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Abstract

Mapping the macrostructural connectivity of the living human brain is one

of the primary goals of neuroscientists who study connectomics. The recon-

struction of a brain’s structural connectivity, aka its connectome, typically

involves applying expert analysis to diffusion-weighted magnetic resonance

imaging (dMRI). A data-driven approach – inferring the underlying model

from data – could overcome the limitations of such human-based approaches

and improve precision mappings for a novel brain. In this work, we explore a

framework that facilitates applying learning algorithms to automatically ex-

tract brain connectomes. Using a tensor encoding to unify the representation

of brain structure and diffusion information, we design a constrained objective

function with a group-regularizer that prefers a biologically plausible structure

for each bundle of neuronal axons, called a fascicle. We show that the objec-

tive is convex and has a unique solution, ensuring identifiable connectomes

for an individual brain. We develop an efficient optimization strategy for this

extremely high-dimensional sparse problem, by reducing the number of param-

eters using a greedy algorithm, called GreedyOrientation, designed specifically

for the problem. We show that GreedyOrientation significantly improves on a

standard greedy algorithm, called Orthogonal Matching Pursuit. We confirm

that our method works effectively by reconstructing structural connectivity of

two major tracts. We conclude with an analysis of the solutions found by our

method, showing it can accurately reconstruct the diffusion information while

maintaining contiguous fascicles with smooth direction changes.
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Preface

The major part of the contribution in this thesis have been published as

a conference paper in Advances in Neural Information Processing Systems

(NeurIPS) 2019 [5]. We are going to submit the results of new experiments as

an extended version paper to a journal.
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Glossary

Anisotropic diffusion signal The directional diffusion signal of the water
molecule in the presence of a restricted barrier. 4

Atoms The basic elements to build the dictionary. 28

Connectome The structure of white matter connectivity in the human brain.
1

Constrained Spherical Deconvolution (CSD) An estimation of a white
matter fibre Orientation Distribution Function (fODF) based on an es-
timate of the signal expected for a single-fibre white matter population
(the so-called response function). 1

Diffusion Tensor Imaging (DTI) An MRI-based neuroimaging technique
which makes it possible to estimate the location, orientation, and anisotropy
of the brain’s white matter tracts. 2

Diffusion-weighted magnetic resonance imaging (DWI or DW-MRI)
The use of specific MRI sequences as well as software that generates im-
ages from the resulting data that uses the diffusion of water molecules
to generate contrast in MR images. 4

Direction The gradient direction of the magnetic field. 18

Fascicle A bundle of neuronal axons wrapped with myelin sheaths. 1

Isotropic diffusion signal The non-directional diffusion signals of the water
molecule in the absence of any restricted barrier. 4

MRI Magnetic resonance imaging is a medical imaging technique used in
radiology to form pictures of the anatomy and the physiological processes
of the body. MRI scanners use strong magnetic fields, magnetic field
gradients, and radio waves to generate images of the organs in the body.
3

Node Each segment of a fascicle, which is straight enough to be represented
with a diffusion ellipsoid can be considered as a node in a graph. Then,
the whole fascicle could be built up by connecting those nodes to each
other sequentially. In this thesis, nodes, orientations, and atoms are
synonyms. 70

Orientation The orientation of longitudinal diffusion ellipsoid in the spatial
space. 17
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Tract The nerve fibres organized in bundles in the central nervous system. 2

Tractography A 3D modeling technique used to visually represent nerve
tracts using data collected by diffusion MRI. 1

White matter The paler tissue of the brain and spinal cord, consisting mainly
of nerve fibers with their myelin sheaths. 1
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Chapter 1

Introduction

A fundamental challenge in neuroscience is to estimate the structure of White

matter connectivity in the human brain, i.e., its Connectome [43, 101]. A con-

nectome is made up of neuronal axon bundles wrapped with myelin sheaths,

called Fascicle, that connect different areas of the brain. Acquiring information

about the connectome is possible by measuring the diffusion of water molecules

at different gradient directions of the magnetic field. Then, the fascicle struc-

tures can be inferred from the mathematical models of this diffusion-weighted

signal by employing Tractography algorithms. In this chapter, we first explain

variety of applications for estimating the the white matter structure. Then, we

discuss the mathematical diffusion models and tractography methods, which

are the current approaches to estimate the connectivity structure of the brain.

Next, we elaborate the problem precisely and draw the scope of this project by

introducing the input and output data. Finally, we describe our contributions

in this project.

1.1 Applications

Currently, diffusion-weighted magnetic resonance imaging (dMRI) combined

with fiber tractography is the only method available to extract structural brain

connectomes in living human brains [11, 83, 102]. This method has revolu-

tionized our understanding of the network structure of the human brain and

the role of white matter in health and disease. In fact, different diffusion

neuroimaging techniques, such as constrained spherical deconvolution (Con-

1



strained Spherical Deconvolution (CSD)) or diffusion tensor imaging (Diffu-

sion Tensor Imaging (DTI)) as well as fiber tractography, may prove useful in

clinical practice [42].

One application is in studying normal brain development and aging

procedure. There are now many 2D and 3D atlases of the white matter ar-

chitecture that could be generated from the quantitative diffusion data of a

normal human brain by applying a tractography model [84, 87]. If done on

the same individual at different ages, it will give us some insight about matu-

rational changes of normal brains throughout his/her childhood.

Congenital anomalies, such as leukodystrophies, is a progressive disorder

that is caused by a specific gene and mostly affects the spinal cord and/or

peripheral nerves by destroying the myelin sheaths of the axons in the white

matter. Applying neuroimaging techniques have been useful in evaluating such

white matter Tract abnormalities [44].

Multiple Sclerosis (MS) is the most frequent neurodegenerative disease

in young adults among demyelinating and neurodegenerative diseases,

which is associated with destruction of myelin sheaths as well as axonal in-

juries. Characterizing the pathologic changes and integrity of white matter is

critical for an effective treatment; this relies on having a sensitive and reliable

in vivo method for estimating the white matter structure of the human brain.

Many research projects [45, 50, 51, 70] have shown that the number of fibers

in a standardized region of interest (ROI) decreases in both Normal Pres-

sure Hydrocephalus (NPH) and Alzheimer disease. Fiber tractography

along with diffusion neuroimaging techniques can be useful in determining the

severity of neurologic impairment and the response to therapy.

Identifying tumors and preoperative planning is a crucial step in

every surgery [100]. Differentiating between the tumor and nontumor tissues

as well as determining the tumor biology is a key step in identifying an appro-

priate therapy or surgery. Additionally, the extent of the disease must be de-

termined prior to any therapy. Accordingly, differentiating between the tumor

and necrosis tissues is also very important in surgery, chemotherapy, or radia-

tion. All these evaluations are possible by utilizing neuroimaging techniques.
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It is also beneficial to follow up the progress of a therapy by representing

changes in a post-treatment MRI scan.

In the domain of epilepsy and seizures, elucidating the etiology of

seizures and the underlying pathophysiology in chronic epilepsy could be in-

vestigated by characterizing microstructural abnormalities in epileptic foci.

Neuroimaging techniques, such as dMRI and Positron Emission Tomography

(PET)1, make it possible to demonstrate the white matter fibers and tracts

participating in the epileptic network [79].

About ischemia and stroke, many (including [63]), have shown that fiber

tractography of DTI data can be used to localize stroke lesions in relation to

functionally important pathways. Moreover, for assessing the crushed nerve

fibers, where the part of the axon distal to the injury degenerates, DTI fiber

tractography allows more accurate prognosis of long-term recovery or disability

[113]. These methods are also useful in evaluating the ischemic injury to the

developing brain of newborns and infants as well as elucidating alterations in

brain connectivity resulting from neuroplasticity after stroke.

Another application is in psychiatric disorders, dementia, and de-

pression. It consists of evaluating the structural differences of white matter

architecture in psychiatric population and healthy controls, which is possible

via DTI-tractography of the human brain. Torgerson et al. [95] have shown

that the length and density of fiber tracts in healthy people are different from

depressed or bipolar patients.

In functional connectivity mapping and cognitive neuroscience,

understanding the pathways associated with a range of specialized cognitive

functions in vivo, such as attention, perception, and decision making, is pos-

sible through probabilistic tractography methods to map the structural con-

nectivity of the human brain [86].

Abnormal spinal cord diffusion signal as well as its fiber tractography pro-

vide physiologic information about disorganization of white matter for spinal

cord evaluation. Furthermore, various DTI metrics are characterized to

provide promises in diagnosing a range of spinal cord disorders ranging from

1A nuclear based medicine procedure to measure the metabolic activity of living tissues.
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tumors, demyelination, and cord narrowing [53].

1.2 Mathematical Modeling of Diffusion Mag-

netic Resonance Imaging Signals

Measuring diffusion magnetic resonance imaging (dMRI) signals is a non-

invasive method that reveals the tissue architecture by capturing the diffusion

of non-free water molecules interacting with different obstacles, e.g. water

molecule diffusion patterns in different brain tissues such as fibers or mem-

branes [7]. A specific sequence of MRI scans of a single region (e.g. the head)

of a person, then applying some software to generate the contrast in MR im-

ages from the diffusion data produces Diffusion-Weighted Magnetic Resonance

Imaging (Diffusion-weighted magnetic resonance imaging (DWI or DW-MRI)

or DW-MRI). Acquiring different MRI scan sequences of a person is possi-

ble by applying various setting of pulse sequences and pulsed field gradients,

resulting in a particular image appearance.

In the MR images of the DWI data, the intensity of each volume pixel,

known as a voxel, reflects the estimation of water diffusion rate at that location.

This dMRI signal can be modeled as a linear combination of two components

for each voxel. The first component reflects the directional diffusion signal,

referred to as Anisotropic diffusion signal diffusion, which presumably related

to the non-free water molecules inside the fibrous structure of axons covered

with myelin sheaths [106]. The anisotropic diffusion is due to the presence of

any constrained obstacle, meaning that water will diffuse more rapidly in the

direction of internal structure rather than any other perpendicular directions

(Figure 1.1). The second component is related to the non-directional signals,

known as Isotropic diffusion signal diffusion, presumably originated from the

diffusion of free water molecules in other brain tissues (Figure 1.2).

The diffusion rate along a specific direction varies depending on the ob-

server’s direction of looking. In other words, collecting dMRI data for any dif-

fusion sensitization magnetic gradient allows the dMRI image intensity to be

measured only along a single direction (Figure 1.3). Therefore, multiple dMR

4



Figure 1.1: Water diffuses rapidly along the neuronal axons covered with
myelin sheaths.

Figure 1.2: Different types of water diffusion interacting with barriers as well
as their ellipsoid representation.
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Figure 1.3: MR image intensity varies by applying different magnetic gradient
directions.

images are collected sequentially by orienting the magnetic gradient along sev-

eral directions for each location (i.e. voxel) in the brain. Each direction of

magnetic gradient is denoted as a unit-norm vector θ ∈ R3. The value of the

measured signal depends on different parameters such as gradient strength,

shown as scalar b, as well as the duration of radiation.

Given the gradient strength b and gradient direction θ for each voxel v, the

dMRI signal can be estimated by the following equation [12, 35]:

S(θ, v) ≈ w0S0(v)e−A0 +
∑
f∈v

wfS0(v)e−bθ
TQf,vθ, (1.1)

where scalar S0(v) ∈ R is the signal measured without the presence of a

diffusion sensitization magnetic gradient, A0 ∈ R is the isotropic diffusion in

all directions, and θTQf,vθ > 0 is the diffusion at direction θ generated by

fascicle f within the voxel v. Qf,v ∈ R3×3 is a symmetric positive-definite

matrix, called diffusion tensor, enables a compact representation of diffusion

signal [10]. The diffusion tensor Qf,v is usually represented as a 3D-ellipsoid

and defined as:

Qf,v =
[
u1 u2 u3

] sa 0 0
0 sr1 0
0 0 sr2

u1
T

u2
T

u3
T

 (1.2)
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Figure 1.4: Representation of diffusion tensor as an ellipsoid as well as its
eigenvalues including axial (sa) and radial (sr1 and sr2) diffusivity.

where un ∈ R3×1 are unit-norm orthogonal vectors corresponding the local

coordinate system in each voxel. sa defines the axial diffusivity of the tensor

showing the longitudinal direction of the ellipsoid aka the flow parallel to the

axon. Both sr1 and sr2 correspond to the radial diffusivity of the tensor, which

is the flow perpendicular to the axon and reflects the myelination around the

it (Figure 1.4).

1.3 General Tractography Approaches

We know that the dMRI signal of the brain is the result of water diffusion

through the bundles of axons, called fascicles. In general, all tractography

algorithms try to solve the inverse problem of estimating the streamlines of

fascicles given the diffusion information.

A simple tractography approach is called Streamline [61], which starts from

one location, generates the next movement direction using the corresponding

diffusion tensor to the current location (i.e. tracking process), and finally

moves along the selected direction for a specific distance (i.e. step size). The

7



algorithm executes the tracking process and stepping repeatedly until a certain

criterion is satisfied. If the generated tract meets certain anatomical criterion

defined by an expert, it is accepted.

Typically, the result of a fiber tractography algorithm depends on multi-

ple key factors [88]. The first factor corresponds to the validation criterion

of the fiber tract, such as Fiber Orientation Distribution (FOD). This factor

reflects the expert knowledge of the anatomical features related to the cir-

cuit under study. The second factor is the biological plausibility of generated

fascicles. Overall, the fascicles must have smooth shapes with no abrupt di-

rectional changes. The third factor describes the movement direction selected

in each step. This factor differentiates between probabilistic and deterministic

tractography methods. The direction selection in a deterministic approach

simply picks the peak direction of a diffusion tensor. However, the proba-

bilistic tractography draws a sample stochastically from the distribution of

all possible directions in the diffusion tensor, where each direction’s chance of

being selected is proportional to its magnitude in the directions’ probabilistic

distribution.

Therefore, each combination of these factors may result in different shapes

of tracts.

1.4 Problem Statement

Standard practice in mapping connectomes from dMRI data is comprised of

several steps: first acquire a dMRI image (Figure 1.5A), then fit a diffusion

model to the signal in each brain voxel (Figure 1.5B) and finally use a trac-

tography algorithm to estimate long range brain connections (Figure 1.5C).

Multiple models can be used at each one of these steps and each model allows

multiple parameters to be set. Currently, best practice in the field is to choose

one diffusion model and pick a single set of parameters using heuristics such

as recommendations by experts or previous publications. This human-based

approach has several limitations. For example, different combinations of mod-

els and parameters generate different solutions and no one knows which one

8



DTI model

CSD model

A

...

B Deterministic tractography
  - Seeding method
  - Turning angle
  - Stopping criteria
  - Etc

Probabilistic tractography
  - Seeding method
  - Turning angle
  - Stopping criteria
  - Etc

...

C 1 cmD

Figure 1.5: A: Measurements of white matter using diffusion-weighted mag-
netic resonance imaging (dMRI). B: Multiple models each can describe the
dMRI signal in each brain voxel. For example, the diffusion-tensor model
(DTI; top, [9]) and the constrained-spherical deconvolution model (CSD, bot-
tom; [97]) are commonly used. C: Multiple tractography methods integrate
model fits across voxels to estimate long-range brain connections. There are
many tractography algorithms, each with multiple parameters, for both de-
terministic and probabilistic methods [96]. In principle several combinations
of methods and parameters are used by investigators. D: Left: Two major
white matter tracts, the arcuate fasciculus in gold and superior lateral fas-
ciculus in lilac, reconstructed in a single brain using deterministic (top) and
probabilistic (bottom) tractography. Right: Cortical termination of the su-
perior lateral fasciculus in the same brain estimated with deterministic (top)
and probabilistic (bottom) tractography. Throughout (A to D), arrows show
multiple possible choices of model and parameters to generate connectome
estimates (D) from dMRI data (A).

is the correct solution (Figure 1.5D). Figure 1.5 exemplifies how from a single

dMRI data set collected in a brain, choosing a single model and parameters

set (Figure 1.5A-C) can generate vastly different connectome mapping results

(Figure 1.5D; adapted from [76]). In the figure, we show that both estimates

of white matter tracts (Figure 1.5D left) and cortical connections (Figure 1.5D

right) vary substantially even within a single brain.

There have been some supervised learning approaches proposed for trac-

tography. These supervised methods, however, such as those using random

forests [67] and neural networks [14, 77], require labelled data. This means

tractography solutions must first be given for training, limiting the models

mainly to mimic expert solutions rather than learn structures beyond them.

A few methods have used regularized learning strategies, but for different

purposes, such as removing false connections in the given tractography solu-

tion [28] and using radial regularization for micro-structure [24].
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1.5 The Scope of this Project

Diffusion Tensor Imaging (DTI) and Constrained Spherical Deconvolution

(CSD) are two types of DWI that apply various types of diffusion tensors to

mathematically model the diffusion signals. For example, the DTI approach

models the distribution of water molecules’ spins using diffusion information as

a Gaussian distribution, represented as a symmetric tensor matrix Qf,v ∈ R3×3

with three diagonal elements corresponding the diffusion coefficient along each

of the principal axis (x, y, z) as well as six off-diagonal parameters reflect the

correlation of random motions between each pair of principal directions. More

complex diffusion models represent the probability of each fiber tract along

different directions, which enables representing of arbitrary fiber configura-

tions such as crossing fibers (i.e. more than two fascicles crossing each other

in a voxel). Then a tractography algorithm can be applied on diffusion tensors

in order to infer the white matter connectivity of the brain, which means to

determine which parts of the brain are connected to which other parts. The

concentration of this project is to come up with an accurate data-driven trac-

tography solution to infer the connection trajectories (i.e. fascicles) in the

human brain given its diffusion data. Therefore, the remainder of this section

discusses the mathematical representation of the input diffusion data. Also,

we explain the output brain connectivity structure as a simple example for a

voxel.

1.5.1 Input Data

For each voxel v, each element in the diffusion information vector yv ∈ RNθ for

Nθ magnetic gradient directions can be computed by Equation 1.1. Stacking

all the vectors of yv (for all voxels v = 1, 2, 3, ..., Nv) as columns gives us the

diffusion matrix Y ∈ RNθ×Nv . Given the diffusion information Y, we want to

infer the structure of the brain connectomes as output. Later, in Section 2.1.1,

we provide more details on the input data in our project.
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1.5.2 Output Structure

In this section, we first discuss a representation of each fascicle considering its

diffusion information, which is a basis for later mathematical encoding of the

whole brain connectome described in Chapter 2. Then, we explain the inferred

output structure of the brain using this representation.

Each fascicle in a voxel can be considered as a restricted barrier to the

water diffusion in the presence of sensitization magnetic gradient. However,

the diffusion direction changes along the curved structure of a fascicle. So

different curvatures among a fascicle can be modeled by different diffusion

tensors Qa or ellipsoids with orientation a. Figure 1.6 demonstrates two cross-

ing fascicles, f1 and f2, within a voxel v. In the segments of fascicles where

the stream is straight enough in a voxel, the diffusion signal (aka ellipsoid)

can be approximated by one orientation in the spatial space (e.g. f2), but for

the curved fascicles (e.g. f1) the diffusion signal can be approximated by a

linear combination of orientations. We discretize the whole spatial space into

Na predefined orientations and approximate each straight fascicle segment by

an orientation vector. Our goal is to come up with the accurate chain of these

orientations to approximate a fascicle structure the best, i.e. the correct set

of orientations a for each fascicle-voxel pair. So for the pair of fascicle-voxel

(f1, v), the best orientation set is {a2, a3}, and for (f2, v) is {a1}.

Consequently, later in Chapter 2, we describe how to mathematically rep-

resent the whole structure of the brain connectome and how to formalize this

problem in order to facilitate applying machine learning techniques.

1.6 Contributions

The ultimate goal of this research is to present a fully unsupervised learning

framework for tractography. We exploit a recently introduced encoding for

connectome data, called ENCODE [22], which represents dMRI (and white

matter fascicles) as a tensor factorization. This factorization was previously

used only to represent expert connectomes as a tensor, generated using a stan-

dard human-based tractography process introduced in Figure 1.5. We propose
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Figure 1.6: Left: Two crossing fascicles passing through a voxel are repre-
sented with multiple diffusion ellipsoids. Each ellipsoid can be approximated
by an orientation in the space. Right: Discretizing the spatial space into the
predefined orientation vectors.

to instead facilitate learning of this tensor using the dMRI data, to extract the

structure of brain connectomes. In order to fully exploit machine learning al-

gorithms to map brain connectome, it is convenient to encode connectome data

(both dMRI and white matter fascicles) into multidimensional tensor frame-

works that allow fast and efficient mathematical operations. We propose that

tensor enconding allow extracting the structure of brain connectomes directly

from the data.

We introduce the tensor encoding framework and show how it can be used

in combination with regularization and optimization methods to overcome the

limitations of the human-based standard tractography process introduced in

Figure 1.5 to infer the connectome.

More specifically, we show that we can infer the structure of major white

matter tracts (e.g. the Arcuate Fasciculus) directly from the data using

group regularizers and convex optimization. We address two key challenges:

(1) designing regularizers that adequately capture biologically plausible tract

structures and (2) optimizing the resulting objective for an extremely high-

dimensional and sparse tensor.

Tackling these challenges and introducing a data-driven method for map-
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ping human brain connectome underlie the work in this thesis. Our contribu-

tions are:

1. we provide a way to (approximately) maximize the likelihood (i.e. the re-

construction loss) and provide an unconstrained objective function based

on ENCODE to extract the tensor of the brain structure. This objec-

tive is highly under-constrained and ill-posed, and prefers any possible

structures that accurately recreates the diffusion information.

To come up with a constrained objective function, we introduce a group

regularizer that attempts to extract a tensor that reflects a biologically

plausible fascicle structure while also reconstructing the diffusion infor-

mation. This group regularizer can capture both spatial and directional

continuity of the white matter fascicles while enforcing the sparsity of

the ultimate solution.

We prove both that the objective is convex, and has a unique solution.

Convexity ensures that gradient descent can obtain optimal solutions

while the uniqueness guarantees achieving an identifiable solution.

2. To solve this extremely high-dimensional sparse problem, we use a greedy

algorithm to screen the set of possible solutions upfront. We formally

describe which dimension is the best option for shrinkage during the

screening stage as well as how intuitively the selection criterion selects

the best set of the possible solutions.

We derive an efficient forward selection algorithm to solve each greedy

step based on its previous step, in order to make the whole screening

procedure efficient.

We then provide approximation guarantees on the greedy algorithm to

show that it has at least as good a submodularity ratio as a typical

forward selection function.

We show empirically that this greedy algorithm selects possible solutions

much more effectively than a standard greedy algorithm, called Orthog-

onal Matching Pursuit (OMP).
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3. We evaluate our proposed method on the synthetic data of five different

datasets generated from publicly available diffusion weighted imaging

(DWI) datasets. The idea is to study the generalization of our approach

by designing various experiments on the dMRI data, (a) acquired via

scanning devices with different configurations, (b) belonging to different

human brain subjects, and (c) related to multiple tract structures. Our

experiments enable us to see the impact of manipulating these three

variables on the output solutions.

We introduce different evaluation metrics and algorithms to measure the

performance of each step in the whole procedure of extracting brain con-

nectome. We show that how effectively the screening stage selects possi-

ble solutions, how well the optimization algorithm and group regularizer

can capture the correct structure of fascicles, and how trustworthy the

visualization algorithm is able to demonstrate the brain structure from

multi-dimensional tensors.

We show, both quantitatively and qualitatively, that the solutions pro-

vided by our method effectively reconstruct the diffusion information in

each voxel while maintaining contiguous, smooth fascicles.

4. We provide an algorithm to visualize the solutions. Due to the infor-

mation loss during the encoding of the connectome data, especially as

the lost data corresponds to the positional information of the fascicles

within voxels, it is not possible to retrieve the exact information. We

introduce a visualization algorithm that optimizes among all the possi-

ble demonstration solutions in order to provide the most correct shape

of tracts and their underlying fascicles based on biological properties of

the neuronal bundles, in general.

1.7 Thesis Organization

The rest of this dissertation is organized to four chapters. Chapter 2 describes

the required background on ENCODE as well as a short overview of previous
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work done in the field to extract macroscopic brain structure. In Chapter 3,

we discuss theoretical analysis to formulate our proposed tractography objec-

tive function. Then in Chapter 4, all methods and corresponding algorithms

to optimize the proposed objective function are described. Chapter 5 provides

empirical analysis of the designed experiments on different datasets. The pro-

posed evaluation metrics and related algorithms are explained in details for

both screening and optimization stages. We also discuss the visualization chal-

lenges and our proposed solution to tackle them. Finally, Chapter 6 concludes

the thesis and describe some of the relative future research directions in the

field 2.

2The code is available at: https://github.com/framinmansour/Learning-Macroscopic-
Brain-Connectomes-via-Group-Sparse-Factorization
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Chapter 2

Background and Related Work

This chapter puts together the required mathematical modeling background

as well as related research done in the field. Section 2.1 describes the encod-

ing framework in addition to the other required background for introducing

our proposed method. Then Section 2.2 goes over some related works that

apply machine learning techniques for the purpose of tractography. Section

2.3 discusses previous works that apply machine learning techniques to con-

nectome data to analyse the subnetworks of the human brain. Connectome

data could be either the functional MRI (fMRI) or diffusion MRI (dMRI),

which are two neuroimaging modalities that allow in-vivo analysis of the brain

network. Additionally, we also talk about some research projects trying to

explore the applications of machine learning techniques in the clinical analysis

of the human brain connectome.

2.1 Encoding Brain Connectomes as Tensors

ENCODE [22] maps fascicles from their natural brain space into the three

dimensions of a sparse tensor Φ ∈ RNa×Nv×Nf (Figure 2.1A - right). The first

dimension of Φ (1st mode, size Na) encodes individual white matter fascicles

orientation at each position along their path through the brain. Individual

segments (nodes) in a fascicle are coded as non-zero entries in the sparse array

(dark-blue cubes in Figure 2.1A - right). The second dimension of Φ (2nd

mode, size Nv) encodes fascicles’ spatial position within the voxels of dMRI

data. Slices in this second dimension represent single voxels (cyan slice in
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(a)

(b)

Figure 2.1: A: The ENCODE method; from natural brain space to tensor
encoding. Left: Two white matter fascicles: f1 passing through a sequence
of voxels, including two voxels (v1 and v2), and f2 passing through v2 and v3.
Right: Encoding of the two fascicles in a three dimensional tensor. Φ, whose
non-zero entries indicate fascicles Orientation (1st mode), position (voxel-id,
2nd mode) and identity (3rd mode). B: Model formulation and group sparse
regularization. Depiction of how ENCODE facilitates integration of dMRI sig-
nal Y, connectome structure, Φ, and a dictionary of predictions of the dMRI
signal D, for each fascicle orientation. The group regularizers (orange and
green squares) define pairwise groups of neighbouring voxels and similar ori-
entations. Note that the voxels are linearized to enable Φ and the groups to be
visualized as this flattens the four-dimensional hyper-cubes—three dimensions
for voxels and one for orientations—to squares.
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Figure 2.1A - right). The third dimension (3rd mode, size Nf ) encodes the

indices of each fascicle within the connectome. Full fascicles are encoded as

Φ frontal slices (cf., yellow and blue in Figure 2.1A - right). Within one

tract, such as the Arcuate Fasciculus, the model we use has Na = 1057 fine-

grained orientations, with number of fascicles Nf = 868 and number of voxels

Nv = 11, 823.

ENCODE facilitates the integration of measured dMRI signals with the

connectome structure (Figure 2.1B - right). dMRI measurements are collected

with and without a diffusion sensitization magnetic gradient and along several

gradient directions or Nθ, i.e. for some vectors θ ∈ R3. In our data for Arcuate

Fasciculuse for instance, the data includes Nθ = 96 different angles of gradient

Direction.

Thus, the dMRI signal is represented as matrix Y ∈ RNθ×Nv , which repre-

sents the value of diffusion signal received from each voxel when any individual

angle of gradient directions was applied during the scanning.

Moreover, ENCODE allows factorizing the dMRI signal as the product

of a 3-dimensional tensor Φ ∈ RNa×Nv×Nf and a dictionary of dMRI signals

D ∈ RNθ×Na :Y ≈ Φ ×1 D ×3 1. The notation “×n” is the tensor-by-matrix

product in mode-n (see [52]). The dot product with 1 ∈ RNf sums over the

fascicle dimension.1

The matrix D is a dictionary of representative diffusion signals: each col-

umn represents the diffusion signal we expect to receive from any axon in the

direction of any possible fascicle orientation a by sensitizing magnetic gradient

in each direction of θ, whose entries are D(θ, a) = e−bθ
TQaθ − 1

Nθ

∑
θ e
−bθTQaθ,

where Qa is an approximation of diffusion tensor per fascicle-voxel and scalar

b denotes the diffusion sensitization gradient strength. Note θTQaθ gives us

the diffusion at direction θ generated by fascicle f . The values of b and Qa are

both given typically based on the expert knowledge.

1The original encoding uses a set of fascicles weights w ∈ RNf , to get Y ≈ Φ×1 D×3 w.
For a fixed Φ, w was optimized to adjust the magnitude of each fascicle dimension. We
do not require this additional vector, because these magnitudes can be incorporated into Φ
and implicitly obtained when Φ is inferred.
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2.1.1 Assumptions of our problem

Both matrices of the diffusion signal Y and dictionary D are given in this

project. Also we assume that fascicles are fixed meaning that we know which

fascicles are active for each voxel in tensor Φ that is, we know f1 goes through

voxels v1 and v2 and f2 goes through v2 and v3 (Figure 2.1a). Our goal is to

optimize Φ only on orientations to extract accurate fascicles’ structure. This

means that we want to infer which orientations are activated for f1 in each of

the voxels v1 and v2.

In a dictionary learning problem, the hidden variable is called atom. In

our case, orientation play the role of the hidden variable. Moreover, in the

representation of each fascicle segment as a diffusion ellipsoid, a node with

spatial coordinate (x, y, z) can be associated to each ellipsoid. Then the full

graph of a fiber could be constructed by connecting these nodes sequentially to

each other. Hence, we might use the terms atom, orientation, and node inter-

changeably in the upcoming chapters when we discuss our proposed method.

2.2 Applying Machine Learning for Tractog-

raphy

Poulin et al . proposed DeepTracker [77], that applies deep learning techniques,

such as Recurrent Neural Networks (RNN) and Feed-Forward Neural Network

(FFNN), to learn a model that can generate fiber streamlines directly from

DWI data. FFNN serves as a local tractography model and has similar limita-

tions and weaknesses to tractography models in learning the streamlines. On

the other hand, RNN contributes whole data sequences and learns tracts glob-

ally. As a result, RNN model is more flexible for learning crossing fascicles.

The training input data to each network is the normalized diffusion-weighted

images distributed equally based on different gradient directions. The label is

intuitively a streamline represented as a sequence S of |S| = M coordinates

Pi(xi, yi, zi) so that all consecutive pairs of points, Pi and Pi+1 with specific

direction di, are located at the same distance from each other. Therefore, the

diffusion information at each location and its corresponding di direction label
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Figure 2.2: Architecture of FFNN and RNN models. (a) The diffusion infor-
mation at data point Pi along with the stream S containing the ground-truth
associated directions di (green) are inputted to the network. The output is
the predicted directions d̂i (orange). (b) RNN architecture allows sending
information to itself in each step.

will be passed to the network during the training time. The output of the

network would be a set of predicted directions d̂i, which would be compared

against the ground-truth associated direction di (Figure 2.2 adapted from [77]).

An advantage of DeepTracker is that, unlike most of the tractography

methods that require a diffusion model on the DWI data, it does not need

any assumption on the diffusion data, which reduces user intervention. A dis-

advantage of DeepTracker is that, since it is a supervised learning method, it

is highly dependent on the expert choices of directions. Therefore, the final

structure of the connectome could only be as good as the expert generated

structure. Moreover, it only allows deterministic tractography since the net-

work output is a constant direction instead of a probabilistic distribution of

multiple directions.

Benou and Raviv in [13] proposed a deep learning architecture that was

identified to DeepTracker, called DeepTract. The only difference is that, in-

stead of using RNN for a regression task to predict continuous fiber directions,
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it instead learns a classifier that predicts probabilities of different predefined

direction classes. They defined 724 direction classes by discretizing the 3D

spatial space with angular resolution of ∼ 3.4◦. The advantage of using a

classifier instead of a regressor is that it allows probabilistic tractography by

providing the probability of each direction classes in the output. However, it

is still a supervised learning method and limited to the given expert labels.

Jörgens et al . [49] focused on predicting a single step of streamline trac-

tography using several predictors based on neural networks with the diffusion

signal as their input. They designed several experiments with variety of con-

figurations, and evaluated the performance of each setting on a dataset. They

investigated different input scenarios and post-processing steps for both regres-

sion and classification tasks. Their results show that having the previous two

directions as the input for predicting the next step of streamline tractography

outperforms the prediction performance.

Similar to previous work, Wegmayr et al . in [105] also concentrated on

predicting a single step tractography. They presented a neural network re-

gression model that sequentially takes a local block of diffusion data as well as

the last incoming direction of the fiber as input, and predict the next direction

of the fiber as output. Both of these methods are supervised learning and only

restricted to preform deterministic tractography.

In a few other works [58, 80, 104], the authors did not try to reconstruct

fiber streamlines directly from DWI data. Instead, they proposed various deep

learning methods, e.g. Convolutional Neural Networks (CNN) or U-Net CNN,

to predict the appropriate diffusion model for the DWI data, which can later

be used by a classical tractography algorithm to generate tract streamlines.

2.3 An Overview on Alternative Machine Learn-

ing Tools to Connectome Data

Previous work on connectome data represented the structural or functional

connectivity of different brain networks, with nodes being regions and arcs

being connections as binary or weighted edges in the network. Acquiring fMRI
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and dMRI data of the brain is time-consuming and expensive. This means

there are very few scans, especially when compared to the number of basic

features in each connectome. This causes the problem of high dimensional

small sample size (HDSSS) [65]. To address this problem for connectome

data, it is typical to use feature selection, data augmentation, dimensionality

reduction, and model regularization. Structural connectivity of the neurons in

a human brain changes during the life time by learning, experiencing, aging,

injury, and pathology [39]. We expect a unique structure for each individual

brain, which probably requires a highly flexible and non-linear model to learn

the connectivity of the brain over a population [60]. Furthermore, connectome

data often has noisy labels and features since the labels rely on an expert’s

subjective measurement.

This section provides a review on the machine learning methods that take

connectomes as input. Thus, it is essential to know about the general pipeline

of constructing connectome from dMRI or fMRI data.

2.3.1 Connectome Data

A natural approach to represent the connectivity network of the brain formally

is to use graphs. Each connectome can be represented as a graph G(V,E),

showing the connectivity between pairs of brain regions of interest (ROI) as

a set of nodes V , connected with a set of either directed or undirected edges

E. Then each connectome is typically encoded as an adjacency matrix, A ∈

R|V |×|V |, with either weighted or binary entries showing the active connections

between regions (i.e. which regions are connected to each other) [92]. The scale

of the number of nodes, |V |, ranges from spatially sparse landmarks with a few

nodes from large ROIs [6] to a densely distributed landmarks with many nodes

from small ROIs [4]. Most of the previous works applied template atlases to

define regions [99, 116]. However, other approaches try to apply unsupervised

learning techniques to cluster regions based on features’ similarities [69, 103],

independent component analysis (ICA) [55], uniform tile-like parcellations of

the brain, or hand-delineated ROIs. In an extreme case, a high scale |V | could

correspond to the number of voxels, which means that each individual voxel
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considered to be a region. Unlike most of the previous works, we consider

this extreme case for the connectome data since it hopefully results in a more

precise brain structure.

Diffusion modeling is a way of characterizing the three-dimensional diffu-

sion direction of water molecules as a function of spatial locations. It can

describe the magnitude, the degree of anisotropy, and the orientation of dif-

fusion anisotropy. Assigning appropriate weights to the edges between the

pairs of ROIs is usually done by fitting a diffusion model such as DTI or CSD

to each voxel, and then reconstructing the fibers via tractography algorithms

[16]. Then the degree of connectivity could be defined as the number of tracts

having the endpoints in both ROIs, or the probability that a tract connects

two ROIs [36, 74], or the average of diffusion fractional anisotropy (FA) over

all voxels containing a tract [60, 82]. We believe that using adjacency ma-

trices, used by almost all of the previous works as the encoding approach of

connectome data, has at least three major drawbacks for our learning purposes

especially in extreme cases of |V |:

1. In general, this this representation does not provide any information

about the structure of fascicles. There is no detailed information about

the fascicles in each tract connecting two ROIs. Moreover, this represen-

tation is not able to encode any information about the crossing fascicles

passing through each voxel. So the output structure of the brain con-

nectome would not be precise in a voxel.

2. It stores redundant elements in the adjacency matrix, i.e. when there is

a connection between two regions A and B, it stores the edges once from

A to B and once from B to A. In the extreme cases when we consider all

of the voxels, it would increase the usage of computational resources.

3. It is not possible to encode the exact information about the length of

the tracts between two ROIs. Given the spatial coordinates of ROIs,

we are only able to discriminate between a long tract and a short tract

by approximating the distances between each pairs of ROIs. This would

23



make mathematical calculations on the matrices difficult, which prevents

us from using the full potential of machine learning methods on this type

of data.

Section 2.1 described another encoding brain connectome method to overcome

the deficiencies of using adjacency matrices.

2.3.2 Machine Learning Tasks

Most of the machine learning tasks in this topic have focused on supervised

classification and regression problems to predict a variety of neurological or

psychological conditions as well as clinical health status of a subject. A few

studies, however, concentrated on unsupervised learning methods to cluster

patients’ connectomes into different categories (e.g. to detect Alzheimer dis-

ease (AD) against normal control connectomes), or to select best ROI choices

by optimization, or to identify important sub-networks [17]. We will discuss

these tasks later in this section.

All these goals are totally different from our purpose in this project, which

eventually is to be able to infer the connectome structure itself from dMRI

data of the brain. However, some of the methods used in these works are

relevant to our approach and so we will discuss them in the next sections.

A lot of machine learning research has dealt with class imbalance prob-

lems, choosing appropriate connectome features, learning models and kernels

on labelled data, defining appropriate regularizers, and proving validation pro-

cedures, which are different from our task. Nonetheless, some of the machine

learning models applied on connectome data such as methods of dimensionality

reduction and feature selection as well as learning strategies are still partially

relevant.

2.3.3 Feature Selection

A relevant scope to investigate in previous studies is about dimensionality

reduction and feature selection methods, since we also work with huge tensors

and matrices. From the literature, feature selection could be categorized in
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three major groups:

Filters

This type of feature selector determines the importance of input features based

on a heuristic criterion, and includes only the k most important features, for

some k. This approach is usually efficient since it can be executed in parallel

all over the dataset with respect to instances; however, it does not consider

the impact of features’ interactions when they combined together, i.e. is only

able to consider the weights of input features independently [19].

Most of the works using this feature selection technique are based on ap-

plying t-test to find the significant differences over the distribution of edge

features corresponding to two classes in order to find the most discriminative

feature set [30, 48, 60, 73, 81, 117]. Additionally, the best choices of feature

sets are the ones that are weakly correlated with others to avoid redundancy

in the selected feature set [40].

Wrappers

Wrapper models identify the most important features for a prediction model,

e.g. a classifier, as a preprocessing stage by fitting the model to a subset of

training data. They select features and validate the selected subset simulta-

neously based on a measurement, e.g. for a classifier this measurement could

be the accuracy or the error of the prediction model. One advantage of this

approach is that it takes the combined discriminative power of selected feature

sets with respect to the trained predictor into account. However, it is slower

since it requires a model to be trained multiple times on different subsets of

training data.

In general, wrappers consist of two groups of algorithms:

1. Backward sequential feature selection algorithms: Popular methods re-

cursive feature elimination (REF) [38] and discriminative subnetwork

mining (DSM) [33], start with the full set of features and remove them

iteratively during the training of the model based on their elimination

25



impact on the value of error or accuracy in a classification task, respec-

tively. Obviously, the fitting function that determines the elimination

impact of a feature could be any arbitrary model rather than a classifier.

2. Forward sequential feature selection algorithms: In contrast to the back-

ward selection methods, forward selection approaches start with an empty

feature set and add to it iteratively based on the amount of improvement

each feature produces in the value of fitting function. This value could

be anything such as the error of a regression problem or the accuracy of

a classifier. In Section 4.3, we will see that our proposed feature selection

method could be categorized under forward selection wrappers.

Embedded selectors

In this approach, the procedure of feature selection is integrated in the training

of final learned model by using regularizers in order to encourage a model that

uses sparse subset of features.

2.3.4 Dimensionality Reduction

Here, we discuss dimensionality reduction methods used for connectome data

in previous studies.

Instead of selecting the most essential features for a model in feature se-

lection methods, dimensionality reduction techniques transform input feature

space into a lower dimensional new representation space where the cardinal

directions are designed to covary with the important components of the data

[17].

Several papers applied popular dimensionality reduction methods such as

principal component analysis (PCA) [18, 60, 78, 82, 118] or kernel based ap-

proaches [64].

One strategy to reduce the dimensionality of the feature space, X ∈ RN×M ,

to the transformed space, X̂ ∈ RN×M̂ , is through non-negative matrix factor-

ization (NMF) [54], where M̂ is the number of new features. In this method,

X̂ would be a weighting matrix of a basis representation, called dictionary,

26



(a)

(b)

Figure 2.3: (a): Tucker decomposition (b): Sparse decomposition [21]

which is a high level non-negative feature transformation like D ∈ RM̂×M that

has to be learned along with X̂. Then, decomposing original features into the

new feature space is possible by X = X̂D+ ε through minimizing the residual

error matrix ε. Non-negativity of the basis set D in this linear model enforces

sparsity in the output weights X̂. Therefore, selected features would be among

the active entries in X̂.

Tucker decomposition and sparse decomposition

This project builds up a model on top of a generalized version of a matrix

decomposition method called Tucker decomposition [98]. In Tucker decompo-

sition, a 3D tensor like X ∈ RI1×I2×I3 is approximated by the product of a core

tensor G ∈ RR1×R2×R3 and factor matrices An ∈ RIn×Rn for n = 1, 2, 3, ... :

X ≈ G×1 A1 ×2 A2 ×3 A3 (2.1)

If G considered to be a very small dense tensor comparing to X, meaning that

Rn � In, then the new representation G guarantees data compression (Figure

2.3a adapted from [21]). Otherwise, if the core tensor G is a large sparse tensor,

the decomposition is called sparse decomposition and data compression would

still be achieved as long as G is sufficiently sparse (Figure 2.3b adapted from

[21]).

Dimensionality reduction in general causes information loss. This lost in-

formation is often useful for visualizing discriminative features, particularly

for connectome data where the anatomical locations of nodes or edges are in-

formative for visualizing the learned model. Section 5.4 shows how we tackled

this challenge in this project.
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2.3.5 Learning Models

One of the barely-explored branches of machine learning applications on con-

nectome data is structured prediction, where the output of the model is a

structured object rather than categorical or continuous variables of a classifier

or a regressor, respectively. This trend of research is the one most relative to

our ultimate goal, which is to learn the structural connectivity of the human

brain from the dMRI data without using any prior tractography knowledge.

Currently, many researchers are applying a wide variety of machine learn-

ing methods to connectome data using supervised methods including linear

predictions, kernel based models, probabilistic models, ensembles, and stacked

models such as deep neural networks [17]. Most of these works are irrelevant

to our project either in terms of their purposes or their methodologies. They

tried to train prediction models for classification or regression purposes from

labeled data to diagnose disorders while our goal is to extract a brain con-

nectome structure from unlabelled data. Therefore, we skip discussing these

supervised learning approaches here.

A few works, however, applied unsupervised learning for different purposes

such as clustering connectomes, identifying the discriminative subnetworks of

a set of connectomes (e.g., identifying the discriminative subnetworks to differ-

entiate between healthy control (HC) connectomes and post-traumatic stress

disorders (PTSD) in a dataset [57, 109]), or to learn the strongly connected

subnetwork structures in a single connectome. While some of these works

tried to predict a specific structure in the connectome data, it is beneficial to

overview unsupervised approaches.

Unsupervised learning methods

A subset of papers applied variations of dictionary learning methods for differ-

ent purposes – many to predict subnetwork structures within or between con-

nectomes. Li et al. applied a variation of general dictionary learning method,

called Fisher discrimination dictionary learning (FDDL) [57, 109], in which

the dictionary D ∈ RM×K , with K Atoms (i.e. the basic elements to build the
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dictionary) and M features, as well as the sparse encoded new representation

of data W ∈ RK×N , with N samples, would be learned through:

{D∗,W ∗} = argmin
D,W

L(X;D,W ) +R(W ) (2.2)

They applied the regularizer R(W ) to learn a sparse W . The loss function L, a

L2-norm, also encourages sub-dictionaries in D to include more discriminative

and class specific information. Using this method, they learned two connec-

tome subnetworks defined by columns of dictionary D, one for the PTSD and

the other for HC,and then used these to distinguish PTSD versus HC con-

nectomes. These sub-dictionaries can easily visualized since they contain edge

information in order to demonstrate which parts of the brain are involved.

Yoldemir et al. [111, 112] proposed a method called ‘’stable overlapping repli-

cator dynamics” (SORD) designed to produce the important subnetworks with

strong connections within an individual connectome. By optimizing the fol-

lowing equation, they successfully determined the strong connections via node

weights, w:

w∗ = argmax
w

wTAw

s.t. ||w||1 = 1 and size(w) ≥ 1,
(2.3)

where A ∈ R|V |×|V | is the adjacency matrix of the connectome. They decided

about the strength of a connection by iteratively adding a new node and new

edges to the A each time and optimizing the weights again. Thus, at each

iteration, a subnetwork with strongest connections could be identified.

Given the high dimensionality of the connectome data, the complexity of

the brain structure and its changes across time and among the population for

different brain subjects, unsupervised learning methods, especially dictionary

learning techniques, could provide appropriate ways to explore this area.
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Chapter 3

Formalizing the Tractography
Objective for Extracting Brain
Connectomes

This chapter assembles the theoretical framework of our data-driven approach.

Section 3.1 introduces an unconstrained optimization objective function by

applying ENCODE and a simple maximum likelihood formulation. To form a

constrained objective function with a unique solution to ensure an identifiable

brain structure (Section 3.2), we design a group regularizer to capture the

biological properties of a fascicle, i.e. continuity and smoothness of the fibers.

We prove that the proposed objective function is convex and has a unique

solution.

The original work on ENCODE assumed the tensor Φ was obtained from

a tractography algorithm. In this chapter, we instead use this encoding to

design an objective to infer Φ directly from dMRI data.

3.1 Unconstrained Objective Function

In this section, we discuss the general maximum likelihood formulation for

multivariate distribution matrices, and then move forward by defining an un-

constrained tractography objective function to reconstruct diffusion informa-

tion.
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3.1.1 Maximum Likelihood Formulation

We first consider a maximum likelihood formulation for the reconstruction loss,

paralleling the loss functions considered for non-matrix data. This approach

involves making distributional assumptions on the matrix Y; we begin with the

standard normal, though this could be generalized to other distributions—as

is commonly done for generalized linear models—without eschewing convexity.

Using the matrix normal distribution [71], we can formulate the loss between

Y and the factorization by parameterizing the matrix normal using the factor-

ized variables. Assume Y ∼ MN (M,U,V) where MN is the Multivariate

Normal, M is the mean matrix, U is the row variance, and V is the column

variance. As a common simplification, we will take U = σ2
uI and V = σ2

vI.

Then the pdf of Y is

P (Y ) =
exp

(−1
2

tr(V−1(Y −M)>U−1(Y −M))
)

(2π)NθNv/2|V|Nθ/2|U|Nv/2

=
exp

(−1
2
σvσutr((Y −M)>(Y −M))

)
(2π)NθNv/2NvNθσ

Nθ
v σNvu

because |U| = |σ2
uI| = Nvσ

2
u. This type of modeling approach assumes zero-

mean, independent noise across entries in Y, though with potentially different

variance across voxels and across directions, which is a common assumption

[12]. Taking the negative of the log likelihood, and dropping constants that

do not affect the minimum, we obtain the optimization

argmin
M

tr((Y −M)>(Y −M))

= argmin
M

‖Y −M‖2
F ,

where ‖ · ‖F is the Frobenius norm that sums up the squared entries of the

given matrix. tr or the trace of a square matrix is defined to be the sum of

elements on the main diagonal of the matrix.

3.1.2 Unconstrained Tractography Objective Function

In order to define an unconstrained objective function, first consider the prob-

lem of estimating tensor Φ to best predict Y, for a given D ∈ RNθ×Na . A
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standard maximum likelihood approach leads to the following reconstruction

objective

Φ̂ = argmin
Φ∈RNa×Nv×Nf

‖Y −Φ×1 D×3 1‖2
F . (3.1)

This objective prefers Φ that can accurately recreate the diffusion infor-

mation in Y. This optimization, however, is highly under-constrained, with

many possible (dense) solutions.

In particular, this objective alone does not enforce a biologically plausible

fascicle structure in Φ. The tensor Φ should be highly sparse, because each

voxel is expected to have only a small number of fascicles and orientations [76].

For example, for the Arcuate Fasciculus with Na ≈ 120000 and Nf ≈ 1000, we

expect at most an activation level in Φ of Nv×10×10/(Na×Nv×Nf ) ≈ 1e−6,

using a conservative upper bound of 10 fascicles and 10 orientations on average

per voxel. Additionally, the fascicles should be contiguous and should not

sharply change orientation.

3.2 Constrained Objective Function

We design a group regularizer to encode these properties: sparsity, continu-

ity, and smoothness of the fascicle structure in Φ. Anatomical consistency

of fascicles is enforced locally within groups of neighboring voxels and orien-

tations. Overlapping groups are used to encourage this local consistency to

result in global consistency. Group regularization prefers to zero all coefficients

for a group. This zeroing has the effect of clustering non-zero coefficients, the

entries of Φ, in local regions within the tensor, ensuring similar fascicles and

orientations are active based on spatial proximity. Further, overlapping groups

encourages neighbouring groups to either both be active or both be inactive

for a fascicle and orientation. This promotes contiguous fascicles and smooth

direction changes. These groups are depicted in Figure 2.1B, with groups de-

fined separately for each fascicle (slice). We describe the group regularizer

more formally in the remainder of this section (Figure 3.1).
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Figure 3.1: The intuition behind the group regularizer only for groups of voxels
Gi. Each cell correspond to a voxel, where the blue active cells with value 1
show the voxels that share the same fascicle. G2 overlaps the non-zero values
in G1 and prefers to become non-zero. G3 overlaps the zero values in G1 and
prefers to stay zero in all entries.

3.2.1 Group regularizer

Assume we have groups of voxels GV ∈ V based on spatial coordinates and

groups of orientations GA ∈ A based on orientation similarity. Note V is the

set of groups of voxels and A is the set of groups of orientations. For example,

each GV could be a set of 27 voxels in a local cube; these cubes of voxels

can overlap between groups, such as {(1, 1, 1), (1, 1, 2), . . . , (3, 3, 3)} ∈ V and

{(2, 1, 1), (2, 1, 2), . . . , (4, 3, 3)} ∈ V . Each GA can be defined by selecting one

atom (one orientation) and including all orientations in the group that have a

small angle to that central atom, i.e., an angle that is below a chosen threshold

(Figure 3.2).

The key intuition given by Figure 2.1B is that local blocks are defined for

each fascicle (slice), in terms of all pairwise combinations of spatially close

voxels GV and similar orientations GA. Consider one (orientation, voxel, fas-

cicle) triple (a, v, f). Assume a voxel has a non-zero coefficient for a fascicle,

i.e. Φa,v,f is not zero for some a. A nearby voxel (here, a voxel within the

same group GV) is likely to have the same fascicle with a similar orientation. A
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Figure 3.2: The way the groups of orientations are chosen.

distant voxel, on the other hand, is highly unlikely to share the same fascicle.

The goal is to encourage as many pairwise groups (GV ,GA) to be inactive—

have all zero coefficients for a fascicle—and concentrate activation in Φ within

groups. Note that the group regularizer is with respect to all GV ∈ V and all

GA ∈ A.

By trying to force as many blocks to zero as possible, the optimization will

prefer to select a non-zero coefficient in the same block containing (a, v, f).

Therefore, to incur least penalty, the neighboring voxel should pick such a

fascicle and orientation, because it will simply be adding another non-zero

entry to a block that already has non-zero entries. If, on the other hand, it tried

to select a different fascicle or orientation outside of GA that caused a different

block to go from being all zero, to suddenly having a non-zero coefficient,

it would incur a sharper penalty. The group regularizer, therefore, tries to

ensure that non-zero coefficients are clustered in blocks, which we design to

reflect the desired spatial properties. Of course, this choice could cause a

significant decrease in reconstruction error of Y, if so, this would override the

penalty incurred from the regularization, which means the optimization can

still choose to violate the group regularizer, because the group regularization

encodes preferences, rather than hard constraints.

One natural question is how to select these groups. A beneficial property
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of encoding this structure as preferences in the form of regularizers rather than

hard constraints, is that the objective is more robust to misspecification. For

this reason, we select a simple approach and cover the tensor space with a

large number of local groups, without carefully designing these groups using

expert knowledge. Even if the groups are not defined optimally—for example,

there are too small or too large—the objective should still be able to find a

balance between reconstruction error and the spatial preferences encoded in

the block regularizer.

We can enforce this group sparsity by adding a regularizer to Equation (3.1).

Let xGA,v,f ∈ R be non-zero whenever the fascicle f is active for voxel v, for

any orientation a ∈ GA. Let xGA,GV ,f be the vector composed of these iden-

tifiers for each v ∈ GV , where we have a different vector xGA,GV ,f defined for

each pair of GV ,GA. This vector corresponds to a block of neighboring voxels

GV , and we want one of two cases. Either we want the entire vector xGA,GV ,f

to be zero, meaning the fascicle is not active in any of the voxels v ∈ GV for

the orientations a ∈ GA. Or, we want more than one non-zero entry in this

vector, meaning multiple nearby voxels share the same fascicle. This second

criterion is largely enforced by encouraging as many blocks to be zero as pos-

sible, because each voxel will prefer to activate fascicles and orientations in

already active pairs (GV ,GA). As with many sparse approaches, we use an

`1-regularizer to set entire blocks to zero. To encode a preference to set entire

blocks to zero, therefore, we use

∑
GV∈V

∑
GA∈A

‖xGA,GV ,f‖2, (3.2)

where the outer two sums can be seen as an `1 norm across the vector of norm

values containing ‖xGA,GV ,f‖2 for every GV ,GA. ‖.‖2 is the `2-norm, which is

the square root of the sum of the squared vector values.

A canonical example of a subset selection approach that uses `1 is Lasso,

which uses an `1 norm on the parameter vector for feature selection. The `1

prefers entries in the parameter vector to be set to zero, resulting in feature

selection.
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For the block regularizer, in particular, as has been previously done for

block sparsity [93], we can use an `1 across the blocks xGA,GV ,f∑
f∈F

∑
GV∈V

∑
GA∈A

‖xGA,GV ,f‖2, (3.3)

which is just (3.2), with a summation over F . The outer sums can be seen

as an `1 norm across the vector of norm values containing ‖xGA,GV ,f‖2. This

encourages ‖xGA,GV ,f‖2 = 0, which is only possible if xGA,GV ,f = 0.

Finally, we need to define a continuous indicator variable xGA,GV ,f to sim-

plify the optimization. A natural choice is to use an indicator function, that

is 1 if a fascicle is active in a voxel for the given orientations, and 0 otherwise.

This choice, however, would result in a discontinuous regularizer, which would

complicate the optimization. Instead, we propose the following continuous,

not just {0, 1}, indicator

xGA,GV ,f = [‖ΦGA,v1,f‖1, . . . , ‖ΦGA,vn,f‖1] ∈ R|GV |×1 for each vi ∈ GV (3.4)

3.2.2 The tractography objective

For the given fascicle f and voxel in GV , we determine if that fascicle f is active,

for an orientation in GA, by summing the absolute value of the coefficients for

that voxel and fascicle across the orientations in GA, i.e., ‖ΦGA,v,f‖1. Note that

though this inner sum ‖ΦGA,v,f‖1 uses an `1 norm, the goal is to identify if a

fascicle is active for the voxel for a set of orientations, rather than to encourage

sparsity. An entry in xGA,GV ,f is 0 if fascicle f is not active for any values from

(GV ,GA). Otherwise, the entry is proportional to the sum of the absolute

coefficient values for that fascicle for orientations in GA. Our proposed group

regularizer is

R(Φ) =
∑
f∈F

∑
GV∈V

∑
GA∈A

‖xGA,GV ,f‖2 =
∑
f∈F

∑
GV∈V

∑
GA∈A

√√√√∑
v∈GV

(∑
a∈GA

|Φa,v,f |

)2

,

(3.5)
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which, combined with equation (3.1), gives our proposed objective. Given the

observed Y, and the dictionary D, find the Φ s.t.

argmin
Φ∈RNa×Nv×Nf

‖Y −Φ×1 D×3 1‖2
F + λR(Φ) (3.6)

for regularization weight λ > 0. This objective balances between reconstruct-

ing diffusion data and constraints on the structure in Φ. One intuitive inter-

pretation of this formulation is that, while the first term entails proper fit to

the measured diffusion data, the second constrains the structure of the final

model to produce global fascicle shapes consistent with anatomical knowledge.

The expectation is to reconstruct continuous and smooth fascicles. Given this

objective, we can now consider how to obtain the optimal Φ. Crucially, this

objective is convex in Φ and has a unique solution, which we show in Theo-

rem 1 in Section 3.3. Uniqueness ensures identifiable tractography solutions

and convexity facilitates obtaining optimal solutions of the objective function.

In Chapter 5, we examine whether this optimal solution is correct or not.

3.3 Convexity of the Tractography Objective

An important property of this objective is that it is convex and has a unique

solution for Φ (up to permutation), as we show in Theorem 1. The convexity

of the objective ensures that gradient descent can obtain optimal solutions,

which is critical for both improving the objective and ensuring that accurate

tractography solutions are extracted. The uniqueness is important, because

it means the solution is identifiable. For tractography, we would like to iden-

tify the fascicle structure for an individual; for an objective with multiple

equivalent solutions, it is not clear which solution to select, and reflects an

impreciseness in the objective. Any solution for Φ will always be equivalent,

up to permutations of the fascicles (frontal slices, see Figure 2.1A - left), but

should not change which fascicles are shared by which voxels.

Theorem 1. The objective in (3.6) is convex in Φ. Further, if the defined

blocks A and V cover all possible orientations and voxels in the sense that every
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v is included in at least one group GV and every orientation a is included in

at least one group GA, then (3.6) has a unique solution (up to permutation).

Proof. Because the sum of convex functions is convex, to show that (3.6) is

convex, we simply need to show that each term in the objective is convex.

The first term ‖Y −Φ×1 D×3 1‖2
F is convex in Φ because ‖Y −M‖2

F is

convex in M, and M = Φ ×1 D ×3 1 is an affine transformation of Φ. The

composition of an affine function and a convex function is convex.

The second term is the sum of several functions of Φ, which only con-

sider subparts of Φ. If each of these functions in the group regularizer is

convex, then the regularizer is composed of the sum of convex functions

and so is itself convex. Let RGA,GV ,f (Φ) = ‖xGA,GV ,f‖2. This function only

changes when elements in Φ related to GA,GV , f change, and is otherwise

constant. However, since a constant function is convex, RGA,GV ,f is convex

in the entries of Φ that are ignored. Let ΦGA,GV ,f be the entries in Φ that

give xGA,GV ,f = [‖ΦGA,v1,f‖1, . . . , ‖ΦGA,vn,f‖1] for vi ∈ GV . We can consider

‖xGA,GV ,f‖2 as a vector composition, of g : Rk → Rn and h : Rn → R,

where g(ΦGA,GV ,f ) = xGA,GV ,f and h(x) = ‖x‖2. The resulting composition

is h(g(ΦGA,GV ,f )) = ‖xGA,GV ,f‖2. Each gi of the vector-valued function g is

convex in ΦGA,GV ,f because it applies an `1 norm—which is convex—on a

subset of ΦGA,GV ,f . Further, h is convex in x, and non-decreasing in each

xi = gi(ΦGA,GV ,f ), because h is a norm. Therefore, the composition h(g(·)) is

convex. Therefore, because RGA,GV ,f is convex w.r.t. ΦGA,GV ,f and constant

w.r.t. all other values in Φ, we know that RGA,GV ,f is convex in Φ. Since

R(Φ) =
∑

f∈F
∑
GV∈V

∑
GA∈ARGA,GV ,f (Φ) is a sum of convex function, it is

convex.

To show uniqueness, we need to show that the regularizer is strictly convex.

Because the sum of a strictly convex and convex function is again strictly

convex, the resulting objective is itself strictly convex and so must have a

unique minimum. Each component of the regularizer only considers a subset

of Φ; however, as long as each possible entry in Φ is considered at least once in

one of these blocks, then that component of Φ has a strictly convex regularizer
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on it in the objective, because norms are strictly convex.

Unfortunately, this objective has an extremely high-dimensional Φ, where

for a non-negligible λ, will also be extremely sparse. To efficiently solve for Φ,

we propose a novel greedy algorithm, combined with subgradient descent, to

solve for Φ. We provide the details for this algorithm in the next chapter.
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Chapter 4

Optimizing the Tractography
Objective for Extracting Brain
Connectomes

In this chapter, we discuss the requirements of having an efficient optimization

of the objective. Section 4.1 discusses the attributes of an efficient algorithm

to optimize the tractography objective. Then Section 4.2 motivates the need

for designing a new screening algorithm for pruning orientations by estab-

lishing the shortcomings of a standard greedy algorithm, called Orthogonal

Matching Pursuit (OMP). After that, Section 4.3 proposes a new forward se-

lection algorithm, called GreedyOrientation, that selects a set of orientations

for each voxel greedily before optimisation. We dig into more details about

GreedyOrientation algorithm by providing an efficient mechanism to compute

orientations for each voxel. Then we highlight the approximation guarantees

for the proposed screening strategy.

We finish off this chapter by jumping into the optimization algorithm, in

which we discuss sparse tensor factorization methods and their corresponding

issues. Then we wrap up (Section 4.4) by explaining the details of computing

subgradient of the objective as well as the pseudo-code of the optimization

algorithm.
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Figure 4.1: For each voxel, shrinking Φ by static screening

4.1 An Efficient Algorithm for the Tractogra-

phy Objective

Standard gradient descent algorithms can be used directly on (3.6) to find the

optimal solution. Unfortunately, the number of parameters in the optimization

is very large: Nv×Nf ×Na is billions even for just one tract. Fortunately, the

number of active coefficients at the end of the optimization is much smaller,

only on the order of Nv, because there are only handful of fascicles and ori-

entations per voxel. Even when initializing Φ to zero, the gradient descent

optimization might make all of Φ active during the optimization. Therefore,

screening coefficients before running gradient descent is crucial.

Screening algorithms have been developed to prune entries for sparse prob-

lems [15, 107]. These generic methods, however, still have too many active

coefficients to make this optimization tractable for wide application, as we

have verified empirically.

Instead, we can design a screening algorithm specialized to our objective.

The key is to define a suitable screening methodology, that does not introduce

much approximation error into our objective. Without any screening, because

our objective is convex, a simple gradient descent approach can obtain the

global solution. Therefore, the main source of approximation error arise from

the static screening (Figure 4.1).
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Because each voxel can have a small number of fascicles, it similarly can

only have a small number of orientations. Filtering fascicles a priori is diffi-

cult, because they contribute to a macrostructure and so need to be globally

consistent. Plausible orientations for a voxel, however, can be defined locally

and so are a natural dimension to screen before the optimization.

Orientations can largely be selected independently for each voxel, based

solely on diffusion information. We can infer the likely orientations of fasci-

cles in a voxel that could plausibly explain the diffusion information, without

knowing precisely which fascicles are in that voxel. If we can select a plausi-

ble set of orientations for each voxel before optimizing the objective, we can

significantly reduce the number of parameters. For example, 20 orientations

is a large superset, but would reduce the number of parameters by a factor of

6,000 because the whole Na = 120, 000.

4.2 A Standard Greedy Algorithm for Screen-

ing

One strategy is to generate these orientations greedily, similar to the OMP

(Orthogonal Matching Pursuit) method. This differs from most screening ap-

proaches, which usually iteratively prune starting from the full set. Generating

orientations starting from an empty set, rather than pruning, is a more natural

strategy for such an extremely sparse solution, which uses only 0.017% of the

items, based on our results. Consider how OMP might generate orientations.

For a given voxel v, the next best orientation is greedily selected based on how

much it reduces the residual error for the diffusion. On the first step, it adds

the single best orientation for predicting the Nθ = 96 dimensional diffusion

vector for voxel v. It generates up to a maximum of k orientations greedily

and then stops. Then only coefficients for this set of orientations will be con-

sidered for voxel v in the optimization of the tractography objective. This

procedure is executed for each voxel, and is very fast.

42



Figure 4.2: Left: OMP selects dissimilar orientations that maximize the gain.
Right: GreedyOrientation selects similar orientations that maximize the gain.

4.2.1 Orthogonal Matching Pursuit

As shown in Algorithm 2, we define a criterion indicating the utility of an ori-

entation (e.g., residual error for the voxel diffusion) and the greedy algorithm

iteratively selects the orientation that most improves this criterion. The algo-

rithm can generate a maximum of k such orientations, which for this project

is k = 5 since there are few orientations per voxel.

Algorithm 1 Initialize Φ with optimized fascicle orientations

1: Φ new← 0Na×Nv×Nf
2: // Get orientations for each voxel
3: for v = 1, . . . , Nv do
4: Φ new(:, v, :)← OMP(D,Φ(:, v, :),y(:, v))

5: Output: Φ new

Once the orientations are screened per voxel, the fascicle structure can be

learned globally according to the block regularizer, but only enabling a reduced

set of coefficients to become active.

4.2.2 Deficiencies of OMP for this problem

Though a greedy strategy for generating orientations is promising, the criterion

used by OMP is not suitable for this problem. Using residual errors for the

criterion prefers orthogonal or dissimilar orientations, to provide a basis with
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Algorithm 2 select k orientations for each voxel

1: procedure OMP(D,Φ,y)
2: s← ∅
3: while not converge do
4: r = y −D(:, s)Φ(s, :)1 . Residue. r = y if s = ∅
5: a← argmaxa/∈s

|r·D(:,a)|
||D(:,a)||2 . Find the most correlated entry in the

dictionary
6: Φ(a, :)← rand(0, 0.0001) . Randomly initialize the coefficients
7: s← s

⋃
a . Add to collection

8: Φ(s, :)← argmaxΦ(s,:) ||y −D(:, s)Φ(s, :)1||22
9: Output: Φ(:, v, :)

which to easily reconstruct the signal (Figure 4.2). The orientations in voxels,

however, are unlikely to be orthogonal. Instead, it is more likely that there

are multiple fascicles with similar orientations in a voxel, with some fascicles

overlapping in different—but not necessarily orthogonal—directions. We must

modify the selection criterion to select a number of similar orientations to

reconstruct the diffusion information in a voxel.

4.3 Proposed Greedy Strategy for Screening

To modify the selection criterion, we rely on the more general algorithmic

framework for subselecting items from a set, of which OMP is a special case.

We will use a simple modification on Forward Selection for feature selection,

which is very similar to OMP, and so will draw on the theoretical results for

Forward Selection. Our goal is to define a set-function criterion g(S), where S

is a set of orientations that reflects the utility of an orientation for a voxel and

for which simple, efficient greedy algorithms are effective. We need to define

a criterion that evaluates the quality of subsets S from the full set of items

S. In our setting, S is the full set of orientations and S a subset of those

orientations. We want to find S ⊂ S with |S| ≤ k such that ḡ(S) is maximal.

If we can guarantee this criterion ḡ : P(S) → R is (approximately) sub-

modular1, then we can rely on a wealth of literature showing the effectiveness

1A submodular function takes a set, informally, has the property that if we add a single
element to its input, the difference in the incremental value of the function decreases as the
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of greedy algorithms for picking S to maximize ḡ.

We use a simple modification on the criterion for OMP: the g(S) = the

squared multiple correlation [29]. This g(S) corresponds to correlation coeffi-

cient for the given set of atoms S. The goal in Forward Selection is to maximize

g(S) for a given subset of orientations S such that |S| ≤ k for some maximum

number of orientations k. Das and Kempe [29] show both that OMP and For-

ward Selection are using a greedy algorithm on an approximately submodular

objective and, further, that the greedy algorithm for both Forward Selection

and OMP is effective, both theoretically and empirically. We propose a simple

yet effective modification, and define the GreedyOrientation criterion as

ḡ(S)
def
= g(S) +

∑
s∈S

g({s})

This objective balances between preferring a set S with high multiple cor-

relation, and ensuring that each orientation itself is useful. Each orientation

likely explains a large proportion of the diffusion for a voxel. This objective

will likely prefer to pick two orientations that are similar and that recreate the

diffusion in the voxel well. This contrasts two orthogonal orientations, that

can be linearly combined to produce those two orientation but that themselves

do not well explain the diffusion information (Figure 4.2). This modification

is conceptually simple, yet now has a very different meaning. The simplicity

of the modification is also useful for the optimization, since a linear sum of

submodular functions is itself again submodular and so we do not lose any of

the submodularity properties.

The key fact property is a submodularity ratio, γ, that reflects the magni-

tude of the approximation error. Because we build on the Forward Selection

criterion, we will have similar theoretical guarantees. We provide approxi-

mation guarantees for this submodular maximization in Section 4.3.2, using

results for the multiple correlation [29].

size of the input set increases.
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4.3.1 Derivation of Forward Selection for Orientations

To derive an efficient forward selection for the orientations, we need to make

each greedy step efficient. For a fixed voxel v, the greedy algorithm selects the

atom a that most increases ḡ:

max
a/∈S

ḡ(S ∪ {a}) = max
a/∈S

g(S ∪ {a}) +
∑
s∈S

g({s}) + g({a}).

Note, we can compute g({a}) upfront for each a and store it before doing the

full greedy optimization. For the greedy optimization, the most naive solution

would be to compute the full regression solution for each new subset S∪{a}, to

obtain g(S ∪ {a}). Unfortunately, this brute-force approach is too expensive.

Because of the structure of ḡ, however, we can take advantage of the solution

on the previous step, to compute the solution on this step.

We provide the recursive update mechanism in Lemma 1. Let y ∈ RNθ

be the diffusion information for one voxel. For given subset of orientations S

with |S| = k, let DS ∈ RNθ×k be the subset of columns in D corresponding to

orientations in S. Using similar subscript notation, with a /∈ S being a new

atom not yet chosen in S, let

CS = D>SDS

bS = D>Sy

Ca = D>a Da

ba = D>a y

cS,a = D>SDa

where Da = D{a}. The squared multiple correlation is

g(S) = b>SC−1

S bS

and g({a}) = C−1

a b
2
a. We provide the following lemma to obtain an efficient

mechanism to compute g(S ∪ {a}) for each a. These recursive updates are

similar to the updates given by [85], for OMP.

46



Lemma 1. Given C−1

S ∈ Rk×k, bS and g(S), for

c = C−1

S cS,a

ν = (Ca − c>S,ac)−1

we get that

g(S ∪ {a}) = g(S) + ν(b>S c− ba)2

Further

ḡ(S ∪ {a}) = ḡ(S) + ν(b>S c− ba)2 + C−1

a b
2
a

Proof. We know that g(S ∪ {a}) = b>S∪{a}C
−1

S∪{a}bS∪{a}. We need to compute

the inverse of CS∪{a} using the inverse of CS. We use the general block matrix

inversion formula

C−1

S∪{a} =

[
CS cS,a
c>S,a Ca

]−1

=

[
C−1

S + νC−1

S cS,ac
>
S,aC

−1

S −νC−1

S cS,a
−νc>S,aC

−1

S ν

]
Therefore,

g(S ∪ {a}) = b>S∪{a}C
−1

S∪{a}bS∪{a}

= b>SC−1

S bS + νb>SC−1

S cS,ac
>
S,aC

−1

S bS − 2νb>SC−1

S cS,aba + νb2
a

= g(S) + ν(b>S c)2 − 2νbab
>
S c + νb2

a

= g(S) + ν(b>S c− νba)

Using this, we can see that

ḡ(S ∪ {a}) = g(S ∪ {a}) +
∑

s∈S∪{a}

g({s})

= g(S) + ν(b>S c− νba)2 +
∑
s∈S

g({s}) + g({a})

= ḡ(S) + ν(b>S c− νba)2 + g({a})

completing the proof, because g({a}) = C−1

a b
2
a.

Given this result, the computation of g(S ∪ {a}) for one atom a costs

O(kNθ + k2) = O(kNθ), since Nθ > k. To compute g for each a, therefore,

costs a total of O(kNθNa). We summarize the greedy algorithm for computing

the directions for a voxel in Algorithm 3. A new point a is added to greedily

maximize ḡ(S), until S has k orientations.
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Algorithm 3 GreedyOrientation: greedy algorithm to select directions for
each voxel

1: Input: dictionary D, maximum number of directions k, diffusion signal y
2: Output: set of selected orientations S
3: // Compute g({a}) for each a, g = diag(D>D)−1(D>y)2

4: c← D>D
5: b← D>y
6: g← 0
7: amax ← −1, gmax ← 0
8: for a = 1, . . . , Na do . O(NθNa)
9: g(a)← (b(a))2/c(a, a)

10: if gmax < g(a) then
11: gmax ← g(a), amax ← a

12: S ← amax

13: C−1 ← 1/c(amax, amax)
14: for i = 2, . . . , k do
15: // Compute g(S ∪ {a}) for every a
16: gS, ν ← ComputeGain(S,C−1, c,b) . O(kNθ)
17: ḡ← gS + g . ḡ ∈ RNa

18: amax ← argmaxa/∈S ḡ(a) . O(Na)

19: C−1 ←
[

C−1 + ν(amax)C−1c(S, amax)c(S, amax)>C−1 −ν(amax)C−1c(S, amax)
−ν(amax)c>S,aC

−1

S ν(amax)

]
20: S ← S ∪ {amax}
21: Output: S

Algorithm 4 ComputeGain(S,C−1, c,b)

1: for a = 1, . . . , Na do
2: c̃← C−1c(S, a)
3: ν(a)← (c(a, a)− c(S, a)>c̃)−1

4: gS(a)← ν(a)(b(S)>c̃− b(a))2

5: Output: gS, ν
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4.3.2 Theoretical Guarantees of the Greedy Screening
Strategy

We can obtain approximation guarantees from the fact that the approximately

submodular function for GreedyOrientation has at least as good a submod-

ularity ratio as the typical forward selection function g. The submodularity

ratio is defined as

γ(g)
def
= min

(S,L)∈S, S∩L=∅

∑
y∈S(g(L ∪ {y})− g(L))

g(L ∪ S)− g(L)
(4.1)

for non-negative functions g : P(S) → R+. According to the definition, a

submodular function has the property that the difference in the incremental

value of the function that a single element makes when added to an input set,

decreases as the size of the input set increases. Therefore, if g is a monotone

function and γ(g) ≥ 1, then g is submodular. Otherwise, for γ(g) < 1, the

function is not submodular and is instead called approximately submodular

for γ(g) close to 1, i.e. 1 − ε < γ(g) < 1. The closer γ(g) is to 1, the better

the approximation guarantees of greedy algorithms on these functions, with

the best approximation guarantees for γ(g) ≥ 1.

In the following theorem, we show that our GreedyOrientation function ḡ

has a submodularity ratio that is no worse than ForwardSelection. The proof

highlights that in fact the ratio is likely strictly better.

Theorem 2. If g : P(S)→ R+ is a monotone function, and

ḡ(S)
def
= g(S) +

∑
s∈S

g({s})

then

γ(ḡ) ≥ γ(g).

Proof. For clarity, we introduce notation for the numerator and denominator

of the submodularity ratio:

γN(g, L, S)
def
=
∑
y∈S

(g(L ∪ {y})− g(L))

γD(g, L, S)
def
= g(L ∪ S)− g(L)
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Notice that

ḡ(L) = g(L) +
∑
x∈L

g({x})

ḡ(L ∪ {y}) = g(L) +
∑
x∈L

g({x}) + g({y})

ḡ(L ∪ S) = g(L ∪ S) +
∑
x∈L

g({x}) +
∑
y∈S

g({y}), where S ∩ L = ∅

giving

γN(ḡ, L, S) =
∑
y∈S

(ḡ(L ∪ {y})− ḡ(L))

=
∑
y∈S

(g(L ∪ {y}) + g({y})− g(L))

= γN(g, L, S) +
∑
y∈S

g({y})

and

γD(ḡ, L, S) = ḡ(L ∪ S)− ḡ(L)

= g(L ∪ S) +
∑
y∈S

g({y})− g(L)

= γD(g, L, S) +
∑
y∈S

g({y}).

If we let aS
def
=
∑

y∈S g({y}) ≥ 0, then we get that

γ(ḡ) = min
S,L∈S,S∩L=∅

γN(ḡ, L, S)

γD(ḡ, L, S)

= min
S,L∈S,S∩L=∅

γN(g, L, S) + aS
γD(g, L, S) + aS

≥ min
S,L∈S,S∩L=∅

γN(g, L, S)

γD(g, L, S)
. because aS > 0 and γD ≥ γN

= γ(g)

completing the proof.

The following result now easily follows, from Theorem 4.2 [29], for approx-

imately submodular functions.
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Corollary 1. The set of orientations S chosen by GreedyOrientation satisfies

ḡ(S) ≥
(
1− e−γ(ḡ)

)
OPT

where OPT = ḡ(S∗) for the optimal selection S∗ such that |S∗| = k.

4.4 Sparse Tensor Factorization Algorithm

In this section, we develop an algorithm to optimize our extremely sparse,

high-dimensional objective. As mentioned earlier in this chapter, a common

strategy for sparse optimization problems is to first perform screening on the

coefficients — which corresponds to all of Φ in this setting — to avoid mod-

ifying coefficients that will remain zero. A number of generalized screening

approaches have been developed for general sparse problems, either with a

static screening before the start of the optimization [75] or with a dynamic

screening that adjust the set of feasible coefficients during the optimization

[15]. We proposed a specialized static screening, where we first select a set of

feasible orientations for each voxel. This static screening on the entries in Φ

significantly reduces the cost per iteration of gradient descent and reduces the

number of iterations. This significantly speeds up the optimization, without

incurring much approximation error, because of the approximation guarantees

of the static screening approach. We first highlight why standard matrix and

tensor factorization algorithms are not suitable for this problem, and then

derive our specialized solver.

4.4.1 Issues with Using Standard Matrix or Tensor Fac-
torization Algorithms

A natural approach to consider to obtain Φ is tensor factorization. Our goal

is to factorize a matrix Y in a tensor Φ, for a given dictionary D, such that

Y = Φ ×1 D ×3 1. Much of the work in tensor factorization, however, has

focused on decomposing tensors into a set of matrices, with a small core tensor

with the Tucker decomposition focused on low rank tensor factorizations (see

[25] for a thorough overview). A few of these works have examined how to
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obtain a sparse core tensor, but towards the aim of either enforcing uniqueness

[62] or to obtain core tensors that are more efficient to store and use [20, 26, 91,

119]. There has been some work on factorizing large sparse tensors, for tensor-

SVD [2, 114]; again, however, their goal is to factorize a sparse tensor, which

differs from our goal to factorize a dense matrix into an extremely sparse tensor

with a particular structure. The most closely related algorithm is derived for

low-rank regularizers for non-negative tensor factorization [xu2013ablock],

but it is not designed for large sparse tensors.

4.4.2 Computing the Subgradient of the Objective

Once the orientations are set per voxel using GreedyOrientation, we can much

more efficiently compute the gradient for the objective, because the sum over

groups significantly reduces,∑
GV∈V

∑
GA∈A

‖xGA,GV ,f‖2 =
∑
GV∈V

∑
GA∈A(GV )

‖xGA,GV ,f‖2

where A(GV) = {GA ∈ A | GA ∩ S(v) 6= ∅, v ∈ GV}. The set A(GV) only

includes groups with orientations that are active for at least one voxel in GV .

Let there be NGa atom groups and NGv voxel groups. We use GA ∈

{0, 1}Na×NGa (resp. GV ∈ {0, 1}Nv×NGv ) to denote if an atom (resp. a voxel)

belongs to a group. Specifically, if GA(a, g) = 1, then atom a belongs to group

g; otherwise it does not. The subderivative of the group regularizer w.r.t.

Φ(a, v, f) is

λg

NGa∑
ag

GA(a, ag)

NGv∑
vg

GV (v, vg)

∑
ai∈Gag

|Φ(ai, v, f)|

A(ag, vg, f)
sign(Φ(a, v, f))

where tensor A =
√(
|Φ| ×1 G>A

)2 ×2 G>V . Additionally, we include a standard

`1 regularizer on all of Φ to further promote sparsity. The full subgradient of

the objective w.r.t. Φ is

∇Φ =D>(Φ×1 D×3 1−Y)1>

+ λg

({(
|Φ| ×1 G>A

)
◦
(

1

A
×2 GV

)}
×1 GA

)
◦ sign(Φ) (4.2)

+ λ1 sign(Φ),
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where ◦ shows the element wise matrix multiplication. On each step, we step

in the direction of the negative of the gradient, with a fixed stepsize, which

we set to η = 1e − 3, until the objective improvement is below a threshold

1e− 4 or until a maximum number of iterations is reached. In addition to the

initial screening, we can obtain some speed improvements on each step by only

computing the gradient for currently active elements in Φ. For any zero-ed

elements in Φ, the gradient of the regularizer would be zero, as the regularizer

prefers each element be zero.

4.4.3 Optimization Algorithm for Mapping Connectomes
of the Brain

The full method consists of two key steps. The first step is to screen the ori-

entations, using GreedyOrientation in Algorithm 3. We then use subgradient

descent to optimize the tractography objective using this much-reduced set

of parameters. The second step prunes this superset of possible orientations

further, often to only a couple of orientations (e.g. k = 5 here). The resulting

solution only has a small number of active fascicles and orientations for each

voxel. We provided a detailed derivation and description of the algorithm in

Section 4.4.2.

The optimization given the screened orientations remains convex. The

main approximation in the algorithm is introduced from the greedy selection

of orientations. We provide approximation guarantees for how effectively the

greedy algorithm maximizes the criterion ḡ. But, this does not characterize

whether the criterion itself is a suitable strategy for screening. In the next

chapter, we focus our empirical study on the efficacy of this greedy algorithm,

which is critical for obtaining efficient solutions for the tractography objective.
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Algorithm 5 Brain: Mapping Brain Connectomes

Input: dMRI signal Y, expert three dimensional sparse tensor Φe, dictionary
D, weights (fascicles’ contribution) w, voxels vicinity Vv matrix (group
information GV) and atoms vicinity Av matrix (group information GA),
maximum iteration max iter, step size step size, termination condition tol-
erance

Ensure: ‖Y−Φ×1D×31‖2
F +λ

∑
f∈F

∑
GV∈V

∑
GA∈A ‖ΦGA,GV ,f‖2 is minimum

1: for f = 1, . . . , Nf do
2: Φe(:, :, f) = Φe(:, :, f) ∗w(f) . Fold w in Φe

3: voxels, atoms, fascicles, Y ← ComputeCompactData(Φe, Y, fascicles, w)
4: Na, Nv, Nf ← size(atoms), size(voxels), size(fascicles)
5: for v = 1, . . . , Nv do
6: aA ← GreedyOrientation(D, k) . Find indices of active atoms aA

with Algorithm 3
7: aF ← non-zero(Φe, 3) . Find indices of active fascicles aF from Φe

8: Φ(aA, v, aF)← Initialization() . Initialize Φ with non-zero values
where atoms and fascicles are active

9: GV ← find(Vv) . GV (i, j) ∈ {0, 1} = 1 if voxel i is in the neighborhood
of voxel j

10: GA ← find(Av) . GA(i, j) ∈ {0, 1} = 1 if atom i is in the neighborhood
of atom j

11: Fmask, Amask, Fscreen, Ascreen ← ComputeMasksAndScreens(Φ,
GV , GA)

12: Ydiff ← Y −Φ×1 D×3 1
13: R(Φ) ←

∑
f∈F

∑
GV∈V

∑
GA∈A ‖ΦGA,GV ,f‖2

14: lnew ← ‖Ydiff‖2
F + λR(Φ)

15: niter ← 1
16: repeat
17: lold ← lnew
18: g← ComputeGradient(Φ, D, Y, GV , GA, Fmask, Amask, Fscreen,

Ascreen)
19: Φ ← Φ− step size ∗ g
20: Ydiff ← Y −Φ×1 D×3 1
21: R(Φ) ←

∑
f∈F

∑
GV∈V

∑
GA∈A ‖ΦGA,GV ,f‖2

22: lnew ← ‖Ydiff‖2
F + λR(Φ)

23: niter ← niter + 1
24: until lold− lnew < lold ∗ tolerance || niter > max iter
25: set small values in Φ to zero
26: Output: Φ
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Algorithm 6 ComputeCompactData(Φe, Y, fascicles, w)

Input: expert three dimensional sparse tensor Φe, the matrix of diffusion
signal Y, all fascicles in a tract fascicles, weights (fascicles’ contribution)
w

1: voxels ← non-zero(Φe, 2) . Find necessary voxels from Φe (Non-zero
elements after summing up the other two dimensions)

2: atoms ← non-zero(Φe, 1) . Find necessary atoms(orientations) from Φe

(Non-zero elements after summing up the other two dimensions)
3: Y = Y(:, voxels) . Remove unnecessary voxels of Y
4: fascicles ← fascicles(non-zero(w)) . Remove unnecessary fascicles where

contribution (weight) is 0
5: Output: voxels, atoms, fascicles, Y

Algorithm 7 ComputeMasksAndScreens(Φ, GV , GA)

Input: three dimensional sparse tensor Φ, all neighboring voxels GV , all
neighboring orientations GA

Emask ← (Φ×2 GV )×1 GA . Entry mask tensor
2: Fmask ← Emask×1 1 . Fascicles Mask matrix

Amask ← Emask×3 1 . Atoms Mask matrix
4: Fscreen ← Φ×1 1 . Fascicles Screen matrix. Unlike Fmask, this screen

matrix does not contain group information
Ascreen ← Φ×3 1 . Atoms Screen matrix. Unlike Amask, this screen
matrix does not contain group information

6: Output: Fmask, Amask, Fscreen, Ascreen

Algorithm 8 ComputeGradient(Φ, D, Y, GV , GA, Fmask, Amask,
Fscreen, Ascreen)

Input: three dimensional sparse tensor Φ, dictionary D, the matrix of diffu-
sion signal Y, all neighboring voxels GV , all neighboring orientations GA,
groups of neighboring fascicles Fmask and Fscreen, groups of neighbor-
ing orientations Ascreen and Amask
grad p1 x ← D>(Φ×1 D×3 1−Y)1>

grad g1 x1 ← |Φ| ×1 G>A . O(number of nonzero elements in Φ ×
number of nonzero elements in GA)

3: A ←
√

grad g1 x12 ×2 G>V
grad g1 x3 ← 1

A
×2 GV . O(Nv× number of nonzero elements in A)

grad g1 x4 ← grad g1 x3 ◦ grad g1 x1
6: grad g1 v ← (grad g1 x4×1 GA) ◦ sign(Φ)

g ← grad p1 x +λg grad g1 v + λ1 sign(Φ)
Mask or Screen elements in g with Fmask,Amask or Fscreen,Ascreen

9: Output: g
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Chapter 5

Empirical Results:
Reconstructing the Anatomical
Structure of Tracts

In this chapter, we present the empirical results of extracting brain connec-

tomes without using any prior tractography models, on several human brains

and different tract structures. Our study consists of several parts: acquiring

brain diffusion weighted imaging (DWI) data and generating the synthetic

datasets since there is no ground truth available for the brain structures in-

vivo, introducing various evaluation metrics to measure the properties of the

screening algorithm as well as the proposed objective function and optimiza-

tion method, developing a visualization algorithm to present the best demon-

stration of a brain structure or Φ, and finally establishing the computational

resources used for running the experiments.

5.1 Data Acquisition

The Open Diffusion Data Derivatives (O3D) repository [8] is an open ser-

vice that allows cognitive and clinical neuroscientists and researchers to have

access to new multi-derivative data and integrated processing pipelines. It is

generated from three diffusion-weighted Magnetic Resonance Imaging datasets

(dMRI) publicly available online called Stanford dataset (STN) 1, Human con-

1https://purl.stanford.edu/rt034xr8593 and https://purl.stanford.edu/ng782rw8378
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nectome project datasets (HCP3T and HCP7T) 2.

The dMRI data from Stanford dataset (STN) contains whole-brain cover-

age for four subjects, collected with the following configurations: a 3T General

Electric Discovery 750 MRI (General Electric Healthcare) using a 32-channel

head coil (Nova Medical), and with a dual-spin echo diffusion-weighted se-

quence, using 96 diffusion-weighting directions and gradient strength of 2, 000

s/mm2 (TE = 96.8 ms). Data spatial resolution was set at 1.5 mm isotropic

[8].

The dMRI data of eight subjects from Human connectome project datasets

(HCP3T and HCP7T), with whole-brain coverage was collected with Siemens

3T and 7T MRI scanners with 2, 000 s/mm2 of gradient strength. Data from

the 3T and 7T scanners have different properties of resolution. HCP3T has

90 gradient directions and 1.25mm isotropic resolution while HCP7T has 60

gradient directions and 1.05mm isotropic resolution [8].

Three different white matter fascicles tracking methods have been applied

on the datasets: tensor-based deterministic tracking, Constrained Spherical

Deconvolution (CSD)-based deterministic tracking, and CSD-based probabilis-

tic tracking [8]. In this project, we used tractograms generated by the third

method.

This repository consists of brains of 12 subjects, each of which has repeated

measures of tractography derivatives for 10 different runs. These datasets have

been generated using modern neuroimaging data processing methods such as

diffusion-signal modelling, fiber tracking, tractography evaluation, white mat-

ter segmentation, and structural connectome construction on different deriva-

tives of diffusion-weighted magnetic resonance imaging (dMRI) with diverse

properties of resolution and signal-to-noise ratio [8]. However, as mentioned in

Chapter 1, none of these data processing methods guarantees to provide the

accurate brain structure of each subject.

2https://www.humanconnectome.org/study/hcp-young-adult/data-releases
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5.1.1 Generating synthetic data

To generate synthetic data for our experiments, we used the dMRI data of four

subjects’ brains. Then for each of these brains, an expert tractography algo-

rithm was applied to over-generate fascicles, Nf = 500, 000, as our candidate

connectomes to fit the LiFE model [76]. LiFE takes any connectome as input

and predicts demeaned diffusion measurements as output in order to evaluate

tractography algorithms. We employed LiFE to purify connectomes and prune

the number of candidate fascicles. It zeros out the weights of fascicles that

do not have significant contribution in reconstructing diffusion signal. This

reduces the size of fascicle set about 10–20% for STN, 15–35% for HCP3T,

and 20–40% for HCP7T. Also, it decreases the reconstruction error of diffusion

signal for all datasets comparing to the reconstruction error of tractography

models. We also applied ENCODE to unify encoding of the brain structure

and dMRI signal by applying dictionary D.3

Using the Automating Fiber-tract Quantification (AFQ) method [110],

twenty major human white matter tracts have been segmented:

• Tracts 1 and 2: left and right Anterior Talamic Radiation (ATRl and

ATRr),

• Tracts 3 and 4: left and right corticospinal tract (CSTl and CSTr),

• Tracts 5 and 6: left and right Cingulum-Cingulate gyrus (CCgl and

CCgr),

• Tracts 7 and 8: left and right Cingulum-Hippocampus portion (CHil and

CHir),

• Tracts 9 and 10: Forceps Major (FMJ), and Forceps Minor (FMI),

• Tracts 11 and 12: left and right Inferior Fronto-Occipital Fasciculus

(IFOFl and IFOFr),

• Tracts 13 and 14: left and right Inferior Longitudinal Fasciculus (ILFl

and ILFr),

3The dataset can be downloaded from https://brainlife.io

58

https://brainlife.io/project/5a022fc99c0d250055709e9c/detail


• Tracts 15 and 16: left and right Superior Longitudinal Fasciculus (SLFl

and SLFr),

• Tracts 17 and 18: left and right Uncinate Fasciculus (UFl and UFr),

• Tracts 19 and 20: left and right Superior Longitudinal Fasciculus-Temporal

part (often referred to as the “arcuate fasciculus”, SLFTl and SLFTr).

In this project, we used ENCODE model to generate the predicted signal

using three major structures: the Cingulum Hippocampus (Tract 7), the Arcu-

ate Fasciculus (Tract 19), and the ARC-SLF (which is the Arcuate combined

with SLFl – which is Tracts 19 and 15).

5.1.2 Datasets

While this dissertation just deals with Arcuate and ARC-SLF of one subject,

our long range plan is to investigate the properties of the proposed objec-

tive on five different datasets corresponding to four subjects and three major

structures in the brain:

• Dataset 1: The first dataset has been generated from the dMRI data of

subject 3 in O3D repository, who is one of the four Stanford dataset’s

subjects. The tract structure we selected for this dataset is Tract 19 aka

the Arcuate Fasciculus, hereafter Arcuate. This tract in this dataset has

Na = 1057, Nv = 11823, Nf = 868, and Nθ = 96.

• Dataset 2: The second dataset corresponds to the same subject as

Dataset 1 but with another tract, which is the Arcuate combined with

one branch of the Superior Longitudinal Fasciculus, SLF1, hereafter

ARC-SLF. This tract has Na = 1057, Nv = 15033, Nf = 1100, and

Nθ = 96 in this dataset.

• Dataset 3: The third dataset corresponds to another subject from Stan-

ford Dataset, subject 1, and for Tract 19 aka Arcuate. This dataset has

Na = 1057, Nv = 11488, Nf = 508, and Nθ = 96.
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• Dataset 4: The fourth dataset generated from subject 12, who is in

HCP7T; this dataset includes the data corresponding to Arcuate aka

Tract 7. This dataset has the highest resolution among others with

Na = 1057, Nv = 34910, Nf = 1313, and Nθ = 64.

• Dataset 5: The fifth dataset corresponds to subject 11, from HCP3T

for a different tract structure, Tract 7 called Cingulum Hippocampus.

We chose this tract to show that our method is able to predict other

fascicles’ structures rather than Arcuate and ARC-SLF. This dataset

has Na = 1057, Nv = 4542, Nf = 210, and Nθ = 64.

Using these datasets enables comparison to a presumed true underlying Φ.

Each dataset has been selected to establish the effectiveness of our method

against three main natural variables that might influence the real dMRI data

of the brain:

1. Variety of scanning devices and configurations

2. Natural differences in subjects’ brains

3. Different structures of tracts

In order to investigate the impact of changing any individual, pair, or triple

of these variables, we selected the datasets based on the following reasoning

as it is shown in Figure 5.1:

• Dataset 1 and Dataset 2: having the same scanning configuration and

subject’s brain data, how does our method work on different tracts?

• Dataset 1 and Dataset 3: For similar tract and the same scanning con-

figuration, how does natural differences in subject’s brain would affect

the output?

• Unfortunately, we did not have access to the data of the same subject’s

brain being scanned under different devices or configurations. Either

or neither of them changes at the same time. Therefore, we cannot
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Figure 5.1: Choosing datasets based on different variables

investigate the effect of changing the scanning device and configuration

solely on the output results, instead, we design experiments by changing

a pair of variables one of them being related to the scanner. Comparing

Dataset 3 or 1 with Dataset 4 enables us to learn about the effect of

changing both scanner and subject’s brain at the same time for a similar

tract.

• Finally, the choice of Dataset 5 investigates the performance of proposed

method on a different tract scanned with a new configuration from a

different brain, meaning that all three variables changing.

Note that, we only provide the empirical results on the first two datasets,

Datasets 1 and 2, and the investigation on the other three datasets remain for

the future work.

5.2 Inferring Anatomy of Tracts and Evaluat-

ing Results

We learn on data generated by an expert connectome solution within the

ENCODE model. This allows us to objectively investigate the efficacy of the

objective and greedy optimization strategy, because we have access to the

ground truth Φ that generated the data. To the best of our knowledge, this

is the first completely unsupervised data-driven approach for extracting brain

connectomes. We, therefore, focus primarily on understanding the properties
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of our optimization approach for tractography. As such, there are no baselines

against which to compare our approach. Instead, we define a few metrics to

evaluate the performance of our method.

We particularly (a) investigate how effectively our Greedy algorithm se-

lects orientations, (b) investigate how accurately the group regularized objec-

tive with this screening approach can reconstruct the diffusion information,

and (c) visualize the plausibility of the solutions produced by our method,

particularly in terms of smoothness of the fascicles. Even with screening, this

optimization when learning over all fascicles and voxels, is prohibitively expen-

sive for running thorough experiments. We therefore focus first on evaluating

the model given the assignment of fascicles to voxels, meaning for the follow-

ing experiments, fascicles are fixed. Because the largest approximation in the

algorithm is the greedy selection of orientations, this is the most important

step to understand first. For a given set of (greedily chosen) orientations, the

objective remains convex with a unique solution. We know, therefore, that

further optimizing over fascicles as well would only reduce the reconstruction

error; assuming that the optimization criteria is correct.

5.2.1 Screening

We define two error metrics to demonstrate the advantage of GreedyOrien-

tation over OMP for this task. The first is the total number of orientations

present in Φ-expert that are not present in Φ generated by the screening ap-

proach, measuring the exactness of the solution. Note that only false negative

orientations are critical here since they would be eliminated forever from Φ,

which means the optimizer would not be able to find the actual solution, no

matter how perfect the objective function is designed. Therefore, only the

falsely omitted orientations could impose further error to the optimization

stage regarding the predicted Φ. In other words, we expect the weights of

the false positive orientations in the orientation candidate set to become zero

if the objective function is accurate and the optimizer works well. We also

assume that we trust the correctness of synthetic data and consider it as the

ground truth.
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Figure 5.2: The first row corresponds to Arcuate and the second row corre-
sponds to ARC-SLF. (a): Average number of missing orientations per voxel
in candidate sets of increasing size. (b): The distribution of angular distances
from the ground truth of OMP and GreedyOrientation after global optimiza-
tion procedure. The angular distance is the minimum possible distance given
some weighted combination of selected orientations calculated based on Algo-
rithm 9. (c): Average angular distance between the weighted sum of predicted
node orientations and the ground truth in each voxel for candidate sets of in-
creasing size.

The second metric is the minimum possible angular distance between each

of the orientations in Φ-expert with any arbitrary set of orientations in the

corresponding voxel of Φ generated by the screening approach, so that the set

would provide the best possible approximation of that orientation. Section 5.3

provides the details of the algorithm measuring the angular distance between

two sets of orientations.

We demonstrate the screening method’s performance using both error met-

rics in Figure 5.2. Note that each numerical index shows the corresponding

dataset. Figure 5.2a shows the effect of increasing the size of our candidate set

of orientations on the number of missing orientations compared to the ground

truth. GreedyOrientation’s advantage is likely because OMP continually adds

dissimilar orientations, thus is less likely to add the exactly correct orienta-

tions because these correct orientations are too similar to orientations already

63



in the candidate set.

Figure 5.2b shows the minimum angular distance given a linear combi-

nation of orientations in the candidate set compared to the ground truth.

GreedyOrientation has high probability mass near zero, showing that it gen-

erates appropriate candidate sets.

Finally, Figure 5.2c shows that the angular distances between the orien-

tations weighted with the optimized weights and ground truth for different

size of orientations candidate set. We can clearly see that increasing the size

of the orientation set in OMP results in a larger angular distance since more

dissimilar orientations are included. On the other hand, the angular distance

of candidate sets chosen by GreedyOrientation decreases fast and then sta-

bilized, which indicates that GreedyOrientation forward selection criterion is

effectively defined so that the best candidate orientations approximate the

ground truth are among the immediate ones. Moreover, according to the

graphs corresponding to each dataset, we can infer the minimum best choice

of k since a larger value would not affect the final connectome structure signifi-

cantly. Although, this best choice was k = 10, we set k = 5 in our experiments,

which means that we had larger approximation than the best choice.

We additionally demonstrate the effects of each screening method on final

reconstruction error after optimization. Figure 5.3a shows the distribution of

reconstruction error over voxels. Starting the optimization with GreedyOrien-

tation leads to much lower bias in the final optimization result than OMP, as

demonstrated by the shift of these distributions away from the Ground Truth

distribution. In Figure 5.3b, we show the reconstruction error on each step

of optimization. The reconstruction error when initialized with orientations

generated by OMP is decreasing at a rate several orders of magnitude slower

than GreedyOrientation since it has the wrong orientations selected in the

candidate set.

5.2.2 Group Sparse Optimization

After Φ has been initialized with one of the locally greedy screening algorithms,

we learn the appropriate weighting of Φ by optimizing the global objective.
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Figure 5.3: The first row corresponds to Arcuate and the second row corre-
sponds to ARC-SLF. (a): Comparing the distribution of reconstruction error
for ground truth, OMP, and GreedyOrientation over voxels after optimiza-
tion. (b): The improvement of reconstruction error during the steps of gradi-
ent decent shows that the objective is not able to improve the OMP selected
orientation sets while it is improving the GreedySelection choices constantly.
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(a) Ground truth

(b1)
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(c) Greedy Orientation

Figure 5.4: Solutions learned after the group sparse optimization for both
screening strategies, compared to ground truth. The first row corresponds
to Arcuate and the second row corresponds to ARC-SLF. (a): Initializing
Φ with expert Φ, (b): Initializing Φ with OMP, (c): Initializing Φ with
GreedyOrientation.
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We applied batch gradient decent with 15 iterations and a dynamic step-size

value, which started from 1e-3 and decreased each time the algorithm could

not improve the total objective error. The `1 and group regularizer coefficients

were chosen to be 1 for most of the experiments; we tested the following values

of the regularization coefficient [10−3, 10−2, . . . , 102, 103] and found that results

were negligibly affected.

For `1 regularizer, we applied a proximal operator to truncate weights less

than the threshold of 0.001. The derivation of the gradient and optimization

procedure have been explained in Sections 4.4.2 and 4.4.3, respectively.

Figure 5.4 visualizes the results of Φ after optimization with both OMP and

GreedyOrientation initialization strategies. The visualization algorithm, for a

given Φ, is given in Section 5.4. Comparing the GreedyOrientation predicted Φ

with expert Φ shows that the group regularizer performed well in regenerating

macrostructure of all tracts independent of datasets’ configuration.

Figure 5.4b shows that the OMP initialization strategy for Φ is not appro-

priate for this setting, as it prevents the global optimization procedure from

generating the desired macrostructure.

To get a better sense for the generated fascicles, Figure 5.5 illustrates the

five best and the worst fascicles in terms of the angular distance between the

predicted fiber and the corresponding ground-truth one in Φ initialized with

GreedyOrientation and OMP. GreedyOrientation produces plausible fascicles

in terms of orientation, in some cases seemingly even more so than the ground

truth, which was obtained with a tractography algorithm. In the best case, in

Figure 5.5a, the reconstruction is highly accurate and the structure and shape

of the fascicles clearly align closely with their ground truth counterparts. In the

worst case, in Figure 5.5b, GreedyOrientation produces fascicles with sharply

changing direction. Looking closer, the worst reconstructed fascicles tend to

be long winding fascicles with abrupt direction changes. Because the objective

attempts to minimize these features during optimization, these tracts are very

difficult to reconstruct. Fascicles such as these are unlikely to occur in the

brain, and are likely a result of imperfect tractography methods that were

used for creating the ground truth data for this experiment. Solutions with
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OMP are generally poor.

5.3 Angular Distance Evaluation Measurement

The goal here is to provide a more precise metric for the angular differences be-

tween the nodes in Φ-predict and Φ-expert. It is not a trivial task to measure

this metric since a more precise measurement requires finding a one-by-one

relationship between the nodes in Φ-predict and Φ-expert. A reasonable way

of doing that is to loop over each individual orientation per fascicle-voxel in Φ-

expert, aexp ∈ Φexp(:, v, f), and find the optimal solution of active orientations

from the candidate set corresponding to the same voxel in Φ-predict so that

they could better regenerate the diffusion signal of Φexp(aexp, v, f)×D(:, aexp).

Then the angular distance of the vector-sum of activated nodes in Φ-predict

with aexp would be calculated and the average angular difference over all aexp

per voxel would be reported.

Algorithm 9 Minimum angular distance metric

Input: Two three dimensional sparse tensors Φexp and Φpred, the expert and
predicted brain structures.

1: total dist ← 0
2: for vp = 1, . . . , Nv do
3: dist per voxel ← 0
4: ap set ← P({a|a ∈ Φpred(:, vp, :)}) . The power set of all orientations

active in the current voxel
5: for all aexp ∈ Φexp(:, vp, :) do
6: vecexp ← aexp ×

∑
fi∈Φexp(aexp,vp,:)

Φexp(aexp, vp, fi)
7: min dist←∞
8: for all s ∈ ap set do
9: vecpred ←

∑
ai∈s(ai ×

∑
fi∈Φpred(ai,vp,:)

Φpred(ai, vp, fi))

10: distance ← Angular Distance(vecexp, vecpred)
11: if distance < min dist then
12: min dist ← distance
13: dist per voxel ← dist per voxel + min dist

14: total dist ← total dist + dist per voxel
Output: total dist . The total angular distance
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(a1) Best 5 GreedyOrientation (b1) Worst 5 GreedyOrientation

(c1) Best 5 OMP (d1) Worst 5 OMP

(a2) Best 5 GreedyOrientation (b2) Worst 5 GreedyOrientation

(c2) Best 5 OMP (d2) Worst 5 OMP

Figure 5.5: Top five best and worst fascicles for OMP and GreedyOrientation
after optimization according to reconstruction error. Solid lines show the pre-
dicted Φ and dashed lines the ground truth (for the fascicle of the same color).
Number 1 corresponds to Arcuate and number 2 corresponds to ARC-SLF.
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Figure 5.6: A number of different permutations of nodes in the voxels for a
fascicle results in a different shape.

5.4 Visualization Algorithm

This section explains the visualization algorithm of the brain connectomes

based on the sparse tensor Φ. Each entry of this sparse tensor represents one

Node – small chunks of a fascicle chaining together to shape the whole fascicle

stream – each having an orientation, being located in a voxel, and belonging to

a fascicle. There is no structure in Φ to indicate how to order the nodes. The

nodes do not contain any positional information of the space and this leads to

an ambiguity in the accuracy of their order. The only positional information

in hand is the coordinates of the voxels. Therefore, displaying an accurate Φ

is itself a challenging problem due to many possible permutations of nodes in

a voxel for each fascicle (Figure 5.6).

Our goal is to go over the fascicles one by one and try to plot each at a

time. We approach this by selecting one voxel that the fascicle passes through

and has the fewest number of neighbouring voxels that also contain the same

fascicle. A voxel with these properties should be at one end of the fascicle.

Then the algorithm examines all surrounding voxels and chooses the pair of

70



nodes with the smallest angular distance between them with one in the first

voxel and one in the neighbours. We plot the nodes in the first voxel so that

the last node in that voxel is the one chosen. Then we move forward through

each voxel plotting first the node chosen in the previous pairing followed by

the rest of the nodes in the voxel greedily chosen based on angular distance

from the last plotted node. Plotting nodes through the neighboring voxels

sharing the same fascicle continues by moving on until we reach the other end

of the fascicle. Similar to the starting voxel, this ending voxel would have no

further neighboring voxel with the same fascicle that has not been met before.

Algorithm 10 Visualize Φ, the structure of connectomes

Input: Any three dimensional sparse tensor Φ, matrix A to map the indices
of atoms in Φ to the Cartesian components of the direction vector of that
atom, and matrix V to map the indices of voxels in Φ to the Cartesian
coordinates of that voxel

1: for f = 1, . . . , Nf do
2: seen v ← ∅ . Initialize set to keep track of which voxels have been

visited for fascicle f up to now
3: v ← get voxels(Φ, f) . Get all voxels that fascicle f passes through
4: vc ← GetFirstVoxel(seen v, v) . Select a voxel that has not been seen

for fascicle f
5: seen v ← seen v ∪ {vc}
6: an ← PlotFirstVoxelNodes(vc, seen v, f) . Plot the nodes of the

current voxel and return the next node in the next voxel
7: repeat
8: vc, ac, seen v ← PlotNodes(an, seen v, f) . Plot all nodes in the

voxel containing an and update vc, ac, and seen v
9: anset ← AllNeighbouringNodes(vc, seen v) . Get all active nodes

in the neighbouring active to vc
10: an ← argminan′∈anset(AngularDistance(an′, ac)) . Finds the

closest node in anset to the last plotted node
11: until an is null

We investigate the properties of visualization algorithm for several reasons.

First, being able to visualize a valid form of tensor Φ is a prerequisite for

the applicability of our proposed method in the real world for learning brain

connectome structure. Trusting the result of this visualization algorithm is

critical since we are using it as a tool for validating our optimization method.

Furthermore, the best visualization of brain structure is selected among many
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Algorithm 11 PlotNodes(ac, seen v, f)

Input: current node to be plotted ac, the set of voxels already visited seen v,
current fascicle f being plotted

1: vc ← voxel containing ac
2: seen v ← seen v ∪ {vc}
3: acset← non-zero(Φ(:,f, vc)) . Get all active nodes in the current voxel
4: while acset 6= ∅ do
5: acset ← acset− ac . Remove ac from acset
6: Plot(ac) . Plot the current node
7: ac ← argminac′∈acset(AngularDistance(ac, ac′)) . Find the next

closest node to the previous node in the current voxel

8: Output: vc, ac, seen v

Algorithm 12 PlotFirstVoxelNodes(vc, seen v, f)

Input: current voxel vc, the set of voxels already visited seen v, current fas-
cicle f being plotted

1: anset ← AllNeighbouringNodes(vc, seen v) . Get all active nodes in the
neighbouring active to vc

2: acset← non-zero(Φ(:,f, vc)) . Get all active nodes in the current voxel
3: ac, an ← argminan′∈anset,ac′∈acset(AngularDistance(an′, ac′)) . Finds the

closest nodes between acset and anset
4: astack ← empty stack
5: while acset 6= ∅ do
6: push ac onto astack
7: acset ← acset− ac . Remove ac from acset
8: ac ← argminac′∈acset(AngularDistance(ac, ac′)) . Find the next

closest node to the previous node in the current voxel

9: while astack not empty do
10: ac ← pop astack
11: Plot(ac) . Pop the nodes from astack and plot them

Output: an . The closest node in terms of angular distance to the last
plotted node
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different possibilities of Φ representations, and as such, could be considered

as an optimization problem. The optimization function could be defined as

minimizing the angular distance of the current node and the next node, over

the set of possible nodes corresponding to the pair of nearby voxel and the same

fascicle. Therefore, we continue this section by talking about visualization

performance.

5.4.1 Vetting Visualization Algorithm

We know that a chain of nodes together forms a fascicle and as we mentioned

earlier in this section, by encoding fiber structures in Φ, we lose the actual

positional information of these nodes. However, we still can use the accurate

spatial coordinates of the fascicles’ nodes in order to investigate the similarity

of visualized Φ and the real demonstration of fascicle streamlines. Real demon-

stration of fascicles is plotted using the precise spatial coordinates of nodes.

If both demonstrations were similar, we conclude that visualization algorithm

performs well in optimizing the output representation of Φ. Otherwise, the

dissimilarity might be due to the low quality of encoded brain structure in Φ,

or because of the deficiencies in the visualization algorithm in choosing the

best representation result.

Figure 5.7a shows the plot of fascicle streamlines for subject 11 in O3D

repository, run01, and tract07 or Cingulum-Hippocampus. Figure 5.7b demon-

strates the same data encoded as tensor Φ and represented by visualization

algorithm. The encoded tract structure in Φ has been approximated by using

Na = 129241 directions in the space, which means that it has a high resolution

in terms of orientations. Therefore, the orientation assigned to each node in Φ

is a closer approximation to the actual direction of the same node in the real

fiber stream. Comparing these two figures, we can clearly see that they are al-

most the same, so the ordering of the nodes chosen by visualization algorithm

for each fiber is almost similar to the real one.

Now that we can trust the visualization algorithm, we would like to learn

about the effect of orientation resolution on the quality of visualization results.

This is possible by comparing the demonstration of real fibers, i.e. according
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(a) (b)

Figure 5.7: (a): Demonstration of a tract using positional information of the
nodes. (b): Visualization of Φ related to the same tact and encoded with
relatively large number of orientations.

to the spatial coordinates of nodes, with the visualization of a Φ encoded with

smaller number of orientations.

Figure 5.8a also shows the plot of fascicle streamlines for subject 11 in O3D

repository, tract07 or Cingulum-Hippocampus, but this time for a different

run, e.g. run03. Note that acquiring data of a run for a subject is independent

of another run. Therefore, there might be small differences in different runs

for the same tract. Figure 5.8b demonstrates visualization result of the same

data encoded as tensor Φ, but this time the generated LiFE model is built

with lower level of space descritization, Na = 1057 orientations. We can see

that there are many differences in the details of these two demonstrations,

however, the main structure of the tracts are similar.

5.5 Computational Resources

All experiments in this paper were run using an Intel Xeon processor from

2014 with 8 cores at 2.4Ghz each and with 32GB of ram. The code relies

heavily on the sparsity of the data, using efficient sparse tensor operations to

minimize memory usage and necessary computational resources. Scaling up

to larger dimensions or using higher resolution data would greatly increase

the total number of entries in the tensors (including empty values), but would
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(a) (b)

Figure 5.8: (a): Demonstration of a tract using positional information of the
nodes. (b): Visualization of Φ related to the same tact and encoded with
relatively smaller number of orientations.

increase the number of active entries at a much lower rate.
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Chapter 6

Conclusion and Future Work

This chapter summarizes the contributions in the thesis and highlights some

future directions for research on this topic.

6.1 Contributions

In this work, we considered the problem of learning macroscopic brain con-

nectomes from dMRI data. This involves inferring locations and orientations

of fascicles given local measurements of diffusion of water molecules within

the white-matter tissue. This is a problem currently approached by heuristic

choices to select preferred recipes of models and parameters among the large

set of all potential models and parameters. An initial mapping of the brain con-

nectome and data from the natural brain space into a mutidimensional tensor

space allows reformulating the problem of tractography providing a convenient

and mathematically tractable framework for machine learning algorithms.

We proposed a new way to formulate this learning problem, using a tensor

encoding. Our proposed group sparse objective facilitates the use of optimiza-

tion algorithms to automatically extract brain structure, without relying on

expert tractography solutions. We also proposed an efficient greedy screen-

ing algorithm for this objective, and proved approximation guarantees for the

algorithm. We finally demonstrated that our specialized screening algorithm

resulted in a much better orientations than a generic greedy subselection al-

gorithm, called OMP. We examined our proposed method to learn solutions

across brain datasets and multiple anatomies of tracts. The solutions with
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Figure 6.1: A pipeline for extracting brain connectomes. Note that our con-
tributions corresponds to the blocks below the dashed lone.

our group sparse objective, in conjunction with these selected orientations,

resulted in smooth fascicles and low reconstruction error of the diffusion data.

We also highlighted some failures of the solution, and noted that more needs

to be done to get fully plausible solutions.

Figure 6.1 demonstrates the big picture of different stages in this project.

The first three stages correspond to the generation of synthetic data. The ma-

jority of our contributions starts from stage 3 where the encoded synthetic data

is given as the ground truth and the goal is to reconstruct a tract structure

that is as similar as possible, in stage 9. Extracting tracts of a connectome

from raw dMRI data is a multi-stage pipeline where each stage can intro-

duce different errors and noises. Given the ground truth, our approach might

introduce errors in three stages:

1. Screening error: Stage 4 where an approximation of the best orienta-

tion choices is made to shrink the dimensionality of the problem. Here,

orientations were selected with respect to a proposed gain function.
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2. Optimization error: Stage 5 where we try to optimize the tractography

objective function with sparse group regularizer over the tensor of brain

structure Φ.

3. Visualization error: Stage 8 where visualization algorithm tries to opti-

mize the structural demonstration of each fascicle from Φ in which the

positional information of each node is lost.

In this work, we assumed that the dictionary D is given by the experts. The

ultimate goal, however, is to learn both dictionary D and brain structure Φ

for any arbitrary input dMRI data – i.e. starting from stage 1, skipping the

next two stages, and coming up with the final solution in stage 9. Later, we

want to learn dictionary D and compare it to the expert generated D to see

how well the dictionary has been learned given the synthetic data.

6.2 Future Work

Our tractography learning formulation has the potential to open new avenues

for learning-based approaches for obtaining brain connectomes. This prelimi-

nary work was necessarily limited, focused on providing a sound formulation

and providing an initial empirical investigation into the efficacy of the approxi-

mations. The next step is to demonstrate the real utility of a full tractography

solution using this formulation. This will involve understanding strengths and

weaknesses compared to current tractography approaches; potentially incorpo-

rating new regularizers and algorithms; and even incorporating different types

of data. We believe that with increased availability of large open datasets and

the improvement in data collections technologies, statistical machine learning

has the potential to become a more robust and scalable approach to mapping

human connectomes [1, 31, 37, 41, 66, 68, 90, 94, 115]. All of this can build on

the foundational idea introduced in this work: using a factorization encoding

to automatically learn brain structure from data.

Future investigations will be necessary to establish the degree to which the

proposed method can be fully applied to multiple, high-resolution data sets.
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Moreover, in addition to inferring orientations, we want to be able to predict

fascicles as well. The input and output of this process is exactly the same as

the current process of optimizing orientations except that, in addition to ori-

entations, we want to optimize fascicles as well instead of assuming that they

are fixed. Yet to date, there are multiple methods for group regularization –

for example from the image processing literature with similar spatial struc-

ture. These include regularizers for total variation [32], general structured

regularizers that enable efficient optimization [56] and Laplace regularization

and angular and radial regularization [24]1. All these methods could be ex-

plored for this new application. One approach to do this involves extending

methods based on group lasso and overlap group lasso regularizers [46], to

tensors. Further, regularizers proposed in image analysis for finding planar

regions [34], to encourage elongated clusters could also be applied.

In addition, there is a large literature on dictionary learning and multi-

way array factorization (tensor factorization) that we could explore. Most of

the literature on sparse coding and sparse dictionary learning (see [72] for the

seminal paper and [59] for a literature summary) typically considers matrix

variables for the sparse coefficients. Even generalizations called tensor sparse

coding [89] consider the input to be a multi-way array and the sparse coef-

ficients to be a matrix. Further, many sparse multi-way array factorization

algorithms [3, 23, 27, 47] do not consider factorization into a tensor. The clos-

est related algorithm is derived for low-rank regularizers, and for non-negative

tensor factorization [108]; though it is not designed for large sparse tensors, it

similarly uses a block coordinate descent approach and will likely provide some

insight. Though no algorithm has yet to be proposed for our particular opti-

mization setting, the separate advances in factorization algorithms and storing

and using large sparse tensors provide a clear opportunity to bring together

these advances to develop such algorithms. The developed algorithms for effi-

cient estimation with very large implicit sparse tensors have the potential to

fill an important void and impact a wide-range of fields using sparse spatial

1Though the algorithm in [24] is again for learning the microstructure, the regularization
strategies could nonetheless be useful.
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data.

All in all, the approach we propose is towards advancing methods for map-

ping the human connectome. We hope it can make an impact to mapping

the connectome to parallel the paradigm shift that has happened in the field

of Artificial Intelligence (AI) from rule-based expert systems to data-driven

systems and machine learning. This is because the current best practice in

the field of tractography is a rule-based process akin to expert systems in AI;

where a set of expert rules and models are prescribed following some heuristics.

The present work proposes a shift away from human produced tractography

methods, toward machine learning, and data driven algorithmic approaches.
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