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Abstract

In this thesis, we study the mathematical modelling of some problems that

involve surface effects. These include an optical biosensor, which uses optical

principles qualitatively to convert chemical and biochemical concentrations

into electrical signals. A typical sensor of this type was constructed in

Badley et al., [6], and Jones et al., [18],but diffusion was considered in

only one direction in [18] to simulate the reaction between the antigen and

the antibody. For realistic applications, we propose the biosensor model in

R3. Our theoretical approach is explicitly presented since it is simple and

directly applicable to the numerical part of the thesis. In particular, we

present existence and uniqueness results based on Maximum Principle and

weak solution arguments. These ideas are later applied to systems and to

the numerical analysis of the approximate discretized problems. It should

be noted that without one dimensional symmetry, the equations can not be

decoupled in order to reduce the problem to a single equation. We also show

the long time monotonic convergence to the steady state. Next, a finite

volume method is applied to the equations, and we obtain existence and

uniqueness for the approximate solution as well as the convergence of the the

first order temporal norm and the L2 spatial norm. We illustrate the results

via some numerical simulations. Finally we consider a mathematically related

system motivated by lagoon ecology. We show that under suitable conditions

on the coefficients, the system has a periodic solution under harvesting

conditions. The mathematical techniques now depend on estimates for

periodic parabolic problems.
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Chapter 1

Introduction

1.1 System with Surface Effects

It is the purpose of this thesis to consider systems of nonlinear parabolic

equations that model problems in which surface effects are important. These

have received much less attention than problems where the effects take place

inside domains rather than on their boundary. Usually the situation on the

boundary is dealt with by assuming some form of ”no flux” (i.e. Neumann)

condition or ”prescribed value” (i.e. Dirichlet) condition or of mixed type:

Neumann on part of the boundary and Dirichlet on the other part. But these

are not the case here.

Specifically we consider two problems that are physically diverse but

mathematically related: The first involves a biosensor device that has been

implemented as a ”pregnancy” sensor. It involves coating part of the sensor

boundary area with an antibody and then monitoring the reaction between

this coating and a test fluid introduced in the sensor. A more detailed

description is given below. The second problem involves, for example, the

ecology of a shallow lagoon. It is well known that interaction with the bottom

sediments is of actual importance. Since the lagoon depth is of the order of

meters, while the sediment thickness is of the order of centimeters, we treat

the sediments as if they were a surface, and examine the question of the

existence of periodic solutions subject to harvesting of some of the biomass.
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1.2 Thesis Outline

The thesis is structured as follows.

In Chapter 2 we discuss briefly the general mathematical background

which is needed later in this thesis. We present chosen results from functional

spaces, parabolic equations and their maximum principles, solvability of

parabolic equation in Holder spaces, Leray-Schauder Degree and finite

volume method, estimates for parabolic problems.

In Chapter 3 we address the analytic properties of a biosensor model, its

solvability and uniqueness of solutions, steady state and long-time behavior

as well as system results.

In Chapter 4, we apply the finite volume method to the biosensor model,

obtaining L2 norm stability and error estimates for the numerical scheme.

In Chapter 5, we consider a biological problem that is mathematically

closely related in formulation to the biosensor model, i.e., a coupled system

with boundary effects and harvesting. Existence of nonnegative periodic

solutions is obtained.

Finally we present some topics for future work.
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Chapter 2

Mathematical Background

In this chapter we recall and discuss briefly some results which will be used

later in this thesis.

2.1 Function spaces

In this section we describe certain classes of function spaces, which turn

out often to be the proper setting in which to apply the ideas of functional

analysis to study parabolic problems. General detailed developments are

found in classical books, e.g: [1], [19], [21].

Throughout the whole section Ω is a bounded domain in Rn, n ≥ 1,

Q = Ω× (0, T ).

An n-tuple α = (α1, · · ·, αn) of nonnegative integers αj is called a multi-

index with |α| = ∑n
j=1 αj. We denote by Dα the differential operator of order

|α|
Dα = (

∂

∂x1

)α1 · · · ( ∂

∂xn

)αn (2.1.1)

We also define the support of a function u defined on the domain Ω as

suppu = {x ∈ Ω : u(x) 6= 0}. (2.1.2)

Let Ck(Ω), k ≥ 0 denote the set of all the function u that are continuous

in Ω together with all their partial derivatives Dα of orders |α| ≤ k. We

put C∞(Ω) =
⋂∞

k=0 Ck(Ω). The subspaces C1
0(Ω) and C∞

0 (Ω) of C1(Ω) and

C∞(Ω) respectively consist of all the functions from these spaces which have

compact support in Ω.
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Let Ck(Ω̄), k ≥ 0 be a subspace of functions u ∈ Ck(Ω) for which all

derivatives Dαu are bounded on Ω̄ for 0 ≤ |α| ≤ k. These spaces are Banach

spaces under the norm

‖u‖Ck = max
0≤|α|≤k

sup
x∈Ω

|Dαu|. (2.1.3)

Now we define the space Ck,γ(Ω̄), k ≥ 0,0 ≤ γ ≤ 1 as the set of functions

such that

u ∈ Ck(Ω̄), sup
x,y∈Ω̄

|Dαu(x)−Dαu(y)|
|x− y|γ < ∞, 0 ≤ |α| ≤ k. (2.1.4)

Ck,γ(Ω̄) is a Banach space under the norm

‖u‖Ck,γ = ‖u‖Ck + max
0≤|α|≤k

sup
x,y∈Ω̄

|Dαu(x)−Dαu(y)|
|x− y|γ < ∞, 0 ≤ |α| ≤ k.

(2.1.5)

This condition generalizes to functions between any two metric spaces.

The number α is called the exponent of the Hölder condition. If α = 1, then

the function satisfies a Lipschitz condition. If α = 0, then the function is

bounded.

It is easy to see that Ck,0(Ω̄) = Ck(Ω̄). Note that functions from C0,1

are called Lipschitz continuous functions. The important property of these

spaces is that for 0 ≤ k ≤ 1 and 0 ≤ γ < ν ≤ 1 the space Ck,ν(Ω̄) is

compactly embedded into Ck,γ(Ω̄).

Our next definition is in accord with observation that in the heat equation

two x-derivatives are equivalent to one t-derivative. This equivalence makes

the definition of higher order holder semi-norms slightly more complicated

than in the elliptic case. First, for β ∈ (0, 2], we define

〈f〉β;X0 = sup{|f(x0, t)− f(X0)|
|t− t0|β/2

: (x0, t) ∈ Q\X0}, (2.1.6)

and 〈f〉β;Ω = supX0∈Ω〈f〉β;X0

Then for any a > 0, we write a = k + α, where k is a nonnegative integer

and α ∈ (0, 1], and we define

〈f〉a;Q =
∑

|β|+2j=k−1〈Dβ
xDi

tf〉a+1
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[f ]a;Q =
∑

|β|+2j=k[D
β
xDi

tf ]a

|f |a;Q = sup|β|+2j≤k |Dβ
xDi

tf |+ 〈f〉a;Q + [f ]a;Q

It is easy to verify that | · |a defines a norm on Ha(Q) = {f : |f |a < ∞}
which makes Ha(Q) a Banach space. If a < 1, we set Ha(Q) = Ca,a/2(Q).

Now we will give the definition and discuss properties of Sobolev Spaces.

Let Lp(Ω), 1 ≤ p < ∞, denote the set of all measurable functions which

are p-integrable. This space is complete under the norm

‖u‖Lp = (

∫

Ω

|u|p)1/p. (2.1.7)

Let also L∞ denote the set of essentially bounded functions on Ω with the

norm

‖u‖L∞ = ess sup
x∈Ω

|u|. (2.1.8)

We define the weak derivative for a locally integrable function u on Ω in

the following way. For any multi-index α a locally integral function is called

the α-th order derivative of u and is denoted as Dαu if

∫

Ω

ϕvdx = (−1)|α|
∫

Ω

(Dαϕ)udx. (2.1.9)

for all ϕ ∈ C∞
0 (Ω).

Finally we say that a function u belongs to the Sobolev space W k,p(Ω)

with integer k ≥ 0 if Dαu ∈ Lp(Ω) for all |α| ≤ k. W k,p(Ω) is a Banach space

under the following norm

‖u‖W k,p =
∑

|α|≤k

‖Dαu‖Lp . (2.1.10)

We denote W k,p
0 (Ω) the closure of C∞

0 (Ω) in W k,p(Ω) and note that it is

also a Banach space under this norm.

In studying parabolic equations, it is useful to have a notion of solution

that allows for functions that are not smooth. In fact, our hypotheses will

often be enough to guarantee that the solutions considered here are actually

C2,1, but it will be very convenient to use weak solutions in developing the
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existence theory. To motivate the notion of weak solution, we observe that if u

solves a parabolic equation in a cylinder Q = Q(X0, R) and if ζ ∈ C1(Q̄) = 0

if |x− x0| = R, then an integration by parts gives

∫

Q

(−uζt + aijDjuDiζ − fζ)dX = 0, (2.1.11)

We shall use this as the basis of our definition of a weak solution because it

makes sense as long as u has weak x derivatives. This weak solution of an

initial problem is defined analogously [19], [21].

2.2 Parabolic theory: Maximum principles

In this section, we introduce an important tool in the theory of second order

parabolic equations: the classical (strong) maximum principle, which asserts

that the maximum of a solution to a homogenous linear parabolic equation

in a domain must occur on the boundary of that domain. In fact, this

maximum must occur on a special subset of the boundary, called the parabolic

boundary.

We consider linear operators L defined by

Lu = aij(X)Diju + bi(X)Diu + c(X)u− ut (2.2.1)

in an (n + 1)-dimensional domain Ω. We assume that L is weakly parabolic.

In other words,

aijξiξj ≥ 0 (2.2.2)

for all ξ ∈ Rn and all X ∈ Ω.

For a domain Ω ⊂ Rn+1, we define the parabolic boundary PΩ to be the set

of all points X0 ∈ ∂Ω such that for any ε > 0, the cylinder Q(X0, ε) contains

points not in Ω. In the special case that Ω = D × (0, T ) for some D ⊂ Rn

and T > 0, PΩ is the union of the sets BΩ = D × {0}, SΩ = ∂D × (0, T ),

and CΩ = ∂D × {0}.
The simplest maximum principle is the following.
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Lemma 2.2.1 If u ∈ C2,1(Ω̄\PΩ)
⋂

C0(Ω̄), if Lu > 0 in Ω̄\PΩ and if u < 0

on PΩ, then u < 0 in Ω̄.

Analogous to our operator L is the boundary operator M defined by

Mu = β · ∂u + β0u. (2.2.3)

Lemma 2.2.2 Suppose that there is a positive constant k such that

c ≤ k (2.2.4)

in Ω

β0 < 0 (2.2.5)

on PΩ

If u ∈ C2,1(Ω)
⋂

C0(Ω̄), if Lu ≥ 0 on Ω and if Mu ≥ 0 on PΩ, then u ≤ 0

in Ω.

The maximum principle is used to prove uniqueness results for various

boundary problems, L∞ bounds for solutions and their derivatives, and

various continuity estimates as well.

Crucial tools in the study of parabolic equations are the following

comparison principle and uniqueness result.

Theorem 2.2.1 Suppose u ∈ C2,1(Ω)
⋂

C0(Ω̄) for some Ω with t ≥ 0 in Ω,

and suppose conditions (2.2.2), (2.2.4) and (2.2.5) hold. If Lu ≥ 0 in Ω and

if Mu ≥ β0φ on PΩ for some nonnegative constant φ, then u(X) ≤ ektφ for

all X ∈ Ω.

There are versions for weak solutions in Cα,α/2 (see [19], [21]).

2.3 Solvability of parabolic equation in

Hölder spaces

Now, we recall the definition of a Hölder space. We also define the Morrey

space Mp,δ to be the set of all function u ∈ H1 with finite norm

‖u‖p,δ = sup
Y ∈Ω,r<diamΩ

(r−δ

∫

Ω[Y,r]

|u|pdX)1/p. (2.3.1)

7



For α ∈ (0, 1) and given domain Ω, we assume that aij and b are in Hα

and that cj ∈ M1,1+n+α for j = 0, ..., n.

We also suppose that

aijξiξj ≥ λ|ξ|2 (2.3.2)

for all ξ ∈ Rn and all X ∈ Ω, and

|aij| ≤ Λλ, (2.3.3)

[aij]α + [b]α + ‖cj‖1,n+1+α ≤ Λ1. (2.3.4)

for some nonnegative constant Λ1. We then have the following existence,

uniqueness, and regularity theorem. ([19], [21], [28]).

Theorem 2.3.1 Suppose PΩ ∈ H1+α and that the coefficients of L, as

defined in (2.2.1), satisfy condition (2.3.2)-(2.3.4). Then for any ϕ ∈ H1+α,

f ∈ Hα and g ∈ M1,n+1+α, there is a unique H1 weak solution of Lu =

Dif
i + g in Ω, u = ϕ on PΩ. Moreover, u ∈ H1+α and

|u|1+α ≤ C(n, α, λ, Λ, Λ1, Ω)(|ϕ|1+α + |f |α + ‖g‖1,n+1+α) (2.3.5)

For oblique derivative problems, i.e., the boundary operator M defined by

Mu = β · ∂u + β0u. (2.3.6)

the same arguments apply and we infer the following result.

Theorem 2.3.2 Suppose L and Ω are as in Theorem 2.3.1, and let β0 and

βi be Hα(SΩ) function with β · γ ≥ χ on SΩ and |β|α + |β0|α ≤ B1χ for

some positive constant B1. Then for any ϕ ∈ H1+α, ψ ∈ Hα, f ∈ Hα and

g ∈ M1,n+1+α, there is a unique H1 weak solution of Lu = Dif
i + g in Ω,

β ·Du + β0u = ψ on SΩ, and u = ϕ on BΩ. Moreover, u ∈ H1+α and

|u|1+α ≤ C(B1, n, α, λ, Λ, Λ1, Ω)(|ϕ|1+α + |ψ|α + |f |α + ‖g‖1,n+1+α) (2.3.7)
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2.4 Leray-Schauder Degree

In this paragraph we will formulate the main properties of the Leray-Schauder

Degree. For a detailed discussion see [11].

Let X be a real Banach space, G ⊂ X an open bounded domain. F a

compact operator from G to X, I an identity operator and y /∈ (I −F )(∂G).

On these triples (I − F,G, y) an integer-valued function deg, which is called

Leray-Schauder Degree, is defined and it satisfies the following properties:

(L1) deg(I, G, y) = 1 for y ∈ Ω;

(L2) (addiditivity) deg(I −F,G, y) = deg(I −F,G1, y) + deg(I −F,G2, y)

whenever G1 and G2 are disjoint open subsets of G = G1 ∪ G2and y /∈
(I − F )(∂G ∪ ∂G1 ∪ ∂G2)

(L3) (homotopy)deg(I − H(t, ·), G, y(t)) is independent of t ∈ [0, a]

whenever H : [0, a] × Ḡ → X is compact, y: [0, a] → X is continuous

and y(t) /∈ (I −H(t, ·), (∂G)) on [0, a];

(L4)deg(I −F,G, y) 6= 0 implies (I −F )−1(y) 6= ∅, i.e. there exists x in G

such that (I − F )x = y.

One of the important consequences of the Learay-Schauder Degree theory

is the Schauder Fixed Point Theorem.

Theorem 2.4.1 (The Schauder Fixed Point Theorem). Let G be a closed

convex set in a Banach space X and let F be a continuous mapping of G into

itself such that the image FG is precompact. Then F has a fixed point.

The proof of this theorem can be found in [17].

2.5 Periodic parabolic problem

We consider next the existence of a periodic solution to a linear parabolic

problem, see eg. [14], [15]. We also draw the reader’s attention to the

important book [33] of X. Zhao for a through discussion and analysis of

dynamical systems arising in population biology.

The results of specific interest to us are:

9



Lemma 2.5.1 Assume all coefficients are smooth, as well as ∂Ω.

(a) Let M be a positive constant. Then the equation





ωt −∇(D∇ω +~bω) + Mω = f ≥ 0, in QT , (2.5.1.1)

D
∂ω

∂n
+~b · ~nω + k1ωc0 = g ≥ 0, on Q′

T , (2.5.1.2)
(2.5.1)

has a unique periodic solution.

(b) Let ω be a nonnegative sub-solution of





ωt −∇(D∇ω +~bu) + Mω ≤ 0, in Ω× (0, T ), (2.5.2.1)

D
∂ω

∂n
+~b · ~nω ≤ g, on ∂Ω, (2.5.2.2)

(2.5.2)

with ω(x, 0) = ω(x, T ), g ≥ 0 smooth bounded.

If

∫

QT

ω is bounded then so is ω in L∞(Q̄T ) for some α > 0.

Proof. (a) For system (2.5.1) to have a unique solution it suffices that

the periodic parabolic eigenvalue problem:





ut −∇(D∇v +~bv) + Mv = λv, in QT ,

D
∂v

∂n
+~b · ~nv + k1vc0 = 0, in Q′

T ,

v(x, 0) = v(x, T ), x in Ω

(2.5.3)

have a positive principle eigenvalue λ, to which there corresponds a positive

eigenvector v. Refer to [10]. It is convenient to note that λ equals the

principle eigenvalue of the formal adjoint problem:





(v1)t −∇(D∇v1) +~b∇v1 + Mv1 = λv1, in QT ,

∂v1

∂n
= 0, in Q′

T ,

v1(x, 0) = v1(x, T ), x in Ω

(2.5.4)

where in the coefficient functions we have replaced t by T − t. Refer to [3].

Since v1 > 0 and M > 0 then λ ≤ 0 would give an immediate contradiction

by the strong Maximum principle whence λ > 0, and the proof follows.

(b) This is immediate by classical results ([21]).
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2.6 Finite volume method

We next introduce a finite volume scheme, which is a technique commonly

employed in practice, for approximating solutions [16], [9]. Generally, a

simulation begins with the formulation of a mathematical model which

usually is a partial differential system. An appropriate numerical method to

solve the corresponding system is always needed to illustrate the theoretical

analysis, to further its application in realistic situations, and to modify the

modeling.

The finite volume method represents partial differential equations as

algebraic equations. It’s also called the box method. It is a numerical method

similar to the finite difference method, with values calculated at discrete

places on a meshed geometry, however, it occupies an intermediate position

between the finite difference and finite element methods. It is generally

understood that the ”Finite volume” refers to a small volume surrounding

each node point on a mesh, called a ”cell”. In the finite volume method,

volume integrals over a cell for a partial differential equation that contain

a divergence term are converted to surface integrals, using the divergence

theorem. These terms are then evaluated as discrete fluxes at the surfaces

of each finite volume. Because the flux entering a given volume is identical

to that leaving the adjacent volume by construction, these methods are flux

conservative. Another advantage of the finite volume method is that it is

easily formulated for unstructured meshes. The method is used for example

in many computational fluid dynamics packages.

The finite volume method has been extensively and successfully used

to derive efficient simulation for partial differential equations and systems.

Consequently, many mathematical papers have dealt with the analysis of the

applications of the finite volume method to a variety of differential equations.

As mentioned above, Finite Volume Methods are known to be well applicable

to the numerical simulation of partial differential equations, with irregular

geometry or unstructed mesh partition. Many papers have been written

on their construction and application, as well as theoretical studies. Elliptic
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equations with general boundary conditions are studied in [16], [13]; while for

parabolic equations, the L2 and H1 error estimate for the Dirichlet boundary

problem and for the Robin boundary problem are considered respectively in

[16] and [9].

For our situation, the finite volume method is preferable to other methods

due to the fact that boundary conditions can be applied easily. This is true

because the values of the conserved variables are located within the volume

element, and not at nodes or surfaces. While the finite volume methods are

especially useful on coarse nonuniform grids, or even in calculations where

the mesh moves to track interfaces or shocks for hyperbolic equations, in our

specific case there are some difficulties in deriving the stability properties

and the convergence of this approach since the biosensor model is a highly

coupled system with a nonlinear term in the boundary condition.

2.7 Basics of Finite volume method

For the reader’s convenience we recall the basics of Finite Volume Methods.

A finite volume mesh for Ω, denoted by T , is given by: a family of ”control

volumes”, which are open polygonal (if d = 2) or polyhedral (if d = 3) convex

subsets of Ω (with positive measure), a family of subsets of Ω̄ contained in

hyperplanes of Rd, denoted by ε (these are the edges (if d = 2) or sides (if

d = 3) of the control volumes), with strictly positive (d − 1)-dimensional

measure and a family of fixed points (nodes) of Ω̄ denoted by P . We refer to

[16] for detailed information on constructing restricted admissible meshes.

Define the mesh size by h = size(T ) = sup{diam(K), K ∈ T }, where

diam(K) is the diameter of K ∈ T . For any K ∈ T and σ ∈ ε, m(K) is the

d-dimensional Lebesgue measure of K (i.e. area if d = 2 , volume if d = 3),

m(σ) is the (d − 1)-dimensional measure of σ, and ηK,σ denotes the unit

normal vector to σ outward from K. It is noted that UK is the approximate

value of u at a fixed node point of K(for instance, the barycenter of K).

For convenience, we note K ∈ {K ∈ Tint}
⋃{K ∈ Text}, i.e. if K̄

⋂
εext =

σext 6= Φ, then we say K ∈ Text. Otherwise, K ∈ Tint.

12



It should be noted that in choosing the nodes for K ∈ Text, we always

assume that Uσ = UK for K ∈ Text, i.e. nodes are chosen on ∂Ω, instead of

possibly different Uσ, UK as in [13]. Accordingly, we use the same nodes for

Uσ, Γσ for external σ, but keep the notation for simplicity.

For any (K, L) ∈ T 2 with K 6= L, either the (d− 1)-dimensional Lebesgue

measure of K̄ ∩ L̄ is 0 or K̄ ∩ L̄ = σ̄ for some σ ∈ ε, which will then be

denoted by K|L.

Denote by εint = {σ ∈ ε; σ 6⊂ ∂Ω}, εext = {σ ∈ ε; σ ⊂ ∂Ω}. For K ∈ T , let

VK,σ = {αxK + (1−α)x, x ∈ σ, α ∈ [0, 1]}. For σ ∈ εint, let Vσ = VK,σ ∩VL,σ,

where K and L are the control volumes such that σ = K|L. For σ ∈ ε∩ εext,

let Vσ = VK,σ.

Denote by dK|L the Euclidean distance between xK and xL (which is

positive) and by dK,σ the distance from xK to σ. If σ = K|L ∈ εint, let

dσ = dK|L = dK,σ + dL,σ; if σ ∈ εK ∩ εext, let dσ = dK,σ.

For any σ ∈ ε, the ”transmissibility” through σ is defined by τσ = m(σ)
dσ

if

dσ 6= 0 and τσ = 0 if dσ = 0. In the results and proofs given below, dσ 6= 0

for all σ ∈ ε is assumed for simplicity.

For the reader’s convenience, we illustrate some of the above terminology

in Figure 1.

xK xL

dK,σ dL,σ

σ = K|L

L

K

Figure 2.1: The mesh terminology associated with the internal cell K.
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Chapter 3

Analytic Properties of a
Biosensor Model in R3

3.1 The optical biosensor Model

An optical biosensor is a device which uses optical principles qualitatively to

convert chemical and biochemical concentrations into electrical signals.

The sensor may also itself incorporate biological molecules, such as

antibodies, to provide a transducing element that gives the desired specificity.

The sensor to be considered here is a disposable type of immunosensor, the

fluorescence capillary fill device.

It consists of two pieces of plastic, separated by a narrow gap, as shown in

schematic form in Fig. 3.1. The lower plate is coated with an immobilized

layer of specific antibody and acts as an optical waveguide. One of the plates

has a dissoluble reagent layer of antigen labelled with fluorescent dye.

When a sample is presented to one end of the capillary fill device it is drawn

into the gap by capillary action and dissolves the reagent. If the device is

set up for competition assay, the fluorescently labelled antigen in the reagent

will compete with simple antigen for the limited number of antibody binding

sites on the waveguide solid face. Since the reactions are reversible a steady

state will be reached in which there are a certain proportion of labelled

antigen/antibody complexes. If there were no antigen present in the sample

all the labelled antigen would react with the specific antibody displaying,

through the optical waveguide, a different signature.

14



Metering of the sample and the reagent then becomes unnecessary provided

the capillary gap is precise and there is accurate loading of the antibody and

reagent during the device manufacture. A typical medical product based on

this antigen/antibody technology is a particular kind of pregnancy kit. A full

description of the fluorescent capillary fill device can be found in Badley et al.

[18]. Technologically, the primary interest is in the determination of the size

of the device and the amount of specific antibody to be coated on the lower

plate within a specified time. For this reason the labelled and unlabelled

antigen will not be differentiated and will be considered to be one species X,

which reacts with the labelled antibody Y, on the lower plate to produce a

complex XY. Even the concentration of the complex (the substance resulting

from the chemical reaction of the antibody and the antigen) might not be

a smooth function of time. Refer to [22]. Thus an accurate representation

for the chemical process is needed, which provides a useful check on the

numerical results.

3.2 Mathematical modeling in R1

The mathematical model of the reaction-diffusion process is developed for

readers’ convenience. The detailed description of the following modeling

analysis can be found in Burgess et al. [7] and Mckee [18].

Let X be the antigen and Y denote the antibody.

The reaction is stated as

X + Y ⇀↽XY,

where k1 and k−1 are the forward and backward reaction rates due to the

reversibility of the reaction in between the antigen and the antibody.

Let [X] denote the concentration of X (in moles/m3), [Y] denote the

concentration of Y (in moles/m2) and [XY] denote the concentration of XY

(in moles/m2).

The following constants are listed:

a0: initial X concentration ,

c0: initial Y concentration at the reaction side wall,

15



Figure 3.1: The figure that describes a typical biosensor device from Jones
et al.[12].
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d: edge of vessel to surface,

D: diffusion coefficient of X.

To facilitate the discussion let us introduce the notation:

u(x, t) denotes concentration of X i.e. [X],

and γ(t) is concentration of XY, i.e. [XY].

If edge effects are ignored, one can neglect any diffusion except that in the

x-direction and [X] satisfies the diffusion equation

ut −D
∂2u

∂x2
(x, t) = 0.

Also
∂u

∂x
(0, t) = 0 at x=0.

Furthermore, [X]t=0 = a0 since the concentration of the antigen is assumed

uniform initially.

Thus we have to define the boundary condition D
∂u

∂x
(x, t) at x = d on the

antibody surface.

However, the behavior of solutions in dynamic equilibrium yields

D
∂u

∂x
(d, t) = k−1γ(t)− k1u(d, t)(c0 − γ(t))

due to the fact that we have assumed that one molecule of X and one molecule

of Y combine to give one molecule of the complex XY. Considering that the

initial concentration of Y is c0, we may obtain the amount of X used up in

the reaction.

Consequently,

[Y ](t) = c0 − (a0d−
∫ d

0

u(x, t)dx).

Therefore,

D
∂u

∂x
(d, t)c0 − (a0d−

∫ d

0

u(x, t)dx)

= k−1γ(t)− k1u(d, t)(c0 − γ(t)).

(3.2.1)

Moreover, the conservation of the total amount of species X, either in solution

or in terms of the complex XY, gives

∫ d

0

u(x, t)dx + γ(t) = a0d.
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Then,

D
∂u

∂x
(d, t) = k−1γ(t)− k1u(d, t)(c0 − γ(t)).

To summarize, a consistent 1D model of the antibody-antigen reaction is

given by:

ut −D
∂2u

∂x2
(x, t) = 0 (3.2.2)

subject to

u(x, 0) = a0 (3.2.3)

and the boundary conditions

∂u

∂x
(0, t) = 0,

D
∂u

∂x
(d, t) = k−1γ(t)− k1u(d, t)(c0 − γ(t)),

(3.2.4)

together with the conservation form

∫ d

0

u(x, t)dx + γ(t) = a0d. (3.2.5)

To continue with the numerical analysis for the derived biosensor model,

an integro-differential equation reformulation is derived in Mckee[18], where,

for convenience, the non-dimensional variables,

x′ =
x

d
, t′ = (

D

d2
)t,

and scaling the dependent variables

u′(x′, t′) =
u(x, t)

a0

, γ′(t′) =
γ(t)

c0

,

are also introduced.

Thus (3.2.2) may be rewritten as

ut =
∂2u

∂x2
(x, t) (3.2.6)

together with

u(x, 0) = 1 (3.2.7)
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and the boundary conditions

∂u

∂x
(0, t) = 0,

D
∂u

∂x
(1, t) =

Em

1 + L
(Lγ(t)− u(1, t)(1− γ(t))),

(3.2.8)

subject to ∫ 1

0

u(x, t)dx + mγ(t) = 1. (3.2.9)

Where the same notations are applied.

The constant m = c0/(a0d) is the molar ratio, L = k−l/k1 is the reaction

time scale ratio, and E = (k1 + k−l)d
2/D is the diffusion reaction time scale

ratio.

3.3 Some known approximation results in R1

Differentiating (3.2.9) with respect to time we obtain

∫ 1

0

∂u(x, t)

∂t
dx + m

dγ(t)

dt
= 0, (3.3.1)

and using (3.2.6) and (3.2.8) gives

∂u(1, t)

∂x
= −m

dγ(t)

dt
. (3.3.2)

Taking Laplace transforms of (3.2.6) with respect to t, after some

manipulation involving the convolution theorem (see Burgess et al. [7]),

we obtain

u(1, t) = 1 +

∫ t

0

k(t− s)
∂u(1, s)

∂x
ds, (3.3.3)

where the integral kernel is given by

k(t) =
1√
πt

(1 +
∞∑

n=0

e(−n2

t
)). (3.3.4)

Thus, using (3.3.1), we obtain

u(1, t) = 1 +

∫ t

0

k(t− s)
∂γ(s)

∂x
ds. (3.3.5)
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Using (3.3.1) and (3.3.3) in equation (3.2.8) yields

dγ(t)

dt
(t) = C−Eγ(t)− Em

1 + L
(Lγ(t)−(1−γ(t)))

∫ t

0

k(t−s)
∂γ(s)

∂x
ds, (3.3.6)

where

C =
E

1 + L
, (3.3.7)

with initial condition γ(0) = 0.

Once γ is known, equation (3.3.5) may be used to obtain u on the boundary

x = 1, and thus (3.2.6) may be solved using (3.2.7), (3.2.8) and the value of

u(1, t) to determine u in the interior 0 < x < t, t > 0(see Burgess et al. [7]).

We conclude by briefly mentioning some of the other results obtained in

[18].

1. An asymptotic solution of γ(t) for small t, based on the integro-differential

equation (3.3.6).

2. A perturbation solution of the analytic expansion of γ(t) = γ(t,m) in

powers of the molar ratio m.

3. For u(x, t), an equivalent system of Volterra integral equations is obtained

for the initial boundary value problem (3.2.6-3.2.9). Using this integral

formulation, high order product integration schemes are derived.

In short, the paper [18] is mainly concerned with the derivation of the

asymptotic result and perturbation solution through an integro-differential

reformulation. The fully mathematical derivation can be found in [18] and

[7].

But unfortunately, such kind of decoupling technique is not available for

the biosensor model in R3 due to fact the function of γ(t) is defined in a

surface other than at a single point as the case in R1. This poses difficulties

in obtaining the analytic and numerical properties for our model in R3.

3.4 Degenerate systems modeling biosensors

Another reaction diffusion system with nonlinear boundary conditions

modeling optical biosensors, named Fluorescence Capillary Fill Devices

(FCFD), was investigated qualitatively in [22]. In its simplest form the device
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consists of two glass plates separated by a narrow gap. The device is shown

in Fig 3.2.

Figure 3.2: Fluorescence Capillary Fill Devices (FCFD) from Merino, et al.
[22].

The upper glass plate is coated with a labeled antigen AF (here F stands

for a fluorescent molecule).

The lower plate is coated with a special antibody Y .

The purpose of the device is to analyse whether a given test solution contains

the unlabeled antigen A. To this end the test solution is presented at the open

end of the device where it is drawn into the cavity by capillary forces. The

labeled antigen AF is soluble and diffuses into the solution, whereas the

antibody Y is insoluble and remains on the lower plate. At the lower plate

the antibody and antigens react in the following way

A + Y ⇀↽AY,

AF + Y ⇀↽AFY,

Thus on the lower plate labeled and unlabeled antigen-antibody molecules

are created and the labeled and unlabeled antigens compete for the available

binding sites as is shown in Fig. 3.3.
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Figure 3.3: Antigen-antibody molecules are created for the Fluorescence
Capillary Fill Devices (FCFD), figure from Merino, et al.

When this reaction-diffusion process has reached equilibrium a flash lamp

is used to exite the fluorescent molecules F.

The lower glass plate then acts as a wave-guide leading the emitted light to an

optoelectronic device that is able to analyse the arriving light impulse. The

intensity of the pulse depends on the ratio of the concentrations of labeled

and unlabeled complexes on the lower plate and thus permitting us to infer

the presence or absence of the antigen A in the test sample.

In a preliminary step of our analysis we assume that the reaction occurs in

a well-stirred isothermal reactor of constant volume. The wall-bound antigen

AF (b) is treated as an independent species and we consider its dissolution as

a further reaction

AF (b) ↔ AF

The reactions is interpreted as a reaction network in the sense of e deficiency

zero theory of chemical reaction networks with an important property :

it is reversible and of deficiency index zero. The deficiency index can be
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determined easily from the structure of the reaction network.

The purpose of paper [22] is to place the evolution problem of biosensor

reaction into the context of the existence and regularity theory as it is

presented in the review article [4]. Since some degenerate aspects due to the

fact that some species are only depended on the boundary of the domain, they

found it is necessary to generalize the theory in some detail. The degenerate

evolution problem has the following structure




∂tu1 + Au1 = g1(x; u1) in(0, L)× (0,∞);

∂tu2 = g2(x; γ∂u1; u2) on{0, 1} × (0,∞);

Bu1 = g3(x; γ∂u1; u2) on{0, 1} × (0,∞);

u1(x; 0) = u0
1(x) in(0, 1);

u2(x; 0) = u0
2(x) on{0, 1},

(3.4.1)

for the moment it is assumed

u1 = (c1; c2), u2 = (c3; c4; c5; c6), Ω = (0; L), g1 = 0

γ∂u1 denotes the formal trace of u1 on ∂Ω. Note that in the above system

the evolution of the two species u1 and u2 is only coupled through the values

of u1 and u2 on the boundary of the domain.

The abstract setting of the theory presented by H. Amann[5] and [4] was

then applied to prove the existence of a global continuous semiflow on a

positive cone in a suitable Banach space. The general existence theory

presented in [5] was then applied to a class of problems that contains the

model in question as a special case. The determination of the qualitative

behaviour of this semiflow is the main contribution in the paper, and the

main tool of the analysis is an infinite dimensional version of the invariance

principle of LaSalle ([16, Theorem 2.3]). The construction of a Liapunov

function is based on analogies between the degenerate model and systems

of nonlinear ODE’s appearing in the theory of chemical reaction networks

(CRNs). The Deficiency Zero Theorem in [9] establishes a relation between

the graph structure of a chemical reaction network and the qualitative

behaviour of the (positive) solutions of the nonlinear system of ODEs that
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is obtained by applying the mass action law of chemistry. No considerations

were given regarding numerical approximation, nor of periodic solutions.

It is our interest to generalize the results of [6], [18] in R3 for realistic

applications, in a way suitable for numerical analysis. Specifically, let again

X denote the antigen and Y denote the antibody, and recall that we have

the reaction:

X + Y ⇀↽XY,

with k1 and k−1 denoting the forward and backward reaction rates.

The reaction-diffusion system for the biosensor model in R3 [2] states:

u = u(x, t) ∈ Ω× (0, T ); γ = γ(x, t) ∈ ∂Ω× (0, T ) such that:





ut −D∆u = 0, in Ω× (0, T ), (3.4.2.1)

D
∂u

∂n
= k−1γ − k1u(c0 − γ), on ∂Ω, (3.4.2.2)

u |t=0= a0, in Ω, (3.4.2.3)

dγ

dt
= −k−1γ + k1u(c0 − γ), on ∂Ω× (0, T ), (3.4.2.4)

γ |t=0= 0, on ∂Ω. (3.4.2.5)

(3.4.2)

The rest of this chapter is as follows. We first note that it is definitely

true that only positive solutions are of interest when realistic applications

are considered since our unknown function are densities and the modelling

will not have physical significance if there arose solutions of negative sign.

Consequently, we obtain first of all positivity results for the solutions by some

comparison theorems with an auxiliary linear equation for v:





vt −D∆v = 0, in Ω× (0, T )

D
∂v

∂n
+ K1v = 0, on ∂Ω

v = a0, t = 0

with K1 = k1 max(c0).

Next, we construct another decoupled equation for ω in order to obtain an
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L∞ bound of u. 



ωt −D∆ω = 0, in Ω× (0, T )

D
∂ω

∂n
= k−1max(c0), on ∂Ω

ω = a0. at t = 0

From the classic regularity theory for parabolic equations mentioned

earlier, we know that u(x, t) is Holder continuous for all time t, for a given

Holder continuous initial data u0(x).

Next, the existence of (u, γ) follows from the Leray-Schauder Degree

Theory.

Finally, the uniqueness of the solution pair for(u, γ) is derived by energy

integral method.

We also investigate the solution behavior as t → ∞ and begin by noting

that the solution to the steady-state problem, obtained by letting,

ut = 0,

dγ

dt
= 0,

in equation (3.5.1.1) and (3.5.1.4) respectively, is given by (us, γs) where

γs = (k1usc0)/(k−1+k1us) and us is the positive constant root of the quadratic

equation:

us|Ω|(k−1 + k1us) + k1us

∫

∂Ω

c0 = (k−1 + k1us)

∫

Ω

a0. (3.4.3)

We next consider ω1 = us − u and e1 = γs − γ, and observe that ω1, e1

satisfy equations (3.6.2.1), (3.6.2.2) and (3.6.2.4), but that equation (3.6.2.3)

and (3.6.2.5) are replaced by:

ω1 |t=0= us − a0, (3.4.4)

and

e1 |t=0= γs, (3.4.5)

respectively.

Exponential decay and upper bound for this new system are considered at

the end of Chapter 3.
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3.5 Model and Assumption

We recall the following.

Let Ω be a smooth bounded domain in R3 and ∂Ω its boundary.

Let u denote the antigen concentration in Ω and c0, γ denote respectively

the initial antibody concentration and that of the combined antigen-antibody

species on (part of) ∂Ω.

It is convenient for our presentation to assume c0 ≥ 0 on ∂Ω, rather than

specifying the part of ∂Ω where c0 > 0.

Our problem then is to find: u = u(x, t) ∈ Ω × (0, T ); γ = γ(x, t) ∈
∂Ω× (0, T ) such that:





ut −D∆u = 0, in Ω× (0, T ), (3.5.1.1)

D
∂u

∂n
= k−1γ − k1u(c0 − γ), on ∂Ω, (3.5.1.2)

u |t=0= a0, in Ω, (3.5.1.3)

dγ

dt
= −k−1γ + k1u(c0 − γ), on ∂Ω× (0, T ), (3.5.1.4)

γ |t=0= 0, on ∂Ω. (3.5.1.5)

(3.5.1)

Motivated by physical consideration, we assume that the (weak) solution

pair u, γ is at least of class Cα, α
2 (Ω × (0, T )) and C1+α

2 in t for fixed x,

respectively, for some α > 0.

The function a0 = a0(x)(respectively c0 = c0(x)) is assumed

positive(respectively nonnegative, nontrivial) and smooth (respectively Cα0

for some α0 > 0) in Ω̄, while the other parameters (D, k1, k−1) are taken to

be positive constants.

We note however that several of the results hold without any change under

more general conditions. For example: D∆u can be replaced by ~∇ · D~∇u

where now D is a positive definite symmetric matrix.

In relating (3.5.1) to the system (3.2.5) discussed in [18], we note the

following:

First, by formal integration of (3.5.1.1), (3.5.1.4) we obtain the conservation
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law:

(

∫

Ω

u)t + (

∫

∂Ω

γ)t = 0,

i.e. ∫

Ω

u +

∫

∂Ω

γ =

∫

Ω

a0.

Under the geometric/ constancy condition of [18], we thus recover (3.2.5) as:

γ +

∫ d

0

udx = a0d.

Secondly, equation (3.5.1.4) shows that wherever c0(x) = 0 on ∂Ω, we have

γ = 0 for all t, as is physically expected and is implicitly the case in [18].

Our analysis thus deals with a situation where the initial antibody

concentration need not be piecewise constant, and nonzero only on a flat

part of the boundary.

Clearly, (3.5.1) cannot be reduced to a one dimensional problem in space

where γ is also explicitly known in terms of u.

3.6 Existence and Uniqueness results

We begin by making the regularity assumption on ∂Ω :

There exists a globally defined calculable vector field ~b = ~b(x) ∈ C1(Ω)

such that

~b · ~n = 1

on ∂Ω
⋂

supp[c0].

Observe that the construction of ~b depends on the support of c0 rather

than on the entire ∂Ω.

We then recall:

Lemma 3.6.1 . Let ε > 0 given. Then there exists K(ε) such that for any

ω1 ∈ C1(Ω) with supp(ω1)
⋂

∂Ω ⊂ supp(c0).

We have: ∫

∂Ω

ω2
1 ≤ ε

∫

Ω

|~∇w1|2 + K(ε)

∫

Ω

ω2
1,
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with K(ε) = ~∇ · (~b) +
1

ε
|~b|2L∞.

Proof:

We merely note:
∫

∂Ω

ω2
1 =

∫

∂Ω

(~b · ~n)ω2
1

=

∫

Ω

~∇ · (~b)ω2
1 +

∫

Ω

2(~b · ∇~ω1)ω1

≤ ε

∫

Ω

|~∇ω1|2 +

∫

Ω

ω2
1{~∇ · (~b) +

|~b|2L∞
ε
}.

Let QT = Ω × (0, T ) and replace equations (3.5.1.2),(3.5.1.3) and (3.5.1.4)

by multiplying the right hand side of each by the parameter λ,

0 ≤ λ ≤ 1.

We denote the resulting system by (3.5.1)λ and observe:

Lemma 3.6.2 Let: u ∈ Cα,α/2(QT ); γ ∈ C1[0, T ] for each x ∈ ∂Ω. Then

for 0 < λ ≤ 1, we have u ≥ 0 in QT , and: 0 < γ ≤ c0(x) in (0,T] wherever

c0(x) > 0, while γ ≡ 0 wherever c0(x) = 0.

Proof:

Without loss of generality, put λ = 1 (the proof of the other cases is identical).

Observe that u > 0 for t small and suppose u = 0 for the first time at some

point (ρ, T0) with ρ ∈ Ω and T0 ≤ T .

We note that from equation (3.5.1.4),(3.5.1.5) we have γ ≥ 0, nontrivial,

up to t = T0.

It follows that u ≥ v for x ∈ Ω and 0 ≤ t ≤ T0 where v solves the linear

problem: 



vt −D∆v = 0, in Ω× (0, T )

D
∂v

∂n
+ K1v = 0, on ∂Ω

v = a0, t = 0
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with K1 = k1 max(c0).

But v > 0 at t = T0 contradicting the assumption, and thus u > 0 in QT .

Finally, note that at points x where c0 = 0 we have γ ≡ 0 by integrating

(3.5.1.4),(3.5.1.5).

While if c0(x) > 0 then γ > 0 for t > 0.

By integrating (3.5.1.4),(3.5.1.5), we also know, while if γ = c0 then

dγ

dt
< 0

whence γ ≤ c0.

Lemma 3.6.3 Let the condition of Lemma 3.6.2 hold.

Then if (u, γ) solve (3.5.1)λ, we have | u |L∞(QT )≤ C with C independent

of u, γ, λ.

Proof:

Observe that since u ≥ 0 and 0 ≤ γ ≤ c0, then u ≤ ω with ω solution of the

linear problem: 



ωt −D∆ω = 0, in Ω× (0, T )

D
∂ω

∂n
= k−1max(c0), on ∂Ω

ω = a0. at t = 0

If we apply [21, Theorem 6.44 or Theorem 6.46]( see also [19], [27]), we

then have:

Corollary 3.6.1 There exists β > 0 (independent of α, λ, u, γ ) such that

u ∈ Cβ, β
2 (QT ). Consequently,

dγ

dt
∈ Cβ, β

2 (∂Ω× [0, T ]) and γ ∈ Cβ,1+β
2 (∂Ω×

[0, T ]).

Theorem 3.6.1 For any T < ∞, equations (3.5.1) have a unique solution

u ∈ Cβ, β
2 (QT ), γ ∈ Cβ,1+β

2 (∂Ω× [0, T ]) for some β > 0. Here 0 < u, 0 ≤ γ ≤
c0. If c0(x) > 0 then γ(x, t) > 0 for t > 0, if c0(x) = 0 then γ(x, t) ≡ 0.
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Proof:

We may formulate equation (3.5.1) as:

u− Z(u) = 0,

with Z continuous and completely continuous from Cβ, β
2 to itself in the usual

way:

given a u calculate γ from equations (3.5.1.4), (3.5.1.5) and then Z(u) from

equation (3.5.1.1),(3.5.1.2),(3.5.1.3).

The properties of Z follow from Corollary 3.6.1, as does the fact that all

solutions are uniformly bounded in Cβ, β
2 for some β > 0.

The existence of (u, γ) follows from the Leray-Schauder Degree Theory.

To see that the solution is unique, we observe:

Let (u1, γ1) and (u2, γ2) be two solutions, and set

ω1 = u1 − u2, e1 = γ1 − γ2. (3.6.1)

We then have:





(ω1)t −D∆ω1 = 0, in Ω× (0, T ), (3.6.2.1)

D
∂ω1

∂n
= k−1e1 − k1ω1c0 + k1(ω1γ1 + u2e1), on ∂Ω, (3.6.2.2)

ω1 |t=0= 0, in Ω, (3.6.2.3)

de1

dt
= −k−1e1 + k1ω1c0 − k1(ω1γ1 + u2e1), on ∂Ω× (0, T ), (3.6.2.4)

e1 |t=0= 0, on ∂Ω, (3.6.2.5)

(3.6.2)

Hence:

(
1

2

∫

Ω

ω2
1)t +D

∫

Ω

|∇ω1|2 +

∫

∂Ω

k1ω
2
1(c0−γ1) =

∫

∂Ω

(k−1 +k1u2)e1ω1, (3.6.3)

and:

(
1

2

∫

∂Ω

e2
1)t +

∫

∂Ω

(k−1 + k1u2)e
2
1 =

∫

∂Ω

k1(c0 − γ1)e1ω1. (3.6.4)
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We recall that γ1, u2 are bounded, nonnegative in QT , γ1 ≤ c0. Whence

adding (3.6.3),(3.6.4) yields:

(
1

2

∫

Ω

ω2
1 +

1

2

∫

∂Ω

e2
1)t + D

∫

Ω

|∇ω1|2 ≤ C(

∫

∂Ω

e2
1 +

∫

∂Ω

ω2
1) (3.6.5)

for some constant C.

We choose

ε =
D

C

in Lemma 3.6.1, and obtain from (3.6.5) for some constant E:

(

∫

Ω

ω2
1 +

∫

∂Ω

e2
1)t − E(

∫

Ω

ω2
1 +

∫

∂Ω

e2
1) ≤ 0. (3.6.6)

Since as t = 0, ∫

Ω

ω2
1 +

∫

∂Ω

e2
1 = 0,

the result follows.

3.7 Steady State and Long-Time Behavior

We now investigate the solution behavior as t →∞ and begin by noting that

the solution to the steady-state problem, obtained by letting,

ut = 0,

dγ

dt
= 0,

in equation (3.5.1.1) and (3.5.1.4) respectively, is given by (us, γs) where

γs = (k1usc0)/(k−1 + k1us)

and us is the positive constant root of the quadratic equation:

us|Ω|(k−1 + k1us) + k1us

∫

∂Ω

c0 = (k−1 + k1us)

∫

Ω

a0. (3.7.1)

We next consider ω1 = us − u and e1 = γs − γ, and observe that ω1, e1

satisfy equations (3.6.2.1), (3.6.2.2) and (3.6.2.4), but that equation (3.6.2.3)

and (3.6.2.5) are replaced by:
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ω1 |t=0= us − a0, (3.7.2)

and

e1 |t=0= γs, (3.7.3)

respectively.

Consequently, equations (3.6.3)and (3.6.4) hold for the newly defined

(ω1, e1) and we shall have the desired result under conditions on the problem

which guarantee that the constant E of equation (3.6.6) is now negative.

To obtain such a result we need as preliminary considerations the following:

Define the constant K1(p) by:

‖ω − ω‖Lp(Ω) ≤ K1(p)‖∇ω‖L2(Ω),

for any ω ∈ H1,2(Ω), where ω̄ =
1

|Ω|
∫

Ω

ω.

Observe that such K1(p): depends on Ω; n(which equals 3 in practical

situations) but not on ω; exists for p ≤ 2n

n− 2
and quite general Ω; may be

easily explicitly estimated for p <
2n

n− 2
and Ω convex by the formula given

e.g in [17].

From this, it is also easy to obtain an explicit estimate for domains that

can be decomposed as the finite union of convex subdomains.

Lemma 3.7.1 Let (u, γ) solve (3.5.1) and let t ≥ T0 > 0. Then:

(

∫

Ω

u2)|t ≤ (

∫

Ω

u2) |T0 e
− (t−T0)D

2K2
1(2) + (1− e

− (t−T0)D

2K2
1(2) )(A(a2

0) + |γ|2L∞(t≥T0)B)

with A, B computable constants, given below. (They depend on K1(2), Ω, n,

but are independent of u, γ, x, t, T0, u0, c0).

Proof:

By the usual energy estimates and since: u0 ≥ 0; 0 ≤ γ ≤ c0; u ≤ u0;

we have:

(
1

2

∫

Ω

u2)t + D

∫

Ω

|~∇u|2 ≤ k−1

∫

∂Ω

γu ≤ k−1|γ|L∞(t≥T0)

∫

Ω

~∇ · (~bu)

≤ k−1|γ|L∞(t≥T0)(‖~∇ ·~b‖L2‖u‖L2 + ‖~b‖L2‖~∇u‖L2)
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Now

k−1|γ|L∞‖~b‖L2‖~∇u‖L2 ≤ D

2
‖∇u‖2

L2 +
1

2D
k2
−1|γ|2L∞‖~b‖2

L2

thus

(
1

2
‖u‖2

L2)t +
D

2
‖~∇u‖2

L2 ≤ k−1|γ|L∞(‖~∇ ·~b‖L2‖u‖L2) +
1

2D
k2
−1|γ|2L∞‖~b‖2

L2

or

(
1

2
‖u‖2

L2)t+
D

2K2
1(2)

‖u−ū‖2
L2 ≤ k−1|γ|L∞(‖~∇·~b‖L2‖u‖L2)+

1

2D
k2
−1|γ|2L∞‖~b‖2

L2

Observing that:

‖u− ū‖2
L2 = ‖u‖2

L2 − |Ω|(ū)2

yields:

(
1

2
‖u‖2

L2)t +
D

2K2
1(2)

‖u‖2
L2

≤ D|Ω|
2K2

1(2)
(ā0)

2 +
1

2D
k2
−1|γ|2L∞‖~b‖2

L2 + k−1|γ|L∞‖~∇ ·~b‖L2‖u‖L2D

We conclude

(
1

2
‖u‖2

L2)t +
D

4K2
1(2)

‖u‖2
L2 ≤ D|Ω|

2K2
1(2)

(ā0)
2 +

1

2D
k2
−1|γ|2L∞‖~b‖2

L2

+
k2
−1|γ|2L∞‖~∇ ·~b‖2

L2K2
1(2)

D

and the result follows with A =
|Ω|
2

,

B =
[

1

2D
k2
−1‖~b‖2

L2 ] + k2
−1[‖~∇ ·~b‖2

L2K2
1(2)/D]

D

4K2
1(2)

.

Theorem 3.7.1 The solution u is globally bounded, and we have

lim
t−→∞

sup‖u(·, t)‖L∞ ≤ M , where

M =
2Λ1ā0k−1

[(k−1 − k1Λ1ā0 − k1|c0|L∞Λ2)2 + 4Λ1ā0k1k−1]
1
2 − [k1|c0|L∞Λ2 + k1Λ1ā0 − k−1]

with Λ1, Λ2 constants with calculable dependence on K1(p).
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Proof:

Let ϕ = ϕ(t) be a fixed function with ϕ = 0 if t ≤ 0, ϕ = 1 if t ≥ 1, ϕt ≥ 0,

and put for chosen T0, h: ω(t) = ϕ( t−T0

h
); z = ωu.

We then have:

zt −D4z = ωtu

D
∂z

∂n
+ k1z(c0 − γ) = k−1γω

z|t=T0 = 0.

We modify somewhat the procedure of [19] to estimate |z|L∞ for T0 ≤ t ≤ T1

with T1 − T0 independent of u.

Note that we may use zk = (z − k)+ as a test function with k ≥ 1, and

obtain:

(
1

2

∫

Ω

z2
k)t + D

∫

Ω

|~∇zk|2

≤ p(t){∫
Ω
(~∇ ·~b)zk +

∫
Ω
~b · ~∇zk}+

∫
Ω

ωtuzk

. (3.7.4)

with p(t) = k−1|γ|L∞(t>T0)ω(t).

This is precisely the situation in [19, Page 184, eq 7.7] with(in the notation

of [19])

f = ωtu + p(t)~∇ ·~b

fi = −p(t)bi

ν = D

We recall that Ω ∈ R3 and following [19], we choose q = 2, r = 1
8

and thus

χ1 = 1
8
(other choice are possible, but these are numerically simple).

Put D = ||f ||q,r,Q[T0≤t≤T0+1] + 1
2
||∑ f 2

i ||
1
2

q,r,Q[T0≤t≤T0+1] and applying the

process of [19] to the function
z

D
we observe that there is a calculable t1 ≤ 1, constants Λ1, Λ2(both

independent of T0, u), such that (by Lemma 3.7.1)
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‖u‖L∞(T0+
t1
2
≤t≤T0+t1) ≤ Λ1(ā0) + Λ2|γ|L∞(t≥T0) (3.7.5)

We observe that Λ1, Λ2 can be estimated if K1(p) can be estimated.

Since Λ1, Λ2, t1 are independent of T0, u, it follows that (3.7.5) holds for all t

sufficiently large, i.e.

‖u‖L∞(t≥T0+1) ≤ Λ1[ā0] + Λ2|γ|L∞(t≥T0) (3.7.6)

Suppose that for t ≥ T ∗ we have u(x, t) ≤ M for some constant M .

We recall that γ satisfies (3.5.1.4-3.5.1.5) and that γ ≤ c0 for all t. We

thus obtain that if γ(x, T ∗) >
k1uc0

k−1 + k1u
then

dγ

dt
< 0

for t ≥ T ∗ as long as this bound holds.

We conclude that if u(x, t) ≤ M for t ≥ T ∗, then given any ε > 0, there

exists a finite time T1 ≥ T ∗ such that

γ(x, t) ≤ ε +
k1Mc0

k−1 + k1M
for t ≥ T1.

We can now iterate on equation (3.7.6) as follows.

Choose M0 = Λ1ā0 + |c0|L∞Λ2, and by induction (for any small ε > 0):

Mi = Λ1ā0 + (ε +
k1Mi−1|c0|L∞
k−1 + k1Mi−1

)Λ2. (3.7.7)

Note that |u(·, t)|L∞(t≥T0) ≤ M0, and that by the estimates on γ there exists

an increasing sequence of times {Ti}∞i=1 such that |u(·, t)|L∞(t≥Ti) ≤ Mi. We

note that (3.7.7) is a monotone decreasing sequence for the Mi .

Put M = limi→∞(Mi) and observe that by direct calculation,

M =
2(Λ1ā0 + εΛ2)k−1

P1− P2
.

Where:

P1 = [(k−1 − k1[Λ1ā0 + εΛ2]− k1|c0|L∞Λ2)
2 + 4(Λ1ā0 + εΛ2)k1k−1]

1
2 ,

P2 = [k1|c0|L∞Λ2 + k1(Λ1ā0 + εΛ2)− k−1].

Since after a finite number of time steps, u ≤ M + ε the result follows.
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Remark 3.7.1 If K1(p) can be calculated, then all other constants can be

determined. In the case that Ω is convex, we can use for p < 2n
n−2

(=6 in our

case) Lemma 7.21 and Lemma 7.16 of [17, pages 152 and 156 respectively]

to calculate

‖ω − ω‖Lp(Ω) ≤ K1(p)‖∇ω‖L2

with K1(p) is in terms of Ω.

From this, we can also get the other needed estimate (eq. 31 of [19] on

page 74) by Holder’s Inequality, and note:

‖u− ū‖Lp ≤ ‖u− ū‖α
Lp‖u− ū‖(1−α)

L2 ≤ K1(p)‖∇u‖α
L2‖u− ū‖(1−α)

L2

with q < p and

α =
1− 2

q

1− 2
p

.

Returning now to the system of equations (3.6.2) (with: γ1 = γs; u1 =

us; γ2 = γ; u2 = u), we first establish a convergence result that does not

require an estimate on |u|L∞ .

Specifically, note that now
∫

Ω

ω1 +

∫

∂Ω

e1 = 0

and e1(x, t) = 0 if c0(x) = 0.

We add (3.6.3) and (3.6.4) to obtain once again:

(
1

2

∫

Ω

ω2
1 +

1

2

∫

∂Ω

e2
1)t + D

∫

Ω

|∇ω1|2 +

∫

∂Ω

k1ω
2
1(c0 − γ)

+

∫

∂Ω

(k−1 + k1us)e
2
1 −

∫

∂Ω

[k−1 + k1us + k1(c0 − γ1)]e1ω1

= 0 (3.7.8)

We then have:

||∇ω1||2L2 ≥ K−1
1 (2)[‖ω1 − ω̄1‖2

L2 ]

= K−1
1 (2)[‖ω1‖2

L2 − ω̄2|Ω|] (3.7.9)
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Since

∫

Ω

ω1 = −
∫

∂Ω

e1, we obtain:

|
∫

Ω

ω1| ≤ (

∫

∂Ω

e2
1)

1
2 [µ(c0)]

1
2

where

µ(c0) = µ[{x|c0(x) > 0}⋂
∂Ω].

Substituting into (3.7.9) yields

∫

Ω

|∇ω1|2 +
K−1

1 (2)[µ(c0)]

|Ω|
∫

∂Ω

e2
1 ≥ K−1

1 (2)

∫

Ω

ω2
1

From Lemma 3.6.1, we also recall:

∫

∂Ω

ω2
1 ≤

∫

Ω

|∇w1|2 + K(1)

∫

Ω

ω2
1

Thus

K(1)K1(2)

∫

Ω

|∇ω1|2 +
K(1)[µ(c0)]

|Ω|
∫

∂Ω

e2
1 ≥ K(1)

∫

Ω

ω2
1

and consequently,

(1 + K(1)K1(2))

∫

Ω

|∇ω1|2 +
K(1)[µ(c0)]

|Ω|
∫

∂Ω

e2
1 ≥

∫

∂Ω

ω2
1

whence:

D

∫

Ω

|~∇ω1|2 ≥ D

1 + K(1)K1(2)

∫

∂Ω

ω2
1 −

D[µ(c0)]

|Ω| · K(1)

1 + K(1)K1(2)

∫

∂Ω

e2
1

Substituting in (3.7.8) gives:

(
1

2

∫

Ω

ω2
1 +

1

2

∫

∂Ω

e2
1)t +

∫

∂Ω

[
D

1 + K(1)K1(2)
+ k1(c0 − γ)]ω2

1

+

∫

∂Ω

[k−1 + k1us − D[µ(c0)]

|Ω| · K(1)

1 + K(1)K1(2)
]e2

1

−
∫

∂Ω

[k−1 + k1us + k1(c0 − γ1)]e1ω1

≤ 0

From this estimate, we obtain:
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Theorem 3.7.2 Assume that for some constant Π > 0 we have

[
D

1 + K(1)K1(2)
+ k1(c0 − γ)] (3.7.10)

×[k−1 + k1us − D[µ(c0)]

|Ω| · K(1)

1 + K(1)K1(2)
]

− 1

4
[k−1 + k1us + k1(c0 − γ1)]

2 ≥ Π (3.7.11)

then

∫

Ω

ω2
1 +

∫

∂Ω

e2
1 → 0 exponentially as t →∞

We recall that us is known and that 0 ≤ γ ≤ c0. From Theorem 3.7.2 we

thus obtain:

Corollary 3.7.1 If

[
D

1 + K(1)K1(2)
]× [k−1 + k1us − D[µ(c0)]

|Ω| · K(1)

1 + K(1)K1(2)
]

− 1

4
[(k−1 + k1us) + k1c0]

2 ≥ Π

then the result of Theorem 3.7.2 holds.

Observe that us is independent of D and the corollary will hold for

situations where D is large but D[µ(c0)] is small.

Remark 3.7.2 If we interchange the definition of (u, γ) and (us, γs) in the

definition of ω1, e1 then (3.7.8) holds but now ”γ” is replaced by ”γs” and

”us” by ”u”.

We know γs explicitly, but now u must be estimated (as was done earlier).

We obtain another result that now depends on the estimate M for u as

follows:

Define δ to be the least eigenvalue of the elliptic problem:

−D

2
4ω = δω,

D
∂ω

∂n
+ k1(c0 − γs)ω = 0.

38



Whence (3.7.8) yields:

(
1

2

∫

Ω

ω2
1 +

1

2

∫

∂Ω

e2
1)t + δ‖ω1‖2

L2 +
D

2

∫

Ω

|∇ω1|2 (3.7.12)

−1

2

∫

∂Ω
T

supp(c0)

(k−1 + k1u)ω2
1

+
1

2

∫

∂Ω

[(k−1 + k1u)− k1(c0 − γs)]e
2
1 ≤ 0 (3.7.13)

Since

∫

∂Ω
T

supp(c0)

(k−1 + k1u)ω2
1 ≤ (k−1 + k1M + ε)

∫

∂Ω
T

supp(c0)

ω2
1

= (k−1 + k1M + ε)[

∫

Ω

∇ · (~b)ω2
1 + 2~b · ω1∇ω1]

Thus,

2(k−1 + k1M + ε)

∫

Ω

~b · ∇ω1ω1 (3.7.14)

≤ (k−1 + k1M + ε)2 2

D
|~b|2L∞

∫

Ω

ω2
1 +

D

2

∫

Ω

|∇ω1|2

whence if we assume:




δ > (k−1 + k1M)~∇ ·~b +
2

D
|~b|2L∞(k−1 + k1M + ε)2,

k−1 > k1(c0 − γs),
(3.7.15)

we obtain:

Theorem 3.7.3 If condition (3.7.15) hold, then

∫

Ω

ω2
1 +

∫

∂Ω

e2
1 → 0 as

t →∞

3.8 System Results

We now consider the application of the previous ideas to situations where

two (or more) antigens are present.
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In this case, where without loss of generality we assume there are exactly

two antigens, we obtain for i = 1, 2 the system:





uit −D∆ui = 0,

D
∂ui

∂n
= k−1,iγi − k1,iui(c0 − γ1 − γ2),

ui |t=0= ai > 0,

dγi

dt
= −k−1,iri + k1,iui(c0 − γ1 − γ2),

γi |t=0= 0,

(3.8.1)

Here Ω, k1,i, k−1,i,ai, c0 satisfy the assumptions given earlier for the case

of a single antigen. The earlier procedures apply with only small changes.

Specifically, we note:

Theorem 3.8.1 There exists a unique solution (u1, u2, γ1, γ2) to system

(3.8.1) with 0 < u1, u2; 0 ≤ γ1, γ2;γ1 + γ2 ≤ c0.

Proof: We need only replace the equation(s) of the model by




dγ1

dt
= −k−1,1γ1 + k1,1u1[(c0 − γ2)

+ − γ1],

dγ2

dt
= −k−1,2γ2 + k1,2u2[(c0 − γ1)

+ − γ2],

The rest of the proof follows that given earlier.

For example, T0 is now defined to be the time when one of u1, u2 is zero

for the first time.

Note that we conclude

γ1 ≤ (c0 − γ2)
+, γ2 ≤ (c0 − γ1)

+

and 0 ≤ γ1, γ2 where γ1 + γ2 ≤ c0.

It follows that we have found solutions of the original system. That there

are no other solutions of this systems (satisfying the above conditions or not)

follows as before by taking differences.

To estimate ‖ u1 ‖L∞(t≥T0) and ‖ u2 ‖L∞(t≥T0), we note that γ1 + γ2 ≤ c0

and 0 ≤ γ1, γ2 imply that the system essentially decouples.
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Next, note that if ‖ u1 ‖L∞(t≥T0)≤ M1 and ‖ u1 ‖L∞(t≥T0)≤ M2, we have
d(γ1 + γ2)

dt
+ min

i=1,2
[k1,i](γ1 + γ2) = max

i=1,2
(Mik1,i)[c0 − γ1 − γ2].

We proceed with the estimates of Lemma 3.7.1 and Theorem 3.7.1 for each

ui, the main difference now being the replacement of γ by γ1+γ2 in the earlier

proof. The long time arguments of Theorem 3.7.2 follow.
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Chapter 4

Numerical Analysis of a
Biosensor Model in R3

4.1 Introduction

Our main result in this chapter is the application and analysis of a finite

element method used to obtain approximate solutions. Drawing in part on

the analytical results given earlier, we establish the existence, stability and

error estimates for the approximate solution, and derive L2 spatial norm

convergence properties.

4.2 L2 Norm Stability

Let k ∈ (0, T ) be a constant time step, Nk = max{n ∈ N , nk < T},
i.e. we divide [0, T ] uniformly into Nk + 1 intervals. Set tn = nk for

n ∈ {0, 1, · · · , Nk + 1}, and let φn = φ(tn, x), dtφ
n =

φn+1 − φn

k
.

To analyze the discretization scheme, it is assumed that the exact solution

is at least of class u ∈ L∞(0, T ; H2(Ω)), γ ∈ L∞(0, T ; H1(∂Ω)), with

ut(·, t), γt(·, t) piecewise C1 functions.

Integrating (3.5.1.1) on each cell of the mesh at time t = tn+1 yields,
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∫

K

un+1
t (x)dx−D

∫

∂K\σext

∇un+1(x) · ηK(x)dS(x)

−
∫

σext
T

∂K

(k−1γ
n+1 − k1u

n+1(c0 − γn+1))dS(x) = 0 (4.2.1)

Accordingly, for (3.5.1.2),

D

∫

σ

∇un+1(x) ·ηK,σ(x)dS(x) =

∫

σ

(k−1γ
n+1−k1u

n+1(c0−γn+1))dS(x),

(4.2.2)

∀σ ⊂ ∂Ω.

From (3.5.1.4), we obtain

γn+1
t (x) + (k−1 + k1u

n+1)γn+1 = k1u
n+1c0. ∀σ ⊂ ∂Ω. (4.2.3)

Next, we follow the finite volume scheme detailed in [16] to get the discrete

form for (4.2.1)-(4.2.3) term by term and integrate (4.2.3) to obtain the

approximation to γn+1.

We replace un+1
t in (4.2.1) by a backward Euler scheme.

More detailed discussions about the consistency and conservativity of the

discrete scheme is available in [16].

We merely mention that the error estimates will be based on the consistent

linear discretization of the normal flux of −∇u · n over the interface of only

two control volumes K and L.

The discrete unknowns are denoted by (Un+1
K )K∈T ∪ (Γn+1

σ )σ∈εext , n =

0, 1, · · · , Nk, yielding the implicit discretization scheme,

m(K)dtU
n
K +

∑
σ∈εK

F n+1
K,σ = 0, ∀K ∈ T , (4.2.4)

F n
K,σ = −m(K|L)D

Un
L − Un

K

dK,L

, ifσ = K|L, (4.2.5)

F n+1
K,σ = −m(σ)(k−1Γ

n+1
σ − k1U

n+1
σ (cσ − Γn+1

σ )), ifσ ∈ εK ∩ εext,

(4.2.6)

cσ =
1

m(σ)

∫

σ

c0(x)dS(x). (4.2.7)
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Recalling tn − tn+1 = −k, we obtain:

Γn+1
σ − Γn

σe
(k−1+k1Un+1

σ )(−k)

1− e−(k−1+k1Un+1
σ )k

k−1 + k1Un+1
σ

= k1U
n+1
σ cσ. (4.2.8)

Corresponding to equation (4.2.3), this can be expressed as:

Γn+1
σ − Γn

σ

1−e−(k−1+k1Un+1
σ )k

k−1+k1Un+1
σ

+ (k−1 + k1U
n+1
σ )Γn

σ

1− 2e−(k−1+k1Un+1
σ )k

1− e−(k−1+k1Un+1
σ )k

= k1U
n+1
σ cσ.

(4.2.9)

For n = 0, 1, · · · , Nk + 1, we define

U0
K =

1

m(K)

∫

K

a0(x)dx, U0
σ =

1

m(σ)

∫

σ

a0(x)dSx, (4.2.10)

Γ0
σ = 0. (4.2.11)

Iteration is required for the implicit nonlinear time-advancing calculation

so as to obtain the solution pairs (Γn
σ, U

n
K).

In fact, We found the given iterative scheme more efficient from a practical

point of view, with the exponential fitting given in (4.2.8) replacing the usual

finite difference scheme for the time derivative.

However, theoretically this introduces no change to the accuracy of the

scheme.

Actually, we have,

1

1−e−(k−1+k1Un+1
σ )k

k−1+k1Un+1
σ

=
1

k
+ l1(k), (4.2.12)

and,

1− 2e−(k−1+k1Un+1
σ )k

1− e−(k−1+k1Un+1
σ )k

= 1 + l2(k). (4.2.13)

With, for k is small, l1(k) and l2(k) both o(k), even though they are

dependent on the numerical solution of (Γn
σ, U

n
K).

Furthermore, for i = 1, 2, since k is small, we observe that

−1

2
< li(k) <

1

2
. (4.2.14)
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In this way, the scheme (4.2.8) may be represented as,

(Γn+1
σ − Γn

σ)(
1

k
+ l1(k)) + (k−1 + k1U

n+1
σ )Γn

σ(1 + l2(k)) = k1U
n+1
σ cσ (4.2.15)

Lemma 4.2.1 For the above discretization form, recalling that (U0
K)K∈T ≥

0, and Γ0
σ = 0, we have:

(a) There exists a unique solution pair (Un+1
K , Γn+1

σ )

(b) 0 ≤ Γn+1
σ ≤ cσ.

Proof :

For convenience we write: ~a ≥ ~b for any two vector ~a,~b iff ~a − ~b has

nonnegative components, and ~Un+1 for (Un+1
K )K∈T , ~Γn+1 for (Γn+1

σ )σ∈εext .

We then rewrite the scheme in a slightly modified form as:

Γn+1
σ = Γn

σe
−(k−1+k1Un+1

σ )k + k1(U
n+1
σ )+cσ[

1− e−(k−1+k1Un+1
σ )k

k−1 + k1Un+1
σ

] (4.2.16)

and:

A~Un+1 + D1
~Un+1 = ~f +

~Un

k
m(k)

Here: D1 is a diagonal matrix with entry zero if σK is internal, entry

k1cσ − Γn+1
σ if σK is external.

The entries of ~f are k−1Γ
n+1
σ if σK is external, 0 if σK is internal.

Finally, A is an M-matrix. M-matrices is a Z-matrix with eigenvalues

whose real parts are positive, arising naturally in some discretizations

of differential operators, particularly those with a minimum/maximum

principle, such as the Laplacian, and as such are well-studied in scientific

computing.

In particular, A−1 leaves invariant the cone of nonnegative functions.

Observe that if Γn
σ ≥ 0, then Γn+1

σ ≥ 0. It follows that if ~Un
σ ≥ 0, then

~Un+1
σ ≥ 0, whence ~Γn+1

σ ≤ cσ. Thus ~Un+1
σ ≤ ~Vσ where ~V solves

A~V =
~Un

k
m(k)

We observe that ~V is independent of ~Un+1.

Introducing the homotopy parameter λ as for the continuous problem

shows the existence of a nonnegative solution pair which thus solve the desired

numerical equation.
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The uniqueness is also obtained as was done for the continuous problem.

Definition 4.2.1 (Discrete Norm) Let φ = φT be a function which is a

constant on each control volume of T and on each edge on the boundary of

∂Ω with φT (x) = φK if x ∈ K, K ∈ T and φT (x) = φσ if x ∈ σ, σ ∈ εext.

The discrete L2 norm, L2(∂Ω) norm and H1 semi-norm are defined by:

‖φT ‖ = ‖φT ‖L2(Ω) = [
∑
K∈T

m(K)(φK)2]
1
2 , (4.2.17)

‖φT ‖L2(∂Ω) = [
∑

σ∈εext

m(σ)(φσ)2]
1
2 , (4.2.18)

|φT |1,T = [
∑
σ∈ε

τσ(Dσφ)2]
1
2 , (4.2.19)

where Dσφ = |φK − φL| if σ = K|L.

We recall the following result from [9](also see [16]):

Lemma 4.2.2 (Discrete Norm Inequality) Let Γ ⊂ ∂Ω such that its (d−1)-

dimensional measure m(Γ) 6= 0 and O⊂ Ω such that its d-dimensional

measure m(O)6= 0. Then there exists C, only depending on Ω, Γ and O,

such that for φ = φT :

‖φ‖2
L2(Ω) ≤ C[|φ|21,T + ‖φ‖2

L2(Γ)], ‖φ‖2
L2(∂Ω) ≤ C[|φ|21,T + ‖φ‖2

L2(O)]. (4.2.20)

Let en
T (x) = en

K = u(xK , tn) − Un
K for x ∈ K, K ∈ T ; fn

T (x) = fn
σ =

γ(xσ, tn)− Γn
σ for x ∈ σ, σ ∈ εext.

We then have our main results whose proof is given below.

Theorem 4.2.1 (L2 norm stability) For the finite volume scheme (4.2.4),

(4.2.8) and (4.2.9), the inequality

‖UN+1
T ‖2 + k

N∑
n=0

|Un+1
T |21,T + k2

N∑
n=0

‖dtU
n
T ‖2 (4.2.21)

+‖ΓN+1
T ‖2

L2(∂Ω) + k2

N∑
n=0

‖dtΓ
n
T ‖2

L2(∂Ω)

≤ C(‖U0
T ‖2 + ‖Γ0

T ‖2
L2(∂Ω)), (4.2.22)

holds.
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Theorem 4.2.2 (L2 norm error estimates) For ‖e0
T ‖ = O(h+k), we have

‖eN+1
T ‖+ (k

N∑
n=0

|en+1
T |21,T )

1
2 + [k

N∑
n=0

‖en+1
T ‖2

L2(∂Ω)]
1
2 + k(

N∑
n=0

‖dte
n
T ‖2)

1
2

+‖fN+1
T ‖2

L2(∂Ω) + k

N∑
n=0

‖dtf
n
T ‖2

L2(∂Ω)

= O(h + k), (4.2.23)

where N = 0, 1, · · · , Nk.

Remark 4.2.1 It is easy to choose an initial approximation that satisfies

the condition ‖e0
T ‖ = O(h + k) in Theorem 4.2.2.

A natural choice is

U0
K =

1

m(K)

∫

K

u0(x)dx, U0
σ =

1

m(σ)

∫

σ

u0(x)dS(x).

Remark 4.2.2 Theorem 4.2.1 and Theorem 4.2.2 show that scheme (4.2.4),

(4.2.8) has a unique solution and first order convergence in both temporal

norm and spatial L2 norm to the original problem (3.5.1).

4.3 Error Estimates

To derive the error estimates we define terms related to the error equations

as follows.

Set

Gn
K,σ = −τσD(en

L − en
K), ∀K ∈ T , σ = K|L ∈ εK ,

m(σ)Rn
K,σ = τσD[u(xL, tn)− u(xK , tn)]

−
∫

σ

D∇u(x, tn) · ηK,σdS(x), σ = K|L ∈ εint,

m(σ)ρn
σ =

∫

σ

[u(x, tn)− u(xσ, tn)]dS(x),

m(σ)rn
σ =

∫

σ

[γ(x, tn)− γ(xσ, tn)]dS(x),

Sn+1
K =

1

m(K)

∫

K

[un+1
t (x)− dtu

n(xK)]dx,

S̄n+1
σ =

1

m(σ)

∫

σ

[γn+1
t (x)− dtγ

n(xσ)]dS(x). (4.3.1)
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In a similar way to [16], if u ∈ L∞(0, T ; H2(Ω)), ut(·, t), γt(·, t) are piecewise

C1 functions, we have estimates of order O(h + k) for the terms of (4.3.1).

We refer to Lemma 2 and Lemma 3 in [16] for proof of similar estimates.

Next, we subtract (4.2.4) from (4.2.1), and either (4.2.8) or (4.2.15) from

(4.2.2) after multiplication by m(σ). We obtain:

m(K)dte
n
K +

∑
σ∈εK

Gn+1
K,σ

= −
∑

σ∈εK
T Tint

{m(σ)Rn+1
K,σ } −

∑
σ∈εK

m(K)Sn+1
K (4.3.2)

−
∑

σ∈εK
T Text

{
∫

σ

(k−1γ
n+1 − k1u

n+1(c0 − γn+1))dS(x)

−m(σ)(k−1Γ
n+1
σ − k1U

n+1
σ (cσ − Γn+1

σ ))}, (4.3.3)

for K ∈ T .

While for σ ∈ εK ∩ εext, we have ( by using explicitly (4.2.15) for

convenience):

m(σ)dtf
n
σ

= −m(σ)S̄n+1
σ + l1(k)kdtΓ

n
σ + l2(k)Γn

σ(k−1 + k1U
n+1
K )

−
∫

σ

(k−1γ
n+1 − k1u

n+1(c0 − γn+1))dS(x)

+m(σ)(k−1Γ
n
σ − k1U

n+1
K (cσ − Γn

σ)). (4.3.4)

We now give:

Proof of Theorem 4.2.1.

Multiplying (6.5) by Un+1
K and summing for all σ ∈ εK , multiplying

(4.2.8)(or (4.2.15)) by m(σ) · Γn+1
σ for all σ ∈ εK ∩ εext, and summing for
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all K ∈ T , yields

3∑
i=1

An
i =:

∑
K∈T

m(K)(dtU
n
K)Un+1

K

+
∑

K∈T

∑
σ∈εK

F n+1
K,σ Un+1

K

+
∑

K∈T

∑
σ∈εK∩εext

m(σ)(dtΓ
n
σ)Γn+1

σ (1− kl1(k))

=
∑

K∈T

∑
σ∈εK∩εext

m(σ)[k−1Γσ − k1U
n+1
σ (cσ − Γn+1

σ )]Un+1
σ

+
∑

K∈T

∑
σ∈εK∩εext

m(σ)[−(k−1 + k1U
n+1
σ )]Γn+1

σ Γn
σ(1− l2(k))

+k1cσU
n+1
σ Γn+1

σ

=
∑

K∈T

∑
σ∈εK∩εext

k−1Γ
n+1
σ Un+1

σ m(σ)

− ∑
K∈T

∑
σ∈εK∩εext

k1(U
n+1
σ )2(cσ − Γn+1

σ )m(σ)

+
∑

K∈T

∑
σ∈εK∩εext

m(σ)[−(k−1 + k1U
n+1
σ )]Γn+1

σ Γn
σ(1− l2(k))

+
∑

K∈T

∑
σ∈εK∩εext

k1cσU
n+1
σ Γn+1

σ

=:
4∑

i=1

Bn
i ,

We estimate the terms in the above equation term by term. From (4.2.17)-

(4.2.19), one deduces

An
1 =

1

2k
‖Un+1

T ‖2 − 1

2k
‖Un

T ‖2 +
k

2
‖dtU

n
T ‖2, (4.3.5)

An
2 =

∑
σ∈εint

Dτσ(DσU
n+1)2 = D|Un+1

T |21,T , (4.3.6)

Recalling (4.2.14), we obtain

An
3 = (

1

2k
‖Γn+1

T ‖2
L2(∂Ω)−

1

2k
‖Γn

T ‖2
L2(∂Ω) +

k

2
‖dtΓ

n
T ‖2

L2(∂Ω))(1+kl1(k)), (4.3.7)

Noticing that cσ ≥ Γn+1
σ from Lemma 4.2.1, we get

B2 ≤ 0, (4.3.8)

B1+B3+B4 ≤ Cε‖Un+1
T ‖2

L2(∂Ω)+(C+
C

ε
)‖Γn+1

T ‖2
L2(∂Ω)+C‖Γn

T ‖2
L2(∂Ω), (4.3.9)
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By the discrete inequality (4.2.20) for ‖Un+1
T ‖L2(∂Ω)

Cε‖Un+1
T ‖2

L2(∂Ω) ≤ Cε[|Un+1
T |21,T + ‖Un+1

T ‖2]

Combining (4.3.5)-(4.3.9), yields

1
2k
‖Un+1

T ‖2 − 1
2k
‖Un

T ‖2 + k
2
‖dtU

n
T ‖2

+(1− kl1(k))( 1
2k
‖Γn+1

T ‖2
L2(∂Ω) − 1

2k
‖Γn

T ‖2
L2(∂Ω) + k

2
‖dtΓ

n
T ‖2

L2(∂Ω))

+D|Un+1
T |21,T

≤ Cε|Un+1
T |21,T + Cε‖Un+1

T ‖2 + (C + C
ε
)‖Γn+1

T ‖2
L2(∂Ω) + C‖Γn

T ‖2
L2(∂Ω)

Collecting terms and multiplying this inequality by 2k and summing for

n = 0, 1, 2, · · · , N leads to

‖UN+1
T ‖2 + 2(D − Cε)k

N∑
n=0

|Un+1
T |21,T + k2

N∑
n=0

‖dtU
n
T ‖2

+‖ΓN+1
T ‖2

L2(∂Ω) + k2
N∑

n=0

‖dtΓ
n
T ‖2

L2(∂Ω)

≤ C(‖U0
T ‖2 + ‖Γ0

T ‖2
L2(∂Ω)) + Cεk

N∑
n=0

‖Un+1
T ‖2

+(Ck +
Ck

ε
)

N∑
n=0

‖Γn+1
T ‖2

L2(∂Ω).

Applying Gronwall’s inequality as in [26, pages 13-14], one gets

‖UN+1
T ‖2 + k

N∑
n=0

|Un+1
T |21,T + k2

N∑
n=0

‖dtU
n
T ‖2

+‖ΓN+1
T ‖2

L2(∂Ω) + k2
N∑

n=0

‖dtΓ
n
T ‖2

L2(∂Ω)

≤ C(‖U0
T ‖2 + ‖Γ0

T ‖2
L2(∂Ω)).

Proof of Theorem 4.2.2.
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We first rewrite the last term in (4.3.2) as follows:∫

σ

(k−1γ
n+1 − k1u

n+1(c0 − γn+1))dS(x)

−m(σ)(k−1Γ
n+1
σ − k1U

n+1
σ (cn+1

σ − Γn+1
σ ))

= k−1[(γ(yσ, tn+1)− Γn+1
σ )m(σ) +

∫

σ

[γ(x, tn+1)− γ(xσ, tn+1)]dS(x)]

+k1c
n+1
σ [(Un+1

σ − u(yσ, tn+1)]m(σ)− (

∫

σ

c0[u(x, tn)− u(xσ, tn))]

+k1(

∫

σ

un+1[γ(x, tn+1)− γ(xσ, tn+1) + (γ(xσ, tn+1)− Γn+1
σ )]dS(x))

+k1Γ
n+1
σ [

∫

σ

[u(x, tn+1)− u(xσ, tn+1)]dS(x) + (u(xσ, tn+1)− Un+1
σ )m(σ)]

= k−1f
n+1
σ m(σ) + k1e

n+1
σ (Γn+1

σ − cσ)m(σ) + k1f
n+1
σ un+1

σ m(σ) + E1

Here

E1

=

∫

σ

[γ(x, tn+1)− γ(xσ, tn+1)]dS(x)−
∫

σ

c0[u(x, tn)− u(xσ, tn)]dS(x)

+k1

∫

σ

un+1[γ(x, tn+1)− γ(xσ, tn+1)]dS(x)

+k1Γ
n+1
σ

∫

σ

[u(x, tn+1)− u(xσ, tn+1)]dS(x)

Recalling the error estimates of (4.3.1), we have

E1 = m(σ)O(h + k). (4.3.10)

Next, we rewrite the last two terms in (4.3.4) as:

−
∫

σ

(k−1γ
n+1 − k1u

n+1(c0 − γn+1))dS(x)

+m(σ)(k−1Γ
n
σ − k1U

n+1
σ (cn+1

σ − Γn
σ))

= −
∫

σ

(k−1 + k1u
n+1)([γ(x, tn+1)− γ(xσ, tn+1)] + [γ(xσ, tn+1)− γ(xσ, tn)]

+[γ(yσ, tn)− Γn
σ])dS(x)−

∫

σ

k1Γ
n
σ([u(x, tn+1)− u(xσ, tn+1)]

+[u(xσ, tn+1)− Un+1
σ ])dS(x) +

∫

σ

k1c0([u(x, tn+1)− u(xσ, tn+1)]

+[u(xσ, tn+1)− Un+1
σ ])dS(x)

= −
∫

σ

(k−1 + k1u
n+1)fn

σ dS(x)−
∫

σ

k1Γ
n
σe

n+1
σ dS(x) +

∫

σ

k1c0e
n+1
σ dS(x) + E2
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Rearranging the terms as was done earlier for E1, we set

E2

= −
∫

σ

(k−1 + k1u
n+1)([γ(x, tn+1)− γ(xσ, tn+1)]

+[γ(xσ, tn+1)− γ(xσ, tn)])dS(x)

−
∫

σ

k1Γ
n
σ[u(x, tn+1)− u(xσ, tn+1)]dS(x)

+

∫

σ

k1c0[u(x, tn+1)− u(xσ, tn+1)]dS(x)

Considering the properties in (4.3.1) again, we have

E2 = m(σ)O(h + k). (4.3.11)

Multiplying equation(4.3.2) by en+1
K , equation (4.3.4) by fn+1

σ , and

summing over all K ∈ T , and σ ∈ εK ∩ εext gives

4∑
i=1

Cn
i =:

∑
K∈T

m(K)(dte
n
K)en+1

K

+
∑

K∈T

∑
σ∈εK

Gn+1
K,σ en+1

K

+
∑

K∈T

∑
σ∈εK∩εext

k1m(σ)(cσ − Γn+1
σ )(en+1

σ )2

+
∑

K∈T

∑
σ∈εK∩εext

m(σ)(dtf
n
σ )fn+1

σ

=
∑

K∈T

∑
σ∈εK∩εext

{k−1f
n+1
σ m(σ) + k1f

n+1
σ un+1

σ m(σ) + E1}en+1
σ

+
∑

K∈T

∑
σ∈εK∩εext

{−
∫

σ

(k−1 + k1u
n+1)fn

σ dS(x)−
∫

σ

k1Γ
n
σe

n+1
σ dS(x)

+

∫

σ

k1c0e
n+1
σ dS(x) + E2}fn+1

σ −
∑
K∈T

∑
σ∈εK∩εint

m(K)Rn+1
K,σ en+1

K

− ∑
K∈T

∑
σ∈εK∩εext

m(σ)S̄n+1
σ fn+1

σ +
∑

K∈T
m(K)Sn+1

K en+1
K

+
∑

K∈T

∑
σ∈εK∩εext

(l1(k)kdtΓ
n
σ + l2(k)Γn

σ(k−1 + k1U
n+1
σ ))m(σ)fn+1

σ

=:
6∑

i=1

Dn
i

Now we estimate the above inequality term by term. From (4.2.17)-(4.2.19),

we deduce

Cn
1 =

1

2k
‖en+1
T ‖2 − 1

2k
‖en
T ‖2 +

k

2
‖dte

n
T ‖2, (4.3.12)
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Cn
2 =

∑
σ∈ε

Dτσ(Dσe
n+1)2 = D|en+1

T |21,T , (4.3.13)

Cn
3 ≥ 0, (4.3.14)

Cn
4 =

1

2k
‖fn+1
T ‖2 − 1

2k
‖fn
T ‖2 +

k

2
‖dtf

n
T ‖2, (4.3.15)

Recalling that Rn+1
K,σ = −Rn+1

L,σ for K ∈ εint, K ∩ L = σ, from (4.3.1),

(4.3.10), (4.3.11) and Young’s inequality we obtain:

Dn
1 =

C

ε
(h2 + k2) +

C

ε
‖fn+1
T ‖2

L2(∂Ω) + ε‖en+1
T ‖2

L2(∂Ω), (4.3.16)

with C a constant independent of h or k.

To justify this, in R2, for example, we assume that the number of control

volumes is of order
1

h2
, the area of each control volume is of order h2, while

the number of edges on the boundary is of order
1

h
.

Thus the term of C(h2 + k2) above is obtained through the product of

Total Number of Boundary Edges × Square of Local Error × Measure of

Edge of Control Volume = C
1

h
× C(h2 + k2)× Ch = C(h2 + k2).

In the same way:

Dn
2 = C(1 +

1

ε
)(h2 + k2) +

C

ε
‖fn+1
T ‖2

L2(∂Ω) + ε‖en+1
T ‖2

L2(∂Ω) + C‖fn
T ‖2

L2(∂Ω),

(4.3.17)

Dn
3 =

C

δ
(h2 + k2) + δ|en+1

T |21,T , (4.3.18)

Similarly,

Dn
4 + Dn

5 + Dn
6 =

C

δ
(h2 + k2) + C‖en+1

T ‖2 +
C

ε
‖fn+1
T ‖2

L2(∂Ω), (4.3.19)

Thus,

4∑
i=1

Cn
i ≤ C(1 +

1

δ
+

1

ε
)(h2 + k2) + δ|en+1

T |21,T + ε‖en+1
T ‖2

L2(∂Ω)

+C‖en+1
T ‖2 +

C

ε
‖fn+1
T ‖2

L2(∂Ω) + C‖fn
T ‖2

L2(∂Ω). (4.3.20)

By the discrete norm inequality (4.2.20):

ε‖en+1
T ‖2

L2(∂Ω) ≤ Cε(|en+1
T |21,T + ‖en+1

T ‖2),

Multiplying (4.3.20) by 2k and summing for n = 0, 1, 2, · · · , N leads to
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‖eN+1
T ‖2 + 2(D − δ − Cε)k

N∑
n=0

|en+1
T |21,T + k2

N∑
n=0

‖dte
n
T ‖2 + ‖fN+1

T ‖2

+k2

N∑
n=0

‖dtf
n
T ‖2

L2(∂Ω)

≤ C(‖e0
T ‖2 + ‖f 0

T ‖2
L2(∂Ω)) + C(1 +

1

δ
+

1

ε
)(h2 + k2) + Ck

N∑
n=0

‖en+1
T ‖2

+εk
N∑

n=0

‖en+1
T ‖2

L2(∂Ω) + Ck
N∑

n=0

‖fn+1
T ‖2

L2(∂Ω). (4.3.21)

Again applying Gronwall’s inequality as in [26, pages 13-14] to (4.3.21),

with ‖e0
T ‖ = O(h + k), we observe that the left hand of the above relation

can be bounded by C(h2 + k2), N = 0, 1, · · · , Nk. Another use of Lemma

4.2.2 shows that the conclusion of Theorem 4.2.2 is valid, i.e.:

‖eN+1
T ‖2 + 2(D − δ − Cε)k

N∑
n=0

|en+1
T |21,T + k2

N∑
n=0

‖dte
n
T ‖2

+‖fN+1
T ‖2 + k2

N∑
n=0

‖dtf
n
T ‖2

≤ C(h2 + k2).

4.4 Numerical Simulation

We conclude by illustrating the above results by means of numerical

simulations run on a PC.

We first simulated equations (3.5.1) with Ω given by the square domain:

Ω = [0, 10]× [0, 10]. The coefficients were chosen to be:

D = 1; k1 = 5; k−1 = 0.5; a0(x, y) ≡ 1;

where c0 was set to be: c0 = 1 for (x, y) ∈ [4, 6]× {0}, c0(x, y) = 0 otherwise.

We implemented the numerical procedures described in Section 6 employing

an unstructured grid generated using the software package TRIANGLE. At

each time step the nonlinear equations were resolved by a simple iteration

scheme, and the linear equations thus obtained were solved by a direct
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method. A typical result is shown in Figure 2 at the instant t=10 units. We

observe that in this situation (and in other cases) it is possible to obtain an

estimate of the actual accuracy of the simulation by comparing the simulated

long-time result with the calculable steady-state value given by (3.7.1). The

error was found to be of the order of 10−4.

Next the situation for two antigens was considered, corresponding to

equations (3.8.1) and again with Ω = [0, 10] × [0, 10]. In this case, for the

first antigen the parameters were chosen to be :D1 = 1; k1,1 = 5; k−1,1 =

0.5; a1(x, y) ≡ 1; while for the second: D2 = 0.1; k1,2 = 5; k−1,2 =

0.5; a2(x, y) ≡ 1;

Finally c0 was chosen to be c0(x, y) = 1 for (x, y) ∈ [4, 6]× {0}; c0(x, y) = 0

otherwise. The simulation results are shown in Figure 3 and Figure 4

respectively at t = 10 units.
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Figure 4.1: One Antigen concentration as D = 1; k1 = 5; k−1 = 0.5; a0(x, y) ≡
1; T = 10.

In all these cases, the CPU time was measured in seconds.
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Figure 4.2: Antigen 1 concentration as D1 = 1; k1,1 = 5; k−1,1 =
0.5; a1(x, y) ≡ 1; T = 10.
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Figure 4.3: Antigen 2 concentration as D2 = 0.1; k1,2 = 5; k−1,2 =
0.5; a2(x, y) ≡ 1; T = 10.
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Chapter 5

Periodic Solutions to Coupled
Systems

5.1 Introduction

Let once again QT = Ω × (0, T ), and set Q′
T = ∂Ω × (0, T ) with Ω a

smooth bounded domain in Rn. We now consider a biological problem that

is mathematically closely related in formulation to what has been done in

the earlier chapters. Specifically, we consider the system:





ut −∇(D∇u +~bu) = (A−Bu)u, in QT , (5.1.1.1)

D
∂u

∂n
+~b · ~nu = k−1γ − k1u(c0 − γ), on Q′

T , (5.1.1.2)

dγ

dt
= −k−1γ + k1u(c0 − γ)− hγ, on Q′

T , (5.1.1.3)

(5.1.1)

The differences between this system and earlier work involve the function

~b, the right hand side of equation (5.1.1.1) and the last term on the right

hand side of equation (5.1.1.3). We maintain the earlier assumption on

D, c0, k−1, k1, Ω and ask that ~b, A, B, h denote smooth functions on Q̄T with

A,B, h nonnegative.

As mentioned earlier, system (5.1.1) can be viewed as a model for various

biological problems. For example: that of a species (of density u) in a fluid

which can be stored in a thin layer from which it is harvested. The stored

density is denoted by γ. In this context, c0(x, t) denotes the carrying capacity

of the layer and h(x, t), the harvesting intensity. Observe that the right
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hand side of (5.1.1.1) is the classical Volterra model. The right hand side

of (5.1.1.2) represent the rate at which the stored density is returned to the

fluid, together with the rate at which the density is stored from the fluid.

An identical comment applies to the right hand side of (5.1.1.3). Finally, we

point out that ~b represents motion in the fluid, due either to natural currents

or to mechanical stirring.

We assume that the harvesting intensity h is sufficiently high, i.e. that it

satisfies:
∂c0

∂t
≤ k−1c0 + hc0 (5.1.2)

This will ensure that we shall find solutions u, γ with γ not exceeding the

carrying capacity c0.

We note that once again it will follow that γ(x0, t) ≡ 0 if c0(x0, t) ≡ 0

for all t. Thus γ ≥ 0 precisely in parts of the boundary where c0 > 0.

As a consequence, equation (5.1.1.2) reduces to the standard natural (no

flow) boundary conditions at places where c0 ≡ 0. From this observation

we observe that model (5.1.1) describes situations where deposition occurs

only on parts of ∂Ω. This is typical, for example, of the situation in lagoons,

where deposition occurs only relative to the bottom layers.

In conclusion we point out that our results can be extended to cover more

general situations. Furthermore, considerations of the initial value problem

for (5.1.1) are similar to those given earlier (for the case A = B = h = ~b = 0).

Consequently here we focus on the periodic problem: we ask that all functions

be periodic with period T , and seek nonnegative weak solutions also of period

T . We start with an analysis for A,B positive and then consider what

happens if A = B ≡ 0.
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5.2 Existence

We rewrite system (5.1.1) in the form





ut −∇(D∇u +~bu) = (A−Bu)u, in QT , (5.2.1.1)

D
∂u

∂n
+~b · ~nu + k1uc0 = (k−1 + k1u)γ, on Q′

T , (5.2.1.2)

dγ

dt
+ k−1γ + hγ = +k1u(c0 − γ), on Q′

T , (5.2.1.3)

(5.2.1)

subject to the periodic conditions u(x, 0) = u(x, T ).

For later convenience, we add a term Mu to both sides of (5.2.1.1) and

then multiply the right hand side of equations (5.2.1) by a constant λ, with

0 ≤ λ ≤ 1 and M large positive constant as needed below. We denote the

resulting system by (5.2.1λ).

We begin by assuming that A,B are positive, and first state some

preliminary results.

Lemma 5.2.1 let (u, λ) solve (5.2.1λ).

(a) 0 ≤ γ(t) ≤ c0(x, t).

(b) Let M be a positive constant, f, g smooth. Then the equation





ωt −∇(D∇ω +~bω) + Mω = f ≥ 0, in QT , (5.2.2.1)

D
∂ω

∂n
+~b · ~nω + k1ωc0 = g ≥ 0, on Q′

T , (5.2.2.2)
(5.2.2)

has a unique periodic solution.

(c) Let ω be a nonnegative sub-solution of





ωt −∇(D∇ω +~bu) + Mω ≤ 0, in Ω× (0, T ), (5.2.3.1)

D
∂ω

∂n
+~b · ~nω ≤ g, on ∂Ω, (5.2.3.2)

(5.2.3)

with ω(x, 0) = ω(x, T ), g ≥ 0 smooth bounded.

If

∫

QT

ω is bounded then so is ω in L∞(Q̄T ) for some α > 0.

Proof. (a) Assume that for some x0 ∈ ∂Ω and all t ∈ [0, T ], we

have γ(x0, t) ≥ c0(x0, t). Then
∂γ(x0, t)

∂t
≤ 0, contradicting periodicity
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unless γ(x, t) is a constant. In such a case γ ≡ c0 by nonnegativity

and equation (5.2.1.3). Whence we may assume there exists t0 such that

γ(x0, t0) < c0(x0, t). Since for any (x, t) where α = c0 we must have ∂α
∂t
≤ ∂c0

∂t

we conclude that α(x, t) ≤ c0(x, t) for all (x, t) in Q′
T .

Proofs of (b) and (c) were given in Lemma 2.5.1.

Theorem 5.2.1 Let f̄(x, t) =
1

T

∫ T

0

f(x, t)dt. If

inf
ϕ∈H1

[

∫

Ω

D|∇ϕ|2 +
(|~b|2)
4D

ϕ2 +∇ϕ|~b|ϕ− Āϕ2 +

∫

∂Ω

k1c0ϕ
2] < 0

Then (5.1.1) has a periodic solution pair (u, γ) of class Cα,α/2(Q̄T ),

Cα,1+α/2(Q̄′
T ), respectively, with u > 0 in Q̄T and γ > 0 in Q′

T ∩
{(x, t)|c0(x, t1) 6≡ 0,∀0 ≤ t1 ≤ T}.

Remark: We observe that the simplest choice in Theorem 1 is ϕ ≡ 1. The

existence condition then becomes:

∫

QT

{|
~b|2
4D

}+

∫

Q′T

k1c0 <

∫

QT

A

Proof. Choose 0 ≤ ε ≤ 1, we rewrite (5.1.1) in perturbed form





ut −∇(D∇u +~bu) + Mu = (A + M −Bu)u+ + ε, in QT , (5.2.4.1)

D
∂u

∂n
+ (~b · ~n + k1c0)u = (k−1 + k1u

+)γ+, on Q′
T , (5.2.4.2)

dγ

dt
+ (k−1 + h)γ = k1u

+(c0 − γ+), on Q′
T , (5.2.4.3)

(5.2.4)

with M chosen sufficiently large. Put L1(v) = {f, g} iff:





vt −∇(D∇v +~bv) + Mv = f, in QT , (5.2.5.1)

D
∂v

∂n
+ (~b · ~n + k1c0)v = g, on Q′

T , (5.2.5.2)

v(x, 0) = v(x, T ), (5.2.5.3)

(5.2.5)

Note that L−1 exists if f, g are smooth enough, since M > 0. Similarly, set
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L2(δ) = z iff:




dδ

dt
+ (k−1 + h)δ = z, in Q′

T , (5.2.6.1)

δ(x, 0) = δ(x, T ). (5.2.6.2)
(5.2.6)

Finally, we define: L

(
v
ω

)
=

(
L1(v)
L2(ω)

)
.

R

(
u1

γ1

)
=

(
(A + M −Bu+

1 )u+
1 + ε, (k−1 + k1u

+
1 )γ+

k1u
+
1 (c0 − γ+

1 )

)
.

Our problem thus becomes to find u, γ such that

(
u
γ

)
= L−1R

(
u
γ

)
,.

Observe then that if

(
u
γ

)
= λL−1R

(
u+

γ+

)
with 0 ≤ λ ≤ 1, u ∈ Cα,α/2,

γ ∈ Cα,1+α/2 for some α > 0, then u, γ are classical solutions and u ≥ 0,

γ ≥ 0 by the maximum principle. Furthermore u > 0 in QT by the maximum

principle. Since once again 0 ≤ γ ≤ c0 integration gives, for λ > 0,
∫

Q′T

k1c0u +

∫

QT

Mu =

∫

Q′T

λ(k−1 + k1u)γ + λ

∫

QT

{[A + M −Bu]u + ε}

We conclude:
∫

QT
Bu2 ≤ ∫

QT
Au+ε|QT |, whence B > 0 implies u is bounded

in L2(QT ), independent of λ > 0. If however λ = 0 then M > 0 yields u ≡ 0.

We conclude that u is bounded in L2 uniformly for 0 ≤ λ ≤ 1, whence

u ≥ 0 satisfies

ut −∇(D∇u +~bu) + Mu− λ(A + M)u ≤ ελ

D
∂u

∂n
+ (~b · n)u ≤ λ1k−1c0

We conclude from Lemma 2.2(c) that u is uniformly bounded in L∞, and

thus u, γ are also bounded in Cα,α/2(Q̄T ), Cα,1+α/2(Q̄′
T ) respectively, for some

α > 0 [19, 21]. Next, consider the map u = T (v) from Cα,α/2(QT ) to itself

given as follows: for a chosen v calculate δ by: L2(δ) = k1z
+(c0 − δ). For

this δ, we find u by

L1(u) = {(A + M −Bv+)v+ + ε, (k−1 + k1v
+)δ}.

The earlier arguments then yield by Degree Theory that T has a fixed point

for a suitable value of α > 0, whence we conclude the existence of a fixed
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point of L−1R, i.e.: of a solution pair (uε, δε) that are uniformly bounded in

Cα,α/2, Cα,1+α/2 independently of ε. We now select 0 < α′ < α and observe

that (uε, δε) will have a subsequence (also denoted by (uε, δε)) that converges

in Cα′,α′/2, Cα′,1+α′/2 to a solution pair (u, δ). We only need to show that

u 6≡ 0, since then δ 6≡ 0. Assume to the contrary that uε → 0(whence

δε → 0). Choose a function ϕ ∈ H1(Ω). We then note that uε > 0 is a

classical solution and, completing the square yields,

0 ≤
∫

Ω

Du2
ε|∇(

ϕ

uε

)|2 −~bϕuε∇(
ϕ

uε

) +
|~b|2
4D

ϕ2 (5.2.7)

We expand the right hand side and obtain:

0 ≤
∫

Ω

D|∇ϕ|2 −~bϕ∇ϕ +
|~b|2
4D

ϕ2 −
∫

Ω

[D∇(
ϕ2

uε

)∇uε − (~b∇uε)[
ϕ2

uε

]]

= I + J (5.2.8)

Now

J =

∫

∂Ω

[(~b · ~n) + k1c0]ϕ
2 −

∫

∂Ω

k−1 + k1uε

uε

γεϕ
2 +

∫

Ω

ϕ2(−∇~b)

−
∫

Ω

ϕ2

uε

[(A−Buε)uε + ε] +

∫

Ω

ϕ2

uε

(uε)t (5.2.9)

We integrate over t, use periodicity to conclude:

0 ≤
∫ T

0

∫

Ω

D|∇ϕ|2 +~bϕ∇ϕ +
|~b|2
4D

ϕ2 +

∫ T

0

∫

∂Ω

k1c0ϕ
2 −

∫ T

0

∫

Ω

ϕ2[A−Buε]

Since uε → 0 by assumption we obtain the desired contradiction.

We now pass to consideration of the periodic problem for the case A =

B = 0. We observe that formal integration of (5.1.1) gives: (

∫

Ω

u+

∫

∂Ω

γ)t−∫

∂Ω

hγ = 0, hence we conclude that solutions will exist only for h ≡ 0, i.e.

no harvesting. Since A = B = 0, the earlier a-priori estimate fails, and we

proceed as follows.

We begin by considering an approximate version of system (5.1.1),

specifically, let 0 < π < 1, F > 0 be chosen constants, and set:
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



vt −∇(D∇v +~bv) + (1− π)v = 0 in QT , (5.2.10.1)

D
∂v

∂n
+~b · ~nv + k1vc0 = π(k−1 + k1v)δ +

F

|Q′
T |

(1− π), on Q′
T , (5.2.10.2)

dδ

dt
+ k−1δ = πk1v(c0 − δ), on Q′

T , (5.2.10.3)

(5.2.10)

subject to periodic conditions.

Theorem 5.2.2 For each (π, A) with 0 < π < 1 and A > 0 system (5.2.10)

has a positive solution pair (v, δ) with v ∈ Cα,α/2(Q̄T ), δ ∈ Cα,1+α/2(Q̄′
T ) for

some α > 0. Furthermore v satisfies an estimate independent of π:

∫

QT

v +

∫

Q′T

(k1vc0 + k−1δ) = F (5.2.11)

and 0 ≤ δ ≤ c0.

Proof. It is convenient to embed system (5.2.10) into a family of systems

given by





ωt −∇(D∇ω +~bω) + (1− π)ω = 0 in QT , (5.2.12.1)

D
∂ω

∂n
+~b · ~nω + k1ωc0 = λ[π(k−1 + k1)β +

F

|Q′
T |

(1− π)], on Q′
T , (5.2.12.2)

dβ

dt
+ k−1β = λ[πk1ω(c0 − β)], on Q′

T , (5.2.12.3)

(5.2.12)

with periodic boundary conditions, and some λ, 0 ≤ λ ≤ 1. We observe that

if the nonnegative pair (ω, β) solve (5.2.12) then β ≤ c0, by the earlier proof.

We thus observe that (5.2.12) yields

D
∂ω

∂n
+~b · ~nω + k1(c0 − λπβ)ω = λ[πk−1β +

F

|Q′
T |

(1− π)], (5.2.13)

We recall that 0 ≤ λ ≤ 1 and 0 < π < 1 , whence for all ω satisfies

0 ≤ ω ≤ z where z is the solution to the linear periodic parabolic problem.
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



zt −∇(D∇z +~bz) + (1− π)z = 0 in QT , (d)

D
∂z

∂n
+~b · ~nz + k1zc0(1− π) = πk−1c0 +

F

|Q′
T |

(1− π), on Q′
T , (e)

z(x, 0) = z(x, T ), in Ω

(5.2.14)

It follows once again that ω is uniformly bounded in L∞(QT ) and thus

in Cα,α/2(QT ), for some α > 0, by classical results [19, 21] . The analogous

result for γ is then immediate. To conclude the existence result, we simply

apply a Degree Theory argument in the usual way. Finally, we integrate

(5.2.10.1) and employ (5.2.10.2), (5.2.10.3) to conclude.

(

∫

Ω

v +

∫

∂Ω

δ)t +

∫

∂Ω

(k1vc0 + k−1δ) +

∫

Ω

(1− π)v

= π

∫

∂Ω

(k1vc0 + k−1δ) +

∫

∂Ω

F

T |Ω|(1− π) (5.2.15)

Whence, by periodicity and integration, we obtain the desired estimate

(5.2.11) in this case.

Theorem 5.2.3 Let A = B = 0. System (5.1.1) has a nonnegative periodic

solution pair.

Proof. Let (vπ, δπ) denote the solutions found for system (5.2.12). We

observe that δπ is uniformly bounded (by c0) and ‖vπ‖L1(QT ) ≤ F , whence

(vπ, δπ) are uniformly bounded in Cα,α/2(QT ), Cα,1+α/2(Q′
T ) respectively.

We select 0 < α′ < α and a subsequence of (vπ, δπ) that converges in

Cα′,α′/2(QT ), Cα′,1+α′/2(Q′
T ) to (v, δ) a weak solution to system (5.1.1). We

conclude by observing that (u, γ) cannot be identically zero. Indeed if u ≡ 0,

then γ ≡ 0. But this contradicts estimates (5.2.11). Whence u 6≡ 0 and thus

γ 6≡ 0 by (5.1.1.3).
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Chapter 6

Future Work

We first note that the degenerate diffusion case remains open since all our

results are based on the classical parabolic system with constant diffusivity

or at least diffusivity positive bounded above and below. More generally,

the diffusivity is considered in the context of a porous medium permeated

by an interconnected network of pores (voids) filled with a fluid (liquid or

gas). Porous media problems are a subject of interest and have emerged as

a separate field of study [20],[23]-[32]. This directly leads to new challenges

in mathematical analysis for our problem.

In the numerical system we presented, we used the finite volume scheme

to obtain approximate solutions. We observe that possibly we could employ

instead a monotone iteration scheme, since positivity and boundness hold

for the solution pair. Some more efficient numerical scheme may then be

derived based on upper-lower solution (order) method. This is presently

under consideration.

Many of today’s biosensor applications and other ”surface effects” involve

organisms which respond to toxic substances at a much lower level than are

apparent to human senses. Thus, such devices can be used in environmental

monitoring that includes trace gas detection and in water treatment facilities.

In order to do this, more mathematically complicated systems must be used

in order to model other effects such as the stirring of fluid (convection terms

added to the system and boundary setting) and more complicated physical

interactions. We are presently beginning the study of some of these problems.
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[16] T. Gallouët, R. Herbin, and M.H. Vignal, Error Estimates on the

Approximate Finite Volume Solution of Convection Diffusion Equations

with General Boundary Conditions. SIAM J. Numer. Anal., 37:6 (2000),

1935-1972.

[17] D. Gilbarg, and N.S. Trudinger, Elliptic Partial Differential Equations

of Second Order. 2nd ed. Berlin: Springer-Verlag, 1983.

67



[18] S. Jones, B. Jumarhon, S. McKee and J. A. Scott, A mathematical

model of a biosensor, Journal of Engineering Mathematics 30:321-337,

1996.

[19] O. A. Ladyzhenskaya, V. A. Solonnikov, N.N. Ural’tseva: Linear and

Quasilinear Equations of Parabolic type. Translations of Mathematical

Monographs, Amer. Math. Soc., 1968.

[20] P. Lei, Z. Wu, and J. Yin, Boundary value problem for a class of

degenerate quasilinear parabolic equations with singularity, J. Math.

Anal. Appl. 296 (2004), no. 1, 209–225

[21] G. M. Lieberman, Second Order Parabolic Differential Equations. World

Scientific Publishing, Singapore, 1996

[22] S. Merino; M. Grinfeld; S. McKee, A degenerate reaction diffusion

system modelling an optical biosensor, Z. Angew. Math. Phys. 49 (1998),

no. 1, 46–85.

[23] M. Nakao, On a system of nonlinear diffusion equations, Funkcial. Ekvac.

27 (1984), no. 1, 75–84.

[24] M. Nakao, On some regularizing and decay estimates for nonlinear

diffusion equations. Nonlinear Anal., 7 (1983), no. 12, 1455–1461.

[25] M. Nakao, On solutions to the initial-boundary value problem for an

equation in the theory of infiltration. Nonlinear Anal. 8 (1984), no. 1,

39–48.

[26] A. Quarteroni; A. Valli, Numerical Approximation of Partial Differential

Equations. Springer Series in Computational Mathematics, 23. Springer-

Verlag, Berlin, 1994. xvi+543 pp. ISBN: 3-540-57111-6

[27] H. Yin, L2,µ(Q)-estimates for parabolic equations and applications, J.

Partial Differential Equations, 10 (1997), no. 1, 31–44.

68



[28] J. Yin and Y. Wang, Asymptotic behaviour of solutions for porous

medium equation with periodic absorption, Int. J. Math. Math. Sci.

26 (2001), no. 1, 35–44.

[29] Y. Wang, J. Yin and Z. Wu, Periodic solutions of porous medium

equations with weakly nonlinear sources, Northeast. Math. J. 16 (2000),

no. 4, 475–483.

[30] Y. Wang, Z. Wu and J. Yin, Time periodic solutions of a class of

degenerate parabolic equations, Acta Math. Appl. Sinica (English Ser.)

16 (2000), no. 2, 180–187.

[31] Y. Wang and J. Yin, Semigroup approach to a doubly degenerate

parabolic equation. Acta Math. Appl. Sinica (English Ser.) 15 (1999),

no. 2, 113–125.

[32] Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear diffusion equations.

Translated from the 1996 Chinese original and revised by the authors.

World Scientific Publishing Co., Inc., River Edge, NJ, 2001. xviii+502

pp. ISBN: 981-02-4718-4

[33] X. Zhao, Dynamical systems in population biology. CMS Books in

Mathematics/Ouvrages de Mathematiques de la SMC, 16. Springer-

Verlag, New York, 2003. xiv+276 pp. ISBN: 0-387-00308-8

69


