vwv. I 68 re
1
F = —-(Frr -F ) sin 20 + F cos 26,
Vs 2 GT:) r6
€ =¢ sin®?6 + € cos?8 + ¢ sin 26,
ss rr 66 ro
M =M cos?¢e =M sin?e + M  sin 26,

(3.17a)
(3.17b)
(3.17¢)
(3.174)

(3.17e)

Some of the stress resultant and stress couple components

are shown in Fig. 2.3. The other vectorial components of

the stress resultants and strains use the same kinematic

subscript notation indicated in this figure,



For plane stress, strain can be expressed as

1

€ = — [F -VvF 1],
rr Eh TT 66
1
€ ==—[F ~-vF 1,
66 Eh o6 rr
1l+v
E S e——— F .

ré Eh ré

Stress resultants and stress couples can be
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(3.18a)

(3.18b)

(3.18¢)

expressed in terms of the dimensionless transverse dis-

placement and stress functions as

3 (1 3k
F =F =-Eh[— -_],

3p \ p 236
DT 92n
M =-_[_+v

ré 9p?

— —— - —

1 92nq 1 an)]

p2 3862 p 3p

M E -

D [1 9%2n 1 an 3%n 7
ér

— e—f = —t V ——-J .

p2 382 p 3p 9p2

p 964l

D 9 1 anyy
M =-M =-(l-v)—(
rr 66 a 9p

(2.19a)

(3.190)

(3.19¢)

(3.194)

(3.19e)

(3.19f)

Substituting Egqs. (3.17a) through (3.17e), (3.18a)

through (3.18¢) and (3.19a2) through (3.19f) into Eags.
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(3.15a) through (3.15d), (3.16a) and (3.16b) yields the
expressions for the operators L1 to LG when operating

on functions of p and 6.

L =1, (3.20a)
1
a - 92 1 32 139
—L=-cos26—+v——+——]-
D 2 Lap2 p2 202 p 9p
r 1 92 19 92
-sin?|— — + = — + v— | +
L p2 362  p 3p 3p2
9 1139
+ sin 26 (l-v)[— (- —_— ], (3.20b)
9p \ p 930
9 sin 6 3
3 9p o 20
1 1 rl 9 1 32 92
— I = —s5in 26}~ — 4 — — -—]-
Eh * 2 Lp 3p p? 302 ap?
rd (19
- cos 26 —(—— , (3.204)
Lap lp 36
13 1 9® 3% 1
L =s1n’-e[-—+— _— - v — |+
5 p 3p p2 962 9p2.
32 v 3 v 3% 7
+ cosze[— _____ _ -
9p? p 3p p? 362
9 11 9
- (1+v) sin 26[—— (— —], (3.20e)
9p V\ p 96
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1 32 1323 1 92
— L = 8in%6 — +cosze[——- L T [
Eh ¢ . 9p? p 3p p2 202

9 (1 9

aplp 96

Substituting Egs. (3.32) and (3.3b) into Egs.

(3 . 153) through ( 3 .

L [E'(5,8)] =
-2, ~
L,[E (5,8)] =
L (R (5,0)] =
-2 -

L [h(5,8)] =

yields homogeneous

in n, and E,

15d) and setting

1, g (5,81 =0, (3.21a)
0, LE (5,01 =1, (3.21b)
1, o (R (5,01=0, (3.21c)
0, LA (3,81=1, (3.214)

"elastically clamped edge™ conditions

L,[n, (5,8)]1 =0, (3.22a)
Lo[n (5,8)1 = 0, (3.22b)
L [g,(5,6)] = 0, (3.22¢)
L_[£ (5,6)] = 0. (3.224)

Similarly, substituting Egs. (3.3a) and (3.3b)

into Egs. (3.15a),

(3.15b), (3.16a) and (3.16b) and setting

L (& (5,8)] = 1, LE'(3,81=0, (3.212)
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L [8%(5,8)1 = 0, LI[E%(5,0)] = 1 (3.21b)
L [A*(5,8)1 = 1, L[B'(3,8)] =0, (3.23a)
L [h%(5,8)1 = 0, Li[A%(5,8)] = 1, (3.23b)

yields homogeneous "elastically clamped edge on

rollers" conditions in n and gl

L [n (5,6)1 = 0, (3.22a)
L*[n (5,6)1 = 0, (3.22b)
| Ls[gl(a,é)] = 0, (3.242)
L:[EI(E,B)] = 0, (3.24D)

Substitution of Eqs. (3.1l4a) and (3.14b)
into Egs. (3.22a) through (3.22d), (3.24a) and (3.24b)

produces the linear homogeneous equations

T (at + 8t +ct p1=0 (3.22a%)
ngo ‘pl 1”2 ‘ps Y 3. a
pn pn pn
@ i i i i
QEQ{Apn v, = (BP9 1+ B [y, - (8,a/D).]+
i i
+ct v, - (sa/mw 1} = 0, (3.220%)

pn
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ASLEA:n Yo ¥ B:n %t c:n Y12 +'D:n ¥,,1 =0 (3.22c%)
;ZLEA:n ¢1~ + B:n *15 + C;n w;s + D:n Qu’] = 0, (3.224%)
géitA;n v, * B;n vt c:n v, * D:n v, 1=0, (3.24a%)
ﬁ?{;i v+ (Bi/Eh) v, 1+ B;n[wll + (Bi,Eh) v 1+

n=0 pn 10

1 1 i i _
¥ cpn[wlz + (Bz/Eh) w’.lil + Dpn[‘pls + (Bz/Eh)‘.'l'7]} -

= 00 (3.2ub*)

The coefficients *:"'*:; are:
vo=- k2 J (§i) cos pn#,
pn

v, = k? I_ (i) cos pné,
i pn

n -~
v, = uli(pn+1) Ep cos pn#o,

p = =%k33'" (§) cos 6 cos mé -~ kz(-—}J (§) sin 6 sin pns,
i pn i P pn

<
I

= k3 I' ({i) cos 6 cos pné + kz(—-)I ({i) sin 6 sin pné,
s i pn 1\s ! pn

<
"

42 pn(pn+l)p pn-l[cos 8 cos pns + sin 6 sin pné],
i



10

i i pn

! pn

pny®

(o]
n
(1 - v) [(i)—z)
p

1 i1 pn

'oal

pn

(o]

pn
(1 = v) [(—
| 52

55 -

kz{[kz (u)-v(pn) 3G+

P

k
v(-i)J' (ﬁ)] cos28 cos pnd + [vk2 J'({) -

i pn

(—) J (i) + (-1) J' (i) | sin%8 cos pné ~
pn

(u) -k (—) J' (f)| sin 28 sin pna} .

n
-kz{[kz "(u)-v(-p- I ) +

P pn

k
v( i)I' (fi)] cos26 cos pnbé + [\akz ' (1) -

i pn

pn k - ~
(_) I (§) + (..1) I (fi)] sin2%6 cos pné -
pn

p pn

pn ~ ~
) I (d) -k (:— I (ﬁ)] sin 26 sin pne} s
pn itlp pn -

N=2

' p -~ -
4% (1 - v)pn[l - (pn)?1p [cos 26 cos pné +

i

sin 28 sin pné],

1l

2

pn

pn)? . -
{[(_1) Jr (§) - (~—) J (f) - k? J"(ﬁ)] sin 26 cos pné
P pn '

i pn

pn - -
2[k (:—) J' (§1) - (—) J (i‘i)] cos 20 sin pne} R
1 1p pn p2! pn
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12

13

1k

15

+

+

1

2
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5

(CERE=

k? I"(ﬁ)] sin 20 cos pne + 2[ L—-) It (u) -
i pn

pn

p

pn-2

pn -~ -~
(——) I (ﬁ)] cos 26 sin pne |,
pn

P

8,

~

a
R

[kz Jre(a) - v( ) J' (u) + v

~2

pn(pn + 1)(cos 28 sin pné - sin 28 cos pna),

pn(pn - 1)(cos 28 sin pné - sin 26 cos pn5),

2

ki pn - -
[(-—J Jr (fi) - (:—) J (fi) - v k2 J'""(fi)] sin26 cos pne +
P p pn i pn

pn|? - .
1:—) J (ﬁ)] cos20 cos pnbé +
P pn

i pn

pn pn -~ -~
(1 + v) [k (——) Jr (fi) - (——) J (ﬁ)] sin 20 sin pne} .
1 p2 pn

5 pn

a ky pny 2 - -
- (—— I' (@) - (——- I (fi) - v k? I"(ﬁ)] sin20 cos pné +
R ~

[kz I''(f) - v

P pn i pn

ky pny 2 - -
:—) It (§i) + v(:—) I (i{i)] cos20 cos pné +
*] pn P p

i pn

pn pn - ~
(1 + v) [k (—) I' ({i) - (_) I (ﬁ)] sin 206 sin pne} s
i p2! pn

p pn
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n -~
| (pn + 1)5p {[(pn + 2) + v(pn - 2)] cos?d cos pno -

- [(pn - 2) + v(pn + 2)1sin2%6 cos pné + pn(l + v) sin 26 x

x sin pn5},
pn=-2 - ~ - -
¢17 = (1 + v)pn(pn - 1)p [cos 26 cos pné + sin 26 sin pnél,

vy = — {[(—) J* (§) - (7) J (ﬁ)] cos26 cos pné +
R p pn p pn

ls

+ k2 J'*(§i) sin2@ cos pnd +
i pn

pn) - pn
+ [ —]lJ () -k (—-) Jt (u)] sin 26 sin pne}
ilg .

21 pn

a ki pny 2 -~ -~
vy = - { ( ) I' (§) - t—-) I (ﬁ)] cos?@ cos pnd +
19 R 6

+ k2 I''(§i) sin28 cos pnd +
i pn

+[( ) T @ -k( ) '(u)] sin 28 sin pna},

wzo = 5 {lpn + 2 - (pn)?3] cos?8 cos pnbd +

+ (pn + 1)(pn + 2) sin?® cos png - pn(pn + 1) sin 28 sin pn5},

wzl = pn(l - pn)p [cos 26 cos pnb + sin 26 sin pné],

where §i = k p.
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3.2.3 Auxilia:y Edge Conditions. The chofce

of functions g”(p,e) and h¥%(p,6) which satisfy the
auxiliary edge conditions formulated in Egs. (3.21a)
through (3.21d), (3.23a) and (3.23b) 1s not unique, as
Meirovitch [25] points out. It is convenient to choose

@ 1,2 pn 2,2 pn+:
g"(p,e) = Y [E o +E p ’]cos pné, & = 1,2, (2.19
n=0" pn pn 25a$
- Qo _1s% pnt2 2,4 pn+s
n‘(p,e) = z:[F [ +F o ] cos pnf, £ = 1,2,(3.25b)
n=0" pn pn
) s
where the constants E n and F are solved approxi-
pPn

mately by applying the boundary collocation technique
to satisfy the auxiliary edge conditions.

Applying the operators Ll...LG given in Egs.
(3.20a) through (3.20f) to the functions éz(p,e) and

n%(p,0) yields

h. L~ R ted 2% o
LIE°G,81= L[E vr+E ], (3.262)
! n=0" pn ! pn 2
a ® . 1,9 2.9
- L [E%(5,0)] = E Y +E v, (3.26b)
D n=0 " pn °? pn
- o . 1.8 2.8
L (8%, = L [E " +E i, (3.26¢)
3 n=0 - pn ° pn ©
1l - - @ 1,2 2,49 .
—_— L..[h”(B,e)] = Z (p * y +F ’ w*], (3.264)
Eh n=0 - pn pn °®
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- - @© 1,8 o 2,2

L (h%5,8)1 = 3 [F v _+F ¥ 1, (3.26e)
S n=0 pn 9 pn 10

1 - @ 1,2 2,2 =

L E%E,81 =Y [F v +F ol (3.26f)

En n=0 pn !! pn 12

The coefficients w:...wfz are:

wl =0 cos pné,
= pn+2 -
v, =6 cos pnéb,
¢3 = - pn(pn = 1)(1 - v)p [cos 26 cos pn® + sin 286 sin pnd],
* pn - ~
v, = (pn + 1) p {-[(pn 4+ 2) - v(pn - 2)Jcos?6 cos pné +
+ [(pn - 2) - v(pn + 2)]sin25 cos pns -
- pn(1 - v) sin 28 sin pns} ’
% pn-1 - - - -
ws = pn p [cos 6 cos pn6 + sin 6 sin pnél,
% _pn+1 - - - -
ws =P .Kpn + 2) cos 6 cos pn6 + pn sin 6 sin pnél,
* .,pn -~ ~ ~ -~
w7 =9 pn(pn + 1)[cos 26 sin pné - sin 28 cos pnél,
* ~pn+ 2 - -
v, =P { pn(pn + 3) cos 26 sin pné -

- [(pn)? + 3pn + 4] sin 28 cos pna}»,
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€
]
o

pn ' ~ -~
(pn + 1){'[(pn.+ 2) + v(pn - 2)] cos2?6 cos pné -

[(pn - 2) + v(pn + 2)] sin? cos pné +

+ (1 +v)pn sin 26 sin pna},

pn+ .
' =5 {T(n+ 8(pn+3) + vEen)? -

- v(pn + 4)] cos?8 cos pné + [(pn + 4) - (pn)? -

- v(pn + 4)(pn + 3)Jsin%6 cos pné +
+ (1 + v) pn (pn + 3) sin 20 sin pn§],

.l pn -~ - : -~ -~
¢?1;= P (pn + 1) {[2 - pn cos 26] cos pn6 + pn sin 20 sin pne},
% pn+2 - - .
wlz = p { (pn + 4)(pn + 3) sin?6 cos pné +

+ [(pn + 4) - (pn)?] cos2@ cos pnd +

+ pn(pn + 3)sin 26 sin png}.
Substitution of Egs. (3.26a) through (3.26f) into
Eqs. (3.21a) through (3.21d), (3.23a) and (3.23b) ylelds
linear nonhomogeneous equations, the solution of which
yields the functions &!(p,0), £2(p,8), h'(p,0) and h2(p,0)
which are required for the time-dependent edge conditions

given in Eqs. (3.15a) through (3.15d), (3.16a) and (3.16b).

3.3 Forced Motion

3.3.1 General Solution. Series solutlons for

Eqs. (3.4a) and (3.2b) are assumed in the form
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O

n(0,8,8) = 3 al(p,0) TH(E), . (3.272)
El(p.e.t) = 1{1 21(0.9) Ti(t), (3.27b)
where o
i ' i

A(p,0) = L[-k2A T (kp) +k2B I (kp)+

n=0 i pn pn 1 i pn pn 1

i pn,
+4x(pn+1)C o ] cos pnb, (3.282)
i pn

g ® . a 1 a 1
E(p,0)= L [-4 7 (ko) +=B I (kp)+

n=0" R pn pn 1 R pn pn 1§

i pn+2 b pn
+ C o "+ D o] ]
pn pn

cos pno. (3.28b)

Substituting Egqs. (3.27a) and (3.28b) into Eq. (3.4b)
and simplifying using Eqs. (3.5b), (3.6a) and (3.6¢c)

ylelds
© 1 ari(t)  a2Ti(e)] 1
2 m [mz T (t) + 2¢ + ]ﬁ (p,0) =
i=] i 1 dt dt?
2
= (1/a)q q(p) cos pm8 Q(t) - (D/a‘) Zlé"(t) x
(o} L=

2
x V'E'(p,0) - (Eh/aR) X F4(t) v2R%(p,0)-

=1
2 azte) o 2 g28%(t)
-2t n X £(0,8) -m T —— E(p,0).
1 =1 dt g=1 dt?

(3.29)
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The term v“g“(p,e) vanishes in Eq. (3.29) since §‘(p,e),
Eq. (3.252), has been chosen as a solution of the
biharmonic equation. Multiplying both sides of Eq.
(3.29) by ﬁJ(p,e), integrating over the characteristic
shell segment area and applying the condition of
orthogonality of the eigenvectors shown in Appendix B.2,
yields |

427 (¢) art(t)
+ 2,

+ 2ri(e) = (1/xi)[(q°/ma) Q(t) x

o dat? dt i o

i 2 2,1
x x_ - (Eh/maR) Z F2(t) x .
1 2=l 2

2 g2%(t) 2,1 2 azEd(b) z,i]

_2;

x -

(3.30)
i =1 dt s 2=1 dt? .

X,

Using the restriction applicable to shallow
shells, that ﬁ-_p?(_%_)_z‘:l for0< p < g permits the
integration to be carried out over the projected area
of the shell., Thus modal participation functions can be
written

cosfo
E—

i 6o cosé i
X = j’ o7 (p,0)]%dpdse, (3.31a)

0 0
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cos80

>
e
]
o;__\o

osb
df P ﬁi(p.e) g(p) cospm8 dp de, (3.31b)

cosbBo
o cosd
2,1 2 _1
xz = szh (p,e) n (p,e) do de, (3-310)
cos8o
8o oso
2,1 j’ f 2 !
X, = y y p & (p,0) T (p,0) dp 46, (3.314)

where 60 = 7w/p.

3.3.2 Initial Conditions. The solution of Eq.

(3.30) for ¢ <w is
1 1

i

i 1 {4T (0) i d
T (t) = exp(- ¢ t){ ——-[ + 7 T (0)]sin wt +
1 d dt i i

W
h
+ Ti(o) cos wdt} + [ll(mzxi)] [(q /ma) X
i i%0 o

L 1 > 9,1 2,1
x x, G (t) - (Eh/maR) éga X, G (t) -

2 2,1 2,1 2 2,1 2,1
- 2;1 p) X, 63 (t) - Lglx’ G, (t)] , (3.32)
where
1 a £
G (t) = (0%/w ) jﬂ Q(t) expl= 7 (t = 1)] x
1 i i i
0
x sin wd(t - 1) dT, (2.21a,
i 3.332)
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2,1
G | (t) = (w2/w )‘j’ (t) expl= ¢ (t - 1)) x
2 i 1 0 i
d
x sin w (t - 1) dT, (3.33b)
i .
2,1 f de ('r)
G (t) = (wz/m ) exp[- ; (t - 1)) x
3 i1 9 drt
d
x sin v (t - 1) dT, (2.21b,
i 3. 33C)
2,1 d a2e" (1)
G (t) = (v¥/u ) —_——— expl-z (t - T)] X
" i 1 g adr? i
d
x sin w (t - T) dT, (2.21c,
i 3.33d)
and
d
w = [w?2 - z? is the damped circular frequency of
i i i

the i-th mode,

3.3.3 Modal Participation Functions. The modal

participation functions are obtained by substituting the
expressions for ﬁi, Eq. (3.28a), and for g* and h*, Egs.
(3.25a) and (3.25b) respectively, into Egs. (3.31a) to
(3.314).

i 2,1 2,1
In evaluating X, X, and X, terms involving
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products of functions of different orders n are neglected
in the integration. This property is true only for
shells with circular boundaries. The errors introduced
for shells with polygonal boundaries should increase,
Jjust as for plates, with the deviatlon of the nodal lines
from circles concentric about the apex. This deviation
of the nodal lines from the circular shape generally
increases with decreasing number of boundary sides and
increasing mode number. The resulting modal partici-

pation functions are

1 142 1,2 142’ 1 4
xo - [Ao] ¢1 + [Bo] ¢'2 + [Co] ¢s + 2Ao Bo ¢~ +
1 1 i 1 @© 1.2
+2A C ¢ +2B C ¢‘+n§l{ [Apn] b, +
i .2 1,2 1 1
+ [B ] 6 + [c ] ¢ +2A B ¢ +
pn 8 pn 9 pn pn 10
1 1 1 1
+2A C ¢ +2B C ¢ } . (3.342)
pn pn 1! pn pn 12
i i i i
xl - A ¢13 + BO ¢1‘0 * C ¢1.5 +
foe) i i i
) [A e B ¢,° ¢ ¢1a]’ (3.340)



66

2,1 1-,2.[ i 1 1
= + +
xz 4 Fo A ¢13 + BO ¢1h CO ¢l$]
z,z[ i 1 i
+ +
+ 16 FO AO ¢19 + BO ¢20 CO ¢21]
1,80 1. 1
+§{4(pn+l)F [A ¢ +B ¢ _+
n=1 pn pn 22 pn 23
i 2.2 1
+C ¢ ]+8(pn+2)F’[A 6+
pn 2% pn pn 2S
i i \ .
+ + .
13pn o, cprl 6, J} . (3.34¢)
2,1 1,8 ¢ 1 i 1 _ 2,8
= + +
x3 EO [A ¢13 + B ¢1. CO ¢15] EO x
[ i i i
X AO ¢19 + BO ¢20 + co ¢21 +
o 1% i i i
+ YU [a o _+8 o _+cCc o |+
22 213 24
n=1 pn pn pn pn
2,2 1 i i
+ E [A ¢ +B ¢ _+C ¢ ]} . (3.344)
pn pn 25 pn 26 pn 27

The coefficients ¢13....¢“ are dependent on the load
distribution function J(p,0). For a load distributed
uniformly over the shell plan surface area,

d(p) cos pmé = 1, and the coefficients ¢l...¢27 are:
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z -O
cos“o ae
= 1Y (o] 2 + 2
ki > of [Jl(uo) Jo(uo)] ~oo%p
e
cosze° ° dae
-kt [ [ -2y + 2] \
1 2 g 1 (o] (] (o cosze
= 42? sin 26 _ ,
N o
)
cos 8, ° . dae
= - _¢c +
ki . f [Jo(uo) Il(uo) Io(uo) J,(“o)] e
5 .
5]
° dae
= - Uk A cosef J (ug) »
i1i g cos 6
e
y ’ (n)) 2
= 4k A cos © .j. I (u
i1 °0 17707 tos 8 "
9
cos 9 pn 2 2
- f { . “u) +[1 - (—) ]J (ug) [ *
Ho pn
cos?pn6
X ae,
cos?e
5]
cos?@ ° 2 pny”
- K BB +[1+(—) 12 (1)) x
i 2 pn u pn ©
o o
cos2pné
X ———— de,
cos?9
5,
822 ¢ ( 2pn+2 cos?pnb
= 822 (pn + 1) (cos 6 ) f dae,
4 ° (cos e)tpn+2

0
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)
cos 90
skt —=2 [ 5 ) I wy) - T () 3 ()] x
i 2 5 pn pn pn pn
cos?pné
—_— ae,
cos ©
9
. : ¢ : n+1 cos?pné
- 4k X (pn + 1 cos O fJ (n) +; d6
i1 ° pn+t1 © (cos 6)P%°* °?
90
Bk A ( ) ¢ il R Y
pn + 1 cos © f I it dae
i1 © 5 pn+1  © (cos 0)PRF! 7
e
° de
-k cos 6 f J (uy) R
i cos O
0
0
f° ae
k cos © I (u))
i o " cos 0 °
0 :
A sin 26 ,
i o]
6
© o cos pné
- 2k cos 0 IJ (p ) ———— a6 +
i ° a=0 g pn+2a+:1 © cos 6
© %
4Z(a+l)fJ (u_) cos pné de,
a=0 o pntaat2
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2k cos ©

@ o
Y (-1)

i ¢ a=0

e}
y Yy (-1° (a+1)f
a=0 0

pn + 1
41(
i \pn + 2

3
- ki cos eo

A
~i-sin 2e
6

- k (cos ©
i

pnt+!
k (cos 6) .[. I ()
i ° pn+1

22 (cos 6 )
i

) (cos ©

0

' 3
ki cos eo f Il(uo)

%

f I

%

pnt+aa+2

e

cos pné

(n.)

-0

pné

cos ©

pnt+2 ° cos
i
(cos 0)PR+2
0

dae

de '
- 2 COS

cos?®o

(1 + 2 cos?sy) ,

pnt °
2

o]

0
0

O
2pn+2
° f

0

ae,

8o

0

®

2e d[
- 0

cos?pné

+ 29 j' J (n)
f J‘(uo)cos’e 2 cos o z‘uo

I (u,)

(cos ©

)pn+1 de,

(o]

cos?pnd

(COS e)zpn}z’
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(uo) cos pnf 4o,
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? cos?6

cos 26
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%

pn+s (w ) cos?pné
¢ = - k (cos 6 ) IJ B -3 46 +
25 1 o 0 pntr1 © (cos 0)Pn >
6o |
: pnta2 ( cos ?pné
+ 2(cos 0 ) fJ n.) 7; 46,
° 0° pntz © (cos 6)P7?
3]
pn+s (° . cos2pné
¢ =k (cos 6 ) J[ I (u) —3 46 -
26 i o 0 pn¥r © (cos g)P"
%
pnt2 cos?pnéd .
- 2(cos 6 ) .[. I (u) n¥z 46
° 0 pn+t2 9 (cos e)p 2
60 :
pn + 1 2DN+s cos2pné .
=21( )(cos e ) f > de.
27 ilpn + 2 o (cos 9)2pnt*

For a concentrated load P = POQ(t) at the shell
apex, Po replaces q in Eq. (3.32). and the coefficients

for xi‘ become

- - 2 2.
¢13 = - ¢u = - ki/(2pa )
= 2
L 411/(2pa ),
¢ =¢é =¢ =0,

16 17 18
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CHAPTER 4
PLATE NUMERICAL RESULTS

4,1 Eigenvalues, Eigenvectors and Modal Participation

Functions

In the practical execution of the boundary
collocation technique, it 1s necessary to assume
convergence of the serles solution for the transverse
displacement eigenvectors, Eq. (2.13). Using this
assumption, symmetric eigenvalues for various clamped
and simply supported polygonal plates were obtained by
employing machine computation using 16 figure accuracy
to search for the roots of a series of linear homo-
geneous equations of the form of Egqs. (2.10a%*) and
(2.,10c*) where the summation with respect to n is
truncated,

Collocation points were regularly spaced on
the boundary of each plate., A typical set of nine
boundary collocation points for a square plate is shown
in Fig, 4.1, Edge condition Eqs. (2.10a¥*) and (2.10c¥)
were satisfied at points 1, 3, 4, 5, 6, 7, and 8. Eq.
(2.10c*) was satisfied at point 2 and Eq. (2.102%*) was
satisfied at point 9. Edge condition Eq. (2,10c*) was
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A 8 go‘bo
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r.' 16 e’zo.
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(-1
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"8 76 543 21234567

© POINT ON CHARACTERISTIC PLATE SEGMENT AT WHICH BOUNDARY
CONDITIONS ARE SATISFIED IN NUMERICAL SOLUTION.

O POINT AT WHICH BOUNDARY CONDITIONS ARE AUTOMATICALLY
SATISFIED DUE TO PLATES ROTATIONAL PERIODICITY.

FIG. 4.1 Boundary Collocation for a Square Plate
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not satisfied at point 9 since 1in practice it is often
difficult to predict its value at the plate corners,
Edge conditions were satisfied in a similar manner for
the other plates, Consequently, an equal number of
simultaneous boundary equations and unknown integration
constants was obtained with L collocation points on the
boundary of the characteristic plate segment for n
ranging from 0 to (L=-2),

The convergence of the symmetric eigenvalues
k; to the values given in Tables 4,1 and 4.2 was
checked for each polygonal plate by increasing the
number of collocation points used in the truncated series
solution until the minimum number required to obtain
these values was determined. It was found that funda-
mental eigenvalues for simply supported plates with from
7 to 12 sides as well as some of the higher modal eigen-
values, especially for 9 and 12 sides, were less
convergent than the eigenvalues obtained for other plates,
sometimes having significant variations in the third
figure. Errors in these eigenvalues might have been
caused by the Poisson's ratio effect which is explained in
Section 4.2, Fundamental eigenvalues previously obtained
by Conway [35], Leissa [36] and Conway and Farnham [37]
for some of the plates using the boundary collocation

technique agree to two or three figure accuracy with the
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present values. As the number of plate slides increases,
these elgenvalues converge to the values given by Flynn [16]
and Weiner [19] for circular plates. The eigenvalues given
in Table 4.3b for a clamped square plate all lie within the
previous best limits given by Bazley, Fox and Stadter [1c2],
and the eigenvalues given in Tables 4,43 and 4,4b for simply
supported triangular and square plates are accurate according
to the exact solutions [103,21].

The values of the modal participation functions
x{/xt for uniformly distributed loads and (x}) /x% for central
point loads, given in Tables 4,1 and 4.2, were obtained using
the eigenvalues in the same tables and their associated
eigenvectors where A% = 1, Integral values for the coefficignts
¢1...¢l° were determined using the generallzed Simpson's
formula with 56 equal increments of ¢ for the equilateral
triangle, 46 increments for the square and 36 for the other
polygons. The summation with respect to a was truncated when

the values of ¢9 and ¢1° converged to five digit accuracy.

The eigenvectors ﬁi associated with the eigenvalues
for clamﬁed plates in Table 4.1 are given in Tables 4.3a to
4,3h and the eigenvectors associated with the eigenvalues for
simply supported plates in Table 4.2 are given in Tables 4.k4a
to 4.4h., The elements A;n and Bén of the eigenvectors
converged to the accuracy shown in these tables for the number
of collocation points indicated., Some of the higher order
elements which are given to only one significant figure may

be accurate only to an order of magnitude,



Table 4.3
Eigenvalues, Model Participetion Functions snd Eigenvectors for s Clemped Plate
With 3 Sides

10 Collocstion Points st 0°, 5°, 10°, 20°, 30°, 40°, 50°, 55°, &0°

Mode i
1 2 3 4 ‘ 5
k; 5. %514 9.92048" 12.6123 14.104 16.7
{.f 0 «ee8  0.2756 -0.00637 -0.109E-04, -0.6E-06 -0.2£-07
f4% no 1.217 -0.369 -0.0910 -0.627E-03  0.017
Order n
0 0.100000E 01  0.100000E 01  0.100000E O1  0.100000E 01  0.T0000CE 01
1 -0.107206E 01  0.120809E 01 -0.616653E00 -0.14 EO03 0.8, EO0
2 -0.191699E 01 -0.197501E 01 O, 00 -0.322 EO1 -0.27 EO0
. 3 0.3441 EO1 -0.125826E 01 -0.10945EoO01 0.14 €03 0.71, EO0
Al 4 0.171 EO03 0,17 EO1 ~0.13, EO1 0.5 EO1 -0.18 EO1
pn 5 0.7 Eo, 0.13 Eo02 -0.. EO00 -0.1 E03 -0.1 E 01
6 0.4 E06 -0., EO03 0.3 EO01 0.1 £03 0.3 E 01
7 0.2 E09 0.19 EO05 -0.7 E02 0.4 EO03 -0.3 E 02
8 -0.2 EN1 0.4 EO06 0.2 EO05 -0.6 Eo6 0.4 EO04
0 0.626205E-01  -D.460099E-02 -0.131683E-02 -0.36 E-01 0.13 E-03
1 0.28151E 00 ~ 0.600642E-03 -0.485718E-02 *-0.13 EO00 0.26 E03
2 0.202315E 01  0.116084E 00 -0.161995E-01 -0.55 EO00 0.9 £-04
3 0.22420 E 02  0.133132€ 01  -0.4658 E-O1 . E01 -0.25 E-02
g A 0.183 EO03 O0.14160E02 0.165 E00 -0.52 E02 0.2 E-02
5 0.3 E0Q, 0.1472 EO03 66 EO1 -0.55 EO03 0.3 £ 00
6 0.4 E0, 0.157 EO04 0.1 E03 0. EG, 0.61 EO01
7 -0.2 E09 0.4 EO5 0.2 EQ, -0.6 EO5 0.1 £ 03
8 -0.8 E10 .-0.8 EO05 0.2 E05 -0.5 E06 0.9 EO03 -
Table 4.3b
Eigenvalues, Modal P.rﬁcip.tign Functions and Eigenvectors for a Clamped Plate
With 4 Sides
8 Collocation Points st 0°, 5°, 10°, 20°, 20°, 35°, 40°, 45°
Mode i
1 2 3 4 5
k; 4024177 8.13038 10.4890 12.432 14.03
ini P05 <o 1.5810 -1.0256 0.0595 0.1244 -0.0487
X% oo 1.667 144k -0..692 0.7878 0.457
Ordar. n
0 0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01  0.700000E 01
1 O.170804E 01 0.57297E00 -0.2008 E 01  0.13977 E01 -0.1118 E O1
2 0.1283 E02 -0.152 EO1 0.1987E 01 0.6, E02 -0.7869 E 00
Al 3 0.0 EO04 -0 Eol -0.149, EO1 -0.1335 EO1 0.193 EO1
4 0.4 E07 0.3 E03 -0.1 E02 -0.3 E01 0.9 £ 00
5 0.1 EM 0.1 E06 ©0.2 EO4 0.5 E02 0.2 E o2
6 0.5 E1 0.4 EO7 0.4 EO5 0.7 E03 -0.9 E 02
0 0.581 -0.31460 E02 -0.222, E-03 0.17938 E03 0.156 E-04
1 0.59685 E 00 -0.71190 E-02 -0.32379 E-02  0.5047 E-03 0.939 E-04
gi 2 0.1662 E 02 0.897 E-01 -0.4401 E-01  0.21304 E-02  0.134 E-03
3 0.176 EO, 0.422 EO1 -0.638 EO00 0.416 EO1 -0.106 E-01
4 0.2 Eo7 0.7 Eo02 -0.8 EO1 0.13 EO1 -0.31 EO00
5 -0.1 E11 0.3 EO5 0.4 EO3 0. E02 -0.8 E Ol
6 0.5 E1 0. E08 -0.4 EO5 0.8 E03 -0.1 €03




Teble 4.3¢c

Eigenvalues, Modsl Perticipstion Functions and Eigenvectors for s Clamped Plste
With 5 Sides

7 Collocstion Points st 0°, 5°, 10°, 20°, 26°, 31°, 36°

Mode i
1 2 3 4 5
3.78397 7.39506 10.5049 11.5889 14,042
(g PG .S 161783 -1.2945 0.5907 0.3780 -0.6005
1.6288 -1.369 1.103 1.202 -1.083

0.100000E 01 0.100000E 01  0.100000E O1 0.100000E 01  0.100000E 01
-0.39435 E 01 0.4228, E00 -0.1422 EO1  0.15750 E 01 -0.13175 E 01
0.195 E 03 -0.44603 E 01 0.2052 E 01 -0.72990 E 00 -0.54046 E 00

o0

Order n
0
1
2
3 0.60 EO06 0.7 EO3 -0.13 EO02 0,13 EO1 0.290 E o1
4 0.8 E11 -0.8 EO05 0.1 EQ, <=0.6 Eo2 0.2, EO02
5 0.4 E16 -0.8 E09 0.5 E06 =0.6 Eo04 <0.7 E03
(1] 0.568067E-01 -0.276570E-02  0.12218 E-03  0.10561 E-03 -0.7175 E-05
1 0.165(9 E 01 -0.12898 E-01 —0.646 E-03 0.6166 E-03  0.5610 E-05
2 0.397 EO02 0.3980 EO00 -0.406 E-01 0.9299 E02  0.1907- E-03
3 0,62 EO06 0.4 Eo2 -0.13 EO1 0.35 E00 -0.141 E-01 .
4 0.6 E1 0.3 EO0, -0.9 "EO2 0.2 Eo0o2 -0.117 EO1
5 «0.3 E16 0.5 E0® -0.2 E06 0.4 E04 0.4 E 02

Table 4.3d

_Eigenvalues, Modal Participation Functions and Eigenvectors for ‘a Clamped Plate
With 6 Sides

7 Collocation Points at 0°, 5°, 10°, 15°, 20°, 25°, 30°

Mode i
1 2 3 4 5
3.57640 7.0267 10.3921 11.857 13.900
;¥ .5 1.61710 -1.3048 1.0505 0.02880 -0.88766
1.6198 -1.323 1,156 . 0.440 -1.097
Order p
0 0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01  0.100000€ 01
1 011U7EO02 0.4811 EO00 -0.472 EO00 0.3909 EO1 -0.634 E00
2 0.285 EO05 -0.338 EO2 0.2208 E01 -0.397 EO1 -0.206 E00
3 0.3 E10 0.5 £05 -0.19 EO03 0.6 Eoz 061 EO1
4 0.3 E16 -0.8 E09 0.3 E06 -0.4 EO05 -0.8 E o3
5 0.4 £23 -0.1 £15 0.2 £E10 -0.1 €09 -0.4 E 06
0 0.562846E-01 —0.26439 E-02  0.12418 E-03  0.393 E-04 -0.5952 E-05
1 0.56035 E 01 —0.25649 E-01  0.205 E-03 0.76, E-03 -0.1438 E-04
2 0.1459 E05 0.8 EO1 -0.52 E-01 0.449 E-01 o.82 E04
3 0.2 E10 -0.9 €04 0.3 Eot 0.31 EO1 0.5 £-01
4 -0.2 E16 0.3 E09 -0.2 £05 0.2 Eoi, 0.1 E o1
5 0.4 Ez3 0.6 €1 <=0.6 E0 0.2 EO8 0.6 E 05




Tgble 4.3e

Eigenvalues, Modal Participation Functions and Eigenvectors for a Clamped Plate
: With 7 Sides

7 Collocation Points st 0°, 5%, 10°, 15°, 19°, 22.5°, 25.7°

Mode i

1 2 3 4 5

kg 3.4632 6.8181 10.16 12.621 13.646

x1i /xg n=0, ,..5  1.6160 -1.3007 1.099 -0.107 -0.853

n=0 1.61690 -1.3067 1.125 -0.684 -1.028

Order n .
0 0.100000E 61  0.100000E 01  0.100000E 01  0,100000E 01  ©O.100000E 01
1 -0.427 E02 0.733 EO00 -0.271 EO0 0.390 EO0i -0.67 EO00
Al 2 0.27 EO7 -0.46 EO3 0.9 EO1 -0.67 EO1 0.3 E-01
Pn 3 -0.1 E1 - 0.13 Eo08 -0.8 Eo, 0.7 E03 0.4 E 02
4 0.2 E22 -0.1 E14 0.4 E0® -0.6 EO7 -0.2 E 06
5 0.6 E30 -0.4 E20 0.6 E14 -0.1 E12 -0.2 E 10
0 0.56041 E-01 -0.2593 E-02 0.1179 E-03 -0.8 E-07 -0.527 E-05
1 0.2237 E02 -0.579 E-01 0.,6217 E-03 0.332 E-03 -0.322 E-04
gi 2 -0.176 EO07 0.95 EO02 -0.26 EO00 0.61 E01 -0.911 E-03
P 3 0.8 E13 -0.41 EO7 0.62 EO03 -0.1 E00 -0.97 EO00
4 0.1 E2 0.6 E13 -0.7 Eog 0.4 E06 0.6 E 04
5 -0.6 E30 0.2 E20 -0.2 E14 0.3 EN 0.2 E 09

Table 4.3f
Eigenvalues, Modal Participation Functions and Eigenvectors for a Clamped Plate
With 8 Sides
6 Collocation Points at 0°, 5°, 10°, 15°, 19°, 22.5°
Mode i
1 2 3 4 5
k; 3.3944 6.689 9.99 13.17 13.82
kii 0 .o 1615 -1.297 1.10 -0.78 -0.19
172 1.6158 ~1.300 1.11 -0.98 -0.90
Order n '

0 0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01
; 1 -0.1816 E03 0.1377 EO1 -0.240 £00 0.82 EO0 -0.297 E 01
A 2 0.9 E09 -091 Eo04 0.41 E02 -0.42 Eo1 0.51 EO
P 3 0.1 E17 0.8 E10 -0.1 EO07 0.5 E04 -0.2 E 04
% -0.3 E27 0.1 E18 0.4 E12 0.2 E0 -0.4 E o8
o 0.5592 E-01 -0.2568 E-02 0.1150 E-03 -0.5146 E-05 -0.410 E-05
gi 1 0.1025 E03 -0.1465 E00 0.132 E-02 0.23 E-0, -0.109 E-03
pn 2 0.20 EO09 0.2, EQ -0.23 EO1 0.3 E-01 -0.320 E-O1
3 0.6 E17 -0.3 £E10 0.1 Eo06 -0.1 E03 0.2 E 02
4 0.2 E27 -0.6 E17 0. E12 -0.2 £08 0.3 E 07




Teble 4.3g

Eigenvalues, Modsl Participation Functions end Eigenvectors for s Clamped Plate
With 9 Sides

6 Collocation Points at 0°, 5°, 9°, 13°, 17°, 20°

Mode i
1 2 3 4 5
k; 3.349 6.603 9.872 13.12 14.71
Xifxd 70 oeed 1.615  -1.295 1.098 -0.956 0.0006
n=0 1,615 -1.297 1.102 -0.99 -0.04
Order n
0 0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01
1 -0.8901 EO03 0.309 EO1 -0.285 EO00 0.257 EO00 -0.726 'E 01
Al 2 0.3 E11 -0.25 EO06 039 EO03 -0.95 EO01 0.29 EO02
on 3 024 E21 0.5 E13 -0.1 E0 0.2 E06 -0.6 E 05
4 -0.7 E32 0.2 E=22 -0.1 E16 0.8 E11 -0.1 E11
o] 0.5585 E-01 -0.2555 E-02 0.1135 E-03 -0.50, E-05 -0.108 E-05
; 1 0.53 EO03 -0.414, EO00 0.285 E02 -0.266 E-04 -0.126 E-03
B, 2 027 E1 o0.77 Eo05 -0.31 EO02 0.118 EO00 -0.12, EO00
P 3 0.3 E21 -0.2 E13 03 EO08 -0.8 EO0 0.1 E o4
A 0.6 E32 -0.1 E22 0.4 E15 -0.1 E11 0.7 EO09
Table 4.3h

Eigenvalues, WModal Participation Functions and Eigenvectors for a Clamped Plate
¥With 12 Sides

4 Collocation Points at 0°, 5°, 10°, 15°

Mode i
1 2 3 , 4 5

i 3-2” 60[068 9:6” 12089 16-10

x1i sxi 070, ...2 16145 -1.292 1.092 -0.96 0.86

2 0 1.6145 -1.293 1.092 -0.96 0.87

Ordar n '

N 0 0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01
AL 1 021 EO6 077 EoO2 -0.140 EO1 0.194 EO00 -0.173 EO00
p 2 0.3 E18 -0.2 E11 0.2 E07 -0.5 E04 0.7 E 02
; 0 0.567, E-01 -0.2536 E-02 0.1115 E-03 -0.487 E-05 0.212 E-06
o 1 0.12 EO06 -0.16, EO02 0.432 E-01 -0.:46 E-03 0.33 E05
P 2 0.2, E18 0.1 E11 -0.3 E06 0.2 E03 -0.4 E 00
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Table 4.40

Eigenvalues, Modal Participstion Functions snd Eigenvectors for s Simply Supported Plste
With 3 Sides '

10 Collocstion Points st 0°, 5°, 10°, 20°,°30°, 40°, 45°, 50°, 55°, 60°

Node i
1 2 3 4 5
4.18879  8.37758 11.08250 12.5663% 15.10290
x1‘ /x; 0, ...8 1.3900 ~0.79467 -0.000031 -0.0000011 0.00002
n=0 1.213% -0.50687 =0.2522 0.9 - 0.2993
Order n
0 0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01
1 ~0.115,70E 01  O0.115,70E O1 -0.623483E 00 -0.1059 EO07 O 00
2 —0.19997 E 01 -0.199995€ 01  0.833820E 00 0.7274 E 00 -0.230316E 0O
3 0.110 E O1 -0.115475E 01 ~0.11433%4E 01 0.1059 E 07  0.663646E 00
4 0.9 EO1 0.20007 E 01 -0.13048 E 01 -0.97 E 01 -0.194695E O1
5 0.2 EO5 0.1 Eot -0.30 EO0 -0.106 E 07 <-0.10151 E 01
6 0.2, Eo8 0.2 E02 -0.20 EO1 -0.4 Eot 0.6 Eo00
7 0.5 E1 0.5 EQ, 0.5 EOl 0.9 EO06 -0.43 EO0O
8 0.8 E14 0.6 E06 0.4 E03 0.1 EOo8 0.19 EO!
0 0.1 E-05 0.5 E-08 -0.3;, E-09 -0.55 <©-04 0.8 E-11
1 -0.13 E-04 -0.2 E-07 0.13 E08 0,19 E-03 -0.2 E-10
2 0.47 E03 0.2 E-06 0.7 E-08 0.8 €03 0.8 E-10
3 «0.47 E01 0.4 E05 0.7 E-07 0.7 E-02 -0.4 E-09
& 0.2 Ec2 0.2 E-03 -0.2 E-05 -0.1 E00 0.6 E-08
5 0.3 E03 -0.5 E-01 0.2 E-03 0.8 Eo0l -0.3 E06 -
6 0.3 Eog8 -0.9 EO1 0.8 E-O1 0.5 EO03 0.1 E-04
7 0.8 E11 -0.1 E 04 o1 EO1 0.3 E05 -0.4 E-03
8 0.2 £15 0.4 E06 0.2 E03 -0.3 EO7 0.2 E-01
Table 4.4b

Eigenvelues, Modal Participation Functions and Eigenvectors for a Simply Supported Plate
With 4 Sides

8 Collocation Points at 0°, 5%, 10°, 20°, 20°, 35°, 40°, 45°

Mode §
1 2 3 4 5

k; 3.14159 7.02482 9.42478 11.32717 12.95312

i /X; 00, ..o 6 1.58955 =1.0564 0.17677 0.60157 0.24331

n=0 . 1.5254 -0.87236 0.2728 0.4905 0.0316

-
4] 0.100000E 01 0.100000E 01 0.100000E O1 0.100000E 01 0.100000E 01
1 -0.200003E O1 0.559996E 00  -0.200001E 01 0.140828E 01 -0.111418E O1
2 0.2009 E 01 -0,168636E O1 0.199999€ 01  -0.1673TE-01 -0.758587E 00
3 0.2 02 -0.1507 EO1 -0.199982E 01 -0.143184E 01 0.195940E 01
4 0.2 E 06 0.16 [ 0.19 EO1 -0 01  <0.142468E 01
5 0.9 E 10 <0.1 E 04 0.2 EOl -0.13, EO1 -0.,364 EOO
[ 0.5 E 14 0.3 E06 0.4 E 03 =0.2 EQ 0.16 EO1
1] 0.2 E-06 0.8 E-08 0.1 E-08 0.6 E-10 0.3 E-10
1 0.9 E-05 0.7 E-07 0.6 E-08 -0.3 E-09 0.1 £-09
2 0.6 E-02 0.3 E-05 0.1 E-06 0.3 £-08 0.9 E-09
3 0.2 E 02 0.4 E03 -0.6 E-05 0.1 E06 0.2 E-07
4 0.1 E06 -0.2 E00 0.9 E03 0.8 E05 0.9 E-06
5 0.7 E 10 0.4 EO03 0.8 EO00 0.4 E-02 -0.3 E-03
6 0.4 E1 <0.7 E 05 0.2 E 02 0.3 E-02 0.1 E02




Table 4.4c

Eigenvalues, Modal Participation Functions and Eigenvectors for a Simply Supported Plate
With 5 Sides

7 Collocation Points at 0°, 6°, 12°, 18°, 24°, 30°, 3¢°

Node i

1 2 3 4 ) 5

ke 2.8212 6.4282 9.5642 10.65 13.0870

L 1.6049 -1.0777 0.514 0.3535 ~0.5043

X/%2 n=0 1.5776 -0.9900 0.7033 0.5678 -0.509

Ordar n :

o 0.100000E 01  0.100000E 01  0.100000E 01  0,100000E 01  0.100000E 01
1 0.517 EO1 0.4233 E00 -0.13472 E 01  0.164008E 01 -0.12864 E 01
Al 2 0.17 EoOL -0.557 EO1 0.2051 EO1 -0.80032 E00 -0.517632E 00
pn 3 0., EO08 0. EO03 -0.17 EO02 -0.131 E©O1 0.03 EO1
Z 0.1 E13 -0.2 EO06 0.1 EO4 -0.4 EO02 -0.2 EO02
5 0.8 E19 0.2 E11 0.6 EO7 0.1 E06 0.1 E 05
o 0.6 E-0, -D.37 E-05 0.61 ED06 -0.39 E-07 <0.4 E-07
; 1 0., E02 0.5 E04 -0.44 E-05 0.2, E-06 0.15 E-06
B 2 0.2 EO3 -0.2 E01 0.3 E-03 0.1 E-04 -0., E-05
pe 3 0.6 EO7 0.2 Eo2 0.3 E-01 -0.6 E03 -0.5 E-04
A 0.6 E13 <0.5 Eo6 04 EO3 -0.7 EO1 -0.6 EO00
5 0.1 E19 -0.1 Eo9 0.3 EO6 -0.4 EO4 -0.3 EO3

Table 4.4d

Eigenvalues, Modal Participation Functions and Eigenvectors for a Simply Supported Plate
With 6 Sides

6 Collocation Points at 0°, 6°, 12°, 18°%, 24°, 30°

Mode i
1 2 3 4 5
k; 2.676 6.12 9.49 11.0 13.0
ind 00 ... 4 1.605 -1.077 0.834 0.017 -0.70
m1/x2 g oo
n=0 1.592 -1.032 0.793 0.13 0.64
Order n ,
0 0.100000E 01  0.100000E 01  0.100000E 01  0,100000E 01  0.100000E 01
. 1 0.16 EO02 0.9 EO00 -0.45 EO00 0401 EO1 -0.627 EO00
A 2 0.3 E06 0.5 E02 0.2 EO1 =020 EO1 -0.197 EO00
pn 3 0.2 E12 -0.1 E05 0.1 Eo03 0.3 E02 0.5, EO01
3 0.3 €19 -0.1 E11 0.2 EO07 -0.2 E06 -0.4 £ 04
0 0.1 E<03 <0.1 E-04 0.8 E-06 =0.5 E-06 0.2 E-07
. 1 ~0.9 E00 0.8 E-03 -0.2 E-04 0.9 E-05 0.5 E-06
g! 2 0.1 E06 0.1 Eol 0.8 E-03 -0.4 E03 -0.1 E-04
3 -0.3 £12 0.8 Eo05 -0.3 £02 0. Eo0t1 0.4 €-01
4 0.1 E18 -0.3 Eo9 -0.1 EO06 0.1 EO05 0.8 E 02




Table 4.40

Eigenvalues, Modal Participation Functions and Eigenvectors for a Simply Supported Plate
With 7 Sides

6 Collocation Points at 0°, §°, 10°, 15°, 20°, 25.7°

Mode i
1 2 3 4 5
ky 2.600 5.9537 9.298 11.80 12.7
PO, et 1604 -1.075 0.863 ~0.090 -0.647
n=0 1.596 -1.050 0.822 -0.52 -0.673

Order n
0 0.100000E 01 0.100000E 01 0.100000E 01 0.100000E 01 0.100000E 01
1 -0.60 E 02 0.75 E00 -0.260 EO0 0.383 EO1 -0.68, EO00
2 0.5 E08 0.9 E 03 0.76 EO01 -0.6755 E 0Ot 0.68 E-01
3 0.2 E16 0.4 EO08 -0.1 E 04 0.4 E 03 0.3 E 02
4 0.3 E2, -0.8 E 1 0.2 E10 =0.2 Eog <0.5 E 06
0 0.8 E-03 -=0.3 E-04 0.15 E-05 =0.5 E-06 -0.30 E-07
1 =0.95 E o1 0.4 E-02 -0.6 E-04 0.1 E-Q4 0.6 E-06
2 0.2 E 08 0.3 E 02 0.3 E-01 =0.229 E-02 0.9 E-04
3 0.3 E 16 0.5 EO08 -0.3 E 04 0.40 E 02 0.1 E o1
4 0.4 E2, 0.3 E 14 <0.1 E 09 0.9 E 06 0.2 E 05
Table 4.4

Eigenvalues, Modal Participation Functions end Eigenvectors for a Simply Supported Plate
With 8 Sides

6 Collocstion Points at 0°, 5°, 10°, 15°, 19°, 22.5°

Mode i
1 2 3 4 5
ks 2.50 5.82 9.14 12.33 13.01
.. 0, ...k 1.61 -1.06 0.86 -0.61 —0.12
1 1
7% =0 1.605 -1.04 0.83 -0.70 -0.59
Order n :
0 0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01  0.100000E 01
1 o1 Eoi 0.21 EO1 -0.243 EO0 0.780582E 00 -0.320 E 01
2 ow E1 -0.6 Eo5 0.8 Eo02 -0.5 EO1 060 Eo0t
3 0.8 E 214 =0.5 E 12 0.5 EO07 <0.1 E 05 0.4 E 04
4 o5 E3 02 E21 01 E1, -03 E10 06 EO9
(o] «0.8 E=02 0.2 E-03 =0.1 E-05 0.5 E-07 0.3 E-07
1 0.5 E 03 0.7 E~O1 0.1 E-03 0.3 E.05 0.2 E-05
2 0.5 E 1 0.1 E 05 0.2 E Ol ‘0.6 E-02 0.2 E-02
3 0.7 E2 0.2 E12 <=0.1 E 07 0.1 EO0, 0.2 E 03
4 0.2 E 33 0.9 E20 0.1 E 13 0.2 E09 =0.3 E 08




&.
Table 4.4g
Eigenvalues, Modal Participation Functions and Eigenvectors for a Simply Supported Plate
With 9 Sides o

6 Collocation Points st 0%, 4°, 8%, 12°, 16°, 20°

Mode i
1 2 3 4 5
x1i /Xé n=0, ... 1.61 =1.05 0.85 -0.72 © 0,001
=0 1.61 ~1.04 0.83 -0.70 -0.05
Order n :

o] 0.100000E 01 0.100000€E 01 0.100000E 01 0.100000E 01 0.100000E 01
Ai 1 =0.1 E o5 0.6 Eol 0.4 E 00 0.29 E 00 -0.66 E 01
pn 2 0.3 E14 -0.3 E07 0.1 Eo;, =0.2 E02 0.30 EO2
3 0.5 E2s 0.2 E15 -0.4- E10 0.6 E 06 0.1 E 06
4 0.2 E39 -0.3 E2s 0.2 E18 -0.4 E13 0.3 E 12
0 0.1 E-01 0.2 E-03 -0.6 E-05 0.3 E-06 -0.2 E-06
gi 1 0.6 E0, -0.4 E00 0.1 E02 -0.1 E-0, 0.6 E-05
pn 2 0.2 E14 09 E06 -=0.7 Eo02 0.1 E00 -0.2 E-O1
3 0.4 E25 0.1 E15 0.2 E09 0.2 E05 0.1 E 04
4 0.2 E 39 0.2 E25 0.6 E17 0.5 E12 -0.2 EMN

Table 4.4h
Eigenvalues, Modal Participation Functions and Eigenvectors for a Simply Supported Plate
With 12 Sides

4 Collocation Points et 0°, 8°, 129, 15°

Mode i
1 2 3 4 5

K 2.42 5.65 8.87 12.1 15.3

ixi 090, ...2  1.61 -1.05 0.8, -0.72 0.63

r‘ 2 o . 1.6 -1.05 0.83 -0.70 0.62

Order n

i 0 0.100000E 01  0.100000E 01  0.100000E O1  0.100000E 01  0.10000CE O1
on 1 0.0 EO7 0.6, E03 -0.191 EO1 0.29 EQ0 -0.19 EO00
2 031 E22 -0.2 E13 0.4 Eo08 0.3 EO05 0.3 EO3
gl 0 0.3 E02 0.2 E03 -0.9 E05 0.5 E-06 -0.3 E07
on 1 o> Eo7 -0.13 Eo2 0.4 Eo01 -0.2 E04 -0.3  E-06
2 0.27 E22 09 E12 -0.5 EO7 09 EO03 0.9 E00
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Values for modal participation functions xf/xt
calculated for uniformly distributed loads using only the
6- independent zero order terms in Egqs., (2.22) and (2.23)
and henceforth referred to as (x{/xi)oare included together
with the values calculated using the higher order terms
which will be referred to simply as xi/x%. The difference
between the values of x%/x% and (le'/xi‘)o is indicative to
some extent of the significance of the errors introduced
by the omission of the products of the terms of different
orders n in x%, Eq. (2.22). Results in Tables 4,3 and 4.4
show that the possibility of error in x% increases with
inereasing mode number and decreasing number of plate sides,

The Fortran digital computer program used to

obtain these results is given in Appendix c.1l.

4,2 Effect of Boundary Shape on Sxmmetric Eigenvalues
The effect of boundary shape on the symmetric

eigenvalues ki for plates of equal surface areas is shown
in Tables 4.5 and 4.6. These elgenvalues are calculated

from the eigenvalues k,, given in Tables 4.1 and 4,2, using
e e
k' = k 4,1
1 =P K o (4.1)

where

p FLI
pe = — sin — (4.2)
2w P
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and o 1s the dimensionless radius of the circular plate
having the same area as the regular polygonal plate,

These tables reveal a pattern of fluctuation
of ki with the number of the sides of the polygon and the
mode number which, with the exception of a few discre-
pancies, appears to be identical for both simply
supported and clamped plates. The direction of decreasing
eigenvalue magnitude for either increasing or decreasing
number of sides is marked by arrows for each mode. These
arrows indicate the polygon having the maximum modal
frequency.

Exceptions to this pattern occur in Table 4.6
where the fundamental and some of the higher modal eigen-
values appear to be too low for the simply supported plates
with 8 and 9 sides. The same discrepanclies also were
noticed in.these eigenvalues when calculating modal
displacements which are discussed later. The magnitude of
these discrepancies could be accounted for by the numerical
convergence error previously noted for theirelated eigen;
values in Section 4.1, Table 4.2.

Since the frequency varies as the square of the
eigenvalue, these tables show thét the fundamental fre-
quency of vibration of polygons of equal area having simply
supported or clamped edges decreases with increasing number
of sides. The relative difference between the fundamental

eigenvalues for a circular plate and a plate with 12
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equilateral sides 1s larger for the simply supported
edge condition than the clamped edge condition. This
seems reasonable since eigenvalues are independent of
Poisson's ratio in the case of simply supported poly-
gonal plates as well as clamped polygonal and circular
plates, but are dependent on this ratio in the case of
simply supported circular plates, having their smallest
values for v = 0, Rao and Rajaiah [104] have discussed
this effect of Poisson's ratio for statically loaded
simply supported plates. They showed that inaccuracles
can arise for p>5 on account of the slow rate of

convergence of the solution.

4.3 Szgggtric Mode Shapes and Modal Participation Functions

The simmetric mode shapes for the characteristic
segments of some clamped and simply supportcd polygonal
plates, computed using the values for the eigenvectors
given in Tables 4.3 and 4,4, are shown in Figs. 4,2a
through 4.2d. Mode shapes for the complete plates are
inferred by the rotational periodicity of the solution.,
The boundary collocation points used to obtain the eigen-
vectors are shown as small circles along the plate
characteristic segment edge. |

The dotted-pdrtions of the nodal lines in Figs.
4.2a through 4.,2d are considered to result from errors in
the satisfaction of the edge conditions. More errors
occurred for the clamped plates than the simply supported
plates since the satisfactlon of the condition of zero

edge slope naturally tends to introduce more incorrect
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nodal lines near the boundary than the condition of zero
edge moment. Since this solution is exact only for
cifcular plates and since a polygonal boundary deviates
most from a circle at the corners aﬁd this deviation
increases with decreasing number of sides, it is
consistent that most numerical errors occurred for the
triangular plate near the boundary in the corners along
generally circular lines emanating from boundary
collocation points.

The deviation of the nodal lines from concentric
circles increases with decreasing number of sides and
‘ increasing mode numbers, The degree of this deviation
is reflected in the degree of variation between the values
of (x{/xt)g and x%/x% given in Tables 4.3 and 4.4,

An attempt was made to relate the nodal areas,
defined as the areas between the nodal lines and denotéd
as ratios of the plate segment area in Figs. 4,2a through
4,23, to the modal participation functions for uniform

loads using

G = wiodnd (4.3)
1" %05 a 170 pay,
where
o = al/(al) . (4.4)
a d

d p=!z
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In Eq. (4.3) (x?/xf) __are the values of xt/xf for the
l12-sided polygonal pg;é; given in Tables 4,3n and 4.4n,
In Eq. (4.4) az 413 the difference between the sums of
the i-th nodal areas which respond in the same direction
under a uniform load.

The modal participation functions xi/x: for
the 12-sided plate were chosen as the basis for obtaining
(xi/xi)a for the other polygons since the evaluation of
x% from Eq. (2.22) is most accurate for the polygonal
boundary most closely approximating a circle.

The modal pariiclipation functions (xi/xf)a,
calculated from Eq. (4.1) and given in Tables 4.7 and 4.8,
agree reasonably well with x?/xi, with differences
generally increasing with decreasing number of sides and
increasing mode number. The largest discrepanclies occur

for the fourth mode of many of the polygons and for all

modes of the triangular plates.

4.4 Central Displacement
The static central deflections for the symmetric

modes of response of polygonal plates with the same

inscribing radius a, were calculated for uniformly

distributed loads using
i i
+
W =u:x
1k cos"_e° X

-

(4.5a)

el

i
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and i i i
a A + B X, '
W =22 e . (4.5b)
» . 1 ’
i k® cos"9 X a
i 0
and for central point loads using
1 i ( i)
P A +B X
W=t o B a2, (4.6)
i k" cos?e X
i 0 0
The convergence of the sums of the modal
displacements for polygons with clamped and simply
supported edges subjJected to uniform pressures qo.
W= Zw = wD/q a"* (4.72)
1 1 O o
and
a a
o= LW (4.7b)
i1

to the values given by Leissa, Lo and Niedenfuhr [77]
is shown in Tables 4.9 and 4,10 for the first five
modes.,

The agreement between the values of W, W2
and the values given in [77] is quite good for all
polygons in Tables 4,9 and 4,10 except the triangular
plates and the simply supported plates with elight and
nine sides. The disagreement between central dis-
placements calculated for these simply supported plates
with eight and nine sides by the static approach in [77]

and the present dynamic approach could be eliminated
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by using the slightly larger fundamental eigenvalues
indicated by the discrepancies previously noted in

Table 4.6, Good agreement could have been obtained
between the static central displacements computed by the
two methods for the simply supported plates with seven,
eight and nine sides if the fundamental eigenvalues were,
respectively, 2.59, 2.53 and 2,49 rather than the values
2.60, 2.50 and 2.45 given in Table 4.2. Consequently,

it seems that the modal participation functions for these
plates should be reliable, However, for the triangular
plates the values of x}/xf appear to be incorrect while

the values of (xf/x% provide good convergence of the

)a
sum of static central modal displacements W2 to the
values given in [77].

From these results it appears that the values
of (xf/x:)a which were calculated from the nodal areas
provide very reliable estimates of at least the first two
modal participation functions for the symmetric response
of uniformly loaded regular polygonal plates,

The convergence of the sums of the modal
displacements for polygons with simply supported and
clamped edges subjected to central point loads Po

W= %:wi = wD/P a? (4.8)
is shown in Tables 4,11 and 4.12 for the first five
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modes. As far as is known, static deflections for
centrally loaded regular polygons have been calculated
only for triangular, squafe and circular shapes. These
values have been given by Timoshenko and Wolnowsky-
Krieger [78]. Agreement with present values is poor

for the simply supported triangular plate and fair for
the square plate reaffirming that errors exist in

1 calculated from Eq. (2,22) for these plates.

0
Better agreement for these plates could be obtained by

values of ¥

using values of xt for the first two symmetric modes

which are derived from values of (xf/xi)a given in

i

Tables 4.7 and 4.8 along with the values of X3

i
0

calculated in this way provide unacceptable values for

calculated from Eq. (2.,23). However, values of X

the modal participation functions (x%)P/xf for centrally
loaded triangular plates for 1 > 3, Values of WE should
be reliable for the polygons with p > 4 except for the
errors previously mentioned in the eigenvalues for the
first mode of response of the simply supported plates
with eight and nine sides.

Comparison of the static central displacements
for the first five symmetric modes for each plate in
Tables 4.9 to 4,12 reveals that usually only the first
two modes must be considered for computing the response

of these plates to most uniformly distributed dynamic
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loads while the first five modes may be needed for
central dynamic point loads. Naturally, the response
of the higher modes becomes more significant as the
load duration becomes short compared to the lower médal
response perilods.

Static central displacements of polygonal
plates having the same surface area and subjected to
uniform and central point loads, termed W€ and WP’e,
respectively, have been calculated from the values
given in [77], [78] and from present values where

existing ones are not available, using
We = W cos*e _/(p®)* = wD/q_(p®a)* (4.92)

and
Pse P 2 2 e.y2
W =W cos eo/(pe) = wD/Po(p a)?, (4,9b)

Comparison of the values of W€ and WP’e given in

Tables 4.9 through 4.12 shows that central displace-
ment increases with the number of polygon sides with
the exception of the value of WP’e for the simply
supported plate with nine sides which can be ignored
for the reason given previously., This implies that

for simply supported and clamped polygons of equal area

the effective plate flexural bending stiffness increases

as the number of boundary sides decreases,
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The convergence of the central displacements
Wwe and W € to the values for circular plates as the
number of sides of the polygon increases is not as
rapid for simply supported plates as it is for clamped
plates. This can be explained partially by the fact
that the displacements W and wE are dependent on
Poisson's ratio only for simply supported circular
plates, decreasing with increasing values of v,

The undamped forced motions of some clamped
plates with the same circumscribing radius a and
subjected to the initial conditions given in Egs. (2.202)
and (2.20b) are depicted in Fig. 4.3 for a typical blast
wave of incident load intensity q_ and duration of the
positive loading phase to. These displacements were
computed using the values of x::‘/xi given in Tables 4.3
and 4.4, The smoothness of the t;eoretical'response
curves is indicative of the small influence of the
higher modes on displacement for this transient load.
However, the influence of the higher modes on stress
couple response is more significant, as is shown in

Chapter 5 for a square plate,
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FIG. 4.3 Theoretical Undamped Center Deflections of Some Clamped
Polygonal Plates vs. Time
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CHAPTER 5

EXPERIMENTAL COMPARISON WITH THEORY FOR A SQUARE PLATE

5.1 Procedure

5.1.1 Experimental Plate. A 34,0 in, (20,1 in.)

square aluminium alloy 65S-T6 plate having a uniform
thickness of 0.757 in. (*0,004 in,) was mounted in the
rolling section of the DRES six-foot diameter shock tube
as shown in Fig., 5.1. Young's molulus E and Poisson's
ratio v were measured statically for two plate material
samples as 10.03 x 10° psi and 0.31, and 10.10 x 10¢ psi
and 0,306, respectively. Since the small differences
between these values and the Alcan specified values for E
and v of 10.0 x 10° psi and 0.33, respectively, theoreti-
cally would have little effect on the plate response, it
was decided to use the manufacturer's specified values
throughout the theoretical analysis. Strain rate effects
for aluminium, as pointed out by Kolsky [79], are not
significant for elastic vibrations and consequently were
ignored in the theoretical analysis.,

The plate was held in position by one inch
thick steel clamping plates and rested on a wooden block.
These clamping plates partially restricted plate edge

rotation while permitting in-plane motion subject to
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6" dia. shock tube -

81 x 4" I beams 1/2" thick cast iron

34.0" x 34.0" x C. 757"
aluminium (65ST6) plate

1v thick front plate

1" gteel clamp — _ :I;a]:gnel

__ 3/4" aluminium spacer
8! x 4'" I beam

1" gteel front plate

aluminium plate
1/2% steel"

3/4v al. facing

g1 'x 4 I beam

1" steel clamps - 3/4" aluminium spacer

1" steel front plate

channel brace

. aluminium plate
a=21.213in. h=0.757 in.
E = 107 p, s.i.

Dens. = 0.0975 b, /in.3

FIG. 5.1 - Plate Mounting Assembly
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resistance by frictional forces. The edge clamping
pressure was made as uniform as possible by shimming
and by adjusting the tightness of the bolts passing
through the clamping plates and the 3/4 in. aluminium
spacer plates, By means of this arrangement the plate
was elastically clamped along its boundary with fair
uniformity and had an exposed surface area 30.0 in,
(¢ 0.1 in,) square, |

As demonstrated by Lassiter and Hess [1],
initial curvature in plates increases the complexlity
of analysing deformation by introducing middle surface
membrane strains even for small deflections, The
experimental plate initially had a maximum deviation
from the flat of 0,013 in. over an 8 inch span or a
minimum radius of curvature R of approximately 2500 in.
An estimate of the effect of this initial curvature on
the transverse vibration frequencies can be obtained
from the equations for the first two frequencies of
transverse vibration of an infinitely long barrel
vault simply supported along its lateral edges which
are a distance 2ao apart. These equations are given by
Hubbard and Houbolt [80] as

Ty D 2
SEeE
m 1;2

26.0 2 1

—_— + —_—

2ay "
—_— +
R " )

R

(5.1)

96(1 - v?) ( 2a°)2(2a°)2]

e R h
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and
T * D 1 2a
w? = 16— —[1--_ ] +
2 2a,l m 2x2 \ R
S | 2a,| "
+ - . (502)
167" ' R
For the experimental plate
2a°/R = 0,012
and
zao/h = 39.630
Hence
T\*D
w? = (— — [1.014]
! 2a,! m
and
Ty *D
w? = 16 (—— — [1.0001].
2 23.0 m

It appears from these values of w and w, that the
maximum deviation from the flat plate fundamental
frequency due to initial curvature effects is less than
one per cent and that the deviation in higher frequencies
is even smaller. These calculations indicate that the
deviations of the middle surface of the experimental
plate from a flat surface were not sufficiently large to
introduce significant membrane stralns.

The effect of transverse shear and rotatory
inertia on the plate's linear response could be neglected

according to Reismann and Greene [20] since the plate
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and
Ty*D 1 2a,
m2=16(— —[1-_ —_] +
2 2a,/ m 22 ' R
.1 2ag "
+ . (5.2)
167" | R
For the experimental plate
2a°/R = 0,012
and
2a,/h = 39,63.
Hence
T\*D
w? = (— — [1.014]
! 22,/ m
and

T y\*D
Zao m

It appears from these values of m1 and w, that the
maximum deviation from the flat plate fundamental
frequency due to initial curvature effects is less than
one per cent and that the deviation in higher frequencies
is even smaller, These calculations indicate that the
deviations of the middle surface of the experimental
plate from a flat surface were not sufficiently large to
introduce significant membrane strains.

The effect of transverse shear and rotatory
inertia on the plate's linear response could be neglected

according to Reismann and Greene [20] since the plate
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thinness ratio h/a of 0.05 was less than 0.1,

One hundred strain gauges were fixed to the
plate using Eastman 910 cement. These gauges were
placed at twenty unique r,0 locations in each of two
characteristic plate sectors along the radial lines
é = 0°, 15°, 30°, and 35°, measuring strain in the
radial and circumferential directions as shown in Fig.
5.2. Gauges were placed on both sides of the plate at
five of these locations in each sector., Budd strain
gauges, type Cl2-121A, having gauge factors of 2,07 and
2.08 (+ 0.5%), a gauge resistance of 120 ohms and a
gauge length of 0.125 in., were used at most of the
positions. Micro-measurement strain gauges, type
EA-06-250-BF-30 having a gauge factor of 2.105 (* 0.5%),
a gauge resistance of 350 ohms and a gauge length of
0.250 in., were used at the positions nearest the
boundary on the four radial lines where strains were

relatively smaller.

5.1.2 Static Response., Static pressures

ranging from 0 to 20 psi! were applied uniformly over
the front surface of the experimental plate by bolting
a steel pressure plate to the one inch steel front

plate shown in Pig. 5.1, sealing all joints and

1 a11 pressures refer to pressures relative to
atmospheric pressure (i.e., psig) unless otherwise

stated.
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I° STEEL PLATE

/ | 8°X4"'STEEL I BEAM \

N ———/

7 F— 320 ———i
27 [ E JFRONT
ACCELEROMETER
LINEAR POTENTIOMETER
PRESSURE GAUGE CENTRAL DISPLACEMENT
DISPLACEMENT GAUGE ‘ WOODEN MOUNT

DISPLACEMENT GAUGE FRONT AND BACK
RADIAL AND CIRCUMFERENTIAL STRAIN GAUGES
RADIAL AND CIRCUMFERENTIAL STRAIN GAUGES FRONT AND BACK

®e+8000n

FIG. 5.2 Plate Instrumentation
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connecting a pressure line from high pressure air
cylinders to the resulting pressure vessel. In this

way, uniform pressures were applied only over the 30 x 30
in. plate surface and the mount was supported against
displacement at a distance approximately three inches
from the plate edges. Pressures were measured with a
Wallace and Tiernan bourdon tube gauge, model FA223,
having a range of 0 to 50 psi and an accuracy of

+ 0,05 psi.

Deflections were measured over the plate
profile and around the boundary using Starret model
656-617 dial gauges, each having a 0,0001 in., graduation
and a 0.400 in., range. These gauges were mounted as
shown in Fig, 5.3. Strains were measured with a Budd
P-350 strain indicator and two Budd SB-1l switch and
balance units., Strains and deflections were recorded
at 5 psi increments from 0 to 20 psi for both the load

and the unload portions of the loading cycle,

5.1.3 Transient Resgonse. The cross

section of the shock tube shown in Fig, 5.1 was
subjected to air blast waves having normally reflected
peak overpressures qo ranging from approximately 5 to
30 psi. The blast waves were formed by the detonation
of charges of 60/40 RDX/TNT positioned at the central
axls of a 16 inch bore Naval gun barrel which served

as the compression chamber for the shock tube. The
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FIG. 5.3 Plate Static Testing Arrangement



e~
_‘$




116

waves travelled through a 15 degree conlical expansion
chamber into a 6 ft, diameter 1/2 in. thick cylindrical
tubé. The plate test section was located approximately
160 ft. downstream from the compression chamber. A
more detailed explanation of the characteristics of
this shock tube is given by Campbell, Jones and

Watson [81].

This test section was located in the rolling
portion of the shock tube. Impingement of the blast
waves caused the section to move very slowly along
rail tracks. Noticeable motion of the rolling test
section started approximately 12 to 20 msec., (sec. x 10‘3)
after the blast wave arrived at the plate., It was
considered that these rigid body accelerations pro-
duced negligible forces on the experimental plate in
comparison to the forces of the blast loads.

The blast waves at the test section were
characterized by a shock front rising to a peak
magnitude in a few nanoseconds (sec. X 10~9) and
subsequently decaying exponentially to zero magnitude
in 20 to 90 msec. depending upon the charge welght.

The positive overpressure phase, having an initial
normally reflected pressure at the plate q, and a
duration to’ was followed by a smaller amplitude
negative overpressure phase. This characteristic shape

of an air blast shock wave is the result of a flat
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compression wave pulse being reduced in magnitude
approximately exponent1a11§“£§ an ensuing rérefaction
.wave, -The ratio of thé initial reflected blast over-
pressure q° to which the plate actually was subjected,
to the initial incident or free fleld overpressure,
increases with incident overpressure from a falue of
2.0 for normal reflection. A succession of smaller
amplitude shock waves followed the initial shock wave.
These secondary waves were caused by longitudinal
reflections of the original shock wave within the
shock tube, The period of interest for the plate
response, including the oscillation of maximum
response plus several smaller amplitude oscillations,
always occurred well within the positive phase to of
the initial shock wave. |

Four Ampex lli-track instrumentation magnetic
tape recorders, having a total of 56 data channels,
were used in this experiment. The recorders use
frequency modulation electronics with d.c. response
range of 0 to 20,000 cps and amplitude accuracy and
linearity of + 1 per cent. Signals were recorded at
a tape speed of 60 inches per second and were reproduced
at 1 7/8 inches per second thereby expanding the time
scale and reducing the apparent recorded frequencies
by a factor of 32. Visual reproduction was obtained
using a Honeywell model 1508 moving light paper chart
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oscilloscope with a variable chart speed giving a time
scale ranging from 0,125 mseec,/in. to 0,26 msec./in.
and galvanometers with a response range of 0 to

2,000 cps.

Some paper chart oscilloscope records were
reproduced directly on to graphs while other records
were digitized with random time-spacing on to computer
tape using a Telecordex chart reader. The data from
the chart reader were read into the DRES IBM 1130
computer and then plotted with a Calcomp model 565
X-Y digital plotter. Radial and circumferential
digitized strain data from the front and back surfaces
of the plate were interpolated iinearly in a computer
program to yield data with equal time-spacing. Two
hundred equitime-spaced points were obtailned from each
strain record for the first 15 msec. of plate response.
The program then correlated strain data from the
different gauges to yield membrane and bending strains
and sectional resultants at the 20 locations on the
plate surface, It was estimated that plate response
data associated with frequencies of up to 6,667 cps
would be reproduced using this technique.

Pressure variations at the test section over
the central 30 in. square were measured for a series
of shots using five shear tube piezoelectric pressure

transducers of DRES design [82] which were shock mounted
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in a dummy plate., These gauges were calibrated after
each series of shots to determine gauge sighal-to-
pressure factors. The gauges had a response capabllity
of up to 10,000 cps with pressure magnitudes accurate
to = 5 per cent. Each pressure signal was amplified
and recorded on magnetic tape. Three seconds before
a shot, a known electrical charge was applied to the
input of the pressure gauge amplifier and after
amplification was recorded on each tape channel, In
conjunction with the gauge factors,this procedure
provided known pressure calibration signals on each
pressure channel. It was found that time and spatial
variations in the pressure over the 30 in. square were
within the possible gauge errors. Consequently, the
transient load was assumed to be uniformly distributed
over the experimental plate surface.

During the experimental plate tests,
reflected overpressures were recorded by four shear
tube gauges shock mounted in the one inch steel front
plate as shown in Fig, 5.2. As a further check, pressures
were computed from the shock front velocities (as
measured by side-on pressure gauges mounfed in the
tube wall upstream from the test section) used in con-
Junction with atmospheric temperature, pressure and
relative humidity measurements taken immediately

upstream from the plate.
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Fifty strain gauge signals were amplified
and recorded on individual tape channels for each shot
involving strain measurements, The plate's response
symmetry was checked for some shots by recording strain
gauge responses at the same 'characteristic segment"
radial and circumferential positions in the plate
sectors designated 1 and 2 1n‘Fig. 5.2, Strain gauge
responses were recorded at all twenty positions in
either sector 1 or sector 2 for other shots. Known
calibration voltage signals, which took into account
gauge and line resistance of the four-armed strain
bridge circuit used, were produced with resistance-
capacitance shunts of DRES design [83]. The calib-
ration signals were amplified and recorded on each
tape.channel three seconds before a shot.

The central displacement was measured with
a Bourns model 156 Aligno-pot linear potentiometer
having an accuracy of * 0,75 per cent for 0 to 1 inch
travel and a maximum range of 1 1/2 inches. This
potentiometer was mounted on the wooden box beam shown
in Fig. 5.2, which was bolted to the back clamping
plates so that displacement was measured relative to
the edge. The travelling shaft of the potentiometer
was attached to a small circular disk which was glued
to the plate center. Edge displacements were measured

at the positions shown in Fig. 5.2 using six Bourns
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model 141 Linipot linear potentiometers with a range
of 7/16 inch, These potentiometers were mounted on

6 in., long 1 1/2 x 1 1/2 in, steel angles which were
welded to the 8 x 4 in, I beams and their travelling
shafts were held against the clamping plates by
compression springs. Linear potentiometer signals
were recorded on separate tape channels without
amplification. Signals were calibrated over the range
of interest by displacing the travelling shafts known
amounts using feeler gauges.

Accelerations were measured at the positions
shown in Fig, 5.2 with two Endevco model 221D piezo-
electric accelerometers having a frequency response
range of from 2 to 7,000 cps. Accelerometer signals
were amplified and recorded on magnetic tape. Cali-
bration signals were obtained in the same way as for
the pressure transducers,

A portion of the 1nstrumeptatibn bunker is
shown in Fig. 5.4, A complete instrumentation block

diagram is shown in Fig. 5.5.

5.2 Theoretical and Exgerimental Results
5.2.1 Theoretical Elastically Clamped Square

Plate. Eigenvalues, modal parti-

cipation functions and static central deflectlions are

given in Table 5,1 for the first five symmetric modes
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of vibration of a uniformly loaded square plate having
uniform elastic edge clamping ranging from the simply
supported to the clamped condition, These values were
obtained using seven collocation points on the boundary
of the characteristic segment. Vélues for the
coefficients ¢1...¢1°, required for modal participation
functions,were obtained using 46 equal increments of 6
for the numerical integration according to Simpson's
rule,

Theoretical symmetric frequencies are given
in Table 5.2 for the experimental plate subject to
varioﬁs degrees of elastic clamping. These results show
that modal frequencies increase relatively more rapidly

with values of B1 for decreasing mode number,

5.2.2 Transient Pressures, Peak reflected

overpressures qo and associated durations of the
positive overpressure phase to are given in Table 5.3
for 24 separate blast loads on the experimental plate
resulting from the detonation of charges of RDX/TNT
welghing from 0,5 to 10.0 1lbs, Average values of q,
and t,, obtained from the four shear tube pressure
records for each shot, were quite consistent for each
charge weight as were values of qo obtained from the

shock front velocity measurements using [84]
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. Table 5.3
Plate Transient Pressures
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Experiment Theory
Charge
Shot l?{gl;t q,(psi) t_(msec) g, (msec) to(nysec)
Average of Calculated
4 Measured from Shock
Values Front
Velocity

1 0.5 5.2 4.0 21 4.8 21

2 5.0 3.9 22

3 5.2 4.0 22

4 4.8 AN 21

5 5.2 2

6 1.5 8.9 7.8 32 8.6 33

7 ’ 8.7 7.9 33

8 8.6 7.8 33

9 8.8 7.5 32
10 8.9 7.7
11 9.1 7.8
12 9.0 7.7
13 8.5 7.5
14 8.7 7.8
15 3.0 12.9 1.6 33 12.9 37
16 13.1 12.5 36 '
17 13.0 12.1 38
18 12.4 38
19 6.0 20.9 20.5 75 20.9 73
20 20.8 19.5 72
21 20.9 19.7 72
22 10.0 29.5 28.0 88 29.8 91
23 29.7 28.1 93
24 30.2 2.6 9%




_128

KM = M2 4 2 = 2 2kM2 = k + 1
qQ =q . )( ’ (5.3)
o atm kM2 - M2 + 2 x +1
where
M " V/cair (504)
and -

Cosp =jnki'. | (5.5)

In Eqs. (5.3) through (5.5) ='Cp/cv and cp and cv are

the specific heats of air at constant pressure and volume,
respectively, R is the gas constant, T is the absolute
temperature, cair is the velocity of sound and 9 em is the
atmospheric pressure, all measured immediately upstream
from the plate in the undisturbed air, V is the velocity of
the incident shock front and M 1is the shock ffont Mach
number,

The experimental values of qo measured by the
pressure transducers were consistently larger by approximately
1 psi than the values calculated using measured shock frbnt
velocities, Initial values of a bredicted using Eq. (5.3)
tended to be less reliable at lower Mach numbers due to the
lower accuracy of shock front velocity measurements. They
usually did not represent the peak overpressures, in any
case, since boundary layer effects introduced a small

secondary rise in the reflected compression wave overpressure

before it began decaying approximately exponentially.
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Values of positive phase duration to
measured from the pressure transducer records were
quite consistent for different shots having the same
charge weight; Variations between the values of qo
obtained from either pressure transducer records or
shock front velocity measurements for different shots
having the same charge welght were usually smaller than
variations between the values of qo obtained for each
shot using the two different techniques., Consequently,
it was considered reasonable to use one value for.qo
and to for each charge weight in the theoretical plate
transient response calculations, with q, being‘chosen
nearer to the values measured by the pressure trans-
ducers. It is seen from Table 5.3 that the possible
errors in theoretical values chosen for q, range from
approximately + 19 per cent to - 8 per cent for a 0.5
1b. shot to + 6 per cent to - 1 per cent for a 10,0 1b.
shot.
In view of the errors possible in Qg it

seemed reasonable to assume a transient load history of

the form

q(t) = qo(l - t/t,) exp(~ t/t,), t £ €, (5.6)

for the theoretical response calculations rather than
to numerically integrate the Duhamel integral, Eq.
(3.33a), for individual pressure records. Typical

experimental and theoretical transient blast pressures
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for a 1.5 1b, shot are shown in Fig. 5.6. At least
some of the higher frequencies present in this
experimental pressure-time record resulted from gauge
'ringing'. For this shot, an initial reflected over-
pressure qo of approximately 8.0 psi would have been
obtained from accurate shock front velocity measure-
ments. However, a value of 8.6 psi was used for the
theoretical initial pressure qo in order to pbtain a
more reasonable pressure impulse for the period of

interest which was approximately 15 msec.

5.2.3 Damping, Damping introduces non-
conservative forces which dissipate energy in a system
undergoing cyclic stréssing, usually by converting
mechanical energy to heat. It was considered that both
structural and air damping would affect the transient
response of the experimental plate.

Structural damping is composed of material
damping, also termed internal, hysteritic or visco-
elastic damping, and interface or Coulomb sliding
damping, both of which are described in detail by Lazan
and Goodman [85]. Generally, structural.damping is
nonlinear and is not representable by a viscous damping
model.

Air damping, as discussed by Hubbard and
Houbolt [80], is composed of a component in-phase with

acceleration producing an apparent "added mass" and a
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component in-phase with veloclity termed "radiation
resistance". According to Hubbard and Houbolt, the
acceleration component of air damping is negligible
for the experimental plate since 2a,/h = 39.6 < 500.
However, particularly for blast waves, the velocity
component of air damping may not be negligible,

The method of calculating the radiation
resistance is dependent upon the value of wa,/c

air’

where cair is the velocity of sound in the air

surrounding the plate. The values of cai ranged

r
from approximately 1100 to 1300 fps for the ailr blast
overpressures assocliated with the plate experiments.
Radial strain vs. time records at p = 0,377, 6 = 15°
for 1.5 and 6.0 1b, shots, shown in Figs. 5.7 and
5.8, respectively, indicate that the fundamental
frequency of vibration of the experimental plate was
approximately 165 cps for the 1.5 lb. shot and 160 cps
for the 6.0 1b., shot. Relating these frequencies to
the theoretical fundamental frequencies for different
edge clamping values given in Table 5.2, shows that the
experimental edge clamping approached the simply
supported condition.

Thus for the experimental plate

0.96 < < 1,17.
9 wlao/cair 1.17
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FIG. 5.7 - Plate Experimental Radial Strain at ¢ =0.377, 6 = 159, sector 1
and Pressure vs. Time for a 1.5 1b. Shot
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FIG. 5.8 Plate Experimental Radial Strain at o= 0.377, 6 = 15°, sector 1
and Pressure vs. Time for a 6.0 1%. Shot .
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According to Hubbard and Houbolt, for a

simplyvsupported square plate having a Poisson's ratio

v = 0.3,
Y c wa
(z /o) = 0.312( air“ ), © <1, (5.72)
1 1 a3ip vy l\le c
air air
Yairy[ airyja |2 wa,
(z /v ) = 0,350 ) )(—3) ’ > 3. (5.7b)
1 1 air Y c h c
air

In Egs. (5.7a) and (5.7b) (;l/ml)air is the ratio of
viscous damping of the fundamental mode to critical
damping computed for air on one side of the plate
only, v and y are the densities of air and plate
materiaifrrespectively, and ¢ = E)Y is the velocity
of sound in the plate material.

At atmospheric pressure and T0°F., (cair)atm
is approximately 1100 fps and (Yair)atm is 0,12 x 10~
1b.sec.2 in.~". For the aluminium plate ¢ is 16,600 fps
and v is 0.25 x 103 lb.sec.zin.-u. For a normally
reflected air shock wave, (y_, ) and (¢ ) are

air ' ref air ref
given by [84] as

(v )
air ref (7M%2 - 1)3M?
= (5.8)
(y ) (M2 + 2)(M2+ 5)
alr atm

and
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(¢ ) /(unz - 1)(M2 + 2)

alr ref _ . (5.9)
(c ) 3M

air atm

Theoretical values of plate viscous damping
due to air coupling are given in Table 5.4 for a range
of blast loads. Assuming one side of the plate was
exposed to atmospheric pressure (q = 0 psi) while the
other was subjected to air blast loads, theoretical
initial values of air damping of the fundamental mode,
obtained by adding the damping on each surface given by
Eq. (5.7a), ranged from 0,50 per cent of critical for a
blast load having q = 4,8 psi to 0,67 per cent for a
blast load having q = 29.8 psi. Even for a blast load
having q, = 463 psi, initial air damping would have been
only 1.3 per cent of ecritical, If Eq. (5.7b) had
governed, then air damping would have been slightly
larger for all blast overpressures and 1t would have
increased more rapidly with blast overpressure. ‘Howeverg
even assuming that Eq. (5.7b) governed, alr damping never
exceeded 1.6 per cent of critical for a blast load with
q, as large as 29.8 psi.

Experimental values of viscous damping computed

from the strain transients in Figs. 5.7 and 5.8 using

x
z/w 1 m _
= ln( ), n > m, (5.10)

Jl - (I;/m)E 2n(m-n) X

n




137
Table 5.4

Plate Theoretical Alir Damping On One Surface

4
q (psi) M zyair)ref “Cair)rer | (;f)
: Yair)atm (cair)atm air
Eq.(5.72) Eq.(5.7Tb)
0 0 1.0 1.0 0.0023 0.0044
4.8 1.06  1.20 1,02 0.0027 ° 0.0054
8.6 1.12  1.42 1.07 0.0031 0.0067
12.9 1.16  1.60 1.10 0.0033 0.0078
20,9 1.24 1.94 1.14 0.0039 0.0098
29.8  1.31  2.27 1.19 0.0044 0.012
463 2,63  9.27 1.96 0.011 0.080

are given in Table 5.5, In Eq. (5.10)'15 is the
amplitude of oscillationvm for free vibration. Values
of zh used in the viscous damping calculations were
obtained from the forced response strain transients by
measuring the strain amplitudes between successive
minimum and maximum strain values of the fundémentalp
mode, where the maximum value is labelled oscillation m.
In this manner the effect of the time decaying preésure
transient on vibration amplitude was partially removed

and values of the ratios zh/zh for the different strain
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amplitudes were thought to approximate closely the

related free vibration values.

Table 5.5

Plate Experimental Viscous Damping

Peak m to Peak n | 1,2 1,3 1,4 1,5 2,4 3,5

q,= 8.6ps1}0.087 0,038 0.049 0,028 0,030 06.023

g,/v,
q°=20.9psi 0.15 0.096 0.065 0.079 0.026 0.062

Peak m to Peak n | 8,9 8,10 8,11 11,12 11,13 12,13

g,/w, q,= 8.6psi0.038 0.022 0.018 0 0.025 0,049

Damping measurements for the 1.5 1b,. shot
commencing at the maximum strain levels occurring for
oscillations 1, 8, and 11 which were associated with
shock waves arriving at 0, 42 and 111 msec., indicate
that viscous damping decayed with the stress amplitude
but was considerably larger than the values estimated
for air damping at all blast overpressures. Comparison
of the damping values for the 1.5 and 6.0 1lb. shots
when q, was 8.6 and 20.9 psi, respectively, reveals the
nearly linear increase of initial values of viscous

damping with stress amplitude. The rapid decay with
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time of viscous damping for both shots indicates that
initial values of damping could have been considerably
larger than'the values measured from the first two
oscillation peaks. This linear increase in viscous
damping with stress amplitude did not occur for the
10.0 1b. shot when plate damping levels were nearly
equivalent to those for the 6.0 1b, shot. It was
thought that this was a result of a decrease in the
plate edge clamping friction. This is discussed
further in Section 5.2.5.

The strain response magnitudes of the higher
modes, as shown in Fig. 5.7, appear to have remained
at least as significant relative to the fundamental mode
magnitude after several oscillations of the fundamental
mode as they were for the first oscillation. This
indicates that the higher modes were subjected to
considerably less viscous damping than the fundamental
mode, because of the smaller amplitudes associated with
the higher modes.

It was considered from these results that
most of the experimental damping resulted from the
interface damping which occurred at the plate edges in
the mounting assembly. Since the experimental values
of viscous damping were so large, it 1s possible that
these values represent not only damping but also the

effect of the presence of in-plane tenslle strains which
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are discussed in Section 5.2.5. However, Lassiter and
Hess [1] found that combined structural and radiation
damping increased rapidly with stress at higher
maximum stress levels for a rectangular panel subject
to random acoustic input and obtained similarly large
values of damping at similar stress levels,

Coupling between the symmetric transverse
modes due to damping was not considered to be important,
even at these high damping levels, since the modal

frequencies were 'well separated’,

5.2.4 Displacement. The theoretical
variation of static dimensionless central displacement
with edge clamping factor Bf is shown in Fig.5.9 for
the values given in Tables 5,1. Static central
deflections measured at 10 and 20 psi show that values
of BT decreased slightly with increased load. While
the value of B} a/D was approximately 8 for the static
loads as indicated by central deflections, it
decreased to between 0 and 0,523 for the blast loads
as indicated by values of fundamental frequencies. The
reduction of edge stiffness for the blast loads resulted
for two reasons. Firstly, for the dynamic loads the
mount was supported against displacement by the
8 x 4 in. I beams at a distance of approximately 1l in.

from the plate edges, while for the static loads the
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mount was supported only 3 in. from the plate edges.
Further, the complete 6 ft. diameter section was
subjected to blast loads while only the 30 in., square
plate was subjected to stétic loads.

Theoretical and experimental central
displacements vs, time are shown in Figs., 5.10 and
5.11 for 0,5 and 1.5 1lb, shots, respectively. Since
maximum response occurred during the first cycle of
the fundamental mode, theoretical and experimental
results were compared for the first few cycles only.
Theoretical transient displacements computed using
g8l a/D = 0.523 and i;i/wi =0.1 agree well with the
results for the 0.5 1lb. shot, however for the 1.5 lb.
shot the experimental clamping was slightly more
flexible and the viscous damping exceeded 10 per cent
of critical for the first cycle,

Dimensionless central displacements are
shown in Figs. 5.12 for static and blast loads. Since
ratios of maximum dynamic-to-static displacement
exceeded the maximum dynamic load factor of two for a
flat pulse, 1t is evident that the elastic edge
clamping was more flexible for the blast loads, Non-
linear effects were almost unnoticeable for static
central displacements ranging up to one-tenth the plate
thickness although there appeared to be slight . non-
linear softening, likely resulting from an edge
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flexural softening. However, there was a general hardening
of plate response with increasing blast load for all values
of w/h with one exception, This hardening was observed
previously by Lassiter and Hess [1] for a rectangular plate
subjected to acoustical loading. Theoretical results given
by Bauer [86] for a simply supported square plate with a
stress-free boundary and h/ay = 0.08 (h/ao = 0,05 for the
experimental plate) indicate that nonlinear hardening effects
for a flat pressure pulse are not significant until the
central displacement-to-thickness ratio exceeds 0,3,
Consequently, this hardening nonlinearity 1is probably a
result of a combination of the increase in damping with
blast load and the softening in the ratio of edge-to-central
transverse displacement discussed below,

Ratios of maximum transverse edge displacements-~
to-central displacements for the blast loads are shown in
Fig. 5.13 for the edge positions labelled 3 and 6 in Fig. 5.2,
Displacements measured at the other boundary positions 1, 2
and 5, had values ranging up to 30 per cent smaller than the
values measured at position 3, However, the increase 1in the
proportion of edge-to-central displacement with the load was
observed at all boundaries, This increase was noticed for
the static loads as well, but the static edge displacements
were approximately one-tenth the value of the dynamic edge
displacements as a result of the two different loading

arrangements., These results indicate that an elastic edge
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condition relating transverse displacement to Kirchoff's
effective transverse shear force should also be considered
theoretically for the dynamic case.

Integration of accelerometer records corroborated
the values of edge motion obtained from the linear
potentiometer records and indicated that the wooden mount
for the potentiometer which measured central displacement
followed the edge displacement motion fairly rigidly.

Fundamental freéuencies measured at the plate center
and the boundary positions labelled 1 and 5 in Fig. 5.2 are
given in Table 5.6. The fundamental frequency at the plate
center for the first peak-to-peak cycle was conslstently
lower than the other measured frequencies, A fregency
reduction to 161 cps could be explained by a reduction in
the elastic clamping constant B, so that the boundary
approached the simply supported condition. Large values
of viscous damping could reduce the frequency further.
However, a reduction in the fundamental frequency from
161 to 147 cps, for example, requires a linear viscous
damping of 41 per cent of critiecal, which is considerably
larger than measured values, Consequently, this low
initial plate frequency probably resulted from the fact
that initially the edge displacement did not vanish completely,
as noted previously, and also that the edge conditions were

time-dependent,
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Table 5.6

Plate Experimental Fundamental Frequencies

Frequency m1/2n (cps * 4 cps)

Plate Center 150 143 143 136 134

s |1,2] Eage 1 167 167 161 157 162
;; Edge 5 169 169 161 154 147
&

s Plate center 166 168 160 158 154
;; 2,6 | Edge 1 166 165 161 164 157
(9]

> Edge 5 165 162 161 164 154

45,8 8,6 12.9 20,9 29.8

qa (psi)
(o]

5.2.5 Strain, Typical experimental bending
and membrane strains vs., time are shown in Fig, 5.14 for
a 1.5 1b. shot. The frequency of the first peak-to-peak
cycle of the fundamental mode was approximately 143 cps
for the bending strain while for the membrane strain it
was 166 cps. Comparison of these frequencies with the
frequencies given in Table 5.6 for q, = 8.6 psi indicates
that the membrane strain frequency had the same value as
the plate edge transverse motion frequency. Similar
correlations between membrane and transverse edge motion

frequencies occurred for the other blast loads.
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Typlcal values of maximum bending and membrane
strains recorded at the ten positions on the plate surface
having strain gauges front and back which are shown in
Fig. 5.2, are given in Table 5.7 for a static load of 10
psi and in Table 5.8 for a blast léad of 8,6 psi initial
reflected overpressure, These results show that although
membrane strains were quite small in proportion to asso-
clated bending strains for static loads, they had signi-~
ficant tensile values fof blast loads even when the max-
Imum center displacement-to-plate thickness ratio was

less than 0.1,
Table 5.7

Plate Experimental Bending and Membrane Strains

for Uniform Static Load of 10 psi

b m b m

Position r,© Sector € € - € €
(in.-deg.) rr rr 06 60

(ue)

1-0 1 179 -5 192 7
2 193 11 182 -2

8 -0 1 91 0 123 7

2 80 8 100 2

12 - 30 1 -59 -3 119 0
2 ~-58 =2 114 -5

8 - U5 1 58 0 166 0
2 50 -8 168 2

16.,5- U5 1 -145 3 101 0
2 -134 14 94 -7
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Table 5.8

Plate Experimental Maximum Bending and Membrane
Strains for Uniform Blast Load, q, = 8.6 psi

and to = 0,033 sec,

b m b m

P?iiffgggf$e Sector “rr rr 00 00
(ue)

1- 0 1 305 26 320 53

2 340 69 305 34

8 - 0 1 185 25 240 62

2 155 56 185 37

12 - 30 1 -45 42 235 31

2 =95 51 225 35

8 - 45 1 100 92 315 39

2 100 54 325 64

16.5- 45 1 -180 50 220 19

2 -195 By 215 55

The large variation in the values of membrane
strains recorded at the same r,0 positions in sectors 1
and 2, in comparison with the reasonably symmetric values
for bending strains, and the correspondence of the values
of the plate membrane and transverse edge frequencies,
indicate that the membrane strains principally resulted
from a nonsymmetric boundary stretching motion assoclated

with the boundary transverse motion. In contrast to this
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conclusion, Eikrem and Doige [87], who also observed membrane
strains for the small deflection response of a simply sup-
ported square plate to blast loads in a recent test conducted
at DRES, seemingly attributed these membrane strains to some
coupling effect with the transverse motion of the plate itself.
Results given in Section 5.2.4 which showed that
transverse edge motion was not symmetric and was approximately
ten times larger for blast loads than comparable static loads,
further corroborate the postulate that the membrane strains
result from in-plane boundary motion., Using this postulate
these results explain both the increased magnitude of the
membrane strains for the blast loads in comparison to the
static loads and the nonsymmetry of the membrane strains.
Since a simultaneous in-plane outward displacement of only
0.00075 in. at each of‘two opposite boundaries was required
to produce a tensile membrane strain of 50 ue, it is quite
conceivable that this plate stretching could result from
boundary rotation in conjunction with an absence of free

slippage of the experimental plate between the edge clamping

plates.
Plots in Fig. 5.15 of the radial and circumferential

bending strains near the plate corner vs, load reveal the
general nonlinear softening of the edge support resistance
to rotation normal to the boundaries with increasing blast

loads.
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Variation of membrane strains recorded near
the plate corners with blast loading is shown in Fig. 5.16,
Generally, the membrane strains reduced nonlinearily
with increasing blasﬁ'load. However, the in-plane
motion of the edge clamping plates probably increased
nonlinearly with the load, in conjunction with edge
transverse motion. Therefore, the boundary clamping
friction must have decreasedwith increasing load as was
concluded in Section 5.2.3.

The present theoretical solution can pre-
dict correct flexural mode shapes for the experimental
plate only if the membrane and bending stress actions were
completely uncoupled, Theoretical results given by
Dawe [47] for the response of rectangular plates show
that the degree of coupling between the membrane and
bending stress actions depends not only upon the magnitude
of the membrane stresses and their distribution but also
upon the plate edge conditions. Even if there was
complete uncoupling for the experimental plate response,
the presence of the membrane stresses would change
the modal frequencies of transverse vibration. Results
given by Dawe for v = 0,3 show that transverse vibration
frequencies decrease with the ratio of the membrane

o(2a°)2 h
stress factor K = ————— to the critical

72D
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buckling stress factor K,,, where K is positive for :
compressive membrane stress o, A modal frequency

approaches zero when K approaches K ‘for the mode,

as was pointed out for shallow shel;: in Section 1.3.2.
Dawe indicates that mode shapes remain essentially
unchanged if the modal frequencies vary linearly

with /K .

According to Dawe, the mode shapes of simply
supported square plates subjected to uniform uniaxial
stress remain unchanged for all values of K < Kcr
and the modal frequencies vary as‘/ET:TE7E:: . PFor the
fundamental mode of a simply supported square plate
Ko = 4, Consequently, for a uniform uniaxial strain
of 50 ue in the experimental plate, K = 0.085 and the
theoretical fundamental frequency increases by 1.05
per cent from the value given by the present theory for
simply supported edges in which the effect of membrane
stresses 1s not considered.

Dawe showed that the mode shapes of a clamped
square plate subjected to uniform biaxial stresses are
affected only slightly by these stresses for |K| < 5,
His results indicate that the fundamental flexural
frequency of the experimental plate with clamped edges
would increase by approximately 0.8 per cent from the

value given by the present theory for a uniform biaxial

strain of 50 ue.
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From these results it appears that the
flexural response of the experimental plate to blast

loads can be predicted reasonably accurately using

the present theory.

5.2.6 Stress Couples., Experimental
values of static and dynamic flexural stress couples
recorded near the plate center vs., load are shown in
Fig. 5.17. These stress couples were computed from
the 'true' bending strains with membrane strains
removed. Although there appears to be some plate
elastic hardening for incident blast loads between
4,8 and 8.6 psi, most nonlinearity is within the
pressure measurement errors., Consequently, the
effect of the nonlinear decay of membrane strain and
the elastic softening of the edge clamping with blast

load must have been offset by increased viscous

damping.
'“M“bimensionless static experimental and
maximum dynamic experimental and theoretical flexural
stress couples formulated in Appendix A.l are plotted
along the radial lines 6 = 0°, 15°, 30° and 45° in
Figs. 5.18 to 5.21, respectively. The experimental
values were obtained for a 10 psi static load and an
8.6 psi reflected overpressure blast load. Since all

dynamic membrane strains were tensile, dynamic stress

couples calculated from 'true' bending strains were
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always smaller than stress couples calculated from
'apparent' bending strains which were measured on the
back of the plate remote from the blast. The uneven
variation in the experimental maximum dynamic stress
couples with radius appears to result entirely from
the elimination of membrane strains from the stress
couple calculatilons at some positions but not at others.
The smooth variation in experimental maximum dynamic
stress couples shown in Fig. 5.19 is likely represen-
tative of the true variation assuming uniform membrane
strains. However, the true magnitudes of the dynamic
stress couples would be approximately 0.5 ordinate
divisions smaller in magnitude than the stress couples
given in this figure.

Theoretical stress couple variations along
the four radial lines are shown for edge clamplng values
B% a/D = 0,523, 1,57 and 10.46 and for viscous damping
values t;i/mi = 0, 0.1 and 0.2. Theoretical results
calculated using an edge rigidity of B% a/D = 10,46 shown
in Figs. 5.18 and 5.21 appear to give the best agreement
with the static experimental results, Stress couples
computed for B} a/D = 0,523 and z;i/mi = 0,2 shown in
Figs. 5.19 and 5.20 give the best agreement with the peak
magnitudes of stress couples recorded for the blast

loading.
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Theoretical and experimental flexural stress
couples vs, time are compared at four different positions
on the plate in Figs. 5.22 through 5.25 for the blast load
having q = 8.6 psi and t, = 33 msec. Experimental stress
couples were calculated from 'true' bending strains in
Figs., 5.22, 5.23 and 5.25. Theoretical flexural stress
couples could not be computed accurately in the region
0<p<0.06, However, experimental results in Fig. 5.18 for
uniform static loads indicate that the stress céuples
varied little with radius for p < 0,1. Consequently,
comparisons in Fig. 5.22 of theoretical stress couples
computed at p = 0,0707 with experimental stress couples
computed at p = 0,0471 should be valid for uniform dynamic
loads. Membrane strains were nct eliminated from the
experimental stress couple calculations at p = 0.5657,

@ = 45° in Fig. 5.24, This gave larger magnitude experi-
mental stress couples which agree quite closely with the
theoretical values., Theoretical and experimental results
agree reasonably well at the other positions, however for
this blast load initial experimental viscous damplng
appeared to be greater than 10 per cent of critical and

the edge clamping value of B}a / D was less than 0,523.
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These results indicate that satisfactory
theoretical predictions for stress couples can be made
for the entire plate surface, even when edge transvérse
displacement does not vanish completely and some membrane
strains are present, providing viscous damping'coefficients
and edge spring constants relating the normal slope to
the tangential flexural stress couple vector can be

estimated with reasonable accuracy.
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CHAPTER 6
SHELL NUMERICAL RESULTS

6.1 Transverse Vibrations of Thin Shallow Shells with

Homoseneous Edsgiconditions

Symmetric eigenvalues for shallow spherical
shells with regular polygonal plan were obtained for
various values of the geometric parameters a/h and a/R
and a range of edge conditions which were satisfied
using the boundary collocation technique. Four edge
conditions were satisfied at (L-l) boundary collocation
points while only the first three edge conditions were
satisfied at the remaining collocation point which was
always chosen at the shell corner, Consequently, an
equal number of simultaneous boundary equations and
unknown integration constants was obtained with L
collocation points on the boundary of the characteristic
segment when the series solutions for ﬁi and Ei in Egs.
(3.27a) and (3.27b) were truncated with n ranging from-
0 to (L-1).

Modal participation functions were computed
for some of the shells for uniformly distributed and
central point loads, Numerical solutions were obtained
using the digital computef program given in Appendix

C.2 and machine computation using 16 figure accuracy.
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Some eigenvalues were obtained using only 10 figure

computational accuracy.

The sets of edge conditions satisfied and
the associated terminology, well established only for

the simply supported and clamped shells, are listed

below:

a) Clamped shell:
w(p,8) = ——— =F (5,8) =¢ (5,8) =0, (6.1)

b) Simply supported shell:

w(g,8) =M (p,8) =F (p,8) =¢_(5,6) =0. (6.2)
Vs vs Ss

¢) Clamped shell with sliding free edges:

. aw(p,0) - .
W(B,e) = —— =F (5’9) =F (age) = 0, (603)
oV vv vs

d) Clamped shell with sliding clamped edges:

3w(5,5) _ (6.1)

]
o
.

(5,6) = ¢ (5,8)

w(5,0) =
ov vv Ss
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Some eigenvalues were obtained using only 10 figure

computational accuracy.

The sets of edge conditions satisfied and
the associated terminology, well established only for
the simply supported and clamped shells, are llsted

below:

a) Clamped shell:

~  aw(p,8) o . |
w(p,6) = ———— = F (p,6) = ¢ (p,0) = 0, (6.1)
ov vs 88

b) Simply supported shell:

w(5,8) = M_(5,8) =F_ (5,8 = ¢_(5,8) = 0. (6.2)

¢c) Clamped shell with sliding free edges:

o~ w(5,8) - -
w(p,0) = —— =F (p,0) =F_ (p,0) = 0. (6.3)
v vv vs

d) Clamped shell with sliding clamped edges:

o= aw(5,6) ~ ~
W(p,e) = —— = F (6,6) = € (B,e) = 00 (601‘)
ov vv ss
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e) Simply supported shell with sliding free edges:

w(B,8) =M (3,8) =F (5,8) =F_(5,8) = 0. (6.5)
Vs vv vs

f) Simply supported shell with sliding clamped edges:

w(,8) =M_(5,6) =F (5,8) =¢_ (5,6 = 0. (6.6)
The terminology applied to edge condition
Egs. (6.3) through (6.6) in each case describes
successively the edge conditions in transverse dis-
placement and stress function. Thus, for example, a
shell satisfying edge condition.Eq, (6.3) is referred
to as a 'cla ped shell with sliding free edges' where
'clamped' refers to the conditions w(a,e) = aw(B,e)/av = 0,
'sliding' refers to the condition Fvv(B,E) = 0 and
'free’ refers to the condition F__(5,8) = 0,
In the numerical analysis, edge condition
Egqs. (6.1) and (6.2) were never satisfied at 6 = 0°
since, if they were, the determinant value of the boundary
equation matrix would vanish for all k as F is zero
by definition (see Egqs. (3.14b), (3 17¢) and (3 19¢c))
along the radial line 6 = 0°, However, edge condition
Eqs. (6.3) and (6.5) could be satisfied at 6 = 0° since

the fourth edge condition was never satisfied numerically
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at the last collocation point.

Satisfaction of the edge GOndition}

ss

w(p,8) = 0 is equivalent, for symmetric shell response,
to satisfaction of the edge conditions us(E,a) = w(s,é) = 0,
where us represents in-plane displacement tangential to
the boundary. Satisfaction of the-edée condition
Fvs(ﬁ,a) = 0 in conjunction with the conditions
us(5,5) = aus(a,é)/av = 0 is equivalent, for symmetric
response, to satisfaction of uv(a,é) = u (5,6) = 0. Here
u, represents in-plane displacement perpendicular to the
boundary. Consequently, specifying only

w(B,8) = F_(5,8) = ¢ (5,8) =0 (6.7)

is not equivalent to specifying

w(p,6) = u_(5,8) = u_(p,8) =0 (6.8)

v

and the edge condition Eqs. (6.1) and (6.2) are not
equivalent to the usual conditilions specified for clamped
and simply supported shells., Physically, satisfaction
of edge condition Eq. (6.7) eliminates edge elongation
and in-plane shear but permits edge curving while
satisfaction of edge condition Eq. (6.8) eliminates

edge elongation and curving but permits edge in-plane

shear, As far as 1is known, the edge condition of the
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function aus/av has never been considered analytically.
However, it is felt that the effect of satisfying
either Eq. (6.7) or Eq. (6.8) is almost equivalent
for symmetric shell response, excEpt_possibly for small
values of p, since values of Bué(B,g)(av should be
small, This near-equivalency is confirmed in Sections
6.1.2 and 6.1.3 for simply supported and clamped shells
with 12 and 15 sides.,

Oniashvili [88] and Nowacki [33], in
analysing the vibrations of a shéllow spherical segment

with a circular boundary, used the edge conditions

3F  oF w
—= e oy = — =
9p 96 9p

as being the equivalent of
ow
u =u =ws=-—=0,
p o ap
However, this equivalency does not appear to be

correct, even assuming that 22& = 0 at the boundary,
op

since Iintegration of the stress resultant-displacement

relations at the boundary yields

oF
u =c¢ — + f£(8)
p ap
and
oF af(e)
u =¢c—+ ¢ -

] 230 3 36

(6.9)

(6.10)

(6.11)

(6.12)
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In these equations f(6) is an arbitrary function of ©
and C s C,» and c, are constants, A numerical check
on the correctness of edge condition Eq. (6.9) applied
to a shell with a polygonal boundarj having 12 sides
as an alternative to edge condition Eq. (6.10) applied
to a shell with a circular boundary, appeared to give
unsatisfactory modal frequencies when compared to
values given by Kalnins [56].

Weinitschke [89], in analysing the
asymmetric buckling of a clamped shallow spherical shell

with a circular boundary, used the edge conditions

e - o ow
€ = r—[e ] -c¢ -—fg J]=w=—=0 (6.13)
06 ar 69 rr 36 r8 or

as being the equivalent of edge condition Eq. (6.10).
Although thése two edge conditions in strain are the
equivalent of satisfying the edge conditions u = u =0
for a clamped shell with a circular boundary, ghey gre
not applicable for a simply supported shell since they
must be satisflied in conjunction with the two edge

conditions w = &¥ = 0 in order to be valid.
r

In the numerical results which follow, varying
degrees of difficulty were encountered in obtaining
fundamental eigenvalues for different edge conditions,

shell geometries and boundary collocation sets., It is
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postulated that essentially it was the insensitivity of
A to changes in k for small k which made it difficult to
find accurately the lowest values of k for which the
various boundary equation matrices had vanishing
determinant values. The decreasing sensitivity of A to
changes in k as k" becomes small in comparison to

12(1 - v2?)a*/(Rh)? is apparent from the relation

Dfjk\* Eh 1
SR
mlia DR%J

A = En/(maRw?).

where

The function A is present in boundary equations

involving the transverse displacement and its derivatives.
Inaccuraclies in calculating'dgrivatives of Jon(kp) and
Ipn(kp) for k<<l using lower order derivativ;s of these
functions further amplify the problems caused by this
insensitivity of A.

This postulate explains the variation in the
degree of difficulty encountered in the numerical
analysis in solving k1 for the different edge conditions.
Fundamental eigenvalues associated with shells
satisfying edge condtion Egs. (6.1) or (6.2) were
found relatively easily since the shell edges were

reasonably well restricted against in-plane normal
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boundary motion and consequently had values of k:'which
were large in comparison to 12(1 - v2)a*/(Rh)%., Values
of k1 associated with shells satisfying edge condition
Eqs. (6.4) or (6.6) were found for many shell geometries
since uv(E,é) was still partially restricted and con-
sequently values of k: usually were not too small in
comparison to 12(1 - v?)a*/(Rh)?, However, values of k
associated with edge condition Eqs. (6.3) or (6.5) were
not found for most shell geometries since uv(E,é) wés
unrestricted and consequently values of k: must have
been small in comparison to 12(1 - v2)a“/(Rh)2,

This postulate also explains the increasing
difficulty encountered in obtaining kl'as p increasedqd,
since the magnitude of k1 generally decreases with
increasing p, at least for the shells for which k1 was
obtained, while 12(1 - v2?)a*/(Rh)? is independent of p.
In addition, it explains why the value of k1 for any
particular shell boundary shape and edge condition was
solved more accurately for smaller magnitude values of
the product of the shell geometry parameters % and %.

The difficulty in solving k1 for edge condition
Egs. (6.4) and (6.6) for larger values of p might also
be explained partially by the fact that, as p in-

creases, the in-plane shear Fvs and slope %Es
v
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decrease and finally vanish for a circular boundary.

But the edge conditions

w($,8) =F (3,8) = ¢ (B,0) = —=(5,8) =0 (6.16)
vs sSs oV

imply that in-plane displacement normal to the boundary
vanishes so that Fvv(B,a) cannot vanish as well. Thus,
it becomes increasingly difficult to satisfy Fvv(B,a) =0

as the polygonal boundary approaches the circular shape

ir e _(5,6) = o.

. 6.1.1 Simply Supported Shells with Sliding

Clamped Edges. The only previous analysis of the
transverse vibrations of a shallow shell of noncircular
planform, as far as is know, has been given by Reissner
[50], who solved the natural frequencies of a shallow
thin paraboloidal cap with a square base. Neglecting
the effects of longitudinal and rotatory inertia and
transverse shear and employing the edge conditlons
3%2w(¥,8) 3%F(¥,8) 3%F(¥,3)

w(¥,3) = - =—" =0, (6.14)
ov? 9s? av?

Reissner obtained the frequency equation

w*(1%+ j2)2 E h? 192(1 - v2?) H?

m = G C—

+ —le
i 192(1 - v3?) vy a: 7% (12 + j2)2n?

(6.15)
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In Eq. (6.15), 1, § = 1, 3, 5... for symmetric modes and
H is the shell height or sagitta.

Although Reissner states that Eq. (6.15) applies
to a spherical middle surface, the surface to which it
actually applies is slightly paraboloidal since the quantity
(H/a,)2 has been neglected with respect to unity in the
curvature calculation. For a truly spherical middle
surface, Eq. (6.,15) becomes
w*(12+432)2 E n? 192(1-v?) H? 1

[ * w*(12+452)2 n? (1+H2/al+H"/4a})

w2 =
1J  192(1-v?) v ag

] (6.15%)
Solutions were obtained for a shallow spherical
shell having the same H/h and a,/h values as the paraboloidal
shell, Edge conditions given in Eq. (6.6), the equivalent
of those in Eq. (6.14), were satisfied at four and five
collocation points on the boundary of the characteristic
segment. Good numerical convergence was obtained for as
. few as four collocation points. The first five symmetric
frequencies calculated using the present theory agree
closely with the values calculated from Eq. (6.15) as
shown in Table 6.1, and they agree with the values calculated
from Eq. (6.15%) to at least four figure accuracy.
It should be noted that the eigenvalues k; given
in Table 6.1 fof the spherical shell are identical to
the eigenvalues given in Table 4,2 for a simply supporfed
square plate. According to Koplik and Yu [60], higher

modal frequencies for clamped shells with circular plan
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Teble 6.1

Symmetric Elgomnluu and Modsl Participstion Functions for quply Supportod
Shellow Spherical Shells with Sliding Clamped Edges having 4, 5 and 6 Sides

p 4 52 6?
/R 0.390625 0.5 0.1 0.390625 0.5 . 0.5
a/h 66.£67 10 66.667 66.667 10 66,667
1 3.14159 1 3. 2.66 2.62 2.67 2.59
2 7.0248 6.44 6.12 C 6.1 . 6.12 6.1
3 9.4248 9.56 9.49 9.48. © 9449 9.48 k;
4 11.327 10.64 1.9 10.99 10.99 10.99
5 12.95 13.08 12.99 12.99 12.9 12.99
6 14.6 1%.8 14.8 14.8 )
1 0.2932(0.4093)* | 0.612 0.105 0.992 0.545 . 0.501
2 0.4515(0.4655) | 1.36 0.199 0.427 1.25 0522 | .
3 0.5645(0.5758) | 2.84 0.425 |  0.568 2.80 0.6 | a /T w;
4 0.7064(0.7154) | 3.50 0.563 0.678 3.73 0.746
5 0.8631(0.8705) 5.25 0.780 0.866 5.19 0.922
6 | 6.57 1.01 1.08 6.75
1 -96.5 -61.8 <145.5 =140.1 -149.6
2 11.0 15.7 17.2 17.2 17.2
3 -1.9 -5.0 ~5.47 =5.48 =5.47 x}
-1 4 -2.3 -3.1 -0.76 0.7 -0.77 (—x-f)
4 5 -0.14 1.87 2.3 2.3 ole
€16 -0.21 —0.21
1 | -100.7 -£62.9. 1468 “141.2 -150.9
2 13.4 . 17.0 17.9 17.9 17.9
3 -1.2 -3.6 -5.75 -5.76 -5.75 1%_
4 -2.9 -1.9 0,10 -0.10 -0.10 xi.l
5 0.9 1.86 2.6 2.6
6 -0.13 -0.13
1 -0.19869 -0.104 -0.210 -0.205 -0.215
2 -0.07923 -0.0847 -0.0894 -0.0893 -0.089%
3| -0.0221 -0.0325 -0.0531 -0.0532 -0.0531 K
4 -0.0290 -0.0254 -0.0068 -0.0068 -0.0068 | 2 =
5 -0.0269 -0.0238 -0.0359 -0.0359 ’ .
6 ~0.0092 -0,0091
1 y =0.33 for.all calculstions.
: Edge conditions satisfied at 5 collocstion points at 0 = 362, 30°, 20°, 1o° o°.
. Edge condxhons satisfied at 4 collocation points st 0 = 5°, 15°, 25°, 30°,

by Rotasns

ies in brackets were cbtained from Eq.(6.15)with i,j =1, 3, 5... This equatxon was ngen
r [ 50] for shallow parabolodial shells.
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converge to the frequencies for clamped circular
plates as the curvature effect decreases with higher
modes. Consequently, it is likely that the eigen-
values for this shell would be identical to the plate
eigenvalues for all modes, Mode shapes computed for
this spherical shell are identical with the simply
supported square plate mode shapes shown in Fig. 4,2a,
as well., Variation of the thinness parameter a/h
between 10 and 66,667 and the shallowness parameter a/R
between 0.1 and 0,5 had no effect on the eigenvalues
and mode shapes.

In the remainder of Table 6.1, eigenvalues
are given for spherical shells with 5 and 6 sides
having different a/R and a/h values., The eigenvalues
found for these shells are almost identical to the
values for simply supported plates with the same number
of sides which are given in Table 4,2, with the
exception of k1 for the 5-sided shell which likely is
in error. The boundary collocation point sets used for
these shells with 5 and 6 sides are noted in the table
since fundamental eigenvalues were not found for every
set used,

It appears from the results given in Table 6.1
that eigenvalues for the edge conditions in.Eg. (6.6) are
almost independent of the values of a/h and a/R within
the limits of thin shallow shells and that they agree
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closely with eigenvalues for simply supported plates
with the same boundary shape.,

Modal participation functions, given in Table
6.1 for uniformly distributed and central point loads,
were obtained using the eigenvalues given in the same

1 where A% =1,

table and their associated eigenvectors n
Integral values for the coefficients ¢1...¢10 were
determined using the generalized Simpson's formula with
46 increments of 6 for the shell with 4 sides and 36
increments of 8 for the shells with 5 and 6 sides.

Since eigenvalues and elgenvectors were nearly indepen-
dent of a/h and a/R values, it appears that for these
edge conditions the fundamental mode contributions will
dominate shallow shell response for most uniform dynamic
loads and that contributions of modes higher than the
third will be insignificant for practical purposes. The
reasonably close agreement between the values of (x%/x%)
and xf/x% for most modes indicates that the modal °
participation functions computed from Eq. (3.34a) should
be reliable, at least for these boundary shapes. For
modes higher than the first, modal participation functions

appear to be almost independent of a/R and a/h values,

at least for p = 6,
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6.1.2 Sigg;z‘§gggdrted'8hells. Kraus and

Kalnins [66] analysed the transverse vibrations of a
simply supported shallow spherical shell with circular
plan, including the effect of longitudinal inertia. The
shell had a shallowness parameter R/h = 20, a thinness
parameter a/h = 5,17638 and a Poisson's ratio v = 0.3.
Employing the edge conditions

w(a,8) =M (a,0) =u (2,08) = u (a,8) = 0, (6.16)
ro r e

they obtained the first twelve symmetric frequencies

and associated static center modal displacements for a
load uniformly distributed over the shell surface area.

Theoretical solutions were obtained for

shells with regular polygonal bases having 12 and 15
sides. These shells had the same shallowness parameter
R/h and Poisson's ratio v as the circular shell, however
the thinness parameter a/h was varied so that the shells
with circular and polygonal bases had the same surface

area as calculated from the relations

A utan 2mR? [1 - Jt - (a/R) 2| (6.17)

. [ // a cos O ) 2 ] (6.18)
= 27R l - < Jf del. o1
polygonal R cos ©,

and
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In Eqs. (6.17) and (6.18), A represents the
circular

surface area of a spherical shell with a circular

plan and A represents the surface area of a
polygonal

spherical shell with a regular polygonal plan.

A was evaluated numerically using Simpson's
polygonal

formula. Edge conditions given 1in Eq. (6.2) were
satisfied at three and four boundary collocation points
on the characteristic segment. Convergence of the
eigenvalues and static center modal deflections to two
or three figure accuracy was obtained for all modes
except the fundamental. Poor convergence of the funda-
mental eigenvalues may have resulted partly from the
Poisson's ratio effect previously noted for simply
supported plates and partly from errors in the higher
orders of the Bessel functions required (orders up to
45 are required for the 15-sided shell with L = y),
Frequencies and static modal displacements
obtained for the three collocation point sets are
compared in Table 6.2 with the values given by Kraus
and Kalnins. In contrast tovthe results for three
collocation points, fundamental modal eigenvalues for
the shells with 12 and 15 sides obtained for four
collocation points were slightly smaller and fundamental

modal deflections were slightly larger than the values
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given by Kraus and Kalnins, However, for modes higher
than the first,convergence of frequencies and displace-
ments with increasing number of sides p to the values
for a circular boundary was consistent for either
collocation set. The results given by Kraus and Kalnins
for the shell with the circular boundary show that the
largest static center modal displacement due to
longitudinal inerta effects (1 = 3) has approximately
the same magnitude as the fifth modal displacement due
to transverse inertia effects (i = 8). Consequently,
longitudinal inertia effects can be ignored for these
shells for most uniformly distributed transverse dynamic
loads.

The dependence of eigenvalues and modal
participation functions upon the geometric parameters
a/R and a/h for simply supported shallow shells 1is
shown in Table 6.,3. For the thinner shells (a/h = 66.667
and 62.0459), the third and fourth modes dominate the
response to uniform loads, while for the thicker shells
(a/h = 5.2) the fundamental mode dominates the response.
Of course, increasing the shallowness parameter a/R
would increase the relative importance of the higher
modes as well, as pointed out by Kraus and Kalnins [66]
who compared modal displacements for a shallow and a

hemispherical shell, In contrast, the relative
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‘number of boundary collocation points

equal surface area

1

equal surface area

p 6 12 15
» 0.33 0.33 0.3 0.3

a/R 0.390625 0.36355 0.26485.  0.26265

a/h | 66.667 62.0459 5.297 5.253

11 5.9, 5.38 2.85 2.8,
2 9.51 8.61 5.63 5.57
3 | 10.9 10.44 8.83 8.75
4 | 1.7 12.15 12.04 11.94 ks
5 | 13.01 15.26 15.24 15,12
6 14.99 17.2 17.1 18.3
7 | 16.6
1 1.05 -1.26 4,05 ~3.96
2 | a4 446 0.956 " 0.958
3 | -7.9 -7.92 -0.303 ~0.303 X;
4 | -7.87 - 5.02 0.139 0.139 (;i'
5 2.32 ~1.76 -0.077 -0.077 ol e
6 3.96 -0.9 0.014 0.05

17 | -1.30

[ ]

3 .

£{1 1.80 -1.21 ~4.05 -3.96
2 -2.32 442 0.959 0.959
3 | -2m . =7.93 -0.305 -0.304 x}
4 | -7.53 5.05 0.141 0.140 a2
5 2.63 -1.78 -0.078 -0.078 *
6 1.53 -0.03 0.0006 0.05
7 | -1.%
1 -0.113 -0.115 -0.113 -0.110
2 | -0.0549 -0.0496 -0.0900 -0.0900
3 | -0.0153 -0.016 -0.0579 -0.0580 z(x})p
4 | o019 -0.038 -0.0425 -0.0423 i
5 | -0.037 -0.033 -0.033 -0.033 .
6 | -0.0106 -0.001 -0.001 -0.03
7 | -0.023

5 3 3 3
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importance of the highervmodes to the response of

shells subjected to central point loads increases with
decreasing values of a/h. The decrease of elgenvalues
ki with increasing number of sides p for modes 1 and 2
and the increase for modes 4 and 5 (except for p = 15)
for these shells follows the pattern exhibited by plates
in Tables 4.5 and 4.6, The increase in k, with p

decreasing from 12 to 6 for mode 3 was not observed for

polygonal plates, however,

6.1.,3 Clamped Shells. Kalnins [56] obtained
the nonsymmetric frequencies of free transverse vibration
of some clamped shallow spherical shells with circular
plan including the effect of longitudinal inertia,
Employing the edge conditions

aw(a,0)
w(a,8) = =———— =u (a,6) =u (a,0) =0, (6.19)
or r e
he obtained natural frequencies for shells with v = 0.3,
a/h = 10 and a/R = 0,1, 0.3 and 0.5,

The symmetric frequencies given by Kalnins
are compared in Table 6.4 with theoretical values for
shells with regular polygonal bases having 12 and 15
sides. All shells had the same shallowness parameter
R/h and Poisson's ratio v, however, the thinness

parameter a/h was varied so that the shells with
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circular and polygonal bases had the same surface area.
Edge conditions given in Eq. (6.1) were satisfied at
three and four boundary collocation points. Good
numerical convergence was obtained for all frequencies.

Frequencies obtained for these polygonal
shells were slightly larger than the values given by
Kalnins for the circular shells just as they were for
polygonal and circular plates. The largest frequency
differences occurred for the fundamental mode and the
largest a/R value.

Eigenvalues and modal participation functlions
are given in Table 6.5 for shells of regular polygonal
plan with 6, 12 and 15 sides and a range of a/R and a/h
values. The increasing relative importance of the
higher modes for uniform and central point loads for
increasing values of a/R 1s shown for shells with 12
and 15 sides and a/h = 10 and for shells with 6 sides
and a/h = 66.667. The significant increase in the relative
importance of the higher modes with increasing values of
a/h for uniform loads and the decrease of their importance
with increasing values of a/h for central point loads is
shown for shells with 12 sides and a/R = 0.33. The pattern
of variation of the eigenvalues for shells of equal surface
area with 6 and 12 sides is the same as it was for the

simply supported shells, at least for the first five modes.
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Symmetric Eigenvalues and Modsl Participstion Functions for
Clamped Shsllow Spherical Shells with 6, 12 and 15 Sides
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P 6 12 15 :
v 1 0.33| 0.33 0.33 0.3 0.3 0.3 0.3 0.3 0.3
a/R | 0.25 | 0.390625| 0.36355| 0.102331| 0.306993 | 0.511655{ 0.101481| 0.30443 | 0.507405
a/h | 66.667| 66.667 62.0459 110.2331 ] 10.2331 | 10.2331 | 10.1481 | 10.1481 | 10.1481
1] 642 | 6.55 ° 5.99 3.38 3.95 4.60 3.35 3.92 4.57
2| 8.76 | 9.96 9.03 6.47 6.5% 6.59 6.41 6.45 6.5,
3110.53 | 11.22 10.59 9.68 9.68 9.69 9.59 9.59 9.60
4]12.00 | 12.22 12.99 [12.88 12.88 12.88 12.77 12.77 | 12.78 k;
5|13.92 | 13.97 16.11
6115.76 | 15.82 17.9
7 17.5
1]-6.21 | -1.2 -3.142 | -1.266 -0.748 -0.507 -1.265 -0.742 |-0.504
2|12.6 4.88 8.325 0.293 0.307 0.329 0.294 0.307 0.320
3|=8.51 | -9.99 -9.51 -0.110 -0.112 -0.116 -0.110 -0.112  |-0.116 'x}
4|-6.72 | -8.12 4.66 0.0549 0.0553 0.0559 0.0547 0.0550 | 0.0557 (ﬁ
5| 3.82 | 4.40 -2.14 sle
6 2.5 -0.3
_|7 -2.5
2 .
2l1]-6.32 | -1.36 -3.143 | -1.266 0.8 0.507" | -1.265 -0.742 |-0.504
2 |12.6 4.93 8.325 0.293 0.307 0.329 0.29 0.307 0.3%
3|-7.83 | -9.30 -9.51 -0.110 -0.112 =0.116 -0.110 -0.112  [-0.116 x{
4 ]-1.43 | -5.50 466 0.0548 0.0552 0.0558 0.0547 0.0550 | 0.0557 F
5| 3.12 | 3.68 -2.12 .
6 0.6 -0.008
7 -1.5
1 |-0.108| -0.109 -0.110 [-0.146 -0.0951 | -0.0744 | ~0.145 -0.0921 |-0.0743
2 |-0.015| -0.041 -0.033 |-0.0782 | -0.0742 |-0.0650 |-0.0782 |-0.0741 |-0.0845
3 |-0.047| -0.0%0 |[-0.028 |-0.0532 | -0.0527 |-0.0526 | -0.0529 |[-0.0528 |-0.0526 Lbp
4 |-0.010 -0.0% |-0.0396 | -0.0396 |[-0.0395 |-0.0397 |-0.0396 |-0.039% T
5 |-0.032 -0.031 ¢
6 ~0.0009
”
5 5 3 3 3 3 3 3 3
number of boundsry collocation points
Bal surface area I equal surface area
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Nodal lines for the first four symmetric
modes of response of a clamped shallow shell with 12
sides and a/R = 0,102331, a/h = 10.2331 and v = 0.3
are shown in Fig. 6.1. The nodal areas agree closely
with the values for a clamped plate with 12 sides
given in Fig. 4.24.

Nodal lines for the first seven symmetric
modes of response of a clamped shallow shell with 6
sides and a/R = 0,390625 and a/h = 66.667 are shown 1n
Fig. 6.2, The first four mode shapes are quite different
from the mode shapes for a clamped plate with 6 sides
shown in Fig.4.2b. The fundamental mode shape has an
interior nodal line which was observed also by Chow and
Popov [90] for a shallow shell with a circular boundary
and a/R = 0,4422, a/h = 24,04 and v = 0.3.

Hoppmann and Baronet [91] studied free
rotationally symmetric vibrations of simply supported
and clamped shallow spherical shells with circular
boundaries. They found that, for values of a/R of 0.1655
and 0,399 and a/h of 24 and 48, the interior nodal circle
of the fundamental mode approached closer to the boundary

with decreasing a/R(a/h) for the same a/h(a/R).

6.1.4 Other Edge Conditions. Eigenvalues

and modal participation functions for some shallow

spherical shells of regular polygonal plan are given in
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FIG. 6.2 Symmetric Mode Shapes for the Characteristic Segment
of a Clamped Shallow Spherical Shell with 6 Sides
and a/R = 0,390625, a/h = 66,667 and v = 0,33
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Table 6.6 for simply supported shells with sliding
free edges and in Tables6.7 and 6.8 for clamped shells
with sliding free and clamped edges, respectively. These
edge conditions, which are given in Eqs. (6.3) through
(6.5), were difficult to satisfy numerically for the
lower modes of vibration, Fundamental eigenvalues were
not obtained for the edge conditions in Eq. (6.5) and
were obtained for the edge conditions in Egs. (6.3) and
(6.4) only for some values of p, a/R and a/h and
particular collocation point sets. Eigenvalues given
without associated modal participation functions were
obtained on the IBM 1130 computer using 10 figure
computational accuracy while all other values were
obtained on the IBM 360/67 computer using 16 figure
computational accuracy.

Comparison of eigenvalues given in Tables
6.1 and 6,6 for simply supported shells with sliding
edges having 4 and 6 sides shows that elgenvalues and
frequencies for the second and third modes lncrease
when the sliding edge is clamped against extension while
higher modal values are unaffected. This increase
becomes more significant with decreasing number of
boundary sides. Fundamental eigenvalues were not
obtained for the edge conditions in Eq. (6.5), however
these results indicate that there would be a larger

increase in the fundamental eigenvalues than observed



Table 6.6
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Symmetric Eigenvalues and Modsl Psrticipstion Functions for Simply Supported Shallow
Spherical Shells with Sliding Free Edges having 4, 5, 6 and 12 Sides®

! v=0.33 for all calculations.

2 These shells have the same surface srea.

p 4 5 , 6 : 12
a/R 1| 0.390625 0.5 0.390625 0.5 0.390625 * 0.5 0.36355% 0.5
a/h | 66.667 10 66.667 10 66.667 10 62.0459 10
1
2| 6.10 6.990 | 6.07 6.39 | 5.87 6.08 | 5.44 5.58
3| 8.57 9.40 | 8.9 9.54 | 9.31 9.48 | 8.78 8.83
41 11.2 1.3 10.5 10.6 10.6 11.0 12.0 12.1 ki
5 12.7 12.9 13.0 13.1 13.0 13.0 15.2 15.2
6 | 16.9 16.9 14.6 1%.6 | 14.8 4.8 | 17.0 17.0
1
2 3.9 3.78
3 -3.9 -3.53 ("f)
4 0.4 2.26 -3
X
5 2.0 -1.40 oo
_|e -0.5 0.7
©
8l1
2 4.7 3.84
3 -4.0 -3.58 o
4 0.06 2.30 —;
5 2.2 -1.42 X,
6 -0.2 0.03
1
2 <0.111 -0.113
3 -0.049 -0.058 az(x{)p
4 -0.011 -0.043 3
5 -0.036 -0.033 d
6 -0.01 ~0.001
5 5 5 3
number of boundary collocation points




Synmetric Eigenvalues and Modsl Participstion Functions for Clamped Shallow

Table 6.7

Spherical Shells with Sliding Free Edges having 4, 5, 6 and 12 Sides r
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1 y= 0.33 for all calculations.
2 These shells have the same surface ares.

P 4 : 5 6 12

a/R 0.390625 0.5 0.390625 0.5 0.3906252 0.5 0.363552 0.5

a/h | 66.667 10 66.667 10 66,667 10 62,0459 10
1 3.64 ' T 2.7 ’
2| 7.72 8.1 7.05 7.367 | 6. 6.995] 6.18 6.43
3| 10.1 10.48 10,3 10.50 | 10.3 10.29 | 9.59 9.67
41 12.3 12.4 1.5 11.6 11.7 11.85 | 12.86 12.88 k;
51 139 14.0 4.0 14.0 13.9 13.90 | 16.07 16.08
6| 16.7 16.6 15.6 15.6 15.7 15.7 | 17.8 17.8
71179 18.0 17.2 17.2 17.4 174
1 -108.6 —281.3
2 13.4 15.2 6.27 5.97
3 0.45 6.2 |-5.0 452 (x‘:')
4 -3.2 5.6 -1.3 2.7 ;i'
5 -1.5 34 3.2 1.7 oo
6 0.09 0.6 '
7 -2.2

[ ]
gl -102.0 -279.0
2 9.5 14.3 6.10 5.97
3 -0.33 -3.3 4ol 452 5
4 =0.50 -1.7 | -0.04 2.71 X
5 0.15 1.9 2.5 -1.73 xf
6 -0.2 0.02
7 -1.3
1 -0.278 -0.602
2 -0.056 -0.078 | -0.104 -0.105
3 -0.005 -0.627 |-0.048 -0.053 b,
4 -0.004 -0.019 | -0.007 -0.040 _Xi—
5 -0.004 -0.020 | -0.033 -0.031 '
3 -0.008 -0.008
7 -0.019
3 5 K 3
number of boundary collocation points
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Symmetric tigenvalues and Modal Participstion Functions for Clamped Shallow
Spherical Shells with Sliding Clamped Edges having 4, 5 and 6 Sides®

P 42 - 58 6"
o/R 0.390625 0.5 0.390625 0.5 | 0.390625 0.5
a/h | 66.667 10 66.667 10 66.667 10
1 11| 466 42t | 6.00 400 3.48
12| 8.27 8.129 7.86 W 6.92 7.02
3| 10.49 10.49 10.53 10.51 | 10.36 10.39
4| 12.4 12.40 11.59 1.59 | 11.85 11.86 k,
5 | 13.86 113.85 14.05 14.04 | 13.89 13.90
6| 16.6 16,6 | 15.6 15.6 15.M 15.7
1| =414 -58.0 -19.3 -57.6 -87.5
2| 13.7 13,7 17.6 15.9 1.5 16.7 &
3| o0.32 0.42 -8.7 -6.3 -6.3 -6.7 (_;_.)
4 | -3.2 -3.1 5.6 ~5.6 | 2.3 -2.0 Xals
51 -1.5 3.9 3.5 3.5 :
~lel" 2.4 . 0.2 0.2
3
El1 | -39.7 -55.0 -19.4 ~57.2 -87.4
2] 9.0 9.70 16.9 15.0 14.3 16.4 N
3| -0.3 -0.33 -3.8 -3.4 -5.7 -6.1 1}
4 | -0.50 =0.49 -1.8 -1.8 -0.2 -1.3 X,
5 0.19 2.1 2.8 2.9
6 0.4 -0.1 -0.1
11| -0.116 -0.155 -0.080 -0.132 | 0T
2 | -0.055 +0.055 -0.036 -0.074 | -0.087 -0.078 ()
3 | -0.006 -0.006 | -0.021 -0.027 | -0.048 -0.048 a’__;__P.
4| -0.004 .=0.004 -0.019 0.019 | -0.007 -0.006 X,
5 | -0.004 -0.019 -0.033 ~0.033
6 -0.010 -0.008 -0.008

1 y =0.33 for all calculations. :

2 Edge conditions satisfied at 5 collocation points at @ = 450, 32°, 23°, 10?, o°.
3 Edge conditions satisfied at 5 collocation points at 0 = 3¢°, 30°, 20°, 10°, 0°.
* Edge conditions satisfied at 5 collocation points at 0 = 5°, 12°, 18°, 25°% 30°



197

for the second and third modal eigenvalues when the
sliding edge 1s clamped against extension. Since values
of k1 could not be obtained for any of the simply
supported shells with sliding free edges analysed, it
would be logical to assume that k1 is smaller for this
edge condition set thén for any of the other edge
condition sets analysed, for any particular shell geometry,
providing that the arguments given in Section 6.1 are
valid., Eigenvalues for the lower modes of these shells
were more sensitive to variations in the values of a/R
and a/h for simpiy supported shells with sliding free
edges than they were for simply éﬁppértéd shells with
sliding clamped edges. o

Comparison of eigenvalues for clamped shells
with sliding edges having 4, 5 and 6 sides in Tables 6.7
and 6.8 shows, as well, that the eigenvalues for the
lower modes increase when the sliding edge 1is clamped
against extension. This increase appears to be most
significant for the fundamental mode and affects only
the first two or three modes, depending upon the values
of a/R and a/h. Eigenvalues for the clamped shallow
shells with sliding clamped edges agree to two or three
digit accuracy with eigenvalues for clamped plates with
the same boundary shape for modes higher than the first.

Eigenvalues for the lower modes are more sensitive to
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changes in values ofva/R and a/h for clamped shells with
sliding free edges than for clamped shells with sliding
clamped edges.

Nodal lines for the first seven symmetric modes of
response of a clamped shell with sliding free edges having
6 sides are shown in Fig. 6.3. These mode shapes are quite
similar to the shapes for a clamped plate with 6 sides
shown in Fig. 4.2b for the first five modes only,

The results given in Tables 6.1, 6.6, 6.7 and 6.8
indicate that the two stress function edge conditlons FVv =
= e o T 0 can be satisfied numerically more accurately for
the lower modes of vibration than can the edge conditions
Fvv = Fvs = 0, likely because the former edge conditlons
are associated with higher elgenvalues than are the latter
edge conditions. The accuracy of satisfaction of both sets
of edge conditions in the stress function is dependent upon

the values of a/R and a/h, especially for the edge conditions

Fvv =F = 0, and decreases with increasing value of the
vs

product of a/R and a/h.

For polygonal shells with sliding edges and as few
as 4 sides, these stress function edge conditions usually have
little effect on eigenvalues for modes higher than the third.
Consequently, higher modal eigenvalues can be calculated from
the uncoupled plate frequency equations in transverse displace-
ment for these edge conditions. Thls uncoupling of the trans-

verse displacement and stress function solutions does not occur
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FIG. 6.3 Symmetric Mode Shapes for the Characteristic Segment

of a Clamped Shallow Spherical Shell with S1iding
Free Edges having 6 Sides and a/R = 0.390625,
a/h = 66.667 and v = 0,33 )
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for the simply supported or clamped shéllow shells
studied in Sections 6,1,2 and 6.1.3, which satisfy the
stress function edge condltions Fvs = €.4 = 0, until
the fifth or sixth mode for shells with 6 sides and the
fourth mode for 12 sides.

Values of modal participation functions for
shells with sliding edges having 6 and 12 sides indicate
that the fundamental mode governs the response of these
shells to uniform loads while contributions of modes

higher than the third are relatively insignificant.

6.2 Edge Condition Satisfaction
In the numerical solution of the transverse

vibrations of plates and shallow shells with regular
polygonal boundaries, edge conditions have been satis-
fied approximately using the boundary collocation
technique. Using this technique, edge conditions were
satisfied exactly only at discrete boundary points rather
than along the entire boundary. The effect of the
resultant numerical errors in the prescribed edge con-
dition functions will be small in the interior for a
stable solution, according to St. Venant's principle, 1f
these errors or edge disturbances are small relative to
maximum interior functional values.

It was found that the accuracy of satis-

faction of a prescribed edge condition for a particular
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function depends not only upon the number and location
of the boundary collocation points and the degree of
deviation of the boundary from a circle but also upon
the interior spacial variation of the function and the
functional derivative order when expressed in terms of
the transverse displacement or stress function solutlons.

Numerical satisfaction of homogeneous edge
conditions is illustrated in Figs. 6.4 through 6.7 for
the first three modes of vibration of a shallow spheri-
cal clamped shell with hexagonal plan having a/h = 66,667,
a/R = 0,390625 and v = 0,33, Eigenvalues and modal
participation functions were given for this shell in
Table 6.5.

Plots of ratios of prescribed 'vanishing'

-~ AW L~ -~ - -~
edge functions w(p,6), e (8,9), Fvs(p’e) and ess(p,e)

oW
to maximum interior values (w) R (S;)max’ (Fvs)max

and (ess)max’ respectively, for 3, 4 and 5 collocation
points on the boundary of the characteristic shell
segment show that edge condition satisfaction generally
improves with increasing number of boundary collocation
points. Of course, since each solution is found by
inversion of a boundary equation matrix whose order
depends upon the number of boundary collocation points

used, there is a practical limit to the number of
collocation points which can be satisfied. This limit
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is dependent upon the relative 'conditioning' of the
boundary equation matrix and the computational
accuracy used in the numerical solutlon.

Plots of edge condition satisfaction for
the first mode show that the degree of satlisfactlon
generally decreases towards the boundary corners for
equiangular spacing between collocation points. Thus,
best edge condition satisfaction is achieved in general
by decreasing the angular spacing between collocation
points towards the boundary corners., In this example,
the set of 4 boundary'collocation points at 6 = 2°, 15°,
25°, 30° gave smaller maximum deviations for all
functions except displacement than did the set of 4
points at @ = 4°, 14°, 22°, 30°. Consequently, for
decreasing number of boundary sides and associated
increasing boundary deviation from the circular shape,
the total number of boundary collocation points satis-
fied over the complete shell boundary must be increased
to maintain the same degree of edge condition satis-
faction.

For the 5 collocation point set, the maximum
edge condition errors for the first 3 modes occur in
the second mode for the transverse displacement and
normal slope functions and in the third mode for the

tangential in-plane shear and strain functions. These
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errors reflected the relative magnitude and proximity
to the bbundary of interior functional variations. In
general, the degree of edge condition satisfaction
expressed in terms of maximum interior values will
decrease with increasing mode number.

In this example, maximum-edge condition
functional errors for the first three modes were 0.24
per cent of the maxlimum interior value for displacement,
1.43 per cent for normal slope, 5.5 per cent for
tangential in-plane shear and 18.5 per cent for tangential
étrain. Since the maximum error for tangential strain
occurred at the shell corner where strain was not
pfescribed to vanish, maximum boundary errors for strain
are not indicative of the accuracy of the boundary
collocation method. However, since slope is a first
order derivative of transverse displacement and in-plane
shear is a second order derivative of stress function,
it 1s apparent that the degree of satisfaction of edge
conditions tends to decrease with increasing order of
the functional derivative of the transverse displacement

and stress function solutlons.

6.3 Series Convergence

The convergence of the series solutions for
the functions describing each mode of response is

illustrated for some edge condition functions in Table 6.9.



Table 6.9

Functional Series Convergence for the Third Mode of Response
of a Uniformly Loaded Clamped Shell with 6 Sides

position p,0
0.16, 0 | 0.16, 0° | 0.56, 00 | 0.56, 30° | 0.8, 0° 0.96, 30°
0.38699E-03| 0.38699E-03 | 0.30796E-03 | 0.30796E-03 | 0.52606E-04| 0.41145E-04 0.
0.38675E-03| 0:387226-03 | 0.20447E-03 | 0.41144E-03 |-0.72300E-05| 0.32116E-05 | 1
w | 0.38675E-03 0.387226-03 | 0.20508E-03 | 0.41206E-03 | 0.68555E-05{-0.11849E-04 2
(in] o.386756-03| 0.387226-03 | 0.205086-03 | 0.41206E-03 | 0.55351E-05| 0.53700E-07 | 3
0.38675E-03 | 0.38722E-03 | 0.20508£-03 | 0.41206E-03 | 0.55532E-05| 0.13821E-05 | 4
| 0.16764E-03 |-0. 14518503 | 0.61413E-04 | 0.53186E-04 |-0.50153E-04 | 0.36952E-04 | - ©
-0.16798E-03 |-0.14489E-03 | 0.42922E-04 | 0.69199E-04 {-0.17342E-04 | 0.12937E-04 1
B | 0.16798E-03 |-0. 1448903 | C.43360E-0 | 0.69579E-04 |-0.16095E-04 |-0.13727E-04 | 2
-0:16798E-03 |-0.14489E-03 | 0.43359E-04 | 0.69580E-04 |-0.17138E-04 |-0.67057E-05 3
-0.16798E-03 |-0.144896-03 | 0.43359E-04 | 0.69580E-04 |-0.17106E-04 |-0.52990E-05 | 4 3
. N
0 0.49707E Ot o -0.46926E 01 0 0.28051E01 | 0 | ¥
0 0.50840E 01 0 +0.23259€ 01 0. 0.11217E 01 | 1
Fus () 0.50840E 01 0 10.23593E 01 () 0.35879E 01 2
i) 0 0.50840E 01 o [ 0.23590E..01 0 0.92675E 00 | 3
0 0.50840E 01 0 -0.23590E 01 0 0.66602E 00 4
0.1892¢E-05 | 0.29105E-05 | 0.54364E-05 | 0.44755E-05 | 0.73852E-06| 0.15437E-05 0
0.19378E-05 | 0.28885E-05 | 0.58404E-05 | 0.45561E-05 | 0.20617E-06| 0.22866E-05 1
. | 0-19378E-05| 0.28885E-05 | 0.58556E-05 | 0.45645E-05 | 0.€0507E-06 0.615856-05 | 2
s | 0.19378E-05 | 0.28885E-05 | 0.585586-05 | 0.45644E-05 | 0.53542E-06| 0.13056E-05 3
0.19378E-05 | 0.28885E-05 | 0.58558E-05 | 0.45644E-05 | 0.53312E-06| 0.13912E-05 | 4

9, =1 psi, a/R = 0.390625, a/h = 66.667, D = 0.49315 E + 5 1be—in., v = 0.33
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These functions were calculated for the third mode of
response of the uniformly loaded clamped shell with 6
sides and a/R = 0,390625, a/h = 66,667 and v = 0.33.
Eigenvalues, eigenvectors and modal participation
functions were obtained using 5 collocation points on
the characteristic segment boundary. Consequently, the
series solutions for nt and i, given in Eqs. (3.27a)
and (3.27b), and their functional derivatives were all
truncated with n ranging from 0 to 4,

Finite 'exact' solutions were obtained at the
origin for ﬁi and Ei from the zero-order terms only,
since all higher order terms vanish. Functional
derivatives of ni and E! were difficult to obtain
numerically in a small region about the origin. The
number of terms in each series required to obtain a
specified functional accuracy increased with radial
distance from the origin, as these results show, Com~
parison of functional series convergence at p = 0.84,
& = 0° (0,027 from the boundary) and p = 0.96, 6 = 30°
(0,020 from the boundary) in Table 6.9 shows that
convergence in the boundary region was less rapid towards

1 ang

the corners. Convergence of derivatives of the #
Ei functional series appeared to be slightly less rapid

than the convergence of the functional series, themselves,
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For this example, series solutions
converged within two or three terms to an accuracy
sufficient for most practical applications over most
of the shell interior. Results did not converge so
rapidly near the boundary, especially in the corner
region, however the degree of accuracy obtained with
five functional series terms is probably at least
comparable to the consistency of results which would
be obtained in practice. In general, the number of
series terms necessary to obtain comparable functional
accuracy increased with decreasing number of boundary
sides p. It was felt also that the number of series
terms required would increase with shallowness and
thinness parameters a/R and a/h, respectively, although
results for the shells analysed in Section 6.1 did not

indicate any significant differences for these parameters.

6.4 Auxiliary Edge Conditions
The auxiliary edge conditions given in Egs.

(3.21) and (3.23) for the functions Z%(p,0) and h*(p,6)
which were assumed in the form

@
- pn pn+2
g%p,0) = ¥ [E“" p +E2%p ]cos pné
n=0 pn

©
- g bpn+2 pn+e

hz(p,e) = Z [Fl’ o + p2o? P ]cos pné
n=0 pn
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in Egs. (3.252) and (3.25b), were satisfied using the
boundary collocation technique. The DRES IBM 1130
digital computer was employed for these calculations
using 10 figure computational accuracy. The results
are summarized in Table 6.10 and the coefficients

L 2
g's®, g%0%, P'o%, ana F%ot

pn ' pn  Ppn pn
through 6.16.

are given in Tables 6.11

Convergent solutions for Hz(p,e) were not
obtained for all edge conditions, especially for small
values of p. Better results might be obtained for these
cases by increasing the accuracy of the computer
calculations, thereby permitting larger auxiliary edge
condition matrices to be inverted accurately, or by
choosing some different functional form for Ez(p,e)
which will converge more rapidly.

The solutions obtained for g*(p,8) can be
used for both plates and shells with regular polygonal
boundaries which are subjected to time-dependent edge
conditions involving transverse displacement, slope
normal to the edge or flexural stress couple tangential
to the edge.

The function §“(p,e) which is associated with
time-dependent transverse edge displacement n(B,E,t) is
given by an exact one term solution in Table 6.10. The
functions n!(p,8) and h2(p,6) which are associated with

time-dependent edge stress resultant Fvv(S,g,t) and
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Table 6.12
Coefficients E-pi;’(p) for Auxiliery Edge Conditions L [32(5,8)1= 0, L,[8%(3,8)] = -1

214

Number of sides p

3 4 5 6 9 8 12 15
0 | 0.2357c 00 | 0.3337E 00| 0.384€ 00 | 0.4147E 00'( '0.44E 0O | 0.46 E 00 047 00 | 0.42€ 00
1 l-0.661 €00 | -0.376 E 00 -0.2585 00 | -0.192 E-00 [ 0.15E 00 |~0.15 E 00 | -0.8 E<01 |-0.6 E-01
2 |o0.287 €00 | 0.16 Ec0| 0.1 E00 | 0.1 Eo0| 0.7E-01 [-0.2 E-01| 0.1 E-01] 0.1 E 00
, 3 |-0.163 E00 | 0.1 Eo00|-0.5 E01 | 0.6 E-01|-0.6E-01 |-0.3 EO0
" 4 |01 E00| 0.7 E01] 0.2 E01 | 0.2 E-02|-0.2 E-01
pn s |-0.8 €01 |-0.7 01| 0.7 E02 | 0.2 E00|-0.2E 00
6 |01 €00 |-0.1 EcO| 0.1 E01 | 0.6 E00
7 |06 Eoo|-0.1 Eo01{ 0.2 Eo0O 0.7 EO00
¢ |[0.2 €01 |02 E01} 0.4 E0O
clo |04 Eo|-02 Eo
[
2 | o |-0.6825E 00 | 0.5527E 00 | -0.519E 00 | -0.507 E 00 -0.51E 00 | -0.52 E 00 }-0.49E 00 }-0.45E 00
1+ | 046 €00 | 0.25 00| 0.177€ 00 | 0.13 E00| 0.1E00 | 0.10 E0O | 0.6 E-01 | 0.5 E-01
2 |0.166 €00 | 0.1 E00|-0.8 E01 | 0.9 E-01|-0.7E01 | 0.2 E-01|-0.1 E 00 |-0.1E 00
3 {005 Eo0| 0.9 e£01| 0.4 E01 | 0.6 E01 0.5E01 |.0.3 E0O
2,2 4 |09 E01 |07 £01|-0.9 E02 | 0.3 E01{ 0.2E
B 5 {o9 E01| 0.6 E01|-0.2 E01 | 0.3 -EO0| 0.2E00
P 6 o €00 0.2 E00|-0.6 E02 | 0.6 EO00
‘w {o.2 Eot| 0.2 Eo1|-0.3 Eco | 0.7 Eo00
g8 |os Eo01| 04 EoO1|-0.5 E0O
9103 Eo0t| 0.2 EO1
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Teble 6.13
I, - 1 - - - -
Coefficients ?pn (p,v)® for Auxiliary Edge Conditions E; L.[h‘(B.O)] =1, L'[h‘(ﬁ,e)] =0
Number of Sides p -
7 | 8’
Poisson's ratio Vv
0.0 0.1 0.33 0.5 0.0 0.1 0.33 -0.5
o| 0.106 Eot 0.138E 01 | 0.16 E01 | 0.21 E01 | 0.2, E O1
1| 0.2 Eo00 0.91 E01 | 0.97 E-01 | 0.115€ 00 | 0.136E 00
2| 0.5 Eot 0.33 E-01 | 0.414E-01 | 0.561E-01 | 0.72 E-O1
P‘-‘ 3| 0.3 E-01 0.16 E-01 | 0.262E-01 | 0.37 E-<01 | 0.48 E-O1
pn 4] 0. E-O1 0.5 E-02 | 0.172E-01 | 0.237E-01 | 0.32 E-O0?
5 - - - 0.5 £02 | 0.6 E-02| 0.1 E-01
cls ) §. & 0.2 E-02
. . Y .
3 2 z 2
5|0 | -0.250 E 00 ] § § -0.292F 00 | -0.32 E 00 [-0.34 E 00 | -0.34 E 00
11 -0.9 E-01 3 3 3 -0.69 E-01 | -0.76 E-01 |-0.94 E-01 | -0.114E 00
2,1 2| -0.5 E-0 0,30 E-01 | -0.388E-01 |-0.542E-01 | -0.709€-01
Fpn 3| 0.3 E-00 -0.16 E-01 | -0.262E-01 |-0.38 E-01 |-0.50 E-01
4| -0.1 E-01 -0.5 E02 | -0.176E-01 |-0.248E-01 | -0.33 E-01
5 -0.5 E-02 |-0.6 E-02{-0.1 E-O1
6 0.3 E-02
Number of Sides p
12 | 15
Poisson's ratio V
0.0 0.1 0.33 0.5 0.0 0.1 0.33 0.5
o | 0.2269E 01 | 0.246E 01 ] 0.313E 01 | 0.401E O1 0.292E 01 | 0.318E 01 | 0.407E 01 | 0.517E O1
1 0.473 E-O1 0.521E-01 0.664E-01 0.811E-01 0.346E-01 0.387€-01 0.510E-01 0.605E-01
- 2 | 0.141 E-01| 0.164E-01 | 0.235€-01 | 0.317E-01 0.9886-02 | 0.117€-01 | 0.173E-01 | 0.20 E-01
J 3| 0.67 E02| 0.77 E02| 0.111E-01 | 0.15 E-01 0.501E-02 | 0.587E-02 | 0.863E-02 | 0.5 E-02
pn .| 0.3 E-02| 0.3 E-02| 0.5 E02 | 0.6 E-02 0.29 E-02 | 0.34 E-02 | 0.51 E-02
5| 0.7 Ewo03| 0.8 Eo03( 0.1 E02} 0.1 E-02 Q.11 E-02 | 0.13 £02 | 0.16 £-02
c .
%o | -0.4175€ 00 |-0.425% 00|-0.44€ 00 |0.461€ 00 | -0.518 00 | 0.528F 00 | -0.552F 00| -0.564% %0
S11 | -0.377 E-01 | -0.423E-01 | —0.556E-01 |-0.692E-01 -0.285E 00 | -0.323E-01 [-0.437E-01 | -0.526E-01
2,1 2 | —0.128 £-01 | -0.151E-01 | -0.222E-01 |-0.302E-01 -0.907-02 | -0.108E-01 |-0.164E-01 | -0.19 E-O1
F o 3| .60 Eo2|-0.75 E02|-0.11 E01 [-0.15 01 | —0.4mE02 | -0.565E-02 [-0.8426-02 |-0.5 E-02
4| -0.3 E-02]|-0.3 E-02{-0.5 E-02 |-0.6 E-O2 -0.28 E-02 | -0.33 E-02 |-0.50 E-02
5| 0.7 €Eo03|-0.8 E03|-0.1 E02|-0.1 E-02 -0.11 E-02 | -0.12 E-02 |-0.16 E-02

Convergent series for h'(p,6)

were not obtained for p < 7.

Table 6.13

12
Coefficients P.. (v)® for Auxiliary Edge Conditions L.[E’(B,S)] =0, L’[E’(B,ﬁ)] =1

0.0

0.1

0.2

0.3

0.33

0.4

0.5

0.500000

0.555556

0.625000

0.714286

0.746269

0.833333

1,0

1,2
is given approximately by P.. = 0.18393 exp[exp(1.0531Vv)].
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Coefficients ’J.‘(p.v)' for Auxiliary Edge Conditions ;L‘{S'(a.i)] -
pn

Teble 6.15

216

1, L (55,81 =0

Nmber of Sides p
s 6
Poissonts ratio v
0.0 0.1 0.33 0.5 0.0 0.1 0.33 0.5
0| 0.1767 01| 0.1705€ 01 | 0.1562€ 01| 0.1448E 01] 0.17E 01| 0.16% 01 0.1476E 01| 0.1263€ 01
1| o e| o.83 Eo1| -0.61 E01| 047 E-01] 0.4126-01] 0.37E-01 0.282 E01| 0.211 E-01
21 -0.15 €01|-0.17 E01| -0.23 €01} -0.25 E01}-0.1 E-01(-0.9 E02)-0.8 E02|-0.%0 E-02
3| o ec2f o8 Eo2| 09 E£cz2| .81 Ew2]-02 Ef2|-04 E03]| 01 E-02} 0.1 02
3] |4] 04 E02|-04 E02f-0.4 Eo2-0.24 E-02)-0.9 €02} -0.6 E02}-0.3 Eo2|-0.2 E02
4 on | |5] 0% E02| 03 £oe| 0.2 €02} 0.1 Eo2}-01 Eo1|-0.8 Eo2|-0.3 E2}-0.1 Eo2
él 0.4 Eoe}-0.1 £02|-0.8 03|04 E03]-03 Eo1]-02 Ec1]-0.7 E02]-04 E02
7| o7 eoz| 0.5 Eo2| 0.2 E02| 0.9 Eo3]-0.2 E01|-0.3 EOT|-04 E-02}-0.2 E02
cle| o5 €w2f 0.3 E02| 04 E02| 0.6 E-03
9
5o | -0us £ 00 | 044 E-00 | =0.357 € 00| -0.2864% 00 | 0.387%E 00 | 0.351E 00 | 0.26KE 00 | -0.2052E 0O
1| 0.2 E01]-0.51 E01{-0.29 E01]-0.18 E-01]-0.296E-01 [ -0.267E-01 | -0.180 E-O01 -0.127 E-01
2| o Eoz| o1 E01| 0.9 £o1| 0.2 E01] 0.8 Ec2} 0.7 Eo2| 0.7 E-02[°0.63 £02
3| 0.6 €o02}-0.7 E02|-0.8 E02|-0.73 E02] 0.3 E-02| 0.9 E03|-0.8 £03]-0.11 E02
11| 4| 0s £02| 04 E02| 0.3 Ed2| 0.0 E02] 0.1 Eo1] 0.6 E02 0.3 E| 0.2 E02
T 5] 0s eoe|0s 2|02 Emloa exfoz £o1| 0.9 E02| 04 Eo2| 02 Ee2
¢| 0.7 £o3| 0.9 E03| 0.6 E03} 0.3 E03] 03 Eo1| 0.2 EO1{ 0.8 E02] 05 E-02
7| 0.8 eo2|0.6 E02|-0.2 Eo02]-0.1 E-G2} 0.2 E-01} 01 e | 0.5 Eo2| 0.3 E02
8| -0.6 E02|-04 E02|-0.2 E02|-0.9 E03 . i
Number of Sides p
[ [ 8
Poissonts ratio v
0.0 0.1 0.33 0.5 0.0 0.1 0.33 0.5
o 0.161 E 01 } 0.155 E” 0.140 EO1 0.10 E 01 0.157€ 01 0.152€ 01 0.19E 01| 0.129 EO
1| o2z €01 0.28 E01 | 0.8 B | 0.u E0t| 0.18 E01 | 017 E-07 | 0.3 E-01 0.99- E£-02
sl [2] 01 E02| 00 E02| 03 eo2| o e| 0.1 Eo02) 0.4 Ec2f 0 Eg2| 0 " EG2
4 3] 0.4 Eo02}04 Eo02| 04 E02f 0.4 E-021 0.3 Eo2 | 0.3 Eo2| 0.3 E02] 0.3 ER
| |i| ox €cz|os €02 os Ec2|os Eo2) os Ec2}os Eo2f 0x Eo2)o0s E02
cls| o5 E02| 0.5 E02'| 0.6 En2| 0.7 E02] 04 to02]| 0.4 E02| 0.4 EL2| 0.3 E-02
go -0.335 E 00 | -0.303 € 00 | 0229 E 00 | -0.173 E 00 | -0.309E 00 | -0.279€ 00 | -0.210E O -0.158 E 00
1| 0.0 E01]0.17 €01 | 0,12 E01 |09 E-02|-0.14 E01 |-0.13 E-01 | -0.95 E-02 {-0.T3 £-02
2| 02 Eo02|0.2 E02|-0.3 Eo2|-0u4 E2]-0.1 Eo2{-0.1 Eg2|-0.1 E-021-0.1 E02
9| |3] 03 ec2{os Eo2|-0s €o2jos Em)-o3 EG2]-0.3 Eoz|-0.3 E02]0.3 €
so | |2 |0z Eoz2l|o0.s Eo02{-0.6 02|07 Ec2]-0.4 E02]-0.5 E-02]-0.5 E2]-04 E-02
5 | 0.5 Eo02{-0.5 E02]|-0.6 E02|-0.7 Ec2]-04 E02|-0.4 E02[-0-4 g0z |03 eo2
Number of Sides p
12 1 15
Poisson's ratio Vv
0.0 0.1 0.33 0.5 0.0 0.1 0. 0.5
0| 0.55€01] 0.9 E01 | 0.137E01| 0.128E 01] 0.ISE O 0. 149E 01| 0.126 E 01| 0.127 E 01
1| o3 £o02| 0.3 02| 0.2 Eo2| 0.1 Ex] 0.6 E03] 0.5 E-03} 0.3 eo3| 0.2 E0
a,s] |2 |06 E03]-06 E03}] 05 to3 |04 Eo3]0.8 E03|-0.7 E03]-0.6 E03|-0.5 EO¥
17 3] 0.4 eos|0a Eoi| 02 Eot|-0. Eoif-0.3 E031-0.3 Eo03|-0.3 E03|-0.2 EO3
| || o3 £o03|03 E03| 02 co3|02 £w|oz E03|02 E03]02 E23)0a EO
Slo | -0.226 £ 00 | -0.249 € 00 | 0.186 € 00 {0139 E 00 | -0.26#F 00 | -0.2¢F 00 }-0.1%0 E 0 -0.13% E 00
1|03 £o02|-02 E02| 0.2 Eo02|0.1 Eo2}-0.6 E03|-0.5 E-03|-0.3 E03{-0.2 E03
an| |2] 05 E03| 05 E03] 04 go3| 0.3 eo3] 0.7 e03| 0.7 03] 0.5 E£03] 04 E-O
rol12] o2 Eoc| 0.2 Eou| 02 Eos| o2 Eaifo3 E03}o3 E03] 02 EO3]02 E03
» 2| 03 £03]| 03 E03] 02 E£03)o0.2 Eo3] 02 Eo3| 02 EM} 02 03| 0.1 Eo3

® Convergsnt serles for B'(p,8) were not obtained for p < 5.
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strain ess(B,E,t), respectively, are given by one term

solutions in Table 6,10, also, when elther edge condition
is used in conjunction with shear Fvs(E,g) as the second
edge condition in stress function., The evaluation of the
modal participation functions x:’i, assoclated with Ez(p,e)
in Eq. (3.31c), and x"i, associated with g!(p,6). in Eq.

(3.31d), simplifies considerably for these time-dependent

edge conditions.

For the time-dependent edge condition
n(ﬁ,a,t), Eq. (3.34d) becomes

1,4 _ L1 + gl i
X, Ao ¢13 Bo ¢1«. + Co ¢l$ *

Thus xi'i is given simply by the zero-order terms of xi.

For the time-dependent edge condition

sss(B,a,t) used in conjunction with the edge condition

Fvs(E,a), Eq. (3.34c) becomes

2,1 _ 4 praz [p1 + Bt i
xz’ = Fo [Ao ¢13 BO ¢1‘0 + Co ¢15 ’

Thus x:oi is simply a constant 4 F:'z times the zero-

order terms of xf where F:’z is given in Table 6.14,
For the time-dependent edge condition

Fvv(B,a,t) used in conjunction with the edge condition

F,s(P,8), Eq. (3.34c) becomes

(6.20)

(6.21)
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CHAPTER 7

EXPERIMENTAL COMPARISON WITH THEORY FOR A SHALLOW
SPHERICAL SHELL ENCLOSING AN HEXAGONAL BASE

7.1 Procedure

7.1.1 Experimental Shell. A shallow spherical
spun aluminium alloy 65S-T4 shell with hexagonal planform

was mounted in the rolling section of the DRES six-foot
diameter shock tube using the two support arrangements
shown in Figs. 7.la and 7.1lb, The shell thickness h,
nominally 0.375 in., was checked with calipers at a few
positions near the boundary and appeared to be 0,375 in,
(+ 0,005 in,)., For Trial 1, the shell had a base circle
circumscribing diameter 2a of 50.0 in., (+ 0.02 in.,) and a
spherical radius R of approximately 64 in., and for Trial
2 the diameter increased to 50.20 in, (+ 0,05 in,) and

the spherical radius ranged between 64 and 70 in., For
theoretical comparison purposes, the experimental shell
geometric shallowness and thinness parameters a/R and a/h
will be quoted as 0.390625 and 66.667, respectively, in
reference to nominal values for a, R and h of 25 in.,

64 in. and 0.375 in., respectively. Young's modulus E and
Polsson's ratio v for the shell were assumed to be 107 psi

and 0.33, respectively.
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The present theory neglects the effects of trans-
verse shear and rotatory inertia (thickness-shear
effect). Theoretical results given by Reismann and
Culkowski [68] show that the thickness-shear effect can
be ignored for symmetric modes of response lower than the
fourth mode for clamped shallow spherical shells with
circular planform for a/h > 30 and a/R as large as 0,5.
Consequently, neglecting the thickness-shear effect when
computing the experimental shell's transient response
likely is valld as long as the lower modes governed the
response,

In the first trial, an attempt was made to obtain
the shell's transient response subject to the edge
conditions for a clamped shell given in Eq. (6.1) and in
the second trial, subjJect to the edge conditions for a
clamped shell with sliding free edges given in Eg. (6.,3).

For the first trial, 2 x 6 in, aluminium (65S-Ti4)
support blocks were attached with epoxy adhesive to the
outer 2 inches of the shell surface, These edge support
blocks were clamped between steel blocks which were
bolted and welded to a steel circular box-beam, Shell
in-plane edge motion was restricted further for some
tests by shimming between the shell edge and a steel
circular member which had an inner boundary shape
matching the shell's hexagonal boundary. Also, for some

tests, 350 1lb. of lead weights were attached to the
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circular box~beam to reduce support ringing. In this
way, the shell was clamped reasonably well against edge
transverse displacement and normal rotation, and at
least partially clamped against edge extension parallel
to the boundary as well as against normal in-plane
motion, The shell and mount assembly was positioned on
its side in the shock tube, resting on a wooden block.
The circular box-beam was bolted to the 1 inch steel
front plates as shown in Fig. 7.2. These steel front
plates were used for the plate experiment and are shown
in Fig. 5.1. The space between the shell steel outer
ring and the tube wall was closed with 5/8 in, steel
plate and all cracks were sealed with adhesive tape as
shown in Fig. 7.3. The six 60 degree shell segments are
labelled 1 to 6 in this figure for future reference., In
this way the air blast was reflected completely at the
shell test section., For one series of tests, aluminium
shims were placed between the 5/8 in, steel plate and the
shell steel outer ring in an attempt to obtain better
edge clamping.

For the second trial, the 2 x 6 in. aluminium
edge support blocks were cut away in alternate 1 inch
blocks, The remaining legs of the support blocks rested
on the steel circular box-beam, Heavy duty Krylon

silicone lubricant was applied to the contacting sliding
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FIG. 7.3 Pront View of Shell Mounted in Shock Tube for Trilal 1
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FIG. 7.3 PFront View of Shell Mounted in Shock Tube for Trial 1
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surfaces, Edge piston-type clamps prevented the shell
from falling off the circular box-beam when the shell and
mount assembly was positioned on its side in the shock
tube. By means of this arrangement, the shell was clamped
reasonably well against transverse edge displacement and
normal rotation. Edge extension parallel to the boundary
was restricted by the outer 2 inch portion of the shell,
itself, and normal edge in-plane motion was resisted by
the inertial forces of the boundary support mass and
frictional forces. The boundary support mass which
followed the edge in-plane motion of the shell weighed
approximately 34 1b, including the 11 1lb, outer 2 in,
portion of the shell, while the shell weighed 62 1b., The
shell and mount assembly was positioned on its side in the
shock tube, resting on a wooden block as shown in Fig., 7.4.
The shell assembly was not connected by bolts or welds to
the shock tube walls in any way. Instead, the shell
assembly wés restricted from transverse motion by four
clamping angles which are shown in Fig. 7.4. In this
manner, shock tube expansion and confraction under blast
loading had little effect on the shell boundary motion,
The test sectlon was completely sgaled against the air
blast, however the portion between the shell.boundary and
the shock tube wall was not a smooth continuous surface as
it was for Trial 1. Resistance of the shell boundary to

edge transverse motion and normal rotation was reduced from
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FIG, 7.4 Front View of Shell Mounted in Shock Tube'for Trial 2
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Trial 1 since the 1 inch steel plates supporting the‘
circular box-beam were partially removed as shown in Fig.
7.5.

Previously, Walkinshaw, Riley, Siddal and
Oravas [92] obtained the static response of this shell
subjected to uniformly distributed loads using the edge
condition$ for a clamped shell with sliding clamped edges
as given by Eq. (6.4), using heavy steel edge rollers and
support clamps. The mounting arrangement used in this
static test was considered impractical for tests in the
shock tube since the shellland mount assembly had to be
positioned on its side. Furthermore, the inertia of the
heavy boundary roller-support mass likely would have a
considerable influence on the shell's dynamic response
characteristics which could not be accounted for using the
present thegry.

The shell's spherical curvature was formed by
spinning to obtain a nominal shallowness parameter a/R of
0.390625 which was within the accepted limits for shallow
shells of 0 £ a/R < 0.5. Spinning, as pointed out by
Hossack [69], introduces residual stresses and variations
in thickness,

The removal of portions of the aluminium support
blocks for Trial 2 permitted some stress relaxation in the
shell with an associated shell 'flattening' or an increase

in R, near the boundary. A plot of the shell profile
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measured along one of its radial lines in Fig. 7.6 shows
this 'flattening'. The variation of the shell radius of
curvature, measured along two radial lines with a Cenco
spherometer, is shown in Fig. 7.7. This spherometer
measured spherical radius of curvatures over 1 inch radius
circular segments on the shell surface to an accuracy of

+ 3 per cent. The radius of curvature measured on the
convex surface of the shell appeared to oscillate three or
four times between the apex and the boundary with maximum
variations of approximately * 25 per cent about the average
value of R which varied from approximately 65 in, near the
apex to 70 in, near the boundary.

For Trial 1, the average spherical middle surface
radius of curvature was approximately 64 in,, however
variations in curvature over the shell surface were not
measured., It was felt that the extent of the curvature
variations was similar to that measured for Trial 2.

The effect of surface curvature variations or
surface 'rippling' on the transient response of shallow
shells has not been studied either experimentally or
theoretically in the shallow shell literature, as far as is
known, and measured variations have not even been quoted.
Okubo and Whittier [74], as a result of measurements for
the static buckling of clamped spherical shells using the

nondestructive technique, concluded that the lowering of
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FIG,7.7 Variation of Experimental Shell Radius of Curvature R
with Radius p for Trial 2
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their experimental frequencies compared with those pre-
dicted by theory might have resulted from curvature
variations. However, they did not include measurements

of the actual curvature variations present in their

experimental shells,

Intuitively, 'rippling' of the shell middle
surface should decrease the shell's rigidity against
1n-pléne stress and increase it against transverse
bending stress .= relative to the rigidity of a perfect
spherical surface. It was felt that the significance of
this variation-in-curvature effect upon the transient
response of shallow shells would increase with the
number and magnitude of the surface 'ripples' and the
values of shell geometric parameters a/h and a/R. The
significance of this effect likely depends upon the edge
conditions to which the shell is subjected, as well,

One hundred and fifty Tatnall strain gauges, type
Cl2-121, having gauge factors of 2,09 (% 0.5 %), gauge
resistance of 120 ohms and gauge length of 0.125 in., were
mounted on both sides of the shell along the radial lines
© = 0°, 10°, 20° and 30° at the positions shown in Fig,
7.8a. Radial bending and membrane strains were measured in
one shell characteristic segment at 36 different positions
including the shell apex, These strains were used in
conjunction with circumferential bending and membrane

strains measured at related positions in another shell
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PLAN VIEW OF SHELL'S CONVEX (FRONT) SURFACE

~, -~
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Pressure-gauge, Trials 1 and 2

Accelerometer, Triall

Accelerometer, Trial 2

Linear potentiometer deflection gauge, Trial l

Bently Nevada deflection gauge, Trials 1 and 2

Bently Nevada deflection gauge, Trial 2

Radial and circumfereuntial strain gauges front and back, Trial 1
Radial and circumferential strain gauges front and back, Trial 2

Notes
1. All dimensions are horizontal.

2. Radial distances refer to middle
surface. Corrections were applied
to locate strain gauges.
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Fig. 7.8a Shell Instrumentation
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characteristic segmgnt to obtain normal stress resultants
and flexural stress couples at the 36 positions assuming
perfectly symmetric shell response. The shell's symmetry
of response was checked at 4 of these 36 positions by

measuring radial and circumferential strains in two other

segments.

7.l1.2 Natural Frequencies. Shell natural

frequencies were obtained using acoustic excitation with
sound pressures ranging between 100 and 130 decibels at
the shell surface., These sound pressures were applied
over a large portion of the shell surface area. In this
manner, the suppression of some resonant frequenciles,
which McConnell [93] showed could occur for concentrated
excitation forces such as those given by shakers, was
avoided., The shell base plane was placed perpendicular to
the axis of the exponential horn in order to increase the
intensity of pressure loading by using standing waves to
advantage; a procedure pointed out by Hubbard and

Houbolt [80]. Placing the axis of the acoustic horn
parallel to the shell base plane would have provided a
more uniform sound pressure level distribution over the
shell's front (convex) surface, however the pressure level
obtained was too low to excite some of the lower shell
’modes. Excitation frequencies ranged from 200 to 3,000 cps.

Strain and acceleration responses at different positions on
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the shell surface indicated the various resonance values,
Nodal lines were established for several symmetric modes
of response of the shell subject to the edge conditions
obtained in Trial 1 from the phase changes observed for
the Lissajous figures for acceleration signals recorded at
many different positions on the shell's convex surface.

In Trial 1, three Electro-Voice model 848, 30
watt, 10 x 12 in. rectangular horn-type speakers with
frequency ranges of 150 to 10,000 cps were used to excite
the shell symmetrically. In Trial 2, symmetric excitation
was obtained with a Geloso model 2579, 200 watt, 29 in.
diameter circular horn-type speaker with a frequency range
of 120 to 12,000 cps.

The sweep-frequency was obtained using a
Nelson-Ross model PSA-021 spectrum analyser in conjunction
with a Nelson-Ross model 601 synchro-sweep generator. The
sound pressure level at the shell surface was kept constant
over the frequency range for some of the tesﬁs by regulating
the amplitude of the sine wave generated using a General
Radio model 1569 automatic regulator in conjunction with a
General Radio model 1565-A sound level meter having an
operating range of 44 to 140 decibels., The sine wave
signal from the regulator was amplified by a General Radio
model 1308-A power amplifier and then fed to the horn-type

speakers,
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In order to maintain a constant sound pressure
level over the entire frequency range using these
speakers, the sound pressure level had to be kept at
approximately 100 decibels. However, some lower shell
resonances were not distinguishable from system noise at
this pressure level., Consequently, for many tests
constant power amplifier output voltage rather than
constant acoustic pressure level was maintained over the
frequency range giving pressures as high as 130 decilbels
at the lower frequencies., However, using this technique,
response amplitudes for different modes were not
indicative directly of the relative modal participation
factors aé'they were when constant sound pressure was
maintained over the frequency range.

Acceleration signals were obtained using a
Kistler model 818 piezoelectric accelerometer. Strain
signals were amplified with DRES designed amplifiers
hav;ng gains of 150 to 5,000 and frequency response of 0
to 20,000 cps., Acceleration and strain signals were
converted from a.c. to d.c. using a Hewlett-Packard model
LOOE voltmeter and then recorded on the y-axis of an
Autograph model 65 two-axis recorder. At the same time,
the sweep-frequency produced by the synchro-sweep
generator was recorded on the x-axis, This frequency was
monitored by a Hewlitt-Packard model 3734A electronic

counter, as well. Lissajous fligures, obtained from accelero-
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meter signals, were displayed on a Tektronix model
502 oscilloscope.

The acoustic excitation equipment is shown in
Fig. 7.9. The Geloso horn speaker and the General Radio
sound level meter are shown in Fig. 7.4, positioned on the
convex side of the shell which is mounted in the shock
tube for Trial 2., A complete instrumentation block
diagram is shown in Fig. 7.10.

Since the shell edge supports were too stiff to
be exclited acoustically, natural frequencies were obtained
by striking the shell edge with different rubber and metal
hammers while recording acceleration and strain signals on
a Tektronix model 564 storage oscilloscope.

7.1.3 Transient Response. The shell was

positioned at the same section in the six-foot diameter
shock tube as the square plate was tested previously, with
the central axis of the shell aligned with the axis of the
shock tube. The characteristics of the shock tube at this
location are described in Section 5.1.3. For this set of
experiments, the test section was subjected to air blast
waves having peak normally reflected overpressures dq and
positive durations to of approximately 10 psi and 32 msec,,
respectively. All blast overpressures resulted from the
detonation of 1.5 1b, charges of 60/40 RDX/TNT, Higher
overpressures were experienced at the test section for

this charge weight than during the plate experiment as a
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FIG. 7.9 Acoustic Excitatlion Equipment
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result of modifications to the shock tube compression
chamber,

The transient loading function for the plate
experiment had the form q = qu(t),,where
Q(t) = (1 - t/t ) exp (- t/to). However, for the shell
experiment, the transient loading function was described
by a more complex function having the form
a = q,G(p)Q*(p,t), as a result of the shell surface
curvature, The assumption of axial symmetry of'the load
was exact for Trial 1 since geometric symmetry was
maintained over the complete shock tube cross section, as
shown in Fig. 7.3. In Trial 2, géometric asymmetry was
introduced at the shell's polygonal boundary, as shown in
Fig. 7.4, however its effect on the symmetry of the shell
surface loading function was.thought to be 1nsignif1caht.

The effect of surface curvature on the reflection
of an air blast wave 1s demonstrated in the schlieren
photographs in Fig. 7.11 and in the pressure-time records
in Fig. 7.12 for a cylindrical surface which had a radius
of curvature of 11.7 in., and the same angle of opening of
23 degrees as the spherical shell. This test was conducted
in the DRES 2 x 12 in. rectangular shock tube for an
incident air blast overpressure of approximately 10 psi at
the shell surface. This shock wave had a peak normally
reflected overpressure of 26 psi and a shock front velocity

of 17,300 ips at the cylindrical surface.
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{a) t=0.017 msec ' (b} -t = 0.140 meec

Fig. 7.11 Schlieren Photographs Showing Air Shock Front Reflection by a Cylinderical Serface
ina 2 x 12 in. Shock Tube
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{(a) t =0.017 msec {b) t = 0.140 msec

Fig. 7.11 Schlieren Photographs Showing Air Shock Front Reflection by a Cylinderical Surface
ina 2 x 12 in. Shock Tube
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The rectilinear incident and curvilinear
reflected shock fronts, which appear as dark lines in
schl;eren bhotographs, are shown 1n Fig. T.1lla at
t = 0,017 msec., after the incident shock first reached
the shell apex. The curvilinear shock fronts,
reflected from the shell surface and the rectilinear
shock tube walls, are shown in Fig. 7.1llb at t = 0,140
msec.

The overpressure magnitudes of the shock
fronts travelling across the shell surface are a
function of the spatial varlation of the obliquely
reflected shock wave magnitude., Theoretically, the
reflected overpressure magnitude generally decreases
with increasing angle between the shock front and the
reflecting surface, and the relative magnitude of this
decrease in overpressure generally increases with-:
incident blast overpressure magnitude. Calculations
from equations given by Bleakney and Taub [94] show that
the magnitude of a normally reflected overpressure of
26 psi at the shell apex would decrease by 1.5 per cent
at the shell edges. Extrapolating from curves given in
the "Effects of Nuclear Weapons™ [95], this decrease
appears to be approximately 2 per cent.

The four pressure-time histories in Fig. 7.12,
which were recorded perpendicular to the cylindrical

surface, indicate that there was a larger decrease 1in the
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magnitude of the initial reflected overpressure with
increasing angle of incidence of the shock front than

is predicted by [94] or [95]. However, the pressure
records are distorted by gauge 'ringing' which makes
initial overpressure values difficult to estimate,
Consequently, these records serve merely as an indication
of the general comportment of the transient blast
overpressure for this curved surface. These records

show that pressure disturbances travelling across the
cylindrical surface were not important after t = 0.4 msec,
This implies that, at least for this shell curvature and
blast overpressure, the transient overpressure was
distributed almost uniformly over the shell surface after
the incident shock wave had travelled past the shell apex
to the shell boundary, reflected to the shock tube wall
and then travelled back across the shell surface to 1its
apex which was located at the central axis of the shock
tube.

In the shallow spherical shell experiment, the
shock front arrived at the shell apex 0.34 msec. before
reaching the shell boundary corners which were 5.1 in,
further downstream., Reflectlions from the shock tube wall
crossed the shell apex approximately 3 msec, after the
incident wave first reached the shell. However,
according to equations given by Bleakney and Tagb (941,

the normally reflected overpressure at the shell apex of
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10 psi would decrease in magnitude by only 0,4 per cent
at the shell boundaries., Curves given in [95], Fig.
3.71b, p. 147, show that the maximum decrease in the
reflected overpressure for this shell would range
between 0 and 3.5 per cent, respectively, for incident
overpressures between 2 and 5 psi which are associated
with nérmally reflected overpressures between 4,25 and
11.5 psi, respectively, It was felt that pressure
disturbances travelling across the shell's surface
would not be important for such small variations in
reflected overpressure magnitude, Consequently, radial
varlations in the pressure magnitude J(p) were ignored.
Tﬁe importance of the radial variation in the
time of shock arrival of up to 0.34 msec. which can be
represented by a function Q*(p,t), depends upon the
values of the shell's governing periods of response,
Generally, for most transient loads it is assumed that
structural response can be determined with sufficient
accuracy using values of the load impulse which are
averaged over time intervals as large as one-tenth of
the natural period of a one-degree system (see, for
example, Biggs [96]). Therefore, it is reasonable to
assume that if the shell governing periods of response
were greater than 34 msec, (i.e., shell governing fre-
quencies were less than about 300 cps), then the function

Q*(p,t) could be replaced by the function Q(t). Other-



248

wise, radial variations of the loading time function
should be included in the theoretical analysis. For
normal mode theory, the shell's response to a load
function Q¥(p,t) can be obtained only approximately,
This i1s done by superimposing the shell's response to
loads applied on different portions of the surface
associated with different loading time functions Q(t),
which combine to give an approximate representation of
Q*(p,t).

In the shell Trials 1 and 2, pressures, dis-
placements, strains and accelerations were recorded at
the locations shown in Fig., 7.8 with three Ampex 14-
track tape recorders, using the techniques described in
Section 5.1.3 for the plate experiment., Face-on
reflected overpressures were measured at four positions
around the shell boundary using DRES shear tube piezo-
electric pressure transducers. Shell central displace-
ment was measured with a Bently Nevada non-contacting
inductance transducer. This transducer had a model
3500N detector-driver and a model 308 proximeter coil
with a range of 0,250 inches. Central displacement also
was measured with a linear potentiometer in Trial 1., The
transverse accelerations of the mounts for these central
displacement transducers shown in Fig. 7.8b were measured
with an Endevco pilezoelectric accelerometer. For Trial 2,

in-plane boundary motion of the shell was measured with a
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Bentley Nevada transducer having a model 302 proximeter
coil with a range of 0,100 inches, For Trial 1, in-plane
boundary acceleration was measured with an Endevco
accelerometer. Strains were measured with 150 strain
gauges at 36 unique r,6 middle surface positions in
Triéi 1 and with 34 strain gauges at 9 unique positions
in Trial 2,

The 1n§trumentation block diagram shown in
Fig. 5.5 for the plate experiment 1s representative of
the instruﬁéntation set-up for the shell experiment
except that the Bentley Nevada displacement transducer
signals were conditioned with DRES strain gauge bridge-
balances and amplifiers, Also, some data recorded on
magnetic tape for Trial 2 were read directly into the
DRES IBM 1130 digital computer. This was accomplished
with an SYS model 2113 data acquisition and control
system having a Miniverter 8 channel, 13 bit analogue-
to-digital (A-D) converter multiplexer. The signals,
recorded at 60 ips on magnetic tape for frequencies of
up to 20,000 cps, were played back on the converter at
3 3/4 ips giving a 16 to 1 speed ratio. The 8 tape
channels were read sequentially at a rate of 10,222
samples per second. Thus, 20,444 samples per second of
actual shell response were digitized and stored in the
computer for each tape channel, Assuming two samples are

required to define one response cycle, this gave an A-D
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digitizing capability for response frequencies up to
10,222 cps.

Other magnetic tape data were digitized with
the chart reader and plotted in the manner explained for
the plate experiment in Section 5.1.3. Experimental
strain data and theoretical and experimental sectional
resultants were represented graphically for 8 msec., with
response frequency reproduction of up to 10,222 cps for
Trial 1 and for 10 msec, with frequency reproduction of

up to 10,000 cps for Trial 2.

7.2 Theoretical Shell Enclosing an Hexagphal Base

Theoretical modal frequencies and static
central deflections, computed from elgenvalues and modal
participation functions given in Chapter 6, are given in
Table 7.1 for the first six or seven symmetric modes of
vibration of uniformly loaded shells with hexagonal plan
satisfying the six different edge condition Eqs; (6.1)
through (6.6). Fundamental elgenvalues could not be found
when satisfying Egs. (6.3) through (6.5) for values of
a/R and a/h of 0.390625 and 66,667, respectively, as
explained previously.

It should be recalled that the evaluation of
the modal participation functions was simplified by
integrating over the shell plan area rather than the

actual surface area. However, the errors introduced by
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using this simplification were not large since the shell
plan surface area of 1624 in.? is only 3.29 per cent
smaller than the actual surface area, assuming a = 25 in.
and R = 64 in,

Comparison of the results given previously in
Table 5,2 for the natural frequencies of a square plate
with those in Table 7.1, reveals that the lower modal
frequencies of a shallow shell do not vary as much with
the type of edge conditions satisfied as they do for a
plate. However, changing the geometric parameters a/R
and a/h causes significant variations in the shell lower
modal frequencies, as shown in Table 7.1l when a/R changes
from 0.390625 to 0,25. Comparison of values of central
modal displacements indicatesthat for a shell with
a/R = 0,390625 and a/h = 66,667 satisfying edge condition
Egs. (6.1) or (6.2), modes 2 through 5 govern shell
response with mode 3 dominating, while it appears that if
any of edge condition Egs. (6.3) through (6.6) are
satisfied, modes 1 through 3 govern response with mode 1

dominating.

7.3 Theoretical and Experimental Results for Trial 1

7.3.1 Natural Frequencies and Mode Shapes. Some

of the shell's natural frequencies for Trial 1 are
inaicated in Figs., 7.13 through 7.15 by the various

resonances recorded with strain and accelerometer gauges
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(F) TRANSVERSE ACCELERATION
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for acoustic excitation frequericies ranging between 200
and 3000 cps. Although the absclssa scales have not
been calibrated in these figures, the excltation
frequencies have been noted for most of the significant
resonances in cps and are accurate to approximately

+ 5 cps, Ordinate scales were not calibrated either
since sound level pressures were not kept constant for
most tests. Modal response amplitudes cannot be related
between graphs even approximately since different signal
amplifications may have been used.

The large number of higher resonances obtained
may have resulted in part from increases in the sound
level overpressure occurring when standing waves were
formed at different excitation frequencies. Of course,
shell longitudinal inertia modes were excited in addition
to the transverse inertia modes predicted by the theory.
However, the larger number of resonances obtained at
positions away from the shell edge, as shown 1in Fig. 7.144d
for example, indicates that antisymmetric as well as
symmetric modes may have been excited. The occurrence
of nonsymmetric resonances could have resulted from
asymmetries in the sound pressure distribution as well as
in the shell geometry and edge fixity.

The attempt to attalin better edge clamping by
shimming and adding mass at the shell edges in order to

simulate the edge conditions in Eq, (6.1) produced some
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changes in the modal frequencies. The resonant frequency
ranges obtained for the various clamping attempts are
summarized in Table 7.2 along with comparable modal fre-
quency ranges for shells with a/R = 0,390625 and

a/h = 66,667 satisfying edge condition Egs. (6.1), (6.2),
(6.4) and (6.6).

The experimental resonant frequency ranging
between 400 and 460 cps was not predictable for this shell
geometry and these theoretical edge conditions. Oniashvili
[88] pointed out that eigenvalues k, must be real as the
frequenclies of a shell which can resist bending are always
higher than its membrane frequency. Theoretically then,
the lowest possible shell frequency occurs for k = 0 and
has the value w = 1/R /§7;‘. Assuming R was 64 in., the
minimum shell frequency for any edge conditions would be
495,1 cps. Therefore, it is felt that the occurrence of
this low resonant frequency resulted from either coupling
between the shell and its mount or an effective increase in
the shell radius of curvature R,

Results from Trial 2, which will be given in
Section 7.4, indicate that the occurrence of this low
resonant frequency resulted from properties of the shell
itself rather than the mounting system. However, it should
be noted that the dominant resonant frequency of the shell

aluminium support blocks was about 230 cps when the steel



Table 7.2

Shell Experimental and Theoretical Natural Frequencies for Trial 1

Approxd mate Experimental

Mode Numbers and Frequencies of Theoretical
Shells with a/R = 0.390625 and a/h = 66.667
which have Frequencies Comparable to

+

higher resonances

Nodal Fr ;:3:)' Ranges Experimental Shell
Edge Conditions Satisfied
Egs. (6.1) and (6.2) |Egs. (6.4) and (6.6)
Mode Frequency Mode Frequency
Range (cps) Range (cps)

g 410 to 460 )
* 535 to 560 (2 resonances) | 1 536 to 554 |1,2 497 to ()3,
§ 541 to 568
§ 720 to 760 2 722 to 760 | 3 720 to 797
° « | 898 to %8 4 944, to 1000 | 4 859 to 955
‘f 5_ 1064 to 1242(4 resonances)| 5 1101 0 1239 | 5 1099 to 1226
5 1340 to 1395 6 1398 to 1537 | 6 1372 to 1518
= +
[ -]
o83 higher resonances
55
‘_‘_’. H 402 to 448
Eg 492 to 498 1 497 to ()}
‘: 535 10 570 (2 resonances) | 1 536 to 554 2 541 to 568
g 708 2 722 to 760 3 720 to 797
£ >| 825
® 2| 922 3,4 860 to 883, | 4 895 to 955
k3 5 944 to 1000
5 @ 1 1055 5 1101 t0 1239 | 5 1099 to 1226
< 1212 to 1220
=
=
<

1 This frequency could not be calculated.
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clamping blocks and wedges were removed. These blocks
were excited by a hammer striking the shell surface
rather than by acoustic sound pressure, in order to
obtain a measureable resonance,

The effective shell radius of curvature R
would have to be approximately 80 in., in order to pre-
dict a natural frequency as low as 400 cps using Eq. (6.6)
while it would have to be 100 in. to prédict this low
frequency using Eq. (6.1). It was felt that R approxi-
mated 64 in. much more closely over the shell surface in
Trial 1 than it did in Trial 2 although actual variations
were not measured in Trial 1, Therefore, it 1s postu-
lated that the resonant frequencies between 400 and 460
cps were introduced as a result of surface 'rippling'
which was discussed in Section T7.1l.1.

The dominance near the apex of a resonant
frequency of approximately 540 cps and the occurrence of
another resonant frequency of approximately 500 cps
indicate that there might have been a homogeneous elastic
restraint condition relating FVS(B,é) and Fvv(ﬁ,é), and
also that edge condition Egqs. (6.4) and (6.6) were more
applicable than Egs. (6.1) and (6.2).

This closer approximation of the experimental
shell edge conditions to the roller rather than tpe

clamped edge conditions 1is confirmed by the mode shapes
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shown in Fig. 7.16. These mode shapes agree more closely
with the theoretical mode shapes of a shell satisfying
edge condition Eq., (6.6) shown in the same figure than
they do with the mode shapes of a shell satisfylng edge
condition Eq. (6.1) which were shown in Fig. 6.2,
Complete experimental nodal lines could not be obtained
in all cases, especially for those near the boundary
where the vibration amplitude was smallest. The
asymmetry of some of these mode shapes probably is
indicative of the nonuniformity of the edge condition
satisfaction around the boundary.

7.3.2 Transient Pressures. The average peak

normally reflected overpressures q, and associated
durations to’ as measured for each of the seven 1.5 1lb.
RDX/TNT shots in Trial 1 by three shear tube pressure
gauges located around the cirgumrerence of the shell
mount assembly, were 10.3 psi (+ 0,3 psi) and 32 msec,
(£ 2 méec.), respectively.

It was not considered worthwhile to include
variations in the time of arrival of the shock front
over the shell surface since theoretical solutions could
not be obtained for some of the roller-edge conditions
which were thought to best simulate the experimental edge
conditions. Therefore, the transient load history over

the complete shell surface was assumed to have the form
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q(t) = qo(l - t/to)exp(- 'c/to) » L <t (7.1)
where q, and to were -10,0 psi and 32 msec,,
respectively. The negative overpressure sign signifies
that the transverse or Eﬁ coordinate was chosen as
positive in a direction outward from the front or
convex surface of the shell. The value for q, was
chosen as - 10,0 psi rather than -10.3 psi to account
for the slightly lower obliquely reflected overpressures
which would be initially experienced over much of the
shell surface in comparison to the normally reflected
overpressure experienced by the pressure gauges.,

Typical experimental blast overpressure and
shell strain records are shown in Fig. 7.17.

7.3.3 Transient Response, Solutions for

transverse displacements and sectional resultants,
formulated in Appendix A.2, have been computed for a
clamped shell and a simply supported shell with sliding
clamped edges. These solutions, obtained by summing
the first seven symmetric modes of response, will be
referred to as Theory 1 and Theory 2, respectively.
Geometric parameters used in the calculations were

a =25 in., R = 64 in, and h = 0.375 in. The experi-
mental sectional resultants were computed by relating
radial strains in sector 1 to circumferential strains in
sector 3 using the assumption that each of the six

sectors of the shell surface responded identically,
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This assumption of symmetric response appeared to be very
good on the basis of comparison of the radial strains at
p=0,68, 6 =0° and p = 0,80, & = 0° in sectors 1 and 4
and the circumferential strains at p = 0.64, © = 30° and
p = 0,80, 6 = 30° in sectors 3 and 6.

Damping was not included in the theoretical
response calculations as it was felt that the edge
conditions of Theory 1 and Theory 2 did not simulate the
experimental edge conditions closely enough to make 1ts
inclusion worthwhile., Damping effects, although they were
not negligible, did not appear to be as significant as
for the plate experiment.

Dimensionless theoretical static and maximum
dynamic transverse displacements are plotted along the
radial line © = 0° in Fig. 7.18. It is interesting to
note that, becauée of beating, the ratio of maximum
dynamic-to-static displacemént exceeds 2 in the region of
the shell apex. In contrast, this ratio would not
usually exceed 2 for plates since for most transient
loads the fundamental mode dominates plate résponse. The
inclusion of viscous damping for the shell would cause a
greater reduction in the maximum values near the apex
than in the values closer to the boundary since maximum
values near the apex occurred several oscillations after

maximum values were attained near the boundary.
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TRANSVERSE DISPLACEMENT
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Dimensionless maximum dynamic experimental and
theoretical sectional regultants are plotted along the
radial lines © = 0°, 10°, 20° and 30° in Figs. 7.19 through
7.22. The edge conditions which were satisfied by the
experimental shell at © = 0° can be readily inferred from a
comparison of the theoretical and experimental values of
the sectional resultants shown in Fig. 7.19 near the shell
boundary (p = 0.866, @ = 0°) since the r,© coordihates
coincide with the v,s coordinates along © = 0°, Deviations
from the prescribed edge condition values in this figure are
larger for Theory 2 than Theory 1 primarily because the
numerical solution for Theory 1 was obtalned using a
collocation point at © = 0° while the solution for Theory 2
did not use a collocation point at © = 0°, It is apparent
from a comparison of values of the radial stress resultants
that the boundary of the experimental shell satisfied more
closely the roller edge condition Fvv(ﬁ,é) = 0 than the
clamped condition uv(B,é) = 0, Eliminating edge extension
by setting ess(B,é) = 0 is equivalent to setting
Fss(B,é) = v Fvv(B,é). Comparison of the experimental radial
and circumferential stress resultants reveals that the shell
boundary was not well restricted against edge extension.
Comparison of the values of the radial flexural stress
couples indicates that the experimental shell boundary

satisfied the condition %%(B,é) = 0 quite well., Setting
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w($,0) = 0 results in the relation between the edge flexural
stress couples that Msv(E,é) ==V Mvs(ﬁ,é). Comparison of
the values of the radial and circumferential flexural stress
couples at the boundary shows that the condition of edge
transverse displacement was satisfied quite well for the
experimental shell and for Theory 1 but not quite so well
for Theory 2.

It appears from this discussion of edge condition
satisfaction that a theoretical solution for a clamped shell
with sliding free edges would provide better agreement with
the experimental results than the predictions of either
Theory 1 or Theory 2. However, it probably would be
necessary to use elastic restraints for both edge conditions
in stress function in order to obtain the theoretical
solution most compatible with the experimental results, ét
least with reference to the satisfaction of homogeneous edge
conditions,

Theoretical values of the twisting stress couples
M.op == Mee shown in Figs. 7.20 and 7.21 are larger in
magnitude for the edge conditions of Theory 1 than for those
of Theory 2, however they are smaller than the values of the
flexural stress couples Mre and Mer for either set of edge
conditions. Theoretical values of shear stress resultants
Fre = Fer shown in the same figures are generally smaller in
magnitude than the values of the normal stress resultants

Frr and F__, although the magnitude of Fr approaches that

06 ©



272

of F near the boundary for Theory 2.

o6
Experimental and theoretical central transverse

displacements vs., time are compared in Fig. 7.23. The
experimental displacement record is not too reliable as it
is composed of some gauge mount vibratlon as well, Experi-
mental and theoretical sectional resultants vs. time are
compared at six different positions on the shell surface in
Figs. T.24 through 7.29. It is apparent that there were
experimental frequencies present which are lower than any
predictable theoretically for the shell geometry assumed.
Although the experimental stress couples responded at
frequencies similar to those for Theory 2 over most of the
shell's surface except near the boundary where they
responded at a frequency of about 400 cps, the stress
resultants were governed by frequencles ranging between only
350 and 450 cps which generally decreased towards the
boundary. It is from these results that the hypothesis
regarding the significance of variations in the middle
surface radius of curvature in the form of 'surface rippling’,
discussed in Section 7.1l.1, arose.

A spectral analysis was performed on some of the
combined membrane plus bending strain data recorded in the
radial direction on the front (convex) surface of the shell
using a digital computer programvdeveloped at DRES which
employs the fast Fourier transform. Record lengths of 50

msec. were analysed at a rate of 20,776 samples per second
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giving a maximum frequency reproduction of 10,388 cps, an
accuracy of * 20 cps and a resolvability of 40 cps. Con-
sequently, the presence of frequencies assoclated with the
first two modes of vibration of the experimental shell for
sliding edge conditions, theoretically separated only by
approximately 40 cps (see Table 7.1l), might not be
detected from the analysis of a single strain record,

Some of the more significant response frequenciles
in cps can be summarized in groups of decreasing importance
with respect to stralin at different positions on the shell's

surface as follows:

p=0,0=0° 1) 549

2) 386, 732, 1098

3) 488, 894, 264

4) 610, 1687, 2378, 346, 122
p=0,48, 8=10° 1) 407, 529

2) 366, 122, 752, 1138, 305, 468
p=0,84 0 =0° 1) 407

2) 2142, 529, 285, 752, 894
3) 203, 610, 1138

Frequencies underlined were considered to arise
from ‘'beating' of certain modes, For example, the fre-
quencies of 122 and 142 cps likely repreéent beating between
the modes with frequencies of 407 and 529 cps, and 407 and

549 cps, respectively, These results show that there were
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dominant response frequencies at 507, 529 and 549 cps
(+ 20 cps). This analysis of the spectral representation
of the shell's forced response characteristics agrees
reasonably well with the acoustic excitation measurements

shown in Figs. 7.13 through 7.15.

7.4 Theoretical and Exgerimental Results for Trial 2
7.4.1 Natural Frequencies. Some of the shell's

natural frequencies for Trial 2 are indicated in Fig. 7.30
by the various resonances recorded over the shell surface
with strain gauges for acoustlic excitation frequenciles
ranging between 200 and 1200 cps.

The governing frequency of response over most of
the shell surface occurred at 530 cps with other significant
resonances occurring at approximately 580, 710 and 950 cps.
However, as in Trial 1 when a relatively low frequency of
around 400 cps dominated response near the shell boundary, a
frequency of around 300 cps dominated response in the
boundary region for this trial. Thils low resonant fre-
quency must have resulted from properties of the shell
itself rather than of the mount, since in-plane edge
rigidity of the mount had been virtually eliminated for this
trial,

Accurate experimental mode shapes could not be
obtained for this trial since the boundary was not well

restrained against free transverse vibration, However, the
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mode shape for the 530 cps resonant frequency appeared to be
nearly the same as that for the 540 cps resonant frequency

of Trial 1 which was shown in Fig, 7.16a.

7.4,2 Transient'Pressures. Transient over-

pressures on the shell as ﬁeasured by two shear tube pressure
gauges were unchanged from Trial 1 and consequently were
represented theoretically by Eq. (7.1) where q, and to were
-10.0 psi and 32 msec,, respectively.

7.4.3 Transient Response. Experimental trans-
verse displacement and sectional resultants are compared in
this section with the theoretical solution for the simply
supported shell with sliding clamped edges used previously
for Trial 1.

Experimental and theoretical central transverse
displacements vs, time are compared in Fig. 7.31. This
experimental displacement record is considered to be
reliable since the gauge mount vibration was almost com-
pletely eliminated for these tests. The maximum experimental
deflection—to-shell thickness ratio of 0,05 was well within
the linear response range. The experimental edge in-plane
displacement normal to the boundary shown in the same figure
was almost as large as the transverse central displacement.
This edge displacement appears to have undergone considerable
damping.

Since strains were measured at only nine unique

r,0 positions, it was not possible to plot variations of the
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values of the sectional resultants along radial lines as
was done for Trial 1 when strains were recorded at 36
unique positions. However, experimental and theoretical
sectional resultants vs. time are compared in Figs. 7.32
through 7.37 at the same six positions on the shell surface
at which they were compared in Trial 1 in Figs. 7.24
through 7.29, respectively.

Comparison of experimental sectional resultants
at the shell apex for two different shots 1n Fig. 7.32
reveals that there was some sensitivity, especially in
values of stress resultants, to the changes in edge support
conditions which could occur between successive shots.

Comparison of the values of stress resultants
near the boundary in Figs. 7.29 and 7.37 shows that,
although more edge extension was permitted in Trial 2
than in Trial 1, the normal boundary force did not change
significantly for the two different support arrangements,
at least at 6 = 0°, Comparison of the values of radial
stress couples in these two figures shows that the support
arrangement of Trial 2 introduced an edge stress couple of
opposite sign to the couple which occurs for a clamped
edge with aw(B,E)/av = 0, Comparison of the radial and
circumferential stress couples near the boundary in Fig.
7.37 indicates that the condition of vanishing transverse

edge displacement was not well satisfied since
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Mer(ﬁ,é) ¥ -'VMEG(B’é)’ Transverse edge displacement was
not eliminated completely for Trial 2 since the shell
boundary was supported against transverse motidon only in
one direction over alternate one inch intervals as shown in
Fig. T.la. It appears from these results that the theory
for a simply supported shell with sliding free edges would
provide a better approximation of the experimental edge
conditions than Theory 2.

The results in Figs. 7.31 through 7.36 show that
the shell transverse displacement and sectlonal resultants
responded at frequencies comparable to the theory after a
relatively slow first quarter cycle of response. It 1is
considered that this initial frequency response, noticed
particularly for stress resultants which responded initially
at frequencies even slower than those for Trial 1, was too
much lower than any possible theoretical frequencies to be
accounted for completely by the variation over the shell
surface of the time of arrival of the shock'front. This
time of arrival had a maximum variation of only 0.01
divisions on the time scale of these figurés. Near the shell
boundary the governing response frequency was about 300 cps
as seen from results in Fig., 7.37. This frequency was
predicted from the acoustic excitation tests,

Some of the more significant response frequencies
in cps obtained by spectral analysis can be summarized in

groups of decreasing importance with respect to front radial
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strain at different positions on the shell's surface as

follows:
6=0,0=0° 1) 529
2) 691
3) 610, 1016, 4u7
4) 976, 264, 833
5) 1403, 325, 81, 1098, 1159, 1240,
1362
6) 1870, 1769, 1687, 1545
p = 0,56, @ = 0° 1) =285
2) 325, 529, 81, 468
3) 610, 651
4) 1016, 163, 976, 1138, 1240
5) 813, 1423, 894
p=10,84, 6 =0° 1) 102
2) 325, 529

3) 264, 183, 610
4) 386, 854, 1016, 1403

Frequencies underlined were considered to arise
from beating. This spectral representation of the shell's
forced response agrees reasonably closely with the acoustic

excitation measurements shown in Figs. 7.30a, 7.30c and 7.30d.
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CHAPTER 8
OBSERVATIONS, CONCLUSIONS AND RECOMMENDATIONS

8.1 Observations and Conclusions

8.1.1 Theoretical Analysis of Plates, Some of the
more important results obtained in this thesis from the
theoretical analysis of the linear dynamic symmetric response
of thin elastic plates with regular polygonal boundaries can
be summarized as follows:

1. Eigenvalues, eigenvectors, mode shapes and
modal participétion functions, many of which previously were
unavailable in the literature, are obtained for a number of
different simply supported, clamped and elastically clamped
polygonal plates subjected to uniformly distributed and
central point loads.

2, The trends apparent in the changes of eigenvalues
and mode shapes with boundary shape often agree quite closely
with the trends observed in these functions for shallow
spherical shells, In fact, in many cases eigenvalues and
mode shapes as defined by the nodal lines are identical for
these two structural types for higher modes when they have
the same boundary plan.

3. The pattern of change in the modal frequencies
wy with number of plate sides p was observed to be the same
for both the simply supported and clamped edge conditions.

It was found that for polygons of equivalent surface area,
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increasing p has the following effect on the associated
values of wiz m1 decreases; ®, increases up to p = 4 and
then decreases; ms increases up to p = 7 and then decreases;
0 increases up to p = 9 to 12 and then decreases; and W,
increases,

It was observed that the maximum modal frequency
occurs for the polygon with the least number of sides for
which the nodal lines do not deviate significantly from
circles concentric with the origin, and 1s generally associated
with the polygon having the largest difference between nodal
areas responding in the same direction. This oﬁservation
can be explained physically in the following wéy. As p
decreases, the relative proportion of 'inactive"corner area
increases, so that, as long as the nodal lines maintain their
circular shape, there is an associated increase in the plate
stiffness.and modal frequency. However, the deviation of a
nodal line from the circular shape in order to adjust to the
polygonal boundary shape, is accompanied by a relaxation in
plate stiffness. The increase in the nodal area function
relative to that for a circular boundary is specified by the
function mé, and has a maximum value of about 3 per cent for
any of the first five modes.

This correlation between the maximum modal
frequency and the mode shape, vs, the number of boundary
sides, likely occurs for shallow shells as well, although

enough shells were not investigated numerically to be certain.
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4, The products of terms of different orders n
were omitted in the evaluation of xi which involves
integration over the plate surface area of the square of
the displacement eigenvector. The omission of these
terms considerably simplifies the numerical evaluation of
xt and, it appears; still provides reasonably accurate
values of x° £or boundaries with as few as four sides.

5. An approximate method is ;nfroduced whereby
ﬁodal participation-fupctions are calculafeq;for different
polygonal plates using known values of thése‘fﬁnctions for
a particular polygonal plate with large p. 'Ih this
method, changes in the areas between the nodal lines
pertaining to the different boundary shapes are related to
changes in the modal participation functions, Reasoneably
accurate modal participation functions are obtained for
plates with more than three sides using this simple
technique in spite of the approximations made with regard
to the modal geometry. .

6., The results indicate that plate response will
be represented adequately for practical requirements for most
uniformly distributed load transients when contributions of

modes higher than the second are ignored, and for most central
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point load transients when modes higher than the third
are ignored,

7. It was observed that the static central
deflections of plates having equal surface areas lncrease
with the number of boundary sides p while the associlated
values of the fundamental frequenclies decrease, Lilkely,
these variations can be attributed to the decrease 1n the

relative proportion of 'inactive' corner areas with

increasing p.

8.1.2 Comparison of Theoretical Predictlions and

Experimental Results for a Square Plate. A comparison of

theoretical predictions with the experimental results
obtained when an elastically clamped square plate was
subjected to blast loading revealed the followling points:
1. Satisfactory theoretical predictions for
flexural stress couples can be made for the entire plate
surface even when some membrane strains are present,
providing edge spring constants and viscous damping
coefficients can be estimated with reasonable accuracy.
2, High levels of damping which increased
rapidly with stress level up to a limit, occurred in the
experimental model., This nonlinear damping likely was
attributable to structural interface damping in the plate
mounting system., Alr damping was considered to be

relatively insignificant for most blast overpressures,
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3. The fundamental frequency of the experimental
plate initially decreased with increasing load even more
than could be explained by the large values of viscous
damping observed, It 1is felt that this experimental frequency
decrease might have been an effect of edge conditions in
transverse displacement and normal slope being time-
dependent rather than homogeneous, since it could not
be a nonlinear effect. Theoretically, nonlinear geometry
effects will cause an increase in the frequency with load.
However, this nonlinear hardening effect should have been
practically unnoticeable in this experiment since the
maximum displacement-to-thickness ratio was always less
than 0.3.

I}, The presence of membrane strains in the experi-
mental plate is not accounted for in the present linear theory
nor is it predictable by other nonlinear theories at these
deflections. Measurements of plate boundary motion indicated
that these strains could have arisen from in-plane time-
dependent boundary loading. It is possible that the in-plane
boundary loading frequency was not constant and could have
accounted for the initial plate frequency decrease with
increasing load which was discussed above. However, the
experimental results seem to confirm, as predicted by Dawe
{471, that the effects of bending and membrane action were
essentially uncoupled at the relatively low levels of

membrane strains encountered.
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8.1.3 Theoretical Analysis of Shells. Results

obtained from the theoretical analysis of the linear dynamic
symmetric response of thin shallow spherical shells having
regular polygonal planforms can be summarized by the
following points:

1., Eigenvalues, mode shapes and modal participation
functions are obtained for a number of shells with different
polygonal plans subjected to uniformly distributed and central
point loads, for a wide range of geometric parameters a/R
and a/h and edge condition sets simulating variations of
clamped and roller edges. The only results previously
available, as far as is known, concern the free vibrations
of shells with square and circular plan and the forced
response of shells with circular plan, for just a few of
these edge conditions,

2, Numerical problems which arose in the determin-
ation of fundamental eigenvalues kl’ appear to be associated
with an insensitivity of the circular frequency w to changes
in k which occurs when k" is small in comparison to
12(1 - v®)a*/(Rh)2, Consequently, values of k; were not
always found for small values of k; or large values of the
product of a/R and a/h. The results show that smaller values
of kl are associated with a relaxation in edge restraints and

an increase in the number of boundary sides p, as would be

expected.
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3., Eigenvalues, eigenvectors and modal participation
functions for shells with roller edges satisfyling Fvv(a'a) = 0
are unaffected by edge conditions in stress function and its
derivatives, usually after only the first two or three modes.,
This uncoupling of the stress and transverse displacement
functions for the higher modes 1is assoclated with an
insensitivity of the eigenvalues, eigenvectors and modal
participation functions to changes in a/R and a/h, It 1is
assocliated also with an interchangeability of elgenvalues
and mode shapes for shells and plates having the same
boundary shape and subjected to the same edge conditions in
transverse displacement and its derivatives.,

4, The importance of the contributions of modes
higher than the first to shell response and the response
sensitivity to values of a/R and a/h, both increase
significantly for shells satisfying ess(B,ﬁ) = 0 when the
second edge condition in stress function is Fvs(a'a) =0
rather than Fvv(a,é') = 0, Physically, this implies that
even though edge extension is completely eliminated by
satisfying ¢, (,6) = 0 in conjunction with w(p,8) =0
so that in-plane motion normal to the edge will be very
small in comparison to that associated with the edge
conditions Fvv(s,'é) = Fvs(s,é) = 0, for example, the
additional 'wrinkling' permitted when Fw(a,é) =0 is
satisfied as the second edge condition rather than

FVS(E,E) = 0, drastically changes the shell response
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characteristics,

5. The edge conditions Fvs(a’é) = us(5,§) =0
were satisfied in an attempt to simulate the conditions
uv(B,a) = us(ﬁ,ﬁ) = 0, The equivalence is not exact since
the function aus(5,§)/3v is not necessarily zero for either
set of edge conditions. However, the numerical results
indicate that effects of satisfying elther edge condition
set may be equivalent for p = 12 and that differences might
not be large for smaller p.

It was discovered at a late date that expressions
for in-plane displacements in terms of the stress function
had been obtained for the static case by Reissner [97] and
Fettahlioglu [98]. Therefore, it should be possible to
check the effect of satisfying the two different edge
conditions for any polygonal boundary.

6. The numerical satisfaction of a prescribed
homogeneous edge condition using the boundary collocation
technique generally improves with increasing number of boundary
sides p, with decreasing functional derivative order of w
or F, and with increasing number of boundary collocation
points L up to a maximum number, the value of which
increases with the digital computational accuracy used.
Best satisfaction is achieved when boundary collocation
points are located with closer angular spacing towards
the boundary corners where larger magnitude errors always

tend to occur, However, it would be very difficult to
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specify the one best spacing for each boundary shape and
number of boundary collocation points used, since any
particular collocation point spacing'will give best overall
satisfaction for only one edge condition function. This 1s
true since the degree of edge condition satisfaction
depends upon the 1nterior‘spatial variations of the edge
condition functions, and these functions are linearly
independent.

These observations and conclusions, made
specifically from observing the edge condition
satisfaction of a clamped shell, should apply in general.

Although the application of the boundary
collocation technique is not new, even today few
investigations have been made specifically into the most
suitable choice of collocation points, as Collatz [99]
pointed out in 1959. It has been stated for the static
solution of these shells that the number and location of
the collocation points is not of paramount significance
[92]. However, in the present dynamic solution these
factors are not always negligible, For example, both the
number and the location of the points influenced
considerably the ability to determine kl for some shells
with roller edges. Consequently, in many cases the number
and sometimes the location of the collocation points have
been given along with the associated numerical results.

Lo, Niedenfuhr and Leissa [100] have suggested

that overall edge condition satisfaction can be improved
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ﬁy obtaining more edge condition equations than unknown
integration constants and then using a least squares
procedure to minimize errors in the integration constants
solved. This approach does not appear to be vallid since
it is impossible to simultaneously minimize the errors

in two linearly independent functions with one condition.,
In addition, since the practical application of the
boundary collocation technique depends upon the truncation
of the functional series, it might be more advantageous to
use the extra edge condition equatlons to compute
additional terms in the functional series, depending upon

the rapidity of the series convergence,

8.1.4 Comparison of Theoretical Predictions and

Exgerimental Results for a Shallow Shell with an Hexagonal

' Base, Comparisons of theoretical predictions with the

experimental results obtained when a shallow spherical
shell was subjected to acoustic and blast loading for two
different sets of boundary restraints, revealed the
following points:

l, Shell governing modal frequencies for uniform
loads as measured from acoustic excitation tests provided a
good estimation of the governing frequency components of the

shell's response to blast loads,
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2, Comparison of experimental and theoretical
mode shapes along with natural frequencies provided a
good indication as to the experimental edge conditions
“which actually governed shell response. The comparison
of mode shapes is considered to be essential, since for
certain edge conditions some modal frequencles are not
'well separated' and could be overlooked in an analysis
of the frequency spectrum alone, Closely spaced modal
frequencies occur, for example, for the first two modes
of a shell with roller edges. Also, frequencies of
different modes of the same shell satisfying different
theoretical edge conditions could be almost identical,
making it difficult to ascertain from a frequency
comparison alone the actual experimental edge condi-
tions satisfied. This difficulty arose for the experi-
mental shell as'the theoretical frequencies of the first
three modes for the simply supported shell are almost
identical to the frequencies of modes 2, 3 and 4, res-
pectively, for the simply supported shell with sliding
clamped edges.

3, Comparison of theoretical predictions and
experimental results for the response of the shell to
blast loading revealed only fair agreement., Some experi-
mental frequencies of response occurred which were much
lower than any predictable using the present theory.

These lower response frequencies became more dominant
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toward the shell boundary and affected the response
of the stress resultants more than the stress couples.,

The discrepancies between theory and experi-
ment occurred for several reasons, First, theoretical
solutions could not be obtained for the edge conditions
best simulating the two different sets of experimental
edge conditions. Second, spatial and time variations
in the blast oVerpressure over the shell surface were
not accounted for in the theory. Third, damping was not
included in the thoeretical calculations, although it
could have been quite readily. Fourth, the experimental
shell geometry deviated from the properties of perfect
symmetry, uniform shell thickness and constant middle
surface radius of curvature,all of which were assumed
in the theory. Fifth, experimental edge conditions were
not uniform around the boundary and were nonhomogeneous.

The occurrence of the low experimental res-
ponse frequencies was considered to be attributable
principally to variations in the shell's radius of
curvature and not to mount vibrations since these low
frequencies occurred even when ln-plane boundary
rigidity had been virtually eliminated.

4, It appears that it is not practical to
simulate the clamped edge conditions in stress function
uv(B,g) = u (,6) = 0, at least for a shell having a

surface area as large as that of the experimental shell
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(1.e. 1670 in.2?) which is subjected to uniform loads.

It is felt that in most practical applications the edge
conditions in stress function will more closely
approximate the sliding free edge conditions

Fvv(ﬁ,e) = Fvs(s,e) = 0 than the clamped edge conditions,

8.2 Recommendations

Certain limitations in the theory presented for
the dynamic response of these plate and shell structures
became apparent from the numerical and experimental
investigations., However, the major effort extended to
investigate the ability of the theory to predict the response
of the wide range of structural shapes for which it is
applicable to the variety of transient load distributions
which are permissable, naturally curtailed detailed
investigations in particular areas. Consequently, there

are several problems which are recommended for future

investigation., These are:

1. Modal participation functions x% should be

evaluated without neglecting the products of terms of
different orders n, for modes having nodal lines which
deviate significantly from circles concentric with the
origin., This should be done for all modes of response

of plates and shells with 3 and 4 sides,
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2, The accuracy of the approximate solutilons

for these problems is dependent upon the degree of
satisfaction of edge conditions achleved using the bqundary
collocation technique, The accuracy of the solutions
obtained in this thesis generally decreases with the
number of boundary sides p, since the general solutions
have been formulated in polar coordinates. However, errors
in fundamental eigenvalues do increase with p for large p.
Therefore, it should prove beneficial to formulate solutions
to these problems in Cartesian coordinates, especially for
plates and shells having boundaries with 3 and 4 sides, 1In
addition, the use of general solutions formulated in
Cartesian rather than polar coordinates should yield more
readily approximate solutions for plates and shells having
rectangular boundaries with large aspect ratios and rhombic
boundaries with small acute angles. This has been shown for
the statical case by Y, R, Kan [101] in the analysis of
uniformly loaded rectangular and rhombic plates, Kan
obtained approximate solutions for these problems by
applying the boundary collocation technique to the general
solution of the biharmonic equation formulated in Cartesian
coordinates.,

3, The effect of introducing time-dependent edge
conditions should be investigated theoretically. It will
be relatively easy to introduce the time-dependent edge

conditions n(3,8,t) = &'(t) and F__(5,6,t) = £ (t)
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or ess(5,§,t) = £2(t) when either of the latter two edge
conditions is associated with FVS(B,E) = 0, since the

1,1
assoclated modal participation functioms x,’' , x;’i and

X;’i are simply multiples of the zero-order terms of x%,
the modal participation functions related to the load
distribution. The experimental results given for the
elastically clamped square plate subjected to blast loading
should provide a model for testing the practical
applicability of introducing the time-dependent edge
conditions n(p,8,t) = €' (t) and Mvs(a,‘é,t)--

- B an(3,8,t)/3v = €2%(t).

i, The theory for the dynamic response of plates
should be extended to include the possibility of in-plane
loading and membrane stresses. This will prove useful in
practice even for cases where only the transient transverse
loads are thought to be significant, since in-plane
loading will always occur to some degree at the edge of
the plate as the plate will ﬁe elastically clamped to a
mount which will be excited at its natural frequencies
as well,

5, There are three areas related specifically
to the dynamic response of shallow spherical shells which
require further investigatioﬁ.

Firstly, there shoﬁld be additional numerical
studies in which the satisfaction of some of the various

theoretical boundary conditions presented in this thesis

are attempted in more detail, In particular, the effect
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of varying the elastic clamping coefficlents B% and B%
should be evaluated and additional effort should be made
to obtain fundamental eigenvalues for shells with roller
edges. Edge conditions in stress function which are the
equivalent of the conditions us(B,E) = uv(5,§) =0

and Fvv(B,‘é) - B%uv(b',‘é) = 0, where 8‘1‘ is an elastic
clamping constant, should be formulated and satisfied
for some numerical examples.

Secondly, modal participation functions should
be computed for loads distributed over annular rings
on the shell surface, so that different load time
functions Q(t) can be applied simultaneously to different
portions of the shell surface using superposition. Then
the effect of variations in time of arrival at the
shell surface of a rectilinear shock front, for example,
can be studied and the maximum variations in load time
functions over the shell surface which can be ignored
without introducing significant errors in the theoretical
solution can be tabulated versus shell governing fre-
quencles, .

Thirdly, the effecé of variations in shell
geometry from the ideal, partiéularly variations in
radius of curvature, should be studied both experi-
mentally and theoretically in relation to values of
the shell parameters a/R and a/h,

6. Experimental values of viscous damping

given in this thesis indicate the desirability of
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including the possibility of nonlinear amplitude-dependent
damping in the theoretical models,

7. An elastic edge condition relating transverse
displacement to Kirchoff's effective transverse'shearing
force should be formulated for both plates énd shells. The
applicability of this condition. can be tested by a theoretical
comparison with the experimental results for the plate,

8. A study should be conducted into the
antisymmetric vibrations of these plates and shells, This
can be done theoretically by replacing cos pné by sin pnoé
in the expressions for transverse displacement w and stress
function F, and replacing cos pm6 by sin pmd in the
expression for the transverse loading function q. In this
analysis, p will représent the number of antisymmetries in
the load over the surface, while the characteristic segment
for which the edge conditions must be satisfied numerically
will still be defined by 0 < 6 < n/p. For example, p =1
for a load which is antisymmetric about a shell plan
diameter while p equals the number of sides of the regular
polygonél boundary for a load which is antisymmetric about
each of the radial lines passing through the midpolnts of

the boundary sides,
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9. Predictions,for the response of these plétes
ahd shells to central point loads usidg'régﬁlér solutions
do not satisfy the mathematical requireﬁenﬁ of infinite‘
tfansverse shear at the point'load. Consequently,
results using solutions which retain the singular terms
should be compafed to the. present results. Inclusion of
an inner boundary solution will be relatively easy as

long as the outer boundary solution remains unchanged.
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APPENDIX A
SECTIONAL RESULTANTS

A.1 Plate Sectional Resultants

The sectional resultants for plates subject to
time-dependent edge condition Eqs. (3.152) and (3.15b),
obtained by substituting Egs. (2.3), (2.12), (2.13) and
(2.19) into Egs. (2.11a) through (2.l1lle), are:

a @® i i pny?
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where u = kip.

The derivatives of Bessel functions can be

expressed in terms of lower order derivatives as
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A.2 Shell Sectional Resultants

The sectlional resultants. for shells subject to
time-dependent edge condition Egs. (3.15) and (3.16),
obtained by substituting Egqs. (3.3), (3.25), (3.27) and
(3.28) into Egs. (3.19a) through (3.19f), are:
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APPENDIX B

ORTHOGONALITY OF EIGENVECTORS

B.1l Orthogonalitx of Plate Eigenvectors
The orthogonality of_the eigenvectors for plates,

Eq. (2.13),

@
ﬁi(p.e) = ) Al g (k o) + 13:l I (k p)] cos pnb

n=0" pn pn 1 pn pn 1 (B.1)

which are associated with homogeneous edge conditions can
be shown by means of the approach used by Nowackil £331].

The equation of free undamped plate vibrations,

Eq. (2.5), 1is

ma~ aznl(p,e.t)

V“nl(p,e,t) + = 0, (B.2)

D ot ?

Introducing

nl(p.e,t) = 7(p,0) exp(iuwt) (B.3)

and considering two different symmetric modes of vibration

7l(p,6) and 7 (p,0) yields

v*al(p,0) = k; .ﬁi(p,e) (B.4)
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and
J
v*7d (p,8) = k;'ﬁ' (p,0), (B.5)
where
[ mah 2
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i D 1

Comparison of Egs. (B.4) and (B.5) with the
differential equation of static plate deflection
3

a
v*n(p,6) =>4 (p,6) (B.6)

shows that ﬁi(p,e) and ﬁj(p,e) can be considered as the

deflections for the loads

D 1 D =3
—k"* n (p,8) and ——k“ n (p,0), respectively.
a’3 1 a® J

Applying Betti's reciprocal theorem for stable conservative
elastic systems with respect to the external work done on

the characteristic plate segment area S yields

J
rfn (p,0 ) — k" n (p 8)ds -ffn (p,0) —k;' (p,0)dS, (B.7)
a

and thus
5 .
(02 - mzz[ry n (p,0) ﬁj(p,e)dS = 0, (B.8)
i J _

S
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If the motions represented by n (p,e) and nd(p,e) have

different frequencies and vy ¥ y(p,0), then

fjﬁi(p,e) #(p,00as = 0, 1 # 3, (8.9)
A |

proving orthogonality of the plate eigenvectors.

B.2 Orthogonalitz of Shell'Eisenvectors
The orthogonality of the transverse displace-

ment eigenvectors for shells, Eq. (3.28a),

n(p,e). Z [-k2 a5 (ko) + kB I (k) +
n=0 i pnpn 1 i pn pn

i1 bpm
+ 411 (pn + 1)CT »p ]cos pneé (B.10)

pn
which are associated with homogeneous edge conditions
can be shown by means of the variational approach used
by Rayleigh [8].
The principle of virtual work for dynamic

systems states

32n1(P.ent)
SH +ff7 ~o? én,(p,0,t)ds = 0, (B.11)

S
where @I is the total potential energy of deformation and,

for symmetric response,S is the surface area of the

shell characteristic segment.
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Substituting v
nl(p,ﬂ.t) = N(p,0)exp(iwt) (B.12)
into Eq. (B.1ll) yields
8l = msz'ml(p,O,t)Gnl(p,e,‘b)dS . (B.13)
S

Assuming nl(p,e,t) refers to the motion
corresponding to the i-th eigenvector ﬁi(p,e) and
Gnl(p,e,t) refers to the motion corresponding to

the j-th eigenvector ﬁJ(p,e) yields

Il = m; exp(21wt)‘j;ﬁi(p.e)ﬁj(p,e)ds . (B,14)
S

Conversely, assuming nl(p,e,t) varies as ﬁj(p,e)

and 6n1(p,e,t) as ﬁi(p,e) yields

ST = u? exp( zm)ffyﬁ"(p,e)'ﬁ“(p,e)ds , (B.15)
S
and thus
2 2 =1 =J
(07 = w2) fyn (0,8)7 (p,0)dS = 0 . (B.16)
S

If the motions represented by ﬁi(p,e) and ﬁj(p,e)

have different frequencies and y ¥ v(p,0), then

ffﬁi(p,e)ﬁj(p,e)ds =0, (B.17)
S

proving orthogonality of the shell transverse

displacement eigenvectors.,
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APPENDIX C

COMPUTER PROGRAMS

C.1 Plate Program
The plate digital computer program calculates

the symmetric eligenvalues, eigenvectors, modal partici-
pation functions for uniformly distributed and central
point loads, transverse displacements and sectional
resultants vs, time including viscous damping effects

for regular polygonal plates subjected to various idealized
transient load shapes and the elastically clamped
homogeneous edge condition Egqs. (2.10a) and (2,10b),

The program has been written for use on fhe
University of Alberta IBM 360/67 digital computer. Double
precision (16 figure) accuracy is used in all computations.
It has been modified for use on the DRES IBM 1130 digital
computer on which it uses only ten figure computational
accuracy. A high order computational accuracy and a large
underflow-overflow exponent range ( 10%7¢ on the IBM 360/67)
are features required in order to invert accurately some of
the larger boundary equation matrices which are ill-
conditioned principally due to the presence of higher
orders of the Bessel functions Jpn and Ipn'

Other computer programs which input

experimental analogue data and output experimental and
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theoretical strains, stresses, displacements and sectional
resultants vs. time in the form of X-Y plots and determine
theoretical mode shapes have been written for the DRES IBM
1130 computer but are not included in this section.

The plate program compilation from the Fortran
source deck,which uses approximately 52,000 core bytes,
program listing and formation of an object deck require a
total of 2.0 minutes execution time on the IBM 360/67.
Program execution on this computer 1nvolvihg the searéh
for one eigenvalue and the calculation of the response of
the associated mode of vibration, excluding'compilation
time, requires approximately 0.5 minutes for a solution
using three collocation points on the characteristic
segment boundary, 0.8 minutes for four collocation points,
1.4 minutes for six collocation points and 4,8 minutes for
ten collocation points. The largest portion of the
computer time required for each of these solutions is used
to solve the modal'participation functions.,

A typical data set which causes the program to
search for two symmetric modes of vibration of the partially
clémped square plafe discussed in Chapter 5 and compute the
undamped modal response at two positions on the platé for
an exponentially decaying blast'load is listed by card

number below:



Data
Card

1
2
3
I
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

4 97,5E-3 2121,3E-2 75,7E=2

3.3E-1

7 0.0 10,0 20,0 30.0 35.0 40.0 45,0

4,6E-1 6.5E-1 0.1E-1
1 o.iE+05 0,0E+00
46 20 20
3
0,00E+00
1.0E+3
150 0.1E-3  15,0E-3 1,00
1
2
1 0.00 0.000
13.859 0.000
1 50 0.1E-3 15,0E-3 1,00
1
2
0.00 0.000
13.859 0.000
99

0.5E-6

340

1.0E+7
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A description of the data correlation to the
general polygonal plate vibration problem 1s given in
Table C.l. Problems of determinant value underflow

=36

(i.e. values <10’76 on the IBM 360/67 or <10 on the

IBM 1130), are automatically corrected by the program
which obtains a finite determinant value by incremen-
ting the magnitude of the matrix element multiplier,
data number {9a} by multiples of 102. However, an
initial choice of the matrix element multiplier which
results in determinant value overflow (i.e. values >1076
on the IBM 360/67 or >1036 on the IBM 1130) will cause
a computer ‘hang-up'.

The program consists of a mainline routine
which supervises the program execution according to
options specified in the data, and nine subroutines.
Three of these subroutines DMINV, BESJ and BESI are
modifications of standard IBM subroutines. The principal
functions of each of these routines are listed in Table
C.2. A flow diagram of the possible program executlon
paths through the routines is shown in Fig. C.1.

In order to facilitate data input and output
on any computer, card input and line output variables
termed IREAD and IPRIN, respectively, are defined in
routine VIBRA and are used in all input/output Fortran
statements., The computer line output is labelled

appropriately with the exception that the values 0l to
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Table C.1

Explanation of Computer Data for Plates

Data Number Format Use
Card
1l a I2 Number of boundary sides p
b El0,1 Density vg
c E10,1 Circumscribing boundary radlus
a (in,) o
a E10.1 Thickness h (in,)
e E10.1 Poisson's ratio v
f E10,1 Young's modulus E (psi)
2 a E1l0,0 = 1,E-50 for IBM 360/67;
= 1,E-~32 for IBM 1130, A constant
used for the backward recurrence
series computation of J and I
pn pn
b I5 Number of terms calculated in back-
ward recurrence series, This number
should be at least an order of
10 greater than the highest order
Bessel function required (i.e.
> p(L-2) + 11)
3 a I5 Number of boundary collocation
points L
b.... F5.1,...| 6 locations of boundary collocation
(t3a} points (degrees)., Program is
numbers) dimensioned for a maximum of 10
collocation points on the charac-
teristic segment boundary
4 a El0,.1 Initial k/a value starting search
for eigenvalues
b E10.1 Final k/a value ending search for

eigenvalues
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Table C.l1 (continued)

Data Number

Card

Format

Use

E10.1
E10.1

I2

E10.1
E10.1

I3

I3,13

I2

E10.0

E10.0

Increment in k/a value

Decimal place error in eigenvalues,
ki/a

=1= clamped or partially clamped
edge condition
=2= simply supported edge condition

Edge clamping factor BT (ib.)

Viscous damping ratio of critical
damping ci/wi

Even number of boundary points used
in Simpson's formula for numerical
integration over 6 when calculating
modal participation functions

Maximum number of terms a used in
calculating ¢9 and ¢1°

=1 search for eigenvalues only and
omit cards 10 to 19...

=2z use the sum of values {4al}! and
{4b} as an eigenvalue and compute
the associated elgenvector and a
forced solution

=3= search for eigenvalues, compute
eigenvectors and forced solutions

=0= compute modal participation
functions i 3
= any value = use this value as X _/X
and omit calculation of modal 1 e
participation functions

Controls the magnitude of the
boundary equation matrix determinant
value, Each element of the matrix
is multiplied by this value thereby
eliminating some computer underflow
and overflow,

! {4a} represents the first number on the fourth data card,
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(continued)

Data
Card

Number

Format

Use

10

11

I2

I3

E10.1

E10.1

E10.1
I2

L
=
|

= exponentially time-
decaying load

linearly time-decaying
load

flat impulse

viscously damped structure
subject to a linearly
time-decaying load
viscously damped structure
subject to an exponentially
time~decaying load

U
n
]

=W
]|

(]
U
]

Number of time instants for
which transverse displacement
and sectional resultants are
calculated at each r,6.
location

Time interval (seconds) between
calculation of transverse
displacement and sectional
resultants at each r,6

location

Positive duration of overpressure
(seconds). Response cannot be
calculated after this time

Reference overpressure qo(psi)

Number controlling output of
transverse displacement and
sectional resultants versus
time to be on disk or paper.
This feature was used on the
IBM 1130 but is not shown in
the program listing. Changes
must be made in subroutine
RESUL for its use,




345

Table C.l1 (continued)

Data Number Format Use
Card
12 a I2 Number of r,0 locations at
which transverse displacement
and sectional resultants are
calculated
13,14, a F10.3 Radius r of position of
oo calculation (in,)
({12a}
cards) b Angle 6 of position of
’ calculation (deg.)

15,16, Cards 10 to 14... are repeated
17,18, once for each symmetric mode
poeee of vibration which will be

found between the initial k/a

value given by {4a} and the

final k/a value given by {i4b}
20 a I2 =0= program restarted with a

new data set following
=99= end of program execution,

This card will be read when
the k/a value exceeds the
final k/a value given by {4b}l.
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\/

EK?I\D START
! _
Y
>{4p}! .
C k<{lp} _ ESJ
)\ -~ BLOND
k
Ze{4b)
y {3a}t1mes BESI
F»{%E) |
{Tal}=1 : E_ > NV
{7a}=3 and a2 D
error in E;ud or
a [72}=3 a2nd error
\"/ fn k<{3d}
l 2 BESJ
# B {8a}=o’:
2 {8a}r;5 < FOURI /8w |
Y ({Ga?ggl)':?fig)x )SIMP
+2 x({6a}+1)x{6blx
(I~1)times
BESJ
-< (Tl Za}time:::.‘ RESUL
BESI

1
Numbers in brackets { } refer to data as outlined in Table C.l.

FIG. C.1 Flow Diagram of Plate Computer Program
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04 and 05 to 010 refer to the modal participation
coefficients ¢7 through ¢1° and ¢1 through ¢s,
respectively, Calculation of the sectional resultants is
inaccurate in the region near the plate center since the
derivatives of the Bessel functions are calculated from
their lower order derivatives., If values of sectional
resultants are desired in this region,'it may be necessary
* to reduce the accuracy specified for the Bessel functions
computed for subroutine RESUL by increasing the order of
magnitude of the variable termed ERR in this subroutine.

The Fortran source program is listed below:
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C.2 Shell Program
The shell digital computer program calculates the

symmetric eigenvalues, eigenvectors, modal participation
functions for uniformly distributed and central point loads,
transverse displacements and sectional resultants vs., time
including viscous damping effects for shallow spherical
shells with regular polygonal boundaries subjected to
various idealized transient load shapes and the elastically
clamped homogeneous edge condition Egs. (3.22) and (3.24),
The program has been written for the University of
Alberta IBM 360/67 digital computer using double precision
computation. The free vibration part of the program has
been modified for usé on the DRES IBM 1130 computer, Since
the boundary equation elements are in dimensional form in
this program, ill-conditioning results from the presence of
terms of the form rR as well as from the higher orders of

the Bessel functions J and I .,
pn pn

Other programs used on the DRES IBM 1130 in the
plate analysis and mentioned in Appendix C.1 were modified
for the shell analysis as well., In addition, a program

2 and 3& associated with the

calculating the functions g
nonhomogeneous time-dependent edge conditions, Egs. (3.21)
and (3.23),has been written for the IBM 1130. These

programs are not included.
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The shell program compilation from the Fortran
source deck, which uses approximately 84,000 core bytes,
program listing and formation of an object deck require
a total of 3.6 minutes execution time on the IBM 360/67.
Program execution on the IBM 360/67 for the complete
solution of one modé of vibration requires approximately
one minute for a solution using three collocation points
and two minutes for a solution using five collocation
points. Accurate execution times for different solutions
are not known since a solution using five collocation
points took as long as 4.25 minutes when the computer
monitor was at level 13 and as little as 1.15 minutes when
the monitor was at level 16,

A typical data set which causes the program to
search for one symmetric mode of vibration of a simply
supported shell with 12 sides and solve the undamped modal
response at three positions on the shell surface for an
exponentially decaying blast load is listed by card

‘number below:



. .;' ! i', a | ;§55f:{5$;

Data
Card .
1 12 .97.5E-323267.2E-3 37.5E-2  3.3E-1  1.0E47 -~ 64.0E+0
2 1.E-50 50 B |
3 4 2,0 7.0 11.0 15,0 |
4 0.1E-1  3.0E-1  0.2E-1 0.5E-6
5 6 1,0E-10 0,0E+00  0.0E+00
6 36 20 20
7 3
8 0.0E+0
9 1.0E+0
10 150 0.2E-4 30.0E-3+10.0
1 1
12 3
13 0.000 0.000
14 5.000 0.000
15 22,476 0.000
16 99

The data correlation to the general shell vibration

problem follows the explanation given for plate data in
Table C.l1 except for the modifications which are given in

Table C.3. -~ -
oF(p,0) _ 9F(p,0)

= 0 and
ov 9s

=0

The edge conditions

which are employed when data {Sa}l = 3, 4, 5 or 7, were

postulated by Oniashvili [88] to represent vanishing
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in-plane displacements perpendicular and tangential to the

shell edge, respectively.

Satisfaction of these edge

conditions did not yield satisfactory fundamental frequencies

for clamped shells with 12 and 15-sided polygonal boundaries.

Table C.3

Modifications of Plate Computer Data for Shells

Data Number Format Use
Card
1 g E10,.1 Radius of curvature of shell middle
surface R (in.)
2 b I5 Number of terms calculated in
backward recurrence series;
should be 2 p(L-l1l) + 11
3 byeese F5.1 0 locations of boundary collocation
(t3a} points (deg.). Program is
numbers) dimensioned for L £ 7
5 a I2 Number designating shell homogeneous

edge conditions to be satisfiled;
=l=n=M__-B 3n/dV=F  =Fyg-B €;5=0
=2sn=M =F  =F -8 €55=0
:3§n=Mvs-BI3n/8v=aF/av=ess=0
-u;nsmvS-slan/av=aF/as+aF/av=ess=o
-Ssncuvs-slan/av=aFlas-3F/av=essso
ss
=7En-Mvs-Blan/3v=3F/3v=3F/as=0

=6En=Mvs-Blan/av=Fvs=e =0

If B, =0 in {5b} when {5a} = 1, 3,
4, 5, 6, or 7, then edge condition
M,; is not computed,
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Table C.3 (continued)

ata Number Format Use

Card

5 d E10.1 | Edge clamping factor B%(lb./in.)
7 b I2 =]1= enter subroutine NONDIS and

search for a determinant value
which becomes progressively
smaller in magnitude but does not
change sign

=0= do not enter subroutine
NONDIS

The shell program mainline routine and subroutines
perform the same functions as the plate routines with the
same names as outlined in Table C.2 and the shell program
execution essentially follows the flow diagram for plates
shown in Fig. C.1l. In order to accommodate the shell
program on the IBM 360/67 it was necessary to divide the
subroutine BLOND into five shorter subroutines called
BLOND, BLOND2, BLOND3, BLOND4, and BLOND5,and the subroutine
FOURI into two shorter subroutines called FOURI and FOURIZ,
One additional subroutine NONDIS was written for the
shell program. This routine is entered only when data
{7b} = 1. It searches for eigenvalues for which the
determinant value magnitude becomes progressively smaller
but dces not change in s.gn. This routine was used in an

unsuccessful attempt to find eigenvalues for clamped shells
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using the edge conditions of vanishing in-plane dis-
placements as postulated by Onliashvili,

The shell computer output is labelled appro-
priately with the exception that the values of 01 to
012 and 013 to 018 refer to the modal participation
coefficients ¢7 through ¢1a apd ¢1 through ¢s,
respectively.

The Fortran source program, except for the
subroutines BESJ, BESI and SIMP which are unchanged

from the plate program, 1s listed below:



370

o, Z it
HE W =X [ L3 L3 [ o
wa ~ WD) Q. Q. a. Q. Q.
Xxa « OV X z b z =
We N e < < < < e
o J Wk a a o a a
-k e QU ) [ L3 L *
W o e - S * - ) - ] ~
Qm = oL L) [ [ [ PS ~N
ce Z O o o) 0 0 © o
D & el (11] (11] [19] (1] (¢0] o
-0 < MZT [ o - L) LY -4
We - ON 4 Z z z Z w
QX Z e ) ) ] e " -
ay) & L) (14 o o o o [}
Wwe wm ol a Qa Q. Q o .
Ol Z2 e=Q - (] - - - o
[c4® ) e Wo o -« L3 *® [ ) L3 oo
e O XeQ 2] v v} v) v) (a)
g Z2 WrE -4 4 4 Z 2
o O *OL Ww w w w u °
v U Qva (7] v v ] () ~ v
S Z Oee - -y () () = ~ (o]
[ e S aOL Ly Ly Ly [ [y [y aQa
~g o X m.GT - | = - [ tn o
= g ] (V) (V) v v (V) ® o
NeQ T ol L [ [ * . )] —
oo Z Wie < < < ! -4 -t S
et & 0 (V] 1 U] 9 9 w X
NLO ™ elWn w w w w w . 4 o
—eal) 4 NO& x > > % = X L - -
Qe 4 e o o o o o - a o
« Q0 o We=e) * L) L * * 2 * N
~oD N Wie o~ o~ N N o~ w ") °
~a e u alur - - ) ~ u — o v
VN >00 -~ -4 -4 -4 (V] Q w
de all, o LX) L [ 3 - L] L — L *
dENS ~ LT e - 4 L) (o) [ ] [1'S - [ ]
wWeNw 4 =N - - -4 - -4 W - | °
Teoed d oN | - - 4 - w a~ v
Ni~N e o« QOUN [ [} * L) [ (o] ot V)
ot - Lo ~ - - - - - LV - o)W
Al J XL o w w wl w w [T \Yol:'4
<NWW o oFof 4t o o o OO0 [\ () o ~ o [+ 4 ouwaa
ZNeO ~ VY e * e M e ~N o N e - w Z e
Oe>e O ZXZ o~ o w e o W o - w o w o 0 w - ~oriZ ®
W ard = LI Q - X ~ - N~ o e € O « @ ~oo N o]
T a0 el (] e W o~ N i NN w 9 w o o w ~0D kOO0 W=t
d-=r o) Ve . n e o a o oljule o ® M R4 1)) « & O *0O=~ Woa.
ON o, ==ZUWV -~ © & O - O NOO~ « X o0 X V™ (3] o ~~L O~ Z
asqQe 00«0 - O o o N & NI+N Ld & WOVN o e g < o ONIE —~O=N~L
~<LX NZ- oL @ ~ [+ o~ & ompirtes JO e MNe O e (o] ~ W & a0 AW 20O~~~
AULEE ZeLe O L ~ X~ X0 NO~L ~F O~ ~M N ~l < ~AeN EE~ririrt
O~ alll e Z_ji— e~ g O T~ ZTWWE e o~ UN oL~ U e . ~ Ze NOHZ o0
W e —=-Uwld ) e anNn W wonod) & N~ Ue N~ UN -~ -0 ~ei) % & 0 =000
TV 24 ZEWAO = I NO o+ KA+ K- w NNO- «3 NQ~ LN N Ok = OXT =-WONEILL
NZZWe o0 eeo D - 1ZZ 00 uwZZ uwununl A ~uZZ 1IN wZzZ | 1020. Z OO0~ XOL 0. ~luw
00QV =l ) a VZu=-00 | +00 1 00 | AW W~~100 UL~ J00 L~HOFQO0ZE O o@D NXW~ X
— ) Ze WWNOZN=OOMZJI 4 Ferilldd WS xwaul-wd SWNWAD JFWAZ e dLrtd O MO~ ~ e
NZLeZ0OWEAN N~ IOZ WM Wk &Cod OQDU.ONXWomo Wiy oMM WWE WwWomonm § Wi\ =
CLZ0O s oL _J ¢DZ NZ O Qr-0Ouw. TN U NN R R ] | [aYn]Ne X ] QOULO~HE WV ow<aCO O-—wglWg

AREMFANEB'ZAILN(LT(LL)(CT(LL)(lZ(IIF:(FLL)((:TFLL)((:T(FLPNL)GTMTLGDMTMDD
COETES~Z2DI-EWX I ~SJd0 o J00 =T Wi Jddad4a 0 W JdJdado w dIZEWID w0 I~ LL
BIIOEEQIOEURPASFAOFAAAFTOFAAAFUUFREERFEAAAFFROEAAAFFROFEAASAAFROOAOEOROEE
IVDCDBL’DDSIICIICGICCRICGICCRISSIFDDFIDCCRIIFGDCCRIIFGIDCDICRINFGCGRFWFRR
> Nt -~ . -t -t - - —
. N~ - O N © 3 no o N 0N NN S
- O Ort - 0NN N N N NN & MM e St N o T ) 0
-~

(V1



3711

L I ) -
0. Z O
~E W O
W - <
O & e
We N W
® o J OW
£XI == & KO
- W @ eo
ol Qd =~ e
ol ae 2 QH
wuw - o “
[ -0 < o
[TW. 4 Wwe m eaao
o oY & MR
- o ey e [U]
PO“ e m o
o= Z W
o gy o
Qb= oo 0O WL o
-0 g Z +0
] Y O O
Qe MW VUV Qe
-t E & o
LX) e o UV
xZ Ce X e
<o Cret L O
zQ 0 X (¥
Ze We Z Nae
ay) et & NI
NO Lo ™M o9 N
Za. a9 4 NW uv <
LX) Qe 4 oF o -
- Q0 & LO W U w
ZJd ~al) N We W U m
[ Y e ) e o g &
~ o N J >0 > e Q
4 —eoll, & earea - 4 =
Z.4 NS ~ THLIT - 4 <
(o) W u =0 e W o
~Z L Ya «a L) o~ L
- ~Ne o« Qemp H o LOV)
ol ot i O o = XK ey
>0 o ~i - J O .« T WZo
N «O (3] NW &« el e ~ W OeZ
Nav - ~NeO ~ U=V - ¥ aLe -] 4
NQ =~ ] o e e A ZWOZ Z -~ U QO ~N (1) o
L XY 0 < s ot = W 0 UI~2 u o Z22 * 'S o
<ZN - b= o NI W o=-OWEOQO o ~W O ew o] ~ o ~
AZN~ (-] no wwi= OV QL o oLl Urid Of= & -t (3] (+))
eNQ ~un - N alL =Z eQAOCN ® ol 22 VU s o~ m @ o~ G o~ o~ ®©
~LeF ™ - DeQ e QO™ Gl =N ~ -~ ard N MOST N N0 ™~ O 1Y Ot
NALL o~ —~00 A~ NZr-d W~o WLart~nmin ~~ ON N NN N N NN N o+
-0~ O OX et SAZ~EE Z o=~ ONO~ING sitnrd (NN « & & o o e & e 0 °oQ
Qe oo ~F - Arte all] CZ QUM O G INTHOD A G0 G0 nZ Z ZAZ Z ~Z 2 2 O ON=s
Z0I3<Z  ul) -4 Q~ W ENE ci~U el a(NQO * aOEIDQAONOOMNNFG 0ot =tFd =t O 4 = 4k
eV~ NI (ol | <O I Zu ZEWw=- eQdriONCUCCCCIL~IE & KiI ¥ & @& & O o~
=W ~u, wo Wwon VNZZu e o0 i< WuS—wiSluNnwwnQo 0 0Q0 A Q40 a4 a Ol
HEWEAW (e OOz ~OQUV QK IW Kol EUA Dt ot =Tt =t Zod = ] Qe
== O=D) W= WO 1~ = UV Ze LWE = & = ritdt it OO N OO~ OO~ ¢ | =N+
- e aZ-XWAQKXD V) DVNZL oZAW ¢ Qb= bt s s o e vs o = ) (Y V) ~Z+ 4+ o—Q,
o EO~ILULQ Nt~ 06O = OZO eNeoL I X ol Ll < <CZ2WOoWOWZWOoWOoOZWO WOWA eZZZ N |
5DuRATM( f# N LOUO--QO~Q. FEWFULCZUDT~QOTEQIAIOFTOOOQT OQOE vl oot v = b e 5ot e e b= 04 () 0 ZZMOXN
< IoZX W I < OO D2OEF I~ZE WM CE LY XL LE LY 0 4 4 el N I N E ¢
owWCOoOXOoL WO WL —Z Q. D=0 W *~Oa IO WOWOWOWWWOWWOLZOX OXLKXOX oW O XOEM~Z~NYEAQA
DRCNHCF.&FDDCGGRISE NSDCD”%‘MDW%RFRFRFRFRRRFRRFIWGWGWIWGWGINGWGWRPNNNGNI
— -
O NN~ [+ J o) ~ N O & nm N O~ 0 VO~ O O A
nunuun o &

(] S N ~t O m



372

e = ewow L LN
Lo on v 0o e Z 4t
v H U = W X ~
«D o o W = WD a
)= o) U e xa e« Qv b
(T YaY ¥Z Z v we N oo <
Wwi<g ~ g L (=t ot J Ul 0
Zo v N -~ no =~ & 0OU o -~
pV4 o « o wy o o enN - -
Jd [ W eoe o o e o = oL <L L) [
— -~ X ~4 Ya a Vv e Z XU (1] )
IV - 0N 4 20V v ZZ -0 e el o o
= ¢ oo QO C = I =0 < MZao - ..
i 4 (YT AN 2 O Q ¢+ We =~ O -4 Z
o w e [ . e QX Z o e« - [y
o wn o o0 e e “Y) o X [+'4 o
>Oo. ~ e 0. X <O We = Leog a [+ %
~v a o(N -~ ~Z N & wy Q= Z om0 - -
- n U ) NO =0 O I Xy e wo e - .
>~ ~ Wty - o QZ Z2 v o O ¥ eg (2] (7))
D o e * w + xd Z el Zz 4
=4 -t (L) f ] -4 ee 2 oo «9 O «OWw w w
(a]al w war (14] <44 ZO O UX MY VU Qo v v
L) o VO - o4 ¥Z Z 2« XE Z Qe - L]
(1 4L 11 4 ~ - 4 Xw~Q0«C <« <O *«Q & +ON L L
= V) MU b o LdZ- - =2 ~L o X O - -
O » W < < Ndee & oo g L ol (V] (V]
« O -4 Wl L) Wl w ww NeQ T e o .
XA UNO b3 Z Ioa a aa alfe Z nNiL o < o
oW o Z< OV o O o0 O 0O et & NI Y (U]
ol <2 ~t 0O 449 g a4 ~ANLO ™M «Wm ) w
>l Twad e . Ww ny v un H—eolD  NOe = >
- e ang<a~ N FOQOee & oo Qe 4 eeoy o O
-~ - N> -t O=F 0N - LUl 0o e o e NeQ©O & L) - -
- NDe ~aUNCses o 40000 a aa o) N W e o~ ~N
- ZAX JIXEIOQOO 0N waFunw v v ar~o e ) el - T,
N Wk~ eIt <« Tttt =0 ZNE—~ 4 >O0n -4 .y
* aQe e N VO Jdan O oo —~eall, & @ e - op~-
* TOQ INeere 2Z ww ZENJg - T—e - ~e
> ES =X ennX o9 o eo woazNw .I-“ =N - -0
~ ® K~ o ap=0OX<Lr=eF o o oo L eepn o N - -
U XD o~ YlWeing—-2Z o O Db=t= b= = ~N e & AOUN [ o~
o QZUIN\— o) & & lt] o W>_14 N [ ] HN Mot e~ L oo | =
(o) e DZN~ V) ¢NOILO Ol lee o oo Q- J X< w et
L] NOWeNEF-Z s o AUV U VU WNw o X o2 [a) (o] o
~t W>-oNINAZOOoWVZ « I o0 o o0 ENeOD ~ Ve o ol
- s O S~ aZ e O~~~ N0 M oOm Wed>e o0 ZZ w wo
* ¥ =00l e e~ Q~UV) IXT I IX form =t =4 LW - [+ 4 X~
O O Vi~ i oaZ e o~ILTON N VO NZ~IW a=0 o0 w, w v)
O N I & O HEZ 6t O«wOMtN 0 $F -0 AV U e *® oD
o N AXAUmnLLL~re ONO TN O Nal =e=ZUV) (v 4 [+ 2. ¢
N 0O ¢riWNTNG~_I$Z rtr00ecaa & oo F AR Yo X NN Yalel o] o o [1 {a
A A HortOMTIWUANT SNUXXX XX X XX OU~CX ~NZw oL an () | W
~OWNeFZ oot e oM —ONOWVNN NN UN ZS-EE Zell o ~ & ° o~ L~ w J
NNOZ 0 QZZ oZ a6 ZZ e QUGG sr o oao O ol aZr_li— g<~N W O Lo - 4 W
AOIUHO U & =4O OO 1Kk Q4100 O OO0 QU U} ~ oNJD ~0 - W w o
MTDRHSRXRHRHNARH &e~NITIII I IXII we 2Zu 2ewoo wo—n+ll N Q-0 o %
AN K KA OO O O =t edetrtrtrd o~ it Z ZWe eonpyeea ~AZ2Z WO W eZZ- |\ O
L1l TNOR O ettt ) i | i oo v o =H0QUV 0l W-WOO0~ e Ud-iFOOWMHA ~NO
dedJ=ZL Qe > o T~ =N U~ U Ze WWINKZWO.JIJ-—l~N WA JDWi-nWwi— o
ANRKRRKWE =T = = =L = NPl e e Z DQZNZC o Z0LEOINLONONOWXY O—ODMCZYW TN
IO U O L A—=RWLCO N | CCLLLO COC LY OmZ0 eNeL UL sNU W+ . QOFLON ¥ (a2 I NalollRaY]
MU HWH +—EN-EFZFEUNMEN~~ZIFTITIZUZIED - WEUCZWD sNZ o=l = R =L ONS =1 %~ WL
NN N Wt O &~ T oY —=EEXXY & X0 OVNEI J—-2¢D-FWl-Jd_ 1.3 aW J +~JdJd ZWi- Wi
NI IO0XE OXEOXOXOIXKOO~—-00000 ¢0O «00WZ D=0l - QLD UWW L~ XOWOWLILOXIWO X LIW
A A IV UL SZUZIULZUL ~ANZLONZWL OO W ooyl ol uoavuoamd «.QM—L. OOV U~V LVADOAQVU~ULAOVLOO
- ~N - NG N
o N N M < ONOIY O M~ N (3] o~ [ ]
- ~ e~ - i NONNONNN. N NN

C NON
1



373

(DELF=ACC) 109353
10 BEroRR

RJ(T9T)IsRI(ToT)sRJIL(T97)>
K
E

NZZ~ZW »

DISPes

RKsRsROESDET1
VERSE DISPLACEMENT TANGe=NORMe DISPeos

EGAsCT»SR»BB»
29ASERRIBETA,

ERSE DISPLACEMENT NORMAL

=0

=0
SPLACEMENT NORMAL DISPLACEMENT

SE DISPLACEMENT NORMAL DISPLACEMENT
=

E DI

=0
NSVE%SE DISPLACEMENT TANGe+NORMs
=
=0
S
NT

STRAIN + SHEAR
=0
R
E

NG _MOMENT TRANSV

D

G

J
ENDING MOMENT TRANSVERSE DISPLACEMENT NORMA
STRAIN + SHEAR

NSVERSE DISPLACEMENT TANGENTIAL SHEAR

NSVER
NS

IP1sL1sLL1sLL2sLLASNMAXINCONDSNIsNIASNIBsL2sIEN
’ R
G
C
N

Wi~
a0 &)
av) Vo
=) e

a a a a
oVJIVOJO0 1010101
* QO <Lt

AZLZ A< A< I I <A
NZ o T V) L LU= U)0 V)t )4 V)
ZoNW o) bk = = = = =
eZ IO Z AZ2IAZ N2 NZ 12
=L W o U <Cllil <Cta) <l <L <l <)

. ZWO N eTVUVUIVEVIVIVEY

CAE 2 CNEXZENXZXZXEZAZAHZ

OO AQV AA L L OO0CO0COLCOCOCO<<
e U Ze Well eZu U 22222
DN NZC « Z0uK MmN
O0Z«ZO N oL Ll ol
CLRWFLCZUD o0 6t N O F 0 O
QNE~ITF I--ZXED-IOE 1§ # % a0 W ] [}
ZO==O0WW e—owWraqu.d O 0 0 0 O a
ova avomJdeaa<Cnez Z2 2 2 2 2 2
-~ - N ~ANFO O O O O O O
o VU LU ULV ULV VU
L Z2 Z 2 Z 2 2

v

(U VIV]V ]V V1V VIV VIV FIVIV)

- L) o ]
T )
- (Z
N N*
x XU
U U-
— l\s
~Z~ZO
Ll LY 1V
[l 117, Ta)
= orat,
NI
A A
[T7] S el S Pl e
Q N~ >N
oL ONON-~-
N UwlU-y)
(a] QZQZO
Q -~ Xk )
x o ~N~NA
-~ (14 —~ =K e 3k %
N ® L ] et oo Nt o o o
X N et NOINDIVU~
*x* e NN - B BN
(44 o - (T, 07, 2T T
7 B 0w OO~
x — QO (U VL L
(o) -4 UV [a]: dali 422 ]
(a o (aTas} * Kk kXU
~— ® kK Xk Lalalo Y 3 K
L o ] o 2o ] Gt Rt
— [v'd * e bl 4 )
K~ o Ll - ~ruo
Wwed o= et NN 4k
wx oo et U U~
+%k e~ Rl [ A0 | A i
< D e (144 LR BT Lo
*9 o - * % ~ememaml) N
Rl et ~ VNN N
WE - am Rk k@~ o
@Xo oo * %O A Kk K OZOO
Wk Ww— %* kO g FeTatyl
W~ -~ oo e wibnd em
d-k NN Juuwod bainainde d TR Jo 1o -4
woewnol O~ * G [ ] [
QQ0~ZO ~l NrNeHO “- u u~ —
W+t | OZ Hhn dulo ~H < []
00 00K WWO~-O .40 A=t A~ e ) ~ o~ - J—
QO0QLAX NN oD U+ ~~N i dtt~ ~ N W S+
e 0ol HiLLrtrd Z 4+ DTINNX ( +ND O D DD + S
ANOTAHNHOW N o~ DD 00 UM e & & o M)
NN —tH 0 e L LN N I B N
MNOFEWEFON U ANO ==~ O O HH~NM— — - <l §-ANO
FFFFFDFOBECIJJJDAAADDCCJJJAIAIAIAIJJJD
o i N ™
) ~ - -



374

L] - [ Y
o~ ® o @ e N~
-~ * N N )
[} ] ) W o~ W o~ 2]
~ % [l o ~ X X — -~
N~ ) w M -~ w =~ ~nN
-~ [ ~ o~ - - %K
N~ ] * %k ) * Kk =0
O ~ > -~ * > - —
U~ - + ~ = + -~ NZ o~
e o D -~ ) o~ wuv X
* Z * o X s oo -
- -~ - N\ Y - N\ U %k -~
~U) -~ - W %k -~ w aQ~ -~
O~ -~ o~ -~ o~ ~— g ~
-k O Kee o R o N
~—o N N~~~ Net * N -
e~ v kN~ *x N~ o)k ()]
-y ~ kKD N\ * %k ) VN - (@]
s AL kXN ~Ve U -~ e L JTH - v
o~ o =)~k =)D ~Z - o
- LW —~ODOWk —O—Q e ~ *
—t—t X u+oew e v —~ -~
e 4 ~lL SNOk~LE NOx~ o ~= N
Qaf % Ik O N~ L UkON~ %X+ Ll hed L
Q- - K (S IR ¥ % T RN o NNO —~ -~
e —e DK o~ Sk L * %k U < -
o~ D~ Nt N |~ Vo Lol R
woZ e mometk st sk UN e N [+ 4
o~ ke DmeUmie Dol kX 0w U - X
wo N SN e~ XUV OO % (1 4 -~
NE e\ e \Y) U~ (viv} * -
VU ~NUO~UVU —NUO ~Wu (aTa ol N -
> ~ N——UN~- N—--U %O A& K — e ~
+o Z MMIQxZ ~Nla VL —~e~ e o [+ 4
~u ~t O~k kr¢« LO~% kO a7 DX - ~
i Lo ) XUDN ) kU ~X% X Xy - u
o4 -0 NOQek~0 NOQogx D~ = =g ——t o~ () o
Y et~ [vd I It X Yal 2T Ya Y Ky -~ ~ o w
Q=N & U=~ QW N (N s (N S 0k [+ 404 (140 4T $ N~
e LT QY N L~ s LU~ * % * ok + <+ <+ &
<k Wk Ny NL ok~ Nij ok —l)k~ NN NN~ o e Lo 4
3 e = O\ N 3 (D~ =~ (\IN] DD @D+~ * %k * A ok L oy 4
x oL Iod U B 22 Tt 1 B % % D * % 0 (4 o
*O S>ONO Nk 2Z kN~ Ntk Z~ %k NO wwm wuwano 3 - ~T
[RTIE 3 B IIVEENTIE S F TNIT T VR e [1 414 ek <9 J=-
~RkEIEXO e~k XU D)k XXNITZO w wuw. O [+ 4 *
UL ek o WZIWkLO ) Z ok LD ol ~—~ ——d e o~ ~u
ok v WO IS =t O K At O~ K~ e - VO ~J I uw 3 - I Lo vwn - oW
[ Tl L Y14 ® Qo D=L~k ULV~ ~Dk~ O [ LY [ ) 1t O Ly i~
e+ U HAN~HOO —_ e —w~—OLt —w—~gL —N —t NN NHOO — R uw oz - an
X #N)OO | < + ~ N + L] ~~UWii | OO ~u ~emesWZOn ] 4
>~ e e I [} it ~ - -~ A A d~eINDDI D e e =  J i~ NN DO IS A N IO~
~ 0N ~e=tNS+ + - [ o~ N Jdtd d++IIMIZ ettt + d+ OO ZVa dJ4+¢ JI+4+UN
+Hnunk | § +t=N D i) ) D et e ek | ANt ANC e cenZ O + i+ ANZ &
N e~ VUUDIITIN o H e o & TPttt trtbrd O UL ) ) Dt et et L ) ) (et e O
L 1o —UARNNTE T — il M N HrereZ o~ W N NRHre—t—Z ] RN HNN
X ~QOH ~MN=INND) -~ D - ~ ~— H ANO AN e OO H NN AN~ e Ol <O H# SNO~NMWL -
<OQauVVUMMNAO « 0O <« L ¢ LM QA CCIUAV VU DINO i L LL LU UODTIDIQm g
N~ N SN - ANGE N
e no ™~ o o -t
- — - . - 3 < <



375

* = o
o, Z Heae
~E W -0
W ~ Wk
xo e Qs
we N ooXm
e J Wy e
=~ & O ey
ww o oLi-o
o OmM = sUW)
N -~ ae F (Voo
“ ~ e~ & oL
& =0 « MUe
-~ ~ We — dunNy
Ld -~ O Z oFU s
- -~ ey) & O o e
- = We = £ o wu
i ~ O Ol Z e~y i +
N N & U « wa e NN
~ - o~ e O (¥ ere x X
[72] o~ g Z Ly * K
(@] [v'4 [ L) o) QO ¢0O e o~ o
(¥} [+ 4%)) N~ Y VU v —~
o AN D~ XE Z 0OV [
~— ~E X - «O - [ Yo X —
o~ I o o o X XOU LIV
N~ =k ~N & L o KX eeo (44 4
L anl 2 * W - ~ a0 FT o=0 <<
x ok u ® ~ We Z N NN\
ot Wk —~ o & e o NIQY UV ]
—~to~ ~~ L) N -~ o9 4 NOO P s
-y ) N X ™ 0O¢ 3 e U1V * Xk
b S —~ - e o 00 & e —~ * XK —~
Nk N [ o e~ e oD N Whe i A | NN i 2 |
v~ ~ N} [ U~ e _J LITT,\V] -~ - s w L)
Z~Z N~ N aNO = >0 [+ 41 4 Yo et —_—e
=ttt —iN~ DO sl e ooy wid i NN\ ~
- wo~ X~ NJ Lo —— 1+ o~ Yo
oxo OUrm o Qre~nNW 4 N " o o~ —~ o
N -~ U~ ot elit~-a0 J e, (642 4 —t— Nt ++
kilk OXN = ~eoeofNe o OLO 1414 ot I+ ~
o~~~ WMo et ¢ oo wild [(GLIU] ~{rd -4
M ~W) e O Qe b= I X4 * o oo LV Y4 -
o~ o 0 ~ ENONWW & oF Qo0 < ~— VO
s 4 ami) ) EN—w—~el ~ VW e NN\ e oo
i o ~—0 WeHaz>e O ZX [1 4+ 4 (V1V) (T ' <<
N~N ~ =45 L ol oo = Wk L * %k e ' + NN
R 4 [aleiailiLe ~eo~T o0 o) [@]e) NN vova —~ —~o~
o Ve~ o N—~pt=¢ Qv U LR ) wi. I NN\~ e~ i I
KNk Xk~ o ONPM e olL =20 o —~e * A a UV ~—~ e 4+ L
NIN xwae 2o a0 A~ ~ bt bt ) - NN e r~teed —tby
*¥—-kO Wk o O~V X NZw agy — —ted ot ~~ MUMLA MM S
*EkO KW ~ AENES Z eV o ~ 9V ++00X+ el T+t o =t
W o U~ O el oaZe™) (141404 DNV L~ MY IHZes I Rl
KUY N ~ (3] ¥ Xy ~~~Quwao K <L L - EFO -~ Wh.eo LW s 414
w—u ne o w 2l ZXwoenN -0 Z I-NNZ I | e o |
+0+Nu [} z ZZZ~W e QX oL (Y ap [ TaTa o LU~~~ WL HHAN UHH el
-~ o~ ~~Wo ~OOM~OU 0 e~ LV oelLerd N Hrtrdemt~ R Il et e~
~ NO—~eiND ) e U Ze Weli] «a QOO N HWUWOOLLN ~~ZZ N )~ Nl H DI MMH ~TD)
D D _OIMZZ NVNMZC e ZQKIDNOOQ~DOHR HH HDDINN~>~Il | MY ]| aaD) | | e el & oZ
e e eoe~ LZ2-O eNoaL Ll oU. e 08 memenos | It IN S a0t YN et | =
N NN D CWWNELLCZWD & o0 & r=tONMO~ o drtrdONONNZ D) WU G Zrittt Z oo (N Z e O D) )
- e a2 -0 OEFZT~EJ2ZEI-OE~AN I Vddvwww Dol ~H—flried ~ el ~ONNEO
~ OO quZ D= O & —~0 W LU ~#NOO L LLI =IO | IO B AP AI=O | SO B IlIZ
g ULV VW Voo VOl «00<d) *LLLOCUVLLLLOVLLULVAOMYEXEMEXONMMY XXOUV XXX W
- ~N ~NO o NOT ANas N g T3 <0

< o33

)
T9T7)sRJIL(T797)>
14,DETSFRELS

227)
EsAAsRK sRsROESDET



376

O Z ~eoa

F W o< - * -~ -~

< ~ Wor - - x -~ N~

Q & Qe - = -~ 9 * * X

g o We L) (] - L &K o~ rmen .

- e O ey -y e -4 -~ e - o~ mT) o~

W o e - o - N o~ - 5 ~e -~

@ =~ eyl =] x o * ~N ﬂ B 4 -~ & e e

e = N o e Y e ) -~ o~ - o~ % - Ve v

o Z oFV K et~ N O~ -~ - U ® Ox O

V) & 9O ~ N~ ~ Xw U~ o~ - o ~ = x VN O

e = Lot -~ XKt = Ut Qrt N~ @ N N Z N Q o

U & uwa -~ - - o vV NN 2~ U ~ Z U L JTTHES J

« O (@Xem X VX N O ﬂ* e ~ 4 - Q w ~g ~

< Z Loy N O~ U U~ VU UIN 4+ ~. v % € ~u ~

W O «O = U VU~ ~ o~ ~ Q% ~ ~ Qo ~ w D% M

e X KOUL b ] N e ~ wQrekme N K ~ N ~ - ~

- g oo L) W st Nkw—gk() %k U — e D e

a E -0 e~ NN~Q U ~— - Z o e o

O M ewe YortUn@N—U~ O~e~ O U % O < N o~ -

© 4 NOO EN——~kEN— UnZem U O U + - 9 -

e 1 ean) KRNI mmUs e QmmN— O X ~— =~ ~ € —*k —

O * e AU memcZaN SN RE~E )~ - * o~ o

O N Uie AeZAINDOIE KeQDK ~~N O — @ ~ N~ N

o _J eulcy )t 0k O e ~ANKON NN U ~ L) - W= W

—~ 1 >0 —ONHUEUOQH— N—~Ul. =T~T A N N -~

W & oo XUO~ = NOwwZ KZ~Ow N~ * X - - wee w

ad ~ Tee NO=IZUDK K it K it Z Nk =k~ U « X —-~ —

Ww J +~-uwnN LWIR KR ENEN~EY) VU~~~ ~lL L —~ L Nk Xk

Q J. *xXH XN~k NWEkDIRD |ON~-U) NLIOW w V) ~ w > >
L~ WERI~Ork o~k Nk kO O%kUX ~ O ~ ® Iuw

- - Lo — AN N~ W RNNE U~~~ N U o b o~~~ -~

- 4 X —mrt kK m LU~ Ok~ ~ O . - end

W o eEre —me kKK DAk R me~— IR - . -y ok o

O ~ wuir KONt ittt oL Z Kt~ OU~ - < o e K e

- W & e N UINK =k KON an—N Ok e - . ~ N~ N

w o0 e - CUIN R N =NEN Us~Qrk kK Ko D QD =~ () U~ >

o an Ux L] AN ONNONTIVIRNWL K kk EV U ~=N o aQY ) N~ N~

w =—ZU e - STINK WOk = Kook e Nwse O & . gk B S a

e QO ~ *—-0% —%kVW Z ~Ned i) IZEZ WLEWV * o ) ™ TN

X NZw— oS < MRVWVUZLOE U~ —LLULUO ek~ +% 0 o] ds 4 () =Nk K~k

T ZeN)u oD FULOE— =l ) ~++%0U RkNWY U~V ~ o~ sk W2 %k %

W «Z~_HOYy -~ ~W—lL—-—x +-0 XULVLVAO WAaKa ~-~0O o~ —~rt W Z Wiy

o A=V W ol LYo | -4 Nk ++0 + —wrfk kUK o~ aund 7o p | W ~nxu

uw ZouloenNe | » [l ] [} W4k W — 11a | & -nl. OWw

& o0 oM art N O (oY} Q v ~~§~OU~—H [aTa) 4 (&l HO— N ~——§

O =0 -0 ZzH L~ ~Z -~ Q~ |~ N§=A~A-O~AN~~WZZO0 ~Zu ~ t~k +~O
U Ze¢ Weld «QO0OQO00™ AN e 110~ ~ o M O sk MLUD00 B (o T [ B P ~ ND ™
< +ZouwxHnNnaooQy Jd+ 4+ et d++UD N N M TINOINHOIUDIRZVLV@A Jd+ 40V Jd++D N nZ
aNoaL ALl ol 00 ¢ e ZN+~HNNK | +—NZ o - [ e Oeoveocy v ok ZZ d ~HNZO 4 N & LN [ Y1e]
LCZWo & *Q. AN~ (VP MA U I~ N N LN N FNZNZUNZN~ =] D)D) et «© =
M—ZED=DZ 0 K U N AN el - [ - e mialel K lnlale >4 LI NN HUU—~ - —Z
Wit @ =W CU.~ANOFT UL O~NMO # He- ML~ ~ N~ ~ O~~~ U)~= Ol lL << ~(ONOW O~ N~ ~ ~00
O0J *0 Q<O * WU L. —Om=~QUUDI DI~ < U< < VIO <LAVLCO ALV H=UDIIDIINO =L < <LV
e D ST e g - 31234 NG N 41 - o~ 12 o ® @ - AN ®

< < < [\ () —



377

-~ %
o~ * —~
™ o~ e -~ N 3 - [ )
o~ - e~ - - * — [~
~ ) - ) L3 L - e B —
b [ 3 ~ L ) - o~ - ~ -
L ) N ™ ~em N~ (N (] N o -~
R L B T « RN W R ~N * o~ %k -~
€ X— V) X NN V) N ~ ~Z ~ = o~ X
XX NN O ~ X%k O ~—~ ~ ~r— L IR B ¥
~ %%k U N U U Z = ~» ~- f ~ -
N U O %X ~— O = — Q- X NN Z
* o~ X ~) K ) N ——— N U > =
Kmmt) K ~~tO~N O ~ NI U~ wn v
SO~ IR — ) KO\ - 1 0 o
~0Ik —~NZQ ek %k O Uk— I ~ U %
CNZA*K ENNKtm ~ U —kN -~ ~a ~
KINKrti~ NTUN—~ ~ Q Z~x% -~ K -~
@ NSEUNC~ Ubwkedm N — =m0 —_ - U =
xw Uk ket~ ok | Kt L Kk e - N | -
O\ S PRIt U~  —~ O—Z N % ~ N
=% IR B AR~y kW A - U -~ O
* W Ottt ) et o~ =)k i O N U
Wk womriNw ) e L - NU~ « VUV a v |
e~ P O = EZEN~ Kk kO - QO % ~— ~
~e DV EZN~ E—k=llk U D> N N X o~ ) ~
~ UNK =Wk KEN~UNE~ ~ | N - ~E~EO
—~— RKEK~NE~ WKk~Ql~ *k N ==Xk o ~N Ny -
N~ WZokk o KZE~D~ N U NU- ) Nim—i—a O
~— Do KD N~ | ﬂ X QkZ o -k TR~ o~
Z= SN = NI~ > KK . Z=~le— v
) ~QWI~T) =QAX eI’ U + ~~¥) ~ =W~ O
nanN RO —RWek | o~ A~ O ™ VRQXN U
Ye) ® Uee Ik ook mtm UrniUrtom i 30D Y AU~
—_ok kKL~ KK LN~ —NANUFN 0 » o NN K —
el P~ B Nk o~ RN~ kKR K FuN— ~ K ~m N
e () ~ONERN~— SONNREKDE VUUVURO~LUY Jo U U
ko ~ + T Uk~ ~ -2 W) N++ kv N AZkZ 40l
* ko Z-WY AZ kWL -T ~0UVO0 -0 +I3d ¥ =%k V)
waoon ek WO T Wl R Wk DU~V U VUV W ~ wnEv)~~0n
-t Xul ~et WUk kD> NWDS-SDO~-D—-O—-kD o~ — RDFD(\I(
- | W~— 0J - ~“ QWSSO+ 0~- | +++ 0k +Xk+UXk 000N J - | Wk ~—k o~
- ~Hnu e o~ +k—1 +4++ % " [ 1a = o ()=)=I=C
-4 N (ol N~OQO [} NOQZ NHO O N —~ o~
] ~~iZn 4lao o~ - — - EANOO: Ul oo AN~k W
= Ad~ANDO U dDD e e 1) ~ ~ N M DFOJdI—~ J IO e e Jl~wriwnkN~D
A4+ 4+IIMIZV At ~—riNd+ + D N e N ZWVoD dt 4+ ettt + OINOINOUIZZ
U N & 8 0 Z O+ ~INOX | | 40N~ & - e « & ~MZ OR+rNOK | ++rN 6w o o oY
Pt = VNV r N == N VU H ™ (3] (2} T((LTBIII3PCCJJJ3$353N3RTU
UL Lo oy > HUH ~BHHRRE Z - - - HUH —NHNHRUNAO~O 1~k Z O
ONMN = QUL O ~ANMO H ~N~NND  ~ D~ ~ ~ OFFA001230:12123!\C(C($(C°EN
O ir it L LU Q= QUVUDIDMNIOD (o JEE- ¢ << < CIICGDIIIDCCCJJJADADADA*CRE

< "o~ o on © oo
® @ N o3

SUBROUTINE BLOND4 (RJ9RISRJU1SRILsRJU2IRI2sA)



378

L ) -
o, Z toa *
~NE W o< * ~
Wwg —- wakr ~ e ]
xo e« aew - -
we N oo - -
el J WUV e - -~ -~
= & O oY ~— e -~
W o ao- ] (1 4 -—
- Qm w W o % -
- cae Z ea * ~ % ~
[ -0 [ ,AA - o~ - ~N
* -0 < ¥Oe -~ - - %
™~ We = oZWiN - -~ - (V)
~ QX & *+XV ~ (14 ~ ~
~ o) o O 14 ~N N <
- We r o ot ~ ¢ -~ puvy
a O Z o=y (V] ~ v v)
« U e« WA e ~ t O (a)
- e O (X om (] -~ L %
[ o3 O e ) ) e x )
~ MW U oV o R ¥ I
-~ E Z Qe @ v ~ N ! ot
- ad o a e v N ~N * -~ ~N
o ~Le X XOU N I % v -~ ~—
o gL L oo I ¢+ v ~ - v)
~ NeQ, T o0 - % ~ v et O
~ elle Z N * L v) O N U
o et o NI w w o v XK (a
~ NLO Y elle w % U (] Y ]
- w el Jd NOO * o~ (a) * ~ -
D Qe 9 eeaM) ~ o~ * -~ (7)) -
& +«Q0 ¢ Lm0 -~ o~ ~ ~x O -
~ o9 N Wli-e D Ak 2 ~NE-N+Y +
~Y e 4 slUN - =\ -\ 0 N
NG J >0 +-ONO +~IONIQ% OX
— el & eoa¥ NZ - Z~ Ni=Z B~ ZU
BN = e Q-OZO~ O-k0Zk O~ O
~ENW o N ZZUU ZZU. UL U VY
ooy . eXM) O=ZNZ— O=WZNWMZ~ Z0
e~Ne o OULO CSHD“Z CS*“D* N ﬂc
et 4 L0 ZOQ% % R~ ZO~ U~ R - (a)
NNWW & aF - Y i ettt talm Lol Loa Lo
N oD ~ VWK U sl V) =~ =i, el NV~
ed>e A Z0e el Kl X~ taee s | Q% | =
o ot = Wl [T DT (TR NEWUTET NSRS T
o~~TUW oD @7 § okt~ 1w o At ok e N
~oaN ol ==ZU e % YN~ X Yo i~ NI~ () 2
wpho e QO L . ~Eyk L ASEZIVRZTY LI~
OwmX N2~ oY 3k olif ok =k = el o Uk &y)
CNMSEE Z el o s lNZNN e WNNE V) N~ D
qCY)- ol eZ D) & - NOZ el =li, NEEQFL Q s s
e ~A=uwied u - [l TRt o | - | IR Rl Aol i
o ZIL ZwoenNe [ wewd < Ly FYS wearomnd o~ L U
Z~ZWl e QA o™ ~ < 4 » — NHOO € ~4 ~N N "
o~00QV -0 LU [l ] N~ ~ W 0iaQo Nl e s N~ s
e U Ze Well «aOOO0O At S~ e N D AN e _dd~s et N RN ~D)
WNZ2C«2Z0WEIONOQDRD Jd++ Jd++4+D N D Z Jd++ (llﬂ... + N N U —ZZ
ZwZO e oIl ol 0000 +iNOF+HN® & @ YN ER I+ +-ING weo wo o wmy
WHWEL. <CZWM * o0 o~ tNMF DI VertrettN N N et =1 OUDIDITIN N VN ZN XD
FTETZI—ZEDF-OZAR AN NN AN NHA 4 =0 Z UAN U RAANAN~ O O e R Z-O
=0 Wi &= W LU ~NAOSTH ANAOAODNM~ ~ — OQONMO N NN U~ U- U~ LUOWZ2
0O AUANI Q09O *LLLLULDIIMMIOFIHE € € UD==—QUUUDIDIMNIC Od O Od *xUxw
- NG NS - -~ N ~N -~ e~

10

A) :
(TeT)9RJIL(TsT)>
_AltAaT?_D27)Y

[ A A

(127)



379

- o~ - -— o [ ] [ ]
e o ) S e
VIt Tt N N
. ALY oY er & *
* NN =N N
x o~ —UX ~UXx W
~ =~ IV =kU ~  ~
-~ - N~ N~ V) v
M * *WwZ kuZ O O
- - Nerrmt (e O (94
- ~ ® v X v O (a ]
~ o~ *x+0 *x+O + +
he ] (v'4 el la T Lo T T -
* [\'K LY R I -~
* NNN SNNIN K *
X w Uk Uxxkx U v
o w t~ I~ V) )]
u. ] ~N~ ~N~ O O
] -~ A0V 0V U V]
— e ] a0 «UO O (a
) . QU ~0OU X *
.- - ~%Q —k*kQ ~ -~
-~ 4 Preem  tone~ e (]
- o KT %k—T) N N
(¢ 4 X ~N e ~Ne X *
* - - ket N o~
- ot Uer™) owrs Z 4
~ o NZE N\NZx = -~
1 4 N O Wik  lgmekk- V) v)
~ w o unu guw O a]
w X e o woow | ]
2 +uL o —Rl kU~ o~
w N~ bbbk 4k
+— % <« + % Yk YU~ U~
Nk W~ - N~ Sfam aop=K =k~
L~~~ <€ W L~ 2 )LL) =
=g~ V)~ = U\ OV~ 0%~ 0K~
T ot Aot Wk O\~ 3k K O K N K ~N
N~ 00K A N o DI~ = I~ Uk ~ (K
o X NNDILNN - R W &l o0k VUL
& TINNNN & [ NN aN\ (N 0~Z o Z
N O eN\WmTunN ® @ T POLT N bt O\ttt O\ = 0t
< O Lo e o b0 O K (b= (e~ V) e )
-3 ~ —Zdk Z— ~ kW | —kid | ~EO~-—D
1T T - | N kel W ) N J ~ O~ LU O Lk <LK
e - { <hLvIWng o | e~ ik | WLkl ~{§ ~~
o~n ’ i o jluwuaa~ Ok ~ a N-HOOO ] ] ] [}
ol . —Y Z N ~uLin £ §jloao i -~ -~ -~ w
UVeOQOO0OO ddree I JO ~ -4 ND= J IO MDD eee i~ — N o =
NOQOQOD A+t AF-+LU D ) DNZ A+40 et + ) N ] ] 2Z
Q. e 0 0 0 + ~NO4-NZM & [ Ortrtd ~NZNe4k | + | 0N & S [ [ T4
Z o NG DI Dbttt = N Nt ettt e = 0. VU U TN o~ N N -2
L AN LI N A D R (] =Z NN N RN NN - - - Z0
QL AN T H ANOO NN~ ~ ~ OO NN NO # N O (O ~ ~ -~ owz
o ML T T My oy o R T TUT T ST T o « LU QM= OV UMM L < < < vow
ot N N NN ~NM =N N
Vel m WO n

(27)»D(27) sCC(27) sCR(27)
AW LA & TR RS e e LR IR RE s DAMPS

-~0

EEEtONI (AsRRsFRESDETsLL1sLL29OMEGASCT s ISENSsIPRIN»BBsLs

-4

)

W

I

(7))

w

-

-

(@]

|

~ e ¢

ol (9

.4

=u I

e (V)

[ Y4 L-s

~0 (17

™~ e

NO o
-~ ° -
x< u -~
o e e
*> v) ~—
-~0 - V)
~ Z (V)
o~ < ~
«Z - v)
~0 2] @ o
N~ b4 e
-wna O -~ O
L~ O ~Ny e N\
(Vs 4 -l DO~
Wwe 22 SN an
NZ~ZeS X -t O
~Q00a0 D Ori~~ o)
L= W J ANCOHI~D

alwmed ONe-tetDYUM)
=SMEFZTIONIWNE e
Z)C=O>»~12ZNLWLOUL. VULl
(o7, "aYaTa) MITHV IV IVIV)
-3 - -

(4] (Y. o}

¢ DE

v



380
=9E1868s
X

4=

* 0

N e

« Q0

W 004

D el

| W e

< -4

> w

LN ]

- "W

Z <

< ou.

< [10]

- b }

x <O

(4 J4Z

w I<

- ~

- w a)

-l 0 »xw!
w X <Nl ~
X 0 QeE -~
v -t wood ~\
- E e ®
W x QWX e
- 0 ar400
- - Lljet o~
(o} o] UN e~
] ° W & XX F
. 00 EZ g~
¥ — ~ O>ede
- w N e e
I X o ¥ MZ e e
(V) E UM - %* Ouion
< - - ® e~ = Qa aDrt1Q
w -~ X > = - Z NOW o
-~ o« - WU - D~ € >uwe~V
o -~ - o e« OZO = ~ - 0O X =u
uy O - ~ - Ol el -4 Q ~ | elL—>
- w -~ o < N WD - * U N WZ2>xKZ
N~ O @ v a o0 O > -~ U H wuaw
sy v - U ~— D= Ne Luwn (o D N WOZ-9
[T T = * ~ (7)) ~ Nt - L o ~ ]
-~ Z - v @ ~0 = o) ~LU (\] - O ~WD)~W
ouU <« - .8 ouv VU NJd ~X) -4 - ~ W ~XIOCoX
oN = . o o~ * Neo N4 ~) - U X NN~
o~ ) (oI o ~~\ ey - <y o2 N (NN r~t ot N Y O e o
-0 2 T~ N - N~ O A1) A2 oL e~ L) dd Fdk - ZalLIZ e
ddl s O -l ™ | - Jddl e o e~ K=OF dridd e _100dd ~d~ W0 =0
adademt - O & LTS I B P J= | SUWLXIWn caae ~D>eNNCe o KEXEIXXT
*® e Y Ll lat et iy > oY)y &oaw ZUa ~Z A ~ZNOONHH ~ N~ JLO.~<<O.~
Wrtr o ClE Ortrre oW HJ VWt o AL IWIZ R O U= <l ¢ ol N 0N QWUIK totver _Jomtomr

[ LY e ~U~L=N$ NN - L o T NVt QOWNOVIMHE T 4T N OO | ~N~ = LW CZ U<
MZZ(QTE=IBI!IRTIIIIRT44(QT77’T(L:TMITNZ)ZZJ9L21122!I3ITD:THATMU
()

NZZIN - “HZ AN—-NZ >4 —~2Z Jd==e W D N e ~ZWN~EI~Z-O

OO 0L ~O =L 0L EZULOONMELOOOU~O00~0O L LUK OXONO~O Or~LO XX O~NEKO KO E> X OO WZ
CDDIACﬁLRDCICRCDIICRCDDIACDDACICDWFHGIDDDDJACDRRDDIRDRCOX”FHUFRE
-t NGO ~Om N o3 ~ O -4 N M < n 0 " ~ O
it ~ N N N N N N o~ ™ o~ NN

v



381

OLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS

o.
N
L 3
o
N
[ 3
(T3
| -4
=
(1T} -
b4 -
w -
- -
w -t -
- v N -
- < 4 -~ ~ O
v) ~ x < - >
s V) v) D (UL —~ g
(U m = - | -t < + a
(14 < (o) o] Mo (L] -
< o o u VvV o < O = X ON T > o<
- ] )] (4] Z o n M w oY ¥ o ~O
- Ww e w e -0 e | @ .0 L]
o < O O < NN~ nn < = nm
o 9 Z ™ Z < oe N N £ 0o * O N
zZZ Ve~ - o~ @ o (D~ LI B & = =lJdL NN eo M- Z3 O M L) e« ON ¥ e« O
L + =T ~ MMM —T) U 0 et IOV St IO Wi U e e ~ VOM— W ~ X
~ird ~2ZU [ ] Ul Ve wor W ~+-I e el O~ " ~ o # +-lln § ~ly
Ha -0 MZ M IV~ ) ~ =ZIYLNW AT NILLCH LD LD DIt DZ i D DN Z~AD)
- k<O 4+UMP L ~ $LLIZ=~UZ F+ 1IN =M~ + 40 DZOVQZ M+ UNZO +2Z +MUMYINZDZ +MNZ
1N NLOZOM N HMHORONAO AN H=ZM ] | Ol emn~ZY | X OMA N ))IQIOR.D (B 2t THIVA K e I N e lad S T K e Y Rl
O rtmnt) 0 § O ZLNZ rteer <l o e et or IV VA QAL et it 1t Z F2Z Y QNM 4 OO0 0 DUNZ M pe (F D Z =000 4024 =Y 04 Y = O M N I V=
o NMAM 8 MM AEY & OMMZ Jdwell 1 J0MD E~0 00 " d e ied Ll 4 W Nl ~E N H-NZ
HOOMH N it~ § MOM= = UYHONONIMUIw=—=0O HUW=OOrt~~ | ULAOQM O~ LHWOUM~0 OXIOIMULI~O "I0IMWL~-O
MOOMZAd OZOZIZTLODQAO~DIEY INMOMINICL ~=~TI0INTCL O QY Qr=Qel U MON =g
[+ )} on (o] n O n o o no o O un ON omn
el N N N N M < dF & 0o oo v [l
(8] O v (V. V) Vv V]



0

ala}

80

100
105
108

130
150

382

WCT OF PIVOTS

ACE PIVOT BY RECIPROCAL
é

L

o
[}
o

RX MN—AXD %V

D0/BIGA
‘ROW AND COLUMN INTERCHANGE

=~ MDD
> OGO

051504105
%go.1zo.1oa
1)

3 n—1
AnRw = ZZ N V=0

227»

A(JI) =HOLD
=M(K)"
(g-ﬁ) 10091005125
BK =
130 I=1sN

8_I=19N
=NI=(]S=N)
8 J=1lsN

mw>ZRDZUZKG>>LIRORHL
Zmauuo~o~no-~o~o~m

4(9)+015(9)+016(9)s
()
s AA.

e ~
aﬁ%o

1
2
E

v DOV~AN
e Porw =0
== N~M
m

Me Ov D
~=DNO~

o =N
e ~W=}

r

MeeeolT = I~
N OO Me

DA P

’EﬁéZéégng’DD’FRE9AA’RKQRnggy
1 4 [
304 '0423053051,052906,07.08,09.

El» ST9GOOGOIQPIoOMEGA.CT’SRQBBo
sDAMPBETAZ29G02

D
gs%aiaﬁfié

£OFy RRALSS

M=t = 20, HKPrw o~y
AA=HIMO ~te MI~ONNZ

CLMwe v OO0
o L0 Q)Y NZ et

me=00Xn o

RK sRsROEsDET1 sDET s FREL»
801 PTsOMECASCT SR BB sBETA s DAMP

’LLZOLL39N"AXQNC°ND’NI’NIA!NIB’LZQIEN1



: 383' :

bV 4
o
~ (v v
—t (9] (Y
Q. < <
-~ (] ]
(7)) - -
o -~ C -
C - [ ] A Ll -y
o o e w o L)
[+'4 R -~ - 4 P (] [y\'] [
w w pV4 » < —_e~ * < -~
- - [+4 a (o] - 1 4 (@ -
- - ~ (14 ~ [« 4 o ~ ~—
14 o a - -~ e * - N
w w ~ 3~ L I 2 2 -~ U~
" -~ . o~ -4 >~ -0 wo n -~ -0 LO -
= J4 - J R LS | ~ gy x o C R b ~ -4 [THCY
M e Ut M Uy - (.47, T - e N o o N e L Inle
e @ <0 . o VOoQo + Q0O & <3 (TR O ek o F~n
~et L. ~rd < % - ~=U~ > 00 * ~s > OO w <
X o = oo~ e e W~ 0N~ P | X el + ' —~~ o w4 (Kol *~0
- Zz ~0 ~ Z *1“2 [ ~ NZ ~ =e - - Z~ e ~T+
v) L) —tr v). o o= et it et <M ) ~ea = S -t - < ) o~ e [ 4. 3 —trle~
-0 > -— e -0 > o~ o_) o ~0 X> = 00 —~— e _} ) = XKOre [e]=] o 1
-J) —~e (« 44 -y ~ e —~ZrZ 2O Zx% ZU ke ~ ~2Z e Z . X2V Xk ow ~re ~Zr-
ZO>X o = ZO> X et O~ o0 CA>UM vt w = Frt O~ & NOQSUMN ~ o (e
P woe L * N o4 4 AN F Ve O #0040 o R RS § N~ Fe
A oa. ~et=et)Q WO kOO  #~ HetD A, O O~ QO O 0 an-MHnao ox~ Ooa
N EVNOX Wil v NENOE - W=~ "I =-EVNOE WO Wit~ ) m=ENO0OZE N WO W —O
=AW=k O =LV DL~ ~cdt ¥ NWV 1=~ DOW D~ ~T) ¥ VWU~ I1D0U.ND~~
ROQU+Z~ OO XOONWHZE X O G=NA OrRDOVN-ZNEUIZ—~ ZOrF=0 O ORMOVI-AIZ § T Z e -~
oW SN QH=OWA e il N QNNWNWIOHO RO~ QAOW & Qr— WO mmilthsrd—OX O Q=OW ¥ == WOl
O DAF Ok § b= eOANK 4 S+ OO t=tLictre N Ot § =i S VD + <=0~  =~rbfmrt U AL AT S ~HE IV A =O = N =
WSO ZHNHON N W IDINNZA N et 0O W IDINHAZUL, —ZeiZ Nttt 0 0O - W IDINKZU,  =Z (e
ONCHNLH AL A NSO H TN <N NONEONXOFTEN OO JNON LN N FOXUKOIAEOOSENONDIIO0O N LN < 0L KOS S
A*-USUNOUOEXO=A>U>UXOUO ZOZTAOOUA—~ XA U UKOLUIW=O UOZUVA0OUAK~X—O>U>UOXUW~OUOX0
o -4 ot NG N 0 ~aoo
wn n o 000 O o [elele)
-t trdrd 4 - ety



384

- +
~
() "Q
(=) ~4
a (o]
0 %* +
(o ] - ——
(o] -4 [
® e ~
n - ('3}
~ (4 -
(o) w.n W...
[ 3 .
< -~ N
~ ) o~
(@] -~ L L) -
” o ™ -
(3] [+'4 N~ N
-4 * ~e=t ]
. (TR ] ~ % o
o~ +O O~ (4
- Onvak Oo+nN *
Q O~ L Xt ] [11]
- * 0N - e (]
v g T YiE %
(Y Vv o ﬁmA L w
< < . -~ €O~ +
] ] o Nk 4 3w ) -
- - - by 2o + 0N ~
g a5 ¢ z a2 : £ X 3
w i ~ w™ w ] ~ iy ] (o] -4 =N ("4
- D - X o - - ~N - am No WJF *
- - n ~on - ~- 1y ) [ ] ] ND0O% ~ o~ N
(L 4 * O [ L] [+ 4 " (o] - OWw et A Il ‘ala] M
o ® N\ ~ - o ~ L) LY~ 4\ TR (ol Lo g
w ~ o~ A~ w -~ -~ -~ ~Ne R"+ V4~ w
L) ~ -~ L e ~ - N o> +XK D4 Q
o W - whn - W . <N~ o N~ L —etQ w
X~ | =y (1 {o] m ~ | -y WO~ e OO E~-QO %k +
Owo ] w ot e * _§ ~ ~eed % o Ore * Tk + VR~ -
-~ Ut ~— =t ) K - - N e Gtee o —~ o ot (N -~
+ O0Q e X w0\ N O e % ngd - Wy -4 ~ XN Q) ~
-~ ~=U > O W ~—t 4 > ON X N (N S — P o
-t el 4 o *x o~ e = & [ 0 =Y — FN- L [+ 4
) ~—~ NZ ~ wie —~n ~ Z ~ -~ e -0+ X 4l 4 o} ¥ 404 L
-t <) ~NU) ~e - O\ e | < ) ~ e ot et~ Dl Xow % s 02 % -~
-4 e =0 X> =~ O ~e _f - =0 X> = on ~ ot Oe + %k %k e~ ~N
«O Z % ZUVU ke - ey -Z O Z % ZU K & ~ et NZes W) N~ R eda  d
~Q~ o) eQ>Urt ™M v ~ e HOQ~ e e3>V ~ o~ < m g [+ I | vt 2 ] *
Hoor e~ N N W)t N N e 4 4 L e Y Y Vet OOCet w -0 G K~~~ oM w
el K0 NN, O D~ OO O~ & QO N=a O mae—- | awn L o (UADN~ Xy o o
Wt e Yy =HEVNOTE HWCOWIN it~ T =SENOE N WCO-WN=-OW ~ DIENN] + + X9 w
D el %k NI I~DOU. MDD~ D) ~ * NV ~_I1DOLND~- 1D A =Y ) ORI\
ZO™IN=O0A OWX NOVIZ § INZ ZUNNIDI=) O AR OONI~WUZ HENZ~ ~Z V) JS+0EN ~.Jdt+ OONNZIrit |
OO it Qe k. O IO s il Nt Ok O - 0 NW &k OO it & 4 XL DO § At DO O + e
v 8 O N olRut.. F b= O e i pr bt ] Q™) N Oriril ot Jok o 4= Or ff fmvrf=ttp= .0  IIN N LR s Wy 2o 3 NI =DJdH
E i N0 W dDINHZU, - 2 2 Nt NEON LD I>NXZU  ~ZN~—Z Jetri f § -0 o~ Il B o 0] ZANnN
00583OOL:O:A:A:50RFRO5ROO§R:OJO:LO:A:A:S:ORFROSRSOAO:1200 OO NN N OO 0OO~NO
vCDOOCDIIXDYCYCXOCEIOCOWCDOOCDRIXIDYCYCYOXCEIOCOWOCCIJJJGGlGDCJJIGG VOO
0 ~oos O (] N [74) )
-t il N N NN ~N ~
-l rieded - et ~



385

" e Z
-~ ~E W
° L) We
(T8 ™~ xQ o e e
w 4 We N oov
o o sl J4 WMHO o
|6 * . b= & Olie o
R 3 - 88258
[ - o6 -
w . (@) - oo F Yo @«
L, - O D & Sef
o n - =) « MO0 U
W -4 O We v oo o
Q - O Z +«O0VW < (V)
w ® O s e 2O U <
~ T & We —~ gD+ W w
o ~ ~ O Z2 eoonN X *
9 Lt ninins (o B o XU e wun O -
X IO [ - e O XeO o -
() =t bt b bt oo N g Z Wetoe ~N
4 eeoee -4 - o9 O e~ Q w
[ anen o O MW U Qen o +
X 2 2 KX * e X 2 OO0 (V)
n LgLAdL o~ ~ o0 e asa ON ~
& o ITEZFY -4 O~ e X OIN UL ~
W™\ gq4qgg Q ~“Og~  XDNO & -~
°00 ITIX - $weod ET eeos OuW -~
e wnununn - ~“NWe Z NN Om w
~0 LRl - OoNnet & NES oo +
Wwet KA KX O «sOWLO ™M @ULIO o (V]
aly 0000 [ ~eaalD . NeeooWA ~—
ne rArdrded (o] n~Qe* J eV ~
% CICIC K - ~e 00 & ULALIO oL *
o~ Lo el ad i O MFO—welD N WO e -
wo L N N ] & (Nl & _J o ool N
w< Q0 G000 A0 o ~0nNE—~ J DHFelidg Ww. - -~
(0]e] rtrdr-drd O eOel, & aLOOWLHK -~ + oxoZnN o
U UTHT T e~ ~eN_J ~ T_deaeal) - (V) wiw w
[ KRk Odeh~NW J FULOO~D N ~ =t N -
Nee Haun Qu~~ren Jd Q0o w x o~ ® o~ w -
OX¥ ~en oo aQO~N & o O aaQli— + L 1 [1 41 4.4 ~ o
voaA—~~~ILIXIXT o ON o i (N QX (V) Ll oo~ [V [+ 4
& ~~00 00 0 (NN o> Sk 9 -OoneO - —o— wiwiv) < w
O oessvesana oL e OU o ol earde ﬂ -0 e e w S
(DA 11,00 00 00 NN N Ve~ sl ~ VID~AO WO - xO O~ * o
& <Clirtrtrd et Ot~ ~>e A &0 +mO o~ * o R~ [\ —
e~ QWL & & & &~ ~ttor N Ot = it~ e F ol > = me— [1 0] s DXV ~ [vs)
VO & & b ZN —~ITWw QoW - . el [ “0 [
KOO # N N ~AN—N~ NeN ~=0 AV XOO~W e * ~OQerd~rd -~ -~0
% VAN S SFNN-— Y e Feall —~ZU D ea)e O o~ X & e\ e~ X e
o~ TWOOOO0O0 OO0N e~ OO« «Q0 e UZ> .~ ~ *Z ~ 00 ~
NN~ TITIXLII~ W~ e X NZeoX - XL Q e+ * v * o o v)
* ey $ 33 FV) Qo ~EZE ZoNZQO oo o - L b olad -~ ~0 -~ * o ~0
MZ eDeeeeeaed LUN el oZli) et - N e —-Z -y De J3Z )
o~000 v < ~ N AU aNIXW s O Z -t ZOX> > HI ZOo>-
OEILITIIIIIIO w 0ZuW Zaoull ~—uv) e -~ O LY St ~0 O\~ [« 4 aN -
QA Lottt =ttt ZeZZrlle o X «~iO@em™ ] [ e~k QD a. ~e=T)TINQA wa Ll Len)
Nt~ ot o e et S e ~ ~eA000QV =AU o o)l - O HUZO WOwW NEWNVRE WY t oxv)
N~ N oL e U Ze QUG c00000 i il D D0 WK = > D~ O =L
O = ottt NZ INNN~ZC «ZolUC D) e NOQOOO O~ nnN~wZ~ Zao * MOOVW+Z %k QO % 0
VWO LL LN O eZZ00O eN oL ) e aOMXlL 00 0 0 oDk OO =O+rli~ ey U D o=l e MW
WX oFF T ZTFITT~D COWL—~FTUCZUWDL & & & 64NOFOO 0l OU Jtt i=ttt= O 0O I IJDOI+ OO0 s iDX )
(Wl [ i dvdedi 4] ofa) OHEENE I-ZEDI~CO0I-tH It IN Ol OIXZerZHOR LAI-IXUHZU~ION wd
QX O-HOO0000 00~ WZ DO =1 Ol & —+O WAL ~-NOFOOH VU IO RO HOVXONH IO NLIHN L U WWWV..AL nOu“.rAw
-t
- -~ HANOE AN

o ONMTNO o -

N
70
GWFHFFFFFFFRRE SDDOCDBLQDDBOBDDFFFFFDXQCIDYCOXCOWCOXIDYCCYCXOC
N

et et 0 0 0



386

~
b3
*
v
v)
o
(V]
(a )
%*
N
- *
- x
AV 4 -
o -~
~ -
Land (14
a - W)
~ x
(2] w
o o
v u.
(= P
~ g ~
~N pY 4 e X
o~ [1'4 P e e L) —~ljo -
ac¥ ~ 141 4141 4 -~ - Qe )
W~ e wiastaiald o o wea O
= N Q. et bt o N w N w —-xw o
L U ~ L X XY ¢ (TR - [T - < a¥Y o O
xwv ~N Z [« 41 4 4 A2 ~ " * * [T @it Xk
1 de] U e (VO A4 (V] (4 4 v o * et U
wy - < U (MY 1T @) 4 o << [+ 4 [V W)
[ Ja] w o o oo o) w w W w < [ LTV |
o e T OO ~HQ~ L ® o~ * L w WM - o~
L | N X DIV -0 e R | o~ - * N woenNw
[ X * 0D O Or oA~ ol m e~ M = ~rd 0 erillee =
[ X ] *x Ou.0O CR X X Yo X -0 o a -Q « e ~0 aririNk o
~\jr—4 -~ % OO ittt [+ 4 ~ed = o o~y -~ ~ITIVSN - D>
Q“I e~ O\~ o oo aflre o0~ X o o, o~ e e [ 28 eoaotk o+
4 (9“0 ~ *Z [l ] ~ 4 nN ~ -4 * ~ DIk Z -~
e et N v) - e N v [ aan ()] L aN ) W & =
- R’ om~eo —0O - - 0 > % & alel > M et -0 oW >
Mme $ZH2Z -y m & wz ) o~ e wz -y o~ e "2 40 Q) 1N e ~
b ot an L outn ZAO>>>>+re [+ 4 ZO> X O ZO> X W ZO>>>rttk e
~NQ. wa. x o. AT Y0 >~ QA —eANA > X0 -0, > WA WO -t k~a O
Uk E wag == O N ENNVNVDE +Wo~0 N ENOX +W——0O HEVOZE +Uhki—lt 1nVux~F W
WK > DU~k D NI K = IO Dt O ~-NWV =t D) =WV JON D (Ne o - e~ VMWW X =0 S~ D)
QO WVUI + 2Z % - e X OQONONONWNZO O XKDNONWHNZO O KOOUVIUHZ - O = ] XOOO~ " I~NWI~Z
- QO=oWOWon W D A0=WoA vl N Q0= woaQ VW N Q0—O0OK0—~D X + = r-w W) Qe
SOOI OOr-a-§ 016RLLLLBH“+ NNt~ e OIS+ HI=H= U o0 S J4 U= N} O~ ol TIN VIS I 00 A+~
S X AZ R ~OO N WAL I I IXOZO~=ON L IDIXKAZ~A~NON L. MIXNZNFY OO N =TIN e WL I~V IXXNZ
<N LN DODKOKrAN SO N LLLLU LU AO AL AN SO LCH LN AOHE AN JONLH AN OGO NI N 4O N LW N DAL R ~O
WU-UXO U0 ZOZTOX~O>UUUU»UXOUOZOX=O>U>»UXOUVOIO X0 U>-UXOUVO OOX=THIUMODID>-VLVLVM>- ..CXOC
[ 4
(42 < [14) V4] ~
O 0 O 0 0



387

~
oy
x
]
(Y
L
()]
o
v
o
-t
*
-~ (2]
o~ (T
N x*
“ (V]
<
-~ W,
~ *
(o | o~
o o~
()] u -~
L + x
w (V)] ~
a * (2]
'S N O
o~ -~ N - W (¥
~ -~ ~ o~ * ~ ~N
(V] -~ X U L * o~ N [T
< o -~ < + -~ [ 414 ﬂ ~
e ~it] vV . (¥) - —~e~ il (9]
* o= O  J * it OF O »=ave -~ <
N ~tje O N N o i) e o x W
M x-a O * u. * DO 4ala T di 4 * ]
W e? ok * -~ -— Wl e e/ (¢ —
o~ -orul U —~ % e~ s 4: 411] ~ e
e o & o~ —l- * W oY (Y e o v) ~ by
—~t—t oW~ + —~— - o [« Lo ATTITT I T [o] [+ A
(1 o d et ot [ A b4 U Y & artrd v W~
ko Wt L * 3 ~ ~ N Wittt Y= la M0
S arly) ~ St vy L Lol ECSe T Y [1T] * ﬁl
*O i) &k o~ (o] O~ NO D=-Wnm — (@]
* & . W e S L] Vd x* o wWwaom & N8 Wwe
(1Y oM ermilL, —— Lot Qe L Lo OM & ortril W lire [+ o
[+ 4 ottt [ [+ o] ~ & me- e ar{ririr-tN\\ @ & L e
(TR APIPme - > W Nt > ASAIIIII I~ > K
E 1o Xeoooarilt] ¢ 4 %o~ o~ e~ x,’o.”’llll + o~
=\ v) We & = =N e e =N Wl e = =N
e o~ O M~ > =t e ol P N 10 DAOD> = — o -~
—-Z 44O ) +0NNe « «2Z 4O e~ e w wZ ) o 4l —« OZ 4 o e
= o) ZAOr>>eikR i & = e ZXra N N e o NDYYYYYYIIII O =i @« ) Z
~0 ~e O\ ~rrwrri e - A e O~ o~ N ~ ° BN\ rfeftde = O 4 . o
oa W10 riedrttimer4~0 O OO HO -“vua O oo o eI ==Y el O A N O rird
N lid— NENVNNW -~ WL N1l H~F NWH~We— (] N ENVNVVNVNWIWIOE W Wi~ # +n
~— )t -t - WL D W= d s Do Dbt =t W)t ol Do e D ome )I IISEEEEEEBB*IL)U)(UI lalalalel
- Z =0 = e~ *BBB(B(SEINI. ~O = ONW-Z= Z O ~§ XOOOOOM~—~YNUrZs Z e
O =0 k- +0NW "~ DIIIEIZID T [V AR TP TSN TT IIC 7l ..:., + MW A DIIIEI6D ol X X0
b 0l INOE dddet | Od b bl o rmiQA O At r b= om0 UM AL S dA 0D+~ == ot O~
O=Z FOUDIN L III~—UIKIZL~Z NO N~ ~_ IXINZN—Z OO WA A I IV I OZOEZ O N Pttt
mmmWMhLﬁ@nnWWAAAE:DA:lOIROOl:LsOsAlelROO:Ll:sllO:AAAAAAEE:AlelROO:LI:zO
)

LVLU@M> UXOUVOZIVAOX—UO>»UXOUOEIUAX~OIUMDIMIO>»VUVLVUUNMI>UXOUVOZUAX~OUNO

© o o - o I
0 o ~ ~ o~ ~ 0~



388

(s 44 D e
(] ag~a
4 oND
oQa & Dee
Ut o~ Y=
oo O < o
W ~ e
g ~ Q=&
L -~ e
o o~ WNO
- X eUQ
a e a N o
OL o~ * Of=
-t O M)
Qe =~ -UD
il -~ U e
ol =~ o oN
ae M NMNN
-y o Ye
ay) e € epy
< WO ~ oo
u. & <0 O NUL
¥ . M =~ = e
Y * Ze - oW
o Vv o= = o¥F
w < NO @ NXEO
¥ W Z—~ & DM e
S * cae ~ ol
M = ~g O e
“ Zvt =t 0 o
- oe — ~MEO
-t - ~-Z O oo
- ~— - o | — ey S oy g Z—= L W
R o M ~ e [l d ad d d Za. « ~0W
“ 3 “ (14 ™~ XA NEX) ae ~A~XX
-~ Ww - *x® (4 0000 00 00 -V) ooEn.
[+ Lt [ 4 a~ w (-] ettt el ) 10 Vet em & -
wx w wx o -t iuswibtasul Ol et B N
g 0o~ [ w—~ Ww R XY > e OO E ]
al) e o) Kes @ (ER NN ] [ ' Y *
(1 4V L 2 [+ AV Der Aememop=-TITIIT 00 ~ oy aeF x
wo L g wo %o T e e sCNNNNN ae O~ eDOE <
[ et O~ —rd (NO O oMot teoeen Z~ YO0 Og o
TN~ wo N~ 10O & 0000t 4NN NN ZJd —etllll o 1 a o
w—~ + o wi~_J W & O\rdrt LIS totrat 1= 0t 0t 1e o v eeLe N E X
M= U MmN 4=~ ~uWliilje s sasaeaan <Z LA ﬂ q4 <
Qﬂ L —t g ok o ! Ut el R Lo oMU o0 o [V} aQ o
~Iked > XK ~STIRH D> ~ H # 8O ~INM N DO~ -l ~02 Wi~ g o [
Xomit 4 o~~~ X e 4+ ke~ OOt rtrtricirtirtriet . JO e Z oNE JaN~ ~ I~ ~ -~
~ XZ ~ w0 ~ XZ ~ ~00 0000000000000 D0 M~0Z «O WE e O O ~ N
V) k& e =N V) e =~ =N ITILIIXIILIIIIIIIIL NY ~O0O—=I0 «» ZLHT F IV N W0
O U> = we ~ ~O Ud> = e NI IITIS IS Ul KeV) oNO. oD & o . & e
U ~e w M~M2Z J (=] M) v w T 00ttt rtn e dE S ettt o XS —wl]~Z Z ~2Z Z Z
O>-U— I~ e o (a] ZO>Up-+ O O Ww N aNvUnNgu. NN 4t Gt =
N=Ow =~ O ot [ aN~O~ ~ ~ IIITIIIXIIXIIILIX TWN =W oNO & ol ¢ o o« @
~Va. O la « O rmire=Ud O OO riririririrtrirdrirdrtrie NZe ZHa) »em gawa a wa a o
UL~ o D e D) 0t e L L1 7) [T D T Bee "l e | i L L Yo TeleTeTatolo Dl nd ple Tod plod pt e
RMANWZt Z O =t R DK NW =0 Z it Fpmp b b b e b Z D<€ NOUWU « atNOOOQO W LY V]
W T Qa0 okk W o~ Qe CCLLL L OUV~Zd ol @ o ¢ o< i ~WOWO—LWOWOW
W)t === ot~ JW N = —ZEZXTITFITFFIITIITI D oo W— nONW etNNT OT ==
WIJDIKZ~—Z O 0~= W IDIOZO~IXXXEEX XXX DOEZTTFND— ecoarlifl U N HWE = =~ e
HLY LU AOHEOON AHE HONLCHLH ~OXO0000000000000WZ NDOL—NIOXZNEL NI E U rOXOULZOKOY
>PU>UXOUVOZVAX~=O0OUIO>»U>-UXOUVUOIVLLiLhu L b i b u ot MS.U%U.DRthu%%FFFFODIWGWGIHGWGW
0 O ~ WM MO (NS IO OO ~N N O 0N O
~ ~ ~ Pt =IO N NN NN NN N

C



389

NN
N N
b W
- +
x & -
-~ o~ | el
<O 3 ~
- o | e 1]
3 - ~ -9
X @ o e 4o
] ] [+ 4 e 1 LT
N N a -~ REI~
" “ D ~ d ~g-)
B ol W AN
-~ o~ < J J N
v v : _ﬂ -l - e 4
M m - o o iﬂ
~ € € N\xg
NN M Ok ONKS
-~ - o~ ~ "3 x
-l b W o N ""85
| - - € N W Wkaw
2 + + * L W &
S ~ ~ TF+ LR
o et w u -+ o > 1
o ae 1 + J4 . k1D
%* 1 4+ N N )Y SRt
@® kX XV 1>~
@ “ QNN ~f -
< e Lo o~ 9 O NI ™) P
w v vy @ uRR** N o A
+ * & 1 444 < < KR PO
-~ i 2 wu NN (VERY RRR“” *aaL~
S o e NN me + Wi ¢~
] L X (UXU) ~ted o~ D M L N 11 |
N X o, I+ M ~— Pkkkk o
x 00 << A/ S K~~~
* Wi SN MY e ) e KEEELY ~l—l
W ea UL -~ o o « ~NNNY) I~ |~
@ 00 * K a O~ ++ + + INNNN e
w e NN - Wi VY 9 O ~T XTI kkkk
o + X« ww. a Ve I+ ¥ C~E~ Qi —~~~—
-~ e~ ae * % - VU —~ << <L kN okk I4DA
) st OO o~ * e NN« et NN /ﬂ/* Rl -~
e 0 o OO ~ +4+00C<t+ "N\ AAZ+ i e )~ oo XY
Z o «ZOX oot Z I E~ ~~ MM e~ VUM -~ ~ O~ Wokkk ok O
- O Foek L Z —wXZ0 il ——riQ e~ el NEN el Feentasat=X | o
o oown NN ~«-00 @ I\ 0kt WV Dl It QYo oL YL L SWHID D00 o
Qa il [ole]e] ® aQ e el Yl ~ WLt o Wl Wl e (F e OO\, OO\ + - d-_JOoO [
= NI 000000 gk~ e oddIl HUNrHl~ D= | U~ ~wnk [ U4k IVIV TN, g A | o
- =Q00N0NA ¢s ¢ +WIO-WNWWOOLL) ~~ZZWIADULLNEEDIAIN DI~ N NI~ - i~ + J—-XE o
~0 o0 0 20 000O0IKE X MDA UNN DINNw~ JlUNI~~ [lanm Ao mmen JuL. o o u "
W+ket e OO0 H ¥ ¥ +JU.<WUO m~ommemrd | 4TINS INASANAOINNMYNMYS | DIV DIk +IU N
Iu HON A HOXEIN N~k T&LllZZINJJFFI(NKKN((I(N((IJ((IJ(’(\J SR Y O 1 4
=N 8 ZO0XKOEN IO o deorranrns Ferwo B Uit Ui NN (363618“!. € O o o
acn :RNRORMMMLH“RFRNOAAJIJIO 0 IO H A=A IO N IO U IO U I ¥ ) uNR 0O X b X
ANWOLLL MDD AlwUGCCFFFFDCFFCCDKKRRKRRDKKRRDCRRDCR“R“JLL U—Fl—rlFB 18
™~ [ m () < 0 ~ a

~ - () 4 L)

DO 20 Js2sL
LLLL=LLL+L]

LL=L+J
LLL=LL+L



390

Eth*(J-l)
1=C-1.D0
C2=C=2.D0
CCl=C+1leD
CC2=C+2D
UN = UN-

FOUNE N
m n
(@] .Y
(] 2
" ]
.
0N
~20 20
2
+

PRI
D00~

mn

A
(o]
]

n &k DV ONOD

F*TH/ =(C/R¥** )*RJ(JH-{E/R)*FRE*RJ

F*TH/SR =(C/R*%2)*RI(J)+(C/R)*FRE*R1 %j
CCl¥R¥*%C RRILLLL) #C*C1*R*¥*¥C2)*DSIN(C*Z)
*FRE**E*(-(FRE**Z)*RJZ(J)+V*(C/R)**Z*RJ(J)-V*(FRE/
E*%2% ( (FRE*%2)%RI2(J)=V*(C/R) *#%2%RI (J)+VR(FRE/R)
4£?B*CC1*C*C1*(Fl-V)*R**CZ)*DCOS(C*Z)

C/R)#¥2%RJ(J)=(FRE/R ¥RJI1(J)=VHFREX%¥2¥RJI2 (
(C}R)g*g)*RI(f;+ F *RII(f)+V*FRE**2*R

i

)+
})+

@
=
X
o
"
X0 W ~DDD~ ~~0 OO0

<))
I12¢

-+
-2

kit ~ NI DD X O 000 T + 000

Q000U | ZHNIIP>ZTVe =000 D~

[01)
+
OXXPM NOXN DVIO-IMOODZ~~~N0I~ N

S(C*Z
RJ1(J) )+
11¢(J}) =~

W W WPLNE QN
{ B ZF**ZFHAW*ZFRW
r

- N

F
(

J
*

Nk
Y} ]

Ira

ONt I ro<—

PO~ MIN—-ZX2Z2ror

oOoMrmn
¥ O~%TV >»OOWrormn

(alalalals]
=404 =g pti—d
alalalala)
00 000NN
Q0000+~ 0O
mmmmm
—A=OHH B NN
0 NOWH WO

Szl Re I Lt
FQ+F%*DAMP/(OME A%%2#p0S) ) #DCOS (OMEDA*T1)))

OMEGA#*%2/ (DAMM*%2+0OMEDA*%2) ) #(F1=T1/POS=F2*
**SEOMEsA**Z))+D%XP(+DAMM*TI)*(DSIN(OMEDA*TI
*#% D e DAMM¥%2 ) / (OMEDA*POS* (DAMM¥*%24+0OMEDA ¥%2
*#(=F1+F2#DAMM/ (POS* (DAMM*%24+0OMEDA%%#2)) ) ) ) %P1l

w

o
N

0

(]
(@)
-

*
)

ONIX PP ~O=MM 2>20CTIrrC ~~C V%A~-0 D0~NOVDIDXDNOD

00T VOZINO~OO =M MIEF ~@r 0202020

NN~ ~TV+-HMN

)
)
N

SA1E2(E1(IERALEGEI g 1)« OEXPL-T1/pS)x
GA* -
IN(OMEGA*TI)~(OMEGA*POS ) %#2#DCOS (OMEGA*TI )

G 0 4

TO lpINg(Fl-DCOS(OMEGA*TI)—TI/POS+(F1/(OMEGA*POS))*DSIN(OMEGA*TI)
GO 70O &

T =PIN*#(F1-DCOS(OMEGA*TI))

Z21=UN*T*G0

22=BMRR*T*G0

23=BMRO*T*G0

24=BMOR*T*#GO

Z5=FRR*¥T#GOQ

ZS=FRORTXCo

WRITE (IPRIN932) TIsR922921922923924925926+27
TI=TI+DLT

22 CONTINUE



E%g}a%ULAR POI“T)

Xyl : .
'1'5 B
I ’§7HEXP NENTIALLY. DECAYING LOAD) v

(1HO»22HL INEARLY DECAYING LOAD) e S
c1uo.4eHoAMPED LINEARLY DECAYING LOAD VISCOUS oAanusc,g;;
(1HO»51HDAMPED EXPONENTIALLY DECAYING LOAD VISCOUS DAMP NG:

OQ(I),6X1

by E12
53 FORMAT (1H101X910H£&M5(SEC0)a4xoéHRADIUSo?X95HANGLEo7XJSPUN(11

%5 PZH?

RR(I 95X’7H RO(I)’5X97HBMOR(I)t6X96HFRR(I)96X’6H

)’/




