Application of a Donor-Acceptor Strategy to Intercept Molecular Main Group Element Precursors en Route to Nanodimensional Materials

by

Anindya K. Swarnakar

A thesis submitted in partial fulfilment of the requirement for the degree of

Doctor of Philosophy

Department of Chemistry University of Alberta

©Anindya K. Swarnakar, 2017

Abstract

The work in this thesis describes the stabilization of reactive and elusive main group entities with the aid of Wittig reagents, transition metal complexes, or Nheterocyclic carbenes (NHCs) as donors. Wittig reagents were employed to stabilize various group 14 element dihydrides (EH_2 ; E = Ge and Sn) within donor-acceptor complexes. Furthermore, traditional hot injection or microwave assisted heating of a GeH₂ donor-acceptor complex yielded surface functionalized Ge nanoparticles. Donor-acceptor complexes of unsaturated mixed group 13/15 hydrides (HB=NH) were also synthesized via Lewis acid-assisted N_2 elimination followed by H⁻ migration from B to N within carbene-bound azidoborane precursors. The reactivity of such HB=NH complexes was studied in detail including attempts to convert these species into bulk BN. Parallel chemistry with Ga was explored in an attempt to prepare a donor-acceptor complex of HGa=NH; however the high reactivity of the Ga-H bonds in the precursor azidogallane complex NHC•GaH₂N₃ did not permit the isolation of such species. In addition, donor-acceptor complexes of chlorooxoborane (ClBO) featuring very short B=O bonds have been synthesized. These species are found to be active reagents for alkane C-F bond activation and functionalization.

Preface

A portion of the work presented in this thesis has been done in collaboration with the other researchers within the Department of Chemistry, University of Alberta. Crystallographic studies for all the compounds presented in this thesis were performed by Dr. R. McDonald and Dr. M. J. Ferguson including mounting of crystals, operation of the diffractometer, refinement of the structures and preparation of the crystallographic data tables. Elemental analyses and mass spectrometric analyses were performed by Analytical Instrument Laboratory and Mass Spectrometry Laboratory at the Department of Chemistry, University of Alberta. The 2 H{ 1 H}, 15 N, 119 Sn NMR spectra were taken with the help of M. Miskolzie and N. Dabral at the NMR Spectrometry Laboratory, University of Alberta.

In Chapter 2: The chemistry of N- and P-donor ligands (4dimethylaminopyridine and tricyclohexylphosphine) toward GeCl₂ center were studied in collaboration with Sean M. McDonald and Kelsey C. Deutsch. The synthesis and characterization of germanium nanoparticles were performed in collaboration with Dr. Tapas K. Purkait and Prof. Jonathan G. C. Veinot at the Department of Chemistry, University of Alberta. Moreover, the photoluminescence lifetime study of the germanium nanoparticles was accomplished in collaboration with Glenda B. De Los Reyes and Prof. Frank A. Hegmann at the Department of Physics, University of Alberta.

In Chapter 4: The computation calculations were performed in collaboration with Dr. Christian Hering-Junghans.

According to the policy of our research group, each chapter of this thesis is essentially self-contained, and prepared in the form of a paper that is intended for publication in peer-reviewed journals.

A portion of this thesis is previously published and the publications are listed below.

Chapter 2:

- Swarnakar, A. K.; McDonald, S. M.; Deutsch, K. C.; Choi, P.; Ferguson, M. J.; McDonald, R.; Rivard, E. *Inorg. Chem.* 2014, 53, 8662.
- Purkait, T. K.; Swarnakar, A. K.; De Los Reyes, G. B.; Hegmann, F. A.; Rivard, E.; Veinot, J. G. C. *Nanoscale* 2015, 7, 2241.

Chapter 3:

Swarnakar, A. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Dalton Trans. 2016, 45, 6071.

Chapter 4:

- Swarnakar, A. K.; Hering-Junghans, C.; Nagata, K.; Ferguson, M. J.; McDonald, R.; Tokitoh, N.; Rivard, E. Angew. Chem. Int. Ed. 2015, 54, 10666.
- Swarnakar, A. K.; Hering-Junghans, C.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Sci. 2017, 8, 2337.

Chapter 5:

Swarnakar, A. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Dalton Trans. 2017, 46, 1406.

Dedicated to my Parents Sri Ananta K. Swarnakar and Smt. Rina Swarnakar

"The world is ready to give up its secrets if we only know how to knock, how to give it the necessary blow. The strength and force of the blow come through concentration." –Swami Vivekananda (1863-1902)

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my supervisor, Prof. Eric Rivard for his continuous support and motivation through out my PhD. He always encouraged me to work independently and creatively by giving me the complete freedom while providing constructive feedback and guidance whenever needed. In addition to this, his constant encouragement and immense patience have played a key role in improving my thinking and writing ability and successful accomplishment of this thesis. Lastly, your advice on both research as well as on my career have been invaluable and I could not have imagined having a better advisor and mentor for my PhD study.

Beside my advisor, I also like to thank my supervisory committee members, Prof. Doug Stephan, Prof. Steven Bergens, Prof. Rylan Lundgren, Prof. Jeffrey Stryker, and Prof. Todd Lowary for their valuable time spent in evaluating my thesis work and providing constructive comments and insightful feedback.

I am also thankful to the fellow Rivard group members (past and present) specially, Gang He, Ibrahim Al-Rafia, Chrissy Braun, Matt Roy, Sarah Parke, Melanie Lui, Christian Hering-Junghans, Mike Boone, Paul Lummis, Emanuel Hupf, Bruno Luppi, Jocelyn Sinclair, Ian Watson, William T. Delgado, Alyona Shynkaruk, Kate Powers, Koichi Nagata, Fatemeh Shahin, Nathan Paisley, Patricia Andreiuk, Devon Schatz, Derek Zomerman, Paul Choi and all other Rivard group members I met during my PhD for the productive discussions and cheerful lab environments. I could have not completed this long journey without the help of Dr. Bob McDonald, Dr. Mike Ferguson, Dr. Wayne Moffat, Jennifer Jones, Mark Miskolzie, Nupur

Dabral, Jing Zheng, Anita Weiler, Ryan Lewis and machine shop of chemistry department (University of Alberta).

I gratefully indebted for the funding I received from ATUMS (CREATE fellowship), Collaborative Research Fund and graduate fellowship of Department of Chemistry, University of Alberta to conduct my PhD research.

Finally, I would like to thank my family and friends for their emotional support. First, I appreciate the love and affection I received from my parents and my brothers (Sudipta Swarnakar and Adwaitya Swarnakar). I am beholden to them for their unfailing support and continuous encouragement throughout my life. I would also like to convey my gratitude to Tapas Purkait and his family for their enormous help and support during my stay in Canada.

Last but not the least, I would like to take an opportunity to express my appreciation to all my friends specially, Supriya Ghosh, Bitan Banerjee, Bijaya Dey, Santa Rabina, Achinta Bera, Koyel Paul, Vivek Gandhi, Subir Goswami, Manas Sajjan, Arpan Dandapat, Subrata Biswas, Sandip Kar, Shrawan Kumar, Urmibhusan Bhakta, Raja Mukherjee, Abhoy Karmakar, Narasimha Thota, Prasnata Das, and all the group members of Amader Chemophore and Amader Rannaghar for the moral support and joyous time spent.

Table of Contents

Chapter 1: Introduction	
1.1 Main Group Element Complexes and Stabilization of Unusual	
Bonding Environments	1
1.1.1 Kinetic Stabilization	1
1.1.2 Electronic Stabilization	2
1.2 Diverse Ligand Choices for Main Group Element Complexation	3
1.2.1 Anionic Carbon-based Donor Ligands	3
1.2.2 Carbenes: Neutral Electron Pair Donors as Ligands	8
1.2.2.1 Electronic Configurations and Stability of Carbenes	8
1.2.2.2 Recent Progress in N-Heterocyclic Carbene (NHC) Chemistry	
within the Main Group	11
1.2.2.3 Recent Progress in Cyclic(alkyl)(amino)carbene (CAAC)	
Chemistry within the Main Group	15
1.2.3 N-Heterocyclic Olefins (NHOs) and Wittig Reagents	18
1.2.3.1 N-Heterocyclic Olefins (NHOs) as Ligands for Main Group	
Centers	18
1.2.3.2 Wittig Reagents as Ligands in the Main Group	20
1.2.4 Electron Rich Transition Metal Complexes as Ligands in the Main	
Group	22
1.3 Stabilization of Low Valent Main Group Complexes by Push-Pull Interactions	25
1.3.1 Donor-Acceptor Stabilization	25
1.3.2 Donor Acceptor Stabilization of Mixed Group 13/15 Element Hydride	

Complexes	26
1.3.3 Donor-Acceptor Stabilization of Heavy Group 14 Element Dihydrides	29
1.4 Germanium Nanoparticles (GeNPs)	31
1.4.1 Properties and Applications	31
1.4.2 Known-Synthetic Strategies for GeNPs	32
1.5 Acknowledgement of Collaborators	34
1.6 References	36

Chapter 2: Application of the Donor-Acceptor Concept to Intercept Group 14 Dihydrides Using a Wittig Reagent and One-Pot Synthesis of Germanium Nanoparticles

2.1 Introduction	48
2.2 Results and Discussions	50
2.3 Conclusions	81
2.4 Experimental Details	82
2.4.1 Materials and Instrumentation	82
2.4.2 X-ray Crystallography	83
2.4.3 Synthetic Procedures	84
2.5 Crystallographic Data	98
2.6 References	103

Valent Group 14 Element Halides	
3.1 Introduction	111
3.2 Results and Discussions	113
3.3 Conclusions	125
3.4 Experimental Details	
3.4.1 Materials and Instrumentation	125
3.4.2 X-ray Crystallography	126
3.4.3 Synthetic Procedures	127
3.5 Crystallographic Data	134
3.6 References	137

Chapter 3: Transition Metal-Mediated Donor-Acceptor Coordination of Low Valent Group 14 Element Halides

Chapter 4: Stabilization of Inorganic Acetylene, HBNH, Using Flanking Coordinative Interactions and Attempts to Isolate Molecular BN

4.1 Introduction	142
4.2 Results and Discussions	
4.3 Conclusions	
4.4 Experimental Details	174
4.4.1 Materials and Instrumentation	174
4.4.2 X-ray Crystallography	175
4.4.3 Synthetic Procedures	175
4.5 Crystallographic Data	192
.6 References	

Heterocyclic Carbenes	
5.1 Introduction	203
5.2 Results and Discussions	204
5.3 Conclusions	212
5.4 Experimental Details	
5.4.1 Materials and Instrumentation	213
5.4.2 X-ray Crystallography	213
5.4.3 Synthetic Procedures	214
5.5 Crystallographic Data	219
5.6 References	

Chapter 5: Azido- and Amido-substituted Gallium Hydrides Supported by N-

Chapter 6: Isolable Oxoborane (RBO) Complexes and their Role in Mediating

C-F Bond Activation

6.1 Introduction	226
5.2 Results and Discussions	
6.3 Conclusions	236
6.4 Experimental Details	236
6.4.1 Materials and Instrumentation	236
6.4.2 X-ray Crystallography	237
6.4.3 Synthetic Procedures	238
6.5 Crystallographic Data	245
6.6 References	

Chapter 7: Summary and Future Work	252
7.1 References	257
Complete Bibliography	258

List of Figures

Figure 1.1.	Kinetic stabilization of heavier group 14 inorganic alkyne	
	analogues $(1, 2 \text{ and } 3)$.	2
Figure 1.2.	Electronic stabilization of reactive main group species: Donor-	
	acceptor stabilization of dimethyl germylene (4) and dimethyl	
	stannylene (5); donor stabilization of elusive B_2 and P_2 units (6)	
	and 7).	3
Figure 1.3.	Cyclopentadienyl (Cp) and pentamethylcyclopentadienyl (Cp*)	
	as ligands for reactive main group complexes.	4
Figure 1.4.	Frequently used terphenyl ligands in molecular main group	
	element chemistry.	5
Figure 1.5.	Stabilization of a group 13 element dimetyllyne (16) and	
	dimetallenes (17-19) with the aid of terphenyl ligands.	6
Figure 1.6.	Tbt and Bbt ligands and stabilization of heavier group 15	
	element multiply bonded species.	6
Figure 1.7.	Stabilization of heavy ketone analogues with the aid of Tbt,	
	Trip and Ditp ligands.	7
Figure 1.8.	Electronic configuration of singlet and triplet carbenes.	9
Figure 1.9.	Electronic stabilization of an N-heterocyclic carbene.	11
Figure 1.10.	Commonly used N-heterocyclic carbene ligands in the main	
	group coordination chemistry.	12
Figure 1.11.	Commonly used CAAC ligands in coordination chemistry.	15

Figure 1.12.	Formation of adducts with electron deficient boron (50) and	
	silicon (51) species.	21
Figure 1.13.	Lewis acidic group 13 element adducts with electron rich	
	transition metal complexes.	23
Figure 1.14.	Lewis acidic group 14 element adducts with electron rich	
	transition metal complexes.	25
Figure 1.15.	Donor-acceptor stabilization of mixed group 13/15 hydride	
	complexes (68-72).	27
Figure 1.16.	Donor-acceptor stabilization of GeH_2 (76) and SnH_2 (77)	
	complexes with IPrCH ₂ .	31
Figure 1.17.	Donor-acceptor stabilization of H2GeGeH2 (78), H2SiGeH2 (79)	
	and H_2SiSnH_2 (80) complexes.	31
Figure 2.1.	Molecular structures of DMAP•GeCl ₂ (1) (left) and $Cy_3P•GeCl_2$	
	(2) (right) with thermal ellipsoids at the 30 % probably level.	51
Figure 2.2.	Molecular structure of $Ph_3PCMe_2(3)$ with thermal ellipsoids at	
	the 30 % probability level.	53
Figure 2.3.	Molecular structure of $Ph_3PCMe_2 \cdot GeCl_2$ (4) with thermal	
	ellipsoids at the 30 % probability level.	55
Figure 2.4.	. Molecular structure of $Ph_3PCMe_2 \bullet GeH_2 \bullet BH_3$ (5) with thermal	
	ellipsoids at the 30 % probability level.	56
Figure 2.5.	EDX spectrum of the insoluble precipitate (germanium metal)	
	formed from the thermolysis of Ph ₃ PCMe ₂ •GeH ₂ •BH ₃ (5).	58

Figure 2.6.	SEM of Ge metal formed from the thermolysis of	
	$Ph_3PCMe_2 \bullet GeH_2 \bullet BH_3$ (5).	58
Figure 2.7.	Molecular structure of $Ph_3PCMe_2 \cdot SnCl_2$ (6) with thermal	
	ellipsoids at the 30 % probability level.	60
Figure 2.8.	Molecular structure of [Ph3PCHMe2][SnCl3] with thermal	
	ellipsoids at the 30 % probability level.	61
Figure 2.9.	Molecular structure of $Ph_3PCMe_2 \cdot BH_3$ (7) with thermal	
	ellipsoids at the 30 % probability level.	62
Figure 2.10.	Molecular structure of $Ph_3PCMe_2 \cdot SnCl_2 \cdot W(CO)_5$ (8) with	
	thermal ellipsoids presented at a 30 % probability level.	64
Figure 2.11.	Molecular structure of $Ph_3PCMe_2 \cdot SnH_2 \cdot W(CO)_5$ (9) with	
	thermal ellipsoids at a 30 % probability level.	67
Figure 2.12.	Molecular structure of $Ph_3PCMe_2 \cdot GeCl_2 \cdot W(CO)_5$ (10) with	
	thermal ellipsoids presented at a 30 % probability level.	69
Figure 2.13.	Representative bright-field TEM and HRTEM images of	
	dodecyl-GeNPs obtained from MI decomposition of 5 at 30 mg	
	/50 mL at 150 °C.	72
Figure 2.14.	Representative TEM evaluation of GeNPs obtained from	
	decomposition of 5 at 30 mg/mL at 190 °C.	73
Figure 2.15.	Representative TEM image of dodecyl-GeNPs obtained from	
	MI decomposition of 5 at 10 mg/ 5mL at 190 °C.	74

Figure 2.16. Representative TEM image of dodecyl-GeNPs obtained from

	MI decomposition of 5 at 20 mg/5 mL at 190 °C.	74
Figure 2.17.	FTIR spectra of GeNPs obtained from decomposition of 5 at 30	
	mg/mL at 190 °C.	75
Figure 2.18.	FTIR spectra of NMe ₂ -GeNPs (Top) and neat 3-	
	dimethylamino-1-propene (Bottom).	76
Figure 2.19.	Survey XP spectra of: (a) Dodecyl-GeNPs prepared by HI (190	
	°C) induced decomposition of 5 at 30 mg/mL, (b) Dodecyl-	
	GeNPs and (c) Me ₂ N-GeNPs synthesized by MI (190 °C)	
	induced decomposition of 5 at 30 mg/ 5 mL.	77
Figure 2.20.	High-resolution XP spectra of the Ge 3d region for GeNPs	
	obtained from decomposition of 5 at 30 mg/ml at 190 °C.	78
Figure 2.21.	Photoluminescent properties of Me ₂ N-GeNPs obtained from MI	
	induced decomposition of 5 at 30 mg/ml at 190 °C.	79
Figure 2.22.	PL quantum yield determination for Me ₂ N-GeNPs.	80
Figure 3.1.	Molecular structure of $[(CO)_5W \cdot GeCl_2(\eta^5 -$	
	$C_{5}H_{4}$]RhH(PMe ₂ Ph) ₂ (1) with thermal ellipsoids presented at a	
	30 % probability level.	114
Figure 3.2.	Molecular structure of CpRh(PMe ₂ Ph) ₂ •SnCl ₂ •W(CO) ₅ (2) with	
	thermal ellipsoids presented at a 30 % probability level.	116
Figure 3.3.	Molecular structure of CpRh(PMe ₂ Ph) ₂ •PbCl ₂ (3) with thermal	
	ellipsoids presented at a 30 % probability level.	117
Figure 3.4.	Molecular structure of $[\eta^5-C_5H_4BAr^F_3]RhH(PMe_2Ph)_2$ (4) with	
	thermal ellipsoids presented at a 30 % probability level.	121

Figure 3.5.	Molecular structure of $ClPt(PCy_3)_2Ge(Cl) \cdot W(CO)_5$ (5) with		
	thermal ellipsoids presented at a 30 % probability level.	123	
Figure 3.6.	Molecular structure of $ClPt(PCy_3)_2Sn(Cl)\bullet W(CO)_5$ (6) with		
	thermal ellipsoids presented at a 30 % probability level.	124	
Figure 4.1.	Molecular structure of [IPr•BH=NH(Me)]OTf (2) with thermal		
	ellipsoids presented at a 30 % probability level.	146	
Figure 4.2.	Molecular structure of $IPr{\scriptstyle \bullet}BH_2N_3{\scriptstyle \bullet}BAr^F_3$ (3) with thermal		
	ellipsoids presented at a 30 % probability level.	148	
Figure 4.3.	Molecular structure of IPr•HB=NH•BAr F_3 (4) with thermal		
	ellipsoids presented at a 30 % probability level.	149	
Figure 4.4.	Kinetic isotope effect (KIE) studies of 3 and 3-d .	151	
Figure 4.5.	¹ H{ ¹¹ B} NMR N– <i>H</i> resonances from a 1:1 mixture (4-N15) of		
	IPr•HB= 15 NH•BAr $^{F}_{3}$ and 4.	153	
Figure 4.6.	Ball-and-stick representation of the optimized structure of 1 and		
	3 with atomic charges.	154	
Figure 4.7.	Ball-stick representation of the optimized structure of 4 with		
	atomic charges and WBI, BD _{theor.} , and BD _{exp} of the respective		
	bonds.	154	
Figure 4.8.	Depiction of selected Kohn-Sham orbitals of		
	IPr•HB=NH•BAr ^F ₃ (4) LUMO and HOMO-7.	155	
Figure 4.9.	Molecular structure of $ImMe_2^{i}Pr_2 \bullet HB = NH \bullet BAr^{F_3}$ (7) with		
	thermal ellipsoids presented at a 30 % probability level.	158	

- Figure 4.10.
 Ball-stick representation of the optimized structure of 7 with atomic charges and *WBI*, BD_{theor.}, and BD_{exp} of the respective bonds.

 158
- Figure 4.11. POV-ray depiction of selected Kohn-Sham orbitals of 7. 159
- Figure 4.12.Molecular structure of $ImMe_2^iPr_2 \cdot H(Cl)B NH_2 \cdot BAr^{F_3}$ (8) with
thermal ellipsoids presented at a 30 % probability level.161
- **Figure 4.13.** Molecular structure of $ImMe_2^{i}Pr_2 \cdot H_2B NH_2 \cdot BAr^{F_3}$ (9) with thermal ellipsoids presented at a 30 % probability level. 162
- Figure 4.14. Ball-stick representation of the optimized structure of 9 along with atomic charges of the atoms and *WBI*, BD_{theor.}, and BD_{exp} of the respective bonds. Ball-stick representation of MeNH₂•BH₃ along with the atomic charges.
- **Figure 4.15.** Molecular structure of $[ImMe_2^{i}Pr_2]_2 \cdot HB NH \cdot BAr^{F_3}$ (10) with thermal ellipsoids presented at a 30 % probability level. 164
- Figure 4.16.
 Ball-stick representation of the optimized structure of 9 along with atomic charges of the atoms and *WBI*, BD_{theor.}, and BD_{exp} of the respective bonds.
 165
- Figure 4.17.Molecular structure of IPr•BHN3(OTf) (11) with thermal
ellipsoids presented at a 30 % probability level.167
- Figure 4.18.Molecular structure of ImMe2iPr2•BHN3(OTf) (12) with
thermal ellipsoids presented at a 30 % probability level.168
- Figure 4.19. IR spectrum of the insoluble part from the reduction of

	$ImMe_2^iPr_2 \bullet BH(OTf)N_3$ (12) with K.	169		
Figure 4.20.	IR spectrum of the insoluble part from the reduction of			
	$ImMe_2^iPr_2 \bullet BH(OTf)N_3$ (12) with KC ₈ .	169		
Figure 4.21.	Selected molecular orbitals of ImMe ₂ •BHN ₃ (OTf).	170		
Figure 4.22.	Molecular structure of $[(ImMe_2^iPr_2)_2 \cdot BHN_3][B\{C_6H_3(m-$	171		
	$CF_{3}_{2}_{4}$] (15) with thermal ellipsoids presented at a 30 %			
	probability level.			
Figure 4.23.	Ball-stick representation of the optimized structure of the model	172		
	compound $[(ImMe_2)_2 \bullet B(H)N_3]^+$ along with atomic charges of			
	the atoms.			
Figure 4.24.	Selected molecular orbitals of $[(ImMe_2)_2 \bullet B(H)N_3]^+$.	173		
Figure 5.1.	Molecular structure of IMes•GaH ₂ N ₃ (1) with thermal ellipsoids			
	presented at a 30 % probability level.	206		
Figure 5.2.	Molecular structure of IMes•GaH(OTf) ₂ (2) with thermal			
	ellipsoids presented at a 30 % probability level.	208		
Figure 5.3.	Molecular structure of IMes•GaH ₂ N(SiMe ₃) ₂ (3) with thermal	210		
	ellipsoids presented at a 30 % probability level.			
Figure 5.4.	Molecular structure of IPr•GaCl ₂ N(SiMe ₂) ₂ (4) with thermal	211		
	ellipsoids presented at a 30 % probability level.			
Figure 5.5.	Molecular structure of IPr•GaCl(OTf)N(SiMe ₂) ₂ (5) with			
	thermal ellipsoids presented at a 30 % probability level.	212		
Figure 6.1.	Molecular structure of IPr•BCl2OSiMe3 (1) with thermal			
	ellipsoids presented at a 30 % probability level.	227		

- Figure 6.2.Molecular structure of $IPr \cdot B(Cl)O \cdot BAr^{F_3}$ (2) with thermal
ellipsoids presented at a 30 % probability level.229
- Figure 6.3.Molecular structure of IPr•B(Cl)O•B(C $_6F_5$) $_3$ (3) with thermal
ellipsoids presented at a 30 % probability level.230
- Figure 6.4. Ball-stick representation of the optimized structure of 1 along with atomic charges of the atoms and *WBI*, BD_{theor}, and BD_{exp} 231 of the respective bonds.
- Figure 6.5.
 Ball- stick representation of the optimized structure of 3 along with atomic charges of the atoms and *WBI*, BD_{theor.}, and BD_{exp} of the respective bonds.
 231
- **Figure 6.6.** Depiction of selected orbitals of IPr•BClO•B(C_6F_5)₃ (3). 232
- Figure 6.7.Molecular structure of $(THF)(Et_2O)Li[IPr•B(Cl)O•B(C_6F_5)_3]$ with thermal ellipsoids presented at a 30 % probability level.233
- Figure 6.8.Molecular structure of [IPr•BCl(OSiMe_3)]AlCl4 (5) with
thermal ellipsoids presented at a 30 % probability level.234
- Figure 6.9.
 Ball-stick representation of the optimized structure of 5 along with atomic charges of the atoms and *WBI*, BD_{theor.}, and BD_{exp} of the respective bonds.
 235
- Figure 7.1.Top: Weight percentage of Ge in Ph_3PCMe_2•GeH_2•BH_3,ⁱPr_3PCMe_2•GeH_2•BH_3 and ImMe_2•GeH_2•BH_3. Bottom: Plannedsynthetic strategy for ImMe_2•GeH_2•BH_3.253

List of Schemes

Scheme 1.1.	Stabilization of a germanone with the aid of Eind ligands.	8
Scheme 1.2.	Synthesis of the stable carbenes 29 and 30 .	10
Scheme 1.3.	Stabilization of group 14 diatomic allotropes (E ₂) with the aid	
	of the <i>N</i> -heterocyclic carbene donor, IPr.	14
Scheme 1.4.	Stabilization of nucleophilic boron (I) centers by CAACs.	16
Scheme 1.5.	Stabilization of diatomic allotropes of group 15 elements, P2	
	(41) and Sb_2 (44) by CAAC ligands (L1).	17
Scheme 1.6.	Resonance forms of an N-heterocyclic olefin (NHO) (top) and	
	coordination of $ImMe_4=CH_2$ to BH_3 and $Mo(CO)_5$ unit	
	(bottom).	18
Scheme 1.7.	General synthetic strategy used to prepare IPr=CH ₂ from IPr.	19
Scheme 1.8.	IPrCH ₂ stabilized cationic boron complexes (47-49).	20
Scheme 1.9.	Conversion of a ketone to an alkene with the aid of a Wittig	
	reagent, and major canonical forms of a Wittig reagent.	21
Scheme 1.10.	Formal oxidative addition of B-X (X = Cl, Br or I) to	
	Pt(PCy ₃) (top), and stabilization of BO triple bonded ligand	
	by a Pt-center (bottom).	24
Scheme 1.11.	Donor-acceptor stabilization of an organogermylene.	26
Scheme 1.12.	Oligomerization or polymerization of H ₂ E-E'H ₂ species.	27
Scheme 1.13.	Lewis acid-assisted N_2 elimination from an azidoborane	
	adduct to form a stable HB=NH complex.	28

Scheme 1.14.	SiH ₂ is an intermediate present during the synthesis of Si-	
	films from SiH ₄ via high temperature CVD methods.	29
Scheme 1.15.	Synthesis of donor-acceptor complexes of GeH ₂ (73), SnH ₂	
	(74) and SiH ₂ (75).	30
Scheme 1.16.	Known synthetic methods for Ge nanoparticles (GeNPs).	33
Scheme 2.1.	Representative resonance forms for Ph ₃ PCR ₂ .	
Scheme 2.2.	Synthesis of DMAP and Cy_3P adducts of $GeCl_2$ (1 and 2) and	
	interaction of these species with excess Li[BH4].	51
Scheme 2.3.	Synthesis of $Ph_3PCMe_2 \cdot SnCl_2$ (6) and its conversion to	
	$Ph_3PCMe_2 \bullet BH_3 (7).$	61
Scheme 2.4.	Synthesis and <i>in-situ</i> functionalization of hydrophilic and	
	hydrophobic GeNPs upon thermal or microwave irradiation-	
	induced decomposition of Ph ₃ PCMe ₂ •GeH ₂ •BH ₃ (5).	71
Scheme 3.1.	Reactivity of compounds 1-3 with K[HB ^s Bu ₃]. The fate of the	
	W(CO) ₅ units and tetrel elements (Ge and Sn) in these	
	reactions is unknown.	118
Scheme 3.2.	Reactivity of 3 with different Lewis acids, leading to C-H	
	bond activation.	120
Scheme 4.1.	Potential route to bulk boron nitride via an HBNH adduct; LA	
	= Lewis acid, LB = Lewis base.	143
Scheme 4.2.	A probable reaction pathway for the synthesis of BN	
	precursor.	144

Scheme 4.3.	Synthesis of 2 starting from 1 and MeOTf. 1		
Scheme 4.4.	Preparation of the azidoborane 3 and its conversion into the		
	iminoborane complex 4 .	147	
Scheme 4.5.	Synthesis of the the deuterium isotopomer		
	$IPr \bullet DB = ND \bullet BAr^{F_{3}} (4-d).$	150	
Scheme 4.6.	Synthesis of the ¹⁵ N-labeled iminoborane adduct		
	$IPr \bullet HB = {}^{15}NH \bullet BAr^{F_3} (4-N15).$	152	
Scheme 4.7.	Synthesis azidoborane adduct ImMe ₂ ⁱ Pr ₂ •BH ₂ N ₃ (6).		
Scheme 4.8.	Synthesis of $ImMe_2^iPr_2 \cdot HB = NH \cdot BAr^F_3$ (7) starting from the		
	azidoborane adduct $ImMe_2^iPr_2 \bullet BH_2N_3$ (6).		
Scheme 4.9.	Divergent reactivity of NHC•BH2N3 adducts with MeOTf,		
	$R''_{3}SiOTf(R'' = Me \text{ or } Ph)$, and $Ph_{3}COTf$.	166	
Scheme 5.1.	Reaction of IMes•GaH ₂ N ₃ (1) with BAr^{F_3} .	206	
Scheme 5.2.	Syntheses of IMes•GaH(OTf) ₂ (2).		
Scheme 6.1.	Reaction of 1 with BAr^{F_3} leading to the formation of		
	IPr•B(Cl)O•BAr F_3 (2) and eventual C-F bond activation.	228	
Scheme 7.1.	Use of Cp* to prevent the C-H activation of Cp ring and		
	stabilization of GeH ₂ complex.	254	
Scheme 7.2.	Postulated synthesis of a molecular BN complex from		
	NHC•BI ₃ .	255	
Scheme 7.3.	Reaction of IPr•BClO•B(C ₆ F ₅) ₃ with Ph ₃ SiOH to trap $[B=O]^+$		
	as boroxine.	256	
Scheme 7.4.	Stabilization of a donor-acceptor complex of HBO.	257	

List of Tables

Table 2.1:	Crystallographic data for 1 and 2.	98
Table 2.2:	Crystallographic data for 3 and 4 .	99
Table 2.3:	Crystallographic data for 5 and 6 .	100
Table 2.4:	Crystallographic data for 7 and 8.	101
Table 2.5:	Crystallographic data for 9 and 10.	102
Table 3.1:	Crystallographic data for 1 and 2.	134
Table 3.2:	Crystallographic data for 3 and 4 .	135
Table 3.3:	Crystallographic data for 5 and 6 .	136
Table 4.1:	Crystallographic data for 2 and 3.	192
Table 4.2:	Crystallographic data for 4 and 7.	193
Table 4.3:	Crystallographic data for 8 and 9.	194
Table 4.4:	Crystallographic data for 10 and 11.	195
Table 4.5:	Crystallographic data for 12 and 15.	196
Table 5.1:	Crystallographic data for 1 and 2.	220
Table 5.2:	Crystallographic data for 3 and 4 .	221
Table 5.3:	Crystallographic data for 5 .	222
Table 6.1:	Crystallographic data for 1 and 2.	245
Table 6.2:	Crystallographic data for 3 and 4 .	246
Table 6.3:	Crystallographic data for 5.	247

List of Symbols and Abbreviations

Å	Angstrom
Ar	Aryl
Ar ^F	3,5-C ₆ H ₃ (CF ₃) ₂
avg.	Average
Bbt	$2,6-\{CH(SiMe_3)_2\}_2-4-\{C(SiMe_3)_3\}C_6H_2$
br	Broad
Bu ₂ O	Dibutyl ether
с.а.	Approximately
CAAC	Cyclic(alkyl)(amino)carbene
C_6D_6	Benzene-d ₆
CDCl ₃	Chloroform-d
Ср	Cyclopentadienyl
Cp*	Pentamethylcyclopentadienyl
COD	1,5-Cyclooctadiene
CD ₂ Cl ₂	Dichloromethane-d ₂
Су	Cyclohexyl
d	Doublet
°C	Degree centigrade
δ	Delta (partial charge or chemical shift)
DFT	Density functional theory
diox	dioxane

Dipp	$2,6-^{i}Pr_{2}C_{6}H_{3}$
Dipt	$2,6-(2-^{i}PrC_{6}H_{4})_{2}C_{6}H_{3}$
dppe	1,2-bis(diphenylphosphino)ethane or Ph ₂ PCH ₂ CH ₂ PPh ₂
EDX	Energy dispersive X-ray analysis
η	Eta (number of atoms of a ligand that coordinate)
Et ₂ O	Diethyl ether
eV	Electron volt
FTIR	Fourier transform infrared spectroscopy
g	Gram
GeNPs	Germanium nanoparticles
НОМО	Highest occupied molecular orbital
Hz	Hertz
IMes	(HCNMes) ₂ C:
IMe ₄	(MeCNMe) ₂ C:
ImMe ₂ ⁱ Pr ₂	(MeCN ⁱ Pr) ₂ C:
IPr	(HCNDipp) ₂ C:
ⁱ Pr	Isopropyl
I ^t Bu	(HCN ^t Bu) ₂ C:
К	Kelvin
Kcal	Kilocalorie
$\lambda_{em.}$	Excitation wavelength
λex.	Emission wavelength
LUMO	Lowest unoccupied molecular orbital

Me	Methyl
Mes	Mesityl or 2,4,6-Me ₃ C ₆ H ₃
mg	Milligram
MHz	Megahertz
mL	Milliliter
mmol	Millimole
Мр	Melting point
μ	Mu
ⁿ Bu	n-Butyl
NBO	Natural bonding orbital
NHC	N-heterocyclic carbene
NHO	N-heterocyclic olefin
$^{n}J_{AB}$	n bond coupling constant between A and B
NMR	Nuclear magnetic resonance
NPA	Natural population analysis
ν	Nu (wave number)
OTf	Trifluoromethanesulfonate or triflate
Ph	Phenyl
PhF	Fluorobenzene
PL	Photoluminescence
ppm	Parts per million
π	Pi
ρ	Rho (density)

S	Singlet
^s Bu	sec-Butyl
SEM	Scanning electron microscopy
σ	Sigma
SIMes	(H ₂ CNMes) ₂ C:
SIPr	(H ₂ CNDipp) ₂ C:
t	Triplet
Tbt	2,4,6-{CH(SiMe ₃) ₂ } ₃ C ₆ H ₂
^t Bu	tert-Butyl
TEM	Transmission electron microscopy
THF	Tetrahydrofuran
Trip	2,4,6- ⁱ Pr ₃ C ₆ H ₂
vide infra	See below
vide supra	See above
VS.	Versus
WBI	Wiberg-bond index
XPS	X-ray photoelectron spectroscopy

Chapter 1: Introduction

1.1 Main Group Element Complexes and Stabilization of Unusual Bonding Environments

The coordination chemistry of p-block elements is fundamentally important due to potential applications in non-precious metal mediated catalysis¹ and for the development of new precursors for semiconducting materials in the electronic industry.² Accordingly, the stabilization of reactive main group species in the form of coordination complexes has gained considerable attention in the last few decades. Interest in this area also stems from the discovery of unprecedented bonding motifs which advance our general knowledge of inorganic chemistry.³

1.1.1 Kinetic Stabilization

The term "kinetic stabilization" is used when a sterically demanding ligand is employed to stabilize a reactive center or unsaturated bonding environment. The steric shield of the bulky ligand (or ligands) prevents the dimerization or oligomerization of such reactive species.⁴ For example, bulky terphenyl ligands were utilized by the Power group to protect inorganic multiple bonds between heavier group 14 elements, such as in the inorganic alkyne analogues Ar'GeGeAr' [Ar' = 2,6-(Dipp)₂C₆H₃; Dipp = 2,6-ⁱPr₂C₆H₃] (1), Ar'SnSnAr' (2) and Ar''PbPbAr'' [Ar'' = 2,6-(Trip)₂C₆H₃; Trip = 2,4,6-ⁱPr₃C₆H₂] (3).⁵ Here the steric bulk of the organic ligands prevents the association of such reactive species to form oligomers or polymers (Figure 1.1).

Figure 1.1. Kinetic stabilization of heavier group 14 inorganic alkyne analogues (1, 2 and 3).

1.1.2 Electronic Stabilization

On the other hand, the term "electronic stabilization" is applied when a vacant orbital or a lone pair of a reactive species is stabilized by employing a suitable electron pair donor (Lewis base) or an electron pair acceptor (Lewis acid). For example, the divalent forms of group 14 elements (:EMe₂; E = Ge or Sn) are often unstable in the free state due to the presence of a highly reactive vacant p orbital in combination with an adjacent lone pair.^{3e} However, by introducing a Lewis acid such as (Fe(CO)₄) along with a Lewis base (THF) both :GeMe₂ and :SnMe₂ can be isolated under ambient conditions as the donor-acceptor complexes, **4** and **5** (Figure 1.2).⁶ Furthermore, electronic stabilization of highly elusive B=B (**6**) and P-P (**7**) units was also possible with the aid of an *N*-heterocyclic carbene, IPr [IPr = (HCNDipp)₂C: (Dipp = 2,6-ⁱPr₂C₆H₃)], as an electron donating ligand (Figure 1.2).⁷

Figure 1.2. Electronic stabilization of reactive main group species: Donor-acceptor stabilization of dimethyl germylene (4) and dimethyl stannylene (5); donor stabilization of elusive B_2 and P_2 units (6 and 7).

1.2 Diverse Ligand Choices for Main Group Element Complexation

The ability to control the reactivity of a metal center within a coordination complex by changing the steric bulk and donor/acceptor properties of a ligand is a central aspect of inorganic chemistry.⁸ Moreover, this concept is key to the development of active catalysts. While traditionally N- and P-based ligands have formed the basis of coordination chemistry (*i.e.* amines or phosphines), new donors based on anionic carbon-based ligands, neutral electron donating carbenes, nucleophilic exocyclic olefins and electron rich transition metal complexes are now emerging.^{4a,9}

1.2.1 Anionic Carbon-based Donor Ligands

Cyclopentadienyl (Cp) and pentamethylcyclopentadienyl (Cp*) ligands are wellknown as 6-electron donors and their metal complexes are referred to as "metallocenes".¹⁰ Moreover Cp and Cp* have been used to generate isolable low valent group 14 element complexes as demonstrated by the preparation of Cp*₂Si (**8**) and Cp₂Pb (**9**) (Figure 1.3).^{11*a,b*} Cp₂Pb adopts an extended structure in the solid state due to the large size and low electronegativity of Pb,^{11*a*} whereas the tin analogue Cp₂Sn: exists as a monomer in the solid state.^{11*c*} Recently, Mo-Ge and W-Ge multiply bonded complexes were stabilized by Filippou and co-workers with the aid of Cp* as a co-ligand leading to the formation of Cl(dppe)₂Mo=Ge-Cp* (**10**) and $Cl(dppe)_2W=Ge-Cp*$ (**11**) (dppe = Ph₂PCH₂CH₂PPh₂) (Figure 1.3); in both compounds **10** and **11**, the Cp* ligand binds to the Ge center in an η^1 -fashion.¹² Metallocenes of cationic group 13 and group 15 elements are also reported, and examples include [Cp*₂B]B(C₆F₅)₄ (**12**), [Cp*₂Al][Cp*AlCl₃] (**13**), [Cp*₂As]AlCl₄ (**14**), and [Cp*₂Sb]AlCl₄(**15**).^{13,14}

Figure 1.3. Cyclopentadienyl (Cp) and pentamethylcyclopentadienyl (Cp*) as ligands for reactive main group complexes.

Another well-known class of anionic carbon based ligands are terphenyl donors of the general form: 2,6-Aryl₂C₆H₃ (Ar', Ar'' and Ar*; Ar* = 2,6-(Mes)₂C₆H₃; Mes = 2,4,6-Me₃C₆H₂) (Figure 1.4).¹⁵ Due to the perpendicular orientation of the neighboring aryl groups about the central ring, a concave steric pocket is generated about the ligated atom. As a result, these ligands are highly efficacious in protecting the coordinated reactive unit from associative decomposition processes.

Figure 1.4. Frequently used terphenyl ligands in molecular main group element chemistry.

With the aid of the terphenyl ligand, Ar", Robinson and co-workers successfully isolated the dianionic salt of the formally Ga-Ga multiply bonded species, Na₂[Ar"GaGaAr"] (**16**) (Figure 1.5).¹⁶ Due to the presence of a somewhat short Ga-Ga bond distance (2.319(3) Å) in **16** relative to standard Ga-Ga single bonds, the Ga-Ga linkage in **16** was originally considered to be a triple bond;¹⁷ however, the Ga-Ga-C angles (125.9(2) and 134.0(2)°) indicated the presence of considerable lone pair character on each Ga center. Later Nagase and Takagi concluded that the central part of the molecule is best regarded as a Na₂Ga₂ cluster with significant covalent character.¹⁸

A few years later, the Power group reported the isolation of neutral dimetallenes of gallium (17) and other heavier group 13 elements (In and Tl) (18 and 19) supported by the terphenyl ligand Ar' (Figure 1.5).¹⁹ As discussed earlier, Power and co-workers prepared a homologous group 14 element dimetallyne series ArEEAr (E = Ge, Sn and Pb; Ar = terphenyl ligand) (Figure 1.1).⁵

Figure 1.5. Stabilization of a group 13 element dimetyllyne (16) and dimetallenes (17-19) with the aid of terphenyl ligands.

The related sterically hindered anionic carbon-based ligands are Tbt (Tbt = $2,4,6-{CH(SiMe_3)_2}_3C_6H_2$) and Bbt (Bbt = $2,6-{CH(SiMe_3)_2}_2-4-{C(SiMe_3)_3}C_6H_2$) were initially reported by Okazaki, Tokitoh and co-workers (Figure 1.6).^{20,21} With the aid of the bulky Tbt and Bbt substituents, Tokitoh reported their seminal work on stabilizing of the heavier group 15 multiply bonded species, Bbt-Sb=Sb-Bbt (**20**) and Tbt-Bi=Bi-Tbt (**21**) (Figure 1.6).²²

Figure 1.6. Tbt and Bbt ligands and stabilization of heavier group 15 element multiply bonded species.

Apart from preparing homonuclear inorganic multiple bonds, Tbt and Bbt were also employed as ligands for the isolation of reactive mixed group 14/16 element multiple bonds (such as Si=Ch, Ge=Ch or Sn=S; Ch = S and Se), and the

resulting compounds were termed as "heavy ketones".^{23,24} Due to the high polarizability and reduced mutual p orbital (π) overlap in relation to C=O linkages, compounds containing these reactive E=Ch bonds are prone toward oligomerization or polymerization when less hindered ligands are present. Later, Goto and co-workers successfully isolated (Tbt)(Trip)Si=S (23) (Trip = $2,4,6-iPr_3C_6H_2$ via dechalcogenation of a tetrathiosilolane (22) (Figure 1.7).²⁵ Following a similar dechalcogenation methodology (Tbt)(Trip)Ge=S (24) and (Tbt)(Trip)Ge=Se (25) were also successfully synthesized by the Tokitoh group (Figure 1.7).²⁶ However, the combined steric bulk of the Tbt and Trip substituents was insufficient to stabilize Sn=S or Sn=Se bonds, and only dimerization products $[(Tbt)(Trip)Sn(Ch)]_2$ (Ch = S and Se) were obtained.^{26c} Later, the use of a terphenyl ligand (Ditp; Ditp = 2,6-(2- 1 PrC₆H₄)₂C₆H₃) in concert with Tbt led to the formation of (Tbt)(Ditp)Sn=S (26) and (Tbt)(Ditp)Sn=Se (27) as stable crystalline solid (Figure 1.7).²⁷

Figure 1.7. Stabilization of heavy ketone analogues with the aid of Tbt, Trip and Ditp ligands

More recently Tamao and co-workers introduced the bulky anionic Eind (Eind = 1,1,3,3,5,5,7,7-octaethyl-s-hydrindacen-4-yl) ligand to the community, and used this symmetric ligand to stabilize the first germanone (Eind)₂Ge=O (**28**) containing a Ge=O double bond as the key structural feature (Scheme 1.1).²⁸ The molecular structure of compound **28** displayed a planar tricoordinated Ge center with a Ge=O bond distance of 1.6468(5) Å, which is 6% shorter than typical Ge(IV)-O single bonds (1.76 Å).²⁹

Scheme 1.1. Stabilization of a germanone with the aid of Eind ligands.

1.2.2 Carbenes: Neutral Electron Pair Donors as Ligands

1.2.2.1 Electronic Configurations and Stability of Carbenes

Carbenes are a class of neutral compounds containing a divalent carbon atom with formally six electrons in its valence shell. Due to the presence of an incomplete octet and coordinative unsaturation, they are generally highly unstable species in the free state. The carbene carbon is linked to the two adjacent groups by covalent bonds and the remaining two non-bonding electrons can either adopt parallel spins (triplet state) or anti-parallel spins (singlet state). A schematic representing possible ground state singlet and triplet states of a carbene species is shown in Figure 1.8.

Figure 1.8. Electronic configuration of singlet and triplet carbenes.

A substituent or adjacent atom (R) with an energetically and geometrically available electron pair can stabilize the singlet state of a carbene by delocalizing electron density into the empty p orbital of the carbene carbon. If the energy of the singlet state is sufficiently reduced by such delocalization, then it will be stable and isolable entity. The isolation of an uncoordinated carbene remained elusive until the late 1980s. In 1988 Bertrand and co-workers reported the first isolable carbene **29**, stabilized by adjacent phosphorus- and silicon-based substituents (Scheme 1.2).³⁰ Compound **29** was synthesized as a red oil from the reaction of Li[Me₃SiCN₂] with ClP(NⁱPr₂)₂. In compound **29**, the lone pair of the carbene carbon strongly interacts with the neighboring Si substituent; as a result, **29** was found to be a very weak sigma donor. Three years later, Arduengo *et al.* reported the synthesis of the thermally stable carbene, 1,3-diadamantylimidazol-2-ylidene (or IAd (**30**)) as a white crystalline solid; the synthesis of **30** was accomplished by deprotonation of an imidazolium chloride with the strong base NaH (Scheme 1.2).³¹

Scheme 1.2. Synthesis of the stable carbene 29 and 30.

Compound **30** is considered to be the first stable cyclic diamino carbene, termed hereafter as an *N*-heterocyclic carbene (NHC). This was the major breakthrough in the field of carbene chemistry and provided inspiration for later experimental and theoretical studies involving the use of NHCs to stabilize reactive main group species. In compound **30** the bulky adamantyl groups attached to the nitrogen atoms help kinetically stabilize the carbene carbon and prevent it from dimerization to the corresponding alkene. *N*-heterocyclic carbenes also exhibit a singlet ground state and the electronic stabilization from the adjacent N atoms is a key factor. The highest occupied molecular orbital (HOMO) can be best described as the sp² hybridized lone pair and lowest unoccupied molecular orbital (LUMO) of the carbene carbon has considerable the $\pi^*(N-C)$ character with a large contribution from C (Figure 1.9). The σ -withdrawing and π -donating characters of the adjacent N atoms stabilize the structure by inductively withdrawing electron density from the HOMO and delocalizing the electron density into carbon-based p orbital. Also the cyclic form of the NHC leads to a bent N-C-N angle at the carbone carbon (Figure 1.9). This method of carbone stabilization works for almost all classes of NHCs.

Figure 1.9. Electronic stabilization of an *N*-heterocyclic carbene.

1.2.2.2 Recent Progress in *N*-Heterocyclic Carbene (NHC) Chemistry within the Main Group

The deprotonation of an imidazolium ion or reductive processes, such as reduction of thiourea analogues with sodium or potassium, leads to the formation of a wide range of *N*-heterocyclic carbene donors (Figure 1.10). IPr, SIPr (SIPr = (H₂CNDipp)₂C:), IMes (IMes = [(HCNMes)₂C:]; Mes = 2,4,6-Me₃C₆H₂) or SIMes (SIPr = (H₂CNMes)₂C:) are the most commonly used NHCs to stabilize the low valent main group complexes and their structures are summarized in Figure 1.10. Due to the presence of large Dipp or Mes groups, they impart stability and solubility to the target main group element complexes. Other frequently used NHCs are I^tBu (I^tBu = (HCN^tBu)₂C:), ImMe₂ⁱPr₂ (ImMe₂ⁱPr₂ = (MeCNⁱPr)₂C:), and IMe₄ (IMe₄ = (MeCNMe)₂C:) (Figure 1.10).³²

Figure 1.10. Commonly used *N*-heterocyclic carbene ligands used in the main group coordination chemistry.

The use of NHCs to stabilize heavier main group element multiple bonds has gone through a tremendous period of growth over the last two decades. In 2007, the first example of an NHC-stabilized B=B bond IPr•HB=BH•IPr (**31**) was reported by the group of Robinson.³³ This species was prepared by reacting IPr•BBr₃ with excess equivalents of potassium graphite (KC₈) which produced a mixture of IPr•HB=BH•IPr (**31**) and IPr•H₂B-BH₂•IPr (**32**) (Scheme 1.3); the source of the hydrogen atoms is thought to be hydrogen abstraction from the Et₂O solvent. Later, Braunschweig and co-workers isolated IPr•(Br)B=B(Br)•IPr (**33**) via the reduction of a bis carbene adduct of tetrabromodiborane, IPr•Br₂B-BBr₂•IPr, with two equivalents of sodium naphthalenide (Scheme 1.3). By increasing the ratio of reducing agent to four equivalents, they were able to isolate an IPr-supported B=B triple bond in the form of the green complex, IPr•B=B•IPr (**6**); this was the first isolable molecule containing a B=B triple bond (Figure 1.2 and Scheme 1.3).^{7*a*} The first example of an NHC-stabilized E₂ unit (E = group 14 elements) came from the laboratory of Robinson, where an IPr adduct of SiCl₄ (IPr•SiCl₄) was reduced with four equivalents of KC₈ to form IPr•Si=Si•IPr (**34**) in low yield, with the simultaneous formation of the ClSiSiCl adduct IPr•(Cl)Si-Si(Cl)•IPr (**35**) as an isolable by-product (Scheme 1.3).^{34*a*} Later, Jones and co-workers successfully isolated Ge₂ and Sn₂ units supported by IPr specially the reaction of IPr•ECl₂ (E = Ge or Sn) with their nacnac Mg(I) dimer ({Mg{[N(Mes)CMe]₂CH}}₂) as a reducing agent led to the formation of IPr•Ge=Ge•IPr (**36**) and IPr•Sn=Sn•IPr (**37**), respectively (Scheme 1.3).^{34*b,c*} Compounds **34**, **36** and **37** can be best described as NHC adducts of doubly bonded :E=E: (E = Si, Ge and Sn) fragments. Moreover, the ^{IPr}C-E=E bond angles in compounds **34**, **36** and **37** are all close to 90° and represent trans-bent geometries in terms of the interaction between the carbon donor in IPr and the central E₂ fragments.

Scheme 1.3. Stabilization of group 14 diatomic allotropes (E_2) with the aid of an *N*-heterocyclic carbene donor, IPr.

1.2.2.3 Recent Progress in Cyclic(alkyl)(amino)carbene (CAAC) Chemistry within the Main Group

Recently cyclic(alkyl)(amino)carbenes (CAACs) have attracted considerable attention as competent donors within inorganic coordination chemistry. CAACs are the mono amino versions of NHCs and were first prepared by the Bertrand group.³⁵ Since only one adjacent N atom is present, the empty p orbital of the carbene carbon in CAACs is electronically less stabilized and this makes CAACs more electrophilic compared to most NHCs.³⁶ As a consequence of their better π -accepting properties, CAACs are efficacious ligands for the stabilization of electron rich main group element fragments. The structures of commonly used CAAC ligands (L1, L2, L3 and L4) are shown in Figure 1.11.

Figure 1.11. Commonly used CAAC ligands in coordination chemistry.

By taking advantage of the enhanced π -accepting character of CAACs, Bertrand and co-workers stabilized the nucleophilic borylene fragment (H-B:) as (L1)₂B-H (**38**) (Scheme 1.4).³⁷ Compound **38** was prepared by the reduction of L1•BBr₃ with five equivalents of KC₈. To confirm the presence of a lone pair on the central boron atom, a reaction of **38** with triflic acid was also performed which gave the expected [BH₂]⁺ unit supported by two CAAC ligands (Scheme 1.4). Furthermore, utilizing the π -accepting property of the CAAC (L1) in combination with the π -accepting nature of the CN groups, Bertrand and co-workers reported the deprotonation of L1•B(CN)₂H (**39**) to form a boryl anion, L1•B(CN)₂⁻ (**40**) as its potassium salt (Scheme 1.4).³⁸ Hydrogen atoms attached to the electropositive boron centers are generally hydridic in character ($B^{\delta+}-H^{\delta-}$); however in the presence of π -accepting ligands (*e. g.* CAAC and CN) the B-H residue in **39** becomes acidic. As a result, compound **39** readily undergoes deprotonation in the presence of the strong base, potassium bis(trimethylsilyl)amide (KHMDS) (Scheme 1.4).

Scheme 1.4. Stabilization of nucleophilic boron (I) centers by CAAC ligands.

CAACs were also employed to stabilize diatomic allotropes of heavier group 15 elements.³⁹ For example, the reaction of L1 with white phosphorous (P₄) enabled the isolation of a P₂ unit supported by two CAAC ligands as L1•P-P•L1 (**41**) (Scheme 1.5).^{39a} The ³¹P{¹H} NMR spectrum of compound **41** displays a resonance at +59.4 ppm and it is largely downfield-shifted compared to that in Robinson's IPr•P-P•IPr (7) (-52.4 ppm);^{7b} this suggests a more electron deficient P₂ unit in compound **41** and is commensurate with the stronger π -accepting nature of CAAC ligands compared to most NHCs. Moreover, L1 was found to be an effective ligand for the stabilization of

four different oxidation states (III, II, I or 0) of Sb, as shown by the compound series: L1•SbCl₃ [Sb(III)], L1•SbCl₂ [Sb(II)] (**42**), L1•SbCl [Sb(I)] (**43**), and L1•Sb-Sb•L1 [Sb(0)] (**44**) (Scheme 1.5).^{39b,c}

44 [Sb(0)]

Scheme 1.5. Stabilization of diatomic allotropes of group 15 elements, P_2 (41) and Sb₂ (44) by CAAC ligands (L1).

1.2.3 N-Heterocyclic Olefins (NHOs) and Wittig Reagents

1.2.3.1 N-Heterocyclic Olefins (NHOs) as Ligands for Main Group Centers

In contrast to NHCs and CAACs, *N*-heterocyclic olefins (NHOs) are relatively unexplored carbon-based ligands within the context of supporting transition metalmediated catalysis and to intercept reactive main group species. A common structural motif within an NHO involves placement of a terminal CH₂ unit on an NHC fragment to yield NHC=CH₂ species. As shown in Scheme 1.6, the resonance forms of an NHO are in line with the highly polarized nature of the exocyclic C=C double bond and the nucleophilic character of the terminal ligating carbon atom.

ImMe₄CH₂ was the first *N*-heterocyclic olefin (NHO) ligand reported, and was prepared in the early 1990s by Kuhn and co-workers.⁴⁰ The terminal carbon of the exocyclic double bond in ImMe₄CH₂ was found to be sufficiently electron rich to coordinate to transition metal and main group Lewis acidic entities, such as Mo(CO)₅ or BH₃ (Scheme 1.6).

Scheme 1.6. Resonance forms of an *N*-heterocyclic olefin (NHO) (top) and coordination of $ImMe_4$ =CH₂ to BH₃ and Mo(CO)₅ unit (bottom).

IPr=CH₂ is the most commonly used NHO, initially synthesized by the methylation of IPr followed by the deprotonation of methyl group (Scheme 1.7).⁴¹

Scheme 1.7. General synthetic strategy used to prepare IPr=CH₂ from IPr.

The Rivard group extensively studied the ligating property of IPr=CH₂ toward various reactive main group element complexes; examples include the isolation of low valent group 14 dihydrides (see section 1.3.3), reduced PN heterocycles and $(GeCl_2)_x$ chains.^{41a,42}

IPr=CH₂ has also been employed as a ligand for the stabilization of various cationic boron or gallium species.43 For example Robinson and co-workers reported the activation of THF IPrCH₂•BBr₃ and the formation of by [IPrCH₂•B(OC₄H₈Br)₂]Br (47), a cationic boron derivative stabilized by IPr=CH₂ (Scheme 1.8).^{41c} Furthermore, Chiu et al. employed IPr=CH₂ as a ligand to stabilize mono and dicationic boron derivatives, as exemplified by the synthesis of $[IPrCH_2 \bullet BClCp^*]AlCl_4$ (48) and $[IPrCH_2 \bullet BCp^*](AlCl_4)_2$ (49) $(Cp^* = \eta^5 - C_5Me_5)$ (Scheme 1.8).^{43a}

Scheme 1.8. IPrCH₂ stabilized cationic boron complexes (47-49).

1.2.3.2 Wittig Reagents as Ligands in the Main Group

A surprisingly ignored ligand class in the chemical community are nucleophilic (ylidic) Wittig reagents of the general form $R_3PCR'_2$. Wittig reagents are often used in organic synthesis for the conversion of ketones to alkenes (Scheme 1.9).⁴⁴ Wittig reagents of the general form $R_3P=CR'_2$ (R = Me or Ph; R' = H or Me) are usually synthesized via deprotonation of their corresponding phosphonium salts, $[R_3PCHR'_2]X$ (X = Cl, Br or I) with a strong base, such as ⁿBuLi. Due to the highly polarized nature of the formal P=C double bond, a significant amount of negative charge is positioned on the terminal carbon atom in a Wittig reagent, leading to the observed nucleophilic character (Scheme 1.9).

Scheme 1.9. Conversion of a ketone to an alkene with the aid of a Wittig reagent and major canonical forms of a Wittig reagent.

Wittig reagents are to some extent known as ligands for transition metals and actinides;⁴⁵ however, the coordination chemistry of these ylides within the main group is almost unknown.⁴⁶ In 1958 Hawthrone first reported the Lewis acid-base adduct Ph₃PCH₂•BH₃ (**50**), synthesized from the reaction of Ph₃P=CH₂ with diborane (B₂H₆) (Figure 1.12).⁴⁷ Another example of a Wittig reagent-main group element adduct was reported by Beletskaya and co-workers; they observed the coordination chemistry of Me₃PCH₂ to a silicon center to give the silafulvene complex **51** (Figure 1.12).⁴⁸

Figure 1.12. Formation of adducts with electron deficient boron (50) and silicon (51) species.

As discussed in chapter 2 of this thesis, a Wittig reagent ($Ph_3P=CMe_2$) was introduced to isolate elusive low valent group 14 element dihydrides, (:EH₂; E = Ge and Sn) in combination with a suitable Lewis acidic molecular group (such as metal carbonyls). This work can be considered as the most recent contribution of a Wittig reagent as a donor in main group element chemistry.⁴⁹ Given the ease at which Wittig reagents are prepared (often made in undergraduate teaching labs), it is hoped that such donors will become more prominent in coordination chemistry.

1.2.4 Electron Rich Transition Metal Complexes as Ligands in the Main Group

In addition to the donor systems mentioned already, one can also use the electron rich character of some late transition metal centers to bind/stabilize electron deficient species. In 1964, Nowell and Russell reported the structure of $(\eta^5 - C_5H_5)(CO)_2Co \cdot HgCl_2$; the first structural evidence of a dative Lewis acid-base interaction between two metal centers.⁵⁰ Thus far, various late transition metal Lewis bases containing Ir, Pt and Rh have been developed.⁵¹ The most common Lewis base metal complexes that have coordinated to main group centers are Pt(PCy₃)₂, Pt(NHC)₂, Cp(CO)₂Rh, Cp(R₃P)₂Rh (R = Me or Et), Cp(Ph₃P)(CO)Rh and Cp*(CO)₂Ir (Cp* = η^5 -C₅Me₅) (Figure 1.13).⁵²

Electron deficient group 13 element complexes with late transition metal ligands are currently being extensively explored. For example, Braunschweig and coworkers reported a series of aluminium trichloride adducts of a Pt(0) based ligand: [(I^tBu)(Cy₃P)Pt•AlCl₃] (52), [(SIMes)(Cy₃P)Pt•AlCl₃] (53), [(SIMes)₂Pt•AlCl₃] (54), [(Cy₃P)₂Pt•AlCl₃] (55) (Figure 1.13).⁵³ Apart from Pt, other late transition metal centers (such as Rh, Ir and Fe) are also sufficiently electron rich to coordinate to group 13 Lewis acids, forming $[Cp(Me_3P)_2Rh \cdot AlMe_3]$ (56), $[Et_4N][Cp(OC)_2Fe \cdot AlPh_3]$ (57), $[Cp^*(Me_3P)(H)_2Ir \cdot AlPh_3]$ (58),

$Cp*(Cp*Ga)_2Rh•GaCl_3$] (59), and $[Cp*Fe(C_7H_8)][Cp*(OC)_2Fe•InCl_3]$ (60) (Figure 1.13).^{54,55}

Figure 1.13. Lewis acidic group 13 element adducts with electron rich transition metal complexes.

In some instances, E-X bond activation processes result after the initial formation of a metal Lewis base adduct with main group element (E) species.⁵⁶ As a salient example of this transformation, $Pt(PCy_3)_2$ reacts with BX₃ (X = Cl, Br or I) to form the oxidative addition products, **61a**, **61b** and **61c** respectively (Scheme 1.10).^{56a,b,c}

Recently, Braunschweig and co-workers used a similar transformation to gain entry to their landmark complex (Br)(Cy₃P)₂Pt-BO (62) featuring a terminal B-O triple bond (Scheme 1.10). Specifically, compound **62** was synthesized via oxidative addition of $Br_2BOSiMe_3$ to $Pt(PCy_3)_2$, followed by $BrSiMe_3$ elimination.⁵⁷ This is the first, and thus far only, example of a BO triple bonded species in molecular form, and thus a major breakthrough in borane chemistry.

Scheme 1.10. Formal oxidative addition of B-X (X = Cl, Br or I) to Pt(PCy₃) (top), and stabilization of BO triple bonded ligand by a Pt-center (bottom).

In contrast to group 13 elements, fewer examples of metalloligand-element complexes with group 14 elements are known. The groups of Marder and Roulet reported the following SnCl₂ bridged complexes of electron rich transition metals: $[{(Me_3P)_3ClRh}_2(\mu-SnCl_2)]$ (63) and $[{(Cy_3P)(CO)(I)Pt}_2(\mu-SnCl_2)]$ (64) (Figure 1.14).⁵⁸ Moreover, Braunschweig, Jones and co-workers isolated coordination complexes of the low valent group 14 element halides $(Cy_3P)_2Pt$ •ECl₂ (E = Ge, Sn and Pb) (65, 66 or 67) with the aid of Pt(PCy_3)₂ as an electron pair donor (Figure 1.14).⁵⁹

Figure 1.14. Lewis acidic group 14 element adducts with electron rich transition metal complexes.

In the chapter 3 of this thesis, the Lewis acidic behavior of $ECl_2 \cdot W(CO)_5$ (E = Ge and Sn) units and PbCl₂ toward a cyclopentadienyl rhodium-based complex, CpRh(PMe₂Ph)₂ was explored.⁶⁰ In addition, the oxidative addition of Ge-Cl and Sn-Cl bonds within $ECl_2 \cdot W(CO)_5$ unit (E = Ge and Sn) at Pt(PCy₃)₂ is also discussed. The ultimate goal of this work would be to generate binary M_xE_y species by thermal extrusion/elimination of the peripheral $W(CO)_5$ and PCy₃ substituents.

1.3 Stabilization of Low Valent Main Group Complexes by Push-Pull Interactions

1.3.1 Donor-Acceptor Stabilization

A molecular entity with a very small HOMO-LUMO energy gap is often susceptible to self oligomerization or polymerization. However, in the presence of suitable Lewis base (LB) and Lewis acid (LA) capping units one can isolate of such reactive species as a stable molecular complex. Specially, the Lewis base donates an electron pair into the low lying LUMO of the reactive entity, while the Lewis acid concurrently accepts electron density from the HOMO of the reactive unit. This LA/LB combination can shut down possible oligomerization/decomposition processes allowing various unsaturated synthons to be isolable under ambient conditions (Scheme 1.11). The Marks group was the first to apply this strategy to isolate organogermylene and stannylene derivatives with the aid of a Lewis base (THF) and the strong Lewis acid $Fe(CO)_{4.}^{6}$ Here, THF donates electrons into the vacant p orbital of the Ge(II) or Sn(II) centers (in Me₂Ge or Me₂Sn), whereas the lone pair of the low valent group 14 species interacts with the Lewis acidic $Fe(CO)_{4}$ unit to form the donor-acceptor complexes, THF•EMe₂•Fe(CO)₄ (E = Ge and Sn; 4 and 5) (Figure 1.2 and Scheme 1.11).

Scheme 1.11. Donor-acceptor stabilization of an organogermylene.

1.3.2 Donor Acceptor Stabilization of Mixed Group 13/15 Element Hydride Complexes

The Scheer group employed donor-acceptor protocol to intercept and stabilize the novel mixed group 13/15 element hydrides, $H_2E-E'H_2$ (E = B, Al or Ga; E' = N, P or As).⁶¹ Such mixed hydride complexes could play an important intermediate role in the production of semiconducting materials (such as in the synthesis of GaN),⁶² and are promising as hydrogen storage materials and as precursors to inorganic polymers.^{61h} Due to the presence of low-lying LUMO and highly active electron pair (HOMO) within in the same molecule (*i.e.* dual Lewis acid-base character), H₂E-

 $E'H_2$ species are prone to oligomerization or polymerization; and are thus unstable in the free state under ambient conditions (Scheme 1.12).

Scheme 1.12. Oligomerization or polymerization of H₂E-E'H₂ species.

In 2001, Scheer and co-workers first isolated mixed hydrides complexes of parent H₂Al-PH₂ and H₂Ga-PH₂ with the aid of Lewis basic Me₃N and Lewis acidic W(CO)₅, as capping groups, as demonstrated by the synthesis of Me₃N•H₂Al-PH₂•W(CO)₅ (**68**) and Me₃N•H₂Ga-PH₂•W(CO)₅ (**69**) (Figure 1.15).^{61*a*} Here, Me₃N stabilizes the empty p orbitals on Al or Ga via electron donation, whereas the Lewis acidic W(CO)₅ group interacts with the lone pair on phosphorus. Two years later, a similar LA/LB combination was used to form complexes Me₃N•H₂B-PH₂•W(CO)₅ (**70**) and Me₃N•H₂B-AsH₂•W(CO)₅ (**71**) (Figure 1.15).⁶¹ The Rivard group also contributed to this field by employing various LA/LB combinations to stabilize the parent amine-borane, H₂B-NH₂ within formal donor-acceptor complexes, such as IPr•H₂B-NH₂•BH₃ (**72**) (Figure 1.15).⁶³

Figure 1.15. Donor-acceptor stabilization of mixed group 13/15 hydride complexes (**68-72**).

Despite these important studies, the lightest unsaturated version of a parent mixed group 13/15 hydride, HBNH, remained elusive and was only identifiable in cryogenic matrices or as a fleeting species in the gas phase.^{64,65} HBNH is likely a key intermediate in the laser-induced preparation of nanodimensional boron nitride (BN) from H₃N•BH₃ dehydrogenation;⁶⁶ boron nitride is of great value to the materials community due to its insulating properties and ability to withstand harsh external conditions.⁶⁷ As discussed in chapter 4, the Lewis acid (LA) assisted elimination of N₂ followed by H migration from B to N of LB•BH₂N₃ produced a donor-acceptor complex of HBNH in the form of LB•HB=NH•LA (Scheme 1.13).⁶⁸

Scheme 1.13. Lewis acid-assisted N₂ elimination from an azidoborane adduct to form a stable HB=NH complex.

A related unsaturated mixed group 13/15 hydride, HGa=NH, could also be a viable building block for the future low temperature deposition of bulk gallium nitride (GaN), a highly valued material for its blue luminescent and semiconducting properties.⁶⁹ Therefore, a similar donor-acceptor stabilization approach via Lewis acid-assisted N₂ elimination was applied as in Scheme 1.13 to isolate a HGa=NH donor-acceptor complex. However, the high reactivity of the Ga-H bonds in IMes•GaH₂N₃ did not permit the isolation of such species as described in chapter 5 of this thesis.⁷⁰

1.3.3 Donor-Acceptor Stabilization of Heavy Group 14 Element Dihydrides

A major research theme within the Rivard group is the use of a donor-acceptor protocol to stabilize low valent group 14 dihydride complexes. Group 14 element dihydrides :EH₂ (E = Si, Ge or Sn) have attracted attention due to their likely presence during the formation of bulk semiconducting materials. For example, SiH₂ was found to be an intermediate during the chemical vapour deposition (CVD) of semiconducting silicon films from the gas phase precursor SiH₄ at very high temperatures (>550 °C) (Scheme 1.14).^{3e,71}

Scheme 1.14. SiH_2 is an intermediate present during the synthesis of Si-film from SiH_4 via high temperature CVD methods.

These elements dihydrides are unstable at room temperature in their free state;⁷² however, with the aid of suitable capping Lewis acid and Lewis bases they can be stabilized in the form of donor-acceptor complexes LB•EH₂•LA. The first example appeared in the literature in 2009 wherein a GeH₂ unit was stabilized using IPr as a Lewis base and BH₃ as Lewis acid.⁷³ Specifically, reaction of IPr•GeCl₂ with two equivalents of LiBH₄ led to the generation of the stable donor-acceptor complex IPr•GeH₂•BH₃ (**73**) (Scheme 1.15). Herein LiBH₄ is both a source of H⁻ as well as the Lewis acidic BH₃ group. In compound **73**, the *N*-heterocyclic carbene IPr donates an electron pair into the vacant p orbital of the Ge, whereas the lone pair in the GeH₂ unit binds to the Lewis acidic BH₃ group; therefore, a push-pull type interaction enables the isolation of the reactive GeH₂ moiety under ambient temperature.

A similar approach was applied in the attempted isolation of a SnH₂ complex. However treatment of IPr•SnCl₂ with LiBH₄ only gave IPr•BH₃ as a soluble product, along with the formation of metallic tin as black insoluble precipitate. Later, the use of the highly Lewis acidic W(CO)₅ unit enabled the successful isolation of the SnH₂ donor-acceptor complex IPr•SnH₂•W(CO)₅ (74) (Scheme 1.15).⁷⁴ Compound 74 was prepared by treating IPr•SnCl₂•W(CO)₅ with the H⁻ source LiBH₄ as outlined in Scheme 1.15. This donor-acceptor stabilization strategy was expanded to include an example of a SiH₂ adduct, IPr•SiH₂•BH₃ (75) (Scheme 1.15).⁷⁵

Scheme 1.15. Synthesis of donor-acceptor complexes of GeH_2 (73), SnH_2 (74) and SiH_2 (75).

As already alluded to, the Rivard group also employed *N*-heterocyclic olefins (NHOs), such as IPr=CH₂ as Lewis bases for the stabilization of GeH₂ and SnH₂. As discussed in section 1.2.3.1, due to the presence of a highly polarized exocylic double bond in the NHOs, a considerable amount of negative charge is placed at the terminal carbon of IPrCH₂. Accordingly, the strong donor ability of IPrCH₂ was used to

intercept GeH₂ and SnH₂ units as shown by the formation of IPrCH₂•GeH₂•W(CO)₅ (**76**) and IPrCH₂•SnH₂•W(CO)₅ (**77**), respectively (Figure 1.16).^{42a}

Figure 1.16. Donor-acceptor stabilization of GeH_2 (76) and SnH_2 (77) complexes with IPrCH₂.

A related LB/LA combination was also employed to isolate the heavier inorganic ethylene analogues H₂GeGeH₂, H₂SiGeH₂ and H₂SiSnH₂ in the form of the stable donor-acceptor complexes $IPr \cdot H_2Ge - GeH_2 \cdot W(CO)_5$ (78), $IPr \cdot H_2Si - GeH_2 \cdot W(CO)_5$ (79), $IPr \cdot H_2Si - SnH_2 \cdot W(CO)_5$ (80), respectively (Figure 1.17).⁷⁶

Figure 1.17. Donor-acceptor stabilization of H_2GeGeH_2 (78), H_2SiGeH_2 (79) and H_2SiSnH_2 (80) complexes.

1.4. Germanium Nanoparticles (GeNPs)

1.4.1 Properties and Applications

Germanium nanoparticles (GeNPs) represent a very promising class of main group material with a wide range of possible applications in the areas of optoelectronics, bioimaging and energy conversion/storage.⁷⁷ In addition, the large exciton radius (*ca.* 17.7 nm) of GeNPs results in quantum confinement effects within comparatively

large particle sizes.⁷⁸ This makes them advantageous for use in solar cells, flash memory devices, field effect transistors, and photodetectors.⁷⁹ Moreover, the low toxicity and environment friendly nature of GeNPs in comparison to widely used CdSe quantum dots opens the door for biological and medical applications, and their use as narrow band gap semiconductor nanomaterials.⁸⁰

1.4.2 Known Synthetic Strategies for GeNPs.

Recently, a variety of methods have been explored for the synthesis of GeNPs;⁸¹ however, a mild procedure involving precise control of size, dimension and surface functionality of GeNPs has not yet been achieved. Early reports on the synthesis of GeNPs were based on the reduction of GeCl₄ to metallic Ge with strong reducing agents, such as alkali metals or organometallic reagents.⁸² Along this theme, Cho and co-workers reported the synthesis of amorphous GeNPs by treating GeCl₄ with sodium naphthalenide (Na $[C_{10}H_8]$) in diglyme at room temperature. Later ⁿBuLi was added to isolate butyl-capped nanocrystals with an average diameter of 10 nm (Scheme 1.16).^{82c} An alternative route to synthesize GeNPs involves the metathesis reaction of germanium zintl salts, such as NaGe, KGe or Mg₂Ge.⁸³ In this study by Kauzlarich and co-workers chloride-terminated Ge nanoparticles were prepared by refluxing GeCl₄ with NaGe in diglyme (Scheme 1.16). The surface chlorides can be replaced by alkyl groups (butyl or octyl) by treatment with the appropriate alkyl lithium reagent. Moreover, the chloride-capped GeNPs can be functionalized with different functional groups, such as acetal and alkoxy-substituents by halogen-ligand replacement chemistry.⁸³ A frequently used method for the synthesis of hydrideterminated Ge nanoparticles is the reduction of Ge(II) or Ge(IV) species in the presence of hydride-based reducing agents (Scheme 1.16).⁸⁴ For example, Jiang and co-workers reported the synthesis of hydride terminated Ge nanoparticles by reacting GeCl₄ with NaBH₄ or LiAlH₄.⁸⁴ Other methods of producing GeNPs involve the high temperature decomposition (> 400 °C) of organogermanes or the reaction of Ge(II) halides (such as GeI₂) with n-butyllithium.⁸⁵ All of the above-mentioned routes to GeNPs involve either the use pyrophoric reagents and or harsh reaction conditions, or require very high temperatures.

Scheme 1.16. Known synthetic methods for Ge nanoparticles (GeNPs).

As will be discussed in chapter 2 of this thesis, a one-pot method to synthesize GeNPs was developed from the controlled decomposition of the donor-acceptor complex Ph₃PCMe₂•GeH₂•BH₃. Hot injection (HI) and microwave irradiation (MI)-induced degradation of this bottleable precursor in presence of suitable capping ligands was used to access crystalline and comparatively monodisperse luminescent GeNPs at temperature below 200 °C.^{49b}

1.5 Acknowledgement to the Collaborators

A portion of the work presented in this thesis has been done in collaboration with the other researchers within the Department of Chemistry, University of Alberta. Crystallographic studies for all the compounds presented in this thesis were performed by Dr. R. McDonald and Dr. M. J. Ferguson including mounting of crystals, operation of the diffractometer, refinement of the structures and preparation of the crystallographic data tables. Elemental analyses and mass spectrometric analyses were performed by Analytical Instrument Laboratory and Mass Spectrometry Laboratory at the Department of Chemistry, University of Alberta. The 2 H{ 1 H}, 15 N, 119 Sn NMR spectra were taken with the help of M. Miskolzie and N. Dabral at the NMR Spectrometry Laboratory, University of Alberta.

In Chapter 2: The chemistry of N- and P-donor ligands (4dimethylaminopyridine and tricyclohexylphosphine) toward GeCl₂ center were studied in collaboration with Sean M. McDonald and Kelsey C. Deutsch. The synthesis and characterization of germanium nanoparticles were performed in collaboration with Dr. Tapas K. Purkait and Prof. Jonathan G. C. Veinot at the Department of Chemistry, University of Alberta. Moreover, the photoluminescence lifetime study of the germanium nanoparticles was accomplished in collaboration with Glenda B. De Los Reyes and Prof. Frank A. Hegmann at the Department of Physics, University of Alberta.

In Chapter 4: The computation calculations were performed in collaboration with Dr. Christian Hering-Junghans.

According to the policy of our research group, each chapter of this thesis is essentially self-contained, and prepared in the form of a paper that is intended for publication in peer-reviewed journals.

A portion of this thesis is previously published and the publications are listed below.

Chapter 2:

- Swarnakar, A. K.; McDonald, S. M.; Deutsch, K. C.; Choi, P.; Ferguson, M. J.; McDonald, R.; Rivard, E. *Inorg. Chem.* 2014, 53, 8662.
- 4. Purkait, T. K.; Swarnakar, A. K.; De Los Reyes, G. B.; Hegmann, F. A.; Rivard, E.; Veinot, J. G. C. *Nanoscale* **2015**, *7*, 2241.

Chapter 3:

Swarnakar, A. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Dalton Trans. 2016, 45, 6071.

Chapter 4:

- Swarnakar, A. K.; Hering-Junghans, C.; Nagata, K.; Ferguson, M. J.; McDonald, R.; Tokitoh, N.; Rivard, E. Angew. Chem. Int. Ed. 2015, 54, 10666.
- Swarnakar, A. K.; Hering-Junghans, C.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Sci. 2017, 8, 2337.

Chapter 5:

Swarnakar, A. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Dalton Trans. 2017, 46, 1406.

1.6 Reference

- (a) Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124; (b) Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880; (c) McCahill, J. S. J.; Welch, G. C.; Stephan, D. W. Angew. Chem. Int. Ed. 2007, 46, 4968; (d) Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008, 1701; (e) Hounjet, L. J.; Stephan, D. W. Org. Process Res. Dev. 2014, 18, 385.
- (a) Manasevit, H. M. Appl. Phys. Lett. 1968, 12, 156; (b) Cowley, A. H.; Jones, R. A. Polyhedron 1994, 13, 1149; (c) Maury, F. Adv. Mater. 1991, 3, 542; (d) Thangaraju, B.; Kaliannan, P. J. Phys. D: Appl. Phys. 2000, 33, 1054; (e) Knapp, C. E.; Carmalt, C. J. Chem. Soc. Rev. 2016, 45, 1036; (f) Malik, M. D.; Afzaal, M.; O'Brien, P. Chem. Rev. 2010, 110, 4817; (g) Ekerdt, J. G.; Sun, Y. -M.; Szabo, A.; Szulczewski, G. J.; White, J. M. Chem. Rev. 1996, 96, 1499 and references therein.
- 3. (a) Power, P. P. Chem. Rev. 1999, 99, 3463; (b) Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009, 109, 3479; (c) Power, P. P. Nature 2010, 463, 171;
 (d) Fischer, R. C.; Power, P. P. Chem. Rev. 2010, 810, 3877; (e) Rivard, E. Chem. Soc. Rev. 2016, 45, 989.
- (a) Rivard, E.; Power, P. P. Inorg. Chem. 2007, 46, 10047; (b) Kays, D. L. Chem. Soc. Rev. 2016, 45, 1004.
- (a) Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P. Angew. Chem. Int. Ed.
 2002, 41, 1785; (b) Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. J.
 Am. Chem. Soc. 2002, 124, 5930; (c) Pu, L.; Twamley, B.; Power, P. P. J. Am.
 Chem. Soc. 2000, 122, 3524.
- 6. Marks, T. J.; Newman, A. R. J. Am. Chem. Soc. 1973, 95, 769.

- (a) Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. Science 2012, 336, 11420; (b) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2008, 130, 14970.
- 8. Gavrilova, A. L.; Bosnich, B. Chem. Rev. 2004, 104, 349.
- (a) Wang, Y.; Robinson, G. H. Inorg. Chem. 2011, 50, 12326; (b) Rivard, E. Dalton Trans. 2014, 43, 8577; (c) Soleilhavoup, M.; Bertrand, G. Acc. Chem. Res. 2015, 58, 256.
- (a) Beswick, M. A.; Palmer, J. S.; Wright, D. S. Chem. Soc. Rev. 1998, 27, 225; (b) Jutzi, P.; Burford, N. Chem. Rev. 1999, 99, 969.
- 11. (a) Almenningen, A.; Haaland, A.; Motzfeldt, T. J. Organomet. Chem. 1967, 7, 97;
 (b) Jutzi, P.; Kanne, D.; Kruger, C. Angew. Chem. Int. Ed. Engl. 1986, 25, 164; (c)
 Panatonni, C.; Bombieri, G.; Croatto, U. Acta. Crystallogr. 1966, 21A, 823; (d)
 Jutzi, P.; Kohl, F.; Hofman, P.; Kruger, C.; Tsay, Y. –H. Chem. Ber. 1980, 113,
 757; (e) Cowley, A. H.; Jutzi, P.; Kohl, F. X.; Lasch, J. G.; Norman, N. C.; Schltiter.
 E. Angew. Chem. Int. Ed. Engl. 1984, 23, 616.
- (a) Filippou, A. C.; Philippopoulos, A. I.; Portius, P.; Neumann, D. U. Angew. Chem. Int. Ed. 2000, 39, 2778; (b) Filippou, A. C.; Portius, P.; Philippopoulos, A. I. Organometallics 2002, 21, 653.
- 13. (a) Voigt, A.; Filipponi, S.; Macdonald, C. L. B.; Gorden, J. D.; Cowley, A. H. *Chem. Commun.* 2000, 911; (b) Dohmeier, C.; Schnockel, H.; Robl, C.; Uwe, S.; Ahlrichs, R. *Angew. Chem. Int. Ed. Engl.* 1993, *32*, 1655; (c) Burns, C. T.; Shapiro, P. J.; Budzelaar, P. H. M.; Willett, R.; Vij, A. *Organometallics* 2000, *19*, 3361.

- 14. (a) Jutzi, P.; Wippermann, T.; Kruger, C.; Kraus, H. –J. Angew. Chem. Int. Ed. Engl. 1983, 22, 250; (b) Wiacek, R. J.; Jones, J. N.; Macdonald, C. L. B.; Cowley, A. H. Can. J. Chem. 2002, 80, 1518.
- 15. (a) Schiemenz, B.; Power, P. P. Organometallics 1996, 15, 958; (b) Simons, R. S.; Haubrich, S. T.; Mork, B. V.; Niemeyer, M.; Power, P. P. Main Group Chem. 1998, 2, 275; (c) Du, C. -J. F.; Hart, H.; Ng, D. K. -K. J. Org. Chem. 1986, 51, 3162; (d) Saednya, A.; Hart, H. Synthesis 1996, 12, 1455.
- Su, J.; Li, X.-W.; Crittendon, R. C.; Robinson, G. H. J. Am. Chem. Soc. 1997, 119, 5471.
- 17. (a) Bytheway, I.; Lin, Z. J. Am. Chem. Soc. 1998, 120, 12133; (b) Xie, Y.; Schaefer,
 H. F.; Robinson, G. H. Chem. Phys. Lett. 2000, 317, 174.
- 18. Takagi, N.; Schmidt, M. W.; Nagase, S. Organometallics 2001, 20, 1646.
- (a) Hardman, N. J.; Wright, R. J.; Phillips, A. D.; Power, P. P. Angew. Chem. Int. Ed. 2002, 41, 2842; (b) Wright, R. J.; Phillips, A. D.; Hardman, N. J.; Power, P. P. J. Am. Chem. Soc. 2002, 124, 8538; (c) Wright, R. J.; Phillips, A. D.; Hino, S.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 4794.
- 20. Okazaki, R.; Unno, M.; Inamoto, N. Chem. Lett. 1987, 2293.
- 21. Tokitoh, N.; Sasamori, T.; Okazaki, R. Chem. Lett. 1998, 725.
- 22. (a) Tokitoh, N.; Arai, Y.; Okazaki, R.; Nagase, S. Science **1997**, 277, 78; (b) Sasamori, T.; Takeda, N.; Tokitoh, N. Chem. Commun. **2000**, 1353.
- 23. Tokitoh, N.; Matsumoto, T.; Okazaki, R. Bull. Chem. Soc. Jpn. 1999, 72, 1165.
- 24. Okazaki, R.; Tokitoh, N. Acc. Chem. Res. 2000, 33, 625.

- Suzuki, H.; Tokitoh, N.; Okazaki, R. Nagase, S.; Goto, M. J. Am. Chem. Soc. 1994, 116, 11578.
- (a) Tokitoh, N.; Matsumoto, T.; Manmaru, K.; Okazaki, R. J. Am. Chem. Soc. 1993, 115, 8855; (b) Matsumoto, T.; Tokitoh, N.; Okazaki, R. Angew. Chem. Int. Ed. Engl. 1994, 33, 2316; (c) Matsumoto, T.; Tokitoh, N.; Okazaki, R. J. Am. Chem. Soc. 1999, 121, 8811.
- 27. Saito, M.; Tokitoh, N.; Okazaki, R. J. Am. Chem. Soc. 1997, 119, 11124.
- Li, L.; Fukawa, T.; Matsuo, T.; Hashizume, D.; Fueno, H.; Tanaka, K.; Tamao, K.
 Nat. Chem. 2012, *4*, 361.
- 29. Allen, F. H. Acta Crystallogr. 2002, B58, 380.
- Igau, A.; Grutzmacher, H.; Baceiredo, A.; Bertrand, G. J. Am. Chem. Soc. 1988, 110, 6463.
- 31. Arduengo, A. J.; Harlow, R. L.; Kline, M. A. J. Am. Chem. Soc. 1991, 113, 361.
- 32. (a) Wang, Y.; Robinson, G. H. Chem. Commun. 2009, 5201; (b) Siemeling, U. Aust. J. Chem. 2011, 64, 1109; (c) Martin, D.; Soleilhavoup, M.; Bertrand, G. Chem. Sci. 2011, 2, 389; (d) Wang, Y.; Robinson, G. H. Dalton Trans. 2012, 41, 337; (e) Clyburne, J. A. C.; McMullen, N. Coord. Chem. Rev. 2000, 210, 73.
- 33. Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R. B.; Schaefer III,
 H. F.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2007, 129, 12412.
- 34. (a) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schäfer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. Science 2008, 321, 1069; (b) Sidiropoulos, A.; Jones, C.; Stasch, A.; Klein, S.; Frenking, G. Angew. Chem. Int. Ed. 2009, 48, 9701; (c) Jones, C.;

Sidiropoulos, A.; Holzmann, N.; Frenking, G.; Stasch, A. Chem. Commun. 2012, 48, 9855.

- Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem. Int. Ed. 2005, 44, 5705.
- 36. Back, O.; Henry-Ellinger, M.; Martin, C. D.; Martin, D.; Bertrand, G. Angew. *Chem. Int. Ed.* **2013**, *52*, 2939.
- 37. (a) Kinjo, R.; Donnadieu, B.; Ali Celik, M.; Frenking, G.; Bertrand, G. Science
 2011, 333, 610; (b) Ruiz, D. A.; Melaimi, M.; Bertrand, G. Chem. Commun. 2014, 50, 7837.
- Ruiz, D. A.; Ung, G.; Melaimi, M.; Bertrand, G. Angew. Chem. Int. Ed. 2013, 52, 7590.
- 39. (a) Back, O.; Donnadieu, B.; Parameswaran, P.; Frenking, G.; Bertrand, G. Nat. Chem. 2010, 2, 369; (b) Kretschmer, R.; Ruiz, D. A.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. Angew. Chem. Int. Ed. 2014, 53, 8176; (c) Dorsey, C. L.; Mushinski, R. M.; Hudnall, T. W. Chem. Eur. J. 2014, 20, 8914; (d) Back, O.; Celik, M. A.; Frenking, G.; Melaimi, M.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2010, 132, 10262.
- 40. Kuhn, N.; Bohnen, H.; Kreutzberg, J.; Bläser, D.; Boese, R. J. Chem. Soc., Chem. Commun. 1993, 14, 1136.
- 41. (a) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. *Chem. Commun.* 2011, 47, 6987; (b) Dumrath, A.; Wu, X. -F.; Neumann, H.; Spannenberg, A.; Jackstell, R.; Beller, M. *Angew. Chem. Int. Ed.* 2010, 49, 8988; (c) Wang, Y.; Abraham, M. Y.; Gilliard Jr., R. J.; Sexton, D. R.; Wei, P.;

Robinson, G. H. Organometallics 2013, 32, 6639; (d) Powers, K.; Hering-Junghans,C.; McDonald, R.; Ferguson, M. J.; Rivard. E. Polyhedron 2016, 108, 8.

- 42. (a) Al-Rafia, S. M. I.; Ferguson, M. J.; Rivard, E. *Inorg. Chem.* 2011, *50*, 10543; (b)
 Al-Rafia, S. M. I.; Momeni, M. R.; McDonald, R.; Ferguson, M. J.; Brown, A.;
 Rivard, E. *Angew. Chem. Int. Ed.* 2013, *52*, 6390; (c) Berger, C. J.; He, G.; Merten,
 C.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Inorg. Chem.* 2014, *53*, 1475.
- 43. (a) Lee, W. -H.; Lin, Y. -F.; Lee, G. -H.; Peng, S. -M.; Chiu. C. -W. *Dalton Trans.*2016, 45, 5937; (b) Ghadwal, R. S.; Reichmann, S. O.; Engelhardt, F.; Andrada, D. M.; Frenking, G. *Chem. Commun.* 2013, 49, 9440; (c) Ghadwal, R. S.; Schurmann, C. J.; Andrada, D. M.; Frenking, G. *Dalton Trans.* 2015, 44, 14359; (d) Ghadwal, R. S.; Schürmann, C. J.; Engelhardt, F.; Steinmetzger, C. *Eur. J. Inorg. Chem.* 2014, 4921; (e) El-Hellani, A.; Monot, J.; Guillot, R.; Bour, C.; Gandon, V. *Inorg. Chem.* 2013, 52, 506.
- 44. Wittig, G.; Schöllkopf, U. Chem. Ber. 1954, 87, 1318.
- 45. (a) Pörschke, K. -R.; Wilke, G.; Mynott, R. Chem. Ber. 1985, 118, 298; (b) Fortier,
 S.; Kaltsoyannis, N.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 14224.
- 46. (a) Bestmann, H. J.; Sühs, K.; Röder, T. Angew. Chem. Int. Ed. Engl. 1981, 20, 1038; (b) Bestmann, H. J.; Röder, T.; Sühs, K. Chem. Ber. 1988, 121, 1509; (c) Breitsameter, F.; Schrödel, H. -P.; Schmidpeter, A.; Nöth, H.; Rojas-Lima, S. Z. Anorg. Allg. Chem. 1999, 625, 1293.
- 47. Hawthorne, F. M. J. Am. Chem. Soc. 1958, 80, 3480.

- Borisova, I. V.; Zemlyansky, N. N.; Belsky, V. K.; Kolosova, N. D.; Sobolev, A. N.; Luzikov, Y. N.; Ustynyuk, Y. A.; Beletskaya, I. P. J. Chem. Soc., Chem. Commun. 1982, 1090.
- 49. (a) Swarnakar, A. K.; McDonald, S. M.; Deutsch, K. C.; Choi, P.; Ferguson, M. J.;
 McDonald, R.; Rivard, E. *Inorg. Chem.* 2014, *53*, 8662; (b) Purkait, T. K.;
 Swarnakar, A. K.; De Los Reyes, G. B.; Hegmann, F. A.; Rivard, E.; Veinot, J. G.
 C. *Nanoscale* 2015, *7*, 2241.
- 50. Nowell, I. N.; Russell, D. R. J. Chem. Soc., Chem. Commun. 1967, 817.
- 51. (a) Einstein, F. W. B.; Pomeroy, R. K.; Rushman, P.; Willis, A. C. Organometallics
 1985, 4, 250; (b) Usón, R.; Forniés, J.; Espinet, P.; Fortuño, C.; Tomas, M.; Welch,
 A. J. J. Chem. Soc., Dalton Trans. 1988, 3005.
- 52. Bauer, J.; Braunschweig, H.; Dewhurst, R. D. Chem. Rev. 2012, 112, 4329.
- 53. (a) Braunschweig, H.; Gruß, K.; Radacki, K. Angew. Chem. Int. Ed. 2007, 46, 7782;
 (b) Bauer, J.; Braunschweig, H.; Brenner, P.; Kraft, K.; Radacki, K.; Schwab, K. Chem. Eur. J. 2010, 16, 11985.
- 54. (a) Mayer, J. M.; Calabrese, J. C. Organometallics 1984, 3, 1292; (b) Burlitch, J. M.; Leonowicz, M. E.; Petersen, R. B.; Hughes, R. E. Inorg. Chem. 1979, 18, 1097;
 (c) Golden, J. T.; Peterson, T. H.; Holland, P. H.; Bergman, R. G.; Andersen, A. R. J. Am. Chem. Soc. 1998, 120, 223.
- 55. Steinke, T.; Fischer, R. A.; Winter, M; Cokoja, M.; Gemel, C. Dalton Trans. 2005, 55; (b) Braunschweig, H.; Gruß, K.; Radacki, K. Inorg. Chem. 2008, 47, 8597; (c) Aldridge, S.; Kays, D. L.; Bunn, N. R.; Coombs, N. D. Main Group Met. Chem. 2005, 28, 201.

- 56. (a) Charmant, J. P. H.; Fan, C.; Norman, N. C.; Pringle, P. G. *Dalton Trans.* 2007, 114; (b) Braunschweig, H.; Brenner, P.; Müller, A.; Radacki, K.; Rais, D.; Uttinger, K. *Chem. Eur. J.* 2007, *13*, 7171; (c) Braunschweig, H.; Radacki, K.; Uttinger, K. *Inorg. Chem.* 2007, *46*, 8796; (d) Braunschweig, H.; Gruss, K.; Radacki, K. *Inorg. Chem.* 2008, *47*, 8595; (e) Braunschweig, H.; Brenner, P.; Cogswell, P.; Kraft, K.; Schwab, K. *Chem. Commun.* 2010, *46*, 7894.
- 57. (a) Braunschweig, H.; Radacki, K.; Schneider, A. Science 2010, 328, 345; (b) Braunschweig, H.; Radacki, K.; Schneider, A. Angew. Chem. Int. Ed. 2010, 49, 5993; (c) Braunschweig, H.; Radacki, K.; Schneider, A. Chem. Commun. 2010, 46, 6473.
- (a) Chan, D. M. T.; Marder, T. B. Angew. Chem. Int. Ed. Engl. 1988, 27, 442; (b)
 Beńi, Z.; Ros, R.; Tassan, A.; Scopelliti, R.; Roulet, R. Dalton Trans. 2005, 315.
- (a) Hupp, F.; Ma, M.; Kroll, F.; Jiménez-Halla, J. O. C.; Dewhurst, R. D.; Radacki, K.; Stasch, A.; Jones, C.; Braunschweig, H. *Chem. Eur. J.* 2014, 20, 16888; (b) Braunschweig, H.; Damme, A.; Dewhurst, R. D.; Hupp, F.; Jiménez-Halla, J. O. C.; Radacki, K. *Chem. Commun.* 2012, 48, 10410.
- Swarnakar, A. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Dalton Trans. 2016, 45, 6071.
- 61. (a) Vogel, U.; Timoshkin, A. Y.; Scheer, M. Angew. Chem. Int. Ed. 2001, 40, 4409;
 (b) Vogel, U.; Hoemensch, P.; Schwan, K. -Ch.; Timoshkin, A. Y.; Scheer, M. Chem. Eur. J. 2003, 9, 515; (c) Schwan, K. -Ch.; Timoshkin, A. Y.; Zabel, M.; Scheer, M. Chem. Eur. J. 2006, 12, 4900; (d) Bodensteiner, M.; Vogel, U.; Timoshkin, A. Y.; Scheer, M. Angew. Chem. Int. Ed. 2009, 48, 4629; (e)

Bodensteiner, M.; Timoshkin, A. Y.; Peresypkina, E. V.; Vogel, U.; Scheer, M. *Chem. –Eur. J.* 2013, 19, 957; (f) Marquardt, C.; Adolf, A.; Stauber, A.;
Bodensteiner, M.; Virovets, A. V.; Timoshkin, A. Y.; Scheer, M. *Chem. –Eur. J.*2013, 19, 11887; (g) Marquardt, C.; Thoms, C.; Stauber, A.; Balázs, G.;
Bodensteiner, M.; Scheer, M. *Angew. Chem. Int. Ed.* 2014, 53, 3727; (h) Marquardt,
C.; Jurca, T.; Schwan, K.-C.; Stauber, A.; Virovets, A. V.; Whittell, G. R.; Manners,
I.; Scheer, M. *Angew. Chem. Int. Ed.* 2015, 54, 13782.

- 62. (a) Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P.; Saykally,
 R. J. Nat. Mater. 2002, 1, 106; (b) Chen, C. C.; Yeh, C. C.; Adv. Mater. 2000, 12,
 738; (c) Kim, H. M.; Kim, D. S.; Park, Y. S.; Kim, D. Y.; Kang, T. W.; Chung, K.
 S. Adv. Mater. 2002, 14, 991; (d) Seryogin, G.; Shalish, I.; Moberlychan, W.;
 Narayanamurti, V. Nanotechnology 2005, 16, 2342.
- 63. Malcolm, A. C.; Sabourin, K. J.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Inorg. Chem.* **2012**, *51*, 12905.
- 64. (a) Lory, E. R.; Porter, R. F. J. Am. Chem. Soc. 1973, 95, 1766; (b) Kawashima, Y.;
 Kawaguchi, K.; Hirota. E. J. Chem. Phys. 1987, 87, 6331; (c) Thompson, C. A.;
 Andrews, L. J. Am. Chem. Soc. 1995, 117, 10125; (d) Zhang, F.; Maksyutenko, P.;
 Kaiser, R. I.; Mebel, A. M.; Gregusova, A.; Perera, S. A.; Bartlett, R. J. J. Phys.
 Chem. A 2010, 114, 12148.
- 65. For selected computational studies on HBNH, see: (a) Baird, N. C.; Datta, R. K. *Inorg. Chem.* 1972, *11*, 17; (b) Matus, M. H.; Grant, D. J.; Nguyen, M. T.; Dixon, D. A. *J. Phys. Chem. C* 2009, *113*, 16553; (c) Sundaram, R.; Scheiner, S.; Roy, A. K.; Kar, T. *J. Phys. Chem. C* 2015, *119*, 3253.
- Liu, H.; Jin, P.; Xue, Y. -M.; Dong, C.; Li, X.; Tang, C. -C.; Du, X. -W. Angew. Chem. Int. Ed. 2015, 54, 7051.
- 67. (a) Piane, R. T.; Narula, C. K. Chem. Rev. 1990, 90, 73; (b) Geim, A. K.; Grigorieva, I. V. Nature 2013, 499, 419; (c) Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Science 2014, 343, 16.
- 68. (a) Swarnakar, A. K.; Hering-Junghans, C.; Nagata, K.; Ferguson, M. J.; McDonald, R.; Tokitoh, N.; Rivard, E. Angew. Chem. Int. Ed. 2015, 54, 10666; (b) Swarnakar, A. K.; Hering-Junghans, C.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Sci. 2017, 8, 2337.
- 69. (a) Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Appl. Phys. Lett. 1986, 48, 353;
 (b) Nakamura, S.; Harada, Y.; Seno, M. Appl. Phys. Lett. 1991, 58, 2021; (c) Morkoc, H.; Mohammad, S. N. Science 1995, 267, 51.
- Swarnakar, A. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Dalton Trans. 2017, 46, 1406.
- 71. (a) Jasinski, J. M.; Gates, S. M. Acc. Chem. Res. 1991, 24, 9; (b) Isobe, C.; Cho, H.
 -C., Sewell, J. E. Surf. Sci. 1993, 295, 117.
- 72. (a) Wang, X.; Andrews, L.; Kushto, G. P. J. Phys. Chem. A 2002, 106, 5809; (b)
 Smith, T. C.; Clouthier, D. J.; Sha, W. Adam, A. G. J. Chem. Phys. 2000, 113, 9567.
- 73. Thimer, K. C.; Al-Rafia, S. M. I.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2009, 7119.

- 74. Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem. Soc. 2011, 133, 777.
- 75. Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Chem. Commun.* **2012**, *48*, 1308.
- 76. (a) Al-Rafia, S. M. I.; Momeni, M. R.; Ferguson, M. J.; McDonald, R.; Brown, A.;
 Rivard, E. *Organometallics* 2013, *32*, 6658; (b) Al-Rafia, S. M. I.; Malcolm, A. C.;
 McDonald, R.; Ferguson, M. J.; Rivard, E. *Angew. Chem. Int. Ed.* 2011, *50*, 8354.
- 77. Kamata, Y. Mater. Today 2008, 11, 30.
- 78. Maeda, Y. Phys. Rev. B: Condens. Matter Mater. Phys. 1995, 51, 1658.
- 79. (a) Pillarisetty, R. Nature 2011, 479, 324; (b) Hekmatshoar, B.; Shahrjerdi, D.; Hopstaken, M.; Fogel, K.; Sadana, D. K. Appl. Phys. Lett. 2012, 101, 032102;
 (c) Guter, W.; Schone, J.; Philipps, S. P.; Steiner, M.; Siefer, G.; Wekkeli, A.; Welser, E.; Oliva, E.; Bett, A. W.; Dimroth, F. Appl. Phys. Lett. 2009, 94, 223504;
 (d) Chakraborty, G.; Sengupta, A.; Requejo, F. G.; Sarkar, C. K. J. Appl. Phys. 2011, 109, 064504; (e) Assefa, S.; Xia, F. N. A.; Vlasov, Y. A. Nature 2010, 464, U80.
- Lambert, T. N.; Andrews, N. L.; Gerung, H.; Boyle, T. J.; Oliver, J. M.; Wilson, B.
 S.; Han, S. M. *Small* 2007, *3*, 691.
- 81. Vaughn II, D. D.; Schaak, R. E. Chem. Soc. Rev. 2013, 42, 2861.
- 82. (a) Kornowski, A.; Giersig, M.; Vogel, R.; Chemseddine, A.; Weller, H. Adv. Mater. 1993, 5, 634; (b) Chiu, H. W.; Chervin, C. N.; Kauzlarich, S. M. Chem. Mater. 2005, 17, 4858; (c) Lee, H.; Kim, M. G.; Choi, C. H.; Sun, Y. K.; Yoon, C. S.; Cho, J. J. Phys. Chem. B 2005, 109, 20719.

- 83. (a) Taylor, B. R.; Kauzlarich, S. M.; Lee, H. W. H.; Delgado, G. R. Chem. Mater.
 1998, 10, 22; (b) Tanke, R. S.; Kauzlarich, S. M.; Patten, T. E.; Pettigrew, K. A.; Murphy, D. L.; Thompson, M. E.; Lee, H. W. H. Chem. Mater. 2003, 15, 1682.
- 84. (a) Wu, H. P.; Liu, J. F.; Wang, Y. W.; Zengand, Y. W.; Jiang, J. Z. Mater. Lett.
 2006, 60, 986; (b) Fok, E.; Shih, M. L.; Meldrum, A.; Veinot, J. G. C.; Chem. Commun. 2004, 386; (c) Lu, X. M.; Korgel, B. A.; Johnston, K. P. Chem. Mater.
 2005, 17, 6479.
- 85. (a) Henderson, E. J.; Hessel, C. M.; Veinot, J. G. C. J. Am. Chem. Soc. 2008, 130, 3624; (b) Lee, D. C.; Pietryga, J. M.; Robel, I.; Werder, D. J.; Schaller, R. D.; Klimov, V. I. J. Am. Chem. Soc. 2009, 131, 3436.

Chapter 2: Application of the Donor-Acceptor Concept to Intercept Group 14 Dihydrides Using a Wittig Reagent and One-Pot Synthesis of Germanium Nanoparticles

2.1 Introduction

The use of electron donating ligands to intercept/stabilize reactive inorganic element centers is a widely explored concept in inorganic chemistry. Recently, N-heterocyclic carbenes (NHCs) have received considerable attention in this regard due to their ease of synthesis and ability to tune the steric bulk about the ligating carbon centers.¹ A commonly employed NHC in formally low oxidation state main group element chemistry is IPr (IPr = [(HCNDipp)_2C:], Dipp = $2,6^{-i}Pr_2C_6H_3$), which has been used to access stable complexes of E_2 (E = B, Si, Ge, Sn, P and As)² and related species with unusual/novel bonding environments.³ The Rivard group has also employed IPr in conjunction with suitable Lewis acid (BH₃ and W(CO)₅) to prepare various inorganic group 14 element methylene :EH2 and ethylene H2EE'H2 complexes (E and E' = Si, Ge and/or Sn) via a general donor-acceptor protocol.⁴ In addition, it was shown that many of these parent main group hydrides can be accessed using the ylidic *N*-heterocyclic olefin (NHO) donor, $IPr=CH_2$ [$IPr=CH_2 = (HCNDipp)_2C=CH_2$] in place of IPr.^{4e,4f,5} Added interest from this work stems from the implication of :EH₂ species, such as the silvlene: :SiH₂, as key intermediates in the growth of semiconducting films from gas phase precursors (e.g. SiH_4 ; Scheme 1.14).⁶

In this chapter, attempts are made to prepare low oxidation state group 14 element hydride complexes with the aid of common phosphine and pyridine-based donors. In addition, the Wittig reagent $Ph_3P=CMe_2^7$ is shown to be an excellent ligand for molecular main group chemistry by virtue of the nucleophilic character of the terminal carbon atom (Scheme 2.1). Furthermore, the ability to rapidly prepare structural variants of this Wittig reagent from inexpensive reagents makes this system advantageous over well-known *N*-heterocyclic carbene-based donors. It should be mentioned that while the use of related Wittig reagents⁸ as ligands is known for transition metals and actinides,⁹ well-defined coordination chemistry involving R'₃PCR₂ donors within the main group remains a largely untouched area.¹⁰ Here it is also shown that mild heating of the GeH₂ precursor, stabilized by Wittig reagent, Ph₃P=CMe₂ vields crustalline carmanium paperaticles (GeNPs) via hot injection (HI) and

Scheme 2.1. Representative resonance forms for Ph₃PCR₂.

2.2 Results and Discussions

While carbon-based donors are known to bind/stabilize main group element polyhydrides,^{3a,4,5a,11} the donor-acceptor protocol was verified by including phosphine and pyridine-based Lewis bases (LBs) to yield new adducts of the general form, LB•EH₂•LA (LA = Lewis acid). A motivation for such studies would be to later study the controlled thermolysis of these complexes to generate group 14 metal coatings and/or nanoparticles.^{4g} It should be mentioned that nanomaterials are often capped with phosphorus- or nitrogen-containing ligands to engender solubility and to prevent quenching of luminescence by surface reactive sites.¹² Moreover the use of amines and phosphines within the context of low oxidation state group 14 coordination chemistry has precedence.¹³

First. Ge(II) dihalide adducts of the widely explored donors. 4dimethylaminopyridine (DMAP) and tricyclohexylphosphine (Cy_3P) were synthesized. Specifically, these adducts were obtained by combining either DMAP or Cy₃P with Cl₂Ge•dioxane in toluene to afford the respective Ge(II) dichloride complexes DMAP•GeCl₂ (1) and Cy_3P •GeCl₂ (2)¹⁴ as air-sensitive (yet thermally stable) colorless solids (Scheme 2.2). While the synthesis of the DMAP adduct, 1 proceeded in a quantitative fashion, the synthesis of Cy₃P•GeCl₂ (2) routinely yielded a [Cy₃PH]⁺ containing by-product (presumably as a GeCl₃⁻ salt).¹⁵ So further purification was necessary to afford pure 2 by fractional crystallization from toluene/hexanes. Both compounds 1 and 2 have been structurally authenticated by Xray crystallography (Figure 2.1) and, as expected, pyramidalized Ge centers are present with an angle sum at Ge (Σ Ge) for compound **1** of 280.83(7)° [Σ Ge for compound **2** = 284.33(4)°].

Scheme 2.2. Synthesis of DMAP and Cy_3P adducts of $GeCl_2$ (1 and 2) and interaction of these species with excess $Li[BH_4]$.

Figure 2.1. Molecular structures of DMAP•GeCl₂ (1) (left) and Cy₃P•GeCl₂ (2) (right) with thermal ellipsoids at the 30 % probably level. All hydrogen atoms have been omitted for clarity. Selected bond lengths [Å] and angles [°]: *Compound 1*: Ge-N(1) 2.028(2), Ge-Cl(1) 2.2881(8), Ge-Cl(2) 2.2907(9); N-Ge-Cl(1) 93.03(7), N-Ge-Cl(2) 92.49(7), Cl(1)-Ge-Cl(2) 95.31(3). *Compound 2*: Ge-P 2.5087(7), Ge-Cl(1) 2.2782(7), Ge-Cl(2) 2.2723(7); P-Ge-Cl(1) 93.96(3), P-Ge-Cl(2) 93.21(2), Cl(1)-Ge-Cl(2) 97.16(2).

In order to obtain donor-acceptor complexes of GeH₂, both the compounds, DMAP•GeCl₂ (1) and Cy₃P•GeCl₂ (2) were treated with a soluble hydride source. However, when 1 and 2 were separately combined with two equivalents of lithium borohydride Li[BH₄] in ether, the only spectroscopically identifiable products were the known adducts DMAP•BH₃ and Cy₃P•BH₃, respectively; these reactions also afforded copious amounts of grey precipitate which is assumed to be the elemental germanium (Scheme 2.2). These observations are in contrast to what was found with the strongly donating *N*-heterocyclic carbene IPr, which yields IPr•GeH₂•BH₃ under similar reaction conditions as an isolable colorless solid.^{4a}

This study was motivated by the structural parallels that exist between Wittig reagents and *N*-heterocyclic olefins (such as IPr=CH₂) due to the mutual presence of ylidic bonding, leading to significant electron density being positioned at a terminal carbon atom (Scheme 2.1).⁵ Prior studies with the donor Ph₃P=CH₂ revealed a potential ligand degradation pathway wherein deprotonation of a terminal methylene unit occurs in the presence of electron deficient main group compounds to yield R_xE-CH=PPh₃ species.¹⁶ Accordingly, I focused on the phosphorus ylide Ph₃P=CMe₂ (**3**)⁷ which does not contain any acidic hydrogen atoms adjacent to the carbon ligation site. Fortunately the methylated donor Ph₃P=CMe₂ (**3**)⁷ can be conveniently prepared in high yield as a moisture-sensitive red solid by treating the commercially available phosphonium salt [Ph₃PCHMe₂]I with ⁿBuLi in toluene, followed by removal of the LiI by-product by filtration. Crystals of **3** were also analyzed by single-crystal X-ray crystallography and the resulting molecular structure is shown in Figure 2.2.

Figure 2.2. Molecular structure of $Ph_3PCMe_2(3)$ with thermal ellipsoids at the 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): P-C(1A) 1.6785(18), C(2A)-C(1A)-P(1A) 122.07(14), C(3A)-C(1A)-P(1A) 120.12(14), C(2A)-C(1A)-C(3A) 114.13(16).

The formation of the stable Ge(II) dihalide adduct Ph₃PCMe₂•GeCl₂ (**4**) was accomplished by combining equimolar amounts of Ph₃P=CMe₂ (**3**) and Cl₂Ge•dioxane in toluene solvent (eqn. 2.1). Compound **4** can be obtained in analytically pure form via re-crystallization from CH₂Cl₂/hexanes and the crystallographically determined structure of this species is presented as Figure 2.3. The binding of the Wittig reagent **3** to a GeCl₂ unit (to form **4**) is accompanied by a significant ³¹P NMR shift from 9.8 to 37.0 ppm. The methyl substituents within the Ph₃PCMe₂ donor in **4** appear as a doublet resonance at 1.77 ppm in the ¹H NMR spectrum, and this signal is shifted upfield in comparison to the methyl resonance within the free ligand **3** (2.17 ppm). Ph₃PCMe₂•GeCl₂ exhibits a pyramidal geometry about germanium [Σ Ge = 287.42(8)°] consistent with the presence of a lone pair at

crys

Interestingly, when Ph₃PCMe₂•GeCl₂ (**4**) was treated with two equivalents of Li[BH₄] in diethyl ether, clean Cl/H exchange transpired to yield the isolable germanium dihydride-borane adduct Ph₃PCMe₂•GeH₂•BH₃ (**5**) (eqn. 2.2). The successful installation of hydride functionality at the germanium atom in **5** was evidenced by ¹H NMR spectroscopy, which revealed the presence of a new broad

resonance at 4.63 ppm for the Ge-*H* protons. In addition, IR spectroscopy clearly displayed a Ge-H stretching band at 1975 cm⁻¹ which is similar in value as the vibration at 1987 cm⁻¹ belonging to a GeH₂ moiety in IPr•GeH₂•BH₃.^{4*a*}

Figure 2.3. Molecular structure of $Ph_3PCMe_2 \cdot GeCl_2(4)$ with thermal ellipsoids at the 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ge–Cl (1) 2.2735(6), Ge-Cl (2) 2.3106(6), Ge-C (1) 2.1535(19); C(1)-Ge-Cl(1) 99.07(6), C(1)-Ge-Cl(2) 93.25(5), Cl(1)-Ge-Cl(2) 95.10(2).

Compound **5** gave a ¹¹B NMR spectrum with a quartet resonance at -39.4 ppm (in C₆₋ D_6 ; ¹ $J_{BH} = 95.4$ Hz) that was assigned to the terminal BH_3 unit, which is comparable with the ¹¹B NMR resonances observed previously for IPr•GeH₂•BH₃ (-40.0 ppm;

As shown in Figure 2.4, Ph₃PCMe₂•GeH₂•BH₃ (**5**) exhibits a tetrahedral coordination environment at Ge with crystallographically determined Ge-H bond distances of 1.477(18) and 1.46(2) Å. The adjacent Ge-B and Ge-C bond lengths are 2.0786(17) and 2.0406(13) Å, respectively, which are elongated by *ca*. 0.03 Å in comparison to the related distances found in the *N*-heterocyclic carbene adduct IPr•GeH₂•BH₃ [Ge-B = 2.053(3) Å; Ge-C = 2.011(2)Å]. Therefore, the metrical data suggests that Ph₃PCMe₂ is a weaker donor than the *N*-heterocyclic carbene, IPr (*vide infra*).

The deutero analogue of **5**, Ph₃CMe₂•GeD₂•BD₃ (**5D**) was also synthesized by combining two mole ratios of Li[BD₄] with **4** in Et₂O. As expected, the ²H{¹H} NMR spectrum of **5D** consisted of broad peaks positioned at 4.63 and 1.56 ppm, corresponding to GeD₂ and BD₃ units, respectively.

Figure 2.4. Molecular structure of $Ph_3PCMe_2 \cdot GeH_2 \cdot BH_3$ (**5**) with thermal ellipsoids at the 30 % probability level. All carbon-bound hydrogen atoms and THF solvate have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ge–B 2.0786(17), Ge-C (1) 2.0406(13), Ge–H(1A) 1.477(18), Ge–H(1B) 1.46(2); C(1)–

Ge-B 111.26(6), C(1)-Ge-H(1A) 103.5(7), C(1)-Ge-H(1B) 100.8(8), H(1A)-Ge-H(1B) 103.4(11), H-B-H 116.7(8) to 118.9(7).

The Wittig reagent-appended germanium (II) dihvdride complex $Ph_3PCMe_2 \cdot GeH_2 \cdot BH_3$ (5) showed similar thermal stability in solution in relation to IPr•GeH₂•BH₃. For example, a toluene-d₈ solution of Ph₃PCMe₂•GeH₂•BH₃ (5) was heated in a J-Young NMR tube at 100 °C for 24 hrs which led to the decomposition of 5 to afford Ph₃P•BH₃¹⁷ (> 95 % yield by ³¹P NMR spectroscopy; $\delta = 21.7$ ppm); for comparison, IPr•GeH₂•BH₃ decomposes in hot toluene to yield IPr•BH₃.^{4a} $^{11}B{}^{1}H{}$ NMR spectroscopy on the product mixture formed when 5 is heated also confirmed the presence of Ph₃P•BH₃ (d, $\delta = 42.1$ ppm, ${}^{1}J_{BP} = 43.7$ Hz) with the accompanying formation of a volatile product at *ca*. 80 ppm which is tentatively assigned as being the triorganoborane ${}^{i}Pr_{3}B$ (literature ${}^{11}B$ NMR shift = 83.7 ppm in C₆D₆).¹⁸ One possible route for this decomposition process is hydride transfer¹⁹ from an E-H group (E = Ge or B) to a CMe₂ carbon atom of the Wittig donor, leading to population of a C-P σ^* orbital and release of PPh₃, which is later trapped by liberated BH_3 to form $Ph_3P \cdot BH_3$. The insoluble precipitate which formed during the thermolysis of Ph₃PCMe₂•GeH₂•BH₃ (5) in toluene was identified as elemental germanium according to EDX analysis (Figure 2.5); in addition, this solid was imaged by SEM which revealed the formation of bulk materials with globular morphology as shown in Figure 2.6.

It appears that Ph₃P=CMe₂ is a weaker electron pair donor than the carbene IPr, as Ph₃PCMe₂•GeH₂•BH₃ (**5**) rapidly reacts with a stoichiometric amount of IPr to afford IPr•GeH₂•BH₃ and free Ph₃P=CMe₂ via a Lewis base exchange reaction, as determined by NMR spectroscopy.

Figure 2.5. EDX spectrum of the insoluble precipitate (germanium metal) formed from the thermolysis of Ph₃PCMe₂•GeH₂•BH₃ (**5**)

Figure 2.6: SEM of Ge metal formed from the thermolysis of Ph₃PCMe₂•GeH₂•BH₃

Of note, previous attempts to form IPrCH₂•GeH₂•BH₃ led to loss of germanium metal and the isolation of IPrCH₂•BH₃ as the sole donor-containing product.^{5*a*} Thus Ph₃PCMe₂ is likely a stronger donor than the *N*-heterocyclic olefin IPrCH₂ and the previously discussed Lewis bases Cy₃P and DMAP. The mechanism

by which LB•GeH₂•BH₃ complexes (LB = Lewis base) degrade to yield the boranes LB•BH₃ is unknown at this time. Either LB-Ge or Ge-B bond scission (or even hydride transfer from Ge^{19}) could be involved as the key step in the decomposition process.

Synthesis of Ge(II) hydride complex Ph₃PCMe₂•GeH₂ was also attempted by treating the GeCl₂ adduct **4** with the milder reducing agent K[HB^sBu₃]. It was hoped that hydride delivery would occur to yield the less acidic and more hindered borane, ^sBu₃B, as a by-product; this could inhibit adduct formation between the borane and the Ge center.^{4*a*} However Ph₃PCMe₂•GeCl₂ (**4**) reacts with two equivalents of K[HB^sBu₃] to yield free PPh₃ and ^sBu₃B²⁰ according to ³¹P and ¹¹B NMR spectroscopy, along with the formation of grey precipitate (presumably elemental Ge).

Analogous coordination and hydride transfer chemistry was explored between the Wittig reagent Ph₃P=CMe₂ and Sn(II) halides. As a start, the Sn(II) halide adduct Ph₃PCMe₂•SnCl₂ (**6**) was prepared from the direct reaction of Ph₃P=CMe₂ and SnCl₂ in a toluene/THF mixture (Scheme 2.3). This reaction proceeds to high yield if conducted over a short time frame of 3 hrs. Ph₃PCMe₂•SnCl₂ (**6**) was also characterized by single-crystal X-ray crystallography and the molecular structure of this adduct is found in Figure 2.7. The most salient metrical parameters of **6** include a Sn-C bond length of 2.3518(14) Å and a sum of the bond angles at Sn of 273.61(6)°; this latter value is substantially smaller than in the Ge congener **4** [287.42(8)°] as is expected for an increase in s-character within the sterochemically active Sn lone pair in Ph₃PCMe₂•SnCl₂ (**6**).

Figure 2.7. Molecular structure of $Ph_3PCMe_2 \cdot SnCl_2(6)$ with thermal ellipsoids at the 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Sn-C(1) 2.3518(4), Sn-Cl(1) 2.4854(4), Sn-Cl(2) 2.4852(4), P-C(1) 1.8036(15); Cl(1)-Sn-Cl(2) 87.828(15), C(1)-Sn-Cl(1) 94.87(4), C(1)-Sn-Cl(2) 90.91(4).

If this reaction is allowed to proceed for longer periods (> 24 hrs), formation of the phosphonium salt, [Ph₃PCHMe₂]SnCl₃ transpires as evidenced by the emergence of a new ³¹P signal at 30.9 ppm. The by-product, [Ph₃PCHMe₂][SnCl₃] was also characterized by single crystal X-ray crystallography and the molecular structure of this salt is shown in Figure 2.8. In an attempt to synthesize a SnH₂ complex, Ph₃PCMe₂•SnCl₂ (**6**) was reacted with the hydride source, Li[BH₄]. However, when **6** was treated with two equivalents of Li[BH₄] in Et₂O, the formation of Ph₃PCMe₂•BH₃ (**7**) along with a black precipitate (presumably metallic tin) was observed (Scheme 2.3). Compound **7** was reported previously by Bestmann and coworkers.^{10*a*}

Scheme 2.3. Synthesis of Ph₃PCMe₂•SnCl₂ (6) and its conversion to Ph₃PCMe₂•BH₃ (7).

Figure 2.8. Molecular structure of $[Ph_3PCHMe_2][SnCl_3]$ with thermal ellipsoids at the 30 % probability level. All hydrogen atoms and toluene molecule have been omitted for clarity. Selected bond lengths (Å) and angles (°): P-C(1) 1.822(6), Sn-Cl(1) 2.449(3), Sn-Cl(2) 2.472(2), Sn-Cl(3) 2.485(3), C(2)-C(1)-P 109.6(5), C(3)-C(1)-P 111.5(5), Cl(1)-Sn-Cl(2) 93.55(9), Cl(1)-Sn-Cl(3) 95.48(8), Cl(2)-Sn-Cl(3) 95.08(8).

An independent synthesis of 7 was accomplished from the reaction of Ph₃PCMe₂ and THF•BH₃ in order to obtain structural characterization by X-ray crystallography (Figure 2.9). It is known from prior studies, and confirmed above, that the synthesis of Sn(II) dihydride (SnH₂) complexes is a more challenging endeavor than GeH₂ adducts as a result of decreased Lewis acidic and basic character at Sn, leading to weaker coordinative interactions.^{4g}

Figure 2.9. Molecular structure of Ph₃PCMe₂•BH₃ (7) with thermal ellipsoids at the 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): P-C(1) 1.8205(11), C(1)-B 1.6631(18), B-H(1A) 1.153(16), B-H(1B) 1.146(17), B-H(1C) 1.132(17), C(2)-C(1)-P 109.71(8), C(3)-C(1)-P 109.30(8), P-C(1)-B 109.60(8), H(1A)-B-H(1B) 108.6(12), H(1A)-B-H(1C) 110.0(12), H(1B)-B-H(1C) 110.6(12).

In order to increase the eventual Lewis acidity of a coordinated SnH₂ unit, a highly electron deficient W(CO)₅ group was introduced as the acceptor moiety within the donor-acceptor protocol; a related approach worked well for the isolation of the formal Sn(II) dihydride adducts, IPr•SnH₂•W(CO)₅ and IPrCH₂•SnH₂•W(CO)₅.

The requisite SnCl₂ precursor to a tin hydride-Wittig reagent complex, $Ph_3PCMe_2 \cdot SnCl_2 \cdot W(CO)_5$ (8), was prepared in nearly quantitative yield as a colorless solid by a THF solvent displacement reaction between the known tin chloride tungsten pentacarbonyl adduct (THF)2•SnCl2•W(CO)5²¹ and the two-electron Wittig donor Ph₃PCMe₂ (**3**) (eqn. 2.3). The formation of Ph₃PCMe₂•SnCl₂•W(CO)₅ (**8**) was accompanied by a large change in chemical shift in the ³¹P NMR spectrum relative to the free $Ph_3P=CMe_2$ (9.8 ppm) to yield a singlet resonance at 38.2 ppm with flanking tin satellites (${}^{3}J_{PSn} = 44.5$ Hz). The IR spectrum of 8 shows two resolvable stretching bands at 1930 and 2060 cm⁻¹ consistent with a LB•W(CO)₅ environment (LB = Lewis base), while a ¹¹⁹Sn NMR resonance, located at 131.3 ppm, is similar as the resonance observed for Ph₃PCMe₂•SnCl₂ (6) (113.3 ppm), despite the change in coordination number at tin. The related N-heterocyclic carbene adduct IPr•SnCl₂•W(CO)₅ has a ¹¹⁹Sn resonance positioned at -71.3 ppm,^{4b} while the ylidic N-heterocyclic olefin complex IPrCH₂•SnCl₂•W(CO)₅ yields a resonance at -96 ppm.^{5a}

The molecular structure of $Ph_3PCMe_2 \cdot SnCl_2 \cdot W(CO)_5$ (8) is presented in Figure 2.10. As discussed earlier for related adducts, binding of the $Ph_3P=CMe_2$ ligand to a $SnCl_2 \cdot W(CO)_5$ unit leads to considerable elongation of the Ph_3P-CMe_2 P-C bond length (from 1.6785(18) Å in the free ligand to 1.8174(18) Å in 8). The

adjacent C-Sn bond length in **8** is 2.2660(18) Å and is similar in value as the C-Sn interaction in the *N*-heterocyclic olefin bound Sn(II) complex IPrCH₂•SnCl₂•W(CO)₅ [2.2435(5) Å *avg*.].^{5*a*} The Sn-W distance in **8** is 2.73047(15) Å and is slightly shorter than the corresponding distances in the structurally authenticated adducts Cy₃P•SnCl₂•W(CO)₅ [2.7438(2) Å]^{4*e*} and IPrCH₂•SnCl₂•W(CO)₅ [2.758(4) Å *avg*.].^{5*a*} As expected, a localized $C_{4\nu}$ coordination environment exists about the tungsten center in **8** with a nearly co-linear Sn-W-C(1) array [177.02(7)°] and Sn-W-C(2-5) bond angles involving the remaining CO groups that approach orthogonal geometries [83.98(7) to 96.07(6)°].

Figure 2.10. Molecular structure of $Ph_3PCMe_2 \cdot SnCl_2 \cdot W(CO)_5$ (8) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): C(6)-Sn 2.2660(18), P-C(6) 1.8174(18), Sn-Cl(1) 2.4217(5), Sn-Cl(2) 2.4018(5), Sn-W 2.73047(15), W-C(1) 2.002(2), W-C(2-5) 2.025(2) to 2.038(2); C(6)-Sn-W 123.82(5), Cl(1)-Sn-Cl(2) 93.901(18), Sn-W-C(1) 177.02(7), Sn-W-C(2-5) 83.98(7) to 96.07(6).

With the successful installation of a Lewis acidic W(CO)₅ group and a Wittig electron pair donor at Sn to give Ph₃PCMe₂•SnCl₂•W(CO)₅ (8), this compound was then combined with the soluble borohydride salt, $Li[BH_4]$, in Et₂O (eqn. 2.4). The resulting mixture contained the Sn(II) dihydride target adduct $Ph_3PCMe_2 \cdot SnH_2 \cdot W(CO)_5$ (9) which could be isolated as a brown solid after crystallization from a diethyl ether/hexanes mixture at -35 °C. Compound 9 was readily identified by the emergence of a new characteristic singlet resonance at 6.66 ppm in the ¹H NMR spectrum which displayed a set of resolvable tin satellites (${}^{1}J_{H}$) $_{119Sn} = 1030 \text{ Hz}$, $^{1}J_{\text{H-117Sn}} = 991 \text{ Hz}$) as expected for the formation of a tin (II) hydride with terminally-positioned hydrogen atoms.^{3a,4b,5a,22} Moreover, a triplet resonance at -49.8 ppm was noted in the ¹¹⁹Sn NMR spectrum of 9 with a ${}^{1}J_{Sn-H}$ coupling constant which mirrored the value obtained from ¹H NMR spectroscopy. Sn-H IR vibrations were also located at 1740 cm⁻¹ with proximal bands from 1891 to 2040 cm⁻¹ due to v(CO) stretches within the W(CO)₅ unit. The A₁¹ v(CO) stretching band at 2040 cm⁻¹ in Ph₃PCMe₂•SnH₂•W(CO)₅ (9) is positioned at a lower wavenumber in relation to the SnCl₂ adduct Ph₃PCMe₂•SnCl₂•W(CO)₅ (8) (2060 cm⁻¹) consistent with a higher degree of electron donation to W(CO)₅ from the electron-rich SnH₂ unit in 9. The analogous complex IPrCH₂•SnH₂•W(CO)₅ affords a v(Sn-H) band in the IR spectrum at 1758 cm⁻¹ with a high frequency CO stretching band at 2043 cm⁻¹, each of which are close in value as in Ph₃PCMe₂•SnH₂•W(CO)₅ (9), reflecting the similar donating ability of the Wittig and NHO donors in this system.^{5a}

The molecular structure of Ph₃PCMe₂•SnH₂•W(CO)₅ (9) is presented in Figure 2.11 and confirms the successful isolation of a new member of the SnH₂ adduct series. By virtue of the hydridic character (and enhanced electron density) of the hydrogen atoms at tin $(Sn^{\delta+}-H^{\delta-})$ that facilitates X-ray scattering, these atoms could be located in the electron difference map. Accordingly, Sn-H distances of 1.73(4) and 1.71(3) Å in 9 were determined. The Sn-W distance in Ph₃PCMe₂•SnH₂•W(CO)₅ (9) is elongated [2.7833(2) Å] in relation to the Sn-W bond length in the SnCl₂ adduct Ph₃PCMe₂•SnCl₂•W(CO)₅ (8) [2.73407(15) Å], despite the anticipated increase of electron density at the SnH₂ center in relation to SnCl₂ (which bears electron withdrawing Cl atoms). The Wittig carbon-tin interaction in $Ph_3PCMe_2 \cdot SnH_2 \cdot W(CO)_5$ (9) is the same within experimental error [2.269(2) Å] as the C-Sn bond length in the halogenated congener 8 [2.2660(18) Å]. The intraligand P-C distance involving the CMe₂ unit in 9 is 1.808(2) Å and matches well the adjacent P-C bond distances within the Ph₃P array [1.802(2) to 1.807(2) Å] indicating the presence of single bonds in each case.

Our investigations into the thermal stability of $Ph_3PCMe_2 \cdot SnH_2 \cdot W(CO)_5$ (9) show that this Wittig complex is less stable than the corresponding carbene-supported adduct $IPr \cdot SnH_2 \cdot W(CO)_5$ reported by our group in 2011.^{4b} Compound 9 melts with decomposition to generate black insoluble product(s) upon heating to 80-81 °C under

Figure 2.11. Molecular structure of $Ph_3PCMe_2 \cdot SnH_2 \cdot W(CO)_5$ (9) with thermal ellipsoids at a 30 % probability level. All carbon-bound hydrogen atoms and diethyl ether solvate have been omitted for clarity. Selected bond lengths (Å) and angles (°): C(6)-Sn 2.269(2), P-C(6) 1.808(2), Sn-H(1) 1.73(4), Sn-H(2) 1.71(3), Sn-W 2.7833(2), W-C(1) 2.019(3), W-C(2-5) 2.026(3) to 2.043(3); C(6)-Sn-W 117.03(6), H(1)-Sn-H(2) 100.3(17), Sn-W-C(1) 174.66(8), Sn-W-C(2-5) 82.77(10) to 92.66(8).

an atmosphere of nitrogen. In addition, compound **9** is stable for a few hours in C_6D_6 solution at room temperature, however if solutions of **9** are allowed to stand for greater than 24 hours, the complete decomposition of **9** into a black metallic precipitate (containing either Sn metal, Sn/W clusters or both) and free Ph₃P occurs, as determined by ³¹P NMR spectroscopy; notably, IPr•SnH₂•W(CO)₅ is stable under

similar conditions. One possible method by which compound 9 decomposes is via C-Sn bond cleavage leading to the production of free $Ph_3P=CMe_2$ (3) and the generation of unstable $H_2Sn \cdot W(CO)_5$. In order to further evaluate the relative binding affinity of Ph₃PCMe₂, IPrCH₂ and IPr, the Wittig analogue Ph₃PCMe₂•SnH₂•W(CO)₅ (9) was combined with stoichiometric amounts of IPr or IPrCH₂ in toluene at room reactions full temperature. These led to the decomposition of $Ph_3PCMe_2 \cdot SnH_2 \cdot W(CO)_5$ before any discernable reactivity (Lewis base exchange) with either IPr or IPrCH₂ was detected.

An attempt was also made to prepare the germastannene adduct $Ph_3PCMe_2 \cdot Cl_2Ge-SnCl_2 \cdot W(CO)_5$ by combining the nucleophilic Ge(II) adduct $Ph_3PCMe_2 \cdot GeCl_2$ (4) with the known stannylene complex, $(THF)_2 \cdot SnCl_2 \cdot W(CO)_5$.²¹ However as noted previously within the IPr adduct series, ^{4f} SnCl_2/GeCl_2 exchange at tungsten transpired to afford the thermally stable germylene complex, $Ph_3PCMe_2 \cdot GeCl_2 \cdot W(CO)_5$ (10) (eqn. 2.5).

Compound **10** was also characterized by a single-crystal X-ray diffraction study (Figure 2.12) and the geometric parameters about the Ge center in **10** are similar to those found in the NHO adduct IPrCH₂•GeCl₂•W(CO)₅, with a slightly elongated Ge-C dative linkage in 10 [2.0826(15) Å] observed relative to in the IPrCH₂ adduct [2.053(2) Å].^{5a}

Figure 2.12. Molecular structure of $Ph_3PCMe_2 \cdot GeCl_2 \cdot W(CO)_5$ (10) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): C(6)-Ge 2.0826(15), P-C(6) 1.8315(16), Ge-Cl(1) 2.2588(4), Ge-Cl(2) 2.2369(4), Ge-W 2.59459(17), W-C(1) 2.0072(18), W-C(2-5) 2.0293(19) to 2.0397(18); C(6)-Ge-W 124.17(4), Cl(1)-Ge-Cl(2) 94.679(17), Ge-W-C(1) 175.25(5), Ge-W-C(2-5) 82.75(6) to 99.11(5).

After showing that the donating ability of the *C*-methylated Wittig reagent Ph₃P=CMe₂ (**3**) is sufficient to obtain reactive hydrides, such as GeH₂ and SnH₂, I decided to explore the thermal decomposition chemistry of the GeH₂-Wittig adduct, Ph₃PCMe₂•GeH₂•BH₃ (**5**) in more controlled conditions to yield germanium nanoparticles (GeNPs). Germanium nanopatricles (GeNPs) are promising materials for optoelectronic applications such as solar cells, flash memory devices, and lithiumion batteries.^{23,24} In addition, as a result of its large exciton radius (*ca.* 17.7 nm) and possible involvement of quantum confinement in light emission, GeNPs could also display tunable size-dependent photoluminescence (PL) spanning the visible and infrared regions of the electromagnetic spectrum.²⁵⁻²⁹ Moreover, GeNPs are

biocompatible/non-toxic making them attractive as biological imaging and therapeutic agents.²⁶ Recently, Vaughn and Schaak presented a comprehensive review outlining known methods for preparing colloidal GeNPs.²⁸ A variety of approaches have been explored including: solution-phase precursor reduction, metathesis of Ge Zintl phases, thermally induced organogermane decomposition, co-reduction of GeI₂ and GeI₄, *etc.*^{23,25,30-44} However precise control of NC dimension and surface chemistry has not yet been achieved. In this regard, methods for preparing well-defined GeNPs are of paramount importance to the future growth of this field.

mentioned earlier, mild heating of the GeH₂-Wittig As adduct Ph₃PCMe₂•GeH₂•BH₃ (5) in toluene to ca. 100 °C yields elemental germanium and soluble byproducts. Positing that Ge particle growth could be controlled to enable nanoparticles formation, the requisite germanium (II) dihydride precursor, 5, was subjected to hot injection (HI) or microwave irradiation (MI) protocols at predefined temperatures (i.e., 100, 150, 190, and 250 °C; see experimental section). To synthesize hydrophobic dodecyl-terminated GeNPs (Scheme 2.4), HI or MI of 5 were performed in a 1:1 (v:v) solution of diphenyl ether and 1-dodecene. Whereas, hydrophilic GeNPs bearing surface bonded 3-dimethylamino-1-propene moieties (i.e., Me₂N-GeNPs) were generated by subjecting 5 to MI in 3-dimethylamino-1propyne; this alkyne adopts the dual role of capping ligand and microwave absorber. Unfortunately, the comparatively low boiling point (*i.e.*, 81 °C) of this alkyne precluded its application in HI syntheses. Surface functionalized GeNPs were freed from reaction by-products (e.g., Ph₃P•BH₃) upon sonication in appropriate

solvent/antisolvent mixtures followed by centrifugation (see experimental section). The initial attempts to prepare hydrophobic GeNPs at 100 and 150 °C *via* HI or MI thermolysis of **5** in 1-dodecene/diphenyl ether yielded only trace product. Bright field transmission electron microscopy (TEM) images of the NPs synthesized *via* MI of 5 at 150 °C showed sparse polydisperse particles of ca. 3-5 nm dimensions (Figure 2.13); HRTEM highlights their crystallinity, however limited yield prevented further characterization.

Scheme 2.4. Synthesis and *in-situ* functionalization of hydrophilic and hydrophobic GeNPs upon thermal or microwave irradiation induced decomposition of Ph₃PCMe₂•GeH₂•BH₃ (5).

Figure 2.13. Representative brightfield TEM and HRTEM images of dodecyl-GeNPs obtained from MI decomposition of **5** at 30 mg/ 5mL at 150 °C in 1:1 (v:v) dodecene/diphenyl ether.

GeNP size and yield increased with HI and MI reaction temperatures. TEM images (Figure 2.14) of dodecyl-GeNPs synthesized by HI at 190 °C show pseudospherical particles with average diameters (d_{avg}) of 10.1±1.7 nm. Dodecyl- and Me₂N-terminated GeNPs (Figures 2.14b, c) synthesized *via* MI at 190 °C are smaller (*i.e.*, $d_{avg} = 5.35 \pm 0.96$ nm, dodecyl-GeNPs; $d_{avg} = 5.41 \pm 0.85$ nm, Me₂N-GeNPs). In all cases HRTEM images show d-spacings of 0.33 nm that are readily attributed to the Ge(111) plane of diamond-structured Ge.⁴⁰

To evaluate the role of precursor concentration on NP size, MI induced decomposition of **5** was performed at concentrations of 10 and 20 mg/5 mL in 1:1 (v:v) 1-dodecene/diphenyl ether. A clear trend emerges that sees smaller particles produced with decreased precursor concentration (Figures 2.15 and 2.16).

Figure 2.14. Representative TEM evaluation of GeNPs obtained from decomposition of 5 at 30 mg/mL at 190 °C. (a) Dodecyl-GeNPs obtained from HI. (b) Dodecyl-GeNPs and (c) Me₂N-GeNPs synthesized by MI.

The FTIR spectra (Figures 2.17a, 2.17b) of dodecyl-terminated GeNPs synthesized by HI and MI methods show absorptions attributable to NC surface coverage by alkyl functionalities. Specifically, absorptions present at 2800-3000 cm⁻¹ are attributed to C-H stretching within a saturated hydrocarbon residue, while accompanying C-H bending appears at 1475 and 1365 cm⁻¹. The FTIR spectrum of the Me₂N-GeNPs (Figure 2.17c) shows features consistent with surface-bonded 3-dimethylamino-1propene moieties.

Figure 2.15. Representative brightfield TEM image and size-distribution of dodecyl-GeNPs obtained from MI decomposition of **5** at 10 mg/ 5mL at 190 °C in 1:1 (v:v) dodecene/diphenyl ether.

Figure 2.16. Representative brightfield TEM image and size-distribution of dodecyl-GeNPs obtained from MI decomposition of **5** at 20 mg/5 mL at 190 °C in 1:1 (v:v) dodecene/diphenyl ether.

The identity of the surface species on Me₂N-GeNPs was further confirmed by direct comparison of the IR spectra obtained for Me₂N-GeNPs and neat 3-dimethylamino-1-propene (Figure 2.18). These IR data are consistent with the HI and MI induced decomposition of **5** yielding hydride-terminated GeNPs that are subsequently

functionalized *via* hydrogermylation of 1-dodecene (dodecyl-GeNPs) or 3dimethylamino-1-propyne (Me₂N-GeNPs). The hydrogermylation reaction yields substitutionally inert Ge-C bonds on the NP surface while the terminal alkyl chains and dimethylamino groups impart hydrophobicity and hydrophilicity, respectively.

Figure 2.17. FTIR spectra of GeNPs obtained from decomposition of **5** at 30 mg/mL at 190 °C. (a) Dodecyl-GeNPs synthesized by HI. (b) Dodecyl-GeNPs and (c) Me_2N -GeNPs synthesized by MI.

Figure 2.18. FTIR spectra of NMe₂-GeNPs (Top) and neat 3-dimethylamino-1-propene (Bottom).

To gain insight into the elemental composition and speciation of the GeNPs obtained from the solution-phase decomposition of **5**, X-ray photoelectron spectroscopy (XPS) was performed.⁴⁵ Survey spectra of all dodecyl-GeNPs confirm only Ge, C, and O are present at the sensitivity of the XPS technique (Figure 2.19). The relative atomic compositions are Ge (19.6%), C (62.7%), O (17.7%) and Ge (21.3%), C (61.5%), O (17.2%) for NPs prepared using HI and MI, respectively. Similarly, survey spectra indicate the relative atomic composition of NMe₂-GeNPs is N (5.2%), Ge (12.5%), C (63.6%) and O (18.7%) (Figure 2.19). The carbon content detected in the present samples arises from surface bonded moieties on the NPs, omnipresent adventitious carbon, and potential impurities. It is non-trivial to account

for the contributions of these carbon components, however a survey spectrum of commercial Ge powder (not shown) provides a baseline estimate of ca. 37% adventitious carbon content. Based upon this value, the N:C ratio found for Me₂N-GeNPs is *ca.* 0.2 and is in excellent agreement with the composition of the expected 3-dimethylamino-1-propene surface termination; from this it can be concluded that the present NPs contain negligible C contamination. Similar compositional analyses for dodecyl-GeNPs are not possible because of the lack of a heteroatom (*i.e.*, N), however it is reasonable the contribution from C impurities is negligible.

Figure 2.19. Survey XP spectra of: (a) Dodecyl-GeNPs prepared by HI (190 °C) induced decomposition of **5** at 30 mg/mL in 1:1 (v:v) dodecene/diphenyl ether. (b) Dodecyl-GeNPs and (c) Me₂N-GeNPs synthesized by MI (190 °C) induced decomposition of **5** at 30 mg/ 5 mL in 1:1 (v:v) dodecene/diphenyl ether.

The oxygen content in the presented NPs is consistent with the complexities of Ge surface chemistry. It can be reasonably attributed to the hydrolysis and oxidation of residual Ge-H surface functionalities during work up and/or high temperature reaction with the diphenyl ether solvent.^{27,35,46} The origin of these oxygen-based species is the subject of ongoing investigation. The Ge 3d region of the high resolution XP spectra (Figure 2.20) show a broad emission centered at ca. 30.5 eV that is can be fit to components at 29.0, 29.8, 30.8, 31.6, and 32.4 eV. The emission at 29.0 eV is characteristic of core Ge atoms; surface atoms bonded to alkyl and alkenyl groups, as well as surface suboxides account for higher oxidation state components.

Figure 2.20. High-resolution XP spectra of the Ge 3d region for GeNPs obtained from decomposition of **5** at 30 mg/mL at 190 °C. (a) Dodecyl-GeNPs synthesized by HI. (b) Dodecyl-GeNPs and (c) Me₂N-GeNPs synthesized by MI. Ge $3d_{3/2}$ fitting components have been omitted for clarity.

Many Ge nanoparticles synthesized *via* solution-phase routes show photoluminescence (PL) in the visible spectral region with blue-light emission often being reported.^{31,34,47} The appearance of blue emission is not readily explained in the context of quantum confinement; in fact, the effective-mass approximation predicts GeNPs of this dimension should emit in the near-IR or IR regions.^{48,49}

Figure 2.21. Photoluminescent properties of Me₂N-GeNPs obtained from MI induced decomposition of **5** at 30 mg/mL at 190 °C. (a) Excitation spectra obtained while monitoring emission at the indicated wavelengths. (b) Emission spectra obtained upon excitation at the indicated wavelengths. (c) PL decay at indicated emission wavelengths for Me₂N-GeNPs. (Solid red lines show the two component fits of the exponential decays).

Figure 2.21a and 2.21b show the PL excitation and PL spectra of Me₂N-GeNPs. Upon excitation at 365 nm blue luminescence is observed. Similar to other reports of blue/green- emitting GeNPs, ^{31,34,47} it was noted that the PL maximum shifts with excitation wavelength (Figure 2.21b). The PL quantum yield was determined to be *ca.* 1.8 % for Me₂N-GeNPs (Figure 2.22). PL lifetimes of the Me₂N-GeNPs (Figure 2.21c) at predefined emission wavelengths were obtained using time-correlated single photon counting methods. The short-lived lifetime components (*i.e.*, 0.42 ns and 3.31 ns) at $\lambda_{em.} = 510$ nm are consistent with previous reports of GeNPs with faster recombination decay.^{40,47} The origin of excitation wavelength dependent PL is currently unclear and may result from preferential excitation of NPs of specific sizes, or surface state emission.⁵⁰ The direct measurements of the band gap of individual NCs with different sizes were also studied in detail.⁵¹

Figure 2.22. PL quantum yield determination for Me₂N-GeNPs.
2.3 Conclusions

It is shown that reactive targets such as GeH_2 and SnH_2 could be generated/intercepted with the aid of a readily available Wittig donor, while parallel chemistry with the commonly used ligands Cy_3P and DMAP was unsuccessful (presumably due to their weaker donating ability in relation to carbon-based ligands). Given the ability to access a wide scope of Wittig donors of the general form $R_3PCR'_2$ in a rapid fashion from inexpensive precursors, it is anticipated that these Lewis bases will be used more actively in the domain of synthetic inorganic main group chemistry in the future. Thus one can view Wittig reagents as competent synthetic analogues to ubiquitous *N*-heterocyclic carbene donors, with their potential use to access new inorganic bonding motifs via coordination chemistry and to advance inorganic element-mediated catalysis envisioned.

In addition, a facile method that provides surface functionalized GeNPs *via* one-pot hot injection or microwave-irradiation induced decomposition of a "bottleable" GeH₂-based precursor was developed. While hot injection and microwave irradiation provided GeNPs, the microwave-initiated method is particularly advantageous as it gives access to GeNPs of different sizes through variation of precursor concentration as well as surface modification using volatile capping ligands. Adding to the appeal of the presented approach, surface Ge-H residues afford sites for incorporating hydrophobic or hydrophilic groups on the periphery of the nanoparticle *via* hydrogermylation. Furthermore, GeNPs of near identical dimension that differ only in surface functionality were prepared and they exhibit very different optical properties. These observations may arise from surface

doping and could open the door to future tailoring of electronic and optical response and are the subject of ongoing investigations.

2.4 Experimental Details

2.4.1 Materials and Instrumentation. All reactions were performed using standard Schlenk line techniques under an atmosphere of nitrogen or in an inert atmosphere glove box (Innovative Technology, Inc.). Solvents were dried using a Grubbs-type solvent purification system⁵² manufactured by Innovative Technology, Inc., degassed (freeze-pump-thaw method) and stored under an atmosphere of nitrogen prior to use. Li[BH₄], Li[BD₄], ⁿBuLi (2.5 M solution in hexanes), H₃B•THF (1.0 M solution in THF), K[HB^sBu₃] (1.0 M solution in THF), [Ph₃P-CH₃]I, Cl₂Ge•dioxane, DMAP and Cy₃P were purchased from Aldrich and used as received. 3-Dimethylamino-1propyne, 1-dodecene and diphenyl ether were purchased from Aldrich, dried over CaH₂ and distilled under nitrogen prior to use. (THF)₂SnCl₂•W(CO)₅ was prepared according to a literature procedure.²¹ ¹H, ²H{¹H}, ¹¹B, ¹³C{¹H} and ¹¹⁹Sn NMR spectra were recorded on a Varian iNova-400 spectrometer and referenced externally to SiMe₄ (¹H and ¹³C{¹H}), Si(CD₃)₄ (²H{¹H}), F₃B•OEt₂ (¹¹B), and SnMe₄ (¹¹⁹Sn) respectively. Elemental analyses were performed by the Analytical and Instrumentation Laboratory at the University of Alberta. Infrared spectra were recorded on a Nicolet IR100 FTIR spectrometer as Nujol mulls between NaCl plates. Melting points were measured in sealed glass capillaries under nitrogen using a MelTemp apparatus and are uncorrected. Scanning electron microscopy (SEM) images were recorded in a Field Emission Scanning Electron Microscope,

JEOL 6301F. Toluene dispersion samples were deposited on cleaned silicon wafer which was attached with aluminium stubs using double sided carbon tape. Conductive coatings of chrome was applied on the samples using Xenosput XE200 sputter coaters before loading them into SEM holder. Images were recorded using secondary electron imaging with an accelerating voltage of 5.0 kV. Transmission electron microscopy (TEM) images were taken with a JOEL 2011TEM with LaB₆ electron gun using an accelerating voltage of 200 kV. TEM samples were prepared by depositing a droplet of dilute toluene suspension of functionalized Ge nanoparticles (GeNPs) onto a holey carbon coated copper grid and the solvent was removed under vacuum. The nanoparticle size was averaged for no fewer than 200 particles using Gatan Digital Micrograph software (Version 2.02.800.0). High-resolution (HR) TEM images were obtained from Hitachi-9500 electron microscope with an accelerating voltage of 300 kV. The HRTEM images were processed using Gatan Digital Micrograph software (Version 2.02.800.0). Photoluminescence (PL) emission and PL excitation spectra of functionalized GeNPs in 100% ethanol were taken using Carry Eclipse spectrophotometer.

2.4.2 X-ray Crystallography. Crystals of suitable quality for X-ray diffraction studies were removed from a vial in a glove box and immediately covered with a thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was selected, mounted on a glass fiber and quickly placed in a low temperature stream of nitrogen on an X-ray diffractometer.⁵³ All data were collected at the University of Alberta using a Bruker APEX II CCD detector/D8 diffractometer using Mo K α (Cy₃P•GeCl₂ (2),

Ph₃PCMe₂•GeCl₂ (4), Ph₃PCMe₂•GeH₂•BH₃ (5). Ph₃PCMe₂•SnCl₂ (6). $Ph_3PCMe_2 \bullet BH_3$ (7), $Ph_3PCMe_2 \bullet SnCl_2 \bullet W(CO)_5$ (8), $Ph_3PCMe_2 \bullet SnH_2 \bullet W(CO)_5$ (9), Ph₃PCMe₂•GeCl₂•W(CO)₅ (8)) or Cu K α (DMAP•GeCl₂ (1), Ph₃PCMe₂ (3)) radiation with the crystals cooled to -100 °C. The data were corrected for absorption through Gaussian integration from the indexing of the crystal faces.⁵⁴ Structures were solved using the direct methods program SHELXS-97⁵⁵ (compounds 1, 3-6), Patterson search/structure expansion facilities within the DIRDIF-2008 program suite⁵⁶ (compounds 2, 6, 8 and 10), or intrinsic phasing SHELXT⁵⁵ (compounds 7 and 9); structure refinement was accomplished using either SHELXL-97 or SHELXL-2013.55 All carbon-bound hydrogen atoms were assigned positions based on the sp² or sp³ hybridization geometries of their attached carbon atoms, and were given thermal parameters 20 % greater than those of their parent atoms. A tabular listing of the crystallographic data for compounds 1-10 can be found in Tables 2.1-2.5.

Special Refinement Conditions. *Compound* 9: The O-C and C-C distances within the disordered Et_2O solvent molecule were restrained to be 1.43(1) and 1.50(1) Å, respectively.

2.4.3 Synthetic Procedures

Synthesis of DMAP•GeCl₂ (1). To a mixture of DMAP (0.069 g, 0.56 mmol) and Cl₂Ge•dioxane (0.130 g, 0.56 mmol) was added 12 mL of toluene. The reaction mixture was stirred overnight to give a colorless solution. The volatiles were then removed under vacuum to give 1 as a white solid (0.147 g, 98 %). Crystals of suitable quality for X-ray crystallography were grown from a toluene/hexanes mixture at -35

°C. ¹H NMR (500 MHz, C₆D₆): $\delta = 1.85$ (s, 6H, N(CH₃)₂), 5.46 (d, ³J_{HH} = 7.5 Hz, 2H, Ar*H*), 8.05 (d, ³J_{HH} = 7.0 Hz, 2H, Ar*H*). ¹³C{¹H} NMR (126 MHz, C₆D₆): $\delta = 38.2$ (N(CH₃)₂), 106.6 (Ar*C*), 143.9 (Ar*C*), 155.6 (Ar*C*). Anal. Calcd. for C₇H₁₀Cl₂GeN₂: C, 31.64; H, 3.79; N, 10.54. Found: C, 31.90; H, 3.80; N. 10.26. Mp (°C): 132-136.

Synthesis of Cy₃P•GeCl₂ (2).¹⁴ Cy₃P (83 mg, 0.29 mmol) and Cl₂Ge•dioxane (69 mg, 0.29 mmol) were combined in 12 mL of toluene. The reaction mixture was stirred overnight to give a white slurry. The mixture was filtered and the resulting filtrate was concentrated to 7 mL, and 2.5 mL of hexanes was carefully layered ontop. This mixture was cooled to -35 °C for 12 hrs to yield white microcrystalline solid, containing **2** and a co-product tentatively identified as a [Cy₃PH]GeCl₃,¹⁵ which was separated from the mother liquor. The solvent was removed from the mother liquor to yield **2** as a white powder (70 mg, 55 %). Crystals of suitable quality for X-ray crystallography were subsequently grown from a toluene/hexanes mixture at -35 °C. ¹H NMR (500 MHz, C₆D₆): δ = 0.91-1.05 (m, 9H, Cy*H*), 1.37-1.60 (m, 15H, Cy*H*), 1.93-1.96 (m, 6H, Cy*H*), 2.25-2.30 (m, 3H, Cy*H*). ¹³C{¹H</sup>) NMR (126 MHz, C₆D₆): δ = 26.3 (s, Cy*C*), 27.4 (d, *J*_{CP} = 10.0 Hz, Cy*C*), 29.7 (s, Cy*C*), 31.9 (d, *J*_{CP} = 3.8 Hz, Cy*C*). ³¹P{¹H</sup>) NMR (162 MHz, C₆D₆): δ = 1.8 (s). Anal. Calcd. for C₁₈H₃₃Cl₂GeP: C, 50.99; H, 7.85. Found: C, 51.03; H, 7.99. Mp (°C): 177-180.

Synthesis of Ph₃P=CMe₂ (3). *n*-BuLi (0.96 mL, 2.5 M solution in hexanes, 2.4 mmol) was added to a 10 mL toluene solution of isopropyltriphenylphosphonium

iodide (1.01 g, 2.3 mmol) and the mixture was stirred for overnight to yield a dark red slurry. The reaction mixture was filtered and the solvent was then removed from the filtrate under vacuum to give **3** as a red powder (0.58 g, 84 %). Crystals suitable for single-crystal X-ray diffraction were grown from a concentrated hexanes solution at - 35 °C. ¹H NMR (400 MHz, C₆D₆): $\delta = 2.17$ (d, ³*J*_{HP} = 16.4 Hz, 6H, C(C*H*₃)₂), 7.03-7.15 (m, 9H, Ar*H*), 7.60-7.66 (m, 6H, Ar*H*). ¹³C{¹H} NMR (100.5 MHz, C₆D₆): $\delta = 9.2$ (d, *J*_{PC} = 123.0 Hz, *C*(CH₃)₂), 20.9 (d, *J*_{CP} = 13.6 Hz, CH₃), 130.5 (s, Ar*C*), 133.2 (s, Ar*C*), 133.9 (d, *J*_{CP} = 8.8 Hz, Ar*C*); the ipso C atoms on the Ph rings could not be located. ³¹P{¹H} NMR (161.8 MHz, C₆D₆): $\delta = 9.8$ (s). Anal. Calcd. for C₂₁H₂₁Cl₂GeP: C, 82.87; H, 6.95. Found: C, 82.00; H, 6.84. Mp (°C): 115-118.

Synthesis of Ph₃PCMe₂•GeCl₂ (4). To a mixture of Ph₃P=CMe₂ (0.42 g, 1.4 mmol) and GeCl₂•dioxane (0.32 g, 1.4 mmol) was added 5 mL of toluene and the mixture was stirred for one hour at room temperature to give an orange slurry. The resulting precipitate was separated from the mother liquor and dried under vacuum. The precipitate was then purified by crystallization from CH₂Cl₂/hexanes at -35 °C to give X-ray quality crystals of 4 (0.29 g, 46 %). ¹H NMR (500 MHz, C₆D₆): δ = 1.88 (d, ³J_{HP} = 20.9 Hz, 6H, C(CH₃)₂), 6.88-6.92 (m, 6H, ArH), 6.98-7.02 (m, 3H, ArH), 7.41-7.46 (m, 6H, ArH). ³¹P{¹H} NMR (161.8 MHz, C₆D₆): δ = 37.5 (s). ¹H NMR (500 MHz, CD₂Cl₂): δ = 1.77 (d, ³J_{HP} = 20.4 Hz, 6H, C(CH₃)₂), 7.58-7.63 (m, 6H, ArH), 7.68-7.77 (m, 9H, ArH). ¹³C{¹H} NMR (125.3 MHz, CD₂Cl₂): δ = 22.1 (s, CH₃), 29.9 (d, J_{PC} = 24.1, C(CH₃)₂), 120.9 (d, J_{CP} = 8.8 Hz, ArC), 129.9 (d, J_{CP} = 11.3 Hz, ArC), 134.2 (s, ArC), 135.1 (d, J_{CP} = 8.8 Hz, ArC). ³¹P{¹H} NMR (161.8

MHz, CD₂Cl₂): δ = 37.4 (s). Anal. Calcd. for C₂₁H₂₁Cl₂GeP: C, 56.31; H, 4.73. Found: C, 55.85; H, 4.63. Mp (°C): 103-105.

Synthesis of Ph₃PCMe₂•GeH₂•BH₃ (5). To a mixture of Ph₃PCMe₂•GeCl₂ (62 mg, 0.14 mmol) and Li[BH₄] (6 mg, 0.3 mmol) was added 5 mL of Et₂O, followed by stirring for 3 hrs at room temperature to give a white slurry. The volatiles were then removed under vacuum and the crude product was dissolved in 10 mL of CH₂Cl₂ and the mixture was filtered. The solvent was removed from the filtrate to yield 5 as a white powder (43 mg, 80 %). Crystals of X-ray quality were grown from a saturated THF solution at -35 °C. ¹H NMR (500 MHz, C_6D_6): $\delta = 1.73$ (br quartet, ¹ $J_{BH} = 94.8$ Hz, 3H, BH₃), 1.66 (d, ${}^{3}J_{HP} = 20.4$ Hz, 6H, C(CH₃)₂), 4.64 (br, 2H, GeH₂), 6.86-6.93 (m, 6H, ArH), 6.97-7.16 (m, 3H, ArH), 7.48-7.51 (m, 6H, ArH). ${}^{13}C{}^{1}H$ NMR (125.3 MHz, C₆D₆): $\delta = 17.4$ (d, ${}^{1}J_{CP} = 23.3$ Hz, C(CH₃)₂), 26.5 (s, CH₃), 121.9 (d, $J_{CP} = 81.0$ Hz, ArC), 129.3 (d, $J_{CP} = 11.4$ Hz, ArC), 133.4 (s, ArC), 134.8 (d, $J_{CP} =$ 8.3 Hz, ArC). ³¹P{¹H} NMR (161.8 MHz, C₆D₆): δ = 38.8 (s). ¹¹B NMR (159.8 MHz, C_6D_6): $\delta = -39.4$ (quartet, ${}^1J_{BH} = 95.4$ Hz, BH_3). IR (cm⁻¹): 1975 (m, v_{Ge-H}) and 2343 (w, v_{B-H}). Anal. Calcd. for C₂₁H₂₆BGeP: C, 64.20; H, 6.67. Found: C, 64.63; H, 6.81. Mp (°C): 110-113.

Synthesis of Ph₃PCMe₂•GeD₂•BD₃ (5D). To a mixture of Ph₃PCMe₂•GeCl₂ (68 mg, 0.15 mmol) and Li[BH₄] (9 mg, 0.34 mmol) was added 5 mL of Et₂O, followed by stirring for 3 hrs at room temperature to give a white slurry. The volatiles were then removed under vacuum and the crude product was dissolved in 10 mL of CH₂Cl₂ and

the mixture was filtered. The solvent was removed from the filtrate to yield **5D** as a white powder (52 mg, 87 %). ¹H NMR (500 MHz, C₆D₆): Similar as Ph₃PCMe₂•GeH₂•BH₃ with very low intensity peaks due to residual GeHD and GeH₂ isotopologues (< 8 %). ²H{¹H} NMR (61.39 MHz, C₆H₆) δ = 1.56 (br, BD₃), 4.63 (s, GeD₂). ¹¹B NMR (159.8 MHz, C₆D₆): δ = -39.4 (br). IR (cm⁻¹): 1377 (m, v_{Ge-D}), 1754 (w, v_{B-D}) and low intensity peaks for Ge-H and B-H at 1975 and 2330 respectively.

Synthesis of Ph₃PCMe₂•SnCl₂ (6). Ph₃P=CMe₂ (113 mg, 0.37 mmol) and SnCl₂ (70 mg, 0.37 mmol) were combined in a 5 mL toluene/ 1 mL THF mixture, followed by stirring for 3 hrs. The solvent was removed under vacuum to yield **6** as a white powder (153 mg, 83 %). Crystals of X-ray quality were grown from a CH₂Cl₂/hexanes solution at -35 °C. ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 1.87$ (d, ³*J*_{HP} = 21.2 Hz, 6H, C(C*H*₃)₂), 7.61-7.76 (m, 15H, Ar*H*). ¹³C{¹H} NMR (125.3 MHz, CD₂Cl₂): $\delta = 21.6$ (s, *C*H₃), 32.3 (d, ¹*J*_{CP} = 24.8 Hz, *C*(CH₃)₂), 121.8 (d, ¹*J*_{CP} = 81.0 Hz, Ar*C*), 130.1 (d, *J*_{CP} = 11.4 Hz, Ar*C*), 134.2 (s, Ar*C*), 134.7 (d, *J*_{CP} = 8.5 Hz, Ar*C*). ³¹P{¹H} NMR (161.8 MHz, CD₂Cl₂): $\delta = 36.9$ (s, satellites: ²*J*_{P-Sn} = *ca*. 89 Hz). ¹¹⁹Sn{¹H} NMR (149 MHz, CD₂Cl₂): $\delta = 113.3$ (br). Anal. Calcd. for C₂₁H₂₁Cl₂PSn: C, 51.06; H, 4.28. Found: C, 49.86; H, 4.28. Mp (°C): 165-167 (turns black 155-157).

Synthesis of Ph₃PCMe₂•BH₃ (7).^{10a} To a solution of Ph₃P=CMe₂ (213 mg, 0.70 mmol) in 5 mL of Et₂O was added a solution of THF•BH₃ (701 μ L, 1.0 M solution in THF, 0.70 mmol) dropwise. The reaction mixture was then stirred overnight at room temperature and the solvent was then removed under vacuum. The resulting solid was

washed with hexanes (3×5 mL) and dried to afford **7** as a white solid (0.154 g, 69 %). Crystals suitable for X-ray crystallography were grown from hexanes/CH₂Cl₂ at -35 °C. ¹H NMR (400 MHz, C₆D₆): $\delta = 1.74$ (d, 6H, ³*J*_{PH} = 21.2 Hz, C(C*H*₃)), 2.33 (q, 3H, ¹*J*_{BH} = 90 Hz, B*H*₃), 6.89-7.01 (m, 9H, Ar*H*), 7.81-7.85 (m, 6H, Ar*H*). ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 30.5$ (s, CH₃), 124.7 (d, *J*_{CP} = 77.0, Ar*C*), 128.7 (d, *J*_{CP} = 10.8, Ar*C*), 132.4 (d, *J*_{CP} = 2.3, Ar*C*), 135.4 (d, *J*_{CP} = 7.8, Ar*C*); the ylidic *C*Me₂ carbon could not be located. ¹¹B NMR (128 MHz, C₆D₆): $\delta = -19.4$ (q, ¹*J*_{BH} = 85.7 Hz, *B*H₃). ³¹P{¹H} NMR (161 MHz, C₆D₆): $\delta = 39.4$ (s).

Synthesis of Ph₃PCMe₂•SnCl₂•W(CO)₅ (8). Ph₃P=CMe₂ (49 mg, 0.17 mmol) and (THF)₂SnCl₂•W(CO)₅ (110 mg, 0.167 mmol) were combined in 10 mL of toluene and stirred for 3 hrs at room temperature to give a yellow slurry. The volatiles were removed under vacuum to afford **8** as a pale yellow powder (130 mg, 94 %). Crystals of X-ray quality were grown from CH₂Cl₂/hexanes at -35 °C. ¹H NMR (400 MHz, C₆D₆): $\delta = 1.61$ (d, ³*J*_{HP} = 20.4 Hz, 6H, C(C*H*₃)₂; satellites: ³*J*_{HSn} and/or ⁴*J*_{HW} = *ca*. 66 Hz), 6.92-7.08 (m, 9H, Ar*H*), 7.32-7.37 (m, 6H, Ar*H*). ¹³C{¹H} NMR (125.3 MHz, C₆D₆): $\delta = 24.6$ (s, CH₃), 32.3 (d, *J*_{CP} = 27.5 Hz, *C*(CH₃)₂), 120.1 (d, *J*_{CP} = 82.7 Hz, Ar*C*), 129.8 (d, *J*_{CP} = 11.6 Hz, Ar*C*), 134.2 (s, Ar*C*), 134.8 (d, *J*_{CP} = 8.8 Hz, Ar*C*), 198.8 (s, satellites: ¹*J*_{CW} = 123.4 Hz, eq. CO), 201.2 (s, ax. CO). ³¹P{¹H} NMR (161.8 MHz, C₆D₆): $\delta = 38.2$ (s, satellites: ²*J*_{P-Sn} = 44.5 Hz). ¹¹⁹Sn{¹H} NMR (149.1 MHz, C₆D₆): $\delta = 131.3$ (d, ²*J*_{Sn-P} = 48.5 Hz). IR (Nujol, cm⁻¹): 1930 (br, v_{CO}) and 2060 (m, v_{CO}). Anal. Calcd. for C₂₆H₂₁Cl₂O₅PSnW: C, 38.18; H, 2.59. Found: C, 38.35; H, 2.65. Mp (°C): 178-180.

Synthesis of Ph₃PCMe₂•SnH₂•W(CO)₅ (9). То mixture of а Ph₃PCMe₂•SnCl₂•W(CO)₅ (78 mg, 0.095 mmol) and Li[BH₄] (4.5 mg, 0.21 mmol) was added 5 mL of Et_2O , followed by stirring for 4 hrs at room temperature to yield a brown slurry. The volatiles were removed under vacuum and the product was extracted with 10 mL toluene and the resulting mixture was filtered. The solvent was then removed under vacuum from the filtrate to yield 9 as a red-brown powder (72 mg, 76 %). Crystals of X-ray quality were grown from Et₂O/hexanes at -35 °C. ¹H NMR (500 MHz, C₆D₆): $\delta = 1.61$ (d, ${}^{3}J_{HP} = 20.4$ Hz, 6H, C(CH₃)₂; satellites: ${}^{3}J_{HSn}$ and/or ${}^{4}J_{HW} = ca.$ 60 Hz), 6.66 (s, 2H, SnH₂; satellites: ${}^{1}J_{H-119Sn} = 1030$ Hz, ${}^{1}J_{H-117Sn} =$ 991 Hz), 6.87-7.06 (m, 9H, ArH), 7.29-7.36 (m, 6H, ArH). ¹³C{¹H} NMR (125.3 MHz, C₆D₆): $\delta = 12.9$ (d, $J_{CP} = 27.5$ Hz, $C(CH_3)_2$), 27.8 (s, CH_3), 121.7 (d, $J_{CP} = 81.6$ Hz, ArC), 129.4 (d, J_{CP} = 11.5 Hz, ArC), 133.6 (s, ArC), 134.5 (d, J_{CP} = 8.3 Hz, ArC), 202.8 (s, eq. CO), 205.1 (s, ax. CO). ${}^{31}P{}^{1}H{}$ NMR (161.8 MHz, C₆D₆): $\delta = 38.3$ (s; satellites: ${}^{2}J_{P-Sn} = 36.3 \text{ Hz}$). ${}^{119}Sn \{{}^{1}H\}$ NMR (149.1 MHz, C₆D₆): $\delta = -49.8 \text{ (d, } {}^{2}J_{Sn-P} =$ 37.4 Hz). ¹¹⁹Sn NMR (149.1 MHz, C₆D₆): $\delta = -49.8$ (t, ¹J_{Sn-H} = ~1074 Hz; the expected t of d pattern was not resolved due to decomposition of 9 during prolonged time period in solution). IR (Nujol, cm⁻¹): 1740 (s, v_{sn-H}) and 1891 (w, v_{CO}), 1959 (s, υ_{CO}), 2040 (m, υ_{CO}). Anal. Calcd. for C₂₆H₂₃O₅PSnW: C, 41.69; H, 3.10. Found: C, 42.72; H, 3.63. Mp (°C): 80-82 (turns black 70-75 °C).

Synthesis of Ph₃PCMe₂•SnD₂•W(CO)₅ (9D). To a mixture of Ph₃PCMe₂•SnCl₂•W(CO)₅ (130 mg, 0.16 mmol) and Li[BD₄] (9 mg, 0.3 mmol) was added 5 mL of Et₂O, followed by stirring for 4 hrs at room temperature to yield a

brown slurry. The volatiles were removed under vacuum and the product was extracted with 10 mL toluene and the resulting mixture was filtered. The solvent was then removed under vacuum from the filtrate to yield **9D** as a red-brown powder (73 mg, 61 %). ¹H NMR (500 MHz, C₆D₆): same as Ph₃PCMe₂•SnH₂•W(CO)₅ with very low intensity peaks due to residual SnHD and SnH₂ isotopomers (< 9 %). ²H{¹H} NMR (61.39 MHz, C₆H₆) δ = 6.66 (s, SnD₂). IR (cm⁻¹): 1975 (m, v_{CO}) and 2343 (w, v_{CO}), 1254 (v_{Sn-D}); very low intensity v_{Sn-H} peak at 1746 cm⁻¹.

Synthesis of Ph₃PCMe₂•GeCl₂•W(CO)s (10). Ph₃PCMe₂•GeCl₂ (43 mg, 0.096 mmol) and (THF)₂•SnCl₂•W(CO)₅ (63 mg, 0.096 mmol) were combined in 10 mL of toluene and stirred for 24 hrs at room temperature to give a pale yellow slurry. The volatiles were removed from the reaction mixture and 15 mL of CH₂Cl₂ was added. The resulting solution was filtered and the solvent was removed from the filtrate to give **10** as a white powder (73 mg, 94 %). Crystals of suitable quality for X-ray analysis were grown from CH₂Cl₂/hexanes at -35 °C. ¹H NMR (500 MHz, C₆D₆): $\delta = 1.49$ (d, ³*J*_{HP} = 19.9 Hz, 6H, C(*CH*₃)₂), 6.89-6.94 (m, 6H, Ar*H*), 6.97-7.03 (m, 3H, Ar*H*), 7.38-7.44 (m, 6H, Ar*H*). ¹³C {¹H} NMR (125.3 MHz, C₆D₆): $\delta = 26.2$ (s, *C*H₃), 32.4 (d, *J*_{CP} = 25.5 Hz, *C*(CH₃)₂), 120.4 (d, *J*_{CP} = 82.1 Hz, Ar*C*), 129.3 (d, *J*_{CP} = 6.5 Hz, Ar*C*), 133.8 (s, Ar*C*), 135.5 (d, *J*_{CP} = 8.8 Hz, Ar*C*), 199.5 (s, eq. *C*O), 202.0 (s, ax. *C*O). ³¹P {¹H} NMR (161.8 MHz, C₆D₆): $\delta = 38.8$ (s). IR (Nujol, cm⁻¹): 1924 (br, u_{CO}) and 2063 (m, u_{CO}). Anal. Calcd. for C₂₆H₂₁Cl₂O₅PGeW: C, 40.46; H, 2.74. Found: C, 40.44; H, 2.72. Mp (°C): 188-192.

Reaction of DMAP•GeCl₂ (1) with Li[BH4]. To a mixture of the DMAP•GeCl₂ (126 mg, 0.47 mmol) and Li[BH4] (22 mg, 0.99 mmol) was added 5 mL of diethyl ether. Upon addition of the solvent a rapid reaction ensued as evidenced by the formation of (presumably) elemental Ge. Analysis of the soluble fraction after 12 hrs of stirring revealed the clean presence of DMAP•BH₃,⁵⁷ which was identified by comparision of the ¹¹B NMR spectroscopic data with those found in the literature.⁵⁷ In order to isolate DMAP•BH₃, the solvent was removed from the reaction mixture and 6 mL of CH₂Cl₂ was added. The resulting mixture was filtered and the volatiles were removed from the filtrate to yield DMAP•BH₃ as a white powder as DMAP•BH₃ (51 mg, 79 %).

Reaction of Cy₃P•GeCl₂ (2) with Li[BH₄]. Following an identical procedure as listed for the reaction of DMAP•GeCl₂ with Li[BH₄], a mixture of the Cy₃P•GeCl₂ (38 mg, 0.089 mmol) and Li[BH₄] (5 mg, 0.2 mmol) were combined in 5 mL of Et₂O. The resulting mixture containing (presumably) elemental Ge and Cy₃P•BH₃⁵⁸ was purified by removing the voltailes, followed by extraction of Cy₃P•BH₃ with 6 mL of CH₂Cl₂. The isolated white solid from the soluble extract (23 mg, 87 %) was identified as Cy₃P•BH₃ by comparison of the ¹¹B and ³¹P NMR spectroscopic data with those found in the literature.⁵⁸

Reaction of Ph₃PCMe₂•SnCl₂ (6) with Li[BH₄]. To a mixture of the Ph₃PCMe₂•SnCl₂ (99 mg, 0.20 mmol) and Li[BH₄] (10 mg, 0.44 mmol) was added 5 mL of diethyl ether. The resulting slurry was stirred for 2 hrs to form a shiny black

precipitate (presumably metallic tin) with the formation of Ph₃PCMe₂•BH₃ (7) as the sole soluble product, as evidenced by ¹H, ¹¹B and ³¹P NMR spectroscopy.

Reaction of Ph₃PCMe₂•GeH₂•BH₃ (5) with IPr. To a mixture of Ph₃PCMe₂•GeH₂•BH₃ (5) (63 mg, 0.16 mmol) and IPr (62 mg, 0.16 mmol) 10 mL toluene was added. The reaction mixture was stirred for overnight. The volatiles were removed under vacuum to yield a brown powder. The ¹H, ³¹P and ¹¹B NMR spectra were received without further purification. These spectroscopic methods show the formation of IPr•GeH₂•BH₃^{4a}, Ph₃PCMe₂ (**3**), PPh₃, an unidentified product (³¹P{¹H} NMR (161.8 MHz, C₆D₆): $\delta = 31.7$) and minor amount of the starting material Ph₃PCMe₂•GeH₂•BH₃ (**5**).

Thermolysis of Ph₃PCMe₂•GeH₂•BH₃ (5). Compound **5** (40 mg, 0.10 mmol) was dissolved in 10 mL of toluene and the solution was heated to reflux. Within 4 hrs a grey suspension was formed. The reflux was continued for 24 hrs to obtain grayish black slurry. The reaction mixture was filtered and the solvent was removed from the filtrate to yield a white solid which was identified by ¹H, ¹¹B, ³¹P NMR spectroscopy. The different NMR spectroscopic methods suggest the formation of Ph₃P•BH₃¹⁸ (> 95 % yield by ³¹P NMR spectroscopy; ³¹P {¹H} NMR (161.8 MHz, C₆D₆): $\delta = 21.7$ ppm. ¹¹B NMR (159.8 MHz, C₆D₆): $\delta = 42.1$ ppm, ¹*J*_{BP} = 43.7 Hz). Another peak in ¹¹B NMR at 80 ppm which is tentatively assigned as being the triorganoborane ⁱPr₃B (literature ¹¹B NMR shift = 83.7 ppm in C₆D₆). The precipitate was studied by EDX and SEM techniques.

Decomposition study on Ph₃PCMe₂•SnH₂•W(CO)₅ (9). Compound 9 (45 mg, mmol) was dissolved in 10 mL of toluene and stirred at room temperature for 24 hrs to yield a brown solution with black precipitate. The solvent was removed under vacuum. The solid was studied by different spectroscopic techniques. ³¹P NMR suggests the formation of PPh₃ as one of the decomposition product.

Synthesis of hydrophilic GeNPs with NMe₂ surface groups. Ph₃PCMe₂•GeH₂•BH₃ (5) (30 mg, 0.076 mmol) and 5 mL of 3-dimethylamino-1-propyne were transferred into a 5 mL microwave vial in a nitrogen filled glovebox. The microwave vial was sealed inside the glovebox and sonicated for 5 min before placing it into a Biotage Initiator microwave reactor. The mixture was irradiated for 2 hours at 190 °C to give a dark red solution. The volatiles were removed from the resulting mixture using a rotary evaporator and the crude product was redispersed in 8 mL of toluene with sonication, followed by addition of ca. 30 mL of hexane. This mixture was centrifuged at 14000 rpm to afford a red solid that was separated from the supernatant and isolated. The resulting pellet was redispersed in 40 mL of toluene/hexanes (1:4) with sonication. The cloudy mixture was centrifuged at 14000 rpm to yield a red solid and the procedure was repeated two more times to afford the GeNPs as a red solid. The hydrophilic NPs are soluble in protic solvent such as alcohols as well as aprotic solvents such as DMSO, DMF, and THF. They are also soluble in aqueous alcohol. Yield: 7 mg.

Preparation of dodecyl-capped GeNPs via microwave irradiation. Ph₃PCMe₂•GeH₂•BH₃ (5) (30 mg, 0.076 mmol), 2.5 mL of 1-dodecene and 2.5 mL of diphenyl ether were transferred into a 5 mL microwave vial under atmosphere of nitrogen. The microwave vial was sealed inside the glovebox and sonicated for 5 min. before placing it into a Biotage Initiator microwave reactor. The reaction mixture was irradiated for 1 hr at predetermined temperatures (*i.e.*, 100, 150, 190, and 250 °C). A mixture of toluene/methanol (1:4; 40 mL) was added to the mixture followed by centrifugation at 14000 rpm to provide a red solid. The supernatant was decanted and discarded. The pellet was redispersed in 40 mL of toluene/methanol (1:4) mixture with sonication. The cloudy mixture was centrifuged at 14000 rpm to yield a red solid and the procedure was repeated two more times to afford the GeNPs as a red solid. Hydrophobic GeNPs were soluble in hydrophobic solvents such as toluene, CHCl₃, and THF. Yield: 9.5 mg for 190 °C. Lower concentrations (*i.e.*, 10 and 20 mg/5 mL) of 1 in 1:1 (v:v) 1-dodecene/diphenyl ether were used to produce various sizes dodecyl-GeNPs.

Synthesis of dodecyl-capped GeNPs via hot-injection method. Ph₃PCMe₂•GeH₂•BH₃ (**5**) (60 mg, 0.16 mmol) in 1.5 mL diphenyl ether was injected into a hot stirring solvent mixture of 1-dodecene (5 mL) and diphenyl ether (4 mL) at 100, 150, and 190 °C under an argon atmosphere. The reaction mixture turned from colorless to yellow with the formation of a gas. After heating for 1 hour the reaction mixture turned to light yellow (100 °C), yellow (150 °C), and red (190 °C). The reaction mixtures were quenched upon addition of 10 mL dry cold toluene. Subsequently, 40 mL of toluene/methanol (1:4) was added, followed by centrifugation at 14000 rpm to provide a yellow (for 100 and 150 °C) or red (for 190 °C) solid. The supernatant was decanted and discarded. The pellet was redispersed in 40 mL of toluene/methanol (1:4) with sonication. The cloudy mixture was centrifuged at 14000 rpm to yield a red solid and the procedure was repeated two more times to afford the GeNPs as a red solid. Yield: 15.2 mg at 190 °C. Reactions at 100 and 150 °C yielded trace quantities of GeNPs.

GeNPs Characterization Details:

Photoluminescence (PL) Lifetimes: Nanosecond (ns) lifetime measurements were performed using an excitation pulse of a 400-nm second harmonic signal from a BBO crystal pumped by 800-nm pulses from a Ti: Sapphire laser (Coherent RegA900 with 65 fs pulse width and 250 kHz repetition rate) with average excitation power of 5.28 mW. Time-resolved PL was recorded using a time-correlated single-photon-counting (TCSPC) unit (Picoharp 300, Picoquant) equipped with a single-photon avalanche photodiode (SPAD, PDM Series by Micro Photon Devices) and coupled to a monochromator (Acton SP2500, Princeton Instruments). The TCSPC system has a time resolution of 50 \pm 4 ps. A 435-nm long pass filter (Edmund optics) was placed at the entrance of the spectrometer to block scattered laser pulses. For microsecond carrier recombination lifetime measurements, 1 kHz frequency-doubled 400 nm pulses from another Ti: Sapphire laser (Coherent Legend Elite, 45 fs pulse width) were used to excite the PL at an average excitation power of 4.8 mW, however, no microsecond PL component was observed. A fast silicon photodiode (Thorlabs,

PDA36A, rise time 20.6 ns) coupled to a 300 MHz oscilloscope (Tektronix) was used to measure the microsecond carrier recombination lifetime. The photodiode was placed at a path perpendicular to the excitation beam and 10-nm bandpass filters (Edmund Optics) were used to select a particular emission wavelength. The carrier recombination lifetimes were accurately fitted by double exponential decay:

$$y(t) = Ae^{-t/\tau_1} + Be^{-t/\tau_2} + y_0$$

where τ_1 and τ_2 are the decay times and A and B are the respective amplitudes of the decay components. The constant offset term, y_0 was insignificant compared to the coefficients A and B.

Quantum yield (QY) determination: Background subtracted UV-vis absorption spectra and solvent corrected PL emission spectra of predefined dilutions of NMe₂-GeNPs solution (in ethanol) and standard (in cyclohexane) were collected at excitation wavelength 350 nm. The integrated intensities (from 360 - 600 nm) were determined from the solvent corrected PL spectra and plotted vs. respective absorbance at 350 nm. QY was determined using the relationship noted below; where Slope_{GeNPs} and Slope_{Std} were determined from the plot in Fig. S10 and *n* is refractive index of the solvent.⁵⁹ The PL standard of choice for the present study was 9,10-diphenylanthracene (QY = 97%).⁶⁰ QY of NMe₂-GeNPs,

$$\boldsymbol{\Phi}_{GeNPs} = \boldsymbol{\Phi}_{Std} \frac{Slope_{GeNPs}}{Slope_{Std}} \left(\frac{n_{ethanol}}{n_{cyclohexane}}\right)^{2}$$

 $= 0.97 \times (1144.04/55173.46) \times (1.361/1.4266)^{2} = 0.018 = 1.8 \%$

2.5 Crystallographic Data

Compound	1	2
Formula	C7H10Cl2P2GeN2	C ₁₈ H ₃₃ Cl ₂ GeP ₂
Formula weight	256.66	423.90
Crystal system	monoclinic	orthorhombic
Space group	$P2_{1}/n$	$Pca2_1$
<i>a</i> (Å)	7.3784(2)	15.158(5)
<i>b</i> (Å)	10.6075(3)	9.974(3)
<i>c</i> (Å)	13.2845(3)	13.629(11)
α (deg)	90	90
β (deg)	90.1560(10)	90
$\gamma(\text{deg})$	90	90
$V(Å^3)$	1039.73(5)	2060.5(11)
Ζ	4	4
ρ (g/cm ³)	1.697	1.366
abs coeff (mm ⁻¹)	8.330	1.820
T (K)	173(1)	173(1)
$2\theta_{max}$ (°)	137.42	54.98
total data	6480	16583
unique data(Rint)	1889 (0.0366)	4664 (0.0204)
Obs data $[I > 2(\sigma(I)]$	1664	4527
Params	111	199
$R_1 \left[I > 2\sigma(I)\right]^a$	0.0313	0.0189
wR ₂ [all data] ^{a}	0.0850	0.0510
max/min $\Delta \rho$ (e ⁻ Å ⁻³)	0.497/-0.412	0.530/-0.254

Table 2.1: Crystallographic data for 1 and 2.

 $K_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; \ wK_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]$

Compound	3	4
Formula	C ₂₁ H ₂₁ P	C ₂₁ H ₂₁ Cl ₂ GeP
Formula weight	304.35	447.84
Crystal system	triclinic	orthorhombic
Space group	$P\bar{1}$	$Pna2_1$
<i>a</i> (Å)	10.0042(2)	12.0720(3)
<i>b</i> (Å)	10.1516(2)	9.3272(3)
<i>c</i> (Å)	18.8977(4)	17.8199(5)
α (deg)	104.8757(15)	90
β (deg)	93.2352(13)	90
$\gamma(\text{deg})$	112.6166(12)	90
$V(Å^3)$	1686.16(6)	2006.48(10)
Z	4	4
ho (g/cm ³)	1.199	1.482
abs coeff (mm ⁻¹)	1.372	1.874
T (K)	173(1)	173(1)
$2\theta_{max}$ (°)	142.50	55.02
total data	11431	16975
unique data (R _{int})	6200 (0.0173)	4572 (0.0159)
Obs data $[I \ge 2(\sigma(I))]$	5443	4472
Params	401	226
$\mathbf{R}_1 \left[I > 2 \sigma(I) \right]^a$	0.0379	0.0164
wR ₂ [all data] ^{a}	0.1020	0.0435
$\frac{\text{max}/\text{min }\Delta\rho(\text{e}^{-}\text{\AA}^{-3})}{2}$	0.423/-0.207	0.287/-0.185

 Table 2.2: Crystallographic data for 3 and 4.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$

Compound	5 •THF	6
Formula	C ₂₅ H ₃₄ BGeOP	$C_{21}H_{21}Cl_2PSn$
Formula weight	464.89	493.94
Crystal system	monoclinic	monoclinic
Space group	C2/c	C2/c
<i>a</i> (Å)	34.2302(9)	12.9507(4)
<i>b</i> (Å)	7.9115(2)	14.5477(4)
<i>c</i> (Å)	23.0344(6)	22.1627(6)
α (deg)	90	90
β (deg)	128.5873(3)	103.1066(3)
$\gamma(\text{deg})$	90	90
$V(Å^3)$	4876.0(2)	4066.7(2)
Ζ	8	8
ho (g/cm ³)	1.267	1.613
abs coeff (mm ⁻¹)	1.335	1.599
T (K)	173(1)	173(1)
$2\theta_{max}$ (°)	56.49	54.93
total data	22028	17697
unique data (Rint)	5986 (0.0188)	4658 (0.0144)
Obs data [$I > 2(\sigma(I))$]	5317	4367
Params	284	228
$R_1 [I > 2\sigma(I)]^a$	0.0264	0.0180
wR ₂ [all data] ^{a}	0.0735	0.0466
max/min $\Delta \rho (e^{-} \text{\AA}^{-3})$	0.858/-0.394	0.438/-0.198
$a R_{I} = \sum F_{o} - F_{c} / \sum F_{o} ; w_{I}$	$R_2 = \sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^4)$	$1^{1/2}$

Table 2.3: Crystallographic data for **5** and **6**.

Compound	7	8
Formula	$C_{21}H_{24}BP$	C ₂₆ H ₂₁ Cl ₂ O ₅ PSnW
Formula weight	318.18	817.84
Crystal system	triclinic	monoclinic
Space group	$P\overline{1}$	<i>I</i> 2/ <i>a</i>
<i>a</i> (Å)	9.7208(4)	14.4711(6)
<i>b</i> (Å)	9.9807(4)	12.6086(5)
<i>c</i> (Å)	10.0913(4)	31.0557(13)
α (deg)	99.4355(4)	90
β (deg)	92.3567(5)	96.8451(4)
$\gamma(\text{deg})$	113.1114(4)	90
$V(\text{\AA}^3)$	882.28(6)	5626(4)
Ζ	2	8
ρ (g/cm ³)	1.198	1.931
abs coeff (mm ⁻¹)	0.153	5.254
T (K)	173(1)	173(1)
$2\theta_{\max}(^{\circ})$	57.87	56.66
total data	8248	25310
unique data (R _{int})	4297 (0.0128)	6879 (0.0151)
Obs data [$I > 2(\sigma(I)$]	3890	6540
Params	222	326
$\mathbf{R}_1 \left[I > 2 \sigma(I) \right]^a$	0.0348	0.0154
wR ₂ [all data] ^{a}	0.0928	0.0387
$\frac{\text{max}/\text{min }\Delta\rho(\text{e}^{-}\text{\AA}^{-3})}{}$	0.426/-0.235	0.876/-0.359

 Table 2.4: Crystallographic data for 7 and 8.

 ${}^{d}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{T}$

Compound	9• 0.5 Et ₂ O	10
Formula	C ₂₈ H ₂₈ O _{5.5} PSnW	C ₂₆ H ₂₁ Cl ₂ GeO ₅ PW
Formula weight	786.01	771.74
Crystal system	triclinic	monoclinic
Space group	$P\overline{1}$	I2/a
<i>a</i> (Å)	10.7586(6)	14.2653(4)
<i>b</i> (Å)	11.9138(7)	12.4535(3)
<i>c</i> (Å)	12.7748(8)	31.0261(3)
α (deg)	79.1297(6)	90
β (deg)	89.4825(7)	97.2299(2)
$\gamma(\text{deg})$	64.8919(6)	90
$V(Å^3)$	1451.45(15)	5468.1(2)
Ζ	2	8
ρ (g/cm ³)	1.798	1.875
abs coeff (mm ⁻¹)	4.911	5.592
T (K)	173(1)	173(1)
$2\theta_{max}$ (°)	52.79	55.11
total data	30449	24150
unique data (R _{int})	5932 (0.0168)	6334 (0.0122)
Obs data [$I > 2(\sigma(I))$]	5850	6063
Params	335	325
$R_1 [I > 2\sigma(I)]^a$	0.0167	0.0129
wR ₂ [all data] ^{a}	0.0425	0.0311
max/min $\Delta \rho$ (e ⁻ Å ⁻³)	1.019/-0.738	0.518/-0.391
$a R_{I} = \sum F_{o} - F_{c} / \sum F_{o} ; v$	$wR_2 = \sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^4)$	1 ^{1/2}

 Table 2.5: Crystallographic data for 9 and 10.

2.6 References

- (a) Arduengo, A. J. III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361;
 (b) Kuhn, N.; Kratz, T. Synthesis 1993, 561; (c) Dröge, T.; Glorius, F. Angew. Chem. Int. Ed. 2010, 49, 6940; (d) Diéz-González, S.; Nolan, S. P. Coord. Chem. Rev. 2007, 251, 874; For related carbene-based donors, see: (e) Martin, D.; Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Organometallics 2011, 30, 5304; (f) Crabtree, R. H. Coord. Chem. Rev. 2013, 257, 755.
- (a) Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. Science 2012, 336, 1420; (b) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F. III; Schleyer, P. v. R.; Robinson, G. H. Science 2008, 321, 1069; (c) Sidiropoulos, A.; Jones, C.; Stasch, A.; Klein, S.; Frenking, G. Angew. Chem. Int. Ed. 2009, 48, 9701; (d) Jones, C., Sidiropoulos, A.; Holzmann, N.; Frenking, G.; Stasch, A. Chem. Commun. 2012, 48, 9855; (e) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F. III; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2008, 130, 14970; (f) Abraham, M. Y.; Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F. III; Schleyer, P. v. R.; Robinson, G. H. Chem. Eur. J. 2010, 16, 432.
- For recent examples with IPr and related NHC donors, see: (a) Sindlinger, C. P.; Wesemann, L. Chem. Sci. 2014, 5, 2739; (b) Filippou, A.; Baars, B.; Chernov, O.; Lebedev, Y. N.; Schnakenburg, G. Angew. Chem. Int. Ed. 2014, 53, 565; (c) Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F. III; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2013, 135, 19139; (d) Xiong, Y.; Yao, S.; Inoue, S.; Epping, J. D.; Driess, M. Angew. Chem., Int. Ed. 2013, 52, 7147; (e) Mondal, K. C.; Samuel, P. P.; Tretiakov, M.; Sing, A. P.; Roesky, H. W.; Stückl, A. C.; Niepötter, B.; Carl,

E.; Wolf, H.; Herbst-Irmer, R.; Stalke, D. Inorg. Chem. 2013, 52, 4736; (f) Al-Rafia, S. M. I.; Momeni, M. R.; McDonald, R.; Ferguson, M. J.; Brown, A.; Rivard, E. Angew. Chem. Int. Ed. 2013, 52, 6390; (g) Jana, A.; Huch, V.; Scheschkewitz, D. Angew. Chem. Int. Ed. 2013, 52, 12179.

- (a) Thimer, K. C.; Al-Rafia, S. M. I.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2009, 7119; (b) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem. Soc. 2011, 133, 777; (c) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Angew. Chem. Int. Ed. 2011, 50, 8354; (d) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. Commun. 2012, 48, 1308; (e) Al-Rafia, S. M. I.; Shynkaruk, O.; McDonald, S. M.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Herber, R. H.; Rivard, E. Inorg. Chem. 2013, 52, 5581; (f) Al-Rafia, S. M.; Momeni, M. R.; Ferguson, M. J.; McDonald, R.; Brown, A., Rivard, E. Organometallics 2013, 32, 6658; (g) For a recent review of this field, see: Rivard, E. Dalton. Trans. 2014, 43, 8577.
- (a) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2011, 47, 6987; For related studies involving NHOs, see: (b) Kuhn, N.; Bohnen, H.; Kreutzberg, J.; Bläser, D.; Boese, R. J. Chem. Soc., Chem. Commun. 1993, 1136. (c) Fürstner, A.; Alcarazo, M.; Goddard, R.; Lehmann, C. W. Angew. Chem. Int. Ed. 2008, 47, 3210; (d) Dumrath, A.; Wu, X. -F.; Neumann, H.; Spannenberg, A.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 8988; (e) Malcolm, A. C.; Sabourin, K. J.; McDonald, R.; Ferguson, M. J.; Rivard, E. Inorg. Chem. 2012, 51, 12905; (f) Wang, Y.; Abraham, M. Y;

Gilliard, R. J. Jr.; Sexton, D. R.; Wei, P.; Robinson, G. H. *Organometallics* **2013**, *32*, 6639; (g) Berger, C. J.; He, G.; Merten, C.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Inorg. Chem.* **2014**, *53*, 1475.

- 6. (a) Jasinski, J. M.; Gates, S. M. Acc. Chem. Res. 1991, 24, 9; (b) Isobe, C.; Cho, H.-C.; Sewell, J. E. Surf. Sci. 1993, 295, 117.
- 7. Bestmann, H. J.; Kratzer, O. Chem. Ber. 1963, 96, 1899.
- (a) Wittig, G.; Schöllkopf, U. Chem. Ber.-Rec. 1954, 87, 1318; (b) Beedham, I.; Micklefield, J. Curr. Org. Syn. 2005, 2, 231; (c) Xu, S.; He, Z. RSC Adv. 2013, 3, 16885.
- For selected examples, see: (a) Pörschke, K. –R.; Wilke, G.; Mynott, R. Chem. Ber.
 1985, 118, 298; (b) Fortier, S.; Kaltsoyannis, N.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 14224.
- (a) Bestmann, H. J.; Sühs, K.; Röder, T. Angew. Chem. Int. Ed. Engl. 1981, 20, 1038; (b) Borisova, I. V.; Zemlyansky, N. N.; Belsky, V. K.; Kolosova, N. D.; Sobolev, A. N.; Luzikov, Y. N.; Ustynyuk, Y. A.; Beletskaya, I. P. J. Chem. Soc., Chem. Commun. 1982, 1090; (c) Bestmann, H. J.; Röder, T.; Sühs, K. Chem. Ber. 1988, 121, 1509. (d) Breitsameter, F.; Schrödel, H.-P.; Schmidpeter, A.; Nöth, H.; Rojas-Lima, S. Z. Anorg. Allg. Chem. 1999, 625, 1293.
- 11. (a) Prabusankar, G.; Sathyanarayana, A.; Suresh, P.; Babu, C. N.; Srinivas, K.; Metla, B. P. R. *Coord. Chem. Rev.* 2014, 269, 96; (b) Inoue, S.; Eisenhut, C. J. Am. *Chem. Soc.* 2013, 135, 18315; (c) Abraham, M. Y.; Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F. III; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2011, 133, 8874; (d) Al-Rafia, S. M. I.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Chem.*

Eur. J. **2012**, *18*, 13810; (*e*) Kinjo, R.; Donnadieu, B.; Celik, M. A.; Frenking, G.; Bertrand, G. *Science* **2011**, *333*, 610; (*f*) Bonyhady, S. J.; Collis, D.; Frenking, G.; Holzmann, N.; Jones, C.; Stasch, A. *Nat. Chem.* **2010**, *2*, 865.

- 12. (a) Chen, M.; Feng, Y.-G.; Wang, X.; Li, T.-C.; Zhang, J.-Y.; Qian, D.-J. Langmuir
 2007, 23, 5296; (b) Nyamen, L. D.; Revaprasadu, N.; Pullabhotla, R. V. S. R.;
 Nejo, A. A.; Ndifon, P. T.; Malik, M. A.; O'Brien, P. Polyhedron 2013, 56, 62; (c)
 Hines, D. A.; Kamat, P. V. ACS Appl. Mater. Interfaces 2014, 6, 3041.
- 13. (a) King, R. B. Inorg. Chem. 1963, 2, 199; (b) Jutzi, P.; Hoffman, J.; Brauner, D. J.; Krüger, C. Angew. Chem. Int. Ed. Engl. 1973, 12, 1002; (c) du Mont, W.-W.; Neudert, B.; Rudolph, C.; Schumann, H. Angew. Chem. Int. Ed. Engl. 1976, 15, 308; (d) Ando, W.; Sekiguchi, A.; Hagiwara, K.; Sakakibara, A.; Yoshida, H. Organometallics 1988, 7, 558; (e) Pu, L.; Twamley, B.; Power, P. P. Organometallics 2000, 19, 2874; (f) Hadlington, T. J.; Hermann, M.; Li, J.; Frenking, G.; Jones, C. Angew. Chem. Int. Ed. 2013, 52, 10199; (g) See also: Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009, 109, 3479.
- 14. For a prior report involving the preparation of Cy₃P•GeCl₂, see: Doddi, A.; Gemel,
 C.; Winter, M.; Fischer, R. A.; Goedecke, C.; Rzepa, H. S.; Frenking, G. Angew. *Chem. Int. Ed.* 2013, 52, 450.
- 15. The identification of the $[HPCy_3]^+$ salt by-product formed in the reaction of Cy_3P with $Cl_2Ge\bullet dioxane$ was accomplished by ³¹P NMR spectroscopy ($\delta = 20.2$ ppm) and the detection of a characteristic doublet ¹H NMR resonance for the P-H residue at 7.12 (${}^{1}J_{PH} = 488$ Hz) in C₆D₆; this latter resonance collapsed to a single resonance in the ¹H{³¹P} spectrum. Phosphonium salts of GeCl₃⁻ ([HPR₃]GeCl₃)

have been reported in the literature: (*a*) du Mont, W.-W.; Rudolph, G. Chem. Ber. 1976, 109, 3419; (*b*) Dal Canto, R. A.; Roskamp, E. J. J. Org. Chem. 1992, 57, 406; (*c*) Davis, M. F.; Levason, W.; Reid, G.; Webster, M. Dalton Trans. 2008, 2261.

- 16. (a) Kolodiazhnyi, O. I. Tetrahedron 1996, 52, 1855; (b) Cristau, H.-J. Chem. Rev.
 1994, 94, 1299; (c) Bestmann, H. J.; Arenz, T. Angew. Chem. Int. Ed. Engl. 1986, 25, 559.
- 17. Rajendran, K. V.; Gilheany, D. G. Chem. Commun. 2012, 48, 817.
- Papp, R.; Somoza Jr., F. B.; Sieler, J.; Blaurock, S.; Hey-Hawkins, E. J. Organomet. Chem. 1999, 585, 127.
- For related studies involving hydride transfer to carbene donor sites (followed by ring-expansion), see: (a) Arrowsmith, M.; Hill, M. S.; Kociok-Köhn, MacDougall, D. J.; Mahon, M. F. Angew. Chem. Int. Ed. 2012, 51, 2098; (b) Schmidt, D.; Berthel, J. H. J.; Pietsch, S.; Radius, U. Angew. Chem. Int. Ed. 2012, 51, 8881; (c) ref 11d. (d) Momeni, M. R.; Rivard, E.; Brown, A. Organometallics 2013, 32, 6201; (e) Iversen, K. J.; Wilson, D. J. D.; Dutton, J. L. Organometallics 2013, 32, 6209; (f) Fang, R.; Yang, L.; Wang, Q. Organometallics 2014, 33, 53.
- Brown, H. C.; Krishnamurthy, S.; Hubbard, J. L.; Coleman, R. A. J. Organometal. Chem. 1979, 166, 281.
- 21. Balch, A. L.; Oram, D. E. Organometallics 1988, 7, 155.
- 22. For related low oxidation state Sn(II) hydrides compounds, see: (a) Eichler, B. E.;
 Power, P. P. J. Am. Chem. Soc. 2000, 122, 8785; (b) Ding, Y.; Hao, H.; Roesky, H.
 W.; Noltemeyer, M.; Schmidt, H. –G. Organometallics 2001, 20, 4806; (c) Rivard,

E.; Fischer, R. C.; Wolf, R.; Peng, Y.; Merrill, W. A.; Schley, N. D.; Zhu, Z.; Pu,
L.; Fettinger, J. C.; Teat, S. J.; Nowik, I.; Herber, R. H.; Takagi, N.; Nagase, S.;
Power, P. P. J. Am. Chem. Soc. 2007, 129, 16197.

- 23. Gresback, R.; Holman, Z.; Kortshagen, U. Appl. Phys. Lett. 2007, 91, 093119.
- 24. Yuan, F. -W.; Tuan, H. -Y. Chem. Mater. 2014, 26, 2172.
- 25. Wilcoxon, J. P.; Provencio, P. P.; Samara, G. A. Condens. Matter 2001, 64, 035417.
- Lambert, T. N.; Andrews, N. L.; Gerung, H.; Boyle, T. J.; Oliver, J. M.; Wilson, B.
 S.; Han, S. M. *Small* 2007, *3*, 691.
- 27. Henderson, E. J.; Seino, M.; Puzzo, D. P.; Ozin, G. A. ACS Nano 2010, 4, 7683.
- 28. Vaughn II, D. D.; Schaak, R. E. Chem. Soc. Rev. 2013, 42, 2861.
- 29. Martienssen, W.; Warliomont, H. Springer Handbook of Condensed Matter and Materials Data; Springer GmbH 2005.
- Taylor, B. R.; Kauzlarich, S. M.; Lee, H. W. H.; Delgado, G. R. Chem. Mater.
 1998, 10, 22.
- Taylor, B. R.; Kauzlarich, S. M.; Delgado, G. R.; Lee, H. W. H. Chem. Mater.
 1999, 11, 2493.
- 32. Ma, X.; Wu, F.; Kauzlarich, S. M. J. Solid State Chem. 2008, 181, 1628.
- Lu, X.; Ziegler, K. J.; Ghezelbash, A.; Johnston, K. P.; Korgel, B. A. Nano Lett.
 2004, 4, 969.
- 34. Fok, E.; Shih, M.; Meldrum, A.; Veinot, J. G. C. Chem. Comm. 2004, 386.
- 35. Chiu, H. W.; Chervin, C. N.; Kauzlarich, S. M. Chem. Mater. 2005, 17, 4858.
- 36. Stoldt, C. R.; Haag, M. A.; Larsen, B. A. Appl. Phys. Lett. 2008, 93, 043125.

- Kortshagen, U.; Anthony, R.; Gresback, R.; Holman, Z.; Ligman, R.; Liu, C.-Y.; Mangolini, L.; Campbell, S. A. *Pure Appl. Chem.* 2008, *80*, 1901.
- Gerung, H.; Bunge, S. D.; Boyle, T. J.; Brinker, C. J.; Han, S. M. Chem. Commun.
 2005, 1914.
- 39. Warner, J. H.; Tilley, R. D. Nanotechnology 2006, 17, 3745.
- 40. Prabakar, S.; Shiohara, A.; Hanada, S.; Fujioka, K.; Yamamoto, K.; Tilley, R. D. *Chem. Mater.* **2010**, *22*, 482.
- 41. Henderson, E. J.; Hessel, C. M.; Veinot, J. G. C. J. Am. Chem. Soc. 2008, 130, 3624.
- 42. Chou, N. H.; Oyler, K. D.; Motl, N. E.; Schaak, R. E. Chem. Mater. 2009, 21, 4105.
- 43. Muthuswamy, E.; Iskandar, A. S.; Amador, M. M.; Kauzlarich, S. M. *Chem. Mater.*2013, 25, 1416.
- 44. Muthuswamy, E.; Zhao, J.; Tabatabaei, K.; Amador, M. M.; Holmes, M. A.; Osterloh, F. E.; Kauzlarich, S. M. *Chem. Mater.* **2014**, *26*, 2138.
- 45. Lu, X.; Korgel, B. A.; Johston, K. P. Chem. Mater. 2005, 17, 6479.
- 46. Buriak, J. M. Chem. Rev. 2002, 102, 1271.
- 47. Shirahata, N.; Hirakawa, D.; Masuda, Y.; Sakka, Y. Langmuir 2013, 29, 7401.
- Lee, D. C.; Pietryga, J. M.; Robel, I.; Werder, D. J.; Schaller, R. D.; Klimov, V. I. J. Am. Chem. Soc. 2009, 131, 3436.
- 49. Wheeler, L. M.; Levij, L. M.; Kortshagen, U. R. J. Phys. Chem. Lett. 2013, 4, 3392.
- 50. Niquet, Y. M.; Allan, G.; Delerue, C.; Lannoo, M. Appl. Phys. Lett. 2000, 77, 1182.

- Millo, O.; Balberg, I., Azulay, D.; Purkait, T. K.; Swarnakar, A. K.; Rivard, E.; Veinot, J. G. C. *J. Phys. Chem. Lett.* 2015, *6*, 3396.
- 52. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- 53. Hope, H. Prog. Inorg. Chem. 1994, 41, 1.
- 54. Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
- 55. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
- Beurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Garcia, S.; Gould, R. O. *DIRDIF-2008*; Crystallography Laboratory, Radboud University: Nijmegen, The Netherlands 2008.
- Lesley, M. J. G.; Woodward, A.; Taylor, N. J.; Marder, T. B.; Cazenobe, I.; Ledoux, I.; Zyss, J.; Thornton, A.; Bruce, D. W.; Kakkar, A. K. *Chem. Mater.* 1998, 10, 1355.
- Blumenthal, A.; Bissinger, P.; Schmidbaur, H. J. J. Organomet. Chem. 1993, 462, 107.
- 59. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067.
- 60. Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S. *Phys. Chem. Chem. Phys.* **2009**, *11*, 9850.

Chapter 3: Transition Metal-Mediated Donor-Acceptor Coordination of Low Valent Group 14 Element Halides

3.1 Introduction

A central concept in synthetic inorganic chemistry is the use of electron-donating ligands to bind/stabilize reactive inorganic species with unusual bonding environments. In this regard N-heterocyclic carbenes (NHCs) such as IPr $([(HCNDipp)_2C:]; Dipp = 2,6^{-i}Pr_2C_6H_3)$ and their structural analogues have been used to intercept novel main group species such as B₂ and the homologous ditetrelene series :E=E: (E = Si, Ge and Sn).^{1,2} Also of relevance to this chapter is the use of NHCs in conjunction with various Lewis acidic capping units to coordinate the inorganic methylene analogues : EH_2 (E = Si, Ge, and Sn) via a general donoracceptor approach (e.g. IPr•GeH₂•BH₃).³ In addition, this protocol was extended to include EH₂ complexes supported by the *N*-heterocyclic olefin (NHO) IPr=CH₂, and the Wittig reagent Ph₃P=CMe₂.⁴ Interest in these complexes stems from the formation of EH₂ as intermediates en route to bulk semi-conductors and metals via tetrelane (EH₄) degradation.⁵ Moreover, it was demonstrated in the previous chapter that luminescent Ge nanoparticles could be prepared from the mild, one pot, decomposition of the donor-acceptor GeH₂ complex Ph₃PCMe₂•GeH₂•BH₃.⁶ Thus finding new ways to stabilize low oxidation state main group hydrides is of importance.

Metal centered Lewis bases (MLBs), wherein an electron rich metal center acts as a formal two-electron donor, are being increasingly investigated within the context of supporting low-oxidation state main group element chemistry.⁷ A possible advantage of MLBs over traditional organic-based donors is the ability to dramatically alter the coordination properties of a MLB via co-ligand modification and/or by changing the metal entirely. Since Nowell and Russell's synthesis of $[(\eta^5 - C_5H_5)(CO)_2Co \rightarrow HgCl_2]$ in 1964,⁸ various late metal MLBs based on Ir, Pt and Rh have been developed.⁹ Moreover metal centered Lewis bases can readily form stable coordinative interactions with electron deficient group 13 (B, Al and Ga)¹⁰ and group 14 (Ge, Sn and Pb)¹¹ compounds. Herein, the ability of the half sandwich complex CpRh(PMe₂Ph)₂ (Cp = η^5 -C₅H₅)¹² and the nucleophilic Pt(0) donor, Pt(PCy₃)₂ to interact with divalent group 14 species is explored. An ultimate goal would be to generate mixed metal donor-acceptor complexes of EH₂ units (E = Ge, Sn and Pb) for the later preparation of binary E_xM_y (M = metal) bulk or nanomaterials.¹³

3.2 Results and Discussions

This study began with an attempt to synthesize a GeCl₂ donor-acceptor complex using CpRh(PMe₂Ph)₂ as a Lewis base and W(CO)₅ as a capping Lewis acid. However, when THF•GeCl₂•W(CO)₅ was combined with CpRh(PMe₂Ph)₂ in toluene for 12 hrs, the resulting deep yellow solid gave spectroscopic signatures consistent with C-H bond activation of the cyclopentadienyl ligand. Specifically, a highly upfield-positioned doublet of triplet resonance was found at -11.98 ppm in the ¹H NMR spectrum in CD₂Cl₂ (²*J*_{H-P} = 29.9 Hz and ¹*J*_{H-Rh} = 19.9 Hz), indicating that hydrogen migration to yield a terminal Rh-H group transpired. Moreover, two distinct Cp-H resonances of equal intensity were noted at 5.40 and 5.75 ppm, respectively, consistent with a mono-functionalized Cp unit. X-ray crystallography later confirmed that hydrogen migration/Cp ring activation did occur to form the Rh(III) product [(CO)₅W•GeCl₂(η^5 -C₅H₄)]RhH(PMe₂Ph)₂ (1) (eqn. 3.1, Figure 3.1).

A related hydride migration/Cp activation process was noted when CpRh(PMe₃)₂ was treated with the bulky alkyl halides 'BuI or ^{*i*}PrI, affording the alkylatedcyclopentadienyl rhodium salts $[(\eta^5-C_5H_4R)RhH(PMe_3)_2]I$ (R = ^tBu or ^{*i*}Pr).¹⁴ It is likely that the high electrophilicity of the GeCl₂•W(CO)₅ unit promotes attack at the Cp ring in CpRh(PMe₂Ph)₂, followed by proton transfer to the basic Rh center.

Figure 3.1. Molecular structure of $[(CO)_5W \cdot GeCl_2(\eta^5 \cdot C_5H_4)]RhH(PMe_2Ph)_2$ (1) with thermal ellipsoids presented at a 30 % probability level. All carbon-bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Rh-H(1) 1.51(3), Ge-C(6) 1.9709(19), Ge-Cl(1) 2.2464(5), Ge-Cl(2) 2.2324(5), Ge-W 2.5820(2); Cl(1)-Ge-Cl(2) 96.62(2), C(6)-Ge-W 129.52(6), Ge-C(6)-Rh 123.82(9), Ge-C(6)-Rh 123.82(9).

As shown in Figure 3.1, $[(CO)_5W \cdot GeCl_2(\eta^5 \cdot C_5H_4)]RhH(PMe_2Ph)_2$ (1) has a GeCl₂•W(CO)₅ group directly attached to a Cp ring with a Ge-C bond distance of 1.9709(19) Å; this value is similar to the covalent Ge-C bond length found within Power's aryl(halo)digermene Ar^{Mes}Ge(Cl)Ge(Cl)Ar^{Mes} [2.000(6) Å] (Ar^{Mes} = 2,6-Mes_2C_6H_3; Mes = 2,4,6-Me_3C_6H_2).¹⁵ The Ge-W interaction in 1 is 2.5820(2) Å and is the same within experimental error as the average Ge-W distance of 2.5833(16) Å in IPr•GeCl₂•W(CO)₅.¹⁶ The hydride bound to the Rh center in 1 could be located in the electron difference map and the refined Rh-H bond length [1.51(3) Å] is of similar value as in Cp₂Zr(CH₂PPh₂)₂Rh(H)(PPh₃) [1.51(4) Å].¹⁷

A different reactivity profile was noted when CpRh(PMe₂Ph)₂ was combined with the Sn(II) dihalide adduct (THF)₂SnCl₂•W(CO)₅. In this case the resulting yelloworange solid did not yield any spectroscopic evidence for Rh-H bond formation. The ¹H NMR spectrum of the product in CDCl₃ contained two virtual triplet resonances assigned to two methyl groups within the phosphine ligands (at 1.92 and 2.08 ppm), while one Cp environment was present, as evidenced by a singlet resonance at 5.25 ppm. Crystals of suitable quality for X-ray analysis were subsequently obtained and conclusively identified the product as the expected Lewis acid-base adduct CpRh(PMe₂Ph)₂•SnCl₂•W(CO)₅ (**2**) (eqn. 3.2). The molecular structure of **2** (Figure 3.2) shows a Rh-Sn single bond distance of 2.6152(5) Å, which is comparable to the terminal Rh-Sn linkage reported within *mer*-[{Rh(CNC₈H₉)₃(SnCl₃)(μ -SnCl₂)}₂] [2.606(1) Å].¹⁸ The Rh-Sn bond in **2** is however shorter compared to the Rh-Sn bonds within Marder's Sn(II) bis-adduct Cl₂Sn[Rh(PMe₃)₃Cl]₂ [2.712(1) Å].^{11a}

Following a related protocol as discussed above, the clean formation of the metal only Lewis pair CpRh(PMe₂Ph)₂•PbCl₂ (**3**) was accomplished by combining an equimolar amount of PbCl₂ with CpRh(PMe₂Ph)₂ in toluene (eqn. 3.3). Two broad methyl resonances from the PMe₂Ph ligands were located at 1.42 and 1.62 ppm in the ¹H NMR spectrum of **3** in CD₂Cl₂, while the corresponding ³¹P{¹H} NMR spectrum afforded a doublet signal at 8.2 ppm with a ¹J_{Rh-P} constant of 170 Hz.

Figure 3.2. Molecular structure of $CpRh(PMe_2Ph)_2 \cdot SnCl_2 \cdot W(CO)_5$ (2) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Rh-Sn 2.6152(5), Sn-Cl(1) 2.4544(14), Sn-Cl(2) 2.4685(15), Sn-W 2.7736(4); Rh-Sn-W 134.438(17), Cl(1)-Sn-Cl(2) 91.60(6).

The crystallographically determined structure of compound **3** is shown in Figure 3.3, and displays a highly pyramidalized lead center [Σ° at Pb (*avg.*) = 296.7°] with a Rh-Pb bond length of 2.7561(7) Å; this is, to my knowledge, the first structural characterization of such a bond type.

Figure 3.3. Molecular structure of CpRh(PMe₂Ph)₂•PbCl₂ (**3**) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg) with parameters associated with a second molecule in the asymmetric unit listed in square brackets: Rh(1A)-Pb(1A) 2.7561(7) [2.7530(7)], Pb(1A)-Cl(1A) 2.6314(16) [2.6540(16)], Pb(1A)-Cl(2A) 2.6515(16) [2.6489(16)]; Cl(1A)-Pb(1A)-Cl(2A) 95.65(6) [98.91(6)], Rh(1A)-Pb(1A)-Cl(1A) 99.78(4) [111.8(2)], Rh(1A)-Pb(1A)-Cl(2A) 101.25(4) [97.48(4)].

Later, compounds 1-3 were reacted with various hydride sources to possibly gain access to new metal-supported EH₂ complexes (E = Ge, Sn or Pb). Motivated by prior successes with using Li[BH₄] to generate donor-acceptor complexes of group 14 dihydrides (*e.g.* Ph₃PCMe₂•SnH₂•W(CO)₅),^{4b} CpRh(PMe₂Ph)₂•SnCl₂•W(CO)₅ (**2**) was treated with two equivalents of Li[BH₄] in Et₂O. The resulting reaction proceeds with the immediate formation of an insoluble black precipitate, presumably consisting of metallic tin and/or tin-tungsten clusters; the only product found in the colorless supernatant was the known phosphine-borane adduct, PhMe₂P•BH₃.¹⁹ The formation of PhMe₂P•BH₃ likely occurs via PhMe₂P decomplexation from rhodium and coordination to the Lewis acidic by-product BH₃ that is generated from Li[BH₄] during Cl⁻/H⁻ exchange. As a result, Li[BH₄] was not used further as a hydride source for the related adducts **1** and **3**.

Scheme 3.1. Reactivity of compounds **1-3** with K[HB^sBu₃]. The fate of the W(CO)₅ units and tetrel elements (Ge and Sn) in these reactions is unknown.

In order to obviate phosphine dissociation from Rh, the alkylated borate salt K[HB^sBu₃] was selected as a hydride delivery agent for H⁻/Cl⁻ exchange, the resulting by-product, ^sBu₃B, is a hindered borane of low Lewis acidity.²⁰ However when compounds **1-3** were separately treated with two equivalents of K[HB^sBu₃], the regeneration of free CpRh(PMe₂Ph)₂ occurred in all three cases (Scheme 3.1). Of note, when [(CO)₅W•GeCl₂(η^{5} -C₅H₄)]RhH(PMe₂Ph)₂ (1) was treated with K[HB^sBu₃], the formal transfer of a hydrogen atom from Rh back to the Cp ring was

noted, along with the cleavage of a C(Cp)-Ge bond, leading to the formation of CpRh(PMe₂Ph)₂.

Positing that the soft-soft coordinative Rh-Pb interactions in 3 might still support the formation of a Pb(II) hydride complex at a later stage, CpRh(PMe₂Ph)₂•PbCl₂ (3) was treated with different Lewis acids in an attempt to form the Pb(II) dihalide precursors CpRh(PMe₂Ph)₂•PbCl₂•LA (LA = Lewis acid). Initially, compound 3 was reacted with an equimolar amount of THF•GeCl₂•W(CO)₅ of producing the formal tetrahalodimetallene complex with the goal CpRh(PMe₂Ph)₂•Cl₂Pb-GeCl₂•W(CO)₅. However, when **3** was treated with one equivalent of THF•GeCl₂•W(CO)₅, the clean formation of the previously synthesized Cp-ring activation product $[(CO)_5W \cdot GeCl_2(\eta^5 - C_5H_4)]RhH(PMe_2Ph)_2$ (1) transpired along with the expulsion of PbCl₂ from the coordination sphere of rhodium (Scheme 3.2). The noted inability of the Pb center in **3** to bind to $W(CO)_5$ is likely due to the lower nucleophilicity of Pb(II) centers in relation to Sn(II) (*i.e.* the inert pair effect).^{3e} In another effort to obtain a donor-acceptor complex of PbCl₂, the bulky fluorinated arylborane (BAr^F₃) (Ar^F = $3,5-(F_3C)_2C_6H_3$) was combined with compound **3**. Interestingly, this reaction afforded a new product with a Rh-H¹H NMR resonance at -11.58 ppm in C₆D₆ (doublet of triplet pattern), consistent with related C-H bond activation occurring as in the formation of 1. Furthermore, the presence of two distinct Cp resonances in the ¹H NMR spectrum and an accompanying ¹¹B NMR signal in the region expected for four-coordinate boron (-10.1 ppm), suggested that electrophilic attack at Cp by BAr^F₃ occurred. Fortunately colorless crystals of the product could be obtained and X-ray crystallography confirmed the formation of the

Cp ring-activated Rh(III) complex $[\eta^5-C_5H_4BAr^{F_3}]RhH(PMe_2Ph)_2$ (4) (Scheme 3.2, Figure 3.4). An independent synthesis of 4 was also accomplished by combining an equimolar mixture of CpRh(PMe_2Ph)_2 and BAr^{F_3} in toluene. The molecular structure (Figure 3.4) of compound 4 shows a Rh-H bond distance of 1.50(3) Å, which is of similar value as the Rh-H bond length in compound 1. The C(Cp)-B bond distance in 4 was found to be 1.636(3) Å which is elongated in comparison to the C(Cp)-B interaction of 1.545(3) Å in [(C₆F₅)₂B(η^5 -C₅H₄)]TiCl₃.²¹

Scheme 3.2. Reactivity of 3 with different Lewis acids, leading to C-H bond activation.

Figure 3.4. Molecular structure of $[\eta^5-C_5H_4BAr^F_3]RhH(PMe_2Ph)_2$ (4) with thermal ellipsoids presented at a 30 % probability level. All carbon-bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): B-C(1) 1.636(3), Rh-H 1.50(3); B-C(1)-Rh 132.18(13), average C(1)-B-C(Ar^F) = 109.5(3).

Apart from the use of CpRh(PMe₂Ph)₂ in the syntheses of donor-acceptor complexes of group 14 elements, the chemistry of another metal centered Lewis base $Pt(PCy_3)_2^{22}$ towards group 14 dihalide complexes was also briefly explored in this chapter. First, $Pt(PCy_3)_2$ was treated with THF•GeCl₂•W(CO)₅ in toluene. In place of 1:1 adduct formation, oxidative addition of the Ge-Cl bond at Pt occurs affording ClPt(PCy₃)₂Ge(Cl)•W(CO)₅ (**5**) as a yellow, moisture-sensitive solid. Recently Braunschweig, Jones and co-workers reported the formation of the Lewis acid-base adduct, (Cy₃P)₂Pt•GeCl₂ from the direct interaction of Pt(PCy₃)₂ with Cl₂Ge•dioxane.^{11d} However the presence of a Lewis acidic W(CO)₅ unit at the Ge(II)

center facilitates Ge-Cl bond oxidative addition to form **5** (eqn. 3.4). Similar oxidative additions involving Lewis acidic BX₃ (X = Cl, Br or I),²³ GaX₃ (X = Br or I),²⁴ and BiCl₃²⁵ to Pt(0) complexes are known. The crystal structure of **5** is presented in Figure 3.5 and shows a Pt-Ge bond distance of 2.3526(5) Å, which is somewhat contracted in length in comparison to the Pt-Ge distance in (PCy₃)₂Pt•GeCl₂ [2.397(1) Å].^{11d} The overall geometry at Pt is square planar, consistent with a Pt(II) formal oxidation state, while the proximal Ge center adopts a distorted T-shaped geometry with a stereochemically active lone pair (*e.g.* Pt-Ge-Cl(2) angle = 104.87(2)°). The ³¹P{¹H} NMR spectrum of **5** in C₆D₆ yields a resonance at 16.9 ppm with resolvable platinum satellites (¹*J*_{P-Pt} = 2412 Hz).

Compound 5 was also combined with two equivalents of the hydride source, $K[HB^sBu_3]$ with the intention of yielding a stable Ge(II) hydride complex. However, upon hydride addition, the only species identified in the ³¹P{¹H} NMR spectrum of the resulting product mixture was free PCy₃; the formation of ^sBu₃B was also confirmed by ¹¹B NMR spectroscopy.

Figure 3.5. Molecular structure of $ClPt(PCy_3)_2Ge(Cl) \cdot W(CO)_5$ (5) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Pt-Ge 2.3526(5), Ge-Cl(2) 2.2489(9), Pt-Cl(1) 2.4176(8), Ge-W 2.5745(5); Cl(1)-Pt-Ge 176.20(2), Pt-Ge-Cl(2) 104.87(2), Pt-Ge-W 147.463(10).

The bis(phosphine) complex Pt(PCy₃)₂ was then mixed with one equivalent of $(THF)_2SnCl_2 \cdot W(CO)_5$, resulting in the formation of two different Pt(PCy₃)₂containing products by ³¹P{¹H} and ¹⁹⁵Pt{¹H} NMR spectroscopy. Specifically, the ³¹P{¹H} NMR spectrum of the product mixture afforded two resonances in a 7:3 ratio with resolvable ¹⁹⁵Pt satellites at 26.1 (¹*J*_{P-Pt} = 2392 Hz) and 47.4 (¹*J*_{P-Pt} = 3063 Hz) ppm. Whereas the ¹⁹⁵Pt{¹H} NMR spectrum gave two different triplets at -3725 (¹*J*_{P-Pt} = 2395 Hz) and -4543 (¹*J*_{P-Pt} = 3056 Hz) ppm. Unfortunately, these two products could not be separated from each other; a crystal of one of the products, CIPt(PCy₃)₂Sn(Cl)•W(CO)₅ (**6**), was selected from the product mixture and identified by X-crystallography (Figure 3.6). Compound **6** likely forms via the oxidative addition of a Sn-Cl bond to a Pt(0) center, in similar fashion as for the Ge congener, **5**. The molecular structure of **6** shows a square planar Pt environment with a Pt-Sn bond distance of 2.5061(3) Å, which is shorter than the reported dative Pt-Sn bond in $(Cy_3P)_2Pt$ •SnCl₂ [2.599(1) Å].^{11d} It is likely that the other species present in the abovementioned reaction mixture is the non-activated adduct $(Cy_3P)_2Pt$ •SnCl₂•W(CO)₅.

Figure 3.6. Molecular structure of $ClPt(PCy_3)_2Sn(Cl) \cdot W(CO)_5$ (6) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Pt-Sn 2.5061(3), Sn-Cl(2) 2.4149(11), Pt-Cl(1) 2.4110(11), Sn-W 2.7309(3); Cl(1)-Pt-Sn 172.63(3), Pt-Sn-Cl(2) 107.89(3), Pt-Sn-W 144.019(13).

To see if one species could be converted into the other, the product mixture was heated in C₆D₆ at 50 °C for 5 hours, however no change in the relative ratio of intensities of two signals in the resulting ${}^{31}P{}^{1}H{}$ NMR spectrum was found. At higher temperatures (> 80 °C) both species decompose to yield multiple new species (*ca.* 10) from which no clean product could be isolated.

3.3 Conclusions

The reactivity of the metal centered Lewis basic complexes $CpRh(PMe_2Ph)_2$ and $Pt(PCy_3)_2$ towards various electron deficient E(II) dihalide units (E = Ge, Sn and Pb) was explored. When strong Lewis acids were combined with the Rh complex, $CpRh(PMe_2Ph)_2$, the formation of Cp-activated products and Rh-H bonds occurred in place of direct Rh-E bond formation. In the case of $Pt(PCy_3)_2$, the formal oxidative addition of Ge-Cl and Sn-Cl bonds transpired to give the products $CIPt(PCy_3)_2E(Cl)\bullet W(CO)_5$ (E = Ge and Sn). Attempts to form the corresponding group 14 hydrides via H⁻ addition to E-Cl residues were unsuccessful, and in each case hydride addition to the Rh complexes 1-3 afforded free $CpRh(PMe_2Ph)_2$. Future work will involve tailoring the nature of the metal centered Lewis bases and Lewis acidic partner to obtain viable EH₂ precursor complexes for mixed element deposition processes.

3.4 Experimental Details

3.4.1 Materials and Instrumentation. All reactions were performed using standard Schlenk line techniques under an atmosphere of nitrogen or in an inert atmosphere glovebox (Innovative Technology, Inc.). Solvents were dried using a Grubbs-type solvent purification system²⁶ manufactured by Innovative Technology, Inc., degassed (freeze–pump–thaw method), and stored under an atmosphere of nitrogen prior to use. Li[BH₄], K[HB^sBu₃] (1.0 M solution in THF), and PbCl₂ were purchased from Aldrich and used as received. (THF)₂SnCl₂•W(CO)₅,²⁷ THF•GeCl₂•W(CO)₅,¹⁶ CpRh(PMe₂Ph)₂,¹² BAr^{F₃} (Ar^F = 3,5-(F₃C)₂C₆H₃),²⁸ and (Cy₃P)₂Pt²² were prepared

according to literature procedures. ¹H, ¹¹B, ¹³C{¹H}, ³¹P{¹H}, ¹⁹F, ¹¹⁹Sn and ¹⁹⁵Pt NMR spectra were recorded on a Varian iNova-400 spectrometer and referenced externally to SiMe₄ (¹H and ¹³C{¹H}), 85 % H₃PO₄ (³¹P{¹H}), F₃B•OEt₂ (¹¹B), CFCl₃ (¹⁹F), SnMe₄ (¹¹⁹Sn), and Na₂[PtCl₆] in D₂O (¹⁹⁵Pt) respectively. Elemental analyses were performed by the Analytical and Instrumentation Laboratory at the University of Alberta. Infrared spectra were recorded on a Nicolet IR100 FTIR spectrometer as Nujol mulls between NaCl plates. Melting points were measured in sealed glass capillaries under nitrogen using a MelTemp melting point apparatus and are uncorrected.

3.4.2 X-ray Crystallography. Crystals of suitable quality for X-ray diffraction studies were removed from a vial in a glovebox and immediately covered with a thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was selected, mounted on a glass fiber, and quickly placed in a low temperature stream of nitrogen on an X-ray diffractometer.²⁹ All data were collected at the University of Alberta using a Bruker APEX II CCD detector/D8 diffractometer using Mo K α , [(CO)₅W•GeCl₂(η^{5} -C₅H₄)]RhH(PMe₂Ph)₂ (1), CpRh(PMe₂Ph)₂•PbCl₂ (3), ClPt(PCy₃)₂GeCl•W(CO)₅ (5), ClPt(PCy₃)₂SnCl•W(CO)₅ (6)) or Cu K α (CpRh(PMe₂Ph)₂•SnCl₂•W(CO)₅ (2), [η^{5} - $C_5H_4BAr^{F_3}$]RhH(PMe₂Ph)₂ (4)) radiation with the crystals cooled to -100 °C. The data were corrected for absorption through Gaussian integration from the indexing of the crystal faces.³⁰ Structures were solved using intrinsic phasing SHELXT³¹ $[\eta^5-C_5H_4BAr^{F_3}]RhH(PMe_2Ph)_2$ (CpRh(PMe₂Ph)₂•PbCl₂ (3),(4), $ClPt(PCy_3)_2GeCl \cdot W(CO)_5$ (5), and $ClPt(PCy_3)_2SnCl \cdot W(CO)_5$ (6)), or Patterson

search/ structure expansion facilities within the DIRDIF-2008 program suite³² ([(CO)₅W•GeCl₂(η^{5} -C₅H₄)]RhH(PMe₂Ph)₂ (1), (CpRh(PMe₂Ph)₂•SnCl₂•W(CO)₅ (2)), structure refinement was accomplished using either SHELXL-97 or SHELXL-2013.³¹ All carbon-bound hydrogen atoms were assigned positions on the basis of the sp² or sp³ hybridization geometries of their attached carbon atoms, and were given thermal parameters 20 % greater than those of their parent atoms. For compounds 1, and 4, all hydrogen atoms attached to heteroatoms (Rh) were located from difference Fourier maps, and their coordinates and isotropic displacement parameters were allowed to refine freely.

3.4.3 Synthetic procedures

Synthesis of [(CO)5W•GeCl₂(η^{5} CsH₄)]RhH(PMe₂Ph)₂ (1). A 3 mL toluene solution of CpRh(PMe₂Ph)₂ (33 mg, 0.074 mmol) was added dropwise to a 3 mL toluene solution of (THF)•GeCl₂•W(CO)₅ (40 mg, 0.074 mmol), and the mixture was stirred for 12 hrs. The resulting dark yellow precipitate was separated from the mother liquor, washed with 5 mL of hexanes and dried under vacuum. Compound 1 was obtained in pure form by crystallization from hexanes/CH₂Cl₂ at -35 °C. Yield: 30 mg (45 %). ¹H NMR (500 MHz, CD₂Cl₂): δ = 7.42-7.48 (m, 2H, Ar*H*), 7.34-7.42 (br, 4H, Ar*H*), 7.18-7.27 (m, 4H, Ar*H*), 5.75 (s, 2H, Cp), 5.40 (s, 2H, Cp), 1.65 (vt, $N = |^2 J_{H-P}$ + ⁴ $J_{H-P}|$ = 8.4 Hz, 6H, CH₃), 1.54 (vt, $N = |^2 J_{H-P} + ^4 J_{H-P}|$ = 8.4 Hz, 6H, CH₃), -11.98 (dt, ² $J_{H-P} = 29.9$ Hz, ¹ $J_{H-Rh} = 19.9$ Hz, 1H, Rh-*H*). ¹³C {¹H} NMR (125 MHz, CD₂Cl₂): δ = 202.6 (s, CO_{ax}), 199.1 (s, CO_{eq}, satellite: ¹ $J_{C-W} = 124$ Hz), 135.0 (vt, $N = |^1 J_{C-P} + ^3 J_{C-P}|$ = 53.6 Hz, ArC), 130.8 (s, ArC), 130.2 (s, ArC), 128.8 (s, ArC), 94.4 (s, Cp), 90.1 (s, Cp), 22.1 (vt, N = 34.1 Hz, CH₃), 21.0 (vt, N = 37.9 Hz, CH₃). ³¹P{¹H} NMR (161 MHz, CD₂Cl₂): $\delta = 14.6$ (d, ¹*J*_{P-Rh} = 139 Hz). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.41$ -7.49 (m, 2H, Ar*H*), 7.33-7.41 (m, 4H, Ar*H*), 7.14-7.28 (m, 4H, Ar*H*), 5.66 (s, 2H, Cp), 5.43 (s, 2H, Cp), 1.65 (vt, $N = |^2 J_{H-P} + {}^4 J_{H-P}| = 10$ Hz, 6H, CH₃), 1.56 (vt, $N = |^2 J_{H-P} + {}^4 J_{H-P}| = 10$ Hz, 6H, CH₃), 1.56 (vt, $N = |^2 J_{H-P} + {}^4 J_{H-P}| = 10$ Hz, 6H, CH₃), 1.56 (vt, $N = |^2 J_{H-P} + {}^4 J_{H-P}| = 10$ Hz, 6H, CH₃), 1.56 (vt, $N = |^2 J_{H-P} + {}^4 J_{H-P}| = 10$ Hz, 6H, CH₃), -11.92 (dt, Rh-*H*, ${}^2 J_{H-P} = 29.9$ Hz, ${}^1 J_{H-Rh} = 19.9$ Hz, 1H, Rh-*H*). ³¹P{¹H} NMR (161 MHz, CDCl₃): $\delta = 14.1$ (d, ${}^1 J_{P-Rh} = 139.1$ Hz). IR (Nujol, cm⁻¹): 1901 (br, ν_{CO}), 1970 (s, ν_{CO}), 2059 (s, ν_{CO}). Anal. Calcd. for C₂₆H₂₇Cl₂GeO₅P₂RhW: C, 34.25; H, 2.98. Found: C, 34.25; H, 3.14. Mp (°C): 132-135 (decomposes).

Synthesis of CpRh(PMe₂Ph)₂•SnCl₂•W(CO)₅ (2). A 3 mL toluene solution of CpRh(PMe₂Ph)₂ (18 mg, 0.041 mmol) was added dropwise to a 3 mL toluene solution of (THF)₂SnCl₂•W(CO)₅ (36 mg, 0.045 mmol), and the mixture was stirred for 12 hrs. The resulting orange yellow precipitate was separated from the mother liquor, washed with 5 mL of hexanes and dried under vacuum. Yield: 38 mg (94 %). Crystals suitable for X-ray crystallography were grown from CH₂Cl₂/hexanes at -35 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.44-7.50 (m, 2H, Ar*H*), 7.36-7.44 (m, 4H, Ar*H*), 7.14-7.22 (m, 4H, Ar*H*), 5.25 (s, 5H, Cp), 2.08 (vt, *N* = 10 Hz, 6H, C*H*₃), 1.92 (vt, *N* = 10 Hz, 6H, C*H*₃). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ = 203.0 (s, CO_{ax}), 200.7 (s, CO_{eq}), 139.6 (vt, *N* = 48.6 Hz, Ar*C*), 130.7 (s, Ar*C*), 129.5 (s, Ar*C*), 129.1 (s, Ar*C*), 95.1 (s, Cp), 22.9 (vt, *N* = 35.9 Hz, CH₃), 15.6 (vt, *N* = 35.8 Hz, CH₃). ³¹P {¹H} NMR (201 MHz, CDCl₃): δ = 4.6 (d, ¹J_{Rh-P} = 153 Hz, satellites: ³J_{P-W} = 77 Hz). IR (Nujol, cm⁻¹): 1892 (br, v_{CO}), 1965 (s, v_{CO}), 2054 (s, v_{CO}). Anal. Calcd. for

C₂₆H₂₇Cl₂O₅P₂RhSnW: C, 32.60; H, 2.84. Found: C, 32.42; H, 2.92. Mp (°C): 150-153 (decomposes).

Synthesis of CpRh(PMe₂Ph)₂•PbCl₂ (3). A 3 mL toluene solution of CpRh(PMe₂Ph)₂ (68 mg, 0.15 mmol) was added dropwise to a 3 mL toluene suspension of PbCl₂ (51 mg, 0.18 mmol), and the mixture was stirred for 15 hrs. The solvent was removed under vacuum and the remaining red powder was washed twice with 5 mL portions of hexanes and dried. The red solid was then dissolved in 10 mL of CH₂Cl₂ and the resulting solution was filtered. The solvent was removed from the filtrate and the product was dried under vacuum. Yield: 65 mg (60 %). Crystals suitable for X-ray crystallography were grown from hexanes/THF at -35 °C. ¹H NMR (500 MHz, CD₂Cl₂): δ = 7.41-7.58 (m, 6H, Ar*H*), 7.22-7.38 (m, 4H, Ar*H*), 5.11 (s, 5H, Cp), 1.62 (br, 6H, CH₃), 1.42 (br, 6H, CH₃). ¹³C {¹H} NMR (125 MHz, CD₂Cl₂): δ = 136.7 (vt, *N* = 46.9 Hz, Ar*C*), 130.6 (s, Ar*C*), 129.9 (s, Ar*C*), 129.3 (s, Ar*C*), 94.0 (s, Cp), 22.1 (vt, *N* = 33.7 Hz, CH₃), 15.4 (vt, *N* = 33.4 Hz, CH₃). ³¹P {¹H} NMR (201 MHz, CD₂Cl₂): δ = 8.2 (d, ¹J_{Rh-P} = 170 Hz). Anal. Calcd. for C₂₁H₂₇Cl₂P₂PbRh: C, 34.92; H, 3.77. Found: C, 35.07; H, 3.76. Mp (°C): 185-188 (decomposes).

Synthesis of $[\eta^5-C_5H_4BAr^F_3]RhH(PMe_2Ph)_2$ (4). A 3 mL toluene solution of CpRh(PMe_2Ph)_2 (83 mg, 0.19 mmol) was added dropwise to a 3 mL toluene solution of BAr^F₃ (136 mg, 0.19 mmol) and the mixture was stirred for 12 hrs to give a red solution. The solvent was removed from the mixture under vacuum to afford a deep yellow-orange oil. The oil was re-dissolved in 3 mL of Et₂O and the solvent was

removed to yield an orange powder. This product was then washed with a mixture of Et₂O/hexanes (1 mL + 3 mL) to give **4** as a white powder. Yield: 100 mg (48 %). Crystals suitable for X-ray were grown from hexanes/Et₂O at -35 °C C. ¹H NMR (500 MHz, C₆D₆): $\delta = 8.27$ (s, 6H, *o*-C₆*H*₃(CF₃)₂), 7.80 (s, 3H, *p*-C₆*H*₃(CF₃)₂), 6.89-6.92 (m, 6H, Ar*H*), 6.55-6.75 (m, 4H, Ar*H*), 4.70 (s, 2H, Cp), 4.30 (s, 2H, Cp), 0.67 (vt, *N* = 10 Hz, 6H, C*H*₃), 0.58 (vt, *N* = 10 Hz, 6H, C*H*₃), -11.58 (dt, ²*J*_{H-P} = 31.6 Hz, ¹*J*_{H-Rh} = 21.6 Hz, 1H, Rh-*H*). ¹³C {¹H} NMR (125 MHz, C₆D₆): $\delta = 162.0$ (q, ¹*J*_{B-C} = 51.2 Hz, *ipso*-C₆H₃(CF₃)₂), 135.8 (vt, *N* = 50.6 Hz, ArC), 135.2 (s, *o*-C₆H₃(CF₃)₂), 130.7 (s, ArC), 130.0 (br, ArC), 129.9 (q, ²*J*_{C-F} = 31.4 Hz, *m*-C₆H₃(CF₃)₂), 128.6 (s, ArC), 125.8 (q, ¹*J*_{C-F} = 272.4 Hz, C*F*₃), 118.6 (s, *p*-C₆H₃(CF₃)₂), 92.8 (s, Cp), 89.2 (s, Cp), 21.6 (vt, *N* = 33.0 Hz, CH₃), 20.5 (vt, *N* = 37.0 Hz, CH₃). ³¹P {¹H} NMR (161 MHz, C₆D₆): $\delta = 13.6$ (d, ¹*J*_{P-Rh} = 133.3 Hz). ¹¹B {¹H} NMR (128 MHz, C₆D₆): $\delta = -10.1$ (s, *-B*Ar^F₃). ¹⁹F {¹H} NMR (376 MHz, C₆D₆): $\delta = -62.0$ (s, *CF*₃). Anal. Calcd. for C₄₅H₃₆BF₁₈P₂Rh: C, 49.39; H, 3.32. C, 49.31; H, 3.62. Mp (°C): 152-155.

Reaction of [(CO)₅W-GeCl₂(η^{5} -C₅H₄)]RhH(PMe₂Ph)₂ (1) with K[HB^sBu₃]. To a 5 mL toluene solution of 1 (110 mg, 0.12 mmol) was added K[HB^sBu₃] (254 µL, 1.0 M solution in THF, 0.25 mmol), and the mixture was stirred for 12 hrs. The mother liquor was separated from the black precipitate by filtration and the solvent was removed from the filtrate to yield an orange oil containing a mixture of CpRh(PMe₂Ph)₂ and ^sBu₃B (as determined by ¹H, ¹¹B and ³¹P{¹H} NMR spectroscopy in C₆D₆).³³

Reaction of CpRh(PMe₂Ph)₂•SnCl₂•W(CO)₅ (2) with K[HB^sBu₃]. To a 5 mL toluene solution of 2 (96 mg, 0.10 mmol), was added K[HB^sBu₃] (210 μ L, 1.0 M solution in THF, 0.21 mmol), and the mixture was stirred for 12 hrs. The mother liquor was separated from the black precipitate by filtration and the solvent was removed from the filtrate to yield an orange oil containing a mixture of CpRh(PMe₂Ph)₂ and ^sBu₃B.

Reaction of CpRh(PMe₂Ph)₂•PbCl₂ (3) with K[HB^sBu₃]. To a 5 mL toluene solution of **3** (56 mg, 0.077 mmol) was added K[HB^sBu₃] (178 μ L, 1.0 M solution in THF, 0.18 mmol), and the mixture was stirred for 12 hrs. The mother liquor was separated from the grey precipitate by filtration and the solvent was removed from the filtrate to yield an orange oil consisting of a mixture of CpRh(PMe₂Ph)₂ and ^sBu₃B.

Reaction of CpRh(PMe₂Ph)₂•PbCl₂ (3) with THF•GeCl₂•W(CO)₅. A 3 mL toluene solution of THF•GeCl₂•W(CO)₅ (25 mg, 0.043 mmol) was added dropwise to a 3 mL toluene suspension of CpRh(PMe₂Ph)₂•PbCl₂ (31 mg, 0.043 mmol) and the mixture was stirred for 12 hrs. The solvent was removed under vacuum from the black suspension to give a black powder. The only soluble product identified by ¹H and ³¹P{¹H} NMR was [η^5 -C₅H₄GeCl₂•W(CO)₅]RhH(PMe₂Ph)₂ (1).

Reaction of CpRh(PMe₂Ph)₂•PbCl₂ (3) with BAr^F₃. A 3 mL toluene solution of BAr^F₃ (40 mg, 0.062 mmol) was added dropwise to a 3 mL toluene suspension of CpRh(PMe₂Ph)₂•PbCl₂ (45 mg, 0.062 mmol) and the mixture was stirred for 12 hrs.

The solvent was removed under vacuum from the black suspension to obtain a black powder. The only NMR identified product was $[\eta^5-C_5H_4BAr^F_3]RhH(PMe_2Ph)_2$ (4).

Synthesis of ClPt(PCy₃)₂GeCl•W(CO)₅ (5). A solution of Pt(PCy₃)₂ (180 mg, 0.24 mmol) in 3 mL of toluene was added dropwise to a 3 mL toluene solution of THF•GeCl₂•W(CO)₅ (130 mg, 0.24 mmol). The reaction mixture was stirred for 24 hrs and the solvent was removed under vacuum. Then 5 mL of hexanes was added to the oily product followed by stirring for one hour. The precipitate was separated from the mother liquor and dried under vacuum to give a yellow powder. Yield: 210 mg (72%). Crystals suitable for X-ray were obtained from a concentrated hexanes solution at -35 °C. ¹H NMR (500 MHz, C_6D_6): $\delta = 2.40-2.62$ (br, 6H, Cy), 2.10-2.30 (br, 12H, Cy), 1.14-1.90 (m, 48H, Cy). ${}^{13}C{}^{1}H$ NMR (125 MHz, C₆D₆): $\delta = 200.9$ (s, CO_{ax}), 198.8 (s, CO_{eo}), 35.6 (br, C¹, Cy), 31.9 (s, C^{3,5}, Cy), 30.7 (s, C^{3,5}, Cy), 27.9 (br s, $C^{2,6}$, Cy), 27.5 (br s, $C^{2,6}$, Cy), 26.7 (s, C^4 , Cy). ${}^{31}P{}^{1}H{}$ NMR (201 MHz, C₆D₆): $\delta = 16.9$ (s, satellites: ¹*J*_{P-Pt} = 2412 Hz). ¹⁹⁵Pt{¹H} NMR (85.5 MHz, C₆D₆): δ = -3645 (t, ${}^{1}J_{P-pt}$ = 2447 Hz). IR (Nujol, cm⁻¹): 1932 (br, v_{CO}), 1984 (s, v_{CO}), 2065 (s, v_{C0}). Anal. Calcd. for: C₄₁H₆₆Cl₂GeO₅P₂PtW: C, 40.25; H, 5.44. Found: C, 41.05; H, 5.51. Mp (°C): 120-123 (decomposes).

Reaction of CIPt(PCy₃)₂GeCl·W(CO)₅ (5) with K[HB^sBu₃]. To a 5 mL THF solution of **5** (20 mg, 0.016 mmol), was added K[HB^sBu₃] (34 μ L, 1.0 M solution in THF, 0.034 mmol), and the mixture was stirred for 12 hrs. The solvent was removed

from the mixture to yield a dark orange oil containing a mixture of PCy₃ and ^sBu₃B as soluble products.³³

Synthesis of CIPt(PCy₃)₂SnCl•W(CO)⁵ (6). A 3 mL toluene solution of Pt(PCy₃)₂ (180 mg, 0.24 mmol) was added dropwise to a 3 mL toluene solution of (THF)₂SnCl₂•W(CO)₅ (130 mg, 0.24 mmol). The mixture was stirred for 24 hrs and the volatiles were removed under vacuum. 5 mL of hexanes was then added to the oily product followed by stirring for one hour. The precipitate was separated from the mother liquor and dried under vacuum to give a red powder. A few crystals suitable for X-ray crystallography were grown from the mixture in hexanes at -35 °C. The crystallographic data identified one of the products as ClPt(PCy₃)₂SnCl•W(CO)₅ (6), whereas the ³¹P{¹H} and ¹⁹⁵Pt{¹H} NMR spectroscopy of the product indicated the presence of two products with the following NMR data: ³¹P{¹H} NMR (201 MHz, C₆D₆): $\delta = 26.1$ (s, satellites: ¹*J*_{P-Pt} = 2392 Hz), 47.4 (s, satellites: ¹*J*_{P-Pt} = 3063 Hz). ¹⁹⁵Pt{¹H} NMR (85.5 MHz, C₆D₆): $\delta = -3725$ (t, ¹*J*_{P-pt} = 2395 Hz), -4543 (t, ¹*J*_{P-pt} = 3056 Hz).

3.5 Crystallographic Data

Compound	1	2 •0.25 CH ₂ Cl ₂
Formula	C26H27Cl2GeO5P2RhW	$C_{26,25}H_{27,5}Cl_{2.5}O_5P_2RhSnW$
Formula weight	911.66	979.00
Crystal system	monoclinic	monoclinic
Space group	$P2_{1}/n$	$P2_{1}/n$
<i>a</i> (Å)	8.9888 (3)	15.3972 (2)
<i>b</i> (Å)	24.3719 (7)	9.0453 (1)
<i>c</i> (Å)	14.4140 (4)	23.3877 (3)
α (deg)	90	90
β (deg)	104.3064 (3)	90.5374 (12)
$\gamma(\text{deg})$	90	90
$V(Å^3)$	3059.81 (16)	3257.12 (7)
Ζ	4	4
ho (g/cm ³)	1.979	1.996
abs coeff (mm ⁻¹)	5.572	19.58
T (K)	173(1)	173(1)
$2\theta_{max}$ (°)	56.65	145.17
total data	28051	21691
unique data(Rint)	7477 (0.0162)	6344
Obs data [$I \ge 2(\sigma(I))$]	7036	5092
Params	351	347
$R_1 [I \ge 2\sigma(I)]^a$	0.016	0.0345
wR ₂ [all data] ^{a}	0.0379	0.0868
$\max/\min \Delta \rho (e^{-} \text{\AA}^{-3})$	1.032/-0.480	1.130/-1.373
wR ₂ [all data] ^{<i>a</i>} max/min $\Delta \rho$ (e ⁻ Å ⁻³) ${}^{a}R_{L} = \sum F_{L} - F_{L} \nabla F_{L} Y_{L} $	0.0379 $1.032/-0.480$ $vR_{2} = \sqrt{\Sigma}w(E^{2} - E^{2})^{2} \nabla w(E^{4})$	0.0868 1.130/-1.373

Table 3.1: Crystallographic data for 1 and 2.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$

Compound	3	4
Formula	$C_{21}H_{27}Cl_2P_2PbRh$	$C_{48}H_{43}BF_{18}P_2Rh$
Formula weight	722.36	1137.48
Crystal system	monoclinic	triclinic
Space group	$P2_{1}/n$	P1 (No. 2)
<i>a</i> (Å)	17.346 (5)	12.2135 (3)
<i>b</i> (Å)	15.351 (4)	12.5991 (3)
<i>c</i> (Å)	18.164 (5)	17.0103 (4)
α (deg)	90	80.6961 (10)
β (deg)	95.470 (3)	81.3382 (8)
$\gamma(\text{deg})$	90	75.2500 (8)
$V(Å^3)$	4814 (2)	2481.49 (10)
Ζ	8	2
ρ (g/cm ³)	1.993	1.522
abs coeff (mm ⁻¹)	8.030	4.305
T (K)	173(1)	173(1)
$2\theta_{max}$ (°)	55.52	144.46
total data	41795	17405
unique data(R _{int})	11064 (0.0573)	9416 (0.0129)
Obs data [$I > 2(\sigma(I))$]	8280	9241
Params	495	716
$R_1 [I > 2\sigma(I)]^a$	0.0364	0.0319
wR ₂ [all data] ^{a}	0.0816	0.0860
max/min $\Delta \rho (e^{-} \text{\AA}^{-3})$	1.992/-1.824	1.112/-0.806
$(D \sum E - E \nabla E $	$\mathbf{D} = (\mathbf{\Gamma}^2 - \mathbf{\Gamma}^2)^2 \mathbf{\nabla} - (\mathbf{\Gamma}^4)^2$	1/2

 Table 3.2: Crystallographic data for 3 and 4.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$

Compound	5•0.5n-hexane	6• <i>n</i> -hexane
Formula	C44H73Cl2GeO5P2PtW	$C_{47}H_{80}Cl_2O_5P_2PtSnW$
Formula weight	1266.39	1355.58
Crystal system	triclinic	orthorhombic
Space group	P1 (No. 2)	P2 ₁ 2 ₁ 2 ₁ (No. 19)
<i>a</i> (Å)	10.172 (2)	14.8910 (4)
<i>b</i> (Å)	12.807 (3)	16.3240 (4)
<i>c</i> (Å)	20.478 (4)	22.1599 (6)
α (deg)	105.848 (2)	90
β (deg)	103.959 (2)	90
$\gamma(\text{deg})$	93.004 (3)	90
$V(Å^3)$	2470.6 (8)	5386.6 (2)
Ζ	2	4
ρ (g/cm ³)	1.702	1.672
abs coeff (mm ⁻¹)	5.964	5.379
T (K)	173(1)	173(1)
$2\theta_{max}$ (°)	55.18	54.98
total data	22384	47820
unique data(R _{int})	11338 (0.0148)	12339 (0.0289)
Obs data [$I > 2(\sigma(I))$]	9930	11780
Params	534	512
$R_1 [I > 2\sigma(I)]^a$	0.0212	0.0176
wR ₂ [all data] ^{a}	0.0603	0.0404
$\frac{max}{min} \Delta \rho \left(e^{-} \text{\AA}^{-3}\right)$	1.248/-1.042	0.737/-0.32

 Table 3.3: Crystallographic data for 5 and 6.

 $aR_1 = \sum ||F_o| - |F_c|| / \sum |F_o|; wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^4)]^{1/2}$

3.6 References

- (*a*) Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. *Science* 2012, *336*, 1420; (*b*) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. *Science* 2008, *321*, 1069;
 (*c*) Sidiropoulos, A.; Jones, C.; Stasch, A.; Klein S.; Frenking, G.; *Angew. Chem. Int. Ed.* 2009, *48*, 9701; (*d*) Jones, C.; Sidiropoulos, A.; Holzmann, N.; Frenking, G.; Stasch, A. *Chem. Commun.* 2012, *48*, 9855.
- For recent highlights from this active research field, see: (a) Wang, Y.; Chen, M.; Xie, Y.; Wei, P.; Schaefer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. *Nature Chem.* 2015, 7, 509; (b) Ahmad, S. U.; Szilvási, T.; Irran E.; Inoue, S. J. Am. *Chem. Soc.* 2015, 137, 5828; (c) Swarnakar, A. K.; Hering-Junghans, C.; Nagata, K.; Ferguson, M. J.; McDonald, R.; Tokitoh, N.; Rivard, E. Angew. Chem. Int. Ed. 2015, 54, 10666; (d) Braunschweig, H.; Dellermann, T.; Ewing, W. C.; Kramer, T.; Schneider C.; Ulrich, S. Angew. Chem. Int. Ed. 2015, 54, 10271; (e) Filippou, A. C.; Baars, B.; Chernov, O.; Lebedev, Y. N.; Schnakenburg, G. Angew. Chem. Int. Ed. 2014, 53, 565; (f) Dahcheh, F.; Martin, D.; Stephan, D. W.; Bertrand, G. Angew. Chem. Int. Ed. 2014, 53, 13159; (g) Jana, A.; Huch, V; Scheschkewitz, D. Angew. Chem. Int. Ed. 2013, 52, 12179; (h) Ghadwal, R. S.; Roesky, H. W.; Pröpper, K.; Dittrich, B.; Klein, S.; Frenking, G. Angew. Chem. Int. Ed. 2011, 50, 5374.
- For selected examples, see: (a) Thimer, K. C.; Al-Rafia, S. M. I.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2009, 7119; (b) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem. Soc. 2011,

133, 777; (c) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.;
Rivard, E. Chem. Commun. 2012, 48, 1308; (d) Al-Rafia, S. M. I.; Shynkaruk, O.;
McDonald, S. M.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Herber, R. H.;
Rivard, E. Inorg. Chem. 2013, 52, 5581; (e) Rivard, E. Dalton. Trans. 2014, 43, 8577.

- (a) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2011, 47, 6987; (b) Swarnakar, A. K.; McDonald, S. M.; Deutsch, K. C.; Choi, P.; Ferguson, M. J.; McDonald, R.; Rivard, E. Inorg. Chem. 2014, 53, 8662. For important early work, see: (c) Kuhn, N.; Bohnen, H.; Kreutzberg, J.; Bläser, D.; Boese, R. J. Chem. Soc., Chem. Commun. 1993, 1136.
- (a) Rivard, E. Chem. Soc. Rev. 2016, 45, 989; (b) Jasinski, J. M.; Gates, S. M. Acc. Chem. Res. 1991, 24, 9; (c) Weerts, W. L. M.; de Croon, M. H. J. M.; Marin, G. B. J. Electrochem. Soc. 1998, 145, 1318; (d) Dzarnoski, J.; O'Neal, H. E.; Ring, M. A. J. Am. Chem. Soc. 1981, 103, 5740 and references therein.
- 6. (a) Purkait, T. K.; Swarnakar, A. K.; De Los Reyes, G. B.; Hegmann, F. A.; Rivard, E.; Veinot, J. G. C. *Nanoscale* 2015, *7*, 2241; (*b*) Millo, O.; Balberg, I., Azulay, D.; Purkait, T. K.; Swarnakar, A. K.; Rivard, E.; Veinot, J. G. C. *J. Phys. Chem. Lett.* 2015, *6*, 3396.
- 7. Bauer, J.; Braunschweig, H.; Dewhurst, R. D. Chem. Rev. 2012, 112, 4329.
- 8. Nowell, I. N.; Russell, D. R. J. Chem. Soc., Chem. Commun. 1967, 817.
- (a) Einstein, F. W. B.; Pomeroy, R. K.; Rushman, P.; Willis, A. C. Organometallics 1985, 4, 250; (b) Usón, R.; Forniés, J.; Espinet, P.; Fortuño, C.; Tomas, M.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1988, 3005.

- 10. (a) Braunschweig, H.; Gruß, K.; Radacki, K. Angew. Chem. Int. Ed. 2007, 46, 7782;
 (b) Bauer, J.; Braunschweig, H.; Brenner, P.; Kraft, K.; Radacki, K.; Schwab, K. Chem. Eur. J. 2010, 16, 11985; (c) Bauer, J.; Braunschweig, H.; Damme, A.; Gruß, K.; Radacki, K. Chem. Commun. 2011, 47, 12783; (d) Burlitch, J. M.; Leonowicz, M. E.; Petersen, R. B.; Hughes, R. E. Inorg. Chem. 1979, 18, 1097.
- (*a*) Chan, D. M. T.; Marder, T. B. Angew. Chem. Int. Ed. Engl. 1988, 27, 442; (*b*)
 Béni, Z.; Ros, R.; Tassan, A.; Scopelliti, R.; Roulet, R. Dalton Trans. 2005, 315;
 (*c*) Rutsch, P.; Huttner, G. Z. Naturforsch. 2002, 57b, 25; (*d*) Hupp, F.; Ma, M.;
 Kroll, F.; Jimenez-Halla, J. O. C.; Dewhurst, R. D.; Radacki, K.; Stasch, A.; Jones,
 C.; Braunschweig, H. Chem. Eur. J. 2014, 20, 16888.
- 12. Mayer, J. M.; Calabrese, J. C. Organometallics 1984, 3, 1292.
- 13. (a) Zadesenets, A.; Filatov, E.; Plyusnin, P.; Baidina, I.; Dalezky, V.; Korenev, S.;
 Bogomyakov, A. *Polyhedron* 2011, 30, 1305; (b) Shubin, Y.; Plyusnin, P.;
 Sharafutdinov, M. *Nanotechnology* 2012, 23, 405302.
- 14. Wakatsuki, Y.; Yamazaki, H. J. Organometal. Chem. 1974, 64, 393.
- Simons, R. S.; Pu, L.; Olmstead, M. M.; Power, P. P. Organometallics 1997, 16, 1920.
- Al-Rafia, S. M. I.; Momeni, M. R.; Ferguson, M. J.; McDonald, R.; Brown, A.; Rivard, E. Organometallics 2013, 32, 6658.
- Choukroun, R.; Iraqi, A.; Gervais, D.; Daran, J. C.; Jeannin, Y. Organometallics 1987, 6, 1197.
- Bott, S. G.; Machell, J. C.; Mingos, D. M. P.; Watson, M. J. J. Chem. Soc., Dalton Trans. 1991, 859.

- 19. Gessner, V. H.; Dilsky, S.; Strohmann, C. Chem. Commun. 2010, 46, 4719.
- 20. For studies using the [HB^sBu₃]⁻ anion as a hydride source, see: (a) Richards, A. F.; Phillips, A. D.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2003, 125, 3204; (b) Lummis, P. A.; Momeni, M. R.; Lui, M. W.; McDonald, R.; Ferguson, M. J.; Miskolzie, M.; Brown, A.; Rivard, E. Angew. Chem. Int. Ed. 2014, 53, 9347.
- Duchateau, R.; Lancaster, S. J.; Thornton-Pett, M.; Bochmann, M. Organometallics 1997, 16, 4995.
- 22. Otsuka, S.; Yoshida, T.; Matsumoto, M.; Nakatsu, K. J. Am. Chem. Soc. 1976, 98, 5850.
- 23. (a) Charmant, J. P. H.; Fan, C.; Norman, N. C.; Pringle, P. G. *Dalton Trans.* 2007, 114; (b) Braunschweig, H.; Brenner, P.; Müller, A.; Radacki, K.; Rais, D.; Uttinger, K. *Chem. Eur. J.* 2007, *13*, 7171; (c) Braunschweig, H.; Radacki, K.; Uttinger, K. *Inorg. Chem.* 2007, *46*, 8796.
- 24. Braunschweig, H.; Gruss, K.; Radacki, K. Inorg. Chem. 2008, 47, 8595.
- 25. Braunschweig, H.; Brenner, P.; Cogswell, P.; Kraft, K.; Schwab, K. Chem. Commun. 2010, 46, 7894.
- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- 27. Balch, A. L.; Oram, D. E. Organometallics 1988, 7, 155.
- Kolychev, E. L.; Bannenberg, T.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. *Chem. Eur. J.* 2012, *18*, 16938.
- 29. Hope, H. Prog. Inorg. Chem. 1994, 41, 1.

- 30. Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
- 31. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
- Beurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Garcia, S.; Gould, R. O. *DIRDIF-2008*; Crystallography Laboratory, Radboud University: Nijmegen, The Netherlands 2008.
- 33. Zaidlewicz, M.; Krzeminski, M. Sci. Synth. 2004, 6, 1097.

Chapter 4: Stabilization of Inorganic Acetylene, HBNH, Using Flanking Coordinative Interactions and Attempts to Isolate a Molecular BN Complex

4.1 Introduction

Iminoboranes (RB=NR) are isoelectronic to alkynes, however they exhibit greatly enhanced reactivity due to the higher polarity of B-N bonds,¹ and thus selfoligomerize when smaller R groups are present.² In seminal studies, Paetzold and coworkers used steric protection to obtain iminoboranes (*e.g.* ^tBuB=N^tBu) as stable entities, and demonstrated initial coordination chemistry.^{2b} Recent breakthroughs by the laboratories of Bertrand, Braunschweig and Stephan have demonstrated that both *N*-heterocyclic carbene (NHC) and cyclic(alkyl)amino carbene (CAAC) donors can bind functionalized iminoboranes such as CIBNSiMe₃ and ^tBuBN^tBu as 1:1 adducts LB•RB=NR' (LB = Lewis base).³ Despite these excellent studies, the parent iminoborane, HBNH, remained only identifiable in cryogenic matrices (40 K) or as a fleeting species in the gas phase.^{4,5} Furthermore HBNH is likely a key intermediate in the laser-induced preparation of nanodimensional boron nitride (BN) from H₃N•BH₃ dehydrogenation,⁶ boron nitride is of great value to the materials community due to its insulating properties and ability to withstand harsh external conditions.⁷

In this chapter a donor-acceptor approach⁸ is presented which led to the isolation of the first stable molecular adduct containing HBNH. Specifically, this parent iminoborane was sandwiched between Lewis basic (LB) and Lewis acidic

(LA) units to yield a stable complex of the form LB•HB=NH•LA, which could also be viewed as a formal Frustrated Lewis Pair (FLP)⁹ interacting with HBNH. By judicious modification of the capping LB and LA groups it is expected that a solution-phase route to boron nitride could be possible via mild dehydrogenation of LB•HB=NH•LA,¹⁰ followed by BN extrusion (Scheme 4.1); typically BN is prepared at temperatures exceeding 900 °C.⁶ Herein a general method is introduced to form B-N (and possibly other element-nitrogen) multiple bonds by the energetically favored loss of N₂ from inorganic hydrido-azide precursors.¹¹ Key intermediates *en route* to a LB•HB=NH•LA complex were isolated and structurally characterized, and the mechanism of iminoborane adduct formation was probed by isotope labeling studies. In addition the reactivity of such species was studied in detail and attempts were made to convert the HBNH adduct into LB•B≡N•LA complexes. Moreover, the reactivity of a donor-stabilized azidohydride boronium cation [BH(N₃)]⁺ was also discussed in this chapter.¹²

Scheme 4.1. Potential route to bulk boron nitride via an HBNH adduct; LA = Lewis acid, LB = Lewis base.

4.2 Results and discussions

The N₂ elimination process central to the current study was discovered in an attempt to form the electrophilic azidoborane adduct IPr•B(OTf)₂N₃ from the addition of two equivalents of MeOTf¹³ to the known azidoborane,¹⁴ IPr•BH₂N₃ (1) (IPr = $[(HCNDipp)_2C:]$, Dipp = 2,6-ⁱPr₂C₆H₃; OTf⁻ = OSO₂CF₃). It was hoped that reduction of IPr•B(OTf)₂N₃ would afford an unstable B(I) species that would yield oligomeric adducts of [IPr•(BN)]_x after loss of dinitrogen (Scheme 4.2).¹²

Scheme 4.2. A possible reaction pathway for the synthesis of a molecular BN precursor.

However when $IPr \cdot BH_2N_3$ (1) was reacted with of MeOTf, gas evolution was noted and a new product was formed that contained a nitrogen-bound methyl group. This product proved to be thermally unstable in solution at room temperature, yet at -35 °C colorless crystals suitable for X-ray crystallography were obtained, revealing the generation of the formal boraiminium adduct [IPr•HB=NH(Me)]OTf (2) (Scheme 4.3; Figure 4.1).

Scheme 4.3. Synthesis of 2 starting from 1 and MeOTf.

Compound 2 adopts a *trans* HBNH configuration in the solid state with a B–N distance of 1.361(5) Å, a value that is slightly elongated with respect to the B=N double bond lengths found in the abovementioned CAAC and NHC iminoborane adducts LB•RBNR' [1.300(3) to 1.340(5) Å] (LB = Lewis base).³ The C_{IPr}-B interaction in 2 [1.571(7) Å *avg*.] is nearly the same value within experimental error (3 σ) as the related coordinative bond in CAAC•BrB=NSiMe₃ [1.606(4) Å],^{3b} indicating that a similar C-B bonding environment is likely present in both species. Compound 2 was also characterized by different NMR techniques. The ¹H{¹¹B} NMR spectrum of compound 2 shows characteristic broad signals at 4.02 and 3.88 ppm for the N-*H* and B-*H* protons. Furthermore, the N-bound methyl group appears as a doublet (³*J*_{HH} = 4.8 Hz) at 1.98 ppm in the proton NMR spectrum of compound 2 displays a sharp resonance at -77.7 ppm representing the OTf counter anion.

Figure 4.1. Molecular structure of [IPr•BH=NH(Me)]OTf (**2**) with thermal ellipsoids presented at a 30 % probability level. All carbon-bound hydrogen atoms and OTf⁻ counterion have been omitted for clarity. Selected bond lengths (Å) and angles (deg) with parameters associated with a second molecule in the asymmetric unit listed in square brackets: C(1B)–B(1B) 1.574(5) [1.568(5)], B(1B)–N(3B) 1.366(5) [1.361(5)], N(3B)–C(4B) 1.478(5) [1.460(5)]; C(1B)–B(1B)–N(3B) 121.3(4) [122.1(4)].

Compound **2** can be viewed as an NHC adduct of methylated HBNH, and accordingly it can be assumed that the N₂ elimination/1,2-H migration protocol in Scheme 4.3 could be extended to include other Lewis acidic entities.¹⁵ Inspired by the prior success using W(CO)₅ as a Lewis acid,^{8c,d,h} IPr•BH₂N₃ (**1**) was combined with THF•W(CO)₅, however no reaction occurred. Fortunately, the hindered fluoroarylborane BAr^F₃ (Ar^F = 3,5-C₆H₃(CF₃)₂)¹⁶ binds to the azide moiety in **1** to yield IPr•BH₂N₃•BAr^F₃ (**3**) as a colorless solid (Scheme 4.4, Figure 4.2).

Scheme 4.4. Preparation of the azidoborane 3 and its conversion into the iminoborane complex 4.

The most notable structural feature of IPr•BH₂N₃•BAr^F₃ (**3**) is the substantial shortening of the terminal N(4)–N(5) bond length [1.134(2) Å] in relation to the internal N(3)–N(4) linkage [1.253(2) Å], consistent with the accumulation of triple bond character. Interestingly, the bond lengths and the overall geometry of the H₂B–N₃ unit in **3** remain unperturbed in relation to those found in the precursor IPr•BH₂N₃ (**1**).¹⁴ In addition to the B–H stretching mode at 2467 cm⁻¹, a diagnostic azide IR υ (N₃) band at 2134 cm⁻¹ was noted for **3**, which matches well with the related stretches at 2189 and 2175 cm⁻¹ found in the bis-silylated azide [(Me₃Si)₂NNN]B(C₆F₅)4.¹⁷

IPr•BH₂N₃•BAr^F₃ (**3**) slowly decomposes at room temperature, both in solution (within 24 hrs) and in the solid state (4 days). As a result, the thermolysis of **3** was explored in more detail. The clean conversion of IPr•BH₂N₃•BAr^F₃ (**3**) to a new carbene-containing product was accomplished by heating a solution of **3** in toluene to

Figure 4.2. Molecular structure of $IPr \cdot BH_2N_3 \cdot BAr^{F_3}$ (3) with thermal ellipsoids presented at a 30 % probability level; all carbon-bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)-B(1) 1.610(2), B(1)-N(3) 1.599(2), N(3)-N(4) 1.253(2), N(4)-N(5) 1.134(2), N(3)-B(2) 1.656(2); N(5)-N(4)-N(3) 177.68(18).

80 °C for 12 hrs.¹⁸ The resulting highly lipophilic colorless solid afforded an IR spectrum devoid of an azide band, suggesting that N₂ loss occurred. Furthermore weak υ (N–H) and υ (B–H) vibrations emerged at 3370 and 2511 cm⁻¹, respectively, while the corresponding N–H and B–H resonances were located at 5.44 and 4.00 ppm in the ¹H{¹¹B} NMR spectrum of the product with an integration ratio of 1:1. The N–H group yields a doublet resonance due to ³*J*_{HH} coupling with an adjacent B–H group, supporting the formation of an iminoborane HBNH array. X-ray crystallography conclusively identified the product as the donor-acceptor iminoborane complex IPr•HB=NH•BAr^F₃ (4) (Scheme 4.4, Figure 4.3). The central iminoborane B–N distance in **4** is 1.364(2) Å and is in line with the presence of a

double bond $(\Sigma r_{cov}(B=N) = 1.38 \text{ Å}).^{19}$ The capping IPr and BAr^F₃ units in 4 form a steric sheath about the central HB=NH unit and help enforce a *trans* core geometry $[C(1)-B(1)-N(3)-B(2) \text{ torsion angle} = 179.26(12)^{\circ}]$ which minimizes IPr•••BAr^F₃ intramolecular repulsions. The C_{IPr}–B distance in 4 is 1.596(2) Å and is shorter in comparison to the dative C–B interaction in ImⁱPr₂•^tBuB=N^tBu [1.648(2) Å; ImⁱPr₂ = (HCNⁱPr)₂C:],^{3c} illustrating the less hindered nature of the HBNH unit in 4. The terminal $N-BAr^{F_3}$ bond in 4 is 1.5708(18) Å and lies in the range of B–N single bonds noted in IPr•BH₂NH₂BH₃ [1.540(3)-1.605(2) Å];²⁰ of note, the capping $N-BAr^{F_3}$ interaction in IPr•BH₂N₃•BAr^{F_3} (**3**) is 1.599(2) Å.

Figure 4.3. Molecular structure of IPr•HB=NH•BAr^F₃ (4) with thermal ellipsoids presented at a 30 % probability level. All carbon-bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)–B(1) 1.596(2), B(1)–N(3) 1.364(2), N(3)–B(2) 1.5708(18); C(1)–B(1)–N(3) 123.45(13), B(1)–N(3)–B(2) 130.72(12), N(3)–B(1)–H(1B) 122.3(10), B(1)–N(3)–H(3N) 117.3(12).

One could also depict the bonding in **4** as the zwitterion NHC(+)-HB=NH-B(-)Ar^F₃; in this case polar two center, two electron C_{NHC}-B and N-B_{ArF3} bonds are still present. As outlined in Scheme 4.4, the formation of **4** is postulated to occur via N₂ loss from **3** followed by a 1,2-hydride shift from boron to nitrogen (*vide infra*). A related process has been observed by Paetzold^{1*a*} who prepared iminoboranes via alkyl-group migration (R₂N-B(R')-N \rightarrow R₂N-B=N-R') involving a transient boranitrene.²¹ Cummins and Fox also observed nitrogen extrusion from the azido-borate salt ⁿBu₄N[(N₃)B(C₆F₅)₃] in the presence of (THF)U[N(^tBu)Ar]₃ (Ar = 3,5-Me₂C₆H₃) to yield the uranium(V) nitride ⁿBu₄N[(F₅C₆)₃B•N=U{N(^tBu)Ar}]₃.²²

To gain insight into the mechanism by which IPr•HB=NH•BAr^F₃ (4) is formed, the deuterium labeled analogue IPr•BD₂N₃•BAr^F₃ (**3-d**) was synthesized from the reaction of IPr•BD₂N₃ (**1-d**) with BAr^F₃ (Scheme 4.5). Subsequent thermolysis of **3-d** at 80 °C yielded the isotopomer IPr•DB=ND•BAr^F₃ (**4-d**) as confirmed by the broad resonances at 5.44 and 4.00 ppm for the N-*D* and B-*D* unit in the ²H{¹H} NMR spectrum. Furthermore N-D and B-D IR stretches of **4-d** appear at 2495 and 1900 cm⁻¹.

Scheme 4.5. Synthesis of the the deuterium isotopomer IPr•DB=ND•BAr^F₃ (4-d).

The kinetic isotope effect on the rate of the conversion from **3** to **4** (compound **3-d** to **4-d**) was studied. Compounds **3** and **3-d** were separately heated in J. Young NMR tubes in C₆D₆ at 75 °C; the initial concentration of **3** and **3-d** was 8.23×10^{-3} mol·L⁻¹. As shown in Figure 4.4, A and A' represent the integral of the characteristic backbone IPr C-*H* ¹H resonances for **3** and **3-d**. The reactions were found to be 1st order and the calculated rate constant (k) was 0.42 s⁻¹ in both cases, thus giving a k_H/k_D = 1. Therefore the thermolysis of the deutero analogue **3-d** did not yield any discernable H/D kinetic isotope effect, suggesting that N₂ loss, and formation of a transient nitrene, is the rate determining step.

Figure 4.4. Kinetic isotope effect (KIE) studies of 3 and 3-d.

In order to facilitate the recording of an ¹⁵N NMR spectrum, the ¹⁵N-labeled adduct IPr•HB=¹⁵NH•BAr^F₃ was prepared as a 1:1 mixture with unlabeled **4** (Scheme 4.6). Interestingly the ¹⁵N–H group in IPr•HB=¹⁵NH•BAr^F₃ yielded a doublet of doublet resonance by ¹H NMR spectroscopy (Figure 4.5) with a ¹*J*_{H-15N} value of 69.6 Hz; for comparison, the –NH₂ group in 4-nitroaniline yields a ¹*J*_{H-15N} value of 86.3 Hz.²³ An ¹⁵N NMR resonance for **4-N15** was located at 155.4 ppm, and is positioned downfield in relation to the ^{15}N NMR resonance in borazine [HBNH]₃ (δ = -278 ppm).²⁴

Scheme 4.6. Synthesis of the ¹⁵N-labeled iminoborane adduct IPr•HB=¹⁵NH•BAr^F₃ (4-N15).

Figure 4.5. ${}^{1}H{}^{11}B{}$ NMR N–*H* resonances from a 1:1 mixture (4-N15) of IPr•HB= 15 NH•BAr^F₃ and 4.

In order to better understand the bonding and reactivity trends observed, computations were carried out at the pbe0/cc-pVDZ level. Natural bond orbital (NBO) analysis of IPr•BH₂N₃ (1) revealed a high negative partial charge of -0.54 on the internal (boron bound) N_{azide} atom, thus explaining the electrophilic attack at this site by MeOTf and BAr^{F₃} (Figure 4.6). Within IPr•BH₂N₃•BAr^{F₃} (3) the boranebound nitrogen [N(3) in Figure 4.2] has significant lone pair character, in line with the mesoionic form drawn in Scheme 4.4. The computed energies for the conversion of **3** into IPr•HB=NH•BAr^{F₃} (4) are -64.5 kcal/mol ($\Delta_r H^o$ (298 K)) and -75.6 kcal/mol ($\Delta_r G^o$ (298 K)), while the estimated activation barrier for N₂ loss from **3** is 31.3 kcal/mol.²⁵ NBO analysis gives rise to a total charge of the central HB=NH fragment in **4** of -0.13. The B–N linkage in **4** can be formulated as a double bond, with significant polarization of the σ and π components towards N (78 % for each) (Figure 4.7). Moreover, the Wiberg bond index (WBI) for this linkage (1.32) supports the presence of multiple-bond character; accordingly, the Kohn-Sham orbitals reveal a LUMO of B–N π *-character, while contributions to the BN double bond appear in the HOMO-7 (Figure 4.8).

Figure 4.6. Left: Ball-and-stick representation of the optimized structure of **1** (the majority of the Dipp and Ar^{F} -groups are omitted for clarity) with atomic charges. Right: Ball-and-stick representation of the optimized structure of **3** (the majority of the Dipp and Ar^{F} -groups are omitted for clarity) with atomic charges.

Figure 4.7. Left: Ball-and-stick representation of the optimized structure of **4** (the majority of the Dipp and Ar^{F} -groups are omitted for clarity). Right: Atomic charges of the atoms and *WBI*, BD_{theor.}, and BD_{exp} of the respective bonds (BD = bond distance).

Figure 4.8. Depiction of selected Kohn-Sham orbitals of $IPr \bullet HB = NH \bullet BAr^{F_3}$ (4) LUMO (left) and HOMO-7 (right).

Given the presence of hydridic (B–H) and acidic (N–H) residues within the parent iminoborane adduct IPr•HB=NH•BAr^F₃ (4), the dehydrogenation¹⁰ of this species was attempted to yield the first molecular adduct of boron nitride IPr•B≡N•BAr^F₃. However, when compound 4 was treated with 2 mol% of the active amine-borane dehydrogenation catalyst [(COD)RhCl]₂ (COD = 1,5-cyclooctadiene) at room temperature, and later at 90 °C, only the starting material could be recovered. Increasing the catalyst loading to 20 mol%, and prolonged heating to 140 °C (for 96 hrs) led to decomposition of 4 into an unidentifiable mixture of products. The lower reactivity of 4 in relation to other unsaturated B-N systems can be traced to the high degree of steric protection about the HB=NH unit due to the bulky flanking IPr and BAr^F₃ groups; in fact 4 can be handled in air (but decomposes in water) and remains unchanged in the presence of "BuLi, K[N(SiMe₃)₂], Ph₃C[B(C₆F₅)₄], MeOTf and even elemental I₂.

With the goal of promoting increased reactivity within a core HB=NH moiety, a HB=NH complex was synthesized with a less sterically encumbered carbene donor. Accordingly, the less hindered NHC, $ImMe_2^{i}Pr_2$ [$ImMe_2^{i}Pr_2 = (MeCN^{i}Pr)_2C$:] was prepared and explored as a Lewis base for HB=NH adduct formation.²⁶ The required azidoborane for this synthesis, $ImMe_2^{i}Pr_2 \cdot BH_2N_3$ (6), was prepared from $ImMe_2^{i}Pr_2 \cdot BH_3^{27}$ in two high yielding steps as illustrated in Scheme 4.7.

Scheme 4.7. Synthesis azidoborane adduct ImMe₂ⁱPr₂•BH₂N₃ (6).

ImMe₂ⁱPr₂•BH₂N₃ (6) was then combined with a stoichiometric amount of the fluoroarylborane, BAr^F₃, followed by heating to 80 °C for 12 hrs in toluene to afford the target iminoborane adduct ImMe₂ⁱPr₂•HB=NH•BAr^F₃ (7) as a colorless solid in a 64 % yield (Mp = 142-146 °C). Based on prior studies this reaction is believed to proceed via initial N₂ elimination and trapping of the resulting nitrene adduct, ImMe₂ⁱPr₂•H₂B-N•BAr^F₃ by a 1,2-hydride migration from B to N (Scheme 4.8). As expected, the ¹H{¹¹B} NMR spectrum of ImMe₂ⁱPr₂•HB=NH•BAr^F₃ (7) gave discernable N-H and B-H resonances at 5.42 and 4.62 ppm, respectively (in C₆D₆), which are similar to the corresponding resonances found in IPr•HB=NH•BAr^F₃ (4). X-ray crystallography later conclusively identified the presence of an HB=NH moiety in 7 (Figure 4.9). The core iminoborane unit in 7 adopts a *trans* arrangement [C-B-N-B dihedral angle = 178.1(2)°] thereby minimizing intramolecular repulsion between the ImMe₂ⁱPr₂ and BAr^F₃ groups. The central B=N and C_(NHC)-B bond distances in 7 are 1.369(3) Å and 1.596(4) Å, which are the same within experimental error as in IPr•HB=NH•BAr^F₃ (4). A slightly elongated B-N distance was reported in the iminoborane (HC=C)₂B-NⁱPr₂ (1.385(3) Å).²⁸

Scheme 4.8. Synthesis of $ImMe_2^iPr_2 \cdot HB = NH \cdot BAr^{F_3}$ (7) starting from the azidoborane adduct $ImMe_2^iPr_2 \cdot BH_2N_3$ (6).

ImMe₂ⁱPr₂•HB=NH•BAr^F₃ (7) was examined by computational methods (M062X functional with 6-31G(d,p)) and an overall charge of -0.13 e was found for the central HB=NH moiety. As anticipated, the B=N linkage (Wiberg bond index, WBI = 1.33) has considerable polarization of the σ - and π -components towards N (ca. 80 % located on N), according to NBO analysis (Figure 4.10). The LUMO shows B-N π^* and B-C π -character, while contributions to the B-N π -manifold appear in HOMO-2 and HOMO-6 (Figure 4.11). The computed HOMO-LUMO gap is 173 kcal mol⁻¹ and is in agreement with the observed inertness of **7** (*vide infra*).

Figure 4.9. Molecular structure of $ImMe_2^iPr_2 \cdot HB=NH \cdot BAr^F_3$ (7) with thermal ellipsoids presented at a 30 % probability level. All carbon-bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)–B(1) 1.596(2), B(1)–N(3) 1.369(3), N(3)–B(2) 1.572(2); C(1)–B(1)–N(3) 121.8(2), B(1)–N(3)–B(2) 130.5(2), N(3)–B(1)–H(1B) 125.2(16), B(1)–N(3)–H(3N) 115.8(19).

Figure 4.10. Left: Ball-and-stick representation of the optimized structure of 7 (the majority of the Ar^{F} -groups are omitted for clarity). Right: Atomic charges of the atoms and *WBI*, BD_{theor}, and BD_{exp} of the respective bonds (BD = bond distance).

Figure 4.11. POV-ray depiction of selected Kohn-Sham orbitals of 7.

With the less hindered HBNH complex 7 in hand, attempts were made to promote its dehydrogenation to afford the BN adduct $ImMe_2^iPr_2 \cdot B \equiv N \cdot BAr^F_3$. When $ImMe_2^iPr_2 \cdot HB = NH \cdot BAr^F_3$ (7) was treated with the well-known dehydrogenation precatalyst [Rh(COD)Cl]₂ (2-5 mol%) in toluene, no reaction occurred at room temperature. When the same dehydrogenation reaction was attempted at 90 °C for 7 days, only partial decomposition of 7 (<10 %; [ImMe_2^iPr_2-H]⁺ salt) was noted. Moreover, compound 7 was also combined with the potential dehydrogenation catalyst CpFe(CO)₂OTf and the FLP, ^tBu₃P and BAr^F₃, (both known to promote H₂ loss from amine-boranes) however in each case no reaction with 7 transpired. Likewise attempted H_2 release from 7 by photolysis (300 W Hg lamp in Et₂O) gave no reaction.

Undaunted by the lack of thermally- or catalytically-instigated H₂ release from 7, it was then verified if the core HBNH unit underwent chemical transformations one would expect for a polarized B=N linkage.²⁹ When ImMe₂ⁱPr₂•HB=NH•BAr^F₃ (7) was combined with one equivalent of HCl in Et₂O, the resulting ¹¹B NMR spectrum was consistent with the presence of two four-coordinate boron centers ($\delta = -3.7$ and -9.5 ppm, in C₆D₆). X-ray crystallography confirmed the successful addition of HCl across the B=N bond to form ImMe₂ⁱPr₂•H(Cl)B- $NH_2 \cdot BAr^F_3$ (8) as a racemic mixture due to the presence of a chiral boron atom (Figure 4.12; eqn. 4.1). The addition of chloride to the boron center in 8 illustrates the Lewis acidic nature of the boron atom in coordinated HB=NH in 7. The central B-N bond distance in 8 is 1.585(4) Å and is comparable to the B-N bond lengths found in structurally related amine-boranes, such as IPr•BH₂NH₂BH₃.³⁰ The C_(NHC)-B bond distance in 8 is 1.616(5) Å which, somewhat to our surprise, is similar in length as the corresponding $C_{(NHC)}$ -B bond distance of 1.596(4) Å in 7, despite the change in hybridization at boron to sp^3 in **8**; however, the capping N-BAr^F₃ interaction in **8** (1.632(4) Å) is longer than in the HBNH adduct 7 (1.572(2) Å). Addition of HCl also leads to a substantial canting of the relative arrangement of the capping NHC and borane groups (vs. in 7), as evidenced by the C-B-N-B dihedral angle of 65.3(3)°.

Figure 4.12. Molecular structure of $ImMe_2^iPr_2 \bullet H(Cl)B-NH_2 \bullet BAr^F_3$ (8) with thermal ellipsoids presented at a 30 % probability level. All carbon-bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)–B(1) 1.616(5), B(1)–N(3) 1.585(4), N(3)–B(2) 1.632(4), B(1)-Cl 1.906(4); C(1)–B(1)–N(3) 115.7(3), B(1)–N(3)–B(2) 124.4(2), N(3)–B(1)–Cl 107.2(2), B(1)–N(3)–H(3NA) 105(2).

While the polarized B=N linkage in $ImMe_2^{i}Pr_2 \cdot HB=NH \cdot BAr^{F_3}$ (7) did not exhibit FLP type reactivity with H₂, CO or CO₂,³¹ effective transfer hydrogenation³² occurred between the amine-borane Me₂NH \cdot BH₃ and 7 (eqn. 4.2). The resulting hydrogenated product $ImMe_2^{i}Pr_2 \cdot H_2B - NH_2 \cdot BAr^{F_3}$ (9) formed after 12 hrs at room temperature; the expected dehydrogenated by-products [Me₂N-BH₂]₂ and Me₂NH-BH₂-NMe₂-BH₃ were also detected by NMR spectroscopy. To probe the mechanism of this transformation in more detail, compound 7 was combined with Me₂ND · BH₃; the resulting product $ImMe_2^{i}Pr_2 \cdot H_2B - N(H)D \cdot BAr^{F_3}$ (9-d) suggested direct H/D atom transfer from B to B and N to N.^{32*a*} The molecular structure of **9** (Figure 4.13) has similar overall structural features as the HCl addition product ImMe₂ⁱPr₂•H(Cl)B-NH₂•BAr^F₃ (**9**) with an elongated C_{NHC}-B distance of 1.627(3) Å in accordance with the decreased electrophilicity of the $-BH_2$ -NH₂-BAr^F₃ unit in **9**.

Figure 4.13. Molecular structure of $ImMe_2^iPr_2 \cdot H_2B \cdot NH_2 \cdot BAr^F_3$ (9) with thermal ellipsoids presented at a 30 % probability level. All carbon-bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)–B(1) 1.627(3), B(1)–N(3) 1.613(3), N(3)–B(2) 1.622(2); C(1)–B(1)–N(3) 110.23(15), B(1)–N(3)–B(2) 120.11(14), N(3)–B(1)–H(1BB) 109.0(12), B(1)–N(3)–H(3NA) 106.8(15).

Despite the presence of both hydridic and acidic H atoms in $ImMe_2^{i}Pr_2 \cdot H_2B$ -NH₂•BAr^F₃ (9), efforts to induce dehydrogenation (and reform the HBNH adduct 7) by heating up to 100 °C in the presence of known dehydrogenation pre-catalysts [Rh(COD)Cl]₂ or CpFe(CO)₂OTf did not afford a discernable reaction. Furthermore, **9** remained unreactive towards the possible H₂ acceptors, PhN=NPh and the FLP (${}^{t}Bu_{3}P/BAr^{F}_{3}$), and did not yield **7** upon attempted photolysis (300 W Hg lamp). Accordingly, the calculated NPA charges for **9** show less hydridic character for the B-*H* array (-0.009 and -0.020 e) compared to the reactive amine-borane MeNH₂•BH₃ (B-*H* charges of -0.030 to -0.034 e), thus partially explaining the higher reactivity for the latter species (Figure 4.14). The computed positive charges for N-bound hydrogen atoms in **9** (0.429 and 0.437 e) are similar to those in MeNH₂•BH₃.

Figure 4.14. Left: Ball-and-stick representation of the optimized structure of **9** (the majority of the Ar^{F} -groups are omitted for clarity) Right-top: Atomic charges of the atoms and *WBI*, BD_{theor}, and BD_{exp} of the respective bonds (BD = bond distance). Right-bottom: Ball-and-stick representation of optimized structure of **MeNH₂•BH₃** with the atomic charges.

In order to directly probe the Lewis acidity of the HBNH unit in 7^{33} an additional equivalent of the carbene donor ImMe₂ⁱPr₂ was combined with ImMe₂ⁱPr₂•HB=NH•BAr^F₃ (7). While the expected bis adduct (ImMe₂ⁱPr₂)₂HBNH•BAr^F₃ (10) could be isolated in the solid state as a yellow solid (88 % yield) and characterized by X-ray crystallography (Figure 4.15, *vide infra*), the

NMR spectra of this product in solution exhibited dynamic behavior, consistent with partial dissociation of one NHC ligand. Addition of the Lewis acid acceptor BH_3 (delivered in the form of Me₂S•BH₃) led to the quantitative removal of one equiv. of ImMe₂ⁱPr₂ from **10** to reform **7** (eqn. 4.3).

Figure 4.15. Molecular structure of $[ImMe_2^{i}Pr_2]_2 \cdot HB-NH \cdot BAr^{F_3}$ (**10**) with thermal ellipsoids presented at a 30 % probability level. All carbon-bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)–B(1) 1.684(3), C(21)–B(1) 1.660(2), B(1)–N(5) 1.512(2), N(5)–B(2) 1.539(2); C(1)–B(1)–N(5) 117.28(14), B(1)–N(5)–B(2) 125.03(14), N(5)–B(1)–C(21) 112.26(14), N(5)–B(1)–H(1B) 113.4(11), B(1)–N(5)–H(5N) 112.5(14).

Consistent with weaker overall C_{NHC} -B interactions in 10 relative to the HBNH adduct 7, elongated distances of 1.684(3) and 1.660(2) Å were found in 10 (by *ca.* 0.06-0.08 Å). For comparison, the C-B distances in Bertrand's mixed

NHC/CAAC complex [CAAC•B(L)H(OTf)]BPh4 [CAAC = cyclic alkyl(amino) carbene; L = benzimidiazolylidene] were slightly shorter (1.645(2) and 1.627(2) Å).³⁴ Coordination of two NHCs at boron in **10** resulted in substantial lengthening of the core B-N distance from a value of 1.369(3) in 7 to 1.512(2) Å, suggesting a lack of a B-N π -bond interaction in **10**. Computational studies on **10** support this postulate with a computed B-N Wiberg bond index (WBI) of 0.85 (vs. 1.33 in 7). Moreover, interaction of the Lewis base ImMe₂ⁱPr₂ with the LUMO in 7 populates an orbital with B-N π *-character.

Figure 4.16. Left: Ball-and-stick representation of the optimized structure of **9** (the majority of the Ar^{F} -groups are omitted for clarity) Right: Atomic charges of the atoms and *WBI*, BD_{theor}, and BD_{exp} of the respective bonds (BD = bond distance).

As described in the beginning part of this chapter, N₂ loss/1,2-hydride migration in IPr•BH₂N₃ could also be instigated with the methylating agent MeOTf (Scheme 4.3), eventually leading to the formation of [IPr•HB=N(Me)H]OTf (2). It was desired to expand the range of known electrophiles that could trigger this potentially general transformation. However with the Ph₃COTf and R₃SiOTf (R = Me

and Ph), divergent reactivity was uncovered (Scheme 4.9). Specifically, when IPr•BH₂N₃ (1) or the less hindered analogue ImMe₂ⁱPr₂•BH₂N₃ (6) was combined with Ph₃COTf in CH₂Cl₂, hydride abstraction occurred to yield triphenylmethane (Ph₃CH) and the new azido(hydrido)borane adducts IPr•BH(OTf)N₃ (11) and ImMe₂ⁱPr₂•BH(OTf)N₃ (12) in isolated yields of 95 and 66 %, respectively (see Figures 4.17 and 4.18 for the corresponding X-ray structures). The ¹⁹F NMR spectra of 11 and 12 show the retention of strong B-OTf contacts in solution (*e.g.* $\delta = -76.9$ ppm for 11 in C₆D₆), while intense azide IR stretches were present at 2117 and 2116 cm⁻¹ for compounds 11 and 12, respectively; these values compare well with the $v(N_3)$ of 2117 cm⁻¹ reported for Cummins' azido borate salt [ⁿBu₄N][(N₃)B(C₆F₅)₃].²² Thus by simply replacing MeOTf with Ph₃COTf, H/OTf exchange chemistry can transpire in place of N₂ loss.

Scheme 4.9. Divergent reactivity of NHC•BH₂N₃ adducts with MeOTf, R''_3 SiOTf (R'' = Me or Ph), and Ph₃COTf.

Figure 4.17. Molecular structure of IPr•BHN₃(OTf) (11) with thermal ellipsoids presented at a 30 % probability level. All carbon-bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg) with parameters associated with a second molecule in the asymmetric unit listed in square brackets: C(1)-B(1A) 1.590(11) [1.652(10)], B(1A)-N(3A) 1.542(8) [1.482(12)], N(3A)-N(4A) 1.223(7) [1.211(8)], N(4A)–N(5A) 1.168(9) [1.145(11)], B(1A)-O(1A) 1.552(11) [1.562(11)]; N(3A)-N(4A)-N(5A) 175.0(11) [178.2(11)].

Yet another reaction pathway occurred when $IPr \cdot BH_2N_3$ was combined with the silyltriflates Me₃SiOTf and Ph₃SiOTf (Scheme 4.9). In each case, complete OTf/azide exchange transpired to form the corresponding silylazides (Me₃SiN₃ and Ph₃SiN₃; identified by NMR spectroscopy) and the known borane adduct $IPr \cdot BH_2OTf.^{14}$ It appears that N₃/OTf exchange is driven by the relatively strong Si-N bonds (*ca.* 355 kJ/mol)³⁵ in relation to the C-N linkages (*ca.* 305 kJ/mol), thus azide abstraction by Ph₃C⁺ sources is not as favorable. To recap, NHC • BH₂N₃ shows three distinct possible reactivity pathways in the presence of electrophiles: a) HBNH formation via N₂ loss/1,2-H shift; b) hydride abstraction; c) azide abstraction.

Figure 4.18. Molecular structure of $ImMe_2^{1}Pr_2 \cdot BHN_3(OTf)$ (12) with thermal ellipsoids presented at a 30 % probability level. All carbon-bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)–B 1.636(9), B–N(2) 1.519(19), B–O(1) 1.609(16), N(2)–N(3) 1.261(19), N(3)–N(4) 1.157(15); C(1)–B–N(2) 110.9(11), B–N(2)–N(3) 112.5(14), N(2)–N(3)–N(4) 169(3).

The accidentally uncovered high yield syntheses of the NHC•BH(OTf)N₃ adducts **11** and **12** (Scheme 4.9) opened another possible path to boron nitride (BN). Motivated by the balanced equation (NHC•BH(OTf)N₃ \rightarrow BN + N₂ + [NHC-H]OTf) the reactivity of both **11** and **12** was investigated in more detail. Initially, the direct thermolysis of **11** and **12** in solution was explored at temperatures approaching 100 °C (*Caution*!) but these adducts proved to be stable under these conditions. Treatment of **12** with potassium as reducing agent (in order to promote the possible reaction: **12** + K \rightarrow $\frac{1}{2}$ H₂ + N₂ + KOTf + BN + NHC) produced the free carbene ImMe₂ⁱPr₂ as the only soluble product by NMR spectroscopy. Whereas the reaction of **12** with KC₈ produced three different carbene containing products: free carbene ImMe₂ⁱPr₂, ImMe₂ⁱPr₂•BH₂N₃ and ImMe₂ⁱPr₂•BH₃.³⁶ Analysis of the insoluble fractions from both of the reactions by IR identified the presence of K[N₃] and K[OTf], indicating that B-N(azide) bond scission transpired in place of H₂ loss and boron nitride formation; in support of this reaction path, no IR bands for bulk BN could be found in the product mixtures (Figures 4.19 and 4.20).

Figure 4.19. IR spectrum of the insoluble part from the reduction of $ImMe_2^{i}Pr_2 \cdot BH(OTf)N_3$ (12) with K.

Figure 4.20. IR spectrum of the insoluble part from the reduction of $ImMe_2^iPr_2 \cdot BH(OTf)N_3$ (12) with KC₈.

Furthermore, the LUMO computed for the model species $ImMe_2 \cdot B(H)N_3(OTf)$ (ImMe₂ = (HCNMe)₂C:) revealed B-N σ^* -character, thus explaining the preferential B-N bond scission noted upon reduction (Figure 4.21).

Figure 4.21. Selected molecular orbitals of ImMe₂•BHN₃(OTf) calculated at the M062X/6-31g(d,p) level of density functional theory.

In order to induce 1,2-H transfer in the NHC•BHN₃(OTf) species **11** and **12** the donor $ImMe_2^{i}Pr_2$ was added to form the respective bis(carbene) boronium salts [IPr(ImMe_2^{i}Pr_2)•BH(N_3)]OTf (**13**) and [(ImMe_2^{i}Pr_2)_2•BH(N_3)]OTf (**14**) (eqn. 4.4).

The spectral parameters of these salts were consistent with free OTF counteranions (*e.g.* ¹⁹F resonance at -78.1 ppm for **14** in CDCl₃) and the retention of boron-bound azide and hydride substituents (*e.g.* IR stretches at *ca.* 2107 and 2400

cm⁻¹ for **13**). Structural confirmation of the proposed bonding environment was provided by an X-ray structure of the tetraarylfluoroborate salt $[(ImMe_2^iPr_2)_2 \cdot BH(N_3)]BAr^F_4$ (**15**) (eqn. 4.5; Figure 4.22).

Figure 4.22. Molecular structure of $[(ImMe_2^{i}Pr_2)_2 \cdot BHN_3][B\{C_6H_3(m-CF_3)_2\}_4]$ (15) with thermal ellipsoids presented at a 30 % probability level. All carbon-bound hydrogen atoms and BAr^F₄ anion have been omitted for clarity. Selected bond lengths (Å) and angles (deg.) with parameters associated with a second molecule in the asymmetric unit listed in square brackets: C(1)-B(1A) 1.642(9) [1.71(3)], C(21)-B(1A) 1.650(9) [1.59(3)], B(1A)-N(5A) 1.553(7) [1.514(13)], N(5A)-N(6A) 1.202(6) [1.206(11)], N(6A)-N(7A) 1.147(10) [1.159(14)]; N(5A)-N(6A)-N(7A) 173.7(6) [158(2)].

With the goal of taking advantage of possibly higher nucleophilic character of the azide group in **15** in relation to the mono-carbene congener **12**, compound **15** was combined with one equivalent of BAr^{F_3} . In place of observing Lewis acid-assisted N₂ elimination/H-migration to give the "trapped" BNH adduct

[(ImMe₂ⁱPr₂)₂•B=NH•BAr^F₃]OTf, no reaction transpired. Likewise no conversion of **15** was noted upon heating this species with BAr^{F_3} at 90-100 °C or under UV irradiation.

Computational investigations (M062X/6-31g(d,p) level) were conducted on the model species $[(ImMe_2)_2BH(N_3)]^+$ and the charge of the boron-bound hydrogen atom was noted to be slightly acidic character (NPA = +0.010) (Figure 4.23). An attempt was made to promote BN formation from **14** by treatment with sodium metal in Et₂O; however this reaction yielded free ImMe₂ⁱPr₂ with no sign of bulk BN formation by IR spectroscopy.

Figure 4.23. Left: Ball-and-stick representation of the optimized structure of model compound $[(ImMe_2)_2 \cdot B(H)N_3]^+$; Right: Atomic charges of the atoms calculated at the M062X/6-31g(d,p) level.

Figure 4.24. Selected molecular orbitals of $[(ImMe_2)_2 \cdot B(H)N_3]^+$ calculated at the M062X/6-31g(d,p) level.

4.3 Conclusions

A novel Lewis acid-induced N₂ elimination/hydride-shift process was developed to yield the first stable adducts of the parent iminoborane HBNH starting from a readily available carbene-azidoborane adduct. However the use of bulky substituents restricted access to the HBNH array by potential reagents/catalysts. As a result, a more reactive HBNH complex with less sterically hindered *N*-heterocyclic carbene was introduced and the reactivity of this species was investigated in detail. In addition the reactivity of the donor-stabilized azidohydride boronium cation $[BH(N_3)]^+$ was also explored. While investigations aimed at forming bulk boron nitride (BN) from these species under mild conditions were not directly successful, it is hoped that this work inspires others to seek low temperature (< 200 °C) routes to this important inorganic wide band gap material. By suitable modification of the capping stabilizing groups, related B-N sources could be potentially used as building blocks for the rational construction of boron nitride materials and π -extended structures.³⁷

4.4 Experimental Details

4.4.1 Materials and Instrumentation. All reactions were performed using standard Schlenk line techniques under an atmosphere of nitrogen or in an inert atmosphere glovebox (Innovative Technology, Inc.). Solvents were dried using a Grubbs-type solvent Purification system³⁸ manufactured by Innovative Technology, Inc., degassed (freeze-pump-thaw method), and stored under an atmosphere of nitrogen prior to use. H₃B•SMe₂ (2.0 M in THF), D₃B•THF (1.0 M solution in THF), NaN₃, I₂, MeOTf, and NaBD₄, Na, K, HCl (2.0 M in Et₂O [diluted to 0.2 M in Et₂O]), Me₂NH•BH₃, Me₃SiOTf, ^tBu₃P, and PhN=NPh were purchased from Aldrich and Na[NN¹⁵N] was purchased from Cambridge Isotope Laboratory (CIL) and each of these reagents were used as received. NaBAr^F₄ (Ar^F = $3,5-(F_3C)_2C_6H_3$) was purchased from Matrix Chemicals and dried under vacuum at 110 °C for 48 hrs. IPr,39 $IPr \cdot BH_2N_3$ (1),¹⁴ B(3,5-(F₃C)₂C₆H₃)₃ (BAr^F₃),¹⁶ IPr \cdot SnCl₄,⁴⁰ ImMe₂ⁱPr₂,²⁶ ImMe2ⁱPr2•BH3,²⁷ Me2ND•BH3,⁴¹ Ph3COTf,⁴² Ph3SiOTf,⁴³ and KC8⁴⁴ were prepared according to literature procedures; $IPr = [(HCNDipp)_2C:]$; $Dipp = 2,6^{-i}Pr_2C_6H_3$ and $ImMe_2^{i}Pr_2 = (MeCN^{i}Pr)_2C: {}^{1}H, {}^{2}H{}^{1}H{}, {}^{11}B, {}^{13}C{}^{1}H{}, {}^{19}F \text{ and } {}^{15}N{}^{1}H{} NMR$ spectra were recorded on a Varian iNova-400 spectrometer and referenced externally to SiMe₄ (¹H and ¹³C{¹H}), Si(CD₃)₄ (²H{¹H}), F₃B•OEt₂ (¹¹B), and 90% CH₃NO₂ (¹⁵N{¹H}), CFCl₃ (¹⁹F) respectively. Elemental analyses were performed by the Analytical and Instrumentation Laboratory at the University of Alberta. Infrared spectra were recorded on a Nicolet IR100 FTIR spectrometer as Nujol mulls between KBr plates. Melting points were measured in sealed glass capillaries under nitrogen using a MelTemp melting point apparatus and are uncorrected. Mass spectra were

obtained on Agilient Technology 6220 TOF (for ESI) and Kratos MS50G (for EI) spectrometers.

4.4.2 X-ray Crystallography. Crystals of appropriate quality for X-ray diffraction studies were removed from either a Schlenk tube under a stream of nitrogen, or from a vial (glove box) and immediately covered with a thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was then selected, attached to a glass fiber, and quickly placed in a low-temperature stream of nitrogen.⁴⁵ All data were collected using a Bruker APEX II CCD detector/D8 diffractometer using Mo K α or Cu K α radiation, with the crystal cooled to -100 °C. The data were corrected for absorption⁴⁶ through Gaussian integration from indexing of the crystal faces. Structures were solved using intrinsic phasing SHELXT.⁴⁷ Structure refinement was accomplished using either SHELXL-97 or SHELXL-2013.⁴⁸ Hydrogen atoms were assigned positions based on the sp² or sp³ hybridization geometries of their attached carbon atoms, and were given thermal parameters 20 % greater than those of their parent atoms.

4.4.3 Synthetic Procedures

Synthesis of [IPr•HB=NHMe]OTf (2). MeOTf (45 μ L, 0.41 mmol) was added to a 10 mL CH₂Cl₂ solution of IPr•BH₂N₃ (1) (152 mg, 0.34 mmol). The mixture was stirred for 2 hrs and the volatiles were removed under vacuum. The product was washed with 10 mL of a toluene/hexanes mixture (ratio: 1:2) and dried under vacuum to yield 2 as a white powder (183 mg, 90 %). X-ray quality crystals were grown from

a hexanes/CH₂Cl₂ mixture at -35 °C. ¹H{¹¹B} NMR (400 MHz, C₆D₆): $\delta = 8.16$ (s, 2H, N-C*H*), 7.33 (t, ³*J*_{H-H} = 7.6 Hz, 2H, Ar*H*), 7.09 (d, ³*J*_{H-H} = 7.9 Hz, 4H, Ar*H*), 4.02 (br, 1H, N*H*), 3.88 (br, 1H, B*H*), 2.34 (sept, ³*J*_{H-H} = 6.8 Hz, 4H, C*H*(CH₃)₂), 1.98 (d, ³*J*_{H-H} = 4.8 Hz, 3H, NH(C*H*₃)), 1.14 (d, ³*J*_{H-H} = 6.8 Hz, 12H, CH(C*H*₃)₂), 0.99 (d, ³*J*_{H-H} = 6.8 Hz, 12H, CH(C*H*₃)₂). ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 145.1$ (N-CH), 132.5 (ArC), 131.1 (ArC), 129.8 (ArC), 125.3 (s, ArC), 35.2 (N-CH₃), 29.1 (*C*H(CH₃)₂), 24.2 (CH(CH₃)₂), 23.7 (CH(CH₃)₂). ¹¹B{¹H} NMR (128 MHz, C₆D₆): δ = 28.6 (br, *B*H, $\omega_{1/2} = 527$ Hz). ¹⁹F NMR (376 MHz, C₆D₆): $\delta = -77.7$ (s, *CF*₃). IR (Nujol, cm⁻¹): 3395 (m, v_N) and 2548 (m, v_B). Anal. Calcd. for C₂₉H₄₁BF₃N₃O₃S: C, 60.10; H, 7.13; N, 7.25; S, 5.53. Found: C, 60.13; H, 7.14; N, 7.74; S, 5.53.

Synthesis of IPr•BH₂N₃•**BAr**^F₃ (**3**). A solution of BAr^F₃ (220 mg, 0.34 mmol) in 5 mL of CH₂Cl₂ was added dropwise to a 3 mL CH₂Cl₂ solution of IPr•BH₂N₃ (**1**) (137 mg, 0.31 mmol). The mixture was stirred for 1 hr and the solvent was removed under vacuum to yield **3** as a white powder (324 mg, 96 %). X-ray quality crystals were grown from a hexanes/Et₂O mixture at -35 °C. ¹H{¹¹B} NMR (400 MHz, C₆D₆): δ = 7.85 (s, 6H, *o*-C₆H₃(CF₃)₂), 7.68 (s, 3H, *p*-C₆H₃(CF₃)₂), 7.26 (t, ³J_{H-H} = 7.6 Hz, 2H, Ar*H* in Dipp), 7.03 (d, ³J_{H-H} = 7.6 Hz, 4H, Ar*H* in Dipp), 6.19 (s, 2H, N-C*H*), 2.38 (br, 2H, B*H*), 2.19 (sept, ³J_{H-H} = 5.6 Hz, 12H, CH(CH₃)₂), 1.07 (d, ³J_{H-H} = 5.6 Hz, 12H, CH(CH₃)₂), 0.85 (d, ³J_{H-H} = 5.6 Hz, 12H, CH(CH₃)₂), 1³C{¹H} NMR (125 MHz, C₆D₆): δ = 150.8 (br, *ipso*-C₆H₃(CF₃)₂), 144.9 (N-CH), 133.9 (*o*-C₆H₃(CF₃)₂), 132.1 (ArC), 131.7 (ArC), 130.8 (q, ²J_{C-F} = 32.4 Hz, *m*-C₆H₃(CF₃)₂), 28.9 (CH(CH₃)₂), 25.2

(CH(*C*H₃)₂), 22.3 (CH(*C*H₃)₂). ¹¹B{¹H} NMR (128 MHz, C₆D₆): δ = -15.6 (br, *B*H₂, $\omega_{1/2}$ = 368 Hz). ¹⁹F NMR (376 MHz, C₆D₆): δ = -62.5 (s, *CF*₃). IR (Nujol, cm⁻¹): 2467 (br, ν_{BH}) and 2134 (m, ν_{N3}). Anal. Calcd. for C₅₁H₄₇B₂F₁₈N₅: C, 56.02; H, 4.33; N, 6.40. Found: C, 55.89; H, 4.51; N, 5.93.

Synthesis of IPr•HB=NH•BAr^F₃ (4). A solution of IPr•BH₂N₃•BAr^F₃ (3) (324 mg, 0.30 mmol) in 10 mL of toluene was heated to 80 °C for 12 hrs to give a clear colorless solution. The solvent was then removed under vacuum from the mixture to vield a colorless oil. A 5 mL portion of hexanes was then added to the oil and the mixture was stirred for another 30 minutes. The mother liquor was decanted from the resulting precipitate and the solid was dried under vacuum to afford 4 as a white powder (250 mg, 81 %). Crystals suitable for X-ray diffraction were grown from hexanes/CH₂Cl₂ at -35 °C. ¹H{¹¹B} NMR (400 MHz, C₆D₆): $\delta = 7.78$ (s, 6H, o- $C_6H_3(CF_3)_2$, 7.64 (s, 3H, *p*- $C_6H_3(CF_3)_2$), 7.20 (t, ${}^3J_{H-H} = 7.6$ Hz, 2H, ArH in Dipp), 6.93 (d, ${}^{3}J_{H-H} = 7.9$ Hz, 4H, ArH in Dipp), 6.06 (s, 2H, N-CH-), 5.44 (d, ${}^{3}J_{H-H} = 11.6$ Hz, 1H, NH), 4.00 (br, 1H, BH), 2.06 (sept, ${}^{3}J_{H-H} = 6.8$ Hz, 4H, CH(CH₃)₂), 0.99 (d, ${}^{3}J_{\text{H-H}} = 6.8$ Hz, 12H, CH(CH₃)₂), 0.85 (d, ${}^{3}J_{\text{H-H}} = 6.8$ Hz, 12H, CH(CH₃)₂). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, C_6D_6): $\delta = 160.0$ (br, N-C-N), 152.3 (br, *ipso*- $C_6H_3(CF_3)_2$), 144.4 (br, N-CH), 133.6 (o-C₆H₃(CF₃)₂), 132.7 (ArC), 131.1 (ArC), 129.9 (g, ²J_{C-F} = 31.5 Hz, *m*-C₆H₃(CF₃)₂), 125.2 (ArC), 125.1 (ArC), 124.9 (q, ¹J_{C-F} = 272.5 Hz, CF₃), 118.9 $(p-C_6H_3(CF_3)_2), 29.2 (CH(CH_3)_2), 23.9 (CH(CH_3)_2), 23.3 (CH(CH_3)_2).$ ¹¹B{¹H} NMR (128 MHz, C₆D₆): δ = 28.5 (br, *B*H, $\omega_{1/2}$ = 178 Hz), -3.9 (s, *B*Ar^F₃). ¹⁹F NMR (376 MHz, C₆D₆): $\delta = -62.1$ (s, CF₃). IR (Nujol, cm⁻¹): 3370 (w, v_{NH}) and 2511 (m, v_{BH}). Anal. Calcd. for C₅₁H₄₈B₂F₁₈N₃: C, 57.49; H, 4.45; N, 3.94. Found: C, 57.48; H, 4.58; N, 3.79. Mp (°C): 202-205 °C.

Synthesis of IPr•BH₂N₃* (1-N15). 5 mL of DMSO was added to a mixture of IPr•BH₂I (415 mg, 0.78 mmol) and Na[NN¹⁵N] (62 mg, 0.94 mmol) and stirred for 24 hrs. 80 mL of ethyl acetate was then added to the mixture and the organic layer was washed with water (3×50 mL). The organic layer was dried over MgSO₄, filtered and the solvent was removed under vacuum to yield 1-N15 as a white powder (250 mg, 72 %). 1-N15 was used as is in subsequent syntheses (> 95 % pure by ¹H NMR spectroscopy). ¹H and ¹¹B NMR: similar to the values reported for IPr•BH₂N₃ (1).¹⁴

Synthesis of IPr•BH₂N₃*•BAr^F₃ (3-N15). Compound 3-N15 was synthesized from 1-N15 following the synthetic procedure for compound 3 (see above). A solution of BAr^F₃ (169 mg, 0.26 mmol) in 5 mL of CH₂Cl₂ was added dropwise to a 3 mL CH₂Cl₂ solution of IPr•BH₂N₃* (1-N15) (105 mg, 0.23 mmol). The mixture was stirred for 1 hr and the solvent was removed under vacuum to yield 3-N15 as a white powder (240 mg, 96 %). ¹H{¹¹B}, ¹¹B and ¹⁹F NMR: similar to 3. ¹⁵N{¹H} NMR (40.5 MHz, C₆D₆): $\delta = 123.0$ (s), 93.5 (s). IR (Nujol, cm⁻¹): 2463 (br, v_{BH}) and 2129 (m, v_{N3}).

Synthesis of IPr•HB=N*H•BAr^F₃ (4-N15). Compound 4-N15 was synthesized from 3-N15 following the synthetic procedure for compound 4 (see above). A solution of IPr•BH₂N₃*•BAr^F₃ (3-N15) (150 mg, 0.14 mmol) in 10 mL of toluene was heated to

80 °C for 12 hrs to get a clear colorless solution. The solvent was removed under vacuum from the mixture to yield a colorless oil. A 5 mL portion of hexanes was then added to the oil and the mixture was stirred for another 30 minutes. The mother liquor was decanted from the resulting precipitate and the solid was dried under vacuum to afford a 1:1 mixture of 4 and IPr•HB=¹⁵NH•BAr^F₃ as a white powder (120 mg, 84 %). Data for IPr•HB=¹⁵NH•BAr^F₃: ¹H{¹¹B} NMR (400 MHz, C₆D₆): Same as 4 except it shows resonance for ¹⁵N-H at $\delta = 5.44$ (dd, ¹*J*_{H-15N} = 69.6 Hz, ³*J*_{H-H} = 13.2 Hz, 1H, N15-*H*). ¹¹B and ⁹F NMR: similar to 4. ¹⁵N{¹H} NMR (40.5 MHz, C₆D₆): $\delta = 155.4$ (s). IR (Nujol, cm⁻¹): 3360 (w, $v_{NH \text{ and } 15NH}$) and 2507 (m, v_{BH}).

Synthesis of IPr•BD₃. To a solution of IPr (507 mg, 1.3 mmol) in 10 mL of hexanes was added 1.5 mL of THF•BD₃ (1.0 M solution in THF). The mixture was stirred for 24 hrs and the solvent was removed under vacuum to yield IPr•BD₃ as a white powder (500 mg, 95 %). ¹H{¹¹B} NMR: similar to IPr•BH₃ with the absence of a B-H resonance.^{49 11}B NMR (128 Mz, C₆D₆): $\delta = -35.8$ (s). ²H{¹H} NMR (61.4 MHz, C₆H₆): $\delta = 1.33$ (br).

Alternate synthesis of IPr•BD₃. 20 mL of diethyl ether was added to a mixture of IPr•SnCl₄ (502 mg, 0.77 mmol) and NaBD₄ (131 mg, 3.2 mmol). The mixture was stirred for 5 hrs and the filtrate was separated from the black precipitate. The solvent was removed from the filtrate under vacuum to yield IPr•BD₃ as a spectroscopically pure white solid (250 mg, 81 %).

Synthesis of IPr•BD₂I. A 10 mL benzene solution containing I₂ (143 mg, 0.56 mmol) was added dropwise to a 10 mL benzene solution of IPr•BD₃ (450 mg, 1.1 mmol), and the mixture was stirred for 4 hrs. The volatiles were removed from the mixture under vacuum to yield IPr•BD₂I as a yellow powder (580 mg, 98 %). ¹H{¹¹B} NMR: similar to IPr•BH₂I with the absence of a B-H resonance.^{14 11}B NMR (128 Mz, C₆D₆): δ = -32.8 (br, $\omega_{1/2}$ = 319 Hz). ²H{¹H} NMR (61.4 MHz, C₆H₆): δ = 2.49 (br).

IPr•BD₂N₃ (1-d). 5 mL of DMSO was added to a mixture of IPr•BD₂I (540 mg, 1.00 mmol) and NaN₃ (80 mg, 1.2 mmol) and stirred for 24 hrs. 100 mL of ethyl acetate was added to the mixture and the organic layer was washed with water (3 × 70 mL). The organic layer was dried over MgSO₄, filtered and the solvent was removed under vacuum to yield **1-d** as a white solid (310 mg, 70 %). **1-d** was used as is in subsequent syntheses (*ca.* 95 % pure by ¹H NMR spectroscopy). ¹H{¹¹B} NMR: similar to IPr•BH₂N₃ (1) with the absence of a B-H resonance.^{14 11}B NMR (128 Mz, CDCl₃): $\delta = 17.4$ (s). ²H{¹H} NMR (61.4 MHz, CHCl₃): $\delta = 2.29$ (br).

Synthesis of IPr•BD₂N₃•BAr^F₃ (3-d). Compound 3-d was synthesized from 1-d following the synthetic procedure for compound 3 (see above). A solution of BAr^F₃ (127 mg, 0.20 mmol) in 5 mL of CH₂Cl₂ was added dropwise to a 3 mL CH₂Cl₂ solution of IPr•BD₂N₃ (1-d) (80 mg, 0.17 mmol). The mixture was stirred for 1 hr and the solvent was removed under vacuum to yield 3-d as a white powder (170 mg, 92 %). ¹H{¹¹B}: similar to 3 with the absence of a B-H resonance. ¹¹B NMR: similar to

3. 2 H{ 1 H} NMR (61.4 MHz, C₆H₆): δ = 2.35 (br). IR (Nujol, cm⁻¹): 2138 (m, v_{N3}) and 1856 (m, v_{BD}).

Synthesis of IPr•DB=ND•BAr^F₃ (4-d). Compound 4-d was synthesized following the synthetic procedure for compound 4 (see above). A solution of IPr•BD₂N₃•BAr^F₃ (3-d) (80 mg, 0.073 mmol) in 5 mL of toluene was heated to 80 °C for 12 hrs to give a colorless solution. The volatiles were removed under vacuum to yield a colorless oil. A 3 mL portion of hexanes was then added to the oil and the mixture was stirred for another 30 minutes. The mother liquor was decanted from the resulting precipitate and the solid was dried under vacuum to afford 4-d as a white powder (50 mg, 70 %). ¹H{¹¹B} NMR: similar to 4 with the absence of B-H and N-H resonances. ¹¹B NMR: similar to 4. ²H{¹H} NMR (61.4 MHz, C₆H₆): δ = 5.44 (br, N-D), 4.00 (br, B-D). IR (Nujol, cm⁻¹): 2495 (w, vND) and 1900 (m, vBD).

ImMe₂ⁱPr₂•BH₂I (5). A solution of I₂ (718 mg, 2.83 mmol) in 10 mL of benzene was added dropwise to a 15 mL benzene solution of ImMe₂ⁱPr₂•BH₃ (1.09 g, 5.61 mmol), and the mixture was stirred for 2 hrs. The volatiles were removed from the mixture under vacuum to yield ImMe₂ⁱPr₂•BH₂I as a yellow powder (1.61 g, 90 %). ¹H{¹¹B} NMR (400 MHz, C₆D₆): $\delta = 5.43$ (br, 2H, CH(CH₃)₂), 3.27 (br, 2H, BH), 1.45 (s, 6H, Im-CH₃), 1.10 (d, ³J_{HH} = 6.4 Hz, 12H, CH(CH₃)₂). ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 124.8$ (N-C-CH₃), 50.5 (CH(CH₃)₂), 20.8 (CH(CH₃)₂), 9.7 (Im-CH₃). ¹¹B NMR (128 MHz, C₆D₆): $\delta = -30.1$ (br). Anal. Calcd. for C₁₁H₂₂BIN₂: C, 41.28; H, 6.93; N, 8.75. Found: C, 41.30; H, 6.89; N, 8.49. Mp (°C): 185-190. ImMe₂ⁱPr₂•BH₂N₃ (6). 5 mL of DMSO was added to a mixture of ImMe₂ⁱPr₂•BH₂I (5) (2.05 g, 6.41 mmol) and NaN₃ (500 mg, 7.69 mmol) followed by stirring for 24 hrs. 100 mL of ethyl acetate was then added to the mixture and the organic layer was washed with water (3 × 70 mL). The organic layer was dried over MgSO₄, filtered and the solvent was removed under vacuum to yield **6** as a white solid (1.02 g, 68 %). The product was further purified by crystallization from Et₂O/hexanes at -35 °C. ¹H{¹¹B} NMR (400 MHz, C₆D₆): δ = 5.34 (br, 2H, C*H*(CH₃)₂), 3.47 (br, 2H, B*H*), 1.46 (s, 6H, Im-C*H*₃), 1.09 (d, ³*J*_{HH} = 7.2 Hz, 12H, CH(C*H*₃)₂). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ = 162.7 (br, N-C-N), 124.5 (N-C-CH₃), 50.4 (CH(CH₃)₂), 21.4 (CH(CH₃)₂), 9.7 (Im-CH₃). ¹¹B NMR (160 MHz, C₆D₆): δ = -16.9 (t, ¹*J*_{BH} = 98.0 Hz). IR (Nujol, cm⁻¹): 2324 (w, v_{BH}), 2118 (m, v_{N3}), 2085 (s, v_{N3}). HR-MS (EI) (C₁₁H₂₂BN₅)⁺: m/z: Caled: 235.1968; Found: 235.1967 (Δ ppm = 0.7). Anal. caled. for C₁₁H₂₂BN₅: C, 56.19; H, 9.43; N, 29.78. Found: C, 56.63; H, 9.54; N, 29.25. Mp (°C): 90-94.

ImMe₂ⁱPr₂•HB=NH•BAr^F₃ (7). A solution of BAr^F₃ (440 mg, 0.68 mmol) in 5 mL CH₂Cl₂ was added dropwise to a 3 mL CH₂Cl₂ solution of ImMe₂ⁱPr₂•BH₂N₃ (6) (159 mg, 0.68 mmol). The mixture was stirred for 1 hr and the volatiles were removed under vacuum. The product was then dissolved in 10 mL of toluene and heated to 80 °C for 12 hrs to give a colorless solution. The solvent was removed under vacuum to yield a colorless oil. A 3 mL portion of Et₂O was then added to the oil and the resulting mixture was layered with 3 mL of hexanes to precipitate out a white solid.

The mother liquor was decanted from the resulting precipitate and the solid was dried under vacuum to afford 7 as a white powder (374 mg, 64 %). Crystals suitable for X-ray diffraction were grown from hexanes/CH₂Cl₂ at -35 °C. ¹H{¹¹B} NMR (400 MHz, C₆D₆): $\delta = 8.19$ (s, 6H, *o*-C₆*H*₃(CF₃)₂), 7.79 (s, 3H, *p*-C₆*H*₃(CF₃)₂), 5.42 (d, ³*J*_{HH} = 10.0 Hz, 1H, N*H*), 4.62 (br, 1H, B*H*), 3.75 (sept, ³*J*_{HH} = 6.9 Hz, 2H, C*H*(CH₃)₂), 1.12 (s, 6H, Im-C*H*₃), 0.79 (d, ³*J*_{HH} = 6.8 Hz, 12H, CH(C*H*₃)₂), 1³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 159.8$ (br, N-*C*-N), 133.9 (*o*-C₆H₃(CF₃)₂), 130.4 (q, ²*J*_{CF} = 31.8 Hz, *m*-C₆H₃(CF₃)₂), 125.6 (N-C-CH₃), 125.1 (q, ¹*J*_{CF} = 272.6 Hz, CF₃), 119.2 (*p*-C₆H₃(CF₃)₂), 51.6 (*C*H(CH₃)₂), 21.5 (CH(*C*H₃)₂), 8.6 (Im-CH₃). ¹¹B{¹H} NMR (128 MHz, C₆D₆): $\delta = 32.6$ (br, *B*H), -3.9 (s, *B*Ar^F₃). ¹⁹F NMR (376 MHz, C₆D₆): $\delta = -62.3$ (s, C*F*₃). IR (Nujol, cm⁻¹): 3367 (w, v_{NH}), 2489 (w, v_{BH}). Anal. Calcd. for C₃₅H₃₁B₂F₁₈N₃: C, 49.04; H, 3.65; N, 4.90. Found: C, 48.63; H, 4.03; N, 4.45. Mp (°C): 142-146.

ImMe2ⁱPr2•H(Cl)B-NH2•BAr^F3 (8). То 5 mL solution а Et₂O of ImMe₂ⁱPr₂•HB=NH•BAr^F₃ (7) (205 mg, 0.24 mmol) was added HCl (1.6 mL, 0.2 M solution in Et₂O, 0.3 mmol) and the mixture was stirred for 2 hrs. The solvent was removed from the mixture under vacuum to yield a white powder. The product (8) was further purified by crystallization from Et₂O/ hexanes at -35 °C (128 mg, 60 %). ¹H{¹¹B} NMR (500 MHz, C₆D₆): $\delta = 7.83$ (s, 6H, *o*-C₆H₃(CF₃)₂), 7.66 (s, 3H, *p*- $C_6H_3(CF_3)_2$, 4.53 (br, 2H, CH(CH₃)₂), 3.75 (br, 1H, BH), 3.61 (d, ${}^{3}J_{HH} = 13.0$ Hz, 1H, NH), 3.40 (br, 1H, NH), 1.36 (s, 6H, Im-CH₃), 0.69 (br, 12H, CH(CH₃)₂). ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 154.1$ (br, N-C-N), 133.4 (*o*-C₆H₃(CF₃)₂), 130.9 (q, ${}^{2}J_{CF} = 32.1$ Hz, $m-C_{6}H_{3}(CF_{3})_{2}$), 124.5 (q, ${}^{1}J_{CF} = 272.9$ Hz, CF_{3}), 120.4 ($p-C_{6}H_{3}(CF_{3})_{2}$), 51.3 ($CH(CH_{3})_{2}$), 20.5 ($CH(CH_{3})_{2}$), 9.6 (Im- CH_{3}). ${}^{11}B\{{}^{1}H\}$ NMR (128 MHz, $C_{6}D_{6}$): $\delta = -3.7$ (s, $BAr^{F_{3}}$), -9.5 (br, BHCl). ${}^{19}F$ NMR (376 MHz, $C_{6}D_{6}$): $\delta = -62.6$ (s, CF_{3}). Anal. Calcd. for $C_{35}H_{32}B_{2}ClF_{18}N_{3}$: C, 47.04; H, 3.61; N, 4.70. Found: C, 47.03; H, 3.69; N, 4.68. Mp (°C): 117-121.

ImMe₂ⁱPr₂•H₂B-NH₂•BAr^F₃ (9). То a 5 mL Et₂O solution of ImMe₂ⁱPr₂•HB=NH•BAr^F₃ (7) (131 mg, 0.15 mmol) was added Me₂NH•BH₃ (9 mg, 0.2 mmol) and the mixture was stirred for 12 hrs. The solvent was removed from the mixture under vacuum and the remaining residue washed three times with hexanes (3 \times 5 mL). The product was then dried under vacuum to yield 9 as a white solid. Crystals suitable for X-ray diffraction were grown from hexanes/CH₂Cl₂ at -35 °C (110 mg, 85 %). ${}^{1}H{}^{11}B{}$ NMR (400 MHz, C₆D₆): $\delta = 7.98$ (s, 6H, o-C₆H₃(CF₃)₂), 7.72 (s, 3H, p-C₆H₃(CF₃)₂), 4.41 (br, 2H, CH(CH₃)₂), 2.43 (br, 2H, NH), 2.29 (br, 2H, BH), 1.34 (s, 6H, Im-CH₃), 0.73 (d, ${}^{3}J_{HH} = 6.8$ Hz, 12H, CH(CH₃)₂). ${}^{13}C{}^{1}H{}$ NMR $(125 \text{ MHz}, C_6D_6): \delta = 160.5 \text{ (br, N-C-N)}, 155.4 \text{ (br, } ipso-C_6H_3(CF_3)_2), 133.6 \text{ (o-}$ $C_{6}H_{3}(CF_{3})_{2}$, 130.7 (q, ${}^{2}J_{CF} = 32.1$ Hz, $m-C_{6}H_{3}(CF_{3})_{2}$), 125.4 (N-C-CH₃), 124.4 (q, ${}^{1}J_{CF} = 272.2 \text{ Hz}, CF_{3}, 120.0 (p-C_{6}H_{3}(CF_{3})_{2}), 50.7 (CH(CH_{3})_{2}), 20.7 (CH(CH_{3})_{2}), 9.5$ (Im-*C*H₃). ¹¹B{¹H} NMR (128 MHz, C₆D₆): $\delta = -3.9$ (s, *B*Ar^F₃), -21.6 (br, *B*H₂). ¹⁹F NMR (376 MHz, C₆D₆): $\delta = -62.5$ (s, CF₃). Anal. Calcd. for C₃₅H₃₃B₂F₁₈N₃: C, 48.92; H, 3.87; N, 4.89. Found: C, 48.24; H, 3.83; N, 4.89. Mp (°C): 175-179. To identify the amine-borane by-product a similar reaction was performed by

combining $ImMe_2^{i}Pr_2 \bullet HB=NH \bullet BAr^{F_3}$ (7) (52 mg, 0.06 mmol) and $Me_2NH \bullet BH_3$ (4

mg, 0.06 mmol) in 5 mL of C₆D₆. The identified dimethyl amine-borane by-products by ¹¹B NMR spectroscopy were [Me₂N-BH₂]₂ (84 %)⁵⁰ and Me₂NH-BH₂-NMe₂-BH₃ (14 %).⁵⁰

ImMe₂ⁱPr₂•H₂B-N(D)H•BAr^F₃ (9-d). To a 5 mL Et₂O solution of ImMe₂ⁱPr₂•HB=NH•BAr^F₃ (7) (191 mg, 0.2 mmol) was added Me₂ND•BH₃ (13 mg, 0.2 mmol) and the mixture was stirred for 12 hrs. The solvent was removed from the mixture under vacuum and the remaining residue was washed three times with hexanes (3 × 5 mL). The product was then dried under vacuum to yield 9-d as a white solid (120 mg, 70 %). ¹H{¹¹B} NMR: similar to 9 except the signal at 2.43 (br) ppm, which integrates as one N-*H* proton. ¹¹B NMR: similar to 9. ²H{¹H} NMR (61.4 MHz, C₆H₆): δ = 2.36 (br, ND).

[ImMe2ⁱPr2]2•HB-NH•BAr^F3 (10). A solution of ImMe2ⁱPr2 (28 mg, 0.16 mmol) in 5 mL of Et₂O was added dropwise to a 5 mL Et₂O solution of ImMe2ⁱPr2•HB=NH•BAr^F3 (7) (130 mg, 0.15 mmol). The mixture was stirred for 12 hrs and the solvent was removed under vacuum to yield **10** as a light yellow powder (155 mg, 88 %). Crystals suitable for X-ray diffraction were grown from hexanes/CH₂Cl₂ at -35 °C. ¹H{¹¹B} NMR (400 MHz, C₆D₆): δ = 8.17 (br, 6H, *o*-C₆H₃(CF₃)₂), 7.77 (br, 3H, *p*-C₆H₃(CF₃)₂), 5.52 (br, 2H, NH), 3.80 (br, 2H, CH(CH₃)₂), 0.60-1.70 (br, 36H, Im-CH₃ and CH(CH₃)₂). ¹³C{¹H} NMR spectrum was not obtained due to the low solubility and dynamic behavior in solution. ¹¹B{¹H} NMR (128 MHz, C₆D₆): δ = -3.6 (s, BAr^F₃), -14.3 (br, BH). ¹⁹F{¹H} NMR (376

MHz, C₆D₆): δ = -62.3 to -62.0 (m, CF₃). Anal. Calcd. for C₄₆H₅₁B₂F₁₈N₅: C, 53.25; H, 4.95; N, 6.75. Found: C, 52.84; H, 4.88; N, 6.41. Mp (°C): 147-151.

Reaction of $[ImMe_2^iPr_2]_2 \bullet HB-NH \bullet BAr^F_3$ (10) with Me_2S \bullet BH_3. To a solution of $[ImMe_2^iPr_2]_2 \bullet HB-NH \bullet BAr^F_3$ (10) (76 mg, 0.07 mmol) in 10 mL of Et_2O was added 37 µL of Me_2S \bullet BH_3 (2.0 M solution in THF). The mixture was stirred for 12 hrs and the solvent was removed under vacuum to yield a white powder. ${}^{1}H{}^{11}B{}$ and ${}^{11}B{}$ NMR confirmed the presence of $ImMe_2^iPr_2 \bullet BH_3^{27}$ and $ImMe_2^iPr_2 \bullet HB=NH \bullet BAr^F_3$ (7).

IPr•BH(OTf)N₃ (11). A 5 mL CH₂Cl₂ solution of Ph₃COTf (224 mg, 0.56 mmol) was added dropwise to a 10 mL CH₂Cl₂ solution of IPr•BH₂N₃ (1) (253 mg, 0.56 mmol), and the mixture was stirred for 1 hrs. The volatiles were removed from the mixture under vacuum and the product was washed with hexanes (3 × 5 mL). The residue was then dried under vacuum to give **11** as yellow solid (323 mg, 95 %). Crystals suitable for X-ray diffraction were grown from fluorobenzene/hexanes at -35 °C. ¹H{¹¹B} (400 MHz, C₆D₆): δ = 7.22 (t, ³*J*_{HH} = 8.0 Hz, 2H, Ar*H*), 7.05-7.07 (m, 4H, Ar*H*), 6.29 (s, 2H, N-C*H*), 3.94 (br, 1H, B*H*), 2.53 (sept, ³*J*_{HH} = 7.0 Hz, 2H, C*H*(CH₃)₂), 2.48 (sept, ³*J*_{HH} = 7.0 Hz, 2H, C*H*(CH₃)₂), 0.95 (d, ³*J*_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 1.36 (d, ³*J*_{HH} = 10.0 Hz, 6H, CH(CH₃)₂), 0.95 (d, ³*J*_{HH} = 7.0 Hz, 12H, CH(CH₃)₂). ¹³C{¹H}</sup> NMR (125 MHz, C₆D₆): δ = 145.1 (N-CH), 145.0 (N-CH), 132.7 (ArC), 131.4 (ArC), 124.6 (ArC), 124.5 (ArC), 124.1 (ArC), 119.6 (q, ¹*J*_{C-F} = 318.9 Hz, CF₃), 29.4 (CH(CH₃)₂), 22.4 (CH(CH₃)₂). ¹¹B NMR (128 MHz, C₆D₆): δ = -

2.0 (br). ¹⁹F NMR (376 MHz, C₆D₆): δ = -76.9 (s, C*F*₃). IR (Nujol, cm⁻¹): 2462 (m, υ_{BH}), 2201 (w, υ_{N3}), 2117 (s, υ_{N3}). Anal. Calcd. for C₂₈H₃₇BF₃N₅O₃S: C, 56.86; H, 6.31; N, 11.84; S, 5.42. Found: C, 56.37; H, 6.22; N, 10.82; S, 5.06. Mp (°C): >195.

ImMe₂ⁱPr₂•BH(OTf)N₃ (12). A 5 mL CH₂Cl₂ solution of Ph₃COTf (369 mg, 0.94 mmol) was added dropwise to a 10 mL CH₂Cl₂ solution of ImMe₂ⁱPr₂•BH₂N₃ (6) (220 mg, 0.94 mmol), and the mixture was stirred for 1 hr. The volatiles were removed from the mixture under vacuum and the product was washed with hexanes (3 × 5 mL). The residue was then dried under vacuum to afford **12** as white powder (237 mg, 66 %). Crystals suitable for X-ray diffraction were grown from hexanes/CH₂Cl₂ at -35 °C. ¹H{¹¹B} NMR (400 MHz, C₆D₆): δ = 5.12 (br, 2H, C*H*(CH₃)₂), 4.56 (br, 1H, B*H*), 1.31 (s, 6H, Im-CH₃), 1.00 (br, 12H, CH(CH₃)₂). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ = 125.9 (N-*C*-CH₃), 50.9 (CH(CH₃)₂), 21.1 (CH(CH₃)₂), 9.6 (Im-CH₃), CF₃ and ^{Im}*C*-B resonances could not be located. ¹¹B NMR (128 MHz, C₆D₆): δ = -1.6 (br). ¹⁹F NMR (376 MHz, C₆D₆): δ = -76.3 (s, OTf). IR (Nujol, cm⁻¹): 2478 (m, v_{BH}), 2116 (s, v_{N3}). Anal. Calcd. for C₁₂H₂₁BF₃N₅O₃S: C, 37.61; H, 5.52; N, 18.28; S, 8.37. Found: C, 37.01; H, 5.45; N, 15.91; S, 8.88. Mp (°C): 74-77. Despite repeated attempts, analyses for N content were always low.

Reaction of IPr•BH₂N₃ (1) with R₃SiOTf (R = Me or Ph). A 5 mL of CH₂Cl₂ solution of Ph₃SiOTf (33 mg, 0.08 mmol) or Me₃SiOTf (22 μ L, 0.12 mmol) was dropwise added to a 5 mL CH₂Cl₂ solution of IPr•BH₂N₃ (1) (35 mg, 0.08 mmol) or (54 mg, 0.12 mmol) and stirred for 12 hrs. The volatiles were removed under vacuum

to yield a white solid. Upon washing with hexanes $(3 \times 5 \text{ mL})$ and dried under vacuum afforded IPr•BH₂OTf as a white powder (27 mg, 61 %) or (60 mg, 90 %). The ¹H{¹¹B}, ¹¹B and ¹⁹F NMR in spectra in CDCl₃ confirmed the product as IPr•BH₂OTf.¹⁴ Also ¹³C{¹H} NMR analysis of the hexanes soluble fraction (with Ph₃SiOTf as a reagent) confirmed the presence of Ph₃SiN₃.⁵¹

[IPr(ImMe₂ⁱPr₂)•BH(N₃)](OTf) (13). A solution of ImMe₂ⁱPr₂ (57 mg, 0.32 mmol) and IPr•BH(OTf)N₃ (11) (186 mg, 0.31 mmol) in 10 mL of toluene was heated at 80 °C for 12 hrs to give a white slurry. The resulting precipitate was separated from the mother liquor and dried under vacuum to give 13 as a white powder. The product was further purified by washing with 10 mL of fluorobenzene (168 mg, 68 %). ${}^{1}H{}^{11}B{}$ (400 MHz, CDCl₃): $\delta = 7.56$ (t, ${}^{3}J_{HH} = 8.0$ Hz, 2H, ArH), 7.45 (s, 2H, N-CH), 7.38 (d, 2H, ${}^{3}J_{\text{HH}} = 7.6$ Hz, ArH), 7.28 (d, 2H, ${}^{3}J_{\text{HH}} = 7.2$ Hz, ArH), 4.49 (sept, ${}^{3}J_{\text{HH}} = 7.2$ Hz, 1H, $CH(CH_3)_2$), 4.23 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 1H, $CH(CH_3)_2$), 3.69 (br, 1H, BH), 2.40-2.55 (m, 4H, CH(CH₃)₂), 2.28 (s, 3H, Im-CH₃), 2.13 (s, 3H, Im-CH₃), 1.47 (d, ${}^{3}J_{HH} =$ 7.2 Hz, 3H, CH(CH₃)₂), 1.40 (d, ${}^{3}J_{HH} = 7.0$ Hz, 6H, CH(CH₃)₂), 1.37 (d, ${}^{3}J_{HH} = 7.0$ Hz, 3H, CH(CH₃)₂), 1.18-1.24 (m, 9H, CH(CH₃)₂), 1.09 (d, ${}^{3}J_{HH} = 7.0$ Hz, 12H, CH(CH₃)₂), 0.81 (d, ${}^{3}J_{HH} = 7.2$ Hz, 3H, CH(CH₃)₂). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, CDCl₃): $\delta = 145.1$ (N-CH), 145.0 (br, C_{NHC} -B), 133.2 (ArC), 131.9 (ArC), 127.6 (ArC), 127.4 (ArC), 127.1 (ArC), 125.0 (N-C-CH₃, 124.6 (N-C-CH₃), 121.1 (q, ¹J_{C-F}) = 321.3 Hz, CF_3), 52.3 ($CH(CH_3)_2$), 51.6 ($CH(CH_3)_2$), 29.3 ($CH(CH_3)_2^{IPr}$), 29.1 $(CH(CH_3)_2^{IPr})$, 26.5 $(CH(CH_3)_2^{IPr})$, 25.9 $(CH(CH_3)_2^{IPr})$, 23.3 $(CH(CH_3)_2)$, 22.9 (CH(CH₃)₂^{IPr}), 22.0 (CH(CH₃)₂^{IPr}), 20.1 (CH(CH₃)₂), 11.1 (Im-CH₃), 10.9 (Im-CH₃).
¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta = -14.3$ (br, *B*H). ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -78.1$ (s, CF₃). IR (Nujol, cm⁻¹): 2400 (w, v_{BH}), 2186 (w, v_{N3}), 2107 (s, v_{N3}). HR-MS (ESI) (C₃₇H₅₇BN₇)⁺: m/z: Calcd: 622.4763; Found: 622.4756 (Δ ppm = 1.2). Anal. Calcd. for C₃₉H₅₇BF₃N₇O₃S: C, 60.69; H, 7.44; N, 12.70; S, 4.15. Found: C, 59.50; H, 7.01; N, 11.33; S, 4.10. Mp (°C): >195. Despite repeated attempts, analyses for C and N content were always low.

[(ImMe₂ⁱPr₂)**2**•BH(N₃)](OTf) (14). A solution of ImMe₂ⁱPr₂ (85 mg, 0.47 mmol) and ImMe₂ⁱPr₂•BH(OTf)N₃ (12) (179 mg, 0.47 mmol) in 10 mL of toluene was heated at 80 °C for 12 hrs. The solvent was removed under from mixture vacuum and the residue was washed with Et₂O (3 × 5 mL). The product was then dried under vacuum to yield a white solid (195 g, 74 %). ¹H{¹¹B} NMR (500 MHz, CDCl₃): δ = 5.05 (br, 4H, C*H*(CH₃)₂), 3.92 (s, 1H, B*H*), 2.34 (s, 12H, Im-C*H*₃), 1.45 (d, ³*J*_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 1.43 (d, ³*J*_{HH} = 7.2 Hz, 12H, CH(C*H*₃)₂). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 127.6 (N-C-CH₃), 50.8 (CH(CH₃)₂), 21.5 (CH(CH₃)₂), 21.3 (CH(CH₃)₂), 10.9 (Im-CH₃), CF₃ group was not located. ¹¹B NMR (128 MHz, CDCl₃): δ = -14.5 (d, ¹*J*_{B-H} = 94.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ = -78.1 (s, OTf). IR (Nujol, cm⁻¹): 2379 (m, v_{BH}), 2105 (s, v_{N3}). HR-MS (ESI) (C₂₂H₄₁BN₇)⁺: m/z: Calcd: 414.3511; Found: 414.3514 (Δ ppm = 0.8). Anal. Calcd. for C₂₃H₄₁BF₇N₇O₃S: C, 49.03; H, 7.33; N, 17.40, S, 5.69. Found: C, 49.02; H, 7.20; N, 16.42; S, 5.78. Mp (°C): 97-101. Despite repeated attempts, analyses for N content were always low.

 $[(ImMe_2^{i}Pr_2)_2 \cdot BH(N_3)]BAr^{F_4}$ (15). $[(ImMe_2^{i}Pr_2)_2 \cdot BH(N_3)](OTf)$ (14) (87 mg, 0.15) mmol) and NaBAr^F₄ (137 mg, 0.15 mmol) were combined in 10 mL of Et₂O. The mixture was stirred for 2 hrs and filtered. The volatiles were removed from the filtrate under vacuum to yield a white solid as 15 (173 mg, 87 %). Crystals suitable for X-ray diffraction were grown from hexanes/CH₂Cl₂ at -35 °C (110 mg, 85 %). ${}^{1}H{}^{11}B{}$ NMR (500 MHz, CDCl₃): $\delta = 7.68$ (s, 8H, $o-C_6H_3(CF_3)_2$), 7.52 (s, 4H, $p-C_6H_3(CF_3)_2$), 5.04 (br, 4H, CH(CH₃)₂), 3.90 (s, 1H, BH), 2.22 (s, 12H, Im-CH₃), 1.37 (d, ${}^{3}J_{HH} = 7.0$ Hz, 12H, CH(CH₃)₂), 1.36 (d, ${}^{3}J_{HH} = 7.5$ Hz, 12H, CH(CH₃)₂). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, CDCl₃): $\delta = 161.8$ (q, ${}^{1}J_{BC} = 49.8$ Hz, B-C₆H₃(CF₃)₂), 134.9 (*o*-C₆H₃(CF₃)₂), 129.0 (q, ${}^{2}J_{CF} = 32.2$ Hz, $m-C_{6}H_{3}(CF_{3})_{2}$), 127.4 (N-C-CH₃), 124.7 (q, ${}^{1}J_{CF} = 272.5$ Hz, CF₃), 117.6 (*p*-C₆H₃(CF₃)₂), 50.7 (CH(CH₃)₂), 21.2 (CH(CH₃)₂), 21.1 (CH(CH₃)₂), 10.6 (Im-CH₃). ¹¹B NMR (128 MHz, CDCl₃): $\delta = -6.6$ (s, BAr^{F_4}), -14.6 (d, ¹J_{BH} = 92.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.4$ (s, CF₃). IR (Nujol, cm⁻¹): 2384 (m, v_{BH}), 2193 (w, v_{N3}), 2110 (s, v_{N3}). HR-MS (ESI) (C₂₂H₄₁BN₇)⁺: m/z: Calcd: 414.3511; Found: 414.3507 (Δ ppm = 0.9). Anal. Calcd. for C₅₄H₅₃B₂F₂₄N₇: C, 50.76; H, 4.18; N, 7.67. Found: C, 50.95; H, 4.19; N, 6.67. Mp (°C): 130-134. Despite repeated attempts, analyses for N content were always low.

Reduction of ImMe₂ⁱPr₂•BH(N₃)OTf (12) with K. ImMe₂ⁱPr₂•BH(N₃)OTf (12) (450 mg, 1.1 mmol) was combined with K (215 mg, 5.3 mmol) in 20 mL of toluene and the mixture was stirred for 24 hrs. The solution was separated from the precipitate by filtration. The volatiles were removed under vacuum from the filtrate to afford a white solid. The ¹H NMR spectrum of the resulting toluene soluble solid revealed the

presence of free $ImMe_2^iPr_2$ (>90 %) with some other minor unidentified products. The IR spectrum of the insoluble fraction was consistent with the formation of K[OTf] and K[N₃] (Figure 4.19).

Reduction of ImMe₂ⁱPr₂•BH(N₃)OTf (12) with KC₈. ImMe₂ⁱPr₂•BH(N₃)OTf (12) (131 mg, 0.34 mmol) was combined with KC₈ (92 mg, 0.68 mmol) in 10 mL of toluene. The mixture was stirred for 24 hrs and filtered. All the volatiles were removed under vacuum from the filtrate to give a white solid. The ¹H and ¹¹B NMR spectra of the resulting solid indicated the formation of ImMe₂ⁱPr₂ (44 %), ImMe₂ⁱPr₂•BH₂N₃ (20 %), ImMe₂ⁱPr₂•BH₃ (13 %) with some other minor unidentified products (*ca.* 23 %). The IR spectrum of the insoluble part showed the formation of K[OTf] and K[N₃] (Figure 4.20).

4.5 Crystallographic Data

Compound	2	3
Formula	C ₂₉ H ₄₁ BF ₃ N ₃ O ₃ S	C51H47B2F18N5
Formula weight	579.52	1093.55
Crystal system	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁ / <i>n</i> (No. 14)	$P2_{1}/c$
<i>a</i> (Å)	9.1416(2)	21.9870(5)
<i>b</i> (Å)	19.2202(4)	11.9409(3)
<i>c</i> (Å)	36.1690(8)	20.9899(4)
α (deg)	90	90
β (deg)	90.1284(16)	105.4316(10)
$\gamma(\text{deg})$	90	90
$V(Å^3)$	6355.0(2)	5312.1(2)
Ζ	8	4
ρ (g/cm ³)	1.211	1.367
abs coeff (mm^{-1})	1.331	1.094
T (K)	173(1)	173(1)
$2\theta_{max}$ (°)	139.00	148.37
total data	42037	37286
unique data(Rint)	11914 (0.1034)	10752(0.0338)
Obs data [$I > 2(\sigma(I)$]	8692	9432
Params	741	693
$R_1 [I > 2\sigma(I)]^a$	0.0613	0.0542
wR ₂ [all data] ^{a}	0.1755	0.1496
max/min $\Delta \rho$ (e ⁻ Å ⁻³)	0.562/-0.543	0.592/-0.411

Table 4.1: Crystallographic data for 2 and 3.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$

Compound	4	7•0.5 toluene
Formula	$C_{51}H_{47}B_2F_{18}N_3$	$C_{38.50}H_{35}B_2F_{18}N_3$
Formula weight	1065.53	903.31
Crystal system	triclinic	monoclinic
Space group	P1 (No. 2)	$P2_1/n$ (No. 14)
<i>a</i> (Å)	12.3716(4)	12.2423(2)
<i>b</i> (Å)	12.5289(4)	22.6420(4)
<i>c</i> (Å)	18.9781(6)	14.6138(2)
α (deg)	83.5864(4)	90
β (deg)	86.5835(3)	92.7542(11)
$\gamma(\text{deg})$	63.4884(3)	90
$V(Å^3)$	2615.69(14)	4046.12 (11)
Z	2	4
ho (g/cm ³)	1.353	1.483
abs coeff (mm ⁻¹)	0.123	1.290
T (K)	173(1)	173(1)
$2\theta_{\max}$ (°)	56.57	148.69
total data	24418	28779
unique data(R _{int})	12615(0.0122)	8210(0.0306)
Obs data [$I > 2(\sigma(I))$]	10273	6089
Params	710	653
$\mathbf{R}_1 \left[I > 2\sigma(I)\right]^a$	0.0512	0.0633
wR ₂ [all data] ^{a}	0.1590	0.1957
max/min $\Delta \rho$ (e ⁻ Å ⁻³)	0.494/-0.379	0.355/-0.369

Table 4.2: Crystallographic data for 4 and 7.

 $a R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$

Compound	8	9• 0.375 CH ₂ Cl ₂
Formula	C35H32B2ClF18N3	$C_{35.38}H_{33.75}B_2Cl_{0.75}F_{18}N_3$
Formula weight	893.70	891.11
Crystal system	monoclinic	monoclinic
Space group	$P2_1/n$ (No. 14)	<i>I</i> 2/ <i>a</i> (No. 15)
<i>a</i> (Å)	11.3790 (6)	25.1883(19)
<i>b</i> (Å)	22.2822 (12)	12.1920(9)
<i>c</i> (Å)	16.4411(9)	26.4276(18)
α (deg)	90	90
β (deg)	107.567(4)	98.253(3)
$\gamma(\text{deg})$	90	90
$V(Å^3)$	3974.2(4)	8031.8(10)
Ζ	4	8
ho (g/cm ³)	1.494	1.474
abs coeff (mm ⁻¹)	1.910	1.738
T (K)	173(1)	173(1)
$2\theta_{max}(^{\circ})$	148.41	148.06
total data	27726	28202
unique data(Rint)	8048(0.0333)	7870(0.0197)
Obs data [$I > 2(\sigma(I))$]	6920	7250
Params	546	670
$R_1 \left[I > 2\sigma(I)\right]^a$	0.0762	0.0608
wR ₂ [all data] ^{a}	0.2120	0.1632
max/min $\Delta \rho (e^{-} \text{ Å}^{-3})$	0.858/-0.570	0.780/-0.682

 Table 4.3: Crystallographic data for 8 and 9.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$

Compound	10	11•0.5 PhF
Formula	$C_{46}H_{51}B_2F_{18}N_5$	C ₃₁ H _{39.50} BF _{3.50} N ₅ O ₃ S
Formula weight	1037.53	639.54
Crystal system	monoclinic	triclinic
Space group	<i>C</i> 2/ <i>a</i> (No. 15)	<i>P</i> 1 (No. 2)
<i>a</i> (Å)	12.9360 (4)	9.3972(2)
<i>b</i> (Å)	18.7832 (6)	12.2337 (3)
<i>c</i> (Å)	41.0326 (12)	16.8072 (4)
α (deg)	90	73.1735 (10)
β (deg)	94.5442 (15)	77.1382 (11)
$\gamma(\text{deg})$	90	68.1258 (10)
$V(Å^3)$	9938.7 (5)	1701.94 (7)
Ζ	8	2
ρ (g/cm ³)	1.387	1.248
abs coeff (mm ⁻¹)	1.133	1.333
T (K)	173(1)	173(1)
$2\theta_{max}$ (°)	144.77	144.69
total data	34208	11942
unique data(R _{int})	9814(0.0327)	6460(0.0136)
Obs data [$I > 2(\sigma(I))$]	8438	5942
Params	741	523
$\mathbf{R}_1 \left[I > 2\sigma(I)\right]^a$	0.0543	0.0434
wR ₂ [all data] ^{a}	0.1447	0.1255
max/min $\Delta \rho$ (e ⁻ Å ⁻³)	0.509/-10.422	0.276/-0.264

 Table 4.4: Crystallographic data for 10 and 11.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$

Compound	12	15
Formula	$C_{12}H_{21}BF_3N_5O_3S$	$C_{54}H_{53}B_2F_{24}N_7$
Formula weight	383.21	1277.65
Crystal system	orthorhombic	monoclinic
Space group	<i>Cmc</i> 2 ₁ (No. 36)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)
<i>a</i> (Å)	13.5787 (3)	12.6084 (3)
<i>b</i> (Å)	12.2769 (2)	19.7795 (6)
<i>c</i> (Å)	11.1774 (2)	24.1204 (6)
α (deg)	90	90
β (deg)	90	90
$\gamma(\text{deg})$	90	90
$V(Å^3)$	1863.32 (6)	6015.3 (3)
Ζ	4	4
ρ (g/cm ³)	1.366	1.411
abs coeff (mm ⁻¹)	2.013	1.206
T (K)	173(1)	173(1)
$2\theta_{\max}(^{\circ})$	140.55	144.70
total data	5885	42409
unique data(R _{int})	1850 (0.0452)	11860(0.0192)
Obs data [$I > 2(\sigma(I))$]	1733	11579
Params	201	812
$R_1 [I > 2\sigma(I)]^a$	0.0684	0.0480
wR ₂ [all data] ^{<i>a</i>}	0.1940	0.1337
max/min $\Delta \rho$ (e ⁻ Å ⁻³)	0.536/-0.385	0.480/-0.351

 Table 4.5: Crystallographic data for 12 and 15.

 $a R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; \ wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$

4.6 References

- (a) Paetzold, P. Adv. Inorg. Chem. 1987, 31, 123; (b) Nöth, H. Angew. Chem. Int. Ed. Engl. 1988, 27, 1603; (c) Paetzold, P. Pure Appl. Chem. 1991, 63, 345; (d) Fischer, R. C.; Power, P. P. Chem. Rev. 2010, 110, 3877; For related M-B=NR chemistry, see: (e) Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Chem. Rev. 2010, 110, 3924; (f) Paetzold, P.; Plotho, C. V. Chem. Ber. 1982, 115, 2819.
- (a) Paetzold, P.; Richter, A.; Thijssen, T.; Wurtenberg, S. Chem. Ber. 1979, 112, 3811; (b) Balak, E.; Herberich, G. E.; Manners, I.; Mayer, H.; Paetzold, P. Angew. Chem. Int. Ed. Engl. 1988, 27, 958.
- (a) Dahcheh, F.; Martin, D.; Stephan, D. W.; Bertrand, G. Angew. Chem. Int. Ed.
 2014, 53, 13159; (b) Dahcheh, F.; Stephan, D. W.; Bertrand, G. Chem. Eur. J.
 2015, 21, 199; (c) Braunschweig, H.; Ewing, W. C.; Geetharani, K.; Schaefer, M.
 Angew. Chem. Int. Ed. 2015, 54, 1662.
- 4. (a) Lory, E. R.; Porter, R. F. J. Am. Chem. Soc. 1973, 95, 1766; (b) Kawashima,
 Y.; Kawaguchi, K.; Hirota. E. J. Chem. Phys. 1987, 87, 6331; (c) Thompson, C.
 A.; Andrews, L. J. Am. Chem. Soc. 1995, 117, 10125; (d) Zhang, F.; Maksyutenko,
 P.; Kaiser, R. I.; Mebel, A. M.; Gregusova, A.; Perera, S. A.; Bartlett, R. J. J. Phys.
 Chem. A 2010, 114, 12148.
- For selected computational studies on HBNH, see: (a) Baird, N. C.; Datta, R. K. *Inorg. Chem.* 1972, *11*, 17; (b) Matus, M. H.; Grant, D. J.; Nguyen, M. T.; Dixon, D. A. *J. Phys. Chem. C* 2009, *113*, 16553; (c) Sundaram, R.; Scheiner, S.; Roy, A. K.; Kar, T. *J. Phys. Chem. C* 2015, *119*, 3253.

- Liu, H.; Jin, P.; Xue, Y.-M.; Dong, C.; Li, X.; Tang, C.-C.; Du, X.-W. Angew. Chem. Int. Ed. 2015, 54, 7051.
- (a) Paine, R. T.; Narula, C. K. Chem. Rev. 1990, 90, 73; (b) Geim, A. K.; Grigorieva, I. V. Nature 2013, 499, 419; c) Liu, L.; Park, J.; Siegel, D. A.;. McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G.; Science 2014, 343, 16.
- (a) Vogel, U.; Timonshkin, A. Y.; Scheer, M. Angew. Chem. Int. Ed. 2001, 40, 4409; (b) Rupar, P. A.; Jennings, M. C.; Ragogna, P. J.; Baines, K. M. Organometallics 2007, 26, 4109; (c) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem. Soc. 2011, 133, 777; (d) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Angew. Chem. Int. Ed. 2011, 50, 8354; (e) Yamaguchi, T.; Sekiguchi, A.; Driess, M. J. Am. Chem. Soc. 2010, 132, 14061; (f) Ghadwal, R. S.; Roesky, H. W. Acc. Chem. Res. 2013, 46, 444; (g) Filippou, A. C.; Baars, B.; Chernov, O.; Lebedev, Y. N.; Schnakenburg, G. Angew. Chem. Int. Ed. 2014, 53, 565; (h) Rivard, E. Dalton Trans. 2014, 43, 8577.
- 9. Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.
- (a) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009, 38, 279; (b) Leitao, E. M.; Titel, J.; Manners, I. Nature Chem. 2013, 5, 817; (c) Krieg, M.; Reicherter, F.; Haiss, P.; Ströbele, M.; Eichele, K.; Treanor, M.-J.; Schaub, R.; Bettinger, H. F. Angew. Chem. Int. Ed. 2015, 54, 8284.

- For related rearrangements involving organic azides, see: (a) Rokade, B. V.;
 Prabhu, J. R. J. Org. Chem. 2012, 77, 5364; (b) Albertin, G.; Antoniutti, S.;
 Baldan, D.; Castro, J.; García-Fontán, S. Inorg. Chem. 2008, 47, 742.
- For recent computational study on LB•BN•LA species, see: Momeni, M. R.;
 Shulman, L.; Rivard, E.; Brown, A. *Phys. Chem. Chem. Phys.* 2015, 17, 16525.
- A related H/OTf exchange process is known within zinc(II) hydride chemistry: Lummis, P. A.; Momeni, M. R.; Lui, M. W.; McDonald, R.; Ferguson, M. J.; Miskolzie, M.; Brown, A.; Rivard, E. Angew. Chem. Int. Ed. 2014, 53, 9347.
- Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.;
 Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072.
- 15. (a) Al-Rafia, S. M. I.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. Eur. J.
 2012, 18, 13810; (b) Stubbs, N. E.; Jurca, T.; Leitao, E. M.; Woodall, C. H.; Manners, I. Chem. Commun. 2013, 49, 9098.
- Kolychev, E. L.; Bannenberg, T.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm,
 M. *Chem. Eur. J.* **2012**, *18*, 16938.
- 17. Schulz, A.; Villinger, A. Chem. Eur. J. 2010, 16, 7276.
- Photolysis of 3 (Hg lamp, 200 W) for 3 hrs in toluene or CH₂Cl₂ gave the new product, 4, along with unknown by-products.
- 19. Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 12770.
- Malcolm, A. C.; Sabourin, K. J.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Inorg. Chem.* 2012, *51*, 12905.
- For a related study on boranitrenes, see: Filthaus, M.; Schwertmann, L.; Neuhaus,
 P.; Seidel, R. W.; Oppel, I.; Bettinger, H. F. *Organometallics* 2012, *31*, 3894.

- 22. Fox, A. R.; Cummins, C. C. J. Am. Chem. Soc. 2009, 131, 5716.
- 23. Axenrod, T.; Pregosin, P. S.; Wieder, M. J.; Becker, E. D.; Bradley, R. B.; Milne, G. W. A. J. Am. Chem. Soc. 1971, 93, 6536.
- 24. Wrackmeyer, B.; Tok, O. L. Z. Naturforsch. B 2007, 62b, 220.
- 25. To estimate the activation barrier, the N3-N4 bond length in **3** was scanned. The extrusion of N₂ is accompanied by a 1,2-H-shift and formation of **4**.
- 26. Kuhn, N.; Kratz, T. Synthesis 1993, 561.
- Kuhn, N.; Henkel, G.; Kratz, T.; Kreutzberg, J.; Boese, R.; Maulitz, A. M. Chem. Ber. 1993, 126, 2041.
- Ge, F.; Kehr, G.; Daniliuc, C. G.; Mück-Lichtenfeld, C.; Erker, G.; Organometallics 2015, 34, 4205.
- 29. (a) Laubengayer, A. W.; Beachley Jr., O. T.; Porter, R. F. Inorg. Chem. 1965, 4, 578; (b) Beachley Jr., O. T.; Washburn, B. Inorg. Chem. 1975, 14, 120.
- Malcolm, A. C.; Sabourin, K. J.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Inorg. Chem.* 2012, *51*, 12905.
- 31. (a) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskelä, M.; Repo, T.; Pyykkö, P.; Rieger, B. J. Am. Chem. Soc. 2008, 130, 14117; (b) Legare, M.-A.; Courtemanche, M. –A.; Rochette, E.; Fontaine, F.-G. Science 2015, 349, 513; (c) Wang, T.; Kehr, G.; Liu, L.; Grimme, S.; Daniliuc, C. G.; Erker, G. J. Am. Chem. Soc. 2016, 138, 4302; (d) Mo, Z.; Rit, A.; Campos, J.; Kolychev, E. L.; Aldridge, S. J. Am. Chem. Soc. 2016, 138, 3306; (e) Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.

- 32. For related examples of transfer hydrogenation between amine-boranes and unsaturated B-N compounds, see: (a) Robertson, A. P. M.; Leitao, E. M.; Manners, I. J. Am. Chem. Soc. 2011, 133, 19322; (b) Lui, M. W.; Paisley, N. R.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. Eur. J. 2016, 22, 2134; (c) Leitao, E. M.; Stubbs, N. E.; Robertson, A. P. M.; Helten, H.; Cox, R. J.; Lloyd-Jones, G. C.; Manners, I. J. Am. Chem. Soc. 2012, 134, 16805.
- 33. We also explored the possible Lewis basic nature of 7. When 7 was combined with CuI and BAr^F₃, no reaction was found; treatment of 7 with Me₂S•BH₃ (as a source of BH₃) gave a complicated product mixture.
- 34. Ruiz, D. A.; Melaimi, M.; Bertrand, G. Chem. Commun. 2014, 50, 7837.
- 35. (a) Benson, S. W. J. Chem. Educ. 1965, 42, 502; (b) Walsh, R. Acc. Chem. Res.
 1981, 14, 246.
- 36. For the synthesis of BN by treating [XBNH]₃ (X = Cl or Br) with molten alkali metals, see: (a) Hamilton, E. J. M.; Dolan, S. E.; Mann, C. M.; Colijn, H. O.; McDonald, C. E.; Shore, S. G. Science 1993, 260, 659; (b) Hamilton, E. J. M.; Dolan, S. E.; Mann, C. M.; Colijn, H. O.; Shore, S. G. Chem. Mater. 1995, 7, 111.
- 37. (a) Dewar, M. J. S.; Kubba, V. P.; Pettit, R. J. Chem. Soc. 1958, 3073; (b) Emslie,
 D. J. H.; Piers, W. E.; Parvez, M. Angew. Chem. Int. Ed. 2003, 42, 1252; (c)
 Campbell, P. G.; Marwitz, A. J. V.; Liu, S.-Y. Angew. Chem. Int. Ed. 2012, 51,
 6074; (d) Edel, K.; Brough, S. A.; Lamm, A. N.; Liu, S.-Y.; Bettinger, H. F.
 Angew. Chem. Int. Ed. 2015, 54, 7819.
- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics. 1996, 15, 1518.

- 39. Jafarpour, L.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem. 2000, 606, 49.
- Al-Rafia, S. M. I.; Lummis, P. A.; Swarnakar, A. K.; Deutsch, K. C.; Ferguson, M. J.; McDonald, R.; Rivard, E. Aust. J. Chem. 2013, 66, 1235.
- Sloan, M. E.; Staubitz, A.; Clark, T. J.; Russell, C. A.; Lloyd-Jones, G. C.; Manners, I. J. Am. Chem. Soc. 2010, 132, 3831.
- 42. Straus, D. A.; Zhang, C.; Tilley, T. D. J. Organomet. Chem. 1989, 369, C13.
- Asadi, A.; Avent, A. G.; Hill, M. S.; Hitchcock, P. B.; Meehan, M. M.; Smith, J. D. Organometallics 2002, 21, 2183.
- 44. Savoia, D.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1978, 43, 2907.
- 45. Hope, H. Prog. Inorg. Chem. 1994, 41, 1.
- 46. Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
- 47. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
- Beurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Garcia, S.; Gould, R. O. DIRDIF-2008; Crystallography Laboratory, Radboud University: Nijmegen, The Netherlands, 2008.
- 49. Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R. B.; Schaefer, H.
 F.; Schleyer, P. v: R.; Robinson, G. H. *J. Am Chem. Soc.* 2007, *129*, 12412.
- 50. (a) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2003, 125, 9424; (b) Robertson, A. P. M.; Leitao, E. M.; Manners, I. J. Am. Chem. Soc. 2011, 133, 19322; (c) Nöth, H.; Thomas, S. Eur. J. Inorg. Chem. 1999, 1373.
- 51. Kuhn, A.; Sander, W. Organometallics 1998, 17, 4776.

Chapter 5: Azido- and Amido-substituted Gallium Hydrides Supported by *N*-Heterocyclic Carbenes

5.1 Introduction

It is now well accepted that the coordination of main group element centers by carbon-based donors, such as *N*-heterocyclic carbenes (NHCs),¹ cyclic(alkyl)aminocarbenes (CAACs),² and *N*-heterocyclic olefins (NHOs)³ can provide access to many species that are unstable or unattainable under conventional synthetic conditions. Drawing focus to the group 13 (triel) elements, the recent isolation of homodiatomic B_2 molecular adducts⁴ can be viewed as a particularly salient example of the stabilization brought forth by the abovementioned carbon-based donors.

As described in the previous chapter, a complex containing the elusive inorganic acetylene HBNH placed between a sterically encumbered NHC donor and a large synthesized.⁵ resulting triarylfluoroborane acceptor was The complex (F₃C)₂C₆H₃)] was synthesized via Lewis acid-assisted N₂ elimination from the nonexplosive azidoborane complex IPr•BH₂N₃⁶ followed by hydride migration from B to N. Motivated by this result, parallel chemistry⁷ was explored with gallium. The iminogallane HGa=NH could be a possible building block for the future low temperature deposition of bulk gallium nitride (GaN), a highly valued material for its luminescent and semi-conducting properties.^{8,9} Preliminary investigations involving the preparation of NHC-supported azido- and amido-gallium hydrides and behavior upon heating are reported herein.

5.2 Results and Discussions

The attempted synthesis of an HGa=NH complex required the discovery of a suitable route to an azidogallane adduct NHC•GaH₂N₃. It was hoped that one analogue, IMes•GaH₂N₃, could be synthesized from known IMes•GaH₂X (IMes = $[{HCN(Mes)}_2C:]$; Mes = 2,4,6-Me₃C₆H₂; X = Cl, Br or I) complexes¹⁰ by reaction with common azide sources such as Me₃SiN₃ or NaN₃. However previous reports associated with the synthesis of the necessary starting material IMes•GaH₃ involved the reaction of the *N*-heterocyclic carbene IMes with thermally unstable Li[GaH₄].¹¹ To make an eventual route to IMes•GaH₂N₃ more convenient, a modified synthesis of IMes•GaCl₃¹² was combined with three equivalents of K[HB^sBu₃] in THF at room temperature to give IMes•GaH₃ in a 75 % isolated yield via Cl/H exchange (eqn. 5.1).

Later, IMes•GaH₃ was treated with 0.5 equivalents of IMes•GaI₃, according to literature procedures,^{10c,12} to afford IMes•GaH₂I. In order to synthesize the desired azido-gallane adduct IMes•GaH₂N₃, IMes•GaH₂I was reacted with either Me₃SiN₃ or NaN₃ in THF; however no reaction transpired. A successful synthesis of

IMes•GaH₂N₃ (1) was accomplished by combining IMes•GaH₂I with the lipophilic azide salt [ⁿBu₄N]N₃ in THF (eqn. 5.2). The ¹H NMR spectrum of the resulting product (1) afforded a broad resonance at 4.52 ppm, due to the retention of two gallium-bound hydrides. Moreover a diagnostic azide $v(N_3)$ band for compound 1 was detected at 2084 cm⁻¹, which matched well with the related asymmetric azide stretch at 2104 cm⁻¹ found in Me₃N•GaCl₂N₃.⁹⁶ The composition of 1 was substantiated by X-ray crystallography (Figure 5.1) and revealed the presence of a tetrahedral geometry about the Ga center. The C_(NHC)-Ga bond distance in 1 is 2.041(4) Å and is similar to values found within known NHC-gallane complexes.^{10,12} The Ga-N bond length in 1 is 1.953(4) Å and comparable to the Ga-N bond distances in Christe's pentaazido gallate salt [PPh₄]₂[Ga(N₃)₅] [1.937(2)-2.049(2) Å].¹³

After the successful isolation of IMes•GaH₂N₃ (1), the Lewis acid-triggered N₂ elimination/hydride migration from Ga to N was attempted to form IMes•HGa=NH•BAr^F₃ (Ar^F = 3,5-(F₃C)₂C₆H₃); a similar transformation was previously used to yield an HB=NH complex.⁵ Accordingly, IMes•GaH₂N₃ (1) was combined with a stoichiometric amount of BAr^F₃ followed by the heating of the reaction mixture to 80 °C in toluene. The ¹H NMR spectrum of the resulting white solid indicated the formation of multiple carbene-containing products, however conclusive evidence for the formation of an HGa=NH complex was not found. Instead, a salt consisting of the known [HBAr^F₃]⁻ anion¹⁴ was identified (Scheme 5.1) as one of the products in the mixture by ¹H and ¹¹B NMR spectroscopy. Attempts to isolate pure products by fractional crystallization were unsuccessful.

Figure 5.1. Molecular structure of IMes•GaH₂N₃ (1) with thermal ellipsoids presented at a 30 % probability level. All carbon bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Ga-C(1) 2.041(4), Ga-N(3) 1.953(4), Ga-H(1A) 1.52(5), Ga-H(1B) 1.52(5), N(3)-N(4) 1.199(6), N(4)-N(5) 1.146(6); N(3)-Ga-C(1) 101.41(18), N(3)-N(4)-N(5) 174.6(6).

Scheme 5.1. Reaction of IMes•GaH₂N₃ (1) with BAr^F₃.

It was also shown in the previous chapter that $N_2 loss/1,2$ -hydride migration in IPr•BH₂N₃ could also be instigated by addition of the strong electrophile MeOTf (OTf = OSO₂CF₃), leading to the formation of the *N*-methylated adduct [IPr•HB=NHMe]OTf.^{5a} However when IMes•GaH₂N₃ (1) was treated with one equivalent of MeOTf in CH₂Cl₂, multiple products were found according to ¹H and ¹⁹F NMR spectroscopy. Increasing the stoichiometry of MeOTf to four molar equivalents resulted in clean formation of the new hydrido/triflate adduct IMes•GaH(OTf)₂ (2) (Scheme 5.2) in 80 % yield as a colorless moisture-sensitive solid.

Scheme 5.2. Syntheses of IMes•GaH(OTf)₂ (2).

Compound **2** was identified by a combination of X-ray crystallography (Figure 5.2) and NMR spectroscopy. Due to the possible explosive nature of the likely by-product, MeN₃ (**Caution!**),¹⁵ this reaction was not repeated again. However, the outcome of the reaction was further confirmed by an independent synthesis of **2** via the reaction of IMes•GaH₃ with excess MeOTf (Scheme 5.2). The ¹⁹F NMR spectrum of IMes•GaH(OTf)₂ (**2**) showed a sharp resonance at -77.4 ppm that was assigned to the covalently bound OTf groups. As displayed in Figure 5.2, the refined structure of **2** afforded the expected coordination of two OTf substituents at gallium with corresponding Ga-O bond lengths of 1.9023(15) and 1.9186(16) Å. These bonds are significantly elongated relative the those [1.8021(1) Å] found in the four-

coordinate bis(hydroxy) gallium complex $LGa(OH)_2$ (L = HC[C(Me)NDipp]_2; Dipp = 2,6-ⁱPr_2C_6H_3),¹⁶ suggesting that the Ga-OTf interactions in **2** are weak in nature.

Figure 5.2. Molecular structure of IMes•GaH(OTf)₂ (**2**) with thermal ellipsoids presented at a 30 % probability level. All carbon bound hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Ga-C(1) 1.9855(19), Ga-O(1) 1.9023(15), Ga-O(4) 1.9186(16), Ga-H(1) 1.45(3); O(1)-Ga-C(1) 104.12(7), C(1)-Ga-H(1) 123.2(11).

The above results indicate that in the presence of a Lewis acid (BAr^{F_3}) or electrophile MeOTf, IMes•GaH₂N₃ (1) undergoes preferential azide or hydride abstraction processes in place of N₂ loss/hydride migration. The differing reactivity of the azido-gallane IMes•GaH₂N₃ (1) compared with IPr•BH₂N₃ is likely a consequence of the increased polarity and reactivity of Ga-N and Ga-H bonds due to the lower electronegativity of Ga in relation to B. Thus it appears that an alternate route to a molecular complex of HGa=NH has to be devised.

In keeping with the theme of eventually generating molecular precursors to bulk gallium nitride, the gallium-silylamide complexes IMes•GaH₂N(SiMe₃)₂ (**3**) and

IPr•GaCl₂N(SiMe₃)₂ (**4**) were synthesized. The amido-gallane complex IMes•GaH₂N(SiMe₃)₂ (**3**) was prepared in a 93 % yield as a white solid from the reaction of IMes•GaH₂Cl¹² with a stoichiometric amount of Li[N(SiMe₃)₂] (eqn. 5.3).

The ¹H NMR spectrum of **3** afforded a sharp up-field positioned resonance at 0.23 ppm due to the capping $-N(SiMe_3)_2$ group, while expected resonances for the gallium hydrides (4.51 ppm) and IMes ligand were also detected. The crystallographically determined structure of 3 is shown in Figure 5.3; despite the presence of cocrystallized IMes•GaH(Cl)-N(SiMe₃)₂ as part of the crystalline lattice, bulk samples of **3** afforded both satisfactory elemental analyses and clean NMR spectra. Perhaps the most salient structural feature of **3** is the substantially longer $C_{(NHC)}$ -Ga length [2.0743(15) Å] in relation to that found in the bis(triflato) gallane IMes•GaH(OTf)₂ (2) [1.9855(19) Å]; this is likely a consequence of the less Lewis acidic GaH₂N(SiMe₃)₂ unit in **3** in relation to the GaH(OTf)₂ moiety in **2**. The nitrogen atom within the silylamido group in 3 [N(3); Figure 5.3] is slightly pyramidalized as revealed by an angle sum ($\Sigma^{\circ}N$) value of 353.41(12)°. Due to the presence of the bulky SiMe₃ groups at nitrogen, the Ga-N bond distance in **3** [1.9226(13) Å] is longer compared to the Ga-NMe₂ bond length [1.816(2) Å] reported in {[(cyclopentyl)N- $C_{6}H_{4}]_{2}O$ GaNMe₂.¹⁷

Figure 5.3. Molecular structure of IMes•GaH₂N(SiMe₃)₂ (3) with thermal ellipsoids presented at a 30 % probability level. All carbon bound hydrogen atoms have been omitted for clarity; 3 co-crystallizes with *ca.* 15% of the mixed hydrido/chloride adduct IMes•GaH(Cl)-N(SiMe₃)₂. Selected bond lengths (Å) and angles (deg) for 3: Ga-C(1) 2.0743(15), Ga-H(1Ga) 1.503(18), Ga-H(2Ga) 1.512(19), Ga-N(3) 1.9226(13); N(3)-Ga-C(1) 112.30(6), Si(1)-N(3)-Si(2) 123.25(8), Ga-N(3)-Si(1) 112.09(7), Ga-N(3)-Si(2) 118.07(7).

A halogenated analogue of **3**, $IPr \cdot GaCl_2N(SiMe_3)_2$ (**4**) was also readily prepared from the known adduct $IPr \cdot GaCl_3^{12b}$ and one equivalent of $Li[N(SiMe_3)_2]$ (eqn. 5.3). The molecular structure of $IPr \cdot GaCl_2N(SiMe_3)_2$ (**4**) is shown in Figure 5.4 and displays similar overall structural features as the hydrido congener **3**.

After the successful preparation of IMes•GaH₂N(SiMe₃)₂ (**3**) and IPr•GaCl₂N(SiMe₃)₂ (**4**), the possible synthesis of extended GaN structures was attempted⁹ via thermolysis. Surprisingly, both of these species were found to be quite thermally stable and do not show any signs of HSiMe₃, ClSiMe₃ or HN(SiMe₃)₂ loss upon heating to 100 °C in toluene. Compound **3** was also stable upon microwave irradiation for 1.5 h at 130 °C in toluene, while under the same microwave

conditions, compound **4** underwent partial decomposition to an $[IPrH]^+$ salt (20 %) and a new unidentified carbene-containing product (24 %).

Figure 5.4. Molecular structure of $IPr \cdot GaCl_2N(SiMe_2)_2$ (4) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Ga-C(1) 2.0570(15), Ga-N(3) 1.8932(13), Ga-Cl(1) 2.2054(4), Ga-Cl(2) 2.2047(5); N(3)-Ga-C(1) 119.05(6), Cl(1)-Ga-Cl(2) 103.54(2), Si(2)-N(3)-Si(1) 121.46(8).

In order to encourage possible intermolecular Ga-N bond forming processes I hoped to replace the chloride substituents in IPr•GaCl₂N(SiMe₃)₂ (**4**) with more labile OTf groups (to form IPr•Ga(OTf)₂N(SiMe₃)₂). Towards this goal, IPr•GaCl₂N(SiMe₃)₂ (**4**) was combined with two equivalents of Ag[OTf] in CH₂Cl₂, however under these conditions the exchange of only one chloride transpired to form IPr•GaCl(OTf)N(SiMe₃)₂ (**5**) (eqn. 5.4).

Compound **5** was obtained as a racemic mixture due to the presence of a chiral gallium center (Figure 5.5). A sharp signal at -76.2 ppm in the ¹⁹F NMR spectrum of **5** indicated that the OTf group remained covalently bound to gallium in solution. Despite replacing one of the chlorine atom with a OTf group, compound **5** was also thermally stable to 100 °C in toluene for prolonged periods of time (12 hrs). However, compound **5** underwent a complete decomposition to several unidentified products upon microwave irradiation for 1.5 h at 130 °C in fluorobenzene.

Figure 5.5. Molecular structure of IPr•GaCl(OTf)N(SiMe₂)₂ (**5**) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg) with parameters associated with a second molecule in the asymmetric unit listed in square brackets: Ga(A)-C(1) 2.042(3) [2.167(6)], Ga(A)-N(3A) 1.846(3) [1.840(9)], Ga(A)-Cl(A) 2.1668(11) [2.171(10)], Ga(A)-O(1) 1.969(2) [1.982(5)]; N(3A)-Ga(A)-C(1) 124.52(14) [129.1(11)], Cl(A)-Ga(A)-O(1) 102.10(9) [112.5(15)].

5.3 Conclusions

The successful isolation of *N*-heterocyclic carbene complexes of azido- and amidogallanes has been described. These species represent members of a general compound class that could be eventually used to generate bulk gallium nitride under mild conditions (after suitable ligand modification). The reported gallium hydrides also have similar structural features as the recently reported active ketone hydrosilylation/borylation catalyst IPr•Zn(H)OTf•THF^{18a} and thus future work would involve exploring the catalytic activity¹⁸ of these main group, NHC-supported, gallium hydrides in more detail.

5.4 Experimental Details

5.4.1 Materials and Instrumentation. All reactions were performed using standard Schlenk techniques under an atmosphere of nitrogen or in an inert atmosphere glovebox (Innovative Technology, Inc.).¹⁹ Solvents were dried using a Grubbs-type solvent purification system manufactured by Innovative Technology, Inc., degassed (freeze–pump–thaw method), and stored under an atmosphere of nitrogen prior to use. K[HB^sBu₃] (1.0 M solution in THF), GaCl₃, Li[N(SiMe₃)₂], and [ⁿBu₄N]N₃ were purchased from Aldrich and used as received. NHC•GaX₃ (NHC = IMes or IPr; X = Cl or I),^{12b,20} IMes•GaH₂X (X = Cl or I)^{10a,10c} and BAr^F₃ (Ar^F = 3,5-(F₃C)₂C₆H₃)²¹ were prepared according to literature procedures. ¹H, ¹¹B, ¹³C {¹H}, ¹⁹F, NMR spectra were recorded on a Varian iNova-400 spectrometer and referenced externally to SiMe4 (¹H and ¹³C {¹H}), F₃B•OEt₂ (¹¹B), and CFCl₃ (¹⁹F) respectively. Elemental analyses were performed by the Analytical and Instrumentation Laboratory at the University of Alberta. Melting points were measured in sealed glass capillaries under nitrogen using a MelTemp apparatus and are uncorrected.

5.4.2 X-ray Crystallography. Crystals of suitable quality for X-ray diffraction studies were removed from a vial in a glovebox and immediately covered with a thin

layer of hydrocarbon oil (Paratone-N). A suitable crystal was selected, mounted on a glass fiber, and quickly placed in a low temperature stream of nitrogen on an X-ray diffractometer.²² All data were collected at the University of Alberta using a Bruker APEX II CCD detector/D8 diffractometer using Cu Kα radiation with the crystals cooled to -100 °C. The data were corrected for absorption through Gaussian integration from the indexing of the crystal faces.²³ Structures were solved using the direct methods program SHELXS-97²⁴ (IPr•GaCl(OTf)N(SiMe₃)₂ (**5**)) or intrinsic phasing SHELXT²⁴ (IMes•GaH₂N₃ (**1**), IMes•GaH(OTf)₂ (**2**), IMes•GaH₂N(SiMe₃)₂ (**3**), IPr•GaCl₂N(SiMe₃)₂ (**4**)). Structure refinement was accomplished using either SHELXL-97 or SHELXL-2013.²⁴ All carbon-bound hydrogen atoms were assigned positions on the basis of the sp² or sp³ hybridization geometries of their attached carbon atoms, and were given thermal parameters 20 % greater than those of their parent atoms.

5.4.3 Synthetic procedures

Synthesis of IMes•GaH₃. To a 40 mL THF solution of IMes•GaCl₃ (1.67 g, 3.48 mmol) was added dropwise K[HB^sBu₃] (11 mL, 1.0 M solution in THF, 11 mmol) and the mixture was stirred for 24 hrs. The mother liquor was separated from the white precipitate by filtration and the solvent was removed under vacuum from the filtrate. The resulting product was washed three times with hexanes (3×10 mL) and dried under vacuum to yield IMes•GaH₃ as a white powder (980 mg, 75 %). The ¹H and ¹³C{¹H} NMR spectra matched those found in the literature.^{10a}

Synthesis of IMes•GaH₂N₃ (1). To a 3 mL THF solution of IMes•GaH₂I (154 mg, 0.31 mmol), was added dropwise a 3 mL THF solution of ["Bu₄N]N₃ (77 mg, 0.28 mmol) and the reaction mixture was stirred for 3 hrs. The solvent was removed from the mixture under vacuum and the resulting white solid was re-dissolved in 20 mL of toluene. The solution was filtered and the solvent was removed from the filtrate under vacuum to yield IMes•GaH₂N₃ (1) (80 mg, 62 %) as a white solid. Crystals suitable for X-ray diffraction were grown from a toluene/hexanes mixture at -35 °C). ¹H NMR (400 MHz, C₆D₆): $\delta = 6.74$ (s, 4H, Ar*H*), 5.96 (s, 2H, Ar*H*), 4.52 (br, 2H, Ga*H*), 2.07 (s, 6H, C*H*₃), 1.98 (s, 12H, C*H*₃). ¹³C {¹H} NMR (125 MHz, C₆D₆): $\delta = 171.7$ (s, N-C-N), 140.1 (s, ArC), 134.9 (s, ArC), 134.2 (s, ArC), 129.6 (s, ArC), 123.0 (s, N-CH), 21.1 (s, CH₃), 17.4 (s, CH₃). IR (Nujol, cm⁻¹): 2084 (s, υ_{N3}), 1890 (m, ^{asym} υ_{Ga-H}), 1843 (m, ^{sym} υ_{Ga-H}). Anal. Calcd. for C₂₁H₂₆GaN₅: C, 60.31; H, 6.21; N, 16.75. Found: C, 60.13; H, 6.22; N, 16.55. Mp (°C): 183-186.

Independent Synthesis of IMes•GaH(OTf)₂ (2). To a 5 mL CH₂Cl₂ solution of IMes•GaH₃ (96 mg, 0.25 mmol) was added MeOTf (114 µL, 1.04 mmol) and the mixture was stirred for 12 hrs. All the volatiles were removed under vacuum and the resulting white solid was washed with 5 mL of hexanes. The product was dried under vacuum to yield **2** as a white powder (140 mg, 83 %). ¹H NMR (400 MHz, C₆D₆): δ = 6.72 (s, 4H, Ar*H*), 5.89 (s, 2H, N-C*H*), 5.10 (br, 1H, Ga*H*), 2.02 (s, 6H, C*H*₃), 1.94 (s, 12H, C*H*₃). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ = 158.0 (s, N-C-N), 141.8 (s, Ar*C*), 134.7 (s, Ar*C*), 131.7 (s, Ar*C*), 130.1 (s, Ar*C*), 125.1 (s, N-CH), 119.9 (q, ¹J_{CF} = 318 Hz, CF₃), 21.0 (s, CH₃), 17.1 (s, CH₃). ¹⁹F NMR (376 MHz, C₆D₆): δ = -77.4. IR

(Nujol, cm⁻¹): 2062 (m, v_{Ga-H}). Anal. Calcd. for C₂₃H₂₅F₆GaN₂O₆S₂: C, 41.03; H, 3.74; N, 4.16; S, 9.52. Found: C, 40.23; H, 3.67; N, 4.01; S, 9.52. Mp (°C): 180-185.

Synthesis of IMes•GaH₂N(SiMe₃)₂ (3). To a 5 mL fluorobenzene solution of IMes•GaH₂Cl (159 mg, 0.39 mmol) was added a 5 mL fluorobenzene solution of Li[N(SiMe₃)₂] (65 mg, 0.39 mmol) and the mixture was stirred for 12 hrs. The volatiles were then removed under vacuum and the resulting white solid was redissolved in 20 mL of Et₂O and filtered. The solvent was removed under vacuum from the filtrate to yield **3** as a white powder (190 mg, 93 %). Crystals suitable for X-ray diffraction were grown from toluene/hexanes at -35 °C. ¹H NMR (400 MHz, C₆D₆): $\delta = 6.77$ (s, 4H, Ar*H*), 5.96 (s, 2H, N-C*H*), 4.51 (br, 2H, Ga*H*), 2.10 (s, 6H, C*H*₃), 2.07 (s, 12H, C*H*₃), 0.23 (s, 18H, Si(C*H*₃)₃). ¹³C {¹H} NMR (125 MHz, C₆D₆): $\delta = 176.8$ (s, N-C-N), 139.6 (s, ArC), 135.1 (s, ArC), 129.8 (s, ArC), 128.6 (s, ArC), 122.9 (s, N-CH), 21.0 (s, CH₃), 18.3 (s, CH₃), 5.5 (s, Si(CH₃)₃). IR (Nujol, cm⁻¹): 1833 (s, ^{asym} υ_{Ga-H}), 1805 (s, ^{sym} υ_{Ga-H}). Anal. Calcd. for C₂₇H₄₄GaN₃Si₂: C, 60.44; H, 8.27; N, 7.83. Found: C, 60.29; H, 7.96; N, 7.42. Mp (°C): 150-155.

Synthesis of IPr•GaCl₂N(SiMe₃)₂ (4). A 5 mL fluorobenzene solution of $Li[N(SiMe_3)_2]$ (29 mg, 0.17 mmol) was dropwise added to a 10 mL fluorobenzene solution of IPr•GaCl₃ (105 mg, 0.19 mmol). The resulting white slurry was stirred for 12 hrs and all the volatiles were removed under vacuum. The remaining white powder was dissolved in 20 mL of Et₂O and filtered. The solvent was removed under vacuum from the filtrate to yield 4 as a white solid (95 mg, 74 %). Crystals suitable

for X-ray diffraction were grown from Et₂O/hexanes at -35 °C. ¹H NMR (400 MHz, C₆D₆): δ = 7.24 (t, ³*J*_{H-H} = 8.0 Hz, 2H, Ar*H*), 7.13 (d, ³*J*_{H-H} = 7.5 Hz, 4H, Ar*H*), 6.40 (s, 2H, N-C*H*-), 2.92 (sept, ³*J*_{H-H} = 6.5 Hz, 4H, C*H*(CH₃)₂), 1.48 (d, ³*J*_{H-H} = 7.0 Hz, 12H, CH(C*H*₃)₂), 0.91 (d, ³*J*_{H-H} = 7.0 Hz, 12H, CH(C*H*₃)₂), 0.30 (s, 18H, Si(C*H*₃)₃). ¹³C {¹H} NMR (125 MHz, C₆D₆): δ = 167.0 (s, N-C-N), 145.9 (s, N-CH), 134.9 (s, ArC), 131.5 (s, ArC), 126.0 (s, ArC), 124.7 (s, ArC), 29.1 (s, CH(CH₃)₂), 26.4 (s, CH(CH₃)₂), 23.1 (s, CH(CH₃)₂), 6.5 (s, Si(C*H*₃)₃). Anal. Calcd. for C₃₃H₅₄Cl₂GaN₃Si₂: C, 57.48; H, 7.89; N, 6.09. Found: C, 57.96; H, 7.88; N, 5.78. Mp (°C): 165-170.

Synthesis of IPr•GaCl(OTf)N(SiMe3)² **(5).** A solution of IPr•GaCl₂N(SiMe₃)² **(4)** (150 mg, 0.22 mmol) in 10 mL of CH₂Cl₂ was added to a 5 mL CH₂Cl₂ solution of AgOTf (123 mg, 0.47 mmol) and the mixture was stirred for 2 hrs. The resulting slurry was filtered and the volatiles were removed from the filtrate to yield **5** as an off-white powder (130 mg, 74 %). Crystals suitable for X-ray diffraction were grown from fluorobenzene/hexanes at -35 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.54 (t, ³*J*_{H-H} = 7.7 Hz, 2H, Ar*H*), 7.39-7.35 (m, 4H, Ar*H*), 7.20 (s, 2H, N-C*H*-), 2.82 (sept, ³*J*_{H-H} = 6.5 Hz, 2H, C*H*(CH₃)₂), 1.46 (d, ³*J*_{H-H} = 6.5 Hz, 6H, CH(CH₃)₂), 1.42 (d, ³*J*_{H-H} = 6.5 Hz, 6H, CH(CH₃)₂), 1.08 (d, ³*J*_{H-H} = 7.5 Hz, 6H, CH(CH₃)₂), 1.07 (d, ³*J*_{H-H} = 7.5 Hz, 6H, CH(CH₃)₂), 0.07 (br, 9H, Si(CH₃)₃). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ = 163.2 (s, N-C-N), 145.5 (s, N-CH), 145.3 (s, N-CH), 133.9 (s, ArC), 131.8 (s, ArC), 127.0 (s, ArC), 125.2 (s, ArC), 125.0 (s, ArC), 118.7 (q, ¹*J*_{CF} = 319.6 Hz, CF₃), 29.1 (s, CH(CH₃)₂),

29.0 (s, CH(CH₃)₂), 27.0 (s, CH(CH₃)₂), 26.8 (s, CH(CH₃)₂), 22.7 (s, CH(CH₃)₂), 22.5 (s, CH(CH₃)₂), 5.8 (br, Si(CH₃)₃), 5.4 (br, Si(CH₃)₃). ¹⁹F NMR (376 MHz, CDCl₃): δ = -76.2 (s, CF₃). Anal. Calcd. for C₃₄H₅₄ClF₃GaN₃O₃SSi₂: C, 50.84; H, 6.78; N, 5.23. Found: C, 50.17; H, 6.56; N, 5.07. Mp (°C): 177-182.

Reaction of 1 with MeOTf. To a 10 mL CH₂Cl₂ solution of IMes•GaH₂N₃ (1) (156 mg, 0.37 mmol) was added MeOTf (163 μ L, 1.48 mmol) and the mixture was stirred for 12 hrs. All the volatiles were removed under vacuum and the resulting white solid was washed with 10 mL of hexanes. The product was dried under vacuum to yield **2** as a white powder (202 mg, 80 %). Crystals suitable for X-ray diffraction were grown from CH₂Cl₂/hexanes at -35 °C. ¹H, ¹³C{¹H} and ¹⁹F NMR spectra: same as compound **2** (see above).

Reaction of 1 with BAr^F₃. A solution of BAr^F₃ (171 mg, 0.26 mmol) in 10 mL of CH_2Cl_2 was added dropwise to a 5 mL CH_2Cl_2 solution of IMes•GaH₂N₃ (1) (110 mg, 0.26 mmol). The mixture was stirred for 2 hrs and the volatiles were removed under vacuum. The product was then dissolved in 10 mL of toluene and heated to 80 °C for 12 hrs to give a colorless solution. All the volatiles were removed under vacuum and the remaining solid was washed with 10 mL of hexanes and dried. The resulting white solid represented the formation of several products. Attempts to fully characterize the products were unsuccessful, however a salt consisting of the [HBAr^F₃]⁻ anion was identified as one of the products by ¹H and ¹¹B NMR spectroscopy.¹⁴

5.5 Crystallographic Data

Compound	1•0.5 toluene	2	
Formula	C24.5H30GaN5	$C_{23}H_{25}F_6GaN_2O_6S_2$	
ormula weight 464.25		673.29	
Crystal system	ystal system monoclinic		
Space group	$P2_{1}/c$	$P2_{1}/c$	
<i>a</i> (Å)	18.7477(5)	12.2187(10)	
<i>b</i> (Å)	8.4344(2)	15.2841(13)	
<i>c</i> (Å)	15.3559(4)	15.7675(13)	
α (deg)	90	90	
β (deg)	95.0657(17)	102.522(4)	
$\gamma(\text{deg})$	90	90	
$V(Å^3)$	2418.68(11)	2874.6(4)	
Z	4	4	
ρ (g/cm ³)	1.275	1.556	
abs coeff (mm^{-1})	1.700	3.391	
T (K)	173(1)	173(1)	
$2\theta_{\max}$ (°)	139.98	145.34	
total data	15845	19732	
unique data (Rint)	4451(0.0706)	5488(0.0240)	
Obs data [$I > 2(\sigma(I)$]	3400	5048	
Params	308	371	
$R_1 [I > 2\sigma(I)]^a$	0.0668	0.0330	
wR ₂ [all data] ^{a}	0.1905	0.0988	
max/min $\Delta \rho$ (e ⁻ Å ⁻³)	1.249/-0.629	0.355/-0.468	

Table 5.1: Crystallographic data for 1 and 2.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; \ wR_{2} = \sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$

Compound	IMes•GaH _{1.85} Cl _{0.15} N(SiMe ₃) ₂	4•1.75 Et ₂ O
Formula	C ₂₇ H _{43.85} Cl _{0.15} GaN ₃ Si ₂	C40H71.5Cl2GaN3O1.75Si2
Formula weight	541.72	819.30
Crystal system	triclinic	monoclinic
Space group	$P\overline{1}$	$P2_{1}/c$
<i>a</i> (Å)	9.3467(2)	12.2392(2)
<i>b</i> (Å)	9.9910(2)	36.3301(7)
<i>c</i> (Å)	18.9915(4)	11.9340(2)
α (deg)	81.5099(8)	90
β (deg)	79.0123(7)	117.5323(6)
$\gamma(\text{deg})$	62.4631(8)	90
$V(Å^3)$	1540.13(6)	4705.51(14)
Ζ	2	4
ρ (g/cm ³)	1.168	1.156
abs coeff (mm ⁻¹)	2.213	2.576
T (K)	173(1)	173(1)
$2\theta_{max}(^{\circ})$	147.80	148.22
total data	11040	33450
unique data (Rint)	5997(0.0124)	9547(0.0171)
Obs data [$I > 2(\sigma(I))$]	5883	9244
Params	321	421
$R_1 [I > 2\sigma(I)]^a$	0.0296	0.0324
wR ₂ [all data] ^a	0.0828	0.0807
max/min $\Delta \rho$ (e ⁻ Å ⁻³)	0.305/-0.255	0.312/-0.229

 Table 5.2: Crystallographic data for 3 and 4.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$

Compound	5
Formula	C34H54ClF3GaN3O3SSi2
Formula weight	803.21
Crystal system	monclinic
Space group	$P2_{1}/c$
<i>a</i> (Å)	11.1905(2)
<i>b</i> (Å)	22.5860(4)
<i>c</i> (Å)	16.2428(3)
α (deg)	90
β (deg)	91.6950(12)
$\gamma(\text{deg})$	90
$V(\text{\AA}^3)$	4103.55(13)
Z	4
ρ (g/cm ³)	1.300
abs coeff (mm ⁻¹)	2.959
Т (К)	173(1)
$2\theta_{\max}(^{\circ})$	148.15
total data	26507
unique data (R _{int})	8220(0.0581)
Obs data $[I > 2(\sigma(I)]$	6507
Params	475
$\mathbf{R}_1 \left[I > 2 \sigma(I) \right]^a$	0.0552
wR ₂ [all data] ^{a}	0.1572
max/min $\Delta \rho (e^{-} \text{\AA}^{-3})$	0.597/-0.549
$a R_{I} = \sum F_{o} - F_{c} / \sum F_{o} ; wR_{2} = [$	$\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^4) J^{1/2}$

 Table 5.3: Crystallographic data for 5.

5.6 References

- (a) Jones, C. Chem. Commun. 2001, 2293; (b) Kuhn, N.; Al-Sheikh, A. Coord. Chem. Rev. 2005, 249, 829; (c) Wang, Y.; Robinson, G. H. Dalton Trans. 2012, 41, 337; (d) Ghadwal, R. S.; Azhakar, R.; Roesky, H. W. Acc. Chem. Res. 2013, 46, 444; (e) Murphy, L. K.; Robertson, K. N.; Masuda, J. D.; Clyburne, J. A. C. in N-Heterocyclic Carbenes, S. P. Nolan (ed.), Wiley-VCH, Weinheim, 2014, pp-427-497; (f) Rivard, E. Dalton Trans. 2014, 43, 8577; (g) Prabusankar, G.; Sathyanarayana, A.; Suresh, P.; Babu, C. N.; Srinivas, K.; Metla, B. P. R. Coord. Chem. Rev. 2014, 269, 96; (h) Präsang, C.; Scheschkewitz, D. Chem. Soc. Rev. 2016, 45, 900; (i) Würtemberger-Pietsch, S.; Radius, U.; Marder, T. B. Dalton Trans. 2016, 45, 5880.
- (a) Martin, D.; Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Organometallics 2011, 30, 5304; (b) Mondal, K. C.; Roy, S.; Roesky, H. W. Chem. Soc. Rev. 2016, 45, 1080; (c) Soleilhavoup, M.; Bertrand, G. Acc. Chem. Res. 2015, 48, 256.
- (a) Kuhn, N.; Bohnen, H.; Kreutzberg, J.; Bläser, D.; Boese, R. J. Chem. Soc., Chem. Commun. 1993, 1136; (b) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2011, 47, 6987; (c) Y. Wang, Y.; Abraham, M. Y.; Gilliard Jr., R. J.; Sexton, D. R.; Wei, P.; Robinson, G. H. Organometallics 2013, 32, 6639; (d) Ghadwal, R. S. Dalton Trans. 2016, 45, 16081; (e) Powers, K.; Hering-Junghans, C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Polyhedron 2016, 108, 8; (f) Huang, J. -S.; Lee, W. -H.; Shen, C. -T.; Lin, Y. -F.; Liu, Y. -H.; Peng, S. -M.; Chiu, C. -W. Inorg. Chem. 2016, 55, 12427.

- 4. (a) Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. Science 2012, 336, 1420; (b) Böhnke, J.; Braunschweig, H.; Ewing, W. C.; Hörl, C.; Kramer, T.; Krummenacher, I.; Mies, J.; Vargas, A. Angew. Chem. Int. Ed. 2014, 53, 9082.
- (a) Swarnakar, A. K.; Hering-Junghans, C.; Nagata, K.; Ferguson, M. J.; McDonald, R.; Tokitoh, N.; Rivard, E. Angew. Chem. Int. Ed. 2015, 54, 10666; (b) Swarnakar, A. K.; Hering-Junghans, C.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Sci. 2017, 8, 2337.
- Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072.
- For related donor-acceptor chemistry in the main group, see: (a) Marks, T. J. J. Am. Chem. Soc. 1971, 93, 7090; (b) Vogel, U.; Timoshkin, A. Y.; Scheer, M. Angew. Chem. Int. Ed. 2001, 40, 4409; (c) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Angew. Chem. Int. Ed. 2011, 50, 8354; (d) Filippou, A. C.; Baars, B.; Chernov, O.; Lebedev, Y. N.; Schnakenburg, G. Angew. Chem. Int. Ed. 2014, 53, 565; (e) Dielmann, F.; Peresypkina, E. V.; Krämer, B.; Hastreiter, F.; Johnson, B. P.; Zabel, M.; Heindl, C.; Scheer, M. Angew. Chem. Int. Ed. 2016, 55, 14833; (f) Zhou, Y. –P.; Karni, M.; Yao, S.; Apeloig, Y.; Driess, M. Angew. Chem. Int. Ed. 2016, 55, 15096.
- 8. (a) Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Appl. Phys. Lett. 1986, 48, 353;
 (b) Nakamura, S.; Harada, Y.; Seno, M. Appl. Phys. Lett. 1991, 58, 2021; (c) Morkoc, H.; Mohammad, S. N. Science 1995, 267, 51.

- 9. (a) Neumayer, D. A.; Cowley, A. H.; Decken, A.; Jones, R. A.; Lakhotia, V.; Ekerdt, J. G. J. Am. Chem. Soc. 1995, 117, 5893; (b) Kouvetakis, J.; McMurran, J.; Matsunaga, P.; O'Keeffe, M.; Hubbard, J. L. Inorg. Chem. 1997, 36, 1792; (c) Dingman, S. D.; Rath, N. P.; Buhro, W. E. Dalton Trans. 2003, 3675; (d) Beachley Jr., O. T.; Pazik, J. C.; Noble, M. J. Organometallics 1998, 17, 2121.
- Cole, M. L.; Furfari, S. K.; Kloth, M. J. Organomet. Chem. 2009, 694, 2934; (b) Abernethy, C. D.; Cole, M. L.; Jones, C. Organometallics 2000, 19, 4852; (c) Baker, R. J.; Jones, C. Appl. Organomet. Chem. 2003, 17, 807; (d) Francis, M.D.; Hibbs, D. E.; Hursthouse, M. B.; Jones, C.; Smithies, N. A. J. Chem. Soc., Dalton Trans. 1998, 3249.
- 11. Shirk, A. E.; Shriver, D. F.; Dilts, J. A.; Nutt, R. W. Inorg. Synth. 1977, 17, 45.
- 12. (a) Ball, G. E.; Cole, M. L.; McKay, A. I. Dalton Trans. 2012, 41, 946; (b) Marion,
 N.; Escudero-Adán, E. C.; Benet-Buchholz, J.; Stevens, E. D.; Fensterbank, L.;
 Malacria, M.; Nolan, S. P. Organometallics 2007, 26, 3256.
- Haiges, R.; Boatz, J. A.; Williams, J. M.; Christe, K. O. Angew. Chem. Int. Ed.
 2011, 50, 8828.
- 14. (a) Herrington, T. J.; Thom, A. J. W.; White, A. J. P.; Ashley, A. E. *Dalton Trans.*2012, 41, 9019; (b) Blagg, R. J.; Lawrence, E. J.; Resner, K.; Oganesyan, V. S.; Herrington, T. J.; Ashley, A. E.; Wildgoose, G. G. *Dalton Trans.* 2016, 45, 6023.
- (a) Burns, M. E.; Smith Jr, R. H. Chem. Eng. News 1984, 62, 2; (b) Hassner, A.;
 Stern, M.; Gottlieb, H. E.; Frolow, F. J. Org. Chem. 1990, 55, 2304.
- Jancik, V.; Pineda, L. W.; Stückl, A. C.; Roesky, H. W.; Herbst-Irmer, R. Organometallics 2005, 24, 1511.
- 17. Hild, F.; Dagorne, S. Organometallics 2012, 31, 1189.
- For related work on using main group species as hydrosilylation/borylation catalysts, see: (a) Lummis, P. A.; Momeni, M. R.; Lui, M. W.; McDonald, R.; Ferguson, M. J.; Misklozie, M.; Brown, A.; Rivard, E. Angew. Chem. Int. Ed. 2014, 53, 9347; (b) Revunova, K.; Nikonov, G. I. Dalton Trans. 2015, 44, 840; (c) Chong, C. C.; Kinjo, R. ACS Catal. 2015, 5, 3238; (d) Wiegand, A.-K.; Rit, A. Okuda, J. Coord. Chem. Rev. 2016, 314, 71; (e) Roy, M. M. D.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Eur. J. 2016, 22, 18236; (f) Hadlington, T. J.; Hermann, M.; Frenking, G.; Jones, C. J. Am. Chem. Soc. 2014, 136, 3028; (g) Bismuto, A.; Thomas, S. P.; Cowley, M. J. Angew. Chem. Int. Ed. 2016, 55, 15356. Initial studies show that 2 is a competent catalyst for the hydrosilylation of benzophenone at room temperature.
- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- Tang, S.; Monot, J.; El-Hellani, A.; Michelet, B.; Guillot, R.; Bour, C.; Gandon, V. *Chem. Eur. J.* 2012, 18, 10239.
- Kolychev, E. L.; Bannenberg, T.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. *Chem. Eur. J.* 2012, *18*, 16938.
- 22. Hope, H. Prog. Inorg. Chem. 1994, 41, 1.
- 23. Blessing, R. H. Acta Crystallogr. Sect. A 1995, 51, 33.
- 24. Sheldrick, G. M. Acta Crystallogr. Sect. A 2007, 64, 112.

Chapter 6: Isolable Oxoborane (RBO) Complexes and their Role in Mediating C-F Bond Activation

6.1 Introduction

Monomeric oxoboranes (RBO) represent the fundamental building block of synthetically useful boroxines (RBO)₃,¹ and due to their unsaturated nature and reactive polar B=O bonds, oxoboranes have only been identified in low temperature matrices or in the gas phase at high temperatures.² However encouraging work by Pachaly and West revealed the intermediacy of the bulky oxoborane, $(2,4,6-(H_3C)_3C_6H_2)BO$ by trapping experiments.^{3,4} This study was complimented by impressive recent work by Braunschweig *et al.* who used metal complexation to stabilize B=O as a monodentate ligand within the first isolable species featuring B-O triple bonding.⁵ Such breakthroughs challenge conventional bonding models and provide chemists with new reactive entities⁶ for use as reagents for advanced material design,⁷ and for non-metal mediated small molecule activation/catalysis.⁸ In this chapter a general donor-acceptor protocol⁹ is applied to isolate adducts of CIB=O. It was also found that intermediary oxoboronium cations activate C-F bonds within fluoroalkanes in a synthetically productive manner.

6.2 Results and Discussions

In order to gain access to a target chloroboroxane, ClB=O complex, the requisite adduct IPr•BCl₂OSiMe₃ (1)¹⁰ was prepared (eqn. 6.1) by coordinating *in situ* generated Cl₂BOSiMe₃ (made from BCl₃ and NaOSiMe₃) with the hindered carbene donor IPr [IPr = (HCNDipp)₂C:; Dipp = $2,6^{-i}Pr_2C_6H_3$]. X-ray crystallography confirmed the formation of IPr•BCl₂OSiMe₃ (1) which exhibits tetrahedral coordination at boron (Figure 6.1) and a B-O bond length [1.393(2) Å] that is comparable in length to known B-O single bonds.⁴*e*

Figure 6.1. Molecular structure of IPr•BCl₂OSiMe₃ (1) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)-B 1.638(2), B-O 1.393(2), B-Cl(1) 1.904(2), B-Cl(2) 1.903(2); C(1)-B-O 111.72(13), Cl(1)-B-Cl(2) 105.80(9).

Compound **1** was then heated to 100 °C in toluene for 12 hrs in an attempt to release Me₃SiCl and form transient ClB=O, however no reaction transpired. Treatment of **1** with the Lewis acid BAr^F₃^{11,12} (Ar^F = 3,5-(F₃C)₂C₆H₃) followed by heating to 80 °C for 12 hrs afforded partial conversion of **1** (20 % by NMR) into the novel oxoborane donor-acceptor complex IPr•ClB=O•BAr^F₃ (**2**; Scheme 6.1) which was later identified by X-ray crystallography (Figure 6.2). Prolonged heating of an equimolar mixture of **1** and BAr^F₃ in toluene for 60 hrs at 80 °C yielded IPr•BF₃¹³ as the identified carbene-containing product; this observation indicates that activation of the C(sp³)-F bonds in Ar^F transpired, with strong B-F bond formation as the likely driving force (*vide infra*).

Scheme 6.1. Reaction of 1 with BAr^{F_3} leading to the formation of $IPr \cdot B(Cl)O \cdot BAr^{F_3}$ (2) and eventual C-F bond activation.

In order to mitigate degradative C-F activation, BAr^{F_3} was replaced with $B(C_6F_5)_3$ as this borane contains less reactive $C(sp^2)$ -F bonds.¹⁴ Stirring a toluene solution of IPr•BCl₂OSiMe₃ (1) and $B(C_6F_5)_3$ at 105 °C for 24 hrs results in the

formation of IPr•B(Cl)O•B(C₆F₅)₃ (**3**) as colorless crystals in an isolated yield of 88 %; thus C-F bond activation was effectively suppressed (eqn. 6.2).

Figure 6.2. Molecular structure of IPr•B(Cl)O•BAr^F₃ (**2**) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)-B(1) 1.601(3), B(1)-O(1) 1.288(3), B(1)-Cl 1.771(2), B(2)-O(1) 1.549(2); C(1)-B(1)-O(1) 119.55(18), B(1)-O(1)-B(2) 133.00(16), Cl-B(1)-O(1) 126.85(16), C(1)-B(1)-Cl 113.59(14).

Two singlet resonances were found at 26.1 and -2.7 ppm in the ¹¹B NMR spectrum of **3**, in line with the presence of 3- and 4-coordinate environments, respectively. A trigonal planar geometry exists about the oxoborane boron atom in **3** (B(1); Figure 6.3) with a bond angle sum of $359.97(19)^{\circ}$. Most striking was the very short B-O length in **3** [1.296(3)] Å, consistent with B=O π -bond character. A similar B-O bond distance [1.304(2) Å] was found in Cowley's nacnac complex HC{C(CH₃)N(C₆F₅)}₂BO•AlCl₃,^{4c} however the B-O linkage in **3** is substantial longer than the B-O triple bond length of 1.210(3) Å found in Braunschweig's *trans*-PhS(Cy₃P)₂PtBO.⁵ After ClSiMe₃ elimination, the remaining B-Cl bond in **3** is much

shorter than in the precursor IPr•BCl₂OSiMe₃ (1) (1.773(3) Å in **3** vs 1.904(2) Å in **1**). A diagnostic v(BO) IR band is present at 1646 cm⁻¹ in **3** which is comparable to the v(BO) vibration noted in Kinjo's 1,2,3,4-triazaborole-based oxoborane, $\{CH(^{t}Bu)N(H)N(Ph)N(Dipp)\}BO•AlCl_{3}$ (1636 cm⁻¹).^{4f}

Figure 6.3. Molecular structure of IPr•B(Cl)O•B(C₆F₅)₃ (**3**) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)-B(1) 1.601(4), B(1)-O(1) 1.296(3), B(1)-Cl(1) 1.773(3), B(2)-O(1) 1.518(3); C(1)-B(1)-O(1) 117.3(2), B(1)-O(1)-B(2) 142.1(2), Cl-B(1)-O(1) 127.7(2), C(1)-B(1)-Cl 114.97(19).

Compounds 1 and 3 were investigated by DFT methods, and as anticipated, NBO analysis afforded a Wiberg Bond Index (WBI) for the central B-O linkage in 3 of 1.123, indicative of double bond character (Figure 6.5). Substantial polarization of the σ and π components of this B-O multiple bond toward O was also found (ca. 83 % of

overall B-O bonding density located at oxygen). Natural Population Analysis (NPA) revealed a higher positive charge, and possible electrophilic character, at the central ClBO unit in **3** (0.887 e) in relation to the boron center in IPr•BCl₂OSiMe₃ (1) (0.621 e) (Figures 6.4 and 6.5). The LUMO of **3** has distinct B=O π *-character whereas the B=O π interaction in ClB=O complex is energetically low lying (HOMO-12) (Figure 6.6).

Figure 6.4. Left: Ball-and-stick representation of the optimized structure of **1** (the majority of the Dipp group and all hydrogen atoms have been omitted for clarity). Right: Atomic charges of the atoms and *WBI*, BD_{theor.}, and BD_{exp} of the respective bonds (BD = bond distance).

Figure 6.5. Left: Ball-and-stick representation of the optimized structure of **3** (the majority of the Dipp and $B(C_6F_5)_3$ -groups, as well as all hydrogen atoms have been omitted for clarity). Right: Atomic charges of the atoms and *WBI*, BD_{theor.}, and BD_{exp} of the respective bonds (BD = bond distance).

Figure 6.6. Depiction of selected Kohn-Sham orbitals of IPr•BCIO•B(C₆F₅)₃ (3).

Motivated by the presence of a potentially functionalizable B-Cl bond in **3**, attempts were made to synthesize the donor-acceptor complexes of parent oxoborane, HBO or RBO (R = Me or Ph). When IPr•B(Cl)O•B(C₆F₅)₃ (**3**) was combined with the hydride source K-selectride (K[HB^sBu₃]), no reaction occurred at room temperature or at 80 °C in toluene. However reaction of **3** with MeLi (or PhLi) in Et₂O led to formation of IPr-backbone deptonated¹⁶ product [(Et₂O)₂Li][IPr•B(Cl)O•B(C₆F₅)₃] (**4**•(OEt₂)₂) (eqn. 6.3) in high yields. This product was crystallographically identified as its mixed THF/Et₂O solvate [(THF)(Et₂O)Li]IPr•B(Cl)O•B(C₆F₅)₃ (**4**•(THF)(OEt₂)) (Figure 6.7).

Given the possibility for further abstraction of a chloride from the ClB=O unit in **3** (to possibility yield $[IPr \cdot B=O]^+$), $IPr \cdot ClB=O \cdot B(C_6F_5)_3$ (**3**) was heated to 140 °C in xylenes for 3 days; this resulted in the complete conversion of **3** into $[IPrH]ClB(C_6F_5)_3$. One possible reaction path is chloride abstraction/transfer by $B(C_6F_5)_3$ to yield a highly reactive oxoboryne adduct $[IPr \cdot B \equiv O]ClB(C_6F_5)_3$. This transient source of electrophilic $[B \equiv O]^+$ could then react with accesible Si-OH groups on the surface of the glass to liberating H⁺ (that is trapped as IPrH⁺).

Figure 6.7. Molecular structure of $(THF)(Et_2O)Li[IPr•B(Cl)O•B(C_6F_5)_3]$ (4•(THF)(OEt₂)) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)-B(1) 1.582(3), B(1)-O(1) 1.297(3), B(1)-Cl(1) 1.790(3), B(2)-O(1) 1.501(3), Li-C(2) 2.082(6); C(1)-B(1)-O(1) 120.0(2), B(1)-O(1)-B(2) 141.88(19), Cl-B(1)-O(1) 126.09(18), C(1)-B(1)-Cl 113.81(17).

An attempt was also made to form $[BO]^+$ oxoborylium adducts, IPr•BO•B(C₆F₅)₃]A⁻ (A⁻ = weakly coordinating anion), by treating **3** with either NaBAr^F₄ (Ar = 3,5-(F₃C)₂C₆H₃) or AgOTf (OTf = OSO₂CF₃). However in each case no reaction occurred, a likely consequence of the short and strong B-Cl bond in **3** (*vide supra*).

During investigations geared towards understanding how the ClBO adduct **3** is formed from IPr•Cl₂BOSiMe₃ (**1**), a salt containing a possible boronium cation intermediate [IPr•BCl(OSiMe₃)]⁺ was formed (eqn. 6.4). Specifically AlCl₃ was combined with **1** in toluene to afford a quantitative yield of [IPr•BCl(OSiMe₃)]AlCl₄ (**5**). X-ray crystallography (Figure 6.8) showed the presence of a rigorously three-coordinate and planar boron center in **5**, with B-O and B-Cl distances [1.310(4) Å and 1.758(3) Å, respectively] that match well those noted within the ClB=O unit of **3**.

Figure 6.8. Molecular structure of [IPr•BCl(OSiMe₃)]AlCl₄ (**5**) with thermal ellipsoids presented at a 30 % probability level. All hydrogen atoms and AlCl₄ anion have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)-B 1.578(4), B-O 1.310(4), B-Cl(1) 1.758(3), O-Si 1.7023(19); C(1)-B-O 119.3(2), C(1)-B-Cl(1) 119.1(2), Cl(1)-B-O 121.7(2).

NBO analysis of the $[IPr \cdot BCl(OSiMe_3)]^+$ cation in **5** afforded a WBI of 1.049 for the B-O bond, pointing towards partial double bond character; the computed NPA charge for the boron center in **5** (0.863 e) is also similar to that found within the ClB=O array in **3** (Figure 6.9). Thus possible parallel C-F activation chemistry could be instigated by the electrophilic boron center in **5**.

Figure 6.9. Left: Ball-and-stick representation of the optimized structure of **5** (the majority of the Dipp and all hydrogen atoms have been omitted for clarity). Right: Atomic charges of the atoms and *WBI*, BD_{theor}, and BD_{exp} of the respective bonds (BD = bond distance).

[IPr•BCl(OSiMe₃)]AlCl₄ (**5**) is thermally stable with no sign of decomposition or ClSiMe₃ release found after heating in xylenes at 130 °C for 18 hrs. However compound **5** was found to be an effective reagent for the C-F activation and functionalization (halogenation) of 1-fluoroadamantane, AdF (eqn. 6.5). When **5** was reacted with 3 equivalents of Ad-F at 80 °C in toluene for 16 hrs, the formation of 1-chloroadamantane (Ad-Cl) occurred (75 % isolated yield), along with the spectroscopic identification of IPr•BF₃ (60 %), an [IPrH]⁺ salt (32 %) and a minor unknown carbene-containing species (<8 %) as co-products. As before, strong B-F bond formation is likely driving this process. Attempts to induce $C(sp^2)$ -F activation by heating **5** in fluorobenzene at 80 °C gave no reaction. To best of my knowledge

this is the first example of selective C-F activation by a cationic borinium species. Along these lines, Stephan and co-workers reported that organofluorophosphonium salt ($[(F_5C_6)_3PF]B(C_6F_5)_4$) is an active catalyst for the hydrodefluorination of fluoroalkanes.¹⁴ These transformations are buoyed by other examples of selective C-F activation by electron deficient main group element centers.¹⁶

6.3 Conclusions

The first coordination complex of chlorooxoborane, ClB=O was synthesized. These ClB=O adducts could be a viable sources of the electrophilic oxoborylium cation $[B=O]^+$, an inorganic analogue of CO. Moreover initial studies show that the electron deficient oxoborinum cations [IPr•BCl(OSiMe₃)]AlCl₄ (**5**) can successfully activate/functionalize alkane C-F bonds.

6.4 Experimental Details

6.4.1 Materials and Instrumentation. All reactions were performed using standard Schlenk line techniques under an atmosphere of nitrogen or in an inert atmosphere glovebox (Innovative Technology, Inc.). Solvents were dried using a Grubbs-type solvent purification system¹⁷ manufactured by Innovative Technology, Inc., degassed (freeze-pump-thaw method), and stored under an atmosphere of nitrogen prior to use.

BCl₃ (1.0 M in heptane), K-Selectride (K[^sBu₃BH], 1.0 M in THF), MeLi (1.6 M in Et₂O), PhLi (1.8 M in Bu₂O), AlCl₃, AgOTf (OTf = OSO₂CF₃) were purchased from Sigma-Aldrich and were used as received. 1-Fluoroadamantane and NaOSiMe₃ (1.0 M in CH₂Cl₂) and were purchased from TCI and Acros Chemicals, respectively, and used as received. NaBAr^F₄ (Ar^F = 3,5-(F₃C)₂C₆H₃) was purchased from Matrix Chemicals and dried under vacuum at 110 °C for 48 hrs prior to use. IPr,¹⁸ BAr^F₃,¹¹ B(C₆F₅)₃,¹⁹ were prepared according to literature procedures. ¹H, ¹¹B, ¹³C{¹H}, ²⁹Si NMR and ¹⁹F{¹H} NMR spectra were recorded on a Varian iNova 400 spectrometer and referenced externally to SiMe₄ (¹H, ¹³C{¹H} and ²⁹Si), F₃B•OEt₂ (¹¹B) and CFCl₃ (¹⁹F), respectively. Elemental analyses were performed by the Analytical and Instrumentation Laboratory at the University of Alberta. Infrared spectra were recorded on a Nicolet IR100 FTIR spectrometer as Nujol mulls between NaCl plates. Melting points were measured in sealed glass capillaries under nitrogen using a MelTemp apparatus and are uncorrected.

6.4.2 X-ray Crystallography. Crystals of suitable quality for X-ray diffraction studies were removed from a vial in a glovebox and immediately covered with a thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was selected, mounted on a glass fiber, and quickly placed in a low-temperature stream of nitrogen on an X-ray diffractometer.²⁰ All data were collected at the University of Alberta using a Bruker APEX II CCD detector/D8 diffractometer or using Cu or Mo K α radiation with the crystals cooled to -100 °C. The data were corrected for absorption through Gaussian integration from the indexing of the crystal faces.²¹ Structures were solved using

direct method *SHELXD* or intrinsic phasing *SHELXT*.²² Structure refinement was accomplished using *SHELXL-2014*.²³ All carbon-bound hydrogen atoms were assigned positions on the basis of the sp² or sp³ hybridization geometries of their attached carbon atoms, and were given thermal parameters 20 % greater than those of their parent atoms.

6.4.3 Synthetic Procedures

Synthesis of IPr•BCl₂OSiMe₃ (1).

To a 300 mL toluene solution of BCl₃ (2.0 mL, 1.0 M in heptane, 2.0 mmol) was added NaOSiMe₃ (2.0 mL, 1.0 M in CH₂Cl₂, 2.0 mmol) dropwise and the mixture was stirred for 30 minutes at room temperature. A 100 mL toluene solution of IPr (777 mg, 2.0 mmol) was then added dropwise and the resulting cloudy mixture was stirred for another 12 hrs. The mixture was then filtered though Celite and the solvent was removed from the filtrate to yield 1 as a white solid as 1 (750 mg, 68 %). Crystals suitable for X-ray diffraction were grown from toluene/hexanes at -35 °C. ¹H NMR (400 MHz, C₆D₆): δ = 7.21 (t, ³J_{H-H} = 7.6 Hz, 2H, ArH), 7.08 (d, ³J_{H-H} = 7.6 Hz, 4H, Ar*H*), 6.29 (s, 2H, N-C*H*-), 2.86 (sept, ${}^{3}J_{H-H} = 6.8$ Hz, 4H, C*H*(CH₃)₂), 1.44 (d, ${}^{3}J_{H-H} =$ 6.8 Hz, 12H, CH(CH₃)₂), 0.99 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 12H, CH(CH₃)₂), 0.13 (s, 9H, Si(CH₃)₃). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ = 145.5 (N-CH), 135.3 (ArC), 130.6 (ArC), 124.1 (ArC), 123.8 (ArC), 29.4 (CH(CH₃)₂), 25.7 (CH(CH₃)₂), 23.0 $(CH(CH_3)_2)$, 2.6 $(Si(CH_3)_3)$. ¹¹B{¹H} NMR (128 MHz, C₆D₆): $\delta = 1.7$ (s). ²⁹Si NMR (79 MHz, C₆D₆): δ = 8.4 (s). Anal. Calcd. for C₃₀H₄₅BCl₂N₂OSi: C, 64.40; H, 8.11; N, 5.01. Found: C, 64.64; H, 8.19; N, 4.97. Mp (°C): >190.

Synthesis of IPr•B(Cl)O•B(C₆F₅)₃ (3).

A 4 mL toluene solution of $B(C_6F_5)_3$ (390 mg, 0.76 mmol) was added to a 4 mL toluene solution of IPr•BCl₂OSiMe₃ (1) (426 mg, 0.76 mmol) in a Teflon-capped Schlenk flask. The mixture was stirred for 25 hrs at 105 °C to yield a colorless solution. The volatiles were removed then from the mixture under reduced pressure. The resulting oil was washed with 5 mL of hexanes and dried under vacuum to yield **3** as a white powder (645 mg, 88 %). Crystals suitable for X-ray diffraction were grown from Et₂O/hexanes at -35 °C. ¹H NMR (400 MHz, C₆D₆): δ = 7.15 (t, ³J_{H-H} = 7.6 Hz, 2H, ArH), 6.91 (d, ${}^{3}J_{H-H} = 8.0$ Hz, 4H, ArH), 6.18 (s, 2H, N-CH-), 2.42 (sept, ${}^{3}J_{\text{H-H}} = 7.0 \text{ Hz}, 4\text{H}, CH(CH_{3})_{2}), 1.17 \text{ (d, } {}^{3}J_{\text{H-H}} = 6.5 \text{ Hz}, 12\text{H}, CH(CH_{3})_{2}), 0.80 \text{ (d, } {}^{3}J_{\text{H-H}}$ _H = 6.5 Hz, 12H, CH(CH₃)₂). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ = 148.5 (d, ¹J_{C-F} = 240.8 Hz, $o-C_6F_5$), 144.9 (N-CH), 139.8 (d, ${}^{1}J_{C-F} = 247.2$ Hz, $p-C_6F_5$), 137.2 (dm, ${}^{1}J_{C-F} = 247.2$ $F = 246.5 \text{ Hz}, m-C_6F_5$, 132.2 (ArC), 131.4 (ArC), 29.3 (CH(CH_3)_2), 25.8 (CH(CH_3)_2), 21.8 (CH(CH₃)₂). ¹¹B{¹H} NMR (128 MHz, C₆D₆): $\delta = 26.1$ (br, BO), -2.7 (s, $B(C_6F_5)_3$). ¹⁹F NMR (376 MHz, C_6D_6): $\delta = -131.3$ (d, ³ $J_{F-F} = 20.1$ Hz, 6F, $o-C_6F_5$), 160.4 (t, ${}^{3}J_{F-F} = 18.6$ Hz, 3F, $p-C_{6}F_{5}$), 165.6 (t, ${}^{3}J_{F-F} = 18.7$ Hz, 6F, $m-C_{6}F_{5}$). IR (Nujol, cm⁻¹): 1646 (s, v_{B=0}). Anal. Calcd. for C₄₅H₃₆B₂ClF₁₅N₂O: C, 56.14; H, 3.77; N, 2.91. Found: C, 56.07; H, 3.80; N, 2.84. Mp (°C): >190.

Thermolysis of IPr•B(Cl)O•B(C₆F₅)₃ (3) and formation of [IPrH][ClB(C₆F₅)₃]

A solution of IPr•B(Cl)O•B(C₆F₅)₃ (**3**) (170 mg, 0.17 mmol) in 10 mL of xylenes was stirred at 140 °C in a Teflon-capped Schlenk flask for 3 days. The volatiles were removed from the mixture under vacuum and the resulting product was washed with

5 mL of hexanes and dried to yield [IPrH][ClB(C₆F₅)₃] as a light yellow powder (135 mg, 84 %). Crystals suitable for X-ray diffraction were grown from Et₂O/hexanes at -35 °C. ¹H NMR (400 MHz, C₆D₆): δ = 7.77 (s, 1H, N-C*H*-N), 7.21 (t, ³*J*_{H-H} = 7.6 Hz, 2H, Ar*H*), 6.94 (d, ³*J*_{H-H} = 7.6 Hz, 4H, Ar*H*), 6.65 (s, 2H, N-C*H*-), 2.02 (sept, ³*J*_{H-H} = 6.8 Hz, 4H, C*H*(CH₃)₂), 0.99 (d, ³*J*_{H-H} = 6.8 Hz, 12H, CH(C*H*₃)₂), 0.94 (d, ³*J*_{H-H} = 6.8 Hz, 12H, CH(C*H*₃)₂). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ = 148.8 (d, ¹*J*_{C-F} = 242.8 Hz, *o*-C₆F₅), 144.7 (N-CH), 139.4 (d, ¹*J*_{C-F} = 253.9 Hz, *p*-C₆F₅), 137.8 (N-CH-N), 137.4 (d, ¹*J*_{C-F} = 259.4 Hz, *m*-C₆F₅), 132.7 (ArC), 129.5 (ArC), 125.2 (ArC), 124.9 (ArC), 29.2 (*C*H(CH₃)₂), 23.7 (CH(*C*H₃)₂), 23.6 (CH(*C*H₃)₂). ¹¹B{¹H} NMR (128 MHz, C₆D₆): δ = -6.5 (s, Cl*B*(C₆F₅)₃). ¹⁹F NMR (376 MHz, C₆D₆): δ = -131.8 (d, ³*J*_{F-F} = 18 Hz, 6F, *o*-C₆F₅), 161.5 (t, ³*J*_{F-F} = 20.6 Hz, 3F, *p*-C₆F₅), 166.3 (t, ³*J*_{F-F} = 20.6 Hz, 6F, *m*-C₆F₅). Anal. Calcd. for C4₅H₃₇BClF₁₅N₂: C, 57.68; H, 3.98; N, 2.99. Found: C, 57.61; H, 4.10; N, 2.91. Mp (°C): 165-170.

Reaction of IPr•B(Cl)O•B(C₆F₅)₃ (3) with MeLi.

To a solution of IPr•B(Cl)O•B(C₆F₅)₃ (**3**) (96.5 mg, 0.10 mmol) in 5 mL of Et₂O was added MeLi (1.6 M solution in Et₂O, 90 μ L, 0.14 mmol) and the mixture was stirred for 3 hrs at room temperature. The volatiles were removed under reduced pressure and the resulting product was washed with 5 mL of hexanes. The remaining solid was dried under vacuum to yield **4**•(OEt₂)₂ as a white powder (93 mg, 83 %). Crystals suitable for X-ray diffraction were grown from fluorobenzene/hexanes at -35 °C. During crystallization in the glovebox, one of the Et₂O molecule was replaced by the residual THF in glovebox environment and the molecular structure of the resulting

compound was determined as $[(THF)(Et_2O)Li]IPr \cdot B(Cl)O \cdot B(C_6F_5)_3 (4 \cdot (THF)(OEt_2))$ by single crystal X-ray diffraction analysis. NMR data for 4•(OEt₂)₂: ¹H NMR (400 MHz, C₆D₆): δ = 7.29 (t, ³*J*_{H-H} = 7.6 Hz, 2H, Ar*H*), 7.11 (d, ³*J*_{H-H} = 8.0 Hz, 2H, Ar*H*), 6.99 (d, ${}^{3}J_{H-H} = 8.0$ Hz, 2H, ArH), 6.43 (s, 1H, N-CH-), 2.85 (g, ${}^{3}J_{H-H} = 7.2$ Hz, 8H, Et₂O), 2.74-2.84 (m, 4H, CH(CH₃)₂), 1.35 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 6H, CH(CH₃)₂), 1.31 (d, ${}^{3}J_{\text{H-H}} = 6.8 \text{ Hz}, 6\text{H}, CH(CH_{3})_{2}, 1.09 \text{ (d, } {}^{3}J_{\text{H-H}} = 6.8 \text{ Hz}, 6\text{H}, CH(CH_{3})_{2}, 0.98 \text{ (d, } {}^{3}J_{\text{H-H}}$ = 6.8 Hz, 6H, CH(CH₃)₂), 0.65 (t, ${}^{3}J_{H-H}$ = 7.2 Hz, 12H, Et₂O). ${}^{13}C{}^{1}H$ NMR (125 MHz, C₆D₆): $\delta = 148.6$ (dm, ${}^{1}J_{C-F} = 234.0$ Hz, $o-C_{6}F_{5}$), 145.4 (N-CH), 144.9 (N-CH), 139.6 (dm, ${}^{1}J_{C-F} = 246.5$ Hz, $p-C_{6}F_{5}$), 139.6 (ArC), 137.1 (dm, ${}^{1}J_{C-F} = 267.6$ Hz, m-C₆F₅), 134.1 (ArC), 133.4 (ArC), 130.7 (ArC), 129.5 (ArC), 124.1 (ArC), 123.8 (ArC), 65.6 (coord. Et₂O), 29.1 (CH(CH₃)₂), 28.8 (CH(CH₃)₂), 26.2 (CH(CH₃)₂), 25.5 (CH(CH₃)₂), 22.6 (CH(CH₃)₂), 22.3 (CH(CH₃)₂), 14.1 (coord. Et₂O). ¹¹B{¹H} NMR (128 MHz, C₆D₆): δ = -3.2 (s, *B*(C₆F₅)₃). ¹⁹F NMR (376 MHz, C₆D₆): δ = -131.5 (d, ${}^{3}J_{\text{F-F}} = 19.5 \text{ Hz}, 6\text{F}, o-C_{6}\text{F}_{5}, 161.6 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 3\text{F}, p-C_{6}\text{F}_{5}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 166.2 \text{ (t, } {}^{3}J_{\text{F-F}} = 20.3 \text{ Hz}, 16$ 19.1 Hz, 6F, *m*-C₆F₅). ⁷Li{¹H} NMR (155 MHz, C₆D₆): $\delta = 0.4$ (s). Anal. Calcd. for C₅₃H₅₅B₂ClF₁₅LiN₂O₃: C, 56.99; H, 4.96; N, 2.51. Found: C, 56.49; H, 4.95; N, 2.44. Mp (°C): 135-140.

Reaction of IPr•B(Cl)O•B(C6F5)3 (3) with PhLi: Alternate preparation of 4•(OEt2)

To a solution of IPr•B(Cl)O•B(C₆F₅)₃ (**3**) (109 mg, 0.11 mmol) in 5 mL of Et₂O was added PhLi (1.8 M solution in Bu₂O, 75 μ L, 0.13 mmol) and the mixture was stirred for 3 hrs at room temperature. The volatiles were removed under reduced pressure

and the resulting product was washed with 5 mL of hexanes. The remaining product was dried under vacuum to yield $4 \cdot (OEt_2)_2$ as a white powder (120 mg, 89 %); the spectroscopic data matched those listed above.

Synthesis of [IPr•B(Cl)OSiMe₃][AlCl₄] (5).

A solution of IPr•BCl₂OSiMe₃ (1) (201 mg, 0.36 mmol) in 4 mL of toluene was added to a suspension of AlCl₃ (48 mg, 0.36 mmol) in 4 mL of toluene and the mixture was stirred for 3 hrs at room temperature. The mother liquor was decanted from the resulting precipitate and the remaining solid dried under vacuum to yield **5** as a white solid (235 mg, 94 %). Crystals suitable for X-ray diffraction were grown from fluorobenzene/hexanes at -35 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (s, 2H, N-C*H*-), 7.62 (t, ³*J*_{H-H} = 8.0 Hz, 2H, Ar*H*), 7.38 (d, ³*J*_{H-H} = 8.0 Hz, 4H, Ar*H*), 2.35 (sept, ³*J*_{H-H} = 7.0 Hz, 4H, C*H*(CH₃)₂), 1.28 (d, ³*J*_{H-H} = 6.5 Hz, 12H, CH(CH₃)₂), 1.20 (d, ³*J*_{H-H} = 7.0 Hz, 12H, CH(CH₃)₂), -0.07 (s, 9H, Si(CH₃)₃). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 144.4 (N-CH), 132.4 (ArC), 131.7 (ArC), 129.7 (ArC), 125.1 (ArC), 29.3 (CH(CH₃)₂), 24.9 (CH(CH₃)₂), 23.7 (CH(CH₃)₂), 0.5 (Si(CH₃)₃). ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ = 28.6 (s). Anal. Calcd. for C₃₀H₄₅AlBCl₅N₂OSi: C, 52.01; H, 6.55; N, 4.04. Found: C, 52.32; H, 6.64; N, 3.93. Mp (°C): 148-150.

Reaction of [IPr•B(Cl)OSiMe3][AlCl4] (4) with 1-fluoroadamantane (Ad-F).

[IPr•B(Cl)OSiMe₃][AlCl₄] (4) (177 mg, 0.26 mmol) and Ad-F (119 mg, 0.77 mmol) were combined in 10 mL of toluene within a Teflon-capped Schlenk flask stirred for 24 hrs at 100 °C. The volatiles were removed under vacuum to yield a viscous semi-

solid. 5 mL of hexanes was then added to the product mixture followed by stirring for 15 minutes. The soluble fraction was separated from the precipitate by filtration and the solvent was removed from the filtrate to yield 1-chloroadamantane (Ad-Cl) as spectroscopically pure solid (98 mg, 75 %).²⁴

Furthermore, the insoluble fraction was also recovered and dried and characterized by multinuclear NMR spectroscopy. The ${}^{1}H{}^{11}B$, ${}^{19}F$ and ${}^{11}B$ NMR spectra of the resulting product revealed the formation of IPr•BF₃ (60 %), 13 an [IPrH]⁺ salt (32 %) and a minor amount of an unknown IPr-containing species (>8 %).

Reaction of IPr•BCl₂OSiMe₃ (1) with BAr^F₃ and formation of IPr•B(Cl)O•BAr^F₃ (2)

A 5 mL toluene suspension of BAr^F₃ (378 mg, 0.58 mmol) was added to a 5 mL toluene solution of IPr•BCl₂OSiMe₃ (1) (325 mg, 0.58 mmol) in a Teflon-capped Schlenk flask. The mixture was stirred for 12 hrs at 80 °C to yield a colorless solution. The volatiles were removed from the mixture under reduced pressure. The resulting oil was washed with 5 mL of hexanes and dried under vacuum. A small batch of crystals suitable for X-ray diffraction were grown from Et₂O/hexanes at -35 °C which identified the product as IPr•B(Cl)O•BAr^F₃ (2). The NMR spectra of the product mixture suggested only 20-25 % conversion to product 2. NMR data for compound 2: ¹H NMR (400 MHz, C₆D₆): δ = 7.81 (s, 6H, *o*-C₆H₃(CF₃)₂), 7.67 (s, 3H, *p*-C₆H₃(CF₃)₂), 6.19 (s, 2H, N-CH-), 2.41 (sept, ³J_{H-H} = 6.8 Hz, 4H, CH(CH₃)₂), 1.09 (d, ³J_{H-H} = 6.4 Hz, 12H, CH(CH₃)₂), 0.83 (d, ³J_{H-H} = 6.4 Hz, 12H, CH(CH₃)₂). The aromatic protons of Dipp overlapped with those from starting material. ¹¹B NMR

(128 MHz, C₆D₆): δ = 27.2 (br, *B*ClO). ¹⁹F NMR (376 MHz, C₆D₆): δ = -62.2 (s, BAr^F₃).

Heating a mixture of **1** and BAr^{F_3} at 80 °C in toluene for 60 hrs results in formation of IPr•BF₃ (24 %)¹³ and another unidentified IPr-containing product (76 %).

6.5 Crystallographic Data

Compound	1	$2 \cdot Et_2O$
Formula	C ₃₀ H ₄₅ BCl ₂ N ₂ OSi	C55H55B2ClF18N2O2
Formula weight	559.48	1175.08
Crystal system	orthorhombic	monoclinic
Space group	P2 ₁ 2 ₁ 2 ₁ (No. 19)	P2/c (No. 13)
<i>a</i> (Å)	13.5717 (2)	20.5429 (8)
<i>b</i> (Å)	14.3900 (2)	13.2877 (5)
<i>c</i> (Å)	16.5638 (3)	22.3054 (8)
α (deg)	90	90
β (deg)	90	111.6851 (15)
$\gamma(\text{deg})$	90	90
$V(Å^3)$	3234.86(9)	5657.8 (4)
Ζ	4	4
ρ (g/cm ³)	1.149	1.380
abs coeff (mm ⁻¹)	2.333	1.500
T (K)	173(1)	173(1)
$2\theta_{max}(^{\circ})$	147.98	148.46
total data	23154	39969
unique data(R _{int})	6562 (0.0205)	11237 (0.0237)
Obs data [$I > 2(\sigma(I))$]	6485	10483
Params	339	758
$R_1 \left[I > 2\sigma(I)\right]^a$	0.0252	0.0625
wR ₂ [all data] ^{a}	0.0713	0.1739
max/min $\Delta \rho$ (e Å ⁻³)	0.311/-0.271	0.994/-0.794

Table 6.1: Crystallographic data for 1 and 2.

 $R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; \ wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]$

Compound	3•Et ₂ O	4 •(Et ₂ O)(THF)
Formula	C ₄₉ H ₄₆ B2ClF ₁₅ N ₂ O ₂	C ₅₃ H ₅₃ B ₂ ClF ₁₅ N ₂ O ₃
Formula weight	1036.95	1114.98
Crystal system	monoclinic	monoclinic
Space group	$P2_1/c$ (No. 14)	P2/n (No. 14)
<i>a</i> (Å)	14.3031 (19)	18.3193 (9)
<i>b</i> (Å)	15.706 (2)	15.4693 (8)
<i>c</i> (Å)	23.224 (3)	20.7292 (10)
α (deg)	90	90
β (deg)	107.7367 (15)	112.4560 (6)
$\gamma(\text{deg})$	90	90
$V(Å^3)$	4969.1 (11)	5428.9 (5)
Ζ	4	4
ρ (g/cm ³)	1.386	1.364
abs coeff (mm ⁻¹)	0.174	0.165
T (K)	173(1)	173(1)
$2\theta_{max}$ (°)	51.58	52.78
total data	36599	41048
unique data(R _{int})	9498 (0.0670)	11111 (0.0261)
Obs data [$I > 2(\sigma(I))$]	5853	8132
Params	595	712
$R_1 [I > 2\sigma(I)]^a$	0.0506	0.0613
wR ₂ [all data] ^{a}	0.1516	0.2007
$\frac{\text{max/min } \Delta \rho \text{ (e Å}^{-3})}{2}$	0.397/-0.318	0.837/-0.530

 Table 6.2: Crystallographic data for 3 and 4.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; \ wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$

Compound	5		
Formula	C ₃₀ H ₄₅ AlBCl5N ₂ OSi		
Formula weight	692.81		
Crystal system	monoclinic		
Space group	P2 ₁ /c (No. 14)		
<i>a</i> (Å)	9.8574 (5)		
<i>b</i> (Å)	18.9588 (9)		
<i>c</i> (Å)	20.6447 (10)		
α (deg)	90		
β (deg)	99.8346 (7)		
$\gamma(\text{deg})$	90		
$V(Å^3)$	3801.5 (3)		
Ζ	4		
ho (g/cm ³)	1.211		
abs coeff (mm ⁻¹)	0.461		
T (K)	173(1)		
$2\theta_{\max}(^{\circ})$	52.86		
total data	27816		
unique data(R _{int})	7813 (0.0443)		
Obs data $[I \ge 2(\sigma(I)]$	5373		
Params	373		
$\mathbf{R}_1 \left[I \ge 2 \sigma(I)\right]^a$	0.0570		
wR_2 [all data] ^{<i>a</i>}	0.1674		
$\frac{\text{max/min } \Delta \rho (e \text{ Å}^{-3})}{2}$	0.619/-0.537		
${}^{a}R_{I} = \sum F_{o} - F_{c} / \sum F_{o} ; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{4})]^{1/2}$			

Table 6.3: Crystallographic data for **5**.

6.6 References

- (a) Coté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166; (b) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cote, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268; (c) De, P.; Gondi, S. R.; Roy, D.; Sumerlin, B. S. Macromolecules 2009, 42, 5614; (d) Perttu, E. K.; Arnold, M.; Iovine, P. M. Tetrahedron Lett. 2005, 46, 8753; (e) Hawkins, R. T.; Lennarz, W. J.; Snyder, H. R. J. Am. Chem. Soc. 1960, 82, 3053; (f) Li, Y.; Ding, J.; Day, M.; Tao, Y.; Lu, J.; D'iorio, M. Chem. Mater. 2003, 15, 4936.
- (a) Kirk, R. W.; Timms, P. L. Chem. Commun. 1967, 18; (b) Kroto, H. W. Chem. Soc. Rev. 1982, 11, 435; (c) Groteklaes, M.; Paetzold, P. Chem. Ber. 1988, 121, 809;
 (d) Burkholder T. R.; Andrews, L. J. Chem. Phys. 1991, 95, 8697; (e) Page, M. J. Phys. Chem. 1989, 93, 3639; (f) Paetzold, P.; Neyses, S.; Géret, L.; Z. Anorg. Allg. Chem. 1995, 621, 732; (g) Osiac, M.; Röpcke, J.; Davies, P. B. Chem. Phys. Lett.
 2001, 344, 92; (h) Bettinger, H. Organometallics 2007, 26, 6263.
- 3. Pachaly, B.; West, R. J. Am. Chem. Soc. 1985, 107, 2987.
- 4. For related studies on isolating reactive LBO species (L = supporting ligand(s)), see:
 (a) Nöth, H. Angew. Chem. Int. Ed. Engl. 1988, 27, 1603; (b) Ito, M.; Tokitoh, N.; Okazaki, R. Tet. Lett. 1997, 38, 4451; (c) Vidovic, D.; Moore, J. A.; Jones, J. N.; Cowley, A. H. J. Am. Chem. Soc. 2005, 127, 4566; (d) Wang, Y.; Hu, H.; Zhang, J.; Cui, C. Angew. Chem. Int. Ed. 2011, 50, 2816; (e) Del Grosso, A.; Clark, E. R.; Montoute, N.; Ingleson, M. J. Chem. Commun. 2012, 48, 7589; (f) Loh, Y. K.; Chong, C. C.; Ganguly, R.; Li, Y.; Vidovic, D.; Kinjo, R. Chem. Commun. 2014, 50, 8561.

- 5. Braunschweig, H.; Radacki, K.; Schneider, A. Science 2010, 328, 345.
- 6. (a) Paetzold, P. Adv. Inorg. Chem. 1987, 31, 123; (b) Fischer, R. C.; Power, P. P. Chem. Rev. 2010, 110, 3877; (c) Wang, Y.; Robinson, G. H. Dalton Trans. 2012, 41, 337; (d) Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009, 109, 3479; (e) Asay, M.; Jones, C.; Driess, M. Chem. Rev. 2011, 111, 354; (f) He, G.; Shynkaruk, O.; Lui, M. W.; Rivard, E. Chem. Rev. 2014, 114, 7815; (g) Brand, J.; Braunschweig, H.; Sen, S. S. Acc. Chem. Res. 2014, 47, 180; (h) Präsang. C.; Scheschkewitz, D. Chem. Soc. Rev. 2016, 45, 900.
- (*a*) Parker, D. S. N.; Dangi, B. B.; Balucani, N.; Stranges, D.; Mebel, A. M.; Kaiser, R. I. *J. Org. Chem.* 2013, 78, 11896; (*b*) Liu, H.; Jin, P.; Xue, Y.-M.; Dong, C.; Li, X.; Tang, C.-C.; Du, X.-W. *Angew. Chem. Int. Ed.* 2015, *54*, 7051; (*c*) Purkait; Swarnakar, A. K.; De Los Reyes, G. B.; Hegmann, F. A.; Rivard, E.; Veinot, J. G. C. *Nanoscale* 2015, *7*, 2241; (*d*) Velian, A.; Cummins, C. C. *Science* 2015, *348*, 1001.
- (a) Power, P. P. Nature 2010, 463, 171; (b) Hadlington, T. J.; Hermann, M.;
 Frenking, G.; Jones, C. J. Am. Chem. Soc. 2014, 136, 3028.
- 9. (a) Rivard, E. Chem. Soc. Rev. 2016, 45, 989; FLP can also be viewed as donor-acceptor complexes: (b) Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46.
- 10. The related dihalosilylether species Br₂BOSiMe₃ was prepared previously (see ref. 5).
- Kolychev, E. L.; Bannenberg, T.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. *Chem. Eur. J.* **2012**, *18*, 16938.
- For the use of BAr^F₃ to intercept main group species, see: (a) Swarnakar, A. K.;
 Hering-Junghans, C.; Nagata, K.; Ferguson, M. J.; McDonald, R.; Tokitoh, N;

Rivard, E. Angew. Chem. Int. Ed. 2015, 54, 10666; (b) Swarnakar, A. K.; Hering-Junghans, C.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Sci. 2017, 8, 2337.

- Brahmia, M. M.; Malacria, M.; Curran, D. P.; Fensterbank, L.; Lacôte, E. Synlett.
 2013, 24, 1260.
- Caputo, C. B.; Hounjet, L. J.; Dobrovetsky, R.; Stephan, D. W. Science 2013, 341, 1374.
- Wang, Y.; Xie, Y.; Abraham, M. Y.; Wei, P.; Schaefer III, P. H. F.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2010, 132, 14370.
- 16. (a) Stahl, T.; Klare, H. F. T.; Oestreich, M. ACS Catal. 2013, 3, 1578; (b) Douvris,
 C.; Ozerov, O. V. Science 2008, 321, 1188; (c) Caputo, C. B.; Stephan, D. W.
 Organometallics 2012, 31, 27; (d) Alcarazo, M.; Gomez, C.; Holle, S.; Goddard, R.
 Angew. Chem. Int. Ed. 2010, 49, 5788; (e) Ahrens, M.; Scholz, G.; Braun, T.;
 Kemnitz, E. Angew. Chem. Int. Ed. 2013, 52, 5328.
- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- 18. Jafarpour, L.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem. 2000, 606, 49.
- (a) Kuprat, M.; Lehmann, M.; Schulz, A.; Villinger, A. Organometallics 2010, 29, 1421; (b) Massey, A. G.; Park, A. J. J. Organomet. Chem. 1964, 2, 245.
- 20. Hope, H. Prog. Inorg. Chem. 1994, 41, 1.
- 21. Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
- 22. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.

- Beurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Garcia, S.; Gould, R. O. DIRDIF-2008; Crystallography Laboratory, Radboud University: Nijmegen, The Netherlands 2008.
- Candish, L.; Standley, E. A.; Gómez-Suµrez, A.; Mukherjee, S.; Glorius, F. Chem. Eur. J. 2016, 22, 9971.

7.1 Summary and Future Work

Chapter 2 described the use of a Wittig reagent as a donor to encapsulate the reactive targets, GeH₂ and SnH₂ within the donor-acceptor complexes Ph₃PCMe₂•GeH₂•BH₃ and Ph₃PCM₂•SnH₂•W(CO)₅, respectively. Parallel chemistry with commonly employed N- and P-based donors was unsuccessful due to their weaker electron donating ability compared to the carbon-based donors. This work can be considered as the most recent contribution of a Wittig reagent as a donor in main group element chemistry. In addition, the donor-acceptor GeH₂ complex (Ph₃PCMe₂•GeH₂•BH₃) was found to be a potential precursor for the one-pot synthesis of germanium nanoparticles (GeNPs). GeNPs with hydrophilic and hydrophobic surfaces were synthesized by thermal or microwave assisted decomposition of the bottleable GeH₂ precursor in presence of capping ligands, 3-dimethylamino-1-propyne and 1-dodecene, respectively. The 3-dimethylamino-1-propene capped-GeNPs show blue photoluminescent which may be due to the surface defects and are the subjects of future investigations.

The future work involves the synthesis of GeH₂ donor-acceptor complex with comparatively smaller Lewis base to improve the yield of GeNPs. The precursor complex, Ph₃PCMe₂•GeH₂•BH₃ contains 18.5 wt % of germanium; by replacing Ph₃PCMe₂ with ⁱPr₃PCMe₂ the percentage of germanium can be increased to 25.0 wt %. Moreover, use of ImMe₂ (ImMe₂ = [H₂CNMe]₂C:) as a Lewis base can enrich the Ge percentage upto 39 wt % in the corresponding donor-acceptor complex (Figure 7.1).

Figure 7.1. Top: Weight percentage of Ge in Ph₃PCMe₂•GeH₂•BH₃, ⁱPr₃PCMe₂•GeH₂•BH₃ and ImMe₂•GeH₂•BH₃. Bottom: Planned synthetic strategy for ImMe₂•GeH₂•BH₃

Chapter 3 described the reactivity of metal center Lewis basic complex $CpRh(PMe_2Ph)_2$ toward electron deficient "ECl₂•W(CO)₅" (E = Ge and Sn) and PbCl₂. The less Lewis acidic "SnCl₂•W(CO)₅" and PbCl₂ formed usual Lewis acidbase adducts with $CpRh(PMe_2Ph)_2$, whereas the more Lewis acidic "GeCl₂•W(CO)₅" gave the Cp-H activation product. In addition, the reactivity of "ECl₂•W(CO)₅" (E = Ge and Sn) toward Pt(PCy₃)₂ was explored which resulted in the oxidative addition of Ge-Cl and Sn-Cl bonds to give the products, $ClPt(PCy_3)_2E(Cl)•W(CO)_5$ (E = Ge and Sn). Attempts to form the corresponding group 14 hydrides via H⁻ addition to E-Cl residues were unsuccessful, and in each case hydride addition to the resulting complexes led to the generation of free metal Lewis base complexes or decomposition product mixture.

In the future the Cp group of $CpRh(PMe_2Ph)_2$ can be replaced with Cp* to prevent the Cp ring C-H activation during the reaction with "GeCl₂•W(CO)₅".

Reaction of Cp*Rh(PMe₂Ph)₂ with THF•GeCl₂•W(CO)₅ could form the desired Lewis acid-base adduct, Cp*Rh(PMe₂Ph)₂•GeCl₂•W(CO)₅. Futhermore, the stabilization of Ge-H bonds is less challenging compared to Sn-H and Pb-H;¹ therefore, stabilization of the GeH₂ unit could be possible within the donor-acceptor complex Cp*Rh(PMe₂Ph)₂•GeH₂•W(CO)₅ (Scheme 7.1). An ultimate goal would be to generate mixed metal donor-acceptor complexes of EH₂ units (E = Ge, Sn and Pb) for the later preparation of binary E_xM_y (M = metal) bulk or nanomaterials.

Scheme 7.1. Use of Cp* to prevent the C-H activation of Cp ring and stabilization of GeH₂ complex.

Chapter 4 involved the Lewis acid (LA) assisted elimination of N₂ followed by H⁻ migration from B to N of an carbene-azidoborane adduct IPr•BH₂N₃ (IPr = [(HCNDipp)₂C:], Dipp = 2,6-ⁱPr₂C₆H₃) to yield the first stable adduct of the parent iminoborane IPr•HB=NH•BAr^F₃ (Ar^F = 3,5-C₆H₃(CF₃)₂). However, the use of bulky substituents restricted the access to the HBNH array by potential reagents/catalysts. Therefore, a more reactive HBNH adduct with less sterically hindered *N*-heterocyclic carbene was prepared and the reactivity of this species was investigated in detailed. In addition, a donor-stabilized azidohydride boronium cation [BH(N₃)]⁺ was also synthesized and its reactivity was explored. However, the detailed investigations aimed at forming bulk boron nitride (BN) from these species under mild conditions were not directly successful. Future work would involve the thermal decomposition (*ca.* 200-400 °C) study of the HBNH complexes to form the bulk boron nitride (BN) materials.

The other possible way to synthesize molecular BN is presented in Scheme 7.2. If NHC•BI₃ is treated with ${}^{n}Bu_{4}N[N_{3}B(C_{6}F_{5})_{3}]^{2}$ it could form NHC•BI₂N₃•B(C₆F₅)₃; later, reaction with a suitable reducing agent may lead to the formation of molecular BN precursor NHC•BN•B(C₆F₅)₃ (Scheme 7.2).

Scheme 7.2. Synthesis of molecular BN from NHC•BI₃.

Chapter 5 described the successful isolation of *N*-heterocyclic carbene complexes of azido- and amido-gallane. Moreover, a similar donor-acceptor stabilization approach via Lewis acid-assisted N₂ elimination was applied to isolate the HGa=NH complex from the azidogallane adduct IMes•GaH₂N₃ (IMes = $[(HCNMes)_2C:]$, Mes = 2,4,6-Me₃C₆H₂). However the high reactivity of Ga-H bonds did not permit the isolation of such species.

The amido-gallium hydride complexes (IMes•GaH(OTf)₂ and IMes•GaH₂N₃) have similar structural features as the recently reported active ketone hydrosilylation/borylation catalyst IPr•Zn(H)OTf•THF^{3a} and thus future work would involve exploring the catalytic activity³ of these main group, NHC-supported, gallium hydrides for hydrosilylation and hydroboration of ketone in more detail. Also, initial

studies show that IMes•GaH(OTf)₂ is a competent catalyst for the hydrosilylation of benzophenone at room temperature (eqn. 7.1).

Chapter 6 involved the borane-based Lewis acid assisted elimination of ClSiMe₃ from IPr•BCl₂OSiMe₃ to form the donor-acceptor adduct of chlorooxoborane, IPr•BClO•B(C₆F₅)₃. Initial experiment showed that the loss of $[B=O]^+$ occurred during the thermal decomposition of the chlorooxoborane complex IPr•BClO•B(C₆F₅)₃. One possible reaction path is chloride abstraction/transfer by B(C₆F₅)₃ to yield a highly reactive oxoborane adduct [IPr•B=O]ClB(C₆F₅)₃. This transient source of electrophilic [B=O]⁺ could then react with accesible Si-OH groups on the surface of the glass to liberating H⁺ (that is trapped as IPrH⁺). Therefore, to prove this hypothesis, future work would involve the reaction of IPr•BClO•B(C₆F₅)₃ with Ph₃SiOH to trap [B=O]⁺ as boroxine [Ph₃SiOBO]₃ (Scheme 7.3).

Scheme 7.3. Reaction of IPr•BClO•B(C_6F_5)₃ with Ph₃SiOH to trap [B=O]⁺ as boroxine.

In the future a similar strategy could be applied to isolate the elusive HBO donor-acceptor complex using known Me₂S•BH₂Cl as the borane precursor (Scheme 7.4).

Scheme 7.4. Stabilization of donor-acceptor complex of HBO.

7.1 Reference

- (*a*) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. *Am. Chem. Soc.* 2011, 133, 777; (*b*) Swarnakar, A. K.; McDonald, S. M.; Deutsch, K. C.; Choi, P.; Ferguson, M. J.; McDonald, R.; Rivard, E. *Inorg. Chem.* 2014, 53, 8662.
- 2. Fox, A. R.; Cummins, C. C. J. Am. Chem. Soc. 2009, 131, 5716.
- (a) Lummis, P. A.; Momeni, M. R.; Lui, M. W.; McDonald, R.; Ferguson, M. J.; Misklozie, M.; Brown, A.; Rivard, E. Angew. Chem. Int. Ed. 2014, 53, 9347; (b) Revunova, K.; Nikonov, G. I. Dalton Trans. 2015, 44, 840; (c) Chong, C. C.; Kinjo, R. ACS Catal. 2015, 5, 3238; (d) Wiegand, A.-K.; Rit, A. Okuda, J. Coord. Chem. Rev. 2016, 314, 71; (e) Roy, M. M. D.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Eur. J. 2016, 22, 18236; (f) Hadlington, T. J.; Hermann, M.; Frenking, G.; Jones, C. J. Am. Chem. Soc. 2014, 136, 3028; (g) Bismuto, A.; Thomas, S. P.; Cowley, M. J. Angew. Chem. Int. Ed. 2016, 55, 15356.

Complete Bibliography

Chapter 1

- (a) Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124; (b) Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880; (c) McCahill, J. S. J.; Welch, G. C.; Stephan, D. W. Angew. Chem. Int. Ed. 2007, 46, 4968; (d) Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008, 1701; (e) Hounjet, L. J.; Stephan, D. W. Org. Process Res. Dev. 2014, 18, 385.
- (a) Manasevit, H. M. Appl. Phys. Lett. 1968, 12, 156; (b) Cowley, A. H.; Jones, R. A. Polyhedron 1994, 13, 1149; (c) Maury, F. Adv. Mater. 1991, 3, 542; (d) Thangaraju, B.; Kaliannan, P. J. Phys. D: Appl. Phys. 2000, 33, 1054; (e) Knapp, C. E.; Carmalt, C. J. Chem. Soc. Rev. 2016, 45, 1036; (f) Malik, M. D.; Afzaal, M.; O'Brien, P. Chem. Rev. 2010, 110, 4817; (g) Ekerdt, J. G.; Sun, Y. -M.; Szabo, A.; Szulczewski, G. J.; White, J. M. Chem. Rev. 1996, 96, 1499 and references therein.
- 3. (a) Power, P. P. Chem. Rev. 1999, 99, 3463; (b) Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009, 109, 3479; (c) Power, P. P. Nature 2010, 463, 171;
 (d) Fischer, R. C.; Power, P. P. Chem. Rev. 2010, 810, 3877; (e) Rivard, E. Chem. Soc. Rev. 2016, 45, 989.
- (a) Rivard, E.; Power, P. P. Inorg. Chem. 2007, 46, 10047; (b) Kays, D. L. Chem. Soc. Rev. 2016, 45, 1004.
- (a) Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P. Angew. Chem. Int. Ed.
 2002, 41, 1785; (b) Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. J.
 Am. Chem. Soc. 2002, 124, 5930; (c) Pu, L.; Twamley, B.; Power, P. P. J. Am.
 Chem. Soc. 2000, 122, 3524.

- 6. Marks, T. J.; Newman, A. R. J. Am. Chem. Soc. 1973, 95, 769.
- 7. (a) Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. Science 2012, 336, 11420; (b) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2008, 130, 14970.
- 8. Gavrilova, A. L.; Bosnich, B. Chem. Rev. 2004, 104, 349.
- (a) Wang, Y.; Robinson, G. H. Inorg. Chem. 2011, 50, 12326; (b) Rivard, E. Dalton Trans. 2014, 43, 8577; (c) Soleilhavoup, M.; Bertrand, G. Acc. Chem. Res. 2015, 58, 256.
- (a) Beswick, M. A.; Palmer, J. S.; Wright, D. S. Chem. Soc. Rev. 1998, 27, 225; (b) Jutzi, P.; Burford, N. Chem. Rev. 1999, 99, 969.
- 11. (a) Almenningen, A.; Haaland, A.; Motzfeldt, T. J. Organomet. Chem. 1967, 7, 97;
 (b) Jutzi, P.; Kanne, D.; Kruger, C. Angew. Chem. Int. Ed. Engl. 1986, 25, 164; (c)
 Panatonni, C.; Bombieri, G.; Croatto, U. Acta. Crystallogr. 1966, 21A, 823; (d)
 Jutzi, P.; Kohl, F.; Hofman, P.; Kruger, C.; Tsay, Y. –H. Chem. Ber. 1980, 113,
 757; (e) Cowley, A. H.; Jutzi, P.; Kohl, F. X.; Lasch, J. G.; Norman, N. C.; Schltiter.
 E. Angew. Chem. Int. Ed. Engl. 1984, 23, 616.
- (a) Filippou, A. C.; Philippopoulos, A. I.; Portius, P.; Neumann, D. U. Angew. Chem. Int. Ed. 2000, 39, 2778; (b) Filippou, A. C.; Portius, P.; Philippopoulos, A. I. Organometallics 2002, 21, 653.
- 13. (a) Voigt, A.; Filipponi, S.; Macdonald, C. L. B.; Gorden, J. D.; Cowley, A. H. Chem. Commun. 2000, 911; (b) Dohmeier, C.; Schnockel, H.; Robl, C.; Uwe, S.;

Ahlrichs, R. Angew. Chem. Int. Ed. Engl. 1993, 32, 1655; (c) Burns, C. T.; Shapiro,
P. J.; Budzelaar, P. H. M.; Willett, R.; Vij, A. Organometallics 2000, 19, 3361.

- 14. (a) Jutzi, P.; Wippermann, T.; Kruger, C.; Kraus, H. –J. Angew. Chem. Int. Ed. Engl. 1983, 22, 250; (b) Wiacek, R. J.; Jones, J. N.; Macdonald, C. L. B.; Cowley, A. H. Can. J. Chem. 2002, 80, 1518.
- 15. (a) Schiemenz, B.; Power, P. P. Organometallics 1996, 15, 958; (b) Simons, R. S.; Haubrich, S. T.; Mork, B. V.; Niemeyer, M.; Power, P. P. Main Group Chem. 1998, 2, 275; (c) Du, C. -J. F.; Hart, H.; Ng, D. K. -K. J. Org. Chem. 1986, 51, 3162; (d) Saednya, A.; Hart, H. Synthesis 1996, 12, 1455.
- Su, J.; Li, X.-W.; Crittendon, R. C.; Robinson, G. H. J. Am. Chem. Soc. 1997, 119, 5471.
- 17. (a) Bytheway, I.; Lin, Z. J. Am. Chem. Soc. 1998, 120, 12133; (b) Xie, Y.; Schaefer,
 H. F.; Robinson, G. H. Chem. Phys. Lett. 2000, 317, 174.
- 18. Takagi, N.; Schmidt, M. W.; Nagase, S. Organometallics 2001, 20, 1646.
- (a) Hardman, N. J.; Wright, R. J.; Phillips, A. D.; Power, P. P. Angew. Chem. Int. Ed. 2002, 41, 2842; (b) Wright, R. J.; Phillips, A. D.; Hardman, N. J.; Power, P. P. J. Am. Chem. Soc. 2002, 124, 8538; (c) Wright, R. J.; Phillips, A. D.; Hino, S.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 4794.
- 20. Okazaki, R.; Unno, M.; Inamoto, N. Chem. Lett. 1987, 2293.
- 21. Tokitoh, N.; Sasamori, T.; Okazaki, R. Chem. Lett. 1998, 725.
- 22. (a) Tokitoh, N.; Arai, Y.; Okazaki, R.; Nagase, S. Science **1997**, 277, 78; (b) Sasamori, T.; Takeda, N.; Tokitoh, N. Chem. Commun. **2000**, 1353.
- 23. Tokitoh, N.; Matsumoto, T.; Okazaki, R. Bull. Chem. Soc. Jpn. 1999, 72, 1165.
- 24. Okazaki, R.; Tokitoh, N. Acc. Chem. Res. 2000, 33, 625.
- Suzuki, H.; Tokitoh, N.; Okazaki, R. Nagase, S.; Goto, M. J. Am. Chem. Soc. 1994, 116, 11578.
- (a) Tokitoh, N.; Matsumoto, T.; Manmaru, K.; Okazaki, R. J. Am. Chem. Soc. 1993, 115, 8855; (b) Matsumoto, T.; Tokitoh, N.; Okazaki, R. Angew. Chem. Int. Ed. Engl. 1994, 33, 2316; (c) Matsumoto, T.; Tokitoh, N.; Okazaki, R. J. Am. Chem. Soc. 1999, 121, 8811.
- 27. Saito, M.; Tokitoh, N.; Okazaki, R. J. Am. Chem. Soc. 1997, 119, 11124.
- Li, L.; Fukawa, T.; Matsuo, T.; Hashizume, D.; Fueno, H.; Tanaka, K.; Tamao, K. Nat. Chem. 2012, 4, 361.
- 29. Allen, F. H. Acta Crystallogr. 2002, B58, 380.
- Igau, A.; Grutzmacher, H.; Baceiredo, A.; Bertrand, G. J. Am. Chem. Soc. 1988, 110, 6463.
- 31. Arduengo, A. J.; Harlow, R. L.; Kline, M. A. J. Am. Chem. Soc. 1991, 113, 361.
- 32. (a) Wang, Y.; Robinson, G. H. Chem. Commun. 2009, 5201; (b) Siemeling, U. Aust. J. Chem. 2011, 64, 1109; (c) Martin, D.; Soleilhavoup, M.; Bertrand, G. Chem. Sci. 2011, 2, 389; (d) Wang, Y.; Robinson, G. H. Dalton Trans. 2012, 41, 337; (e) Clyburne, J. A. C.; McMullen, N. Coord. Chem. Rev. 2000, 210, 73.
- 33. Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R. B.; Schaefer III,
 H. F.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2007, 129, 12412.
- 34. (a) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schäfer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. Science 2008, 321, 1069; (b) Sidiropoulos, A.; Jones, C.; Stasch, A.; Klein, S.; Frenking, G. Angew. Chem. Int. Ed. 2009, 48, 9701; (c) Jones, C.;

Sidiropoulos, A.; Holzmann, N.; Frenking, G.; Stasch, A. Chem. Commun. 2012, 48, 9855.

- Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem. Int. Ed. 2005, 44, 5705.
- 36. Back, O.; Henry-Ellinger, M.; Martin, C. D.; Martin, D.; Bertrand, G. Angew. *Chem. Int. Ed.* **2013**, *52*, 2939.
- 37. (a) Kinjo, R.; Donnadieu, B.; Ali Celik, M.; Frenking, G.; Bertrand, G. Science
 2011, 333, 610; (b) Ruiz, D. A.; Melaimi, M.; Bertrand, G. Chem. Commun. 2014, 50, 7837.
- Ruiz, D. A.; Ung, G.; Melaimi, M.; Bertrand, G. Angew. Chem. Int. Ed. 2013, 52, 7590.
- 39. (a) Back, O.; Donnadieu, B.; Parameswaran, P.; Frenking, G.; Bertrand, G. Nat. Chem. 2010, 2, 369; (b) Kretschmer, R.; Ruiz, D. A.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. Angew. Chem. Int. Ed. 2014, 53, 8176; (c) Dorsey, C. L.; Mushinski, R. M.; Hudnall, T. W. Chem. Eur. J. 2014, 20, 8914; (d) Back, O.; Celik, M. A.; Frenking, G.; Melaimi, M.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2010, 132, 10262.
- 40. Kuhn, N.; Bohnen, H.; Kreutzberg, J.; Bläser, D.; Boese, R. J. Chem. Soc., Chem. Commun. 1993, 14, 1136.
- 41. (a) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. *Chem. Commun.* 2011, 47, 6987; (b) Dumrath, A.; Wu, X. -F.; Neumann, H.; Spannenberg, A.; Jackstell, R.; Beller, M. *Angew. Chem. Int. Ed.* 2010, 49, 8988; (c) Wang, Y.; Abraham, M. Y.; Gilliard Jr., R. J.; Sexton, D. R.; Wei, P.;

Robinson, G. H. Organometallics 2013, 32, 6639; (d) Powers, K.; Hering-Junghans,C.; McDonald, R.; Ferguson, M. J.; Rivard. E. Polyhedron 2016, 108, 8.

- 42. (a) Al-Rafia, S. M. I.; Ferguson, M. J.; Rivard, E. *Inorg. Chem.* 2011, *50*, 10543; (b)
 Al-Rafia, S. M. I.; Momeni, M. R.; McDonald, R.; Ferguson, M. J.; Brown, A.;
 Rivard, E. *Angew. Chem. Int. Ed.* 2013, *52*, 6390; (c) Berger, C. J.; He, G.; Merten,
 C.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Inorg. Chem.* 2014, *53*, 1475.
- 43. (a) Lee, W. -H.; Lin, Y. -F.; Lee, G. -H.; Peng, S. -M.; Chiu. C. -W. *Dalton Trans.*2016, 45, 5937; (b) Ghadwal, R. S.; Reichmann, S. O.; Engelhardt, F.; Andrada, D. M.; Frenking, G. *Chem. Commun.* 2013, 49, 9440; (c) Ghadwal, R. S.; Schurmann, C. J.; Andrada, D. M.; Frenking, G. *Dalton Trans.* 2015, 44, 14359; (d) Ghadwal, R. S.; Schürmann, C. J.; Engelhardt, F.; Steinmetzger, C. *Eur. J. Inorg. Chem.* 2014, 4921; (e) El-Hellani, A.; Monot, J.; Guillot, R.; Bour, C.; Gandon, V. *Inorg. Chem.* 2013, 52, 506.
- 44. Wittig, G.; Schöllkopf, U. Chem. Ber. 1954, 87, 1318.
- 45. (a) Pörschke, K. -R.; Wilke, G.; Mynott, R. Chem. Ber. 1985, 118, 298; (b) Fortier,
 S.; Kaltsoyannis, N.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 14224.
- 46. (a) Bestmann, H. J.; Sühs, K.; Röder, T. Angew. Chem. Int. Ed. Engl. 1981, 20, 1038; (b) Bestmann, H. J.; Röder, T.; Sühs, K. Chem. Ber. 1988, 121, 1509; (c) Breitsameter, F.; Schrödel, H. -P.; Schmidpeter, A.; Nöth, H.; Rojas-Lima, S. Z. Anorg. Allg. Chem. 1999, 625, 1293.
- 47. Hawthorne, F. M. J. Am. Chem. Soc. 1958, 80, 3480.

- Borisova, I. V.; Zemlyansky, N. N.; Belsky, V. K.; Kolosova, N. D.; Sobolev, A. N.; Luzikov, Y. N.; Ustynyuk, Y. A.; Beletskaya, I. P. J. Chem. Soc., Chem. Commun. 1982, 1090.
- 49. (a) Swarnakar, A. K.; McDonald, S. M.; Deutsch, K. C.; Choi, P.; Ferguson, M. J.;
 McDonald, R.; Rivard, E. *Inorg. Chem.* 2014, *53*, 8662; (b) Purkait, T. K.;
 Swarnakar, A. K.; De Los Reyes, G. B.; Hegmann, F. A.; Rivard, E.; Veinot, J. G.
 C. *Nanoscale* 2015, *7*, 2241.
- 50. Nowell, I. N.; Russell, D. R. J. Chem. Soc., Chem. Commun. 1967, 817.
- 51. (a) Einstein, F. W. B.; Pomeroy, R. K.; Rushman, P.; Willis, A. C. Organometallics
 1985, 4, 250; (b) Usón, R.; Forniés, J.; Espinet, P.; Fortuño, C.; Tomas, M.; Welch,
 A. J. J. Chem. Soc., Dalton Trans. 1988, 3005.
- 52. Bauer, J.; Braunschweig, H.; Dewhurst, R. D. Chem. Rev. 2012, 112, 4329.
- 53. (a) Braunschweig, H.; Gruß, K.; Radacki, K. Angew. Chem. Int. Ed. 2007, 46, 7782;
 (b) Bauer, J.; Braunschweig, H.; Brenner, P.; Kraft, K.; Radacki, K.; Schwab, K. Chem. Eur. J. 2010, 16, 11985.
- 54. (a) Mayer, J. M.; Calabrese, J. C. Organometallics 1984, 3, 1292; (b) Burlitch, J. M.; Leonowicz, M. E.; Petersen, R. B.; Hughes, R. E. Inorg. Chem. 1979, 18, 1097;
 (c) Golden, J. T.; Peterson, T. H.; Holland, P. H.; Bergman, R. G.; Andersen, A. R. J. Am. Chem. Soc. 1998, 120, 223.
- 55. Steinke, T.; Fischer, R. A.; Winter, M; Cokoja, M.; Gemel, C. Dalton Trans. 2005, 55; (b) Braunschweig, H.; Gruß, K.; Radacki, K. Inorg. Chem. 2008, 47, 8597; (c) Aldridge, S.; Kays, D. L.; Bunn, N. R.; Coombs, N. D. Main Group Met. Chem. 2005, 28, 201.

- (a) Charmant, J. P. H.; Fan, C.; Norman, N. C.; Pringle, P. G. *Dalton Trans.* 2007, 114; (b) Braunschweig, H.; Brenner, P.; Müller, A.; Radacki, K.; Rais, D.; Uttinger, K. *Chem. Eur. J.* 2007, *13*, 7171; (c) Braunschweig, H.; Radacki, K.; Uttinger, K. *Inorg. Chem.* 2007, *46*, 8796; (d) Braunschweig, H.; Gruss, K.; Radacki, K. *Inorg. Chem.* 2008, *47*, 8595; (e) Braunschweig, H.; Brenner, P.; Cogswell, P.; Kraft, K.; Schwab, K. *Chem. Commun.* 2010, *46*, 7894.
- 57. (a) Braunschweig, H.; Radacki, K.; Schneider, A. Science 2010, 328, 345; (b)
 Braunschweig, H.; Radacki, K.; Schneider, A. Angew. Chem. Int. Ed. 2010, 49, 5993; (c) Braunschweig, H.; Radacki, K.; Schneider, A. Chem. Commun. 2010, 46, 6473.
- (a) Chan, D. M. T.; Marder, T. B. Angew. Chem. Int. Ed. Engl. 1988, 27, 442; (b)
 Beńi, Z.; Ros, R.; Tassan, A.; Scopelliti, R.; Roulet, R. Dalton Trans. 2005, 315.
- (a) Hupp, F.; Ma, M.; Kroll, F.; Jiménez-Halla, J. O. C.; Dewhurst, R. D.; Radacki, K.; Stasch, A.; Jones, C.; Braunschweig, H. *Chem. Eur. J.* 2014, 20, 16888; (b) Braunschweig, H.; Damme, A.; Dewhurst, R. D.; Hupp, F.; Jiménez-Halla, J. O. C.; Radacki, K. *Chem. Commun.* 2012, 48, 10410.
- Swarnakar, A. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Dalton Trans. 2016, 45, 6071.
- 61. (a) Vogel, U.; Timoshkin, A. Y.; Scheer, M. Angew. Chem. Int. Ed. 2001, 40, 4409;
 (b) Vogel, U.; Hoemensch, P.; Schwan, K. -Ch.; Timoshkin, A. Y.; Scheer, M. Chem. Eur. J. 2003, 9, 515; (c) Schwan, K. -Ch.; Timoshkin, A. Y.; Zabel, M.; Scheer, M. Chem. Eur. J. 2006, 12, 4900; (d) Bodensteiner, M.; Vogel, U.; Timoshkin, A. Y.; Scheer, M. Angew. Chem. Int. Ed. 2009, 48, 4629; (e)

Bodensteiner, M.; Timoshkin, A. Y.; Peresypkina, E. V.; Vogel, U.; Scheer, M. *Chem. –Eur. J.* 2013, 19, 957; (f) Marquardt, C.; Adolf, A.; Stauber, A.;
Bodensteiner, M.; Virovets, A. V.; Timoshkin, A. Y.; Scheer, M. *Chem. –Eur. J.*2013, 19, 11887; (g) Marquardt, C.; Thoms, C.; Stauber, A.; Balázs, G.;
Bodensteiner, M.; Scheer, M. *Angew. Chem. Int. Ed.* 2014, 53, 3727; (h) Marquardt,
C.; Jurca, T.; Schwan, K.-C.; Stauber, A.; Virovets, A. V.; Whittell, G. R.; Manners,
I.; Scheer, M. *Angew. Chem. Int. Ed.* 2015, 54, 13782.

- 62. (a) Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P.; Saykally,
 R. J. Nat. Mater. 2002, 1, 106; (b) Chen, C. C.; Yeh, C. C.; Adv. Mater. 2000, 12,
 738; (c) Kim, H. M.; Kim, D. S.; Park, Y. S.; Kim, D. Y.; Kang, T. W.; Chung, K.
 S. Adv. Mater. 2002, 14, 991; (d) Seryogin, G.; Shalish, I.; Moberlychan, W.;
 Narayanamurti, V. Nanotechnology 2005, 16, 2342.
- 63. Malcolm, A. C.; Sabourin, K. J.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Inorg. Chem.* **2012**, *51*, 12905.
- 64. (a) Lory, E. R.; Porter, R. F. J. Am. Chem. Soc. 1973, 95, 1766; (b) Kawashima, Y.;
 Kawaguchi, K.; Hirota. E. J. Chem. Phys. 1987, 87, 6331; (c) Thompson, C. A.;
 Andrews, L. J. Am. Chem. Soc. 1995, 117, 10125; (d) Zhang, F.; Maksyutenko, P.;
 Kaiser, R. I.; Mebel, A. M.; Gregusova, A.; Perera, S. A.; Bartlett, R. J. J. Phys.
 Chem. A 2010, 114, 12148.
- 65. For selected computational studies on HBNH, see: (a) Baird, N. C.; Datta, R. K. *Inorg. Chem.* 1972, *11*, 17; (b) Matus, M. H.; Grant, D. J.; Nguyen, M. T.; Dixon, D. A. *J. Phys. Chem. C* 2009, *113*, 16553; (c) Sundaram, R.; Scheiner, S.; Roy, A. K.; Kar, T. *J. Phys. Chem. C* 2015, *119*, 3253.

- Liu, H.; Jin, P.; Xue, Y. -M.; Dong, C.; Li, X.; Tang, C. -C.; Du, X. -W. Angew. Chem. Int. Ed. 2015, 54, 7051.
- 67. (a) Piane, R. T.; Narula, C. K. Chem. Rev. 1990, 90, 73; (b) Geim, A. K.; Grigorieva, I. V. Nature 2013, 499, 419; (c) Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Science 2014, 343, 16.
- 68. (a) Swarnakar, A. K.; Hering-Junghans, C.; Nagata, K.; Ferguson, M. J.; McDonald, R.; Tokitoh, N.; Rivard, E. Angew. Chem. Int. Ed. 2015, 54, 10666; (b) Swarnakar, A. K.; Hering-Junghans, C.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Sci. 2017, 8, 2337.
- 69. (a) Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Appl. Phys. Lett. 1986, 48, 353;
 (b) Nakamura, S.; Harada, Y.; Seno, M. Appl. Phys. Lett. 1991, 58, 2021; (c) Morkoc, H.; Mohammad, S. N. Science 1995, 267, 51.
- Swarnakar, A. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Dalton Trans. 2017, 46, 1406.
- 71. (a) Jasinski, J. M.; Gates, S. M. Acc. Chem. Res. 1991, 24, 9; (b) Isobe, C.; Cho, H.
 -C., Sewell, J. E. Surf. Sci. 1993, 295, 117.
- 72. (a) Wang, X.; Andrews, L.; Kushto, G. P. J. Phys. Chem. A 2002, 106, 5809; (b)
 Smith, T. C.; Clouthier, D. J.; Sha, W. Adam, A. G. J. Chem. Phys. 2000, 113, 9567.
- 73. Thimer, K. C.; Al-Rafia, S. M. I.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2009, 7119.

- 74. Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem. Soc. 2011, 133, 777.
- 75. Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Chem. Commun.* **2012**, *48*, 1308.
- 76. (a) Al-Rafia, S. M. I.; Momeni, M. R.; Ferguson, M. J.; McDonald, R.; Brown, A.;
 Rivard, E. *Organometallics* 2013, *32*, 6658; (b) Al-Rafia, S. M. I.; Malcolm, A. C.;
 McDonald, R.; Ferguson, M. J.; Rivard, E. *Angew. Chem. Int. Ed.* 2011, *50*, 8354.
- 77. Kamata, Y. Mater. Today 2008, 11, 30.
- 78. Maeda, Y. Phys. Rev. B: Condens. Matter Mater. Phys. 1995, 51, 1658.
- 79. (a) Pillarisetty, R. Nature 2011, 479, 324; (b) Hekmatshoar, B.; Shahrjerdi, D.; Hopstaken, M.; Fogel, K.; Sadana, D. K. Appl. Phys. Lett. 2012, 101, 032102;
 (c) Guter, W.; Schone, J.; Philipps, S. P.; Steiner, M.; Siefer, G.; Wekkeli, A.; Welser, E.; Oliva, E.; Bett, A. W.; Dimroth, F. Appl. Phys. Lett. 2009, 94, 223504;
 (d) Chakraborty, G.; Sengupta, A.; Requejo, F. G.; Sarkar, C. K. J. Appl. Phys. 2011, 109, 064504; (e) Assefa, S.; Xia, F. N. A.; Vlasov, Y. A. Nature 2010, 464, U80.
- Lambert, T. N.; Andrews, N. L.; Gerung, H.; Boyle, T. J.; Oliver, J. M.; Wilson, B.
 S.; Han, S. M. *Small* 2007, *3*, 691.
- 81. Vaughn II, D. D.; Schaak, R. E. Chem. Soc. Rev. 2013, 42, 2861.
- 82. (a) Kornowski, A.; Giersig, M.; Vogel, R.; Chemseddine, A.; Weller, H. Adv. Mater. 1993, 5, 634; (b) Chiu, H. W.; Chervin, C. N.; Kauzlarich, S. M. Chem. Mater. 2005, 17, 4858; (c) Lee, H.; Kim, M. G.; Choi, C. H.; Sun, Y. K.; Yoon, C. S.; Cho, J. J. Phys. Chem. B 2005, 109, 20719.

- 83. (a) Taylor, B. R.; Kauzlarich, S. M.; Lee, H. W. H.; Delgado, G. R. *Chem. Mater.*1998, 10, 22; (b) Tanke, R. S.; Kauzlarich, S. M.; Patten, T. E.; Pettigrew, K. A.;
 Murphy, D. L.; Thompson, M. E.; Lee, H. W. H. *Chem. Mater.* 2003, 15, 1682.
- 84. (a) Wu, H. P.; Liu, J. F.; Wang, Y. W.; Zengand, Y. W.; Jiang, J. Z. Mater. Lett.
 2006, 60, 986; (b) Fok, E.; Shih, M. L.; Meldrum, A.; Veinot, J. G. C.; Chem.
 Commun. 2004, 386; (c) Lu, X. M.; Korgel, B. A.; Johnston, K. P. Chem. Mater.
 2005, 17, 6479.
- 85. (a) Henderson, E. J.; Hessel, C. M.; Veinot, J. G. C. J. Am. Chem. Soc. 2008, 130, 3624; (b) Lee, D. C.; Pietryga, J. M.; Robel, I.; Werder, D. J.; Schaller, R. D.; Klimov, V. I. J. Am. Chem. Soc. 2009, 131, 3436.

- (*a*) Arduengo, A. J. III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. **1991**, *113*, 361;
 (*b*) Kuhn, N.; Kratz, T. Synthesis **1993**, 561; (*c*) Dröge, T.; Glorius, F. Angew. Chem. Int. Ed. **2010**, 49, 6940; (*d*) Diéz-González, S.; Nolan, S. P. Coord. Chem. Rev. **2007**, 251, 874; For related carbene-based donors, see: (*e*) Martin, D.; Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Organometallics **2011**, 30, 5304; (*f*) Crabtree, R. H. Coord. Chem. Rev. **2013**, 257, 755.
- (*a*) Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. *Science* 2012, *336*, 1420; (*b*) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F. III; Schleyer, P. v. R.; Robinson, G. H. *Science* 2008, *321*, 1069; (*c*) Sidiropoulos, A.; Jones, C.; Stasch, A.; Klein, S.; Frenking, G. *Angew. Chem. Int. Ed.* 2009, *48*, 9701; (*d*) Jones, C., Sidiropoulos, A.; Holzmann, N.; Frenking, G.; Stasch, A. *Chem.*

Commun. 2012, 48, 9855; (e) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H.
F. III; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2008, 130, 14970; (f)
Abraham, M. Y.; Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F. III; Schleyer, P. v. R.;
Robinson, G. H. Chem. Eur. J. 2010, 16, 432.

- For recent examples with IPr and related NHC donors, see: (a) Sindlinger, C. P.; Wesemann, L. Chem. Sci. 2014, 5, 2739; (b) Filippou, A.; Baars, B.; Chernov, O.; Lebedev, Y. N.; Schnakenburg, G. Angew. Chem. Int. Ed. 2014, 53, 565; (c) Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F. III; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2013, 135, 19139; (d) Xiong, Y.; Yao, S.; Inoue, S.; Epping, J. D.; Driess, M. Angew. Chem., Int. Ed. 2013, 52, 7147; (e) Mondal, K. C.; Samuel, P. P.; Tretiakov, M.; Sing, A. P.; Roesky, H. W.; Stückl, A. C.; Niepötter, B.; Carl, E.; Wolf, H.; Herbst-Irmer, R.; Stalke, D. Inorg. Chem. 2013, 52, 4736; (f) Al-Rafia, S. M. I.; Momeni, M. R.; McDonald, R.; Ferguson, M. J.; Brown, A.; Rivard, E. Angew. Chem. Int. Ed. 2013, 52, 6390; (g) Jana, A.; Huch, V.; Scheschkewitz, D. Angew. Chem. Int. Ed. 2013, 52, 12179.
- (a) Thimer, K. C.; Al-Rafia, S. M. I.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2009, 7119; (b) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem. Soc. 2011, 133, 777; (c) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Angew. Chem. Int. Ed. 2011, 50, 8354; (d) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. Commun. 2012, 48, 1308; (e) Al-Rafia, S. M. I.; Shynkaruk, O.; McDonald, S. M.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Herber, R. H.; Rivard, E. Inorg. Chem. 2013, 52, 5581; (f) Al-Rafia, S. M.; Momeni, M. R.;

Ferguson, M. J.; McDonald, R.; Brown, A., Rivard, E. *Organometallics* **2013**, *32*, 6658; (g) For a recent review of this field, see: Rivard, E. *Dalton. Trans.* **2014**, *43*, 8577.

- (a) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2011, 47, 6987; For related studies involving NHOs, see: (b) Kuhn, N.; Bohnen, H.; Kreutzberg, J.; Bläser, D.; Boese, R. J. Chem. Soc., Chem. Commun. 1993, 1136. (c) Fürstner, A.; Alcarazo, M.; Goddard, R.; Lehmann, C. W. Angew. Chem. Int. Ed. 2008, 47, 3210; (d) Dumrath, A.; Wu, X. -F.; Neumann, H.; Spannenberg, A.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 8988; (e) Malcolm, A. C.; Sabourin, K. J.; McDonald, R.; Ferguson, M. J.; Rivard, E. Inorg. Chem. 2012, 51, 12905; (f) Wang, Y.; Abraham, M. Y; Gilliard, R. J. Jr.; Sexton, D. R.; Wei, P.; Robinson, G. H. Organometallics 2013, 32, 6639; (g) Berger, C. J.; He, G.; Merten, C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Inorg. Chem. 2014, 53, 1475.
- 6. (a) Jasinski, J. M.; Gates, S. M. Acc. Chem. Res. 1991, 24, 9; (b) Isobe, C.; Cho, H.-C.; Sewell, J. E. Surf. Sci. 1993, 295, 117.
- 7. Bestmann, H. J.; Kratzer, O. Chem. Ber. 1963, 96, 1899.
- (a) Wittig, G.; Schöllkopf, U. Chem. Ber.-Rec. 1954, 87, 1318; (b) Beedham, I.; Micklefield, J. Curr. Org. Syn. 2005, 2, 231; (c) Xu, S.; He, Z. RSC Adv. 2013, 3, 16885.
- For selected examples, see: (a) Pörschke, K. –R.; Wilke, G.; Mynott, R. Chem. Ber.
 1985, 118, 298; (b) Fortier, S.; Kaltsoyannis, N.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 14224.

- (*a*) Bestmann, H. J.; Sühs, K.; Röder, T. *Angew. Chem. Int. Ed. Engl.* **1981**, *20*, 1038;
 (*b*) Borisova, I. V.; Zemlyansky, N. N.; Belsky, V. K.; Kolosova, N. D.; Sobolev, A. N.; Luzikov, Y. N.; Ustynyuk, Y. A.; Beletskaya, I. P. *J. Chem. Soc., Chem. Commun.* **1982**, 1090; (*c*) Bestmann, H. J.; Röder, T.; Sühs, K. *Chem. Ber.* 1988, *121*, 1509. (*d*) Breitsameter, F.; Schrödel, H.-P.; Schmidpeter, A.; Nöth, H.; Rojas-Lima, S. *Z. Anorg. Allg. Chem.* **1999**, *625*, 1293.
- 11. (*a*) Prabusankar, G.; Sathyanarayana, A.; Suresh, P.; Babu, C. N.; Srinivas, K.; Metla, B. P. R. *Coord. Chem. Rev.* 2014, 269, 96; (*b*) Inoue, S.; Eisenhut, C. *J. Am. Chem. Soc.* 2013, 135, 18315; (*c*) Abraham, M. Y.; Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F. III; Schleyer, P. v. R.; Robinson, G. H. *J. Am. Chem. Soc.* 2011, 133, 8874; (*d*) Al-Rafia, S. M. I.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Chem. Eur. J.* 2012, 18, 13810; (*e*) Kinjo, R.; Donnadieu, B.; Celik, M. A.; Frenking, G.; Bertrand, G. *Science* 2011, 333, 610; (*f*) Bonyhady, S. J.; Collis, D.; Frenking, G.; Holzmann, N.; Jones, C.; Stasch, A. *Nat. Chem.* 2010, 2, 865.
- 12. (a) Chen, M.; Feng, Y.-G.; Wang, X.; Li, T.-C.; Zhang, J.-Y.; Qian, D.-J. *Langmuir*2007, 23, 5296; (b) Nyamen, L. D.; Revaprasadu, N.; Pullabhotla, R. V. S. R.; Nejo,
 A. A.; Ndifon, P. T.; Malik, M. A.; O'Brien, P. *Polyhedron* 2013, 56, 62; (c) Hines,
 D. A.; Kamat, P. V. ACS Appl. Mater. Interfaces 2014, 6, 3041.
- 13. (a) King, R. B. *Inorg. Chem.* 1963, *2*, 199; (b) Jutzi, P.; Hoffman, J.; Brauner, D. J.; Krüger, C. *Angew. Chem. Int. Ed. Engl.* 1973, *12*, 1002; (c) du Mont, W.-W.; Neudert, B.; Rudolph, C.; Schumann, H. *Angew. Chem. Int. Ed. Engl.* 1976, *15*, 308; (d) Ando, W.; Sekiguchi, A.; Hagiwara, K.; Sakakibara, A.; Yoshida, H. *Organometallics* 1988, *7*, 558; (e) Pu, L.; Twamley, B.; Power, P. P. *Organometallics*

2000, *19*, 2874; (*f*) Hadlington, T. J.; Hermann, M.; Li, J.; Frenking, G.; Jones, C. *Angew. Chem. Int. Ed.* **2013**, *52*, 10199; (*g*) See also: Mizuhata, Y.; Sasamori, T.; Tokitoh, N. *Chem. Rev.* 2009, *109*, 3479.

- 14. For a prior report involving the preparation of Cy₃P•GeCl₂, see: Doddi, A.; Gemel, C.; Winter, M.; Fischer, R. A.; Goedecke, C.; Rzepa, H. S.; Frenking, G. Angew. Chem. Int. Ed. 2013, 52, 450.
- 15. The identification of the [HPCy₃]⁺ salt by-product formed in the reaction of Cy₃P with Cl₂Ge•dioxane was accomplished by ³¹P NMR spectroscopy (δ = 20.2 ppm) and the detection of a characteristic doublet ¹H NMR resonance for the P-H residue at 7.12 (¹J_{PH} = 488 Hz) in C₆D₆; this latter resonance collapsed to a single resonance in the ¹H{³¹P} spectrum. Phosphonium salts of GeCl₃⁻ ([HPR₃]GeCl₃) have been reported in the literature: (*a*) du Mont, W.-W.; Rudolph, G. *Chem. Ber.* **1976**, *109*, 3419; (*b*) Dal Canto, R. A.; Roskamp, E. J. *J. Org. Chem.* **1992**, *57*, 406; (*c*) Davis, M. F.; Levason, W.; Reid, G.; Webster, M. *Dalton Trans.* **2008**, 2261.
- 16. (a) Kolodiazhnyi, O. I. Tetrahedron 1996, 52, 1855; (b) Cristau, H.-J. Chem. Rev.
 1994, 94, 1299; (c) Bestmann, H. J.; Arenz, T. Angew. Chem. Int. Ed. Engl. 1986, 25, 559.
- 17. Rajendran, K. V.; Gilheany, D. G. Chem. Commun. 2012, 48, 817.
- Papp, R.; Somoza Jr., F. B.; Sieler, J.; Blaurock, S.; Hey-Hawkins, E. J. Organomet. Chem. 1999, 585, 127.
- For related studies involving hydride transfer to carbene donor sites (followed by ring-expansion), see: (a) Arrowsmith, M.; Hill, M. S.; Kociok-Köhn, MacDougall, D. J.; Mahon, M. F. Angew. Chem. Int. Ed. 2012, 51, 2098; (b) Schmidt, D.; Berthel, J.

H. J.; Pietsch, S.; Radius, U. Angew. Chem. Int. Ed. 2012, 51, 8881; (c) ref 11d. (d)
Momeni, M. R.; Rivard, E.; Brown, A. Organometallics 2013, 32, 6201; (e) Iversen,
K. J.; Wilson, D. J. D.; Dutton, J. L. Organometallics 2013, 32, 6209; (f) Fang, R.;
Yang, L.; Wang, Q. Organometallics 2014, 33, 53.

- Brown, H. C.; Krishnamurthy, S.; Hubbard, J. L.; Coleman, R. A. J. Organometal. Chem. 1979, 166, 281.
- 21. Balch, A. L.; Oram, D. E. Organometallics 1988, 7, 155.
- 22. For related low oxidation state Sn(II) hydrides compounds, see: (a) Eichler, B. E.; Power, P. P. J. Am. Chem. Soc. 2000, 122, 8785; (b) Ding, Y.; Hao, H.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H. –G. Organometallics 2001, 20, 4806; (c) Rivard, E.; Fischer, R. C.; Wolf, R.; Peng, Y.; Merrill, W. A.; Schley, N. D.; Zhu, Z.; Pu, L.; Fettinger, J. C.; Teat, S. J.; Nowik, I.; Herber, R. H.; Takagi, N.; Nagase, S.; Power, P. P. J. Am. Chem. Soc. 2007, 129, 16197.
- 23. Gresback, R.; Holman, Z.; Kortshagen, U. Appl. Phys. Lett. 2007, 91, 093119.
- 24. Yuan, F. -W.; Tuan, H. -Y. Chem. Mater. 2014, 26, 2172.
- 25. Wilcoxon, J. P.; Provencio, P. P.; Samara, G. A. Condens. Matter 2001, 64, 035417.
- Lambert, T. N.; Andrews, N. L.; Gerung, H.; Boyle, T. J.; Oliver, J. M.; Wilson, B.
 S.; Han, S. M. *Small* 2007, *3*, 691.
- 27. Henderson, E. J.; Seino, M.; Puzzo, D. P.; Ozin, G. A. ACS Nano 2010, 4, 7683.
- 28. Vaughn II, D. D.; Schaak, R. E. Chem. Soc. Rev. 2013, 42, 2861.
- 29. Martienssen, W.; Warliomont, H. Springer Handbook of Condensed Matter and Materials Data; Springer GmbH 2005.

- Taylor, B. R.; Kauzlarich, S. M.; Lee, H. W. H.; Delgado, G. R. Chem. Mater. 1998, 10, 22.
- Taylor, B. R.; Kauzlarich, S. M.; Delgado, G. R.; Lee, H. W. H. Chem. Mater. 1999, 11, 2493.
- 32. Ma, X.; Wu, F.; Kauzlarich, S. M. J. Solid State Chem. 2008, 181, 1628.
- Lu, X.; Ziegler, K. J.; Ghezelbash, A.; Johnston, K. P.; Korgel, B. A. Nano Lett.
 2004, 4, 969.
- 34. Fok, E.; Shih, M.; Meldrum, A.; Veinot, J. G. C. Chem. Comm. 2004, 386.
- 35. Chiu, H. W.; Chervin, C. N.; Kauzlarich, S. M. Chem. Mater. 2005, 17, 4858.
- 36. Stoldt, C. R.; Haag, M. A.; Larsen, B. A. Appl. Phys. Lett. 2008, 93, 043125.
- Kortshagen, U.; Anthony, R.; Gresback, R.; Holman, Z.; Ligman, R.; Liu, C.-Y.;
 Mangolini, L.; Campbell, S. A. *Pure Appl. Chem.* 2008, 80, 1901.
- Gerung, H.; Bunge, S. D.; Boyle, T. J.; Brinker, C. J.; Han, S. M. Chem. Commun.
 2005, 1914.
- 39. Warner, J. H.; Tilley, R. D. Nanotechnology 2006, 17, 3745.
- 40. Prabakar, S.; Shiohara, A.; Hanada, S.; Fujioka, K.; Yamamoto, K.; Tilley, R. D. Chem. Mater. 2010, 22, 482.
- 41. Henderson, E. J.; Hessel, C. M.; Veinot, J. G. C. J. Am. Chem. Soc. 2008, 130, 3624.
- 42. Chou, N. H.; Oyler, K. D.; Motl, N. E.; Schaak, R. E. Chem. Mater. 2009, 21, 4105.
- Muthuswamy, E.; Iskandar, A. S.; Amador, M. M.; Kauzlarich, S. M. Chem. Mater.
 2013, 25, 1416.
- 44. Muthuswamy, E.; Zhao, J.; Tabatabaei, K.; Amador, M. M.; Holmes, M. A.; Osterloh, F. E.; Kauzlarich, S. M. *Chem. Mater.* **2014**, *26*, 2138.

- 45. Lu, X.; Korgel, B. A.; Johston, K. P. Chem. Mater. 2005, 17, 6479.
- 46. Buriak, J. M. Chem. Rev. 2002, 102, 1271.
- 47. Shirahata, N.; Hirakawa, D.; Masuda, Y.; Sakka, Y. Langmuir 2013, 29, 7401.
- Lee, D. C.; Pietryga, J. M.; Robel, I.; Werder, D. J.; Schaller, R. D.; Klimov, V. I. J. Am. Chem. Soc. 2009, 131, 3436.
- 49. Wheeler, L. M.; Levij, L. M.; Kortshagen, U. R. J. Phys. Chem. Lett. 2013, 4, 3392.
- 50. Niquet, Y. M.; Allan, G.; Delerue, C.; Lannoo, M. Appl. Phys. Lett. 2000, 77, 1182.
- 51. Millo, O.; Balberg, I., Azulay, D.; Purkait, T. K.; Swarnakar, A. K.; Rivard, E.; Veinot, J. G. C. *J. Phys. Chem. Lett.* **2015**, *6*, 3396.
- 52. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- 53. Hope, H. Prog. Inorg. Chem. 1994, 41, 1.
- 54. Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
- 55. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
- Beurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Garcia, S.; Gould, R. O. *DIRDIF-2008*; Crystallography Laboratory, Radboud University: Nijmegen, The Netherlands 2008.
- Lesley, M. J. G.; Woodward, A.; Taylor, N. J.; Marder, T. B.; Cazenobe, I.; Ledoux,
 I.; Zyss, J.; Thornton, A.; Bruce, D. W.; Kakkar, A. K. *Chem. Mater.* **1998**, *10*, 1355.
- 58. Blumenthal, A.; Bissinger, P.; Schmidbaur, H. J. J. Organomet. Chem. 1993, 462, 107.
- 59. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067.

60. Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S. *Phys. Chem. Chem. Phys.* **2009**, *11*, 9850.

- (*a*) Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. *Science* 2012, *336*, 1420; (*b*) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. *Science* 2008, *321*, 1069; (*c*) Sidiropoulos, A.; Jones, C.; Stasch, A.; Klein S.; Frenking, G.; *Angew. Chem. Int. Ed.* 2009, *48*, 9701; (*d*) Jones, C.; Sidiropoulos, A.; Holzmann, N.; Frenking, G.; Stasch, A. *Chem. Commun.* 2012, *48*, 9855.
- For recent highlights from this active research field, see: (a) Wang, Y.; Chen, M.; Xie, Y.; Wei, P.; Schaefer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. Nature Chem. 2015, 7, 509; (b) Ahmad, S. U.; Szilvási, T.; Irran E.; Inoue, S. J. Am. Chem. Soc. 2015, 137, 5828; (c) Swarnakar, A. K.; Hering-Junghans, C.; Nagata, K.; Ferguson, M. J.; McDonald, R.; Tokitoh, N.; Rivard, E. Angew. Chem. Int. Ed. 2015, 54, 10666; (d) Braunschweig, H.; Dellermann, T.; Ewing, W. C.; Kramer, T.; Schneider C.; Ulrich, S. Angew. Chem. Int. Ed. 2015, 54, 10271; (e) Filippou, A. C.; Baars, B.; Chernov, O.; Lebedev, Y. N.; Schnakenburg, G. Angew. Chem. Int. Ed. 2014, 53, 565; (f) Dahcheh, F.; Martin, D.; Stephan, D. W.; Bertrand, G. Angew. Chem. Int. Ed. 2014, 53, 13159; (g) Jana, A.; Huch, V; Scheschkewitz, D. Angew. Chem. Int. Ed. 2013, 52, 12179; (h) Ghadwal, R. S.; Roesky, H. W.; Pröpper, K.; Dittrich, B.; Klein, S.; Frenking, G. Angew. Chem. Int. Ed. 2013, 52, 12179; (h)

- For selected examples, see: (a) Thimer, K. C.; Al-Rafia, S. M. I.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2009, 7119; (b) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem. Soc. 2011, 133, 777; (c) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. Commun. 2012, 48, 1308; (d) Al-Rafia, S. M. I.; Shynkaruk, O.; McDonald, S. M.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Herber, R. H.; Rivard, E. Inorg. Chem. 2013, 52, 5581; (e) Rivard, E. Dalton. Trans. 2014, 43, 8577.
- 4. (a) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. *Chem. Commun.* 2011, 47, 6987; (b) Swarnakar, A. K.; McDonald, S. M.; Deutsch, K. C.; Choi, P.; Ferguson, M. J.; McDonald, R.; Rivard, E. *Inorg. Chem.* 2014, 53, 8662. For important early work, see: (c) Kuhn, N.; Bohnen, H.; Kreutzberg, J.; Bläser, D.; Boese, R. J. Chem. Soc., Chem. Commun. 1993, 1136.
- (a) Rivard, E. Chem. Soc. Rev. 2016, 45, 989; (b) Jasinski, J. M.; Gates, S. M. Acc. Chem. Res. 1991, 24, 9; (c) Weerts, W. L. M.; de Croon, M. H. J. M.; Marin, G. B. J. Electrochem. Soc. 1998, 145, 1318; (d) Dzarnoski, J.; O'Neal, H. E.; Ring, M. A. J. Am. Chem. Soc. 1981, 103, 5740 and references therein.
- 6. (a) Purkait, T. K.; Swarnakar, A. K.; De Los Reyes, G. B.; Hegmann, F. A.; Rivard, E.; Veinot, J. G. C. *Nanoscale* 2015, 7, 2241; (b) Millo, O.; Balberg, I., Azulay, D.; Purkait, T. K.; Swarnakar, A. K.; Rivard, E.; Veinot, J. G. C. *J. Phys. Chem. Lett.* 2015, 6, 3396.
- 7. Bauer, J.; Braunschweig, H.; Dewhurst, R. D. Chem. Rev. 2012, 112, 4329.
- 8. Nowell, I. N.; Russell, D. R. J. Chem. Soc., Chem. Commun. 1967, 817.

- 9. (a) Einstein, F. W. B.; Pomeroy, R. K.; Rushman, P.; Willis, A. C. Organometallics
 1985, 4, 250; (b) Usón, R.; Forniés, J.; Espinet, P.; Fortuño, C.; Tomas, M.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1988, 3005.
- (a) Braunschweig, H.; Gruß, K.; Radacki, K. Angew. Chem. Int. Ed. 2007, 46, 7782; (b)
 Bauer, J.; Braunschweig, H.; Brenner, P.; Kraft, K.; Radacki, K.; Schwab, K. Chem.
 Eur. J. 2010, 16, 11985; (c) Bauer, J.; Braunschweig, H.; Damme, A.; Gruß, K.;
 Radacki, K. Chem. Commun. 2011, 47, 12783; (d) Burlitch, J. M.; Leonowicz, M. E.;
 Petersen, R. B.; Hughes, R. E. Inorg. Chem. 1979, 18, 1097.
- 11. (a) Chan, D. M. T.; Marder, T. B. Angew. Chem. Int. Ed. Engl. 1988, 27, 442; (b)
 Béni, Z.; Ros, R.; Tassan, A.; Scopelliti, R.; Roulet, R. Dalton Trans. 2005, 315; (c)
 Rutsch, P.; Huttner, G. Z. Naturforsch. 2002, 57b, 25; (d) Hupp, F.; Ma, M.; Kroll, F.;
 Jimenez-Halla, J. O. C.; Dewhurst, R. D.; Radacki, K.; Stasch, A.; Jones, C.;
 Braunschweig, H. Chem. Eur. J. 2014, 20, 16888.
- 12. Mayer, J. M.; Calabrese, J. C. Organometallics 1984, 3, 1292.
- 13. (a) Zadesenets, A.; Filatov, E.; Plyusnin, P.; Baidina, I.; Dalezky, V.; Korenev, S.;
 Bogomyakov, A. *Polyhedron* 2011, 30, 1305; (b) Shubin, Y.; Plyusnin, P.;
 Sharafutdinov, M. *Nanotechnology* 2012, 23, 405302.
- 14. Wakatsuki, Y.; Yamazaki, H. J. Organometal. Chem. 1974, 64, 393.
- 15. Simons, R. S.; Pu, L.; Olmstead, M. M.; Power, P. P. Organometallics 1997, 16, 1920.
- Al-Rafia, S. M. I.; Momeni, M. R.; Ferguson, M. J.; McDonald, R.; Brown, A.; Rivard, E. Organometallics 2013, 32, 6658.
- Choukroun, R.; Iraqi, A.; Gervais, D.; Daran, J. C.; Jeannin, Y. Organometallics 1987, 6, 1197.

- Bott, S. G.; Machell, J. C.; Mingos, D. M. P.; Watson, M. J. J. Chem. Soc., Dalton Trans. 1991, 859.
- 19. Gessner, V. H.; Dilsky, S.; Strohmann, C. Chem. Commun. 2010, 46, 4719.
- 20. For studies using the [HB^sBu₃]⁻ anion as a hydride source, see: (a) Richards, A. F.; Phillips, A. D.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2003, 125, 3204;
 (b) Lummis, P. A.; Momeni, M. R.; Lui, M. W.; McDonald, R.; Ferguson, M. J.; Miskolzie, M.; Brown, A.; Rivard, E. Angew. Chem. Int. Ed. 2014, 53, 9347.
- Duchateau, R.; Lancaster, S. J.; Thornton-Pett, M.; Bochmann, M. Organometallics 1997, 16, 4995.
- 22. Otsuka, S.; Yoshida, T.; Matsumoto, M.; Nakatsu, K. J. Am. Chem. Soc. 1976, 98, 5850.
- 23. (a) Charmant, J. P. H.; Fan, C.; Norman, N. C.; Pringle, P. G. *Dalton Trans.* 2007, 114;
 (b) Braunschweig, H.; Brenner, P.; Müller, A.; Radacki, K.; Rais, D.; Uttinger, K. *Chem. Eur. J.* 2007, *13*, 7171; (c) Braunschweig, H.; Radacki, K.; Uttinger, K. *Inorg. Chem.* 2007, *46*, 8796.
- 24. Braunschweig, H.; Gruss, K.; Radacki, K. Inorg. Chem. 2008, 47, 8595.
- Braunschweig, H.; Brenner, P.; Cogswell, P.; Kraft, K.; Schwab, K. *Chem. Commun.* **2010**, *46*, 7894.
- 26. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- 27. Balch, A. L.; Oram, D. E. Organometallics 1988, 7, 155.
- Kolychev, E. L.; Bannenberg, T.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. *Chem. Eur. J.* 2012, 18, 16938.

- 29. Hope, H. Prog. Inorg. Chem. 1994, 41, 1.
- 30. Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
- 31. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
- Beurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Garcia, S.; Gould, R. O. *DIRDIF-2008*; Crystallography Laboratory, Radboud University: Nijmegen, The Netherlands 2008.
- 33. Zaidlewicz, M.; Krzeminski, M. Sci. Synth. 2004, 6, 1097.

- (a) Paetzold, P. Adv. Inorg. Chem. 1987, 31, 123; (b) Nöth, H. Angew. Chem. Int. Ed. Engl. 1988, 27, 1603; (c) Paetzold, P. Pure Appl. Chem. 1991, 63, 345; (d) Fischer, R.
 C.; Power, P. P. Chem. Rev. 2010, 110, 3877; For related M-B=NR chemistry, see: (e) Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Chem. Rev. 2010, 110, 3924; (f) Paetzold, P.; Plotho, C. V. Chem. Ber. 1982, 115, 2819.
- (a) Paetzold, P.; Richter, A.; Thijssen, T.; Wurtenberg, S. Chem. Ber. 1979, 112, 3811;
 (b) Balak, E.; Herberich, G. E.; Manners, I.; Mayer, H.; Paetzold, P. Angew. Chem. Int. Ed. Engl. 1988, 27, 958.
- (a) Dahcheh, F.; Martin, D.; Stephan, D. W.; Bertrand, G. Angew. Chem. Int. Ed. 2014, 53, 13159; (b) Dahcheh, F.; Stephan, D. W.; Bertrand, G. Chem. Eur. J. 2015, 21, 199;
 (c) Braunschweig, H.; Ewing, W. C.; Geetharani, K.; Schaefer, M. Angew. Chem. Int. Ed. 2015, 54, 1662.
- (a) Lory, E. R.; Porter, R. F. J. Am. Chem. Soc. 1973, 95, 1766; (b) Kawashima, Y.;
 Kawaguchi, K.; Hirota. E. J. Chem. Phys. 1987, 87, 6331; (c) Thompson, C. A.;

Andrews, L. J. Am. Chem. Soc. 1995, 117, 10125; (d) Zhang, F.; Maksyutenko, P.; Kaiser, R. I.; Mebel, A. M.; Gregusova, A.; Perera, S. A.; Bartlett, R. J. J. Phys. Chem. A 2010, 114, 12148.

- For selected computational studies on HBNH, see: (a) Baird, N. C.; Datta, R. K. Inorg. Chem. 1972, 11, 17; (b) Matus, M. H.; Grant, D. J.; Nguyen, M. T.; Dixon, D. A. J. Phys. Chem. C 2009, 113, 16553; (c) Sundaram, R.; Scheiner, S.; Roy, A. K.; Kar, T. J. Phys. Chem. C 2015, 119, 3253.
- Liu, H.; Jin, P.; Xue, Y.-M.; Dong, C.; Li, X.; Tang, C.-C.; Du, X.-W. Angew. Chem. Int. Ed. 2015, 54, 7051.
- 7. (a) Paine, R. T.; Narula, C. K. Chem. Rev. 1990, 90, 73; (b) Geim, A. K.; Grigorieva, I.
 V. Nature 2013, 499, 419; c) Liu, L.; Park, J.; Siegel, D. A.;. McCarty, K. F.; Clark, K.
 W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G.; Science 2014, 343, 16.
- (a) Vogel, U.; Timonshkin, A. Y.; Scheer, M. Angew. Chem. Int. Ed. 2001, 40, 4409;
 (b) Rupar, P. A.; Jennings, M. C.; Ragogna, P. J.; Baines, K. M. Organometallics
 2007, 26, 4109; (c) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem. Soc. 2011, 133, 777; (d) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Angew. Chem. Int. Ed. 2011, 50, 8354; (e)
 Yamaguchi, T.; Sekiguchi, A.; Driess, M. J. Am. Chem. Soc. 2010, 132, 14061; (f)
 Ghadwal, R. S.; Roesky, H. W. Acc. Chem. Res. 2013, 46, 444; (g) Filippou, A. C.; Baars, B.; Chernov, O.; Lebedev, Y. N.; Schnakenburg, G. Angew. Chem. Int. Ed.
 2014, 53, 565; (h) Rivard, E. Dalton Trans. 2014, 43, 8577.
- 9. Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.

- (a) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009, 38, 279; (b) Leitao, E. M.; Titel, J.; Manners, I. Nature Chem. 2013, 5, 817; (c) Krieg, M.; Reicherter, F.; Haiss, P.; Ströbele, M.; Eichele, K.; Treanor, M.-J.; Schaub, R.; Bettinger, H. F. Angew. Chem. Int. Ed. 2015, 54, 8284.
- For related rearrangements involving organic azides, see: (a) Rokade, B. V.; Prabhu, J. R. J. Org. Chem. 2012, 77, 5364; (b) Albertin, G.; Antoniutti, S.; Baldan, D.; Castro, J.; García-Fontán, S. Inorg. Chem. 2008, 47, 742.
- For recent computational study on LB•BN•LA species, see: Momeni, M. R.; Shulman,
 L.; Rivard, E.; Brown, A. *Phys. Chem. Chem. Phys.* 2015, *17*, 16525.
- A related H/OTf exchange process is known within zinc(II) hydride chemistry: Lummis, P. A.; Momeni, M. R.; Lui, M. W.; McDonald, R.; Ferguson, M. J.; Miskolzie, M.; Brown, A.; Rivard, E. Angew. Chem. Int. Ed. 2014, 53, 9347.
- 14. Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072.
- (a) Al-Rafia, S. M. I.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. Eur. J. 2012, 18, 13810; (b) Stubbs, N. E.; Jurca, T.; Leitao, E. M.; Woodall, C. H.; Manners, I. Chem. Commun. 2013, 49, 9098.
- Kolychev, E. L.; Bannenberg, T.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. *Chem. Eur. J.* 2012, *18*, 16938.
- 17. Schulz, A.; Villinger, A. Chem. Eur. J. 2010, 16, 7276.
- 18. Photolysis of 3 (Hg lamp, 200 W) for 3 hrs in toluene or CH₂Cl₂ gave the new product,
 4, along with unknown by-products.
- 19. Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 12770.

- Malcolm, A. C.; Sabourin, K. J.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Inorg. Chem.* 2012, 51, 12905.
- For a related study on boranitrenes, see: Filthaus, M.; Schwertmann, L.; Neuhaus, P.;
 Seidel, R. W.; Oppel, I.; Bettinger, H. F. *Organometallics* 2012, *31*, 3894.
- 22. Fox, A. R.; Cummins, C. C. J. Am. Chem. Soc. 2009, 131, 5716.
- 23. Axenrod, T.; Pregosin, P. S.; Wieder, M. J.; Becker, E. D.; Bradley, R. B.; Milne, G. W. A. J. Am. Chem. Soc. 1971, 93, 6536.
- 24. Wrackmeyer, B.; Tok, O. L. Z. Naturforsch. B 2007, 62b, 220.
- 25. To estimate the activation barrier, the N3-N4 bond length in **3** was scanned. The extrusion of N_2 is accompanied by a 1,2-H-shift and formation of **4**.
- 26. Kuhn, N.; Kratz, T. Synthesis 1993, 561.
- 27. Kuhn, N.; Henkel, G.; Kratz, T.; Kreutzberg, J.; Boese, R.; Maulitz, A. M. Chem. Ber.
 1993, 126, 2041.
- Ge, F.; Kehr, G.; Daniliuc, C. G.; Mück-Lichtenfeld, C.; Erker, G.; Organometallics
 2015, 34, 4205.
- 29. (a) Laubengayer, A. W.; Beachley Jr., O. T.; Porter, R. F. *Inorg. Chem.* 1965, *4*, 578;
 (b) Beachley Jr., O. T.; Washburn, B. *Inorg. Chem.* 1975, *14*, 120.
- Malcolm, A. C.; Sabourin, K. J.; McDonald, R.; Ferguson, M. J.; Rivard, E. *Inorg. Chem.* 2012, *51*, 12905.
- 31. (*a*) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskelä, M.; Repo, T.;
 Pyykkö, P.; Rieger, B. *J. Am. Chem. Soc.* 2008, *130*, 14117; (*b*) Legare, M.-A.;
 Courtemanche, M. –A.; Rochette, E.; Fontaine, F.-G. *Science* 2015, *349*, 513; (*c*)
 Wang, T.; Kehr, G.; Liu, L.; Grimme, S.; Daniliuc, C. G.; Erker, G. *J. Am. Chem. Soc.*

2016, *138*, 4302; (*d*) Mo, Z.; Rit, A.; Campos, J.; Kolychev, E. L.; Aldridge, S. J. Am. Chem. Soc. **2016**, *138*, 3306; (*e*) Stephan, D. W. Acc. Chem. Res. **2015**, *48*, 306.

- 32. For related examples of transfer hydrogenation between amine-boranes and unsaturated B-N compounds, see: (a) Robertson, A. P. M.; Leitao, E. M.; Manners, I. J. Am. Chem. Soc. 2011, 133, 19322; (b) Lui, M. W.; Paisley, N. R.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. Eur. J. 2016, 22, 2134; (c) Leitao, E. M.; Stubbs, N. E.; Robertson, A. P. M.; Helten, H.; Cox, R. J.; Lloyd-Jones, G. C.; Manners, I. J. Am. Chem. Soc. 2012, 134, 16805.
- 33. We also explored the possible Lewis basic nature of 7. When 7 was combined with CuI and BAr^F₃, no reaction was found; treatment of 7 with Me₂S•BH₃ (as a source of BH₃) gave a complicated product mixture.
- 34. Ruiz, D. A.; Melaimi, M.; Bertrand, G. Chem. Commun. 2014, 50, 7837.
- (a) Benson, S. W. J. Chem. Educ. 1965, 42, 502; (b) Walsh, R. Acc. Chem. Res. 1981, 14, 246.
- 36. For the synthesis of BN by treating [XBNH]₃ (X = Cl or Br) with molten alkali metals, see: (*a*) Hamilton, E. J. M.; Dolan, S. E.; Mann, C. M.; Colijn, H. O.; McDonald, C. E.; Shore, S. G. *Science* 1993, *260*, 659; (*b*) Hamilton, E. J. M.; Dolan, S. E.; Mann, C. M.; Colijn, H. O.; Shore, S. G. *Chem. Mater.* 1995, *7*, 111.
- 37. (a) Dewar, M. J. S.; Kubba, V. P.; Pettit, R. J. Chem. Soc. 1958, 3073; (b) Emslie, D. J. H.; Piers, W. E.; Parvez, M. Angew. Chem. Int. Ed. 2003, 42, 1252; (c) Campbell, P. G.; Marwitz, A. J. V.; Liu, S.-Y. Angew. Chem. Int. Ed. 2012, 51, 6074; (d) Edel, K.; Brough, S. A.; Lamm, A. N.; Liu, S.-Y.; Bettinger, H. F. Angew. Chem. Int. Ed. 2015, 54, 7819.

- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics. 1996, 15, 1518.
- 39. Jafarpour, L.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem. 2000, 606, 49.
- Al-Rafia, S. M. I.; Lummis, P. A.; Swarnakar, A. K.; Deutsch, K. C.; Ferguson, M. J.; McDonald, R.; Rivard, E. Aust. J. Chem. 2013, 66, 1235.
- Sloan, M. E.; Staubitz, A.; Clark, T. J.; Russell, C. A.; Lloyd-Jones, G. C.; Manners, I. J. Am. Chem. Soc. 2010, 132, 3831.
- 42. Straus, D. A.; Zhang, C.; Tilley, T. D. J. Organomet. Chem. 1989, 369, C13.
- 43. Asadi, A.; Avent, A. G.; Hill, M. S.; Hitchcock, P. B.; Meehan, M. M.; Smith, J. D. Organometallics 2002, 21, 2183.
- 44. Savoia, D.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1978, 43, 2907.
- 45. Hope, H. Prog. Inorg. Chem. 1994, 41, 1.
- 46. Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
- 47. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
- Beurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Garcia, S.; Gould, R. O. DIRDIF-2008; Crystallography Laboratory, Radboud University: Nijmegen, The Netherlands, 2008.
- Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R. B.; Schaefer, H. F.;
 Schleyer, P. v: R.; Robinson, G. H. J. Am Chem. Soc. 2007, 129, 12412.
- (a) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2003, 125, 9424; (b) Robertson, A. P. M.; Leitao, E. M.; Manners, I. J. Am. Chem. Soc. 2011, 133, 19322; (c) Nöth, H.; Thomas, S. Eur. J. Inorg. Chem. 1999, 1373.
- 51. Kuhn, A.; Sander, W. Organometallics 1998, 17, 4776.

- (a) Jones, C. Chem. Commun. 2001, 2293; (b) Kuhn, N.; Al-Sheikh, A. Coord. Chem. Rev. 2005, 249, 829; (c) Wang, Y.; Robinson, G. H. Dalton Trans. 2012, 41, 337; (d) Ghadwal, R. S.; Azhakar, R.; Roesky, H. W. Acc. Chem. Res. 2013, 46, 444; (e) Murphy, L. K.; Robertson, K. N.; Masuda, J. D.; Clyburne, J. A. C. in N-Heterocyclic Carbenes, S. P. Nolan (ed.), Wiley-VCH, Weinheim, 2014, pp-427-497; (f) Rivard, E. Dalton Trans. 2014, 43, 8577; (g) Prabusankar, G.; Sathyanarayana, A.; Suresh, P.; Babu, C. N.; Srinivas, K.; Metla, B. P. R. Coord. Chem. Rev. 2014, 269, 96; (h) Präsang, C.; Scheschkewitz, D. Chem. Soc. Rev. 2016, 45, 900; (i) Würtemberger-Pietsch, S.; Radius, U.; Marder, T. B. Dalton Trans. 2016, 45, 5880.
- (a) Martin, D.; Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Organometallics 2011, 30, 5304; (b) Mondal, K. C.; Roy, S.; Roesky, H. W. Chem. Soc. Rev. 2016, 45, 1080; (c) Soleilhavoup, M.; Bertrand, G. Acc. Chem. Res. 2015, 48, 256.
- (a) Kuhn, N.; Bohnen, H.; Kreutzberg, J.; Bläser, D.; Boese, R. J. Chem. Soc., Chem. Commun. 1993, 1136; (b) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2011, 47, 6987; (c) Y. Wang, Y.; Abraham, M. Y.; Gilliard Jr., R. J.; Sexton, D. R.; Wei, P.; Robinson, G. H. Organometallics 2013, 32, 6639; (d) Ghadwal, R. S. Dalton Trans. 2016, 45, 16081; (e) Powers, K.; Hering-Junghans, C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Polyhedron 2016, 108, 8; (f) Huang, J. -S.; Lee, W. -H.; Shen, C. -T.; Lin, Y. -F.; Liu, Y. -H.; Peng, S. -M.; Chiu, C. -W. Inorg. Chem. 2016, 55, 12427.
- 4. (a) Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas,
 A. Science 2012, 336, 1420; (b) Böhnke, J.; Braunschweig, H.; Ewing, W. C.; Hörl, C.;

Kramer, T.; Krummenacher, I.; Mies, J.; Vargas, A. Angew. Chem. Int. Ed. 2014, 53, 9082.

- 5. (a) Swarnakar, A. K.; Hering-Junghans, C.; Nagata, K.; Ferguson, M. J.; McDonald, R.; Tokitoh, N.; Rivard, E. Angew. Chem. Int. Ed. 2015, 54, 10666; (b) Swarnakar, A. K.; Hering-Junghans, C.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Sci. 2017, 8, 2337.
- Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072.
- For related donor-acceptor chemistry in the main group, see: (a) Marks, T. J. J. Am. Chem. Soc. 1971, 93, 7090; (b) Vogel, U.; Timoshkin, A. Y.; Scheer, M. Angew. Chem. Int. Ed. 2001, 40, 4409; (c) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.; Rivard, E. Angew. Chem. Int. Ed. 2011, 50, 8354; (d) Filippou, A. C.; Baars, B.; Chernov, O.; Lebedev, Y. N.; Schnakenburg, G. Angew. Chem. Int. Ed. 2014, 53, 565; (e) Dielmann, F.; Peresypkina, E. V.; Krämer, B.; Hastreiter, F.; Johnson, B. P.; Zabel, M.; Heindl, C.; Scheer, M. Angew. Chem. Int. Ed. 2016, 55, 14833; (f) Zhou, Y. –P.; Karni, M.; Yao, S.; Apeloig, Y.; Driess, M. Angew. Chem. Int. Ed. 2016, 55, 15096.
- 8. (a) Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Appl. Phys. Lett. 1986, 48, 353; (b)
 Nakamura, S.; Harada, Y.; Seno, M. Appl. Phys. Lett. 1991, 58, 2021; (c) Morkoc, H.;
 Mohammad, S. N. Science 1995, 267, 51.
- 9. (a) Neumayer, D. A.; Cowley, A. H.; Decken, A.; Jones, R. A.; Lakhotia, V.; Ekerdt, J. G. J. Am. Chem. Soc. 1995, 117, 5893; (b) Kouvetakis, J.; McMurran, J.; Matsunaga, P.; O'Keeffe, M.; Hubbard, J. L. Inorg. Chem. 1997, 36, 1792; (c) Dingman, S. D.;

Rath, N. P.; Buhro, W. E. *Dalton Trans.* 2003, 3675; (*d*) Beachley Jr., O. T.; Pazik, J.
C.; Noble, M. J. *Organometallics* 1998, 17, 2121.

- Cole, M. L.; Furfari, S. K.; Kloth, M. J. Organomet. Chem. 2009, 694, 2934; (b) Abernethy, C. D.; Cole, M. L.; Jones, C. Organometallics 2000, 19, 4852; (c) Baker, R. J.; Jones, C. Appl. Organomet. Chem. 2003, 17, 807; (d) Francis, M.D.; Hibbs, D. E.; Hursthouse, M. B.; Jones, C.; Smithies, N. A. J. Chem. Soc., Dalton Trans. 1998, 3249.
- 11. Shirk, A. E.; Shriver, D. F.; Dilts, J. A.; Nutt, R. W. Inorg. Synth. 1977, 17, 45.
- 12. (a) Ball, G. E.; Cole, M. L.; McKay, A. I. Dalton Trans. 2012, 41, 946; (b) Marion, N.;
 Escudero-Adán, E. C.; Benet-Buchholz, J.; Stevens, E. D.; Fensterbank, L.; Malacria, M.; Nolan, S. P. Organometallics 2007, 26, 3256.
- Haiges, R.; Boatz, J. A.; Williams, J. M.; Christe, K. O. Angew. Chem. Int. Ed. 2011, 50, 8828.
- 14. (a) Herrington, T. J.; Thom, A. J. W.; White, A. J. P.; Ashley, A. E. Dalton Trans.
 2012, 41, 9019; (b) Blagg, R. J.; Lawrence, E. J.; Resner, K.; Oganesyan, V. S.; Herrington, T. J.; Ashley, A. E.; Wildgoose, G. G. Dalton Trans. 2016, 45, 6023.
- 15. (a) Burns, M. E.; Smith Jr, R. H. Chem. Eng. News 1984, 62, 2; (b) Hassner, A.; Stern,
 M.; Gottlieb, H. E.; Frolow, F. J. Org. Chem. 1990, 55, 2304.
- Jancik, V.; Pineda, L. W.; Stückl, A. C.; Roesky, H. W.; Herbst-Irmer, R. Organometallics 2005, 24, 1511.
- 17. Hild, F.; Dagorne, S. Organometallics 2012, 31, 1189.
- 18. For related work on using main group species as hydrosilylation/borylation catalysts, see: (*a*) Lummis, P. A.; Momeni, M. R.; Lui, M. W.; McDonald, R.; Ferguson, M. J.;

Misklozie, M.; Brown, A.; Rivard, E. Angew. Chem. Int. Ed. 2014, 53, 9347; (b)
Revunova, K.; Nikonov, G. I. Dalton Trans. 2015, 44, 840; (c) Chong, C. C.; Kinjo, R.
ACS Catal. 2015, 5, 3238; (d) Wiegand, A.-K.; Rit, A. Okuda, J. Coord. Chem. Rev.
2016, 314, 71; (e) Roy, M. M. D.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem.
Eur. J. 2016, 22, 18236; (f) Hadlington, T. J.; Hermann, M.; Frenking, G.; Jones, C. J.
Am. Chem. Soc. 2014, 136, 3028; (g) Bismuto, A.; Thomas, S. P.; Cowley, M. J.
Angew. Chem. Int. Ed. 2016, 55, 15356. Initial studies show that 2 is a competent catalyst for the hydrosilylation of benzophenone at room temperature.

- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- Tang, S.; Monot, J.; El-Hellani, A.; Michelet, B.; Guillot, R.; Bour, C.; Gandon, V. *Chem. Eur. J.* 2012, 18, 10239.
- Kolychev, E. L.; Bannenberg, T.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. *Chem. Eur. J.* 2012, *18*, 16938.
- 22. Hope, H. Prog. Inorg. Chem. 1994, 41, 1.
- 23. Blessing, R. H. Acta Crystallogr. Sect. A 1995, 51, 33.
- 24. Sheldrick, G. M. Acta Crystallogr. Sect. A 2007, 64, 112.

Chapter 6

(*a*) Coté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. *Science* 2005, *310*, 1166; (*b*) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cote, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. *Science* 2007, *316*, 268; (*c*) De, P.; Gondi, S. R.; Roy, D.; Sumerlin, B. S. *Macromolecules* 2009, *42*, 5614; (*d*) Perttu,

E. K.; Arnold, M.; Iovine, P. M. *Tetrahedron Lett.* 2005, 46, 8753; (e) Hawkins, R. T.;
Lennarz, W. J.; Snyder, H. R. J. Am. Chem. Soc. 1960, 82, 3053; (f) Li, Y.; Ding, J.;
Day, M.; Tao, Y.; Lu, J.; D'iorio, M. Chem. Mater. 2003, 15, 4936.

- (a) Kirk, R. W.; Timms, P. L. Chem. Commun. 1967, 18; (b) Kroto, H. W. Chem. Soc. Rev. 1982, 11, 435; (c) Groteklaes, M.; Paetzold, P. Chem. Ber. 1988, 121, 809; (d) Burkholder T. R.; Andrews, L. J. Chem. Phys. 1991, 95, 8697; (e) Page, M. J. Phys. Chem. 1989, 93, 3639; (f) Paetzold, P.; Neyses, S.; Géret, L.; Z. Anorg. Allg. Chem. 1995, 621, 732; (g) Osiac, M.; Röpcke, J.; Davies, P. B. Chem. Phys. Lett. 2001, 344, 92; (h) Bettinger, H. Organometallics 2007, 26, 6263.
- 3. Pachaly, B.; West, R. J. Am. Chem. Soc. 1985, 107, 2987.
- 4. For related studies on isolating reactive LBO species (L = supporting ligand(s)), see:
 (a) Nöth, H. Angew. Chem. Int. Ed. Engl. 1988, 27, 1603; (b) Ito, M.; Tokitoh, N.; Okazaki, R. Tet. Lett. 1997, 38, 4451; (c) Vidovic, D.; Moore, J. A.; Jones, J. N.; Cowley, A. H. J. Am. Chem. Soc. 2005, 127, 4566; (d) Wang, Y.; Hu, H.; Zhang, J.; Cui, C. Angew. Chem. Int. Ed. 2011, 50, 2816; (e) Del Grosso, A.; Clark, E. R.; Montoute, N.; Ingleson, M. J. Chem. Commun. 2012, 48, 7589; (f) Loh, Y. K.; Chong, C. C.; Ganguly, R.; Li, Y.; Vidovic, D.; Kinjo, R. Chem. Commun. 2014, 50, 8561.
- 5. Braunschweig, H.; Radacki, K.; Schneider, A. Science 2010, 328, 345.
- 6. (a) Paetzold, P. Adv. Inorg. Chem. 1987, 31, 123; (b) Fischer, R. C.; Power, P. P. Chem. Rev. 2010, 110, 3877; (c) Wang, Y.; Robinson, G. H. Dalton Trans. 2012, 41, 337; (d) Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009, 109, 3479; (e) Asay, M.; Jones, C.; Driess, M. Chem. Rev. 2011, 111, 354; (f) He, G.; Shynkaruk, O.; Lui, M. W.; Rivard, E. Chem. Rev. 2014, 114, 7815; (g) Brand, J.; Braunschweig, H.;

Sen, S. S. Acc. Chem. Res. 2014, 47, 180; (h) Präsang. C.; Scheschkewitz, D. Chem. Soc. Rev. 2016, 45, 900.

- 7. (a) Parker, D. S. N.; Dangi, B. B.; Balucani, N.; Stranges, D.; Mebel, A. M.; Kaiser, R. I. J. Org. Chem. 2013, 78, 11896; (b) Liu, H.; Jin, P.; Xue, Y.-M.; Dong, C.; Li, X.; Tang, C.-C.; Du, X.-W. Angew. Chem. Int. Ed. 2015, 54, 7051; (c) Purkait; Swarnakar, A. K.; De Los Reyes, G. B.; Hegmann, F. A.; Rivard, E.; Veinot, J. G. C. Nanoscale 2015, 7, 2241; (d) Velian, A.; Cummins, C. C. Science 2015, 348, 1001.
- 8. (a) Power, P. P. Nature 2010, 463, 171; (b) Hadlington, T. J.; Hermann, M.; Frenking, G.; Jones, C. J. Am. Chem. Soc. 2014, 136, 3028.
- 9. (a) Rivard, E. Chem. Soc. Rev. 2016, 45, 989; FLP can also be viewed as donoracceptor complexes: (b) Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46.
- 10. The related dihalosilylether species Br₂BOSiMe₃ was prepared previously (see ref. 5).
- Kolychev, E. L.; Bannenberg, T.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. *Chem. Eur. J.* 2012, *18*, 16938.
- For the use of BAr^F₃ to intercept main group species, see: (*a*) Swarnakar, A. K.; Hering-Junghans, C.; Nagata, K.; Ferguson, M. J.; McDonald, R.; Tokitoh, N; Rivard, E. *Angew. Chem. Int. Ed.* 2015, *54*, 10666; (*b*) Swarnakar, A. K.; Hering-Junghans, C.; Ferguson, M. J.; McDonald, R.; Rivard, E. *Chem. Sci.* 2017, *8*, 2337.
- Brahmia, M. M.; Malacria, M.; Curran, D. P.; Fensterbank, L.; Lacôte, E. Synlett. 2013, 24, 1260.
- Caputo, C. B.; Hounjet, L. J.; Dobrovetsky, R.; Stephan, D. W. Science 2013, 341, 1374.

- Wang, Y.; Xie, Y.; Abraham, M. Y.; Wei, P.; Schaefer III, P. H. F.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2010, 132, 14370.
- 16. (a) Stahl, T.; Klare, H. F. T.; Oestreich, M. ACS Catal. 2013, 3, 1578; (b) Douvris, C.;
 Ozerov, O. V. Science 2008, 321, 1188; (c) Caputo, C. B.; Stephan, D. W.
 Organometallics 2012, 31, 27; (d) Alcarazo, M.; Gomez, C.; Holle, S.; Goddard, R.
 Angew. Chem. Int. Ed. 2010, 49, 5788; (e) Ahrens, M.; Scholz, G.; Braun, T.; Kemnitz,
 E. Angew. Chem. Int. Ed. 2013, 52, 5328.
- 17. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- 18. Jafarpour, L.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem. 2000, 606, 49.
- 19. (a) Kuprat, M.; Lehmann, M.; Schulz, A.; Villinger, A. Organometallics 2010, 29, 1421; (b) Massey, A. G.; Park, A. J. J. Organomet. Chem. 1964, 2, 245.
- 20. Hope, H. Prog. Inorg. Chem. 1994, 41, 1.
- 21. Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
- 22. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
- Beurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Garcia, S.; Gould, R. O. DIRDIF-2008; Crystallography Laboratory, Radboud University: Nijmegen, The Netherlands 2008.
- Candish, L.; Standley, E. A.; Gómez-Suµrez, A.; Mukherjee, S.; Glorius, F. *Chem. Eur.* J. 2016, 22, 9971.

- (a) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem. Soc. 2011, 133, 777; (b) Swarnakar, A. K.; McDonald, S. M.; Deutsch, K. C.; Choi, P.; Ferguson, M. J.; McDonald, R.; Rivard, E. Inorg. Chem. 2014, 53, 8662.
- 2. Fox, A. R.; Cummins, C. C. J. Am. Chem. Soc. 2009, 131, 5716.
- (a) Lummis, P. A.; Momeni, M. R.; Lui, M. W.; McDonald, R.; Ferguson, M. J.; Misklozie, M.; Brown, A.; Rivard, E. Angew. Chem. Int. Ed. 2014, 53, 9347; (b) Revunova, K.; Nikonov, G. I. Dalton Trans. 2015, 44, 840; (c) Chong, C. C.; Kinjo, R. ACS Catal. 2015, 5, 3238; (d) Wiegand, A.-K.; Rit, A. Okuda, J. Coord. Chem. Rev. 2016, 314, 71; (e) Roy, M. M. D.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Eur. J. 2016, 22, 18236; (f) Hadlington, T. J.; Hermann, M.; Frenking, G.; Jones, C. J. Am. Chem. Soc. 2014, 136, 3028; (g) Bismuto, A.; Thomas, S. P.; Cowley, M. J. Angew. Chem. Int. Ed. 2016, 55, 15356.