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Abstract

The establishment of a formal object model provides a theoretical foundation to investigate other
objectbase features such as query processing� In this report� we present an extensible uniform
behavioral object query model for the TIGUKAT object management system� The TIGUKAT
object model �P�OS��� is purely behavioral in nature� supports full encapsulation of objects� de�nes
a clear separation between primitive components such as types� classes� collections� behaviors and
functions � and incorporates a uniform semantics over objects which makes it a favorable basis for
an extensible query model� Every concept that can be modeled in TIGUKAT has the uniform
semantics of a �rst class object with well�de�ned behavior� Following this semantics� queries are
modeled as type and behavioral extensions to the base object model� thus incorporating queries as
an extensible part of the model itself�

The complete query model de�nition presented in this report includes	 the type and behavior
extensions to the base model
 a formal object calculus with a logical foundation that introduces
a function symbol to incorporate the behavioral paradigm of the object model into the calculus

a behavioral�functional object algebra with a comprehensive set of object�preserving and object�
creating operators
 an SQL�like ad hoc query language �TQL
 for user�level retrieval of objects
 user�
level de�nition and control languages �TDL and TCL
 for de�ning new types� classes� behaviors�
functions� etc�� and for controlling an interactive session with the query processor
 a rigorous
de�nition of safety based on the evaluable class of queries which is arguably the largest decidable
subclass of the domain independent class
 a notion of completeness that includes reductions between
the algebra and calculus that prove their equivalence and a reduction from the user�level language
to the calculus
 and in addition to the formal aspects� we give a complete algorithmic translation
from the calculus into the object algebra� At this point� the algebraic expressions can be optimized
and an execution plan can be generated and passed to the storage manager for processing�

A prototype implementation of the object model on top of the EXODUS storage manager is
ongoing� We are implementing a compiler for the user language and an extensible query optimizer
for the algebra� Furthermore� we are developing a view manager� with update semantics� for the
model�
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Chapter �

Introduction

To meet data and information management requirements of new complex applications� object
management systems �OMSs
� are emerging as the most likely candidate� The general acceptance
of this new technology is dependent on the increased functionality it can provide� and two important
measures lie in the power of its query model and its languages� User requirements of these systems
demand a declarative language to formulate queries by focusing on �what� information is needed
and leaving it up to the system to determine �how� to e�ciently retrieve the information� Therefore�
the formal query model of these systems de�ne an object calculus as a theoretical framework for
supporting formulation of declarative queries and a procedural or functional algebra� equivalent in
expressive power to the calculus� to execute them e�ciently�

In this report� we present an extensible uniform behavioral object query model and its lan�
guages� Our work is conducted within the framework of the TIGUKAT� project� TIGUKAT is
an extensible uniform behavioral object management system� Its object model is characterized by
a purely behavioral abstraction of types and a uniform approach to objects �P�OS���� The high�
level behavioral abstraction of the object model may be mapped to a variety of structural models�
The uniformity of the model abstracts everything� including types� classes� behaviors� functions�
meta�information and so on� as a �rst class object with well�de�ned behavior� The query model is
a direct extension of the object model in that queries are de�ned as type and behavior extensions
to the base model� meaning they inherit all behaviors of objects including their semantics� This
makes for an extensible query model that is uniformly integrated with the base object model� Some
advantages of this approach are that we have a behavioral�theoretic de�nition of a query model
that is consistent with the base object model and since the query model is integrated with the
object model� it itself is queryable� For example� we may query a collection of queries to gather
some statistical information about them or may query the types and behaviors of the query model
to examine its de�nition� These types and behaviors can be easily extended using object�oriented
techniques to evolve the query model as more advanced features are demanded of it� This illus�
trates an advantage of our approach in designing a uniform extensible query model since advanced
information processing features can be added as they are required�

�We prefer the terms �objectbase� and �object management system� over the more popular terms �object�oriented
database� and �object�oriented database management system� since not only data in the traditional sense is managed�
but objects in general which include things such as code and complex information in addition to data�

�TIGUKAT �tee�goo�kat� is a term in the language of the Canadian Inuit people meaning �objects�� The Canadian
Inuits� commonly known as Eskimos� are native to Canada with an ancestry originating in the Arctic regions of the
country�
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Other identifying characteristics of the TIGUKAT query model that di�erentiates it from other
object query model proposals are the following	

�� It incorporates a formal and powerful object calculus and object algebra with a proven equiv�
alence in expressive power and a complete algorithmic translation from calculus to algebra�

�� Its safety criterion is based on the evaluable class of queries �GT��� which is arguably the
largest decidable subclass of domain independent queries �Mak����

�� It exploits object�oriented features to extend the evaluable class by introducing notions of
object generation on equality and membership atoms which relaxes range speci�cation re�
quirements� The result is that a broader class of safe queries are recognized by our approach�

�� It incorporates a complete SQL�like user language called TQL �TIGUKAT Query Language
�
an object de�nition language called TDL �TIGUKAT De�nition Language
 and a control
language called TCL �TIGUKAT Control Language
� TQL is proven equivalent to the formal
languages making it easy to perform logical transformations and argue about its safety�

�� It uniformly models queries as �rst class objects by directly de�ning them as type and behavior
extensions to the TIGUKAT object model� This makes for an extensible query model that
has a consistent uniform underlying semantics commensurate with the object model�

�� The extensible algebra speci�cation forms a uniform basis for processing queries and is ex�
ploited by our extensible algebraic query optimizer and execution plan generator which are
topics of a forthcoming paper�

�� To the best of our knowledge� it is the �rst extensible uniform behaviorally�oriented query
model to formally bring together the components of an object�oriented user language� com�
plete object calculus and object algebra de�nitions� proofs of completeness between the lan�
guages� and an algorithmic translation from the calculus to the algebra� A parser for the user
language is being developed and integrated with the calculus to algebra translation�

Even though our work is within the context of the TIGUKAT project� the results reported
here extend to any system based on a uniform behavioral object model where behaviors de�ne the
semantics of types and are implemented in a functional paradigm�

The remainder of the report is organized as follows� In Chapter �� we discuss some of the earlier
work on object query models� In Chapter �� we give an overview of the TIGUKAT object model�
This outlines the fundamental features of the model and gives the speci�cation of the primitive type
lattice� In Chapter �� an overview of the TIGUKAT query model as an extension to the object
model is presented� and the concept of queries as objects is introduced� In Chapter � the formal
object calculus is de�ned that builds on the behaviors of the object model to form atoms and the
well�formed formulas which make up calculus expressions� The class of safe calculus expressions is
also de�ned� In Chapter �� the syntax and semantics of the TIGUKAT Query Language �TQL
�
TIGUKAT De�nition Language �TDL
 and TIGUKAT Control Language are given� In Chapter ��
the operators of the formal object algebra are presented along with a brief overview of the type
creation and inferencing mechanisms used by our algebra� In Chapter �� we de�ne a Geographic
Information System �GIS
 as an example objectbase application and present several example queries
expressed in their equivalent TQL� object calculus and object algebra forms� The reader may want
to refer to the examples in this chapter while reading the earlier parts of the report� In Chapter �� we
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give the theorems and proofs showing the equivalence between the languages of the query model�
along with an algorithm that translates safe object calculus expressions into equivalent object
algebra expressions� Finally� Chapter �� contains our concluding remarks and a brief discussion of
the ongoing work�

�



Chapter �

Related Work

One reason for the broad acceptance of relational database management systems �DBMSs
 is their
implementation of a high level� declarative query facility which provides an elegant and simple
interface to the underlying model� One of the most popular query languages in those systems is
SQL which has become an international standard for the de�nition and management of relational
data �Dat����

In order to consistently extend the functionality of relational systems� next generation DBMSs
must extend the power of the relational query model and SQL� Therefore� one of the problems
facing object�oriented systems designers is the de�nition of an object query model and language
for these systems�

The power and expressiveness of a query model is characterized by its calculus� its algebra� its
notion of safety and its completeness� The usability of a particular query model is measured by
the user languages developed for it� In this chapter� we examine some of the recent literature on
these topics including	

� framework papers that discuss the qualities of query models and serve as guidelines for query
model development


� complex object query models that� like our behavioral query model� have complete de�nitions
of an algebra� a calculus and a link between them


� speci�c complex algebras that introduce object�oriented operators and semantics that are
exploited and expanded on in our object algebra


� user languages that are similar to the SQL�like syntax and semantics of our language�

��� Query Model Frameworks

Although there is not one single universally accepted object�oriented model� a core set of features
has been identi�ed and presented in a number of manifestos �ABD���� SRL����� Similar guidelines
for the design of an object query model and user language have recently appeared as well� They
are summarized below�

Yu and Osborn �YO��� de�ne a framework for evaluating the power and expressibility of object
algebras� A set of categories is proposed for measuring the object�orientedness� expressiveness�
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formalness� performance and database issues support of an algebra� The framework is not meant
to be all inclusive� In fact� some of the recommendations are contradictory requiring compromise in
a design� To illustrate the practicality of the framework� four object algebras are compared within
its dimensions� The framework serves as a useful guideline for developing object algebras�

The object query module speci�cation �Bla��� of the DARPA open object�oriented database
�FKMT��� o�ers a structured discussion of language features that an object query language should
provide� Some of the more general properties which distinguish object query models from others are
classi�ed into �essential� and �non�essential� categories� This is supplemented by a more detailed
discussion of speci�c features which are organized into a framework that de�nes an overall design
space for object query languages� This framework is intended to serve as a reference model and is
expected to accommodate a broad spectrum of existing and future object query model de�nitions�
The reference model is similar to that of Yu and Osborn �YO��� and assists in understanding the
dimensions of object query model design by providing a common foundation for comparing and
reasoning about existing object query language de�nitions� This in turn helps to identify common
areas of agreement which may lead to an eventual standardization of object query model features�

In � �OSP��� we examined several issues relating to design alternatives for an object query model
in the context of knowledge base systems� This work focused on presenting a general discussion of
the key issues concerning query model design� how a particular set of choices are carried through
to an object query model de�nition� and the rami�cations of the choices made� Several of the
alternatives outlined in that report were readdressed during the development of this query model�

��� Complete Object Query Models

Several object query models have been proposed� Many focus on a particular language aspect such
as a calculus� an algebra or a user language� Others de�ne a complete model� but in order to
deal with safety they restrict their languages in certain ways� Many query models are built on the
nested set�and�tuple style structural model� Ours di�ers in that it is a purely behavior�theoretic
approach� de�ning the query model as an extensible part of the base object model� Some complete
query models in�uencing our design are examined below�

The emphasis of Straube and �Ozsu�s �S�O��a� Str��� work is to illustrate the viability of de�
veloping a query processor for an object�oriented database system with comparable power and
expressibility available in relational systems� A formal methodology for object�oriented query pro�
cessing is developed in line with the relational paradigm� That is� a high�level declarative calculus
is de�ned� optimization techniques on the calculus are developed� an object�oriented algebra is
de�ned� translation of conjunctive calculus formulas with limited negation into the algebra is de�
�ned� algebraic type�checking and optimization strategies based on traditional and object�oriented
transformation rules are developed� and an execution plan generation mechanism is designed that
translates optimized algebraic expressions into an execution plan that consists of a series of pack�
aged object manager calls� This increases e�ciency of query processing by reducing the number of
times the query processor must cross the bridge to the object manager�

One contribution of �S�O��a� Str��� is the de�nition of both an object algebra� an object calculus
and the linking of the two with translations between them� The algebra�to�calculus translation is
complete while the calculus�to�algebra transformation is not� The algebra de�nes a comprehensive
set of object�preserving operators� but lacks object�creating operators such as project and join��

�Object�preserving operators are limited to returning existing objects from an objectbase while object�creating
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Furthermore� the classi�cation of �safe� queries is limited to conjunctive queries without existential
negation� meaning there is no allowance for universal quanti�cation in the translation�

Abiteboul and Beeri �AB��� have de�ned a query model for complex objects that is based on
a set�and�tuple data model� Their model includes set and tuple type constructors that relax the
common restriction of alternating set and tuple structuring� This allows for arbitrary structures
with the only restriction being that the last constructor used is a set� The calculus and algebra have
complete de�nitions and include extended set operations such set�collapse for collapsing sets of sets�
powerset for forming the powerset of a given set and a higher�order restructuring operator called
replace that generalizes relational projection and provides set�and�tuple restructuring capabilities�
Safety in their model is de�ned constructively similar to the �range
 restricted formulas in �Ull����
They assume that a partial order on the variables has been de�ned� and based on this ordering� form
range terms for variables� The range terms restrict the domains of the variables� Constructions
are de�ned that build safe formulas from range terms using conjunction� disjunction� quanti�cation
and negation� With this approach� safety is dependent on how the formula is constructed from
the ground up and does not take advantage of the structure of the formula to recognize a broader
class of queries� The class of safe queries recognizable by this approach is a strict subset of the
evaluable class of queries that we use as a basis for our safety criteria� Although the formal work of
�AB��� is sound� an algorithmic de�nition of safety and a calculus�to�algebra translation algorithm
are not given� Furthermore� an e�cient solution for their transformation is not apparent since it
requires the formation of DOM sets for each variable appearing the formula� These sets consists
of all possible values from the database �and the constants in the query
 that the variable can take
on� With complex valued variables allowed in their calculus� these sets can become quite large�

��� Complex Object Algebras

An algebra is usually one of the �rst components developed for a query model� Its design determines
the ease with which data can be retrieved� Several complex object algebras have appeared in recent
years evolving from the nested relational models and functional approaches� A select number of
proposals related to our algebra are discussed below�

PDM �PROBE Data Model
 �MD��� builds on the functional model and language of DAPLEX
�Shi���� It de�nes an algebra�based query model that is an extension of the relational algebra� It is
a functional algebra that de�nes traditional relational operators� plus an �apply�and�append� op�
erator that provides a functional notion of the join operator� Apply�and�append accepts a relation
�essentially a function
 and a function over this relation as arguments� It returns a relation contain�
ing the columns of the original relation� plus an additional column holding the result of applying
the function to each tuple of the original relation� Thus� the relation acts as the �rst operand of a
join and the function de�nes the second operand� plus the join term� A nearly identical approach
is described by the OOAlgebra of OODAPLEX �Day���� We de�ne a variant of these approaches
in our algebra since their uniform functional approach �t in naturally with the behavioral nature
of our query model�

The object algebra of Shaw and Zdonik �SZ��� SZ��� is a set�and�tuple model that consistently
extends the relational algebra with both object�preserving and object�creating operators� The
algebraic operators work on collections of objects which have parameterized set types� The algebra
de�nes traditional set operations along with a �atten operator for collapsing sets of sets� For tuples�

operators may create new objects during their execution �SS�	
�
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nest and unnest operators are de�ned to restructure the representation of tuples as �at or nested
relations� In addition to these� they de�ne a traditional select operator� an image operator that
applies a function to each object of a collection and returns the results as another collection� a
project operator as an extension of image that returns a newly constructed tuple object for each
object of a queried collection� and an ojoin operator to serve as a cartesian product between two
collections of objects� The result of an ojoin is a set of object pairs with the elements of each pair
containing objects from the original collections that satisfy the join condition�

Osborn �Osb��� de�nes an algebra for an object�oriented model based on atomic objects�
strongly typed aggregates �tuples
 and both homogeneous and heterogeneous sets� A fairly com�
prehensive set of algebraic operators is de�ned� The algebra is multi�sorted since the operators
are de�ned over multiple types �sorts
 of objects and are unde�ned for certain combinations of
these types� Operators include traditional set operations� a combine operator that is equivalent
to cartesian product for sets and has a similar semantics for aggregates� a partition operator for
carving up aggregate objects only� and a choose operator which is a generalization of the relational
select � The objects created by partition� and the types to which they belong� are all grouped under
a �CreatedAggregates� class� There is no relationship between CreatedAggregates and the classes
from which the new objects are derived� The integration of the results of combine with the existing
lattice is not speci�ed�

Kim �Kim��� de�nes the query model for the ORION OODBMS� The simple form of a query in
this model is restricted to a single target class� Queries always return a new class with new object
instances created from the objects in the target class� Thus� the algebra is strictly object�creating�
The integration of new classes into the existing lattice is achieved by hanging them o� the root�
Reasoning about the type of the result class to better integrate it with the existing lattice is not
de�ned� Single operand queries are too restrictive as they do not allow explicit joins� Therefore� the
model extends queries over multiple target classes� However� there is a restriction on the domains
of the �join attributes� of a query in that they must be identical or in a sub�supertype relation
with one another� The result of a multiple�operand query� as with single�operand ones� is a new
class with new object instances that hang o� the root of the lattice�

Davis �Dav��� de�nes a formal object algebra that includes a full set of algebraic operators�
Classical object�preserving set operators and a select are de�ned which are closed on sets �they use
classes
� The relative position of the resulting classes in the class lattice is derived by manipulating
class properties which are in membership normal form �MNF
� A property restriction operator�
similar to select� is used to extract objects with particular properties and form a class of these
objects which is a subclass of the operand� The algebra also de�nes project and cross product
operators for �taking apart� and �putting together� objects� respectively� These two operators
create new objects and form new classes that are not integrated with the classes from which they
were formed� Thus� the results of these operators are not classi�ed like they are with the object�
preserving operators� We have de�ned product and a form of behavioral projection that allow us
to integrate their results with the existing lattice� Moreover� our research involves the de�nition of
procedures for deriving new types and classes of all operators and investigating how to integrate
new schema objects into the existing type lattice�

��� User Languages

A number of object query languages have been designed� One reason for this variety is due to
the inseparability of the object model and the query language� Presently� there is no universally
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accepted object query language which is not surprising since there is no accepted object model
either� Our approach in designing an extensible query model gives us an advantage by ensuring
that our model will be able to meet future information processing requirements�

SQL� �Gal��� is expected to incorporate numerous features for an object query language� It
is intended to be a complete language for managing� creating and querying persistent objects� It
provides facilities for de�ning new abstract data types �ADT
� creating new functions and access�
ing objects� Moreover� non�traditional language statements are de�ned �while�loop� if�statement�
branch statement
 that add to the computational power of the language� However� the language
is not based on any underlying object model and as a result it contains some arti�cial constructs
�objects are mapped to relational tables
 and several object�oriented features are missing �de�ni�
tion of sets� classes or other container objects
� We note that SQL� is still being designed and the
standard speci�cation is not expected to be released until ����� A number of these problems may
be solved by then�

Blakeley �Bla��� Bla��� addresses the query�programming language integration problem in the
context of an object�oriented database that uses the type system of an existing programming
language C�� �ES��� as an object model� ZQL�C��� is an object query language based on the
SQL paradigm� Query statements can be mixed with programming language statements and the
syntax of these two languages is uniform� Therefore� the query language is well integrated with
the database host language �C��
 and the impedance mismatch problem is a nonissue� Queries in
ZQL�C��� are orthogonal to all extensions of the language� Objects can be queried regardless of
whether they are transient� persistent� distributed� and so on� Query results can be inputs to other
queries and can be used in the from and where clauses of queries �i�e�� nested queries
� However�
the formal semantics of the language is not de�ned which raises questions regarding the safety�
completeness and optimization possibilities of the language� Furthermore� aggregate functions are
not addressed and ZQL�C��� does not seem to support a syntax for them�

A similar approach to ZQL�C��� is taken in CQL�� �DGJ���� CQL�� is a declarative front
end to Ode �AG���� It combines an SQL�like syntax with the C�� class model� CQL�� is based
on an object algebra that is closed on sets� and is well integrated with O�� which is the host
language in Ode� Finally� queries are orthogonal to persistence� since persistence is associated with
objects�

In �BCD��� LR��b� LR��a� the main features of the query language for the O� �BCD��� LRV���
system are discussed� The syntax of the query language is based on the SQL select�from�where block�
while the semantics of the language is de�ned as a partial mapping from sets of objects and values
to a set of objects and values� It is a functional language and is a subset of a host programming
language� Thus� the problem of impedance mismatch does not exist� A �atten operator is provided
to enable the navigation through embedded sets and lists� However� the language violates the
encapsulation principle when used on an ad hoc basis� Furthermore� the semantics of the language
is not based on any formal calculus�

EXCESS �CDV��� is the query language for EXODUS �CDF���� and is di�erent from ZQL�C����
CQL��� and O� languages in that it is based on QUEL rather then SQL� Its main features include
the uniform treatment of sets and arrays �meaning queries can operate on sets as well as on arrays
�
a type�oriented treatment of range variables and support for update syntax� EXCESS allows path
expressions to simplify the task of formulating queries� Queries in EXCESS work on sets or arrays
of objects� values or tuples and return sets as results� EXCESS supports aggregate functions which
add computational power to the language�

OSQL �Ken��� is a database language developed for the IRIS object�oriented database system�
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Its design was largely in�uenced by the SQL standard� Consequently� OSQL serves as an object
description� manipulation and query language that has an SQL syntax� Queries are modeled as
functions whose domains are either types �equivalent to the concept of classes in TIGUKAT
� or
bags of instances of types �collections in TIGUKAT
� They always return bags as results� therefore
results of queries can be inputs to other queries� The syntax for nested queries in the from and
where clauses is not supported�

Quite di�erent design ideology is presented in the object query language for the ObjectStore
�LLOW��� OHMS���� C�� programming language is adopted as a host language in the system�
and queries are expressed using C�� extensions supported by the C�� compiler� In other words�
queries are integrated with the host language by a special query operator �
���
 whose operands
are either collections or predicates� Thus� one cannot talk about the query language based on any
know paradigm like SQL or QUEL� However� the same expressive power is achieved by the queries�
nested queries and path expressions in ObjectStore� Queries in this system operate on collections
or predicates� and they evaluate to collections� single objects or boolean�

OQL �ASL��� is a somewhat unorthodox object query language for object�oriented databases�
The concept of a subdatabase is introduced� A subdatabase is de�ned as a portion of the operand
database �which can be either an original database or another subdatabase that has been established
by another query
� It consists of an intensional association pattern �which is a network of classes

and the extensional association pattern �which is a network of instances that belong to those
classes
� Queries operate upon subdatabases� and they return subdatabases as results� The syntax
of OQL is not based on any common languages �neither SQL� nor QUEL
 and therefore� as many
argue� it is not very intuitive and rather unclear�
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Chapter �

TIGUKAT Object Model

The TIGUKAT object model �P�OS��� is de�ned behaviorally with a uniform object semantics� The
model is behavioral in the sense that all access to� and manipulation of� objects is based on the
application of behaviors �operations
 on objects� The model is uniform in that every component of
information� including its semantics� is uniformly modeled by objects and has the status of a �rst
class object �

Uniformity in TIGUKAT is similar to the approaches of DAPLEX �Shi���� its object�oriented
counterpart OODAPLEX �Day��� and FROOM �MB���� However� our de�nition of uniformity
is complete in the sense that it extends over all forms of information including schema� meta�
information� query model� query optimizer and so on� We adopt another signi�cant aspect of these
models	 their functional approach to de�ning behaviors� TIGUKAT enhances this approach by
extending functionality� providing a full set of precise speci�cations and de�ning an integrated
structural counterpart� In this chapter� we give only a general overview of the TIGUKAT object
model in order to introduce its fundamental concepts� We provide depth on only those aspects
of the model that are important in regards to object query processing� For the complete model
speci�cation� including the structural counterpart� we refer the reader to �P�OS����

An object is a fundamental concept in TIGUKAT� Every component of information� including
its semantics� is uniformly represented by objects� This means that at the most basic level� every
expressible element incorporates at least the semantics of our primitive notion for �object��

The model de�nes a number of primitive objects that include	 atomic entities �such as reals�
integers� naturals� strings� characters and booleans

 types for de�ning the features of common
objects
 behaviors for specifying the semantics of operations that may be performed on objects

functions for specifying the implementations of behaviors over various types�
 classes for the auto�
matic classi�cation of objects based on type�
 and collections� bags� posets and lists for supporting
general heterogeneous user�de�nable groupings of objects�

The primitive type system of TIGUKAT is shown in Figure ��� with the type T object as the
root of the lattice and type T null as the base� T null is introduced to provide� among other
things� error handling and null semantics for the model� For example� there is an object null that
is an instance of T null and can be returned by behaviors that have no other result� In a similar
way� we could de�ne unde�ned� dontknow and error objects of this type� We can even subtype
T null to specialize its semantics� In the remainder of the report� the pre�x T refers to a type�

�Behaviors and functions form the support mechanism for overloading and late binding of behaviors
�Types and their extents are separate constructs in TIGUKAT�
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Figure ���	 Primitive type system of TIGUKAT�

C refers to a class� L refers to a collection� and B refers to a behavior� For example� T person

is a type reference� C person is a class reference� L seniors is a collection reference� B age is a
behavior reference� and a reference such as sherry without any speci�c pre�x represents some other
application speci�c reference� In Appendix A we give tables showing the signatures for the native
behaviors de�ned by the types in our model� Some behaviors are elaborated on in this paper�
but for a complete discussion of the semantics of these and other behaviors we refer the reader to
�P�OS����

Objects are de�ned as �identity� state� pairs where identity represents a unique� immutable sys�
tem managed object identity and state represents the information carried by the object� Thus� our
model supports strong object identity as described in �KC���� meaning every object has a unique
existence within the model and is distinguishable from every other object� However� this does
not preclude application environments such as object programming languages from having many
references �or denotations
 to objects which need not be necessarily unique and may even change
depending on the scoping rules of the application� On the other hand� the state of an object encap�
sulates the information carried by that object� along with its representation� In other words� the
state encapsulates the denotations of objects and hides the structure and implementation� Concep�
tually� every object in TIGUKAT is a composite object� meaning every object has references �not
necessarily implemented as pointers
 to other objects� For example� even integers have behaviors
that return objects� but obviously it would be ine�cient to implement them as a series of pointers�
This illustrates a strength in the model�s separation of behaviors from their implementations�

��



The access and manipulation of an object�s state occurs exclusively through the application
of behaviors� similar to the message�based approach of Smalltalk �GR���� FROOM �MB��� and
OODAPLEX �Day���� An important primitive behavior de�ned on objects is that of identity
equality �denoted B equal and de�ned on T object
 that compares two object references based on
their identities� In this case� two object references are identity equal if and only if they refer to
the same object� Other notions of equality �such as those based on the structural components of
objects like deep�equality and i�equality �SZ���
 can be de�ned in terms of the primitive identity
equality and can vary over di�erent types�

We separate the means for de�ning the characteristics of objects �i�e�� a type
 from the mech�
anism for grouping instances of a particular type �i�e�� a class
� A type speci�es behaviors and
encapsulates the implementation and representation for objects created using the type as a tem�
plate� Thus� a type serves as an information repository of common characteristics for all objects of
that particular type� The behaviors de�ned by a type describe the interface �denoted B interface
de�ned on T type
 to the objects of that type� Types are organized into a lattice structure using
the notion of subtyping which promotes software reuse and incremental type development� Since
TIGUKAT supports multiple subtyping �i�e�� a type can be a subtype of several other types
� the
type structure is potentially a directed acyclic graph �DAG
� However� this DAG is converted to a
lattice by lifting with the base type T null�

A class ties together the notions of type and object instance� A class is a supplemental� but
distinct� construct responsible for managing all instances created using a speci�c type as a template�
The entire group of objects of a particular type is known as the extent of the type� This is separated
into the notion of deep extent which refers to all objects created from the given type� or one of
its subtypes� and the notion of shallow extent which refers only to those objects created from the
given type without considering its subtypes� Thus� shallow extent is a subset of deep extent� In
general� we use extent in place of deep extent and explicitly mention shallow extent when required�

Objects of a particular type cannot exist without an associated class and every class is uniquely
associated with a single type� Thus� a fundamental notion of TIGUKAT is that objects imply
classes which imply types � Another unique feature of classes is that object creation occurs only
through a class using its associated type as a template for the creation� De�ning object� type and
class in this manner introduces a clear separation of these concepts� This separation is important
in schema evolution which manipulates type objects into new subtype relationships and need not
be concerned with the overhead of classes� Furthermore� more general grouping constructs� called
collections� use types to de�ne common characteristics of their member objects�

Classes represent objects that are part of the objectbase� For example� the class C person
represents all person objects in the objectbase and C object represents all the objects in the
objectbase� We assume a �nite objectbase and therefore all classes are �nite� There are two kinds
of classes provided by the model� The one kind is called an explicit class because it explicitly
manages its shallow extent and computes its deep extent by recursing over the shallow extents
of its subclasses� The second kind is called an implicit class because the shallow extent is not
explicitly stored� but rather is implied from the contents of the objectbase� In other words� the
shallow extent of an implicit class is the ��nite
 collection of objects in the objectbase that belong
to the class� The shallow extent of an implicit class can be computed by scanning the objectbase
and returning the objects that belong to the class�

Most classes are explicit classes� However� the classes for the atomic types T real� T integer�
T natural and T string are implicit� Moreover� they are special in the sense that there is a built�in
mechanism for creating the constants of the these classes� The act of writing down a constant of
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one of these classes �in a query for example
 can be thought of as a request to return an object
representing the constant� creating a new one if necessary� For example� the class C integer is
initialized with the object zero and by using the B succ and B pred behaviors on this object� any
integer object can be theoretically created and returned� The act of writing down the integer
constant �� can be thought as a request to apply B succ to the object zero and then to apply
B succ to the result� This either returns the existing object representing the integer �� or creates a
new one� This is an assurance that there is only one integer � in the objectbase� Any intermediate
objects created along the way that are not stored in the objectbase are deleted� The reals and
naturals have a similar semantics� The B succ and B pred behaviors on reals are limited to the
precision of reals on a particular system� The class C string is initialized with the empty string
and string representations of all the characters of which there are a �nite number� With these
initial strings and the concat function any string can be created and returned� The act of writing
down the string �joe� can be thought of as a request to apply B concat to the string objects �j�
and �o� and then to apply B concat to the result and the string object �e�� Of course� in our
implementation of TIGUKAT we don�t actually do it in this way� but instead use the �native�
domains of the implementation language� The above is just a formal model that is consistent with
the uniformity aspects of the object model�

We de�ne a collection as a general user�de�nable grouping construct� A collection is synonymous
with a set and we use the terms interchangeably� Collections are similar to classes in that they
both represent an extent of objects� but they di�er in the following respects� First� object creation
cannot occur through a collection
 object creation occurs only through classes� This means that
collections are derived from existing objects and therefore collections are �nite� Second� an object
may exist in any number of collections� but it is a member of the shallow extent of only one class�
Third� classes are automatically managed by the system based on the subtype lattice whereas
the management of collections is explicit � meaning that the user is responsible for their extents�
Finally� a class consists of the extension of a single type �shallow extent
 along with the extensions
of its subtypes �deep extent
� Therefore� the elements of a class are homogeneous up to inclusion
polymorphism while a collection may be heterogeneous in the sense that it may contain objects
of di�erent types that are not related by subtyping� There is no distinction of shallow and deep
extent for collections in the sense that a collection represents its entire extent� The subtypes T bag�
T poset and T list are specialized collections that add duplication and ordering
 bags maintain
duplicates� posets maintain ordering� and lists maintain both�

Classes in TIGUKAT are similar to the grouping constructs in Iris �FBC����� ODE �AG���� Ob�
jectStore �LLOW��� and Orion �BCG����� while collections resemble those in EXODUS �CDV����
ENCORE �SZ���� GEMSTONE �MS��� and O� �LRV���� Having both de�ned within the same
model is bene�cial in that type extents are automatically maintained through classes and users
have the �exibility to de�ne their own object groupings by means of collections� Beeri �Bee���
also identi�es these two forms of grouping constructs� but does not separate them as we do here�
He regards a type as both the speci�cation of object structure� plus the entire extent of objects
created using that type as a template� This is similar to a merger of our notions of type and class �
Furthermore� Beeri does not separate type extents �classes
 into shallow and deep extent as we do�
He introduces the notion of class as a general grouping construct which we call a collection in our
model�

In TIGUKAT� we de�ne class �type T class
 as a specialization �subtype
 of collection �type
T collection
� This introduces a clean semantics between the two and allows the model to utilize
both constructs in an e�ective manner� For example� the targets and results of queries are typed
collections of objects� This means targets also include classes because of the specialization of
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classes on collections� This approach provides great �exibility and expressiveness in formulating
queries and gives closure to the query model which is often regarded as an important feature
�Bla��� YO���� The remaining subtypes of T class� namely� T class�class� T type�class and
T collection�class� make up the meta type system� Their placement within the type system
itself directly supports the uniformity de�nition of the model� For a full discussion on how these
types support uniformity in TIGUKAT� we refer the reader to �P�OS����

Two other fundamental notions of TIGUKAT are behaviors and the functions �known as meth�
ods in other models
 that implement them� In the same way as object speci�cations �types
 are
separated from the groupings of their instances �classes and collections
� we separate the de�nition
of a behavior from its possible implementations �functions�methods
� The advantage of this ap�
proach is that common behaviors over di�erent types can have a di�erent implementation for each
of the types� This is referred to as overloading the behavior� meaning that the implementation
of the behavior may vary depending on the type of the object to which it is applied� This gives
the model the ability to dynamically bind implementations to behaviors at run time �known as
late�binding
 which is recognized as a major advantage of object�oriented computing�

The semantics of every operation on an object is speci�ed by a behavior de�ned on its type�
A function implements the semantics of each behavior� Alternatively� we say it provides the op�
erational semantics of its corresponding behavior� The implementation of a particular behavior
may vary over the types that support it� Nonetheless� the semantics of the behavior remains the
same over the types supporting that behavior� We de�ne two kinds of implementations for behav�
iors� One is a computed function that consists of runtime calls to executable code and the other
is a stored function that is a reference to an existing object in the objectbase� The uniformity
of TIGUKAT considers each behavioral application as the invocation of a function� regardless of
whether the function is stored or computed� Functions are discussed more in the query model
where it is shown that queries are specialized functions� That is� queries are really objects and are
uniformly described in terms of the model itself� This example of uniform speci�cation illustrates
the expressive power of the TIGUKAT object model�
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Chapter �

TIGUKAT Query Model

The design of a complete uniform behavioral object model forms a basis for an extensible object
query model� The query model reported here is a uniform extension of the base object model� it
de�nes a logical object calculus� an equivalent behavioral�functional algebra� equivalence preserving
reductions between the two and an SQL�like user language� The model�s extensibility can be used
to describe extensible query optimization and execution plan generation� but these results are not
reported here�

��� Query Model Overview

An identifying characteristic of the TIGUKAT query model is that it is de�ned as type and behav�
ioral extensions to the base object model� The uniform behavioral paradigm of the object model is
carried through into the query model� Queries are de�ned as a specialization of functions and the
algebraic operators are de�ned as behaviors on the type T collection� Thus� the query model is
a collection of objects �types� behaviors� functions� etc�
 uniformly integrated with the base model�
This approach has many advantages� For example� the query model is itself queryable� meaning
a query may be posed on a collection of query objects or on the types and behaviors making up
the query model de�nition �i�e�� schema
� Another advantage is that we have a single underlying
semantics for both the object and query model resulting in a clean integration of the two� The
mechanics of this integration is explained in Section ����

A distinction is commonly made �SS��� between object preserving and object creating operations
in object query models� An object preserving operator is one whose result contains only existing
objects� That is� it does not create or modify objects in any way� either explicitly or by side
e�ects� The query formalism of Straube and �Ozsu �S�O��a� considered only operations of the object
preserving kind� On the other hand� object creating operators allow for the �taking apart� and
�putting together� of objects into various new structures� with new identity� which are distinct from
any existing objects in the objectbase� The objects created �especially persistent objects
 must be
integrated into the underlying type system� including any derived types or classes necessary for the
consistent existence of these new objects�

The debate over object preserving vs � object creating operators has strong arguments on both
sides� On the one hand� object preserving operators are important because a query language must
support these kinds of queries independent of its support for object creating operators� On the other
hand� object creating operators allow otherwise unrelated objects to be combined in new ways which
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is important for composing new relationships among objects and reorganizing information
 this has
application in knowledge base systems where knowledge is acquired by forming new relationships
from the existing facts� However� object creating operators introduce several problems that need to
be resolved� First� new objects require a type that may not exist and must be integrated with the
existing type lattice� Questions on how this type �ts into the existing lattice and what behaviors
it supports must be addressed� Second� the issue of query safety becomes more complex due to the
introduction of new objects during query processing� For example� consider a query that creates
new objects in one of its argument collections with every iteration of its evaluation� If the semantics
were such that the query would continue to process these new objects� then more objects would be
created and the query could go on inde�nitely�

The terms object�preserving and object�creating require further clari�cation in the context of a
uniform object model like TIGUKAT in which everything is an object� Queries in our model �at
minimum
 always create and return a new collection object that represents the result� Furthermore�
a query may also create a new type object to go along with the collection if a proper type does
not already exist� Thus� in TIGUKAT all queries are object�creating in one sense� If the result
collection of a query contains objects created during the execution of the query� it is called a
target�creating query
 otherwise it is called a target�preserving query�

The user query language �TQL
 has a syntax based on the SQL select�from�where structure� and
formal semantics de�ned by the object calculus� Thus� it extends the relational query languages
with object�oriented features� The de�nition language �TDL
 provides functionality to create new
types� classes� collections and behaviors
 to de�ne new functions in the query language or an external
language
 to add and remove behavior de�nitions to and from types
 and to associate functions with
behaviors on types� The control language �TCL
 consists of a few simple commands for controlling
a session with the query processor�

The object calculus has a logical foundation and its expressive power is outlined by the follow�
ing characteristics� It de�nes predicates on collections �essentially sets
 of objects and returns a
collection of objects as a result� This property makes the language closed which is important for
uniformity� It incorporates the behavioral paradigm of the object model and allows the retrieval of
objects using nested behavioral applications� sometimes referred to as path expressions or implicit
joins � It supports both existential and universal quanti�cation over collections� It has a rigorous
de�nition of safety based on the evaluable class of queries that is compile time checkable� Finally� it
supports controlled creation and integration of new collections� types and objects into the existing
schema�

The algebra has a behavioral �or functional
 basis as opposed to the logical foundation of the
calculus� Like the calculus� the algebra is closed on collections� The algebraic operators are modeled
as behaviors on the primitive type T collection� Thus� any subtype of T collection �such as
classes
 may be used as an operand of an algebra operator�

A desirable property of an object query model is that the algebra and calculus be equivalent in
expressive power� meaning that all queries expressed in one language can also be expressed in the
other� In Chapter � we state our theorems and proofs which show the equivalence of our algebra
and calculus� along with the reductions of the user language to the formal languages� Safety of our
languages is addressed in Section ����
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Figure ���	 Query type extension to primitive type system�

B argTypes	 T listhT typei
B resultType	 T type

B source	 T string

B execute	 T list� T object

B compile	 T object

B executable	 T object

B initialOAPT	 T algOp

B optimizedOAPT	 T collectionhT algOpi
B searchStrategy 	 T searchStrategy

B transformations	 T listhT algEqRulei
B argMbrTypes	 T listhT typei

B resultMbrType	 T type

B optimize	 T searchStrategy� T algOp� T collectionhT algOpi
B genExecPlan	 T algOp� T function

B budgetOpt	 T integer

B lastOpt	 T date

B lastExec	 T date

B materialization	 T object

Table ���	 Behavior signatures for type T query� Upper half are inherited from T function� Lower
half are native to this type�

��� Queries as Objects

Modeling queries as objects is a natural extension to the TIGUKAT object model� We de�ne a
type T query as a subtype of T function in the primitive type system as illustrated in Figure ����
This means that queries have the status of �rst class objects and that they inherit all the behaviors
and semantics of objects� Moreover� queries are a specialized kind of function object� This means
they can be used as implementations of behaviors� they can be compiled� they can be executed and
so on�

Table ��� lists the signatures of behaviors de�ned on type T query� The upper half of the table
are the behaviors inherited from T function and the lower half are the native behaviors de�ned
by this type�

Functions have source code associated with them and the source code for a query is a TIGUKAT
query language statement as de�ned in Chapter �� The behavior B source retrieves this language
statement from the query� Functions have a behavior B compile that compiles the code� For a
query� this involves translating the query statement into an algebra expression� optimizing it and
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generating an execution plan� Functions have a behavior B execute that executes the compiled
code� In general� for a query this means submitting the execution plan to the object manager for
processing� Furthermore� queries have specialized behaviors such as B materialization which is a
reference to the materialized query result �i�e�� the actual result collection itself
� If this result is
made persistent� then the query is said to be stored and doesn�t need to be re�evaluated the next time
it is called upon to B execute itself� Other behaviors include B initialOAPT and B optimizedOAPT
for accessing the initial and optimized Object Algebra Processing Trees
 B searchStrategy for
accessing the search strategy used for optimization
 B transformations for accessing the list of
transformation rules used during optimization
 B argMbrTypes for accessing the membership types
of the argument collections as opposed to B argTypes which are the types of the collection objects
themselves
 B resultMbrType for accessing the membership type of the result collection as opposed
to B resultType which is the type of the collection
 and several other behaviors for keeping various
statistics about queries� These behaviors relate to the extensible query optimizer and will be
discussed in a forthcoming paper�

Incorporating queries as a specialization of functions is a very natural and uniform way of
extending the object model to include declarative query capabilities� The major bene�ts of this
approach are as follows	

�� Queries are �rst class objects � meaning they support the uniform semantics of objects and
are maintained within the objectbase as just another kind of object�

�� Since queries are objects� they can be queried and can be operated upon by other behav�
iors� This is useful for retrieving information about queries� generating statistics about the
performance of queries and in de�ning extensible optimization techniques on query objects�

�� Queries are uniformly integrated with the operational semantics of the model so that queries
can be used as implementations of behaviors �i�e�� the result of applying a behavior to an
object can trigger the execution of a query
�

�� The type T query can be further specialized by subtyping� This can be used to dichotomize
the class of queries into additional subclasses� each with its own unique characteristics� and
to incrementally develop the characteristics of new kinds of queries as they are discovered�
For example� we can subtype T query into T adhocQuery and T productionQuery and then
de�ne di�erent evaluation strategies for both� Ad hoc queries may be interpreted without
incurring high compile�time optimization strategies while� on the other hand� production
queries are usually compiled once and then executed many times� Thus� more time is usually
spent on optimizing production queries�
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Chapter �

The Object Calculus

It is well recognized that a declarative query facility is an essential component of any database
management system
 object�oriented systems are no exception� In this chapter� we present a high�
level behavioral object calculus with �rst�order semantics�

In order to maintain the uniformity of the behavioral object model within the query model� the
behavioral abstraction paradigm is carried through into the calculus� The logical foundation of the
calculus includes a function symbol to incorporate the behavioral nature of the object model� This
allows the use of general path expressions in the calculus� The safety of our calculus is based on
the evaluable class of queries �GT��� which is arguably the largest decidable subclass of the domain
independent class �Mak���� We extend this class by making use of object generators for equality
and membership atoms and this relaxes the requirement of specifying explicit range expressions for
each variable�

We begin by presenting the �rst�order theory of our object calculus that de�nes the well�formed
formulae of the language� We then describe augmentations to the theory which form object calculus
expressions �OCEs
 that represent the declarative queries posed on an objectbase�

The alphabet of the object calculus consists of the following symbols	

Object constants	 a� b� c� d
Object variables	 o� p� q� u� v� x� y� z

Predicate symbols
monadic	 C� P�Q�R�S� T

dyadic	 �� ����� ��
n�ary	 Eval

Function symbols	 �

Logical connectives	 �� �������
Delimiters	 � 
 �

Note that the object constants� object variables� monadic predicates and function symbols may
be subscripted �e�g�� a�� oi� Cn� ���etc�
� In addition� we adopt a vector notation �s to denote a
countably in�nite list of symbols s�� s�� � � � � sn where n 	 ��

From object constants and object variables we develop the syntax and semantics of the function
symbol � called a behavioral speci�cation �Bspec
� A term is an object constant� an object variable
or a Bspec� A Bspec is an n���ary function ��s� b��t
 where s and each ti denote terms and where
b is an object constant� For n � �� we use ��s� b
 without loss of generality�
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The ordered list of terms s� b��t is considered to be behaviorally consistent if and only if the
following properties hold	

�� b is an object constant denoting a behavior� meaning b is not allowed to range over behaviors
�functions
 which ensures a �rst�order semantics when incorporated into a language with
quanti�cation


�� the type of the object denoted by s de�nes behavior b as part of its interface� meaning b is
applicable to s because it is de�ned on the type of s


�� �t is compatible with the arity of the argument list for behavior b� meaning the number of
arguments expected by b is equivalent to the number of terms in �t
 and

�� the types of the objects denoted by �t are compatible with the argument types of behavior b�
meaning the types of the terms are compatible with the argument types of b�

A Bspec ��s� b��t
 is consistent if and only if s� b��t are behaviorally consistent � In TIGUKAT� every
object knows its type and therefore� we can determine the consistency of a Bspec at compile time�

The �evaluation� of a consistent Bspec involves applying the behavior b to the object denoted
by term s using objects denoted by terms �t as arguments� The �result� of Bspec evaluation denotes
an object in the objectbase� Since Bspecs denote objects� they have a type �and a class
 that are
in the objectbase as well�

The �evaluation� of Bspecs has the following logical formation� We introduce the n���ary
predicate Eval�R� s� b��t
 as an axiom in the language such that Eval�R� s� b��t
 is true if and only
if R denotes the �result� of applying behavior b to the object denoted by term s using terms �t as
arguments� The function symbol ��s� b��t
 is a logical representation of R� The Eval predicate also
serves as an enforcement of the consistency property of Bspecs� From now on we consider only
those Bspecs that are consistent�

Bspecs may be composed� This provides the capability of building path expressions in queries�
For example� given the object constants emp� B department and B budget with the obvious se�
mantics� we can compose the Bspec ����emp�B department
�B budget
 that denotes the object
representing the annual budget of the department that employee emp works in� Also note that the
example Bspec has the properties of a ground term �see De�nition ��� below
�

For brevity� we recast the syntax of Bspecs into the dot notation as s�b��t
 which we intend
as being semantically equivalent to the original speci�cation� If behavior b does not require any
arguments� then the notation simpli�es to s�b� The previous example can then be represented
as emp�B department�B budget assuming left�associativity of behavioral applications� Parenthesis
may be used to change the order of precedence� Some other equivalent syntax� such as function
application b�s��t
 which is popular in other languages� could have been chosen instead�

As shown by the above example� many path expression formations often include a series of
behaviors with the semantics that the result of the �rst behavior be used as the input to the second
and so on� We call such a sequence ofmultiple operations a mop �S�O��a� which is equivalent to a
Bspec� We introduce the multi�operation dot notation ��s��b��b�� � �bm to denote a multi�operation
resulting in the application of behavior object constants b��b�� � �bm using objects denoted by terms
�s as arguments� Furthermore� ��s���b is used as a shorthand to denote a multi�operation where the
number and ordering of the behaviors are immaterial�
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To illustrate the processing of a mop� consider the multi�operation �s�� s�� � � � � sn��b��b�� � �bm�
Let ki denote the number of parameters

� de�ned by behavior bi� let ri designate the intermediate
object denoted by the Bspec formation of behavior bi and let r denote the �nal result of the mop�
Procedurely� a mop is processed as follows where �
� denotes assignment	

r� 
 s��b��s�� � � � � sk���

r� 
 r��b��sk���� � � � � s�k��k����

���

���
ri 
 ri���bi�s�

Pi��

j��
kj���

� � � � � s
�
Pi

j��
kj���

���
���

r � rm 
 rm���bm�s�
Pm��

j��
kj���

� � � � � sn


The above sequence of behavioral application making up the mop is illustrated in Figure ����
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Figure ���	 Sequence of behavioral applications making up a mop�

Bspecs and mops are equivalent forms of representation� One form can be freely transformed
into the other and results established using one form also hold for the other� This result is impor�
tant since we can transform between the formal calculus and �simplier� language notations� The
equivalence is formalized by the following lemma�

Lemma �
� Bspecs and mops are equivalent representations�

Proof� Trivial� Due to the following equivalence mappings between Bspecs and mops where s and
t represent terms and b represents behavior constants	

��s� b��t
 � �s��t��b ����

��t��b��b � ���t��b���b ����


The �rst mapping shows that every Bspec can be replaced by an equivalent mop over a single
behavior and vice versa� The second mapping shows the unnesting of mops over multiple behaviors
into an equivalent series of single behavior mops which is handled by the �rst mapping� �

We generalize the notions of constants and variables to include Bspecs by de�ning ground terms
and variable terms as follows	

De�nition �
� Ground Term� A ground term is recursively de�ned as follows	

�Here the parameters refer to the objects supplied to the behavior� not including the initial object to which the
behavior is being applied�
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�� every object constant is a ground term


�� if ��s� b��t
 is a Bspec and all of s��t are ground terms �note that b must be a ground term by
the de�nition of Bspec
� then ��s� b��t
 is a ground term


�� nothing else is a ground term�

From now on� symbols de�ned as denoting an object constant� including symbols a� b� c� d� are
extended to include ground terms as well� Any term that is not a ground term is called a variable
term since it must contain at least one object variable� If �o are the object variables appearing
in some term r� then r is called a variable term over �o� The variables can be thought of as the
parameters of the term� If r is the object variable o� then r is a variable term over o� If r is a
term de�ned by Bspec s�b��t
 and �o represents the object variables appearing in the Bspec� then r
is a variable term over �o� We use the notation rf�og to denote that r is a variable term over �o� We
generalize this notation to �f�og when the form of the term is immaterial� If �o is empty� then �fg
denotes a generic ground term�

The atomic formulas or atoms are the building blocks of calculus expressions� They represent
the fundamental predicates of the calculus� The atoms of the calculus consist of the following	

Range Atom� C�o
 is called a range atom for o where C corresponds to a unary predicate rep�
resenting a collection and o denotes an object variable� We say C is the range of o� A range
atom is true if and only if o denotes an object in collection C� When C is de�ned for a class�
it denotes the deep extent of the class and we extend the notation to include C��o
 which
is true if and only if o denotes an object in the shallow extent of the class� One may think
of C� as a separate monadic predicate for specifying the shallow range of o� Range atom
speci�cations of the form C�s
 where s is a term denoting an object constant or Bspec �i�e��
not an object variable
 are represented by membership atoms de�ned below�

Equality Atom� s � t is a built�in predicate called an equality atom where s and t are terms�
The predicate is true if and only if the object denoted by term s is object identity equal to the
object denoted by term t� This atom is type consistent for all objects since all objects must
support an object identity equality behavior� Note� as a syntactical convenience� an equality
atom where both terms are boolean and where one of the terms is the object constant true�
say s � true where s is boolean� is simpli�ed to s� If one of the terms is the object constant
false� we simply the atom speci�cation to �s� The built�in predicate s �� t is the complement
of equality�

Membership Atom� s � t is a built�in predicate called a membership atom where s and t are
terms and t is a term denoting a collection� The predicate is true if and only if the object
denoted by s is an element of the collection denoted by t� Note that a range speci�cation of the
form C�s
 where s is an object constant or Bspec �i�e�� not an object variable
 is represented
as a membership atom s � C� where C� is a constant denoting the collection represented by
predicate C� The built�in predicate s �� t is the complement of membership�

Generating Atom� An equality atom of the form o � t or a membership atom o � t� where o
is an object variable� t is an appropriate term for the atom� and o does not appear in t� are
called generating atoms for o� They are so named because the object denotations for o can
be generated from t� We call o the generated variable and t the generator � Any atom that is
not a generating atom is called a restriction atom and any variable that is not generated is
called a restriction variable�
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A ground atom is an atom that contains only ground terms� A literal is either an atom or a
negated atom� A ground literal is a literal whose atom is a ground atom�

The choice of atoms may seem restrictive when compared to other calculi such as the tuple
relational calculus which de�nes a greater variety of comparison predicates including �� ���� ��
and 	� An identifying characteristic of our calculus is that it is strictly behavioral and does not
de�ne explicit value�based comparisons of objects or their subcomponents� Thus� operations such as
����	�� must be de�ned as behaviors on the respective types of objects that are to be compared�
The only comparison predicates de�ned are object identity equality and membership� However�
type implementors can specialize the behaviors for these comparison predicates in their own types
�e�g�� value based comparisons
 that are of most utility to them� For example� a form of �structural
equality� on cartesian product types that compares two product objects based on the pairwise
equality of their respective component objects can be de�ned�

From atoms� we build the de�nition of a �rst�order well�formed�formula or simply formula
�abbreviated WFF
 of the object calculus� WFFs are de�ned in terms of free and bound object
variables� An object variable is bound in a formula if it has been previously introduced by the
quanti�er � or �� If the variable has not been introduced with a quanti�er it is free in the formula�
WFFs are de�ned recursively as follows	

�� Every atom is a formula� All object variables in the atom are free in the formula�

�� If � is a formula� then �� is a formula� Object variables are free or bound in �� as they are
free or bound in ��

�� If �� and �� are formulas� then �� � �� and �� � �� are formulas� Object variables are free
or bound in �� � �� and �� � �� as they are free or bound in �� or ���

�� If � is a formula� then �o��
 is a formula� Free occurrences of o in � are bound to �o in
�o��
�

�� If � is a formula� then �o��
 is a formula� Free occurrences of o in � are bound to �o in
�o��
�

�� Nothing else is a formula�

We use A�B� F�G and �� � to denote formulas and subformulas� We use the relation �A
def
� F�

as meaning symbol A �is de�ned by� the expression F � This is used to associate formula symbols
with formulas� Furthermore� we use A�x
 to denote that variable x is free in formula A� Formulas
may be enclosed in parenthesis to indicate order of precedence� In the absence of parenthesis� we
adopt the following precedence hierarchy� with the highest precedence at the top	

�� �� �
�
�

��� Calculus Queries

Several classi�cations of object�oriented queries have been made� One class of queries deals only
with behaviors that are side�e�ect free� A behavior is said to be side�e�ect free if it does not
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modify the state of any object or create new objects during its execution� This property is too
restrictive in the context of our model since all operations �including the algebraic operators
 are
uniformly managed as behaviors� At minimum� a query always returns a new collection as a result
and in certain cases generates a new type for the collection as well� Thus� there is a small set
of prede�ned behaviors that manage the controlled creation of collections �and possibly types
 as
their side e�ects� These behaviors include the algebraic operators and the primitive behaviors
for collection creation and construction� We use the notation newcoll�o�� � � � � on
 as a shorthand
to represent the creation of a collection containing objects o�� � � � � on� The primitive sequence of
behavioral applications corresponding to this notation is as follows	

C collection�B new �B insert�o�
 � � �B insert�on


A new empty collection is created and then each object oi is added to the collection in turn� The
result is a collection containing objects o�� � � � � on� A compiler could optimize this series of n��
behavioral applications into a single internal primitive collection creation operation since collections
are part of the primitive model�

We assume that all user�de�ned behaviors appearing in calculus expressions are side�e�ect
free� In other words� all user�de�ned behaviors appearing in calculus expressions must be retrieval
oriented�

A target�preserving query is an object calculus expression �OCE
 of the form ft j �g where t
is a target term consisting of a single variable� say o� possibly indexed by a set of behaviors� � is
a WFF with o as the only free variable� and all behaviors in the expression are side�e�ect free or
retrieval oriented�

Indexed variables are of the form o�B� where B represents a subset of behaviors de�ned on
the type of variable o� unioned with the behaviors de�ned on type T object� The union with
T object is necessary since every object must support the behaviors of T object� The semantics
of indexed terms is to project over the behaviors in B for variable o creating a new type for the
result� Following a projection� the membership type of the result collection will be a type that
only de�nes the behaviors in B� This resticts the behaviors that can� in general� be applied to the
members of the result collection�

Target�preserving queries may seem to be somewhat simplistic and too restrictive� but this form
supports a wide variety of useful queries� For example� assume �nite classes C dept and C emp

where C emp objects have behaviors B dept and B age de�ned on them� The following target�
preserving query returns a collection of department objects that have senior citizens working for
them	

f o j C dept�o
 � �p�C emp�p

� o � p�B dept � �p� ����B age�B greaterThan
 g

All queries that are not target�preserving are target�creating� We extend the notation of OCEs
for target�creating queries to include the form ft�� � � � � tk j �g where the set of variables appearing
in �possibly indexed
 target terms t�� � � � � tk is precisely the set of free variables� say �o� in the WFF
�� This form is a generalization of the target�preserving kind by allowing k 	 � target terms
over �o distinct object variables� The result of this second form of query is a collection of product
objects created by joining permutations of t� through tk that satisfy �� Assume that in the previous
example we wanted to return �department� employee
 pairs instead of just departments and that
the employee objects are projected over behavior B age� The target�creating query that produces
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this result is as follows	

f o� p�B age� j C dept�o
 � C emp�p

� o � p�B dept � �p� ����B age�B greaterThan g

Additional examples of both target�preserving and target�creating queries are given in Chapter ��

��� Safety of Object Calculus Expressions

A traditional notion in relational database systems is that �reasonable� queries are ones whose
correct answers contain values that are limited to the constants that appear in the query or the
database relations that appear in the query� A corresponding notion in an object model is that
reasonable queries produce correct answers that contain objects which are limited to the objects
appearing the query or in the collections that appear in the query� Unary predicates C�o
 are
de�ned for the �nite collections and classes appearing in the objectbase� These are used to range
over the elements of a collection� The collection represented by the complement of a predicate is
assumed to be in�nite �i�e�� �C�o
 is in�nite for all predicates C
�

The object calculus is very expressive and allows for the formation of queries that have no
�reasonable� interpretation� For example� the complement of a predicate �C�o
 holds for arbitrary
objects o that are not in the collection C� Another problematic query is the one that adds objects to
collections over which it is ranging� This has the e�ect of updating the predicate on each iteration�
These kinds of queries are considered �unreasonable� and in an implementation we wish to strictly
avoid processing such constructs� Therefore� we de�ne a criterion of safety and some tests� based
on the structure of the formula �i�e�� its syntax
� to check if a formula is safe� We only process
queries that are safe and reject those that do not pass the tests� The general notion of safety is
de�ned as follows�

De�nition �
� Safety� An expression is considered safe if it can be evaluated in �nite time and
produces �nite output �OW����

The above de�nition is a semantic one which raises the problem of �nding an e�cient solution
for determining whether an arbitrary expression is safe or not� In other words� we would like to
de�ne a syntactic check that could be performed on any arbitrary formula and could tell us� in
polynomial time� whether the given formula is safe or not� The safe formulas are the ones translated
to an algebra� optimized and executed� Since the implementations of behaviors can be arbitrary
code� we can only guarantee safety up to Bspec evaluation� That is� we have no mechanisms to
guarantee the termination of a function that may be called as part of a behavior being applied to
an object�

The �rst safety check is on the calculus formula and determines the domain independence of
the formula� The second check is based on the operators of an equivalent algebra expression for
the formula and determines the operand �niteness of a query� meaning it checks that objects aren�t
being added to operand collections or classes of the operator� If the query fails either test� it
is rejected� We �rst talk about the domain independence form of �safety� and then switch our
discussion to the operand �niteness of queries�

The class of domain independent formulas �Mak��� Fag��� is recognized as being the largest
class of �reasonable� queries� However� the undecidability of this class is well known
 Nicolas and
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Demolombre �ND��� have shown domain independence to be equivalent to the class of de�nite
formulas de�ned by Kuhns �Kuh��� which has been shown to be not recursive by DiPaola �DiP����

Many decidable subclasses of the domain independent class have been proposed� The class of
conjunctive queries are those which include only � and � connectives and is one of the simplest �rea�
sonable� subclasses shown to be decidable �Ull���� Larger decidable subclasses augment conjunctive
queries with negation and disjunction� Several object calculi proposals have de�ned safety in the
context of conjunctive queries with disjunction and restricted forms of negation �S�O��a� Cha����
These proposals de�ne a broader range of safe queries� however� more general classes have been
identi�ed� The class of evaluable queries as �rst proposed by Demolombre �Dem��� and later exam�
ined by Gelder and Topor �GT��� GT��� is argued as being the largest decidable subclass of domain
independent queries� In our query model� we use the evaluable class as the base set of safe queries
that can be translated into the object algebra� The class of range restricted queries �Dem��� has
been shown to be equivalent to the evaluable class �GT���� A strict subclass of the range restricted
class �hence the evaluable class
 is essentially the basis of safety in the structural query model of
Abiteboul and Beeri �AB���� Furthermore� their de�nition assumes the existence of a partial order
on the variables in a calculus formula such that all variables are restricted � An indication of how
to construct a proper partial ordering from a given formula is not presented� Our safety model also
de�nes a partial order and the �rst part of the translation from calculus to algebra �see Section ���

constructs this ordering�

The class of evaluable queries can be de�ned in terms of the two relations gen and con �see
Figure ���
 between variables and �sub
formulas� These relations were introduced by Gelder and
Topor �GT��� GT��� in the form of logical rules�

Intuitively� gen�x�A
 means that formula A can generate all the needed values of variable x
that contribute to making A true and that there are only a �nite number of these values� In other
words� if gen�x�A�x� �y

 holds and A�c� �d
 is true for some variable assignment x � c and �y � �d�
then we can conclude that c is an element of a �nite collection of objects derivable from the formula
A itself� If con�x�A�x� �y

 holds� then the variable x is said to be constrained in A� meaning that
x is generated in every disjunct of A in which x appears� The con rules subsume the gen rules�
Thus� it is clear that gen�x�A
 implies con�x�A
� but con�x�A
 does not imply gen�x�A
�

We extend these rules by adding a gdb relation that makes use of generating atoms in formulas�
The gdb relation relies on a globally accessed partial order denoted �F � This partial order consists
of pairs �x�N
 where x is a variable and N is a positive integer or the symbol 
� We also use �F

in the gdb rules as an in�x dyadic predicate on the variables appearing in the partial order �F �
This predicate is de�ned as follows	

De�nition �
� Ordering Predicate ��F 
� For any two elements �x�Nx
 and �y�Ny
 appearing in
the partial order �F � the predicate x �F y is de�ned by the following table where n and m denote
positive integers and m is greater than zero	

Nx Ny x �F y


 
 false


 n false

n 
 true

n n�m true

n�m n false

n n false
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Figure ��� shows the rules for the gdb relation and the extended gen and con relations� The
partial order used by the gdb relation is built from the atoms in a calculus formula F during the
�rst step in the translation from the calculus to the algebra� The partial order is constructed to
produce a representation of the generating atom dependencies between variables in a formula F �
If predicate x �F y holds for the partial order �F � this means that variable x is not dependent
on variable y and that x potentially generates values for y in formula F � For example� the partial
order for the formula	

F
def
� �x�C emp�x
� y � x�B name


is �F
def
� f�x� �
� �y� �
g since x is generated independently of y from C emp and y is generated

using x in y � x�B name� The reason we say x �potentially� generates y is clear from the following
example� Consider the formula	

F � def� �x�w�C emp�x
 � y � x�B name �C emp�w
� z � w�B age


The partial order for this formula is �F �

def
� f�x� �
� �w� �
� �y� �
� �z� �
g� Now� x �F � z holds and

x is not dependent on z� but x does not generate objects for z in F �� Thus� x is only a potential
generator for z�

The additional predicates and functions that appear within the rules of Figure ��� are de�ned
as follows	

� Predicate edb�A
 holds if one of the following conditions is met	

�� formula A is a range atom of the form C�x
 where predicate symbol C represents a �nite
collection


�� formula A is an equality atom of the form x � c where c is a ground term
 or

�� formula A is a membership atom of the form x � c where c is a ground term representing
a �nite collection�

� Predicate free�x�A
 holds if variable x appears as a free variable in formula A�

� Predicate notfree�x�A
 holds if variable x is bound in formula A or if x does not appear in A�

� Predicate distinct�x� y
 holds if x and y are di�erent variables�

� Function pushnot��A
 represents a formula B �provided edb�A
 does not hold
 that is evalu�
ated as follows	

�A B

��A� �A�
 ��A�
 � ��A�

��A� �A�
 ��A�
 � ��A�

��xA� �x�A�

��xA� �x�A�

��A� A�

��s � t
 s �� t

��s �� t
 s � t
��s � t
 s �� t

��s �� t
 s � t

If edb�A
 holds� then pushnot��A
 represents a formula� say �� that causes the corresponding
gen or con predicate to fail�
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gdb�x� x� y
 if y �F x
gdb�x� x� �f�yg
 if �y �F x
gdb�x� x � y
 if y �F x

gdb�x� x � �f�yg
 if �y �F x

gen�x�A
 if edb�A
 and free�x�A

gen�x�A
 if gdb�x�A


gen�x��A
 if gen�x� pushnot��A


gen�x� �yA
 if distinct�x� y
 and gen�x�A

gen�x� �yA
 if distinct�x� y
 and gen�x�A

gen�x�A �B
 if gen�x�A
 and gen�x�B

gen�x�A �B
 if gen�x�A

gen�x�A �B
 if gen�x�B


con�x�A
 if edb�A
 and free�x�A

con�x�A
 if gdb�x�A

con�x�A
 if notfree�x�A


con�x��A
 if con�x� pushnot��A


con�x� �yA
 if distinct�x� y
 and con�x�A

con�x� �yA
 if distinct�x� y
 and con�x�A

con�x�A �B
 if con�x�A
 and con�x�B

con�x�A �B
 if gen�x�A

con�x�A �B
 if gen�x�B

con�x�A �B
 if con�x�A
 and con�x�B


Figure ���	 Logical rules that de�ne the gen and con relations�

From the relations of gen and con� the class of evaluable �GT��� formulas is de�ned below� The
class of formulas satisfying this de�nition �or which can be rewritten to satisfy the de�nition
 is
exactly the class of �safe� formulas of our calculus�

De�nition �
� Evaluable� A formula F is evaluable or has the evaluable property if the following
conditions are met	

�� For every variable x that is free in F � gen�x� F 
 holds�

�� For every subformula �xA of F � con�x�A
 holds�

�� For every subformula �xA of F � con�x��A
 holds�

This de�nition provides an e�cient� syntactic approach for determining whether a given formula
is evaluable or not	 simply apply the appropriate gen and con rules to the formula and subformulas�
We extend this de�nition to object calculus expressions by stating that an OCE f�t j �g where
�t contains at least one target term� is evaluable if the formula � is evaluable in the sense of
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De�nition ���� This establishes the decision mechanism for accepting or rejecting any arbitrary
query posed as an OCE� For example� assuming all range predicates represent �nite collections� the
following OCE is evaluable	

fo j C�o
 � �p�P �p
 � �Q�o

g

while	
fo j C�o
 � �p��P �p
 � p�B something � o�B something
g

is not because con�p��P �p
 � p�B something � o�B something
 does not hold� Note that the
evaluable OCE above as given is an example of a formula that is safe in the evaluable class� but is
unsafe in the �range
 restricted class as de�ned by �AB����

Without a partial order de�ned �i�e�� we cannot make use of the gdb predicate
� formulas satisfy�
ing De�nition ��� are known as strict�sense evaluable �GT��� because of the conservative approach
taken towards the built�in equality and membership predicates	 gen�x� x�y
 and con�x� x�y
 where
� is one of ��� never hold� The strict�sense evaluable queries are the class considered in �GT����
However� they realized that many formulas are evaluable despite this conservative approach� They
presented transformations that remove some instances of equality ��
 and yield an �equality re�
duced� form� However� a more general solution was needed for our model to deal with Bspecs and
generating atoms that were not part of their work� Our introduction of the gdb predicate and the
formation of the partial order �F consistently extends the class of evaluable queries to a larger
class recognized in �GT���� Formulas that fail strict�sense evaluability� but can be made evaluable
through transformations or rule extensions are known as wide�sense evaluable�

This concludes the de�nition of our syntactic based check for recognizing the domain indepen�
dence of a formula� We check if the formula is in the evaluable class of queries which is arguably
the largest decidable subclass of the domain independent class� Once it is known that an OCE
is evaluable� there are a �nite number of steps �described in Chapter � by the calculus to alge�
bra reduction Theorem ���
 that translates any evaluable OCE into an equivalent object algebra
expression �OAE
�

The second test for �safety� determines whether a query adds objects to the collections and
classes that it is ranging over and to reject it if it does� We call this form of safety the check for
operand �niteness � An example calculus expression that exhibits this problematic operation is as
follows	

fo j �p�C collection�p
� o � newcoll�p

g

This query ranges over the class of collections and for each collection p in this class it creates a
new collection containing the collection p� The problem is that the new collections are created
as instances of class C collection� thereby increasing the cardinality of C collection for every
object in C collection� The semantics of the query is to range over all members of C collection�
meaning the newly created collections should be included in the range of p which results in the
creation of more collections and so on� We defer the check for operand �niteness until after the
generation of an equivalent algebraic expression and perform this check on algebraic operators �see
Section ���
� This is done because the algebraic expression de�nes the structure of the query and
we de�ne a recursive process that goes through and tests each operator in turn�
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Chapter �

The TIGUKAT User Languages

The main function of the TIGUKAT language is to support the de�nition� the manipulation and
the retrieval of objects in a TIGUKAT objectbase on an ad hoc basis� It is not a computationally
complete language in that �ow control statements for iteration and conditional execution are not
supported� A complete objectbase programming language will be developed in the future� and it
will subsume this work� The TIGUKAT language supports the features de�ned in the TIGUKAT
object model� Thus new types� classes� collections� behaviors and functions can be created using
the language statements� Functions can be written in TIGUKAT language as well as in other
programming language like for example C��� TIGUKAT language also supports the concept of
composite objects� enabling querying� retrieving� and accessing them�

The TIGUKAT language consists of three separate parts	 TIGUKAT De�nition Language
�TDL
� TIGUKAT Query Language �TQL
� and TIGUKAT Control Language �TCL
� TDL sup�
ports the de�nition of metaobjects in a TIGUKAT objectbase� Types� collections� classes� be�
haviors and functions are created using TDL statements� TQL allows the retrieval of objects in
a TIGUKAT objectbase� Its syntax is based on the SQL paradigm� while the semantics of the
language is de�ned by the object calculus� Finally� TCL supports session speci�c operations like
opening a session� saving a session� making objects persistent� and so on� The description of every
language is given in the subsequent sections� while the full syntax of the TIGUKAT language is
described in Appendix B�

The notation used throughout this chapter is as follows� All bold words and characters cor�
respond to terminal symbols of the language �keywords� special characters� etc�
� Nonterminal
symbols are enclosed between ��� and ���� Vertical bar �j� separates alternatives� The square
brackets ���� ��� enclose optional material which consists of one or more items separated by vertical
bars�

��� TIGUKAT De�nition Language

TDL supports the de�nition and the creation of metaobjects� All type� collection� class� behavior�
and function objects in the objectbase are considered metaobjects� TDL is logically divided into
six groups of statements	 type declaration� collection declaration� class declaration� behavior ma�
nipulation� function declaration� and association� Statements in TIGUKAT language are separated
by a semicolon�
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The type declaration statement is used to create new TYPE Objects in a TIGUKAT objectbase�
The general syntax of this statement is as follows	

� type declaration �	 create type � new reference �

under � type list �
� behavior list �

The create type clause declares a reference to a new type� The under clause contains a type list
which declares all direct supertypes of a new type� This list is composed of comma�separated
constant references to existing types� It cannot be empty� as every type in TIGUKAT is at least a
subtype of T Object type� The last part of type declaration statement is the behavior list which
is made up of zero or more behavior signatures separated by commas� The behavior signature has
the following syntax	

� signature �	 � bahavior name � �� � type list � 
�	 � type reference �

A behavior signature consists of a behavior name which also becomes a behavior reference� the
optional list of type references which de�ne types of behavior parameters� and a single type reference
speci�ed after the colon� which de�nes the type of the behavior result� Thus� the whole behavior
list is of the form	

� behavior list �	 �� public behaviors �� �� private behaviors ��
where public and private behaviors are de�ned as follows	

� public behaviors �	 public � signature list �
� private behaviors �	 private � signature list �

Every behavior can be declared either as a public behavior� or as a private behavior� A public
behavior is visible to all authorized users of the type� while a private behavior is totally encapsulated�
and it is visible only within the de�nition of its type� All names of behaviors must be unique within
a given type� and all its supertypes� Thus� a de�nition of a behavior which is already de�ned in one
of the supertypes of a de�ned type cannot be repeated in that type� In order to rede�ne a behavior
inherited from a supertype� a new association must be done between the behavior and some new
function� The following example illustrates the creation of a new type T person in the TIGUKAT
objectbase	

create type T person

under T Object

public� B getName	 T string�
B setName�T string
	 T string�
B getBrtday 	 T date�
B setBrtday�T date
	 T date

The new type T person is de�ned as a direct subtype of T Object which is a primitive type
in TIGUKAT� The public interface of T person type consists of four behaviors	 B getName�
B setName� B getBrtday � B setBrtday � It does not have any private behaviors� Type T string is
a primitive type in TIGUKAT� and we assume that T date has already been de�ned� so we can
use it� It should be noted here� that all behaviors speci�ed in the type declaration statement are
automatically created and associated with a de�ned type� Thus� the type declaration statement
can also become an implicit behavior declaration statement�
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Behavior manipulation statements are used to manipulate behaviors within existing types� New
behaviors can be added to existing types� or the native behaviors can be removed from them� The
general syntax of these statements is as follows	

� behavior statements �	 add to � type reference � � behavior list �
j remove from � type reference � behaviors� � name list �

The �rst statement adds new behaviors to an existing type� It consists of a behavior list which
has the same format as the behavior list in the type declaration statement� Thus� behaviors must
be declared public or private� and all behavior names must be unique within a given type and all
its supertypes� The second component of the add statement is a type reference which declares the
type with which new behaviors are to be associated � The remove statement deletes behaviors
from a given type� However� only the native behaviors can be removed from a given type� The
behaviors are automatically removed from all the subtypes of this type� Again� the behavior list
has the same syntax as in the type declaration statement� and the type reference is a reference to
an existing type from which the behaviors are to be removed� In the following example� two new
public behaviors are added to T person type	

add to T person

public� B age	 T natural�
B spouse�T person
	T person


Every behavior in TIGUKAT objectbase has to be associated with a function object which
provides an implementation of the behavior semantics� The semantics of the behavior and the
semantics of the corresponding functions must be the same� There are two kinds of functions in
TIGUKAT objectbase	 stored functions and computed functions� Stored functions do not have
any parameters� and their result type can be inferred from the result type of the corresponding
behavior� therefore they do not have to be declared explicitly� They are created when the association
statement is invoked �see association statement in this section
� Computed functions� on the other
hand� must be explicitly declared using one of the following declaration statements	

� function declaration �	 � language � function � function signature �

begin
� function code �

end
j external function � function signature �

Thus� there are two ways to declare computed functions� A user can either write the complete
function� specifying the language used and providing the code of the function� or the user can declare
a reference to an external function which has already been de�ned� and exists in the objectbase�
The language clause in the �rst statement speci�es the programming language which is to be used to
write the function code� So far� there are two languages which can be used to write function code in
TIGUKAT	 TQL and C��� However� other languages will be supported in the future� The second
statement for computed functions is used to declare references to functions which already exist in
the objectbase� The function signature speci�es the semantics of the function� and the function
object with this semantics is bound to the local reference� Thus� in both function declaration
statements� a function signature must be declared� A function signature has the following format	

� function signature �	
� function name � �� � formal parameter list � �� � � type reference �
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A function name in the function signature speci�es a unique name of the function� and it also
becomes a reference to the function object� The formal parameter list has the following syntax	

� formal parameter list �	 �� first parameter �� � parameter list �

� first parameter �	 self � � type reference � ���

The �rst parameter� which is optional� declares a type of the receiver object� In other words� it
de�nes a type with which the function can be associated� If it is not speci�ed� T Object primitive
type is assumed by default� The second part of the formal parameter list declares parameters and
their types in the function� The syntax of a parameter declaration in this list is as follows	

� parameter �	 � identifier � 	 � type reference �

The parameter declarations in this list are separated by a comma� In TQL functions� parameters
play the role of constants in TQL statements� The last part of the function signature is a type
reference speci�ed after a colon� It de�nes a result type of a new function� In the following example�
two computed functions age and spouse are declared	

C�� function f age�self	T person
	 T integer

begin

T date today�


today�initDate�


return �today � B getBrtday��



end�

external function f spouse�self	T person� p	T person
	 T person


The �rst statement declares a new computed function which is written in C�� language� This
function can be associated with a behavior in T person type� or a behavior in any of its subtypes�
A new function object is created� and the reference f age is bound to it� The second statement
declares a local reference f spouse and bounds it to the external function object with the same
semantics� If there are more then one object with the same semantics in the objectbase� then the
system prompts the user about the ambiguity who must resolve it�

To associate the behavior with the corresponding function� the association statement is used�
The general syntax of the association statements is as follows	

� association �	 associate in � type reference � �� computed list �� �� stored list ��

where the computed list is a comma�separated list of computed function associations� and the stored
list is a list of stored function associations� Each computed function association is de�ned as	

� computed association �	 � behavior reference list � with � function reference �

and the stored function association is one of the following�	

� get association �	 � behavior reference list � with GET

� set association �	 � behavior reference list � with SET

�The full syntax of the association statement is given in Appendix B�
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The type reference in the association clause speci�es the type within which the associations are to
be de�ned� Thus� one association statement can be used to de�ne associations between behaviors
and function objects only within a single type� Computed list in this statement associates computed
functions with the behaviors in the given type� Every element of this list consists of the behavior
reference list and one function reference� Behavior names together with the type reference �from the
association clause
 uniquely specify behavior objects in the objectbase� Behaviors which are in the
same behavior reference list are associated with the same function object whose reference is given
after the with clause� In other words� they all have the same implementation� The stored clause in
this statement associates stored functions with the behaviors in the given type� However� there are
two di�erent semantics of behaviors which can be associated with stored functions� The semantics
of behaviors can either be to retrieve the object which is stored� or to store it �set its value
�
Thus� stored function association is made up either of the get sequence� or of the set sequence�
Moreover� if there is one get �set
 association� there must be at least one set �get
 association
and vice versa� Furthermore� within the same association statement all set and get association
correspond to the same stored function� Thus� at most one get� set pair is created within a single
association statement� In order to associate behaviors in the speci�c type with di�erent stored
functions� separate association statements must be used�

In the following example� the association statement is used for two di�erent pairs of behaviors�
It is incorrect� as behaviors have di�erent semantics and should not be associated with the same
stored function�

associate in T person

getName with GET � setName with SET �
getBrtday with GET � setBrtday with SET 


The example below illustrate associations which can be done within the T person type� Two
association statements are used to ensure that two di�erent stored function are created�

associate in T person

getName with GET � setName with SET 


associate in T person

getBrtday with GET � setBrtday with SET �
age with f age� spouse with f spouse


The �rst association statement creates a pair of stored functions� Function to retrieve the object
is referenced by GET � while the function to store the object is referenced by SET � Thus� be�
havior B getName is associated with GET � and behavior B setName is associated with SET in
type T person� The second statement creates a new pair of stored functions� and associate for
behaviors B getBrtday and B setBrtday with GET and SET respectively� The statement also as�
sociates behaviors B age and B spouse with computed functions referenced by f age and f spouse

respectively�

The next TDL statement is a class declaration statement which is used to create a new class
object in a TIGUKAT objectbase and to associate it with existing types� The association is done
automatically during class creation� When the class is created� it is assumed that the corresponding
type is correctly and fully de�ned� meaning that all behaviors are speci�ed and the associations
between behaviors and functions are completed� An error condition is raised if there exists a
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behavior within a given type which does not have an associated function de�ned and a request to
create a class for this type is posted� The general syntax of the class declaration statement is as
follows	

� class declaration �	 create class � � new reference � � on � type reference �

The class reference in this statement declares a reference to a new class object� However� this
speci�cation is optional
 if not provided� the reference of the corresponding type becomes a reference
to a new class object� Although� a direct reference to a given type object is lost� it can still be
accessed through the B Mapsto behavior de�ned on the primitive T Class type� Consider the
following example	

create class C person on T person


or the other way to create a class object is	
create class on T person


Both of these statements create class object for T person type� However� the �rst statement not
only creates a class object and associates it with the type object T person� but also declares a
separate reference C person to the class object� The type object and the class object� in this case�
have unique direct references� The second statement creates a class object for the T person type�
and associates it with this type� The reference of the type object becomes a reference to the class
object� Although� the direct reference to the type object is lost� it can still be accessed through
the B Mapsto behavior de�ned on T Class�

The last TDL statement is a collection declaration statement which creates new collection
objects� The general syntax of this statement is as follows	

� collection declaration �	 create collection � new reference �
type � type reference �

�with � object list � �

The create collection clause in this statement declares a new reference to a collection object� The
type clause speci�es the member type of collection elements� while the with clause initializes the
collection with objects given in the list�

Summarizing� TDL is used to create type� class� behavior and function objects in a TIGUKAT
objectbase� and to de�ne relationships among them� To create a new type object� the type reference
and the list of supertypes must be given� Behaviors of a new type can be either de�ned during the
type declaration� or later using behavior manipulation statements� There are stored and computed
functions in TIGUKAT objectbase� Stored functions cannot be explicitly declared� they are created
during the association process� Computed functions are explicitly declared and created using
computed function declaration statements� Association between behaviors and functions is de�ned
by the association statement� Finally� class objects are created using a class declaration statement�
However� a new class can be created for an existing type only if this type is completely de�ned�
meaning that all behaviors have functions associated with them� Otherwise� an error occurs� The
example in Chapter � illustrates the whole process of creating new type� class� behavior and function
objects and de�ning associations among them�
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��� TIGUKAT Query Language

The main function of TQL is to retrieve and to manipulate objects in a TIGUKAT objectbase� Its
syntax is based on the SQL select�from�where structure �Dat���� while its semantics is de�ned in
terms of the object calculus� In fact� there is a complete reduction from TQL to object calculus�
thus the semantics of the language is formally speci�ed�

����� Design Decisions

TQL is based on the SQL select�from�where structure� We have decided to adopt this structure
for various reasons� First of all� SQL is the standard language for relational systems� Second�
current work on SQL� attempts to extend its syntax and its semantics to ful�ll requirements of
object�oriented systems �Gal���� Finally� any syntax of a query statement must provide a way to
specify the three basic components of the query block� Instead of designing a new structure to
achieve the same result� we have adopted the one which is already successful in other systems�

TQL extends the basic SQL structure by accepting path expressions �implicit joins �KBC����

whenever it makes sense� Thus� path expressions can be used in the select clause to navigate trough
the schema� in the from clause if the result of the application of behaviors is a �nite collection� and
in the where clause as predicates� The object equality is de�ned on the primitive type T object�
thus� explicit joins are also supported by TQL� Queries operate on �nite collections� and they always
return new collections as results� Thus� query results are queryable� Also� queries can appear in
the from and where clauses of other queries �the concept of nested queries is supported
� Objects
can be queried regardless of whether they are persistent or transient� Finally� TQL is built on top
of the object calculus� which makes the semantics of the language well de�ned�

It should be noted here� that the syntax for the application of aggregate functions is not explicitly
supported by TQL� However� as the underlying model is purely behavioral� these functions are
de�ned as behaviors on T collection primitive type� They can be applied to any collection
including those returned as a result of a query�

����� The Syntax of TIGUKAT Query Language

There are four basic TQL operations	 select� insert� delete� and update� and three binary
operations	 union� minus� and intersect� Each of these statements operates on a set of input
collections� and returns a collection as a result� However� only the semantics of the select� union�
minus� and intersect statements are currently well de�ned� The de�nition of the semantics for
the insert� delete and update statements involves the speci�cation of the update semantics in the
TIGUKAT object model� These aspects of the object model and the associated language constructs
are currently being developed and will be presented in future reports�

The basic query statement of the TQL is the select statement� It operates on a set of input
collections� and it always returns a new collection as the result� The general syntax of the select
statement is as follows	

� select statement �	 select � object variable list �
� into 
 persistent 
 all �� � collection name � �
from � range variable list �
� where � boolean formula � �
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The select clause in this statement identi�es objects which are to be returned in a new collection�
There can be one or more object variables in this clause� They can be in form of simple variables�
path expressions �which are equivalent to Bspecs de�ned in Chapter �� Chapter �
� index variables�
or constants� They correspond to free variables in object calculus formulas� The into clause declares
a reference to a new collection returned as a result of a query� If the into clause is not speci�ed�
a new collection is created
 however� there is no reference to it� This is especially useful when a
query is embedded in some other query and the collection returned as a result does not require
an explicit reference� Also� as TIGUKAT language supports the assignment statement� the result
of a query can be directly assigned to a variable reference� and therefore the into clause can be
omitted� In addition� the result collection can be made persistent by specifying it in the into
clause� The persistent clause makes only the container object persistent in the objectbase� while a
persistent all makes all elements of the collection persistent as well� If elements of the collections
are themselves collections� persistent all makes all the objects in those collections persistent in
the recursive fashion� The from clause declares ranges of object variables in the select and where
clauses� Every object variable can range over either an existing collection� or a collection returned
as a result of a subquery� while a subquery can be either given explicitly� or as a reference to a
query object� We distinguish between constant references to collections and variable references to
collections� A constant reference is a reference which does not change during the execution of a
query� In particular� it can be a reference to a collection that is a result of the evaluation of a
subquery� A variable reference to a collection is a reference which can change during the execution
of a query� The range variable in the from clause has the following syntax	

� range variable � 	 � variable list � in � collection reference � � � �
� collection reference � 	 � term �

j � � query statement � �

The collection reference in the range variable de�nition can be followed by a plus ��� which refers
to a shallow extent of a collection or a class� If not speci�ed a deep extend is assumed by default�
In case of collections� a deep and shallow extents are equivalent�

The term in the collection reference de�nition is either a constant reference to a collection� a
variable reference� or a path expression�

The where clause de�nes a boolean formula which must be satis�ed by objects returned by a
query� Boolean formulas in TQL are de�ned in a similar �recursive
 fashion as the formulas of
the object calculus� In fact� there is a complete correspondence between the formulas of the query
language and the object calculus formulas� Boolean formulas of the TQL have the following syntax	

� boolean formula �	 � atom �
j not � boolean formula �

j � boolean formula � and � boolean formula �
j � boolean formula � or � boolean formula �

j � � boolean formula � �
j � exists predicate �

j � forAll predicate �
j � boolean path expression �

Atom in the TQL boolean formula is one of the following	
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� atom �	 � term � � � term �
j � term list � in � collection reference � ���

where the term is a variable reference� a constant reference or a path expression� and the collection
reference is the same as in the range variable de�nition�

Two special predicates are added to boolean formulas of the query language in order to express
the existential and universal quanti�cations� The existential quanti�er is expressed by the exists
predicate which is of the following format	

� exists predicate �	 exists � collection reference �

The exists predicate is true if the collection returned by the subquery is not empty� Otherwise� the
predicate is false� The exists predicate is unnecessary in the TQL� as every query with this predicate
in the where clause can be transformed to the equivalent query without this predicate� However�
we have decided to include it in TQL� so users are not forced to write queries in the prenex normal
form�

The universal quanti�er is expressed by the forAll predicate which has the following structure	

� forAll predicate �	 forAll � range variable list � � boolean formula �

The syntax of the range variable list is the same as in the from clause of the select statement� It
de�nes variables which range over speci�ed collection� The boolean formula is evaluated for every
possible binding of every variable in this list� Thus� the entire forAll predicate is true� if for every
element in every collection in the range variable list� the boolean formula evaluates to true� If� on
the other hand� there exists at least one element in any collection such that the formula evaluates
to false� then the whole predicate is false�

Example �
�

forAll p in P� q in Q F �p� q


This predicate is true if for every element of the collection P � and for every element of the collec�
tion Q� the formula F �p� q
 evaluates to true �the formal semantics of this predicate in given in
Section �����
� �

It should be noted here that collections in the range variable list can be given explicitly as constant
references to collection objects� or implicitly as queries �just as it is in the from clause of the select
statement
�

The last part of the de�nition of the boolean formula is the boolean path expression which is
equivalent to the following formula	

� path expression � � TRUE	FALSE

However� to avoid such arti�cial constructs� we include boolean path expressions in the de�nition
of the TQL formula under two conditions� First� all invoked functions are side�e�ect�free� Second�
the result type of the whole path expression is of a boolean type�

So far� a select statement with only one simple object variable in the select clause was discussed�
There can be one or more objects of various formats in this clause� The object in the select clause
has the syntax	
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� object variable � 	 �� � cast type � �� � term �
j � index variable �

where a term is either a constant reference to an object� variable reference to an object� or a path
expression� The �rst de�nition of the object variable corresponds to a standard reference to an
object� The projection type enclosed in brackets �which is optional in this clause
 de�nes the type
of elements of a result collection� However� it makes sense only if this type is a supertype of the type
of an object which it proceeds� It acts as a behavior projector or a generalization operator �Gal����
The interface of objects returned in the result collection is a subset �not necessarily a proper one

of the interface of objects given in the select clause� This subset is de�ned by the interface of the
type enclosed in brackets� The construct used to project behaviors is similar to the cast function
in �Gal���� and equivalent to the cast operator in �Bla���� If is is not given� the type of the result
collection is inferred from types of collections de�ned as ranges� The second de�nition of the object
variable is the index variable� It has the following format	

� index variable �	 � identifier � � � behavior name list � �

The role of the index variables is to specify the behaviors which are applicable to objects in the
result collection� The idea is the same as in the projection type
 however� all behaviors in the index
variable must be given explicitly in the behavior name list� Thus� objects in the result collection
can have di�erent types then original ones�

TQL supports three binary operations	 union� minus� and intersect� Similar to a select
statement� they operate on the collection of objects and always return new collections as result�
The syntax of these statements is as follows	

� collection reference � union � collection reference �
� collection reference � minus � collection reference �

� collection reference � intersect � collection reference �

The collection reference in TQL binary statements is either a constant reference to a collection
object� or it is a query�

����� The Formal Semantics of TQL

The semantics of TQL is de�ned in terms of the object calculus� It is shown in this section that every
TQL statement corresponds to the object calculus expression
 thus there is a complete reduction
from TQL to the object calculus�

Throughout this section the following notation is used� Every TQL select statements of the
form	

select p�� p�� ��� pk
into newCollection

from p� in P�� ���� pk in Pk � q� in Q�� ���� qn in Qn

where F �p�� ���� pk� q�� ���� qn


is referred as S�p�� ���� pk
� In other words� queries can be modeled as functions S�p�� ���� pk
 which
operate upon one or more collections� and return collections as results� Lists which are returned
in the result collections are made up of objects referenced by p�� ���� pk� and they are denoted as
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� p�� ���� pk �� Furthermore� for groups of quanti�ers like �p�� ����� � pk or �p�� ����� �pk� the shorthand
notation is used	 � � p�� ���� pk � and � � p�� ���� pk � respectively� Finally� � p�� ���� pk ���
x�� ���� xk � is a short notation for p� � x�� ���� pk � xk�

It is shown in this section� that every select statement S�p�� ���� pk
 corresponds to the object
calculus expression	 f� p�� ���� pk � j 
�� p�� ���� pk �
g� The select clause in S�p�� ���� pk
 de�nes
free variables of the object calculus formula� The from clause speci�es the ranges of variables
which can either be given explicitly as constant references to collection� or implicitly in form of
subqueries� If the range variable is de�ned over a constant collection reference� then it corresponds
to the range atom �p in C person � C person�p

 in the object calculus� If it ranges over a
collection de�ned by a variable or a path expression then it corresponds to a membership atom

�p in q�kids�
 � �p � q�kids

� Otherwise� in case of subqueries� the semantics of the range variable
is de�ned by a complex object calculus formula� However� as shown below� every query which has
a subquery in the from clause can be rewritten into an equivalent �at query�

Theorem �
� Every TQL query Sp�p�� ���� pk
 with nested queries in the from clause can be rewrit�
ten into equivalent �at query�

Proof� Every query with a subquery in the from clause is expressed in TQL as�	

S�p�� ���� pk
 � select p�� ���� pk
from p� in �P� � ���� pi in �Pi�

pi�� in Si���qi��
 � ���� pk in Sk�qk
�
r in �R

where F �p�� ���� pk� r


which is equivalent to the object formula	

�p�����pk �P��p�
 � ��� � Pi�pi
 � ����

pi�� in Si���qi��
 � ���� pk in Sk�qk
 � �r�R�r
� F �p�� ���� pk� r




P�� ���� Pi in this query are constant references to collections� r represents all variables which appear
in the query� but not in the select clause� and Si���qi��
� ���� Sk�qk
 represent subqueries� Thus�
every Si�j �j � �� ���� k� i
 is also a query� and it is represented in TQL as	

Si�j�qi�j
 � select qi�j
from qi�j in � Qi�j � ri�j in � Ri�j

where Fi�j�qi�j � ri�j


which is equivalent to the following object calculus formula	

Si�j�qi�j
 � �qi�j�Qi�j�qi�j
 � �ri�j�Ri�j�ri�j
� Fi�j�qi�j � ri�j




Furthermore� every subformula in the from clause which is in the form	 pi�j in Si�j�qi�j
 is
equivalent to	

pi�j in Si�j�qi�j
 � ����

�qi�j�Qi�j�qi�j
 � �ri�j�Ri�j�ri�j
� Fi�j�qi�j � ri�j

� pi�j � qi�j


�For brevity� we assume that all collection references P in the from clause are constants� It can be easily
generalized to include other cases� however� this does not e�ects the proof�
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In ���� every qi�j �j � �� ���� k� i
 can be replaced by pi�j yielding an equivalent formula	

pi�j in Si�j�qi�j
 � Qi�j�pi�j
� �ri�j�Ri�j�ri�j
 � Fi�j�pi�j � ri�j



Thus� by replacing each pi�j in Si�j�qi�j
 in ��� the following equivalent formula is obtain	

�p�����pk�P��p�
 � ���� Pi�pi
 � ����

�Qi���pi��
 � �ri���Ri���ri��
 � Fi���pi��� ri��

 � ��� �
�Qk�pk
 � �rk�Rk�rk
 � Fk�pk� rk


� �r�R�r
� F �p�� ���� pk� r




The formula ��� is in conjunctive form
 therefore� changing the order of predicates results in a logi�
cally equivalent formula� Thus� in a new formula� all range atoms of the form Pi�pi
� Qi�qi
� Ri�ri

are put together� and all well�formed formulas of the form F �p�� ���pk� r
� ���� Fi�pi� ri
 are put to�
gether� The equivalent formula is as follows	

�p�����pk�P��p�
� ��� � Pi�pi
�
Qi���pi��
 � ���� �Qk�pk
�
�ri���Ri���ri��
 � ���� �rk�Rk�rk
�
Fi���pi��� ri��
 � ���� Fk�pk� rk
 � F �p�� ���� pk� r




���


Thus� the original query S�p�� ���� pk
 can be rewritten to the following form	

S
�

�p�� ���� pk
 � select p�� ���� pk
from p� in �P� � ���� pi in �Pi���

pi�� in �Qi�� � ���� pk in �Qk�
ri�� in �Ri��� ���� rk in �Rk� r in �R

where Fi���pi��� ri��
 � ���� Fk�pk� rk
 � F �p�� ���� pk� r

�

From now on� we assume that all ranges in the from clause are de�ned by either the constant
references to a collection corresponding to the range atoms in the object calculus formulas� or
by variable references corresponding to membership atom of the object calculus� Consider the
following example	

Example �
�

select p
from p in �P� q in � select v from v in �V� w in �W where F��p� v� w
� �z �

Sp




where F��p� q


This query has a nested query �Sp
 in the from clause which is of the following format	

select v��z�
a

from v in �V� w in �W� �z �
b

where F��p� v� w
� �z �
c

��



Variables in the select clause correspond to free variables of the calculus expression �part �a

	

f v��z�
a

j V �v
� �w�W �w
� �z �
b

�F��p� v� w

� �z �
c

g

The from clause speci�es ranges of the object variables� In this case� all range variables correspond
to range atoms of object calculus� and build the second part of the calculus expression �b
� Finally�
the where clause contains a boolean formula� which correspond to a well�formed formula of the
calculus� and makes up the third �c
 part of the query expression�

In a similar fashion� a calculus expression is built for the entire query� There is one variable p
in the select clause� which corresponds to a free variable of the calculus formula� The from clause
de�nes ranges of variables used in the select and where clauses� In this case a range of the variable
p is a constant reference� while the range of q is given in form of a subquery �Sp
 which corresponds
to the following calculus formula	

�q in Sp
 � �v �V �v
� �w�W �w
� F��p� v� w
� q � v

�

The where clause adds the last part F��p� q
 to the calculus expression� Thus� the �nal form of this
expression is	

f p j P �p
 � �q��v�V �v
 � �w�W �w
� F��p� v� w
� q � v


� F��p� q
g

This formula can be transformed to	

�q��v �V �v
� �w�W �w
 � F��p� v� w
� q � v


 � �v �V �v
� �w�W �w
 � F��p� v� w


�

Thus� the calculus expression for the whole query is the following	

f p��z�
a

j �P �p
 � �v�V �v
� �w�W �w
� �z �
b

�F��p� v� w
� F��p� v
� �z �
c



g

The query can be rewritten in TQL as	

select p��z�
a

from p in �P� v in �V� w in �W� �z �
b

where F��p� v� w
 and F��p� v
� �z �
c

�

Next� it is shown that there is a direct correspondence between a TQL boolean formula in the where
clause and the object calculus well�formed formulas�

Theorem �
� Every boolean formula in the where clause of the select statement corresponds to a
well�formed formula in the object calculus�

Proof� The boolean formula in TQL has the following syntax	
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� boolean formula �	 � atom �
j � exists predicate �
j � forAll predicate �

j � boolean path expression �
j not � boolean formula �

j � boolean formula � and � boolean formula �
j � boolean formula � or � boolean formula �

j � � boolean formula � �

a� The atom in TQL boolean formula is one of the following	

� atom � 	 � term � � � term �
j � term list � in � collection reference � ���

The �rst atom is equivalent to the equality atom of the object calculus� If the term on the
left hand side of the equality atom is a variable� then it corresponds to the generating atom
of the object calculus� The semantics of the second atom depends on the collection reference�
If it is a constant reference to a collection� then it corresponds to a range atom in the object
calculus� Otherwise� it corresponds to a membership atom�

b� The existential quanti�er in TQL is expressed by the exists predicate	

� exists predicate �	 exists � collection reference �

The exists predicate is true if the referenced collection is not empty� Otherwise� the predicate
is false� The collection reference in this predicate is either a constant reference to a collection
object� or it is a query which returns a collection as a result� In the �rst case� the exists
predicate has the format	 exists P � and it is equivalent to the object formula �x P �x
�
In the second case� when the collection reference is given implicitly by a query� the exists
predicate has a form	 exists S�p�� ���� pk
� Then� it corresponds to the following calculus
formula	

� � x�� ���� xk � �� � p�� ���� pk � �S�p�� ���� pk

� � p�� ���� pk ��� x�� ���� xk �


However� the exists predicate is unnecessary in TQL� Every query with this predicate in the
where clause can be transformed to the equivalent �at query� We decided to include it in
the language� so users are not forced write queries in the prenex normal form� Consider the
example	

Example �
�
S�p
 � select p

from p in �P� r in �R
where F��p� r


and exists � select v from v in �V� w in �W where F��p� v� w
� �z �
S�v�




The subquery S�v
 in the where clause corresponds to the object calculus formula	

S�v
 � �v�V �v
� �w�W �w
� F��p� v� w




��



Thus� the entire query in the object calculus can be expressed by	

�p �P �p
 � �r�R�r
� F �p� r
� �v�V �v
� �w�W �w
� F��p� v� w






Applying formula preserving transformations� the above formula can be rewritten to	

�p�P �p
 � �r�R�r
� �v�V �v
� �w�W �w
� F��p� r
� F��p� v� w






Thus� in TQL� S�p
 can be expressed as	

S
�

�p
 � select p

from p in �P� r in �R� v in �V� w in �W
where F��p� r
 and F��p� v� w


�

c� The universal quanti�er is represented in TQL by the forAll predicate� It has the following
format	

� forAll predicate �	 forAll � range variable list � � boolean formula �

This predicate is true� if for every element in every collection in the range variable list� the
boolean formula evaluates to true� If� on the other hand� there exists at least one element
in any collection such that the formula evaluates to false� then the whole predicate is false�
Again� the collection references in the range variable list are either constant references to
collection objects� or they are given by queries� Therefore� in a general case� this predicate is
as follows	

forAll p� in �P�� ���� pi in �Pi� pi�� in Si���qi��
� ���� pk in Sk�qk
 F �p�� ���� pk


where P�� ���Pi are constant references to collections� and Si���qk
� ���� Sk�qk
 are queries� The
following object calculus formula is equivalent to this predicate	

� p����� pk���P��p�
 � ��� � �Pi�pi

���Si���qi��
 � pi�� � qi��
� ���� ��Si���qi��
 � pi�� � qi��

� F �p�� ���� pk



d� The next part of the de�nition of the boolean formula is the boolean path expression� In general�
path expressions in TIGUKAT language correspond to Bspecs de�ned in Chapter �� Boolean
path expressions are Bspecs which evaluate to objects of T boolean type� A boolean formula
which is given in form of a boolean path expression is true if the path expression evaluates to
a constant object TRUE� Otherwise� it is false� Therefore� the boolean path expression in
the TQL boolean formula de�nition can be considered as a shorthand notation of the equality
atom of the form	

� path expression � � TRUE	FALSE

Thus� boolean path expressions correspond to equality atoms in the object calculus�

e� The remaining de�nitions of TQL boolean formulas correspond directly to the recursive def�
inition of a well�formed formulas in object calculus� Thus� every TQL boolean formula is
equivalent to an object calculus well�formed formula� �
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As shown in Section ������ the select clause is made up of one or more object terms� Each term
is either a constant reference to an object� a variable reference to an object� path expression� or an
index variable� In addition� each term can be proceeded by a cast type which extracts behaviors
from it� However� object calculus allows constant� variables� Bspecs and index variable as free
variables in its formulas as well� Thus� every constant reference in TQL corresponds to a constant
in the object calculus� a variable reference is equivalent to a variable in the object calculus� while
path expression in TQL corresponds to Bspec� TQL index variables extract certain behaviors from
object�s types� thus they correspond to index variables of the object calculus� Finally� each term
can be proceeded by a cast type which extracts �generalizes
 behaviors from an object type� Thus�
TQL cast type and the following term correspond to index variable in the object calculus as well�

Example �
�
T person	 subtype of T object has the following behaviors	

fB name� B ageg plus all behaviors inherited from T object

T student	 subtype of T person has the following native behaviors	
f B stId� B department� B gpa g

Thus� the following TQL query	
select �T person
 p
from p in C student

where F �p

corresponds to the following object calculus formula	

�p�B name�B age� �C person�p
 � F �p



which corresponds to the following calculus expression	
fp�B name�B age� j C person�p
� F �p
g

�

Theorem �
� Every select statement in TQL has an equivalent object calculus expression�

Proof� It follows directly from Theorem ��� and Theorem ���� Every select statement can be
expressed as	

select p�� p�� ��� pk
from p� in �P�� ���� pk in �Pk � q� in �Q�� ���� qn in �Qn

where F �p�� ���� pk� q�� ���� qn


where p�� p�� ��� pk are free variables within the query� P�� ���� Pk� Q�� ���� Qn are constant references to
collections� and F �p�� ���� pk� q�� ���� qn
 is a TQL boolean formula� Thus� the whole query corresponds
to the object calculus expression of the form	

f p�� ���� pk j P��p�
 � ��� � Pk�pk
 � �q�� ���� �qn�Q��q�
 � ��� � Qn�qn
� F �p�� ���� pk� q�� ���� qn

 g�

�

Summarizing� the select clause of the select statement de�nes free variables of an object calculus
formula� which correspond to variables of the target list in the object calculus expression� The from
clause declares range of variables which correspond to range atoms of an object calculus formula�
Finally� the where clause speci�es a boolean condition that corresponds to an object calculus well�
formed formula� Therefore� the semantics of every select statement in TQL is well de�ned�

��



Theorem �
� Every binary operation in TQL has an equivalent object calculus expression�

Proof� The binary operations in TQL have the following syntax	

� collection reference � union � collection reference �
� collection reference � minus � collection reference �

� collection reference � intersect � collection reference �

Thus� in object calculus they are expressed by simple calculus expressions of the following form
respectively	 f o j P �o
 � Q�o
g� f o j P �o
 � �Q�o
g� f o j P �o
 � Q�o
g� where P is a reference
to the �rst collection in the binary statement� and Q is a reference to the second collection� �

Theorem �
� The reduction from TQL to the object calculus is complete�

Proof� It follows directly from Theorems ���� ���� ��� and ���� �

��� TIGUKAT Control Language

The last part of TIGUKAT Language is the TIGUKAT Control Language �TCL
 which consists
of operations performed on session objects� Since� everything in TIGUKAT is treated as a �rst
class object� sessions are also represented by objects in the objectbase� They can be referenced�
opened� accessed� closed and so on� Session objects are instances of the C session class which is
of T session type� T session is a direct subtype of T Object type� Among others� it has the fol�
lowing behaviors	 B openSession� B closeSession� B saveSession� B environment� Every TIGUKAT
objectbase� has at least one instance of the C session class which is referred to as a root session�
When TIGUKAT is called� a root session is opened� All other sessions can be opened from this
session� TCL consists of the following session speci�c operations	 open session� close session�
save session� make persistent� and quit�

The open session statement is used to open a session object which provides a workspace from
which a user can perform operations on the objectbase� The syntax of this statement is as follows	

� open session �	 open � session reference �

The session reference is a reference to a session object in the objectbase� If the session referenced
by the session reference does not exists� a new session object is created� and it is opened�

The save session statement is used to save the session environment� The general syntax of this
statement is as follows	

� save session �	 save �� session reference ��

All transient objects are saved meaning that their references are stored in the session symbol table
�they do not became persistent however
� Next time that session object is opened� the environment
is restored� Otherwise� once the session is closed without saving� all transient objects are lost�

The close session statement is used to close a current session without leaving an objectbase�
The syntax of this statement is as follows	

� close session �	 close �� session reference ��
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If the session environment has not been saved� all transient object are lost� If the session object has
not been made persistent before this statement was issued� it is lost as well� If� on the other hand�
the session environment was saved� next time this session object is open� the entire environment is
restored�

The make persistent statement is used to make transient objects persistent in the objectbase�
The syntax of this statement is as follows	

� make persistent � 	 persistent � object reference list �
j persistent all � collection reference �

The �rst statement makes all objects speci�ed in the object references list persistent in the object�
base� Persistence in TIGUKAT is associated with individual objects
 therefore� if the referenced
object is a collection or a class� only the container object is made persistent� All transient objects
which are in this container stay temporary unless they are explicitly made persistent� To make all
objects persistent within the container object� the second form of a statement must be used� If the
elements of the collection are themselves collections� it recursively makes all objects persistent�

The last session speci�c statement in TCL is a quit statement which is used to quit the session
without saving� and leave the TIGUKAT objectbase� The syntax of this statement is as follows	

� quit objectbase �	 quit�

This statement can be invoked from any session� That means it can be invoked from the root
session as well as from any other session� The request to close all sessions which are currently
opened is sent� The objects which haven�t been made persistent or saved in any opened session are
lost�

In addition� TCL supports an assignment statement� Since TIGUKAT is a reference based
model� objects are accessed through their references� To bind a reference with an object that is
returned as a result of some query or execution of the behavior� the assignment statement must be
used� It has the following structure	

� assignment �	 let � left side � be � right side �

where the left side is	

� left side �	 � object reference �

and the right side can be one of two things	

� right side �	 � TQL Statement �

j � path expression �

It should be noted here� that current implementation of TCL is only preliminary� More statements
will be added in the future� and they will be presented in the forthcoming papers�
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Chapter �

The Object Algebra

An algebraic expression represents a typed collection of objects� The operands and result of alge�
braic operators are typed collections� Collections can be heterogeneous� When combining collec�
tions with certain algebra operators �e�g�� product� union� intersection
� a collection with a di�erent
type from those of the operand collections �or any type in the lattice
 may be created� Thus� in or�
der to integrate these new types into the existing lattice a type inferencing mechanism is introduced
and used by the algebra�

There are two types to consider here	 the type of the container �i�e�� the type of the collection
object
 and the type of the objects in the container �i�e�� the membership type of the collection
�
The types we are referring to in our inferencing mechanism are the membership types of collections�

��� Semantics of Type Inferencing

Type creation and type inferencing are topics related to schema evolution� In this section� we do
not give an exhaustive discussion of schema evolution� However� in order to fully appreciate the
semantics of the target�creating algebra we present the intuition of the type creation and inferencing
semantics developed for this model� The full description of our schema evolution semantics will
appear in a forthcoming paper�

Let Ti �� � i � n
 denote types� Then the behavioral application Ti�B interface denotes the
collection of behaviors applicable to objects of type Ti� The type inferencing mechanism is based
on type construction operations that are modeled as behaviors on the primitive type T type� They
are de�ned as follows	

T� u T� �B tmeet
 produces the meet type of the argument types� The result type� say T � de�nes
the behaviors that are common to types T� and T�� The interface set of T is de�ned as
T��B interface � T��B interface� If T� is a subtype of T�� then T� u T� is T�� The converse is
true if T� is a subtype of T�� The B tmeet behavior produces a result type that is integrated
into the type lattice as a supertype of the argument types�

T� t T� �B tjoin
 produces the join type of the argument types� The result type� say T � de�nes all
the behaviors of T� together with all the behaviors of T�� The interface set of T is de�ned as
T��B interface � T��B interface� If T� is a subtype of T�� then T� t T� is T�� The converse is
true if T� is a subtype of T�� The B tjoin behavior produces a result type that is integrated
as a subtype of the argument types�
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T� � T� �B tproduct
 produces the product type of the two argument types� The result type� say
T � de�nes product behaviors �see below
 and is integrated as a subtype of other product types
according to the product behaviors de�ned� That is� the name and result type of product
behaviors determines subtyping on product types� Objects of type T are pairs with the
�rst component being an object of type T� and the second component an object of type T��
The B tproduct behavior produces a product of types that does not have a sub�supertype
relationship with the argument types� but is integrated with other product types� Instances
of a product type are called product objects � They are created from objects in the extents of
the types that contributed to the product type� The components of a product object are the
original objects from which it was created�

The binary u�t�� behaviors can be naturally extended by de�ning them over multiple types
in the following way �where n 	 �
	

uni��Ti � T� u T� u � � � u Tn
tni��Ti � T� t T� t � � � t Tn
�n
i��Ti � T� � T� � � � � � Tn

Parentheses may be used with the above operators� Each parenthesized subexpression represents
the creation of a new type� With respect to the behaviors de�ned on the �nal type created� operators
u and t are commutative and associative while � is neither� Parentheses a�ect the semantics of
the product operator in the following way� Product types de�ne inject behaviors ��i
 that return
the ith component of a product object� With this in mind� the following product types are all
di�erent types that de�ne di�erent inject behaviors with di�erent result types	

�T� � T�
� T�
T� � �T� � T�

T� � T� � T�

The �rst type de�nes two inject behaviors
 �� that returns a product object of type T� � T� and
�� that returns an object of type T�� The second one de�nes two inject behaviors that di�er from
the �rst
 �� that returns an object of type T� and �� that returns a product object of type T��T��
The third type de�nes three inject behaviors
 �� that returns an object of type T�� �� that returns
an object of type T� and �� that returns an object of type T��

The de�nition and integration of product types into the existing lattice and the creation of
product objects is designed to be an automated process� A request is made through the application
of a behavior to create a product object from a given list of objects� This may spawn the creation
of a new product type and a class for the object if they don�t already exist� In order to support
these semantics� the following extensions are made to the primitive type system	

� We de�ne T product as a subtype of T type� T product de�nes the native behavior

B compTypes 	 T listhT typei

which returns the list of component types that make up a product type� Intuitively� T product

is the type that describes the semantics of product types� The class C product for this type
is created as an instance of T type�class so that the primitive type creation behavior �de�ned
as new on this type
 can be applied to it and passed a list of component types� The semantics
of applying this creation behavior to C product with a list of argument types is to create a
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product type �if one doesn�t already exist
 whose component types are the argument types
passed and to integrate the new type with existing product types� The behavior B tproduct
��
 applies the type creation behavior toC product passing along its arguments types� This
de�nes the creation of new product types as instances of C product�

� We de�ne type T product�class as a subtype of T class� A product object creation behavior

B new 	 T listhT objecti � T object

is de�ned on T product�class� Intuitively� this type de�nes the semantics for the classes
of product types� The class C product�type is created as an instance of C class�class�
The type T class�class de�nes a class creation behavior �new
 that accepts a type �the
type to associate a class to
 as an argument� By applying this behavior to C product�class

and passing a product type� a class for the product type is created �if one does not already
exist
� Now� product objects can be created through the resulting class by applying the B new
behavior de�ned on T product�class to the class and passing a list of objects�

For example� the following series of behavioral applications create a new product type called
T person�dwelling� a product class called C person�dwelling and a product object o as an
instance of this class� The �rst component of o is the person object joe and second component is
the dwelling object apt���� The �
� symbol denotes assignment and �� denotes a list of objects�

T person�dwelling 
 C product�B new��T person� T dwelling�

C person�dwelling 
 C product�class�B new�T person�dwelling


o 
 C person�dwelling�B new��joe� apt����


Finally� we de�ne a behavior B newprod on T object that accepts as arguments a list of objects
and a list of corresponding behavioral projection sets� The result of applying this behavior with
these arguments is as follows	

�� A product type is created �if one does not already exist
 using the type of the receiver object
and the types of the objects in the �rst argument list� The types are projected over the
behavioral projections in the second argument list before the product type is formed�

�� A class for the product type is created �if one does not already exist
�

�� A product object formed from the receiver and the objects in the �rst argument list is created
as an instance of the �possibly new
 product type and a reference to this object is returned�

For a given list of objects o�� o�� � � � � on and list of behavioral projection sets B��B�� � � � �Bn� we
use the notation newprod�o��B��� � � � � on�Bn�
 to denote a Bspec that represents the application of
the product creating behavior with the given argument lists as	

o��B newprod��o�� � � � � on���B�� � � � �Bn�


The result is a product object �o�� � � � � on
 whose ith component is the original object oi from which
it was formed� The type of each oi component object in the product type is the type of the original
oi object projected over the behaviors in Bi� When the behavioral projection list is immaterial� we
simplify the notation to newprod�o�� � � � � on
�

In order to extract and operate on the original component objects of a product object� every
product type de�nes an inject behavior for each of its component types� Product types are in�
tegrated into the type lattice according to the names and return types of these behaviors �more
generally� their semantics
� The behaviors de�ned on product types are the following	
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Inject� For every product type T� � � � � � Tn� there are n inject behaviors de�ned �i� � � i � n
such that for a given object of this type� say o� the behavioral application o��i returns the
object of type Ti that represents the i

th component of o�

A product type T� � � � � � Tn is integrated as a subtype of a product type T
�
� � � � � � T �m if

m � n and Ti is a subtype of T �i for � � i � m� It is integrated as a supertype of T ��� �� � ��T
��
k

if n � k and Ti is a supertype of T ��i for � � i � n� If the product type cannot be integrated
as a subtype of some other type� it is de�ned as a subtype of T object�

Equality� The object equality behavior for T product is re�ned to be based on pairwise identity
equality of the component objects� That is� for two product objects o and o� of types T� �
� � � � Tn and T

�
� � � � � � T �n� o � o� is true if and only if o��i � o���i for � � i � n�

��� Algebra Expressions

The underlying framework of the object algebra and calculus are essentially the same� However�
an important di�erence is that the algebra can be viewed as having a functional basis as opposed
to the logical foundation of the calculus� This perspective was described by Backus �Bac��� and
has been exploited by several complex object models �MD��� Day��� AB���� In our algebra� names
are used as placeholders for collections with the appropriate types� The predicates �� ����� ��
and connectives ����� are handled as boolean�valued functions� The object creating behaviors
newcoll� 
 and newprod� 
 are variadic functions� There is a small set of well�de�ned algebraic
operators �viewed as functions
 that provide meaningful iterations over collections and can be
composed to form more complicated queries �existential and universal quanti�cation are handled
by composing these operators
� Thus� an algebraic query is a functional expression to be evaluated
and the algebra is a functional language�

The basic algebra expression consists of a single collection speci�cation� In our algebra� a base
algebra expression is either a collection name or the function application newcoll�c�� � � � � cn
 where
each ci denotes a constant �i�e�� a ground term
� We call the latter a collection constant� Other
algebra expressions can be constructed from the base expressions using the algebraic operators�

The basic constructs of the calculus �object constants� object variables and Bspecs
 have a
functional interpretation that abstracts over the free variables in the constructs� We call this
interpretation of the construct a functional expression�

De�nition �
� Functional Expression� A functional expression is a functional abstraction of an
object constant� an object variable or a Bspec de�ned as follows	

�� For every constant c� there is a unary functional expression �x�c that returns the constant c�

�� For every variable x� there is a unary functional expression �x�x that is the identity function�

�� For every Bpsec �f�xg� there is a functional expression ��x��f�xg that represents a functional
abstraction of the Bspec� If the Bspec is a ground term �i�e�� is not free over any variables
�
then its functional expression is �x��fg with the same semantics as for constants�

The variables appearing after the � symbol and before the �rst dot are called the parameters of
the functional expression�
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Since Bspecs can be abstracted into functional expressions� all behaviors have this abstraction�
This means that predicates �� ����� �� and connectives ����� are boolean�valued functional expres�
sions� The object creating behaviors newcoll� 
 and newprod� 
 are variadic functional expressions
that produce the appropriate collection or product object� The algebraic operators �de�ned below

are functional expressions that operate on collections and produce collections as results�

In general� we use mop to denote a functional expression and call it a mop function� Given a
mop function �mop
 with parameters �x and given objects �o that are type compatible with �x� we use
mop��o
 to denote the application of the mop function to the objects� That is� each oi is substituted
for an xi to form a context� the context is evaluated and the result object is produced�

Operands and results of the object algebra operators are typed collections of objects� Thus�
the algebra is closed since the result of any operator may be used as the operand of another� Let
 represent an operator in the algebra� The notation P  hQ�� � � � � Qni is used for expressions
where P and each Qj are names for typed collections of objects� They represent the arguments
to  � When n � � we use P  Q and when n � � we use P  without loss of generality� The
collections represented by P and Qj may be names for base collections� a collection constant creation
request or the result of an algebraic subexpression� Since the model supports substitutability� any
specialization of collection� including classes� may be used as the operand� Similar to the range
predicates of the calculus� we de�ne P� to denote the shallow extent when P is the name for a
class�

Certain algebraic operators require a functional expression �mop function
 as an argument� The
operator applies the mop function to permutations of elements from its operand collections and takes
appropriate action on the result� Some operators require a boolean�valued functional expression �a
predicate
 denoted F � Evaluating F for particular permutation of arguments produces a boolean
result upon which the operator takes an appropriate action� The membership types of the operand
collections must be consistent with the types expected by the mop function� Mop function quali�ed
operators are written as P  mop hQ�� � � � � Qni where mop is a mop function �or predicate
 with
parameters� say p� q�� � � � � qn� that range over the elements of collections P�Q�� � � � � Qn� respectively�
To make the identi�cation of arguments with parameters simplier and more explicit in algebraic
operators� we sometimes drop the ��x speci�cation from mop functions and subscript operand
collections with the parameters of the mop function as Pp� This explicitly indicates that the range
of variable p �in the mop function
 are the elements of the operand collection P � For example�
Pp  mop�p�q� Qq is used instead of the abstract notation P  �p�q�mop�p�q� Q� For operands consisting
of product objects with components �x� we subscript the operands with all the components as P�x�
This means that some combination of inject behaviors on the elements of P will retrieve the original
xi components� This is only a notational convenience to identify the ranges of variables and the
components of product objects in algebra expressions�

For a collection P � the notation !P denotes the membership type of the objects in P � Further�
more� the behavioral application !P �B interface denotes the behaviors applicable to objects of this
type� We use this notation and the results of Section ��� to infer a new membership type for the
result collection produced by the operators�

The object algebra de�nes both target�preserving and target�creating operators� The target�
preserving operators are as follows	

Di�erence �denoted P �Q
	 Di�erence is a binary operator that produces a collection containing
objects that are in P and not in Q� The membership type of the result collection is exactly
the type of P �i�e� !P 
�
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Union �denoted P �Q
	 Union is a binary operator that produces a collection containing objects
that are in P � in Q or in both� The membership type of the result collection is !P u!Q� This
type de�nes behaviors common to both !P and !Q�

Intersection �denoted P � Q
	 Intersection is a binary operator that produces a collection con�
taining objects that are both in P and in Q� The membership type of the result collection is
!P t !Q� This type de�nes all behaviors of both !P and !Q� Note that P � Q is derivable
from di�erence as P � �P �Q
 or Q� �Q� P 
� Even though these three operations produce
result collections with identical extents� the membership type of each result may di�er�

Collapse �denoted P �
	 Collapse is a unary operator accepting a collection of collections P as
an argument and produces the extended union of the collections in P �

P � �
�
fx j x � Pg

The membership type of the result collection is the extended meet over the membership types
of the collections in P �

uf!x j x � Pg

Select �denoted P 
F hQ�� � � � � Qni
	 where F is a predicate over the elements of collections
P�Q�� � � � � Qn� meaning F expects arguments p� q�� � � � � qn and that they are type consistent
with the membership types of the collections� Select is a higher order operation accepting a
mop function� the predicate F � and the n�� collections P�Q�� � � � � Qn as arguments� The select
operation produces a collection containing objects from P corresponding to the p component
of each permutation �p� q�� � � � � qn� that satis�es F �p� q�� � � � � qn
� The membership type of
the result collection is exactly the type of P �i�e� !P 
�

Example �
� Return the persons that are senior citizens	

C personp 
p�B age�	


Example �
� Return the maps that contain water zones	

C mapp 
q�p�B zones C waterq

Project �denoted P "B
	 where B is a behavioral projection set with the restriction that it
be a subset of the behaviors de�ned by the membership type of P � �i�e�� a subset of
!P �B interface
� The B collection is automatically unioned with the behaviors of type
T object before the project is performed in order to ensure consistency with the object model
�i�e�� everything is an object and therefore must support the behaviors of T object
� Project
produces a collection containing the objects of P � but with a membership type coinciding
with the behaviors in B�

The new type is integrated into the sublattice rooted at T object and with the base !P � An
abstract type de�nition is created that has all the behaviors de�ned by B� The implemen�
tations of these behaviors are unde�ned� but this doesn�t cause problems because no class is
created and therefore no objects of this type exist� This new type has no special properties�
meaning it can be subtyped� implementations for its behaviors can be de�ned� a class can be
associated with it and objects of this type can be created�
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The B projection set has no impact on which objects appear in the result collection of the
query� It is only important during the �nal type assignment that occurs at type inferencing
time after the extent of the query has been produced� This form of project di�ers from the
traditional one in that it does not project over the structure of objects� but rather over their
behavioral speci�cation� Our project is a behavioral�theoretic notion of projection that has
no structural implications�

Example �
� Project over behaviors B name and B age for class C person	

C person "B name�B age

The full object algebra includes target�creating operators in order to provide necessary object
formation and restructuring operators� The result of these operations is always a collection of new
objects that are object identity distinguishable from the objects in the argument collections� The
primary target�creating operator is product 	

Product �denoted Q��� � ��Qn
	 where n 	 �� Product produces a collection containing product
objects of the form �q�� q�� � � � � qn
 created from each permutation �q�� q�� � � � � qn� such that
component qi is an object from Qi� Product may initiate the creation of a new type along with
a new class to maintain the product objects� The membership type of the result collection
is !Q� � � � � � !Qn � Although this operator seems structural in nature� Section ��� de�nes
a behavioral�theoretic notion of product that is commensurate with the uniformity of the
object model�

There is an additional operator that �ts into both the target�preserving and target�creating
classi�cation� Themap operator produces a collection of new or existing objects depending on the
mop function argument passed to it� That is� if the mop function is target�creating� the operator
is target�creating� otherwise it is target�preserving� Map is de�ned as follows	

Map �denoted Q� �mop hQ�� � � � � Qni
	 where mop is a mop function over the elements of col�
lections Q�� Q�� � � � � Qn� meaning it expects arguments q�� q�� � � � � qn and that they are type
consistent with the membership types of the collections� Map is a higher order operation
accepting the mop function mop and the n collections Q�� Q�� � � � � Qn as arguments� For each
permutation of objects �q�� q�� � � � � qn� formed from the elements of the argument collections�
mop�q�� q�� � � � � qn
 is applied and the resulting object is included in the result collection� The
membership type of the result collection is the type of the mop function� Map is a generalized
version of the same operator de�ned in �S�O��a� and is similar to the replace restructuring
operator in �AB���� However� replace operates over a single set�valued relation in contrast to
ours which is variadic over the number of argument collections� Map is also similar to the
image operator of �SZ��� except that theirs is restricted to the application of single behaviors
while the mop in our approach is a general functional expression�

Example �
� Return the zones that have people living in them	

C personp �p�B residence �B inZone

Example �
� Return the proximities of water zones to the City of Edmonton	

C waterp �p�B proximity�edmonton�
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Example �
� Return �person� person� children
 triples for all combinations of people	

C personp �newprod�p�q�p�B children�q�� C personq

The operators de�ned above form the primitive algebra �some refer to this as a physical algebra
�
They are fundamental in supporting the expressive power of the calculus and the subsequent oper�
ators can be de�ned in terms of them� We add the following operators to the primitive algebra and
call this the extended algebra �some call this a logical algebra
� These operators are derived from
the primitive algebra� they support a useful functionality� they generalize the expressive power of
the algebra and some are important for higher�level optimizations �S�O��a�� Note that the following
operators are target�creating�

Join �denoted P �F hQ�� � � � � Qni
	 where n 	 � and F is a predicate over the elements of
collections P�Q�� � � � � Qn� Join produces a collection containing product objects of the form
�p� q�� � � � � qn
 created from each permutation �p� q�� � � � � qn� that satis�es F �p� q�� � � � � qn
�
The membership type of the result collection is !P � !Q� � � � � � !Qn� This type and its
associated class may be created if they don�t already exist�

The join operator can be expressed in terms of product and selection as follows	

Ex� �F hEx� � � � � � Exni � �Ex� �Ex� � � � � �Exn
o 
F �

where F is a predicate over variables �x and F � is F except that every occurrence of xi is
replaced with o��i� the inject of component xi from product object o�

Example �
� Return married couples that don�t live together	

C personp �p�B spouse�q � q�B residence ��p�B residence C personq

Example �
	 Return �map� water zone� water zone
 triples where the given map contains
two di�erent water zone that are within ��� units from each other	

C mapm �x�m�B zones � y�m�B zones � x ��y � x�B proximity�y����� hC waterx�C wateryi

Generate Join �denoted Q� �
o
g hQ�� � � � � Qni
	 g is a generating atom of the form o � mop where

� is either � or � and mop is a mop function over the elements of collections Q�� Q�� � � � � Qn�
Generate join produces a collection of product objects created from each permutation of the
qi�s and extended by an object o in the following way� If � is �� the result contains product
objects of the form �q�� q�� � � � � qn� mop�q�� q�� � � � � qn

 for each permutation of the qi�s �i�e��
each product object is a permutation of the qi�s extended by the result of applying the mop
function to that permutation
� If � is �� the result contains product objects of the form
�q�� q�� � � � � qn� o
 for each permutation of the qi�s and each o � mop�q�� q�� � � � � qn
 �i�e�� for a
permutation of the qi�s and for each member o of the collection resulting from the application
mop�q�� q�� � � � � qn
� a product object with components �q�� q�� � � � � qn� o
 is created as a member
of the result collection
� Generate Join is similar to PDM�s apply�append operator except
theirs works on a single tuple while ours is over an arbitrary number of collections�

The equality atom based generate join can be expressed by map as follows	

Ex� �
o
o�mop hEx�� � � � � Exni � Ex� �newprod�x� �x������xn�mop��x�� hEx� � � � � � Exni
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The membership atom based generate join can be expressed by the following series of algebraic
operations	

A
def
� �Ex� � Ex� � � � � �Exn
x �newprod�x�mop�x����x��������x��n��

B
def
� �Ax �newcoll�x�����x��� 
 �

Ex� �
o
o�mop hEx�� � � � � Exni � Bx �newprod�x�������x�����������x�����n�x����

Example �
� Return �zone� proximity
 pairs of each zone extended with its proximity to all
water zones	

C zonep �
o
o�p�B proximity�q� C waterq

Example �
�� Return �map� zone
 pairs of each map extended with the zones contained in
that map	

C mapp �
o
o�p�B zones

Reduce �denoted P��i
	 where P is a collection of product objects and �i is an inject behav�
ior de�ned on the membership type of P � The reduce operator has the e�ect of discard�
ing the ith component of the product objects in P � That is� product objects of the form
�p�� � � � � pi��� pi� pi��� � � � � pn
 with inject behaviors ��� � � � � �i��� �i� �i��� � � � � �n are mapped
to product objects �p�� � � � � pi��� pi��� � � � � pn
 with inject behaviors ��� � � � � �i� �i��� � � � � �n���
This is similar to the relational projection operator except that the speci�ed components are
removed� If P is not a product object� the empty collection is returned�

The reduce operator can be expressed by map as follows	

E��i � Eo �newprod�o��������o��i���o��i�������o��n�

The e�ect of the map is to produce product objects that contain all the original components
of o� minus the ith component� Map� together with the product object creation behavior� is
a generalization of the relational projection on product objects�

As a notational convenience� a series of reduce operators is coalesced into a single one and
the � symbol is dropped from the speci�cation� The equivalence is de�ned as follows	

P��x� ���
��xn � P�x������xn

Example �
�� Let E be the result of Example ��� above� Reduce E by excluding the �rst
water zone of the result	

E�x

The functional nature of queries is twofold� On the one hand� a query may be thought of as
a function where collection names serve as variables representing the arguments� By associating
these names with collections in an instantiation of an objectbase we get a substitution that can be
evaluated� On the other hand� for a given objectbase a query denotes a constant� That is� a query
is a function only when all possible objectbases are considered� For a given objectbase� a query
is an expression resembling a ��ary function� In contrast� behavioral compositions such as Bspecs
�mops
 are functions even within the instantiation of a objectbase� When they are composed with
algebraic operators select� map� join and generate join� they denote functions that are applied to
permutations of the elements from the operand collections�
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We have chosen not to include a powerset operator in our algebra because one of our primary
interests is to produce an e�cient implementation of our query model� Use of powerset causes
exponential growth of collections and the costs that this could incur is unacceptable for our imple�
mentation�

The foundations of powerset and recursive query capability are present in our model� One
extension is the addition of a primitive powerset algebraic operator that accepts a collection and
produces the powerset of the collection as output� Using this� we could derive a form of generate
join that creates a collection of product objects� one for each element in the powerset of the mop

function evaluation� whose components are the operand collections appended with the element
from the powerset� Since we already have a B containedBy behavior �analogous to �
 de�ned on
T collection� we only need to de�ne a predicate s � t in the calculus for this behavior� If the
term s is a variable� then this becomes another kind of generating atom in the calculus�

A clean de�nition of safety with respect to powerset that complies with the e�cient translation
of evaluable formulas �i�e�� without forming aDOM domain
 is not apparent� The powerset property
has a logical derivation as follows	

s � t � �x�x � s� x � t

� �x�x �� s � x � t

� ��x�x � s � x �� t


This derivation does not satisfy the evaluable property unless s and t are further restricted outside
the formula� This means that s � t can not in general be used to generate objects for s from t and
its only consistent use would be as a restriction atom� However� our language already handles this
because the derivation is a valid formula of the calculus and is safe if s and t are restricted outside
the formula� Thus� without being able to generate values for s from the derivation� no additional
power is added by including a � predicate and a powerset operator� On the contrary� it would
make the algebra more expressive than the calculus since the translation of the powerset operator
to the calculus �i�e�� the derivation above
 would result in an unsafe calculus formula�

A clean incorporation of powerset capability that complies with the feasible translation prop�
erties of the evaluable class is part of our future research� If a compatible derivation can be found�
extending the proofs of completeness will be straightforward� From algebra to calculus it is simply
a matter of stating the derivation of the powerset operator and from calculus to algebra it involves
carrying the � predicate through the translation�

��� Safety of Algebraic Expressions

Recall from the discussion in Section ��� that there are two forms of safety to consider� The �rst
form checks the domain independence of the query and was de�ned in that section� The second
form checks the safety of a query with respect to operand �niteness � meaning it checks that the
query does not add objects to any collections or classes that it is ranging over� We de�ne this check
on algebraic expressions that checks the operand �niteness of each operator in the expression�

Since object creation and insertion occurs through the application of behaviors� the check for
operand �niteness could be combined with an algebraic type checking mechanism such as the one
de�ned in �S�O��b� that goes through an algebraic expression and examines the behaviors being
applied in algebraic operators for type consistency�

The �problematic� operators of the algebra that can violate operand �niteness by adding objects
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to their operands are select � map� join and generate join because they contain mop functions that
are general behavioral applications� The only side e�ect behaviors allowed in mop functions are
insertion into a collection �i�e�� B insert on a collection
 and creation of a new object �i�e�� B new
on a class
� We further restrict this in that the insertion or creation behavior must be applied to
a constant reference of a collection or a class �i�e�� not to a variable or the result of a behavioral
application
 or must not occur at all�

We assume that all other behaviors in a mop function are side�e�ect free �i�e�� they do not
create new objects or modify existing objects in any way
� The reason for this assumption is
that we don�t examine the implementations of behaviors to determine their safety with respect
to operand �niteness� The exceptions to this assumption are the primitive de�ned newcoll�
 and
newprod�
 behaviors and the algebraic operators� They can occur in mop functions� but their use
is restricted as de�ned below�

An algebraic expression is rejected if it contains an algebraic operator that is unsafe with respect
to operand �niteness� An algebraic operator  is unsafe with respect to operand �niteness if it is
a select � map� join or generate join operator which has a mop function that contains one of the
following	

� an application of B new on a class that is an operand of  �

� an application of B new on a class that is a subclass of an operand of  and the operand is
a class ranging over its deep extent�

� an application of B insert on a collection that is an operand of  �

� an application of newcoll�
 and one of the operands of  is the class C collection�

� an application of newprod�
 that creates an object in a class that is an operand of  �

� an application of newprod�
 that creates an object in a subclass of an operand of  and the
operand is a class ranging over its deep extent�

� an algebraic operator and one of the operands of  is C collection�

� an algebraic operator and this algebraic operator is unsafe with respect to operand �niteness�

��



Chapter �

Example Objectbase

Object�orientation is intended to serve many application areas requiring advanced data represen�
tation and manipulation� A geographic information system �GIS
 �Aro��� Tom��� is selected as
an example to illustrate the practicality of the concepts introduced and to assist in clarifying their
semantics� A GIS was chosen because it is among the applications which can potentially bene�t
from the advanced features o�ered by object�oriented technology� Speci�cally� a GIS requires the
following capabilities	

�� management of persistent and transient data�

�� management of large quantities of diverse data types and dynamic evolution of types�

�� a seamless integration of sophisticated computer graphic images with complex structured
attribute data�

�� handling of large volumes of data and performing extensive numerical tabulations on data�

�� management of di�ering views of data� and

�� the ability to e�ciently answer a variety of ad hoc queries�

A GIS can be de�ned as an application �designed for the collection� storage and analysis of
objects and phenomena where geographic location is an important characteristic or critical for
analysis� � � In each case� what it is and where it is must be taken into account�� �Aro���� Some
examples include displaying the e�ective range of a police force� illustrating how logging activities
a�ect wildlife populations� and depicting the severity of soil erosion�

GIS technology is being applied to many areas� Some common ones include agriculture and
land use planning� forestry and wildlife management� geology� archaeology� municipal facilities
management� and more global scale applications such as ecology� Each of these areas rely on
statistical data� historical information� aerial photographs� and satellite images for analyzing and
presenting empirical data� for drawing conclusions about certain phenomena� or for predicting future
events through sophisticated computer simulations using the information at hand� GISs require
advanced information management and analysis features in order to be e�ective� Object�oriented
databases have the potential to provide this advanced functionality�

A type lattice for a simpli�ed GIS is given in Figure ���� The example is su�ciently complex
to illustrate the advanced functionality of the query model we present� yet simple enough to be

��
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T dwellingT person

T land

T forest
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T riverT pondT clear
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T map

T house T zone

T object

T location

T window

T displayObject

T geometricShape

T atomic

T altitudeT transport

T road

T type

T collectionT function

T behavior

T date

Figure ���	 Type lattice for a simple geographic information system�

understandable without an elaborate discussion� The example includes the root types of the various
sub�lattices from the primitive type system in Figure ��� to illustrate their relative position in an
extended application lattice� The additional types de�ned by the GIS example include	

�� Abstract types for representing information on people and their dwellings� These include the
types T person� T date� T dwelling and T house� Note that T date is a new atomic type
introduced by the application which is used to represent dates in a form acceptable to the
application�

�� Geographic types to store information about the locations of dwellings and their surrounding
areas� These include the type T location� the type T zone along with its subtypes which
categorize the various zones of a geographic area� and the type T map which de�nes a collection
of zones suitable for displaying in a window�

�� Displayable types for presenting information on a graphical device� These include the types
T displayObject and T window which are application independent and the type T map which
is the only GIS application speci�c object that can be displayed�

�� A type T geometricShape that de�nes the geometric shape of the regions representing the
various zones� For our purposes we will only use this general type� but in more practical appli�
cations this type would be further specialized into subtypes representing polygons� polygons
with holes� rectangles� squares� splines and so on�

Table ��� lists the signatures of the behaviors de�ned on GIS speci�c types in the lattice of
Figure ����

��



Type Signatures

T location B latitude� T real

B longitude� T real

T displayObject B display � T displayObject

T window B resize� T window

B drag � T window

T geometricShape

T zone B title� T string

B origin� T location

B region� T geometricShape

B area� T real

B proximity � T zone� T real

T map B resolution� T real

B orientation� T real

B zones� T collectionhT zonei
T land B value� T real

T water B volume� T real

T transport B e�ciency � T real

T altitude B low � T integer

B high� T integer

T person B name� T string

B birthDate� T date

B age� T natural

B residence� T dwelling

B spouse� T person

B children� T person� T collectionhT personi
T dwelling B address� T string

B inZone� T land

T house B inZone� T developeda

B mortgage� T real

aBehavior was re
ned from supertype T dwelling�

Table ���	 Behavior signatures pertaining to example speci�c types of Figure ����

	�� Example De�nitions

We de�ne the types T dwelling and T house for the GIS� The type T dwelling is a subtype of
T object and it de�nes two behaviors	 B address and B inZone� The type T house is a subtype of
T dwelling� it specializes behavior B inZone inherited from T dwelling and de�nes native behavior
B mortgage� The de�nition of these two types in TDL is as follows	

create type T dwelling

under T object

public� B setAddr�T string
	T string�
B getAddr	T string�
B inZone	 T land


create type T house

under T dwelling

public� B setMortgage�T real
	T real�

��



B getMortgage	T real


Behavior B address is to be associated with a stored function in T dwelling� In the absence of a
language with assignment� we opt to de�ne two behaviors� B setAddr and B getAddr for the single
behavior B address� Although these two behaviors have di�erent semantics� they will be associated
with the same stored function� Behavior B mortgage is handled the same way� In the de�nition of
type T house� we do not specify B inZone� since it is inherited from T dwelling� However� as the
implementation for this behavior in type T house changes� an association with a correct function
will be performed later� The next step is to create function objects� and to de�ne local references
to them�

external function dw inZone � T land

external function hs inZone � T developed


We assume that functions dw inZone 	 T land and hs inZone 	 T developed already exist some�
where in the system� The above statements declare local references to them� There is a pair of
stored functions �one to set � one to get
 for the address behavior in T dwelling and a pair of
stored functions for the mortgage behavior in T house� They are created as part of the association
of functions to behaviors which is speci�ed next�

associate in T dwelling

B inZone with dw inZone�
B setAddr with SET �
B getAddr with GET 


associate in T house

B inZone with hs inZone�
B setMortgage with SET �
B getMortgage with GET 


Finally� as all associations are done� class objects for the newly created types can be created�

create class C dwelling on T dwelling

create class C house on T house


This completes the de�nition of T dwelling and T house�

	�� Example Queries

The following examples illustrate possible queries on the GIS� They are �rst expressed in TQL�
followed by the corresponding object calculus expression and then the equivalent algebraic expres�
sion� In the algebraic expressions� we subscript operand collections by the variable that ranges over
it� If the operand consists of product objects� we list the variables that make up the components
of these objects� The indexed variables are used as a symbolic reference to the elements of the col�
lection as described in Section ���� Furthermore� we use the arithmetic notation for operations like
o�greaterthan�p�� o�elementof�p�� etc�� instead of their boolean Bspec equivalents� The execution
of the algebraic expression is from left�to�right� except that parenthesized expressions have higher
priority and are executed �rst�
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Example 	
� Return land zones valued over #������� or that cover an area over ���� units�

TQL	 select o

from o in C land
where �o�B value�
 � ������
 or �o�B area�
 � ����


Calculus	 f o j C land�o
 � �o�B value � ������ � o�B area � ����
g
Algebra	 C lando 
�o�B value������� 	 o�B area������

Example 	
� Return all zones that have people living in them �the zones are generated from
person objects
�

TQL	 select o

from q in C person
where �o � q�B residence�
�B inzone�



Calculus	 f o j �q�C person�q
 � o � q�B residence �B inzone
g

Algebra	
�
C personq �

o
o�q�B residence �B inzone

�
q�o
�q

Example 	
� Return the maps with areas where senior citizens live�

TQL	 select o
from o in C map

where exists � select p
from p in C person� q in C dwelling

where �p�B age�
 	 �� and q � p�B residence�

and q�B inzone�
 � o�B zones�




Calculus	 f o j C map�o
 � �p�C person�p
 � �q�C dwelling�q

� p�B age 	 �� � q � p�B residence � q�B inzone � o�B zones

g

Algebra	

�
C mapo �F hC dwellingq�

�
C personp 
p�B age�	


�
p
i

�
o�q�p

�p�q

where F is the predicate �q � p�B residence � q�B inzone � o�B zones


Example 	
� Return all maps that describe areas strictly above ���� feet�

TQL	 select o

from o in C map
where forAll p in � select q

from q in C altitude
where q � o�B zones�



p�B low�
 � ����
Calculus	 f o j C map�o
 � �p��C altitude�p
� ��p � o�B zones
 � p�B low � ����
g�

Algebra	 C map�

��
C mapo �p�o�B zones

�
C altitudep 

�p�B low�
����

�
p

�
o�p

�p

	

Example 	
� Return the dollar values of the zones that people live in�

��



TQL	 select p�B residence�
�B inzone�
�B value�

from p in C person

Calculus	 f o j �p�C person�p
� o � p�B residence �B inzone �B value
g�

Algebra	
�
C personp �

o
o�p�B residence �B inzone�B value

�
p�o
�p

Note that this has a simplier form using the map operator as follows	
C personp �p�B residence �B inzone�B value

Example 	
� Return the zones that are part of some map and are within �� units from water�
Project the result over B title and B area�

TQL	 select o�B title�B area�
from p in C map� o in p�B zones� q in C water

where o�B proximity�q
 � ��
Calculus	 f o�B title�B area� j �p�q�C map�p
�C water�q


�o � p�B zones � o�B proximity�q
 � ��
g�

Algebra	

��
C mapp �

o
o�p�B zones

�
p�o
�o�B proximity�q���� C waterq

�
p�o�q

�q�p "B title�B name

Example 	
� Return pairs consisting of a person and the title of a map such that the person�s
dwelling is in the map�

TQL	 select p� q�B title�

from p in C person� q in C map

where p�B residence�
�B inZone�
 � q�B zones�

Calculus	 fp� o j �q�C person�p
�C map�q


� o � q�B title � p�B residence �B inZone � q�B zones
g

Algebra	

�
C personp �p�B residence �B inZone�q�B zones

�
C mapq �

o
o�q�B title

�
q�o

�
p�q�o

�q

Example 	
	 Return �person� spouse� child
 triples of all couples and their children where the
�rst parent is homeless� The children set of a couple is ��attened� by grouping each child with
their parents�

TQL	 select p� s� c

from p� s in C person� c in p�B children�s

where s � p�B spouse�
 and

not p�B residence�
 in � select h
from h in C house


Calculus	 fp� s� c j C person�p
�C person�s
 � c � p�B children�s

� s � p�B spouse � p�B residence �� C houseg

Algebra	

��
C personp 
p�B residence ��C house

�
p
�s�p�B spouse C persons

�
p�s

�c
c�p�B children�s�

��



Chapter �

Completeness of Languages

A desired property of the languages of a query model is that they be equivalent in expressive power�
That is� any expression formed in one language has an equivalent formation in the other� In the
calculus it was shown that certain queries are not �reasonable� because there is no e�cient way to
process them� Thus� in de�ning the completeness of our languages we only concern ourselves with
the �reasonable� or �safe� expressions�

In this chapter� we show the completeness of the reduction from the algebra to the calculus� the
calculus to the algebra� and from TQL to the calculus and algebra� This proves the equivalence
of the formal languages �algebra and calculus
 and shows that the calculus supports the expressive
power of the user language TQL�


�� Theorems and Proofs

Theorem �
� The reduction from TQL to the object calculus is complete�

Proof� Every statement of TQL presented in Chapter � was shown in Section ����� to have a
translation into an equivalent calculus expression� �

Theorem �
� The reduction from the object algebra to the object calculus is complete�

Proof� We need to show that if E is an expression in the object algebra� then there is an object
calculus expression �OCE
 equivalent to E� The proof is by structural induction on the number of
operators in E�

Basis
 Zero Operators� Then E consists of a single collection name C or a collection creating
behavior application newcoll�c�� � � � � cn
 where each ci is a constant� An equivalent OCE for
E in the �rst case is fo j C��o
g where C� is the predicate for collection C� In the second case
an equivalent OCE for E is fo j o � newcoll�c�� � � � � cn
g�

Induction� Assume E has at least one operator and that the theorem is true for expressions with
fewer operators than E�

Case �� E
def
� E� "B� Since E� is an object algebra expression with fewer operators than E� we

can �nd an OCE fo j ���o
g equivalent to E�� Then E is equivalent to fo�B� j ���o
g�

��



Case �� E
def
� E� � E�� By renaming of variables if necessary� we can �nd OCEs fo�B�� j ���o
g

and fo�B�� j ���o
g equivalent to E� and E�� respectively �the behavioral projections B� and
B� may be empty
� Then E is equivalent to fo�B�� j ���o
� ����o
g�

Case �� E
def
� E� � E�� We can �nd OCEs for E� and E� as in Case �� Then E is equivalent to

fo�B��B�� j ���o
����o
g� Note that B��B� denotes the intersection of the two component
behavioral projections� This intersection represents the proper behavioral projection of the
result collection�

Case �� E
def
� E� � E�� E� and E� have equivalent OCEs as in Case �� Then E is equivalent to

fo�B��B�� j ���o
����o
g� Here B��B� denotes the union of the two component behavioral
projections�

Case �� E
def
� E� �� There is an equivalent OCE for E� as in Case �� Then E is equivalent to

fo j �o�����o�
 � o � o�
g�

Case �� E
def
� E� 
F hE�� � � � � Eni� There are n OCEs equivalent to E�� E�� � � � � En� Then E is

equivalent to fo�B�� j ���o
� �o� � � ��on����o�
 � � � �� �n�on
 � F �o� o�� � � � � on

g�

Case �� E
def
� E� � � � � � En� There are n OCEs equivalent to E�� � � � � En� Then E is equiv�

alent to fo j �o� � � ��on����o�
 � � � � � �n�on
 � o � newprod�o��B��� � � � � on�Bn�

g� Here
newprod�o��B��� � � � � on�Bn�
 denotes the behavioral application that creates a product object
constant whose ith component is the object denoted by oi that is typed according to the
behavioral projection set Bi�

Case 	� E
def
� E� �mop hE�� � � � � Eni� There are n OCEs equivalent to E�� E�� � � � � En� Then E is

equivalent to fo j �o��o� � � ��on����o�
 � ���o�
 � � � �� �n�on
 � o � mop�o�� o�� � � � � on

g�

The other algebraic operators can be written in terms of the primitive ones above and this
completes the proof� �

Theorem �
� The reduction from the the object calculus to the object algebra is complete�

Proof� The reduction from the calculus to the algebra is proven by a translation algorithm that
follows the steps illustrated in Figure ���� The �rst step� called evalify � determines the evaluability
�De�nition ���
 of a given object calculus formula� Recall from Section ��� that evaluability is
enough for safety
 this is proved by the translation algorithm in Section ���� Moreover� the class of
evaluable queries we are translating are wide�sense evaluable with respect to equality and member�
ship� meaning a broader class of safe queries are recognized by our approach� If the input formula
is not evaluable� it is rejected� From a database perspective� we are only interested in the reduction
of those queries which are considered safe� For evaluable formulas� the rest of the translation is
similar to that presented in �GT���� except that our extended de�nitions are used� The genify step
converts an evaluable formula into an allowed form �De�nition ���
 that rewrites the formula to
include range �generators� for variables in each subformula� The ANFify step places an allowed
formula into Allowed Normal Form �ANF
 �De�nition ���
 that makes each constructive subfor�
mula independent of atoms outside the quanti�er for the subformula� The ANFify step makes
use of Existential Normal Form �ENF
 �De�nition ���
 and simpli�ed form �De�nition ���
� The
advantage of ANF is that the transformation from this form to the algebra is straightforward� The
�nal step of the translation involves simple pattern matching to transform the ANF formula into

��
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Figure ���	 Translation steps from object calculus to object algebra�

a �safe
 object algebra expression �OAE
 that is equivalent to the original formula� The complete
translation algorithm is presented in Section ���� �

Corollary �
� The reduction from TQL to the object algebra is complete�

Proof� This follows directly from Theorem ��� and Theorem ���� �


�� Calculus to Algebra Translation

In this section� we describe a complete translation algorithm that converts safe object calculus ex�
pressions into equivalent algebraic expressions and rejects expressions that are unsafe� The algebra
expressions should be checked for type consistency before they are optimized and prior to an exe�
cution plan being generated� Since every object knows its type� this step may be performed during
compilation of the query� Query optimization and execution plan generation are not addressed in
this report�

To help understand the translation process� we use the following query as a running example�
The calculus expression in Example ��� will be translated into an equivalent algebra expression
with the intermediate steps shown along the way�

Example �
� Return zones that are transport zones or that have people living in them�

Consider the query expressed in the following way	

f o j �p��C person�p
 � o � p�B residence �B inZone
 � C transport�o

 g

For brevity� we map predicate C person to P � C transport to T and the behavioral application
p�B residence �B inZone to p��� The query can then be written as	

f o j �p��P �p
 � o � p��
 � T �o

 g

Let the formula part of the query be F
def
� �p��P �p
 � o � p��
 � T �o

 �

We �rst extend the gen and con rules of Figure ��� by adding the notion of �generators� as
described in �GT���� The extended rules are shown in Figure ���� The technique adds a third
argument G�x
 that serves as a �generator� of sorts for the variable x� A G�x
 �generator� is a
disjunction of edb and gdb atoms �possibly including a placeholder �
 that generates all the needed
objects for x in the given formula and possibly more �i�e�� G�x
 is a range for x that is at least
as large as the values that x can take on in the formula
� Moreover� the atoms in G�x
 were the
ones used to prove that the gen or con relation holds for variable x in some formula A�x
� The
placeholder ��� is used when x is not free in the formula A	 it may be thought of as a ��ary
predicate that always fails�

��



gdb�x� x� y
 if y �F x
gdb�x� x� �f�yg
 if �y �F x
gdb�x� x � y
 if y �F x

gdb�x� x � �f�yg
 if �y �F x

gen�x�A�A
 if edb�A
 and free�x�A

gen�x�A�A
 if gdb�x�A


gen�x��A�G
 if gen�x� pushnot��A
� G

gen�x� �yA�G
 if distinct�x� y
 and gen�x�A�G

gen�x� �yA�G
 if distinct�x� y
 and gen�x�A�G

gen�x�A�B�G� �G�
 if gen�x�A�G�
 and gen�x�B�G�

gen�x�A�B�G
 if gen�x�A�G

gen�x�A�B�G
 if gen�x�B�G


con�x�A�A
 if edb�A
 and free�x�A

con�x�A�A
 if gdb�x�A

con�x�A��
 if notfree�x�A


con�x��A�G
 if con�x� pushnot��A
� G

con�x� �yA�G
 if distinct�x� y
 and con�x�A�G

con�x� �yA�G
 if distinct�x� y
 and con�x�A�G

con�x�A�B�G� �G�
 if con�x�A�G�
 and con�x�B�G�

con�x�A�B�G
 if gen�x�A�G

con�x�A�B�G
 if gen�x�B�G

con�x�A�B�G� �G�
 if con�x�A�G�
 and con�x�B�G�


Figure ���	 Extended rules of gen and con that produce �generators��

����� Evalify	 Syntactic Safety Check

The evalify algorithm �Algorithm ���
 syntactically determines whether a given input formula F
is evaluable or not and returns an indicator SAFE or REJECT� respectively� Recall from the
discussion in Section ��� that the evaluable property �De�nition ���
 is su�cient for safety� A side�
e�ect of the algorithm is that the partial order �F for formula F is de�ned� When evalify is �rst
called� the partial order is initialized as being unde�ned� The algorithm incrementally builds the
partial order on each pass through the repeat loop
 the �rst pass orders variables that are generated
from edb atoms� the second pass orders variables that are generated from variables in the �rst pass
and so on� The gdb predicate for the gen and con rules uses the �partially de�ned� partial order
in each intermediate pass through the repeat loop� Thus� the results of the previous pass are used
to update the partial order on the current pass� The temporary set V is used to temporarily store
unde�ned elements of the partial order that are updated after the gen and con application� This
is done to avoid misorderings since the partial order is incrementally built and always used by the
gdb predicate� If all variables in �F become ordered� the input formula is evaluable and therefore

��



SAFE� A �xpoint of the algorithm is reached when no changes are made to the partial order� At
this point we REJECT the formula since there are variables in �F that cannot be ordered� meaning
they have no �reasonable� range de�ned and they cannot be generated from the other variables�

The result of applying evalify to the formula F from Example ��� is the indicator SAFE and the
instantiation of the partial order f�p� �
� �o� �
g for �F � Two passes are made through the repeat
loop� The �rst pass updates element �p� �
 of the partial order and the second pass updates �o� �
�

����� Genify	 Adding Range Expressions to Subformulas

The next step of the translation process converts an evaluable formula into an allowed form� The
de�nition of allowed is as follows	

De�nition �
� Allowed� A formula F is allowed or has the allowed property if the following
conditions are met	

�� For every variable x that is free in F � gen�x� F 
 holds�

�� For every subformula �xA of F � gen�x�A
 holds�

�� For every subformula �xA of F � gen�x��A
 holds�

The allowed property is stronger than evaluable since every formula satisfying the allowed
property satis�es the evaluable property �because gen�x� F 
 implies con�x� F 

� but the converse
does not hold� However� every evaluable formula can be translated into an equivalent allowed
formula� The desired properties of allowed formulas are that all variables� free and bound� are
generated from the formula and allowed formulas are more robust under certain transformations
than evaluable ones� Gelder and Topor �GT��� de�ne conservative transformations which include �
and � distribution that do not always preserve the evaluable property� but do preserve the allowed
property� These transformations are used in subsequent steps of the translation to algebra and
therefore we convert evaluable formulas into an equivalent allowed form�

As an example of allowed vs� evaluable� consider the formula	

P �p
 � �q�Q�q
� �R�q
� p�� � q��



which is allowed and the formula	

P �p
 � �q�Q�q
� ��R�p
� p�� � p��



which is evaluable� but not allowed because gen�q� Q�q
� ��R�p
� p�� � p��

 does not hold�

Algorithm ��� �genify
 follows the con�to�gen algorithm presented in �GT��� and translates an
evaluable formula into one that�s allowed� The basic procedure of the algorithm is to identify the
subformulas �xA such that con�x�A
 holds� but gen�x�A
 fails and then to rewrite these formulas as
an equivalent formula� say A�� so that gen�x�A�
 holds� From this point on� unless otherwise noted�
we assume that all occurrences of �xA in a formula have been replaced with the logical equivalent
��x�A� The genify algorithm is general in the sense that if the input formula is not evaluable� it
can identify this and returns an error� It is necessary before applying the genify algorithm that we
check separately that gen�xi� F 
 holds for all free variables xi in F � The algorithm relies on the
following de�nitions paraphrased from �GT����

��



Algorithm �
� evalify�

Input� An object calculus formula F

Output� SAFE indicating that F is evaluable or REJECT

Comments� The algorithm incrementally builds the global partial order �F with each pass
through the repeat loop� A temporary set V is used to store elements of �F that need
to be updated after each pass�

Initialization

�� For every variable xi appearing in F � initialize a pair �xi�

 in �F � This indicates that
the order for xi is unde�ned�

�� order � �

Procedure�

repeat

V � f g
foreach unde�ned element �xi�

 in �F do

if free�xi� F 
 then
apply gen�xi� F 


else if xi is � bound as �xA then

apply con�xi� A

else xi must be � bound as �xA

apply con�xi��A

if gen or con application succeeded then

V � V � f�xi�

g
endfor
foreach element �xi�

 in V do

update element �xi�

 in �F to �xi� order
 which de�nes its order
endfor

if no more unde�ned elements �xi�

 in �F then return SAFE
increment order

until no changes made to �F

return REJECT

��



Algorithm �
� genify�

Input� An evaluable formula F with universal quanti�ers replaced�

Output� An allowed formula equivalent to F �

Procedure�

�� if F is an atom then return F

�� if F has the form �A then return �genify�F 


�� if F has the form A �B then return genify�A
 � genify�B


�� if F has the form A �B then return genify�A
 � genify�B


�� if F has the form �xA then

�a
 if gen�x�A�x
� G�x

 holds then return �x genify�A�x



�b
 if con�x�A�G
 holds then

i� if notfree�x�A
 and hence G � � then return genify�A


ii� else free�x�A
 holds and G � P��x
 � � � � � Pm�x
 where m 	 � and some of
the disjuncts may be �� Let R be the truth value simpli�cation of A�G	false��
De�ne	

$F
def
� �x �G�x
� A�x

�R

and return genify� $F 


�c
 Note that if con�x�A�G
 does not hold then F is not evaluable so we return an error�

De�nition �
� Truth Value Simpli�cation� The operation of truth value simpli�cation consists
of applying the following simpli�cations to a formula for as long as possible�

�false �� true �true �� false

A � false �� false A � true �� true

A � false �� A A � true �� true

�x false �� false �x true �� true

�x false �� false �x true �� true

Simpli�cations that depend on the law of the excluded middle� such as A � �A �� true� are not
part of this de�nition because in general A is a formula and we do not get into recognizing formula
equivalences�

De�nition �
� Formula Substitution� Let G
def
� P� � � � � � Pm where Pi are atoms in A� Then

A�G	false� denotes a formula in which each occurrence of Pi in A is replaced by false�

Steps ��� of the algorithm traverse the structure of the input formula and step � performs the
transformations into allowed form on the subformulas that violate this property� If step �a holds�
then there is nothing to do here and we can simply continue traversing the formula� Step �b must
hold in order for the formula to be evaluable and if it does not then an error is produced� If
variable x is not free in subformula A� this means that x must not appear in A and so we drop
the existential quanti�er for x and continue traversing the formula� The key step of the algorithm

��



is ��b
ii where F is rewritten into the equivalent $F form� The purpose of this step is to form a
conjunction of the original subformula A with a generator G for the constrained variable x
 in e�ect
making gen�x�G � A
 hold� The role of R is to act as the �remainder� of the subformula which
moves copies of subformulas that are independent of x �i�e�� don�t contain x
 outside the existential
quanti�er for x� This is necessary to make F and $F equivalent because the conjunction of G with
A changes the meaning of the subformula�

The result of applying genify to our example formula F from Example ��� is the formula	

F � def� �p�P �p
 � ��P �p
 � o � p��
 � T �o


 � T �o


which is allowed� The steps that produce this formula are as follows	

� The algorithm falls through to step � since F has the form �xA where	

A
def
� �P �p
 � o � p��
 � T �o


� Step �a fails� but step �b succeeds with con�p� A�G
 where G
def
� P �p
 � ��

� Thus� the algorithm proceeds to step ��b
ii and the result of applying this step to our example
formula de�nes the following	

R
def
� T �o


$F
def
� �p��P �p
 � �
 � ��P �p
 � o � p��
 � T �o


 � T �o


$F is in allowed form and by replacing all occurrences of � with false and carrying out truth
value simpli�cation we get the output formula F ��

����� ANFify	 Making Subformulas Independent

The next step of translation is to normalize an allowed formula by putting it into Allowed Nor�
mal Form �ANF
� The reason for converting a formula into ANF is that every proper constructive
subformula �see De�nition ��� below
 can generate objects for all the free variables in the sub�
formula� This in e�ect makes every constructive subformula independent of atoms that appear
outside the quanti�er for the subformula� meaning that in the �nal translation to the algebra we
can translate subformulas independent of the atoms outside the quanti�er for the subformula� The
transformation of an ANF formula into an object algebra expression is straightforward by simple
pattern matching starting with the inner subformulas and moving to the outer formula� At times
our discussion assumes a tree structured representation for a formula where the leaves represent
atoms from the calculus and the internal nodes are the connectives �������� Algorithm ��� �AN�
Fify
 and the de�nition of ANF depend on the following de�nitions that extend those presented in
�GT��� by including a notion for membership�

De�nition �
� Simpli�ed Form� A formula �with universal quanti�ers replaced
 is call simpli�ed
if the following conditions are met	

�� There is no occurrence of ��A� It is replaced by the logical equivalent A�

�� There are no occurrences of ��s � t
���s �� t
���s � t
���s �� t
� They are replaced by their
logical equivalents �s �� t
� �s � t
� �s �� t
� �s � t
� respectively�

��



�� The operators ���� � are made polyadic and are �attened� meaning	

�a
 in a subformula A� � � � � � An� n 	 � and no operand Ai is itself a conjunction�

�b
 in a subformula A� � � � � � An� n 	 � and no operand Ai is itself a disjunction�

�c
 in a subformula ��xA� operand A does not begin with ��

�� In a subformula ��xA� free�xi� A
 holds for every variable xi�

An algorithm to translate a formula into simpli�ed form follows immediately from the de�ni�
tion� We assume the existence of a function simplify that transforms an arbitrary formula into its
equivalent simpli�ed form satisfying De�nition ���� The following three de�nitions formalize the
notion of Existential Normal Form �ENF
�

De�nition �
� Negative	Positive Formulas� A simpli�ed formula is negative if its root is ���

otherwise� it is positive� An arbitrary formula is negative �resp� positive
 if its simpli�ed form is
negative �resp� positive
�

De�nition �
� Restrictive	Constructive Subformulas� A subformula A of a simpli�ed formula F
is restrictive if the parent of A is ��� and either A is negative or A is an atom and edb�A
 does
not hold
 otherwise A is constructive�

De�nition �
� Existential Normal Form� A formula is in Existential Normal Form �ENF
 if	

�� it is simpli�ed
 and

�� for each disjunction in the formula	

�a
 the parent of the disjunction� if it has one� is ���
 and

�b
 each operand of the disjunction is a positive formula�

The existential normal form prohibits certain parent�child combinations illustrated by the non�
blank entries in Figure ��� and these entries specify rewrite rules that correct the violations� The
s along the diagonal indicates a call to simplify on the formula and has the highest priority�

De�ning an algorithm for converting any arbitrary formula into ENF is straightforward from
Figure ��� and one is presented in �GT���� Furthermore� a Lemma is provided stating that if the
input formula to the algorithm is allowed� then so is the output formula� This means that we can
put an allowed formula into ENF without losing the allowed property� ENF is important for the
�nal translation into ANF� Let ENFify be a function that performs ENF normalization�

The following two de�nitions formalize the notion of allowed normal form�

De�nition �
	 genall� The property genall�F 
 holds for a formula F if and only if gen�xi� F 

holds for every free variable appearing in F �

De�nition �
� Allowed Normal Form� A formula F is in Allowed Normal Form �ANF
 if it is in
ENF� genall�F 
 holds� and every constructive subformula A of F is in ANF�

��



Parent

Child � � � �

� s R� R�

� s R�a

� s

� R�A s

aOnly if every conjunct of � is negative�

R� 	 ���A� � � � � � �An
 �� A� � � � � � An

R�A 	 �A �B� � � � � �Bn �� ��A � �B � � � � � �Bn

R� 	 ��A� � � � � �An
 �� ��A� � � � � � �An

R� 	 ��x�A��x
 � B��x

 �� ���xA��x
 � ��xB��x



Figure ���	 Prohibitive parent�child combinations in ENF formulas and rewrite rules to correct the
violations� The s entry indicates a call to simplify on the formula and has highest priority�

Algorithm ��� �ANFify
 transforms an allowed ENF formula into an equivalent ANF formula�
The algorithm is based on the repeated application of the rewrite rules in Figure ���� Application
of rules for Case � and Case � require the resulting formula to be simpli�ed before recursing on
the formula� Case � may produce a non�ENF formula �e�g�� D����A� �A�
�B

 and so a call to
ENFify is necessary before recursing� A �xpoint of the algorithm is reached when no changes are
made to the input formula F and at this point F is in allowed normal form�

The purpose of the ANFify algorithm is to rewrite every proper constructive subformula so
that all free variables in the subformula are generated by the subformula itself� This ensures that
every constructive subformula is allowed and therefore can be �evaluated� independently of the
atoms outside the quanti�er for this formula� This motivates the following Lemma that removes
the recursion in De�nition ���� but yields the same class of ANF formulas�

Lemma �
� An ENF formula F is in ANF if and only if F is allowed and every constructive
subformula A of F is allowed�

Proof� Immediate from the de�nition of ANF and structural induction on F � We refer the reader
to �GT��� for the formal proof�

The result of applying ANFify to the allowed formula F � produced by the genify algorithm in
the previous section is the formula	

F �� def� �p�P �p
 � o � p��
 � �p�P �p
 � T �o

 � T �o


which is in ANF� The steps that produce this formula are as follows	

� The algorithm matches on Case � with the following being de�ned from the formula F �	

F�
def
� P �p
 � ��P �p
 � o � p��
 � T �o



B�
def
� P �p


G
def
� ��P �p
 � o � p��
 � T �o



A�
def
� �P �p
 � o � p��


A�
def
� T �o


��



Algorithm �
� ANFify�

Input� An allowed formula F in ENF�

Output� An ANF formula equivalent to F �

Comments�

The algorithm assumes a tree structure representation of formulas� The notation F �A	B�
where A is a subtree �subformula
 of F denotes an operation that replaces the subtree of A
in F by the tree representation of formula B�
In each of the cases below� F� is an allowed �not necessarily proper
 subformula of F to be

replaced and F� is the equivalent allowed formula that replaces F�� The notation �F�
def
� � � ��

means that F� matches the allowed formula pattern on the right�hand side� If none of the
patterns can be matched to some subformula of F � the algorithm falls through to the otherwise
clause which causes the procedure to terminate�

Procedure�

Case �� F�
def
� ��yA � B� � � � � �Bn� and genall�A
 does not hold	

� Let �x be the set of variables that are free in A such that gen�xi� A
 fails �since F�
is allowed� this set is disjoint from �y
�

� Let B� � � � � � Bk be a pre�x �possibly after rearrangement
 of B� � � � � � Bn such
that genall�A �B� � � � � �Bk
 holds �at worst k � n because genall�F�
 holds
�

� Let F�
def
� ��y�A �B� � � � � � Bk
 � Bk�� � � � � � Bn

� return ANFify�simplify�F �F�	F��



Case �� F�
def
� �A �B� � � � � �Bn� and genall�A
 does not hold	

� Let �x be the set of variables that are free in A such that gen�xi� A
 fails�

� Let B� � � � � � Bk be a pre�x �possibly after rearrangement
 of B� � � � � � Bn such
that all �x are free in B� � � � � � Bk and genall�B� � � � � � Bk
 holds �at worst k � n
because genall�F�
 holds
�

� Let G
def
� ANFify�B� � � � � � Bk


� Let F�
def
� ��A � G
�B� � � � � � Bn

� return ANFify�simplify�F �F�	F��



Case �� F�
def
� G �B� � � � � � Bn� where G

def
� A� � � � � �Am and genall�G
 does not hold	

� Let B� � � � � � Bk be a pre�x �possibly after rearrangement
 of B� � � � � � Bn such
that genall�G� B� � � � � �Bk
 holds �at worst k � n because genall�F�
 holds
�

� Distribute B� � � � � � Bk over G�

� For � � i � m do	 let Gi
def
� ANFify�Ai � B� � � � � �Bk


� Let F�
def
� �G� � � � � �Gm
 �Bk�� � � � � �Bn

� return ANFify�ENFify�F �F�	F��



Otherwise� return F

��



Carrying out the distribution of B� over G produces two Gi formulas that are in ANF and
de�ne the �nal result formula as follows	

G�
def
� �P �p
 � P �p
 � o � p��

� �P �p
 � o � p��


G�
def
� �P �p
 � T �o



F�
def
� �P �p
 � o � p��
 � �P �p
 � T �o



F �F�	F��
def
� �p��P �p
 � o � p��
 � �P �p
 � T �o


 � T �o


The call to ENFify on F distributes the �p over the disjunct� The resulting formula is in
ANF and is the output of ANFify as formula F ���

����
 Transform	 Translating into Algebra

The �nal step of translation involves the transformation of an ANF formula into an equivalent
series of object algebra operations� This step follows immediately from the structure of an ANF
formula� Every range atom C�x
 is translated into a name C� that represents the collection of the
range predicate� Atoms x � c and x � c are translated as part of appropriate select or generate
operations �see below
 or into appropriate collections as follows	

x � c �� newcoll�c
x
x � c �� cx

The �rst case creates a collection containing the single constant c and the second case uses c as
the name for the collection� Recall that the subscript x is our notation from Section ��� which
indicates that the result collection is a range for variable x�

Next� we apply the transformations shown in Figure ��� to the remaining proper constructive
subformulas and then combine the subformulas� In the �gure� A and B refer to subformulas� A�

and B� refer to the algebraic equivalents of A and B respectively� F refers to a predicate� mop
refers to a mop function� and � is one of � or �� Algebraic expressions are subscripted with the
variables that they represent �or that their components represent in the case of product objects
�
Furthermore� A��x
 is used to denote that �x are the only free variables in A� The same applies
to F ��x
 and mop��x
� For join terms of the form �x � �x� it is assumed that one set of �x refer to
components of A� while the other set refers to components of B��

Transformation ����
 is known as a generalized set di�erence �HHT��� and could be de�ned
as a primitive derived operator in the algebra so that e�cient join techniques could be de�ned to
process it�

Transformation ����
 de�nes a join between the common variables �components
 of A and B�
Transformation ����
 de�nes a join using a predicate �general mop function
 over the components
of A and B� Transformation ����
 is a general case of ����
 and ����
 which de�nes a join between
an A and a B that have some variables in common �namely� �w� �x
� some variables not in common
�A has �u��v and B has �y� �z
� and a predicate over some of the common and uncommon variables of
A and B �namely� �u� �w� �y
� Transformation �����
 de�nes a generate join over an A and a B that
have no variables in common� and a generating atom over over some of the variables of A and B�
The reason A and B cannot have common variables is that the relationship between these variables
would be lost in the operation� If A and B have common variables� then they should be joined
instead� Transformation �����
 is a special case of �����
�

��
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 �B��w� �x� �y� �z
 � F ��u� �w� �y
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A��x� �y
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 �� �A��x��y �
o
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�x��y�o �����


A��x� �y
 � B��w� �z
 � o�mop��y� �z
 �� �A��x��y �
o
o�mop B

�
�w��z
�x��y� �w��z�o �����


��yA��x� �y
 �� �A��x��y��y
�x �����


Figure ���	 Transformations from object calculus to object algebra�

Transformations of join and generate join over two operands can be generalized over multiple
operands� For example� there is the opportunity to perform the following transformations on the
given formula	

A��x
 �B��y
 � C��z
 � F ��x� �y� �z
 �� �A�x �F hB�y � C�zi
�x��y��z
A��x
 �B��y
 � C��z
 � o � mop��x� �y� �z
 �� �A�x �

o
o�mop hB�y � C�zi
�x��y��z�o

This groups the collections involved in the operation with the operator and may provide some
opportunities for optimization such as grouping together collections that may be clustered on disk�

The last stage of the transformation is to apply the necessary project operation using behavioral
projections in the target list of the object calculus expression� This operation does not change the
extent of the result collection� Rather� it has the e�ect of generalizing a new membership type for
the collection that only includes the behaviors speci�ed in the projection�

The result of applying the transformations to the ANF formula F �� output by the ANFify
algorithm in the previous section is the algebraic expression	�

�Pp �
o
o�p�� 
p�o�p

�
o
� ��Pp � To
p�o�p
o � To

Written using the constructs of the original query it is	�
�C person �o

o�p�B residence �B inZone 
�p

�
� ��C person�C transport
�p
 � C transport

There are opportunities for optimization on this expression� but the importance of this section
was to show the correct translation from calculus to algebra� The expression should also be type
checked to ensure that the behaviors used in the expression are actually de�ned for the objects
to which they�re being applied� During type checking the test for operand �niteness can also take
place� The resulting example query is safe in all respects that we have considered in this report�

��



Chapter �	

Conclusions and Future Work

In this paper� we give a complete formal speci�cation of the TIGUKAT uniform extensible query
model� This includes the user�level de�nition language� user�level query language� user�level control
language� the object calculus� the object algebra� and completeness proofs of the languages� In
keeping with the uniformity aspects of the TIGUKAT object model �P�OS���� the query model is
de�ned in a consistent way as type and behavior extensions to the base object model� Thus� queries
are objects with well�de�ned behavior� This is a uniform object�oriented approach to developing an
extensible query model that is seamlessly integrated with the object model� This kind of natural
extension is possible due to the uniformity built into the object model which treats everything as a
�rst�class object and allows the consistent abstraction of an object�s �attributes� into the uniform
semantics of behaviors� This speci�cation is being used as a foundation for implementing the query
model�

The TIGUKAT Query Language �TQL
 is a user�level language with similarities to the SQL�
standardization e�orts �Gal���� Therefore� TQL should be SQL ready when standards �nally
emerge� The TIGUKAT De�nition Language �TDL
 provides the ability to extend the object model
with types� classes� behaviors and functions� The TIGUKAT Control Language �TCL
 provides a
simpli�ed set of commands for controlling a session within the TIGUKAT query processor�

The formal object calculus is a powerful declarative object creating language that incorporates
the behavioral paradigm of the object model� Safety is based on the evaluable class of queries �GT���
which is arguably the largest decidable subclass of the domain independent class �Mak���� The class
of evaluable queries we de�ne are wide�sense evaluable with respect to equality and membership
atoms� meaning a broader class of safe queries is recognized by our approach� Furthermore� a notion
of operand �niteness is de�ned that checks if a query adds objects to the collections and classes
that it is ranging over and rejects it if it does�

The object algebra includes a powerful� complete set of the behavioral�functional operators that
fully support the object�creating nature of the calculus� A novel operator is behavioral projection
which is a form of type generalization� Other notable operators include a generalized map for
applying behaviors to elements of collections� a select and the derived join and generate join
operators� We have chosen not to include a powerset operator in our algebra because one of our
primary interests is to produce an e�cient implementation of our query model� Use of powerset
may cause exponential growth of collections and the costs associated with this is unacceptable
for our implementation� Furthermore� a clean de�nition of safety with respect to powerset that
complies with the e�cient translation of evaluable formulas �i�e�� without forming a DOM domain


��



is not apparent� The calculus and algebra are proven to be equivalent in expressive power and the
reduction from TQL to the calculus is complete� Furthermore� a feasible translation algorithm from
calculus to algebra is presented that does not depend on the formation of �potentially
 large DOM
domains� Object creating languages require the ability to perform type inferencing because newly
created objects may not correspond to any type in the lattice� As part of the algebra� we de�ne
how the operators relate to the schema in terms of the creation and integration of new types�

There are a number of ongoing research activities related to this project� A main memory
version of the TIGUKAT object model has been implemented� We are coupling this implementa�
tion with the EXODUS storage manager �CDV��� to provide persistence� We are implementing
a compiler for the query model and user language on top of the object model implementation�
We are developing and implementing an extensible query optimizer for the algebra� including an
execution plan generator with a generic interface to an object storage manager such as EXODUS�
The query optimizer design loosely follows the strategy in �LV��� to the extent that both em�
ploy object�oriented techniques in de�ning the components of the optimizer in an extensible way�
The empirical experiences of �BMG��� in implementing an object�oriented optimizer has several
lessons and recommendation to help guide the development of new optimizer technologies for non�
traditional models� Our query optimizer is uniformly integrated with the object model� meaning
the query optimizer is de�ned as a collection of objects with well�de�ned behavior� The �nal step
of our query processor implementation is the design of its interface with the object storage manager
and the generation of an e�cient execution plan for retrieving objects in the result collection of the
query�

Another issue we are addressing is the de�nition of the update semantics for the model� In this
paper� we have de�ned the syntax and semantics of a TIGUKAT De�nition Language �TDL
 that
allows for the consistent creation of schema such as types� classes and collections� Furthermore�
we have de�ned the syntax of TQL statements insert� update and delete to perform updates
on the objectbase and are currently working out the semantics of these constructs� A related issue
involves handling behaviors with side e�ects and we are hoping to develop some rules for dealing
with these in our languages�

The de�nition of the object query model� user language and optimizer provides e�cient declar�
ative access to objects� However� this model currently works on the physical database as de�ned
by its conceptual schema� A conceptual schema can have various meanings to di�erent applica�
tions� That is� there can be several external schemas for a single conceptual schema� These various
perspectives must be speci�able in a model without having to rede�ne the physical or conceptual
schema for each application� The de�nition and management of external schemas is part of a view
management facility� We are currently developing a view manager �with an update semantics
 for
the model� Following uniformity� views are de�ned as �rst class objects with well�de�ned behavior�

The object�oriented approach is a suitable candidate for facilitating an integration of the data
abstraction and computation model of object�oriented programming languages with the perfor�
mance and consistency of an object query model� Traditionally� these two areas have developed
orthogonally to each other� An integration would alleviate many problems �e�g�� impedance mis�
match
 associated with embedded languages in use today� We are investigating how a uniform
behavioral model like TIGUKAT may lead to a merger of these two disciplines and are looking at
developing a methodology for specifying a seamless interface between them� The de�nition of a
uniform objectbase programming language is one of the possibilities we are exploring�
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Appendix A

Primitive Type System

Table A�� displays the signatures for the behaviors de�ned on the non�atomic types �except the
container types
 of the primitive type system� Table A�� shows the signatures for the behaviors
de�ned on the container types of the primitive type system� Table A�� lists the signatures for
the behaviors de�ned on the atomic types of the primitive type system� The receiver type of a
behavior is not given because the receiver must be an object of a type that is compatible with the
type de�ning the behavior�

Note that the type speci�cations for the behaviors are the most general types� Types for some
of the behaviors are revised in the subtypes that inherit them� For example� the result type of B self
is always the type of the receiver object and the result type of B new is always the membership
type of the receiver class�
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Type Signatures

T object B self 	 T object

B mapsto	 T type

B conformsTo	 T type� T boolean

B equal	 T object� T boolean

B notequal	 T object� T boolean

B newprod	 T listhT objecti � T listhT collectionhT behaviorii
� T object

T type B interface	 T collectionhT behaviori
B native	 T collectionhT behaviori

B inherited	 T collectionhT behaviori
B specialize	 T type� T boolean

B subtype	 T type� T boolean

B subtypes	 T collectionhT typei
B supertypes	 T collectionhT typei
B sub�lattice	 T posethT typei

B super�lattice	 T posethT typei
B classof 	 T class

B tmeet	 T collectionhT typei � T type

B tjoin	 T collectionhT typei � T type

B tproduct	 T listhT typei � T type

T product B compTypes	 T listhT typei

T behavior B name	 T string

B argTypes	 T listhT typei
B resultType	 T type� T type

B semantics	 T object

B associate	 T type� T function� T behavior

B implementation	 T type� T function

B primitiveApply 	 T object� T object

B apply 	 T object� T list� T object

B de�nes	 T collectionhT typei

T function B argTypes	 T listhT typei
B resultType	 T type

B source	 T object

B primitiveExecute	 T object� T object

B execute	 T list� T object

B compile	 T object

B executable	 T object

Table A��	 Behavior signatures of the non�atomic types of the primitive type system�
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Type Signatures

T collection B memberType	 T type

B union	 T collection� T collection

B di� 	 T collection� T collection

B intersect	 T collection� T collection

B collapse	 T collection

B select	 T string� T listhT collectioni � T collection

B project	 T collectionhT behaviori � T collection

B map	 T string� T listhT collectioni � T collection

B product	 T collectionhT collectioni � T collection

B join	 T string� T listhT collectioni � T collection

B genjoin	 T string� T listhT collectioni � T collection

B setEqual	 T collection� T boolean

B containedBy 	 T collection� T boolean

B cardinality 	 T natural

B elementOf 	 T object� T boolean

B insert	 T object� T collection

B delete	 T object� T collection

T bag B occurrences	 T object� T natural

B count	 T natural

Behaviors from T collection re�ned to preserve duplicates

T poset B ordered	 T object� T object� T boolean

B ordering 	 T behavior

Behaviors from T collection re�ned to preserve ordering

T list Behaviors re�ned to preserve duplicates and ordering

T class B deepExtent	 T collection

B new 	 T object

T class�class B new 	 T type� T class

T type�class B new 	 T collectionhT typei � T collectionhT behaviori
� T type

T collection�class B new 	 T type� T collection

T product�class B new 	 T listhT objecti � T object

Table A��	 Behavior signatures of the container types of the primitive type system�
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Type Signatures

T atomic

T boolean B not	 T boolean

B or	 T boolean� T boolean

B if 	 T object� T object� T object

B and	 T boolean� T boolean

B xor	 T boolean� T boolean

T character B ord	 T natural

T string B car	 T character

B cdr	 T string

B concat	 T string� T string

T real B succ	 T real

B pred	 T real

B add	 T real� T real

B subtract	 T real� T real

B multiply 	 T real� T real

B divide	 T real� T real

B trunc	 T integer

B round	 T integer

B lessThan	 T real� T boolean

B lessThanEQ	 T real� T boolean

B greaterThan	 T real� T boolean

B greaterThanEQ	 T real� T boolean

T integer Behaviors from T real re�ned to work on integers

T naturals Behaviors from T integer re�ned to work on naturals

Table A��	 Behavior signatures of the atomic types of the primitive type system�
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Appendix B

Syntax of the TIGUKAT Language

� session �
	 quit

j � statement list � quit

� statement list �
	 � statement �
j � statement � � � statement list �

� statement �

	 � tdl statement �
j � tql statement �

j � tcl statement �

� tdl statement �
	 � type declaration �

j � collection declaration �
j � class declaration �
j � behavior specification �

j � function declaration �
j � association �

� type declaration �

	 create type � new reference �
under � type list �

� behavior list �

� collection declaration �
	 create collection � new reference �

type � type reference �

� with � obejct variable list �

� class declaration �
	 create class � � new reference � � on � type reference �
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� behavior specification �
	 add to � type reference � � behavior list �

j remove from � type reference � behaviors� � behavior name list �

� function declaration �
	 � language � function � function signature �

begin
� function code �

end
j external function � function signature �

� association �
	 associate in � type reference � �� computed list ���� stored list ��

� computed list �
	 � comp elem �

j � computed list � � � comp elem �
� comp get list �

	 � comp get elem �
j � comp get list � � � comp get elem �

� comp get set list �

	 � comp get set elem �
j � comp get set list � � � comp get set elem �

� stored list �
	 � get elem � �� copm get list �� � set elem � �� copm get set list ��
j � get elem � �� copm set list �� � get elem � �� copm get set list ��

� comp get elem �

	 � comp elem �
j � get elem �

� comp set elem �
	 � comp elem �
j � set elem �

� comp get set elem �
	 � comp elem �

j � get elem �
j � set elem �

� comp elem �
	� behavior reference list � with � function reference �

� get elem �
	 � behavior reference list � with GET

� set elem �
	 � behavior reference list � with SET

� association reference �	 � funtion reference �

j GET
j SET
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� function code �
	 � TQL Statement �
j C�� String

� language �

	 TQL
j C��

� new reference �
	 identi�er

� type reference �

	 � term �

� class reference �
	 � term �

� function reference �
	 � term �

� behavior reference �

	 � term �

� collection reference �
	 � term �

j � subquery �

� behavior name �
	 identi�er

� function name �
	 identi�er

� type list �

	 � type reference �
j � type list � � � type reference �

� behavior name list �

	 � behavior name �
j � behavior name list � � � behavior name �

� behavior list �
	 � public list � � private list �

� public list �

	 �) empty )�
j public � signature list �
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� private list �
	 �) empty )�
j private � signature list �

� signature list �

	 � behavior signature �
j � signature list � � � behavior signature �

� behavior signature �

	 � behavior name � � � � type list � � � � � type reference �

� function signature �
	 � function name � � � � formal parameter list � � � � � type reference �

� formal parameter list �	
�� first parameter �� � parameter list �

� first parameter �	
self � � type reference � ���

� parameter list �
	 � parameter �

j � parameter list � � � parameter �

� parameter �	
identy�er � � type reference �

� TQL Statements �
	 � select statement �

j � union statement �
j � minus statement �

j � intersect statement �

� select statement �

select � object variable list �
� into 
 persistent 
 all �� � collection reference � �
from � range variable list �
� where � boolean formula � �

� union statement �

	 � collection reference � union � collection reference �

� minus statement �
	 � collection reference � minus � collection reference �

� intersect statement �
	 � collection reference � intersect � collection reference �
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� object variable list �
	 � object variable �
j � object list � � � object variable �

� object variable �

j � �� cast type � � � � term �
j � index variable �

� term �

	 � variable reference �
j � constant reference �

j � path expression �

� index variable �

	 identi�er 
 � behavior name list � �

� variable reference �
	 identi�er

� constant reference �

	 �identi�er

� path expression �
	 � term � 
 � function expression �

� function expr �
	 � behavior name � � �

j � behavior name � � � term list � �

� term list �
	 � term �

j � term list � � � term �

� variable list �
	 � variable �
j � variable list � � � variable �

� range variable list �
	 � range variable �

j � range variable list � � � range variable �

� range variable �
	 � variable list � in � collection reference � � � �

� boolean formula �

	 � atom �
j not � boolean formula �
j � boolean formula � and � boolean formula �

j � boolean formula � or � boolean formula �
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j � � boolean formula � �
j � exists predicate �
j � forAll predicate �

j � boolean function expression �

� atom �
	 � term � � � term �

j � term list � in � collection reference � � � �

� exists predicate �
	 exists � collection reference �

� forAll predicate �

	 forAll � range variable list � � boolean formula �

� subquery �
	 � � query specification � �

� tcl statement �

	 � open session �
j � save session �

j � close session �
j � make persistent �

j � quit objectbase �
j � assignment �

� open session �

	 open � session reference �

� session reference �

	 � term �

� save session �
	 save �� session reference ��

� close session �

	 close �� session reference ��

� make persistent �
	 persistent � object reference �
j persistent all � collection reference �

� quit objectbase �

	 quit
� assignment �

	 let � right side � be � right side �

� left side �

��



	 � object refernce �

� right side �

	 � TQL Statement �
j � term �
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