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ABSTRACT

Hydrodynamics of the flow around multi-foil systems, representing the tailfin dynamics of col-

lectively swimming fish or fish schooling, were investigated by directly solving the Navier-Stokes

equations across a range of flow conditions. The wake and performance of the pitching foils in

schooling configurations are examined across a broad parameter space, including Reynolds num-

ber, Strouhal number, pitching amplitude, phase difference, and foil spacing. The aim of this

study is to enhance our understanding of the fluid dynamics associated with fish-like swimmers

in schooling configurations. The insights gained are intended to inform the design of advanced

man-made propulsors, operating in schooling configurations.

The dynamics of unsteady interactions behind schooling foils were explored at a Reynolds

number of 1000-12000, unveiling their correlation with performance metrics. At lower Strouhal

numbers, quasi-steady performance characteristics were observed, aligning with the persistence

of wake symmetry. Conversely, higher Strouhal numbers exhibited unsteady interactions between

vortex streets in the wake behind the foils, leading to intricate transitional behaviors. Specif-

ically, asymmetric vortex streets produced by in-phase pitching foils merged into a symmetric

wake, while out-of-phase pitching foils experienced a transition from symmetric to asymmetric

wakes. Further analysis of vortex circulation indicated that secondary structures that separate from

the lower wake influenced the primary structures of the upper wake, initiating the wake merging

process. Wake patterns were categorized by their merged-separated and steady-transient features,

prompting the development of a novel mathematical model to differentiate between merged and

separated patterns. Additionally, novel scaling laws were formulated to estimate the steady perfor-

mance metrics of the foils under varying flow conditions, resulting in two sets of scaling equations

grounded in empirical and physics-based methodologies. The study also delved into the three-

dimensional instability characteristics of parallel pitching foils in the turbulent regime. A unique

spanwise instability within the separating shear layer, resulting from the proximity of one foil to

another, was identified, and a mechanism responsible for the suppression of spanwise instabilities

on leading edge vortices under extreme foil proximity effect was elucidated.
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Chapter 1

INTRODUCTION

Swimming fish and flying birds feature some of the most fascinating natural engineering mechan-

ics and designs on earth. Over millions of years, evolution has succeeded in developing a marvel

technique for locomotion of natural species. Understanding these natural processes is critical in

developing bio-inspired engineering systems for higher performance. To this end, this disserta-

tion investigates the unsteady flow around pitching foils in schooling configurations, representing

swimming fish tailfins, with a particular emphasis on wake interactions and their effects on propul-

sive performance. Specifically, it delves into vortex dynamics behind the foils in bio-inspired

schooling configurations, develops scaling laws to estimate and comprehend their performance,

and characterizes the three-dimensional instabilities emerging in their wakes.

1.1 Motivations

Fish are known to swim efficiently in groups, but why? This statement outlines the motivation

behind this dissertation. That is to delve into the hydrodynamics of collective swimming behavior

of fish towards designing fast, efficient, stealth, and agile underwater propulsion systems

The swimming capabilities of fish have been honed over millions of years through the evolu-

tionary process. While not every feature they have adopted can be directly attributed to hydro-

dynamics, it is undeniable that they rank among the most proficient swimmers in nature. Their
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near-perfect anatomies have served as a significant wellspring of inspiration for engineers in the

development of next-generation bio-inspired systems. In fact, engineers have achieved remarkable

success in developing a variety of robotic platforms that mimic different aspects of fish swimming

(Triantafyllou and Triantafyllou, 1995; Marras and Porfiri, 2012; Ay et al., 2018), thus substantiat-

ing the efficacy of this approach.

Observing any aquarium housing multiple fish would reveal that many fish species gather in

swarms while navigating, a behavior commonly known as fish schooling. It can be argued that

this behaviour is driven by their social structures rather than hydrodynamic advantages. This hy-

pothesis seems plausible, especially considering that the relatively confined environment of an

aquarium may not necessarily incentivize fish to exploit hydrodynamic advantages for faster, more

agile, or efficient swimming. Nevertheless, we have compelling evidence from biological experi-

ments Herskin and Steffensen (1998); Marras et al. (2015) that fish, at least certain species, indeed

improve their swimming performance by forming schools. A comprehensive understanding of

the intrinsic flow physics responsible for these enhancements is imperative to unravel the poten-

tial hydrodynamic advantages that can inform the design of advanced aquatic propulsion systems.

Hence, exploring the flow interactions between multiple swimmers, emblematic of schooling fish,

constitutes the primary motivation behind this dissertation.

1.2 The Overview

Hydrodynamic interactions among individuals in schooling arrangements have been an intriguing

and unexplored topic within the fluid mechanics community for decades (Shaw, 1962). Biological

studies have revealed that trailing fish in schools consume significantly less energy compared to

those in the leading positions, indicating that members in rear positions exploit wake structures

for their hydrodynamic benefits (Herskin and Steffensen, 1998; Svendsen et al., 2003). Controlled

experiments in fish tanks (Ashraf et al., 2016, 2017) have shown that red nose tetra fish (Hemi-

grammus bleheri) arrange themselves vertically and synchronize their tail beat frequencies when
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Figure 1.1: Bodies of natural aquatic animals can be decomposed into drag-producing (dashed
line) and thrust-generating (full line) components. The process of thrust generation can effectively
be represented by an oscillating foil. (Adopted with permission from Moored and Quinn (2019),
Copyright 2019, American Institute of Aeronautics and Astronautics (AIAA)).

compelled to swim faster, suggesting a correlation between schooling behavior and improved per-

formance. Three-dimensional (3D) numerical studies, simulating realistic fish schools, have sim-

ilarly indicated enhanced swimming performance for certain positions Daghooghi and Borazjani

(2015); Li et al. (2019). However, these investigations are constrained by fixed or limited ranges

of kinematic parameters due to the high computational demands arising from the complexity of

the problem. Similarly, biological investigations are restricted by the species of fish being studied,

posing challenges in deriving conclusions regarding the fundamental flow physics. This under-

scores the need for a comprehensive study that encompasses a wide range of parameters to fully

elucidate the underlying physics behind hydrodynamic interactions in fish schools.

Fish utilize various swimming modes, which are primarily categorized into undulatory and os-

cillatory movements, each tailored to different environmental and physiological conditions (Webb,

1984). Undulatory swimming involves the propagation of wave-like motions along the body or

fins to displace fluid, a mechanism prevalent among species such as eels and knifefish. Conversely,

oscillatory swimming, typical of species like tuna, entails periodic side-to-side motion of the rel-

atively rigid caudal fin (Webb, 1984). However, these modes are not strictly distinct but rather

exist along a spectrum, particularly evident when considering that the characteristics of oscillatory

motion can be regarded as undulations with large wavelengths. A key criterion for distinguishing

between these modes is the comparison of the wavelength of motion to body length. Oscillatory
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motions exhibit wavelengths greater than their body length, while undulatory motions have wave-

lengths smaller than the body length (Smits, 2019). The morphology of fish species is exceptionally

diverse and intricate, often linked to the type of motion they employ for locomotion (Sfakiotakis

et al., 1999). A prevalent method for simplifying the analysis of fish swimming in the literature

involves segmenting the fish into a drag-producing stationary body and a thrust-generating oscil-

latory caudal fin (Floryan et al., 2018; Moored and Quinn, 2019), as depicted in figure 1.1. This

simplification may not capture the full complexity of swimming in eels or pike, which use nearly

their entire body for propulsion. However, it is a useful approximation for modelling the mechanics

of thunniform swimming, renowned for their efficient cruising capabilities, where the caudal fin

is almost solely responsible for generating the required thrust force (Shadwick and Syme, 2008).

This dissertation adopts the approach of modeling swimmers in schooling configurations as rigid

teardrop foils, pitching around the center of their semicircular leading edge. Further elaboration

can be found in Section 3.

Can oscillating rigid foils accurately represent the fluid dynamics surrounding swimming fish?

Literature suggests that they do so quite effectively, particularly when evaluated based on perfor-

mance metrics. Triantafyllou et al. (1993) found that optimal efficiency occurs when the non-

dimensional oscillation frequency of the foil, commonly referred to as the Strouhal number (St),

falls within the narrow range of 0.25 to 0.35. Remarkably, this moderate range closely aligns with

the cruising Strouhal number observed in fish, encompassing a diverse size spectrum from daces to

sharks (see figure 1.2). It is possible to extend this principle beyond fish to encompass a myriad of

other aquatic animals, including amphibians, reptiles, and mammals (Gazzola et al., 2014). What

is even more intriguing is that the striking consistency of this narrow Strouhal number range is

not confined to the aquatic realm; it also holds true among aerial creatures that employ oscillatory

motion during cruising, such as bats, birds, and insects (Taylor et al., 2003).

The applicability of the Strouhal number range across animals of different length scales, from

5-10 centimeter-long goldfish to 20-30 meter-long blue whales Gazzola et al. (2014), underscores

the critical significance of non-dimensional analysis. Scaling laws in fluid mechanics have played
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Figure 1.2: Fish navigate through water by flapping their tail fins. The Strouhal number, which
characterizes the flapping motion of these tail fins, typically falls within a range of 0.25 to 0.35.
(Reprinted with permission from Triantafyllou et al. (1993), Copyright 1993, Elsevier Science &
Technology Journals).

a pivotal role in comprehending and predicting the behavior of fluid systems over diverse sizes.

These laws operate on the principle that certain key properties of fluid flow remain consistent un-

der proportional scaling of relevant parameters. It is pioneered with the groundbreaking research of

Osborne Reynolds in the late 19th century, which introduced one of the most fundamental scaling

laws in fluid mechanics: Reynolds number (Reynolds, 1883). This parameter serves as a metric

to assess the relative contributions of inertial forces versus viscous forces in a fluid flow, thereby

delineating the transition from laminar to turbulent flow regimes. As research has progressed,

the application of scaling laws has expanded significantly, now encompassing a diverse array of

flow phenomena, such as flow mixing (Wang et al., 2017), multiphase flows (Balachandar, 2009),

aeroacoustics (Viswanathan, 2006), and turbulent boundary layers (De Graaff and Eaton, 2000).

Scaling laws developed for aquatic locomotion have proven invaluable, shedding light on reasons
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Figure 1.3: Representation of (a) a Bénard–von Kármán (BvK) wake behind a stationary cylinder
and (b) a reverse Bénard–von Kármán (rBvK) wake behind an oscillating foil. The mean flow in
BvK wakes typically shows (c) a velocity deficit, while rBvK wakes exhibit (d) a velocity surplus,
respectively. (Reprinted with permission from Eloy (2012), Copyright 2012, Elsevier).

for the previously mentioned observation that the cruising Strouhal number for various animals

is confined to a specific and narrow range, mentioned in the previous paragraph. Floryan et al.

(2017, 2018) derived scaling equations for thrust generation, power consumption, and propulsive

efficiency, demonstrating that the interplay between the frequency of oscillation and drag force is

responsible for generating a peak in the efficiency curve. This revelation unveiled that the peak ef-

ficiency, and thus the optimal conditions for steady cruising, are dictated by the offset drag exerted

on the propulsors. This exemplifies the twofold importance of scaling laws: not only do they play

a crucial role in guiding design and optimization efforts, but they also serve as fundamental tools

in uncovering the underlying principles that govern natural phenomena.

Another crucial element of fish-like swimming is the vortex topology behind the swimmers,

which are frequently linked to their performance (Andersen et al., 2014). A stationary object sub-

merged in a fluid in motion, or conversely an object moving through a fluid at rest, generates a

region of disrupted flow trailing behind it, commonly known as a wake. This disruption occurs as

the fluid detaches from the surface of the object, often resulting in formation of vortex patterns,
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unsteadiness, and turbulence. Beyond their visually captivating nature, examination of wakes pro-

vides critical knowledge in the behavior of fluid flow around objects, rendering it a central focus

in fluid mechanics research. Flow over a bluff body, as exemplified by a cylinder in figure 1.3(a),

gives rise to the formation of a Bénard–von Kármán (BvK) vortex street (Eloy, 2012). This phe-

nomenon is characterized by the periodic shedding of vortices with alternating rotations on either

side of the body. Clockwise-rotating vortices are positioned above the centerline of the body,

while those rotating counterclockwise are located below, jointly inducing a velocity (or momen-

tum) deficit along the centerline, as depicted in figure 1.3(c). In contrast, the wake pattern behind

oscillating foils, as illustrated in figure 1.3(b), is known as the reverse Bénard–von Kármán (rBvK).

This pattern mirrors the BvK wake but with vortex rotations reversed, which leads to a velocity (or

momentum) jet along the centerline (figure 1.3(d)), hence its name. Additionally, it is worth high-

lighting that the BvK wake also manifests behind foils oscillating at notably low Strouhal numbers

Godoy-Diana et al. (2008). The rBvK wake often corresponds to net thrust, whereas the BvK wake

is typically associated with net drag, although exceptions exist (Andersen et al., 2014). It is re-

markable that a variety of other configurations are feasible, particularly evident in Schnipper et al.

(2009), where numerous distinct wake patterns behind pitching foils were identified and mapped

in a phase diagram. Expanding upon existing knowledge of flow physics surrounding individual

oscillating foils and their resulting wake patterns, the next logical step is to delve into the dynamics

of how multiple oscillating foils interact. The anticipation of diverse and intricate vortex arrange-

ments arising from these interactions underscores the necessity for a thorough and detailed wake

analysis.

The study of wake patterns generated by oscillating foils boasts a long and notable history, with

Bratt (1950) being among the first to visually depict vortical structures behind foils across various

flow conditions. The report demonstrated, without further elaboration, that foils with significantly

higher non-dimensional frequencies tend to produce asymmetric vortex shedding patterns, often

referred to as deflected Bénard Von Kármán (dBvK) wake. Subsequently, Jones et al. (1998), to the

best of author’s knowledge, were the first to discuss this phenomenon, demonstrating its association
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with the generation of non-zero mean lift. Since then, extensive research has been conducted on the

deflected wakes behind single oscillating foils, providing a comprehensive understanding of their

dynamics Heathcote and Gursul (2007); Godoy-Diana et al. (2009); Cleaver et al. (2012). However,

interaction of these vortex patterns in the case of multiple foils remains largely underexplored. A

contributing factor to this gap in research is that studies on multi-foil systems typically utilize

the moderate Strouhal number. While biologically inspired, this range might not align with the

conditions fostering deflected wakes. Hence, Strouhal numbers examined in this dissertation span

from 0.15 to 0.5, not only covering the biologically relevant range but also extending beyond it,

ensuring a comprehensive assessment that addresses the existing shortfall in literature. Exploring

the dynamics of interacting wakes holds the potential to uncover crucial insights into the underlying

mechanisms for bio-inspired propulsion, making it essential for devising advanced flow control

strategies. This is particularly vital for swarm propulsion systems, where comprehending these

dynamics could significantly enhance efficiency and maneuverability.

The discussion thus far has emphasized the pivotal role of the Strouhal number in dictating

the vortex shedding pattern behind oscillating foils. With an increase in the Strouhal number, the

wake undergoes a sequential transition: it first shifts from the BvK to the rBvK pattern, and sub-

sequently from the rBvK to the dBvK (Godoy-Diana et al., 2008). As the Strouhal number further

increases, two-dimensional vortices become unstable to spanwise perturbations, leading to forma-

tion of three-dimensional flow structures in the wake (Deng et al., 2016; Zurman-Nasution et al.,

2020). This 2D-to-3D transition is characterized by the formation of streamwise vortices, which

can significantly alter the flow pattern, increase turbulence, and impact the propulsive performance

of the foils.

Three-dimensional instability mechanisms hold critical importance for the aviation industry

due to their profound impact on aircraft safety. Encountering the vortex wake from another air-

craft, planes can experience a variety of motions including upwash, downwash, and rolling, de-

pending on their position and orientation relative to the wake (Ortega et al., 2002). This poses

substantial challenges, particularly during critical phases like landing or takeoff. Vortex pairs,
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commonly observed in aircraft wakes, could develop unstable perturbations under specific cir-

cumstances, prompting to their rapid disintegration (Scorer and Davenport, 1970). This manifests

itself as a rapid decay of their vorticity, a process that unfolds substantially faster than viscous

diffusion alone, thus effectively diminishing their threat as a wake hazard. Understanding and

predicting these instabilities is crucial for ensuring safe separation distances between airplanes

and for the development of operational protocols that mitigate the risks associated with wake vor-

tices (Spalart, 1998). Pairs of vortex rollers are essential components of the wakes of oscillating

foils, predisposing them to similar perturbations. These disturbances could result in the emergence

of three-dimensional structures, either by amplifying within the vortex core or causing wave-like

bending across the entire roller (Leweke et al., 2016). The literature contains extensive and con-

clusive studies that thoroughly describe the evolution of three-dimensional wake structures behind

single foils, linking them to the foil kinematics and spanwise instabilities (Deng and Caulfield,

2015; Zurman-Nasution et al., 2020; Chiereghin et al., 2020; Verma and Hemmati, 2021; Son

et al., 2022; Verma et al., 2023). Yet, the influence of kinematic parameters on the emergence of

spanwise instabilities in multi-foil systems, including gap distance and phase difference between

the foils, remains largely unexplored.

This dissertation explores the flow around two (and in some cases 3 or 5) pitching foils in

various schooling configurations and phase differences (φ ), at a range of Reynolds number (Re)

spanning from 1000 to 12000. This range captures the lower spectrum of Reynolds numbers

associated with natural aquatic animal locomotion (Gazzola et al., 2014). A detailed examination

of two-dimensional characteristics of the wake is carried out at Re = 4000, where influence of

Reynolds number on the wake topology is anticipated to be negligible (Das et al., 2016). The

flow is observed to transition to full turbulence behind oscillating foils at Re = 8000, with minimal

transitional effects in the shear layer (Verma and Hemmati, 2021; Son et al., 2022). Consequently,

three-dimensional numerical simulations are conducted on two infinite span pitching foils in side-

by-side configurations, aiming to investigate the development of spanwise instabilities and flow

dynamics under foil proximity effect.
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Side-by-side (parallel)
 configuration

Staggered configuration

In-line configuration

(a) (b)

(c)

Figure 1.4: Schematics of (a) side-by-side (parallel), (b) staggered, and (c) in-line configurations.

Out-of-phase oscillation 𝜙 = π

In-phase oscillation 𝜙 = 0

(a)

Out-of-phase oscillation 𝜙 = π

In-phase oscillation 𝜙 = 0

(b)

Figure 1.5: Schematics of (a) in-phase (b) out-of-phase pitching parallel foils.
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In a two-dimensional plane, two foils can be arranged in different configurations. The “side-

by-side” or “parallel” configuration positions the foils adjacent to each other along the vertical

axis, as shown in figure 1.4a. Conversely, the "in-line” configuration aligns them horizontally, as

shown in figure 1.4c. When the foils are offset both vertically and horizontally, the arrangement is

described as “staggered”. While this dissertation focuses mainly on the side-by-side configuration,

staggered configurations are also considered. Herein, the term “parallel” synonymously used to

describe the side-by-side configuration, and “tandem” is used to describe any two-foil arrangement.

For parallel configurations, two predominant phase differences studied at the extreme ends of this

spectrum are in-phase and out-of-phase pitching. In-phase pitching involves identical motion of the

foils, while out-of-phase pitching involves mirror-image symmetric motion, as depicted in figure

1.5. Typically, vortical structures from in-phase oscillating foils tend to converge near the wake

centerline, whereas those from out-of-phase oscillating foils tend to diverge (Dewey et al., 2014).

One crucial term frequently employed in this dissertation is “foil proximity effect.” This term

refers to the influence of one pitching foil on the vortex dynamics or propulsive performance of

another. When one of the foils is infinite and stationary, this effect reduces to “ground effect”,

which in aerodynamics is defined as the impact on forces generated by a lifting surface due to the

presence of a solid boundary (Coulliette and Plotkin, 1996). Specifically, the foil proximity effect

encompasses flow interactions between foils in staggered or side-by-side configurations. Lastly,

the term “quasi-steady,” denotes the absence of significant alterations in flow features (both in wake

and performance) from one pitching cycle to the next in this study. In contrast, the term “unsteady”

(or “transient”) describes conditions where the flow dynamics exhibit temporal variations across

consecutive cycles.

1.3 Objectives

This dissertation examines the complex flow dynamics, unsteady wake interactions, and hydro-

dynamics of closely positioned pitching foils in bio-inspired schooling configurations. There is
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a particular interest in unraveling the cooperative flow mechanisms that influence propulsive per-

formance, vortex topology, and three-dimensional instability characteristics of the flow around

multiple (mostly parallel) foils. The research objectives, detailed below, are designed to make

unique and novel contributions to fluid mechanics, collective swimming, and bio-inspired under-

water locomotion, thereby advancing our understanding and application of these principles.

• Objective A - Characterizing of Unsteady Vortex Dynamics and Their Implications on

Propulsive Performance: It has been shown that the gap distance and phase difference

between multiple oscillating foils play pivotal roles in the development of wake patterns,

significantly influencing the propulsive performance (Boschitsch et al., 2014; Dewey et al.,

2014; Huera-Huarte, 2018). Yet, a gap in these studies lies in their limited utilization of

the parameter space, neglecting the nuanced transient vortex interactions occurring in the

wake. Thus, distinct wake patterns that emerge behind the parallel foils shall be identified

and characterized, highlighting the effects of foil positioning, phase differences between

the foils, pitching amplitude, and Strouhal number on the wake development. Additionally,

this research shall examine the dynamics of unsteady wake interactions between the foils,

concentrating on their implications on the propulsive performance metrics. The outcomes

of this research aim to deepen our comprehension of the governing flow physics and control

techniques for innovative underwater propulsors operating in schooling configurations, with

the goal of achieving superior swimming performance.

• Objective B - Developing of Scaling Laws for Schooling Foils: Scaling laws are piv-

otal in bio-inspired propulsion, offering a framework to enhance our comprehension of flow

physics. Numerous scaling laws have been developed for single oscillating foils, cover-

ing a wide array of effects pertinent to different swimming dynamics, including intermittent

swimming (Akoz and Moored, 2019), the influence of Reynolds number (Senturk and Smits,

2019), combined motions (Buren et al., 2019b), foil aspect ratio (Ayancik et al., 2019), and

ground effect (Mivehchi et al., 2021). Given this groundwork, there is a need to extend these

scaling laws to encompass schooling foils. Thus, this research shall formulate scaling laws
12



for staggered foils, integrating essential parameters of collective swimming, with the goal of

uncovering the universal principles that dictate the flow dynamics of fish schools.

• Objective C - Characterizing of Spanwise Instabilities and Three-dimensional Struc-

tures: Spanwise instabilities evolving within the vortex rollers in the wake of oscillating

foils could potentially lead to development of three-dimensional streamwise structures, ul-

timately influencing force generation and vortex topology. The capability to predict and

regulate these three-dimensional instabilities offers opportunities for advanced flow control

strategies. For example, Crouch et al. (2001) proposed an active control system designed to

introduce a novel instability mechanism for aircraft trailing vortices, which is known as a

potential safety hazard. Despite considerable research efforts directed at understanding the

evolution of three-dimensional wake structures behind individual oscillating foils, attention

to foils in a side-by-side configuration has been minimal, if not entirely absent. Thus, this

research shall characterize the spanwise instabilities that emerge around and in the wake

of parallel oscillating foils, highlighting their correspondence to the kinematic parameters

such as foil spacing, phase difference between the foils, and pitching frequency. Insights

gained from this analysis could be instrumental in devising innovative vortex disintegration

strategies aimed at improving the stealth features of underwater propulsion systems.

1.4 Novel Contributions

This dissertation makes several novel contributions to fluid mechanics and bio-inspired design:

(1) Identifying unsteady wake interactions behind parallel pitching foils. Particularly, this dis-

sertation focuses on in-phase and out-of-phase motions and their association with wake topology

and cycle-averaged propulsive performance. This aligns with Objective A of this thesis.

(2) Investigating the effects of abrupt phase changes from out-of-phase to in-phase on propul-

sive performance and wake topology. This provides conjectured insights into a peculiar schooling

behavior observed in Hemigrammus bleheri. This contributions tackles Objective A of this thesis.
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(3) Classification of wake patterns behind parallel foils across a wide range of Strouhal num-

bers, phase differences, and separation distances. This contribution includes the development of a

unique mathematical model that quantitatively defines a threshold for distinguishing wake patterns

and addresses Objective A of this thesis.

(4) Elucidating the physical mechanism that lead to the merging of vortex streets shed from

each foil in a school. This tackles Objective A of this thesis.

(5) Assessing the contribution of the merger to enhanced thrust generation in parallel pitching

foils. This contribution coincides with Objective A of this thesis.

(6) Developing semi-empirical scaling laws for parallel foil. The new laws consider the impacts

of Reynolds number, Strouhal number, separation distance, and phase difference. This contribu-

tions addresses Objective B of this thesis.

(7) Developing physics-based scaling laws for foils in various schooling configurations. These

consider the impacts of Strouhal number, positioning of the foils, phase difference, and pitching

amplitude. This aligns with Objective B of this thesis.

(8) Identifying of shear layer instability on the leg of developing trailing edge vortcies (T EV )

in the wake parallel foils. This contribution coincides with Objective C of this thesis.

(9) Unraveling the mechanism behind the suppression of three-dimensional instabilities in the

leading edge vortices (LEV s) of parallel foils. This aligns with Objective C of this thesis.

1.5 Thesis Structures

This dissertation is organized to initially offer, in chapter 2, an extensive literature review focused

on the flow dynamics surrounding oscillating bodies, whether individually or in groups. This sec-

tion compiles a range of experimental, computational, and analytical studies, specifically putting

emphasis on vortex dynamics, performance metrics, scaling laws, and three-dimensional insta-

bilities. Chapter 3 delivers a detailed description of the computational methodology designed to

accurately simulate the flow around two pitching foils in schooling configurations. This includes
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an elaborative discussion of the numerical algorithm, computational domain, boundary conditions,

and grid setup. The chapter distinguishes between two-dimensional and three-dimensional simula-

tions, detailing them separately due to their reliance on distinct solution algorithms. Additionally,

it features a comprehensive verification and validation assessment, enhancing the reliability of the

numerical tools applied to model the complex wake interactions between the foils.

Chapter 4 delves into the exploration of wake interactions behind parallel pitching foils, in-

vestigating both in-phase and out-of-phase motions. It elucidates unique unsteady wake transition

mechanisms at higher Strouhal numbers and explores their relationship with performance metrics.

Building on the insights acquired, chapters 5 and 6 assess how abrupt phase shifts from out-of-

phase to in-phase affect wake behavior and propulsive performance. This specific setup draws

inspiration from schooling behavior of Hemigrammus bleheri observed in fish tank experiments

(Ashraf et al., 2016, 2017). Chapter 5 leans towards performance implications, proposing a flow-

related explanation for this behaviors, while Chapter 6 focuses on unsteady wake dynamics, con-

sidering the effects of Strouhal number and Reynolds number. Chapter 7 broadens the examination

to include intermediate phase differences, thus encompassing the full spectrum of phase variation.

Chapter 10 categorizes wake patterns behind parallel pitching foils by their steady-unsteady and

merged-separated characteristics, introducing a novel quantitative model for wake pattern distinc-

tion. It also unveils the physics behind wake merging phenomena and its impact on propulsion.

In combination, chapters 4−10 weave a coherent narrative, culminating in the accomplishment of

Objective A.

Chapters 8 and 9 establish scaling laws for predicting the propulsive performance of multiple

foils through different approaches, ultimately addressing Objective B. Chapter 8 extends existing

scaling relations, initially designed for single oscillating foils, to foils in a side-by-side config-

uration. It introduces two new empirically derived scaling terms that account for the separation

distance and phase difference between the foils. The scaling laws formulated in chapter 9, on

the other hand, adopts a physics-based approach to model interactions between foils, enabling ac-
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curate estimations of foil performance across any schooling configuration and various kinematic

parameters.

Objective C is explored in chapter 11 and 12, which investigate the onset of three-dimensional

instabilities in foils arranged in the side-by-side configuration. Chapter 11 investigates a novel

shear layer instability on the legs of newly shed trailing edge vortices. The role of foil-foil inter-

actions on the emergence of the instability is characterized through a combination of qualitative

and quantitative assessments. Chapter 12 investigates the occurrence of spanwise instabilities in

leading edge vortices, introducing a mechanism for their suppression attributed to the pronounced

foil proximity effect.

Chapter 13 provides a detailed summary of key findings and conclusions derived from this

study, offering an extensive overview of the acquired knowledge and its implications. It then

looks forward, identifying opportunities for further exploration and advancement in the field. It

emphasizes areas where additional studies could deepen our comprehension, setting the stage for

future studies to build upon the foundational work established here.
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Chapter 2

BACKGROUND

The integration of bioinspiration into engineering system design necessitates a profound compre-

hension of animal behaviors, spanning from the advanced aerial maneuverability of birds to the

streamlined cruising characteristics of fish. This has catalyzed extensive collaborations between

biologists and engineers, particularly in unsteady hydrodynamics for underwater propulsion. Us-

ing a combination of experimental analysis, mathematical models, and numerical simulations, re-

searchers aim to gain insight to the natural swimming habits of fish and marine mammals (Tri-

antafyllou et al., 2000), design better underwater propulsors (Buren et al., 2019a), and develop

high-efficiency energy harvesting technologies (Peng and Zhu, 2009). Enhancing our comprehen-

sion of fluid dynamics in the wake of swimming fish, whether they move individually or in groups,

facilitates the identification of mechanisms that promote specific behaviors observed in nature.

Numerous studies on oscillatory motion of a foil, serving as a simplified model for fish locomo-

tion, has identified wake features and swimming characteristics associated with high propulsion

performance (Triantafyllou and Triantafyllou, 1995; Sfakiotakis et al., 1999).

This chapter presents a comprehensive evolution of the literature in the field of fish swimming

and hydrodynamics, related to both individual and collective swimmers. It delves into a detailed

examination of past research, highlighting the flow dynamics around oscillating bodies, scaling

laws developed for their propulsive performance, the wake patterns behind them, interactions be-
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tween these patterns in multi-body swimming scenarios, and the three-dimensional instabilities

in their wakes. The aim of this review is to elucidate the intricate flow dynamics governing fish

swimming phenomena and investigate their significance for developing efficient propulsion mech-

anisms.

2.1 Non-dimensional Parameters for Underwater Locomotion

Non-dimensional analysis is vital in studying fish-like swimming research, acting as a key instru-

ment for elucidating and contrasting the fluid dynamics and performance under different scales

and operating conditions. This method transforms physical measurements into dimensionless

quantities, allowing for a broad generalization of oscillating foil behaviour. It enables the iden-

tification of universal patterns and underlying principles that dictate their dynamics. Additionally,

non-dimensional analysis bridges the gap between theoretical models and practical applications,

thereby advancing the development and refinement of bio-inspired propulsion technologies, and

boosting their performance and adaptability to environmental conditions.

Triantafyllou et al. (1993) argued that the Strouhal number is "the governing parameter of the

overall problem" in fish-like swimming, defined as:

St =
f A
U∞

. (2.1)

Here, f denotes the oscillation frequency, A is the peak-to-peak trailing edge amplitude, and

U∞ represents the free-stream flow velocity. The Reynolds number is another important non-

dimensional parameter that strongly impacts the wake and performance of oscillating foils (Das

et al., 2016), defined as:

Re =
U∞c

ν
, (2.2)

where c is the chord length of the foil, and ν is the kinematic viscosity of the fluid. Other

non-dimensional parameters frequently used in the literature include reduced frequency ( f ∗), non-
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dimensional amplitude (A), thickness-based Strouhal number (StD), and Swimming number (Sw).

These are defined as,

f ∗ =
f c

U∞

, A∗ =
A
c
, StD =

f D
U∞

Sw =
f Ac
2πν

, (2.3)

where D is the maximum foil thickness.

The propulsive performance metrics of oscillating foils are also frequently expressed in non-

dimensional formats. Coefficients of thrust, side-force, and power are commonly utilized, denoted

as:

CT =
Fx

1
2ρU2

∞sc
, CS =

Fy
1
2ρU2

∞sc
, CP =

Fyḣ+Mθ̇

1
2ρU3

∞sc
. (2.4)

Here, ρ is the fluid density, s is the span of the foil, Fx is the thrust force, Fy is the side force, M is

the pitch moment. Additionally, ḣ and θ̇ are the time derivatives of the heaving (h(t)) and pitching

(θ(t)) motions. In this dissertation, on the other hand, the foils undergo pure pitching motions,

thereby eliminating any Fyḣ contribution to the power coefficient. For sinusoidal motions, they are

defined as:

h(t) = h0sin(2π f t), θ(t) = θ0sin(2π f t) (2.5)

where t is time, h0 is heaving amplitude, and θ0 is pitching amplitude. Although sinusoidal motion

is commonly employed in the literature, nonsinusoidal motion can also be prescribed to the foils

(Koochesfahani, 1989; Van Buren et al., 2017). It should be noted that the term CS is occasionally

referred to as the coefficient of lift in the literature. However, this dissertation mainly adopts

the term “side-force” rather than “lift” because it more accurately reflects the nuances of fish

swimming dynamics. Finally, the propulsive efficiency can be calculated as the ratio of CT to

CP, given as:

η =
CT

CP
. (2.6)
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This definition of efficiency is based on the useful power input and output (Moored and Quinn,

2019). However, it relies on some basic assumptions that can be difficult to justify in fish schools

with close proximity.

To determine the mean values for performance metrics, this dissertation utilizes two distinct

approaches. The first approach involves calculating cycle-averaged values for the coefficients of

thrust, side-force, and power by averaging over the period of one pitching cycle. Here, the cycle

period (P) is the duration required for a pitching foil to complete one full cycle, determined by

P = 1/ f . This method is especially beneficial for examining the transient performance character-

istics of the foils. The second approach calculates the time-averaged values of these coefficients

across 10 pitching cycles, contingent upon reaching statistical convergence within the simulations.

Statistical convergence is verified by ensuring the percent change between consecutive pitching

cycles remains below 1% for the last 10 cycles, thus reliably indicating steady performance met-

rics of the foils. Cycle-averaged coefficients are represented with the □̃ symbol, e.g., C̃T , C̃S, and

C̃P, while time-averaged coefficients use the □ symbol, e.g., CT , CS, and CP.

2.2 Wake and Performance of an Oscillating Foil

Wake patterns of oscillating bodies have long been a focal point of research in fluid mechanics

research. In this regard, wake manipulation has been extensively employed for control flow pur-

poses. For instance, Clark and Smits (2006) conducted experimental research on a batoid-inspired

oscillating fin, revealing that both viscous and pressure forces play crucial roles in thrust genera-

tion, which impact the vorticity field. Thus, they suggested that thrust generation is directly related

to the vortical structures in the wake. Koochesfahani (1989) showed that foils oscillating at low

frequencies produce drag force, while forming a BvK vortex street in their wake. The transition

from drag producing to thrust generating foils occurs in virtue of wake evolution from BvK to re-

verse BvK vortex street, facilitated by an increase in oscillation frequency. While this correlation is
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Figure 2.1: Vortex shedding patterns identified behind an oscillating cylinder. Here, “P” and “S”
mean a vortex pair and a single vortex, respectively. (Reprinted with permission from Williamson
and Roshko (1988), Copyright 1988, Elsevier).
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commonly observed, Deng et al. (2016) illustrated that, in certain cases, there can be a noticeable

delay between these two transitions, especially in the context of pitching foils.

Controlling the oscillation frequency enables the generation of diverse vortex patterns in the

wake of oscillating bodies, extending beyond the standard BvK and rBvK formations. Williamson

and Roshko (1988) determined the regions of major vortex patterns in the non-dimensional

amplitude-wavelength (non-dimensional period of the oscillation) plane for the wake of an oscil-

lating cylinder. These patterns, shown in figure 2.1, include P, 2P, 2S, P+S, and 2P+2S wakes.

Here, S corresponds to a single vortex and P corresponds to a pair of vortices of opposite sign shed

in each cycle, e.g. 2P+ 2S wake consists of two vortex pairs and two single vortices per cycle.

Schnipper et al. (2009) performed a similar classification study on the wake of a flapping foil.

They identified a wide variety of vortex patterns from well known 2P or 2S wakes to 8P wake that

consist of 16 vortices per oscillation cycle. Furthermore, they demonstrated the time evolution of

2P wakes in detail as well as the transition from 2P to 2S with increasing Strouhal number.

2.2.1 Deflected Wake Phenomenon

Oscillating foils can produce asymmetric wakes in particular parameter settings, including oscil-

lation amplitude, Strouhal number, and Reynolds number. Jones et al. (1998) performed experi-

ments on plunging foils, revealing that deflected wakes form when the Strouhal number exceeds a

certain value. This finding is consistent with the wake formation being highly reproducible. Cru-

cially, they observed that the emergence of deflected wakes corresponds with the production of

non-zero total side-force (lift), establishing a clear link between wake behavior and force gener-

ation. Furthermore, these experimental observations were corroborated by simulations using an

unsteady, inviscid panel code to numerically capture wake deflection, depicted in figure 2.2. This

phenomenon was previously noted but not explored by Bratt (1950). In a detailed parametric study

of pitching foils at Re = 1173, Godoy-Diana et al. (2008) categorized wake regimes over various

Strouhal numbers and dimensionless flapping amplitudes. Their findings led to the creation of a

performance-wake diagram, which identified three distinct wake regimes: BvK, reverse BvK, and
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Figure 2.2: An illustrative example of a deflected wake, which is indicative of thrust and lift.
(Reprinted with permission from Jones et al. (1998), Copyright 1998, American Institute of Aero-
nautics and Astronautics (AIAA)).

deflected BvK. This diagram underscores the direct impact of Strouhal number on the transitions

between wake regimes. Das et al. (2016) expanded on these insights, showing that wake asymme-

try is not solely influenced by oscillation amplitude and Strouhal number. Their analysis indicated

that an increase in Reynolds number also disrupts the symmetry in reverse BvK wakes (see figure

2.3). This resulted in a performance-wake diagram that varies with Strouhal number and Reynolds

number at fixed amplitudes, revealing that the diagram reaches an asymptotic range at Re = 103.

Beyond this point, transitions between wake regimes are no longer evident in the flow, providing a

broader understanding of the dynamics at play in the wake of oscillating foils.

Comparing biological data with the performance diagram from Godoy-Diana et al. (2008) re-

veals that the Strouhal number range for fish-like locomotion and flapping flight partially aligns
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Figure 2.3: Effect of (a) Reynolds number at a fixed Strouhal number of 0.4, and (b) Strouhal
number at a fixed Reynolds number of 750 on the wake topology behind a single pitching foil.
(Reprinted with permission from Das et al. (2016), Copyright 2016, Cambridge University Press).

with the reverse BvK and deflected BvK wake regimes. This suggests that animals may either

utilize these wake phenomena for maneuvering strategies or to avoid them during steady cruising

conditions. Godoy-Diana et al. (2008) contended that while three-dimensional effects do play a

role in vortex dynamics of oscillating foils, wake deflection primarily manifests as a quasi-two-

dimensional (Q2D) phenomenon. However, a further increase in the Strouhal number leads to

a transition from two-dimensional to three-dimensional wakes, indicating that transitioning from

reverse BvK to deflected BvK is necessary for the emergence of three-dimensional structures in

the wake (Deng et al., 2015). The underlying physical mechanism for deflected wake formation is

elucidated by Godoy-Diana et al. (2009), who found that deflection occurs when the self-advection
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of the initially shed dipole is strong enough to alter the main flow and subsequent dipoles away

from the centerline of the wake. They also introduced a model that quantitatively predicts wake

deflection by considering the offset between dipolar velocity and advection velocity of the dipoles.

There is a consensus in the literature that the direction of wake deflection significantly depends

on the initial conditions (Liang et al., 2011; Cleaver et al., 2012; Godoy-Diana et al., 2008, 2009;

von Ellenrieder and Pothos, 2008; Heathcote and Gursul, 2007; Lewin and Haj-Hariri, 2003; Jones

et al., 1998). Liang et al. (2011) showed that direction of the first pitching stroke determines

the direction of deflection, such that an upward bent wake is observed when the first stroke is

downward and vice versa. This phenomenon is often referred to as dual mode and illustrated in

figure 2.4. However, Cleaver et al. (2012) later argued that the deflection phenomenon is a complex

process, in which multiple parameters affect the direction of the wake deflection. These parameters

include the starting position, the angle of attack, and possibly the initial acceleration. Although

Godoy-Diana et al. (2008, 2009), Cleaver et al. (2012), and von Ellenrieder and Pothos (2008)

reported that direction of the wake deflection does not change once it is constituted, Jones et al.

(1998), Heathcote and Gursul (2007), and Lewin and Haj-Hariri (2003) observed that the direction

may switch from upwards to downwards or vice versa over time. For example, the experiments

of Jones et al. (1998) showed that the wake deflection switches between modes (downwards and

upwards) randomly. Their inviscid model, however, was not able to capture this phenomenon.

They argued that this is due to small disturbances in the experimental setup that contribute to

the switching of wake deflection. Later on, experimentally observed switching phenomenon was

numerically reproduced by Lewin and Haj-Hariri (2003) using a viscous flow solver. However,

experiments of Heathcote and Gursul (2007) showed that direction of the wake deflection does not

switch randomly. Rather, this process is periodic, where the period is two orders of magnitude

larger than that of the plunging cycle.

On the other hand, there are some conditions that inhibit the formation of deflected wakes. For

instance,Marais et al. (2012) investigated the influence of flexibility on the wake deflection charac-

teristics of oscillating foils. They demonstrated that the formation of an asymmetric vortex street
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Figure 2.4: Numerical simulations of flow over a heaving foil, illustrating the switching of the
wake deflection angle. (Reprinted with permission from Lewin and Haj-Hariri (2003), Copyright
2003, Cambridge University Press).

was hindered for flexible foils, although rigid foils produced deflected wakes under the same flow

conditions. This is attributed to interactions between the shed vortices and flexible foils. Like-

wise, Calderon et al. (2014) showed that 3D effects in the wake of finite span foils hindered wake

deflection, which was observed for effectively infinite span foils under the same flow conditions.

Three-dimensionality introduced by the tip vortex, which prevents the vortex coupling, and the

symmetric circulation of interconnected vortex loops, which are due to the vortex topology of a

finite span foil, are two underlying reasons that were provided for the absence of wake deflection.

2.2.2 Association of Vortex Dynamics and Propulsive Performance

Efficient propulsion through implementation of effective control of vortex topology has been a

great challenge in the engineering community for decades. Leading edge vortices substantially

impact and often dominate the wake of oscillating foils, where their development can significantly

amplify the propulsive performance of foils depending on their formation and shedding. These

dynamics are deeply influenced by the kinematics of the foil. For instance, merging of leading

edge and trailing edge vortices occurs when vortical structures are controlled using various pa-

rameters of foil kinematics, such as the phase angle between heave and pitch motions, Strouhal

number, amplitude of heave motion, or maximum angle of attack (Anderson, 1996; Anderson

et al., 1998). This phenomenon coincides with higher propulsive efficiency of foils, and improved

thrust generation. In a similar study, it was shown that distinct vortex patterns emerge behind a foil
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simultaneously heaving and pitching in the wake of a D-section cylinder (Gopalkrishnan, 1993;

Gopalkrishnan et al., 1994; Shao and Pan, 2011). By controlling the foil position and kinematics,

the interaction mode—constructive, destructive, or expanding wake modes—can be determined.

These modes are respectively associated with troughs, peaks, and mixed responses in efficiency.

This correlation underscores the link between vortex interactions, propulsion performance, and

kinematics of the foil, showcasing the critical importance of wake topology control in optimizing

the propulsion efficiency of oscillatory swimmers.

Saffman and Sheffield (1977) calculated the exact solution for potential flow over a flat plate

with a free line vortex positioned on the upper boundary, which estimated highly improved lift

generation. An adequately stabilized spanwise vortex can enhance the coefficient of lift by a factor

of 10, which can be beneficial for the design of short takeoff and landing aircrafts (Rossow, 1978).

Under the inviscid and incompressible flow assumption, trapping a free leading edge vortex on the

upper surface of a two-dimensional wing is theoretically capable of increasing lift generation by in-

troducing a low pressure region (Huang and Chow, 1982). Natural swimmers and flyers are known

to exploit physical mechanisms for their best interest to achieve the most efficient propulsion in a

fluid medium. Reattachment of leading edge vortices that are formed by the flow separation due to

dynamic stall on the upper surface of the wing of hawkmoths or fruit flies, during the downstroke of

flapping, greatly contributes to lift production (Ellington et al., 1996; Birch and Dickinson, 2001;

Bomphrey et al., 2005).

Although balancing the body weight with enhanced lift production plays a crucial role in insect

flight, it constitutes insignificant adversity for aquatic animals, owing to their adept exploitation of

bouyant forces (Strand et al., 2005). The main concern for aquatic swimmers is overcoming the

drag exerted by water, which is three orders of magnitude denser than air. Borazjani and Daghooghi

(2013) carried out numerical simulations on self-propelled virtual swimmers with three different

tail geometries inspired by the mackerel body. They demonstrated that an attached leading edge

vortex is formed on the body during locomotion that resemble natural swimming conditions for

most fish. Evolution of the leading edge vortex consequentially influence the pressure distribution
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around the fish tail. Thus, different tail shapes result in different lift production. In an experimental

study, the propulsive force of actively swimming bottlenose dolphins was calculated digital parti-

cle image velocimetry measurements of the vortex generated by the large amplitude fluke stroke

of the dolphin (Fish et al., 2014). The effect of body shape (mackerel body or lamprey body) and

swimming kinematics (anguilliform or carangiform) on the hydrodynamics of self-propelled vir-

tual body/caudal fin swimmers was numerically examined by Borazjani and Sotiropoulos (2010)

for a range of Reynolds numbers. It is noted that the form and kinematics of swimmers dif-

ferently impact the swimming efficiency in viscous, transitional and inertial regimes. Liu et al.

(2017) simulated a more complex model, which includes both fin–fin and body–fin interactions,

by reconstructing body shape and kinematics of steady swimming crevalle jack using high-speed

cameras. They demonstrated that posterior body vortices captured by the caudal fin strengthens

LEVs around the fin, which produces most of the swimming thrust. Building on this, Khalid et al.

(2021a) elucidated the physics underpinning the effect of employing large undulatory wavelengths

by crevalle jack, demonstrating its significant contribution to enhanced swimming performance.

2.3 Scaling Laws for Energetics of Aquatic Swimmers

Research in the unsteady dynamics of oscillating foils, encompassing analytical formulations and

theoretical models, has its roots in early to mid-20th century. Theodorsen (1935) developed the

unsteady, linearized equations for lift and moments around oscillating foils or combinations of foils

and ailerons to address wing flutter problem. Expanding upon this foundational work, Garrick

(1936) formulated expressions for the mean thrust and power generated by an oscillating foil.

His derivations were based on the assumptions of infinitesimally small oscillation amplitudes,

an infinitely narrow, rectilinear vortex wake, and a perfect fluid. The last assumption overlooks

viscous effects, implying the absence of drag force on the foil. Yet, understanding drag is vital

for fully grasping the energetics of oscillating foils. Gazzola et al. (2014) established fundamental

scaling relations that connect the swimming kinematics of aquatic animals with Reynolds number,
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(a)

(b)

Figure 2.5: (a) Analysis of data from various aquatic animals shows that the Reynolds number
of the swimmers scales with the Swimming number. In the laminar regime, the relationship is
modeled as Re = 0.03Sw1.33 with R2 = 0.95, and in the turbulent regime as Re = 0.4Sw1.02 with
R2 = 0.99. (b) The Strouhal number demonstrates a weak dependency on the Reynolds number,
approximated as St ∼ Re−1/4 for Sw < 104 (blue), and remains independent of Reynolds num-
ber for Sw > 104 (red)."(Reprinted with permission from Gazzola et al. (2014), Copyright 2014,
Springer Nature).
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taking into account the equilibrium between thrust and drag forces. They discovered that body

kinematics change based on the flow regime, whether it be laminar (skin friction-dominated) or

turbulent (pressure drag-dominated). These scaling relations, covering a wide array of aquatic life

from larvae to blue whales (see figure 2.5), underscore the significant impact of drag force on

aquatic locomotion.

A major limitation of linear theory lies in its assumption that the wake is infinitely narrow, a

simplification that even Garrick acknowledged might not align well with experimental findings. In

fact, Liu et al. (2015) demonstrated that the linear theory precisely predicts foil performance only

under low oscillation amplitude and frequency conditions. When oscillating at large amplitude or

high frequency, there is a notable deviation in the magnitudes, phases, and waveforms of forces

from those predicted by the linear model. This suggests that certain terms, deemed negligible

by linear theory over an oscillation cycle, could have substantial effects in flows with finite wake

width. Considering this, Floryan et al. (2017) developed scaling relations for the cycle-averaged

thrust, power, and efficiency of heaving and pitching foils, which align perfectly with experimental

data (see figure 2.6), thereby offering a more nuanced understanding of flow dynamics beyond the

constraints of linear theory. It was further demonstrated that these mathematical models produced

results that were consistent with the biological data for aquatic animals. Expanding this work,

Senturk and Smits (2019) numerically simulated pitching foils at a range of Reynolds number and

Strouhal number to develop scaling relations based on the effects of Reynolds number. They iden-

tified that contributions due to the drag force on pitching foils scales with Re−0.5, which strongly

suggests laminar flow scaling. Buren et al. (2019b) focused on more complex foil kinematics,

presenting scaling laws for simultaneously heaving and pitching foils. In another study, Van Bu-

ren et al. (2018) performed scaling-based analysis on the same kinematics, which revealed that

streamwise speed of the flow had little or no impact on the performance of oscillating foils. This

was related to the lateral velocity of the foils, which dominated the forces. Thus, they argued that

performance-related conclusions drawn from tethered foils should be applicable to free-swimming

conditions.
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Figure 2.6: Scaling results for time-averaged (a) thrust and (b) power coefficients.(Reprinted with
permission from Floryan et al. (2017), Copyright 2017, Cambridge University Press).

Moored and Quinn (2019) argued that Garrick’s theory was able to capture mean thrust forces

of the foils, whereas it poorly estimated the mean power. They provided a corrected power scaling

for self-propelling pitching foils, which incorporated the effects of added-mass forces and large

amplitude shear layer that is separated from the trailing edge. They suggested that separating shear

layer contributed to the scaling of power through its circulation and vortex proximity. Ayancik et al.

(2019, 2020) focused on pitching propulsors of finite spans and modified the formulations provided

earlier by Moored and Quinn (2019). The new scaling formulation included modified terms that

capture the effects of three-dimensional flows on performance parameters based on the foil as-

pect ratio. Ayancik et al. (2019, 2020) provided insights on the physical mechanisms responsible

for producing forces by catacean flukes. This allowed determining an optimal non-dimensional

heaving amplitude that maximizes the propulsive efficiency of oscillating foils. Similarly, Akoz

and Moored (2019) altered the scaling relations for intermittently pitching foils and explained the

reasons for hydrodynamic benefits of intermittent swimming using these updated relations. These

studies suggest that scaling laws, when tailored to accommodate complex flow conditions, can

yield profound insights into fluid dynamics and propulsion strategies.
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Scaling laws have been refined to evaluate the performance of oscillating foils in interaction

with their environment. Quinn et al. (2014) investigated the propulsion of a pitching foil in ground

effect and suggested an empirical power-law scaling for both thrust and power. Mivehchi et al.

(2021) addressed the same problem using physics-based modifications to the added mass and cir-

culatory forces, which included the ground effect by incorporating the trailing edge vortex and

its image. More recently, Han et al. (2024) focused on lift generation by pitching foils operating

near a solid boundary and developed scaling laws that estimates the equilibrium altitudes. Simsek

et al. (2020) modified the scaling laws of Floryan et al. (2017) and Senturk and Smits (2019) to

extend their applicability for pitching foils arranged in an in-line configuration and showed that

they performed better by introducing modified empirical coefficients.

2.4 Collective Locomotion of Swimmers

Fish schooling is defined as a collective behaviour in many fish species to navigate and move in the

flow. Various reasons were propounded by evolutionary biologists and zoologists to explain this

habit. These include, but are not limited to, improved attempts for finding mates, effective defence

strategy against predators, and better chances of finding prospection. A fundamental question from

engineers interested in bio-inspiration is ‘Could coordinated swimming enhance the propulsive per-

formance of an individual swimmer?’ One of the pioneer studies, which addressed this question,

was presented by Weihs (1973). They argued, based on a highly idealized, two-dimensional and

inviscid model, that individual fish in schooling formation might experience hydrodynamic bene-

fits if the spacing and synchronization between swimmers was adequately tuned. Hemelrijk et al.

(2015) numerically simulated viscous flows over undulating fish for a range of separation distances

for four different infinite schools: diamond, side-by-side, in-line and rectangular. It was demon-

strated that entire schooling formations, except very dense ones with side-by-side formations, re-

sulted in improved swimming efficiency. Daghooghi and Borazjani (2015) conducted large-eddy

simulations of self-propelled synchronized mackerels in a variety of infinite rectangular school-
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Figure 2.7: (a) Out-of-phase (OP), (b) in-phase (IP) synchronization states observed in two Hem-
igrammus bleheri swimming side-by-side. (Reprinted with permission from Ashraf et al. (2016),
Copyright 2017, The Royal Society (U.K.)).

ing patterns. They observed that schooling fish enjoyed significant enhancements in swimming

speed without more power requirements. They achieve this through exploitation of the channeling

effect. These studies strongly indicate that collective swimmers derive significant hydrodynamic

advantages from multi-body configurations.

Empirical evidence from direct observations of living fish also suggests that the energetic ben-

efits motivates the fish schooling behaviour. Marras et al. (2015) revealed that fish within a school

experience lower swimming costs than those swimming alone at equivalent speeds. Notably, while

fish positioned behind others achieve the most significant energy savings, even those at the fore-

front of a school benefit energetically compared to solitary swimming. This indicates an overall net

energetic advantage for all positions within a school. Ashraf et al. (2016, 2017) further explored

this phenomenon by analyzing the swimming behaviors of red nose tetra fish (Hemigrammus ble-

heri) in a controlled-velocity shallow-water tunnel. Through stereoscopic video analysis of fish

kinematics, it was explored that fish locomote in a side-by-side configuration while synchronizing

their tail beat frequencies either in-phase or out-of-phase as shown in figure 2.7. Remarkably, their

synchronized swimming behavior strongly correlated with increased water speed (see figure 2.8),

suggesting that proper positioning and coordination among swimmers significantly boost propul-

sive performance, which is needed for overcoming demanding flow conditions.
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Figure 2.8: Typical caudal fin tip kinematics for (a) slow (2.7cms−1) and (c) fast (15cms−1) swim-
ming velocities. Top and bottom fish from figure 2.7 are represented by blue and red lines, respec-
tively. Phase difference plots for swimming velocities of (b) 2.7cms−1 and (d) 15cms−1.(Reprinted
with permission from Ashraf et al. (2016), Copyright 2017, The Royal Society (U.K.)).
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Latest developments in the field of bio-inspired swimming accelerated the efforts to exam-

ine the propulsive performance of individual members in fish schools from different perspectives.

Measurements of energy consumed by a pair of fish-like robots developed by Li et al. (2020a) dis-

played that follower fish in a staggered configuration gained energy benefits if the phase difference

between tail beat frequencies was linearly conformed with their longitudinal distance. They re-

ferred to this phenomenon as vortex phase matching. It was further validated through experiments

with real fish that the follower utilized this strategy in order to exploit hydrodynamic interactions

to reduce the energy cost during swimming. Later, Li et al. (2021) focused on the swimming of

bio-mimetic robots in side-by-side configurations at a range of phase differences and revealed that

both swimming speed and efficiency of the pair were enhanced compared to a single swimmer

for the entire range. Here in-phase and out-of-phase swimming could be employed to maximize

efficiency and speed, respectively. A recent study by Yu et al. (2022) examined self-organization

patterns of self-propelled undulatory swimmers using a deep-reinforcement-learning technique.

For two in-line swimmers with very small gap distances between them, side-by-side arrangements

spontaneously emerged when the solver was set to optimize the swimming efficiency of both indi-

viduals. The same solution strategy was applied to fish schools comprised of three to six bodies,

which resulted in the formation of optimal subgroups with two to four individuals. For all school-

ing configurations, swimmers in schools yield considerably enhanced efficiency compared with a

single swimmer. Most recent studies confirm that collective locomotion outperforms a solitary one

as long as the swimming conditions are appropriately disposed.

2.4.1 Propulsive Performance of Foils in Schooling Configurations

Fish schools are often modelled using multiple oscillating rigid foils arranged in different config-

urations due to the simplicity that it offers. Notably, dynamics of oscillating foils in side-by-side

configurations have been examined through both numerical (Dong and Lu, 2007; Bao et al., 2017)

and experimental approaches (Dewey et al., 2014; Kurt and Moored, 2018a; Quinn et al., 2014;

Huera-Huarte, 2018). These studies have primarily concentrated on how separation distance and
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oscillation phase difference influence the performance of parallel foils. For instance, Dong and Lu

(2007) conducted a numerical analysis on the hydrodynamics of oscillating wavy foils positioned

side-by-side, demonstrating that power consumption decreases as the separation distance between

the foils increases. Moreover, they tend to generate more thrust when they oscillate out-of-phase.

Simulations of side-by-side foils oscillating out-of-phase by Bao et al. (2017) explained the ef-

fects of separation distance on propulsive performance. They identified that more thrust could be

experienced by the foils, when placed close to each other. Also drag-to-thrust transition occurred

at lower St with decreasing separation distance. Quinn et al. (2014) investigated propulsion of a

pitching foil near a stationary wall, which effectively makes it a system composed of two foils in a

side-by-side arrangement with out-of-phase synchronization when the viscous effects are assumed

to be negligible. It is shown that the generated lift pushed the foil away from the wall boundary

at lower separation distances, while it pulls the foil towards the boundary when it was located at a

shorter distance. On the contrary, the ground boundary tend to pull those foils towards itself when

the foils were present at a large separation distance. They noticed approximately 40% thrust en-

hancement when the ground clearance was such that the vertical force acting on the foil was zero.

In a more recent study, Liu et al. (2022) demonstrated that the swimming equilibria between the

foil and the ground can be manipulated by employing asymmetric kinematics. Dewey et al. (2014)

experimentally investigated a wide range of phase difference and separation distances, finding that

in-phase oscillations led to a reduction in both thrust and power, thereby increasing efficiency (see

figure 2.9). They further demonstrated that one foil could attain improved thrust and efficiency, po-

tentially compromising the hydrodynamic performance of the adjacent foil at intermediate phase

differences. Huera-Huarte (2018) compared the hydrodynamic performance of a single foil and a

system of two foils arranged in side-by-side and staggered configurations. They found that side-by-

side configuration benefited in terms of efficiency for in-phase oscillations, whereas the staggered

configurations consistently displayed reduced efficiency.

The investigation of oscillating foils in in-line configurations has garnered interest due to its im-

plications for understanding biological locomotion. In this regard, Akhtar et al. (2007) developed a
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Figure 2.9: Propulsive efficiency of two pitching foils in a side-by-side configuration as a function
of phase difference (φ ). (Reprinted with permission from Dewey et al. (2014), Copyright 2014,
AIP Publishing).

hydrodynamic computational model featuring two in-line flapping plates, mimicking both pitching

and plunging motions, to study the interactions reminiscent of those between the dorsal and cau-

dal fins of a bluegill sunfish. This approach could similarly apply to two fish swimming in close

proximity. Their work elucidated the importance of the phase relationship between the two foils in

maximizing thrust production. Furthering this research, Boschitsch et al. (2014) conducted exper-

iments to demonstrate that the gap distance for a pair of pitching foils positioned one behind the

other had a significant impact on the propulsive performance of the leading foil. They determined

that closely positioned downstream body could cause the augmentation of propulsive performance

parameters by around 20%. However, the hydrodynamic features were more sensitive to almost

all governing kinematic parameters. Most importantly, this configuration was more beneficial for

the following foil with up to 50% greater thrust and efficiency than those of an isolated foil, if the

spacing and phase difference from the leading foil were optimal. An inappropriate selection of

these factors might result in 50% performance reduction. More recently, Meng et al. (2022) took

a further step and simulated flows over multiple flapping foils in in-line configurations. For three

wings, they demonstrated that thrust of the system was optimized for a separation distance of two

chord lengths with the third wing generating the most thrust. Later, they examined the system with
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four, five, six and seven wings, but observed that a further increase in the number of wings did not

translate into any alteration in the average thrust produced by the group.

2.4.2 Vortex Topology in Schools

The wake topology of oscillating foils in schooling configurations has been explored to a limited

extent. Dong and Lu (2007) depicted the formation of vortex pairs with opposite-signed vorticity

in the wake during in-phase oscillations of tandem foils, directing the wake vertically against the

freestream flow. Dewey et al. (2014) analyzed vortex patterns for in-phase, mid-phase, and out-of-

phase pitching foils in side-by-side configurations at a constant separation distance and Strouhal

number. They visualized wake patterns for each scenario, revealing that in-phase, out-of-phase,

and mid-phase pitching result in merging symmetric (see figure 2.10a-b), diverging symmetric

(see figure 2.10c-d), and asymmetric wakes (see figure 2.10e-f), respectively. Quinn et al. (2014)

investigated the wake topology of a pitching foil near a solid boundary and found that the wake

structures was significantly affected by distance of the foil from the boundary. At larger separation

distances, vortical structures tend to advect away from the surface, forming angled momentum

jets, whereas they align parallel to the surface at closer distances. More recently, Ambolkar and

Arumuru (2022) numerically studied two parallel foils, which were not equal in size for a range

of pitching frequencies and phase differences. They showed that vortex streets shed from the foils

were separated from each other as a result of their deflections in opposite directions at higher

frequencies, whereas they merged in the near wake at lower frequencies for all phase differences.

For intermediate oscillations, on the other hand, merger of the vortex streets occurred only for

smaller phase differences.

Huera-Huarte (2018) observed an asymmetric wake in the staggered configuration of two foils

but did not investigate the causes of wake deflection and asymmetry. Zhang et al. (2018), through

numerical simulations, noticed that the initially symmetric wake of out-of-phase pitching parallel

foils transitioned into an asymmetric pattern after 20 cycles. Similarly, Bao et al. (2017) reported

emergence of an asymmetric wake behind out-of-phase oscillating parallel foils, without further
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Wake structures at St = 0.25 for two foils in sde-by-side configurations. Instanta-
neous vorticity fields for (a) φ = 0, (c) φ = π , and (e) φ = π/2. Time-averaged velocity fields for
(b) φ = 0, (d) φ = π , and (f) φ = π/2. (Adopted from Dewey et al. (2014), Copyright 2014, AIP
Publishing). 39



Figure 2.11: Time evolution of normalised vorticity for lift cancelling tandem configurations, de-
picting three distinct wake patterns. (Reprinted with permission from Lagopoulos et al. (2020),
Copyright 2020, Cambridge University Press).

exploration. These studies, however, captured the asymmetric wake at a singular moment, over-

looking the transient wake and its interaction process leading to asymmetry. Lagopoulos et al.

(2020) demonstrated that in oscillating foils arranged in an in-line configuration, both deflected

wakes and total side force production could be mitigated. They identified three distinct interac-

tion scenarios between the leading and trailing foils, as demonstrated in figure 2.11, that enable

this mitigation. Additionally, their findings revealed that the trailing foil could significantly affect

the performance and wake formation of the leading foil. These studies highlight the importance

of a thorough understanding of the relationship between foil kinematics and wake dynamics for

effective control of vortices.
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2.5 Three-dimensional Wake Instabilities

Exploring fundamental features of the vortex dynamics and wake interactions is important in avia-

tion and marine engineering sectors. Understanding the complex unsteady flow dynamics is crucial

for enhancement of safety and productivity of air transportation (Spalart, 1998), development of

fish-like autonomous vehicles with high efficiency (Triantafyllou et al., 2000), and designing agile

and stealth propulsion systems (Smits, 2019). These vital aspirations have prompted theoretical,

experimental, and numerical studies that explore their underlying flow physics. To this end, the

dynamics and instabilities of counter-rotating and co-rotating vortex pairs observed in such appli-

cations constitute the basis of many fundamental studies.

Counter-rotating vortex pairs are unstable in the presence of three-dimensional displacement

perturbations, which amplify due to the combination of mutually and self-induced dynamics of

vortices (Leweke et al., 2016). These perturbations appear as sinusoidal deformations with wave-

lengths significantly longer than the vortex core radius. They are symmetric about the midpoint

between the two vortices, and are situated in planes inclined at approximately 45◦ to the axis

connecting the vortex centers (Crow, 1970). Known as Crow instability or long wavelength insta-

bility, this phenomenon results in the amplification of deformation amplitude until the vortex cores

merge, leading to the formation of a series of vortex rings through a reconnection process (Leweke

and Williamson, 2011). Time evolution of the process is presented in figure 2.12. On the other

hand, both counter-rotating and co-rotating vortex pairs are susceptible to short-wave instabilities

within the vortex cores at sufficiently high Reynolds numbers, triggered by a resonance between

the strain induced by one vortex on another and the linear Kelvin modes of the vortex (Leweke

et al., 2016). This instability, often referred to as short-wavelength instability or elliptical instabil-

ity, is characterized by wavelengths comparable to the vortex core diameter. Despite their distinct

mechanisms, a vortex pair can manifest both types of instabilities (Leweke and Williamson, 1998),

showcasing the complex dynamics at play within vortices (see figure 2.13).

The co-rotating vortices tend to merge into a single vortex unless their separation distance is

more than a certain threshold. The underlying mechanism behind the merger was elucidated by
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Figure 2.12: Time evolution of a vortex pair perturbed by a long-wavelength instability at Re =
1450. The pair is viewed from the front, with the vortices moving toward the observer. (a) t∗ =
3.2, (b) t∗ = 5.3, (c) t∗ = 7.0. (Reprinted with permission from Leweke and Williamson (2011),
Copyright 2011, AIP Publishing).
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Figure 2.13: Time evolution of a vortex pair perturbed by a combined action of long-wavelength
and short-wavelength instabilities at Re= 2750. The pair is viewed from the front, with the vortices
moving toward the observer.(a) t∗ = 1.7, (b) t∗ = 5.6, (c) t∗ = 6.8.(Reprinted with permission from
Leweke and Williamson (1998), Copyright 1998, Cambridge University Press).

Cerretelli and Williamson (2003), which bears resemblance to the “axisymmetrization” principle

proposed by Melander et al. (1987) for elliptic vortices. While the merger predominantly occurs

in a two-dimensional plane, three-dimensionality exerts notable effects on the process, including

early merging, quick expansion of the core radius, and a decrease in the maximum swirl velocity

of the final vortex (Meunier et al., 2005). Moreover, three-dimensional instabilities can trigger the

merging process at a greater separation distance that exceeds the critical limit allowed for merger of

two-dimensional vortices (Bristol et al., 2004). This phenomenon arises when the short-wavelength

elliptic instability, developing on one of the vortex cores, steers the peripheral vorticity towards the

other one and creates a vorticity bridge, connecting the cores. On the other hand, experiments on
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the characteristics of the elliptic instability in the pairs of counter-rotating vortices (Leweke and

Williamson, 1998) revealed a distinct phase relationship between disturbances on the vortex cores.

It indicates that the elliptic instability evolves in a coupled or “cooperative” manner. Ortega et al.

(2003) delved into the dynamics of initially two-dimensional, counter-rotating vortex pairs with

unequal strengths to demonstrate that long-wavelength instabilities occurring on the weaker vortex

led to the formation of loops. These encircled the stronger vortex and eventually transitioned into

rings. They further noticed that 2D-to-3D transition unfolded considerably earlier than the onset of

visible deformations in an equal-strength counter-rotating vortex pair under similar flow conditions

(Ortega et al., 2003).

A vortex in proximity to the ground effectively creates a counter-rotating vortex pair with its

mirror image, rendering it susceptible to both short and long-wavelength instabilities (Benton and

Bons, 2014). Modeling the ground, whether as a viscous boundary (employing a no-slip condition)

or an inviscid boundary (employing slip with no-penetration condition), fundamentally alters the

characteristics of the instabilities (Rabinovitch et al., 2012). Although the ground effect due to a

stationary wall is well studied (Harvey and Perry, 1971; Peace and Riley, 1983), the influence of a

moving boundary requires more attention.

The laminar wake behind a circular cylinder is known to transition to a three-dimensional state

with increasing Reynolds number, featuring two distinct small-scale instability modes, Mode A

and Mode B (Williamson, 1996). These modes are differentiated by their spanwise wavelengths,

yet they share similar spatial structures. Mode A is characterized by a larger wavelength, between

3 to 4 diameters, scaling with the primary vortical structures in the wake (see figure 2.14a). In

contrast, wavelength of Mode B is significantly shorter, approximately 1 diameter, and scales with

the braid shear layer (see figure 2.14b). Numerical simulations by Zhang et al. (1994) revealed

the existence of a third instability, Mode C, with an intermediate wavelength of about 2 diameters.

Their analysis provided a concise comparison of these modes, noting that the wavelengths of sec-

ondary structures in Modes A and C are consistent in both the near and far wake. Conversely, the
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(a) (b)

Figure 2.14: Dye visualization of three-dimensional instabilities behind a circular cylinder depict-
ing (a) Mode A at Re = 200 and (b) Mode B at Re = 270. Flow is from bottom to top. (Reprinted
with permission from Williamson (1996), Copyright 1996, Cambridge University Press).

secondary structures in Mode B are observed only in the near wake as they merge into larger-scale

structures downstream.

In the context of oscillating foils, the transition from the deflected BvK wake to a three-

dimensional wake is driven by an increase in the Strouhal number (Deng et al., 2016). Flo-

quet stability analysis by applying three-dimensional spanwise periodic perturbations to a time-

periodic two-dimensional base flow by Deng and Caulfield (2015) quantified the inherently three-

dimensional linear instabilities in the wake of a pitching foil. They discovered two distinct types of

unstable spanwise periodic modes: a long-wavelength mode, analogous to the Mode A instability

observed in circular cylinders, and a short-wavelength mode. Subsequently, Deng et al. (2015) ex-

panded on this study by employing Direct Numerical Simulations (DNS) to validate the presence

of the instability modes identified by the Floquet analysis. The agreement between the Floquet

analysis and DNS results, particularly for the short-wavelength mode, reinforces the validity of
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Figure 2.15: Vortex skeleton models illustrating (a) high efficiency and (b) large thrust cases.
(Reprinted with permission from Verma and Hemmati (2021), Copyright 2021, Cambridge Uni-
versity Press).

their initial analysis. A recent study by Verma and Hemmati (2021) examined the vortex evolu-

tion of simultaneously heaving and pitching foils for two extreme performance conditions: high

efficiency and large thrust production. They identified primary (roller) and secondary (ribs) ver-

tex structures and introduced a novel vortex-skeleton model (see figure 2.15) for both kinematic

settings. They performed statistical correlation analysis together with qualitative assessment to

determine the mode of the secondary instabilities. Wavelength of the secondary structures show

similarity with long-wavelength mode identified in the wake of pitching foils.

Three-dimensionality in the wake of oscillating foils, undergoing pure pitching, pure heaving,

and combined motions was explored by Zurman-Nasution et al. (2020), unraveling that the transi-

tion at larger flapping amplitudes occurred when the circulation of Leading edge vortices exceeded
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a universal threshold. Thus, they overcome the damping effect of the viscous dissipation, which

consequently resulted in the disintegration of vortices. Verma et al. (2023) investigated the link be-

tween the kinematics of foils and three-dimensional characteristics of the wake by covering a wide

range of governing parameters. They identified two distinct mechanisms governing the growth of

secondary structures across their parametric space, as well as two principal pathways, characteriz-

ing the transition between these mechanisms. These studies suggest a distinct relationship between

kinematics and three-dimensional instabilities of vortex structures of oscillating foils.

Chiereghin et al. (2020) experimentally examined three-dimensional features of leading edge

vortices on high-aspect ratio heaving swept wings, identifying a spanwise instability in the leading

edge vortex filament. Investigating the phenomenon quantitatively and qualitatively, Verma and

Hemmati (2021) established a connection between spanwise undulation of the leading edge vortex

and the elliptic instability of vortex pairs in the wake of foils, with simultaneous heaving and

pitching motions. Their research yielded valuable insights into the correlation between spanwise

instability and the formation of streamwise vortical structures. Utilizing experiments, numerical

simulations, and stability analysis, Son et al. (2022) later elucidated that instabilities on leading

edge vortex filaments arose from distinct sources in heaving foils and high-aspect ratio wings. In

the case of foils, their observations corroborated with the findings of Verma and Hemmati (2021),

where leading edge vortices exhibited spanwise undulations while forming a pair with a counter-

rotating vortex. It can be either a trailing edge vortex or a secondary leading edge vortex that rolls

up from the surface of the foil. Conversely, for the high-aspect ratio wings, leg of the leading edge

vortex remains attached to the wing surface, leading to the formation of helical waves on the leg.
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Chapter 3

METHODOLOGY
†

This chapter presents the research methodology in detail. Section 3.1 delineates the problem ad-

dressed in this dissertation, specifically the flow dynamics around pitching foils in schooling con-

figurations. To model the pitching motion of the foils, different dynamic grid techniques are uti-

lized for two-dimensional and three-dimensional simulations, with detailed explanations provided

in sections 3.2 and 3.3, respectively. An exhaustive validation and verification analysis is then

discussed in section 3.4, ensuring the reliability of the simulation results.

3.1 Geometry and Kinematics

In this dissertation, unsteady flows around the pitching foils in schooling configurations is numer-

ically examined by directly solving the Navier-Stokes equations in the open-source solver Open-

†The content of this chapter has been published in whole or part, or under review with the citations:
"Gungor, A., & Hemmati, A., (2020) Wake symmetry impacts the performance of tandem hydrofoils during in-phase
and out-of-phase oscillations differently. Phys. Rev. E, 102, 043104."
"Gungor, A., Khalid, M.S.U., & Hemmati, A., (2022) Classification of vortex patterns of oscillating foils in side-by-
side configurations J. Fluid Mech., 951, A37."
"Gungor, A., & Hemmati, A., (2021) The scaling and performance of side-by-side pitching hydrofoils. J. Fluids
Struct., 104, 103320."
"Gungor, A., Khalid, M.S.U., & Hemmati, A., (2024) Physics-Informed Scaling Laws for the Performance of Pitching
Foils in Schooling Configurations. J. R. Soc. Interface."
"Gungor, A., Verma, S., Khalid, M.S.U., & Hemmati, A., (2024) Foil Proximity Effect-Induced Shear Layer Instability
Around Oscillating Foils J. Fluid Mech.. "
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FOAM which utilizes the finite volume method. Continuity (Eq. 3.1) and momentum (Eq. 3.2)

equations are solved directly, considering incompressible and Newtonian fluid flows:

∂ui

∂xi
= 0, (3.1)

∂ui

∂ t
+

∂
(
uiu j

)
∂x j

=− 1
ρ

(
∂ p
∂xi

)
+ v

∂

∂x j

(
∂ui

∂x j

)
. (3.2)

Here, ui is the velocity, xi is the spatial coordinate, t is time, p is pressure, ρ is density.

Two rigid teardrop foils with a chord length of c and semicircular leading edges at a radius

of 0.05c are placed in a uniform flow. This foil shape is chosen based on insights from recent

numerical and experimental research (Dewey et al., 2014; Senturk and Smits, 2019). A sinusoidal

pitching motion about the center of the leading edge is imposed on Foil 1 and Foil 2, which is

mathematically defined as:

θ1(t) = θ0 sin(2π f t), (3.3)

θ2(t) = θ0 sin(2π f t −φ). (3.4)

Here, θ0 is the pitching amplitude and φ is the phase difference between the two foils. The separa-

tion distance between the foils is varied in the x−direction (denoted as x∗) and in the y−direction

(denoted as y∗), as depicted in figure 3.1. In-phase (φ = 0), out-of-phase (φ = π), and mid-phase

(φ = π/2) motions are also depicted in figure 3.1. Throughout this dissertation, Foil 1 is named as

the lower, bottom, or leader foil, while Foil 2 is the upper, top, or follower foil.

3.2 Two-dimensional Setup

The mesh morphing technique is applied to simulate the pitching motion in two-dimensional sim-

ulations. The solver pimpleDyMFOAM, which is an incompressible, transient flow solver for dy-

namics grid applications is selected for this purpose. It utilizes the PIMPLE algorithm, which is a

hybrid of PISO (pressure-implicit with splitting of operators) and SIMPLE (semiimplicit method
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Figure 3.1: Demonstration of the pitching motion of two foils in staggered configuration.

(b) (c)

(a)

Figure 3.2: Representation of the (a) overall spatial grid utilized for two-dimesional simulations
with detailed views around (b) leading edge, and (c) trailing edge.
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for pressure-linked equations). The solver deforms the grid in each of time-step following the os-

cillatory motion assigned to the body. The inverseDistance module is utilized as a mesh motion

diffusivity model, indicating that deformation diminishes as the distance from the foils increases.

Measurements indicate that the maximum mesh skewness remains stable, fluctuating by no more

than 5% over a pitching cycle, thus ensuring the grid quality. The time-step size (∆t) is selected

such that the maximum Courant number in the domain remains below 0.8, while there are over

3500 time-steps per oscillation cycle. The divergence terms of Navier-Stokes equations are dis-

cretized using upwind-biased, second-order accurate “Linear Upwind" technique. Second-order,

implicit backward time method is employed for temporal terms. The root-mean-square of the

residual of the velocity components and pressure in the momentum equations are used as the con-

vergence criteria, which is set to 105.

A non-homogeneous spatial grid, consisting of around 7.5×105 hexahedral elements, is gen-

erated to simulate the flow. The grid is most refined around the foils with 600 nodes on the surface

of each foil, which is consistent with the numerical setup of Senturk and Smits (2019). The grid

element size (∆x) expands towards the boundaries without exceeding the expansion ratio of 1.03

in the entire computational domain. More details of the presently utilized grid around the foils are

presented in Figure 3.2.

The computational domain is rectangular and extended 30c in the streamwise (x−) and 5.8c in

the cross-flow (y−) directions (see figure 3.3. The domain is designed so that it could match the

experimental setup of Dewey et al. (2014). The leading edge of the foils are placed 8c away from

the inlet. Neumann condition for both pressure and velocity are applied at the outlet boundary,

while a uniform velocity (u = U∞,v = 0,w = 0) is prescribed to the inlet boundary. Boundary

conditions for the upper and lower walls, and foil surfaces are selected to be slip and no-slip,

respectively. The assignment of boundary conditions followed that of Hemmati et al. (2019b),

which is based on reproducing experiments.
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Figure 3.3: Computational domain for two-dimensional simulations with boundary conditions (not
to scale).

3.3 Three-dimensional Setup

For three-dimensional simulations, the pitching motion of the foils is modeled using the Over-

set Grid Assembly (OGA) technique. OGA functions by attaching an overset, where the mo-

tion is defined, to a stationary background grid, as illustrated in figure 3.4. Previous research

has demonstrated the efficacy of the OGA method in accurately representing the flow dynamics

around three-dimensional wakes of both stationary (Verma and Hemmati, 2020) and oscillating

bodies (Verma and Hemmati, 2021). The primary rationale for employing the overset technique in

three-dimensional simulations is its advantage to keep the background grid stationary, unlike in the

mesh morphing technique where the entire grid deforms. In the overset approach, recomputation

of node locations is confined only to the overset region, which is significantly smaller compared to

the entire background grid. This attribute is anticipated to make it computationally more efficient,

especially for grids comprising large number of elements. The overPimpleDyMFoam solver, which

integrates the functionality of OGA and PIMPLE algorithms, is employed to solve the governing

equations. Backward and central difference schemes, both second-order accurate, are employed

for temporal and spatial discretizations, respectively. The convergence criteria for the simulation
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(a) (b)

Figure 3.4: Details of the Overset Grid Assembly (OGA) depicting (a) background grid, (b) overset
grids.

are established by setting the residual of the velocity and pressure components of the momentum

equation to 10−6.

The Overset Grid Assembly (OGA) method classifies cells within the computational domain

into three distinct categories: calculated, interpolated, and hole cells (Tisovska, 2019). The as-

signed cell types is updated by the solver at each time-step, ensuring precise representation of the

prescribed dynamic motion. Figure 3.5 illustrates the distribution of these cell types across both

the background and overset grids. Calculated cells are where the governing equations are directly

solved. Interpolated cells, positioned adjacent to or near an outer boundary, have their values de-

termined through interpolation from the closest elements on the overlapping grid. For example,

values for interpolated cells on the background grid are calculated by interpolating from the nearest

cells on the overset grid, and vice versa. The overset grids are designed in such a way that they

do not overlap at any time during their pitching motion, as depicted in Figure 3.5. This approach

is adopted after encountering issues with setups involving overlapping overset regions, which are

detailed in appendix A. While various numerical schemes are available for the interpolation pro-

cess, this dissertation opts for “inverse distance weighting” due to its established effectiveness on

finer grids (Chandar, 2019; Verma and Hemmati, 2021). Hole cells define the physical boundaries,
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(b)

Calculated Cells

Interpolated Cells

Figure 3.5: Representation of of hole cells (red), calculated cells (blue), and (interpolated cells
(green) on (a) background (b) overset grid.

such as the geometry of the foil, where neither calculations nor interpolations are executed. The

flow fields generated on the background grid through this method are subsequently used for the

analysis.

The rectangular computational domain (see figure 3.6) extends to 20c, 16c, and πc in the

streamwise (x), cross-flow (y), and spanwise (z) directions, respectively. The size of the domain

is determined closely following Verma and Hemmati (2021, 2023). The foils are positioned at

a distance of 5c from the inlet. Neumann boundary conditions for both pressure and velocity

are imposed at the outlet, a uniform velocity boundary condition (u = U∞,v = w = 0) is applied

at the inlet, and slip boundary conditions are prescribed at the upper and lower boundaries of

the domain. Surfaces of the foils are set to a no-slip wall boundary condition, while periodic

boundary conditions are utilized at the side boundaries. The periodic boundary condition ensures

a continuous flow across the side boundaries, effectively mitigating any effects associated with the

formation of tip vortices and thereby simulating flow over infinite span parallel pitching foils.

Mesh generation is tailored based on the ratio (δ ∗) of the minimum grid element size to the

Kolmogorov length scale (ηk ≈ (ν3/ε)0.25), which acts as a benchmark for setting the finest grid
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Figure 3.6: Dimensions of the three-dimensional computational domain with boundary conditions
(not to scale). Here, y∗ is the vertical separation distance between the foils.

size. Here, ε is the rate of dissipation of turbulence kinetic energy. A fine uniform grid is generated

close to the foils. Following the recommendations of Moin and Mahesh (1998), we maintain

the ratio below 5 around the foils and below 10 in the critical region, where the formation of

3D instabilities is anticipated (Verma and Hemmati, 2023; Verma et al., 2023). Outside of the

critical region, the element size gradually increases with an expansion ratio of less than 1.03,

toward the boundaries of the domain (see figure 3.4). Thus, at downstream positions of x/c = 1,

2, and 4, the values for the ratio are δ ∗ = 4.75, 4.75, and 9.5, respectively. Consequently, a non-

homogeneous spatial grid, comprising of around 40× 106 hexahedral elements, is employed for

the simulations. The dimensionless time-step size, set as ∆t∗ = ∆tU∞/c = 0.0005, aligns with the

standards established in previous numerical simulations of three-dimensional flow over pitching

panels (Senturk and Smits, 2018; Hemmati et al., 2019b).

The spanwise domain size is set to πc following Verma and Hemmati (2023), who compared

domain sizes of πc and 2πc. Using spatial autocorrelation, they calculated the wavelength of

spanwise instability in leading edge vortex rollers of oscillating foils. Their study confirmed that

the wavelengths between the two spanwise domain lengths do not significantly differ, confirming

the adequacy of a domain size of πc for capturing the flow physics related to spanwise instabilities.
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Table 3.1: Simulation sensitivity analysis for x∗ = 0, y∗ = 1c, and φ = 0 at Re = 4000 (St = 0.25)
and Re = 12000 (St = 0.25). Ntotal is the total number of elements in the grid and ∆ denotes the
relative percent error with respect to Grid 3.

Study Re Ntotal Domain Size CT 1 ∆ CT 1 (%) CT 2 ∆ CT 2 (%)

Grid 1 4000 2.33×105 30c×5.8c 0.083 1.60 0.083 0.46

Grid 2 4000 3.05×105 30c×5.8c 0.083 0.97 0.084 0.16

Grid 3 4000 7.18×105 30c×5.8c 0.084 − 0.084 −

Grid 4 4000 1.37×106 30c×5.8c 0.081 2.84 0.082 1.40

Domain 1 4000 7.87×105 30c×16c 0.080 4.61 0.080 4.00

Domain 2 4000 7.53×105 35c×5.8c 0.082 2.02 0.084 0.20

Time 1 4000 7.18×105 30c×5.8c 0.084 0.37 0.084 0.40

Grid 1 12000 2.33×105 30c×5.8c 0.206 0.81 0.210 1.01

Grid 2 12000 3.05×105 30c×5.8c 0.208 0.28 0.212 0.46

Grid 3 12000 7.18×105 30c×5.8c 0.208 − 0.213 −

Grid 4 12000 1.37×105 30c×5.8c 0.207 0.41 0.211 0.57

3.4 Validation and Verification

The sensitivity of two-dimensional numerical results to spatial grid, time-step size, and domain size

is examined at x∗ = 0, y∗ = 1, and φ = 0 for Re = 4000 (at St = 0.25) and Re = 12000 (at St = 0.3).

Table 3.1 shows the cycle averaged thrust and power coefficients for both foils obtained from seven

different simulations for the convergence study. This data also includes corresponding relative

errors computed based on the results from Grid 3, that is employed for the actual simulations

afterwards. Four different grid sizes (Grid 1, Grid 2, Grid 3 and Grid 4) are used to confirm the

grid-independence of our numerical solutions at Re = 4000 and 12000. The grid refinement is

based on the number of grid points on the foils, which are 300, 400, 600 and 900 grid points

for Grid 1, Grid 2, Grid 3 and Grid 4, respectively. A grid refinement ratio of 1.5 was used to

systematically coarsen the mesh from 900 grid points, resulting in 900/1.5 = 600 grid points and

then 600/1.5 = 400 grid points. The coarsest case is an exception, as generating a high-quality
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Figure 3.7: Unsteady thrust coefficient variations for Foil 1 for test cases Grid 3, Grid 4, Domain
1 and Time 1.

mesh using 400/1.5 = 267 grid points was not feasible; therefore, the number is rounded up to

300. Previously, Senturk and Smits (2018) used 500 grid points on the surface of each foil for

their study. The relative percentage error is less than 3% for Grid 4 at both Reynolds numbers,

which confirms that the mesh in Grid 3 is of high quality to accurately solve the flow features. The

grid used in Domain 1 is identical to that of Grid 3 with the width increasing from 5.8c to 16c.

Similarly in Domain 2, its length is increased from 30c to 35c while keeping other dimensions

fixed. The results in Table 3.1 shows that the relative error is always less than 5%, implying that

the domain of Grid 3 is sufficiently large to accurately capture the flow features. The implications

of the time-step size on the computational results are tested by reducing it by half in Time 1, while

using the same setup and spatial grid as in Grid 3. The relative error of less than 1% for Time 1

shows that the temporal solution became insensitive to further variations in time-step size.

The unsteady thrust for Foil 1 is compared for Grid 3, Grid 4, Domain 1, and Time 1 at Re =

4000 in figure 3.7. For clarity, figure 3.7 focuses on 2 cycles of oscillations between t/P = 10 to

12. It is observed that results for Grid 4, Domain 1, and Time 1 matched well with those of Grid

3. It indicates that the settings of the numerical solver reached the convergence for the spatial grid,

time-step size, and domain size for Grid 3 in order to resolve unsteady flow features.
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Figure 3.8: Contours of normalized spanwise vorticity (ω∗
z = ωz c/U∞) at the end of 20th pitching

cycle for pure in-phase oscillations at St = 0.25 using (a) Grid 3 and (b) Grid 4.
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Figure 3.9: Comparing numerically obtained mean thrust coefficients with experimental results of
Dewey et al. (2014) and Quinn et al. (2014).

In addition to the verification based on the forces, the grid used in the simulations are suffi-

ciently refined to capture the vortex dynamics in the mid wake region. Figure 3.8 presents the

comparison of vorticity contours obtained through the presently employed grid (Grid 3) and finer

grid (Grid 4) for pure in-phase oscillations at St = 0.25. It is evident that Grid 3 resolves coher-

ent flow structures in the mid wake (around x/c = 4) quite well and the dynamics of the coherent

structures can be captured with sufficient details.
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Figure 3.10: Comparing contour plots of spanwise vorticity (ω∗
z = ωz c/U∞) of in-phase pitching

foils between (a) two- and (b) three-dimensional simulations for Re= 4000 and St = 0.3 at t = 10P.
The 3D case renders results on the mid xy−plane.

The validation study is performed through the verified simulation setup, using the selected

domain size and spatial-temporal grids, for a single foil compared with the experiments of Dewey

et al. (2014) and Quinn et al. (2014) at Re = 4000. The results in figure 3.9 showed that the current

numerical results agreed well with existing experimental studies for oscillating foils. Thus, the

numerical setup is capable of accurately capturing the primary flow features.

Three-dimensional numerical simulations exhibit important complexities that can have impli-

cations on wake dynamics at high Re. To this effect, three-dimensional sensitivity studies are

carried out to confirm that underlying physics of coherent structures in the flow, including wake

deflection, wake merging, and vortex interactions, follow a two-dimensional or Q2D mechanism

(Godoy-Diana et al., 2008, 2009; Dewey et al., 2014; Shoele and Zhu, 2015; Lagopoulos et al.,

2020). Contour plots in figure 3.10 compare coherent structures, and their interactions, along the

center xy−plane of the wake of in-phase pitching foils at Re = 4000, St = 0.3, and d∗ = 1 with

those from two-dimensional simulations. These results confirm that two- and three-dimensional

simulations render very similar results in terms of coherent structures, wake dynamics and vortex
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(a) (b)

(c)

Figure 3.11: Iso-surfaces of Q-criterion (Q c2/U2
∞ = 10) depicting spanwise instabilities in the

wake of out-of-phase pitching parallel foils at St = 0.5 and y∗ = 1c for (a) Span1, (b) Span2, and
(c) Span3. Iso-surfaces are colored using normalized spanwise vorticity (ω∗

z = ω c/U∞ =−40 for
blue and ω∗

z = 40 for red).

interactions. It has been already shown in literature (Zurman-Nasution et al., 2020) that two-

dimensional simulations are sufficient for capturing accurate hydrodynamic performance results.

For three-dimensional simulations, the selection of spanwise domain size and grid refinement

is informed by established practices in the literature. Spanwise length of the domain is partitioned

into 64 equally spaced elements, consistent with literature on flow over infinite span bodies (Naj-

jar and Balachandar, 1998; Hemmati et al., 2016, 2018; Verma and Hemmati, 2021; Verma et al.,

2023). Najjar and Balachandar (1998) effectively simulated flow over an infinite span flat plate

with a domain comprising 48 spanwise elements, successfully capturing the formation of stream-

wise vortices. Hemmati et al. (2018) conducted a comprehensive grid sensitivity analysis for a

DNS study, comparing grids with 64 and 96 spanwise elements. Their findings indicated a neg-
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Figure 3.12: Profiles of normalized (a) streamwise (ũ/U∞) (b) crosswise velocity (ṽ/U∞) along
cross wise direction (y/c) at x/c = 2 and z/c = 0 for different spanwise grid refinement cases at
Re = 8000.

ligible difference between the two, concluding that a grid with 64 spanwise elements is sufficient

to resolve the three-dimensional flow field. Likewise, Verma and Hemmati (2021); Verma et al.

(2023) employed grids with 64 spanwise elements in their investigation of three-dimensional insta-

bilities in wake oscillating foils, thus corroborating the spanwise refinement utilized in this study.

Nonetheless, a grid sensitivity analysis is conducted to further validate the three-dimensional grid

utilized in this dissertation. Figure 3.11 showcases a comparison of spanwise instabilities in the

leading-edge vortices at Re = 8000 captured by three distinct grids (Span1, Span2, Span3), com-

prising 48, 56, and 64 spanwise elements, respectively. Qualitatively, the results are consistent

across the grids, with each configuration revealing 5-7 bulges on the vortices. A quantitative anal-

ysis of the grids is illustrated in figure 3.12, which compares the mean spanwise velocities across

the span of the domain. The minimal deviation between Span3 and Span2 suggests that Span3 is

sufficiently refined to accurately represent the flow physics.
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Chapter 4

IMPACT OF WAKE SYMMETRY ON

PERFORMANCE
†

Bio-mimicking represents a cutting-edge approach in the creation of highly efficient robotic plat-

forms, with wide-ranging applications in engineering. This methodology draws inspiration from

the physical mechanisms utilized by natural species. Such an approach is pivotal for the design of

advanced underwater swimming platform, as it allows engineers to harness the evolved efficiencies

of aquatic animals (Smits, 2019). Particularly, a deeper understanding of the fluid flow in the wake

of swimming fish, moving in isolation or as a group, enables determining mechanisms that encour-

ages certain behaviors observed in nature. As previously mentioned in section 2.4, two red nose

tetra fish tend to swim side-by-side while synchronizing their tailbeat kinematics as the freestream

flow is adjusted Ashraf et al. (2016, 2017). However, there is no justification proposed for their

behavior in terms of wake dynamics and its implications on propulsive performance. This poses

a fundamental question on the implications of external effects and flow physics on the natural be-

havior of biological species, which can be addressed using experimental and numerical analysis of

the wake.
†The content of this chapter has been published in whole or part, in Phys. Rev. E with the citation: "Gungor, A., &

Hemmati, A., (2020) Wake symmetry impacts the performance of tandem hydrofoils during in-phase and out-of-phase
oscillations differently. Phys. Rev. E, 102, 043104."
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As detailed in section 2.2.1, the wake deflection phenomena for single oscillating foils is exten-

sively investigated, there are not any comprehensive studies of this type for tandem foils. Partic-

ularly, there are no detailed analysis of the dynamics associated with deflected wakes of two foils

in side-by-side configuration, their unsteady interactions, and its implications on the propulsive

performance of the foils. This knowledge is critical in providing insight to the swimming habit of

fish, which in turn contributes greatly to developing more efficient, stable and effective underwater

propulsors and energy harvesting technologies. In this chapter, we aim to address this knowledge

gap by numerically examining the wakes of two foils in side-by-side configuration that oscillate

in-phase and out-of-phase. Here, we explore the asymmetric wake phenomenon by comparing the

performance and wake dynamics of tandem foils oscillating in-phase with those oscillating out-

of-phase. This chapter includes a description of the problem in section 4.1, followed by the main

results and discussions in section 4.2. A summary is presented in section 4.3.

4.1 Problem Definition

Two-dimensional flow simulations around two pitching foils in side-by-side configuration is con-

ducted for a fixed Reynolds number of Re = 4000. The in-phase (φ = 0) and out-of-phase (φ = π)

pitching motion of parallel foils are considered, while the separation distance between the foils

and the amplitude of pitching is fixed at y∗ = 1c and θ0 = 8◦, respectively. The Strouhal number of

the pitching motion is varied between St = 0.15 and St = 0.5. However, particular focus is given

to St = 0.25 and St = 0.5. The higher limit of St typically applies to fish swimming in abnormal

conditions, such as fast maneuvering and speeding due to faster freestream flow (Ashraf et al.,

2016, 2017). The lower St, on the other hand, represents the efficient swimming range for wide

variety of aquatic animals (see figure 1.2). Although simulations are carried out at St = 0.15 and

0.175 as well, the wake dynamics for these cases are not relevant here due to their drag producing

or nearly zero thrust generating nature.
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Figure 4.1: The time-averaged coefficients of (a) thrust and (b) power for tandem foils at a range
of St.

4.2 Results and Discussion

We begin by examining the performance of the two foils in the range of St = 0.15− 0.5. First,

we look at the mean coefficient of thrust and power in figure 4.1. Tandem foils oscillating both

in-phase and out-of-phase exhibit drag-producing characteristics at St ≤ 0.175, as shown in figure

4.1a. However at St ≥ 0.25, both foils have already transitioned to thrust generating systems. The

range of St at which drag-producing tandem foils transition to thrust-generating oscillations, for

both in-phase and out-of-phase motion, is 0.175< St < 0.25. Based on the current results, the tran-

sition is likely occurring at St = 0.178 and 0.185 for in-phase and out-of-phase foils, respectively.

This coincides with a sharp rise in thrust as well as power for both in-phase and out-of-phase cases.

Throughout the entire range of St considered here, out-of-phase oscillating tandem foils generate

larger thrust and power than in-phase oscillations with the gap between the two cases widening

as St increases. The performance parameters are observed to be uneven between Foil 1 and Foil

2 at St = 0.5 where the foils generate unequal thrust and power for in-phase and out of-phase

oscillations, respectively. To better appreciate the impact of wake dynamics and distinguish be-

tween the characteristics of the in-phase and out-of-phase oscillations, we focus our attention on

the wake behavior at St = 0.25 and 0.5, showcasing lower and higher St. Here, we focus on how

the out-of-phase oscillating tandem foils behave differently from those oscillating in-phase.
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We now focus on examining the wake of tandem foils in side-by-side configuration at St = 0.25.

The unsteady wake development is examined for the in-phase and out-of phase oscillations in

order to track the evolution of the wake asymmetry. A similar procedure is also followed for the

case of St = 0.5. Simulations are repeated for a single oscillatory foil to investigate the effect of

tandem configuration on the wake symmetry. Although the wake results for a single foil are used

for comparison, they are not shown explicitly here for brevity. We then proceed with examining

the cycle-averaged performance of the foils in conjunction with the wake analysis to identify the

correspondence between the wake behavior and propulsive characteristics of the foils.

4.2.1 Symmetric Wake Regimes (St = 0.25)

The wakes of two foils oscillating in-phase and out-of-phase are shown in figure 4.2 at St = 0.25

and Re = 4000. The unsteady wake evolution is studied at two timesteps: t1 = 10P and t2 = 20P,

where “P” is the period of pitching. The wake is observed to remain unchanged between each of

the oscillation cycles from t = 10P to 20P, which suggest that a quasi-steady solution is achieved.

Thus, we can accurately portray the wake and obtain a clear perspective of the performance of these

foils within only 20 oscillation cycles. In the in-phase pitching case, two opposite-sign vortices

that are shed by each foil in one pitching cycle form a dipole structure. The dipole shed by one

of the foils (Dipole 1 in figure 4.2a) moves in the cross-flow direction downstream towards the

centerline until it encounters its counterpart dipole (Dipole 2 in figure 4.2a) shed by the other foil.

The interactions between these dipoles begin after they reach x/c = 3.5, which aligns the vortical

structures along the centerline in a symmetric manner. Conversely, a similar interaction of dipole

structures does not appear in the wake of out-of-phase pitching foils. In this case, each of the

dipoles (Dipoles 3 and 4 in figure 4.2b) move away from the centerline at an angle that constitutes

a perfect mirror symmetry about the centerline. Qualitative results are in perfect agreement with

both numerical (Huera-Huarte, 2018) and experimental (Dewey et al., 2014) studies.

Dipole structures in the wake of single pitching foils are said to lead to wake deflections and

a change of wake symmetry at specific ranges of Re, St, and reduced frequencies (Godoy-Diana
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Figure 4.2: Time evolution of contours of normalized spanwise vorticity (ω∗
z = ωz c/U∞) for tan-

dem foils pitching (a) in-phase (left column) and (b) out-of-phase (right column) at St = 0.25.

et al., 2008, 2009; Calderon et al., 2014). For example, the wake of a single foil remains symmetric

at St = 0.25, but there are no dipoles formed in the wake (Godoy-Diana et al., 2008). At a higher St,

for example St = 0.4, dipole structures are formed in the wake, which Godoy-Diana et al. (2008)

relate to the wake deflection. Here, despite observing dipole structures in the wake of tandem foils

at St = 0.25 (see figure 4.2), the wake remains symmetric about its centerline (y/c = 0). Thus, this

presents an example, in which dipole structures have not led to the formation of deflected wakes.

We refer to this flow regime as the “Symmetric Wake Regime”, in which an initially symmetric

wake remains symmetric as long as the oscillation is preserved. The symmetric wake of the tandem

foils obtained here is consistent with previous studies (Dewey et al., 2014; Huera-Huarte, 2018) of

similar setup in terms of St, Re and θ0.

The cycle-averaged streamwise velocity profiles (ũ) obtained from both in-phase and out-of-

phase pitching cases are shown for three streamwise locations in figures 4.3 and 4.4. These results
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Figure 4.3: Mean velocity profiles at different locations in the wake. Normalized cycle-averaged
streamwise velocity profiles (ũ/U∞) of in-phase pitching foils at St = 0.25 for (a) t1 = 10P, (b)
t2 = 20P.

provide further insight into the symmetric wake regime. Two local peaks in figure 4.3a at x/c = 2,

which corresponds to two local high velocity regions shed by each of the foils, merge and create a

single, higher velocity jet at x/= 4. Farther downstream at x/c= 6, the jet diminishes in magnitude

but expands in width. For the out-of-phase case in figure 4.4a, the two local peaks are observed,

however they do not hint at any interactions since they individually coexist at all downstream

locations. Velocity profiles for both of the oscillation phase differences exhibit symmetric behavior

in cross-flow direction (about y/c= 0) in the wake. Since these behaviors do not change over times

(figures 4.3b and 4.4b), the flow can be described as quasi-steadily symmetric.

4.2.2 Transitioning Wake Regimes (St = 0.5)

Contrary to the quasi-steadily symmetric wakes observed at St = 0.25 for both in-phase and out-

of-phase pitching foils, the wake at St = 0.5 exhibits highly interactive and asymmetric wake

characteristics. This occurs initially for the in-phase pitching, and subsequently for the out-of-

phase pitching foils. Furthermore, a transitioning process is observed in the wake of tandem foils

from symmetric to asymmetric wakes, or vice versa, when the pitching St increases beyond 0.5,

as shown in figure 4.5. This transition occurs at 27th and 13th cycle for in-phase and out-of-phase

cases, respectively. Based on long-term analysis of the foils upto the 60th cycle, not shown here
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Figure 4.4: Mean velocity profiles at different locations in the wake. Normalized cycle-averaged
streamwise velocity profiles (ũ/U∞) of out-of-phase pitching foils at St = 0.25 for (a) t1 = 10P, (b)
t2 = 20P.

for brevity, a total of 50 pitching cycles are needed to reach a quasi-steady solution. We refer to

this wake behavior as “Transitioning Wake Regime”, where the wake is initially symmetric and it

transitions to asymmetric wake, or vice-versa. The unsteady evolution of vortical structures in the

wake of both in-phase and out-of-phase pitching foils is demonstrated over the course of 50 cycles

in figure 4.5 at 10P increments.

First, we look at the in-phase pitching case of tandem foils in figure 4.5a. At t1 = 10P in figure

4.5a, two distinct downwards deflected reverse BvK vortex streets are formed behind each of the

foils. Unlike the “Symmetric Wake Regime”, in which dipoles interact with each other to form

complex structures, the dipoles in the “Transitioning Wake Regime” (Dipole 1 and Dipole 2) coex-

ist in the absence of interaction until their diffusion farther downstream. The latter wake is similar

to the deflected wake seen behind a single pitching foil (not shown here for brevity), and it agrees

with existing numerical and experimental studies (Jones et al., 1998; Heathcote and Gursul, 2007;

Godoy-Diana et al., 2008; Das et al., 2016) with a similar configuration. It is notable to mention

that the first pitching stroke is upwards, which coincides with a downward wake deflection. This

behavior is consistent with the observations of Liang et al. (2011). When the direction of the initial

pitching stroke is switched from upwards to downwards (not shown here for brevity), the wake

deflection also switches from downwards to upwards. Thus, there exits a reverse correspondence
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Figure 4.5: Time evolution of contours of spanwise vorticity (ω∗
z = ωz c/U∞) for tandem foils

pitching (a) in-phase (left column) and (b) out-of-phase (right column) at St = 0.5.
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between the pitching initiation direction and the wake deflection. There also appears to be a dif-

ference between the deflection angles of the upper (Foil 1) and lower (Foil 2) wakes. The wake

deflection angle for Foil 1 is 16.98◦, calculated following the same procedure as Godoy-Diana

et al. (2009) and von Ellenrieder and Pothos (2008), whereas the angle of deflection for Foil 2 is

5.18◦. This suggests that the two wakes are not dynamically independent from one another since

they are expected to have the same angle of deflection in the absence of any dynamic interactions.

Although the physics remains unclear, this hints that there exists an embedded interaction between

the foils leading to such wake behavior. At t2 = 20P in figure 4.5a, vortical structures from upper

and lower wakes begin interacting at the range of 2.5 < x/c < 3.5. At x/c > 3.5, the upper and

lower dipoles move downstream and they are distinctly deflected downwards. There appears to

be severe distortions associated with structures at t3 = 30P, after which point the wake becomes

mostly quasi-symmetric with some minor irregularities. By t5 = 50P, the wake is quasi-symmetric

along the centerline, and it appears to be qualitatively similar to the case of St = 0.25 (see figure

4.2a), where the flow follows the “Symmetric Wake Regime”. The dipole shed by Foil 1 (B0 and

B1 at t5 = 50P) moves laterally towards the centerline and interact with its counterpart (T2 and T3)

shed by Foil 2 at x/c ≈ 2.5. The structures rotating in the same direction (e.g., B4 and T4) form

a new vortex pair with an internally induced motion that for example moves B4 upwards and T4

downwards. Farther downstream, these structures merge at x/c ≈ 5. This wake transition has not

been previously reported in other studies, possibly because the transition occurs at a late cycle.

On the contrary, the transition from symmetry to asymmetry in the wake is observed for tandem

foils pitching out-of-phase in figure 4.5b. The wake appears to be initially symmetric and well-

ordered at t1 = 10P with the dipoles (Dipole 3 and Dipole 4) moving away from the centerline.

This is qualitatively similar to the wake of out-of-phase pitching foils at St = 0.25 (see figure 4.2b).

Note that the wake of in-phase pitching foils are asymmetric at the same St and number of cycles

(see figure 4.5a). It can be argued that the perfect mirror image symmetry of the motion of out-of-

phase oscillation inhibits the formation of the deflected wake. At t2 = 20P, the first indicators of

symmetry breaking is observed as the perfect mirror image symmetry about the centerline (y/c= 0)
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Figure 4.6: Mean velocity profiles at different locations in the wake. Normalized cycle-averaged
streamwise velocity profiles (ũ/U∞) of in-phase pitching foils at St = 0.5 for (a) t1 = 10P, (b)
t2 = 30P, (c) t3 = 50P.
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Figure 4.7: Mean velocity profiles at different locations in the wake. Normalized cycle-averaged
streamwise velocity profiles (ũ/U∞) of out-of-phase pitching foils at St = 0.5 for (a) t1 = 10P, (b)
t2 = 30P, (c) t3 = 50P.

is slightly disturbed, although the wake remains mostly symmetric. This is similar to the findings

of Zhang et al. (2018), who reported but did not further investigate that symmetry breaking is

triggered after 20 oscillation cycles for side-by-side tandem foils oscillating out-of-phase. At t3 =

30P, we observe the initial formation of secondary structures, which coincides with disappearance

of the symmetric features of the dipoles (see Dipole 5 and Dipole 6 for comparison). There are

quantitatively insignificant differences between the wake at t4 = 40P and t5 = 50P, which suggests

that the wake will not further change considerably. Although not shown here for brevity, our

simulations up to 60 cycles indicated no change in the wake topology.

The transitioning trend of in-phase and out-of-phase oscillating tandem foils at St = 0.5 are

quantified using cycle-averaged streamwise velocity profiles (ũ/U∞) in figures 4.6 and 4.7, respec-
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tively. In-phase oscillating foils initially (at t1 = 10P) have two legs at each streamwise location

(that is x/c = 2, 2.5, and 3.5), which are not symmetric about y/c = 0. Velocity peaks that corre-

spond to the structures formed by Foil 1 are centered around y/c =−1, whereas the velocity peaks

for Foil 2 are centered around y/c = 0.5. This implies that the wake is deflected towards the neg-

ative y−direction (downwards). It is evident that symmetry is partially restored at t2 = 30P, espe-

cially in the near wake (x/c = 2 and 2.5) and around the centerline (−0.5 < y/c < 0.5). Symmetry

is further improved in the wake at t3 = 50P, where most of the wake irregularities are severely

distorted or diffused. Figure 4.7 demonstrates an opposite trend in the wake transition for out-of-

phase oscillating foils. The symmetric velocity profiles at t1 = 10P are distorted and lose their

symmetric features at t2 = 30P in figure 4.7b. They eventually transform to a fully asymmetric

(non-symmetric) profile at t3 = 50P in figure 4.7c.

Figures 4.8 and 4.9 show the lateral tracking of the vortex cores in the wake of in-phase and

out-of-phase oscillating foils at St = 0.5, respectively. These results enable further analysis of the

motion of vortical structures in time. Four vortex cores (T0, T1, B0 and B1 in figure 4.5) are moni-

tored following their formation at tin = 10P, 20P and 50P over three oscillating cycles. Moreover,

we also include the collective (spatial-averaged) location of the structures, approximating the true

collective wake centerline, in these plots to display the trends of the wake symmetry. For in-phase

oscillations in figure 4.8, two vortex dipoles are shed at tin,1 = 10P (B0 and B1 by Foil 1 and T0

and T1 for Foil 2), which move downwards without directly interacting with one another. This is

apparent from the non-intersecting track lines in figure 4.8a with a negative slope that implies the

negative lateral convective velocity of vortices. However, the vortex dipoles formed at tin,2 = 20P

start interacting during the 21st cycle, which is apparent by the intersection of the track-lines in

figure 4.8b. This induces a laterally positive convective velocity on the wake of Foil 1 (B0 and

B1), which moves it upwards (in the positive y−direction). The convective velocity of the wake

of Foil 2 remains negative. The restoration of symmetry is apparent when tracking the structures

formed at tin,3 = 50P in figure 4.8c. Here, the collective location of vortex cores in the y−direction

remains stable at y/c = 0 over the three cycles shown. Contrary to the case of in-phase oscillations,
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Figure 4.8: Trace of lateral (y−) location of the vortex cores for T0, T1, B0 and B1 in the wake that
is initiated at three different times (a) tin,1 = 10P, (b) tin,2 = 20P, (c) tin,3 = 50P for the in-phase
oscillating foils at St = 0.5. The vortex core labels refer to those shown in figure 4.5a.
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Figure 4.9: Trace of lateral (y−) location of the vortex cores for T0, T1, B0 and B1 in the wake that
is initiated at three different times (a) tin,1 = 10P, (b) tin,2 = 20P, (c) tin,3 = 50P for the out-of-phase
oscillating foils at St = 0.5. The vortex core labels refer to those shown in figure 4.5b.

there exists a symmetry breaking point in the wake of out-phase pitching foils that is identifiable in

figure 4.9. The wake symmetry is initially apparent from the vortex core track-lines in figure 4.9a,

in which the collective location lays exactly at y/c = 0. This symmetry is disturbed over time and

the collective location of structures deviate from y/c = 0. For example, the wake is distorted with

structures moving upwards in figure 4.9b. This behavior continues further in figure 4.9c, in which

case structures formed at tin,3 = 50P collectively deviate by ≈+0.4c from y/c = 0.

The examination of the wake structures suggests that there exists a dynamic interaction in

the wake of the two foils that is greatly affected by their St and phase differences. Although

changes in St and φ severely alters the unsteady wake evolution, it is apparent that the separation

distance between the two foils also influences the nature of vortex interactions. This topic deserves
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a detailed study of its own, which falls outside the scope of this chapter. Chapter 7 investigates the

influence of intermediate phase differences (0 < φ < π), and chapter 10 expands the discussion

with a thorough analysis encompassing a wide range of separation distances.

4.2.3 Evolutionary Propulsive Performance

The transitioning wake regime observed for both in-phase and out-of-phase pitching foils suggests

that there may also be a change in propulsive performance of the foils that have remained unex-

plored. This transition in performance may have been overlooked by most studies since they either

focused only on the collective (time-averaged) performance of the foils, or that their range of St

only exhibited the “Symmetric Wake Regime”. To investigate the unsteady behavior of perfor-

mance, we looked at cycle-averaged coefficients of thrust, power and side-force over 50 pitching

cycles.

Figure 4.10 shows the cycle-averaged coefficient of thrust (C̃T ) plotted against the number of

pitching cycles at St = 0.25 and St = 0.5, which correspond to cases with symmetric and transi-

tioning wake regimes, respectively. Similarly, the cycle-averaged coefficient of power (C̃P) and

side-force (C̃S) are shown for different St in figures 4.11 and 4.12, respectively. The latter also in-

cludes the total (collective for both foils) side-force for in-phase and out-of-phase pitching foils at

St = 0.25 and St = 0.5. The first main observation hints that the performance of both foils reaches

a quasi-steady behavior (asymptotic range) within only 20 cycles at lower St of 0.25, at which case

the wake follows the symmetric wake regime. At the higher Strouhal number of St = 0.5, however,

the foils approach their quasi-steady performance after the 40th cycle. This is the case, at which

the flow exhibits features associated with the transitioning wake regime. This observation hints

that the change in wake dynamics coincides with a change in propulsive performance of the foils.

The evolution of C̃T , C̃P and C̃S in figures 4.10a, 4.11a and 4.12a appear to involve no ma-

jor variations after the 10th cycle, which agrees with the quasi-steadily symmetric wake behavior

observed in figure 4.2. Moreover, the wake symmetry is corroborated by the identical thrust gen-
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Figure 4.10: The variation of cycle-averaged thrust coefficient for Foil 1 and Foil 2 in time for
in-phase and out-of-phase oscillations at (a) St = 0.25, (b) St = 0.5.
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Figure 4.11: The variation of cycle-averaged coefficient of power of Foil 1 and Foil 2 in time for
in-phase and out-of-phase oscillations at (a) St = 0.25, (b) St = 0.5.

eration and power consumption of Foil 1 and Foil 2. This is further confirmed by the zero total

(collective) side-force produced by the foils in figure 4.12a.

At higher St, the performance of the foils appear to change over time for both in-phase and out-

of-phase pitching cases. We start with the former, where the foils are pitching in-phase. Initially,

the thrust generation between Foil 1 and Foil 2 inhibits a difference that favors Foil 2, which is

also observed in lower power consumption of Foil 2. This gap in performance enlarges until the
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20th cycle, at which point the wake is predominantly asymmetric (see figure 4.5a). However, this

behavior starts to reverse itself after the 20th cycle, when the wake starts becoming more regular

and aligned with the streamwise direction (see figure 4.5a). This behavior diffuses over time with

similar thrust generated and power consumed by both foils after the 40th cycle. Although the

average C̃P of Foil 1 and Foil 2 does not change significantly during the transitioning wake regime,

there appears to be a dramatic increase in the average C̃T . This improves the overall performance of

the system. It is also observed that the initially non-zero total (collective) side-force (C̃S) produced

by the system coincides with the wake asymmetry. This implies that the symmetric wake leads to a

zero total side-force, whereas a non-symmetric wake results in a total non-zero side-force. This is

important in understanding the change in swimming synchronization of fish. Due to the downward

deflected wake (negative y−direction in figure 4.5a), foils produce positive C̃S, which diminishes

and converges to zero as quasi-symmetric wake is restored in time.

During the out-of-phase pitching, the performance of both foils appear identical in the initial

cycles in figure 4.10b, which agrees with the symmetric wake characteristics previously discussed

in section 4.2.2. At the 13th cycle, the first evidence of a departure from identical performance

of the two foils is observed, where the thrust generated by Foil 1 is starting to surpass that of

Foil 2. This departure from symmetry occurs earlier that the first indicators of wake symmetry
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breaking prior to the 20th cycle in the wake (e.g., figure 4.5b). By the 25th cycle, the performance

appears to start stabilizing to what eventually become a quasi-steady behavior in the 40th cycle.

This coincides with the timeline at which the wake also appears to have transitioned to a fully

non-symmetric regime. More substantial effect on performance of the out-of-phase pitching foils

is seen in figure 4.11b for the power consumption. The break in wake symmetry coincides with an

increase in C̃P for Foil 1 and a decreased in C̃P for Foil 2. However, average C̃P of the foils stays

nearly the same with the power consumption prior to the start of any changes on wake topology.

Similar to the case of in-phase pitching, there is a correspondence between asymmetry and non-

zero total side-force production for out-of-phase pitching in figure 4.12b. Here, the negative total

C̃S starts when symmetry is broken after the 13th cycle, which persists for the remainder of pitching

cycles.

The difference in side-force production complemented by the changes in thrust generation and

power consumption of tandem foils during the in-phase and out-of-phase pitching configurations

hints at the reasoning for certain swimming habit of fish in nature. For example, Ashraf et al.

(2016, 2017) showed in an aquarium experiment that the red nose tetra fish (Hemigrammus bleheri)

prefer to swim in side-by-side configuration with their body kinematics synchronizing such that

their caudal fins oscillate either in-phase or out-of-phase. However, the selected oscillation phase

difference (in-phase or out-of-phase) is not permanent since they switch the phase synchrony after

a number of cycles during swimming. This habit of fish in switching their synchronization in

side-by-side configuration could be related to the total non-zero side-force production observed

in the current chapter. This hints at the fact that switching from out-of-phase pitching, which

coincides with start of producing negative total side-force after the 13th cycle, to the in-phase

pitching configuration, which produces a positive total side-force, allows fish to maintain their

lateral position. Although the fundamental physics discussed here appear to address this natural

fish behavior, the specific case study on the experiments of (Ashraf et al., 2016, 2017) requires a

special attention that is outside the scope of the current chapter.
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4.3 Summary

The wake topology of two foils in tandem side-by-side configuration that are pitching either in-

phase or out-of-phase are studied at low and high St at Re = 4000. Fundamental dissimilarities

in the wakes are observed at the extreme cases of St = 0.25 and 0.5. At low St, flow is found to

be quasi-steady since the propulsive performance parameters, such as coefficients of thrust, power

and side-force, appear to exhibit no major changes over time. This appears to be consistent with

the wake topology that remains symmetric over time. However, the wake topology and variations

of the propulsive performance of tandem pitching foils change over time at higher St. The wake ap-

pears to exhibit what is referred to as the transitioning wake regime, in which initial wake topology

changes due to interactions in the wake. For the in-phase case, wakes of the foils does not exhibit

interaction at the beginning so that two distinct, deflected BvK vortex streets are shed similar to

the deflected wake of a single pitching foil. Interactions between the wakes initiates the merging of

the two vortex streets. This leads to restoration of a wake alignment with the freestream, or what is

referred to as a quasi-symmetric wake. On the contrary, the wake created due to the out-of-phase

pitching of tandem foils is initially symmetric due to the perfect mirror-image symmetry of the

out-of-phase motion. However, symmetry breaking is triggered after a number of pitching cycles,

which results in a non-symmetric wake with disordered vortical structures. This provides insight

to the swimming habit of fish, which switch between in-phase and out-of-phase configurations in

nature. This is best illustrated by the change in propulsive performance of the foils during each of

these configurations.

It is observed that propulsive performance parameters, such as coefficients of thrust, power and

side-force, follow closely the change in symmetric characteristics of the wake. At low St, where

the wake appears regular and symmetric, identical thrust generation and power consumption is

observed for both foils. Moreover, the same magnitude of side-force is also generated but in

opposite directions for each foil, leading to a zero total side-force in the system. A similar behavior

is also observed for high St pitching foils as long as the wake remains symmetric, i.e. quasi-steady

conditions for the in-phase pitching, and the initial cycles of the out-of-phase pitching. Foils
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oscillating in-phase at high St exhibit considerable improvement in thrust generation as the wake

regularity (quasi-symmetric characteristics) is restored in time. The power consumption of the

foils does not change significantly during this time, which implies an overall improvement in the

propulsive performance. However, the symmetry breaking in the out-of-phase pitching wake seems

not to affect the overall performance of the system since the collective (averaged) coefficient of

thrust and power for the two foils does not change significantly after the wake symmetry breaking

is triggered. Furthermore, the total non zero side-force production (collective between Foil 1 and

Foil 2) is found to closely follow the wake asymmetry. Initially positive total side-force production

of the foils drops to zero as their wake transitions from asymmetric to symmetric. However, foils

begin to produce negative total side-force after symmetry breaking is triggered. This hints at

a reasoning for fish alternating between in-phase and out-of-phase swimming synchronization in

their natural environment. Next chapter presents a case study inspired by this phenomenon, aiming

to delve deeper into its nuance.
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Chapter 5

IMPLICATIONS OF CHANGING

SYNCHRONIZATION ON PROPULSIVE

PERFORMANCE
†

Several fish species exhibit a tendency to form schools, a behavior driven by various factors such

as reproduction, hunting, predator defense, and hydrodynamic advantages (Shaw, 1962). Numer-

ous studies have delved into this phenomenon, shedding light on the advantages and ramifications

of different school formations in fish locomotion. For instance, Weihs (1973) proposed that the

diamond-shaped school offers the greatest hydrodynamic benefits to fish. However, Ashraf et al.

(2016, 2017) demonstrated that red nose tetra fish prefer a side-by-side arrangement, with ei-

ther in-phase or out-of-phase synchronization. Notably, their research revealed that these fish do

not maintain consistent phase synchronization during locomotion; instead, they alternate between

out-of-phase and in-phase synchronizations (see figure 2.8). Although Ashraf et al. (2016, 2017)

provided insightful explanations on the effect of swimming configuration and synchronization on

the fish propulsive performance, physical reasoning behind such swimming habit in changing the

†The content of this chapter has been published in whole or part, in Bioinspir. Biomim. with the citation: "Gun-
gor, A., & Hemmati, A., (2021) Implications of changing synchronization in propulsive performance of side-by-side
pitching foils. Bioinspir. Biomim., 16(3), 036006."
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synchronization of their tailfin oscillations remains unclear. Yet, this physical phenomenon in-

spired the current study that could lead to new design and operational strategies for Autonomous

Underwater Vehicles (AUVs) and underwater energy harvesting technologies.

The wake deflection phenomenon behind single oscillating foils is discussed in detail in section

2.2.1. The emergence of asymmetry in the wake of parallel oscillating foils is reported by Bao

et al. (2017) and Zhang et al. (2018) for out-of-phase motion without thorough discussion. In the

previous chapter, the development of deflected wakes for side-by-side pitching foils is identified,

and their implications for propulsive performance are documented. It is demonstrated that the

symmetric characteristics of the wake are strongly correlated with the total side-force production

of the foils. Lagopoulos et al. (2020) showed that deflected wake and total side force production

can be eliminated for oscillating foils in an in-line configuration. They reported three different

cases of interaction between the wake of the front foil and the back foil in which elimination is

observed. Moreover, they showed that back foils can have a significant effect on the performance

and wake of the front foil.

Nature of the asymmetric wakes could be coinciding with the fish swimming habits, such as

change of synchronization, as hinted in chapter 4. However, more in-depth studies are needed

to clearly identify the physical implications of such natural behaviors when incorporated in man-

made systems. Here, we study pure in-phase and out-of-phase oscillations combined with hybrid

swimming modes that incorporate a change in oscillation synchronization from in-phase to out-of-

phase in various stages of pitching. This chapter is structured, such that the details of the numerical

setup is discussed in section 5.1. This is followed by the main results and discussions in section

5.2. A brief summary is provided in section 5.3.

5.1 Problem Definition

Four hybrid synchronization modes, inspired by the experiments of Ashraf et al. (2016, 2017) on

red nose tetra fish, are simulated at St = 0.5 to identify their implications on both performance and
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Figure 5.1: Graphical demonstration of the hybrid oscillation modes.

wake dynamics for man-made systems. Cases with pure in-phase and out-of-phase oscillations,

examined in chapter 4, serve as reference studies. Other parameters used in the hybrid modes,

such as Reynolds number, separation distance, and pitching amplitude, are kept the same as in

chapter 4. A summary of the motion of the foils are illustrated in Figure 5.1. In in-phase pitching,

the foils follow the identical angular path, while they have perfect mirror-image symmetric motion

in out-of-phase oscillations. Modes 1−4 represent hybrid synchronization modes, characterized by

a transition from initially out-of-phase synchronization, spanning 20 oscillating cycles, to in-phase

synchronization. The wake and propulsive performance of each of these cases are investigated

for total 40 oscillation cycles. In Mode 1 and Mode 2, the change of synchronization (from out-

of-phase to in-phase) occur instantly. The initial direction of the foil motion after the change of

synchronization is counter-clockwise for Mode 1, while the first stroke is in the clockwise direction
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for Mode 2. The primary aim of this part of the study is to evaluate the effect of initialization on

the foil performance, since Liang et al. (2011) identified major impacts on both wake dynamics

and performance due to the initial behavior of oscillating foils. The complexity of these hybrid

modes is further extended, such that Mode 3 and Mode 4 present cases of delayed swimming

with a change in synchronization. Thus, there is a no-oscillation period during which the foils stop

pitching for the duration of two oscillation cycles just after the end of the 20th out-of-phase pitching

cycle. Thereafter, the foils continue their motion by pitching in-phase with a counterclockwise first

stroke for Mode 3, and vice versa for Mode 4. It is important to note that Mode 3 and Mode 4

were inspired by the burst-and-coast swimming in fish schools (Fish et al., 1991), in which the fish

swimming is not steady. In such cases, the fish follow an intermittent swimming with periods of

active oscillation (burst) and gliding (coast). Although the current two-dimensional simulations

may not directly correspond to the three-dimensional self-propelled burst-and-coast swimming

in fish (Kern and Koumoutsakos, 2006), they provide great insight into the hydrodynamics of

man-made systems, the performance characteristics of which should remain similar. Moreover,

the recent results of Zurman-Nasution et al. (2020) revealed that two-dimensional simulations

of flapping foils yield adequate results compared to three-dimensional simulations in a certain

parameter space that align with those in this dissertation.

5.2 Results and Discussion

We begin by revisiting the findings of Ashraf et al. (2017, 2016) as an inspiration for the current

study on man-made systems, which showed that proper swimming pattern and synchronization

improve the swimming performance in fish schools. Particularly, two red nose tetra fish were ob-

served to arrange their position in side-by-side swimming, while synchronizing their tailfin beating

frequency either in-phase or out-of-phase, to move faster in a shallow water channel. Moreover, it

was reported that they switched their tailfin synchronization from out-of-phase to in-phase, or vice

versa, in the course of their swimming exercise. This poses an interesting question on what are
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the implications of changing phase angle between side-by-side foils, e.g., switching of synchro-

nization, in the course of their locomotion. It is futile to address this problem from the perspective

of swimming efficiency since fish have certain position and synchronization that allows them to

exploit the wake for the best propulsive performance in a given setting (Weihs, 1973; Liao et al.,

2003).

Initially, we look at the cycle-averaged thrust and power coefficients (C̃T and C̃P) for pure

in-phase and out-of-phase oscillations of side-by-side pitching foils in figures 4.10b and 4.11b.

Out-of-phase oscillating foils produce significantly larger thrust than that of in-phase oscillating

foils at a cost of more power consumption. These serve as reference cases for understanding

the implications of switching synchronization in side-by-side foils, and the preference for out-of-

phase compared to in-phase oscillations. Given the smaller thrust generation for in-phase pitching

foils, it is hypothesized that such thrust generation is not sufficient and the configuration is not

adequately stable for side-by-side foils to maintain their position steadily with increasing flow

speed. It is also significant to identify that non-equivalent thrust generation and power consumption

for these cases are highly correlated with asymmetry in the wake due to in-phase and out-of-phase

oscillations. Similarly, the wake asymmetry coincides with a non-zero total side-force generated by

side-by-side foils, which are shown in figure 4.12b. Out-of-phase oscillating foils produce negative

total side-force after the symmetry in the wake is disturbed at approximately the 13th cycle. On

the other hand, positive total side-force produced by in-phase oscillating foils approaches zero as

the symmetry in the wake was restored in time. Detailed discussion on the correlation of wake

asymmetry and propulsive performance for side-by-side foils is provided in chapter 4.

Based on the existing evidence on the performance and wake of oscillating side-by-side foils,

inspired by red nose tetra fish tailfin locomotion, we hypothesize that symmetry breaking in the

wake of out-of-phase oscillating side-by-side foils motivates abrupt switching of synchronization

for enhanced performance. Although 2D simulations on oscillating side-by-side foils overlook

fundamental flow features in 3D fish swimming, balancing the production of side force correlated

with the wake symmetry could be a contributing factor for abrupt change of synchronization in-
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spired from natural fish swimming habits. This physical processes motivates better hydrodynamic

performance, i.e., maintaining lateral positioning and minimizing side- (lift-) force, in AUVs and

man-made underwater energy harvesting systems. It is naturally preferred that side-by-side foils

oscillate out-of-phase since it leads to larger thrust generation. However, this only remains true

until the negative total side-force production begins, at which point foils would be displaced from

their current or desired position if not properly constrained. Switching to in-phase oscillations,

which exhibits positive side-force production, allowing them to maintain or stabilize their lateral

position. Once the zero total side-force production is achieved, they can return to their out-of-

phase oscillation to generate more thrust. Similar observations were also reported by Lagopoulos

et al. (2020) for the effect of synchronization on side-force (or lift in their terminology) for in-line

tandem foils. They remarked that under specific synchronization conditions between the front foil

wake and back foil, the tandem configuration produced negligible side force with a considerable

enhancement in thrust. This only provides a very brief explanation on why such variations may

be observed in nature, and more detailed studies of a 3D self-propelled fish swimming may be

needed for deeper insights into their swimming habits. Here, however, we focus on the implica-

tions of change in performance and wake development in man-made systems due to sudden or

gradual change of oscillation synchronization in side-by-side foils inspired by tailfin locomotion

of swimming fish.

5.2.1 Propulsive Performance of the Hybrid Modes

We consider four hybrid synchronization modes, all of which are based on an initially out-of-phase

oscillations for 20 cycles. Each mode, thereafter, is designed based on different times for the on-set

of switch of synchronization to in-phase oscillations, details of which are previously explained in

section 5.1. Figure 5.2 presents the propulsive performance of both foils during all four hybrid

modes, which are compared with the reference case of pure out-of-phase oscillations. Thrust and

power coefficients in all cases converge to similar performance characteristics observed for pure in-

85



20 25 30 35 40
0.25

0.5

0.75

1

1.25

Mode1 (Foil 1)
Mode1 (Foil 2)
Mode2 (Foil 1)
Mode2 (Foil 2)
Out-of-phase (Foil 1)
Out-of-phase (Foil 2)

20 25 30 35 40
1

2

3

4

5

6

7

Mode1 (Foil 1)
Mode1 (Foil 2)
Mode2 (Foil 1)
Mode2 (Foil 2)
Out-of-phase (Foil 1)
Out-of-phase (Foil 2)

20 25 30 35 40
0.25

0.5

0.75

1

1.25

Mode3 (Foil 1)
Mode3 (Foil 2)
Mode4 (Foil 1)
Mode4 (Foil 2)
Out-of-phase (Foil 1)
Out-of-phase (Foil 2)

(a)

20 25 30 35 40
1

2

3

4

5

6

7

Mode3 (Foil 1)
Mode3 (Foil 2)
Mode4 (Foil 1)
Mode4 (Foil 2)
Out-of-phase (Foil 1)
Out-of-phase (Foil 2)

(b)

Figure 5.2: The variation of cycle-averaged (a) thrust and (b) power coefficients for Foil 1 and Foil
2 in time for modes 1−4 and out-of-phase oscillation.

phase oscillations shortly after the switch in synchronization. However, there are major differences

between each case that require further discussion.

First, there is a difference in the rate at which foils approaches quasi-steady performance in

thrust compared to power following the flow disturbances introduced by the change in oscillations.

To this effect, coefficient of power adjusts quickly within 3 cycles to in-phase characteristics (see

figure 5.2), while C̃T required significantly more cycles to approach quasi-steady behavior. Partic-

ularly, Mode 1 is the fastest in reaching stable thrust production within 3 cycles after the switch

occurred, while thrust generation for Foil 2 slowly approaches that of Foil 1 until 30th−35th cy-

cle. Mode 2, Mode 3 and Mode 4 are slow in their recovery, in which a prolong effect on the
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Figure 5.3: The variation of cycle-averaged side-force coefficient for Foil 1, Foil 2 and the system
(Foil 1 and Foil 2) for modes 1−4 and in-phase and out-of-phase oscillations.

performance of both foils is apparent until end of the 40th cycle. It is also important to note that

differences in thrust generation between Foil 1 and Foil 2 at the onset of stability for Mode 4 (say

30th cycle) is 1.9% lower than those for Mode 1, 79.3% lower than Mode 2, and 28.1% lower than

Mode 3. Since power variations are very similar for all cases, it is apparent that the larger thrust

generation of Mode 1 and Mode 3 translates to improved efficiency, which are not shown here for

brevity.

There are significant differences in terms of side-force production for both foils amongst the

hybrid modes of oscillation, which are shown in Figure 5.3. All hybrid modes, except for Mode
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1, experiences a major reduction in the total side-force production after a small number of cy-

cles. This hints that the change in oscillation in mid-swimming has more implications on retaining

position or separation distance than it does on improved propulsion. Although the long-term pro-

duction of the side-force for Mode 2, Mode 3 and Mode 4 collapse to zero by the 40th cycle, Mode

2 appears to achieve zero total side-force production faster than other modes. Particularly, Mode

2 reaches zero total side-force production by the 30th cycle, while Mode 3 and Mode 4 does not

get to zero production until the 38th cycle. It is also intriguing that zero total side-force production

is achieved faster with changing the oscillation synchronization mid-swimming compared to the

case of pure in-phase pitching by more than 20 cycles. The near zero total side-force production

implies that the two foils, inspired by fish tailfins, will be able to retained their collective position

inside the fluid medium. The non-zero total C̃S indicates that the two constrained foils will drift

apart at a large rate over long periods of time if they do not change their oscillation correlation.

The apparent large difference in total side-force production between Mode 1 and Mode 2,

which only differ on the initiation of oscillations (direction of first stroke), implies a very complex

wake dynamics in play, which deserve a detailed wake analysis. One possibility is the effect of

pitching initiation (direction of first pitch), and another can be related to vortex interactions and

wake history. The observation of the difference between Mode 1 and Mode 2 is consistent with

those on the propulsive performance of single foils (Liang et al., 2011; Cleaver et al., 2012), as

well as tandem foils (see chapter 4). However, it expands on these observation by indicating that

the effect of initiation remains significant even if there exists a wake history. Thus, the differences

in performance are mostly related to the formation and detachment of structures from the body,

rather than their interactions in the wake. The combination of differences between hybrid modes

themselves, and that of pure in-phase pitching case in general, brings out the need to study the

wake topology that may be related to variations in C̃S for each foil. While a general discussion of

the wake dynamics is provided in the next section to support our hypothesis, a more comprehensive

study of the wake structures as well as their developments, interactions and models for four hybrid

modes with abrupt changes in synchronization are provided in the next chapter (chapter 6).
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5.2.2 Wake Analysis

The study of Godoy-Diana et al. (2008) on wake dynamics and performance of pitching foils at

a range of Strouhal numbers revealed that there is a general coincidence in appearance of wake

asymmetry and hydrodynamics benefits. They identified that the wake asymmetry occurs at a

certain range of Strouhal number and non-dimensional amplitude for pure-pitching foils, which

coincides with the Strouhal number range of natural swimming of fish. This was further discussed

by Khalid et al. (2020), who observed that swimmers achieve their maximum efficiency just be-

fore the onset of the wake deflection, after which their performance deteriorates with asymmetric

wakes. Based on this, they suggested that fish must be exploiting the asymmetric wake regime for

maneuvering purposes or avoiding it for stability. Thus, the wake asymmetry and its implications

in the case of intermediate change in oscillations is critical in understanding the swimming habit

of fish for inspiration to achieve better performing man-made systems, e.g., underwater propulsors

and energy harvesters.

The Strouhal number of St = 0.5 in the current study is the median St in the experiments of

Ashraf et al. (2017, 2016), in which the switching of swimming synchronization is observed in

fish. It is also larger than St = 0.3, which Godoy-Diana et al.Godoy-Diana et al. (2008) reported as

the threshold after which the wake appears asymmetric. This indicates that there may be a major

change in wake asymmetric characteristics due to the switch in synchronization that requires a

more detailed investigation. To this end, contours of spanwise vorticity (ω∗
z ) are shown in figure 5.4

for both reference cases and the hybrid modes of oscillations at the 40th cycle (t/P= 40). Although

the in-phase pitching motion is assigned to the hybrid oscillation cases between the 20th (or 22th

for Mode 3 and Mode 4) and 40th cycles (t/P = 20− 40), the wake of pure in-phase pitching

foils significantly differed from that of all hybrid modes. As shown in figure 5.4a, an in-phase

pitching system of side-by-side foils produces a single horizontal wake at St = 0.5. Moreover, it

initially forms a split-wake that does not fully merge to create a single vortex street until the 30th

cycle (see figure 4.5a). The hybrid modes of oscillations, on the other hand, all retain a split-wake

(figures 5.4c−5.4f), similar to the pure out-of-phase pitching case in figure 5.4b. We measured
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Figure 5.4: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) for side-by-side foils pitching (a) in-

phase, (b) out-of-phase, (c) Mode 1, (d) Mode 2, (e) Mode 3, (f) Mode 4 at t/P = 40.
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the wake width at x/c = 3 and t/P = 40 for all cases, based on the method of Sarkar and Sarkar

(2010). In discussion of the the wake, we only focus on how the wake development and width

changes with the change in prescribed motion. Here, the width is defined as the distance between

two points, where the velocity deficit drops below half of the maximum value of the streamwise

velocity deficit in the wake. Since the wake in all hybrid modes have two distinct branches, the

wake width is calculated between the maximum of the upper branch and the minimum of the lower

branch. The width of the wake of Mode 3 and Mode 4 were 2.66c and 2.67c, respectively, which

are both higher than 2.45c for Mode 1 and 2.55c for Mode 2. Note that Mode 3 and Mode 4

experience interruption in swimming for 2 cycles, compared to Mode 1 and Mode 2, after which

they switch their synchronization from out-of-phase to in-phase pitching. This observation implies

that the changes in thrust generation, power, and side-force amongst different hybrid oscillatory

modes coincide with differences in terms of wake dynamics.

We next quantify the angle of wake deflection for both vortex streets for all cases. Although

none of the wakes considered are mirror image symmetric, the angle of deflection for the upper

and lower streets were similar between Mode 2, Mode 3 and Mode 4 (see figure5.4). In case

of Mode 1, however, the deflection angle for one street is significantly different than that of the

other. This coincides with the total non-zero side-force generation diverging from zero for Mode

1 compared to the other hybrid modes of oscillation. There also appears to be a split in the path of

vortical structures at x/c ≈ 4.5 in the lower street for Mode 3, which is only observed in the lower

branch of Mode 1 at x/c ≈ 3. Mode 2 and Mode 4 does not exhibit a similar split in the near and

mid-wake, that is x/c ≤ 5.

Figure 5.5 shows the trace of vortical structures in the wakes of modes 1− 4. Two pairs of

counter-rotating vortices shed by Foil 1 and Foil 2 are tracked for a time equal to 3 oscillation

cycles starting from tin = 37P. Trails of Mode 2 and Mode 4 follows a v−shape, while vortices

shed in Mode 1 and Mode 3 follows an arched path that straightened after x/c ≈ 3.5. Collective

location of the vortices, however, remains close to the centerline (y/c = 0) for all hybrid modes,

except for Mode 1, which experiences a divergence at x/c > 4. This deviation from the centerline,
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Figure 5.5: Trace of location of vortex cores shed by Foil 1 (B) and Foil 2 (T) for 3 oscillation
cycles starting from tin/P = 37 for (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4. (+) and (-)
correspond to positive and negative vortex cores, respectively.

similar to the comparison of deflection angles, coincides with the fact that Mode 1 is the only mode

in which non-zero total side force production is observed.

The difference in wake structures are proportionally more significant than small changes in

performance characteristics (mostly on thrust generation and efficiency) of the foils. This is based

on the observation that time-averaged thrust coefficient for hybrid modes appear to only vary by

1.3%−12.5% compared to pure in-phase pitching foils. However, their wakes are fundamentally

different. The combination of these observations indicates that wake structures only relate to per-

formance on certain control settings, which does not include the presence of a wake history, similar

to the simulations here. This agrees with the findings of Floryan et al. (2020), which suggested
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Figure 5.6: The profiles of mean streamwise velocity for all hybrid modes at x/c = 3 and the 40th
cycle.

that swimming performance is not directly indicated by the wake structures. They further reported

that vortex spacing, pattern and interactions could be misleading to interpret the swimming per-

formance in some cases. Although we provide information here that verifies their reporting, we

have also observed that there are certain correspondence in simple contentious oscillatory motions

between performance and wake structures, which may not necessary be reciprocal between the

two.

The time-averaged streamwise velocity profiles in figure 5.6 identify the variations in the struc-

ture of mean wake amongst hybrid modes of oscillations. The velocity profile at the 20th cycle

consists of double peaks for both vortex streets, which suggests a thrust generating wake. This,

however, is changed for hybrid modes, in which the mean velocity profiles consist of a single peak

for both upper and lower vortex streets. The mean wake for Modes 2− 4 appear distorted, such

that there is for example a resemblance of two small, and closely assembled, peaks at y/c ≈ 1 for

Mode 2 and at y/c ≈ −1 for Mode 4. Thus, it is plausible that the wake in Mode 2, Mode 3 and
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Mode 4 require more time for recovery compared to Mode 1. This suggests that the fast recovery

of Mode 1, compared to Modes 2− 4 that have a different initial direction of pitching, translates

to differences in the mean wake. Given the direction of initial pitching for Mode 2 and Mode 3

are opposite of one another, it is apparent that the wake development does not necessarily correlate

closely with the initial direction of pitching.

5.3 Summary

The propulsive performance and wake of side-by-side pitching foils are studied numerically at St =

0.5 and Re = 4000. Cycle-averaged coefficients of thrust, power and side-force are investigated

for in-phase, out-of-phase and hybrid oscillations to investigate the implications of abrupt change

in phase difference inspired from swimming fish observed in nature. Non-zero total side-force

generation by pitching foils could be a major contributing factor that motivates adopting such

habit in design and operation of underwater propellers and energy harvesters. The results show

that abruptly changing the phase difference between side-by-side foils, from out-of-phase to in-

phase, compensates for zero total side-force generation to maintain lateral positioning or other

maneuvering desires. This hypothesis is further supported by the findings based on hybrid modes

of oscillations, Modes 1−4, which consist of both out-of-phase and in-phase pitching, similar to

experimental observations of Ashraf et al. (2017, 2016) for red nose tetra fish. In the case of Modes

2− 4, negative total side-force generation drops to zero relatively quickly (5− 7 cycles) after the

switch from out-of-phase to in-phase pitching.

The coefficient of thrust and power differed amongst different hybrid modes of oscillation,

which show the importance of correct timing in change of synchronization for optimum benefit.

They also differed from the case of pure in-phase pitching foils. While the variations in thrust

were more apparent, there appeared to be minimal changes in power requirements, which hints

at improvements in efficiency depending on onset of the hybrid modes. Despite small changes in

performance amongst the hybrid modes and in-phase pitching, the former oscillations exhibited
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fundamentally distinct wakes than that of the pure in-phase pitching foils. The upper and lower

vortex streets merged to form a single vortex street at the wake centerline for pure in-phase pitching

(y/c = 0), while two distinct vortex streets were observed for all hybrid modes that diverged from

one another. These two streets in the wake of Modes 1−4 were qualitatively similar to the wake

of pure out-of-phase pitching foils even though the foil performance was very different and more

similar to the in-phase pitching. This indicated that using only wake structures may be misleading

in determining the performance characteristics of fish in the presence of a wake history, similar to

abrupt change of synchronization or interruption in swimming.

The differences in wake structures amongst hybrid modes of oscillation hint at a change in how

newly formed structures, following the change in oscillation pattern, interact with exiting structures

in the wake. Consequently, the subsequent chapter is dedicated to examining this dynamic behavior

of unsteady wakes and exploring vortex models.
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Chapter 6

IMPLICATIONS OF CHANGING

SYNCHRONIZATION ON WAKE

DYNAMICS
†

There exists a known correlation between the side (lateral) force production and asymmetric wakes

(Khalid et al., 2015; Lagopoulos et al., 2020) for pitching and heaving foils. As hinted in the pre-

vious chapter, this may also be relevant to the case of tandem foils undergoing abrupt changes in

their pitching synchronization. Chapter 5 revealed that varying synchronization patterns enabled

the foils to maintain their lateral positions inside the multi-foil arrangement. Furthermore, it is

observed that the foils require a period of 10− 20 cycles to reach quasi-steady performance de-

pending on the onset of change in synchronization. The current chapter expands on these findings

by exploring the implications of such effects on the unsteady wake dynamics for tandem foils.

Here, the central theme is to identify and illustrate underlying flow control mechanisms fish may

employ during swimming in order to modify their wakes and consequent hydrodynamic forces

over their bodies for propulsion. The paper is organized in the following manner. The problem

†The content of this chapter has been published in whole or part, in Phys. Fluids with the citation: "Gungor, A.,
Khalid, M.S.U., & Hemmati, A., (2021) How does switching synchronization of pitching parallel foils from out-of-
phase to in-phase change their wake dynamics?. Phys. Fluids, 33(8), 081901."
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description is provided in section 6.1 followed by the discussion on the results in section 6.2. A

brief summary and conclusion is included in section 6.3.

6.1 Problem Definition

The same four hybrid synchronization modes discussed in chapter 5 (see figure 5.1) are employed

in this analysis. However, the parameter space for both the Reynolds number and the Strouhal

number is expanded here, aiming to comprehensively characterize the effects of sudden phase

changes on the propulsive performance and the unsteady wake dynamics of parallel pitching foils.

The detailed wake dynamic analysis initially focuses on the case of St = 0.5 and Re = 4000,

while the effect of St is examined by comparing the wake and performance of the two foils at

St = 0.25− 0.40 in conjunction with the results discussed for St = 0.5. Finally, the special case

of a lower Reynolds number is studied for St = 0.5 at Re = 1000 to examine the applicability of

wake and performance observations in flow conditions mostly observed in low-speed underwater

maneuvers. At low St (St = 0.25 and 0.3), foils maintained φ = π for the initial 10 pitching cycles,

at which they had established a quasi-steady behavior as depicted in figure 4.2 while phase change

took place at the 20th cycle for high St cases (St = 0.4 and 0.5) following chapter 5. Therefore, the

wake and propulsive performance of each of these modes were investigated for a total of 30 and

60 oscillation cycles for low and high St cases, respectively.

6.2 Results and Discussion

The hydrodynamic performance of the system of side-by-side pitching foils for St = 0.5 and Re =

4000 is detailed in chapter 5. When comparing the performance of the foils between Mode 1

and Mode 2 (see figures 5.2 and 5.3), an inherent difference is observed between the two hybrid

modes. This difference can be attributed to the existing wake and performance asymmetry at such

high St and Re. This phenomenon leads to lack of symmetry in both performance and the wake

between the two foils at the 20th cycle, which is retained following the phase change between
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them. Interestingly, thrust generation for the foils start approaching one another at the 40th cycle,

but their side-force variations remain substantially different even in quasi-steady conditions, i.e.,

40th cycle. It hints at potential variations in wake dynamics that remain intact despite quasi-steady

state of the flow. Similar observations are apparent for Mode 3 and Mode 4 in terms of thrust

generation. However, side-force differences between the two modes appear to shrink approaching

the quasi-steady conditions. This further depicts a potential alteration of the wake dynamics, which

appear to be suppressed by the suspension of oscillations after the 20th cycle for Modes 3 and 4

compared to Modes 1 and 2.

6.2.1 Unsteady wake evolution

In this section, we focus on the vortex dynamics in the wake of two parallel foils in side-by-side

configurations at St = 0.5 and Re = 4000. This is meant to illustrate how the wake dynamics and

coherent structures influence the production of lateral (side-) force. For this purpose, not only

the vortex shedding process from the individual foils are described, but also the interference of

these vortices, their shape and orientation in the overall wake are explained in detail. It establishes

how they affect the lateral force acting on the foils for all four hybrid modes despite their similar

kinematics, particularly Mode 1 versus Mode 2, and Mode 3 versus Mode 4.

Secondary vortex street (Mode 1)

In mode 1, foils begin their in-phase oscillations with an upstroke motion during the 20th cycle.

Throughout the motion, including the out-of-phase pitching before the abrupt phase change, pos-

itive and negative leading edge vortices (LEVs) are formed on the leading edge of the foils (see

figure 6.1a). LEVs travel on the lower side of Foil 1 and the upper side of Foil 2 towards the trail-

ing edges of the two foils. One LEV per pitching cycle separate from the foils only to be merged

with structures formed at the trailing edges, which are referred to as trailing edge vortices (TEVs).

These are then shed into the wake. Figure 6.1a show the alignment of vortices at the onset of switch

in phase difference, i.e., t = 20.5P. Two vortex dipoles are observed (Du1 and Dl1) moving down-
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stream. These dipole structures are the last vortex pairs formed by the initial out-of-phase motion,

and they do not appear symmetric about the horizontal axis (y/c = 0). Dl1 traveled upwards due to

its higher cross-stream velocity, whereas Du1 exhibits a very small cross-stream displacement with

a large stream-wise convective speed (see figure 6.1b). During the 22nd pitching cycle, Dl2 begins

to traverse upstream to interact with the consecutive pair shed from Foil 1. One of the poles of Dl2

that has a negative vorticity (blue color in figure 6.1c) paired with a pole of Dl3 with opposite sign

vorticity (positive - red color). This forms two new dipoles that are separated and move in opposite

directions in the wake (see arrows in figure 6.1c). The newly formed dipole structure moving up-

stream remains under the lower primary vortex street and diffuses after a few more cycles without

making further significant contributions to the wake dynamics.

Newly formed Dl2 and Du2 approach each other until their initial interactions in the 24th cycle

form a small recirculatory zone, which is identified by the dashed rectangle in figure 6.1e. Two

vortices in the middle of this region retain their position, hence forming a small region of consis-

tent recirculatory fluid. The other two structures are convected downstream. The newly formed

recirculary flow region between the two vortex streets remains intact for 4 cycles, until the end

of the 28th cycle in figure 6.1g. Although this local recirculatry region moves downstream, its

convective speed is slow. Moreover, the circulatory motion of the fluid inside this region induces

secondary upwash and downwash flows after and prior to this zone, which are identified in fig-

ure 6.1f at x/c = 4. This intermediate dynamics provides some additional space for a secondary

vortex street to be formed by the traces of positive vorticity from the wake of Foil 2 and negative

vorticity from that of Foil 1. These are highlighted in the rectangular region in figure 6.1h. On

the contrary, Raj and Arumuru (2020) found the jet deflecting on one side due to the interaction

of vortices shed from their foils in a similar configuration but oscillating in a quiescent fluid. For

the remaining oscillation cycles, this secondary vortex street grows from which the induced flow

keeps the two primary streets from merging with each other. It is important to note that the vortex

pair in the recirculation zone, shown in figure 6.1f, stays in the middle of the two primary vortex

streets only to diffuse at a later stage by the induced momentum from the newly forming secondary
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Figure 6.2: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) at (a) 21th, (b) 27th, (c) 32th, and (d)

40th pitching cycle for flows over side-by-side foils following Mode 2 for St = 0.5 and Re = 4000.

vortex street. Hence, the wake does not merge to form a single vortex street similar to that for a

pure in-phase pitching case (Dewey et al., 2014). On the contrary, foils develop a two vortex street

tilted away from each other similar to pure out-of-phase pitching foils in side-by-side configura-

tions (Bao et al., 2017; Quinn et al., 2014). The same wake mechanism is also observed for Mode

2 in quasi-steady conditions.

Effect of initiation (Mode 1 versus Mode 2)

The time-lapse of wake contours for Mode 2 are shown here for only limited time instants for

brevity. It is suffice to state that the wake experiences the formation of a secondary vortex street

portrayed in figure 6.2. At this stage, this formation is dominated by small structures with negative

vorticity from both foils. From the 27th pitching cycle shown in figure 6.2b, the secondary vortex
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street grows downstream and becomes more prominent. Interestingly, this expanding vortex street

splits the overall wake by pushing the intermittently interacting coherent structures further down-

stream. The presence of this circulatory flow region deflects the primary vortex streets. Thus, there

are no apparent interactions between the two vortex streets, hinting that their dynamics appears not

to depend on one-another. As the secondary vortex grows past the 32nd cycle in figure 6.2d, the

wake deflections persist throughout the remaining oscillation cycles, approaching a quasi-steady

behavior. This aligns with the variations in thrust, power, and side-force.

The wake immediately following the change in phase angle for Mode 2 experiences subtle

differences with Mode 1, which attributes to the variations previously described in their perfor-

mances. Particularly, the wake asymmetry leads to a close interaction of Du1 and Du2 in Mode 2

(figure 6.2a) compared to their counterpart in Mode 1 (Dl1 and Dl2 in figure 6.1b). The separation

distance between the pairs is almost zero for Mode 2, whereas they are separated by ≈ 1c in Mode

1. This separation between the pairs in Mode 1 allows Dl1 (figure 6.1b−f) to separate and interact

in the wake, initiates the formation of what is then referred to as a “small recirculation zone” for

Mode 1 in figure 6.1f. Contrarily, the interactions of Du1 and Du2 in Mode 2 (figure 6.2a−b) do

not allow for Du1 to act as a rogue structure in the wake. Thus, there is no local recirculation zone

formed between the 25th to the 32nd cycle, as observed for Mode 1. This coincides with the total

side-force approaching zero for Mode 2, whereas it remains non-zero for Mode 1. Finally at the

quasi-steady state, both modes experience a secondary vortex street formed in between the two

primary streets. However, the one for Mode 2 is not tilted as seen for Mode 1 on the account of

a “small recirculation zone" that does not form for Mode 2. This has a long lasting effect on the

wake, as well as thrust generation and side-force production of the foils, in Mode 1 compared to

Mode 2.

Effect of suppressed oscillations (Mode 3 & Mode 4)

The oscillatory motion of foils in Mode 3 and Mode 4 are suspended for 2 cycles after the 20th

cycle. Then, they begin their in-phase oscillations. Two vortex pairs, shed just before the foils
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Figure 6.3: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) at (a) 22.5th, (b) 25th, (c) 32nd, and (d)

40th pitching cycle for flows over side-by-side foils following Mode 3 for St = 0.5 and Re = 4000.

became static, are trapped in a recirculation region in the near wake as seen in figure 6.3a. Upon

the start of oscillations in Mode 3, the formation and shedding of more vortex pairs for the next

three oscillation cycles form a region with intermittent flow dynamics that is identified by a dashed

rectangular enclosure in figure 6.3b. This region is referred to as an intermittent regime because

these vortices undergo intense interactions within this region, and no distinct pairing mechanisms

may be identified. During three more oscillation periods, two interesting phenomena are observed:

(1) a secondary vortex street, identified by a box in figure 6.3c, is formed by the trailing parts of

larger structures with negative vorticity (blue color in figure 6.3) that are shed from Foil 1 in the

middle of the two primary vortex streets, and (2) a circulatory fluid zone is formed by the vortices

shed during the 23rd to 28th cycles, which convects downstream. The circulatory zone appears to
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Figure 6.4: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) at (a) 23rd and (b) 40th pitching cycle

for flows over side-by-side foils following Mode 4. for St = 0.5 and Re = 4000.

experience a large convective speed, such that it moves downstream quickly compared to previous

observations of similar processes in Mode 1.

The growth of the secondary vortex street (shown in figure 6.3d) appears to be the key factor

in the primary vortex streets attaining their quasi-steady behavior by bifurcating the region of the

main flow activity. Evidently, the angles of the primary vortex street do not change after the 30th

cycle, that is after the secondary vortex street grows to dominate the centre of the wake. To this

effect, the dynamics of these vortex streets approaches a quasi-steady nature after the 36th cycle.

The wake configurations resulted from Mode 4 are also presented in figure 6.4 to account for

the effect of suspended oscillations and wake alternations arose by changing the initiation of foil

oscillations. The foils in Mode 4 has a similar general behavior to Mode 3 with the opposite

direction of initial pitch. There are, however, very subtle differences in the wake compared to

Mode 3, which are substantially less significant than differences observed between Mode 1 and

Mode 2. First, the suspended oscillation periods allow for the wake to settle, such that there are no

rogue structures formed in the wake for one mode versus the other, compared to what is observed

for Mode 1. Second, the wake developments appear to be very similar, but yet slightly get altered

by the convective speed and direction of structures immediately behind the two foils (compare

figure 6.4a with 6.3a). These small variations in the intermittent stage of the wake development
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Figure 6.5: Cycle-averaged pressure variation on (a) top surface of Foil 1, (b) top surface of Foil
2, (c) bottom surface of Foil 1, and (d) bottom surface of Foil 2 in the case of Mode 1 at St = 0.5
and Re = 4000.

lead to Mode 4 reaching quasi-steady settings earlier (32nd cycle) compared to Mode 3. These

results are not shown here for brevity. However, the wake appears fairly similar between the two

modes once reaching quasi-steady conditions (compare figure 6.4b and figure 6.3d). Thus, it is

evident that the suspension of oscillations significantly limits the effect of initiation of oscillations

in both performance and wake dynamics for this problem.
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6.2.2 Surface Pressure Distributions and Secondary Vortex Street

Surface pressure variations are expected to dominate in alleviating side-forces. To examine this

hypothesis, the phase-averaged distribution of the surface pressure coefficient (C̃pres = p/0.5ρU2
∞)

are shown in figure 6.5 for Mode 1 at St = 0.5 and Re = 4000. The profiles of pressure on upper

surfaces of both foils are presented in the first row, whereas those on lower surfaces are shown

in the second row. It is interesting that pressure variations on the foils approach their respective

quasi-steady states in all cases faster than the wake. Figure 6.5a shows the phase-averaged pressure

data on the upper surface of Foil 1. At the end of their out-of-phase oscillations in the 20th cycle,

negative pressure is observed on 80% of this surface, with a large negative variation towards the

foil’s trailing edge, which is mostly attributed to the detachment of TEVs. After the phase is

switched, surface pressure transforms to positive values on the leading 90% of the foil’s surface,

while remaining negative on the remaining part. There is a sharp decrement in pressure in the

22nd cycle and no significant changes are observed afterwards. A similar pattern is exhibited by

pressure on the lower surface of Foil 1. Considering the side-force mathematically defined by the

area between respective curves for each cycle in figures 6.5a and 6.5b, it depicts mitigation of the

side-force right after the 22nd pitching cycle.

For Foil 2, pressure is positive on the leading 20% part of the upper surface, whereas it becomes

negative for x/c > 0.20. For its whole lower surface, pressure remains negative. Similar to Foil

1, the pressure distribution remains the same for all pitching cycles following the 22nd period.

The only side-force likely to be experienced by Foil 2 is due to small pressure differences on the

leading 18% of upper and lower surfaces. Hence, quantitative and qualitative analyses demonstrate

here that abrupt change of the phase angle attributes to the mitigation of side-force experienced by

the system of foils, similar to solitary swimmers, due to wake deflection. Similar pressure related

phenomena are also observed around the two foils for the remaining hybrid modes, which are not

shown here for brevity.

To examine the dynamics of the secondary vortex street formed in all hybrid modes, the time-

averaged stream-wise velocity profiles are presented at x/c = 2.50 and x/c = 3.50 in Figures 6.6a
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Figure 6.6: Normalized stream-wise velocity profiles in the wake at (a) x/c = 2.50 and (b) x/c =
3.50, (c) x/c coordinates of the leading coherent structures of the secondary vortex streets for all
four hybrid modes at St = 0.5 and Re = 4000.

and 6.6b, respectively. It is evident that the presence of the secondary vortex streets attributes to

velocity deficits for all four modes. The upper and lower momentum-surfeit regions exist here due

to the two primary vortex streets formed by both foils. The overall (total) thrust generation is also

adversely affected after the switching of phase angle as manifested by the reduction in the strength

of these velocity-surfeit regions compared to those depicted in figure 5.6 for purely out-of-phase

pitching kinematics. Figure 6.6b presents the stream-wise velocity profiles for all hybrid modes

considered in this study at x/c = 3.50. It is observed that the primary vortex streets has slightly

shifted their positions downstream, which is also noticed in the vorticity contours of figure 6.1.

Velocity profiles in figures 6.6a and 6.6b for all four modes demonstrate a similarity in the overall
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wake dynamics as well as specifically for secondary vortex streets. It is important to mention

that the secondary vortex street does not maintain its coherence for pure out-of-phase pitching

oscillations, as shown in figure 4.5b. Its formation is observed after around 25 oscillation cycles.

However, it does not bifurcate the wake and diffuses quickly providing an opportunity for the two

primary vortex streets to interact with each other.

In order to understand the growth rate of the secondary vortex streets for all four hybrid modes,

the coherent structures in the secondary vortex streets are visualized to track the motion of the

leading vortices (positive vortex for Mode 4 and negative vortices for the remaining modes) in the

wake. The abscissa coordinates of the core of these vortices are shown in figure 6.6c. It is apparent

that the growth rate of secondary vortex streets is almost the same for all hybrid modes and their

leading vortices traverse the same distance, although the phase is switched from φ = π to 0 in

different ways. The results thus far reveal an underlying flow physics in the wake of a simplified

side-by-side foil system due to abrupt changes in their phase angle, which involves the formation

and interaction of a secondary vortex street. This wake mechanism can be a contributing factor

in fish switching their synchronization to adjust to external environmental changes or to maintain

their orientation at higher speeds (Re) and faster oscillatory conditions (St).

6.2.3 The effect of Strouhal number

In order to extend this study and identify the effect of Strouhal number on hydrodynamic perfor-

mance parameters and wake dynamics, the cases of St = 0.25− 0.4 are examined at Re = 4000.

However, the results presented for these studies are limited to hybrid Mode 2 and Mode 4 for

brevity. These results indicate that there exists a change in performance of the two foils for the

lower St cases compared to St = 0.5 that is extensively discussed earlier. Figure 6.7 shows the un-

steady variations of C̃S, C̃T , and C̃P for St = 0.3. Note that for the case of St = 0.3, the quasi-steady

conditions are achieved within 10 oscillation cycles, which is why the onset of the abrupt change in

the phase angle occurs at t = 10P. It is also evident that the overall side-force gets reduced to zero

within 9 oscillation cycles following the change in the phase-angle. For the other cases not shown
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Figure 6.7: Hydrodynamic performance parameters, (a) C̃S, (b) C̃T , and (c) C̃P for the two pitching
foils at St = 0.3 and Re = 4000.

here, the zero total side-force is achieved after 10 cycles for St = 0.25 in Mode 2 and Mode 4, 15

cycles for St = 0.3 in Mode 4, 25 cycles for St = 0.4 in Mode 2, and 27 cycles for St = 0.4 in Mode

4. The side-forces of both Foil 1 and Foil 2 approach their respective values for the case with pure

in-phase pitching motion within 12 oscillation cycles after the phase switching for St = 0.3 (Mode

2) as shown in figure 6.7(a). These observations imply that mid swimming phase-alteration is an

important flow control technique for a wide range of Strouhal numbers. Under these conditions,

the two foils generate thrust equal to what they produce in the case with pure in-phase motion,

while consuming equal power.

Naturally, the focus moves to the vortex dynamics in the wake of the two pitching foils at the

lower St cases, which are presented in figure 6.8 for Re = 4000 and St = 0.25, when the foils

oscillate following the kinematics of Mode 2. The results elucidate that the secondary vortex street
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Figure 6.8: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) at (a) 10th, (b) 15th, (c) 19th, and (d)

25th pitching cycle for flows over side-by-side foils following Mode 2 for St = 0.25 and Re= 4000.
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Figure 6.9: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) at 30th pitching cycle for flows over

side-by-side foils following (a) Mode 2 and (b) Mode 4 for St = 0.3 and Re = 4000
.
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only appears at higher St cases. Thus, the two wakes merged to form a single vortex street in the

absence of the secondary vortex street at lower St. This wake topology resembles that of observed

in chapter 4 for pure in-phase pitching parallel foils (see figure 4.2a). In brief, a double-street wake

is observed at the end of the 10th pitching cycle, which coincides with the time right before the

switch in phase angle occurs. Thus, the wake is symmetric around the horizontal axis (y/c = 0)

based on its generic shape (not for the exact alignments of positive and negative vortices in those

two streets). In this configuration, vortices shed from the two foils traverse in the wake at an

angle from the respective foils. After the phase is altered, the vortices produced by the two foils

follow straight horizontal paths for three oscillation cycles. During the 4th pitching cycle after

the phase switching, the two streets start approaching each other at a distance of x/c = 1 from

the trailing edges of the foils. It is important to observe the constructive interference between

vortices, i.e., the merging of similar signed vortices from the two streets, which would form bigger

coherent structures arranged into a single street, looking like a traditional reverse von Karman

vortex street. For the phase switching in Mode 4, stationary states of foils for the time equal

to two periods of oscillations allow the previously shed vortices to traverse farther downstream,

which would not let the newly formed vortices interact with them in any way. In this scenario, the

vortices produced by the two foils follow straight horizontal paths symmetrically around y/c = 0

axis for three oscillation cycles after the phase is changed. In this case, similarly, a wake with

single vortex street is formed. The only change at a slightly higher St, i.e., still lower than 0.5,

is that the merging of two vortex streets into a single street is delayed. Thus, the wake requires

a few additional oscillation cycles (i.e., 10 cycles for St = 0.3) to reach the same quasi-steady

behavior observed for St = 0.3, as shown in figure 6.9. It is important to notice that the wake and

performance at St = 0.30 exhibit very stable characteristics for both Modes 2 and 4. Earlier, Khalid

and Akhtar (2017) examined the effect of different initial conditions on the force production by

flapping airfoils at St = 0.10 and St = 0.30 to reveal the existence of limit cycles. It means that

the dynamical response of airfoils remains independent of the initial conditions for low Strouhal

numbers. When the foils change their out-of-phase oscillations to in-phase motion in the present
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Figure 6.10: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) at (a) 20th and (b) 43th pitching cycle

for flows over side-by-side foils following Mode 2 for Re = 1000 and St = 0.5.

simulations, it may be considered equivalent to another condition to initiate the flow dynamics.

Because this dynamical system exhibits the limit cycle phenomenon, the motion with the switched

phase brings this dynamical system to a response after some number of oscillation cycles which it

would experience for foils beginning their motion from rest. Hence, the wake topology of Modes

2 and 4 shows conditions similar to those with foils pitching in-phase.

6.2.4 The special case of a lower Reynolds number

The applicability of the observed mechanisms to lower Reynolds number cases are further evalu-

ated by repeating the same simulations at St = 0.5 for the case of Re = 1000. From the results, it

is clear that the role of phase alteration is not substantially different from that of higher Re flows

at the same St. The out-of-phase pitching motion of the two parallel foils at St = 0.5 produces two

distinct vortex streets, which would start coming close to each other by the end of the 20th oscilla-

tion cycle, shown in figure 6.10a. This interaction is anticipated to lead to more incoherent vortex

dynamics in subsequent cycles, similar to the phenomena observed in figure 4.5b for Re = 4000.

At this time instant, switching the phase helps stabilize the flow and forms two vortex streets for a

bow-shaped wake configuration, which coincides with the formation of the secondary vortex street

as presented in figure 6.10b. It is evident from figure 6.11a that the overall side-force (C̃S) does
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Figure 6.11: Hydrodynamic performance parameters, (a) C̃S, (b) C̃T and (c) C̃P for the two pitching
foils at St = 0.5 and Re = 1000

.

not reduce to zero for Mode 2 contrary to Re = 4000 as in figure 5.3a. On the other hand, zero

total side force production is observed for Mode 4 both at Re = 1000 and Re = 4000. Thrust gen-

eration by Foil 1 is substantially enhanced compared to the pure in-phase oscillations (see figure

6.11b). However, Foil 2 generates almost the same thrust with the altered phase compared to the

pure in-phase pitching oscillations. Moreover, these foils expend slightly higher power compared

to those undergoing pure in-phase motion, which is observed in figure 6.11c. This translates to an

improvement in total efficiency of the system since the enhancement in thrust is greater than the

increased power consumption.
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6.3 Summary

Numerical simulations of the flow over two foils pitching in side-by-side arrangement reveals

unique unsteady wake modifications induced by abrupt changes in the phase angle between them.

Four different hybrid modes are considered for St = 0.25− 0.5 at Re = 1000 and 4000, where

the phase angle of oscillations is changed from π to 0. The modes considered in this study are

distinguished by either the direction of the first pitching stroke, or suspension of oscillations prior

to the switch in the phase angle. Although we observe no major deviations in the performance and

wake behavior due to suspended oscillations (Mode 3 and Mode 4) compared to Mode 1 and Mode

2, examining the implications of the suspension period forms the basis of a future study. Three

main and novel observations related to flow physics in this study were: (1) identifying a secondary

vortex street in the wake, which dictates the interaction of primary vortex streets behind parallel

foils; (2) characterizing the implications of suspended oscillations mid-swimming on performance

and wake topology of oscillating parallel foils with abrupt change in their synchronization; (3) the

dominance of Strouhal number relative to Reynolds number on performance and wake topology

due to abrupt switch in synchronization of parallel foils.

In all modes at St = 0.5 and Re = 4000, the quasi-steady wake consists of two distinct vortex

streets, angled away from the centerline (y/c = 0). This is contrary to the wake topology com-

monly observed for in-phase pitching parallel foils, which consists of a single vortex street and

no secondary streets. The unsteady evolution of the wake exhibits the formation of a secondary

vortex street between the two primary streets behind individual foils. These contribute to the wake

retaining its split pattern by suppressing any interactions between the two primary vortex streets

formed behind each foil. This is attributed to the induced upward-downward flow by the resultant

vortex interactions. Further examinations of variation in surface pressure shows that changes in

the phase angle reduce the pressure difference, which is attributed to alleviating side-forces for the

overall dynamical system. Moreover, velocity profiles identify major changes to the wake due to

the formation of, and dynamics related to the secondary vortex streets. It is also revealed that this

new vortex street grows at the same rate for all four hybrid modes. Thus, its dynamics appears
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independent from the initial dynamics associated with the foils motions. There are subtle but ap-

parent differences in both performance and wake dynamics due to opposite initial oscillations for

foils in Mode 1 versus Mode 2, which is substantially suppressed by the suspension of oscillations

in Mode 3 and Mode 4.

Changing the oscillating St reveals that the wake dynamics and performance of the foils

strongly depends on St following an abrupt change in the phase angle. Contrary to the case for

St = 0.5, the two foils approach the conditions of pure in-phase pitching within 9−27 oscillation

cycles at St = 0.25−0.4. While the total side-force production is reduced to zero, the time required

to attain this condition increases at higher St. The wake topology also exhibits the conditions

of pure in-phase pitching foils with a single vortex street. The effect of lower Reynolds number

(Re = 1000) at St = 0.5 is insignificant. Main characteristics of performance parameters and wake

features at St = 0.5 are similar between Re = 1000 and 4000. The main difference is that the total

side force generated by Mode 2 drops to zero at Re = 4000 but it only decreases significantly

at Re = 1000. Thus, it is apparent that for this particular kinematic setting, the implications of

Strouhal number dominate those of Reynolds number. Given the profound impact of the Strouhal

number and phase synchronization on the flow dynamics around parallel pitching foils, the natural

next step is to explore the impact of intermediate phase differences (0 < φ < π) for a range of

Strouhal numbers. This investigation constitutes the primary emphasis of the subsequent chapter.
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Chapter 7

EFFECT OF PHASE DIFFERENCE ON

WAKE CHARACTERISTICS AND

PROPULSIVE PERFORMANCE
†

The influence of phase difference on the wake dynamics and performance of parallel oscillating

foils has received some attention, albeit limited. Dewey et al. (2014) conducted experiments in

a water channel on parallel pitching foils over a wide range of phase difference and separation

distances. Their observations revealed that different phase angles resulted in unique wake patterns,

leading to the development of wake interpretation models for in-phase, out-of-phase, and interme-

diate phase motions. Experiments with similar range of parameters at higher Reynolds numbers

were reported by Kurt and Moored (2018a). Their study showed that foils in side-by-side config-

urations could enhance their efficiency by 17%, and thrust by nearly 20%, with phase differences

of φ = π/2 and φ = 3π/2 when the separation distance was equal to one chord-length. A shared

limitation of these experiments, however, was the fixation of the Strouhal number at St = 0.25.

†The content of this chapter has been published in whole or part, in In Fluids Engineering Division Summer
Meeting with the citation: "Gungor, A., Khalid, M.S.U., & Hemmati, A., (2022, August) Effect of Phase Difference
on Wake Characteristics and Propulsive Performance of Pitching Foils in Side-by-Side Configurations. In Fluids
Engineering Division Summer Meeting, Vol. 85840, p. V002T05A031 American Society of Mechanical Engineers."
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In Chapter 4, the effects of in-phase and out-of-phase kinematics on the unsteady wake evo-

lution and the propulsive performance of foils operating across a range of Strouhal numbers is

explored. Following this, chapters 5 and 6 delves into the dynamics of sudden shifts from out-

of-phase to in-phase pitching motions. These studies underscored the significant role of Strouhal

number in influencing both the wake dynamics and the performance of foils in parallel configu-

rations. Building upon these findings, the current chapter aims to further investigate the influence

of phase differences on flow characteristics at a range of St. Employing a comprehensive range

of phase differences, from in-phase (φ = 0) to out-of-phase (φ = π), at increments of π/6, and

Strouhal numbers spanning from St = 0.15 to St = 0.5, this chapter addresses a notable gap in the

literature regarding the combined effects of phase difference and Strouhal number on biomimetic

robotics. This aspect is crucial for advancing our understanding of bio-inspired marine locomo-

tion. The structure of this chapter is organized to first present the main findings in Section 7.1,

followed by a concise summary in Section 7.2.

7.1 Results and Discussion

Chapter 4 provides an in-depth analysis comparing the wake dynamics and performance metrics

of oscillating foils in both in-phase (φ = 0) and out-of-phase (φ = π) motions, highlighting the

significant influence of the Strouhal number. For both phase angles, wakes at low St reach quasi-

steady characteristics after a few oscillation cycles (see figure 4.2), whereas the foils at higher

St exhibit unsteady transitions in their wake patterns and require more than 30 cycles to attain

quasi-steady features (see figure 4.5). This observation aligns well with the temporal evolution of

cycle-averaged performance metrics (see figures 4.10, 4.11, and 4.12). Consequently, this chapter

narrows its focus to examining intermediate phase differences (π/6 < φ < 5π/6) at St = 0.25

and St = 0.4, representing lower and higher Strouhal numbers, respectively. The ensuing analysis,

therefore, considers 20 and 45 oscillation cycles for St = 0.25 and St = 0.4, respectively, to account

for the distinct unsteady behaviors exhibited by these systems at different Strouhal numbers.
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Figure 7.1: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) of parallel foils pitching at St = 0.25

and t = 10P for (a) φ = π/6, (b) φ = π/2, (c) φ = 5π/6.

7.1.1 Wake Evolution

Evolution of the wake at intermediate phase angles display similar steady characteristics with in-

phase and out-of-phase kinematics at low St. When coherent vortical structures are formed behind

the foils, the wake preserve its features without any significant alteration between pitching cycles.

Therefore, contours of spanwise vorticity are plotted in figure 7.1 only at t = 10P, where P is the

period of a pitching cycle for varied phase angles at St = 0.25. For φ = π/6, the foils produce a

merging wake that is qualitatively similar to the wake of in-phase pitching foils (see figure 4.2a),

where new coherent structures are formed in the mid-wake around the centerline. It occurs as

a result of amalgamation of the upper and lower wakes. Here, the mean motion of the vortical

structures exhibit a slightly downward slope contrary to the wake at φ = 0, where the structures are

symmetric around the centerline. This can be attributed to the asymmetry introduced by the phase
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Figure 7.2: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) of parallel foils pitching for St = 0.4

and φ = π/6 at (a) t1 = 10P, (b) t2 = 40P.
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Figure 7.3: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) of parallel foils pitching for St = 0.4

and φ = π/2 at (a) t1 = 10P, (b) t2 = 40P.

difference of the pitching motion. Similar to the correspondence between φ = 0 and φ = π/6, wake

structures at φ = 5π/6 resemble those of foils pitching at φ = π (see figure 4.2b), which is expected

considering the small alteration between phase angles. Here, vortex streets of the upper and lower

foils drift apart from each other at an inclination angle without any merging. Vortex streets at

φ = π/2 constitute a “v-shaped” formation that is symmetric about the centerline. It appears

similar to the case of φ = 5π/6 but with a smaller inclination angle. However, it contradicts with

the experiments of Dewey et al. (2014). They observed that negative vortices approached each

other and concentrated on the centerline, resulting in the formation of asymmetric wakes.
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Figure 7.4: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) of parallel foils pitching for St = 0.4

and φ = 5π/6 at (a) t1 = 10P, (b) t2 = 40P.

Steady characteristics of the wake, which are highly prominent at lower St, disappears with

increasing St. Temporal variations in the wake structures at St = 0.4 are demonstrated in figures

7.2, 7.3, and 7.4 at φ = π/6, φ = π/2, and φ = 5π/6, respectively. The wakes exhibit consequential

transition between t1 = 10P and t2 = 40P in all three cases. Unsteadiness in the wake diminishes

once the vortex patterns achieve their terminal forms after more than 20 pitching cycles (not shown

here for brevity). A major difference between the cases with lower and higher St is the evolution

process of the wake rather than the vortex patterns when steady-state conditions are achieved.

This is apparent from the resemblance between figures 7.1a and 7.2b, where the foils pitching at

φ = π/6 experience merged wakes at both lower and higher St, respectively. Similarly at φ = π/2

and φ = 5π/6, qualitatively analogous “v-shaped” separated vortex patterns are observed at low St

(figures 7.1b and figure 7.1c) as well as at high St for quasi-steady conditions (figures 7.3b, 7.4b).

The presence of secondary vortex structures on the centerline is only observed in the cases with

high St. It can be best explained considering the phenomenon of deflected wakes. Oscillating foils

produce deflected von Karman streets at a considerably high St, as shown by many studies (Cleaver

et al., 2012; Godoy-Diana et al., 2009; von Ellenrieder and Pothos, 2008). When a deflected wake

is formed, secondary structures are also shed, which originates from the main street but moves with

opposite inclinations. They are observed in the wake of solitary oscillating foils (Jones et al., 1998;
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Godoy-Diana et al., 2008; Liang et al., 2011) as well as tandem foils (chapter 4). It is important

to note that a deflected wake with a secondary street is also observed in our cases of an isolated

foil at high St, St ≥ 0.4, but those are not shown here for brevity. The formation and growth of

these structures is expected to play an important role in splitting the wake and establishing the “v-

shaped” vortex pattern. It is plausible to state that split wakes at high St (see figures 7.3b and 7.4b)

have greater deflection angles, which can be explained by the separating effect of the secondary

street. In chapter 6, it is shown that similar structures played a crucial role to separate the wakes of

parallel foils, when the phase angle was abruptly switched from out-of-phase to in-phase. However,

they also appear, even though barely visible, in the early cycles of φ = π/6 at St = 0.4 (see figure

7.2a) before the merger of the upper and lower wakes.

7.1.2 Propulsive Performance

Here, the propulsive performance of this dynamical system is assessed using cycle averaged values

of coefficients of thrust and power for each foil as well as efficiency of the overall system (Foil 1 +

Foil 2) in figures 7.5 and 7.6 for St = 0.25 and 0.4, respectively. Quasi-steady wake characteristics

in the cases with low St are observed in their performance metrics. These parameters reach their

stable solutions within the first 10 cycles and remain unchanged thereafter as long as kinematics of

the foils does not change (see figure 7.5). On the other hand, more than 30 cycles are necessary to

reach a quasi-steady solution for St = 0.4 (see figure 7.6). Although unsteadiness of the solution

is clearly highlighted in the thrust generation, there exist some variations in the power coefficient.

Generation of thrust by the system (Foil 1 + Foil 2) displays an enhancement with increasing

phase angle from 0 to π at both high and low St in the current study. The same trend persists

in the power consumption, which is aligned with findings of Dewey et al. (2014). On the other

hand, efficiency of the system exhibit dissimilar characteristics for high and low St. There is

an amplification in efficiency with increasing phase difference for St = 0.25 whereas efficiency

of the system at φ = π/2 is significantly smaller than other phase differences at St = 0.4. This

could be the reason for the behaviour of red nose tetra fish in experiments of Ashraf et al. (2016,
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Figure 7.5: The unsteady variation of cycle-averaged (a) coefficient of thrust, (b) coefficient of
power, and (c) efficiency at different phase angles for St = 0.25

2017) preferred to swim in either in-phase or out-of-phase rather than using intermediate phase

differences.

It is important to note here that the propulsive performance parameters for the case with

φ = π/2 are significantly different from those at φ = 5π/6 or π , although they all yield similar

characteristics for the wake development. This finding suggests that wake features of an oscillating

foil alone cannot be a reasonable reference for assessing the foil’s performance. This also supports

the argument of Floryan et al. (2020), illustrating that similar wake configurations yield disparate

characteristics of propulsive performance.
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Figure 7.6: The unsteady variation of cycle-averaged (a) coefficient of thrust, (b) coefficient of
power, and (c) efficiency at different phase angles for St = 0.4

Table 7.1: Percent deviation in the cycle-averaged coefficient of thrust (∆C̃T ) and power (∆C̃P)
between Foil 1 and Foil 2 at a range of phase differences for St = 0.25 and St = 0.4.

St = 0.25 St = 0.4

∆C̃T ∆C̃p ∆C̃T ∆C̃p

φ = 0 %1.4 %0.1 %1.4 %0.3

φ = π/6 %13.1 %2.1 %14.9 %4.7

φ = π/2 %34.7 %0.5 %23.1 %10.1

φ = 5π/6 %18.1 %0.4 %19.8 %3.6

φ = π %0.0 %0.0 %0.4 %0.3
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Another major outcome of this study is uneven thrust generation by Foil 1 and Foil 2 for inter-

mediate phase difference (π/6 ≤ φ ≤ 5π/6), which achieves its peak at φ = π/2. This disparity

gradually disappears as the phase difference approaches in-phase (φ = 0) or out-of-phase (φ = π)

conditions. For example, Foil 1 yields 33% and 21% more thrust than Foil 2 at φ = π/2 for

St = 0.25 and St = 0.4, respectively. However, there is no substantial difference between the thrust

coefficients of the foils. It is also important to note that there exists a similar trend in the coefficient

of power only at high St. Table 7.1 summarizes these results in terms percentage of differences in

C̃T and C̃P between the foils, that are calculated at the end of the 20th and 45th cycle at St = 0.25

and 0.4, respectively.

7.2 Summary

The effect of phase difference and St on evolution of the wake and propulsive performance char-

acteristics of pitching foils in side-by-side configurations is numerically examined. It is revealed

that low Strouhal number (St ≤ 0.3) and high St (St ≥ 0.3) regimes have distinct impacts on the

wake and performance. Vortex streets shed by the upper and lower foils merge around the center-

line at small phase differences (φ ≤ π/6), whereas a split wake with vortex streets moving away

from each other in opposite directions is formed at higher phase differences (φ ≥ π/3). Formation

and growth of the secondary vortex street around the centerline of the wake is conjectured to be

an underlying reason for splitting of wakes. Development of similar wake structures is also ob-

served in parallel pitching foils when the phase difference is abruptly switched from in-phase to

out-of-phase.

Phase difference between the foils and St are observed to directly influence the propulsive

performance characteristics of the system. Generation of thrust by this coupled dynamic system

is augmented as the phase difference increases for both high and low values of St, which is ac-

companied by more consumption of power. Both foils produce nearly identical thrust when they

undergo in-phase (φ = 0) or out-of-phase (φ = π) pitching. However, there exists a discrepancy
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between the thrust coefficients of the foils for intermediate phase differences. This contrast at-

tains its peak at φ = π/2 such that one of the foils outperforms the other. Outcomes of this study

provide adequate flow control strategies for bio-inspired underwater propulsors. In particular, an

intermediate phase difference can be utilized as a maneuvering technique due to the production of

unequal thrust by the foils, whereas steady swimming can be achieved by employing in-phase or

out-of-phase pitching motion.

Expanding on chapters 4-6, this chapter has delved into various facets of the flow dynamics

around pitching foils in a side-by-side configuration, characterizing the wake dynamics and propul-

sive performance. A thorough understanding of performance characteristics obtained from these

chapters lays the groundwork for developing scaling laws for pitching foils operating in schooling

configurations. This topic will be explored in depth in the subsequent two chapters, collectively

fulfilling Objective B.
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Chapter 8

SCALING LAWS FOR PROPULSIVE

PERFORMANCE OF FOILS IN

SIDE-BY-SIDE CONFIGURATION
†

Driven by the growing interest of the scientific community in fish-like swimming, analytical mod-

els were developed to accurately estimate the propulsive performance metrics of oscillating foils

and plates. Floryan et al. (2017) used the formulations of lift-based forces by Garrick (1936)

and added mass force formulation by Sedov (1965) to develop new scaling laws for thrust coeffi-

cient, power coefficient and efficiency of a single (isolated) heaving and pitching foil. Buren et al.

(2019b) adapted these scaling laws to the combined motion of heaving and pitching for a single

foil. Floryan et al. (2018) later identified the importance of the offset drag term, which depends

on Reynolds number to determine the peak efficiency. Based on their model, Senturk and Smits

(2019) developed scaling based on Reynolds number for propulsive performance of an isolated

foil performing purely pitching oscillations. Expanding this work to tandem foils, Quinn et al.

(2014) scaled the thrust and power of a single foil oscillating near a solid boundary, which repre-

†The content of this chapter has been published in whole or part, in J. Fluids Struct. with the citation: "Gungor,
A., & Hemmati, A., (2021) The scaling and performance of side-by-side pitching hydrofoils. J. Fluids Struct., 104,
103320."
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Table 8.1: The parameter space.

Parameters Value

Number of Foils 2

Configuration Side-by-Side (Parallel)

Strouhal Number (St) 0.15−0.5

Reynolds Number (Re) 1000−12000

Phase Difference (φ ) 0−π

Separation Distance (y∗) 0.5c−2c

Amplitude of Oscillations (θ0) 8◦

Incoming Flow Uniform (U∞)

Oscillations Prescribed sinusoidal

sents out-of-phase oscillating foils in side-by-side configuration, as a function of St and separation

distance.

Despite these studies, there is limited understanding on how the performance of pitching foils

in side-by-side configurations, in terms of thrust and power, scale over a wide parametric space.

This motivated the current chapter to examined the performance and scaling of such systems over

a wide parametric space, which includes variations in Reynolds number, Strouhal number, sepa-

ration distance, and phase difference. The complete list of parameters used in the current study

is given in table 8.1. In contrast to the previous chapters, this chapter adopts a Reynolds number

range of Re = 1000− 12000. Because Senturk and Smits (2019) identified that the flow around

isolated pitching foils did not change significantly after Re = 8000, the current range of Re would

be sufficient in capturing potential Re effects. Furthermore, this range coincides with the lower

spectrum of the cruising Reynolds number observed in fish swimming (Gazzola et al., 2014). In

this analysis, steady-state performance metrics are examined, leading to the coefficients of thrust

and power, as well as efficiency, being expressed as time-averaged values, denoted by CT , CP,

and η , respectively. The approach for calculating these time-averaged quantities, and a discussion

on their distinction from cycle-averaged ones, are provided in detail in section 2.1. The structure
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of this chapter is designed such that the developed scaling laws and the results showcasing their

predictive capabilities are detailed in section 8.1, followed by a summary of the study provided in

section 8.2.

8.1 Results and Discussion

We begin by looking at the propulsive performance of an isolated foil and two parallel foils by

evaluating their coefficients of thrust and power as well as their hydrodynamics efficiency. We,

then, develop scaling laws for coefficients of thrust and power for the two foils oscillating in side-

by-side configurations.

8.1.1 Propulsive Performance

The variation of time-averaged coefficients of power (CP) and thrust (CT ) with St are shown for

Foil 1 and Foil 2 in figure 8.1 along with the performance of an isolated foil at different Reynolds

numbers for fixed separation distance (y∗ = 1c ) and phase difference (φ = 0◦). The results indi-

cates that power increased slightly with Re for the solitary foil and two parallel foils. Moreover, the

foils in a side-by-side configuration consumes significantly less power in comparison to the single

foil. Senturk and Smits (2019) also reported similar upsizing effects of Re on CP for an isolated

foil, while Huera-Huarte (2018) made similar observations for the case of side-by-side configura-

tions. Moreover, this variation in power coefficient is amplified with increasing St, such that the

differences in CP were insignificant at St = 0.15 and grow to a maximum of 20% at St = 0.5.

The more substantial effect of Re is observed on the time-averaged coefficient of thrust due to

considerable thrust enhancement associated with increasing Reynolds number for the entire range

of St in figure 8.1b. This trend is consistent with the findings of Senturk and Smits (2019) at

Re = 500−32000 for an isolated foil, and those of Borazjani and Sotiropoulos (2008) at Re = 300

to infinity (inviscid flow). At a given Re, parallel foils generates slightly smaller thrust compared

to isolated foils. However, the difference in thrust generation between combined parallel foils (av-
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Figure 8.1: The variation of time-averaged (a) coefficients of power and (b) coefficients of thrust
in a range of St and Re for both tandem and isolated foils at y∗ = 1c and φ = 0.

erage of two foils) and an isolated foil is observed to remain constant for the range of St considered

here. Another important observation is that Foil 2 generates larger thrust than Foil 1. This disparity

becomes more pronounced at higher St, which might be due to the initial movement of the foils.

Although the foils are configured, such that they are mirror image symmetric about the centerline,

it is shown in chapter 4 that the in-phase pitching motion of the foils could not be described as

symmetric about the centerline. Similar patterns are also shown in the non-identical performance

of the two foils despite their symmetric configuration and oscillations.
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Figure 8.2: The variation of propulsive efficiency of tandem and isolated foils in a range of St and
Re at y∗ = 1c and φ = 0.

As mentioned, oscillating foils produces drag rather than thrust at considerably low St (Tri-

antafyllou et al., 1991; Koochesfahani, 1989; Triantafyllou et al., 1993). Effects of Reynolds num-

ber and side-by-side configuration on the characteristics of drag-to-thrust transition of parallel foils

is also shown in figure 8.1b. As expected, increase in Re helps the foils start producing thrust at

lower St. The side-by-side configuration, however, has the opposite effect on the transition. It

increases the St at which transition occurs compared to an isolated foil. Moreover, the delay due

to the side-by-side configuration of the foils is less apparent at higher Res.

The impact of Reynolds number on the propulsive efficiency of parallel pitching foils are shown

in figure 8.2. At lower St and Re, a single oscillating foil have higher efficient compared to those

two arranged in parallel, whereas the latter configuration become more beneficial at higher Re and

St. For example, in the case of St = 0.3, parallel foils exhibit lower efficiency than the isolated foil

at Re = 1000. The performance of parallel foils surpass that of an isolated foil when Re increases

to 4000. It have already been shown that St for the maximum efficiency got shifted to lower values

for higher Re (Senturk and Smits, 2019; Das et al., 2016). Similarly, decreasing the separation

distance shifts the St at which transition occurs for side-by-side foils oscillating out-of-phase (Bao
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et al., 2017). However, Reynolds number and separation distance are not the only parameters that

affect the performance. Here, it is apparent that the parallel foils attain their maximum η at higher

St values compared to an isolated foil and this trend is persisted for all Reynolds numbers. At

Re = 4000, the efficiency of an isolated foil is maximum at St = 0.3, while the average efficiency

of two parallel foils continues to rise for the whole range of St. Cases for the remaining Re values

also exhibit similar trends.

8.1.2 Scaling laws

There have been several studies aimed at scaling the propulsive parameters for oscillating foils

(Floryan et al., 2017; Garrick, 1936; Sedov, 1965; Buren et al., 2019b; Floryan et al., 2018; Senturk

and Smits, 2019). These studies focused to developing scaling relations for thrust coefficient and

hydrodynamic efficiency of solitary pitching foils based on St and f ∗. Senturk and Smits (2019)

presented the following simple and reduced forms of scaling relationships for a single pitching foil.

CT = γSt2 −CD, (8.1)

CP = ζ St2 f ∗, (8.2)

where γ , CD and ζ denoted empirically computed coefficients. Senturk and Smits (2019) further

determined that these empirical coefficients depended on Re−1/2 , which resembled a laminar

flow scaling. Moreover, Simsek et al. (2020) showed that a similar Reynolds number scaling

existed for in-line tandem foils oscillating at a fixed separation distance and phase difference.

They reported that Reynolds number-based scaling perfectly modeled the performance of tandem

foils by incorporating the term f ∗−1 to find γ and ζ .

To begin, the collapse of data on existing scaling relations developed for tandem foils (Simsek

et al., 2020) is evaluated for parallel foils for a fixed separation distance and phase difference.

These relations are then expanded to incorporate the effects of phase difference and separation

distance within the range considered in this study. Therefore, two new terms are introduced in the
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Figure 8.3: The variation of coefficient of thrust of tandem foils in a range of phase difference and
St.

scaling relations for CT and CP, which modified the scaling equations to the following forms:

CT = τ β γ St2 −CD, (8.3)

CP = ε κ ζ St2 f ∗, (8.4)

where τ and ε denotes coefficients of phase difference, and β and κ represents coefficients of sep-

aration distance for CT and CP, respectively. These coefficients are computed empirically similar

to γ and ζ , that consider only the effect of Reynolds number on thrust and power.

In order to determine the formulations for τ and ε , we vary the separation distance and exam-

ined their effects on thrust and power. Figures 8.3 and 8.4 present the plots for variations of CT

and CP for Foil 1 and Foil 2 as a function of phase difference for a range of St, respectively. It is

evident that CT and CP follow different patterns for Foil 1 and Foil 2 for each St. It is observed

that these trends can be best represented by third-order polynomials. Thus, the terms τ and ε are
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Figure 8.4: The variation of coefficient of power of tandem foils in a range of phase difference and
St.

determined as functions of phase difference with third order polynomial coefficients, such that

τ = ct6 φ
3 + ct7 φ

2 + ct8 φ + ct9,

ε = cp4 φ
3 + cp5 φ

2 + cp6 φ + cp7.

Similar analyses are used to determine β and κ . Figures 8.5 and 8.6 show the variations of

CT and CP for Foil 1 and Foil 2 for a range of separation distances at different Strouhal numbers,

respectively. Moreover, it is considered that the effects due to separation distance should disappear

if the foils are sufficiently far apart. Thus, a power function in the form of a+by∗−2, similar to that

proposed by Mivehchi et al. (2021), is employed to modify the scaling model. This function works

well to mathematically model both CT and CP. Therefore, β and κ took the following forms:

β = ct10 + ct11 y∗−2,

κ = cp8 + cp9 y∗−2.
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Figure 8.5: The variation of coefficient of thrust of tandem foils in a range of separation distance
and St.

Consequently, the final form of the scaling relations are:

CT = τ β γ St2 −CD

= (ct6φ
3 + ct7φ

2 + ct8φ + ct9)(ct10 + ct11/y∗−2)(ct1 + ct2Re−0.5 + ct3 f ∗−1)St2 − (ct4 + ct5),

(8.5)

CP = ε κ ζ St2 f ∗

= (cp4φ
3 + cp5φ

2 + cp6φ + cp7)(cp8 + cp9/y∗−2)(cp1 + cp2Re−0.5 + cp3 f ∗−1)St2 f ∗.
(8.6)

Coefficients ct1 − ct11 and cp1 − cp9 are empirically calculated for Foil 1 and Foil 2 separately,

since the deviation of CT and CP between the foils obstructs defining a single scaling relation for

both foils. Using linear regression to minimize the square of deviation from the results obtained

through numerical simulations for each case determines the optimum coefficients. Consequently,
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Figure 8.6: The variation of coefficient of power of tandem foils in a range of separation distance
and St.

the coefficients for the scaling model of CT for Foil 1 are determined as:

τ = 0.035 φ
3 −0.319 φ

2 +3.20 φ +11.91

β = 0.218−0.0122 y∗−2

γ = 1.86−7.71 Re−0.5 −1.04 f ∗−1

CD =−0.041+3.43 Re−0.5

(8.7)

Similarly for Foil 2, the coefficient were:

τ =−0.357 φ
3 +2.54 φ

2 −2.75 φ +14.07

β = 0.763−0.0256 y∗−2

γ = 0.51−1.54 Re−0.5 −0.32 f ∗−1

CD =−0.055+4.04 Re−0.5.

(8.8)
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Data from the modified scaling of CT collapse perfectly in the parametric space considered in the

current study for Foil 1 and Foil 2, as shown in figure 8.7. The scaling coefficients for CP for Foil

1 are:
ε =−0.037 φ

3 +0.277 φ
2 −0.1737 φ +2.52

κ = 5.47−0.417 y∗−2

ζ = 0.73−2.79 Re−0.5 +0.092 f ∗−1

(8.9)

Similarly, the coefficients for Foil 2 were:

ε =−0.105 φ
3 +0.432 φ

2 −0332 φ +2.01

κ = 5.91−0.372 y∗−2

ζ = 0.80−2.55 Re−0.5 +0.087 f ∗−1.

(8.10)

As shown in figure 8.8, the modified scaling model for CP also yields a good collapse for both

foils. We also present a combined scaling relation for CT and CP that applies to both foils. The

scaling coefficients for CT are calculated as:

τ =−1.25 φ
3 +5.77 φ

2 −2.05 φ +28.65

β = 0.19−0.008 y∗−2

γ = 0.94−2.72 Re−0.5 −0.54 f ∗−1

CD =−0.048+4.08 Re−0.5.

(8.11)

Similarly for CP, the scaling coefficients were:

ε =−0.309 φ
3 +1.50 φ

2 +0.416 φ +1.65

κ = 5.08−0.6911 y∗−2

ζ = 2.85−33.08 Re−0.5 −1.38 f ∗−1.

(8.12)
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Figure 8.7: The scaling relations for coefficient of thrust for (a) Foil 1 (b) Foil 2.
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Figure 8.8: The scaling relations for coefficient of power for (a) Foil 1 (b) Foil 2.

As shown in figure 8.9, data from both scaling models collapse well at lower St. However, there

exists a deviation with increasing St that closely coincides with variations in phase difference. It

is apparent from figures 8.3−8.6 that the disparity of CT and CP between the two foils is more

pronounced with varying phase differences. Asymmetry of the motion introduced by phase dif-

ference could be the reason for this disparity because the wake and performance of the two foils

differs despite their symmetric configuration and oscillations as shown in chapter 4. This suggests

that one scaling relation would not work well for both foils if the positioning of the foils are not

incorporated in the model.
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Figure 8.9: The scaling relations for coefficient of (a) thrust and (b) power for tandem foils.

Table 8.2: Comparison of CT and CP of isolated foil between numerical simulation and scaling
relation at a range of St for Re = 4000. ∆ indicates the relative error.

St CT−sim CT−scale ∆CT (%) CP−sim CP−scale ∆CP (%)

0.25 0.10 0.08 22.23 0.64 0.59 7.92

0.3 0.20 0.17 12.98 1.08 1.00 7.95

0.4 0.45 0.43 4.83 2.48 2.30 7.91

0.5 0.81 0.78 4.41 4.75 4.41 7.68

The capability of the scaling models to estimate the performance of an isolated foil is further

examined for the entire parameter space. Table 8.2 shows the numerically obtained CT and CP

in comparison to those estimated by the scaling relations for two parallel foils. At a sufficiently

large separation distance, it is expected that the two side-by-side foils behaves independently from

one another, resembling the case of two isolated foils. For convenience, we considered the case of

y∗ = 100 and φ = 0◦ to model the case of isolated foils. Even though isolated foil data are not used

in determining the scaling coefficients for CT and CP, the estimated power and thrust coefficients

by the scaling relations at sufficiently large separation distance approach that of the data obtained

through numerical simulations for an isolated foil. For CT , the largest relative error is observed

to be 22.23% at St = 0.25, which decreases at higher St to only 4.41% at St = 0.5. The relative

error in the prediction of CP, however, have a substantially reduced maximum value of 7.95% at

St = 0.3.
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8.2 Summary

The propulsive performance and scaling of pitching rigid foils in side-by-side configuration are

studied over a broad parameter space, including a range of Reynolds numbers, Strouhal numbers,

separation distances, and phase differences. The performance of pitching foils arranged in side-

by-side are compared with isolated foils. The results suggests that the side-by-side configuration

only enhances hydrodynamic performance, in terms of power requirement and efficiency, at higher

Re and St. However, the side-by-side configuration increases St at which the maximum efficiency

is attained by the foils for any given Re. This optimum St decreases with increasing Re, which is

in agreement with previous observations for isolated foils. Moreover, it is observed that foils in

side-by-side configuration scaled with Re−0.5, which indicates a laminar flow scaling.

Modified scaling models are developed for pitching foils in side-by-side configurations. Two

additional parameters are introduced based on the separation distance and phase difference be-

tween pitching foils. The data obtained from our scaling models collapses well on the parameters

for individual foils. A combined scaling model for both foils, however, shows deviations between

the two foils, especially at higher St, which is attributed to the non-uniform production of thrust

and power consumption by the foils under such conditions. It is also observed that the scaling

models adequately estimates the performance parameters of isolated foils as well assuming suffi-

ciently large separation distance between parallel foils. Recognizing the limitations inherent in the

derived scaling model, the following chapter presents physics-based scaling laws that estimate the

propulsive performance of pitching foils in various schooling configurations.
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Chapter 9

PHYSICS-INFORMED SCALING LAWS

FOR SCHOOLING CONFIGURATIONS
†

Scaling equations for propulsive performance of pitching foils in side-by-side configurations we

explored in chapter 8, utilizing empirical expressions for spacing between the foils and their phase

difference. However, limitations of these very recent research efforts in terms of their slender para-

metric space or more reliance on empirical formulations are clear. In order to design bio-inspired

swimming robots, it is critical to construct physics-informed scaling laws applicable to a broad

range of design and schooling parameters, including relative positions of oscillating foils and their

phase differences. This primarily lays the foundation and motivation for the present study to de-

velop scaling relations for a wide parametric space, including oscillation amplitude, oscillation

frequency, separation distance, and phase difference. It is important to mention that developing

universal scaling laws applicable to a variety of fish schooling configurations needs incorporation

of flow conditions (Reynolds numbers), geometric characteristics (separation distance between the

members of a school), kinematic parameters (oscillation frequencies and amplitudes, and phase

difference), and physiological features of different aquatic species. In this context, this newly

†The content of this chapter has been published in whole or part, in J. R. Soc. Interface with the citation: "Gungor,
A., Khalid, M.S.U., & Hemmati, A., (2024) Physics-Informed Scaling Laws for the Performance of Pitching Foils in
Schooling Configurations. J. R. Soc. Interface."
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Table 9.1: Parametric space of the study.

Parameter x∗ y∗ St Re f ∗ φ θ0

Range 0c−3c 0.5c−2c 0.15−0.4 1000−10000 0.3−1.7 0−π 5◦−14◦

proposed scaling relations for the propulsive metrics of individual members cover a wide, though

not full, spectrum of the governing conditions in fish schools. This chapter is structured as fol-

lows: section 9.1 provides an overview of the problem definition and introduces the parametric

space. The derivation of the novel scaling laws for staggered foils, highlighting their formula-

tion and underlying principles, is presented in Section 9.2. The results obtained from the analysis

are presented in Section 9.3. Finally, conclusions are drawn from the study, and the findings are

summarized in Section 9.4.

9.1 Problem Definition

A wide range of spatial configurations are simulated in this study, including two-foil, three-foil,

and five-foil configurations. This range of schooling systems demonstrates the extensiveness of

the scaling approach. The horizontal and vertical separation distances between the foils, denoted

by x∗ and y∗, respectively, are varied between 0.5c−2c and 0c−3c, respectively, with increments

of 0.5c. The amplitude-based Strouhal number of the flow was set to St = 0.15− 0.4, which en-

compasses the range in which fish naturally swim (Godoy-Diana et al., 2008; Triantafyllou et al.,

1993). Additionally, the phase difference between the foils was varied from φ = 0 (in-phase mo-

tion) to φ = π (out-of-phase motion), with increments of π/6. The pitching amplitude was also

varied between 5◦ ≤ θ0 ≤ 14◦ with increments of 3◦. The simulations are conducted at Re = 1000,

Re = 2000, Re = 4000, Re = 6000, and Re = 10000. A summary of the parameter space used in

this study is provided in table 9.1.
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9.2 Scaling laws

In this section, we elucidate the construction of a new physics-based scaling formulation for

propulsion metrics, thrust and power, for synchronously pitching foils. We consider a wide range

of schooling arrangements and design parameters. The term ’synchronous’ implies that the foils in

the system utilize the same pitching frequency. Pitching frequencies of the foils are kept the same,

following the natural swimming habits of various fish species swimming in schooling configura-

tions. Different biological studies (Herskin and Steffensen, 1998; Svendsen et al., 2003) revealed

that the following members of fish schools could reduce their energy consumption by beating their

tails with lower frequencies than those of their leaders. However, the difference in frequencies was

found to be less than 15% (Herskin and Steffensen, 1998; Svendsen et al., 2003). From Khalid

et al. (2016) and Newbolt et al. (2019), it is evident that there exists a very small range of gov-

erning kinematic parameters that allow for hydrodynamic advantages for follower fish, which led

to the formation of stable configurations in fish schools. Additionally, oscillation frequencies of

schooling red nose tetra fish are measured to be in close proximity in both two-fish and three-fish

schools (Ashraf et al., 2016). These observations serve as a justification for considering synchro-

nized kinematics for the members of fish schools in this study.

9.2.1 Scaling Approach

We employ an approach similar to Floryan et al. (2017) and Buren et al. (2019b), who established

scaling relations for isolated foils based on lift-based forces (Theodorsen, 1935), added mass forces

(Sedov, 1965), and contributions from the drag due to fluid flow over the oscillating bodies. A

novel element of our present work originates from our analysis considering the impact on a foil

through the vortex-induced velocity imposed by the other foils in the schooling configuration and

their wakes. We excluded systems consisting of in-line foils because such configurations inherently

involve direct vortex-body interactions. These interactions are heavily reliant on the advection

velocities of the vortices and viscous effects (Boschitsch et al., 2014; Kurt and Moored, 2018b),
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Figure 9.1: Induced velocities on the follower foil due to the circulation around and in the wake
of the leader foil, together with the geometric quantities used in the analysis. Here, Γ f , Γ0, Γw,
and Γvs represent the circulation around the foil, the amplitude of circulation, the circulation in the
wake, and the circulation in the vortex street, respectively.

significantly altering the propulsive performance metrics for the follower foil by directly impacting

the development of leading-edge vortices (Pourfarzan and Wong, 2022). Therefore, they cannot

be accurately modeled using induced velocities. We derive the scaling equations not for each foil

individually but in a generalized manner. To this end, we utilize the subscript i to represent the

foil number, while double subscripts i and j are employed to describe the interaction between the

foils and its direction. For instance, CTi corresponds to the cycle-averaged thrust of Foil i, whereas

Vindi, j defines the velocity on Foil i induced by Foil j. It is important to mention that we employ

small-angle approximation throughout the derivation process for our scaling formulations.

Now, we begin with the description of lift-based forces and their contribution to the

scaling relations. Pitching foils produce unsteady lift that follows their sinusoidal motion,

θi(t) = θ0 sin(2π fit −φi), but with a phase lag ξi that depends on the reduced frequency f ∗. This

phase lag indicates the lag of lift data compared to the pitching motion of the foil. This is a conse-
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quence of the time taken during the development of the vortex shedding process. The relationship

between the phase lag and the reduced frequency can be estimated by Theodorsen’s reduced

order model (Theodorsen, 1935), which provides an accurate approximation except for very small

reduced frequencies (Chiereghin et al., 2019). Hence, unsteady lift force on a foil is expressed as

Lunsi = L0i sin(2π fit − ξi), where L0 is the amplitude of lift. Since the lift force is proportional

to the circulation around the foil through the Kutta-Joukowski theorem (i.e., Γi = Lunsi/ρsU∞), it

induces a momentum (velocity) on the other foil in its vicinity. Employing Kelvin’s circulation

theorem, it can be assumed that circulation with the same strength but opposite sign is developed

in the wake (see figure 9.1). This circulation is centered in the immediate vicinity of the trailing

edge since the circulations of oppositely sign vortices in the rest of the wake cancel each other. The

underlying reason for this cancellation is their equal strength that is opposite in sign at moderate

St (Godoy-Diana et al., 2009). We estimate the center of wake circulation to be located U/2 f

from the trailing edge, as this is the lateral distance between two consecutively shed vortices,

also quantifying the wavelength of the near-wake. While it is true that the vertical location of

the circulation may not align with the wake centerline for cases where the wake is deflected (see

chapter 4), we expect its impact on the induced velocity to be minimal. It is because the shift

in the vertical location of vortices is considerably smaller compared to the distance between the

foils for any possible wake topology (see figure 10.1). Circulation around a foil and in its wake

is counter-productive since they possess opposite-signs. Their combined effect induces a velocity

in both vertical and horizontal directions. Thus, these induced velocities allow us to consider

swimmer’s performance as a single foil, which undergoes combined heaving and pitching motion.

This argument is based on the induced velocity in vertical direction that may be analogous to heave

velocity of the simultaneously heaving and pitching foil. Hence, we can compute the induced
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Figure 9.2: Velocity components arise on the pitching foils in staggered configurations.

velocities in the x− and y− directions for a foil using the Biot-Savart rule as follows:

Vindi =
n

∑
j=1
j ̸=i

Γ j

2π

[
cosψ fi, j

|r fi, j |
−

cosψwi, j

|rwi, j |

]

=
n

∑
j=1
j ̸=i

L0 sin(2π f t −ξ j −φ j)

2πρsU∞

[
cosψ fi, j

|r fi, j |
−

cosψwi, j

|rwi, j |

]
(9.1)

Uindi =
n

∑
j=1
j ̸=i

Γ j

2π

[
sinψ fi, j

|r fi, j |
−

sinψwi, j

|rwi, j |

]
+U∗

i, j

=
n

∑
j=1
j ̸=i

L0sin(2π f t −ξ j −φ j)

2πρsU∞

[
sinψ fi, j

|r fi, j |
−

sinψwi, j

|rwi, j |

]
+U∗

i, j (9.2)

where n denotes the total number of foils in the school, Γ j is the quasi-steady sinusoidal circulation

generated by the foils, r fi, j is the radial distance vector (from the center of the circulation around

Foil j to the leading edge of Foil i), rwi, j is the radial distance vector (from the center of the wake

circulation of Foil j to the leading edge of Foil i), ψ fi, j denotes the angle from the center-line of

Foil j to r fi, j , ψwi, j denotes the angle from the center-line of Foil j to rwi, j , and U∗
i, j shows the

time-independent velocity contribution on Foil i due to the vortex street of Foil j that is further

explained in the following paragraph. Note that the lift force discussed in this chapter is identical

to the side force considered in previous chapters. As mentioned earlier, the term “side force” was

adopted in this dissertation due to its relevance to fish swimming. However, “lift” is used here to

align with the terminology more commonly employed in the scaling literature.
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In addition to the velocities induced by circulation around the foil and its counterpart in the

immediate wake, the rest of the wake also contributes to the induced velocities. It forms a vortex

street with apparently net zero circulation as previously explained. However, the vortices in the

vortex street have varying vertical distances from the foil; therefore, their total contribution to

the induces velocities can be non-zero. Schaefer and Eskinazi (1959) and Griffin and Ramberg

(1959) provided potential flow solutions for velocities at a point induced by an infinite vortex

street generated by tripping and vibrating cylinders, respectively. Following Griffin and Ramberg

(1959), the induced velocity in the horizontal direction can be estimated as:

U∗
i, j =−

ΓT EV j

l j

cosh2πγ j(sinh2πγ j − sin2πς j sinh2πδ j)

sinh22πγ jsinh22πδ j + cos2 2πς j −2sinh2πγ j sin2πς j sinh2πδ j
, (9.3)

where ΓT EV j is the circulation of trailing edge vortex (TEV), γ j = v j/2l j, ς = (x∗i, j − c)/l j, and

δ j = y∗i, j/l j. The terms l j and v j are the longitudinal and vertical spacings between the vortices in

the vortex street of Foil j, respectively (see figure 9.1). They can be approximated as l j ≈ U∞/ f j

and v j ≈ A j. Hence, U∗
i, j can be represented in a simpler form:

U∗
i, j ≈

n

∑
j=1
j ̸=i

ΓT EV j fk

U∞

χi, j( f ,A,U∞,x∗,y∗), (9.4)

where χi, j is a vortex street function which depends on the oscillation frequency and amplitude,

free-stream velocity, and longitudinal and vertical spacing between the foils. Note that Griffin and

Ramberg (1959) also derived more complex formulation for the induced velocities by incorporating

viscous decay of the vorticity term. However, we use inviscid solution in our formulation because

of its simplicity.

9.2.2 Lift-based (circulatory) forces

Now, we explain the derivation from Theodorsen’s lift-based forces (circulatory) (Theodorsen,

1935). Oscillating foils produce unsteady lift as a result of its continuously varying angle-of-attack.
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Figure 9.2 illustrates velocity components generated and corresponding angles on a pitching foil

in the two-foil system. The instantaneous angle-of-attack and the corresponding effective velocity

of the foil is given by αi = θi − arctan(Vindi/(U∞ +Uindi)) and Ue f fi =
√

V 2
indi

+(U∞ +Uindi)
2, re-

spectively. Lift-based forces in x− direction, in y− direction and moment about the leading edge

are given as follows:

Fx,Li =−Li sin(θi −αi) =−LiVindi/Ue f fi, (9.5)

Fy,Li = Li cos(θi −αi) =−Li(U∞ +Uindi)/Ue f fi, (9.6)

Mz,Li =−cLi/4, (9.7)

where Li = (1/2)ρU2
e f fiscCLi and CLi = 2π sinαi +(3/2)πα̇ic/U∞.

Considering the induced velocities are very small compared to the free-stream velocity and the

trailing edge velocity, we can approximate αi as αi ≈ θi −Vindi/(U∞ +Uindi)≈ θi −Vindi/U∞. Con-

sequently, α̇i = θ̇i −V̇indi/U∞. Now the lift-based forces and moment adopt the following forms:

Fx,Li ∼ ρsc

(
θiVindiUe f fi −

V 2
indi

U∞

Ue f fi + cθ̇iVindi − c
V̇indi

U∞

Vindi

)
(9.8)

Fy,Li ∼ ρsc
(
θiU∞Ue f fi −VindiUe f f + cθ̇iUe f fi − cV̇indi

)
(9.9)

Mz,Li ∼ ρsc2

(
θiU2

e f fi −
Vindi

U∞

U2
e f fi + cθ̇i

U2
e f fi

U∞

− cV̇indi

U2
e f fi

U2
∞

)
(9.10)

9.2.3 Added mass forces

Next, we proceed with formulating the added mass forces, acting on the foils, by following Sedov’s

approach (Sedov, 1965). Tangential force (Ft), normal force (Fn), and moment (Mz) on the foils

are:

Ft,AMi = ρπsc
(

c
4

Viθ̇i −
c2

8
θ̇i

2
)

(9.11)

Fn,AMi = ρπsc
(

c
4

V̇i +
c2

8
θ̈i

)
(9.12)
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Mz,AMi = ρπsc2
(

c
8

V̇i −
9c2

128
θ̈i

1
4

UiVi +
c
8

Uiθ̇i

)
(9.13)

where Ui and Vi are normal and tangential velocity components impinging on Foil i, given as

Ui =Vindi sinθi +(U∞ +Uindi)cosθi and Vi =Vindi cosθi − (U∞ +Uindi)sinθi, respectively. In x−y

coordinates, the forces and the moment reduce to

(9.14)Fx,AMi ∼ ρsc
[
cθ̇iVindi(1+θ

2
i )+cθiθ̇iU∞+cθiθ̇iUindi +c2

θ̇i
2
+cθiV̇indi +cθ

2
i U̇indi +c2

θiθ̈i

]

Fy,AMi ∼ ρsc
[
cθiθ̇iVindi + cθ̇iU∞(1 + θ

2
i ) + cθ̇iUindi(1 + θ

2
i ) + c2

θiθ̇i
2
+ cV̇indi + cθiU̇indi + c2

θ̈i

]
(9.15)

(9.16)Mz,AMi ∼ ρsc2 [cV̇indi + cθiθ̇iVindi + cθ̇iU∞ + cθ̇iUindi + c2
θ̈i +VindiU∞(1 + θ

2
i )

+VindiUindi(1 + θ
2
i ) + θiV 2

indi
+ θiU2

∞ + θiU∞Uindi + θU2
indi

]

9.2.4 Derivation of cycle-averaged coefficients

Now, we combine the lift-based and added mass forces and moments to determine the scaling

relations for schooling foils. Following Buren et al. (2019b), we approximate that 1+ θ 2 ≈ 1,

considering θ is small and its contribution is negligible. The thrust and lift forces on the foils can

be expressed in the following form:

(9.17)
Fxi ∼ ρsc

(
θVindiUe f fi −

V 2
indi

U∞

Ue f fi + cθ̇iVindi − c
V̇indi

U∞

Vindi + cθiθ̇iU∞ + cθiθ̇iUindi

+ c2
θ̇i

2
+ cθiV̇indi + cθ

2
i ˙Uindi + c2

θiθ̈i

)
− FDi,

(9.18)
Fyi ∼ ρsc

(
θiU∞Ue f fi +VindiUe f fi + cθ̇iUe f fi + cV̇indi + cθiθ̇iVindi + cθ̇iU∞ + cθ̇iUindi

+ c2
θiθ̇i

2
+ cθiU̇indi + c2

θ̈i

)
,

where FD is the drag force on the foil. Since the drag force arises from viscous effects, it is not

considered in lift-based forces or added mass forces, which both are inviscid in nature. Therefore,
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it needs to be superimposed into the formulation. The drag experienced by a bluff body is pro-

portional to the frontal area, A f , which scales with ∼U2
∞A f . In the absence of large leading edge

flow separation, drag on a pitching foil can be considered to be akin to that of a stationary foil.

In this regard, frontal area of a stationary foil can be replaced with an averaged frontal area over

a pitching cycle, which is proportional to the pitching amplitude, A (Floryan et al., 2019, 2018).

This relationship is supported by a quantitative evidence presented by Buren et al. (2019b), who

demonstrated that the drag was a linear function of pitching amplitude and independent of heaving

amplitude. Hence, drag offset should scale as FD ∼U2
∞A.

Next, we proceed with the derivation of the scaling relation for power consumed by tethered

foils to continue producing propulsive forces. Power for simultaneously heaving and pitching

foils is P = Fyḣ+Mzθ̇ (Verma and Hemmati, 2021). However, it can be approximated here as

P = FyVind +Mzθ̇ , because heave velocity of the foil, ḣ, is akin to the induced velocity in the

vertical direction, Vind . Therefore, P can be expressed as:

Pi ∼ ρsc
(

θiU∞Ue f fiVindi +V 2
indi

Ue f fi + cθ̇iVindiUe f fi + cVindiV̇indi + cθiθ̇iV 2
indi

+ cθ̇iVindiU∞

+ cθ̇iVindiUindi + c2
θiθ̇i

2Vindi + cθiVindiU̇indi + c2
θ̈iVindi + c2

θ̇iV̇indi + c2
θ̇i

2U∞ + c2
θ̇i

2Uindi

+ c3
θ̇iθ̈i + cθ̇iVindiUindi + cθiθ̇iU2

∞ + cθiθ̇iU∞Uindi + cθiθ̇iU2
indi

)
.

(9.19)

To finalize these laws, we should determine how Vind and Uind scale with the flow quantities.

As previously explained, induced velocities arise from the circulation of the foils, which is related

to the generated lift (see equation 9.1 and equation 9.2). Therefore, we approximate L0 from the

equation for the lift force (equation 9.18). To simplify the approximation, only a pure-pitching mo-

tion is considered, reducing equation 9.18 to Fyi ∼ θiU2
∞+cθ̇iU∞+c2θiθ̇i

2
+c2θ̈i. Upon expansion,

it is found that the third term can be neglected by employing the small angle approximation since

it contains θ 3
0 , whereas the other terms contain θ0. The equation is further simplified by assuming

that the fourth term, which scales as c2θ̈ , is the dominant term. To confirm this assumption, we an-

alyzed the dominance of c2θ̈ term to represent unsteady lift amplitude data alone. As illustrated in

figure 9.3, c2θ̈ provides an adequate approximation for the amplitude of unsteady lift, even though
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(a) (b)

Figure 9.3: Coefficient of unsteady lift amplitude, CL0 = L0/
1
2ρU2

∞sc, scaled with (a) m1θU2
∞ +

m2cU∞θ̇ +m4c2θ̈ and (b) m4c2θ̈ where m1−4 are empirical coefficients determined through a least-
squares linear regression analysis over randomly selected data points.

inclusion of the terms θU2
∞ and cθ̇U∞ improves the fit. Thus, we assume that the amplitude of lift

would scale as L0 ∼ f 2c2θ0. Similarly, we need an approximation for ΓT EV , which was presented

by Schnipper et al. (2009) as:

ΓT EVi =
1
2

∫ 1/2 f

0
V 2

T Ei
dt ≈ 1

2
π

2 f c2
θ

2
0 , (9.20)

where VT E is the trailing edge velocity magnitude, calculated as VT Ei = cθ̇i. This elucidates that

ΓT EV scales as ΓT EV ∼ f c2θ 2
0 (Van Buren et al., 2018). Next, we integrate the thrust and power

relations over a pitching cycle and non-dimensionalize them through equation 2.4 to obtain CT and

CP, respectively. We assume cycle-averaged effective velocity to be similar to the free-stream flow,

i.e., Ue f f ≈ U∞ as its contribution would be negligible compared to other flow quantities (Buren

et al., 2019a). Hence, CT,i and CP,i can be expressed as:

(9.21)CT,i = ct1ΛT 1i + ct2ΛT 2i + ct3ΛT 3i + ct4ΛT 4i + ct5ΛT 5i

+ ct6ΛT 6i + ct7ΛT 7i + ct8ΛT 8i + ct9ΛT 9i + ct10ΛT 10i,
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(9.22)
CP,i = cp1ΛP1i + cp2ΛP2i + cp3ΛP3i + cp4ΛP4i + cp5ΛP5i + cp6ΛP6i + cp7ΛP7i

+ cp8ΛP8i + cp9ΛP9i + cp10ΛP10i + cp11ΛP11i + cp12ΛP12i + cp13ΛP13i

+ cp14ΛP14i + cp15ΛP15i + cp16ΛP16i + cp17ΛP17i + cp18ΛP18i + cp19ΛP19i,

where definitions of expressions ΛT 1−10 and ΛP1−19 are given in table 9.2 and table 9.3, respec-

tively.

Table 9.2: Definitions of the thrust terms in the derived scaling equations.

Thrust Term Definition

ΛT 1i

n
∑
j=1
j ̸=i

St2 cos(ξ j +φ j −φi)

(
cosψ fi, j

r fi, j
−

cosψwi, j
rwi, j

)

ΛT 2i

n
∑
j=1
j ̸=i

St2 f ∗2
(

cosψ fi, j
r fi, j

−
cosψwi, j

rwi, j

)2

ΛT 3i

n
∑
j=1
j ̸=i

St2 f ∗ sin(ξ j +φ j −φi)

(
cosψ fi, j

r fi, j
−

cosψwi, j
rwi, j

)

ΛT 4i

n
∑
j=1
j ̸=i

St2 f ∗3
(

cosψ fi, j
r fi, j

−
cosψwi, j

rwi, j

)2

ΛT 5i St2

ΛT 6i

n
∑
j=1
j ̸=i

St2 f ∗ sin(ξ j +φ j −φi)

(
sinψ fi, j

r fi, j
−

sinψwi, j
rwi, j

)

ΛT 7i StA∗

ΛT 8i

n
∑
j=1
j ̸=i

St3
(

sinψ fi, j
r fi, j

−
sinψwi, j

rwi, j

)

ΛT 9i

n
∑
j=1
j ̸=i

St3A∗χi, j

ΛT 10i A∗
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Table 9.3: Definitions of the power terms in the derived scaling equations.

Power Term Definition

ΛP1i

n
∑
j=1
j ̸=i

St2 cos(ξ j +φ j −φi)

(
cosψ fi, j

r fi, j
−

cosψwi, j
rwi, j

)

ΛP2i

n
∑
j=1
j ̸=i

St4
(

cosψ fi, j
r fi, j

−
cosψwi, j

rwi, j

)2

ΛP3i

n
∑
j=1
j ̸=i

St2 f ∗ sin(ξ j +φ j −φi)

(
cosψ fi, j

r fi, j
−

cosψwi, j
rwi, j

)

ΛP4i

n
∑
j=1
j ̸=i

St2 f ∗3
(

cosψ fi, j
r fi, j

−
cosψwi, j

rwi, j

)2

ΛP5i

n
∑
j=1
j ̸=i

St4 f ∗ sin(2ξ j +2φ j −2φi)

(
cosψ fi, j

r fi, j
−

cosψwi, j
rwi, j

)2

ΛP6i

n
∑
j=1
j ̸=i

St3 f ∗2
(

cosψ fi, j
r fi, j

−
cosψwi, j

rwi, j

)(
sinψ fi, j

r fi, j
−

sinψwi, j
rwi, j

)

ΛP7i

n
∑
j=1
j ̸=i

St4 cos(ξ j +φ j −φi)

(
cosψ fi, j

r fi, j
−

cosψwi, j
rwi, j

)

ΛP8i

n
∑
j=1
j ̸=i

St2 f ∗2 cos(ξ j +φ j −φi)

(
cosψ fi, j

r fi, j
−

cosψwi, j
rwi, j

)

ΛP9i St2

ΛP10i

n
∑
j=1
j ̸=i

St3 f ∗
(

sinψ fi, j
r fi, j

−
sinψwi, j

rwi, j

)

ΛP11i St2 f ∗

ΛP12i StA∗

ΛP13i

n
∑
j=1
j ̸=i

St3
(

sinψ fi, j
r fi, j

−
sinψwi, j

rwi, j

)

ΛP14i

n
∑
j=1
j ̸=i

St4 f ∗ cos(2ξ j +2φ j −2φi)

(
sinψ fi, j

r fi, j
−

sinψwi, j
rwi, j

)2

ΛP15i

n
∑
j=1
j ̸=i

St4 f ∗ sin(ξ j +φ j −φi)

(
cosψ fi, j

r fi, j
−

cosψwi, j
rwi, j

)
χi, j
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Table 9.3 – continued from previous page

Power Term Definition

ΛP16i

n
∑
j=1
j ̸=i

St4χi, j

ΛP17i

n
∑
j=1
j ̸=i

St3A∗χi, j

ΛP18i

n
∑
j=1
j ̸=i

St5
(

sinψ fi, j
r fi, j

−
sinψwi, j

rwi, j

)
χi, j

ΛP19i

n
∑
j=1
j ̸=i

St5A∗χ2
i, j

9.3 Results and Discussion

We now continue with computing the terms in equation 9.21 and equation 9.22 to assess the ef-

fectiveness of the derived equations in capturing the fundamental flow physics. For the purpose

of this analysis, we focus on the case of two-foil systems, since these configurations represent the

majority of our dataset. To calculate the equations for the two foils, we simply substitute i = 1 and

i= 2 to represent Foils 1 and 2, respectively, while keeping the value of n fixed at 2. Note that j can

get only one value since it represents the contribution due to the other foil in the system, i.e., j = 2

for i = 1 and j = 1 for i = 2. Here, ct1−10 and cp1−19 are scaling coefficients that are determined

numerically. In accordance with Floryan et al. (2017) and Buren et al. (2019b), we underline inher-

ently out-of-phase terms, such as displacement-velocity or velocity-acceleration terms, i.e., θ − θ̇

or θ̇ − θ̈ . These terms have 90◦ phase lag between them; therefore, a time-averaged quantity of

their product should be very small. However, it is possible for strong non-linear effects to exist in

such complex flows as suggested by Liu et al. (2015), which may break the inherent out-of-phase

synchronization of these terms. Hence, we chose to keep these terms in our analysis.
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𝑦∗

𝑦∗

(a)

𝑅2 = 0.9637

(b)

𝑅2 = 0.9672

(d)

𝑅2 = 0.9901

(c)

𝑅2 = 0.9841

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [9.23] 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [9.24]

Figure 9.4: (a-c) Thrust and (b-d) power scaling results of pitching foils in two-foil configurations
for varying pitching amplitude and phase difference at Re= 4000. Numerical data is plotted against
(a-b) only pure-pitching terms, (c-d) full scaling equations. Color and size indicates the radial
distance between the foils (y∗) and pitching amplitude (A∗), respectively. Isolated foil data is
illustrated with black squares.

9.3.1 Two-Foil systems

In order to determine the scaling coefficients, ct1−10 and cp1−19, least-squares linear regression

analysis is employed on two-foil configurations at Re = 4000, as our first trial. Ultimately, it is

noticed that some terms could be eliminated from the formulations as their impact on the results

is marginal for the given parameter space. The influence of each term on the scaling estimation is
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carefully evaluated. Terms that contribute less than 1% to the estimated value, on average across

the dataset, are deemed negligible. This facilitates the establishment of more simplified scaling

equations with little compromise on accuracy. Consequently, the terms associated with ct1, ct3,

ct4, ct6, ct7, ct8, and ct9 in the equations for thrust, and cp1, cp4, cp5, cp12, cp13, cp14, cp15, cp16,

cp17, and cp19 in the equations for power are excluded from the final form of the scaling equations:

(9.23)CT,i = ct2ΛT 2i + ct3ΛT 3i︸ ︷︷ ︸
induced velocity

+ct5ΛT 5i + ct10ΛT 10i︸ ︷︷ ︸
pure-pitching

,

(9.24)CP,i = cp6ΛP6i + cp7ΛP7i + cp8ΛP8i + cp10ΛP10i + cp18ΛP18i︸ ︷︷ ︸
induced velocity

+cp9ΛP9i + cp11ΛP11i︸ ︷︷ ︸
pure-pitching

.

The numerical coefficients are calculated, such that ct2 = 0.29, ct3 =−0.84, ct5 = 3.50, and ct10 =

−0.41 for thrust scaling and cp6 =−1.79, cp7 = 146.75, cp8 =−13.01, cp9 = 1.39, cp10 = 2.70,

cp11 = 8.93, and cp18 = 4.67 for power scaling.

Terms in the scaling equations (equation 9.23 and equation 9.24) are classified based on their

origin. The "pure-pitching" terms arise from the pitching oscillations of the foils, while the terms

for "induced velocity" stem from the interactions between the foils. The pure-pitching terms are

plotted alone against the numerical simulation data for the coefficients of thrust and power in fig-

ure 9.4a and figure 9.4b, respectively. The figures also comprise the performance of isolated foils,

which are essentially for the foils uninfluenced by the effects of induced velocity. They fail to

achieve a satisfactory collapse, except for the isolated foils and two-foil systems with significant

separation distance. This indicates the insufficiency of the pure-pitching terms in accurately rep-

resenting complex flows with intense foil-foil interactions. On the other hand, Figs. 9.4c and 9.4d

display the fit of the data, where the numerical results demonstrate an excellent linear collapse

on the complete scaling equations (equation 9.23 and equation 9.24). It provides a compelling

evidence that the derived terms proficiently capture the underlying flow physics. The improved

r-squared values, depicting a notable shift from R2 = 0.9637 to R2 = 0.9841 for the thrust scaling

and from R2 = 0.9672 to R2 = 0.9901 for the power scaling, unequivocally quantify the critical

role played by the induced velocity terms.
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𝑓∗

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [9.25]

Figure 9.5: Simulation efficiency plotted against scaling efficiency for two-foil configurations at
Re = 4000. Color and size indicates the radial distance between the foils (y∗) and pitching ampli-
tude (A∗), respectively.

Induced velocity terms in the relation for thrust (equation 9.23), namely ΛT 2i and ΛT 3i , orig-

inate from the terms involving V 2
indi

Ue f fi/U∞ and cθ̇iVindi , respectively. The first term signifies

the steady portion of the lift-based forces, whereas the latter results from the combination of the

unsteady portion of the lift-based forces and the Coriolis effect from the added mass forces. It is

crucial to note that purely pitching foils do not generate any lift-based thrust since their instanta-

neous angle-of-attack (αi) is equal to their instantaneous pitching angle (θi), causing sin(θi−αi) in

equation 9.5 to vanish. Therefore, the lift-based thrust generated by schooling foils is attributed to

the alterations in αi due to the induced vertical velocity. The terms ΛT 5i and ΛT 10i represent pure-

pitching related features attributed to contributions form added mass and viscous drag, respectively.

The added mass term originates from the combination of c2θ̇i
2, highlighting the centrifugal effect,

and c2θiθ̈i, representing the influence of the foil acceleration.

The results display certain outliers in figures 9.4c and 9.4d, primarily noticeable in scenarios

where the foils are in very close proximity. We categorize these configurations as interfering con-

figurations, such that the leader and follower foils can no longer be considered separate bodies. In

such scenarios, the wake of one foil directly influences the wake of another, leading to inaccuracy

in the implementation of Kelvin’s circulation theorem, which associates circulation around a foil
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with the circulation in the wake. Strong interactions between the foils, even in the absence of any

interference, may also introduce minor effect on the flow that are not considered in the current

formulations. For instance, these interactions could cause the wake of a foil to deflect upwards

or downwards based on its kinematics (see figure 4.2 or Dewey et al. (2014)), resulting in devi-

ations in the calculation of the wake geometric properties (ψw and rw). Another impact could be

on the circulation of the foils, given that the interaction between the foils exerts a substantial in-

fluence on their lift characteristics. In chapter 10, we demonstrated that the formation of leading

edge vortices is suppressed on the adjacent surfaces of the foils when placed in a side-by-side ar-

rangement. This phenomenon directly influences the circulation generated by the foils and their

wake, resulting in deviation from our initial assumption that the lift follows an ideal sine-wave,

i.e., Li = L0 sin(2π f t −ξi). Likewise, Han et al. (2024) displayed that the induced velocities could

result in asymmetric quasi-steady lift variation for pitching foils with ground effect. We conjecture

that the inclusion of a lift-correction term for close foil proximity could potentially offer a solution.

However, since the deviations are already relatively small, we do not consider changing the form

of lift variation.

We calculate the propulsive efficiency of the foils utilizing the scaling equations, given as:

ηi =
CTi

CPi

=
RHS of equation 9.23
RHS of equation 9.24

. (9.25)

However, when plotting efficiency from the scaling relations (equation 9.25) against that from the

computational data (equation 2.4), as shown in figure 9.5, we observe that the data has not col-

lapsed as well as those of the coefficients at lower f ∗. This outcome motivated us to hypothesize

that the traditional definition of efficiency (equation 2.4) may be inadequate for schooling config-

urations. Therefore, it is necessary to redefine efficiency specifically for these setups. Similar to

the previously proposed lift-correction term, the introduction of a moment-correction term could

potentially resolve this issue. However, examining and including a moment-correction term falls

outside the scope of this study, and we consider it as a potential avenue for our future research.
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𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [9.23] 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [9.24]

Figure 9.6: (a) Thrust and (b) power scaling results of pitching foils in two-foil configurations at a
range of Reynolds numbers.

Yet, equation 9.25 accurately predicts the efficiencies of foils within the thrust-generating regime

(positive η), revealing a trend of increased efficiencies at higher f ∗, albeit with some scatter. This

underscores the significance of the induced velocity effects, particularly considering that the effi-

ciency of purely pitching foils tends to decrease with an increasing f ∗, except for very slow foil

motions where viscous drag dominates (Floryan et al., 2017). This is attributed to the presence of

additional f ∗ terms included in the induced velocity terms, thereby magnifying the induced effects

on efficiency at higher f ∗. Nonetheless, discerning a linear relationship between efficiency and f ∗

is unattainable due to the inherent complexity of the efficiency equation.

9.3.2 Influence of Reynolds number

We demonstrate the predictive capability of scaling relations across various Reynolds numbers. To

achieve this, flows around different schooling configurations are simulated at Reynolds numbers

of 1000, 2000, 6000, and 10000. Subsequently, a regression analysis is performed to determine

the scaling coefficients for each Reynolds number as presented in table 9.4. Figure 9.6 illustrates

the collapse of the scaling-based estimation for the thrust and power coefficients in comparison to

those from simulations. Additionally, results for Re = 4000 in figure 9.4 are incorporated in fig-
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Table 9.4: Scaling coefficients for thrust and power equations at different Reynolds numbers.

Re ct2 ct3 ct5 ct10 cp6 cp7 cp8 cp9 cp10 cp11 cp18

1000 0.30 -0.62 3.45 -0.69 -1.57 147.76 -12.84 0.54 2.08 9.67 3.89

2000 0.32 -0.68 3.49 -0.51 -1.66 148.02 -12.80 0.62 2.11 9.60 4.11

6000 0.26 -0.86 3.52 -0.34 -1.84 146.07 -12.71 0.85 2.17 9.67 4.73

10000 0.21 -0.88 3.54 -0.28 -1.90 144.73 -12.69 0.79 2.05 9.61 5.02

ure 9.6 for completeness. The data demonstrates an excellent collapse, affirming the adaptability of

our newly proposed scaling relations. The influence of Reynolds number on the coefficients of the

induced velocity terms appears to be marginal, indicating that the inherent flow physics governing

the influence of foil-foil interactions on the propulsive performance of schooling foils is predom-

inantly inviscid. This observation aligns with the conclusion of Kurt et al. (2019), asserting that

the equilibrium altitude of a pitching foil near a wall is controlled by added mass and circulatory

forces, both of which are inviscid in nature. Conversely, the drag force on the foils, represented by

ct10, displays significant dependence on Reynolds number. This outcome is anticipated, consider-

ing that the drag force arises from viscous effects and it is expected to be a function of Reynolds

number (Floryan et al., 2018; Senturk and Smits, 2019). Moreover, the performance of both single

foils (Senturk and Smits, 2019) and foils in parallel configurations (see chapter 8) is not notably af-

fected by Reynolds number beyond Re = 8000. Hence, it can be argued that the derived equations

maintain their efficacy at higher Reynolds numbers with minimal, if any, adjustments to the coeffi-

cients. This implies that our scaling relations coincide with the lower end of the natural swimming

Reynolds numbers range of fish (Triantafyllou et al., 1993; Gazzola et al., 2014).

9.3.3 Multi-Foil systems

While the scaling relations presented in this work primarily focus on two-foil configurations, they

can be effectively extended to multi-foil systems. This stems from the accurate modelling of

foil-foil interactions in accordance with the underlying flow physics. To confirm, we conducted
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𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [9.23] 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [9.24]

Figure 9.7: (a) Thrust and (b) power scaling results of pitching foils in various three-foil and five-
foil schools at Re = 4000.

simulations involving three-foil and five-foil configurations at Re = 4000. The scaling coefficients

that provides the most accurate estimation for the simulation data are ct2 = 0.21, ct3 = −0.88,

ct5 = 3.54, ct10 = −0.28, cp6 = −1.90, cp7 = 144.73, cp8 = −12.69, cp9 = 0.79, cp10 = 2.05,

cp11 = 9.61, and cp18 = 5.02. The results in figure 9.7 demonstrates an excellent alignment with

the scaling equations for both thrust and power. This further builds confidence on the versatility

and robustness of the derived scaling laws to assess the propulsive performance of a variety of

multi-foil schooling configurations.

9.4 Summary

This chapter presents a novel approach in developing physics-informed scaling relations that ac-

curately estimate the propulsive performance metrics of pitching foils in various schooling forma-

tions. Building on the existing scaling laws established for single oscillating foils, this research

extends their applicability to multi-foil systems by incorporating the intricate dynamics of foil-

foil interactions. Our analysis considers vortex-induced velocities, imposed by a foil through its

circulation on the other foils in the system. The vertical component of the induced velocity is anal-
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ogous to the heaving motion, suggesting that pitching foils in multi-foil systems can be treated as

simultaneously heaving and pitching bodies. The scaling relations unveil a novel, physics-based

methodology for two or more oscillating foils, exhibiting outstanding agreement with numerical

simulations. These relations account for the influence of the positioning of foils, phase differences

between them, and the amplitudes and frequencies of oscillations. By providing a deeper under-

standing of the fundamental flow physics of schooling foils, the derived relations are expected to

play a crucial role in offering vital insights for the design and optimization of more effective un-

derwater propulsive and energy harvesting systems, thereby fulfilling Objective B. Despite these

insights, there remains a need for a comprehensive investigation that categorizes the vortex topolo-

gies behind parallel foils and elucidates the fundamental physics governing the wake interactions.

Therefore, these critical aspects are addressed in the forthcoming chapter.
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Chapter 10

CLASSIFICATION OF VORTEX

PATTERNS
†

Bio-inspired engineering presents a novel strategy for developing highly efficient and advanced

engineering systems by emulating the naturally optimized physical forms and functions of biolog-

ical entities. A quintessential example of this is observed in the ability of flapping insect wings

to generate leading-edge vortices and keep them attached on their wing surfaces, even under steep

angles of attack. This ability is crucial for generating unsteady aerodynamic forces, granting them

exceptional hovering and maneuvering capabilities (Ellington et al., 1996; Sane, 2003). Thus,

unraveling the physical mechanisms employed by natural species is essential for engineering ad-

vanced propulsion systems.

While prior chapters have illustrated the formation of vortex patterns behind parallel foils, a

detailed quantitative analysis of vortex interactions within the wake remains to be addressed. This

chapter delves into the merged-separate characteristics of the vortex streets behind pitching foils

placed in side-by-side configuration. To this end, a wide range of parameter space, including

Strouhal number, phase difference, oscillation amplitude, and separation distance is investigated.

†The content of this chapter has been published in whole or part, in J. Fluid Mech. with the citation: "Gungor, A.,
Khalid, M.S.U., & Hemmati, A., (2022) Classification of vortex patterns of oscillating foils in side-by-side configura-
tions J. Fluid Mech., 951, A37."
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Outcomes of this chapter aim to strengthen our knowledge of the governing flow physics and

control techniques for novel underwater propulsors operating in schooling configurations to attain

superior swimming performance. Therefore, this chapter sheds light to three novel points that are

currently missing in literature: (i) quantification and classification of vortex patterns behind two

parallel pitching foils, (ii) physical mechanisms, governing the wake merging phenomenon, and

(iii) influence of the merger on propulsive performance of the system. For this purpose, this chapter

is structured as follows. Details of the problem is explained in section 10.1. Section 10.2 includes

the results on the wakes of parallel foils and discussions concerning the vortex patterns and wake

merging phenomena, which is followed by main conclusions in section 10.3.

10.1 Problem Definition

A wide range of parameter space is utilized to provide a comprehensive classification for wake

topology behind parallel oscillating foils. Phase difference between the foils is varied from in-

phase (φ = 0) to out-of-phase (φ = π) with increments of π/6, and pitching amplitude is fixed at

8◦. However, simulations with θ0 = 5◦, 11◦, and 14◦ also performed for selected cases in order to

ensure the validity of the analysis over a range of the pitching amplitude. This analysis reveals that

classification of the wake topology remains consistent, while the ranges at which each topology is

observed may differ with changing amplitude. This, however, would not concern the core analyses

in the current study. The Reynolds number of the flow is fixed at Re = 4000. The separation

distance between the foils (y∗) is varied from 0.5c to 2.5c with increments of 0.5c. St ranges from

0.15 to 0.5 for each value of y∗. The St space covers the formation of BvK, reverse BvK, and

reverse BvK regimes in the wake of single oscillating foils (Godoy-Diana et al., 2008) and natural

swimming St of various fish species (Triantafyllou et al., 1993). The extent of the parameter space

used in the study is summarized in table 10.1.
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Table 10.1: Parametric space of the chapter.

y∗ φ θ0 St Re

0.5−2.5c 0 8◦ 0.15−0.5 4000

1c 0−π 8◦ 0.15−0.5 4000

1.5c 0 5◦−14◦ 0.15−0.5 4000

10.2 Results and Discussion

We begin our analysis with examining vortex dynamics and wake interactions of parallel pitching

foils. In chapter 4, we examined transient wake developments of foils, performing in-phase and

out-of-phase pitching in side-by-side configurations for St = 0.15−0.5 and y∗ = 1c at Re = 4000.

It was demonstrated that wake structures at low St showed quasi-steady characteristics and were

in perfect agreement with the findings of Dewey et al. (2014), i.e., merging symmetric wake for

in-phase pitching and diverging symmetric wake for out-of-phase pitching foils. However, wake

structures and propulsive performance of both in-phase and out-of-phase pitching foils were ob-

served to be highly transient at high St. The wake of in-phase pitching foils initially consisted

of two deflected vortex streets parallel to each other. These streets merged after some time and

formed a symmetric wake. The merging process coincides with the enhancement in time-averaged

thrust and efficiency of the foils. The opposite phenomena was observed in the wake of out-of-

phase pitching foils. The foils initially produced diverging symmetric wakes whose symmetry was

broken after several oscillation cycles. Here, we expand the parametric space to classify vortex pat-

terns, which elucidate active flow control techniques possibly employed by natural swimmers, to

gain a desired hydrodynamic performance. Furthermore, we also present a quantitative explanation

for underlying physical mechanisms of the wake merging phenomenon.

10.2.1 Classification of Vortex Patterns

We identify three distinct vortex patterns in the wake of parallel pitching foils (side-by-side config-

uration) for the given parametric space. Merged−separated characteristics of the wakes were taken
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Figure 10.1: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) of parallel foils for (a) St = 0.25

and y∗ = 1c (merged wake), (b) St = 0.3 and y∗ = 1.5 (separated wake), (c) St = 0.5 and y∗ = 2c
(transitional-merged wake), and (d) St = 0.4 and y∗ = 1c (separated wake) at different time instants
for in-phase and out-of-phase pitching.
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into consideration when classifying the wake in figure 10.1. Here, a merged wake corresponds to

the vortex topology that involves the vortex streets shed by upper and lower foils merging in mid-

wake and forming a single street, which constitutes a new flow configuration. In separated wakes,

on the other hand, upper and lower vortex streets do not amalgamate with each other. Separated

wakes of in-phase pitching foils consist of two parallel vortex streets whereas “v-shaped" diverging

configuration is observed in the separated wakes of out-of-phase pitching foils (see figure 10.1b

and 10.1d). In both merged and separated wakes, vortex patterns are formed within several pitching

cycles and their merged−separated features remain unchanged during the next oscillation cycles

without altering significantly (compare t1 = 14P and t2 = 20P of figure 10.1a, 10.1b, and 10.1d,

where P is period of the pitching cycle). Note that out-of-phase pitching foils at St = 0.5 experi-

ence symmetric to asymmetric transition (see figure 4.5b). However, its wake remains separated

throughout the process. Conversely, transitional-merged wakes undergo distinct separation and

merging stages, primarily transitioning from the former to the latter configuration. As explained

earlier, oscillating foils produce deflected BvK vortex streets at considerably high St. In the wake

of in-phase pitching parallel foils, interaction between vortex streets shed by each foil results in the

constitution of the symmetric wake, in which upper and lower wakes amalgamate around the cen-

terline. (see figure 10.1c). The pitching cycle, in which the merging takes place, greatly depends

on y∗ and St (see table 10.2). For the sake of comparison, the merging process of the wakes occurs

around 22nd cycle for y∗ = 1c and St = 0.5, whereas more than 75 cycles are needed for this phe-

nomenon to occur for y∗ = 2c and St = 0.5. These vortex patterns were gathered in a St −y∗ phase

diagram in order to provide a thorough classification of the wakes of in-phase pitching parallel foils

in figure 10.2a. In this diagram, separated and merged wakes are observed in upper (y∗ ≥ 1.5c)

and lower (y∗ ≤ 1c) regions of the diagram, respectively. On the other hand, transitional-merged

wakes fall into the high St region. It is important to note that this type of wakes are formed

only at sufficiently high St that facilitate the formation of deflected wakes. The relation between

the deflection phenomena, and wake merging is further explained in the next part of this section.

Furthermore, another diagram, explaining the wake topology of parallel foils for varying phase
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Figure 10.2: Classification of the wake patterns of foils in side-by-side configuration for Re= 4000
(a) at a range of separation distance and Strouhal number for in-phase pitching (b) at a range of
phase difference and Strouhal number for y∗ = 1c. Dashed lines correspond to the boundary that
distinguished merged and separated wakes.

difference and Strouhal number at fixed separation distance of 1c, is presented in figure 10.2b.

Vortex patterns display strong dependence to phase difference. For π/3 ≤ φ ≤ 5π/6, parallel foils

constitute separated wakes for each St examined here, which resemble separated wakes of out-of-

phase oscillations, i.e., diverging vortex pattern. On the other hand, merged wakes at φ = π/6 do

not fundamentally differ from those formed by in-phase oscillating foils. Results for intermediate

phase difference are not presented here for brevity, because they yields similar conclusions.

Thereafter, we present quantification of important characteristics of the wakes and propose

a model that distinguishes emerging vortex patterns. At this point, it is important to recall the

dipole model by Godoy-Diana et al. (2009), which presented a quantitative threshold for the wake

deflection behind a single oscillating foil. This model also remains valid for the wake of undulating

foils (Khalid et al., 2020). The wake of oscillating foils, consisting of a reverse BvK vortex street,

is dominated by shedding of a counter-clockwise (positive sign) and a clockwise (negative sign)

vortex per oscillation cycle. These vortices are located slightly above and below the centerline,
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respectively (Koochesfahani, 1989). The structure formed by these two vortices is called a dipole.

Circulations of the vortices in a dipole induce velocity normal to the line that connects the vortex

centers as described by the two-dimensional Bio-Savart rule (Naguib et al., 2011). When the self-

advection velocity of the dipole is strong enough, it diverts the dipole from the centerline, which

is followed by the consecutive dipoles. Therefore, the model was based on the offset between

advection velocity of the propulsive wake, i.e., Uphase, and self-induced translation velocity of the

dipole, i.e., Udipole. They can be mathematically defined as follows:

Uphase = dXi/dt, (10.1)

Udipole = Γ/2πb, (10.2)

where Xi is the x-coordinate of a vortex core, Γ denotes the average of magnitudes of circulation

of counter-rotating vortices, and b represents the distance between the centers of the vortices (see

figure 10.3a). Circulation (Γ) is computed either from a line integral of the velocity field or from a

surface integral of voricity over the area bounded by a closed curve. Godoy-Diana et al. (2009) used

a rectangular frame, whose size was determined by Gaussian fit, to extract the boundary of each

vortex towards calculating Γ. However, this method has a downside of potential numerical errors

due to the possibility that rectangular frames may include counter-rotating vortices, particularly

in the case of structures traversing in close proximity of one another. Therefore, we use a non-

predefined closed curve to accurately capture each vortex proposed earlier by Khalid et al. (2020),

which eliminates this error in computing Γ. The boundary of the curve is defined such that it only

encompasses the region with magnitude of vorticty (ω) greater than 10% of its value in the flow

field. Then, we determine the circulation of each vortex by calculating the line integral of the

velocity field around the curve using the following definition:

Γ =
∮

V ·dl, (10.3)
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Figure 10.3: (a) Demonstration of the parameters used in the proposed model. (b) Effective phase
velocity of the coupled vortex system with respect to radial displacement of the dipoles.

where V is the velocity, and dl is the infinitesimal length. This method ensures that circulation

is computed without any penetration by a neighboring vortex with oppositely-signed vorticity.

Hence, regions in which circulations of positive and negative vortices are calculated are entirely

separated from each other by non-predefined boundaries around these coherent flow structures.

For the effective phase velocity (U∗
p ), Godoy-Diana et al. (2009) defined it in the following

manner that yields positive values for deflected wakes:

U∗
p = (Uphase −U∞)cosα

∗−Udipole, (10.4)

where α∗ is the angle between Uphase and Udipole as presented in figure 10.3a. Here, we present

a model that distinguishes different classes of vortex patterns using U∗
p . Although the model of

Godoy-Diana et al. (2009) successfully predicts whether the wake is deflected behind an isolated

oscillating foil, but it cannot identify the nature of vortex patterns, i.e., merged or separated, for

multiple parallel foils, forming complex wakes in close proximity of one another. In order to con-
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struct an effective mathematical model, our current work focuses on differentiating merged and

separated wakes and supplying information about the direction of their deflections. To illustrate

it further, in-phase pitching transitional-merged wake at St = 0.5 and y∗ = 2c exhibits deflection

during each stage of wake development. During the separated stage at t1 = 30P, both top and

bottom wakes are deflected downwards, whereas the wake fully transitions to that of a merged

configuration at t2 = 90P. In the latter stage, upwards deflected bottom vortex street and down-

wards deflected top vortex street is observed (see figure 10.1c). However, the model proposed by

Godoy-Diana et al. (2009) cannot distinguish the vortex patterns for these configurations since all

the cases consist of deflected wakes. Similarly, separated wake with deflected vortex streets at

St = 0.4 and y∗ = 2c (see figure 10.4a) and separated wake with horizontal vortex streets at lower

St and 1.5c ≤ y∗ ≤ 2.5c (e.g. figure 10.1b) are treated disparately by the model, although, they are

all classified as separated wake. Thus, we introduce the term sinα∗ to the formulation to take the

direction of deflection into account, because sinα∗ yields positive values for upwards wakes and

negative values for downwards and non-deflected wakes. Moreover, weight factor term, Wi, which

yields −1 for diverging separated wakes and 1 for the rest is incorporated into the equation to

distinguish the separated wakes of out-of-phase pitching parallel foils. Hence, the effective phase

velocity of the coupled vortex system or U∗
p,sys can now be defined as follows:

U∗
p,sys =

U∗
p,upper sinα∗

upper

U∗
p,lower sinα∗

lower
Wi (10.5)

Here, Wi is the wake weighting function defined as

Wi =


1, small β (|β |< β

∗/κ)

sin(β )/|sin(β )|, large β (|β |≥ β
∗/κ)

(10.6)

where β = α∗
lower −α∗

upper and β ∗ = |α∗
lower|+|α∗

upper|. Here, κ denotes a positive number, which

helps setting up a threshold for different classes of wakes under a broad range of kinematic pa-

170



rameters. We examine the performance of this weight factor term with κ = 5, 7.5, and 10, and all

these values serve the purpose very well.

Equation 10.5 yields negative U∗
p,sys values for merging wakes, whereas separated wakes pro-

duce positive U∗
p,sys. The model requires U∗

p and sinα∗ for the upper and lower vortex dipoles (see

figure 10.4a) that are shed in the same pitching cycle. Although it can be calculated at a certain

location, it is preferred to trace these dipoles as they move in the downstream direction. It helps

demonstrate that the model is not limited to a specific location but is valid for the whole domain.

Figure 10.3b shows variations in U∗
p,sys for separated, merged, and transitional-merged wakes with

respect to the radial displacement given by r =
√

(X1 −X0)2 +(Y1 −Y0)2, where X1 and Y1 define

an instantaneous location of a vortex core. Moreover, X0 and Y0 provide the location of the vortex

core just after its detachment process from the foils is completed. Note that a geometric mean

of the respective quantities for the counter-rotating vortices is used as the location of the dipole.

Because the counter-rotating vortices are shed alternatively from each foil, it is also important to

mention that each dipole is formed by those two counter-rotating vortices that have smaller dis-

tance between their centers. It is evident from the plot in figure 10.3b that the proposed model

successfully differentiates between separated and merged wakes for the given parametric space.

In this model, separated and merged stage of transitional-merged wakes are treated individually

and marked with different colors, since these stages are contradictory to one another in terms of

their vortex configuration. It is important to note that merged wake cases are tracked for relatively

short radial displacement, i.e., r/c ≤ 3. This is because their upper and lower vortex streets merge

at mid-wake, which inhibits further tracking. However, dipoles of the separated wakes are traceable

until circulation of the vortices shrink to negligible values due to the viscous diffusion around

r/c = 5. To clarify the working mechanism of the model, U∗
p of merged wakes (see figure 10.1a

or figure 10.1c at t2 = 90) yields positive values for both bottom and top vortex streets as they are

deflected upwards and downwards, respectively. Furthermore, sinα∗ for top and bottom wakes

switch signs (sinα∗ < 0 for top and sinα∗ > 0 for bottom), which results in U∗
p,sys < 0. On the

other hand, horizontal vortex streets in the separated wakes (see figure 10.1b) have U∗
p < 0 and
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sinα∗ < 0, thus leading to U∗
p,sys > 0. The separated wake, whose vortex streets are deflected (see

figure 10.4a), or transitional-merged wake at separated stage (see figure 10.1c at t1 = 30P) yield

U∗
p > 0 and sinα∗ < 0, which translates to U∗

p,sys > 0. Finally, diverging separated wakes whose

vortex streets are deflected in opposite directions yield positive values for U∗
p and opposite signs

for sinα∗ (sinα∗ > 0 for top and sinα∗ < 0 for bottom). However, it gets −1 from the weight

factor since β = α∗
lower −α∗

top < 0, which translate into U∗
p,sys > 0.

The classification and mathematical modeling of the vortex patterns presented here is devel-

oped for Re = 4000. However, it relies on kinematic quantities of coherent structures in the wake,

such as the angle between vortex cores, circulation of vortices, and phase velocity of dipoles.

Therefore, it is expected to work well for low and medium Re ranges considering all the flow

topologies, i.e., von Karman street, reverse von Karman street, and deflected von Karman street,

observed for 10 ≤ Re ≤ 2000 (Das et al., 2016) already covered in the analysis. It is notewor-

thy to state that the coherent structures remain the same even though the wake transitions to 3D

at Re = 8000 (Verma and Hemmati, 2021). A similar argument can be made for the range of

oscillation amplitude. Patterns of the coherent structures behind oscillating foils for a range of os-

cillation amplitude (Godoy-Diana et al., 2008; Das et al., 2016) do not fundamentally differ from

the ones considered in the current study. This suggests that wakes of oscillating foils at different

oscillating amplitudes can be classified and mathematically modeled using the presently proposed

procedure. In an effort to test this, we also simulate cases for θ0 = 5◦,11◦, and 14◦ at a range of

St for y∗ = 1.5c. Their wakes display characteristics of one of the three vortex patterns examined

above: separated wake, merged wake, or transitional merged wake. Furthermore, equation 10.5

performs excellently in distinguishing different topologies of the wake. Nevertheless, these results

are not shown here for brevity.

10.2.2 Mechanism of Wake Merging

After establishing a mathematical model to quantitatively identify and characterize different wake

patterns behind pitching foils in side-by-side (parallel) configuration, we focus our attention to
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Figure 10.4: Contours of spanwise vorticity (ω∗
z = ωz c/U∞) of in-phase pitching parallel foils at

y∗ = 2c for (a) St = 0.4 (separated wake) and (b) St = 0.5 (transitional-merged wake) at different
time instants.

identify and explain the mechanism of wake merging. To this effect, we analyze primary transi-

tions in the wake of in-phase pitching foils by associating it with the production and dynamics of

secondary vortex structures. When an oscillating single foil produces a deflected wake, secondary

structures appear from the primary vortex street to move away from the direction of deflection.

Such secondary structures were also observed in the experiments of Godoy-Diana et al. (2008)

and Jones et al. (1998) and numerical simulations of Liang et al. (2011). But no further analyses

were conducted for this important feature of the wake dynamics. These structures are consider-

ably weaker in their relative strength compared to those in the main street, which is why they have

not received adequate attention in literature. We hypothesize that secondary structures play a key

role in the merger of upper and lower vortex streets behind parallel oscillating foils. Figure 10.4a

shows a separated wake of the foils for the case of St = 0.4 and y∗ = 2c at t = 60P. Even though

secondary structures are present in the wake, structures from the lower wake are convected in the

downstream direction before reaching the upper wake. At St = 0.5 and y∗ = 2c, in which wakes

are merged, however, these secondary structures from the lower foil deflect upward to interact with
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Figure 10.5: Magnitude of non-dimensional circulation (Γ∗ = Γ/U∞ c) of negative vorticity of
upper and lower vortex streets at y∗ = 2c for (a) St = 0.4 (separated wake) and (b) St = 0.5
(transitional-merged wake before the merger) at different time instants for in-phase pitching.

primary street of the upper foil, traversing downward (see figure 10.4b). These observations hint

that this interaction triggers the wake merging process, because constructive or destructive inter-

ference of secondary vortices with the bigger coherent structures change their strengths in terms of

circulation (Zhu et al., 2002; Akhtar et al., 2007; Khalid et al., 2021b,a). Furthermore, onset of the

complete wake merging appears located very close to the point of interaction between secondary

structures and primary street. For instance, secondary structures shed by the lower foil at St = 0.5

and y∗ = 2c catch the upper main vortex street at x/c ≈ 4, which coincides with the location for the

merging of wakes (see figure 10.1c). Likewise, both the interactions between secondary structures

and the upper wake as well as the merging of upper and lower wakes occur at x/c≈ 3.6 for St = 0.5

and y∗ = 2c (see table 10.2). The alignment of spatial merging location and that of vortex interac-

tions strengthens our argument on the role of these smaller structures in initiating and facilitating

the wake merging process.

We proceed with providing another quantitative explanation to the impact of secondary struc-

tures on the overall wake dynamics. In this manner, locations and circulation of vortex dipoles

are traced in the wake to provide evidence for the impact of secondary structures. Figure 10.5

exhibits the change of Γ for negative vortices associated with separated (St = 0.4 & y∗ = 2) and
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Figure 10.6: Magnitude of non-dimensional circulation (Γ∗ = Γ/U∞ c) of negative vorticity of up-
per and lower vortex streets for transitional-merged wakes before the merger and separated wakes
for in-phase pitching.
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transitional-merged (St = 0.5 & y∗ = 2c) wakes, as dipoles move downstream. For the transitional-

merged wake (figure 10.5b), circulation of the negative vortices of upper and lower wakes overlap

in the near wake region. However, proximity in this sense is broken in favor of the upper wake,

after which there is constructive interference of secondary structures with negative vorticity at

r/c ≈ 3.5. This observation remains valid at different time instants. Non-dimensional circulation

at t1 = 44P and t2 = 55P is presented in figure 10.5b. On the contrary, there exists no significant

difference in circulation of the upper and lower wakes for the separated wake (figure 10.5a), be-

cause the secondary structures have no influence on the upper wake. Similarly, wakes at t1 = 40P

and t2 = 50P show that this trend is independent of the wake evolution and time. It is apparent

that enhancement of the negative vorticity of the upper wake due to the influence of the secondary

structures causes alterations in deflection of the vortex street (see equation 10.2 and 10.4). It

eventually results in the primary wake transition, i.e., merger of the wakes. We also notice that

relatively weaker and smaller secondary structures compared to the primary vortices could be the

reason for gradual merging of the vortex streets in transitional-merged wakes. As illustrated in

figures 10.5 and 10.6, they have a delicate but significant effect on the upper vortex street, which

may result in the crawling merging process. Therefore, the dynamics of secondary structures only

account for the merging mechanism and physical process, while the discussion in section 10.2.1

outlines the mathematical model to effectively categorize the wake patterns. Furthermore, circu-

lation of negative vortices of the upper and lower wakes is computed for other separated wakes

and transitional-merged wakes to support this explanation for this mechanism. It is evident from

figure 10.6 that our illustration stays valid for all transitional-merged wake cases investigated in

this study.

10.2.3 Effect of Wake Merging on the Propulsive Performance of the System

We now focus on the relationship between propulsive performance of in-phase pitching paral-

lel foils (side-by-side configuration) and primary transitions in the wake by assessing the cycle-

averaged performance metrics. Figure 10.7 shows temporal variations of the coefficients of thrust
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Figure 10.7: The variation of cycle-averaged (a) thrust and (b) power coefficients, as well as (c)
efficiency of the system (averaged using Foil 1 and Foil 2), and the isolated foil in time at a range
of St and y∗ for in-phase pitching.

and power, as well as efficiency at a range of St and y∗ for the system (average of Foils 1 and

2) and an isolated foils. The performance parameters of this dynamical system are examined for

a large number of oscillation cycles, i.e., until the cases reach quasi-steady conditions for their

propulsion. This translates into 40 cycles for isolated cases, 65 cycles for cases with St = 0.4, 90

cycles for y∗ = 1c & St = 0.5 and y∗ = 1.5c & St = 0.5, and 120 cycles for y∗ = 2c & St = 0.5

and y∗ = 2.5c & St = 0.5. Figure 10.7 covers all transitional-merged wakes observed in the current

study as well as separated wakes, i.e. St = 0.4 and y∗ = 2c, St = 0.4 and y∗ = 2.5c, St = 0.5

and y∗ = 2.5c, and isolated foils’ wakes. In this section, we aim at establishing the impact of
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Table 10.2: Streamwise location (x/c) and time instant (t/P) in which the wake merging occurs
as well as the percent improvement in the cycle-averaged coefficient of thrust (∆C̃T ) for separated
and transitional-merged wake cases at St = 0.4 and St = 0.5.

St = 0.4 St = 0.5

y∗ = 1c y∗ = 1.5c y∗ = 2c y∗ = 1c y∗ = 1.5c y∗ = 2c

x/c 2.7 4.7 − 2.5 3 3.6

t/P 15 49 − 22 36 78

∆C̃T 5.15% 1.83% 0.95% 12.60% 10.77% 7.52%

unsteady alterations in wake dynamics on the propulsive performance of the system. Thus, param-

eters for cases with lower St, i.e., St ≤ 0.3, are not presented here as they display no significant

wake transitions. In chapter 4, it is demonstrated that parallel foils generates highly quasi-steady

performance and wake characteristics for lower St at y∗ = 1. With this background, it is further

noticed in the present study that the same attributions persist for other separation distances ex-

amined here. Power requirements of the system marginally vary in time, which translates into

resembling trends for the cycle-averaged coefficient of thrust and efficiency. The percent improve-

ment in thrust (∆C̃T ) is given in table 10.2 together with the location and time instant of the wake

merging. ∆C̃T is calculated between 5th cycle and the cycle in which the thrust coefficient reaches

quasi-steady conditions, e.g., 90th cycle for y∗ = 1c & St = 0.5, 120th cycle for y∗ = 2c & St = 0.5.

The first 5 cycles are disregarded, considering that the performance metrics of steady cases require

5 cycles to converge as shown in chapter 4. It is evident from figure 10.7a that the generated

thrust by transitional-merged wakes improves with time and reaches a steady-state after the pri-

mary transition in the wake is established. This indicates that the wake merging process could be

a contributing factor for thrust enhancement. Furthermore, it is important to note that the sepa-

rated wakes presented here (St = 0.4 & y∗ = 2c, St = 0.4 & y∗ = 2.5c, and St = 0.5 & y∗ = 2.5c)

experiences trivial alterations in propulsive performance parameters, which further supports our
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argument. Thus, we affirm that merging of these wakes improves propulsive thrust of the system

by increasing thrust generation through amplification of the circulation associated with amalga-

mated vortices around the mid-wake. This results in the formation of high momentum jet on the

centerline.

There are two consequential inferences from figure 10.7 and table 10.2, which strengthens our

argument. First, the time instance of peaks in thrust variation lags the instant of wake merging

process. For example, thrust generation for the case of St = 0.5 and y∗ = 1c has its maximum at

t/P = 29, whereas its wake merging occurs at t/P = 22. Second, thrust enhancement in the system

decreases as the streamwise location of the onset of wake merging moves downtream. This is due

to the reduction in circulation of the dipoles as they travel downstream the wake (see figures 10.5

and 10.6). When upper and lower vortex streets merge in closer proximity to the foils, amalgamated

vortices have greater circulation. This causes an increased momentum jet that is induced by the

vortex street. This is consistent with insignificant improvements in thrust for the case of St = 0.4

and y∗ = 1.5c, whose wake merging occurs farther in the wake, i.e., increased distance from the

foils.

Propulsive performance metrics of isolated pitching foils are also presented in figure 10.7. This

data is tracked for 40 oscillation cycles, negligible alterations are witnessed after 20 oscillation

cycles. Note that a single foil with St = 0.4 and 0.5 forms deflected wakes with quasi-steady

characteristics although it is not demonstrated here for brevity. This range of St agrees well with

the threshold St for wake deflection shown in other studies (Jones et al., 1998; Godoy-Diana et al.,

2008; Deng et al., 2015, 2016; Das et al., 2016). Pitching foils in side-by-side configurations

exhibit superior performance compared to a solitary foil. Although parallel foils with all separation

distances produce less thrust compared to a foil in isolation, they require substantially less power.

This results in improved efficiency for parallel foils. Similar findings are also presented by Huera-

Huarte (2018) and Dewey et al. (2014). It is worth mentioning that efficiency of an isolated foil at

St = 0.4 does not substantially differ from the case with separated wakes (y∗ = 2c and y∗ = 2.5c).

Likewise at St = 0.5, an isolated foil attains similar efficiency with a transitionally merged wake
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Figure 10.8: Cycle-averaged streamwise velocity (ũ) profiles of in-phase pitching foils, normalized
by U∞, obtained from the finite-core vortex array model for St = 0.5 and y∗ = 1c at different time
instants (t1 = 13P and t2 = 50P) and streamwise locations (x/c = 4 and x/c = 6).

(y∗ = 2c) when it is not merged (t/P ≤ 78) and a separated wake (y∗ = 2.5c). On the other hand,

efficiency of the two parallel foils, in which the primary wake transition occurs, is greater than an

isolated foil for the same St. These observations imply that interactions of wakes favorably impact

the performance of these complex dynamical system.

We now proceed with implementing the finite-core vortex array model to our wake data, follow-

ing Naguib et al. (2011). This model suggests that velocity profiles in the wake can be determined

by superimposing finite amount of vortex cores onto a uniform flow. Streamwise and transverse

velocity profiles that induced by superposition of N vortices can be determined using:

u(x,y) =U∞ −
N

∑
i=1

Γi(ri)

2π

(y− yci)

r2
i

, (10.7)

v(x,y) =
N

∑
i=1

Γi(ri)

2π

(x− xci)

r2
i

, (10.8)

where ri is the radial distance from ith vortex center to the point of calculation, and xci and yci are the
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streamwise and transverse location of the center of the ith vortex, respectively. The model requires

the number of vortices greater than or equal to 10 in order to converge (Naguib et al., 2011). To this

end, locations and circulations of vortices within the range of 3≤ x/c≤ 7 are measured for St = 0.5

and y∗ = 1c at t1 = 13P (separated stage) and at t2 = 50P (merged stage). The St and y∗ of the

flow are selected, considering it yields the highest percent improvement in thrust production (see

figure 10.7 and table 10.2). Moreover, the range of execution is determined considering that the

wake merging occurs following x/c = 2.5 and circulation of the dipoles diminishes after x/c ≥ 7.

Mean streamwise velocity profiles calculated using the vortex array model are plotted for x/c = 4

and x/c = 6 in figure 10.8. High momentum-surfeit regions are observed around the centerline

(y/c = 0) for the merged wake (t1 = 50P), whereas two distinct peaks associated with the jets

created by the upper and lower vortex streets are visible in the separated wake (t1 = 13P). Excessive

momentum at the outlet profiles (x/c= 4 and x/c= 6) created by the single velocity peak is greater

than combination of the two peaks. It clearly shows impact of the wake merging on the formation

of high-momentum jets, which results in improving thrust production. Furthermore, we compare

velocity profiles obtained from the vortex array model with contours of mean horizontal velocity

from figure 10.9. The model accurately captures the general trend and locations of the velocity

peaks. However, it underestimates the magnitude of peaks in velocity profiles. This limitation

may be due to the sampling space given we only consider the region after wake merging in our

calculations for the model. This focus on a particular region is driven by our emphasis on the

influence of wake merging. Finite-core vortex array model was also developed and utilized by

Dewey et al. (2014) to reproduce wake structures and time-averaged velocity fields around parallel

foils for in-phase (φ = 0), out-of-phase (φ = π), and mid-phase (φ = π/2) oscillations. Even

though they successfully demonstrated merging of wakes for in-phase pitching foils, they were not

able to observe transitional characteristics during evolution of the wake, because Strouhal number

of their study was limited to St = 0.25.

The formation, growth and interaction of LEVs can be an important mechanism that impact

propulsive performance of oscillating foils (Anderson et al., 1998; Pan et al., 2012), while also
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Figure 10.9: Cycle-averaged streamwise velocity (ũ) contours normalized by U∞ of in-phase pitch-
ing parallel foils for St = 0.5 and y∗ = 1c at (a) t1 = 13P and (b) t2 = 50P.

impacting the wake development (Hemmati et al., 2019a). To this effect, we now look at how

alterations in the formation and growth of LEVs around the foils influence their propulsive perfor-

mance during separated-to-merged wake transition. LEVs are formed when the angle of attack is

high enough that a separation bubble is formed on the foils. Their presence and evolvement on the

surface of a fin or wing is responsible for a large part of thrust and lift generation in aquatic loco-

motion (Borazjani and Daghooghi, 2013; Bottom Ii et al., 2016; Liu et al., 2017; Xiong and Liu,

2019) and insect flight (Ellington et al., 1996; Birch and Dickinson, 2001; Bomphrey et al., 2005),

respectively. Unsteady thrust variations of the foils in the transitional-merged wake (St = 0.5 and

y∗ = 1c) throughout the separated and merged time ranges is presented in figure 10.10, which

182



clearly demonstrates that higher peaks and lower troughs are achieved after the wake merging.

Contours of vorticity focusing on surfaces of the foils at time instants that correspond to the highest

(θ = 8◦) and the lowest (θ = 0◦) angles of attack is shown in figure 10.11. This enables comparing

this process to the evolution of LEVs around the foils. Note that these instants roughly overlap with

the times at which the foils yield their highest and lowest thrust generation, as marked in figure

10.10. Negative (clockwise rotating) and positive (counter clockwise rotating) LEV are formed on

the upper and lower surface of the foils at the separated stage of the wake evolution, respectively.

On the other hand, constituting positive LEVs on the lower surface of Foil 1 and negative LEVs

on the upper surface of Foil 2 is significantly suppressed when the wake is fully merged. Further-

more, it is evident from contour plots in figure 10.11 that stronger LEVs are formed after the wake

merging, which hints at a potential factor for thrust enhancement. These observations are valid for

the other transitional-merged wake cases with recognizable thrust enhancement as well, although

they are not shown here for brevity. Note that profiles of unsteady thrust have two peaks and two

troughs per oscillation cycle. The impact of LEVs on thrust generation can be explained through

the low pressure region (suction) formed by vortices. LEVs attached close to the anterior part of

the foil favorably affect thrust by dropping the pressure in this region, whereas their influence is

adverse if located around the posterior part of the foil. For example, Foil 1 at t7 = 50.25P have

enhanced LEV around the front edge comparing to Foil 1 at t3 = 13.25P. However, the distribution

of LEVs on rear surfaces of the foils are matching, which translates to thrust enhancements for Foil

1. Likewise, thrust of Foil 2 at t5 = 49.75P is considerably larger than that of Foil 1. This is due to

stronger LEVs formed close to the forehead of Foil 2, while an LEV with large negative vorticity

is present on the rear part of the Foil 1.

Merging of vortex streets was accompanied by the restoration of wake symmetry for parallel

foils as shown in chapter 4. Both performance and wake characteristics exhibit symmetric behavior

with a delay of half pitching period. This lag between the foils is due to the formation process of

vortex dipoles. Although TEV1 and TEV2 are shed at the same time (e.g., t5 = 49.75P), TEV2

establishes a dipole with TEV0 that has been shed half a period prior to these TEVs, whereas
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Figure 10.11: Contour of spanwise vorticity (ω∗
z =ωz c/U∞) around in-phase pitching parallel foils

for St = 0.5 and y∗ = 1c (transitional-merged wake) at various time instants during separated stage:
(a) t1 = 12.5P, (b) t2 = 13P, and merged stage: (c) t3 = 49.5P, (d) t4 = 50P.
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the coupling of TEV1 and TEV3 are delayed by half a cycle. Therefore, distribution of LEVs

around Foil 1 and Foil 2 at t5 = 49.75 in figures 10.11e is mirror image symmetric with switched

signs of vorticity with that around Foil 2 and Foil 1 at t7 = 50.25P in figures 10.11g, respectively.

Besides, shifting CT values for Foil 1 by a half period in either direction results in a perfect overlap

with those for Foil 2 during the merged stage of the wake evolution, or vice versa (see figure

10.10). Contrarily, there is neither a coherent similarity of the arrangement of LEVs around the

foils between different time steps nor a half period lag between performance parameters of Foil 1

and Foil 2 during the separated stage of wake evolution.

10.3 Summary

Numerical simulations on the flow around two pitching foils in side-by-side configuration are ex-

amined at a range of Strouhal number, 0.15 < St < 0.5, phase difference, 0 < φ < π , pitching am-

plitude, 5◦ < θ0 < 14◦, and, separation distance, 0.5c < y∗ < 2.5c, at Reynolds number of 4000.

First, we classify the vortex patterns in the wake. In the Strohual number−separation distance

phase map of in-phase pitching foils, separated and merged wakes, which exhibit quasi-steady

performance and wake characteristics, are observed at lower Strouhal numbers. Small spacing be-

tween the foils yields the constitution of merged wakes, while separated wakes are seen at higher

separation distances. On the other hand, transitional-merged wakes, which are often observed at

high Strouhal numbers, exhibit wake evolution in time. Two distinct and deflected vortex streets

shed by each foil are observed at early stages of the oscillations. Upper and lower vortex streets

approach each other in time, which eventually results in merging of the wakes. A novel mathe-

matical model is proposed, which quantitatively establishes the threshold for the two set vortex

patterns. This model utilizes the locations and circulations of individual vortices in a dipole. It is

further tested using the current parameter space and performs perfectly in determining if the wake

is separated or merged.
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Then, we proceed with evaluating and explaining the physical mechanism associated with the

primary wake transition, observed in in-phase pitching foils. This analysis reveals a novel process

in which secondary structures in the wake are responsible in part for the wake merging. The wake

merging occurs when secondary structures from the lower vortex street are strong enough to form

a constructive interaction with main vortex street of the upper wake. This interaction triggers the

merging of wakes by increasing the circulation of negative vortex in the upper vortex street. In

turn, this impacts the resultant induced velocity (flow) by the two vortex streets, which now do not

match, leading to further deflection of wakes and their subsequent merger. Finally, it is observed

that merging of the wakes enhances propulsive performance of the foils by combining circulations

of amalgamated vortices. This process induces high-momentum jet around the centerline. Evolu-

tion of leading-edge vortices plays a major role in the performance enhancement. Alterations in

the distribution of leading-edge structures and the amplification in their strength, which occurrs

after the wake merging, is a contributing factor for the improvements in thrust generation.

This chapter, in conjunction with chapters 4-7, tackles the complex dynamics of unsteady wake

interactions behind parallel oscillating foils and their impact on propulsive performance metrics,

thereby achieving Objective A. The detailed characterization of two-dimensional structures be-

hind parallel oscillating foils, accomplished in these chapters, provides essential motivation and

background knowledge for elucidating the intrinsic dynamics of three-dimensional instabilities.

Consequently, the focus in the subsequent two chapters shifts to investigating the spanwise insta-

bilities that emerge around parallel pitching foils.
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Chapter 11

FOIL PROXIMITY EFFECT INDUCED

SHEAR LAYER INSTABILITY
†

A vortex pair, whether co-rotating or counter-rotating, manifests three-dimensional instabilities

both in isolation and within close proximity of another foil, bearing significant relevance to air-

craft and submarine wake dynamics (Williamson et al., 2014). This has spurred numerous foun-

dational investigations aimed at characterizing the intricacies of these instabilities within vortex

pairs (Leweke and Williamson, 1998; Ortega et al., 2002, 2003; Bristol et al., 2004; Leweke

and Williamson, 2011). In their review, Leweke et al. (2016) meticulously examines this subject

matter, providing a comprehensive overview that delves into the fundamental attributes of three-

dimensional instabilities, particularly focusing on long and short wavelength instability mecha-

nisms. Similarly, significant attention has been directed towards elucidating the three-dimensional

aspects of wakes in the context of oscillating foils, as outlined in chapter 2.5. Recent studies

(Deng and Caulfield, 2015; Deng et al., 2016; Zurman-Nasution et al., 2020; Chiereghin et al.,

2020; Verma and Hemmati, 2021; Son et al., 2022; Verma et al., 2023) offer valuable insights into

the complex dynamics of wake instabilities associated with single oscillating foils. Nonetheless, a

†The content of this chapter is currently under revision in J. Fluid Mech. with the citation: "Gungor, A., Verma,
S., Khalid, M.S.U., & Hemmati, A., (2024) Foil Proximity Effect Induced Shear Layer Instability Around Oscillating
Foils J. Fluid Mech."
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comprehensive exploration of how kinematic parameters affect parallel foils, specifically the gap

and phase difference between them, remains an area for further investigation.

The presence of a solid boundary near oscillating foils leads to substantial effects on vortex dy-

namics around them (Quinn et al., 2014) and their propulsive performance characteristics (Blevins

and Lauder, 2013; Mivehchi et al., 2021). Quinn et al. (2014) identified two distinct vortex pat-

terns, emerging in the wake of pitching foils near the ground, based on the separation distance from

the wall boundary. The flow around oscillating foils near a solid boundary is akin to that of a pair of

parallel foils undergoing out-of-phase oscillations at low frequencies. It can be correlated with the

method of images discussed by Dewey et al. (2014). Previously, the key disparities between two-

dimensional wake topologies of in-phase and out-of-phase pitching parallel foils is elucidated in

chapter 4, followed by a comprehensive classification of their vortex patterns in chapter 10. These

studies, however, overlooked three-dimensional characteristics in the flow instabilities. Thus, the

objective of this chapter is to examine three-dimensional flow dynamics and the spanwise instabil-

ities that emerge behind parallel foils in the presence of another pitching foil in close proximity.

Here, we introduce and explain the nature of a new shear layer instability due to the foil proximity

effect. This aspect shapes up the primary novelty of the work presented. This chapter is orga-

nized to first present the details of the problem in section 11.1. Subsequently, the main results and

discussions are outlined in section 11.2, followed by a summary in section 11.3.

11.1 Problem Definition

The flow around two pitching foils in side-by-side configurations are simulated at a Reynolds

number of 8000, in which the flow is anticiptaed to fully transition to turbulence (Verma and

Hemmati, 2021). Note that the experimental results of Zurman-Nasution et al. (2020) on the wake

transition to 3D at Re = 5300 remain valid, even when Re is doubled. The separation distance

between these infinite-span teardrop foils is varied from y∗ = 0.5c to y∗ = 1.5c in increments of
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0.25c. Both in-phase (φ = 0) and out-of-phase (φ = π) motions are considered for the Strouhal

numbers of 0.3 and 0.5, which represent low and high St, as detailed in the previous chapters.

11.2 Results and Discussion

The transition to three-dimensionality is not anticipated for the foils oscillating in isolation within

the range of kinematic parameters examined in the current study, emphasizing the critical role of

the foil proximity effect. Zurman-Nasution et al. (2020) demonstrated that pitching foils produced

a two-dimensional wake for St ≈ 0.3− 0.6. Deng et al. (2016) also estimated a comparable St

for the transition. Both studies also concurred on the observation that the wake of heaving foils

exhibited a transition to three-dimensionality at a significantly lower St. Therefore, our present

work addresses the primary question of how foil proximity effect influences the vortex dynamics

on the surfaces of the parallel foils. In this quest, we also report a novel instability mechanism

for the shear layers of developing TEVs. Flow instabilities are first identified and characterized,

while quantitative links are presented between the growth of LEVs, roll up of the shear layer, and

dislocation of vortex legs on the growing TEVs. This discussion provides a foundation to examine

a unique fundamental association between foil proximity effect and vortex instabilities around

parallel foils. Lastly, the influence of kinematics of the foils on the newly discovered mechanism

is discussed.

11.2.1 Characterization of the Instability

We begin by examining three-dimensional flow features in the vicinity of parallel in-phase pitching

foils with a small separation distance between them (y∗ = 0.75c) and a moderate Strouhal number

(St = 0.3), under quasi-steady conditions. Iso-surfaces of the Q-criterion, as originally defined by

Hunt et al. (1988), are utilized to identify coherent flow structures in the wake. This technique

is known for its robustness, and it is commonly employed in wake and flow analyses (Chiereghin

et al., 2020; Verma and Hemmati, 2021; Khalid et al., 2021a). Figure 11.1 exhibits temporal pro-
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gression of vortical structures around the foils during the downstroke phase of the pitching cycle,

resulting in the formation of positively signed (counter-clockwise rotating) TEVs. Even at the ini-

tial stage of their formation in figure 11.1a (t1 = 11.375P), spanwise undulations become apparent

with the TEV growing on the bottom foil. This observation aligns with the presence of prominent

oppositely signed vortical structures on the upper surface of the bottom foil, near the trailing edge.

It is also consistent with chpater 10, where the impact of a side-by-side configuration on the LEV

dynamics is illustrated . For the in-phase pitching motion, neighboring surfaces of the parallel

foils (the upper surface of the bottom foil and the lower surface of the top foil) exhibit stronger

LEVs compared to those of a single foil. LEVs on the outer surfaces (the lower surface of the
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bottom foil and the upper surface of the top foil) are observed to be comparatively weaker. This

can explain the presence of undulations on the TEV of the bottom foil and their absence on the

top foil, which coincides with the stronger vortical structures, more severely straining the TEVs.

This is the underlying mechanism for spanwise instabilities (Kerswell, 2002). A quantitative as-

sessment of LEVs, presented later in this section, provides additional support for this argument.

As the foils complete their downstroke at t3 = 11.75P (figure 11.1b), shear layers in the form of

legs of TEVs are fully detached from the foils. The perturbed shear layer exhibits highly three-

dimensional features, leading to loss of coherence, which disintegrate into two parts (figure 11.1c).

The upper part of the shear layer merges with the primary vortex tube, while the lower part is

completely detached from the braid region and convected downstream (figure 11.1d). In contrast,

the shear layer formed by the leg of the TEV at the top foil maintains its coherence and remains

predominantly two-dimensional throughout the shedding process. It coincides with the absence of

strong structures formed on the upper surface of the top foil. The exact opposite phenomenon takes

place for shedding of the consecutive (clockwise rotating) TEVs during the upstroke, supporting

the qualitative link witnessed between the emergence of shear layer instability and LEV dynamics.

To quantify the spanwise instability characteristics, the wavelength of the undulations on the

TEV is calculated. Figure 11.2 shows contours of streamwise vorticity plotted on a plane that cuts

through the center of the newly developing TEVs. The undulations in the vortex shed from the

bottom foil lead to the formation of aligned streamwise vortex pairs along the spanwise direction

at y/c ≈−0.2. The wavelength of the spanwise instability, denoted by λz, is defined as the distance

between two consecutive similarly signed vortices, as illustrated in the figure. The average wave-

length of the instability is calculated to be λz/c = 0.37, indicating a short wavelength mode. This

is consistent with in the Floquet stability analysis of Deng and Caulfield (2015), who observed that

the vortices in wake of pitching foils are unstable to short wavelength perturbations at λz/c = 0.21.

As expected, no prominent streamwise structures are observed for the TEV shed from the top foil

(y/c ≈ 0.6) considering its mainly two-dimensional structure.
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The connection between the shear layer instability induced by the foil proximity effect and

the formation and growth of LEVs is quantitatively evaluated and linked with qualitative wake

visualizations in figure 11.3. A combination of spanwise vorticity contours (ω∗
z ) and profiles of

span-averaged chord-wise pressure gradients (d pw/dx) are presented here. Temporal evolution of

vortex topology in the vicinity of the foils at the middle plane (z/c = 0) for a complete pitching

cycle delivers a clear depiction of the alteration mechanism of the LEV in figures 11.3a-11.3d.

Variations in span-averaged pressure gradients on the upper surfaces of both foils are tracked over

the same pitching cycle to provide a quantitative assessment of this process (figures 11.3e-11.3h).

A rapid variation of the pressure gradient on the surface is associated with the presence of a large-
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scale vortex core, as suggested by Obabko and Cassel (2002). This method is also used by Verma

et al. (2023) to identify LEV structures forming on the surfaces of oscillating foils in correspon-

dence with transition mechanisms that govern the growth of secondary streamwise structures. At

the beginning of the downstroke (figure 11.3a), LEVs start forming on the upper surfaces of the

foils. The one formed on the bottom foil (LEV 1
bot) is considerably stronger compared to that formed

on the top foil (LEV 1
top). This is evident from the deviation of the maximum pressure gradients in

figure 11.3e, which corresponds to these particular LEVs. By the time both foils reach their middle

position parallel to free stream at t2 = 11.5P, a secondary vortex roll-up is visible on the bottom

foil near its trailing edge. It coincides with emergence of the newly discovered “double-neck” on
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the leg of T EV 1
bot prior to its detachment from the foil (figure 11.3c). On the contrary, the top foil

exhibits no sign of a secondary roll-up with only a “single-neck” appearing in the shear layer of

T EV 1
top. Quantitative data also confirms the presence of a secondary roll-up on the bottom foil

during the downstroke (figure 11.3f), while it is absent on the top foil. This phenomenon indicates

that this new instability is associated with the formation of secondary roll-ups. At the time of

complete detachment of TEVs from the foils (figure 11.3d), the single-neck of T EV 1
top is drawn

into the stronger co-rotating TEV (T EV 1
top), resulting in their merger. The first-neck of T EV 1

bot

undergoes very similar dynamics, eventually merging with T EV 1
bot . Contrarily, the second-neck

of T EV 1
bot is not absorbed into the primary vortex. Instead, it separates from the braid region and

convects downstream. An identical process occurs on the lower surfaces of the foils during the

upstroke phase of the pitching cycle due to the inherent symmetry of the phenomenon, although it

is not marked on the figures for simplicity.

11.2.2 Influence of the Foil Proximity Effect

We now expand on the pivotal role of the foil proximity effect (quantified by spacing between the

foils) to further explore dynamics of the shear layer instability. Figure 11.4 displays iso-surfaces of

the Q-criterion, along with contours of ω∗
z on the middle plane (z/c = 0) at St = 0.3. Three distinct

cases representing extreme (y∗ = 0.5c), moderate (y∗ = 1c), and low (y∗ = 1.5c) foil proximity

effect are selected. The results clearly illustrates the transition from a two-dimensional wake to a

three-dimensional wake as the separation distance between foils decreases (right column of figure

11.4). This wake three-dimensionality aligns well with the presence of the secondary roll-up and

double-neck structure at the lowermost position of the foils (t = 11.75P). The wake behind the

pitching foils at y∗ = 1.5c (figure 11.4a) is predominantly two-dimensional, where especially the

bottom foil experiences neither the double necking nor secondary roll-up. In the case of moderate

foil proximity effect (y∗ = 1c), both double necking and the roll-up of a secondary vortex are

qualitatively visible (figure 11.4b). Two-dimensionality of the wake is disturbed with development

of the shear layer instability. This process subsequently promotes the detachment of the shear layer
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Figure 11.4: Iso-surfaces of Q-criterion (Q c2/U2
∞ = 1.5) in the wake of in-phase pitching foils at
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from the braid region and its transformation into the streamwise vortex filaments, surrounding the

vortex rollers at the mid-wake (x/c ≈ 6). It also coincides with the growth of spanwise undulations

on the counter-clockwise rotating TEVs shed from the bottom foil, and clockwise rotating TEVs

shed from the top foil. The necks within the double-neck structure, and the secondary roll-up

on the surface, evidently manifest under extreme foil proximity effect at y∗ = 0.5c (figure 11.4c).

Their sizes become comparable to the shed TEV and the primary LEV, respectively. The detached

necks mostly preserve their coherence even at the mid-wake, unlike the case of moderate foil

proximity effect (figure 11.4b). This phenomenon is attributed to the change in the strength of

primary rollers and the detached necks. A larger imbalance in the strengths of a pair of counter-

rotating vortices promotes the transformation of a weaker vortex into vortex filaments (Ryan et al.,

2012). This is apparent in the ratio between the circulations of TEVs (Γ∗
0) and second necks (Γ∗

2),

yielding Γ∗
0/Γ∗

2 = 1.98 and Γ∗
0/Γ∗

2 = 5.13 for the extreme and moderate foil proximity effect cases,

respectively.

Figure 11.5 quantitatively compares span-averaged pressure gradients on the upper surfaces of

the lower foils at different spacings between the two foils. The amplitude of pressure gradient vari-

ation, which is linked to the secondary roll-up, is most pronounced under extreme foil proximity
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effect conditions (y∗ = 0.5c) and consistently diminishes with widening foil spacing. At y∗ = 1.5c,

the foil proximity effect features nearly vanish, apparent with the absence of double-necking and

wake three-dimensionality (figure 11.4c). A similar trend is observed for LEVs, reaffirming the

consistency of wake features associated with foil proximity effect. Furthermore, a remarkable

insight derived from this visualization is the chord-wise shift of both LEVs and secondary roll-

ups toward the trailing edge with shrinking separation between the foils. This observation further

strengthens our argument that the secondary roll-up plays a vital role in perturbing the shear layer,

through leg of oppositely signed TEVs.

11.2.3 Effect of Kinematics of the Foils

We proceed with investigating the role of oscillation frequency on physical aspects of the shear

layer instability. Increasing St can potentially lead to the formation of secondary vortical structures

or alter the governing mechanism for their growth (Verma et al., 2023). Nevertheless, primary

characteristics of the shear layer instability at lower Strouhal number (St = 0.3), as discussed in

section 11.2.1, align with those observed at St = 0.5. The case of strong foil proximity effect

(y∗ = 0.75c) is selected to elucidate the impact of St. The temporal evolution of vortex topology

around the foils at St = 0.5 and y∗ = 0.75c closely resembles that at St = 0.3. Therefore, it is not

included here for brevity. The key difference is the more pronounced foil proximity effect at the

higher St, which coincides with the emergence of more prominent structures detaching from the

braid region.

Since vortex instabilities result from a resonance between Kelvin modes within the core of vor-

tex filaments and the underlying strain field, their linear growth rate is directly proportional to the

strain field (Kerswell, 2002). Hence, we use the strain rate as a tool to elucidate the correspondence

between St and the shear layer separation instability. Hemmati et al. (2019b) further reported that

Q was proportional to the source term in the Poisson equation, which could provide a connection

between the vortex core location and the strain rate via Q= 1
2ρ

∇2 p= |R|2−|S|2. Here, |R|2 and |S|2

represent the square of rotation and strain rate tensors, respectively. Menon and Mittal (2021) also
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at the mid-plane (z/c = 0) during time instants t = 11.5P and t = 21.5P for St = 0.3 and 0.5,
respectively.

discussed the existing strain-dominated (Q < 0) regions, encircling the rotation-dominated core of

vortices (Q > 0). These considerably impact the vortex dynamics. Figure 11.6 demonstrates the

contours of |S|2 around the bottom foil (figures 11.6b-11.6d) and the top foil (figures 11.6a-11.6c)

at St = 0.3 (figures 11.6a-11.6b) and 0.5 (figures 11.6c-11.6d) for y∗ = 0.75 in the middle of the

downstroke phase. For both cases, the upper surface of the top foil and the lower surface of the

bottom foil exhibit only a thin layer of a high-strain region, which coincides with the presence of

the weaker LEVs on these surfaces. Contrarily, wider regions of high strain rate are observed on

the upper surfaces of the bottom foil near their trailing edge, coinciding with the development of

secondary roll-ups. It is also evident from these snapshots that the strain rate is more intense above

the upper surface of the bottom foil and along the shear layer of its newly developing TEV leg at

the higher Strouhal number. This explains the detachment of more prominent structures. These

findings are further supported by the quantitative data illustrated in figure 11.6e, which presents the

profiles of |S|2 along a vertical line, starting from the upper surfaces of both foils (ys) at x/c = 0.85

identified in figures 11.6a-11.6d. Notably, profiles of |S|2 are wider for the top foil compared to

those for the bottom one for both Strouhal numbers, whereas the peaks of |S|2 at St = 0.5 consid-

erably surpass those at St = 0.3. It is important to note that these patterns remain consistent across

198



y/c
y/c

z/c
x/cx/c

𝜔𝑧
∗

Separated structures

Vortex filaments

Highly three-dimensional 
wake

Double-necking 
Secondary 

roll-up

Figure 11.7: Iso-surfaces of Q-criterion (Q c2/U2
∞ = 10) in the wake of out-of-phase pitching foils,

along with contours of spanwise vorticity (ω∗
z = ωz c/U∞) at the mid-plane (z/c = 0) for St = 0.3

and y∗ = 0.75c at t = 12.25P.

various streamwise locations along the foil chord, near the trailing edge, which are not displayed

here.

The phase difference between the foils represents another crucial kinematic parameter that sig-

nificantly influence the vortex topology around the foils and the corresponding three-dimensional

instabilities. While the manuscript predominantly addresses the foil proximity effect induced shear

layer instability in the context of in-phase pitching foils, it is noteworthy to emphasize that this

instability also manifests during the out-of-phase motion, as depicted in figure 11.7. This corre-

sponds to the case of St = 0.3 and y∗ = 0.75c. A notable feature of out-of-phase pitching foils is

that they simultaneously experience the instability because of the mirror image symmetry of their

kinematics. The influence of the foil proximity effect on the LEV dynamics is precisely opposite

for in-phase and out-of-phase motions. For the out-of-phase motion, LEVs forming on the outer

surfaces of the foils are remarkably stronger than those on the neighbouring surfaces, constituting

a crucial nuance from the in-phase motion. However, characteristics of the instability, including

the formation of double-necks on the legs of TEVs, and the growth of secondary roll-ups with

opposite circulation compared to the double-necks, remains essentially the same for the out-of-

199



phase motion as we observe for the case of in-phase motion. This consistency provides additional

evidence for the association between the newly discovered shear layer instability and the alteration

mechanism of the LEVs.

11.3 Summary

Three-dimensional instabilities around pitching foils in side-by-side configurations are numerically

evaluated at Re = 8000. Foil proximity effect, defined in terms of the influence of a neighbouring

foil on vortex dynamics, plays a crucial role in the emergence of three-dimensional structures and

a newly discovered shear layer instability. During the downstroke of the in-phase pitching motion,

a TEV, shed from the bottom foil, experiences spanwise undulations while its leg (representative of

a shear layer) exhibits perturbations. This leads to the formation of secondary spanwise structures

that detach from the shear layer and convect downstream. A mirrored phenomenon occurs for the

upper foil during the upstroke motion. These phenomena are associated with the development of

secondary roll-ups on the upper and lower surfaces of the bottom and top foils near their trailing

edges, respectively.

The foil proximity effect has a consistent impact on the newly identified instability, charac-

terized by the emergence of a double-neck structure within the shedding TEVs. Double-necks

become more pronounced with intensified foil proximity effect. The secondary roll-up becomes

stronger, and it moves closer to the trailing edge. Under low foil proximity effect, the wake pre-

dominantly exhibits two-dimensional features, coinciding with the absence of double-necks and

secondary roll-up. Increasing the Strouhal number also has a significant influence on the wake

three-dimensionality, leading to the detachment of more prominent structures from the shear layer.

This impact coincides with the production of a higher strain rate region around the trailing edge

and on the shear layer. Despite distinct implications of foil proximity effect on the vortex dynamics

around in-phase and out-of-phase pitching foils, the intrinsic attributes of the instability undergo

no fundamental alteration.
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Chapter 12

ASSOCIATION OF FOIL PROXIMITY

EFFECT AND SUPPRESSION OF

LEADING EDGE VORTEX

INSTABILITY
†

Understanding the fundamental aspects of vortex dynamics and wake interactions is crucial for

unraveling the complex flow phenomena that frequently occur in both natural environments and in-

dustrial applications (Leweke et al., 2016). The mechanisms governing the formation and evolution

of vortex filaments, along with their interactions with the surrounding environment, are garnering

increased attention due to their pivotal role in aircraft wake dynamics (Leweke and Williamson,

1998; Cerretelli and Williamson, 2003; Meunier et al., 2005). Research by Leweke and Williamson

(1998) on counter-rotating vortex pairs showed that short-wavelength instabilities developed co-

operatively within these structures. It further explored the long-term flow evolution, highlighting

interactions between short-wavelength and long-wavelength instabilities. In a separate investiga-

†The content of this chapter is currently under preparation and will be submitted to Phys. Rev. Fluids with the
citation: "Gungor, A., Verma, S., Khalid, M.S.U., & Hemmati, A., (2024) Suppression of LEV Instabilities Under
Extreme Foil Proximity Effect. Phys. Rev. Fluids"
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tion, Cerretelli and Williamson (2003) detailed the physical mechanisms that govern the merging

process of two co-rotating vortices, which sequentially experienced phases of diffusion, convec-

tion, and merging. This study revealed that induced velocities from the asymmetric vorticity field

of the vortex pair drove the centroids of the vortices towards each other, ultimately facilitating their

merger.

The study of instabilities in wake structures has recently gained attention due to its relevance

in understanding propulsion characteristics in insect flight and aquatic locomotion (Deng et al.,

2016). Deng and Caulfield (2015) observed that the transition from symmetric reverse von Kármán

wakes to deflected wake modes coincided with the emergence of three-dimensional instability

features and increased thrust production. Verma and Hemmati (2021) elucidated the relationship

between spanwise instability and the development of streamwise vortical structures, enhancing our

understanding of fluid dynamics in biologically inspired propulsion. A more recent study by Verma

et al. (2023) explored a broader range of parametric spaces to examine the relationship between

foil kinematics and three-dimensional characteristics of its wake. This study identified two distinct

mechanisms that govern the growth of secondary structures, and delineated two major pathways

characterizing the transition between these mechanisms. Thus, it provides deeper insights into the

complex dynamics of wake instability.

Despite considerable efforts to characterize instabilities around a single oscillating foil, the

impact of foil proximity on LEV instabilities around parallel oscillating foils remains relatively

unexplored. Quinn et al. (2014) demonstrated that the flow around a pitching foil is significantly

influenced by the presence of a solid wall, especially when it is positioned very close to the foil.

However, the dynamics of the LEVs and the characteristics of three-dimensional instabilities were

not addressed. In chapter 11, our focus was on the shear layer instabilities of separating TEVs; now,

we shift our attention to LEVs. Using the same parameters as those in chapter 11, this chapter aims

to explore the unique LEV instabilities that emerge around foils in side-by-side configurations,

influenced by foil proximity effect and wake interactions. Major observations are discussed in

section 12.1, and a concise summary of key findings is provided in section 12.2.
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12.1 Results and Discussion

We begin by investigating the cases of out-of-phase pitching foils operating under moderate foil

proximity effect (y∗ = 1c) for St = 0.3. Since the out-of-phase motion is mirror image symmetric,

the bottom (Foil 1) and top (Foil 2) wakes exhibit symmetric features. Therefore, we only focus on

the top foil for simplicity. Figure 12.1 illustrates the time evolution of vortical structures around

the out-of-phase pitching foils at St = 0.3. The left column of figure 12.1 displays iso-surfaces

of the Q-criterion on the upper surface of the top foil from a top-down perspective, while the

right column of figure 12.1 shows the side view of contours of spanwise vorticity at the mid-plane

(z/c = 0). An LEV is formed as a result of the upward stroke of the upper foil (see figure 12.1a-

b). After its formation, it progresses downstream, while remaining attached to the surface. As a

result of this interaction, a spanwise instability starts developing on the vortex at t = 12.25P and

becomes very prevalent at t = 12.5P. This phenomenon can be best explained with the method

of images, which suggests that there is an opposite-sign image vortex forming beneath the surface

that satisfies the no-slip boundary condition on the surface. Consequently, the LEV effectively

forms a vortex pair with its opposite-sign image. Mutually induced velocities impose on them give

rise to the amplification of the sinusoidal undulations on the vortex (Crow, 1970). The emergence

of three-dimensional instabilities has been previously shown for vortex-wall interactions (Benton

and Bons, 2014) as well as for single oscillating foils with combined heading and pitching motion

(Chiereghin et al., 2020; Verma et al., 2023). However, this is the first study to identify them for

purely pitching foils due to moderate foil proximity effect. Moreover, the interaction of undulations

with the surface lead to disintegration of the vortex before it reaches the trailing edge of the foil,

as depicted in figure 12.1g-h. While the LEV on the lower surface of the top foil similarly exhibits

spanwise undulations, its evolution is not detailed here for brevity, as it follows a comparable

mechanism.

A noteworthy phenomenon occurs at the opposite end of the spectrum: instabilities vanish

with severely intensified foil proximity effect. The time evolution of vortex dynamics around the

foils in extreme foil proximity effect conditions (y∗ = 0.5c) is depicted in figure 12.2 for St = 0.3.
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Figure 12.1: Temporal evolution of vortical structures around out-of-phase pitching foils for St =
0.3 and y∗ = 1c at (a,b) t = 11.75P, (c,d) t = 12.25P, (e,f) t = 12.5P, and (g,h) t = 12.625P. Left
column displays iso-surface of Q-criterion (Q c2/U2

∞ = 50) on the upper surface of the top foil
viewed from above, while right column shows contours of spanwise vorticity (ω∗

z = ω c/U∞) at
the mid-plane (z/c = 0).
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Similar to the moderate foil proximity effect case, upstroke motion of the upper foil sheds an LEV.

However, this LEV is markedly stronger, as demonstrated by a comparison between figure 12.1b

and figure 12.2b. Additionally, a secondary structure with opposite sign vorticity forms beneath

the LEV. It is worth noting that the moderate foil proximity effect case also presents secondary

structure, but they are significantly weaker and barely visible in figure 12.1b. Interaction between

a vortex and a wall leads to the detachment of the boundary layer from the surface, resulting in the

formation of a secondary structure opposite to the main vortex (Quinn et al., 2014; Leweke et al.,

2016). Vorticity budget analysis by Eslam Panah et al. (2015) shows that the flux of secondary

vorticity from the boundary correlates with the leading edge shear layer flux, which can explain the

severity of differences between cases. The secondary structure induces an upward velocity, causing

the detachment of the LEV from the surface (see figure 12.2). This resembles the interactive

behavior of a vortex pair approaching a wall (Harvey and Perry, 1971; Peace and Riley, 1983),

where the primary vortex rebounds from the wall due to a formation of the secondary vortex, a

process often referred to as “vortex rebounding.” Subsequently, the LEV continues downstream,

maintaining its distance from the surface until it merges with the newly developing TEV. Unlike the

moderate foil proximity effect case, the LEV does not exhibit any significant spanwise undulations

and reaches the trailing edge as a two-dimensional vortex tube (see figure 12.2g). The dynamics

of LEVs at higher Strouhal numbers exhibit similar characteristics, and thus are not explored in

detail here. The main difference is that at St = 0.5, the foils generate stronger LEVs, resulting in

detachment even at greater separation distances, covering the separation distance range considered

in this chapter.

The comparison between extreme and moderate foil proximity effect cases indicates that the

detachment of the LEV from the foil surface is crucial in suppressing three-dimensional insta-

bilities. This suppression is likely due to the diminished influence of the image vortex, which is

formed due to the LEV’s proximity to the foil surface. This plays a central role in the emergence of

three-dimensional instability. As the distance between the LEV and the foil increases, the effect of

the image vortex weakens, effectively reducing the three-dimensional instabilities. This dynamic
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Figure 12.3: Separation distance (b∗) between LEV and foil surface at chordwise locations for the
extreme (y∗ = 0.5c) and moderate (y∗ = 0.5c) foil proximity effect cases at St = 0.3. The definition
of b∗ is illustrated in figure 12.2f.

is consistent with theoretical models, which suggest that the growth rates of both long-wavelength

and elliptic instabilities in a vortex pair are inversely proportional to the square of the separation

distance between vortices (b) (Leweke et al., 2016). Figure 12.3 illustrates the separation between

the LEV and the foil surface (b∗), measured as the normal distance from the center of the LEV to

the foil surface across chordwise positions for both scenarios. This highlights the influence of de-

tachment on the emergence of three-dimensional instabilities. Another notable aspect of the LEV

dynamics is the speed at which the detached vortex moves towards the trailing edge compared to

its attached counterpart. The detached vortex reaches the trailing edge by t = 12.5P (as shown in

figure 12.2h), whereas the attached vortex remains at approximately x/c ≈ 0.8 at the same time

instant (as seen in figure 12.1f). Quinn et al. (2014) observed a similar lagging for a TEV in ground

effect. This suggests that the slowing effect is attributed to the influence of the image vortex. The

difference in streamwise velocities allows the attached vortex to stay under the influence of its

image vortex for an extended period, thus promoting the development of spanwise undulations.

Both the emergence and suppression of three-dimensional instabilities are influenced by the foil

proximity effect. As the foil proximity effect diminishes, i.e., as the separation distance between

the foils increases, spanwise undulations on LEVs disappear (details not shown here for brevity).
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Figure 12.4: Streamlines around the out-of-phase pitching parallel foils for y∗ = 0.5c and St = 0.3
at (a) t = 11.75P, and (b) t = 12.25P.

This underscores its role in the emergence of these instabilities. Conversely, the foil proximity ef-

fect also plays a critical role in the suppression mechanism by significantly altering LEV dynamics

(see chapter 10). For out-of-phase motion, the strength of LEVs formed on the outer surfaces of

the foils, i.e., the upper surface of the top foil and the lower surface of the bottom foi, is enhanced.

However, the strength of LEVs on the inner surfaces, i.e., lower surface of the top foil and upper

surface of the bottom foil, is diminished (see chapter 4). This dynamic is evident in figure 12.2,

which shows that the top foil generates a stronger LEV on its upper surface, while shedding of the

LEV from the lower surface is inhibited. This aligns with two-dimensional simulations explored

in chapter 4. This effect can be attributed to changes in the effective angle of attack due to induced

velocity effects from the adjacent foil. Streamlines around the out-of-phase pitching parallel foils

are presented in figure 12.4, illustrating that the effective angle of attack of the top foil at the be-

ginning of the downstroke motion (figure 12.4a) is significantly larger compared to the angle at

the beginning of the upstroke motion. This discrepancy leads to the formation of a stronger LEV

on the upper surface, while inhibiting the formation of an LEV on the lower surface. This obser-

vation is consistent with findings of Wong and Rival (2015), who noted that the rate of growth of

LEV circulation corresponds to the square of the effective flow velocity. Furthermore, Li et al.

(2020b) demonstrated that circulations of both the LEV and the secondary vortex increase with an

208



increasing maximum effective angle of attack. This aligns perfectly with the current observations.

Thus, extreme foil proximity effect is associated with the suppression of LEV instabilities by en-

hancing the circulation of the secondary vortex beneath the LEV. This increased circulation leads

to detachment of the LEV from the foil surface, resulting in the elimination of three-dimensional

instabilities.

The suppression of LEV instabilities is also observed in in-phase pitching parallel foils oper-

ating under extreme foil proximity effect conditions. However, this phenomenon is not explored

in this chapter due to the unique differences between in-phase and out-of-phase motions. These

differences significantly impact the dynamics of LEVs, necessitating a dedicated investigation.

Consequently, a comprehensive study focused on in-phase pitching motion will be the subject of

our future research endeavors.

12.2 Summary

The outcomes of this chapter reveal the presence of a distinct instability mechanism induced by

foil proximity effect on the LEVs of two pitching foils arranged side-by-side at Re = 8000. Under

moderate foil proximity effect, a spanwise instability develops on the LEVs that remain attached

to the surface. This instability intensifies due to continuous and prolonged interaction between the

LEV and the foil surface. This leads to disintegration of the LEV before it reaches the trailing

edge. Contrarily, in the case of extreme foil proximity effect, LEV detaches from the foil, reducing

its interaction with the surface and thus preventing any spanwise instabilities. This detachment

is facilitated by larger effective angle of attack, which amplifies the growth of secondary vortex

beneath the shedding LEV. This effectively pushes the LEV away from the surface. These obser-

vations will be further substantiated through quantitative assessments to validate the critical role

played by the foil proximity effect in both fostering and suppressing these vortex instabilities. The

characterization of three-dimensional instabilities around pitching foils in a side-by-side configura-

tion, as presented in this chapter and in chapter 11, fulfills Objective C—the final objective of this
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study. Consequently, the next chapter will conclude this dissertation and provide recommendations

for future work.
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Chapter 13

CONCLUSIONS

The primary aim of this study was to investigate the vortex dynamics and propulsive performance

of pitching foils in various spatial arrangements, representing tailfin of schooling fish. The inves-

tigation predominantly focused on the side-by-side configuration of two foils, although staggered

and multi-foil arrangements were also examined. The Navier-Stokes equations were solved di-

rectly using both two-dimensional and three-dimensional setups. In two-dimensional simulations,

mesh morphing method was employed to simulate the pitching motion of the foils, while three-

dimensional simulations utilized the Overset Grid Assembly method. The objectives of the study

were divided into three key areas: (1) exploring the unsteady vortex dynamics behind parallel

pitching foils and their impact on propulsive performance metrics; (2) formulating scaling laws to

estimate the steady-state propulsion performance of schooling foils; and (3) examining the three-

dimensional instabilities around parallel pitching foils.

The study delved into the unsteady wake characteristics and performance of parallel pitching

foils across a range of Strouhal numbers and separation distances, primarily focusing on Reynolds

number of 4000. This Reynolds number, selected from a range between 1000 and 12000, was

chosen because it is expected to be minimally influenced by viscous effects (Das et al., 2016)

and is biologically relevant, representing the swimming of small-scale fish (Gazzola et al., 2014).

The results presented here further validated this selection, as the wake patterns and interactions
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observed at Re = 1000 demonstrated very little difference compared to those at Re = 4000. It was

discovered that the unsteady wake features are intrinsically linked to both the Strouhal number

and separation distance, with significant effects typically manifesting for (St ≥ 0.4) at intermediate

separation distances. In-depth investigations were conducted on in-phase (φ = 0) and out-of-phase

(φ = π) motions, with a comprehensive analysis of their unique wake interaction mechanisms. At

lower Strouhal numbers, the vortex streets generated by in-phase pitching foils converge into a

single wake, whereas in the out-of-phase configuration, the wakes diverge from each other. In both

scenarios, the wakes behind the foils maintain symmetry. Conversely, at higher Strouhal numbers,

in-phase pitching foils undergo a transition from an asymmetric to a symmetric wake pattern. The

initially parallel deflected vortex streets, gradually approach to each other over time, merging into

a single wake. The final symmetric stage is similar to the pattern observed at lower St. Merging of

the wakes coincides with the enhancements in propulsive efficiency by increasing thrust generation

without a significant alteration in power requirements. On the contrary, out-of-phase pitching foils

exhibit an opposite trend, evolving from a symmetric to an asymmetric pattern, with both states

characterized by separated and diverging vortex streets.

The occurrence of symmetric wake patterns aligns with periods of zero total side force pro-

duction by the foils, transitioning to non-zero values when wake symmetry is disrupted. This

transition might reflect the behavior of red nose tetra fish, which are known to swim in parallel

configurations and can alter their tail beat synchrony from out-of-phase to in-phase, or vice versa,

mid-swimming (Ashraf et al., 2016, 2017). To replicate this natural phenomenon, simulations of

four hybrid modes were conducted, where the phase difference is switched abruptly from out-of-

phase to in-phase. The total side force production of the system drops to zero after the switch

for three of the four modes. Therefore, it was conjectured that phase switching might have been

employed by the schooling fish as a strategy to maintain their lateral position. Moreover, after

the phase transition, the coefficients of thrust and power align with the metrics observed under

pure in-phase pitching conditions, despite the wake structure resembling that of pure out-of-phase

pitching foils. This observation implies a complex relationship between the wake dynamics and
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the performance metrics of oscillating foils, challenging the notion of a straightforward correlation

between the two.

A novel mathematical model was introduced based on fundamental flow variables including

velocity, location and circulation of vortices to quantitatively distinguish vortex patterns in the

wake. One of the key findings of this study was the elucidation of the physical mechanism of

the wake merging process. When an oscillating foil experiences the jet deflection phenomenon,

secondary structures separated from the primary street traversed in the other direction by making

an angle with its parent vortex street. For in-phase pitching parallel foils, secondary structures from

the vortex street of the lower foil interacted with the primary vortex street of the upper foil under

certain kinematic conditions. This interaction triggers the wake merging process by influencing

circulation of coherent structures in the upper part of the wake.

Two sets of scaling relations were derived to estimate the propulsive performance of pitching

foils in schooling configurations. The first approach focuses on side-by-side configurations at a

range of Reynolds number (1000 ≤ Re ≤ 12000), Strouhal number (0.15 ≤ St ≤ 0.5), phase differ-

ence (0≤ φ ≤ π) and separation distance (0.5c≤ y∗ ≤ 2c), introducing two novel scaling terms that

empirically incorporate these effects of separation distance and phase difference between the foils.

Subsequently, a physics-based approach was employed to further extend these scaling relations

to any given staggered configuration. This approach models foil-foil interactions by considering

vortex-induced velocities. The developed relationships are anticipated to play a pivotal role in

offering essential insights for designing and optimizing bio-inspired underwater propulsors and

energy harvesting systems.

The scaling coefficients revealed that only the term representing fluid drag on the propulsors

was significantly influenced by Reynolds number, while all other terms showed minimal to no de-

pendence. This supports the earlier conclusion that the fundamentals of wake dynamics remain

consistent across different Reynolds numbers. Collectively, these findings suggest that wake in-

teractions between oscillating foils in schooling configurations are primarily governed by inviscid

mechanisms, at least within the studied range.
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The dynamics of three-dimensional instabilities around infinite span pitching foils placed in

side-by-side configurations were explored at a Reynolds number of 8000. A novel instability

mechanism, triggered by foil proximity effect on the legs of trailing edge vortices during their

roll-up, was identified. This instability presents itself through the formation of secondary vortical

structures on the surface of the foil with circulation opposite to that of the trailing edge vortices,

leading to a distinctive double-necking phenomenon on the legs of the trailing edge vortices. The

first neck is amalgamated into the trailing edge vortex, whereas the second neck detaches from

the braid region, moving downstream independently. The foil proximity effect was found to be

directly linked to the emergence of intricate three-dimensional wake structures, marked by the dis-

tinct presence of coherent structures at reduced distances between the foils. On the other hand, it

was also observed that extreme foil proximity effect could suppress the formation of LEV instabil-

ities. This suppression was attributed to the amplification of LEV circulations by the foil proximity

effect, which ultimately leads to the detachment of the LEVs from the foil surface. Once detached,

the LEVs maintain their two-dimensional structure as their interaction with the surface is signifi-

cantly reduced. This highlights the role of foil proximity effect in inhibiting the development of

three-dimensional structures.

13.1 Future Work

While this study provides a thorough examination of the wake dynamics and performance metrics

of schooling foils, several areas warrant further investigation. As noted in chapter 9, although the

thrust and power equations align closely with simulation data, the efficiency estimations were less

accurate. This discrepancy suggests that the current definition of efficiency may not fully capture

the dynamics specific to schooling foils. The complex interactions between bodies and between

bodies and vortices in such nonlinear dynamic systems necessitate a more precise definition of

efficiency. This issue is particularly pronounced at slower foil motions, where thrust generation

can be minimal or even negative, highlighting potential shortcomings in the drag component of the
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scaling equations. In this dissertation, the drag term is approximated to scale solely with the frontal

area of the foil, overlooking the effects of foil motion. Developing a more comprehensive drag term

that accounts for oscillation effects could substantially enrich the existing body of literature.

Although the Reynolds number was shown to have minimal impact on the wake interactions of

schooling foils within the studied range, it significantly influences wake patterns behind a single

foil for Re < 1000 (Das et al., 2016). This suggests that unique wake interaction mechanisms may

emerge behind oscillating foils in multi-foil configurations at lower Reynolds numbers. Further-

more, this range is biologically relevant, as the Reynolds number range of Re = 10−1000 aligns

with the natural swimming conditions of larvae (Gazzola et al., 2014). Therefore, a comprehen-

sive analysis within this range could provide valuable insights into a better understanding of larvae

swimming in schooling configurations.

Aspect ratio and flexibility are two critical factors influencing the flow dynamics around os-

cillating foils, with significant effects on the wake and performance characteristics of single oscil-

lating foils. For instance, Marais et al. (2012) demonstrated that foil flexibility could inhibit the

formation of deflected wakes. Similarly, Calderon et al. (2014) observed a suppression of deflected

wakes in plunging foils with finite aspect ratios. Furthermore, Chiereghin et al. (2020) examined

the three-dimensional effects on LEVs of high aspect ratio wings due to tip vortices. Despite these

findings, the interplay between these factors and schooling configurations remains largely unex-

plored. Given their potential impact on wake behavior and propulsion performance, these aspects

warrant further investigation.
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Appendix A

Overlapping Overset Grids

Initially, a numerical setup involving larger overset grids that overlap around the centerline is

generated to simulate the flow over infinite span pitching foils. However, preliminary results from

this setup exhibited non-physical vortical structures in the flow ahead of the foils, as shown in

figure A.1. It is assumed that these structures arise due to the amplification of interpolation errors

in the overlapping region, where results are interpolated between the background grid and the two

overset grids. Nevertheless, a more comprehensive investigation is needed to determine the exact

cause. Consequently, a setup with non-overlapping overset grids, as explained in chapter 3, is

generated to avoid this issue.

Background

grid

Overset grid 1

Overset grid 2

Overlapping 

region

Figure A.1: A numerical setup involving overlapping overset grids depicting iso-surfaces of Q-
criterion.
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