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Abstract

This thesis as a part of the University of Alberta Energy Management and Sustainable

Operations (EMSO) program aims to design an intelligent management tool for the

University of Alberta fleet vehicles to achieve the fuel consumption reduction, and

driver behavior improvement. To achieve this goal, developing the fleet vehicles’

driving cycles is essential. The driving cycle is affected by factors such as vehicle

application, driving area, etc. This thesis divided the fleet vehicles into four categories

according to the vehicle applications and developed distinctive driving cycles for each

category.

This study used Freematics one + OBD data loggers to collect real-world driving

data of vehicles. The collected data are divided into Microtrips, which are trips be-

tween two consecutive times when the vehicle speed is zero. Multiple driving scenarios

are generated by using an unsupervised clustering algorithm to classify Microtrips.

Driving cycles for different vehicle categories are generated by combining data from

different driving scenarios.

The results show that different vehicle categories have different driving cycle char-

acteristics. Those vehicles running in the campus area (such as utility and trade,

shuttle minibus, and University of Alberta police services category vehicles) have a

low average velocity which are in the range of 17.5 km/h to 24.6 km/h. In con-

trast, the average operating velocity for highway-running vehicles, like casual rental

category vehicles, is 51.9 km/h. The University of Alberta police services category

vehicles have the largest ratio of idle time in the driving cycle which is 41.1 %, but

other category vehicles’ idle time ratio to the driving cycle are in the range of 17.0 %
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to 27.4 %.

Driver behavior, especially driver aggressiveness, directly affects a vehicle’s fuel

consumption (FC). Two shuttle minibuses and one Ford Escape Plug-In Hybrid Elec-

tric Vehicle (PHEV) with three fixed drivers were selected to do the test. The driving

route was fixed and the vehicle model between shuttle minibuses was identical. The

collected data was then used to develop and assess driving aggressiveness (DA). Differ-

ent from the traditional statistical analysis method, this thesis adopts the frequency

domain analysis method to analyze DA and apply a quantitative DA evaluation met-

ric. According to the frequency of occurrence of driving data in different driving

situations, revised average fuel consumption (RAFC) was used to analyze the effect

of DA on FC.

The results show that DA can have adverse impact on certain driving scenarios.

The bigger the DA value the greater the average fuel consumption, but the RAFC

value may be different. When the DA value is close to 1, the driver drives more

aggressively and causes more fuel consumption. On the contrary, when DA is close to

0, the driver drives smoothly and consumes less fuel. To reduce driver aggressiveness

and achieve economic driving with low fuel consumption, future research may focus

on driver training programs for key driving scenarios including urban driving scenario

and highway driving scenario.
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Chapter 1

Introduction

1.1 Motivation

Faced with rising greenhouse gas (GHG) emissions, Canada has an ambitious plans

to achieve a GHG reduction target of 40% below 2005 levels by 2030 and net zero

emissions by 2050, to improve the environment [1]. The Energy Management and Sus-

tainable Operations (EMSO) program at University of Alberta aims to achieve 66K

tonnes fewer GHG emissions/year [2]. The EMSO program has continued and con-

sists of sixteen sub-projects, including fleet management, light-emitting diode (LED)

equipment renewal, solar energy utilization, and ventilation and heating equipment

renewal [2]. Due to the diversity and complexity of its content, EMSO projects are

completed by different departments and teams.

Our team was responsible for intelligent fleet management at the University of Al-

berta (hereby called UAlberta fleet vehicles). The overall goal of our team included

UAlberta representative driving cycle development categorized for vehicle applica-

tions, eco-driving analysis of the vehicle collected data based on driving behaviors,

reducing the UAlberta fleet operational cost by minimizing fuel/energy consumption,

and developing an emission inventory,

Figure 1.1 shows the key research aspects of the effort for creating an intelligent

management tool for the University of Alberta fleet vehicles. The work in this thesis

mainly centres on two parts: i) driving cycle identification for each UAlberta fleet

1



application. These driving cycles can be used for assessing fuel consumption and

emission from the university vehicles, and also creating a renewal plan for university

fleet vehicles to select optimum vehicle type for each vehicle application, ii) driver

behaviour analysis which illustrates the extent of extra fuel consumption by aggressive

driving behavior.

Figure 1.1: Research aspects of developing an intelligent fleet management system for
UAlberta fleet vehicles as a part of the energy management and sustainable operations
(ESMO) program at the university

1.2 Background

The existing UAlberta fleet vehicles include 172 vehicles with five different vehicle

types, as listed in Table 1.1. UAlberta fleet vehicles include 150 trucks and vans,

and those trucks and vans have engine sizes ranging from 3 liters to 7.6 liters. Using

Table 1.1 data, the fleet estimated annual fuel consumption is over 205,000 liters

which leads to about 564,291 kg CO2 greenhouse gas (GHG) emissions based on
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Canada Clean Fuel Standard [3]. The estimated operational cost of the UAlberta

fleet vehicles is about $530K annually.

The estimated fuel consumption of the UAlberta fleet is shown in Figure 1.2. This

is calculated based on the UAlberta fleet data in 2019-2020 fiscal year to determine

an average mileage for each vehicle type of the fleet. The data in Figure 1.2 shows

an estimated fuel consumption of 205,388 liters for the whole fleet. 165 of the fleet

vehicles run with gasoline fuels and the remaining 7 vehicles (1 bus, 6 trucks) run with

diesel fuel. Considering Edmonton’s average fuel price of $1.1/liter for gasoline and

$1.15/liter for diesel during 2019-2020 fiscal year [4, 5], the estimated fuel cost for the

UAlberta fleet will be about $226,000. The estimated fleet fuel cost of $226,000 shows

about 42% of the fleet operational cost is spent on fuel. The remaining operational

costs include i) engine oil, brake fluid, automatic transmission fluid, oil filters, etc.,

ii) UAlberta labour cost for repairs and maintenance, iii) outside university contract

work (e.g., wheel alignment), iv) replacement parts (e.g., wipers, bulbs), v) decals,

and vi) overhead (admin time). By optimizing and minimizing the size of the fleet,

the operational and maintenance cost of the fleet should decrease.

The vehicle types are varied, so that the speed profile, time duration, and fuel

consumption are different. That is the reason why driving cycles for different vehicle

applications should be analyzed. Additionally, different driving styles, especially ag-

gressive driving, can cause excessive fuel consumption. Analyzing drivers’ aggressive

behavior can help the fleet manager to develop training program for drivers and also

assign fleet vehicles to drivers by consider driving aggressiveness.

1.3 Driving Cycle

A vehicle driving cycle is the vehicle speed profile versus time for a certain type of

vehicle in a specified environment. Drive cycles are developed by different countries

and organizations to evaluate vehicle performance in various ways, such as fuel con-

sumption, electric vehicle (EV) autonomy, and tailpipe emissions. Another use for
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Table 1.1: University of Alberta fleet vehicle types, fuel consumption rate, and average
annual travel distances

Vehicle
Type

Number of
Vehicles

Fuel Con-
sumption
[L/100 km]

[6]

Average
Travel

[km/year]

Sedans 12 6.0 8830

SUVs 6 11.8 10930

Trucks 73 14.3 9244

Vans 79 18.4 4249

Buses 2 47.0 7472

Figure 1.2: Estimated annual total fuel consumption for each vehicle type for the
UAlberta fleet vehicles using the data from Table 1.1

the driving cycle is vehicle simulation. Driving cycles are used in propulsion system

simulations to predict the performance of internal combustion engines, transmissions,

electric drive systems, batteries, fuel cell systems, and similar components [7–9].

The relationship between the driving cycle and fuel consumption/emissions is that

the driving cycle can significantly affect how much fuel a vehicle consumes and how

much emission the vehicle produces. This is because different driving cycles can lead

to different patterns of acceleration, deceleration, and idling, which can affect the

efficiency of the engine and the amount of pollutants emitted [10]. For example, a

driving cycle that involves frequent stops and starts with a lot of idling time can
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increase fuel consumption and emissions, as the engine is required to work harder to

accelerate from a standstill and run longer to keep the vehicle running while idling. On

the other hand, a driving cycle that involves more steady-state driving at a constant

speed can be more fuel-efficient and produce less emissions

A driving cycle can also be used to estimate driving style. The number of vehicles’

starts and stops in a driving cycle reflects at the driver’s driving style. A driver

with more start-stop actions will cause more emissions [11]. The driving range of

electric vehicles is obtained based on driving cycles. In addition, driving cycles can

also be used to estimate the charge of state of EVs [12]. The flowchart in Figure 1.3

summarizes different applications of driving cycle.

Figure 1.3: Different applications of driving cycles

Different driving cycles can be used to test the fuel efficiency and emissions perfor-

mance of vehicles under different driving conditions. Driving cycles can also be used

to compare the performance of different vehicles. There are three most commonly

used driving cycle categories, shown in Figure 1.4 and Figure 1.5, and they include (i)

United States Environmental Protection Agency (EPA) Vehicle Chassis Dynamome-

ter Driving Schedules (DDS), (ii) Economic Commission for Europe Dynamometer
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Operating Cycles, and (iii) Driving schedules specified in Japanese Technical Stan-

dards [13].

Figure 1.4 shows the DDS driving cycle category [13]. In Figure 1.4, Figure 1.4a is

the EPA urban dynamometer driving cycle, Figure 1.4b is the New York city driving

cycle (NYCC), Figure 1.4c is the US06 which is a high acceleration aggressive driving

cycle, Figure 1.4d is the LA-92 driving cycle for Class 3 Heavy-Duty vehicles, Fig-

ure 1.4e is the federal test procedure motorcycle 1-B driving cycle, and Figure 1.4f is

the federal test procedure driving cycle. DDS driving cycle category mainly consists

of driving cycles for urban and highway driving scenarios. According to the appli-

cations of the vehicle and traffic conditions, a variety of driving cycles in urban and

highway driving scenarios have been developed. For example, LA-92 is the driving

cycle developed for heavy duty vehicles and NYCC is the driving cycle that features

low-speed stop-and-go traffic conditions.

Figure 1.5 shows the Economic Commission for Europe Dynamometer Operating

Cycles, and Driving schedules specified in Japanese Technical Standards driving cycle

category [13]. In Figure 1.5, Figure 1.5a is the part 1 UN/ECE elementary urban

driving cycle, Figure 1.5b is the part 2 UN/ECE elementary urban driving cycle,

Figure 1.5c is the UN/ECE urban driving cycle for low-powered vehicles, Figure 1.5d

is the Japanese 10 mode driving cycle, and Figure 1.5e is the Japanese 15 mode

driving cycle.

None of above driving cycles, including US EPA driving cycles, EU driving cycles,

and Japan driving cycles, can represent UAlberta fleet vehicles because UAlberta fleet

vehicles are mainly running in campus area where the vehicle speed limit is 30 km/h.

In addition, campus area is more crowded, so vehicles need to have frequent stop-

starts. Based on the vehicle operating characteristics, this thesis aims to generate

driving cycles for UAlberta fleet vehicles.

There are substantial research conducted to develop location-specific driving cycles.

Uditha et al. [14] developed representative and economical driving cycles for a given
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(a) EPA urban dynamometer driving cycl (b) New York city driving cycle

(c) US06 driving cycle (d) LA-92 driving cycle

(e) Federal test procedure 1-B driving cycle (f) Federal test procedure driving cycle

Figure 1.4: The US environmental protection agency driving cycles for emission stan-
dards

geographic location. Uditha pointed out that the driving cycle can be considered one

of the main models for estimating emission inventories. It can be used for various

purposes, such as setting emission standards, for traffic management purposes, or to

determine travel times. Uditha also pointed out that when the driving cycle devel-

opment is in its infancy, the basic parameters commonly used in many countries can

be used for cycle evaluation. Commonly used parameters are: average speed, average

running speed, average acceleration, average deceleration, percent idling, percent ac-
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(a) Part 1 UN/ECE elementary urban driv-
ing cycle

(b) Part 2 UN/ECE elementary urban driv-
ing cycle

(c) UN/ECE urban driving cycle for low-
powered vehicles (d) Japanese 10 mode driving cycle

(e) Japanese 15 mode driving cycle

Figure 1.5: EU and Japan driving cycles

celeration, percent deceleration, percent cruise, route mean square acceleration and

positive kinetic energy (PKE).

Arvind et al. [15] expanded the range of parameters for evaluating driving cycles.

They used Average Velocity, Maximum Velocity, Average Acceleration, Maximum ac-

celeration, Time share of acceleration, Average Deceleration, Maximum Deceleration,

Time share of Deceleration, and Time share of Idle parameters to assess the gener-
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ated driving cycle. The generated driving cycle needs a method to judge whether it

can represent driving behavior or not. Route mean square (RMS) algorithm is com-

monly used to validate the generated driving cycles. The common parameters used in

driving cycles’ RMS include average speed, average running speed, average accelera-

tion, average deceleration, percent idling, percent acceleration, percent deceleration,

percent cruise, and so on [16]. However, those parameters not as equally important.

Therefor, to design weight for each parameter to use the RMS algorithm is necessary

[16].

Driving cycle analysis can be simplified by classifying experimental data to generate

driving scenarios. Jean-Baptiste Gallo divided the Microtrip, which is a time series

of speed, into four driving scenarios with a certain speed standard. Those driving

scenarios including i) idle driving scenario: vehicle speed is equal to zero, ii) creeping

driving scenario: Microtrip maximum speed in the range from 0 to 8.2 mph, iii) Low-

Speed Transient driving scenario: Microtrip maximum speed in the range from 8.2

to 22 mph, and High-Speed Transient driving scenario: Microtrip maximum speed

in the range from 22 to 52 mph. The desired driving cycle can be obtained by

selecting representative Microtrips in different driving scenarios and combining the

representative Microtrips according to certain rules [17].

The Tehran driving cycle was developed by Fotouhi et al. [18], by using Mcrotrips

and applying the k-means method to cluster the Microtrip database. Fotouhi used

average vehicle speed and idling time as variables for evaluating the suitability of

driving cycles. Driving scenarios are identified by clustering Microtrips. Four driving

scenarios including congested, urban, out-urban and highway driving were divided

to study the Tehran driving cycle. The Tehran driving cycle was characterized by a

distance of more than 14.4 km, a duration of 1533 seconds, an average speed of 33.84

km/h and an idling time of 15.3%.

Chugh et al. [19] used Microtrips and applied the velocity and acceleration fre-

quency matrices formed by each sequence to develop the Delhi driving cycle. Chugh
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evaluated the effectiveness of the developed driving cycle in terms of average speed,

percent idling time, percent acceleration/deceleration and percent cruise time. By

clustering Microtrip, four driving scenarios of crowded, semi-urban, urban and non-

urban driving are obtained. When generating driving cycles, Chugh also took into

account the characteristics of the class of traffic conditions. The Delhi driving cycle

was characterized by a mileage of 7.8 km, a duration of 1565 seconds, an average

speed of 25.5 km/h and an idling time of 29.9%.

In studies for generating driving cycles, Tamsanya et al. [20] designed an driving

cycle generation algorithm based on average velocity. In Tamsanya’s research, driving

cycles are generated by randomly combining Microtrips.

Shi et al. [21] constructed a driving cycle using a Markov process from stochas-

tic process theory. Shi used the transition matrix of vehicle data to determine the

statistical characteristics. Modal events were randomly selected from the data and

combined until the desired cycle length was reached. Shi’s research serves as a guid-

ing theory that can be applied in the development of different kinds of driving cycles

according to the specific experimental situation.

Justin et al. [22] developed a robust, data-driven approach to Markov chains. This

method can capture the real behavior in the driving cycle without deconstructing

the raw velocity-time series. Justin used the number of velocity states, drive cycle

length, and Markovian repetitions to evaluate the effectiveness of generating drive

cycles. Justin’s research found that the accuracy of candidate drive cycles is largely

dependent on the number of Markovian repetitions.

The study by Huiming et al. [23] found that different vehicles in the same re-

gion have different driving cycle characteristics. Based on the measured data, the

usage and driving characteristics of electric vehicles in Beijing were investigated. The

driving characteristics of the EV were compared with existing standard cycles. The

results show that the actual data differ significantly from the standard driving con-

ditions in many respects. The development of the drive cycle, therefore, takes into
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account the differences in the test vehicles.

Shortcomings : There are two drawbacks for the existing driving cycles research.

The first one is the lack of weight design for parameters. In the driving cycle apprais-

ing algorithm, if all parameters are calculated with the same weight, the influence

of insignificant parameters will be amplified. Another shortcoming is the inefficient

calculation of driving scenarios and driving cycles. This thesis aims to address these

shortcomings (see detial in Section 3.3.2 and Section 3.6).

1.4 Driver Behavior

Driver behavior refers to the actions and habits of a driver while operating a vehicle.

It includes a range of factors such as driving style, attitude, skill level, and experience.

Driver aggression is a subset of driver behavior that refers to aggressive or reckless

driving practices [24]. This thesis focus on driver aggressive analysis.

Driver aggression can have a significant impact on fuel consumption. Aggressive

driving, such as rapid acceleration, sudden braking, and excessive speeding, can cause

a vehicle’s fuel conversion efficiency to decrease by up to 33% on highways and 5% in

the city, according to the US Department of Energy [25]. This is because aggressive

driving requires more energy for heavy acceleration, resulting in increased fuel con-

sumption. Rapid acceleration requires the engine to work harder to produce power,

which leading to more fuel consumption. Sudden braking wastes the kinetic energy

that the car has gained from accelerating, which then needs to be regained through

more fuel use. In addition, excessive speeding increases wind resistance, which also

requires more energy and fuel to maintain the vehicle’s speed.

Fangfang et al. [26] found through real-world data of 38 drivers in Chengdu,

China, that traffic control signals are the influencing factors that affect vehicle fuel

consumption and emissions. Idling due to parking at traffic intersections is a major

contributor to fuel consumption losses. An aggressive driver consumes more fuel

when the vehicle starts and brakes, which greatly exacerbates fuel consumption. At
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the same time, Fangfang et al. also designed a comprehensive emission model to

obtain the real-time emission and fuel consumption of vehicles.

Javier et al. [27] designed an intelligent traffic system, through data mining and

a neural network system, based on the analysis of the driver’s characteristics, the

relationship between the driver’s style and the fuel consumption of the vehicle. In

Javier’s experiment, the real-time fuel consumption of the vehicle was derived from

two parameters; Fuel Flow and Vehicle Speed.

Wenshuo et al. [28] used a semi-supervised method, a semi-supervised support

vector machine (S3VM), to classify driver aggressiveness. In Wenshuo’s experiment,

different from the traditional driving scenario coordinate system which uses vehicle

average speed and maximum speed, the vehicle speed and throttle opening were used

as the coordinate system to mark the label, and also the S3VM algorithm was used

to obtain the classification of the driver’s driving state.

Tzirakis et al. [29] tested driving aggressiveness differences among drivers of twelve

vehicles in a closed experimental field. The test site used by Tzirakis et al is charac-

terized by many uphill, downhill, and humps. This caused the driver to make more

accelerations and decelerations. In the experiment, the fuel consumption was mea-

sured by a portable vehicle fuel consumption analyzer directly. Experimental results

showed that compared with smooth driving, aggressive driving leads to increased

fuel consumption, ranging from 78.5% to 137.3% for gasoline vehicles and 116.3% to

128.3% for diesel vehicles .

Deepak Hari et al. [30] installed a retrofit driver behavior improvement device on

15 vehicles in the UK and tested it in a real-world environment. Fuel savings of 7.6%

were achieved through improved driving behavior by reducing harsh acceleration and

earlier shifting to higher gears. Through simulation experiments on urban roads and

high-speed roads, Emilia et al. [31] found that aggressive driving behavior greatly

affects the fuel consumption and emissions of vehicles. Especially on urban roads,

aggressive driving increases fuel consumption by 30% and pollutant emissions by
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40%.

Glareh et al. [32] utilized driving cycles to represent differences in driving aggres-

sion. Experimental results showed that medium truck drivers are more aggressive

than heavy truck drivers. This aggressiveness resulted in medium-duty trucks emit-

ting 60% more harmful substances than heavy-duty trucks.

Eunsol et al. [33] used the in-vehicle data capture device to record the factors that

may affect the driver’s aggressiveness. A binary logistic regression model was estab-

lished with influencing factors as independent variables and driving aggressiveness as

independent variables. The main factors affecting driving aggressiveness were found

through mathematical research through the logistic regression model. Experimental

resulted show that mileage is an important factor affecting driver aggressiveness. In

addition, the driver’s mental health is also a key factor affecting driving performance.

Shortcomings : The existing research’s method on driver aggressiveness analysis

are mainly focus on statistical analysis method. Moreover, the driving scenarios

selection range is not comprehensive, focusing on small scale driving scenario such as

uphill, downhill, and humps. Based on those features, this thesis applies an algorithm

to quantify driver aggressiveness and use unsupervised machine learning method to

generate a large scale driving scenarios. Detail information can be found in Section 3.4

and Section 4.3.1.

1.5 Thesis Objectives and Scope

Driving cycles can provide a standardized way to test a vehicle’s fuel efficiency and

emissions. A consistent drive cycle allows for a fair test comparison of vehicles.

Test results can be used to design and optimize vehicle components. The commonly

used driving cycles are mainly under generated urban and highway driving scenarios.

Inadequate work has been done on the development of driving cycles on university

campus vehicles. Different from urban and rural area vehicles, campus vehicles have

many unique characteristics, such as lower average speed and more frequent starts
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and stops. The University of Alberta is located in Edmonton where has longer winters

with low ambient temperatures. The snow in winter will make vehicles travel more

slowly. Therefore, it is necessary to analyze the driving cycle of the UAlberta fleet

vehicles.

There are more than 170 vehicles on the UA campus, it is important to develop

a campus driving cycle to analyze vehicle fuel consumption and emissions. In this

thesis, according to the characteristics of the fleet vehicles of the University of Alberta,

the fleet vehicles are divided into four categories, and driving cycles are developed for

each category.

Driver behavior, especially aggressive driver behavior, directly influences vehicle

fuel consumption. However, the existing research mainly provides statistic criteria

for judging driver aggressiveness in the driving cycle scale. Large scale driver aggres-

siveness analysis will loss detail information so it is difficult to formulate accurate

training programs for drivers. This thesis will start from the frequency domain and

provide a metric for different driving scenarios of driver s to measure driver aggressive-

ness. At the same time, this thesis will analyze the difference in driver aggressiveness

and fuel consumption caused by this difference in different driving scenarios.

The main outcomes/benefits of this thesis are

i) A driving cycle generation method based on average speed is designed. This

method is applied and tested for extensive vehicle data sets.

ii) Extraction of a drive cycle for each of four categories of university fleet vehicles.

These driving cycles can be used for fuel consumption and emission analysis of

the fleet vehicles as well as deciding for the university vehicles renewal plan to

choose optimum vehicle type for each category of applications.

iii) A numerical driving aggressiveness (DA) evaluation method based on frequency

domain analysis is designed. When the DA value is closer to 0, the driving

is more smooth, and when the DA value is closer to 1, the driving is more
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aggressive. This method can be used to compare university vehicle drivers and

identify driving situations that lead to aggressive driving, thus, driver training

programs, e.g. by design of driving simulation platforms, can be designed to

train university drivers.

iv) Proposed a revised average fuel consumption (RAFC) metric to better reflect

the impact of DA on vehicle fuel consumption. This method considers the

impact of the occurrence probability of DA in different driving scenarios.

1.6 Thesis Outline

Figure 1.6 shows the structure of this thesis. This thesis consists of five parts including

introduction, experimental setup, driving cycle analysis, driver behavior analysis, and

conclusion.

In the experimental setup chapter, detailed information of the vehicle test setup

will be introduced, including the vehicle type, vehicle instrumentation, engine pa-

rameters, Global Positioning System (GPS) map of the driving routes, and data

collection. In addition, according to the characteristics of the collected data, this

chapter designs a set of data preprocessing methods to enhance the usability of the

data. In chapter 3, major driving cycle conceptions including Microtrip, Kinematic

Fragment, and Assessment Metrics are introduced first. Next, the algorithms used in

this chapter, including the clustering algorithm for classifying driving scenarios and

the Principal Component Analysis (PCA) algorithm for evaluating parameter weight,

will be explained. Finally, the Microtrip and sub-Microtrip databases for each vehicle

class, the driving cycle generation algorithm, and the final results are discussed in de-

tail. Chapter 4 introduces driver behavior conceptions including driver behavior, and

driver aggressiveness. Next, the algorithms used in this chapter, including frequency

domain algorithms for numerically expressing driver aggressiveness and algorithms

for estimating fuel consumption, will be discussed. Finally, the driver aggressiveness
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and fuel consumption differences of different drivers under different driving scenarios

are obtained. The last chapter concluded this thesis by listing the main findings from

this thesis.

Figure 1.6: Thesis flow including chapters and resulting publications
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Chapter 2

Experimental Setup

2.1 Introduction

Currently, UAlberta fleet vehicles include 172 vehicles, most of which are trucks or

vans. According to the application of each vehicle, the fleet vehicles in this research

were divided into 4 categories, namely: Utility or Trades; Casual Rentals; Shuttle

Minibus; University of Alberta Protective Services (UAPS). Within each category

of vehicles, several vehicles are selected to represent all other vehicles in the same

category. Vehicle characteristics and instruments installed to collect data are the

focus of this chapter. In addition, this chapter also introduces the main running

routes of different categories of vehicles and their characteristics.

2.2 Data Collection

Today’s vehicles all have on-board diagnostics (OBD) capability for vehicle self-

diagnostic and reporting. To this end, extensive vehicle operational data is available

and can be recorded through OBD port in vehicles. The OBD data can be read by a

standardized digital communication port in vehicles.

In this study, Freematics One+ OBD data loggers, shown in Figure 2.1, were used

to collect vehicles’ data. The Freematics ONE+ is an Arduino programmable vehicle

telemetry prototyping platform in the form of an OBD dongle that plugs into the

vehicle’s OBD port and works as a standalone smart device that can communicate
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with the vehicle’s Engine Control Unit (ECU). Freematics One+ OBD data logger

has a dual-core Central Processing Unit (CPU) that can process data quickly in real

time, and store the processed data in the internal flash memory or microSD card.

Freematics One+ OBD data logger can also use cellular network or WiFi to transmit

data to Freematics Hub. Freematics Hub is a cross-platform open-source telemetry

and IoT data server software. It receives real-time data from multiple Freematics

ONE+ OBD data loggers and provides a simple REST API for third party applica-

tions to access real-time and historical data. Freematics Hub is efficient and has low

system resource requirements. It requires no application to maintain a connection

with the telematics device, while being deployable on any types of computes. Figure

1 shows the workflow of the Freematics One+ OBD data logger [34, 35].

During use, Freematics One+ OBD data loggers were inserted into vehicle OBD

interface to read the vehicle running data. At the same time, the location of the vehicle

will also be transmitted to Freematics One+ OBD data logger in real time through

GPS signals. Freematics data loggers are equipped with a GNSS model M8030, and

the GPS accuracy of horizontal position is 2.0 m. All data uses a dedicated telemetry

transmission protocol to transmit high-throughput and low-latency vehicle data to

the Freematics Hub with minimal data overhead. In the end, the historical data from

Freematics Hub were stored into the database for free call by participants. Table 2.1

shows the OBD parameters that were used to generate driving cycle and analyze

driver behavior.

This thesis focuses on the differences in driving cycles between different vehicle

applications and differences in driver behavior among different drivers. Given, the

test data are mainly in the same season, this thesis does not focus on studying the

seasonal influence on vehicle driving cycle and driver behavior.
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Figure 2.1: The workflow of Freematics One+ OBD data logger

Table 2.1: Parameters collected by Freematics One+ to generate driving cycle and
analyze driver behavior

Parameter Name Unit

Vehicle ID -

GPS Time stamp s

GPS latitude ◦

GPS longitude ◦

Vehicle speed Km/h

Engine speed RPM

Throttle position ◦

Pedal position ◦

Intake air mass flow rate (MAF) g/s

Short and long term fuel trims -

Air-fuel equivalence ratio (λ) -
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2.3 Vehicle Selection

Because there are more than 170 vehicles owned by UAlberta fleet vehicles, the cost

of installing experimental equipment on all vehicles to collect data is too large. More-

over, many vehicles have similar or even identical models. At the same time, the

geographical areas that different vehicles use also follow certain rules. The Utility or

Trade and UAPS vehicles are running in the campus area. In contract, Casual Rental

vehicles are mainly running on highways. The following content will introduce the

operating characteristics, selected representative vehicle models, and specific vehicle

driving trajectories according to the categories of vehicles.

2.3.1 Utility or Trades

The University of Alberta ’s utility vehicles are mainly running near the university

campus. The types of these vehicles in Utility or Trades category are mainly trucks

and vans. In this experiment, six vehicles are selected to represent the University of

Alberta trucks and vans category. The data for this study is collected for four months

of operation from these six vehicles. In total, 716,794 data points were obtained. The

specifications of vehicles are shown in Table 2.2 to Table 2.7.

Table 2.2: Specification of the tested vehicle A in utility and trades category

Vehicle Dodge RAM 2500
(0429)

Model year 2011

Engine size 5.7 Liters

Fuel Type Gasoline

Rated power 383 hp @ 5,600 rpm

Rated torque 400 lb-ft @ 4,000 rpm

Data collection
duration

Aug. 17, 2021 to Nov.
24, 2021
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Table 2.3: Specification of the tested vehicle B in utility and trades category

Vehicle Ford E250 (0441)

Model year 2012

Engine size 4.6 Liters

Fuel Type Gasoline (flex fuel)

Rated power 225 hp @ 4,800 rpm

Rated torque 286 lb-ft @ 3,500 rpm

Data collection
duration

Aug. 30, 2021 to Dec.
16, 2021

Table 2.4: Specification of the tested vehicle C in utility and trades category

Vehicle Ford E250 (0443)

Model year 2012

Engine size 4.6 Liters

Fuel Type Gasoline (flex fuel)

Rated power 225 hp @ 4,800 rpm

Rated torque 286 lb-ft @ 3,500 rpm

Data collection
duration

Aug. 30, 2021 to Dec.
7, 2021

Table 2.5: Specification of the tested vehicle D in utility and trades category

Vehicle Ford F250 (0451)

Model year 2012

Engine size 6.2 Liters

Fuel Type Gasoline (flex fuel)

Rated power 385 hp @ 5,500 rpm

Rated torque 405 lb-ft @ 4,500 rpm

Data collection
duration

Aug. 19, 2021 to Dec.
24, 2021
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Table 2.6: Specification of the tested vehicle E in utility and trades category

Vehicle Chevrolet Express
(0484)

Model year 2014

Engine size 5.3 Liters

Fuel Type Gasoline (flex fuel)

Rated power 310 hp @ 5,200 rpm

Rated torque 334 lb-ft @ 4,500 rpm

Data collection
duration

Sep. 3, 2021 to Jan.
20, 2021

Table 2.7: Specification of the tested vehicle F in utility and trades category

Vehicle Ford Transit (0505)

Model year 2016

Engine size 3.7 Liters

Fuel Type Gasoline (flex fuel)

Rated power 275 hp @ 6,000 rpm

Rated torque 260 lb-ft @ 4,000 rpm

Data collection
duration

Aug. 30, 2021 to Dec.
13, 2021

Table 2.2 to Table 2.7 show that the utility trucks used by University of Alberta

are all mostly light-duty trucks with engine size less than 6 liter. Such a vehicle model

is in line with the characteristics of campus work. In campus, Large vehicles require

a lot of steering space and are not suitable for campus work. At the same time, the

vehicles working on the campus start and stop frequently with substantial idling time.

The larger the vehicles, the more fuel consumption.

The running trajectory of the University of Alberta trucks and vans category can

be obtained by GPS data from OBD logger. As shown in Figure 2.2, most of the

vehicle trajectories are within the University of Alberta campus, which is framed by
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a black dotted lines.

Figure 2.2: The GPS route map for the tested utility or trade vehicles; Data from
Aug. 17, 2021 to Jan. 20, 2022

At the same time, in Figure 2.2, the landmark buildings near University of Alberta

campus are also marked, they are St Joseph’s College, South campus landmark,

Phillips services building, HUB mall, and Timms Center for the arts respectively.

Readers can find satellite images of nearby roads on Google Maps based on landmarks.

2.3.2 Casual Rentals

According to work management and demands of UAlberta, not all vehicles will be

put into service. For the casual vehicles, University of Alberta fleet vehicles’ manager

will rent them out. Vehicle models in this category is similar to the vehicle model in

Utility or Trades category. But their running trajectories, driving scenarios, and the

number of starts and stops are quite different. In this experiment, a total of 4 vehicles

were selected to represent the casual rental category. The specific information of the
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selected vehicles is list in the Table 2.8 to Table 2.11.

Table 2.8: Specification of the tested vehicle A in casual rentals category

Vehicle Ford F250 (0486)

Model year 2015

Engine size 6.2 Liters

Fuel Type Gasoline (flex fuel)

Rated power 385 hp @ 5,500 rpm

Rated torque 405 lb-ft @ 4,500 rpm

Data collection
duration

May 16, 2022

Table 2.9: Specification of the tested vehicle B in casual rentals category

Vehicle Dodge Grand Caravan
(0518)

Model year 2016

Engine size 3.6 Liters

Fuel Type Gasoline (flex fuel)

Rated power 283 hp @ 6,400 rpm

Rated torque 260 lb-ft @ 4,400 rpm

Data collection
duration

May 12, 2022 to Sep.
8, 2022

Through Table 2.8 to Table 2.11, it can be found that the selected vehicles are

close to the vehicles in utility and trades category, all of which are light-duty trucks.

The trajectory map of Casual Rentals category vehicles is shown in Figure 2.3.

It can be seen from Figure 2.3 that vehicles of Casual Rentals category mostly run

on highways. Casual rental vehicles consumed more fuel than those urban driving

vehicles as high speed driving cause high fuel consumption.
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Table 2.10: Specification of the tested vehicle C in casual rentals category

Vehicle Dodge Grand Caravan
(0488)

Model year 2015

Engine size 3.6 Liters

Fuel Type Gasoline

Rated power 283 hp @ 6,400 rpm

Rated torque 260 lb-ft @ 4,400 rpm

Data collection
duration

May 12, 2022 to Sep.
14, 2022

Table 2.11: Specification of the tested vehicle D in casual rentals category

Vehicle Ford F350 (0587)

Model year 2021

Engine size 6.2 Liters

Fuel Type Gasoline (flex fuel)

Rated power 385 hp @ 5,750 rpm

Rated torque 430 lb-ft @ 3,800 rpm

Data collection
duration

May 12, 2022 to Sep.
13, 2022

2.3.3 Shuttle Bus

Except the main campus located by the North Saskatchewan River, University of

Alberta (UA) also has a campus named Campus Saint-Jean (CSJ) to provide students

with French courses. UA has two minibuses to shuttle students between the two

campuses. The passenger capacity of the minibus is about 30 passengers, so the

vehicles are larger than noraml vans and consume more fuel. At the same time,

the trajectory of the shuttle minibuses is fixed. This kind of trajectory is ideal for

driver performance analysis as vehicles with the same driving trajectory will reduce

the difference on vehicle fuel consumption caused by driven distance. Under such a
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Figure 2.3: The GPS route map for the tested casual rental vehicles; Data from May.
12, 2022 to Sep. 14, 2022

control variable study, the fuel consumption of the vehicle is mainly caused by the

difference in the driving style of the personnel. This part will be discussed in detail in

Chapter 4. The specification of the two vehicles is shown in Table 2.12 and Table 2.13.

Table 2.12: Specification of the tested vehicle A in shuttle minibus category

Vehicle FORD E-450 (0438)

Model year 2018

Engine size 7.3 Liters

Fuel Type Gasoline (flex fuel)

Rated power 325 hp @ 3,800 rpm

Rated torque 420 lb-ft @ 3,000 rpm

Data collection
duration

Apr. 4, 2022 to Apr.
21, 2022

Figure 2.4 shows the driving track of the minibus. At the same time, the University
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Table 2.13: Specification of the tested vehicle B in shuttle minibus category

Vehicle FORD E-450 (0416)

Model year 2018

Engine size 7.3 Liters

Fuel Type Gasoline (flex fuel)

Rated power 325 hp @ 3,800 rpm

Rated torque 420 lb-ft @ 3,000 rpm

Data collection
duration

Apr. 4, 2022 to Apr.
21, 2022

of Alberta north campus and CSJ are also marked with black dotted lines in the figure.

The speed limit in the campus area in the picture is 30 km/h, and the speed limit in

urban areas is 50 km/h. The distance from UA campus to CSJ is 6.1 Km, and the

distance from CSJ to UA is 6.3 km.

Figure 2.4: The GPS route map for the tested shuttle minibuses; Data from Apr. 4,
2022 to Apr. 21, 2022
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As shown in Figure 2.4, both minibuses travel between the UA main campus and

CSJ campus along the same route. Mark 1 in Figure 2.4 is the Timms Centre for the

Arts in UA main campus, which is also the departure station of shuttle minibus, and

Mark 2 in Figure 2.4 is the CSJ campus landmark in Saint Jean campus. The reason

why the lines of the GPS route map at the Marks 3 and 4 locations are not clear is

because the route at Mark 3 will pass through a tunnel, and the route at Mark 4 will

pass through an iron bridge, High Level Bridge of Edmonton. The tunnel and iron

bridge made the receiving and sending of GPS signals unstable.

2.3.4 University of Alberta Protective Service

The UAlberta fleet vehicles has a total of 6 sport utility vehicles (SUV), most of which

are used for security patrols. UAPS vehicles patrol within the main campus of UA.

However, the specific patrol trajectory cannot be publiced due to security concerns.

In this experiment, a total of two vehicles were selected to represent the category

of emergency vehicles. The specification of the vehicle are shown in Table 2.14 and

Table 2.15.

Table 2.14: Specification of the tested vehicle A in UAPS category

Vehicle Ford Explorer Police
(0093)

Model year 2017

Engine size 3.7 Liters

Fuel Type Gasoline (flex fuel)

Rated power 300 hp @ 6,250 rpm

Rated torque 280 lb-ft @ 4,500 rpm

Data collection
duration

Jun. 23, 2022 to Feb.
2, 2023

As shown in Table 2.14 and Table 2.15, the models of the vehicles are all the same.

Due to the limitation of safety factors, this thesis mainly studies the driving cycle of
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Table 2.15: Specification of the tested vehicle B in UAPS category

Vehicle Ford Explorer Police
(0095)

Model year 2017

Engine size 3.7 Liters

Fuel Type Gasoline (flex fuel)

Rated power 300 hp @ 6,250 rpm

Rated torque 280 lb-ft @ 4,500 rpm

Data collection
duration

Jun. 21, 2022 to Oct.
9, 2022

UAPS.

2.3.5 Ford Escape Plug-In Hybrid Electric Vehicle

In the EMSO project, sedan vehicles are also classified in the casual rental category.

One Sedan vehicles, Ford Escape Plug-In Hybrid Electric Vehicle (PHEV), is selected

for the cold climate experiment. In the cold climate test, one driver did one normal

driving and one aggressive driving through a fixed driving route. Thus, the data

from this experiment can also be used for driver behavior analysis. The information,

trajectory, and database of the selected sedan vehicle are shown below.

Vehicle Information

The specific information of the vehicle is shown in Table 2.16.

Test Rote

Figure 2.5 shows the select test driving route. The reason to select this route is that

this route covers a broad range of driving conditions which is close to shuttle minibus

driving conditions. The route includes campus area (maximum speed of 30 km/h),

residential area (maximum speed of 40 km/h), and urban area (60 – 100 km/h).
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Table 2.16: Specification of Ford Escape Plug-In Hybrid Electric Vehicle

Vehicle Make/ Model Ford Escape PHEV

Model Year 2021

Vehicle Body Style Compact SUV

Fuel Type Gasoline / Battery

Engine Size 2.5 L

Engine Power 221 hp (@ 6,250 rpm)

Battery Capacity 14.4 kWh

Figure 2.5: The GPS route map for Ford Escape PHEV; Use data from Mar. 26,
2022 to Mar. 27, 2022

Fuel Measurement

Because the vehicle model is different, the amount of data that the OBD data log-

ger can read is also different. Freematics one + can’t read the data like MAF and
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AFRstoich from Ford Escape. Therefore, an ultrasonic fuel flow meter by Sentronics

(FlowSonic LF Low-Flow Sensor) was installed on Fordd Escape PHEV to measure

instantaneous fuel consumption. Figure 2.6 shows the fuel flow meter installation

in the fuel path of the tested vehicles. FlowSonic LF Low-Flow Sensor has many

advantages including (i) low-volume fuel flow measurement (e.g., idling condition of

a small fleet vehicle), (ii) different fuels measurement (e.g., gasoline, diesel), (iii) high

measurement accuracy, and (iv) small and lightweight to install easily on any engine.

Therefore, the lowSonic LF Low-Flow Sensor was installed on Ford Escape PHEV for

the experiment done in this study.

Figure 2.6: Ultrasonic fuel flow meter for Ford Escape PHEV

CAN Data Collection

Figure 2.7 shows the data collection process by using CANedge2 data logger. By

using CANedge2 data logger, OBD data is collected through CAN bus. Fuel flow

measurement data is collected by CSS Electronics CANedge2 CAN bus.
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Figure 2.7: Schematics of the data collection process Ford Escape PHEV

2.4 Data Pre-process

The data obtained by OBD loggers cannot be used directly, due to missing data, and

unstable sampling rate at some time stamps. In this section, according to the Freemat-

ics+ OBD characteristics used in this experiment, a data pre-processing method is

designed to avoid data errors.

2.4.1 Data Interpolation

Data collection by Freematics+ OBD sometimes have missing data points. The miss-

ing data is filled by using a polynomial interpolation algorithm. Polynomial interpo-

lation is the procedure of fitting a polynomial of degree n to a set of n+1 data points.

In this thesis, according to the Runge’s phenomenon [36] the 4th-order Polynomial

interpolation algorithm is used. If the order is too low, the interpolation will lead

to underfitting, and if the order is too high, it will lead to large oscillations between

data points [36]. Runge’s phenomenon also happens in our test data which is shown

in Figure 2.8. In Figure 2.8, the blue line is interpolating polynomial, the black dots

are raw data points, the red dots are interpolated points, the black lines are linear

links among data. Figure 2.8 shows that for the sample presented data, the 4th-order

polynomial performs better than other orders of polynominals.
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(a) 3th-order Polynomial interpolation (b) 4th-order Polynomial interpolation

(c) 5th-order Polynomial interpolation (d) 6th-order Polynomial interpolation

Figure 2.8: Effect of polynomial order on interpolation accuracy; Use 2022.8.9 shuttle
minibus data

In this thesis, since the frequency of collection is fixed, the time point tm of missing

data can be obtained by Equation (2.1).

tm = tm−1 +∆t (2.1)

tm is the missing time data, tm−1 is the former time data of missing data, and ∆t

is the time interval. In this thesis, the sampling frequency of the data is 1Hz after

down-sampling. Therefor, the ∆t is 1 second.

The 4th order interpolation equation, when used, requires 4 known data points to

infer the unknown data points. In this thesis, the first two time data points tm−1 and

tm−2 , and the last two time data points of the missing data points tm+1 and tm+2

is used as known time parameter points. The velocity data parameter is denoted by
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ym−1, ym−2, ym+1, and ym+2 . The matrix form of the 4th order interpolation equation

is shown as Equation (2.2)

⎡⎢⎢⎢⎢⎢⎢⎣
1 tm−2

1 tm−1

t2m−2 t3m−2

t2m−1 t3m−1

1 tm+1

1 tm+2

t2m+1 t3m+1

t2m+2 t3m+2

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a0

a1

a2

a3

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ym−2

ym−1

ym+1

ym+2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.2)

Bring in the data points to solve the matrix to get the value of the a vector.

According to Equation (2.3), the missing data points are determined.

vm = a0 + a1tm + a2t
2
m + a3t

3
m (2.3)

Here is an example in Figure 2.9, taking the shuttle minibus data on April 9, 2022,

the original data and interpolated data are shown.

2.4.2 Data Re-sampling

The sampling frequency of the OBD data logger used in this thesis is not stable at

1 hz. This thesis adapts a down sampling method that extracts sample values in

the window length (WL) to create a new signal. The number of new signal samples

decreases as the WL value increases. The specific down-sampling equation is shown

in Equation (2.4).

y(n) = x (nWL) (2.4)

In Equation (2.4), x(n) is the original signal, y(n) is the downsampled signal
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Figure 2.9: The comparison between the interpolated data and the original data based
on the shuttle minibus data on April 9, 2022
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Chapter 3

Driving Cycle Establish for
Different Vehicle Categories

3.1 Introduction

In this chapter, some concepts related to the driving cycle will be introduced first.

Secondly, the algorithm used in generating the driving cycle is introduced. The

database for different vehicle categories and the algorithm for generating driving

cycles are discussed in detail in Section 3.4 and Section 3.5. Finally, driving cycles

for each vehicle category from UAlberta fleet vehicles are given.

3.2 Concept Definition

3.2.1 Microtrips and Microtrip Databases

A general method of creating driving cycle is breaking the recorded natural driving

cycle data into pieces and combining those pieces with a certain algorithm later [37].

Microtrips are those pieces. So, when getting the recorded natural driving cycle data,

one need is cut the data at the time stamps when vehicle velocity is zero [38]. A

Microtrip is a trip between two consecutive times when the vehicle speed is zero. By

using data from the Utility or Trades category, a sample set of Microtrip is shown

in Figure 3.1. In Figure 3.1, each velocity-time series surrounded by a rectangle is a

Microtrip.
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Figure 3.1: Depiction of Microtrips extraction for 2021/10/1 vehicle velocity data
from a vehicle from utility or trades category.

A collection of Microtrip forms a Microtrip database. Figure 3.2 shows the Mi-

crotrip database for all vehicle categories. Microtrip database for Utility or Trades

category is shown in Figure 3.2a, casual rental category Microtrip database is shown

in Figure 3.2b, Figure 3.2c shows the Microtrip database for shuttle minibus, and

UAPS’ Microtrip database is shown in Figure 3.2d.

The reason for showing Microtrip database with the average and maximum speed

is that the driving scenarios of each vehicle category can be obtained by combining

these two parameters with the clustering algorithm [18]. The detail information of

clustering algorithm is shown in Section 3.2.2, and the driving scenarios are shown in

Section 3.4.

It can be seen from the Figure 3.2 that vehicles working near the University of

Alberta campus have speeds of Microtrips within 80 km/h. The maximum speed of

the casual rental vehicle’s Microstrip has reached 120 km/h, reflecting the character-

istics of rental vehicles running on expressways. In addition, the Microtrip’s average

speed of casual rental vehicles is mainly below 60 km/h, which shows that casual
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(a) Utility or trade vehicles’ Microtrip
database

(b) Casual rental vehicles’ Microtrip
database

(c) Shuttle minibuses’ Microtrip database (d) UAPS’ Microtrip database

Figure 3.2: Microtrip database for different vehicle categories for all OBD recorded
data from Aug. 17, 2021 to Oct. 9, 2022

rental vehicles mainly travel in the residential and urban areas. The data points in

Figure 3.2d are more scattered than other vehicles driving on the University of Al-

berta campus, which means that the acceleration of UAPS will be greater than other

vehicles. On the contrary, the Microtrip data points of the utility or trade vehicles are

more concentrated, indicating that the utility or trade vehicles run more smoothly

and the acceleration will be relatively small.

3.2.2 Kinematic Fragment

A Kinematic fragment is a meticulous division of driving segments compared to Mi-

crotrips [39]. It contains acceleration, deceleration, cruise and idle driving modes.
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The criteria to generate Kinematic fragments are explained in Table 3.1. As it shows,

the driving segments with a certain range of velocity and acceleration are used to

determine the driving state. This research considers the idle duration and does not

consider ultra-short idling (less than 5 seconds) as an idle state. An example of

kinematic fragments is illustrated in Figure 3.3.

Figure 3.3: An example of kinematic fragments by a using utility vehicles’ data from
2021/9/30 test

Table 3.1: Principles used for kinematic fragments

Kinematic
State

v
(km/h)

a (m/s2) t (s) Cruise
State
with
t < 5 s

Idle = 0 − > 0 −

Cruise > 0 ≥ −0.15
& ≤ 0.15

> 5 −

Acceleration > 0 > 0.15 > 0 V (k+1) >
V (k)

Deceleration > 0 < −0.15 > 0 V (k+1) <
V (k)

As it shows, each Microtrip consists of multiple Kinematic fragments. Those Kine-

matic fragments will be used to calculate the assessment metrics which are used to
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judge whether a generated driving is acceptable. The assessment metrics are shown

in Section 3.2.3.

3.2.3 Assessment Metrics

Generating a driving cycle is to find the driving cycle that best represents the recorded

driving data. Statistical metrics are used to determine whether the generated driving

cycle can represent all recorded driving cycles [16]. Some of the common metrics

include the average velocity of a driving cycle (Vavg), the average velocity of a driving

cycle except idle (V eavg), average acceleration of a driving cycle (Accavg), average

deceleration of a driving cycle (Decavg), time spent on idling divided by the total

time (%Idle), time spent on cruise divided by the total time (%Cruise), time spent

on acceleration divided by the total time (%Acc), time spent on deceleration divided

by the total time (%Dec), and the number of vehicle stops per kilometer (Stop/km).

These metrics are also called target parameters. The values of each target parameters

are the median of the data.

Table 3.2 shows the utility or trade vehicles’ target parameters and their values.

Similarly, Table 3.3 shows the casual rental vehicles’ target parameters and their

values. The values of target parameters for shuttle minibuses and UAPS vehicles are

shown in Table 3.4 and Table 3.5 respectively.

Table 3.2: Utility or trade vehicles’ assessment metrics values; Data from Aug. 17,
2021 to Jan. 20, 2022

Target
Param-
eters

Vavg

(km/h)
V eavg

(km/h)
Accavg
(m/s2)

Decavg
(m/s2)

Stop/km

Value 14.6 20.1 0.36 -0.36 3.0

Target
Param-
eters

%Acc %Dec %Cruise %Idle

Value 27.8 28.1 16.7 27.4
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Table 3.3: Casual rental vehicles’ assessment metrics values; Data from May. 12,
2022 to Sep. 14, 2022

Target
Param-
eters

Vavg

(km/h)
V eavg

(km/h)
Accavg
(m/s2)

Decavg
(m/s2)

Stop/km

Value 58.3 70.7 0.46 -0.47 0.4

Target
Param-
eters

%Acc %Dec %Cruise %Idle

Value 14.9 14.6 52.9 17.6

Table 3.4: Shuttle minibuses’ assessment metrics values; Data from Apr. 4, 2022 to
Apr. 21, 2022

Target
Param-
eters

Vavg

(km/h)
V eavg

(km/h)
Accavg
(m/s2)

Decavg
(m/s2)

Stop/km

Value 25.0 33.2 0.44 -0.45 1.1

Target
Param-
eters

%Acc %Dec %Cruise %Idle

Value 24.8 24.5 25.9 24.7

Table 3.5: UAPS’ driving assessment metrics values; Data from Jun. 21, 2022 to Oct.
9, 2022

Target
Param-
eters

Vavg

(km/h)
V eavg

(km/h)
Accavg
(m/s2)

Decavg
(m/s2)

Stop/km

Value 13.7 23.2 0.76 -0.73 4.0

Target
Param-
eters

%Acc %Dec %Cruise %Idle

Value 21.2 21.2 16.4 41.1

By investigating Table 3.2 to Table 3.5, it can be found that casual rental vehicles

have the highest average velocity. Moreover, UAPS vehicles have the highest acceler-
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ation and deceleration, and utility or trade vehicles have the lowest acceleration and

deceleration, which confirms that the conclusion in Section 3.2.1 about the acceler-

ation value is correct. Furthermore, Table 3.3 gives more details about the driving

state. The cruise driving state of the casual rental vehicle is relatively long that takes

up more than half of the driving time. Table 3.5 shows that the UASP category

vehicles have the most idle driving state. The driving style of casual rental vehicles

is mainly long-term high-speed driving. The driving status of other vehicles will be

more evenly distributed based on the %Acc, %Dec, and %Cruise values.

3.2.4 Driving Scenarios

Driving scenarios are situations and conditions that drivers may encounter while

operating a vehicle on a road [40]. These scenarios can vary widely depending on

factors such as the type of road, the time of day, the weather conditions, and the

specific geographical location. Generally, driving scenarios can be divided into three

broad categories for different studies which are shown in Figure 3.4. Three categories

are (i) Environmentally Influenced Driving Scenarios, (ii) Driving Speed Influenced

Driving Scenarios, and (iii) Driving Area Influenced Driving Scenarios.

Environmentally Influenced Driving Scenarios usually contain parts like night driv-

ing scenario, adverse weather conditions driving scenario, and so on [40–42]. The night

driving scenario involves driving in low light conditions, which can make it more diffi-

cult to see and react to potential hazards on the road. Drivers in this scenario should

make sure their headlights are on and be extra vigilant for pedestrians, bicyclists,

and other hazards that may be difficult to see. The adverse weather conditions driv-

ing scenario includes driving in the rain, snow, ice, fog, or other hazardous weather

conditions that can make driving more challenging. Drivers in this scenario should

slow down and allow extra time for braking and steering and should avoid sudden

movements or sharp turns.

Driving Area Influenced Driving Scenarios usually contain parts like lead sudden

42



Figure 3.4: Classification for type of analysis for driving scenarios.

harsh brake driving scenario, cut-in then lead brake, and so on [43]. The research

on this category mainly focuses on driving safety, especially those conditions which

relate to driving conflicts. A conflict is defined as a driving situation that results

in a driver crashing or evasive maneuvers [44]. When drivers in scenarios that are

required a rapid, severe, evasive maneuver to avoid a crash, the driving task is referred

to as Safety Critical Event (SCE). When the drivers are required an evasive maneuver

occurring at less magnitude than a SCE, the driving task is given the label of Safety

Relevant Event (SRE). Based on SCE and SRE criteria, to analyze French in-depth

accident database VOIESUR [45], European naturalistic driving study UDRIVE and

Field Operational Test MOOVE [46], several safety-critical scenarios, like lead sudden

harsh brake driving scenario, cut-in then lead brake are determined.

Driving Speed Influenced Driving Scenarios usually contain parts like highway driv-

ing scenario, city driving scenario, creeping driving scenario, and so on. The highway

driving scenario involves driving on a freeway or interstate, where drivers typically

travel at higher speeds and must be aware of merging traffic, changing lanes, and nav-
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igating exits. Drivers in this scenario need to be alert, maintain a safe distance from

other vehicles, and follow posted speed limits [47]. City driving scenario involves nav-

igating through urban environments, including dealing with traffic congestion, stop-

and-go driving, and navigating through intersections and one-way streets. Drivers

in this scenario need to be extra vigilant, especially when pedestrians or bicyclists

are present and should be prepared for sudden stops or changes in traffic flow [48].

Creeping driving scenario is a situation where a driver moves the vehicle forward at

a very slow speed, typically a few kilometers per hour or less, in order to maintain

control of the vehicle and navigate through a congested area. This scenario is often

encountered in slow-moving traffic, parking lots, or other situations where the driver

needs to be extra cautious and maintain a high level of control over the vehicle [49].

In this research, Driving Speed Influenced Driving Scenarios is the key part. An

unsupervised machine algorithm is used to generate different driving scenarios, in-

cluding creeping driving scenario, low-speed city driving scenario, high-speed city

driving scenario, etc, which will be discussed in Section 3.4.

3.3 Machine Learning Algorithm

3.3.1 K-means

Each Microtrip has a certain value of average vehicle speed and maximum vehicle

speed which are the most important driving characteristic parameters, as shown in

Figure 3.2 [50]. Each point in Figure 3.2 is a Microtrip. By using the data in

Figure 3.2, a machine learning model is developed to form the sub-Microtrip database

for different vehicle categories. Each sub-Microtrip database presents one of the

driving scenarios from creeping driving scenarios to high-speed driving scenarios. In

this study, the K-means algorithm is used to determine the sub-Microtrip database.

The K-means algorithm is a common unsupervised learning algorithm, which is

mainly used to automatically classify similar samples into one category. In the cluster-
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ing algorithm, samples are divided into different categories according to the similarity

among samples. For different similarity calculation methods, different clustering re-

sults will be obtained. The similarity calculation method used in this thesis is the

Euclidean Distance method [51], because the Euclidean Distance method is simple to

calculate and it can speed up the algorithm.

For using the K-means algorithm, firstly, the sample set X in Equation (3.1) and

the number of clusters k should be determined. Each element in X is called an object.

X = {X1, X2, X3, . . . Xn} (3.1)

The goal of the K-means algorithm is to gather n objects into the specified k

clusters according to the similarity between objects. For K-means, it is needed to

initialize k cluster centers as listed in Equation (3.2). Initialized k cluster centers are

usually composed of k points which are randomly selected from X.

C = {C1, C2, C3, . . . Ck} , 1 < k ≤ n (3.2)

Equation (3.3) is used to calculate the Euclidean distance (dis) from each object

to each cluster center.

dis (Xi, Cj) =

⌜⃓⃓⎷ n∑︂
t=1

(Xit − Cjt)
2 (3.3)

Next, the distance from each object to each cluster center is compared, and the

object is assigned to the cluster with the nearest cluster center. Therefore, k clusters

S is determined in Equation (3.4).

S = {S1, S2, S3, . . . SK} (3.4)
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The K-means clustering algorithm uses the center to define the characteristics of

the cluster. The new cluster center of the cluster is the mean value of all objects

in the cluster in each dimension. The equation to calculate the new cluster center

(Cinew) is as follows.

Cinew =

∑︁
Xi∈Si

Xi

|Si|
(3.5)

After obtaining the new cluster center, an interactive process is followed to calculate

the distance from each object to each cluster center to determine the new cluster

center. Until the value of the cluster center does not change, the classification of the

data is completed.

For the selection of k value, this thesis uses cross-validation to select the optimal

k according to the loss Equation (3.6) [52].

Loss =
n∑︂

i=1

mink ∥Xi − Ck∥2 (3.6)

The loss Equation (3.6) will eventually have an elbow point. According to the

elbow point, the best k value is selected. However, sometimes the elbow point is not

easy to see directly. At this time, ∆Loss is needed to find the elbow point. The

equation of ∆Loss is shown blow

∆Loss(i) = Loss(i+ 1)− Loss(i) (3.7)

When the elbow point of ∆Loss is found, assuming that the found ∆Loss value is

∆Loss(i), then the value of Loss(i+ 1) is the elbow point of the loss function data.

By using the K-means algorithm, the sub-Microtrip database is determined and

each cluster of the Microtrip is a driving situation. Sub-Microtrip will be detialed in

Section 3.4.
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3.3.2 Principal Component Analysis

PCA is an unsupervised machine learning algorithm and a technique for exploring

high-dimensional data structures. It is mainly used for dimensionality reduction of

data. Through dimensionality reduction, features that are easier found, and the

processing speed of valuable information from samples can be accelerated.

The logic of PCA is that the data is transformed from the original coordinate

system to the new coordinate system, and the choice of the new coordinate system

is determined by the data itself. The first new coordinate axis selects the direction

with the largest variance in the original data, and the second new coordinate axis

selects the direction that is orthogonal to the first coordinate axis and has the largest

variance. This process is repeated for the number of features in the original data.

Most of the variance is contained in the first few new axes. Therefore, to ignore the

remaining coordinate axes can perform dimensionality reduction on the data [53].

In PCA, the distance between the coordinate axes of the new coordinate system and

the original data has a distance relationship. There is a link between the original data

and the new axes through the variance. The variance is the degree of dispersion of a

random variable, that is, the measure of the distance between a group of numbers and

its average value. The variance is also the expected value of the square of the deviation

between a random variable and its population mean or sample mean [54]. Through

reverse thinking, the insignificant coordinate axis can be regarded as the insignificance

of the parameter, that is, the weight of the parameter is designed through the primary

and secondary of the coordinate axis of the new coordinate system. The specific

algorithm of this weight designer is as follows.

When using PCA, the parameters are not distinguished as independent variables

and dependent variables; thus, all parameters are treated equally. The parameters

are arranged into an array X, and the covariance matrix “Σ” of different parameter

arrays are calculated. The analysis is then simplified by examining arrays in new
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spaces through mathematical transformations, which is shown in Equation (3.8).

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y1 = αT
1X = a11x1 + . . .+ a1pxp

Y2 = αT
2X = a21x1 + . . .+ a2pxp

. . .

Yp = αT
pX = ap1x1 + . . .+ appxp

(3.8)

cov (Yi, Yk) = αT
i

∑︂
αk = 0 (3.9)

∥αi∥2 = αT
i αi = 1 (3.10)

Where, aij represents the value of row “i” and column “j” in the covariance matrix

“Σ” . The principal component (PC) is αi in the Equation (3.8), which is also the

eigenvector ei of the covariance matrix “Σ”. Equation (3.9) and Equation (3.10)

show that the vectors of PC in the new coordinate system are pairwise orthogonal,

which explains that each coordinate axis is independent of the other in the new space.

Moreover, it is the orthogonality of those vectors that greatly simplifies the research

difficulty of the problem as orthogonality indicates that the subsequent design of the

weight allocator can ensure that the weights of the parameters will not overlap. α

are used to get the matrix of feature vector A as Equation (3.11) shows.

A =

⎡⎢⎢⎢⎢⎢⎢⎣
αT
1

αT
2

. . .

αT
p

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 . . . a1p

a21 . . . a2p

. . .

ap1

. . .

. . .

. . .

app

⎤⎥⎥⎥⎥⎥⎥⎦ (3.11)

The eigenvalues λi is obtained by calculating the variance of Yi from Equation (3.12)

to Equation (3.14). The larger the eigenvalue λi, the more important the coordinate
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axis of the corresponding new coordinate system is, that is, the data set is mainly

close to the new coordinate axis which has larger λi.

Yi = αT
i X (3.12)

var (Yi) = max ∥αi∥ = αT
∑︂

α
(︂
with αT

i

∑︂
αj = 0) (3.13)

var (Yi) = αT
i

∑︂
αi = λi (3.14)

Next, a single λi is divide by the Σλi to get λi% and the elements of the covariance

matrix are divided by the sum of the elements in the same column to get a(i,j)%. The

equations are shown in the following. Finally, Equation (3.17) is obtained that yields

the matrix of the proportional feature vector.

λi% =
λi∑︁
λi

=

(︃
λi

λ1 + . . .+ λi + . . . λp

)︃
× 100% (3.15)

ai,j% =
ai,j
p∑︁

i=1

ai,j

× λi% (3.16)

A% =

⎡⎢⎢⎢⎢⎢⎢⎣
a11% . . . a1p%

a21% . . . a2p%

. . .

ap1
%

. . .

. . .

. . .

app%

⎤⎥⎥⎥⎥⎥⎥⎦ (3.17)

By summing of each row of the matrix of proportional feature vector A%, the

weight of each parameter is obtained as shown in Equation (3.18). By summing of
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each column of the matrix of proportional feature vector A%, the λi% of each PC

is obtained. In order to avoid confusion of equation parameters, subsequent λi% is

represented by λj%.

Wi =

p∑︂
j=1

ai,j (3.18)

λj% =

p∑︂
i=1

ai,j (3.19)

Figure 3.5 is the matrix of the proportional feature vector for vehicle target pa-

rameters. In this thesis, the target parameters of all driving cycles are calculated and

combined into a target parameter matrix. Each row represents the target parame-

ters, and each column represents the eigenvalues. Inputting the data matrix into the

previously designed weight allocator yields Figure 3.5.

Figure 3.5: The matrix of the proportional feature vector based on the OBD recording
data from Aug. 17, 2021 to Oct. 9, 2022 for all vehicle category
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In Figure 3.5, parameter 1 to 9 are Vavg,V eavg, Accavg, Decavg, %Idle, %Cruise,

%Acc, %Dec, and Stop/km, respectively. Color bar shows the importance of each

data, which is the weight for each data. Add the data of each row of Figure 3.5 can

get the weight of each parameter, and add the data in each column of Figure 3.5 can

get the eigenvalues for each PC.

3.3.3 Revised Root Mean Square Algorithm

The Root Mean Square (RMS) is an algorithm used to determine the deviation be-

tween the result data column and the target data column. RMS is one of four eval-

uation functions commonly used in machine learning [55]. The root means square

error, also known as the standard error, is the square root of the ratio of the square

of the deviation between the observed value and the true value to the number of

observations. The root mean square error is used to measure the deviation between

the observed value and the true value. The standard error is very sensitive to the

large or small error in a set of measurements, and the standard error can be used as

a criterion for assessing the precision of a measurement process. RMS is calculated

as follows:

RMS =

⌜⃓⃓⎷∑︂
n

(︃
xi − xi.avg

xi.avg

)︃2

(3.20)

xi = average target parameter for a candidate drive cycle

xiavg = average target parameter for all OBD recorded data

However, the RMS algorithm does not take into account the weight for all pa-

rameters. If the RMS algorithm is directly used as the evaluation function of the

driving cycle, there will be an effect of parameter error accumulation. Therefore, in
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this research, the Principal component analysis algorithm is used to design weight

for each assessment metric parameters. the detailed information can be got from

Section 3.3.2. The weight of each parameter is shown in Figure 3.6.

Figure 3.6: Weights for target parameters based on the OBD recording data from
Aug. 17, 2021 to Oct. 9, 2022 for all vehicle category

Through Section 3.3.3 to Section 3.3.2, the revised RMS (RMSrevised) is deter-

mined.

RMSrevised =

⌜⃓⃓⎷∑︂
n

(︃
xi − xi.avg

xi.avg

)︃2

× Wi (3.21)

As shown in Equation (3.21), each parameter is assigned a weight when it is used.

Thus, during use, the problem of over-weighting due to parameter correlation is re-

solved.

3.4 Driving Scenarios for Different Vehicle Cate-

gory

The generation of the driving cycle for the UAlberta fleet vehicles in this research

faced the problem of an excessive number of Microtrips. Therefore, it is important

to simplify the Microtrip database. To this end, at first, Microtrips are divided into

several scenarios, then simplify each scenario, and finally get a simplified database,
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which is also called sub-Microtrip database. Through this categorization and simpli-

fying method, the database can be simplified quickly.

Average speed (Vavg) and maximum speed (Vmax) are important parameters to

reflect the driving state. For example, when the Vavg and Vmax are close to 0, vehicles

are usually in idle driving scenarios, but when the Vavg and Vmax are high, vehicles

are usually in a cruising state. Therefore, using the Vavg and Vmax to distinguish the

Microtrips can let driving scenarios be determined.

The traditional driving scenarios dividing method is based on the speed range

evenly divided method. For example, the driving scenarios are divided into steps of

5km/h (0 - 5 km/h is the first driving scenario, 5 - 10 km/h is the secondary driving

scenario, and so on) [20]. However, such a driving scenarios determination method

has two drawbacks. The first drawback is that the division steps of different vehicle

categories are different. Vehicles travelling on campus should have smaller steps,

while vehicles travelling on highways should have larger steps. Another problem is

how to determine the value of the step size. As shown in the Figure 3.2, it is difficult

to determine how to divide the data. Therefore, a driving scenarios determination

algorithm based on an unsupervised machine learning method is applied in this thesis.

As mentioned before in Section 3.2.4, clustering a Microtrip database is a kind of

method to get driving scenarios. As introduced in the previous, this thesis uses the

speed-based driving scenario division method, because the experimental data in this

thesis are real-world vehicle driving data. The Microtrip database of different vehicle

categories can be classified using the unsupervised learning algorithm K-means. The

number of clusters can be obtained from the Equation (3.7). The result is shown

below.

Figure 3.7a is the result for utility or trade vehicle category, Figure 3.7b is the

result for casual rental vehicle category, Figure 3.7c is the result for shuttle minibuses

category, and Figure 3.7d is the result for UAPS category. From the Figure 3.7, the

blue histogram is the Loss value, which is difficult to find the elbow point. Therefore,
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(a) Loss and ∆loss for utility or trade
vehicles

(b) Loss and ∆loss for casual rental ve-
hicles

(c) Loss and ∆loss for shuttle minibuses (d) Loss and ∆loss for UAPS

Figure 3.7: Loss and ∆loss for different vehicle category for all OBD recorded data
from Aug. 17, 2021 to Oct. 9, 2022

use the ∆Loss value obtained by the Equation (3.7) to find the elbow point. It can be

seen from the Figure 3.7 that the utility or trade vehicle category and casual rental

vehicle category both need five cluster centers, but the shuttle minibuses category

and UAPS category need six cluster centers.

The selection for the final number of clusters in this study is confirmed with the

physical interpretation of vehicle velocity data and purpose of this study to under-

stand different driving situations by university vehicles as well understanding driver

aggressiveness in different scenarios. The number of driving scenarios is linked to

the type of driving area. For instant, low-speed creeping driving scenario links to the
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crossroad area, campus driving scenario with speeds below 30 km/h links to university

area, etc.

Another factor that affects the number of driving scenarios is speed. Take utility

or trades vehicle data as an example, high-speed resident driving scenario’s average

driving speed is 30.32 km/h, but low-speed resident driving scenario’s average driv-

ing speed is 18.61 km/h. Driving speed is related to driving aggressiveness. More

aggressive driving usually has higher driving speeds. Dividing Micortrips with large

differences in driving speed into different driving scenarios can make the comparison

of driving aggressiveness more reliable.

In addition, the choice of the number of driving scenarios is also affected by the

Microtrip duration. Take utility or trades vehicle data as an example, the Microtrip

duration range of Creeping driving scenario is mainly within 15 s, the low-speed

campus driving scenario Microtrip duration is mainly within 60 s, the high-speed

campus driving scenario Microtrip duration is mainly within 100 s, etc. The duration

of Microtrip directly affects energy consumption. Such a division can ensure that the

impact of driver aggression on fuel consumption is sufficiently accurate. Otherwise,

the variance of data statistics in the same driving area will be large, which means

that the correlation of the data is weak.

The Microtrip database divided into driving scenarios is shown in Figure 3.8 to

Figure 3.11.

After getting driving scenarios, RMSrevised and PCA from Section 3.3.3 and Sec-

tion 3.3.2 are applied to get the five most representative Microtrips in each driv-

ing scenario interval to simplify the Microtrip database. The simplified Microtrip

database with driving scenarios classification is called sub-Microtrip database. The

sub-Microtrip database for different vehicle categories is shown from Figure 3.12 to

Figure 3.15. In each driving scenario category, the solid lines are the best representa-

tive Microtrips. The remaining Microtrips are represented by the area plot, and the

darker the color, the more frequent the driving situation in the range appears.
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Figure 3.8: Driving scenarios for utility or trade vehicles; Data from Aug. 17, 2021
to Jan. 20, 2022

Figure 3.9: Driving scenarios for casual rental vehicles; Data from May. 12, 2022 to
Sep. 14, 2022

In Figure 3.12, Figure 3.12a is the creeping driving scenario, Figure 3.12b is the

low-speed campus driving scenario, Figure 3.12c is the high-speed campus driving
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Figure 3.10: Driving scenarios for shuttle minibuses; Data from Apr. 4, 2022 to Apr.
21, 2022

Figure 3.11: Driving scenarios for UAPS; Data from Jun. 21, 2022 to Oct. 9, 2022

scenario, Figure 3.12d is the low-speed resident driving scenario, and Figure 3.12e is

the high-speed resident driving scenario.

For creeping driving scenarios, the time interval of Microtrip is less than one
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(a) Creeping driving scenario (b) Low-speed campus driving scenario

(c) High-speed campus driving scenario (d) Low-speed resident driving scenario

(e) High-speed resident driving scenario

Figure 3.12: Sub-Microtrip database for utility or trade vehicle category ; Data from
Aug. 17, 2021 to Jan. 20, 2022

minute, and the maximum driving speed does not exceed 10 km/h. It belongs to

the characteristics of driving in crowded areas. The campus driving scenario is a

driving scenario where the vehicle is running in an area with people on the campus.

It can be seen that the driving speed of the vehicle is within the campus speed limit of

30 km/h. Both low-speed and high-speed resident driving scenarios have longer time

intervals. The greater the average speed of Microtrips, the longer the time interval of

Microtrips.
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(a) Creeping driving scenario (b) Low-speed resident driving scenario

(c) High-speed resident driving scenario (d) Urban driving scenarios

(e) Highway driving scenario

Figure 3.13: Sub-Microtrip database for casual rental vehicle category; Data from
May. 12, 2022 to Sep. 14, 2022

In Figure 3.13, Figure 3.13a is the creeping driving scenario, Figure 3.13b is the

low-speed resident driving scenario, Figure 3.13c is the high-speed resident driving

scenario, Figure 3.13d is the urban driving scenario, and Figure 3.13e is the highway

urban driving scenario. The driving scenarios for casual rental vehicles have higher

speeds and longer time intervals than utility and trade vehicles. Only casual rental

vehicles have highway driving scenarios. Therefore, the assessment metric for casual
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rental vehicles have the highest average speed and the lowest number of Stops/m,

which are 58.3 km/h and 0.4 respectively.

(a) Creeping driving scenario (b) Campus driving scenario

(c) Low-speed resident driving scenario (d) High-speed resident driving scenario

(e) Low-speed urban driving scenario (f) High-speed urban driving scenario

Figure 3.14: Sub-Microtrip database for shuttle minibus vehicle category; Data from
Apr. 4, 2022 to Apr. 21, 2022

In Figure 3.14, Figure 3.14a is the creeping driving scenario, Figure 3.14b is the

campus driving scenario, Figure 3.14c is the low-speed resident driving scenario, Fig-

ure 3.14d is the high-speed resident driving scenario, Figure 3.14e is the low-speed

urban driving scenario, Figure 3.14f is the high-speed urban driving scenario. Com-
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pared with casual rental vehicles, shuttle minibuses have a higher speed in both

low-speed resident driving scenario and high-speed resident driving scenario. Even in

the same driving scenario, different vehicle models and different driving routes can

lead to different driving characteristics. This also illustrates the necessity of building

driving cycles for different vehicle categories.

(a) Creeping driving scenario (b) Low-speed campus driving scenario

(c) High-speed campus driving scenario (d) Low-speed resident driving scenario

(e) High-speed resident driving scenario (f) Urban driving scenario

Figure 3.15: Sub-Microtrip database for UAPS vehicle category; Data from Jun. 21,
2022 to Oct. 9, 2022

In Figure 3.15, Figure 3.15a is the creeping driving scenario, Figure 3.15b is the
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low-speed campus driving scenario, Figure 3.15c is the high-speed campus driving

scenario, Figure 3.15d is the low-speed resident driving scenario, Figure 3.15e is the

high-speed resident driving scenario, Figure 3.15f is the urban driving scenario. UAPS

have the most campus driving scenarios which resulting in a higher number of starts

and stops. Morover, because of the speed limit in the campus area, UAPS has the

lowest average speed assessment metric value.

3.5 Microtrip Generation Algorithm

Based on the generation method of the sub-Microtrip database from section Sec-

tion 3.4, a driving cycle is constructed according to the algorithm illustrated in Fig-

ure 3.16. Different from the conventional completely random driving cycle construc-

tion method, which randomly combines Microtrips and then judges the performance

to determine whether the generated driving cycle is available. The algorithm in Fig-

ure 3.16 uses the average speed of Microtrips to accelerate the process.

In the process of combining the Microtrips into a driving cycle, because the Mi-

crotrip does not include the idle driving state, the driving cycle consisting of Mi-

crotrips should not include the idle driving state. Here, V Ravg is used, which is the

average speed of a driving cycle consisting of Microtrips without any inserted idle

driving states. Because the idle driving state is abandoned during the combination,

the total expected driving cycle time duration is also reduced, so TimeDesired is used

to represent the expected driving cycle time without the idle driving state. TimeDC

in the algorithm is the time duration of the Microtrip combined driving cycle.

As Figure 3.16 shows, firstly, a Microtrip is randomly selected and its V Ravg is

calculated. If V Ravg is equal to V eavg, then the algorithm randomly selects a Microtrip

from the Microtrip database. If V Ravg is larger than V eavg, then the algorithm

randomly selects the next driving state from the Microtrip database for which the

speed range is higher than the previously selected Microtrip and randomly selects a

new Microtrip to connect the previous Microtrip, otherwise, the algorithm randomly
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selects the next driving state interval which is lower than the previously selected one

and keep other steps unchanged. The process is then continued until the time is

greater than the TimeDesired. Next, the RMSrevised of the generated driving cycle is

calculated, if RMSrevised is greater than 1, the generated driving cycle is regarded as

an invalid driving cycle; thus, the driving cycle is deleted and the process is restarted.

Based on the above process, the driving cycle except for the idle driving state is

obtained.

For the allocation of idle times, the start and the end idle times of the driving cycle

are obtained by calculating the average ratio of the start and end idle times to the

total time from all recorded data. The driving cycle’s idle time between Microtrips

is the total idle time minus the start and end idle time divided by the number of

Microtrips in the driving cycle. The driving cycle time is the average value of all

OBD recorded driving cycle times.

3.6 Driving Cycles for Each Vehicle Category

In this section, driving cycles, values of target parameters for driving cycles, and

RMSrevised value for different vehicle categories are shown below. Figure 3.17 shows

the driving cycle for the utility or trade vehicle category. Table 3.6 shows the driving

cycles’ target parameter values for the utility or trade vehicle category. As mentioned

in Section 3.4, the duration of the driving cycle is the average value of all OBD

recorded driving cycle duration time. Therefore, the cycle time for utility and trades

vehicles is 1761 seconds. From all OBD recorded driving cycles, the idle driving state

time accounted for 33.7% of the total time. Thus, for utility and trade vehicles, the

duration of idle driving state time is 594.6 s. The idle time of the driving cycle at the

beginning and the end of the total driving cycle time are 28.5 s and 39.2 s, respectively.

RMSrevised is 0.27, which means the proposed driving cycle in Figure 3.17 can well

represent the driving characteristics of the tested fleet vehicles in utility or trade

vehicles category.
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Table 3.6: The driving cycles’ target parameter values for utility or trade vehicle
category

Target
Param-
eters

Vavg

(km/h)
V eavg

(km/h)
Accavg
(m/s2)

Decavg
(m/s2)

Stop/km

Value 17.5 21.2 0.34 -0.34 3.1

Target
Param-
eters

%Acc %Dec %Cruise %Idle RMSrevised

Value 25.9 23.5 23.2 27.4 0.27

Figure 3.18 depicts the driving cycle for the casual rental vehicle category. Table 3.7

shows the driving cycles’ target parameter values for the casual rental vehicle category.

The cycle time for casual rental vehicles is 9136 seconds. From all OBD recorded

driving cycles, the idle driving state time accounted for 17.6% of the total time.

Thus, the duration of idle driving state time is 1607 s. The idle time of the driving

cycle at the beginning and the end of the total driving cycle time are 132 s and 343

s, respectively. It can be seen that the driving cycle for the casual rental vehicle

category has the longest driving duration, and it’s the only vehicle category which

has the highway driving scenario.

Table 3.7: The driving cycles’ target parameter values for casual rental vehicle cate-
gory

Target
Param-
eters

Vavg

(km/h)
V eavg

(km/h)
Accavg
(m/s2)

Decavg
(m/s2)

Stop/km

Value 51.9 70.1 0.51 -0.51 0.3

Target
Param-
eters

%Acc %Dec %Cruise %Idle RMSrevised

Value 14.7 15.0 49.3 17.0 0.87

Figure 3.19 shows the driving cycle for the shuttle minibus category. Table 3.8
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shows the driving cycles’ characteristics for shuttle minibus category. The cycle time

for shuttle minibus is 980 seconds. From all OBD recorded driving cycles, the idle

driving state time accounted for 27.4% of the total time. Thus, in this study, the

duration of idle driving state time is 242 s. The idle time of the driving cycle at the

beginning and the end of the total driving cycle time are 35 s and 13 s, respectively.

Compared with utility and trades vehicles, the shuttle minibus’ driving cycle has

fewer cruise fragments and more acceleration and deceleration. It means that minibus

drivers are more aggressive than utility and trade vehicles driver. To relieve aggressive

driving for minibus drivers can save fuel and produce less emissions.

Table 3.8: The driving cycles’ target parameter values for shuttle minibus category

Target
Param-
eters

Vavg

(km/h)
V eavg

(km/h)
Accavg
(m/s2)

Decavg
(m/s2)

Stop/km

Value 24.6 29.4 0.41 -0.41 1.7

Target
Param-
eters

%Acc %Dec %Cruise %Idle RMSrevised

Value 29.1 31.1 16.0 23.8 0.22

Figure 3.20 shows the driving cycle for the UAPS vehicle category. Table 3.9 shows

the driving cycles’ characteristics for UAPS vehicle category. The cycle time for UAPS

vehicles is 1221 seconds. From all OBD recorded driving cycles, the idle driving state

time accounted for 41.1% of the total time. Thus, in this study, the duration of idle

driving state time is 502 s. The idle time of the driving cycle at the beginning and

the end of the total driving cycle time are 20 s and 15 s, respectively. UAPS vehicles

have the most idle fragments which means that UAPS vehicles are more about waiting

than patrolling. This is also very understandable, that the campus area has a large

flow of people, and it is inconvenient to patrol for a long time.
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Table 3.9: The driving cycles’ target parameter values for UAPS vehicle category

Target
Param-
eters

Vavg

(km/h)
V eavg

(km/h)
Accavg
(m/s2)

Decavg
(m/s2)

Stop/km

Value 18.3 20.2 0.66 -0.65 5.1

Target
Param-
eters

%Acc %Dec %Cruise %Idle RMSrevised

Value 22.4 23.0 13.6 41.0 0.18

3.7 Conclusion

This chapter elaborates on the algorithms and results for the driving cycles for the

UAlberta fleet vehicles. A method based on unsupervised machine learning is used

to generate driving scenarios, and a PCA algorithm is used to design the weights

of different parameters. Based on the operating characteristics of the vehicles, four

driving cycles were developed for the UAlberta fleet vehicles. They are utility and

trade vehicles driving cycle, casual rental vehicles driving cycle, shuttle minibuses

driving cycle, and UAPS driving cycle. The driving cycle can be used to test the fuel

efficiency and emissions of vehicles.
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Figure 3.16: Flowchart of the designed algorithm to construct the driving cycle
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Figure 3.17: The driving cycle for utility or trade vehicles

Figure 3.18: The driving cycle for casual rental vehicles

Figure 3.19: The driving cycle for shuttle minibuses
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Figure 3.20: The driving cycle for UAPS
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Chapter 4

Driver Behavior Assessment and
Fuel Consumption

4.1 Introduction

In this chapter, the numerical measurement of driver aggressiveness and the impact

of driving aggression on fuel consumption will be detailed. Two types of vehicles,

shuttle minibus and sedan vehicles, were used for testing. For shuttle minibuses, two

drivers were selected for testing on a fixed route, and for sedan vehicle, one driver

are selected to do one normal driving and one aggressive driving. In order to analyze

the impact of driver aggressiveness on fuel consumption, driver aggressiveness will be

assessed based on different driving scenarios.

4.2 Concept Definition

4.2.1 Driver Behavior

Driver’s driving behavior (also referred to as driver behavior for short) refers to the

actions, decisions, and attitudes of drivers when driving a vehicle on a road [56]. It

covers a wide range of behaviors, including how drivers obey traffic rules, deal with

distractions, react to unexpected situations, manage emotions and interact with other

road users [57–61]. At the same time, drivers behave differently in different areas and

environments [62, 63]. Driver behavior can have a major impact on road safety Unsafe
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driving behaviors such as speeding, aggressive driving, and distracted driving increase

the risk of accidents and injuries.

The research on driver behavior usually includes three parts as shown in Figure 4.1.

Different driving scenarios affect driver behavior in various ways, as drivers may need

to adapt different behavior and decisions to the specific situations they encounter on

the road.

Some examples of driving scenarios that may affect driver behavior include: (i)

Traffic congestion: In heavy traffic, drivers may become more irritable, frustrated,

and aggressive, leading to behaviors such as tailgating, weaving in and out of lanes,

and honking [64]. (ii) Country Roads: Driving on narrow, winding roads with lim-

ited visibility may require more concentration and defensive driving skills, as well

as slower speeds [65]. (iii) Urban areas: On busy city streets, drivers may need to

navigate intersections, pedestrian crossings, and cycle lanes while dealing with heavy

traffic and unpredictable road users [66]. Overall, different driving scenarios affect

driver behavior in complex ways, depending on factors such as risk level, stress level,

and familiarity with the environment. Understanding these factors can help drivers

anticipate potential behavioral challenges and make timely adjustments to ensure

safer, more efficient driving.

Some examples of how natural environmental conditions can affect driver behavior

include: (i) Weather: Rain can reduce visibility, increase stopping distances, and

create slippery roads that make it harder for the driver to maintain control of the

vehicle; ice and snow can make roads wet, which can lead to skids and accidents;

fog can reduce visibility and create dangerous driving conditions, especially at high

speeds [67–69]. (ii) Slope, also known as a ramp, can have a significant impact

on driver behavior as they affect vehicle speed, acceleration and handling. When

going uphill, the vehicle may need to accelerate to maintain a steady speed, which

affects fuel efficiency and engine performance. On a downhill slope, the vehicle may

accelerate more easily, which increases the risk of speeding and loss of control [70].
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Figure 4.1: Classification of driving behavior analysis. Green blocks show the focus
area of this study.

(iii) Light and shadow can create contrast in the visual environment, making objects,

signs or other road users more difficult to see [71]. Natural environmental conditions

can significantly affect driver behavior, requiring drivers to adjust their behavior and

decisions to ensure safe and efficient driving. Knowing these conditions and taking

proper precautions can help drivers avoid accidents and reach their destinations safely.
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In terms of experimental methods, driver behavior research can be classified as sim-

ulation experiments and on-road driving tests. Simulation experiments are generally

carried out on the driving simulator, as shown in the simulation module in Figure 4.1.

Within the scope of driver self-influence, research directions can be divided into three

categories, that is, (i) finding the optimal driving cycle: This kind of research is

mainly aimed at vehicles with fixed driving routes and road conditions [72], (ii) driv-

ing behavior prediction: This type of research is mainly used for real-time control

of the driver to ensure that the driver is in a safe driving state. Real-time control

can also be used to guide drivers to drive economically. Common forms of feedback

include sound alarms, light bars, and screen lock [73], and (iii) driving characteristic

classification.

The research on driving characteristic classification can be further divided into

three categories, including (i) driver emotion impact analysis: By understanding how

different emotions affect driver behavior, traffic safety organizations and law enforce-

ment agencies can develop targeted interventions and education programs to promote

safe and responsible driving [74], (ii) unsafe behavior analysis: Unsafe behavior analy-

sis is the process of identifying and studying the behaviors and actions that contribute

to unsafe driving practices. By understanding these unsafe behaviors, traffic safety

organizations and law enforcement agencies can develop targeted interventions and

education programs to promote safe and responsible driving [75], and (iii) driving

aggressiveness analysis [liu2023identification]. In Figure 4.1, the focus area of this

thesis is highlighted by green blocks.

4.2.2 Driver Aggressiveness

This study focuses on driving aggressiveness (DA). DA refers to a pattern of driving

behavior characterized by hostility, impatience, and a tendency to take risks while

driving [76]. The performance in the data is that compared with the normal driving

mode, the aggressive driving speed is faster, and the acceleration and deceleration
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are more frequent and the range is larger. Aggressive driving increases the risk of

accidents and has serious consequences for aggressive drivers and other road users.

Traditional DA research methods focus on the statistics of acceleration [77]. How-

ever, statistical methods will ignore the detailed performance of driving behavior. For

instance, consider the shuttle minibus category data as an example. There are two

minibuses in the shuttle minibus category. The two minibuses are driven by two fixed

drivers, called Driver A and Driver B. The driving route of the minibus is also fixed.

If one counts the acceleration data of driver A and B and makes a violin figure as

shown in Figure 4.2; it can be seen from the Figure 4.2 that the acceleration values

of Driver A and B are all concentrated around 0. However, it is difficult to see from

the Figure 4.2 that which vehicle has more driving acceleration. This will mislead

the reader that Driver A and B have the same driving aggressiveness. However, the

driving fuel consumption of Driver A and B is quite different. It can be seen from

the Figure 4.3 that the lowest fuel consumption value of driver B is greater than

the highest fuel consumption value of driver A. If one analyzes DA from a driving

scenarios perspective such as creeping driving scenarios and so on, the error of DA

calculated by traditional statistical method is even bigger.

Frequency domain analysis transforms the data into the frequency domain. In

the frequency domain, the characteristics of the data are displayed sequentially from

low frequency to high frequency. The information of the signal is not lost during

conversion [78]. Therefore, this research adopts the frequency domain analysis method

to analyze the DA under different driving situations.

4.3 Mathematic model

4.3.1 Frequency Domain Analysis

In this study, the driver’s DA and the fuel consumption difference from different

driving scenarios was analyzed. As introduced in Section 3.4, this thesis uses Microtrip
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Figure 4.2: The acceleration violin statistics of the drivers of the shuttle minibuses
(Use data of shuttle minibus from Apr. 4, 2022 to Apr. 21, 2022)

Figure 4.3: Differences in fuel consumption by shuttle minibus drivers (Use data of
shuttle minibus from Apr. 4, 2022 to Apr. 21, 2022)

to identify driving scenarios. Microtrip is a signal sequence with a limited time and

a certain frequency (1Hz). Microtrip signal sequence can be regarded as a discretized

version of continuous time-driving velocity. Discrete Fourier Transform (DFT) is used

to analyze Microtrip signal in the frequency domain. DFT maps length-N signals

into a set of N discrete frequency components. The DFT representation is shown in

Equation (4.1)
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X(k) =
N−1∑︂
n=0

x(n)e−j 2π
N , k = 0, . . . , N − 1 (4.1)

In Equation (4.1), x(n) is the discrete signals in the time domain, X(k) is the

discrete signals in the frequence domain, and N is the original signal length

Based on DFT and Parseval theorem, as shown in Equation (4.2), the energy of

the time-domain signal sequence and frequency-domain signal sequence is conserved

[79].

N−1∑︂
n=0

|x(n)|2 = 1

N

N−1∑︂
n=0

|X(k)|2 (4.2)

The content 1
N
|X(k)|2 on the right side of Equation (4.2) is periodogram [80]. The

value under the periodogram area is exactly the variance of the signal in the time

domain. The variance of the time-domain signal is the fluctuation of driving speed.

Therefore, the DA can be reflected by the 1
N
|X(k)|2 value of the frequency domain

signal, and this description is quantitative.

When performing frequency domain analysis, it is first necessary to subtract the

average velocity of the Microtrip signal, because the zero-mean signal occupies too

much energy in the frequency domain. At the same time, the zero-mean signal cannot

reflect the driver’s driving performance as zero-mean signal is the driving state that

vehicle is idling. The analysis of DA in different speed ranges can be analyzed in

different driving situations.

Moreover, to analyze the Microtrip signal, it is necessary to obtain the second-order

derivative to obtain the jerk trace. Because if the velocity signal is directly subjected

to frequency analysis, the low-speed component signal accounts for too much energy

in the frequency domain, which desensitize the DA model [78]. The low-frequency

(LF) components of the velocity signal in the frequency domain are usually caused

by the driving environment, while the high-frequency (HF) speed components are
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caused by the driving behavior, and the cutoff frequency between LF and HF is the

frequency at which high frequency accounts for 80% of the total energy. [81].

Thus, the numerical expression of driver aggressiveness can be shown by Equa-

tion (4.3).

DA=
HF

LF+HF
(4.3)

Where, HF represents high-frequency energy, and LF represents low-frequency en-

ergy. Thus, the numerical range of DA is between 0 and 1, and the closer it is to 0,

the smoother the driver is driving, and the closer it is to 1, the more aggressively the

driver is driving. The flow chart of DA research process on the Microtrip database is

shown in Figure 4.4.

Figure 4.4 shows the flow of frequency domain analysis. Firstly, as shown in Fig-

ure 4.4(a), the Microtrip database is divided into sub-Microtrip databases with dif-

ferent driving scenarios using a clustering algorithm (see Section 3.4 for details).

Figure 4.4(b) shows the shuttle minibus sub-Microtrip database. Each figure in

Figure 4.4(b) is composed of multiple Microtrip lines, and it is determined as sub-

Microtrip database (one sub-Microtrip is zoomed for demonstration). In each sub-

Microtrip database, one Microtrip line is bolded for demonstration. As shown in

Figure 4.4(c), each Microtrip under different driving scenarios was analyzed in the fre-

quency domain. Using Equation (4.2) to calculate the DA value of each Microtrip, the

DA of different drivers in different driving situations can be obtained. Figure 4.4(d)

shows the specific DA calculation process of Microtrip circled by the red box in Fig-

ure 4.4(c). One can add periodogram value with frequencies lower than 0.1 HZ to

calculate LF, and add periodogram value with frequencies higher than 0.1 HZ to

calculate HF. By appling the Equation (4.3), the DA of Microtrip is determined.
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Figure 4.4: The flow chart of frequency domain analysis on driver aggressiveness in
different driving scenarios (Use data of shuttle minibus from Apr. 4, 2022 to Apr.
21, 2022)

4.3.2 Fuel Consumption Rate

The OBD data loggers don’t provide fuel consumption rate (FCR) data directly.

Therefore, engine data including Intake Mass Air flow (MAF), the air-to-fuel ratio at

the stoichiometric level (AFRstoich), and λ which is the ratio of the actual air/fuel

ratio (AFR) to AFRstoich are used to estimate vehicle fuel consumption rate [82].
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FCR (t)=
MAF (t)

λ(t)×AFRstoich

(4.4)

In this study, the short and long-term fuel trims from OBD data are used to

calculate the air-fuel equivalence ratio accurately for the tested vehicle with spark

ignition (SI) engine [83].

λ (t)=
1(︁

1 + Short−term fuel trim
100

)︁
×
(︁
1 + Long−term fuel trim

100

)︁ (4.5)

By using Equation (4.4), FCR data for a driving cycle is obtained. To properly

assess the driving behavior and its link to FCR, all driving data from each driver is

used to create Microtrips that from a driving cycle. Vehicle data from each driver

is divided into small pieces to generate Microtrips. At the same time FCR is also

divided into pieces following the same segmentation method as Microtrip. Therefore,

each Microtrip contains information including, velocity, time, and actual FCR data.

Total fuel consumption (FC) is calculated by

FC =
∑︂

FCR(t) ·∆t (4.6)

The data recorded by OBD data loggers are used to obtain the relatively accurate

FC of the experimental driving cycle using Equation (4.4) and Equation (4.6).

Figure 4.5 uses the shuttle minibus OBD record data on April 5, 2022 to show the

instantaneous fuel consumption and vehicle speed.

4.4 Driver Aggressiveness in Different Driving Sce-

narios

4.4.1 Shuttle Minibuses’ Driving Aggressiveness

According to the methods in Section 2.3.3, Section 3.4 and Section 4.3, the driving

behavior of the University of Alberta two shuttle minibuses drivers are analyzed.
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Figure 4.5: Time series of vehicle speed and recorded fuel consumption (Data source:
April 5, 2022 shuttle minibus; ID: 0438)

Figure 4.6 shows the driving aggressiveness of drivers A and B in different driving

scenarios. In Figure 4.6, the x-axis represents the magnitude of the DA value. The

most aggressive driving occurs when the DA is close to 1, and the smoother the

driving occurs when the DA is close to 0. Each sub-Microtrip database on the y-axis

represents different driving situations.

For each driving scenario, each point in Figure 4.6 represents the DA value of

the Microtrip under that driving scenario. The area plot represents the probability

density of Microtrip’s DA distribution under each scenario. The boxplot in Figure 4.6

shows the upper bound, upper quartile, median, lower quartile, and lower bound of

the data.

As shown in Figure 4.6, Driver B is more aggressive than Driver A in all scenarios

since average DA values of Driver B are higher by 7% to 45% compared those by the

Driver A. Figure 4.6 shows that for shuttle minibus drivers, the driver’s DA gradually

increases with the increase of driving speed. The DA value range of Driver A in each

driving scenario is relatively concentrated, and the difference between the upper and

lower quartiles of DA ranged from 0.09 to 0.12. This also shows that for Driver A,

the aggressive change in driving is mainly affected by the driving speed. When the
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driving speed is higher, the driver usually has to step on the pedal harder to brake to

a safe speed. For the Driver B, the difference between the upper and lower quartiles

of DA ranged from 0.07 to 0.16 in different driving scenarios. Moreover, the DA value

of Driver B under the creeping driving scenario and campus driving scenario has a

large change span. The DA upper and lower bounds value ranged from 0.29 to 0.80

and 0.53 to 0.94 respectively. Therefore, in order to improve the driving performance

of Driver B, it is first necessary to improve his tendency of driving aggression at low

speed.

4.4.2 Ford Escape PHEV Vehicle’s Driving Aggressiveness

Result in Section 4.4.1 were from the analysis for two different drivers. This section

aims to analyze driving of a same driver but for different days with different driving

state of vehicle driving.

Driving scenarios for Ford Escape PHEV

The Microtrip database and the driving scenarios of the Ford Escape PHEV can be

obtained by using the algorithm in Section 3.3. The result is shown in Figure 4.7a

and Figure 4.7b. The reason of why choice max speed and average speed as label is

explained in Section 3.2.1. In Figure 4.7c, Loss and ∆Loss is defined in Section 3.4.

It can be seen from the Figure 4.7a and Figure 4.7b that the driving scenarios of

the test vehicle are divided into five categories. They are creeping driving scenario,

low-speed residential driving scenario, high-speed residential driving scenario, low-

speed urban driving scenario, and high-speed urban driving scenario. Compared with

shuttle minibus Microtrip database as shown in Figure 3.10, the driving scenarios of

both Sedan vehicle and shuttle minibuses are very close.

Driving aggressive for Ford Escape PHEV

Figure 4.8 shows the driver aggressiveness for the Ford Escape PHEV test vehicle.

Because the driver did cold climate emission test, one normal driving state test and
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(a) Driving aggressiveness for drivers A

(b) Driving aggressiveness for drivers B

Figure 4.6: Driving aggressiveness of shuttle minibus drivers A and B in different
driving scenarios (Scenario 1-6 are defined in Figure 3.10; Use data of shuttle minibus
from Apr. 4, 2022 to Apr. 21, 2022)
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(a) Ford Escape PHEV’s Microtrip database (b) Driving scenarios for Ford Escape PHEV

(c) Loss and ∆loss for Ford Escape PHEV
(Loss and ∆Loss is defined in Section 3.4)

Figure 4.7: Microtrip database and sub-Microtrip database for Ford Escape PHEV
(Use data of Ford Escape PHEV from Mar. 26, 2022 to Mar. 27, 2022)

one aggressive driving state test had been done in two days with the same driving

route. By observing the distribution of DA in different scenarios, it can be determined

which day of driving is more aggressive. It can be seen from Figure 4.8 that in

2022/03/27, the driver had creeping driving conditions, but in 2022/03/26, the driver

did not have creeping driving conditions. Therefore, Figure 4.8a indicates the driver

driving in a normal driving state and Figure 4.8b indicates the driver driving in an

aggressive driving state.

From Figure 4.8, one can find that regardless of the driving state, the driver’s

DA distribution is relatively compact in each driving scenarios. For both normal
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driving state and aggressive driving state, the biggest difference between the upper

and lower quartiles of DA is 0.02, which indicate that driving aggressiveness is mainly

determined by the driver behavior. In addition, as the driving speed increases, the

value of DA becomes more concentrated. In low-speed residential driving scenario,

the biggest difference between the upper and lower bounds of DA are 0.016 and 0.025

respectively, and in low-speed urban driving scenario, the biggest difference between

the upper and lower bounds of DA are 0.003 and 0.005 respectively. The scattered

DA values at low speeds indicate that driving aggressiveness is more affected by the

driving environment in low speeds driving state compared with high speed driving

state. Therefore, when training drivers, focus on high-speed driving scenarios first.

4.5 Fuel Consumption Difference Caused by Driver

Aggressiveness

In this section, the effect of DA on vehicle fuel consumption is studied. Because the

vehicle model and the driving routes used in this thesis for driver behavior studies are

consistent, the fuel consumption difference are mainly caused by DA behavior. By

comparing fuel consumption in different driving scenarios, the impact of DA on fuel

consumption can be determined. A more precise analysis should take into account the

distribution of Microtrip in different driving scenarios. Therefor, a revised average

fuel consumption (RAFC) metric is proposed to better reflect the impact of DA on

fuel consumption.

4.5.1 Shuttle Minibuses’ Fuel Consumption Caused by Driv-
ing Aggressiveness

Figure 4.9 shows the correlation coefficient value for shuttle minibus driver A in

different driving scenarios. The result shows that DA and fuel consumption are

highly correlated in different driving scenarios.

Figure 4.10 shows the difference in fuel consumption (FC) of drivers A and B under
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(a) Driving aggressiveness for normal driving state

(b) Driving aggressiveness for aggressive driving state

Figure 4.8: Driving aggressiveness of Ford Escape PHEV in different driving scenarios
(Scenario 1-5 are defined in Figure 4.7b; Use data of Ford Escape PHEV from Mar.
26, 2022 to Mar. 27, 2022)
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Figure 4.9: The correlation coefficient value for the link between DA and vehicle fuel
consumption for the shuttle minibus driver A in different driving scenarios

different driving scenarios. In scenario 2, the average DA value for the driver A and

B are 0.31 and 0.76 (0.45 difference), and the difference in average FC value is 196 g.

However, in scenario 6, the average DA value between the driver A and B is 0.82 and

0.89 (0.07 difference), but the difference in average FC value is 2904 g. This shows

that in the same scenarios, the higher the DA difference, the larger the FC difference.

However, Figure 4.10 cannot properly show the impact of the occurrence prob-

ability of DA in different driving scenarios on fuel consumption. The occurrence

probability is the value that data number in one driving scenario divide by total data

number. In Figure 4.6, the density of data points in different driving scenarios is

different. Therefore, Figure 4.11 is used to show the probability of DA occurrence in

different driving scenarios. For minibus drivers A and B, the DA is more likely to

occur in driving scenarios 2 and 4.

Based on the occurrence probability of DA (OPDA) in different driving scenarios, a

revised average-fuel consumption (RAFC) formulation is proposed to better describe

the impact of DA on fuel consumption of vehicles. The RAFC equation is:

RAFC = OPDA · AFC (4.7)
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(a) Fuel consumption for driver A

(b) Fuel consumption for driver B

Figure 4.10: Fuel consumption for shuttle minibus two drivers in different driving
scenarios (Scenario 1-6 are defined in Figure 3.10; Use data of shuttle minibus from
Apr. 4, 2022 to Apr. 21, 2022)

Where AFC is the average fuel consumption in driving scenarios. The calculated

value is shown in Figure 4.12. For Driver B, one can find that Driver B consume more

fuel in scenario 5 than scenario 4 (the average fuel consumption is 2202 g and 2716

g respectively) in Figure 4.10b. The results can mislead people into thinking that

driving scenario 5 is more important. But if the OPDA is considered, it can be seen

from Figure 4.12 that the RAFC of Driver B is 526 g in driving scenario 4 and only

478 g in driving scenario 5. Therefore, in order to improve driver behavior, driving

scenario 4 should be considered more than driving scenario 5.

From Figure 4.12, it can be clearly seen that for minibus drivers, the extra fuel
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Figure 4.11: The occurrence probability of driving aggressiveness in different driving
scenarios for shuttle minibuses two drivers (Scenario 1-6 are defined in Figure 3.10;
Use data of shuttle minibus from Apr. 4, 2022 to Apr. 21, 2022)

consumption caused by DA mainly occurs in high-speed driving scenarios. Also,

Figure 4.12 shows that extra fuel consumption mainly occurs in driving scenario 4,

high-speed resident driving scenario, which has 377 g RAFC difference. Scenario

5 and 6, low-speed and high speed urban driving scenario, are also the primary

driving scenarios that result in additional fuel consumption, which have 208 g and

297 g RAFC difference respectively. The value of RAFC points out key scenarios for

improving driver’s driving behavior.

4.5.2 Ford Escape PHEV Vehicle’ Fuel Consumption Caused
by Driving Aggressiveness

Through Figure 4.8 in Section 4.5.1, it was found that the driver performing aggressive

driving does not mean that the driver is in an aggressive driving situation in all

driving scenarios. Morover, it can be seen from Figure 4.8 that the experimental

data is limited in driving scenarios 1 and 5, so when analyzing fuel consumption, only

driving scenarios 2, 3 and 4 are included. The test result shows that the driver’s total

fuel consumption is 1649 g under aggressive driving, and the total fuel consumption

under normal driving is 1201 g. However, the driver with aggressive driving only
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Figure 4.12: Differences in revised average fuel consumption in different driving sce-
narios for shuttle minibuses two drivers (scenario 1-6 are defined in Figure 3.10; Use
data of shuttle minibus from Apr. 4, 2022 to Apr. 21, 2022)

drives more aggressively in low-speed residential driving scenarios. This phenomenon

can also be verified by Figure 4.13. In Figure 4.13, driver with aggressive driving

only has more fuel consumption in scenario 2. The OPDA and RAFC values for Ford

Escape are shown in Figure 4.14 and Figure 4.15, respectively.

Figure 4.13: Fuel consumption for Ford Escape PHEV driver with different driving
behaviors in different driving scenarios (scenario 2-4 are defined in Figure 4.7b; Use
data of Ford Escape PHEV from Mar. 26, 2022 to Mar. 27, 2022)

Different from Figure 4.13, the RAFC values for aggressive driving are always
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Figure 4.14: The occurrence probability of driving aggressiveness in different driving
scenarios for Ford Escape PHEV driver (Scenario 2-4 are defined in Figure 4.7b; Use
data of Ford Escape PHEV from Mar. 26, 2022 to Mar. 27, 2022)

Figure 4.15: Differences in revised average fuel consumption (RAFC) in different
driving scenarios for Ford Escape PHEV (Scenario 2-4 are defined in Figure 4.7b;
Use data of Ford Escape PHEV from Mar. 26, 2022 to Mar. 27, 2022)

higher than normal driving RAFC values. This shows that RAFC can better reflect

the impact of DA on fuel consumption than fuel consumption value. The maximum

RAFC difference is occured in scenarios 4, which the aggressive driving has 8.11 g

extra RAFC than of normal driving. It shows that for Ford Escape PHEV, it is

still necessary to pay attention to high-speed driving situations, so as to improve the
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driver’s driving behavior.

Such results also illustrate the importance of studying driver aggressiveness at the

driving scenarios scale. Through the study of driver aggressiveness in different driving

scenarios. It can better guide drivers to improve their driving styles and thus realize

feul efficient which leads to low tailpipe CO2 emission. In addition, because the

UAlberta fleet vehicles have a variety models of vehicles, energy saving and emission

reduction can be achieved through vehicle allocation matching drivers aggressiveness.

For example, drivers who are more aggressive in low-speed driving scenarios can be

assigned to HEVs that run electric motors at low vehicle speed; thus, minimizing

tailpipe emissions.

4.6 Conclusion

In this chapter, the frequency domain analysis method was used to quantize driver

aggressiveness. Three drivers from the University of Alberta shuttle minibuses and

Ford Escape PHEV Sedan vehicle were analyzed. Using the clustering algorithm,

different driving scenarios were divided into six and five groups for shuttle minibuses

and Ford Escape PHEV respectively. The driving behaviors and fuel consumption in

different driving scenarios were analyzed separately.

Data samples from 17 days of testing two minibuses were used to illustrate DA

for two drivers, named Driver A and Driver B. It was found that driver B’s driving

behavior was more aggressive in all driving situations. Such a difference in DA value

was reflected in the fuel consumption, where the average fuel consumption in a driving

cycle scale of driver B was about 5000 g more than that of driver A. When driving

scenarios at higher driving speeds, it usually has a higher DA. Moreover, considering

the occurrence probability of driving aggressiveness in different driving scenarios is

different. This thesis used RAFC plots to better illustrated how much extra fuel

consumption was caused by driving aggression. The results of RAFC also illustrate

which driving scenarios are key parts. For Ford Escape PHVE, the testing result
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indicated that driver aggressiveness was concentrated in a few scenarios.

In future research, the differences in driver behavior of other vehicles in the UAl-

berta fleet can be analyzed using the method from this thesis. Next, a guideline can

be developed to assist the fleet drivers to avoid excessively high DA to minimizing

fuel consumption and GHG emission.
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Chapter 5

Conclusion and Future Work

5.1 Thesis Contributions

This thesis focus on developing driving cycles of the UAlberta fleet vehicles and an-

alyzing the driving aggressiveness for different drivers. Research on driver behavior

provides a tool for how the University of Alberta can assess driver performance and

subsequently plan driver training programs or consider driver aggressiveness in as-

signing vehicles. As a result, the energy saving and emission reduction goals of the

EMSO project can be achieved.

The main contributions of this thesis are:

i Development of driving cycle for each application of university vheicles: Ac-

cording to the vehicle characteristics of the UAlberta fleet vehicles, the fleet is

divided into several categories, which are the utility and trade category, casual

rental category, shuttle minibus category, and UAPS category. In this thesis,

unique driving cycles were developed for each vehicle category.

ii Establishment of a method characterise driver aggressiveness (DA): Using the

frequency domain analysis method to analyze the DA in different driving sce-

narios.

iii Linking the DA with fuel consumption: The impact of DA on driving fuel

consumption under different driving scenarios had been analyzed. This thesis
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also proposes to revised average fuel consumption (RAFC) to better reflect the

impact of DA with fuel consumption. Use RAFC to identify driving scenarios

that prioritize improving driver behavior.

The main innovations of the thesis are:

i A parameter weight assignment method is designed using the PCA algorithm.

Using this weight assignment method can eliminate the duplication between

parameters.

ii Using an unsupervised clustering algorithm, driving scenarios for different ve-

hicle categories were developed by clustering the labels of the average and max-

imum speeds of Microtrips.

iii By using the Microtrip database and the average velocity of a driving cycle

except idle (V eavg) parameters, an algorithm for the development of driving

cycles was designed. The R values between the generated driving cycles and

the collected data are all lower than 0.5 which indicates that the algorithm is

robust.

iv An algorithm was designed to reflect driver aggressiveness based on discrete

fourier transform. When the calculation result is closer to 0, it means that the

driving is more stable, and on the contrary, when the result is closer to 1, it

means that the driving is more aggressive.

v Using engine data (i.e., MAF, AFRstoich, and λ), vehicle fuel consumption rate

was estimated and then linked to driver behavior. Next, driver aggressiveness

along with fuel consumption in different driving scenarios were analyzed. The

difference in driver aggressiveness of different drivers and the difference in fuel

consumption caused by driver aggressiveness was identified.
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5.2 Conclusions

Here are the main conclusions from this study:

• Research on the driving cycle has shown that the driving cycle varies widely for

different vehicle applications. The driving cycle for casual rental vehicles has

the longest duration, 9136 seconds, but all other driving cycles’ duration are

less than 2000 seconds.

• The characteristic of different driving cycles (e.g., average speed, number of

starts, stops per kilometer, and the idle ratio) are also quite different. For ex-

ample, casual rental category vehicles have the highest average running velocity

(Vavg) which is 58.3 km/h. While other vehicles’ Vavg ranged from 13.7 km/h

to 25.0 km/h. The results underscore the necessity of developing driving cycles

for different vehicles.

• DA can be better analyzed by using the frequency domain analysis method.

Traditional statistical driving aggression analysis methods miss detail informa-

tion. For different drivers of the shuttle minibus, although the distribution of

acceleration is similar, the fuel consumption is very different. The average fuel

consumption of Driver B is 16304 g, but Driver A’s average fuel consumption

is only 12969 g. Frequency domain analysis method can numerically express

driving aggressiveness. The most aggressive driving occurs when the result is

close to 1, and the smoother the driving occurs when the result is close to 0.

• Research on driver behavior showed that the driver’s aggressiveness state is

different in different driving situations. For shuttle minibus, Driver B is more

aggressive than Driver A in all scenarios since average DA values of Driver B

are higher by 7% to 45% compared those by the Driver A. For Ford Escape

PHEV, aggressive driving state doesn’t have creeping driving scenarios. To

relieve driver aggressiveness, research should focus on key driving scenarios.
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• This thesis use RAFC values to better demonstrate the effect of DA on fuel

consumption. For minibus drivers, the extra fuel consumption caused by DA

mainly occurs in high-speed driving scenarios. The biggest RAFC difference

happened in high-speed resident driving scenario, which is 377 g.

5.3 Future Work

Building upon the findings from this thesis, future work may include the following

research avenues:

1. Design an optimization framework to utilize driving cycle for each university ve-

hicle category to determine optimum i) fleet composition for university vehicles,

ii) assign vehicle type for each driving assignment at the university.

2. Integrating driving cycles for estimating tailpipe emission for university vehicles.

3. Adding road grade information to developed driving cycles to improve their

usage for estimating vehicular fuel consumption and emission.

4. Analyzing driver aggressiveness for university drivers for various vehicles (e.g.,

university utility and trade vehicles) and creating a training program and a

monitoring system to improve driving behavior of university drivers.

5. Investigation into the change of the drive cycle by the change of season, i.e.,

winter vs summer since there is more idling time and lower average vehicle speed

in winter driving vs summer driving.

6. Considering the effect of vehicle slip in measured vehicle velocity for calculation

of drive cycles, particularly for winter driving data. This will require vehicle

instrumentation to measure wheel speed vs other methods of measuring vehi-

cle speed (e.g., using high-accuracy GPS measurements, or using high-precision

inertial measurement units, IMUs). In addition, this information can be used
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along with the drive cycle of vehicles to determine potential regenerative en-

ergy available for winter vs summer driving; thus, allowing a more accurate

estimation/prediction of energy consumption for electrified vehicles during win-

ter driving.
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Appendix B: Thesis Files

B.1 Program and Data File Summary

The following files were created in this thesis.

B.2 Chapter 1

Table B.1: Chapter 1 figure files

File name File Description

thesis scheme.pptx, thesis
scheme.jpg

Figure 1.1

EMSO Project Overview.pdf Figure 1.2

dcc.pptx, dc category.jpg Figure 1.3

epa 1.fig, epa 1.jpg Figure 1.4a

epa 2.fig, epa 2.jpg Figure 1.4b

epa 3.fig, epa 3.jpg Figure 1.4c

epa 4.fig, epa 4.jpg Figure 1.4d

epa 5.fig, epa 5.jpg Figure 1.4e

epa 6.fig, epa 6.jpg Figure 1.4f

euja 1.fig, euja 1.jpg Figure 1.5a

euja 2.fig, euja 2.jpg Figure 1.5b

euja 3.fig, euja 3.jpg Figure 1.5c

euja 4.fig, euja 4.jpg Figure 1.5d

euja 5.fig, euja 5.jpg Figure 1.5e

tf.pptx, thesis flow.jpg Figure 1.6
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Table B.2: Chapter 1 Matlab script files

File name File Description

ch 1 estimate FC.m (Used to
plot estimated total fuel

consumption for each vehicle
type for the UAlberta fleet

vehicles)

Figure 1.2

epa drivingCycle.m (Used to
plot the US environmental
protection agency driving
cycles and EU & Japan

driving cycles)

Figure 1.4a - Figure 1.4e

Table B.3: Chapter 1 data files

File name File Description

drive cycle.xlsx (Contain all
US environmental protection
agency driving cycles and

EU and Japan driving cycles’
data)

Figure 1.4a - Figure 1.4e
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B.3 Chapter 2

Table B.4: Chapter 2 figure files

File name File Description

gps1.pptx, gps1.jpg Figure 2.2

gps2.pptx, gps2.jpg Figure 2.3

gps3.pptx, gps3.jpg Figure 2.4

OBD.pptx, OBD.jpg Figure 2.1

Test.pdf, test route.jpg Figure 2.5

FF.pptx, fuel flow.jpg Figure 2.6

collect.pptx, Schematics of
the data collection

process.jpg

Figure 2.7

inter.pptx, interpolation
data.jpg

Figure 2.8

interpolate.pptx Figure 2.9

Table B.5: Chapter 2 Matlab script files

File name File Description

Data Interpolation.m (Used
to plot the interpolation

figure and plot the
polynomial order on
interpolation accuracy

figure)

Figure 2.8 - Figure 2.9

inter data.m (Used to plot
the enlarged part of the
interpolation figure)

Figure 2.9
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Table B.6: Chapter 2 data files

File name File Description

Unit429.xlsx - Unit505.xlsx
(Include all utility or trade
vehicles’ OBD record data)

Figure 2.2

Unit486.xlsx - Unit587.xlsx
(Include all casual rental

vehicles’ OBD record data)

Figure 2.3

Unit438.xlsx - Unit416.xlsx
(Include all shuttle

minibuses’ OBD record data)

Figure 2.4
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B.4 Chapter 3

Table B.7: Chapter 3 figure files

File name File Description

microtrip.fig, microtrip.jpg Figure 3.1

ua truck database.fig, ua
truck database.jpg

Figure 3.2a

rental database.fig, rental
database.jpg

Figure 3.2b

minibus database.fig,
minibus database.jpg

Figure 3.2c

police database.fig, police
database.jpg

Figure 3.2d

kf.pptx, kinematic
fragment.jpg

Figure 3.3

driving scenarios.pptx,
driving scenarios.jpg

Figure 3.4

pca hot.fig, pca hot.jpg Figure 3.5

pca weight.fig, pca
weight.jpg

Figure 3.6

loss ua truck.fig, loss ua
truck.jpg

Figure 3.7a

loss rental.fig, loss rental.jpg Figure 3.7b

loss minibus.fig, loss
minibus.jpg

Figure 3.7c

loss police.fig, loss police.jpg Figure 3.7d

scenario ua.fig, scenario
ua.jpg

Figure 3.8

scenario rental.fig, scenario
rental.jpg

Figure 3.9

scenario minibus.fig, scenario
minibus.jpg

Figure 3.10

scenario police.fig, scenario
police.jpg

Figure 3.11
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Table B.8: Chapter 3 figure files

File name File Description

sub ua 1.fig, sub ua 1.jpg Figure 3.12a

sub ua 2.fig, sub ua 2.jpg Figure 3.12b

sub ua 3.fig, sub ua 3.jpg Figure 3.12c

sub ua 4.fig, sub ua 4.jpg Figure 3.12d

sub ua 5.fig, sub ua 5.jpg Figure 3.12e

srental 1.fig, sub rental 1.jpg Figure 3.13a

srental 2.fig, sub rental 2.jpg Figure 3.13b

srental 3.fig, sub rental 3.jpg Figure 3.13c

srental 4.fig, sub rental 4.jpg Figure 3.13d

srental 5.fig, sub rental 5.jpg Figure 3.13e

sub mini 1.fig, sub mini 1.jpg Figure 3.14a

sub mini 2.fig, sub mini 2.jpg Figure 3.14b

sub mini 3.fig, sub mini 3.jpg Figure 3.14c

sub mini 4.fig, sub mini 4.jpg Figure 3.14d

sub mini 5.fig, sub mini 5.jpg Figure 3.14e

sub mini 6.fig, sub mini 6.jpg Figure 3.14f

spolice 1.fig, sub police 1.jpg Figure 3.15a

spolice 2.fig, sub police 2.jpg Figure 3.15b

spolice 3.fig, sub police 3.jpg Figure 3.15c

spolice 4.fig, sub police 4.jpg Figure 3.15d

spolice 5.fig, sub police 5.jpg Figure 3.15e

spolice 6.fig, sub police 6.jpg Figure 3.15f

DC.pptx, DC flow chart.jpg Figure 3.16

dc ua.fig, dc ua.jpg Figure 3.17

dc rental.fig, dc rental.jpg Figure 3.18

dc minibus.fig, dc
minibus.jpg

Figure 3.19

dc uaps.fig, dc uaps.jpg Figure 3.20
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Table B.9: Chapter 3 Matlab script files

File name File Description

Microtrip determine.m (Used
to plot Microtrip example

figure)

Figure 3.1

get microtrip.m (Used to
plot Microtrip database for
different vehicle categories)

Figure 3.2a - Figure 3.2d

LookForAccDecCruise.m
(Used to plot kinematic
fragment example figure)

Figure 3.3

parameter for total.m (Used
to plot the matrix of the
proportional feature vector

and weights for target
parameters figures)

Figure 3.5 - Figure 3.6

judge k number.m (Used to
plot Loss and ∆loss for
different vehicle category)

Figure 3.7a - Figure 3.7d

draw figure.m (Used to plot
driving scenarios for different

vehicle category)

Figure 3.8 - Figure 3.11

microtrip database.m (Used
to plot sub microtrip

database for different vehicle
category)

Figure 3.12a - Figure 3.15f

driving cycle.m (Used to plot
driving cycle for different

vehicle category)

Figure 3.17 - Figure 3.20

table1.m (Used to get
driving fragment)

Figure 3.8 - Figure 3.20

table2.m (Used to generate
database)

Figure 3.8 - Figure 3.20
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Table B.10: Chapter 3 driving cycle files

File name File Description

driving cycle.xlsx (Contain
all generate driving cycles for
different vehicle categories)

Figure 3.17 - Figure 3.20

Table B.11: Chapter 3 data files

File name File Description

Unit429.xlsx - Unit505.xlsx
(Include all utility or trade
vehicles’ OBD record data)

Figure 3.2a & Figure 3.7a &
Figure 3.12a - Figure 3.12e

Unit486.xlsx - Unit587.xlsx
(Include all casual rental

vehicles’ OBD record data)

Figure 3.2b & Figure 3.7b &
Figure 3.13a - Figure 3.13e

Unit438.xlsx - Unit416.xlsx
(Include all shuttle

minibuses’ OBD record data)

Figure 3.2c & Figure 3.7c &
Figure 3.14a - Figure 3.14f

Unit93.xlsx - Unit95.xlsx
(Include all UAPS’ OBD

record data)

Figure 3.2d & Figure 3.7d &
Figure 3.15a - Figure 3.15f
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B.5 Chapter 4

Table B.12: Chapter 4 figure files

File name File Description

DB.pptx, driver behavior.jpg Figure 4.1

acc compare.fig, acc
compare.jpg

Figure 4.2

fuel compare.fig, fuel
compare.jpg

Figure 4.3

DF.pptx, a flow fig.jpg Figure 4.4

af.fig, actual fuel.jpg Figure 4.5

test database.fig, test
database.jpg

Figure 4.7a

test subdatabase.fig, test
subdatabase.jpg

Figure 4.7b

test loss.fig, test loss.jpg Figure 4.7c

Da agg.fig, Da agg.jpg Figure 4.6a

Db agg.fig, Db agg.jpg Figure 4.6b

test a.fig, test a.jpg Figure 4.8a

test b.fig, test b.jpg Figure 4.8b

correlation coefficient
shuttle.fig, correlation
coefficient shuttle.jpg

Figure 4.9

fba.fig, fuel boxlpot a.jpg Figure 4.10a

fbb.fig, fuel boxlpot b.jpg Figure 4.10b

pm.fig, prpbability for
minibus.jpg

Figure 4.11

Rm.fig, RAFC minibus.jpg Figure 4.12

test fuel.fig, test fuel.jpg Figure 4.13

pt.fig, prpbability for test.jpg Figure 4.14

Rt.fig, RAFC test.jpg Figure 4.15
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Table B.13: Chapter 4 Matlab script files

File name File Description

acc compare.m (Used to plot
acceleration compare figure)

Figure 4.2

compare UArental.m (Used
to plot fuel consumption

compare figure)

Figure 4.3

rainplot.m (Used to plot
driver aggressiveness figures)

Figure 4.6a - Figure 4.8b

box togother.m (Used to plot
fuel consumption figures for

minibuses)

Figure 4.6a - Figure 4.8b

cc shuttle.m (Used to plot
correlation coefficient value
for shuttle minibus driver A)

Figure 4.9

RAFC mini.m (Used to plot
revised average fuel

consumption and occurrence
probability of driving

aggressiveness figures for
minibuses)

Figure 4.11 - Figure 4.12

Ford fuel.m (Used to plot
fuel consumption figures for

Ford Escape PHEV)

Figure 4.13

RAFC.m (Used to plot
revised average fuel

consumption and occurrence
probability of driving

aggressiveness figures for
Ford Escape PHEV)

Figure 4.14 - Figure 4.15

get driver agg.m (Used to
calculate driver aggressive)

Figure 4.6a - Figure 4.8b

115



Table B.14: Chapter 4 data files

File name File Description

normal.xlsx - aggressive.xlsx
(Include all Ford Escape

PHEV’s OBD record data)

Figure 4.7a - Figure 4.7c &
Figure 4.8a - Figure 4.8b &
Figure 4.13 & Figure 4.11 -

Figure 4.12

minibus record data.xlsx
(Include all shuttle

minibuses’ OBD record data)

Figure 4.1 & Figure 4.2 &
Figure 4.3 & Figure 4.6a -

Figure 4.6b & Figure 4.10a -
Figure 4.10b & Figure 4.14 -

Figure 4.15
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