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ABSTRACT

This disseriation consists of a joint study of mathematical analysis, numerical
computation and experimental investigation on aonlinear long free-surface and in-
ternal waves in channel flows subject to external forcings. The fluids are assumed
to be inviscid and incompressible. The external forcing is an obstruction mounted
on the bottom or the top lid in the channel. By using a perturbation expansion, the
forced Korteweg-de Vries (fKdV) equation is derived from a two-layer fluid flow in
a closed channel. The main results obtained in the study are summarized as follows
Analytic properties of sclutions to vhe stationary forced Korteweg—~de Vries (stKdV)
equation are studied. Analytic supercritical solitary wave solutions (SSWS) to the
sfKdV equation are expressed in terms of Weierstrass' elliptic functions for a rectan-
gular bump/dent or two local forcings. The existence of multiple SSWS is illustrated
by depicting complicated bifurcation diagrams. There are at most two SSWS for a
rectangular bump and more than two SSWS for a rectangular dent and two leral
bumps. A criterion for the stability of SSWS is provided, which stems from the
nonlinear stability analysis developed by Benjamin. Based on our numerical simula-
tions, only one of multiple SSWS is stable and all the others are unstable. Solitary
waves on a shelf are discovered by solving a boundary value problem of the sfKdV
equation. The uniform flows on a chelf are found analytically, which agree with the
previous results obtained by King and Bloor through numerical computation. The
uniform flow is always stable according to the nonlinear stability criterion. A series
of experiments are carried out to verify the validity of the sfKdV model for forced
stationary solitary waves and hydraulic falls. Experimental results agree reasonably

well with the sfKdV prediction.
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Chapter 1

Introduction

The purpose of this dissertation is to provide a joint study of mathematical analysis,
numerical computation and experimental investigation on nonlinear long waves in
response to external forcings. A practical motivation for studying forced nonlincar
waves is to investigate the blocking effects of atmospheric currents by mountains and
oceanic currents by seabed topography. The study deals primarily with the char-
acteristics of supercritical solitary wave solutions (SSWS) of the stationary forced
Korteweg—de Vries (sfKdV) equation, the bifurcation of multiple SSWS, the stabil-
ity of forced SSWS, and the validity of the sfKdV model. The research results are
anticipated to apply in the areas of meteorology, oceanography and other related
fields.
The subject of nonlinear long waves has attracted the interest of many math-
ematicians and physical scientists over the last 160 years since John Scott Russell
‘bserved the Wave of Translation in 1834, which he characterized as the soli-
tary wave [27]. The essential feature of the solitary wave is a balance between the

nonlinearity and the dispersion of long wave modes in a physical system. The need



of a mathematical description for this type of wave stimulated the development of
the theory of nonlinear long waves at the time and later in the nineteenth cen-
tury. In 1895, Korteweg and de Vries derived their famous equation (referred to
as the KdV equation now) for the propagation of unidirectional waves on the free
surface of a shallow channel flow [19]. The KdV model provides a simple and ap-
proximate mathematical description of Russell’s observation. By the mid-1960’s, a
renewed interest in studying solitary waves had become much more intense since
they had been observed in many other fields, such as meteorology, elementary par-
ticle physics, plasma physics, and laser physics. A crucial discovery was made by
two applied mathematicians, M. Kruskal and N. Zabusky, at Princeton University
in 1965 [30]. By solving the KdV equation numerically, they demonstrated Fermi-
Pasta-Ulum (FPU) recurrence. Meanwhile, they realized that nonlinear waves can
interact strongly when they meet and then continue to move thereafter almost as if
there had been no interaction at all. This led them to coin the name “soliton” to
emphasize the particle-like character of these waves which seem to retain their iden-
tities in a collision. Intensive studies of solitons have fostered greater understanding
of the physical world and helped to develop many powerful mathematical methods.
A comprehensive bibliography about this interdisciplinary subject can be found in
a recent book [1].

Particular interest in uniform soliton generation has recently stemmed from the
remarkable numerical findings by Wu and Wu [47] and the pioneering experimental
work by Huang, et al. [16]. The distinguished feature of their studies on free-surface
waves of shallow water in a channel is that an external forcing was introduced by
applying a steadily moving surface pressure. It was found that when the external

forcing steadily moves at a velocity close to the critical speed \/gH, where H is the



depth of undisturbed water and g is the gravitational acceleration, a succession of
solitons of the same size can be generated periodically. Then the solitons advance
ahead of the disturbance while there exists a region of depressed water just behind
the disturbance and a train of dispersive waves propagate away frdm the disturbance
in a direction opposite to that of the disturbance itself. This wave phenomenon does
not occur in the absence of the external forcing. Since 1982, many mathematical
models have been developed and applied to this intriguing problem. Among them are
(i) the generalized Boussinesq equations by Wu and Wu [47]; (ii) the Green—Naghdi
(G-N) models by Erterkin, et al. [10]; and (iii) the forced Kurteweg—de Vries
(fKdV) equation by Akylas [2], Mei [25], Wu [46] and Lee, ¢i ai. [21]. The mo:st
appealing model is perhaps the fKdV model because of its simple structure. In
addition, Grimshaw and Smyth [15] investigated the same problem in a density-
stratified fluid system. Katsis and Akylas [17] studied an analogue problern in three
dimensional space by using the forced Kadomstev—Petviashvili equation. A detailed
review related to the research of this topic can be found in the reference [21].

To give a brief summary of major published results, let us consider free-surface
waves of a single-layer fluid flow over a bottom obstacle in a channe!. The wave
phenomena are classified by the upstream Froude number F. Here, the upstream
Froude number F is defined as the ratio of the velocity U of the upstream flow to
the shallow water wave speed \/gH. It has been found that there exist two crucial
values Fp, (< 1) and Fc (> 1) such that the flow is classified into three categories:
(i) supercritical régime, F > Fg, (ii) transcritical régime, F € (Fp, F¢), and
(iii) subcritical régime, F < Fj,. According to this classification, all possible wave
phenomena are (i) multiple stationary solitary waves sustained on the site of the

bump when F > F¢ and two branches of solitary waves merge into one at I = F¢



{Vanden-Broeck [43] and Shen [35]); (ii) run-away solitons (Wu & Wu [47], and
others (2], [21]) when F € (Fy, F¢); (iii) only one stationary downstream cnoidal
wave matched with the upstream flat region when F < F|, (Forbes & Schwarz [13])
and the hydraulic fall occurs when F = Fj, (Sivakumuran et al. [41], Forbes [12],
and Shen & Shen [39]).

However, many problems in the forced physical system are still unsolved. For
example, the basic mechanism of soliton generation in a forced transcritical flow
remains so far unexplained. The stability analysis of forced supercritical stationary
solitary waves seems too difficult to apply for the general cases of arbitrary forcings
although there is a remarkable progress on smooth sech?-like solitary waves due to
Camassa and Wu [7]-[8]. It is these interesting problems and intriguing phenomena
which lead us to conduct this study.

Our main concern in this study is the stationary flow problem in the supercritical
régime. Physical modeis include internal waves of two-layer fluid flows in a closed
channel and free-surface waves of single-layer fluid flows in an open channel subject
to the channel bottom obstacle. The sfKdV equation will be used as our mathe-
matical model. Based on the sflKkdV model, we study analytical properties of forced
SSWS, discern the bifurcation of multiple SSWS, and investigate the instability and
stability of forced SSWS. In addition, we attempt to test the validity of the sfKdV
mode} by an experimental procedure.

The following results constitute the novel features of this dissertation:
(1) Proof of the positivity of SSWS to the sfKdV equation with a positive forcing;
(2) Ordered properties and extreme properties of the SSWS;

(3) Analytic expressions of the SSWS when the forcing is a rectangular bump or



dent, and two local forcings;
(4) Bifurcation analysis of multiple SSWS;
(5) Stability criterion of forced SSWS;
(6) Numerical simulations on the instability of the SSWS;
(7) Solitary waves and uniform flows on a shelf;

(8) Experimental validation of the sfKdV model for forced supercritical solitary

waves and hydraulic falls.

Most analytical results such as the existence of the positive SSWS for the posi-
tive forcing and the nonexistence of three mutual ordered SSWS are motivated by
numerical calculations. The ordered properties and extreme properties are useful
in understanding the difference among multiple SSWS, envisaging the bifurcation
behavior of the boundary value problem for the sfKdV equation, and determining
the stability of an SSWS. These properties, some of which are sharp, are included
in our recent paper [14].

Analytic solutions explicitly reveal the multiplicity of the solutions and make the
complicated sfKdV bifurcation behavior more clear. Although the analytic solutions
are constructed for a particular forcing, some of their properties which depend only
on the area of the forcing (i.e. [ f(z) dz) are applicable to the forcing of other
shapes.

A criterion for the stability of SSWS is provided. This result is obtained employ-
ing the nonlinear stability analysis developed by Benjamin [5]. Numerical simula-
tions based on a psuedo-spectral scheme are carried out to test the instability and

stability of SSWS. Our numerical results show that only one of the multiple SSWS is



stable and all the others are unstable. Meanwhile, the numerical simulation reveals
many remarkable features of forced long wave evolution in supercritical flows, which
warrant further research.

For a shelf forcing, there exists an almost complete solitary wave sustained on
the shelf while a tail of the solitary wave downstream connects smoothly to the
upstream solitary wave [38]. This new finding, although not proved rigorously, can
be justified intuitively. It is well known that there exists a stable solitary wave in
each single-layer free-surface flow at a supercritical speed. A bottom obstruction,
such as a shelf, only alters the shape of the solitary wave called the free solitary
wave in the flat channel, but does not completely remove it. The altered solitary
wave is considered to be a perturbation of the free solitary wave by the obstruction
as explained by Vanden-Broeck [43].

A series of experiments with open channel water flows over a segment of a cylinder
were conducted to confirm the validity of the sfKdV model for forced supercritical
solitary waves and hydraulic falls. Our experimental results agree qualitatively with
the results obtained from the sfKdV model. These results confirm the previous
conclusion in Shen’s paper [36]. Namely, the sfKdV equation is a parsimonious
asymptotic model as long as the corresponding physics exists and the height of the
bump is lower than the half of the upstream flow. Here, “parsimonious”, meaning
“simple” and “correct” in the sense of small error, is a word adopted from Lud-
wig's paper [22]. In addition, experimental uncertainties, which were not explicitly
explained in the previous reports [12] and [41], will also be analyzed.

We have arranged £he contents of this dissertation as follows. In Chapter 2,
we present a detailed derivation of the fKdV equation for the motion of internal

waves of two-layer duid flows over topography in a closed channel. In the following
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chapters, the sfKdV equation is used to explore the features of forced stationary
solitary waves. Analytic properties of SSWS to the sfKdV equation are studied in
Chapter 3. These properties include the existence of the positive SSWS, erdered
and extreme properties. of forced stationary solitary waves. In Chapter 4, we solve
the sfKdV BVP analytically for (i) a nonlocal rectangular bump or dent, where
“nonlocal” means that the support base of the forcing is much longer than the height
of the forcing, and (ii) two local forcings, where “local” means that the forcing height
is comparable with the forcing length. In Chapter 5, a nonlinear stability criterion
of forced stationary solitary waves is proved, which provides a simple and suflicient
condition. Numerical simulations on the instability and stability of the SSWS are
illustrated by means of graphics obtained from our computations. In Chapter 6,
solitary waves and uniform flows on a shelf are discussed. Experimental validation
of the sfKdV model for forced supercritical stationary solitary waves and hydraulic
falls are reported in Chapter 7. Finally, in Chapter 8, a brief summary of this

dissertation and several remarks about future research in this area are given.



Chapter 2

Forced KdV Equation for Internal

Waves in Two-layer Flows

It is important to investigate nonlinear long waves of near-critical stratified flows
forced by external forcings since near-critical conditions are relatively common in
meteorology and oceanography (see Baines [4] and Patoine & Warn [32]). Asymp-
totic analyses on this problem have been conducted by many people (Patoine &
Warn [32], Grimshaw & Smyth [15], Melville & Helfrich [26], and Shen [36]).

In this chapter, an approximate mathematical model will be derived for the
motion of internal waves in a two-layer fluid flow over topography. Our model is
different from Melville and Helfrich’s inhomogeneous extended KdV equation where
the third-order nonlinearity is included. Here, we demonstrate that when the flow
is near transcritical and the amplitude of the forcing is small compared to the depth
of the lower layer fluid, the first order asymptotic approximation oi the elevation
of the interface between two fluids must satisfy a fKdV equation, which displays a

balance of the quadratic nonlinearity, the dispersion of long internal wave modes



and the external forciné.

The procedure of our formulation is similar to that in Shen’s paper [36].

2.1 Physical problem and basic equations

The two fluids under consideration are immiscible, inviscid and incompressible: a
lower one of density p_ and upstream depth H_ and an upper, lighter one of density
p+ (ie, py < p_) and upstream depth H,. The two fluids are confined in a closed
channel by a rigid top flat lid and a rigid uneven bottom wall. The flow is assumed
to be two-dimensional and irrotational in both layers. The effects of surface tension

are neglected.

U ¥k
" H+ P+
%, k%
nx,t) .
I X
‘ === ——
Uu_* H. g p_
h*(x™)
Y

=

Figure 2.1: The sketch of a two-layer fluid flow over a bump.
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The reference frame is fixed on the undisturbed interface (shown in Figure 2.1).
Let the z°-axis be aligned along the longitudinal direction, and the y*-axis vertically
opposite to the gravitational direction. The subscripts ‘+’ signify the quantities of
the upper and lower fluid layers, respectively. The flow potential functions are
3 (z°,y°,t*). The upstream uniform velocities are Uy. The gravitational accelera-
tion is g. The upper boundary, the interface and the lower boundary are y* = H,,

* =n*(z°,1*), and y* = —H_ + h*(z"), respectively. By the conservation of mass
and the irrotationality of the flow, the potential functions &3 satisfy Laplace equa-

tions in the domain of the fluids, that is,
Q;'Io:o + q’;,yoyo = 0, (2.1)

subject to the following boundary conditions on the top lid at y* = H,

¢ . =0, (kinematic B.C.) (2.2)

on the interface y* = n*
0 . = @} o7 + 75, (kinematic B.C.) (2.3)
p+B [<I>'+,r]‘] =p_B [‘I"_,n'] (dynamic B.C.) (2.4)

where the differential operator B is defined as

- - - 1 L4 - - -
B [‘Pi»n ] =0 t3 (‘1’;,:- +0%,. - U;) +9n°,
and on the bottom y* == —H_+ A"
¢ . =h. & ... (kinematic B.C.) (2.5)

In general, it is difficult to solve the nonlinear system of (2.1)-(2.5) due to the

fact that the interface can not be prescribed. The objective of this chapter is to



I

reduce the above problem to a simple model. This model should be convenient for
mathematical analysis and numerical computation, and it also give insights into
major physical features. It is of our interest to investigate the propagation of long
internal wave motion for the case when the flow is near critical and the amplitude
of the forcing is small. We anticipate that main features will display a balance of
the nonlinearity and the dispersion of long internal wave modes in response to the

external forcing. Qur formulation is based on suitable asymptotic expansions.

2.2 Linear dispersion relation

The linear dispersion relation of weakly nonlinear waves usually follows from the
solvability condition of the first order expansion. Before proceeding to the formula-
tion of this problem, we try to find out the linear dispersion relation in the absence of
the forcing. Linearizing the system of (2.1)-(2.5), we obtain the following equations:

for the upper and lower layers

q);;,r‘l" + Q:‘t,y‘y' = 0, (26)

on the top lid y* = H,
¢ . =0, (2.7)

on the interface y* =0
DL, =T, (2.8)
P+ (‘1’1,1- +gn') =p- (‘P'.,,- + gn') , (2.9)

on the bottom y* = —H_ is
$° . =0. (2.10)

=¥
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Suppose that a sinusoidal wave is taken as 4° = a exp{i(kz® — wi*)}, k and w
heing the wave number and the angular frequency, respectively. Then, the velocity

potentials in both layers must be taken in the form
B} = (Ag oHH" 4 By £7") eilheur), (2.11)

The form: {2.11) is chosen in order to satisfy (2.9). Equations (2.7), (2.8) and (2.10)

give the constants Ay and By in terms of the given amplitude a:

iwa e¥FH+
At = o ik (212)
iwa et*Hs
B: = im. (2.13)
Substituting (2.12)-(2.13) into (2.9) results in
w?(py cothkHy + p- cothkH_) = gk(p_ — p—4)- (2.14)

Under the assumption ¢ the long wave approximation, i.e. kH, < 1, we have
cothkHy ~ 1/(kHy),
and the dispersion relation between k and w becomes

(p-Hy + pe H_)w? + (py — p-)gH H_K? = 0.

Hence, the phase velocity of long linear internal oscillatory waves can be written

as
2 _w? _ p-Hy—peHy

=== H_, 2.15

T pH, ¥ pyHY (215)

which, according to Lamb’s book “Hydrodynamics™ ([20] pp. 370), .a< first inves-

tigated by Stokes. This is similar to the critical velocity of free-surface waves in



13

shallow water of depth H_. It is shown by the above equation that internal waves,

in general, propagate slower than free-surface waves since

p-Hy +peH- —

Also, we remark that this phase velocity (2.15) is expected to be the critical velocity

of nonlinear long internal wave modes which will be discussed in §2.5.

2.3 Nondimensionalization

To carry out the procedure of asymptotic expansion, (2.1)-(2.5) need to be nondi-
mensionalized. Let L (the typical wavelength) and H_ be the horizontal and vertical

length scales, respectively. The following dimensionless variables are introduced
e=(H-/L)}*<«1, n=n"/H. (long wave assumption),

o=Hy/H_, p=ps/p-, ¥=UL/UL,

Use = Up/\JgH-, @4 =ct®}/\/gH?,
(z,y) = (ef2",y")/H_, t=¢e\/gH "L,

h =¢7%h"/H_ (small bottom obstacle assumption).

In terms of the dimensionless variables, the upper boundary, the interface, and the
lower boundary are y = o, y = n and y = —1 + £2h, respectively.
Let ¢1+(z,y,1) denote the perturbations of the flow potentials about the upstream

uniform flows. Then the flow potentials ®4(z,y,t) take the forms
q)i(x?yvt)=Uix+¢t(zvy,t)~ (216)

Using the dimensionless variables and (2.16), (2.1)-(2.5) can be written as follows:



EPyrr+ P4y =0, when n<y<oa,

5¢—,tz + ¢-.yy =0, when -1+ eh < y<n,

¢+.u =10, on y=o,

¢sy = (U + ¢4.2)0: + €21,

PB¢ [¢+, 77] =B, [¢-, 77] ’

on y=1,

on y=m,

-y =3 (U= + ¢- 2 )hs, on y=-1+¢%h.

In the formula (2.21), the differential operator B, is defined as

1
Bt [¢ty 77] = €¢i.¢ + § (¢:2i:.z + 6-1¢§:,y) + Ui:¢:t.1' +7.

2.4 Asymptotic expansions

14

(2.17)
(2.18)
(2.19)
(2.20)
(2.21)

(2.22)

Now let us proceed with asymptotic expansions in the strips S_ = {(z,y) € R |

—1 <y <0}and S = {(z,y) € R |0 <y < o}. Hence, it is required to approxi-

mate the boundary conditions on the interface and the bottom so that the boundary

conditions are approximately prescribed on y = 0 and y = —1, respectively. Taking

the first order approximation of Taylor expansions of (2.20)~(2.21) about y = 0 and

(2.22) about y = —1, we can get

Pry +NPry, = 5277: +ens(Uz + ¢4, + NP+,zy)
pcl [d)-h 77] = L. [¢—a 77] on y= 0,

G-y +e2h_yy = (U + ¢_2)hs

on

on y=20,

y =~

(2.23)
(2.24)

(2.25)



In the formula (2.24), the differential operator L, is defined as

L. [b1,n]) = e(brs + 1024) + Ur(b1.z + 1d2.2y) + 1

1
+5 [(¢e + 1855 + €7 (Be + ne)’] (2.26)

Therefore, with this approximation, all of the above equations are confined in the
two strips S_ and S,.

The response of the interface to the order €2 forcing is assumed to be of order
€ which implies that the internal wave is a dispersive wave with the second-order

nonlinearity. Hence, the asymptotic expansions for (¢4, 7n) are taken as follows

br = edP(z,y)+ 20 (z,y) + O(?), (2.27)
n = en™M(z)+ ¥ (x) + O(3). (2.28)

Also, it is our intention to investigate the displacement of the interface for ncar-
critical flows in both layers. The precise meaning of near-critical velocity is that the

upstream uniform velocities U, take the form
Us = U9y + ey (2.29)

Here, U®), are the critical velocities which will be determined by the solvability
condition of the second-order perturbation problem derived in the next section.
The quantities Ay are constants which signify the perturbations of the upstream
uniform velocities about the corresponding critical velocities. When Ay > 0 (< 0),
the upper layer flow is said to be supercritical (subcritical). A similar definition

applies to the lower layer flow.
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2.5 Forced KdV equation

Substituting the above asymptotic expansions (2.27)-(2.29) into the approximate
governing equations (2.17)-(2.19) and (2.23)-(2.25) in the strips S_ and S yields
the first three order problems according to the powers of ¢.

The first-order probiem: In the upper layer S, and the lower layer S_

S = (2.30)
ony=o
) = (2.31)
ony=20
#¢) =0, (2.32)
p (A0 + ULH +q0) = 2607 + UL 400, (239
and on y = —1
) =0. (2.34)

It is easy to show from (2.30)-(2.32) and (2.34) that ¢(1) (z,y,t) = 0 everywhere.
Hence, d)i”(:r,y, t) are independent of y and (2.33) is reduced to

p(UL L, + ) = U, 4 7D, (2.35)

The quantities Uio) are the critical velocities of the upstream uniform flows that
will be determined by the solvability condition for the second-order problem. The
first-order approximation of the interface elevation n(!) will be determined by the
solvability condition of the third-order problem.

The second-order problem: In the upper layer S, and the lower layer S_

oM+ o2, =0, (2.36)



ony=g0
¢(2)

ony=0
¢(t2) U(O)n(l)

2
p [B0+ J60 4+ UPGE + 0 gk + %] =

B+ 5807+ UG, + 2 g 49

and on y = —1

¢(2) =0.

From (2.36)-(2.40), one can derive that

2 1
g-,)y = (0 - y)‘%’s&,)x.r,

% = (1 +y)¢!".,

(0)
vn _ Uy (1)
+.zr — 77:: ’

0 = U
These equations further lead to

(0)
m _ Uy n®

z ’
+ o

d)(l)—.z = '—USO)U(I)'

Substituting (2.45)-(2.46) into (2.35) results in

v (0)?
pl—t—+1 7™ = (~U" +1) .

17

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
(2.42)
(2.43)

(2.44)

(2.45)

(2.46)

(2.47)
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For a nontrivial solution, 7!} is not identically equal to zero. Therefore, the solv-

ability condition of the second-order problem is

o

(0)?
p ( Ve | 1) =-U" 1. (2.48)

This is the dispersion relation which determines the critical velocities Uio). If v
denotes the ratio of the upstream uniform velocity of the upper layer to that of the
lower layer, i.e. ¥ = UL /U, we have Uio) = yU® and A4+ = vA_. Therefore, the

critical velocities Uio) can be determined by

U = -Z—(i—;z%) and U =4u® (2.49)

in terms of p,o, and 4. When ¥ = 1, the first equation in (2.49) coincides with
(2.15) which is the phase velocity of linear long internal wave modes in the absent

of the external forcing.

It is worth noting that, by differentiating with respect to z, (2.39) can be rewrit-

ten in the form

p 84 + 0kt hr + U0, + A0 + ] =
¢+ 0%l + UG, 2 gl + 0@, (2.50)
Substituting (2.45)-(2.46) into (2.50) yields

v o (VY o o, U
Pl ™ T\~ M) + U ¢+.u+/\+-;—77£)+77£2) =

—UOM 4 U g0 4 UOE, - x_ UM 4 4@, (2.51)

It is easy to see from-(2.51) that the first-order approximation of the interface

elevation n{!) can be determined if the terms related to ¢f) and 7(® are eliminated.



19

In fact, we are ::ble to achieve this by considering the third-order problem and using
(2.41)-(2.42) and the dispersion relation (2.48).
The procedure is carried out as follows. Integrating equations (2.41) and (2.42)

with respect to y, one can derive that

¢(2) (2) |v +y(2d - y) S}) (2 5:))
=0 2 WTY bt

2+
¢(2) ¢(2) ly=o0 — y( y)¢$)rz (2.53)

Then, taking twice differentiation of the above two equations with respect to r, we

have
y(20 —
d)g}'cz‘ = f,L‘z y=0 +J(—é_gl g—l.)x.u::m (254)
2+
d)(—zv) = ¢(2II |V=O ( y)¢(11'1'zz: (2-55)

Further, in order to eliminate qbi )= and n{®, we need to consider the following

third-order problem.
The third-order problem: In the upper layer Sy and the lower layer S_

¢P. + 68, = (2.56)
ony=o0
¢¢), = (2.57)
ony=0
62, + 2, nM =M + (As + L) + UL, (2.58)
and on y = —1
¢ = UOh,. (2.59)

Using the boundary conditions (2.57)-(2.59), integrating equations (2.54) and (2.55)

in [0,0] and [~1, 0] with respect to y results in the following:
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2 1
Sh):z |v=0 = é-(f )z'.u'z

[n(x) + (,\ + ¢(1)) ) +Ui°’n£”+d>(+'.)un("], (2.60)

¢(l TIITT 7’(1)

U£°’<h, ) — (A= +¢lh) 0l — ¢Clan®. (261)

fl

¢(-2,)1'1' I y=0

Then, substituting (2.60)—(2.61) into (2.51) and using equations (2.45)-(2.46), we
can obtain a fKdV equation for the first-order approximation of the interface eleva-
tion

munt + man + manWn® + men), = f., (2-62)

where the coefficients m; (k = 1,2,3,4) and the forcing term f are given by

my =2 (fu“” + U‘°’) (2.63)
ms = 2 (§A+Ui°’ + A-Ui"’) , (2.64)
ma =3 (%Uf’)z - Ui"’z) , (2.65)
my = —é apU®’ + Ui"”) , (2.66)

f=U%h. (2.67)

Here, we have also used the dispersion relation (2.48) to eliminate n{?).

For a single-layer open channel flow, H, = 0, p = 0, and U(o) = (0. Then,
UL =1 from (2.47), and in (2.63)-(2.67), m; = 2, my = 2A_, m3 = —3, my =
—é, ms = h. Equation (2.62) in this case coincides with the fKdV equation for a
rectangular channel derived by Shen [34]. This may be considered as a verification

of the correctness of the coefficients (2.63)—(2.67).
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The fKdV equation has been discussed extensively over the last decade since
Patoine and Warn [32] derived a similar equation for Rossby waves forced by topog-
raphy. This simple mode! has been successfully used for describing the generation
of advancing upstream solitons by Akylas [2], Lee, et al. [21], and showing the ex-
istence of hydraulic falls and multiple stationary forced solitary waves by Shen [36].
All of these results confirmed the innovative discoveries by Wu and Wu [47], Forbes
and Schwartz [13], Vanden-Broek [43] and Forbes [12]. But, the research in this
area is far from the end. An analytic method of solving an initial value problem of
the fKdV equation still needs to be developed although Fokas and Ablowitz made a
first try five years ago [11]. The bifurcation behavior of multiple stationary forced
solitary waves is, in general, very complicated. The mathematical analysis on the
stability of forced solitary waves hardly achieves much for the general case of forc-
ings owing to the complicated structure of the wave profiles. In this dissertation, we
will primarily study the time-independent fKdV model, and in particular, examine
the bifurcation behavior of multiple forced stationary solitary waves, the stability of

forced stationary solitary waves, and the validation of the sfKdV model.



Chapter 3

Analysis on the Supercritical

Stationary Forced KdV Equation

When the flow is steady, the fKdV equation (2.62) is reduced to a nonlinear third

order ordinary differential equation:
An: + 2amn,: + ﬂflxx: = fz, (31)

where A = m;, a = m3/2, § = my are constants, and n = {*). The equation (3.1)
is referred to as the stationary forced Korteweg-de Vries (sfKdV) equation.

The fKdV equation has been derived from single-layer flows and density-stratified
flows by many authors. For convenience to explain the physical meaning of our
mathematical analysis, we regard 7n(z) in (3.1) as the first order approximation of
the free-surface elevation of a single-layer flow and A specifies the upstream velocity
of the flow. The upstream flow is supercritical (subcritical) if A > 0 (A < 0). The
constants a and 0 are determined by the geometric shape of the cross section of
the channel and the function f(z) represents the external forcing, such as a bottom

bump in the channel.

22
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Further, we assume that A > 0, a < 0, 3 < 0, and the forcing function f(z) €
Co(R). Here, Co(R) is defined as a set of functions which are continuous and have
a compact support in R. It is interesting to study analytical properties of solutions

to the sfKdV equation (3.1) with the boundary conditions
n(£00) = n-(+00) = Nzz(Fo0) = 0. (3.2)

Integrating (3.1) once over (—oo, z) and using the boundary condition (3.2) results
in
An + an? + Bz = f. (3.3)
A function n(z) € C*(R) which satisfies (3.3) and the boundary condition (3.2) is
referred to as a supercritical solitary wave solution (SSWS) to the sfKdV equation
since the wave profile represented by 7(z) resembles a single solitary wave. This wave
is stationary and different from the regular KdV solitary wave which is a traveling
wave.
We will present (i) a complete proof of the existence of supercritical positive
solitary wave solutions (SPSWS) for the positive forcing in §3.1, (ii) two ordered

properties of SSWS in §3.2, and (iii) some extreme properties of SSWS in §3.3.

3.1 Supercritical positive solitary wave solutions
Consider the following sfKdV BVP

An + 0’772 + B0z = f, —oo < T < 400, (3.4)

n(£o0) = n:(£o0) =0, (3.5)

where A > 0, a <0, 8 <0 and f(z) € Co(R).
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Shen proved that the sfKdV BVP (3.4)-(3.5) has at least one SSWS if A is
sufficiently large [34]. Many results from numerical calculations suggest that every

solution is positive for the positive forcing f(z) > 0. Here, we prove this general

statement.

Theorem 1 (Positivity Property) Suppose that n(z) is an SSWS of the sfKdV
BVP (3.4)-(3.5) and f(z) 2 0, then n(z) > 0 for any z € R, i.e. n(z) is an
SPSWS.

Proof: If n(z)is an SSWS of the sfKdV BVP (3.4)-(3.5) with the positive forcing
f(z) > 0, then we have

w@) =5 [ K@, (an’(€) - 1) de, (3.6)

where K'(z,€) = 3 exp(—v|f — z]) is the Green’s function satisfying

K¢ — v?K = -6(§ — =), (3.7)
K(§ = £00,2) =0, v=,/—A/P.
Clearly, 7(z) > 0 holds for any z € R sincea <0, 3< 0, K(z,£) 2 0and f(§) >0

for any £ € R.
Now, suppose that there exists a point a € R such that n(a) = 0. From (3.6),

1 [+
n(a) = 5 [ K(a,€) (an’(&) - 1(6)) d€ = 0.

Since A(a,€) > 0 and an?(£) — f(£) < 0 we have an?(€) = f(£) for any £ € R.
This is a contradiction since f(§;) > 0 for some & € R whereas an?(§;) is always

less or equal to zero. Hence, n(z) > 0 for any = € R.



3.2 Ordered properties

After resolving the existence question of SPSWS to the sfkdV equation with f(r) €
Co(R), we discuss various properties of SSWS to the sfKdV equation. For multiple
solutions, it is interesting to investigate the relative position of the solutions. When
we say that two solutions n,(x) and n;(z) of the sfkKdV BVP (3.4)-(3.5) are ordered,
we mean that n;(z) # () for any ¢ € R. Numerous numerical solutions we
obtained seem to suggt'ast that if there exists a third solution of the sfikdV BVP
(3.4)-(3.5), then it can not be ordered with respect to the other two already ordered
solutions. Indeed, this is generally true. We have found that the solutions of the

sfKdV BVP (3.4)-(3.5) have the following ordered properties.

Theorem 2 (Ordered Property 1) The sfKdV BVP (3.4)-(3.5) admits at most two
ordered SPSWS;

Proof: If the theorem were not true, the sfkdV BVP (3.4)~(3.5) would admit at
least three ordered SPSWS. Assume that 7; (i = 1,2,3) are three ordered solutions
and, without loss of generality, 0 < 17, < 17, < 173. Let wy = m,—m, and wy = y3— 1.

From (3.4), it follows that

ﬂwl,rr = [_’\ - 0(711 + 7]2)]11!], (38)

ﬂw2.zr = [—’\ - 0(772 + T’3)]w2' (3())

Multiplying (3.8) by w, and (3.9) by —w;, adding the two resulting equations

together and integrating the sum from —oc to oc, we have

/Oo (w1 + wy)wywydr = 0.

— oG
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Clearly, wy and w; are positive for any z € R. This is a contradiction and the proof

of the theorem is finished.
Hence, if there exists a third SPSWS of the sfKdV BVP (3.4)-(3.5), then it

cannot be ordered with the other two.

Next, let us show a condition for two SPSWS being ordered. This condition is

simple to apply if the SPSWS profiles are known.

Theorem 3 (Ordered Property 11) If two distinct solutions n,(z) and n;(z) of the
sfKdV BVP (3.4)-(3.5) satisfy || m [lo>|| 72 |lwo and || m2 < = 35, then mi(z) >
n2(2) for each z € R.

Proof: The second ordered property is based on the following two facts. First,
under the assumptions of Theorem 3, m(x) 2 n2(z) for any = € R. If this were not
true, there would exist z¢o € R such that n;(z0) < 72(z0). Let w(z) = g (z) — ().

Then, putting g (z) = w(z) + n2(z) into (3.4), one gets
(A + 2amz(2)) w(z) + aw?(z) + fw,.(z) =0, z€R. (3.10)

On the other hand, the function w(z) has at least a local minimum point a such
that w(a) < 0 and w;-(a) > 0 since w(zp) < 0 and w(+o0) = 0. Also, by the above

assumption A + 2an;(a) > 0, we have
(A + 2am3(a)) w(a) + aw?(a) + fw;.(a) < 0.

This contradicts (3.10). Hence, n,(z) > ny(z) for all r € R.

Now, according to the theory of ordinary differential equations, the following
IVP:
(A + 2amy(2)) w(z) + aw?(z) + Bwe.(z) =0, z € R, (3.11)

w(zo) = ws(z0) =0, zo € R, (3.12)
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has only a trivial solution when n;(z) is a given bounded function. In fact, the IVP

(3.11)-(3.12) can be viewed as a system of first order differential equations:

= = (3.13)
% = —%[(z\+2an3)w+aw2] (3.14)

with initial value conditions: w(zp) =0 and v(zo) = 0.

Since the right hand side of (3.13)-(3.14) is obviously in C' and hence satisfies
Lipschitz condition, the IVP (3.13)-(3.14) has only a trivial solution, that is w(r) =
0,forallr € R.

Now, let us return to the proof of Theorem 8. Suppose that the conclusion
fails to hold. There must exist zo € R such that n;(x0) = n2(x0), i.e. w(xo) = 0.
By the first fact, zo is a minimum point of w(z), hence, w(xo) = 0. Then, by the
second fact, m(z) = n:(z) for all £ € R. This is a contradiction to the assumption

and completes our proof.

3.3 Extreme properties

It is clear that every solution to the sfKdV BVP (3.4)-(3.5) is bounded for the
forcing f(x) € Co(R). The extreme properties is very useful in determining the
stability of an SSWS, which will be discussed in Chapter 5. Regarding a general
forcing, we first show that the crest of supercritical solitary waves is either higher

than a certain point or lower than another point.

Theorem 4 (Extreme Property I) If n(z) is a solution of the sfKdV BVP (3.4)-
(3.5) and f{z) € CA(R), then either

VAZ+ 4o || flle — A
2

VAT +aa | flle+ A

3.15
50 (3.15)

7 le< 7 lle>—
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where || f ||o= max{|f(z)|,z € R}.
Proof: By (3.6), one can get
1 3 +oo
In()1 < (el 0 1 + 11 ) [ K2, €)deE
Direct calculation of the above integral yields
+o0
[ K@.6de = 181/
Thus

lal 7 11% <Al lleo + 1l f llo> 0,

which is equivalent to (3.15).

However, for a negative forcing, we can prove the crest of supercritical positive
solitary waves must be higher than a certain point. This is included in the following

theorem whose conclusion is stronger than (3.15).

Theorem 5 (Extreme Property II) If n(z) is an SPSWS of the sfKdV BVP (3.4)-
(3.5) and f(z) <0, then || n ||l —A/a.

Proof: By the continuity of n(z), there exists zo € R such that n(zo) =|| 7 ||co,
7' (z0) = 0, and 7:.(z0) < 0. Since f(z) <0, from (3.4), we have

An(zo) + an?(zo) = f(20) — Bnzz(x0) < 0.

The condition n(zo) > 0 implies that A + an(zo) < 0. Therefore, || 7 ||w= n(z0) =
-A/a.

For forced supercritical solitary waves, there might exist both the crest and the
trough. The following theorem specifies the trough of the wave profile must always

be lower than a certain height.



29

Theorem 6 (Extreme'Propetty II1) Ifn(z) is an SPSWS of the sfkdV BVP (3.4)-
(3.5) and f(z) 2 0 and zo is a local minimum point of n(z) in R, then n(zo) < -A/a.

Proof: Since zg is a local minimum point of n(z), then n.(zo) = 0, and ,.(xo) > 0.

By (3.4), the condition f(z) = 0 implies

An(zo) + an?(zo0) = f(20) — Bnz(z0) > 0.

Hence, from n(zq) > 0, we have A 4+ an(zp) 2 0, i.e. n(z0) £ —A/a.
The following property concerns the numbers of crests and troughs of supercrit-

ical solitary waves.

Theorem 7 (Extreme Property IV) Ifn(z) is an SPSWS of the sfKdV BVP (3.4)-
(3.5), and if n(z) > —A/a and f(z) 2 0 for all x € supp(f), then n(z) has al most

one local extreme point in supp(f).

Proof: Suppose that n(z) has two local extreme points a and b with a < b in
supp(f), then 7n.(a) = n.(b) = 0. Integrating (3.4) with respect to x from a to b

yields b b
[ Pae) + ant(@)] dz + Bn(0) = ne(a)] = [ fla)de.

This implies that
b
/ [\(2) + an(z)] dz > 0 (3.16)

since f(z) > 0 for any z € [a,b] C supp(f). On the other hand, the assumption
n(z) > —A/a > 0 for all z € supp(f) leads to

b
/a [An(:c) + anz(z)] dr <0.

This contradicts (3.16), and our proof is completed.



Chapter 4

Analytic Solitary Wave Solutions

It is well known that the solutions to the sfKdV BVP (3.4)—(3.5) represent station-
ary solitary waves of an open channel flow in response to external forcings. These
solutions may play a significant role in developing stability theory of nonlinear evo-
lution equations. It is interesting to solve this problem analytically. The explicit
expression of solutions is useful for exploring the complicated bifurcation behavior
of the sfKdV BVP (3.4)—(3.5).

In the sfKdV equation, the forcing is usually classified into two categories. ac-
cording to [36]. One type of forcing, called “local” forcing, has the height of the
bump comparable with the length of the bump support and can be approximated by
the Dirac delta function in the nondimensional long wave coordinates. For a local
forcing, Shen has recently shown that the sfKdV equation has at most two branches
of SPSWS by finding the analytic expression [35]. A forcing which is not the “lo-
cal” type is called a “nonlocal” forcing. For a nonlocal forcing bump, it means its
support is much longer than its height. Patoine and Warn [32], and Wu [46] found
analytic expressions for the solutions of the sfKdV BVP (3.4)—(3.5) for a sech*-like

30
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and sech?-like forcing, respectively. These forcings belong to the category of nonlocal
forcing. They also demonstrated the existence of two branches of SPSWS.

In this chapter, our main goal is to solve the sfKdV BVP (3.4)—(3.5) analytically
for (i) a nonlocal rectangular bump/dent (§4.1) and (ii) two local forcings (§4.2).
Meanwhile, we will elucidate the complicated bifurcation behavior of multiple SP-

SWS in these cases by displaying many graphs from the computations.

4.1 Analytical SPSWS for a bump or dent

Let us consider the rectangular bump or dent forcing which is defined as

fe) o { 7 lel<a/2,

0, otherwise.

When v > 0 (< 0), f(z) represents the forcing of a rectangular bump (dent). All
SPSWS in this case can be expressed in terms of Weierstrass’ elliptic functions
in the region of the rectangular bump or dent and matched by hyperbolic sech®-
type of functions outside of the support base of the forcing. Here, a is a positive
constant which represents the length of the rectangular bump or dent. Since the
forcing function f(z) has a jump discontinuity, all SPSWS 7(z) of the sfKdV BVP
(3.4)—(3.5) are in C!(R).

4.1.1 Explicit expression of SPSWS

When = < —a/2, an SPSWS 75(z) of the sfKdV BVP(3.4)—(3.5) can be expressed
by

3\ 2 [—A
n(z) = —%-sech ZB—(I - Ly),
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where the phase shift Lo is to be determined.

When |z| < a/2, the SPSWS 1(z) must satisfy the equation
An+an® + fn.. = 7. (4.1)

The continuity of  and 7. at £ = —a/2 and z = a/2 yields

n(—a/2) = --g%sechz\/;:—;(a/? + Lo) = 1o, (4.2)
n:(—a/2) = \/-——ﬂ-——'\no tanh\/i;;'(a/Q + Lo) =y, (4.3)
n(—a/2) = n(a/2), (4.4)
n:(—a/2) = n:(a/2), or n.(-a/2) = —n(a/2). (4.5)

The first integral of (4.1) from —a/2 to = (< a/2) satisfies
(n2)? = byin® + ban? + ban + by, (4.6)

where b, = —(2a)/(38), b; = —=A/B, by = 2v4/8, and by = —bzn. By making a

transform 9 = c;u + c3, (4.6) is converted into
(ur)? = 4’ — gou ~ g3, (4.7)

where ¢; = 4/by, c; = —b3/(3b1), g2 = —(bacz + b3)/c1, and gz = —(bye3 + bycd +
bacy + bs)/ci. Here, g, is a constant and gs is a function of Lo for given A, a, 3, and
a. The general solution of (4.7) can be expressed in terms of Weierstrass’ elliptic
function u = p(z + 7, g2,93) (cf. [44)], pp. 470). Thus, when |z| < a/2, the SPSWS

n(x) can be put in the form

77(33) = Clp(l‘ + Ty g2a93) + c2. (48)



33

Equations (4.2) and (4.3) yield

o = c1p(—a/2 + 1,92,83) + 3, (4.9)

m = ap'(—a/2+7,9:,93) (4.10)

Further, by using the identity of Weierstrass’ elliptic function (cf. [44], pp. 482)

0 (2,92, 93) — (¥, 93, 93) }2

1
T+ Y,92,93) + p(z, g2, + 1 92, = = {
(T +4,92,95) + (2,92, 95) + 0(y, 92,93) = 3 (T, 9293 — Pl5. 92, 95)

Weierstrass’ elliptic function p(z + 7, g2,93) in (4.8) can be rewritten in the form:

oz + 7202, 93) = l{ ap(z+af2,g2,93) —m }2—p(:c+a/2 2.05) — N — €3
’ ’ 4 CIP($+G/2,92,Q3)"770+02 192, 53 (o] ’

Then, (4.4) results in an equation

) ap'(a,95,6)-m |’
B\ Lo) = = - , G2, 2 —2n0 =0, (4.11
(A, Lo) 1 {Clp(a,gz’ga)_no+c2} aip(a, g2, g3) + 2c; — 200 (4.11)

which determines the phase shift Lo.
On the other hand, when z > a/2, the SPSWS can be expressed by

n(z) = — 2 sech? ;—;(z - L),

where the phase shift L, is to be determined by the continuity conditions (4.4)—(4.5).
Consequently, for each solution Lo of (4.11), we are able to construct an SPSWS

to the sfKdV BVP (3.4)—(3.5), which is expressed by

_g—é\-sechﬁ’ /.:F*\(.’L’ -— Lo), -0 <z S _0/2,
n(z) =3 ap(z+7,92,95) +c2y, —af2<z<al?, (4.12)
_%SeChz\/ ':7';\'(-'5 - L), a/2<z<o0.
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4.1.2 Existence of multiple SPSWS

A salient feature of the sfKdV BVP (3.4)—(3.5) for a nonlocal forcing is that it
may admit more than two SPSWS. In fact, (4.11) may define Ly as a multi-valued
function of A and determines the bifurcation of the sfKdV BVP (3.4)—(3.5). Namely,
for a given A, the number of the corresponding solutions for Lo to equation (4.11) is
equal to the number of SPSWS. Obviously, a contour plot of z = B(A, Lo) at level
zero is able to show the bifurcation behavior of multiple SPSWS. In this section,
we would like to illustrate our numerical results obtained by using Mathematica
(cf. Appendix A). For. simplicity, let us take a = —3/4, 8 = —1/6, v and a as
parameters.

CASE 1. v>0

In this case, our numerical results suggest that there are at most two branches
of SPSWS, which are always ordered. For a fixed A > 0, when v approaches zero,
which corresponds to the unforced case, two branches of SPSWS reduce to free
solitary waves and uniform null solutions, respectively. As explained in [43], a
higher solitary wave solution may be viewed as the perturbation of an unforced
solitary wave solution and a lower solitary wave solution branch is the response to
the perturbation of an unforced uniform wave solution. Our computational results
are shown as follows.

(1) For ¥ = 1 and a = 1, the contour plot (Figure 4.1 (a)) of z = B(A, Lg) at
level zero shows that (4.11) has at most two zeros for 0 < A < 3. Precisely, there
are no solutions, one solution, and two solutions to the sfKdV BVP (3.4)—(3.5) for
A < Ac(= 1.2), A = A¢, and Ac < A < 3, respectively. This A¢ is called the
turning point of the SPSWS bifurcation. Figure 4.1 (b) displays two SPSWS for

=1.5> Ac.
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(b)

Figure 4.1: (a) Bifurcation diagram of the SPSWS in the plane (A, Lg) for y =1
and a = 1. (b) Two SPSWS of the sfKdV BVP when A = 1.5 corresponding to
Loy = 0.601315225 (solid line) and Lo = 0.1270480543 (dashed line).
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(ii) For 4 = 0.5 and a = 1, the contour plot (Figure 4.2 (a)) of z = B(A, Lo) at
level zero shows that (4.11) has at most two zeros for 0 < A < 3. The turning point
Ac is close to 0.785. Hence, there are no solutions, one solution, and two solutions
to the sfKdV BVP (3.4)—(3.5) for A < Ac A = A¢, and A¢c < A < 3, respectively.
Figure 4.2 (b) displays two SPSWS for A = 1.5 > A¢.
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Figure 4.2: (a) Bifurcation diagram of the SPSWS in the plane (A, Lg) for v = 0.5
and a = 1. (b) Two SPSWS of the sfKdV BVP when A = 1.5 corresponding to
Loy = 0.8985087523 (solid line) and Lo, = 0.05288336998 (dashed line).
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(ii1) For ¥ = 0.1 and a = 1, the contour plot (Figure 4.3 (a)) of z = B(A, L) at
level zero shows that (4.11) has at most two zeros for 0 < A < 2. The turning point

Ac is close to 0.283. Therefore, there are no solutions, one solution, and two solutions
to the sfKdV BVP (3.4)—(3.5) for A < Ac(= 1.2), A = A¢, and Ac < A < 3,

respectively. Figure 4.3 (b) displays two SPSWS for A = 1.5 > (A¢).

tambxia

(a)

-

LS x
1 z .
(b)

Figure 4.3: (a) Bifurcation diagram of the SPSWS in the plane (A, Lo) for v = 0.1

and a = 1. (b) Two SPSWS of the sfKdV BVP when A = 1.5 corresponding to
Loy = 1.471252106 (solid line) and Lo, = 0.00964251 (dashed line).
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CASE Il. v <0
For a dent forcing, we have found numerically that the sfKdV BVP (3.4)—(3.5)

might admit infinitely many SPSWS for fixed a and 3, and sufficiently large values
A and a, the number of the SPSWS is an increasing function of A and a, and all

SPSWS are not always ordered.

(i) When ¥ = -1 and a = 1, the contour plot (Figure 4.4) of 2 = B(A, Lp) at
level zero shows that (4.11) has at most two zeros for 0 < A < 4. The turning point
Ac is close to 0.9916. Hence, there are no solution, one solutions, and two solutions

to the sfKdV BVP (3.4)—(3.5) for A < A¢, A = A¢, and A¢c < A < 3, respectively.

lambda

Figure 4.4: Bifurcation of the SPSWS in the plane (A, Ly) for y = —1 and a = 1.
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(i1) Figure 4.5 (a) shows that there are four SPSWS for sufficiently large A > Ac,
when v = —1 and @ = 2. There are two turning points in this case. One is A¢, (%
0.22175) and the other is Ac, (= 0.339). A remarkable feature of this bifurcation is
that there exists a pitchfork bifurcation at the turning point Ac,. Figure 4.5 (b)
displays the local bifurcation diagram in the neighborhood of the two turning points.

The gaps in Figures 4.5 (a)—(b) are due to numerical errors.
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1 l
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0.2 0.3 G.4 G.5 0.6
lamhda

(b)

Figure 4.5: (a) Bifurcation diagiam of the SPSWS in the plane (A, Lp) for v = —1
and a = 2. (b) Local bifurcation diagram of the SPSWS near two turning points.
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Another interesting feature is that there exist nonsymmetricsolutions in response

to symmetric forcing and nonsymmetric solutions must occur in pairs. In fact, for a
symmetric forcing, n(—z) is also an SPSWS if n(z) is an SPSWS. Hence, the number

of nonsymmetric solutions must be even. Figures 4.6 (a)—(b) show the graphs of
two symmetric SPSWS and two nonsymmetric SPSWS when ¢ = 2 and A = 3,

respectively. Two nonsymmetric SPSWS in Figure 4.6 (b) ure indeed antisymmetric.

etatxl

9
‘0
[
.
[
. (
‘ 5
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—

—_—

. —

{b)

Figure 4.6: (a) Two symmetric SPSWS of the sfKdV BVP when a =2 and A =3
corresponding to Lg; = 0.201436 (solid line) and Lo, = —0.793253 (dashed line). (b)
Two nonsymmetric SPSWS of the sfkdV BVP when a = 2 and A = 3 corresponding
to Loz = —0.0669117 (dashed line) and Los = —1.93309 (dot-dashed line).
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(iii) Moreover, we have found that there exist eight SPSWS to the sfkdV BVP
(3.4)—(3.5) when v = ~1 and a = 8. In this case, there are four turning points:
Ac, (= 0.3132), Ac,(= 0.3395), Ac,(= 1.3866), and Ac, (= 2.2545). Figure 4.7 (a)
shows the bifurcation diagram for 0 < A < 4 and Figure 4.7 (b) shows the local
bifurcation diagram for 0.3 < A < 0.4. Our numerical results have clearly demon-
strated the existence of two pitchfork bifurcations at the turning point Ac, (Figure

4.7 (b)) and Ac, (Figure 4.7 (a)).

-¢.%

Lo

lang-zz

{a)

S —

Lo

lamboe
(b)

Figure 4.7: (a) Bifurcation diagram of the SPSWS in the plane (A, Lo) for v = —1
and a = 8. (b) Local bifurcation diagram of the SPSWS near the first two turning

points.



42

All eight SPSW i
S are displayed in Figures 4.8: four symmetric SPSWS
(a)-(b)

and four nonsymmetric SPSWS (c)-(d)
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Figure 4.8: (a) Two symmetric SPSWS of the sfKdV BVP when a = 8 and A = 3

—2.96922 (dashed line).
—3.84921 (dashed line) and

Loy = —4.77441 (dot-dashed line). (c) Two nonsymmetric SPSWS correspond to

Los = —3.06691 (dashed line) and Los = —3.67532 (dot-dashed line).

—3.4566 (solid line) and Lg;

(b) Other two symmetric SPSWS correspond to Loz

corresponding to Lg;

(d) Other

—4.32468 (dashed line) and Los = —4.93309

two nonsymmetric correspond to Loy

(dot-dashed line).
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4.2 Analytical SPSWS for two local bumps

For two local forcings at z = —a and z = q, the forcing function can be approximated
by

f(z) = Pié(z + a) + Pd(z — a),
where a, Py and P; are constants. Since the forcing function is a generalized function,
we require that the SPSWS 5(z) of the sfKdV BVP (3.4)--(3.5) must be in C(R)

and possess at least the second order continuous derivatives in R except two singular

points z = —a and z = a at which it satisfies the following jump conditions:
nz(—a4) —n-(—a-) = P,/8, (4.13)
nz(as) —n-(a-) = P/B. (4.14)

The procedure of solving the sfKdV BVP (3.4)—(3.5) with the above forcing
and conditions is similar to that discussed in §4.1. All SPSWS in this case can be
expressed in terms of Weierstrass’ elliptic functions in the interval (—a, a) matched
by hyperbolic sech®-type of functions outside of that interval.

The SPSWS 7(z) of the sfKdV BVP(3.4)—(3.5) can be expressed by

n(z) = —%sech ’/E(T —Lg), for z < —a,
n(z) = —g—’\sechﬂ/ 4[;\ — L), for z > —a,

where the phase shifts Ly and L, are to be determined.

and

When —a < z < a, the SPSWS n(z) must satisfy the equation

An 4+ an® + By, = 0. (4.15)
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The continuity of 7 and the jump conditions of 1, at z = —a and z = a yields

n(—a4) = n(-a-), (4.16)

Ne(—a4) = n:(—a-) + P /B, (4.17)

n(a+) =n(a-), (4.18)

n-(ay) = n:(a-) + P/B, (4.19)

where

o =n(—a-) = 3\ sechﬂ/ (a + Lo), (4.20)

o = 1z(—a-) = \/——r]o tauh‘/ 4ﬂ (a + Lo), (4.21)

m=n(as) = %SGChQV '@(a - L), (4.22)

=n.(aq) = —\/——;im tanh\/}ﬂi(a - Ly). (4.23)

The first integral of (4.15) from —a to z (< a) satisfies
(1=)* = byn® + ban® + S, (4.24)

Here, by = ~(2a)/(38), b, = —A/B, and the integration constant S must be de-

termined. The continuity of 5 and the jump condition of 1, at £ = —a results
in
Py (P, + 2[310)
= .25
S o (4.25)
By making a transform 5 = ciu + ¢;, (4.24) is converted into
(ug)? = 4u® - gou — gs, (4.26)

where ¢; = 4/b;, ¢c; = —b2/(3b1), g2 = —bycz/cy, and g3 = — (b1} + back + S)/ct.

Here, g, is a constant and g3 is a function of Lo for given A, a,f8, and a. The
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general solution of (4.26) can be expressed in term of Weierstrass’ elliptic function

u = p(z + 7,92,93). Thus, when |z] < a, the SPSWS n(z) can be put in the form
n(z) = cip(z + 1,92, 93) + 2. (4.27)

Equations (4.20) and (4.21) are rewritten as

N = p(—a + 7, g2993) + cq, (4’28)
N P,
o = clp,(_a + 7,92,93) - _‘[71" (429)

Further, Weierstrass’ elliptic function p(z + 7, 92,93) in (4.28) can be rewritten as

ag'(r+a,g,93) —d
ap(z +a,g2,93) - d;

2
1 d
P(.’L‘ + rsg'.’ygS) = Z { } - p(l’ +a, g, g3) - -CTZ

where d; = 7o — P,/8 and d; = ng — ¢;. The continuity (4.18)of 1 and the jump

condition (4.19) of 7, at z = a results in a nonlinear system of equations:

m = nla), (4.30)
o= nx(a-)+%, (431)

where n(a_) and n:(a-) can be calculated from (4.27). This system determines two

phase shifts Lo and L,. Substituting (4.30)—(4.31) into (4.24) yields

. _ PSP

m= —m—- (4.32)

Eliminating n; and 7, from (4.30)-(4.32), one finally obtains one equation for L,

2 _ 2\ ?
BA(LO)sbm"(a-)+b2n2(a-)—(5—2%) =0 (4.33)

Any solution Lo of (4.30)—(4.31) satisfies (4.33). But, (4.33) may have extra zeros for
(4.30)—(4.31). Therefore, unlike the equation (4.11), (4.33) cannot give an explicit
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expression for discerning the bifurcation. However, (4.33) is useful to search for the
SPSWS of the sfKdV BVP. We first find all roots Lo of (4.33), then substitute each
root into (4.30) to solve for Ly, and finally confirm whether each pair of (Lo, L))
satisfies (4.31). Once such a pair of Lo and L, is found, we are able to construct an

SPSWS to the sfKdV BVP (3.4)—(3.5), which is expressed by

._%sechz\/:f—g(m - L), -oo<z<-—a,

(z) =9Q ap(z+71,92,93) +¢2, —-a<zr<a, (4.34)
—%sechz\/%(z -L;), a<zr<oo

One example is displayed in Figure 4.9 fora=1, P, = P, = 0.5 and A = 1.0.
In this case, by using Mathematica (cf. Appendix B), we find that the system of
(4.30)—(4.31) has four pairs of roots Lo, and L;: {-0.16443883, 0.16443883}, {-
0.5722933, 0.5722933}, {-0.21513488, 0.66210687}, and {-0.66210681, 0.21513506}.
Hence, the sfKdV BVP (3.4)—(3.5) has four SPSWS: two symmetric and two non-
symmetric. The two symmetric SPSWS shown in Figure 4.9 (a) are ordered and the

two nonsymmetric shown in Figure 4.9 (b) are mutually antisymmetric.
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Chapter 5

Stability of Forced Solitary Waves

We have shown analytically that there may exist multiple SSWS to the sfkdV
BVP (3.4)-(3.5). A natural and important question is which solution is physically
observable. The answe‘r to this question is related to the stability of these forced
stationary solitary waves.

It is worth remarking that Camassa and Wu have recently made remarkable
progress in the research on the stability analysis for forced stationary sech?-like
solitary waves [7]-[8]. Through the linear instability analysis, they identified three
different categories of forced stationary solitary waves, which occur in three different
parametric régimes called a periodic bifurcating régime, an aperiodic bifurcating
régime, and a supercritical stable régime. The steady state is unstable in the periodic
bifurcating régime and the aperiodic bifurcating régime. The steady state in the
supercritical stable régime is shown to be stable by means of nonlinear stability
analysis based on the Hamiltonian functional formulation. But, in general, the
stability and instability of the sfKdV SSWS seem difficult to be analyzed due to

their complicated structure.
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In this chapter, we investigate the stability of the sfKdV SSWS both analytically
and numerically. Following the nonlinear stability theory developed by Benjamin
[5], we will derive a criterion of nonlinear stability for forced stationary solitary
waves in §5.1. This criterion is easy to use for discerning the stability of an SSWS$
provided that the magnitude of the wave profile is known. Alternatively, numerical
simulations may be helpful in illustrating the features of the stability and instability
of the sfKdV SSWS when the mathematical theory fails to apply. In §5.2, we will
demonstrate numerical evidence for the stability and instability of supercritical sta-

tionary solitary waves forced by a rectangular bump and two local forcings described

in Chapter 4.

5.1 Theory of linear and nonlinear stability

5.1.1 Basic concepts of stability theory

Suppose that n,(z) is an SSWS of the sfKdV equation and an arbitrary perturbation
v(z) is imposed on the given initial state n,(z), the resulting motion n(z, t) is required

to satisfy the fKdV equation with the following initial and boundary conditions

™ + /\771- + 2(17777;- + ﬂrh'zr = fz:, -x<rIr< oo,t > 0, (5.1)
n(zx,t =0) = n,(z) +v(z), —o0<z < o0, (5.2)
n(£o0,1) = ny(foo,t) = n-(Foo,t) =0, t>0. (5.3)

If n(z,t) is decomposed into

ﬂ(z»t) = 7]:(3) + C(z’t)a
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then the perturbation {(z,t) of the primary motion 7,(z) must satisfy a homoge-

neous nonlinear equation with the corresponding initial and boundary conditions
G+ [(A + 20m,(2))¢ + aC? + ,BC,,L =0, —-co<zT<o00,t>0, (54)
(z,t=0)=v(z), —-oo<T<O00, (5.5)
((Fo0,t) = ((Foo,t) = (zx(Fo0,t) =0, t>0. (5.6)

The primary motion 7,(z) is said to be stable if {(z,t) remains arbitrarily small for

all future time provided that the initial perturbation v(z) is suitably small.

5.1.2 Formulation of linear stability

Linear stability analysis is based on the linearized equation of (5.4), i.e.,
¢+ [(A+ 20m,(2))¢ + BCee), =0, —c0< T <00,t>0 (5.7)

with boundary conditions (5.6). By separating variables

((e,t) = e”'r(2)
where o and r(z) may be complex, (5.6) and (5.7) reduce to

(A + 2an,(z))r(z) + Brzz(z)], + or(z) =0, —oo < T < o0, (5.8)
r(o0) = rz(£00) = ryz(+oo0) = 0. (5.9)

This is an eigenvalue problem of a third order ordinary differential equation. The
linear stability of 7,(z) is determined by the signature of the real part of o. Namely,
ns(z) is referred to as linearly stable, neutrally stable, or unstable if Re(o) is nega-
tive, zero, or positive, respectively. It is remarked that no statement can be made
for the nonlinear stability if 7,(z) is neutrally stable. However, this eigenvalue prob-
lem (5.8)-(5.9) does not seem to have been resclved. This leads us to search for

alternative approaches which will be discussed in the rest of this chapter.
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5.1.3 Criterion of nonlinear stability

To our surprise, the nox;linear stability analysis actually results in a simple sufficient
condition for the stability criterion. The concept of nonlinear stability is here inter-
preted in the usual Lyapunov sense. Precisely, suppose that the perturbed motion
¢((z,t) and initial perturbation v(z) belong to the Sobolev space H! where the norm
is defined by ||¢||? = [22,(¢* + (2)dz for any ( € H'. The SSWS 5, (z) is stable if
for any € > 0, one can choose a § > 0 such that ||{(z,?)||; < € for all timet > 0
provided that ||v(z)]|; < 6.

According to numerical results reported in the paper [40], an SSWS is stable if
the crest of the SSWS profile is lower than a certain height. This is actually true in
general. Following nonlinear analysis developed by Benjamin [5], we can prove the

following criterion for the nonlinear stability of the sfKdV solitary waves.
Theorem 8 Suppose that n,(z) is an SSWS of the sfKdV BVP (3.4)-(3.5). If
A+ 2a||ns)leo > 0, then n, is stable.

Proof: The proof of this theorem can be done by following the procedure reported

in Bona’s paper [6]. To do this, we first introduce a functional
1 2
H=g [~ [+ 2am) + 556 - B2
for the perturbation ((z,t) defined in §5.1.1. By a standard procedure, one can

show that dH/dt = 0 for all time ¢ > 0. In fact,

%ftl = _: (A +2am,)¢ + a(?] ¢dz — ﬂ/_i (z(ndz.

Integrating by part and using the boundary condition (5.6), we can rewrite the

second integral in the above equation as

T Gede =~ [T eatida
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This implies that

%iti = /_: (A +2am)¢ + a¢? + Bz] Gede.

Further, since ((z,t) satisfies (5.4) and (5.6), we have dH/dt = 0. Therefore, H is
invariant in time ¢.

Secondly, one can show the operator
1 [e]
Eiwkx+mmgﬁ—ﬁgyu (5.10)

is always positive definite under our assumption, i.e. there is a positive constant ¢,
such that

1 [ 2 2 2

5 [+ 2am)? - Bc]da 2 e ¢ IR,

2J-

since a < 0, 8 < 0and A +2an, > co = A + 2a||ns||lo > 0. Here, ¢; = min{co, —/3}.
We point out the difference between our estimate and Camassa and Wu’s one.

Indeed, the operator (5.10) can be put in another form

_;_/:’o [(,\ + 2am, )% + ﬂCCu] dz = %/ Az + ﬂ/ (——mC + Qu) cde.

For a forced stationary sech®-like solitary wave, they have a sharp estimate for the
second integral on the right hand side from elementary quantum mechanics (cf. [7],
pp. 443), which will results in a sharp conclusion.

The third step is to use Sobolev’s inequality [5]

“ C “l [
I ¢ llo< 3 (5.11)

to obtain the following estimates of the upper and lower bounds for the functional
H

el

375

o]

2 5.
33 ¢l IS, (5.12)

all S ——7= ¢ ICIPSHSM| ¢+
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where |[¢||* = [23, (*dz, The proof of the above Sobolev’s inequality is based on the
theory of Fourier analysis. In fact, suppose ¢ € H!, then ¢ € £? and (, € £?. The

Fourier’s transform of ( is defined as

(k)= [~ eme(a,0)de

and the inverse Fourier’s transform is defined as
R N Gl
Cat)= 5 [~ ek, tyak.
According to Parseval’s identity, the norm of ¢ in H! can be put in the form
¢ U= [~ 1+ k)IEPdk.

Now, using the Schwarz inequality, we get Sobolev’s inequality (5.11).
It is noticed that H < v(8) = 4 holds for all time ¢ > 0 if it holds at ¢ = 0 since

it is invariant in time ¢. Finally, we use this fact to establish the stability condition

for the sfKdV SSWS.
For simplicity, let us denote A(t) = ||¢||, and ™) = ||¢;||- Then, we have

38 = H-g [” [0+ 20m)0 + 20 da

II
< B)A®.
< 3\/_.A-i-)

Here, to get the last inequality, we have used Sobolev’s inequality (5.11) once again.

Solving this inequality yields

(4]

2 o] 4_ :
3—\/—55/1 ,3[ A 2,3( 3\/. )} . (5.13)

On the other hand, we have

B< F(A) =

D47 "" (A+ B)A? < . (5.14)
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Substituting (5.13) into (5.14) gives

. o Jal
6= (2 - Lhra) ar- Llw <,

Notice that F(0) = ,/—%1 and G(0) = G'(0) = 0. Also, we have G"(0) > 0 if

9c33
v < -{2—2. (5.15)

Two typical graphics of the function G(A) are depicted in Figure 5.1.

Following Bona’s arguments, we can conclude that there exists an A, for 4 small
enough such that A, approaches zero as 4 approaches zero and A < A, for all time
t > 0. In turn, there also exists a B, such that B, approaches zero as 4 approaches
zero and B < B, for all time t > 0.

Hence, by choosing é small enough such that both (5.15) and A2+ B? < A2+ B? <
€2 hold, we are able to establish the Lyapunov condition for the stability of an sfKdV
SSWS in the Sobolev space H!. Hence, n,(z) is stable.

In the following, we would like to make several remarks about this nonlinear
stability criterion.

Remark I  According to this stability criterion, the lower SSWS reported in our
paper [40] and discussed in Case I of §4.2 must be stable. These results have been
confirmed by our numerical simulations.

Remark Il It is also easy to prove another criterion by Theorem 8, which may

be used to discern the stability of the uniform flow on a shelf discussed in §6.3. Since

A+ 2allnl 2 /A2 +4a || f [l > 0,

following Theorem 8, we have the following corollary:
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Corollary Suppose that n,(z) is an SPSWS of the sfKdV BVP (3.4)-(3.5) and
M +4a | flleo> 0, then, n, is stable if

VA2 +4a|l flleo—A
” "h "ms 20 M

G(A)

-0.01}

-0.02p

(a)

G(A)
0.005
0.004
0.003¢p
0.002¢

0.001}

-0.001}

-0.002 ¢

(b)
Figure 5.1: Two typical graphics of the function G(A): (a)a = -3/4, 8= -1/6,y =
1/10,c0 = 1; (b) a = —3/4,8 = ~1/6,~ = 1/100;¢co = 1/2.
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Remark III  Following the proof of Theorem 8, we can also show that all
negative SSWS, if they exist, must be stable.
Remark IV This stability criterion only provides a sufficient condition for the
stability of an SSWS. It cannot be applied for the SSWS of the sfKdV equation which
does not satisfy the condition. For example, any SSWS of the sfKdV equation
with a negative forcing, i.e. f(z) < 0, does not satisfy this condition because of
A + 20}|7,]|le0 < 0 according to Theorem 5. Thus, this criterion cannot be applied
for the case of a nonlocal rectangular dent discussed in Chapter 4. The stability and
instability features have been illustrated by numerical simulations in our paper [14].
Remark V  The condition in Theorem 8 is simple and nice since we do not
specify the shape of the forcing and the structure of the forced solitary wave. In the
studies [32], {7] and [8], Camassa and Wu, Patoine and Warn restricted themselves to
sech?-like forced solitary waves. With these specifications, they provided a sharper
stability criterion which includes our results. Despite that our criterion is not sharp,
it is applicable to a large variety of supercritical forced solitary waves and forcings.
Hence, our criterion is a more general result.

Let us make a specific comparison of our results and Camassa and Wu’s ones

below. First, we look at the forcing defined by
flz) = ;—(u — 4) sech’z.

Here p is a parameter. This forcing was originally proposed by Wu [46]. In this

case, the fKdV equation assumes the form
N+ pune — 97]771' ~ Nzzz = fz
and the corresponding sfKdV equation admits a solitary wave solution

ns(z) = %sechzz.
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They proved that the above SSWS is stable when ¢ > 9 [7]. According to our
criterion, the above SSWS is stable when p > 12.

Another case is that
1 4
flz)= 1—80(12 — a) sech'z.

Here, a is a parameter. This forcing was originally studied by Patoine and Warn

(32]. In this case, the fKdV equation takes the form
N+ 40 — MNe — Nezz = f;
and the corresponding sfKdV equation admits a solitary wave solution

7:(z) = =a sech’z.

O =

They showed that this SSWS is stable when a < 6 [8]. According to our criterion,
this SSWS is stable when a < 4.

For the regions of 4 < 9 and a > 6 corresponding to the above two cases,
nonlinear stability analysis cannot be applied. Instead, they employed the method
of asymptotic perturbation to explore linearized instability analysis. By means of
this, they identified that forced solitary waves in the regions of y < 9 and a > 6
are unstable. However, in general, the stability and instability of the sfKdV SSWS
seems difficult to analyze due to their complicated structure. Thus, we seek for the
numerical method to explore the stability and instability of general forced solitary

waves in the next section.
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5.2 Numerical investigation of the stability

Computer simulation is very helpful to discern the stability features of the sfkdV
solitary waves. It may be used to verify the results obtained from mathematical
analysis. Besides that, by means of numerical simulation, one can see whether an
initial state is stable or unstable when mathematical theory fails to apply and how an
unstable state evolves. We have numerically shown that only one SPSWS is stable
and all others are unstable in the cases of one local forcing [40] and a rectangular
dent forcing [15]. In this section, we focus on numerical investigation of the stability
and instability of stationary solitary waves in response to two types of forcings: (i)
a rectangular bump and (ii) two 4-functions.

The fKdV equation (5.1) with a given SPSWS #,(zx) as the initial profile is
numerically solved up to a certain time ¢, (say, ¢ < 60). Naturally, numerical
results are approximations to the exact solutions with the error usually estimable.
The small perturbation due to the truncation error (or called the numerical noise),
which possesses waves of almost all wave numbers, is introduced to the system. If
the solution is stable in response to this type of perturbation, then it should he stable
in response to all types of perturbations. Therefore, we say that n,(z) is stable if
this initial profile remains almost the same shape as the time evolves. Otherwise, it

1s unstable.

5.2.1 Chan and Kerkhoven’s psuedo-spectral scheme

For the purpose of numerical simulations, the Chan and Kerkhoven’s psuedo-spectral
scheme [9] is extended to solve the fKdV IVP (5.1)-(5.3). This scheme was the most

effective and accurate shown by Nouri and Sloan [31] and originally designed to solve
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the KdV equation. The KdV equation is notorious for its fast propagation of waves
possessing large wave numbers which are associated with the numerical noise. By
using the Chan-Kerkhoven’s scheme, the propagation of numerical noise does not
occur seriously when a large integration interval and a small time step are taken

and the efficiency is not yet given up.

Equation (5.1) is integrated in time by the leap-frog finite difference scheme in
the spectrum space. The infinite domain in space is replaced by —L < z < L with
L sufficiently large and the periodic boundary condition n(—L,t) = n(L,t) holds for
any time ¢ > 0. For a convenience, we make a substitution X = wz/L + 7 so that
the solution in X is 2r —periodic and write s = n/L,u(X,t) = n(z,t) and w = su?.

Thus, the fKdV equation is rewritten as
3 d . -
U + Asux + awy + fsuxxx = sﬁ-f(s (X~-7)), 0< X <2rm,t>0. (516)

Then, the interval [0, 2n] is discretized by N+1 equidistant points Xo = 0, X3, ..., Xn-1,
XN = 2m so that AX = 2n /N, where N is always taken to be a power of 2. The
numerical approximation of u(Xj,t) is denoted by U(Xj,t). The discrete Fourier

transform of {U(X,,1)|7 =0,1,2,..., N — 1} is denoted by

-~ N-l . .
U(p,t) = C/LN Y U(X;, )N p o MM 41, M =1, (517)
J=0

where M = N/2 and i = /=1 is the imaginary unit. Taking the discrete Fourier

transform of (5.16) with respect to X, we get
Ud(p, 1) + Asipll(p,t) + aipW (p, 1) = Bs°ip°U(p, t) = ispF (p), (5.18)

where W (p, t) and F(p) are the discrete Fourier transforms of {W (X, t) = sU*(X;,t)}}¥"!
and {f(s~}(X; — m))}&"?, respectively. We adopt the leap-frog scheme to approxi-
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mate for Uy(p,t) in (5.18)

R Up,t + At) - U(p,t — At
Ou(p,t) » SR H AT = 8D,

and Crank-Nicolson scheme to approximate linear dispersive term p*U(p.1) in (5.18)

R Up,t + At) + U(p,t — At
P U (pt) ~ p° (p )2 (p )

Given U(Xj,t) and U(Xj,t — At) for 3 =0,1,2,..., N — 1, we are able to calculate
U(p,t + At) from (5.18) and obtain

1
1 —ifs3pAt
+iBs*pP AtU(p, t — At) — 2iAspAtU (p, t)

Up,t + At) = [0(p.t - A

—2iapAtW(p,1) + ispALF(p)|,

p=-M,-M+1,..M-1.
From {U(p,t + At) M7', approximate solution {U(X;,t + At)}Y ™! is resolved

by inverse Fourier transformation

1 M-1 ) ) )
—_— U(p,t + At)et=2m?/NX 5 =01, ., N=1. (519)
v R

Since the leap-frog schem is used, we need to specify the values at first two time

U(stt + At) =

steps. By refining the time step to A?/10, the values U at the time step At are

calculated by
Up,t) = U(p,t —0.1A1) + 0.1At[iBs*p*U (p, t — 0.1At) — idspU(p,t — 0.1At)
—iapW(p,t — 0.1At) + ispF(p)]
through 9 time steps from initial values assigned.

Based on the above scheme, a Mathematica program called sspsws.m (cf. Ap-

pendix C) is designed to solve the fKdV IVP (5.1)-(5.3). In order to implement
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the above algorithm using Mathematica and take advantage of its command for
built-in discrete Fourier transform, we change the indices j = 0,1,...,N — 1 and
p=-M,-M+1,.,M—-1tok=j+1and ¢g=p+ M + 1, respectively. Thus we
have V(q,t) for g =1,2,..., N — 1 in place of U(p,t) where

Vig,t) Z V(X;,t)e 2mitk=De-N2=D/N o =19 N, (5.20)
\/_
Similarly, we have V(k,t) in place of U(X],t) such that

V(k,t) = \/_ZV(q,t)ez”'(" D@-N2-D/N | =1,2,...,N. (5.21)

5.2.2 Numerical results

Let us illustrate our numerical calculations for two specific forcings below. All
numerical computations are implemented on an HP 9000/755 workstation in the
Department of Mathematics at the University of Alberta.
CASE 1. The forcing of a rectangular bump

In this case, all parameters are taken to be A = 1.5, a = -3/4, 8 = —1/6,
4 =1, and a = 1. The sfKdV BVP (3.4)-(3.5) has two SPSWS as shown in §4.1.2,
Case I (i). According to the nonlinear stability criterion, the lower SSWS must be
stable. This is confirmed by our numerical computation. Figure 5.2 (a) exhibits the
evolution of the lower SPSWS n{!)(z) (solid line in Figure 4.1 (b)). The norm of
¢(z,t) in {* space is depicted in Figure 5.2 (b).

It is also noticed that the wave resistance coefficient

— +oo l1d r+e ,
CDu(t) = — - fn;-d(l? = EE d.’lf, (522)

introduced by Wu [46], characterizes the energy balance of the wave evolution. This

quantity can be used to discern the instability feature of an SPSWS as well. Namely,
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the stationary solution %,(z) is said to be unstable if the wave resistance coefficient
Cp,(t) oscillates within computing time. Otherwise, it is stable. For a rectangular

bump forcing, the wave resistance coefficient Cp, (t) is simply written as
Cp,(t) = n(—a/2,t) - n(a/2,?).

Figure 5.2 (c) displays the curve of the wave resistance coefficient Cp,(t) versus
time t. Thus, this SPSWS is stable since the initial wave profile remains in the same
shape up to time ¢t = 50 and the curve of the wave resistance coefficient Cp, (1) is

almost flat. In the computation, we take L =8, Az = 16/512 and At = 0.01.

eta(x, t)
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tizeta |1
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(b)
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(c)

Figure 5.2:  (a) Evolution of the stable SPSWS 5{!)(z) corresponding to the solid
line in Figure 4.1 (b);  (b) The norm of {(z,t) in /? space versus timet; (c) The

curve of the wave resistance coefficient Cp_(t) versus time ¢.
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Figure 5.3 (a) displays the evolution of the higher SPSWS n{?)(z) up to ¢ = 25.
The plot domain in z space is (—=30,90). This SPSWS is unstable since the wave
profile changes the shape of initial state after a certain time step. The system evolves
into the stable state shown in Figure 5.2 (a) and generates a soliton advancing
along the upstream while a train of dispersive waves propagates away along the
downstream. In the computaticn, we take L = 30, Az = 120/512 and At = 0.01.
The package sspsws.m shown in Appendix C needs to be modified a little for the
domain (~L,3L) in place of (=L, L).

eta(x, t)

Figure 5.3:  Evolution of the SPSWS n{?)(z) corresponding to the dashed line in
Figure 4.1 (b).
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CASE II. The forcing of two é-functions
In our numerical computation for the case of two local forcings, we take all
parameters specified in 4.2, A =1, a=-3/4,8=-1/6, A =P, =05and a= 1.

Then the forcing function and its discrete Fourier transform are approximated by
f(2)=05[86(z+1) - é(z - 1)) and F(p) = 0.5pN cos(sp)/(2L).

As we have shown in §4.2, the sfKdV BVP (3.4)-(3.5) has four SPSWS in this case.
According to our numerical simulation, only one SPSWS is stable and all the others
are unstable. The results are displayed throughout Figure 5.4-8.

Figure 5.4 exhibits the evolution of the symmetric SPSWS 7{!)(z) (solid line in
Figure 4.9 (a)). This SPSWS is stable since the initial wave profile remains in the
same shape up to time ¢t = 50. In the computation, we take L = 12, Az = 24/512
and At = 0.01.

Figure 5.5 displays the evolution of another symmetric SPSWS 7{3(z) up to
t = 35. This SPSWS is unstable since the wave profile changes the shape of initial
state after a certain time steps. The system evolves into the stable state shown in
Figure 5.4, and generates a soliton advancing along the upstream while a train of
dispersive waves propagates away along the downstream. In the computation, we
take L = 40, Az = 80/512 and At = 0.02. To display the main character of the
wave propagation, we only plot the wave profiles in the space domain (—25, 40).

Figure 5.6 (a) displays the evolution of initial profile n(z,0) = n{3(z) up to
t = 60. Figure 5.6 (b) shows four profiles of wave propagation corresponding to
t =35, 15, 25, 35. Accc;rding to these numerical results, this nonsymmetric SPSWS
is unstable as well and it eventually evolves into the stable steady-state with only

some weak radiation downstream. In the computation, the infinite domain in space
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is taken as (—L,3L) to display the main character of the wave propagation, L =
20, Az = 80/512 and At = 0.02.
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Figure 5.4:  (a) Evolution of the stable SPSWS 5{!)(z) corresponding to the solid

line in Figure 4.9 (a); (b) The norm of {(z,t) in {? space versus time t.
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Figure 5.5: Evolution of the symmetric SPSWS n{?)(z) corresponding to the dashed

Line in Figure 4.9 (a).
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Figure 5.6: {a) Evolution of the symmetric SPSWS n{®)(z) correspoending to the
dashed line in Figure 4.9 (b). {b) Four wave profiles at time t = 5, 15, 25, 35.
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Figure 5.7 (a) displays the evolution of another nonsymmetric SPSWS up to
t = 60. Figure 5.7 (bj shows four profiles of wave propagation corresponding to
t=1, 10, 20, 30. According to these numerical results, this nonsymmetric SPSWS
is unstable as well and it eventually evolves into the stable steady-state with only
some weak radiation downstream. In the computation, the infinite domain in space

is taken as (—L,3L) to display the main character of the wave propagation, L =

20,Az = 80/512 and At = 0.02.
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Figure 5.7: (a) Evolution of the symmetric SPSWS 7{*)(z) corresponding to the
dot-dashed line in Figure 4.9 (b). (b) Four wave profiles at time t = 1, 20, 40, 60.
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It is clearly observed that there is a “basin of attraction” in the system. Indeed,
the system absorbs energy initially in generating the stable stationary wave in the
vicinity of the forcing. The terminology “the basin of attraction” is adopted from
Camassa and Wu's paper [7]. Besides the above, there is another interesting fea-
ture of the fKdV system. By observing Figure 5.5, we find that a single soliton is
generated by the external forcing and advances along the upstream while a train of
dispersive waves propagate away along the downstreamn. It is different from the pe-
riodic geuerétion of solitons, discovered by Wu and Wu [47], in transcritical region.
This leads us to conjecture that this fKdV system in supercritical region might also
generate one soliton running away along the upstream provided that the initial state
possesses enough mass. Figure 5.8 demonstrates another evidence of this conjecture,

which is to be studied further.
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Figure 5.8: Evolution of the initial profile n(z,0) = 0.8 7{?)(z) in the fKdV system.



Chapter 6

Solitary Waves on a Shelf

The study in this chapter is concentrated on free-surface waves of a steady open
channel flow over a shelf as depicted in Figure 6.1. The motivation of the study is
to reveal a qualitative description of wave motion in the ocean disturbed by a long
body steadily moving close to the seabed. The application of this problem may be
found in hydraulic and coastal engineering.

The sfKdV equation (3.1) is used to model this physical problem. Particularly,
the shelf forcing can be put in the form f(z) = (P/2)H(z), where P is a positive
constant representing t.,he height of the shelf and H(z) is a Heaviside unit step
function in dimensionless variables, i.e. H(z) takes the value 1 for £ > 0 and
vanishes for z < 0. The parameters a and (3 are negative constants.

By solving an sfKdV BVP, we have found that there are two branches of station-
ary waves: the solitary wave branch (§6.2) and the uniform flow branch (§6.3) [38].
For the first branch, an almost complete solitary wave profile is sustained on the
downstream shelf and a tail of a solitary wave, whose base is lower than that of the

downstream one, remains in the upstream flat bottom. There is a smooth transition
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Figure 6.1: The sketch of a stationary solitary wave on the shelf

region which connects the downstream solitary wave with the upstream tail. This
stationary solitary wave is different from the case of a solitary wave that surges
from an upstream deeper water zone to a downstream shelf and disintegrates into
a train of smaller solitary waves, which is a soliton fission problem, as first studied
by Madsen and Mei [23]. A second branch of uniform flow solutions can be found
analytically, which agree with the results obtained through numerical computation
by King and Bloor [18]. According to the criterion described in §5.1.2, this uniform
flow branch is stable, but, the numerical simulations await future research since the

package “sspsws.m” cannot work for non-periodic boundary conditions.
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6.1 Mathematical description

Let us first give a complete mathematical description of the problem. For the shelf
forcing, the boundary condition n(+o0) = b is required, where b is a positive con-
stant. Hence, the first order asymptotic approximation of the elevation of the free

surface and the boundary conditions satisfy the following sfKdV BVP

Az + 20 + BNzer = g’){,, —o<zr<o0,z#0 (6.1)
n(—oo0) =0, n(oo) = b, (6.2)
ﬂz(iOO) = nxz(:tco) = 0. (6.3)

Any solution 7(z) of the sfKdV BVP (6.1)-(6.3) must have the first order continuous
derivative for all z € R, i.e., n(z) € C! and the second order continuous derivative
for all £ € R except at z = U. Under this circumstance, integrating (6.1) and using

(6.2)—(6.3) yields
P

A+ ab® = 7 (6.4)
Therefore, there are two possible values for b, i.e.,
-2+ VA2 +2aP
by = 5 , (6.5)

if A2 > —2aP. It is easy to show that when b = b_, the sfKdV BVP (6.1)-(6.3) has

no bounded solution satisfying n(+o00) = b_.

Theorem 9 When A% > —2aP, the sfKdV BVP (6.1)-(6.3) has no bounded solu-

tion, which approaches b_ as r approaches co.

Proof: Suppose that n(z) be a bounded solution of the sfKdV BVP (6.1)—(6.3)

with n(4+00) = b_. By a standard procedure, integrating twice (6.1) and using
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(6.2)—(6.3), we have

2
n = ~55(W-+ )b ~np, z>0, (6.6)
where
— 27 .
W = A-2 ;\a+2al’. (6.7)

From (6.6), we have W_ + 1 < 0 for all z > 0. Particularly, W. 4+ b6_ < 0. This is a

contradiction with the fact W_ 4+ b_ = —3v/A? + 2aP/(2a) > 0.
Hence, we take only b, in (6.5) to search for the solutions of the sfKdV BVP

(6.1)-(6.3) for A > Ac = /—2aP and a given P. Before presenting two branches of
solutions to the sfKdV BVP (6.1)-(6.3) we would like to show that the value of any

solution n(z) at £ = 0 can be determined by the continuity of # and 7,.

Theorem 10 Suppose that n(z) is a solution to the sSfKdV BVP (6.1)—(6.3). Then,
forz <0,

n(z) = _3_’\.sech2 { vy [ ‘/i—i—arcsech\/—g—:n(o)l } , (6.8)

(o) = 2P =20)

where

Proof: It is well-known that, for z < 0,

n(z) = —ggsech2 {1/ [ Farcsech 3,\7] 0) }

Integrating (6.1)-(6.3) over (—o0,0) and (0,00) twice, respectively, then using
the continuity conditions of 5 and 7, at z = 0, we can get

A 2a
n(0) = by — Fbi 3Pbi'



-2
-3

Further, by (6.4), we have

b, (2P — \b
0 =n(0) = 'L(——:F—L)

Hence, the remainder of this problem is to solve a mixed initial value and boundary

value problem of the following first order differential equation

22 () = Wy = )by =), 2>0, (69)

7(0) = no, n(+00) = by, (6.10)

where 7o = (734 P — Ab2)/(3P) and W, = —2b, — (3))/(2a).

6.2 Solitary wave branch

We would like to find solutions with n(z) > b, for sufficiently large ¢ > 0. The
solution for sufficiently large z > 0 might be taken in the form

_ 1/2
n(z) = by + (W4 — by )sech? { [9’(—%&)] (z — L,)} .

However, we use the ODE solver in Mathematica called NDSolve (cf. Appendix D)
to search for this branch of solutions. Some solutions for given parameters a = —3/4
and 8 = —1/6 are displayed in Figure 6.2, which shows that the upstream flow is
a solitary wave tail and the downstream flow is an almost complete solitary wave
whose base is higher than that of the upstream solitary wave tail. There is a smooth
transition region where the upstream solitary wave tail is connected with the base
of the downstream solitary wave. This branch is referred to as solitary wave branch.

The existence of solitary waves on a shelf, although not rigerously proved math-

ematically, can be intuitively justified. It is well known that there exists a stable
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solitary wave in each single-layer free-surface flow at a supercritical speed. A bottom
obstruction, such as a shelf, only alters the shape of the solitary wave called the free
solitary wave, in the ﬁa;t channel, but does not completely remove it. The altered
solitary wave is considered to be a perturbation of the free solitary wave by the
obstruction as explained by Vanden-Broeck [43]. The existence of the free solitary
wave was mathematically proved by Amick and Turner [3], and was numerically

justified by Turner and Vanden-Broeck [42].

6.3 Uniform flow branch

By a standard procedure, under the assumption 5 < b,, integrating (6.9)-(6.10)

once yields the following solution for z > 0

_ _ 2| [a(Wy —by) Wi —no
n(z) = by + (by £./V+)csch { 5 z + arccoth _W+ b, | (6.11)

Therefore, an analytic expression for a second branch of solutions can be written

as
1](1‘.) sec { [1‘ ) arcsec 7o } ( 1 )

when ¢ < 0 and

- W 2 oW, —i,) Wy —mno
n(xr) = by + (by — W, )esch [‘/—_———Gﬁ z + arccoth W, b, (6.13)

when = > 0.
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Figure 6.2: (a) Solitary waves on the shelf for fixed P = 2 and different A =
v3,1.8,1.85,1.9. (b) Solitary waves on the shelf for fixed A = 1.5 and different

P=10,1.1,1.2
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Graphics of solutions on this branch are shown in Figure 6.3 for given parameters

= —3/4 and § = —1/6, which shows that the upstream flow is a solitary wave tail

and the downstream flow is an opposite solitary wave tail. Also, there is a smooth

transition region that connects the upstream solitary wave tail and the downstream

solitary wave tail. This branch is referred to as uniform flow branch. According to
Corollary in §5.1.3, all uniform flows must be stable since < b,..

The bifurcation diagrams in terms of the amplitude of two branch solutions
against the upstream velocity for fixed the height of the forcing and the height of
the forcing for fixed the upstream velocity are displayed in Figure 6.4 (a) and (b).
The dashed line stands' for the solitary wave branch and the solid line represents
the uniform flow branch. Figure 6.4 {a)~(b) demonstrates that (i) thc amplitude
of downstream solitary waves on the solitary wave branch is proportional to the
upstream velocity and inversely proportional to the height of the shelf is fixed; (ii)
the downstream elevation on the uniform flow branch is inversely proportional to

the upstream velocity and proportional to the height of the shelf.
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Chapter 7

Experimental Validation of the

sfKdV model

The flkdV model has been used often since 1984 to describe the motion of two di-
mensional free-surface waves of an inviscid and incompressible fluid flow over an
obstruction in a channel. The validity of this asymptotic model is a noteworthy
question and seems impossible to be proved analytically. Much evidence from com-
putational and experimental results has shown that the fKdV model is a good model
to within the error of less than 10% when the height of the bump is lower than half
of the upstream depth (cf. [21] and [36]). In this chapter, we investigate experimen-
tally stationary open channel flows over a bump to check the validity of the sfKdV
model for forced stationary solitary waves and hydraulic falls. The experimental
work on forced stationary solitary waves seems not appeared in literature before, al-
though analogue experiments for hydraulic falls were conducted by Forbes (referred
to as the critical flow there) [12] and Sivakumaran, et al. [41].

The experimental setup is described in §7.1. All experimental results and their

83
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comr:isons with theoretical results obtained from the sfKdV model for forced sta-
tionary solitary waves and hydraulic falls will be presented in §7.2 and §7.3, respece-
tively. Meanwhile, the uncertainty of the experiments is analvzed, which seems not

to have been reported in the previous literature.

7.1 Experimental apparatus

The experiments are performed in a top-open flume made of a steel frame with plass
windows on both vertical side walls and the aluminum bed about 7500 mm long, 650

mm deep and 465 mm wide in T. Blench Hydraulics Laboratory at the University

of Alberta (shown in Plate 7.1).

Plate 7.1 Experimental apparatus
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As shown in Figure 7.1, water is pumped into the head tank from the sump.
The water discharge Q is controlled by the pump and measured by a magnetic flow
meter (1 voltage/sec = 15 litre/sec). The velocity of the flow is then calculated by
Q/A, where A is the area of the channel cross section. A portable point gauge is
placed on the top frame of the flume to measure the depth of the water at different
cross sections along the center line of the flume.

In order to reduce the turbulence of the inflow, a portable gate with a streamline
lip is inserted in the flume about 4200 mm distance from the head tank and a
screen is placed in the middle of the portable gate and the sluice gite of the head
tank. This portable gate is also used to control the depth of the upstream inflow.
In addition, we put a piece of 2000 mm long, 465 1nm wide and 6 mm thick white
plastic board into the flume about 4100 mm distance from the head tank to diminish
the roughness of the original bed where there are many holes. To improve the inflow
and maintain the downstream supercritical flow, the plastic board is lifted up to
about 60 mm high above the original bed so that the length of the valid channel is
suitable for testing both forced solitary waves and hydraulic falls.

In our experiments, two different bumps made of clear plastic glass are used,
which are referred to as Bump I and Bump II, respectively. Both bumps are a
segment of a piece of cylindric pipe with the radius 7 = 31.5 mm. Bump I (flat
bump or nonlocal forcing) with the base length b = 46 mm and the height . = 10
mm is used for testing forced stationary solitary waves. Instead, Bump IT (high
bump or local forcing) with the base length b = 60 mm and the height i, = 22 mm
is used for testing hydraulic falls. The purpose of using a flatter cylindric segment for
testing forced stationary solitary waves is to reduce the effect of the flow separation

on the free surface. Instead, when testing hydraulic falls, a higher bump is used to
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avoid the occurrence of the downstream hydraulic jump.

7.2 Forced stationary solitary waves

In this section, let us illustrate the experimental results of supercritical forced sta-
tionary solitary waves and compare them with those obtained from the sfKdV model.

Meanwhile, the uncertainty of the experiment is also analyzed.

7.2.1 Experimental results

A series of experiments have been done for forced supercritical stationary solitary
waves. Plate 7.2 displays two pictures of two-dimensional supercritical stationary
solitary waves sustained on the bump, which are modelled by the sfKdV equation.
In (a) and (b), the flow has the same upstream depth H = 47 mm and the different
upstream Froude number F = 1.32 and 1.46. Here the upstream Froude number is
defined as the ratio of the velocity U of the upstream flow to the shallow water wave
speed /gl , i.e. F = U/v/gH. The flows at both upstream and downstream are
uniform. It is clear that the amplitude of the free surface decreases as the upstream
velocity increases for a fixed depth of the upstream flow. Indeed, the amplitude of
the free surface is 58 mm in (a) and 55 mm in (b). Also, a real water flow has a
nonsymmetric free-surface wave profile, ¥ e., the downstream free surface is a little
higher than the upstream. This nonsymmetric phenomenon might >e due to the
effects of sidewall friction and the flow stagnation points on the bump, but, the real
reason seems still not clear.

Further, Plate 7.3 (a) demonstrates another two-dimensional water surface in the

case of the upstream depth H = 34 mm and the Froude number F' = 1.48. Plate



7.3 (b) displays the three-dimensional picture of the free surface corresponding to

Plate 7.3 (a). Small ripples on the upstream free surface generated by the sidewalls
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Plate 7.2 Two-dimensional forced solitary waves: (a) I/ =47 mm, o= 132

(b) H =47 mm, F = 1.46.
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are amplified when the water flows over the bump. The fluctuation of water surface
becomes larger at the downstream. This fluctuation might also increase when the
discharge of the flow increases since the flow approaches to a state which is no longer
a potential flow. Despite the appearance of these uncertainties, the experimental
results we have obtained at least qualitatively demonstrate the basic features of

forced stationary solitary waves in cupercritical flows.

7.2.2 Comparison of experimental and theoretical results

To compare the results obtained from the sfKdV model and the experimental data

in §7.2.1, we may put the sfKdV BVP (3.4)-(3.5) in the laboratory coordinates:

(F =10+ g + BH e = -;—h'(:r‘), oo < 2 < 400, (T.1)

[

n*(£oo) = nl.(oo) = 0. (7.2)

Here, F is the upstream Froude number and H is the depth of the upstream flow. In
this section, & = —3/4, # = —1/6, and the forcing function h*(z") can be expressed

in the form:

Vit —z2—r 4 k., || <b/2,
h*(z*) =
0, otherwise,

where b and h. represent the width and height of the circle segment, respectively.

The radius of the circle can be calculated by the formula

o b% + 4h?
~ 8h?

This forcing is considered as a nonlocal one since the base of the bump is over

4.5 times of the height. Then, the sfKdV BVP (7.1)-(7.2) must be solved by the

numerical method since there are no analytical solutions available. An effective
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numerical scheme developed by Shen [34] is used here. To make the numerical
method and results self-contained, we briefly describe this scheme. For brevity, the
superscript ‘*’ of all variables are dropped off thereafter.

For z < —b/2, the solution of the sfKdV BVP (7.1)—(7.2) is expressed by

. 3H(F -1 | F—1
n(r) = .___(20(—lscch2 _4H2,B(r — L),

where the phase shift L is to be determined. We need to solve the BVP (7.1)-(7.2)

for > —b/2. Different solutions are distinguished by different values of the phase

shift Lo. To determine Lg, we solve the following initial value problem

_ @2 pigy =L _b
‘ b _ 3H(F-1) 2 _F—l 9
n ( 2) = oy sech 1073 (2 + 0) , (7.4)

L
b F - b F— b
(D) T ) o

up to b/2 for a trial value of Lo, and compute

w5 () [ (B )

The solution n(x) satisfies n(+o00) = 0 if and only if Br(Lo) = 0 and n(b/2) >0

for some Lo. If |Br(Lo)| < 1075, we consider this Lo as a numerical approximation
solution to Br(Lo) = 0. Using a do loop for Lo, a function Bp(Lo) versus Lo can
be plotted in the (Lo, Br(Lo)) rectangular coordinate plane. The number of the
intersections of the graph of the function Br(Lo) with the Lo-axis is equal to the
number of SPSWS of the sfKdV BVP (7.1)-(7.2).

Based on this scheme, a Mathematica program (cf. Appendix E) is designed to
solve the sfikdV BVP (7.1)-(7.2). We found that there are two branches of solitary

wave solutions for the bump we used. Figure 7.2 displays numerical solutions and
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experimental data corresponding to those in Plate 7.2 (a)~(b). All solid lines are
the solutions of the sfKdV model which are stable. The dashed lines represent the
solutions of the sfKdV model which are unstable. The dots are experimental data

measured by the point guage.
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Figure 7.2: Comparison of experimental and theoretical results: (a) H = 47 mm,

F =1.32 and (b) H = 47 mm, F = 1.46.
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The results obtained from the :"KdV model agree reasonably well with the ex-
perimental results, in term of the amplitude of the free surface. It is noticed that the
sfKdV model slightly underestimates the supercritical flows. This is different from
the case of transcritical flows and hydraulic falls, where both fKdV models slightly
overestimates th> amplitude of transcritica! waves [21] and the sfKdV model over-

estimates the amplitude of hydraulic falls [36], respectively.

7.3 Hydraulic falls

In this section, we first' report the experimental results of hydraulic falls, and then
compare the experimental results with the theoretical results from the sfKdV model

and the extended Rayleigh’s formulation due to Shen [36] and Miles [28], respectively.

7.3.1 Experimental results

As mentioned hefore, Bump Il is used for demonstrating hydraulic falls. This bump
is considered as a local forcing since the height of the bump is comparable with
the width of the bump. A hydraulic fall is a critical flow which is uniform at
both upstream and downstream. The subcritical flow at the upstream is changed
into the supercritical flow at the downstream when the flow falls over the bump.
The basic features of hydraulic falls can be characterized in terms of the upstream
Froude number Fy and the nondimensional downstream depth Hy,/H against the
nondimensional area of the bump A/H? (or the nondimensional height of the bump
h./H. When the discharge of the flow increases, the upstream water level rises
so that the nondimensional area of the bump A/H? decreases. We have observed

that the free surface of water is almost smooth everywhere both upstream and
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downstream when the discharge is not too large. Plate 7.4 (a) demonstrates a picture
of two-dimensional water surface in the case of the upstream depth H = 67.2 mmand
the discharge of the flow Q = 0.8 voltage. Plate 7.4 (b) displays the corresponding
three-dimensional picture. All experimental data are shown in Table 1. In this table,
the values H and Hj, are measured by the point guage and the discharge Q is read
from the magnetic flow meter. Due to the fluctuation of the income flow, the data
Q showing on the magnetic meter varies within a range about 4+0.099 voltage. We

take an average value of two extrem discharge recordings.

H (mm) Hy, (mm) @ (voltage)

55.1 19.0 0.5
59.2 22.8 0.6
64.7 25.3 0.7
©67.2 27.0 0.8
69.1 29.5 0.9
73.5 32.8 1.0
76.3 35.2 1.1
80.5 39.3 1.2
84.7 41.9 1.3
88.2 44.9 1.4
91.8 47.4 1.5
94.6 50.0 1.6

Table 1: Experimental data
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7.3.2 Comparison of experimental and theoretical results

For a compact (or localized) forcing, the forcing function can be approximated by
P5(z) in nondimensional variables, where P represents the nondimensional area
of the bump and &(z) is the Dirac delta function. The comparison between the
experimental results and theoretical results from two theoretical models: Rayleigh's
formulation developed by Miles [28] and the sfKdV model [36] will be illustrated in
this subsection. Through this comparison, we can conclude that the sfKdV model is
valid when A/H? < 0.25 and the corresponding physical phenomenon exists. This
conclusion confirms Shen’s previous results the sfkdV model is valid for ¢ < 0.7 [36]
since we can choose ¢ = (A/H?*)Y/*.

According to the extension of Rayleigh’s formulation and the sfKdV model, the
dimensionless quantity of the downstream depth can be approximated by

Hio . (V6A)}
7= 1 - (—1-1—2‘> (7.6)

to first order of (A/H?)%3, where A stands for the area of the obstacle and I is the

depth of the far upstream. For the value of Fi, Miles obtained ([28], (4.2))

i
FL=11- (-2?7’;—2-) (7.7)
while Shen had ([36], (90))
%
FL=1—% 59-1%) . (7.8)

Although, from the formal mathematical expressions, (7.8) is a linear approximation
of (7.7), it does not mean that (7.8) is a less accurate formula (see Figure 7.3).

Equations (7.7) and (7.8) can be rewritten in term of the dimensionless quantity
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Hd:/”s
F L=\2H 32 (7.9)
and )
_l( M
FL—4(1+ = ) (7.10)

On the other hand, by Bernoulli’s equation, we are able to obtain

_ l 2H},
Fr= HH+ Ha)' (7.11)

According to the experimental data, a detailed comparison is displayed in Figure

7.3-4. The experimental data for F, in Figure 7.4 are calculated by the formula

The comparison shows that the experimental results agree reasonably well with the

predictions by the theoretical models.

0.1¢

0 5.1 0.15 0.2 0.25 0.3 0.35

Figure 7.3: the comparison of the experimental and theoretical results for Ha,/H

against A/H?: the experimental data (triangle dots) and the theoretical prediction
(solid line).
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Chapter 8

Summary and Remarks

We started the dissertation with a derivation of the forced Korteweg—-de Vries (fKdV)
model for nonlinear long internal waves of a two-layer fluid flow in a closed channel
subject to external forcings. The fluids are assumed to be inviscid and incompress-
ible. The external forcing is an obstruction mounted on the bottom bed or the
top lid in the channel. The response of nonlinear long internal wave modes to the
external forcing of order €? is of order . The weak nonlinearity is of the second
order. There is a balance of the dispersion, the nonlinearity, and the forcing. Then,
the study primarily deals with the stationary forced Korteweg-de Vries (sfKdV)
equation. The main results can be summarized as follows. Analytic properties of
solutions to the sfKdV equation are discussed, which are useful in understanding
the diflerence among multiple forced solitary wave solutions and envisaging the bi-
furcation behavior of the boundary value problem for the sfKdV equation. When
the forcing is a rectangular bump/dent or two local forcings, supercritical solitary
wave solutions (SSWS) to the sfKdV equation can be expressed in terms of Weier-

strass’ elliptic functions in the site of the forcing matched with the solitary wave tails
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outside of the forcing. The existence of multiple SSWS is illustrated by depicting
complicated bifurcation diagrams. There are at most two SSWS for a rectangular
bump and more than two SSWS for a rectangular dent and two local bumps. A
criterion of the stability of SSWS is provided based on nonlinear stability theory de-
veloped by Benjamin. According to numerical simulations, only one SSWS is stable
and all the others are unstable. Solitary waves on a shelf are discovered by solving
a boundary value problem of the sfKdV equation. The uniform flows on a shelf
are analytically found, which agree with the previous resulis obtained by King and
Bloor through numerical computation. A series of experiments are implemented to
verify the validity of the sfKdV model for both forced solitary waves and hydraulic
falls. Experimental results agree reasor:ably well with the prediction from the sfkdV
model and shows that the sfKdV mode is a good model when nondimensional area
of the bump A/H? is smaller than 0.25. The application of these results can be
found in the areas of meteorology, oceanography, and other related fields.

Next, let us make some remarks for future studies in this area since there remain
many interesting and significant open problems. The first remark is about the
evolution of nonlinear long waves in the fKdV system. In transcritical region (AL <
A < A¢), the periodic soliton generation has been intensively studied since 1982. All
the studies have confirmed the remarkable numerical findings by Wu and Wu [47]
and the pioneering experimental work by Huang, et al. [16]. Besides this, we have
already learned from our stability analysis that a stable steady state always exists
in the supercritical region (i.e., A > A¢). According to our numerical simulations in
the supercritical region, when an initial state possesses sufficiently large mass, it can
always evolve into the stable stationary solitary wave sustained on the site of the

forcing. The excessive mass is radiated to infinity at both upstream and downstream.
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In particular, the mass in the system is redistributed to form the stable steady state
in the vicinity of the forcing, a soliton advancing ahead of the forcing, and a train
of dispersive waves propagating ulong the downstream. Usually, an unstable steady
state satisfies such an initial condition of sufficiently large mass. Obviously, this
wave phenomenon is different from that in transcritical region discovered by Wu
and Wu [47] and should be studied further.

The second one is on the bifurcation of multiple SSWS of the sfKdV equation.
In the sfKdV model, the forcing is classified into two categories: nonlocal and local
forcing. Here, “nonlocal forcing” means that the support of the forcing in the
physical problem is of comparable length with the length scaie L of the free surface
wave. The forced stationary KdV equation has more than two SPSWS for a nonlocal
forcing as we have shown in §4.1. Indeed, there may exist 2N SPSWS for an
arbitrary integer N when a and A are sufficiently large in the case of the well-shape
forcing. At the turning points from two SPSWS to four SPSWS, from four solutions
to six solutions, and so on, there may exist pitchfork bifurcations. In addition,
nonsymmetric solutions exist in response to the symmetric forcing and must occur
in pairs. For two local forcings, the sfKdV equation has also more than two SPSWS
for a nonlocal forcing as we have shown in §4.2. As of today, the bifurcation behavior
in this case is still unclear.

The third one is associated with the stability problem. Although Camassa and
Wu have made a remarkable progress on the study of the stability of forced smooth
solitary waves, in general, the stability of the forced stationary solitary waves is
very difficult to analyze since the structure of the SPSWS is complicated. For linear
theory, what must be overcome is to solve an eigenvalue problem of third order

ordinary differential equations. For nonlinear theory, other criteria are necessary to
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be developed so that more general cases of forcings can be treated. The approach
based on Hamiltonian functional should be paid more attention in this direction.

The final remark is on the existence of solitary waves on a shelf. The verification
of the existence of the shelf solitary wave as a solution of the Euler equation is still
an open problem. Two approaches may be taken for further studies. One is the
computational method developed by King and Bloor [18] and the other one is the
theoretical method expounded by Amick and Turner [3].
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Appendix A

L e e T P R T I LR 1 )
(» *)
($———-mommmmm e Program I rectbifsol.m —=——-~——-—---==- *)
(+ *)
(* This MATHEMATICA program "rectbifsol.m" is designed *)
(¢ to plot the bifurcation and solutions of the sfKdV BVP +)
(¢« with a rectangular bump or well-shape forcing discussed *)
(» 1in Section 4.1.2. *)
(= --written by Lianger Gong, May 7, 1994 *)
(* +)
L T T L I AL L A L L )]
(*+ Input the values of ‘gamma’ and ‘al’ first. Here, gamma #)
(* and al represent the height of the bump or the depth of #)
(* the dent and the length of the bump or dent, respectivelys)
alpha = -3/4;

beta = -1/6;

bl = -2%alpha/(3*beta);

b2[x_J}:= -x/beta;

b3 = 2#%gamma/beta;

cl = 4/by;

c2x_1:= -b2{x]/(3%b1);

u0

wilx_,t_]:=Sqrt{b2[x]]+u0lx,t]1*Tanh{Sqrt [0.25*b2[x]]#(0.5%al+t)];

g2

g3[x_,t_]:=-(b1*52[x]‘3+b2[x]‘02[x]‘2+b3#c2[x]-b3*u0[x,t])/(61'2):

hw
hw
hw
hw
bl
bi

(*
(*
(*
(*

(*
(*
pl

[x_,t_J:=-(b2[x]/b1)+Sech[Sqrt[0.25+b2[x]1#(0.5+al+t)]1"2;

[x_]:=-(b2[x]*c2[x]+b3)/c1;

1{x_,t_]:=WeierstrassP[al,g2[x],g30x,t]];
2[x_,t_]:=ci*WeierstrassPPrimelal,g2[x],g3[x,t1]-u1lx,t];
3[x_,t_J:=cishwilx,t]-u0[x,t}+c2[x];

4[x_, t_J:= 0.25+«(hw2lx, t]J/hw3[x, t))"2 - hwilx, tl;
O[x_, t_1:= cishwé[x, t] + 2%c2[x] -~ 2#u0O[x, t];

f[xi_, x2_, t1_, t2_1:= ContourPlot[blolx,tl,{x, x1, x2}, {t, t1,
PlotRange->{0, 0}, PlotPoints ->30, FrameLabel->{''lambda’,"LO"},
ContourShading->False, Contours->1, ContourSmoothing->True] ;

b10[x, t] defines the equation (4.11) in Section 4.1.1 *)
where x and t represent the cooresponding lambda and LO. *)
bif[x1, x2, t1, t2] plots the bifurcation diagram, where *)
xi=lambda_min, x2=lambda_max, t1=LO_min and t2_=LO_max. *)

Input lambda here. ‘pltb’ plots the curve of blO[lambda,t]*)
‘frt' finds a root LO of blO[x, t]=0 close to ti and t2. *)
tblti_,t2_J:= Plot[bl0[lambda,t],{t,t1,t2},PlotPoints—>30];

108
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fre(ti_,t2_]:= N[FindRoot [bl0[lambda,t]==0,{t, ti, t2}], 10];

(¢ The following section is designed to plot the solution *)
uwllx_,t_):=If[x<=-al/2,(-b2{lambda]/b1)
sSech[Sqrt[0.26+b2[lambdal)*(x-t)]~2,0];
urnlx_,t_]:=1f[x >=al/2,(-b2[lambdal/b1)
+Sech[Sqrt [0.25¢b2[lambda)]*(x-al-t)]~2,0];
urlx_.t.]:=I1f[x >=al/2,(-b2[lambdal/b1)
+Sech[Sqrt[0.26+b2[lambdal] #(x+t)]~2,0];
gvplx_, t_):=WeierstrassPPrime[x + 0.6%al,g2[lambdal, g3[lambda,t]];

gvilx_, t_J:=cteguplx, t] - uillambda, t];

gw2lx_, t_]:= WeierstrassP(x + 0.5%al, g2[lambdal, g3{lambda, t1];
gv3lx_, t_1:=cte gw2lx, t] - uO[lambda, t] + c2[lambdal;

gwalx_, t_1:= gw2[x, t] + (uo[lambda, t] - c2[lambdal)/c1;

gusix_, t_1:= 2.256%(gwilx, t)/gudlx, t1)"2 - gwalx, tl;

ulx_, t_1:= If[Absix] < al/2, clegwS(x, t] + c2[lambda], 0l;
us[x_,t.):=ullx,t]+ur[x.tJ+ulx,t]; (% symmetric solution %)
usn{x_,t_]:=ullx,t]+urr x,t}+ulx,t]; (*+ nonsymmetric solution )
(¢ ‘pts’ and ‘pltns’ plot the symmetric and nonsymmetric *)

(¢ solution in [x1, x2]. Input the value LO here. %)

pICS[xl_,xz_,ti_,tz_]:=Plot[{us[x,t1],us[x.t2]},{x,x1.x2},
PlotRange->{0, -3*lambda/(2¢alpha)},PlotPoints->35,
AxesLabel->{x, "eta(x)"},PlotStyle->{{GraylLevel{0],
Thickness[0.0005]},{Dashing[{0.01}],Thickness[0.0005]}}];
pltns(xi_, x2_, t1_, t2_]:=Plot[{usnix, t1]),usnlx, t2]},{x,x1,x2},
PlotRange->{0,-3#lambda/(2*¥alpha)},PlotPoints->35,
AxesLabel->{x, "eta(x)"},PlotStyle->{Dashing({0.02,0.01}],
Thickness[0.0005]},{Dashing[{0.01}],Thickness[0.000581}}];

(se+ssvessesssesssEnd of the program P T T I T TTII Y2 2 21 D)



Appendix 13

i AT DA A R A AL A A A AL A A A A add il adds
(*

($--—-mommmmm Program II del2bifsol.m —--=-—--w------s
(*

(+ This MATHEMATICA program "del2nifs.m" is designed

(¢ to find the roots LO and L1 and plot solutions

(¢ of the sfKdV BVP with a forcing of two delta functions
(¢ discussed in Section 4.2.

(* --Written by Lianger Gong, May 8, 1994
(*

("#“"#“‘#‘tt‘tt‘0““0“#“““‘“““‘tt#t“““.‘t‘.“.

(¢ First, set up an equation for LO ¢)

(*+ Input the values of ‘gamma’ and ‘al’ first. Here, gamma
(+ and al represent the height of the bump of the depth of
(* the dent and the length of the bump or dent, respectively

alpha = -3/4;

beta = -1/6;

b1 = -2%alpha/(3¢beta);

b2[x_]:= -x/beta;

wOlx_, t_J:= —(b2[x]/b1)*Sech[Sqrt[0.25+b2[x]11*(al+t)]"2;

utlx_, t_J):= Sqrt[b2[x]]+u0lx, t]*Tanh[Sqrt[0.25+b2[x]1]*(al+t)];

s[x_, t_.1= ple(pl + 2sbetasuilx, t])/beta”2;
cl = 4/by;

c2[x_):= -b2[x]/(3%b1);

difx_, t_l:=utlx, t] + pl/beta;

d2lx_, t_):=u0lx, t] - c2[x];

g2lx_1:= -(b2[x)*c2[x])/c1;

g3lx_, t_]:= ~(b1sc2[x]"3+b2[x]Isc2[x] 2+slx, t])/(c172);
hwilx_,t_]:= WeierstrassP[2#al,g2[x],g3[x,t]1];

hw2lx_,t_1:= cisWeierstrassPPrime[2+al,g2[x],g30x,t]]-d1lx,t];

hw3lx_, t_J:= cishwilx,t] - d2[x, t];

hw4[x_,t_]:=o.25tc1t(hw2[x,t]/hw3[x,t])‘2—c1thw1[x,t]—d2[x,t]+c2[x];

hws[x_, t_]:=(pr-2 - s[x, tl*beta~2)/(2¢pr+beta);
b10[x_, t_):=hws[x,t] 2-bishwslx,t]~3-b2[x]*hwé[x,t]"2;

¢)
.)
+)
.)
*)
.)
*)
*)
*)
.)
+)

*)
*)
*)

(* Input pl and pr here. ‘pltb‘’ plots the curve of *)
(+ blo[lambda, t] and shows possible locatiomns of L. *)

pltb[tl_,t2_]:=Plot[b10[1ambda,t],{t,tl,t2}.PlotRange->A11.PlotPoint8->30];

(¢ ‘f1t‘ search for an approximate root LO close .)
(* to t1 and t2 for a fixed lambda. *)

1o
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21t [t1_,t2_]:= N[FindRoot[bl0[lambda,t]==0,{t,t1,t2}],7];

(¢ Second, search for L1 )

w2lx_, t_3:= -(b2[x]/b1)sSech(Sqrt[0.26+b2[x]]¢(al-t)]"2;

uslx_, t_1:= -Sqre{b2[xJ]su2[x, t]eTanh[Sqrt[0.26¢b2[x]]¢(al-t)];
srilx_, t_3= u2{lambda, t] - hv4[lambda, x];

sr2[x_, t_1= u3[lambda, t]J-(pr-2 - s[lambda, x]sbeta"2)/(2¢prebeta);
(¢ Input LO ‘pltr’ plets the curve of sri[t, Lol *)

(*+ and label the possible location of L1. *)

pltrlti_,t2_]:=Plotlsr1[L0,t],{t,t1,t2}, PlotPoints->50];

(¢ ‘frt’ finds a approximate L_1 root of sri[LO, t]=0 close %)
(¢ to t1 and t2 for a fixed lambda and check sr2(LO, L1}=0 ¥)

frelti_, t2_):= N[FindRoot[sri1[LO, t]==0, {t, t1, t2}], 8];
(¢ The final paragraph defines an analytic solution *)
uwllx_, x1_):= If[x <= -al, (-b2[lambdal/b1)

+Sech[Sqrt [0.25¢b2[lambdall*(x - x1)]~2, 0J;

If{x > al,(-b2[lambdal/bl)
+Sech[Sqrt[0.26+b2[lambda]]*(x - xr)]"2, 0];

urlx_, xr_]:

guplx_, x1_]:=WeierstrassPPrime[x + al,g2[lambda), g3[lambda,x11];
gwilx_, x1_]:=cteguplx, x1] - uillambda, x1]- (pl/beta);
gw2[x_,x1_]:=UeierstrassP[x+a1.g2[lambda],g3[1ambda,x1]];

gwdlx_, x1_J:=c1# gw2[x, x1] - uo[lambda, x1] + c2[lambdal;
gvalx_, x1_J:=cisgw2lx, x1] + uo[lambda, x1] - 2¢c2{lambda);
gvws[x_,x1_1:= 0.25%c1s(gwilx,x1]1/gw3[x,x1]) "2-gw4[x,x1];

ulx_, x1_.):= If[ -al< x <= al, gwb[x, x13, 0];
uslx_, x1_, xr_J:=ullx, x1] + urlx, xr] + ulx, x1];

(+ ‘plts’ and ‘pltns’ plot symmetric and nonsymmetric SPSWS. %)

pitsxi_, x2_]:=Plot[{us[x, x11, xril,uslx, x12, xr2]},{x,x1,x2},
PlotRange->{0,—3t1ambda/(2¢a1pha)},PlotPoints->35,
AxesLabel->{x,"eta(x)"},PlotStyle->{{GrayLevel[0],
Thickness [0.00u5]},{Dashing[{0.01}],Thickness [0.0005]}1}];
pltns[xi_, x2_):=Plot{{usix, x13, xr3],uslx, x14, xr4l}, {x,x1,x2},
PlotRange->{0,-3*lambda/(2*alpha)},PlotPoints->35,
AxesLabel->{x,"eta(x)"},PlotStyle->{{Dashing[{0.05,0.01}],
Thickness [2.0005]},{Dashing[{0.01}],Thickness [0.0005]}}];

(sssesnsenessdss*ssEnd of the programm SRS EREERREREE SRR RSN R RNk E )



Appendix C

(“‘."t‘..t.“‘0‘.."t.t‘#““t‘t“““t‘.‘O..“‘t“‘.‘t.“‘)

(» *)
(essvssessssss  PACKAGE NAME: sspsws.m PHESEEISSITIOIS)
(s *)
(* This MATHMATICA code solves the fKdV IVP of +)
(s *)
(e D([u,t]+lambdas*D[u,x]+2¢alphasusD[u,x] *)
(» +beta*D[u,{x,3}] = D[f, x], t>0, -L < x <L *)
(+ *)
(s u(x, 0)=vix), *)
(= *)
(* using the spectral method. *)
(+ *)
(+ Modified by L. Gong *)
(+ Written originally by S. S. Shen *)
(+ Department of Mathematics *)
(* University of Alberta *)
(+ R. P. Manohar and L. Quinlan *)
(* Unjversity of Saskatchewan %)
(* April 1994 .)
(* E-mail:lgong@parabolic.math.ualberta.ca *)
(* *)

e e A R A A A I L R AL A AL D)
BeginPackage["sspsws ‘"]
sspsws::usage = "sspsws solves the equatioa using mslastres time steps"”
conser::usage = "conser[mi] checks the conservation of mass at time t=mi"
plt::usage = "plt[m3] plots the solution u(x,t=m3) at a fixed time t=m3
where x is in grid point value and the cdw curve"
pltx::usage = "plt[m4] plots the solution u(x,t=m4) at a fixed time t=mé
where x is in recal x value”
plt3d::usage = "plt3d[x3] plots the 3-Dim graph of u(x,t) in (x3,L) and
for t running from t=0 to t=lastresand the norm of
perturbation in 12 against t”
anifKdV::usage = "anifKdV animates the 2-Dim u(x,t) wave
from t=1 to t=lastres”
pltcd::usage = "pltcd plots the C_Dw curve against time t"
pltr::usage = "pltr plots the error between u(x,t) and v(x)
in 12 space against time t"

<<sspsws.dat;
Begin["‘Private’"]

(##xs+2s%33% Begin Computational Procedures FRRREEEESEIE)
fourier{g_List]:=Block[{k,n,a},
n = Lengthlgl;



a = Table[(-1)~(k-1)gl[k]],{k,1,n}];
InverseFourier[a]
]; (vend of fourier Blocks)

invfourier{gt_List]):=Block{{k,n,a},
n = Lengthlgtl;
a = Fourier(gt]:
Table{(-1) " (k-1)al(k1],{k,1,n}]
J; (send of invfourier Blocks)

(+sesws Calculating one time step for ut at t+deltat *ssssss)
stepfumt_List,ut_List,wt_List]:=
Block({j.q,n,a,t1,t2,t3}, n = Lengthlutl;
t3=Table[If[Abs[2¢(j-1)/n-1]1< 0.5*al/l,
pamma,0.0],{j,1,n}];
ft=fourier[t3];
Do[ti = g - n/2. - 1;
t2 = N[1/(1.-betasdeltat*s 3*I%t173)];
alq] = t2+((1+betavdeltatsl¢s 3¢t1"3)sumt[{ql]
-2.slambdasdeltat*s¢Istisut [[q]]
-2.+alphasdeltatsIstiswt[[q]]
+ 2¢deltatelssetisft[[qll),
{q,1.n}]; (*end of Do loop*)
Tablela[j],{j,1,n}]
J; (%end of step Blocks)

tsteps [nsteps_]:=Block[{j},
Dolw = s u~2; wt = fourier([w];
upt = steplumt,ut,wt];
up = invfourier[upt];
umt = ut; ut = upt; u = up; (*updating lists*)
time = time + 1; (*updating time variables#)
tottime = deltat + tottime;
1f [Mod[time-1, timesave]==0,
(sthen#*) Print[tottime];
<<"!rm intres'; save,
(velse*) Continuel,{j,1,nsteps}];
(*end of Do loop*)
1; (send of tsteps Blocks)

init:=Block[{t1}, time=tottime=0.;
s=N[Pi/1]; wO=s * u0~2; Clearl(ql;
umt=fourier [u0]; wmt=fourier[w0]; Clear(ql;
deltat=deltat/initfac ;
£0=N[Table[If[Abs[2#(j-1)/n-1]1<0.5%al/1,gamma,0],{j,1,n}1];
f0t=fourier [£0];
ut=Table[umt [[q]]+deltat*N[I*s*(q-n/2-1)*f0t[[q]]
-lambda*I*s#*(gq-n/2-1)sumt[[q]]
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-alphas¢l¢(g-n/2-1)%wmt[[q]]

+beta*I*((q-n/2-1)"3)sumt[[q])*s"3],

{q.1.,n}]; Clearlql:

u=invfourier{ut]; tottime=tcttime + deltat;

tsteps[initfac - 1);

deltat= initfac * deltat; umt=fourier[u0]; time=1;
J; (send of init Blocks)

msteps:=Block[{i}, Do[tsteps([m]; end = ToStringlil;

If{i > 9,

(#thens) file = Stringloin["res',end],

(%else+) file = Stringloin{"res0",end]];

reu = Relu]:
Save[file,reu,tottime,lambda,deltat,cwd],
{i,firstres,lastres}]; (%end of Do loop*)

]; (¥#end of msteps Block#)

sspsws:=Block[{},
If [firstres==0, (#then*) Return[Print["If first run, data file is
not loaded; if sup run, value for firstres is missing."]])
1
If [firstres==1, (*then%) init,
(*else*) <<intres;
u = invfourier[ut];
1;
msteps;
1; (*end of sspsws Block®)

save:=Save(["intres',1l,lambda,n,m,alpha,beta,p,
deltat,s, timesave,tottime,time,umt,ut]
(##++++End of Computational Procedures Sections¢sss+)

conser [mi_] :=Block[{ },
sufx=ToStringlmi1];
If{ ml < 10,result=StringJoin["res0",sufx],
result=StringJoin[“res",sufx]
1
Get[result];
sumlreu[[i]],{i,n}]
3

(s**#2x3*%+End of Conservation Law Verificationsssssssss)

plt[m3_]:=Hodu1e[{temp1,temp2,t1,t2.t3,t4},
sufx=ToString [m3];
If[ m3 < 10, resu1t=StringJoin[“resO",sufx],
result=StringJoin["res", sufx]
1;
Get [result];
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1n

templ = Min[reul;
temp2 = Max[reul;
t: = N[tottime - deltat,4];
t2 = ToStringlti];
t3 = ToString(lambdal;
t4 = StringJoin["time=",t2," lambda=",t3];
ListPlot(reu,PlotJoined->True, PlotRange->{templ,temp2},
PlotLabel->t4, Frame->True,
FrameLabel->{"x (in grid point)","eta(x,t)"}]

1
(¢ End of 2-Dim Plot at t=m3 Section (in grid point) ¥)

pltx[mé_):=Module[{templ,temp2,t1,t2,t3,t4},
sufx=ToString(m4];
1£[ m4 < 10,result=StringJloin{"res0",sufx],
result=StringJoin["res",sufx] };
Get[result];

templ = Minl[reu); temp2 = Max(reu];
t1 = N[tottime - deltat,4];

t2 = ToStringltil;

t3 = ToString[lambdal;

t4 = StringJoin["time=",t2," lambda=",t3];
xvalues=Table[N[(i-n)#2¢1/(n-1) + 1], {i,1,n}];
plotxlist=Table[{xvalues[[i]], reul[i]]},{i,1.,n}];
ListPlot[plotxlist,PlotJoined->True,
PlotRange->{templ,temp2},PlotLabel->t4,
Frame->True,Axes->False,
FrameLabel->{"x","eta(x,t)"}]

]

(+ End of 2-Dim Plot at t=m4 Section (in x value) #)

plt3d[x3_]:=Module{{i, j, tabplot3d},

cwd=err=Table[0.0, {i, 1, lastres}];d=Table[1, {i,1,n}];

xit=Table[N[(i-n)*2#1/(n-1) + 1], {i,1,n}];

uwit=Table[{xit[[i]1], wol[il]},{i,1,n}];

pgl0)=ListPlot[uit,PlotJoined->True, AspectRatio->1.2,
Axes->False, PlotStyle->{Thickness[0.001]},
PlotRange->{Min[u0], lastres + Max[u0]},
DisplayFunction->Identity];

Dol sufx=ToStringlil];
1£[i<10,result=StringJloin["res0",sufx],
result=StringJoin["res",sufx] J;

Get[result];
err[[i]J]=Sqrt[Sum[(reul[j1]1-u0[[j11)"2,{j.1,n}]/n];
ewd[[il]=reul[1+n*(1-0.6%al)/(2+1)]]
~reul[[1+n*(1+0.5%al)/(2+1)]];
xvalues=Table[N[(i-n)*2#1/(n-1) + 1], {i,1,n}];
umarch=Take[reu,{1, n}] + i d;
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xulist=Table[{xvalues{[j]],umarch((j1]},{j.1.n}];
pglil=ListPlot[xulist, PlotJoined->True, AspectRatio->1.2,
Axes->False, PlotStyle->{Thickness[0.001]},
PlotRange->{Min[u0], lastres + Max[uO]},
DisplayFunction->Identity],{i,1,lastres}];
Clear[i]; tabplot3d=Table(pglil,{i,0,lastres}];
Show[tabplot3d,Frame->True,
PlotRange->{{x3,-x3},{Min[u0],lastres+2}},
FrameLabel->{"x","t", "eta(x, t)", ""},
DisplayFunction->$DisplayFunction J;
]

(s*es% End of 3-Dim Plot Section s*¥ssssssssssss)

pltcd:=Module[{i, j, tabplot3d},

cwd=Table[0.0, {i, 1, lastres}];

Dol sutx=ToStringlil;
I1£[i<10,result=StringJoin{"res0",sufx],
result=Stringloin["res”,surx]];

Get[result]; cwd[[ill=reul[[1+n¢(1-0.5¢al)/(2¢1)}]]
-reul[ [1+n#*(1+0.6%al)/(2+1)1],{i,1,lastres}];

t5 = StringJoin["t"];

t6 = StringJoin["C_Dw"];

cwp=Table[{i, cwd[[i11}, {i, 1, lastres}];

ListPlot [cwp,PlotJoined->True,AxesOrigin->{1,-0.4},

AxesLabel->{t5,t6}, PlotStyle->{Thickness[0.001]},

PlotRange->{-0.5, 0.8}]
]

(#+%** End of C_Dw 2lot Section SEEEBSSEIFUOEES)

pltr:=Module({i, j, tabplot3d},

err=Table[0.0, {i, 1, lastres}];

Dol sufx=ToStringlil;
1£[i<10,result=StringJoin["res0",sufx],
result=StringJloin["res",sufx]];

Get[result]; err[[il}=Sqrt[Sum[(reul[j11-u0l(jl])"2,

{j, 1, n}¥l/nl,{i,1,lastres}];

ListPlot[err, PlotJoined->True, AxesOrigin ->{1, -0.1},
AxesLabel->{"t","|lzeta 1"},
PlotStyle->{Thickness[0.001]},PlotRange->{-0.2,0.3}]

]

(s**#** End of Error Plot Section FEEARBBERERERNE )

<<Graphics‘Animation’
anifKdVimin_,max_J:=
Module[{i,tabanimation},
Dol sufx=ToStringlil;
1£[i<10,result=StringJoin["res0",sufx],
result=Stringloin{"res",sufx]];



Get[result];

xvalues=Table[N[(j - n)*2¢1l/(n-1) + 11, {j,1,n}];

anilist = Table[{xvalues[[jl], reul{3j1]}, {j,1.,n}];

glil=ListPlot[aniligt ,PlotJoined->True,
PlotRange->{min, max},

DisplayFunction->Identity],{i,1,lastres}];

Clear(il;

tabanimation=Table[glil,{i,1,lastres}];

ShowAnimation[tabanimation,
AnimationFunction:>$AnimationFunction]

]

(¢ees End of Animation Procedures Section sss%)

End[ ]
Unprotect[anifKdv]
EndPackagel ]

(..“‘tt.‘“O.‘*‘*t‘..“““““““““*““‘tt‘t“*“‘tt)

(€22 *8%)
(sse FILE NAME: sspsws.dat %)
(€12] s34)
(SHEIBSUBSHEIESESFE SRR RRIEFIEEEE RIS IS LERSSER R EER IS 4)
(s This file supplies the parameters and initial data *)
(* for the running sspsws.dat *)

(".‘.0"t“00"#‘.““‘t“#“““'Ott““t‘t““t“t““‘)

alpha = -3/4;beta = -1/6;

gamma=1.0; (#The forcing amplitude *)
lambda = 1.5;al1=1.0;

n = 612;1 = 8.0;

deltat = 0.0%;

m = 100;

firstres = 1;

lastres = 50;

timesave = 100;

waveheight = 1.0;
initfac = 10; (#The first step is divided into initfac sub-stepss)

(#+The following is the definition of the initial profiless)

bl = -2+alpha/(3sbeta);

b2[x_]:= -x/beta;

b3 = 2¢gamma/beta;

c1 = 4/bi; c2{x_]:= -b2[x]/(3%b1);
wolx_,t_):=-(b2[x]/b1)*Sech[Sqrt[0.26+b2{x]1*(0.5#al+t)]"2;
utlx_,t_J:=Sqrt[b2[x]]*u0[x,t]*Tanh[Sqrt [0.26%b2[x]1]#(0.5*al+t)];
g2[x_J:= -(b2[x]sc2[x]J+b3)/c1;

g30x_,t_):=-(blec2[x]"3+b2[x] *c2[x]"2+b3*c2[x]-b3*»u0[x,t])/(c172);



x01=0.601316225;

ullx_):= I1f[x <= -al/2, (-b2([lambdal/b})
‘Sech[Sqrt {0.26%b2[lambdal)s(x - x01)]°2,0];

urlx_J:= If(x >= al/2, (-b2[lambdal/b1)
sSech[Sqrt[0.25%b2[lambda))*(x + x01)]°2,0];

gvplx_):=VWeierstrassPPrime[x+0.5%al,g2[lambdal ,g3[lambda,x01]];
gwilx_J:=cleguplx) - uillambda, x01];
gv2lx_]:= WeierstrassP[x + 0.5+al, g2[lambda],g3[lambda, x01]];

gv3lx_]:=clegu2[x]-u0[lambda,x01]+c2[lambdal;
gwv4lx_]:= gw2[x] + (u0[lambda, x01] - c2[lambdal)/cy;
gws[x_]:= 0.26%(gw1lx]/gw3lx])-2 - gwslx];

ulx_J:=1¢[Abs[x]<al/2,c1¥gus[x]+c2[lambda],0];
us{x_]:=ul [x]+urixJ+ulx];
u0=Table[us[1+(2#(gq-1)/n -1.)], {q,1,n}];

(ssessssssss¢ End of the data file I T I T IR 2 R R 2 1 D]
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Appendix D

(‘O“..O...".'.".Ot..‘...‘tt.‘.“‘0‘0#.“‘.““‘t‘.‘.“‘.‘)

(s +)
(0-—--mommmmrmm e PROGRAM 1V shbifsol.m ——-—=~-—=--=—>—~ *)
(e )
(¢ The Mathematica program "shbifsol.m" is designed *)
(¢ to plot the solutions and bifurcation diagrams of *)
(¢ the sfKdV BVP (6.1)-(6.3) discussed in Chapter 6 *)
(* *)
(o ~-Written by Lianger Gong, May 18, 1994 *)
C *)

(O“““‘“““““‘ttt"““““t‘*t‘tt““t““‘t#“t“‘tt)

(» The following section contains the input of all *)
(¢ parameters and functions being used in the computation. *)

alpha = -3/4; beta = -1/6;
(» s[] defines b+ for given parameters lambda and P %)

u{lm_, p_] := Sqrt[ 1m"2 + 2 alpha pJl;
e[1m_,p_J:=(-1m+Sqrt [1m-2+2¢alpha*p])/(2%alpha); (* q[] defines eta(0) ¥)

rlim_,p_Jl:=s{im, pl (1 - (p + 1Im s[1m, p] }/(p 3));
qllm_,p_]:=ArcSech[Sqrt[-r[1m,pl*(2%alpha/(3¢1lm))]1/Sqrt[-1m/(4+beta)l;

(+ plt1{] plots the solution for all x < 0 *)

gllim_,p_,x_):=-(3+1m/(2+alpha))*(Sech[Sqrt[-1m/(4+beta)]*(x-q[1m,p])1)"2;
pltilim_, p_J:=Plot[gllim, p, x1, {x, -3., O},
PlotRange->All,PlotStyle->{Thickness[0.003]}];

(» plt2[] plots the solution for x > O on the second branch *)

elim_, p_l:= -2 s[im, pl - 3 1m/ (2 alpha);

vilm_, p_J:=Sqrtl(c(im,pl-r(im,pl)/(clim,pl-s(im,p})];

grullm_,p_,x_]:=3%ullm,pl*((CschlArcCothlv[lm,p]]

+Sqrt[ullm,pl/(-4sbeta))*x])~2)/(2*alpha)+s[im,pl;

pit2[im_,p.J:=Plot[grullm,p,x],{x,0,9},PiotRange->All,
PlotStyle->{Thickness[0.003]}];

(» p1t3[] plots the solution for x > O on the solitary wave branch *)
sol[1lm_,p_] :=NDSolve[{lm y[x]+alpha y[x]ey[x]+beta y’’[x1-p/2.==0,

y(0)==r[1m, pJ,
y' [0]==Sqrt[-1m/betalsTanh[Sqrt[-1m/(4*beta)]



+q[1m,pller(im,pl). y, {x,0,14} J1;
plt3[im_, p_]:= Plot[Esaluate[y[x]/.soll1lm, p]].{x,0,14},
PlotStyle->{Thickness[0.003]},PlotRange—>A11];

(% The following section includes plotting figure 6.2 *)

figas = Show[plt1[1.9, 2],plt3[1.9, 2], pit1[1.85, 2], p1t3[1.85, 2],
pltil1.8,2],plt3[1.8,2],ple1[Sqre[3],2],p1t3[Sqrt(3],2],
AxesLabel->{"x", "eta(x)"}];
tigbs = Show[plt1[1.5, 1.0],p1t3[1.56, 1.0],plt1{1.5, 1.1],
pit3[1.5, 1.1], pltil1.5, 1.2], p1t3[1.5, 1.2],
AxesLabel->{"x","eta(x)"}];

$DefaultFont={"Courier", 8};
label2=Show[Graphics [Text [FontForm["(a)",{"Courier",10}], {2.0,0.0}]1];
labeli=Show[Graphics[Text [FontForm["(b)",{"Courier",10}], {2.0,0.0}111:
tig=Show[Graphics[{Rectangle[{—s.-l},{20,3}, figas],

Rectangle[{-5.3,~1.5},{20,-1}, label2],

Rectanglel{-5,-6},{20,-2}, figbs],

Rectangle[{-5.3,-6.5},{20,-6}, label1l}],AspectRatio->1.1]

(* The following is designed to plot figure 6.3. ¥)
figau = Show[plt1[1.9, 2], plt2[1.9, 2], plti[1.85, 2], plt2[1.85, 2],
plti[1.8, 2], plt2{1.8, 2],plti[Sqrt(3], 2], plt2[sqrt(3l,2],
AxesLabel->{"x", "eta(x)"}];
figbu = Show[plt1[1.5, 1.01,plt2[1.5, 1.0],plt1l1.5, 1.1],
plt2(1.5, 1.1], plt1[1.5, 1.2], plt2{1.5, 1.2],
AxesLabel->{"x", "eta(x)"}, PlotRange->{0, 1}];
$DefaultFont={"Courier", 8};

label2=Show[Graphics [Text [FontForm["(a)", {"Courier",10}], {2.0,0.0}11];
1abeli=Show[Graphics[Text [FontForm["(b)", {"Courier",10}], {2.0,0.0}11);

fig=Show[Graphics[{Rectangle[{-5,~1},{20,3}, figaul,
Rectangle[{-5.3,-1.5},{20,-1}, label2],
Rectangle[{-5,~€},{20,-2}, figbul,
Rectangle[{-5.3,-6.5},{20,-6}, label1l}],
AspectRatio->1.1]

(* The following is designed to plot the bifurcation *)

blx_, t_):=(-x + Sqrt[x~2+2#alpha*t])/(2*alpha);

bu=Plot{b[x, 2], {x, Sqrtl[-2*alpha*2], 2.7},
PlotStyle->{Thickness[0.003]}, PlotPoints->1000];

wix_,t_):=-2%blx, t]-3*x/(2alpha);

bs=Plot[wlx, 2], {x, Sqrt[-2salphas2], 2.}, PlotPoints->1000,
PlotStyle->{Dashing[{0.01}],Thickness[0.003]}];

bifas=Show[bu, bs, PlotRange->{0, 3},AxesOrigin->{1.725, 0},
AxesLabel->{"lambda", "lletall"}]
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bup=Piot[b[1.6, t], {t, 0, 1.572/(-2¢alpha)},

PlotStyle->{Thickness[0.003]}, PlotPoints->1000];

bsp=Plot[wl[1.5, t], {t, 0, 1.572/(-2%alpha)},PlotPoints->1000,
PlotStyle->{Dashing[{0.01}],Thickness{0.003]}];

bitp=Show[bup,bsp,PlotRange->{0,3.5},AxesLabel->{"P"," | letal |"}];
$DefaultFont={"Courier", 8};

label2=Show[Graphics[Text [FontForm["(a)",{"Courier",10}], {2.0,0.0}]1];
labeli=Show[Graphics[Text [FontForm["(b)", {"Courier”,10}], {2.0,0.0}11];
tig=Show[Graphics[{Rectangle[{-5,-1},{20,3}, bifal,
Rectangle{{-5.3,-1.5},{20,-1}, label2],
Rectangle[{-5,-6},{20,-2}, bifp],
Rectangle[{-5.3,-6.6},{20,-6}, label1]}],
AspectRatio->1.1];
Display[“plot2.ps", %]

(sessssssssssesrvesssssssTHE ENDES #5404 s 0400508346566 P$E %% %% )



Appendix E

(“““#“t.‘“‘...‘..“‘Ot“‘.“““.“#'.“.““‘.“‘.“)

(» *)
(¢ ———-ommmem o Program V. stfkdvlab.m--=~---=---—o——----- *)
(» *)
(¢ This mathematica code is designed to solve the sfkdV )
(s equation in the laboratory coordindates by using *)
(% Shen’s scheme. The shape of the bottom bump )
(+ at the cross section is a segment of a circle with *)
(¢ the height 1.1 cm and the width 4.6 cm. *)
(+ *)
(« o Made by Lianger Gong, May 21, 1994 +#)
(* *)
(t‘t#“t‘i“““‘*“““‘#t“#“t“““*“t.“#““““‘.‘)
(» nfr[t, y] defines the Froude number as a function )
(* of the voltage t mesured in the experiments. *)
(* The parameter y is the depth of the upstream flow. *)

nfrlt_, y_1:=15 + t /(465 * y Sqrt[9.81 * y]);

(* hlx] defines the forcing function on the bottom *)
(* The bump shape at the cross section is a segment *)
(* of a circle with the height hc and the width bp. *)
he=1.;
bp=4.6;

r=((0.5%bp)~2 + hc~2)/(2%hc)
hix_):=I1f[Abs[x] < bp/2, Sqrtlr-2 - x72] - r + hec, 0];

(¢ Plot[h{x], {x, -30, 30}, AspectRatio -> Automatic] *)
(» Input of volt and H #)

volt=1.43;

H=5.0;

alply_1:=-3./(4sy);

betaly_l:=-y~2/6;

a=alp[H];

b=betalH];

Im=nfrivolt, H/100]-1;

x1=-0.5%bp;

eta0[x_]:=-(3*1m/(2#a))*(Sech[Sqrt[-1m/ (4 b)](x1-x}])"2;
etallx_]:=-(Sqrt[-1m/bl)*eta0x]*Tanh[Sqrt{-1m/(4 b)I(x1-x)];

(* The following section is to plot BLO diagram
in order to locate the phase shift LO.
n=60;
Do[10=-1.+15.0*(i-1)/n;
sol[i] = NDSolve[{lmsy[x]+a*y[x]J+y[x]+ bey’’{x]-0.5¢h{[x]==0,
y[x1] == eta0[10],



y'[x1)== eta1[10]},
y, {x, xi, -4ex1} 1;
y1lil=y(-x1)/.801[i];
y2[lil=y’[-x1]/.801[i];
b1 lil=(b/2)¢y2[ilsy2[il+(Im/2+avy1[i]1/3)eys[iley1lil,{i,1,n+1}];

sp=Table[{-1+16.+(i-1)/n, b1[iJ[[11]}, {i,1,n+1}];
gi=ListPlot[sp, PlotJoined -> True,
PlotRange->A1l, AxesLabel->{LO, "B(L0)"}]; *)

(* The following section is to plot the two solutions and the bottom bump ¢)
10=1.66014;
s0l = NDSolve[{lmey[x]+aey([x]¢y[x]+bey’’ [x]-0.5+h[x]==0,
y{x1] == etao[10],
y’ [x1]== eta1[10]1},
y, {x, x1, -15%x1} ];
yi=y[-x1]/.s0l;
y2=y’[-x1]/.801;
bl=(b/2)ey2¢y2 + (1m/2 + asyl/3)+yleyl;

letal[x_]:=-(3¢1m/(2+a))*(Sech[Sqrt[-1m/(4¥b)J*(x-10)])"2;

letar[x_J]:= Evaluate(y([x]/.so0l];

letalx_J:= If[x < x1, letallx], letar[x]]);

gras1=Plot[H + letalx], {x, -20, 20}, AspectRatio -> Automatic,
PlotStyle->{{Dashing({0.02, 0.01}]}}];

10= 9.43651;

s0l = NDSolve[{lmsy[x]+a*y[x]+y[x]+bsy’’ [x]-0.6¢h[x]==0,
y[x1] == eta0O[l0],
y'[x1]== eta1[10]},
y, {x, x1, -12%x1}];

y1=y[-x1]/.801;

y2=y’[-x1]/.s0l;

bl=(b/2)sy2¢y2 + (Im/2 + asyl/3)sylsyl;

letallx_J:= -(3¢1m/(2+%a))*(Sech[Sqrt [-1m/(4*b)]*(x-10)])"2;
letar{x_]:= Evaluate([y[x]/.soll;
letalx_J:= If[x < x1, letallx], letar([x1];

gras2=Plot(H + letalx], {x, -20, 20}, AspectRatio -> Automatic];
grab=Plot[h([x], {x, -20, 20}, AspectRatio -> Automatic];
expd={{-20, 4.81}, {-16, 4.86}, {-10, 5.0}, {-5, 6.34},{0, 5.85},

{5, 5.74}, {10, 5.42}, {15, 5.17}, {20, 5.10}};
graex=ListPlot[expd];
Showlgrasi, gras2, grab, graex, PlotRegion->{{0.1, 0.9},{0.2, 0.83}]);



