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Abstract

Research in unsupervised text generation has been gaining attention over the

years. One recent approach is local search towards a heuristically defined ob-

jective, which specifies language fluency, semantic meanings, and other task

specific attributes. Search in the sentence space is realized by word-level edit

operations including insertion, replacement, and deletion. However, such ob-

jective function is manually designed with multiple components. Although

previous work has shown maximizing this objective yields good performance

in terms of true measure of success (i.e. BLEU and iBLEU), the objective land-

scape is considered to be non-smooth with significant noises, posing challenge

for optimization.

In this dissertation, we address the research problem of smoothing the noise

in the heuristic search objective by learning to model the search dynamics.

Then, the learned model is combined with the original objective function to

guide the search in a bootstrapping fashion.

Experimental results show that the learned models combined with the orig-

inal search objective can indeed provide a smoothing effect, improving the

search performance by a small margin.
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The computer was born to solve problems that didn’t exist before.

– Bill Gates.
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Chapter 1

Introduction

1.1 Background

Natural language generation (NLG) has been a long standing task in the field

of Natural Language Processing (NLP) over the years. Being able to under-

stand, model and generate texts that are syntactically compliant, semantically

meaningful, coherent with contexts, and free from rigid rules and artificial con-

struction remains a challenge in NLP research.

A wide range of applications are dependent on text generation modules

including dialogue systems, data-to-text generation, document summarization,

sentence simplification, style transfer, and machine translation.

In this dissertation, we focus on conditional text generation, whose goal

is to generate a piece of text based on a given piece of source text, while

enforcing some task specific attributes. For example, the desired attributes

for paraphrase generation task would be preserving semantic meaning from

the input text, while using different wording; for machine translation, the

generated text is required to deliver the same semantic meaning as the input

text, while being syntactically coherent.

Due to the complexity of language generation tasks, traditional approaches

rely on rules and templates. However, modern languages evolve over time

through the pragmatic use by humans without conscious planning and pre-
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meditation [28]. In other words, natural languages used by humans are fluid

in terms of grammar and structures. For this reason, rules and templates are

oftentimes restricted to narrow applications: for example, rules and templates

used by a hotel booking chatbot are very different from that of an internet tech-

nical support service agent, leading to the need of sophisticated task-specific

design for each application. Despite the high efficiency and controllability,

rules and templates are never able to generate true natural language that are

diverse, complex, while being able to deliver important information.

Recent advances in computational hardware and large scale machine learn-

ing models have revolutionized the paradigm of text generation. State-of-

the-art language models powered by Artificial Neural Networks (ANN) have

demonstrated their superior capability of modeling complex environmental

states in various tasks. Language models powered by ANNs can now learn and

represent complex natural languages as a black-box by learning from a large

amount of training data. Such a data-driven approach to model languages

eliminates the need of static rules and templates hand-crafted by humans, as

the languages are modeled implicitly by the neural networks learning from

true natural language data directly. Being able to model natural languages in

such a free form has enabled numerous breakthroughs in NLP.

The most widely used approach for supervised text generation nowadays

is the neural network-based sequence-to-sequence (Seq2Seq) model [42]. The

role of Seq2seq model is to produce a mapping between sequential data. A

Seq2Seq model first encodes the language input into a numerical representa-

tion using a neural network-based encoder. Such representation carries the

semantic meaning and structural information of the input sentence, which is

then used to generate output text by the decoder. With parallel corpora avail-

able, training of such a model is typically done by maximizing the probability

of generating the ground-truth output given the input. Various modules are
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proposed to parameterize this encoding-decoding process, including recurrent

neural networks (RNN), and the more advanced Transformer [43] architecture

with attention mechanisms.

However, parallel corpora are labor-intensive to acquire, and many appli-

cations do not come with a massive amount of parallel training data. For

example, many rare languages or tasks are not well studied yet in the field

of NLP, thus simply do not have large amount of annotated data for training

supervised models. Another common scenario is when a model is to be used

in a new domain, all training corpora dedicated for the old application is no

longer usable, which is often the case when a company needs to quickly de-

velop a minimum viable product for new applications. Being able to generate

text without supervision by parallel corpora is very much in need in a lot of

scenarios.

Unsupervised text generation has attracted increasing interest in the field

of NLP over the years. One intuitive approach is the variational auto-encoder

[4], which generates text by sampling from a latent space. However, low inter-

pretability and controllability of the latent space pose challenges on control-

ling the text being generated. Consider the example of sentence simplification,

where the goal is to shorten a sentence while preserving the original content.

This goal would not be trivial to specify in the latent space, as it would not be

apparent how to modify the latent representation would shorten the sentence

length without compromising the content.

Another approach to unsupervised text generation is stochastic search to-

wards a heuristically defined objective function. The objective function mea-

sures the quality of generated text in terms of general attributes including

language fluency, expression fluency, and other task specific attributes such

as length and expression diversity. Then the goal of the search algorithm

is to find an output that maximizes this objective function. To accomplish
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this, the discrete search algorithm takes small steps in the sentence space by

making word-level editing, e.g., insertion, deletion, and replacement. Note

that with search steps defined this way the dimension of search states grows

exponentially with the vocabulary size. Hence, an exhaustive search is in-

feasible. Efficient heuristic search would be the more appropriate algorithm.

The search algorithm can be plugged in with simple Hill-climbing or other

non-greedy variants such as simulated annealing. This iterative local search

process will explore the sentence space within the budgeted time steps, before

settling with a locally optimal solution.

Stochastic search formulation of unsupervised text generation has demon-

strated its flexibility and capability for a variety of tasks. Applications of

the search-based framework in paraphrase generation [25], document summa-

rization [40], and sentence simplification [22] have achieved state-of-the-art

performance in respective tasks. Each of these models is equipped with both

general and task-specific objective functions to guide the search towards ap-

propriate output for the given task. Since local search algorithms such as

hill-climbing (HC) and simulated annealing (SA) generate text by directly

modifying the input text, search-based frameworks are especially suitable for

tasks with significant overlap between input and output.

Despite the success of the search-based framework in a variety of tasks,

there are some drawbacks to be tackled. In the aforementioned search-based

framework, quality of the generated text is ensured by the heuristically defined

objective function, which could provide general guidance on a population level,

but might not be specifically instructive for each single sentence. More pre-

cisely, the objective functions are believed to correlate with the evaluation

metrics on average for a large number of samples, but such correlation is weak

when it comes to each individual instance. Hence, the search algorithms would

have to face a very non-smooth objective landscape when searching for solu-
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tion. Detail analysis is presented in the experiment section.

The non-smooth function landscape poses two main challenges for the

search algorithm: guidance by the objective function may be inaccurate, mean-

ing that the objective function which the search algorithm aims to maximize

is skewed from the true measure of success; search algorithms would be more

susceptible to local optimum in a non-smooth function landscape, leading to

the search frequently getting trapped.

1.2 Thesis Statement and Contributions

In this dissertation, we address the research problem of smoothing the ob-

jective function for word-level local search, in order to improve search-based

unsupervised paraphrase generation. More specifically, we claim that:

In the context of heuristic search-based text generation, learning of the

search dynamic can help smoothing the objective function in a bootstrapping

fashion, thus improving the performance of text generation in terms of BLEU

and iBLEU evaluation metrics.

To attain our objective, we make use of deep neural networks to learn and

model the search dynamic. Firstly, the search algorithm would search in the

sentence space in order to generate search trajectory samples. Then, we train

our deep neural network-based models using the collected search trajectory

samples. Finally, the learned models will be used to guide the search algorithm

together with the original objective function for the final generation of text.

All of these are done in the unsupervised setting. Qualitative and quantitative

experiments and analysis will be performed to support the above statement.

In this dissertation, we propose three approaches for learning the search

dynamic of search-based text generation. In particular, we employ the Trans-

former architecture as the backbone for all three of our models. For the final

inference, the learned model will be combined with the original objective func-
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tion to guide the search.

In summary, the main contributions of this dissertation are as follows:

1. We reproduce a search-based text generation framework, UPSA [26], and

validate its performance by evaluation metrics, serving as a testbed for

our proposed models.

2. We collect, clean, and process a dataset of search trajectories to train

our models.

3. We propose and implement three different novel learning-for-search text

generation models. We evaluate and analyze the model quantitatively

and qualitatively on the task of paraphrase generation, showing the ef-

fectiveness of our proposed approaches.

1.3 Thesis Organization

The thesis is organized as follows: in Chapter 2, we overview the current state

of the art of natural language processing and natural language generation.

In particular, we review how various kinds of deep neural networks are used

to process, represent, and generate natural language. We further explain the

general working mechanism of the Transformer backbone that we adopted.

Search-based text generation framework is the focus of this dissertation, thus

recent work in this area would also be covered in details in this chapter.

In Chapter 3 we detail our reproduction of the UPSA [26] model as our

testbed, and propose three different models stemming from the same idea: two

of them are BERT-based [6] regression models that aim to directly model the

manually designed heuristic objective function, while the third model learns

the search via a Transformer-based sequence-to-sequence model [42]. The

learned model would be combined with the original objective function to guide

6



a second iteration of search to generate the final output. The motivation of

this approach, and how it works with the UPSA model would be discussed

in details. Moreover, we also describe how to collect and process a dataset

needed to learn from the search dynamics of simulated annealing on the task

of unsupervised paraphrase generation.

Experiment and analysis procedures and results are presented in Chapter

4. The main purpose of this chapter is to demonstrate the effectiveness of

our proposed models. Following previous work in paraphrase generation, we

adopt BLEU [33] and iBLEU [41] as measures of success. We also aim to gain

insights on the underlying behavior of our proposed models, and verify our

motivation of the approach. Specifically, we are interested in how the score

predicted by our models correlate with true measure of success, compared with

the original objective function; we would also look into how the acceptance

ratio in simulated annealing is changed by our models; and finally, we want

to investigate whether our proposed models indeed help the search algorithm

avoid getting stuck at local optimum.

Finally, we conclude this thesis in Chapter 5 with a summarization of our

finding and contribution. We also discuss our thoughts and understanding in

retrospect, hoping to pinpoint future direction for search-based text genera-

tion.
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Chapter 2

Background and Related work

2.1 Natural Language Generation

Natural language generation (NLG) has been a long-standing task in the field

of natural language processing (NLP). In general, an NLG system aims to

generate natural languages that are diverse and able to convey information of

interest. NLG and natural language understanding (NLU) are the two impor-

tant subfields of NLP research. Complementary to NLG, NLU modules are

responsible for the understanding of natural language input and representing

the semantic and logical relationship with the context. A large number of

applications are achieved by the combination of NLG and NLU, yielding NLP

systems that can take natural language as input from the user, then process

the command or query with a database, and finally respond to the user in

natural language as in Figure 2.1. Although usually taking up different roles

in an NLP pipelines, NLU and NLG are by no means orthogonal: in order to

generate natural language text, NLG systems need to develop an understand-

ing of natural language. During the text generation process, the NLG system

needs to maintain a representation of the semantic meaning or message to be

delivered, then generate a text based on that representation. Hence, NLU can

be considered as an important building blocks for NLG systems.
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Figure 2.1: An example dialogue system pipeline.

2.1.1 Text Generation Applications

Various applications have been realized by NLG models. Perhaps the most

sought after application of NLG is machine translation (MT) [2][27][45], whose

goal is to generate text in the target language domain with same meaning as

the input from the source language domain. Machine translation is not a triv-

ial task as word-to-word substitution does not solve the problem due to the

different grammar and expression style among various languages. To accom-

plish the task of automatic translation the system needs to understand the

syntax and semantic of both the source language and target language, while

developing a mapping between the two languages. Another commercially suc-

cessful applications of NLG in recent times is data-to-text generation [44][35].

Generating weather report in natural language [8] is one of the earliest appli-

cation of data-to-text generation, whilst nowadays numerous applications are

made to interpret and summarize financial and business data [23][12]. An-

other application with rising popularity is dialogue systems, whose goal is to

converse with human in natural language, and be able to answer the queries
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or execute the commands according to the interaction history with the user.

In this case, the NLG component would be crucial to process the retrieved

data and able to deliver the gist to the user via data-to-text generation. For

example, if a user requests “Summarize the news for me today.”, the NLU

component would need to understand the information to look up, and deliver

the retrieved data to the NLG component, before the NLG component can

perform the summarization task on the news. Oftentimes, the generated nat-

ural language response might require further polishing before sending out to

user. For instance, the text generated by the aforementioned pipelines might

require another model to paraphrase it to improve fluency and correct the

grammar, or some sensitive words need to be filtered out.

Challenges of both NLU and NLG are rooted in the complex nature of

human languages: compared with programming or scripted languages that

come with rigid structures and unambiguous instruction, human languages are

more likely to be ambiguous, diverse, context dependent, and even oftentimes

syntactically erroneous. For this reason, natural languages with appropriate

syntax and semantic patterns are in general difficult to specify by rules and

templates. More specifically, the challenge of NLU is to produce a consis-

tent representation for the same semantic meaning in various forms, while

the challenge of NLG is to stay consistent throughout the process of emitting

words without degeneration. Another major challenge for NLG is the vocab-

ulary size. Take English language as an example. Typically, the vocabulary

size is over 30,000. Considering the number of combinatorial sentences grows

exponentially with the length by a factor of the vocabulary size, such high

dimensionality renders exact solutions intractable even if the true measure of

success is known.
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2.1.2 Task Formulation

The general task of generating text can be formulated as follows: Given the

source language domain X , the target language domain Y , and a task specific

function f(X, Y ) indicating the quality of the generated text Y ∈ Y given the

input X ∈ X , the goal of text generation would be to find the best text Y ∗

that maximizes the task specific objective function f(X, Y ). For example, in

machine translation f(X, Y ) would evaluate the combination of semantic sim-

ilarity between the source text and translated text, fluency of the generated

text, as well as how appropriate the tone is; for automatic document summa-

rization, f(X, Y ) would be based on the preservation of the original meaning

and some measure of brevity. However, such f(X, Y ) may not be easily de-

fined due to the difficulty of evaluating complicated natural languages. Ideally

this should be done by human evaluation. Oftentimes we might need to set-

tle for an approximate evaluation metric that is largely representative of the

conceptual idea, and feasible for automatic evaluation.

2.1.3 Modelling Text Generation

Traditionally, text generation is accomplished by rules and templates. For

relatively narrow applications, filling the blank in a fixed template would be

viable. For example, weather report is one of the more narrow domains where

everyday almost the same data structure is fed to the text generation system

to generate the weather report, meaning that it would suffice to have one or a

few templates with the same blanks to be filled in by the fixed data structure

(e.g., temperature and humidity). To handle slightly varying data structures,

the filling-the-blank system can be embedded by scripting languages, in which

one can specify rules that constitute the templates using conditional branch-

ing, or logical loops to handle slightly varying data structure. However, as

seen such system is manually constructed by humans; thus, expressions are
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relatively restrictive because the system would not be able to generate text

that was not directly scripted by humans. Text generated in such a way is

by no means diverse, and is considered not to be a form of natural language.

As seen, although using templates and rules might work well in some narrow

applications, such system would obviously fail when facing more complicated

tasks that cannot be scripted for every instances, not to mention even if the

scripts are achievable by intensive labor, they are impossible to generalized to

different domains.

In recent years, the strong function approximation capability of deep neural

networks (DNN) [9] has revolutionized the field of NLP. DNNs are complex

composition of linear functions with non-linear composite connections that

can theoretically approximate any function given enough memory and com-

putational capacity [16]. Multi-layer perceptron is a common class of DNN

architecture consisting of multiple layers of linear neurons that are parameter-

ized by weights and bias, with non-linear synapses connecting layers to layers

in one direction. Typically DNNs operate as feed-forward connectionist net-

works that take the input and let the numerical data flow through layers by

layers, producing representations from each layer. Then the representation can

be used by downstream decoders to generate text. Such design is originally

inspired by how synaptic system in human brains transmit signals.

One key advantage of DNNs over traditional rules and templates is the

elimination of manual feature engineering. DNNs are able to learn a repre-

sentation of content automatically from data and use it to make prediction.

Tremendous successes have shown the capability of DNNs learning meaning-

ful features and using them to model noisy, uncertain, and high-dimensional

environments.

The power of the DNNs comes at the price of needing huge amount of data

for training. Typically DNNs are trained by trial and error. At each training
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Figure 2.2: An example deep neural network.

step, the DNN makes a prediction, which is evaluated by a differentiable loss

function to indicate how good the prediction is. Then, automatic learning of

DNNs is accomplished by backpropagation (BP), which is the process of modi-

fying the weight and bias parameters in all neurons in the direction of negative

gradient with respect to the loss function by a small step. The intuition of

modifying parameters in such a way is that weights moved in the direction

of negative gradient lead to steepest descent of the loss function locally. By

making small gradual local steps for a great many iterations, the loss function

should be somehow minimized.

Learning and predicting the probability P (w1, . . . , wl) of a sequence w1, . . . , wl

of length l are the backbones of various NLP applications, including speech

recognition, part-of-speech tagging, and semantic parsing. Since text is made

of discrete word tokens, such probability is usually factorized into P (w1, . . . , wl) =

P (w1) · P (w2|w1) · · · · · P (wl|w1, . . . , wl−1). In other words, the probability

of a given sentence is computed by the product of probability of all words

13



given all preceding words. Before the era of DNNs, lack of computational

power calls for the need of a simplified approximation. Uni-gram and n-

gram models are designed for this exact purpose, which essentially approxi-

mate P (w1, . . . , wl) = P (w1) · P (w2|w1) · · · · · P (wl|w1, . . . , wl−1) with trun-

cated probabilities Puni-gram(w1, . . . , wl) = P (w1) · P (w2) · · · · · P (wl) and

Pn-gram(w1, . . . , wl) =
∏l

i=1 P (wi|wi−(n−1), . . . , wi−1), respectively. Modern lan-

guage models parameterized by DNNs are more expressive, and thus can fully

model P (w1, . . . , wl) = P (w1) · P (w2|w1) · · · · · P (wl|w1, . . . , wl−1). In order to

convert word tokens into numerical representation for DNNs, words are rep-

resented by word embeddings, which map discrete word tokens to continuous

real-valued vectors while encoding semantic meaning of words in such a way

that words with more similar meaning are mapped to vectors with a smaller

distance, and vice versa. Representing words in such way provides more mean-

ing than simply using indexes. Moreover, modelling a vocabulary of words in

continuous space theoretically and practically alleviates the curse of dimen-

sionality. Plenty of pre-trained embeddings are readily available nowadays,

such as Word2vec [31] and GloVe [34], setting up the foundation for various

applications.

2.1.4 Sequential Models

Recurrent neural network (RNN) is a family of DNN models that connects

computational layers in a cyclic way over temporal steps to process varying-

length sequences sequentially and finally outputs a representation for down-

stream tasks. As for vanilla RNNs, the outputs of the neurons at time step t

are used as input for the neurons in time step t+ 1. In such a way, each time

step the representation is being processed using the same set of weights. Recur-

rent computation can be conceptually unrolled to reflect the feed-forward pass

over time as in Figure 2.3. Theoretically, vanilla RNNs should have the power
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Figure 2.3: Recurrent neural network and unrolled perspective.

of modelling long-term dependencies. However, in practice vanilla RNNs face

various problems, including gradient exploding and vanishing during training

time [14][17]. Long-short term memory (LSTM) [15] recurrent neural networks

alleviate these issues by regulating dependencies using a gating mechanism.

As seen, vanilla RNN is one-directional, meaning that when processing

word wt, only w1, . . . , wt−1 are taken into consideration. Bidirectional RNNs

is a simple direct improvement over vanilla RNNs. Instead of only having

one hidden state accumulating information from the beginning of a sequence,

bidirectional RNNs use another hidden state that accumulates information

from the end of the sequence, providing more context when dealing with each

single word in the sequence.

The sequence-to-sequence (Seq2seq) [42] model is a popular text genera-

tion model for various tasks, which essentially maps an arbitrary length text

sequence to another arbitrary length sequence by compressing the former into

a latent representation before generating output conditional on that. The

Seq2seq model is originally developed for the task of machine translation due

to its flexibility with different source and target language domains, but its

simplistic and flexible design has made its way to numerous applications, such

as part-of-speech (POS) tagging. Seq2seq models are typically constituted by

an encoder, which can be parameterized by RNNs, LSTMs, or other sequential

models, and a decoder that generates output sequentially. The encoder takes
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Figure 2.4: An example sequence-to-sequence (Seq2seq) model for English-to-
Spanish machine translation.

an input sentence, and outputs a latent representation that carries the informa-

tion from the input sentence. The decoder then takes the latent representation

as input and generate text auto-regressively from the first word until a spe-

cial stopping token is emitted, to deliver the content specified by the latent

representation. At each time step, a probability distribution over the entire

vocabulary conditional on the already generated tokens P (wt|w1, . . . , wt−1) is

given by the softmax function in the decoder, indicating the probability of wt

following a sequence of w1, . . . , wt−1, given the input sentence.

2.1.5 Attention Mechanism

Despite the effectiveness of the gating mechanism in LSTMs, RNN-based

Seq2seq models still suffer from two major issues: RNNs are not paralleliz-

able since the input for a time step strictly depends on the previous time

steps, thus computation in all time steps must be done one-by-one; although

the gating mechanism in LSTMs can alleviate the gradient vanishing problem,

the gradient exploding problem implies the difficulty of feeding hidden state

linearly forward over time steps (e.g., if wt+n is heavily dependent on wt, then

the hidden state needs to carry the relevant information from time step t all

the way through time steps t to t+ n). The attention mechanism [2], inspired

by cognitive science, is designed to tackle these issues. Instead of using the

hidden state from strictly the previous time step (forward or backward), an
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attention mechanism also makes use of the input text directly weighted by

their relevance to the output. The attention weights given by an alignment

model parameterized by DNN is a probability distribution indicating the “cor-

relation” between all the words in input sentence and the specific word being

processed.

Transformers [43] are a family of sequential model that uses attention only

to process text and has been trending since it was first introduced. Similar

to the aforementioned RNN-based Seq2seq model, Transformer-based Seq2seq

models also follow the encoder-decoder architecture. Other than that, Trans-

formers are very different from RNNs in terms of architecture and have several

advantages. The core idea of Transformers is to use attention alone without

recurrent structure to process sequential data to allow the model to process

time dependencies without linear recurrent passage. Besides, the attention

mechanism enables parallelization of computation, and thus improving train-

ing efficiency. The attention mechanism used by the original Transformer [43]

is multi-head self-attention, meaning that when processing the input the model

attends to the input itself, and having multiple attention heads functioning in-

dependently.

Various large-scale Transformer-based models have demonstrated their ca-

pability in a wide variety of tasks. Bidirectional Encoder Representation

from Transformer (BERT) [6] is a set of models for NLP tasks developed

by Google. The original English-language BERT models are pre-trained on

the Bookcorpus [50]1 and the English Wikipedia dataset2, consisting of 800M

and 2.5B samples, respectively. BERT achieved state-of-the-art performance

on a variety of NLU benchmarks, including General Language Understanding

1Bookcorpus dataset: https://github.com/soskek/bookcorpus
2English Wikipedia dataset: https://en.wikipedia.org/wiki/Wikipedia:Database_

download
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Evaluation (GLUE)3, Standard Question Answering Dataset (SQuAD)4, and

Situations with Adversarial Generations (SWAG) [47], showing the superior

capability of BERT in language understanding. Representations learned by

BERT while training towards general purpose NLU tasks are now used as em-

beddings for various downstream tasks. Evidence [38] shows that pre-trained

BERT models often performs well with only minimal fine-tuning on relevant

NLU tasks. Generating text from BERT is not trivial, as BERT is inherently

bidirectional, rendering auto-regressive word generation infeasible. However,

there are various ways to decode text from BERT, such as starting with a

sentence filled with empty blanks, then using BERT to fill all the blanks in

a specified order [13]. Generative Pre-trained Transformer (GPT) [36] and

its direct scaled up successor GPT-2 [37] are pre-trained Transformers geared

more towards text generation. Different from BERT, GPT models have only

decoder, but are also equipped with multi-head self-attention.

2.2 Edit-Based Text Generation

Different from the MT-based Seq2seq model that emits words one after an-

other, edit-based text generation models refer to the family of models that

learn to generate text by modifying the input text. Solving NLG tasks by pre-

dicting edit operation sequence has several advantage over auto-regressive text

generators: many monolingual text generation tasks require generating text

that have big overlap with the input. Take sentence simplification as an exam-

ple: the easy way to simplify a sentence is to remove non-essential utterances

while keeping all important key words, then fill in some new words to make

the simplified sentence fluent and grammatically coherent. Using a MT-based

Seq2seq model for this purpose would require the model to implicitly learn all

3GLEU:https://gluebenchmark.com/
4SQuAD: https://rajpurkar.github.io/SQuAD-explorer/
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Figure 2.5: Example of paraphrase generation by edit.

these edit actions, while still be able to recover the essential keywords via the

context representation. Indeed, experiment results show that Seq2seq models

in this case are prone to generate the exact same output as the input most of

the time, indicating that the minimal differences between inputs and outputs

are oftentimes not captured by the Seq2seq models [49].

Learning the edit operations in the supervised setting requires first finding

the edit operation sequence given parallel sentence pairs. This can be done

by dynamic programming (DP) by first creating a table to store the results

of sub-problems(i.e. partially edited text), then the minimum edit operation

sequence can be obtained by tracking the table. Each valid edit label consists

of a sequence of edit operation that if executed will convert the input sentence

X to the target sentence Y . Commonly used word-level edit operations are

insertion, deletion, and replacement. However, various operation formulations

can be used to suit the need of various tasks. Edit-based approach allows the

model to theoretically generate any sentence while also be able to preserve

important keywords from the input sentence relatively easy by choosing not

to modify those tokens. Moreover, such design also comes with more control-

lability and interpretability than MT-based Seq2seq models, as the generated

operation sequence can reflect which part of the input needs to be edited in-

stead of generating everything from scratch as a black-box.
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2.2.1 Supervised Learning

In this section, we overview the current state of the art of edit-based text

generation in supervised setting.

[1] aligns the input and output sentence to the best extent, before using

heuristics to find the edit sequence label. The word-level edit operations they

adopt are MOVE, DELETE, and REPLACE. Since heuristics are used

instead of dynamic programming, annotations themselves are not exactly op-

timal, yielding 92% accuracy and an average of 0.7 F1 score compared with

human expert annotations. Finally, they train a bi-directional LSTM-based

RNN model to learn from the automatic annotated edit labels. Experiment

results on sentence simplification task show that the RNN model does not

learn the edit operations very well, but is still able to generate good quality

sentence in terms of human evaluation.

EditNTS [7] adopts the neural programmer-interpreter model for sequen-

tial text edit operation prediction. The programmer module predicts the edit

operation by jointly considering the partially generated sentence, edit trajec-

tory, and contexts, while the interpreter is in charge of the realization of edit

operations. Different from the RNN model [1], edit annotations in EditNTS

are labeled by dynamic programming, which theoretically should yield 100%

accuracy, superior to the heuristic based approach. For the task of sentence

simplification, the programmer predicts one operation from ADD, Delete,

and KEEP for each word in the sentence. EditNTS model is trained to pre-

dict the correct edit label for each word by maximum likelihood training. The

maximum likelihood training loss function can be modified to counter the

class imbalance among ADD, Delete, and KEEP operations by assigning

different weight to each edit label in the loss function. This is also one way

to inject human expert bias of preference among edit operations (i.e. to edit
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more or to keep more words from the input sentence). Experiment results

on sentence simplification task with WikiLarge, WikiSmall [48], and Newsela

dataset 5 show that on all three dataset EditNTS consistently outperforms all

other simplification models that does not use external knowledge base by the

time of publication. More specifically, performance of EditNTS is consistently

higher than that of the vanilla MT-based RNN model [1], demonstrating the

superiority of edit-based text generation in sentence simplification task. We

attribute the higher performance of EditNTS to two factors: quality of edit

labels used by EditNTS are of higher quality since dynamic programming are

used to create the labels; the programmer-interpreter model is more suitable

than simple RNNs for learning edit labels.

Levenshtein Transformer [11] is an interesting mixture of edit-based model

and auto-regressive model. The editing process is done by first processing

input by a Transformer model, then iteratively delete, insert placeholder, and

finally fill in the placeholder by word. The deletion, placeholder insertion,

and fill-in-blank steps are each done by their own models at each step, but

share the same Transformer backbone. Such iteration loops until the deletion

and insertion policies stabilize or fixed budget is reached. In the experiment,

Levenshtein Transformer achieves high performance and efficiency in machine

translation, text summarization, and automatic post-editing.

LaserTagger [29] proposed an edit-based text generation model using pre-

built phrase vocabulary. This model comes with a very simplistic three step

design: encode input, tag edit operations, and realize the edits. The highlight

of this work is the phrase vocabulary they adopt for phrase insertion. The

phrases in the vocabulary are built from pair-wise alignment of all parallel

pairs in a dataset, then the mismatched n-grams between input and ground-

truth output after alignment are stored in the phrase vocabulary. The phrase

5Newsela dataset: https://newsela.com/data/
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vocabulary has a much smaller size than a word vocabulary, and thus making

the model eaiser to train. Using such a restricted vocabulary, LaserTagger

yields similar performance compared with the BERT-based Seq2seq model

when large number of training examples are available, but significantly out-

performs the Seq2seq model when training examples are scarce (≤ 1000).

2.2.2 Unsupervised Text Generation

As seen, edit-based text generation models have several advantage over MT-

based models in supervised learning setting. However, lack of parallel corpora

in certain tasks call for unsupervised edit-based models.

The variational auto-encoder (VAE) [20] is a popular generative model for

unsupervised setting. [4] proposes to generate text using VAE by sampling

from the latent sentence space. Different from auto-encoders (AE) [3], VAE

compresses the input (i.e. a sentence) into a mean µ and standard deviation

σ that parameterize a multi-variate distribution, which is then used to sample

the latent representation z. Then the LSTM-based decoder would generate

text conditional on the latent representation. The training objective is to

minimize the evidence lower bound, which measures the distance between the

estimated posterior and the real posterior. Experiment results show that VAE

is a competitive approach for imputing missing words and text classification.

However, due to the black-box nature of the latent space, VAE would not be

able to generate text with specific attributes.

Generating text by Metropolis-Hastings (MH) sampling in word space [30]

is the cornerstone that leads to search-based NLG which this dissertation

focuses on. Metropolis-Hastings algorithm is a Markov Chain Monte Carlo

(MCMC) sampling algorithm that generates samples by iteratively jumping

from state to state within a Markov Chain governed by a discrete probability

distribution. Here the Markov Chain is defined to be the space of all sentence
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X , and each state is a sentence x ∈ X . To explore the sentence space by

sampling, the MH algorithm involves two steps: starting from any state x,

first a candidate transition to x′ is proposed using one of the word-level edit

operations from insertion, replacement, and deletion; Then, the probability of

accepting this proposed transition x′ is determined by

A(x′|x) = min{1, A∗(x′|x)} (2.1)

where A∗(x′|x) =
π(x′)g(x|x′)
π(x)g(x′|x)

(2.2)

where g(x′|x) is the proposal function that suggests a tentative transition x′

from x, and π(x′|x) is the stationary distribution that defines a probability

distribution over the sentence space. As seen A(x′|x) is rectified to the range

of [0, 1] to output a probability of accepting the transition to x′. In other

words, the probability of not accepting transition to x′ and remaining at x is

1 − A(x′|x). The motivation of MH algorithm is that sampling directly from

π(·) is difficult as it involves computing π(x) for all x to get a normalized

measure. In the MH algorithm, only state at the sampling time xt and the

proposed neighbour x′t require inference with π(·), thus bypassing the compu-

tational complexity of a global inference. For the task of text generation, π(·)

is essentially a non-learnable heuristic function that takes as input a specific

state x (the original input sentence x0 is also taken as input implicitly), then

evaluates a score indicating the quality of the state x with respect to the task.

The idea of using MH sampling is to generate a sequence of states that follows

the distribution π(·), such that sentences with relatively higher probability

(i.e. higher quality sentence) are likely to be sampled more, while those with

relatively low probability (i.e. lower quality sentence) are less likely to be

sampled. In other words, MH sampling would be able to continually generate

different sentence states by jumping around in the sentence space.

Model in [30] does not require any supervision since the distribution π
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is manually designed by human to reflect the requirement for the text to be

generated x∗. Consider the example of keyword-to-text generation. The dis-

tribution π· can be set to

π(·) ∝ pLM(·) · skeyword(·) (2.3)

where pLM(·) is the probability given by a language model, indicating the flu-

ency and grammatical coherence of a particular sampled state. More specif-

ically, the language model for evaluating pLM(·) is trained from non-parallel

corpora in a unsupervised fashion; skeyword is the hard keywords constraint

taking value of 1 or 0, indicating if all required keywords are present in the

state. This ensures the MH sampler never visit any state that does not strictly

have all the required keywords present in the sentence.

Furthermore, for the task of paraphrase generation, the MH algorithm

would sample from

π(·) ∝ π(·) ∝ pLM(·) · smatch(·|x0) (2.4)

where pLM(·) is language model probability indicating the fluency of generated

text, similar to Equation 2.3; smatch(·|x0) is a matching score function indi-

cating how similar are the semantic meaning between the generate sentence

and original sentence to be paraphrase, which could be implemented by cosine

similarity of pre-trained embeddings, or skip-thoughts sentence similarity [21].

Note that although manually designed heuristics are used, there are no explicit

rules or templates being imposed. Components of π(·) (except for hard con-

straint) are all parameterized by pre-trained DNNs or embeddings, and thus

able to recognize complicated semantic structures.

Experiment result in [30] shows that the MH sampler yields promising per-

formance in keywords-to-sentence generation, unsupervised paraphrase gener-

ation, and unsupervised error correction, showing the generality of their model.
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Hence, it can be concluded that it is feasible to manually design a task spe-

cific distribution π(·), then generate text via sequential sampling from such

distribution.

x1, x2, . . . , xT ∼ π(·|x0) (2.5)

MH sampling is in a sense wasteful as it samples both high quality and low

quality sentences. Although sentences of higher quality are more likely to be

sampled, there are still quite some steps wasted on low quality region in the

sentence space as in Equation 2.5. In other words, it would make more sense

to use a sampling mechanism that focus on finding a maximum score sentence

as in Equation 2.6.

x∗ = argmax
x

π(x|x0) (2.6)

In the next section, we overview search-based sampling for this exact purpose.

2.3 Search-Based Text Generation

In this dissertation, we refer search-based text generation models as word-

level edit-based models that generate text by searching towards an objective

function. Similar to [30], a manually specified objective function is used to in-

dicate the quality of an arbitrary sentence for a given task. However, instead

of sampling from a distribution, search-based model aims to optimize the ob-

jective function by searching towards its optimum using discrete word-level

edit operations.

[40] tackles the task of document summarization by hill-climbing(HC) search,

which ensures every accepted search step leads to a higher scored state. Sum-

marization in this model is realized by word extraction, meaning that the

model generates summary by directly using words from the original document.

A good summary should be fluent, semantically similar to the original docu-

ment, but has a shorter length. To specify these requirement, the objective
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function designed for the summarization task is

f(yyy;xxx, s) = f−→
LM

(yyy) · fSIM(yyy;xxx)γ · fLEN(yyy; s) (2.7)

where s is the desired length of summary; f−→
LM

(yyy), fSIM(yyy;xxx), and fLEN(yyy; s)

are components enforcing different requirements for generated text; and γ is

a hyperparameter adjusting the relative weights of these components. f−→
LM

(yyy)

is the perplexity of sentence yyy given by a forward-backward language model,

indicating the fluency of sentence yyy; fSIM(yyy;xxx) measures the similarity be-

tween the original document and sentence yyy, which is realized by computing

the cosine distance of the sent2vec [32] embeddings of the two; and fLEN(yyy; s)

is the hard constraint of length that outputs 1 if length sentence yyy is equal

to s and 0 otherwise. The search space is defined to be a vector of Boolean

variables (a1, . . . , an) indicating if each specific word in the original document

is extracted for the summary. To find a satisfactory summary in this search

space, the model would iteratively sample one word at a time from the origi-

nal document to swap a random word from the summary. The HC algorithm

would only accept the new summary only if it is evaluated to have a higher

score f(yyy;xxx, s) than the current summary. This ensures that as the sampling

process goes on, the quality of summary can only get better or stay the same.

Experiment results on Gigaword and DUC2004 dataset show that such ap-

proach achieves a new stat-of-the-art performance on headline generation at

the time of publication.

[22] uses an iterative search algorithm similar to hill-climbing for the task

of text simplification. Components of the objective function in this model are

as follows:

f(s) = feslor(s)
α · ffre(s)β · (1/flen(s))γ · fentity(s)δ · fcos(s) (2.8)

where feslor(s) is the syntactic log-odds ratio (SLOR) [18] given by a syntax-

aware language model, which measures fluency and structural simplicity of a
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simplification. SLOR differs from the plain forward-backward language mod-

els used in [30][26] in the sense that it penalizes the plain language model

probability by length and the product of uni-gram probability of all words

in the sentence. This is to factor out the low language model probability of

rare words, as they carry important information but oftentimes lead to low

language model probability if present in a sentence. SLOR also takes as input

the part-of-speech (POS) and dependency tags, claiming better evaluation of

language fluency than a plain language model. ffre(s) stands for the Flesch

Reading Ease [19] score, which measures the readability of a sentence. The in-

verse of sentence length (1/flen(s)) is designed to give higher scores for shorter

sentences. fentity(s) is the count of all named entities, compensating their low

language model probabilities. fcos(s) is the cosine distance between the sen-

tence embeddings of the original sentence and the simplified sentence. The

edit operations used in this model are both in word and phrase level: removal,

extraction, reordering and substitution. At each iteration, each of the edit

operation is used to generate multiple candidates, and only those candidates

with higher objective scores than the previous step by a threshold would be

accepted. Hence, the search algorithm in this model is similar to hill climbing,

but have multiple candidate branching at each step. However, the intrinsic

issue with only accepting higher score would make the search prone to local

optimum. In order to jump out of local optimum, some randomness would be

needed to occasionally accept lower score.

UPSA [26] uses simulated annealing (SA) search algorithm for the task

of unsupervised paraphrase generation. SA algorithm differs from the hill

climbing search in the sense that non-greedy search steps are occasionally

allowed. At each iteration one candidate would be generated from one of the

word-level operations: insertion, replacement, deletion. If the new candidate

state is evaluated to have a higher score than the current state, the current
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state is always updated to the candidate; if the new candidate state has a

lower score than the current state, SA algorithm would still be possible to

accept it with a low probability. Such non-greedy search steps are more likely

to be allowed in the beginning of search, and become gradually less likely as

the search goes on to settle for a optimum point.

2.3.1 Learning from Search

Despite the state-of-the-art performance in various tasks by the search-based

edit models, there are opportunities for enhancement. One major drawback

of the search-based framework is that the search process is oftentimes noisy.

This is to be expected since the objective functions are manually designed and

not learnable.

[24] proposes an iterative search and learn framework for text generation.

The core idea is using a Seq2seq model to provide new starting points for the

SA search. In the first learning stage, SA algorithm is first performed to search

towards the objective function to generate a dataset with pseudo-labels. The

generated pseudo labels are used to train a Seq2seq model by cross-entropy

loss. In the second learning stage, beam search is performed on the Seq2seq

model to obtain a set of candidate outputs. These outputs are used as starting

point for SA search again to generate another set of outputs. The Seq2seq is

then trained by max-margin loss to maximize the margin between the highest

scored instance from these two sets of outputs and the rest. Such alternation

between searching (SA) and learning (Seq2seq) is carried on for a couple iter-

ations. Experimental results show that such iterative alternation of searching

and learning indeed improve the performance in paraphrase generation task

as more iterations are performed, and finally achieve state-of-the-art perfor-

mance. They attribute the success of this simple approach to the Seq2seq

model effectively smoothing out the noise in search results. Moreover, the
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positive outcome of such framework shows that learning of search results is

feasible. However, learning and searching procedures in this framework both

function as black-boxes of input-output correspondence. The natural question

along this line would be: Is it also possible to learn from the internal search

dynamic?

Attempts are made to use learnable function to improve local search by

learning directly from the search dynamics in [5]. This framework learns a

function that predicts the outcome of a local search algorithm. In other words,

a model predicts the expected maximum objective score seen on a trajectory

that starts from a given state x and follows the local search algorithm. To

sample from the search dynamics, the search algorithm is first performed to

collect search trajectories. Then the learnable evaluation function is trained

from the collected trajectories to predict the search outcomes. The training

framework consists of two stages running alternately: a search algorithm to

maximizes the original objective function; and another search algorithm max-

imizes the learned evaluation function. Output of either stage would be used

as input for the next stage for several iterations. Hence, this framework can

be viewed as a smart restarting mechanism for the search algorithm. Exper-

imental results on combinatorial games such as bin-packing, rerouting, and

Boolean satisability show promising performance. However, this formulation

has yet to demonstrate its capability when it comes to notoriously large search

space, such as text generation.
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Chapter 3

Methodology

In Section 3.1, we overview the framework of search-based text generation.

Specifically, we focus on the paraphrase generation framework of UPSA, which

shows state-of-the-art performance in paraphrase generation according to [26]

and will serve as our baseline for setting up the foundation of our study. We

follow [26] and evaluate our models on the task of unsupervised paraphrase

generation.

In Section 3.2, we introduce our proposed models for smoothing the objec-

tive function. In particular, we pinpoint the drawback of the current search-

based framework, then propose three models for guiding the search process by

smoothing the objective function. All three models learn from search trajec-

tories of the SA algorithm.

3.1 Unsupervised Text Generation by Simu-

lated Annealing

Search-based approaches have demonstrated their capability in various unsu-

pervised text generation tasks and have been gaining popularity over recent

years [40][22][26]. The search-based framework consists of a manually designed

objective function to evaluate the search states with respect to the specified

tasks, and a local search algorithm to find the optimum of the objective func-
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tion in the sentence space. For the particular task of paraphrase generation,

the objective function would need to evaluate grammatical fluency, semantic

preservation, and expression diversity. The search algorithm would then per-

form local search in the sentence space by making word-level edit to search

states (i.e. sentence), in order to maximize the objective function. Hence, the

task of text generation is formulated as an optimization problem. Details will

be provided in the rest of this section to overview components in the objective

function to enforce the requirements of paraphrase generation.

3.1.1 Unsupervised Objective Function

The objective function plays the important role of guiding the search algorithm

by evaluating the objective score of any given search step. Specifically, the

objective function can be considered as a mapping that takes as input an

arbitrary sentence x and the context (e.g. original input sentence x0), and

outputs a numerical score indicating the quality of generated sentence x for

the given task. In other words, a state with a high score indicates it satisfies

most of the requirement for the task.

Language fluency and syntactical coherence are among the most fundamen-

tal necessities of language generation. In the neural network regime, fluency

and syntax are measured approximately by the probability predicted by a

language model. This probability indicates the relative likelihood of a partic-

ular sentence is drawn from a specific dataset. More specifically, the language

model itself is a probability distribution over the sentence space. The language

model is trained to maximize the log-likelihood of each sentence in the dataset.

Hence a high probability assigned to a sentence means it was likely drawn

from the same distribution that induces the dataset. Since all sentences in the

dataset are presumed to be grammatically fluent and syntactically coherent, a

high language model probability correlates with higher language fluency and
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syntactical coherence:

fflu(x) =
∏

k
P−→

LM
(wk|w1, · · ·wk−1) (3.1)

where k is the length of sentence x. The language model used in our experiment

is a two-layer LSTM model with 300 hidden units. No parallel supervision is

used for training the language model.

The main goal of paraphrase generation is to generate text that is distinct

from the original input. Hence, sentence with more different wording compared

with the original input should be assigned a higher score. The BLEU [33]

score is an automatic measure for lexical similarity, which computes the length-

penalized n-gram overlaps between two text sequences. Then 1−BLEU would

yield higher score for output dissimilar to the input. In this experiment, the

lexical dissimilarity of a sentence is measured by 1−BLEU against the original

sentence:

flex(x|x0) = (1− BLEU(x, x0))S (3.2)

where S is a hyperparameter controlling the multiplicative weight of the lexical

diversity component.

Although different wording is desired, the semantic meaning of the sentence

should not change during the paraphrasing process. To enforce this require-

ment, word-level or sentence-level embedding distance are used to measure the

semantic similarity between input and output. In such a way, sentences with

similar meaning would have a shorter embedding distance, and vice versa.

Such distance metric is not particularly sensitive to any particular word in

the sentence as all words are mapped to embeddings. UPSA adopts two ways

for measuring semantic similarity: mini-max keyword embedding distance and
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sentence embedding distance:

fsem(x|x0) = fsem,key(x|x0)P · fsem, sen(x, x0)Q (3.3)

fsem,key(x|x0) = min
e∈keywords(x0)

max
j
{cos(w, e)} (3.4)

fsem, sen(x, x0) = cos(x,x0) (3.5)

where P and Q are the relative weight of keyword similarity and sentence

similarity, respectively. Here the keywords are extracted by RAKE [39] and

the GloVE [34] embeddings are used for computing distance.

The objective function used in UPSA is a multiplicative weighted combina-

tion of the aforementioned components. It simultaneously evaluates language

fluency, semantic preservation, and lexical diversity:

f(x, x0) = fflu(x) · fsem(x|x0) · flex(x|x0) (3.6)

note that each components are weighted implicitly.

To this end, we have reviewed each individual component in the objective

function for paraphrase generation. This objective function specifies the re-

quirement for the task of paraphrase generation. Next to discuss is a search

algorithm to maximize such objective function approximately by making word-

level local edits.

3.1.2 Simulated Annealing Search

The computational cost of exhaustive search renders it infeasible to perform.

The number of possible sentences that can be generated combinatorially grows

exponentially with the vocabulary size. In other words, an exhaustive search

can be done theoretically, but one would need to face the cost of a branching

factor of 30,000 (i.e. vocabulary size). Moreover, for the task of paraphrase

generation specifically, exhaustive search is not needed as there could be many

plausible paraphrases for a sentence. Being able to find an acceptable solution

efficiently should suffice.
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The general local search algorithm solves discrete optimization problem

by starting from a candidate then iteratively moving to neighbours in the

solution space by applying local changes, until some criterion is satisfied or

the computational budget is exhausted. In other words, every step in the

search trajectory itself would be a potential solution. Hence, the main goal

is to search efficiently by making moves that follow a good strategy, so that

the trajectory can reach at least one high score state. In this dissertation,

we use the simulated annealing algorithm described in [26] as the local search

algorithm for solving the optimization problem approximately. Paraphrase

generation is a monolingual task that usually have significant overlap between

input and output. Hence, the input sentence would serve as a reasonable

starting point for the search.

Local search algorithms require a well-defined neighbourhood relation in

the solution space for state transition. For the task of paraphrase generation,

the solution search space is defined to be all finite length sentences. Search

steps are realized by making word-level edit operations. More specifically, each

state of the search is represented by:

xt = (wt,i|i ∈ [0, l]) (3.7)

where t indexes time steps in the search process, and l is the length of the

sentence corresponding to state xt.

Local word-level edits used in this framework are insertion, deletion, and

replacement. It can be seen that in theory any arbitrary sentence can be gen-

erated from any starting point using these edit operations. Word deletion is

straightforward to perform, but word insertion and replacement both require

adding appropriate new word to the sentence. The new word added to the sen-

tence are sampled from the same language model used for fluency evaluation.

Details will be discussed in rest of this section.
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“how can one get rid of anger”

“how can i get rid of anger”

“how can one get rid of happiness”

“how can one get rid of”

“why can one get rid of anger”
“how can i get rid of anger issue”

“how do i get rid of anger”

“how can i rid of anger”

✅

Figure 3.1: An example of one iteration of simulated annealing search. The
red crosses represent rejected proposals, while the green swoosh represents
accepted proposal.

Simulated annealing (SA) is the choice of search algorithm for maximizing

the aforementioned objective function 3.6. The terminology of SA is borrowed

from metallurgy, which originally refers to the technique of alternating heating

and cooling of a material to produce crystals of desired size while reducing

defects. In the context of optimization by stochastic search, this translates to

the idea of that the search algorithm would climb to higher function values

greedily most of the time, but occasionally allow some non-greedy exploration

to escape local optima. SA algorithm explicitly encourages exploration during

the initial steps of the search, then becomes more greedy as the search goes

on. With this design, the SA algorithm is able to provide reasonable solution

even when the search space is large.

One basic iteration of SA for text generation is done by first making edit

proposals, then either accepting or rejecting the proposals. For each iteration,

a position to be edited i is sampled from a uniform distribution over the length

of the sentence, giving each position an equal chance to be edited. Then a

neighbouring state x∗ is proposed based on the ongoing state xt at time step t
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by performing the one of the aforementioned basic edit operations: insertion,

replacement, or deletion, at the sampled position of i:

i ∼ Uniform(0, l) (3.8)

where l is the number of words in sentence xt.

An edit operation from insertion, deletion, and replacement needs to be

chosen once the edit position has been determined. Edit operations are also

sampled from the three options. More specifically, given probability of pins,

prep, pdel for insertion, replacement and deletion, respectively, the edit opera-

tion is sampled by:

z ∼ Categorical(pins, prep, pdel) (3.9)

where z is the one-hot vector indicating which edit operation to be performed.

In practice, pins, prep, pdel are set to equal.

If the sampled edit operation is deletion, then it would be straight for-

ward: given the current state xt = (wt,1, . . . , wt,i−1, wt,i, wt,i+1, . . . , wt,l) at

step t and i-th word to be deleted, the new candidate sentence becomes

x∗ = (wt,1, . . . , wt,i−1, wt,i+1, . . . , wt,l).

For insertion and replacement, a new word needs to be sampled to add to

the sentence. For the appropriate word to be selected, the new candidate word

is sampled with probability proportional to the objective score corresponding

to the new sentence state induced by the added word

p(w∗|·) =
fsim(x∗, x0) · fexp(x∗, x0) · fflu(x∗)

Z
(3.10)

Z =
∑
w∗∈W

fsim(x∗, x0) · fexp(x∗, x0) · fflu(x∗) (3.11)

sampling in such way would ensure words that lead to higher scores are more

likely to be added. Due to the expensive computational cost of evaluating
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Equation 3.10 for every word in the vocabulary, a forward and backward lan-

guage model is used to truncate this selection to only top-K words. In other

words, only the words that lead to high fluency scores are considered. If the

new word is to be placed at the i-th slot in sentence xt, the top-K words being

used to evaluate 3.10 are restricted to:

Wt = top-Kw∗ [p−→LM
(wt,1, . . . , wt,i−1, w∗) · p−→LM

(w∗, wt,i+1, . . . , wt,lt)] (3.12)

After the new candidate word is proposed, the new candidate state generated

by replacement operation would be x∗ = (wt,1, . . . , wt,i−1, w∗, wt,i+1, . . . , wt,l).

Likewise, the new candidate state proposed by insertion operation would be

x∗ = (wt,1, . . . , wt,i−1, wt,i, w∗, wt,i+1, . . . , wt,l).

Copy mechanism is incorporated to preserve named entities and rare key

words. These words are usually kept in the sentence during paraphrasing since

they carry relatively high amount of important information. However, in prac-

tice sentences with these rare words are usually given very low probabilities

by language models due to their low uni-gram probabilities. Hence, the prac-

tical issue of these rare words is that they are likely to be deleted or replaced

during the search process, but are not likely to be recovered again due to the

low language model probabilities of sentences having these words. Inspired

by [10], the copy mechanism is incorporated in the word sampling process by

augmenting the top-k candidates with all words in the input sentence. Hence,

it would be easier for the model to copy these words from the original sentence.

In particular, the truncated candidates become:

W̃t =Wt

⋃
{w0,1, . . . , w0,l0} (3.13)

where Wt is the top-K words truncated by the forward-backward language

model in 3.12, and {w0,1, . . . , w0,l0} are the words in the input sentence x0.

The SA algorithm decides if the new proposal x∗ would be accepted. The

essence of SA algorithm is to always accept proposals that lead to higher scores,
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but lower scored proposals are occasionally accepted as a means to escape local

optima. The time-dependent acceptance ratio is given by:

p(accept|x, x∗, x0, T ) = min{1, e
f(x∗|x0)−f(x|x0)

T } (3.14)

where T is the temperature parameter controlling how likely non-greedy steps

are allowed. T is large at the beginning of search then gradually cools down

as search goes on. As shown, the probability of accepting a proposal x∗ is

always 1 if f(x∗|x0) > f(x|x0). Otherwise, the probability of accepting a

new proposal x∗ that leads to lower objective score depends on the absolute

difference between f(x∗|x0) and f(x|x0). Earlier steps yield high probability to

accept a proposal x∗ when f(x∗|x0) < f(x|x0) due to the larger T value. The

gradual reduction of temperature in Equation 3.14 can be interpreted as the

gradual increase in greediness for high objective score. We follow [26] and set

initial temperature to T0 = 3× 10−2, which is then linearly decreased to zero

after a fixed number of search iterations. In this manner, the search algorithm

is encouraged to explore a wide region of the search space at the beginning of

search. As the search progresses the algorithm commits to an optimum. In

theory, with sufficient budget steps for search, the probability of the algorithm

settling with a global optimum converges to 1. However, the large search space

makes this theoretical guarantee unrealistic. Instead, the main focus of the SA

search is to efficiently find a near optimal solution without global inference.

3.2 Learning From Search

One drawback of the search based text generation framework underlies in the

manually designed objective function, which is not learnable. Previous work

[26][30] show that maximizing the objective function by search indeed improves

the evaluation metrics (e.g., BLEU and iBLEU) on average for a dataset.

Such evidence show that there is indeed a correlation between the manually
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source what are the things you would like to change if you are given one
what are that things you would like to change if you are given one
what are that thing you would like to change if you are given one
what is that thing you would like to change if you are given one
what is that one thing you would like to change if you are given one
what is that one thing you like to change if you are given one
what is that one thing you want to change if you are given one
what is that one thing you want to change if are given one
what is that one thing you want to change if given one
what is that one thing you want to change in given one
what is that one thing you want to change in given life

output what is that one thing you want to change in your life

score

search 
steps

Figure 3.2: An example search trajectory of paraphrase generation.

score

search 
steps

Original objective function

Smoothed objective function

Figure 3.3: A sketch of our motivation to smooth out the original objective
function.

designed objective function and the true measure of success on a population

level. However, we suspect that the heuristic objective defined with a high

level of abstraction may not have the granularity to provide accurate guidance

when it comes to each individual sentence. Empirical evidence will be shown

to support this claim later in experiments section.

Another challenge of local search in general is the trap of local optima.

Being trapped in a local optimum that has a relatively higher score than all of
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its immediate neighbours can leave the search stranded for a very long time.

Even though SA algorithm would allow occasionally non-greedy move, the

probability of this happening only depends on the absolute difference in the

objective scores between two states. In our work, we aim to achieve the goal

of learning to make sacrifice by making locally non-greedy actions that are

beneficial in the long run. This is accomplished by smoothing the heuristic

objective function, so that the jumps in between locally optima are more

feasible. As demonstrated in Figure 3.3, a smoothed objective function would

yield smaller difference among the neighbouring region of a state. Such smaller

difference would lead to higher acceptance probability for transition to states

with lower scores, but with higher scoring regions around them for the following

potential steps to reach.

To this end, we propose three approaches for smoothing out the objective

function by learning models from the search process of simulated annealing.

The learned models are then combined with the original objective function to

form a new smoother approximation of the original objective. The learning

task is accomplished by two regression models that try to directly predict the

scores, and a Seq2seq model that predicts the likelihood of state transitions

implicitly. In the following section, we will go through the proposed models,

implementation and model tuning details.

3.2.1 Value Function

Our first approach is to directly train a regression model to approximate the ob-

jective function, known as value function [5]. The motivation of this approach

is to directly smooth out the objective function numerically. The procedure

of this approach is as follows:

1. We perform SA search towards the original objective function, to collect

search trajectory samples in the form of X = {xi|i ∈ [0, h]} where i
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indexes the time steps in a trajectory, and h is the number of search

steps in a search trajectory. Each search state in a trajectory is labeled

by its own objective score evaluated by the original objective function f .

2. The value function network is trained to take as input the original sen-

tence x0, and a state x from a search trajectory, then make a prediction

of the objective function score f̂(x|x0) for the given state x. The value

function network is trained by mean square error (MSE) against the

ground-truth objective scores.

3. For inference, the learned value function is directly combined with the

original objective f , yielding a new objective function fvalue. This new

objective function then guide a next iteration of SA search to generate

the final output xT .

The baseline model used in step (1) to collect search trajectory samples

are our own re-implementation of UPSA. We evaluate the performance of this

re-implementation to validate the baseline. Detailed results are presented in

Chapter 4. We faithfully follow all hyperparameter settings as described in

[26], setting up a fair comparison between our own models and the original SA

search.

In step (2), the value function network fv(x|x0) is trained to predict the

scalar score evaluated by the objective function f . As the backbone of this

model, a pre-trained bert-base-uncased [6] model is adopted and modified

for the regression task. The bert-base-uncased model is a transformer [43]

model pre-trained on Masked Language Modelling (MLM) and Next Sentence

Prediction (NSP) with large scale English data. Pre-training enables the model

to learn effective latent representation, which can help relevant downstream

tasks. This pre-trained model is capable of performing superbly in a vari-

ety of tasks [46] with minimal fine-tuning. Considering this regression task
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Output xT
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Objective 
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Figure 3.4: An illustration of our proposed learning from search model. Left
hand side is the UPSA framework, which generates trajectory samples for
training the prediction model(e.g. value function, Seq2seq model). Then the
learned prediction model is combined with the original objective function for
heuristic evaluation. Search is performed again with the new combined objec-
tive function to generate final output.

is largely dependent on Natural Language Understanding(NLU), the BERT

model is a reasonable choice for our base model. To modify the pre-trained

bert-base-uncased model for regression, we extract representation from the

pooled output, which is the last layer of the hidden-state of the special leading

token of the sequence [CLS]. We then simply add a fully connected layer on

top of the pooled output, to generate a scalar prediction of the score. The

regression model is then further fine-tuned by mean square error (MSE), in

order to minimize the l2 error between the score predicted by the value func-

tion fv and the ground truth score given by the heuristic objective function

f .

Jv(f, fv) =
∑
x∈X

(f(x|x0)− fv(x|x0))2 (3.15)

In the inference stage of step (3), the learned value function prediction fv

is directly combined with the original heuristic objective function f by convex

combination, yielding an overall objective function fvalue as

fvalue(·|x0) = k · fv(·|x0) + (1− k) · f(·|x0) (3.16)
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3.2.2 Max Value Function

The second approach we propose is a variant of the value function. Instead

of directly learning the objective score of a given state, max value function

learns and predicts the maximum objective score of a trajectory starting from

any particular state. The idea of this approach is similar to smoothing out

the objective function with the value function, but we also want to assign

a higher scores to states that lead to subsequent high scoring states in the

search trajectory. In other words, the goal of the max value function is to

learn to sacrifice immediate scores in order to reach even higher scores later

in the search trajectory. Max value function is trained and used for inference

almost the same way as the value function, except that in step (1), each state

is labeled by the maximum objective score that follows that particular state

in the search trajectory. Training objective in step (2) is to learn and predict

these new pseudo-labels. Inference in step (3) is the same as the value function

approach, using a convex combination of the original score f and the new score

fv∗. We use the exact same bert-base-uncased pre-trained model with an

added fully connected regression layer on top of the pooled output. Loss

function for training the max value function is also mean square error(MSE):

Jv∗(f, fv∗) =
∑
x∈X

[fv∗(x|x0)−max
x′∈X

f(x′|x0)]2 (3.17)

here x′ is the highest scoring state that follows the particular state x in tra-

jectory X.

3.2.3 Seq2seq Probabilistic Model

The third approach uses a Seq2seq model to smooth out the objective func-

tion. This idea is similar to [24], in which they also smooth out the noise in the

searching and learning frame work using a Seq2seq model. Unlike the regres-

sion models used in the value function and max value function, this approach
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uses the emission probability of a Seq2seq model for smoothing effect. More

specifically, we train a seq2seq model which takes as input the original input,

and predicts the search output (i.e. paraphrases). During inference, the pre-

dicted probability of a particular state to be emitted from the seq2seq model

given the original input sentence is combined with the original objective func-

tion to provide a smoothing effect. The procedure of the seq2seq smoothing

approach is as follows

1. We perform SA search towards the original objective function, to collect

search trajectory samples X = {xi|i ∈ [0, h]} similar to the value function

approaches. Then each trajectory would generate one pseudo-parallel

label in the form of (x0, xT). Each pseudo-parallel training example

(x0, xT) consists of the original input sentence x0 and the outcome of

search xT (i.e. the final state in search trajectory).

2. The seq2seq model is trained to take the input sentence x0 of a trajectory

and predict the search output xT. The training objective is to minimize

the cross-entropy loss against the pseudo-labels from step (1).

3. For inference, the probability of emitting a particular sentence P
(s2s)
i,v is

directly combined with the original objective f , yielding a new objective

function fseq2seq. This new objective function is used by the SA algorithm

to search again and output the final sentence x.

To train a Seq2seq model using the pseudo-label from search, we train a state-

of-the-art transformer-based Seq2seq model P
(s2s)
i,v by cross-entropy loss:

JCE = −
∑l

i=1

∑
v∈V

wi,v log P
(s2s)
i,v (3.18)

Where wi,v is the binary value indicating whether the i-th word is v or not

in the search output, and P
(s2s)
i,v = Ps2s(wi = v|w<i, x0) is predicted by the

Seq2seq model.
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The learned Seq2seq model P(s2s) is combined with the original heuristic

objective function f by:

fs2s(·|x0) = k · d · Ps2s(·|x0) + (1− k) · f(·|x0) (3.19)

Ps2s(x|x0) =
∏L

i=1
p(wi|w<i, x0) (3.20)

Here, d is a scaling factor (set to 100) to scale a probabilities to a similar

range of Equation 3.6. k is a relative weighting hyperparameter for the two

terms. fs2s becomes the new objective for generating final outputs by another

iteration of SA search.

Although both using a Seq2seq model to learn from the pseudo-parallel

search output, our work differs from [24], in which Ps2s is used to directly

generate output tokens in an auto-regressive manner. Instead, our work aims

to improve the quality of generated text by improving the original heuristic

objective function. Our work provides insight on the search objective, which is

an important building block for all search-based text generation frameworks.

Moreover, we want to answer the curious question of whether search guided

by a heuristic objective function can help improve the objective function in a

bootstrapping manner without supervision.
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Chapter 4

Experiments

4.1 Dataset

We follow [26] and evaluate our models on unsupervised paraphrase genera-

tion with Quora question pair dataset1, which is a collection of question pairs

that are identified as duplicate questions. These duplicated questions can be

interpreted as paraphrases for each others. Each data instance consists of its

own id, two questions with their respective unique id numbers, as well as a

target variable indicating whether they are duplicate questions. Preprocessing

of the data involves lower-casing, removing punctuation, and finally dedupli-

cating to avoid any particular instance being assigned more weight than others

in training and evaluation. After cleaning up the data, we reserve 10K and

20K of parallel paraphrase pairs for validation and test, respectively. The re-

maining 500K non-parallel sentences are used for training language model (for

fluency score and proposal truncation) as well as collecting search trajectories

for training the value function, max value function, Seq2seq model.

1Quora question pair datasethttps://www.kaggle.com/c/quora-question-pairs
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4.2 Settings

4.2.1 Search Algorithm Parameters

We faithfully follow the hyperparameter settings of the simulated annealing

search algorithm as in UPSA [26] for two reasons: hyperparameters in UPSA

are tuned by grid search and validated on the same Quora dataset, which

already achieved state-the-art performance in paraphrase generation; we will

use this set of hyperparameter settings as the basis of our ablation study, which

sets up a fair comparison with the original UPSA model. In particular, initial

temperature Tinit is set to 3× 10−2, then decay according to T = max{Tinit −

C ·t, 0}, where the annealing rate C is set to 3×10−4. In this way temperature

T will drop to zero linearly in 100 iterations. The language model for word

proposal and evaluating fluency score fflu is parameterized by a two-layer

LSTM model with 300 hidden units. Training of the language model uses

only the non-parallel training split of the Quora dataset. The relative weight

of each component in the heuristic objective P,Q , and S are set to 8, 1, 1,

respectively.

4.2.2 Search Trajectories Collection

To learn from the SA search dynamics, we perform SA search on the 50K

inputs from the training set, generating 50K search trajectories totalling 1.3M

search steps for training our proposed models. Each state visited in search

trajectories becomes a training data point, which consists of its own trajectory

id, search step index, edit operation used, and score evaluated by the original

objective. To train the value function fv, each data instance is cleaned up to

keep the original input sentence x0, the sentence corresponding to the state

at the particular search step xt, and the objective score f(xt). For training of

max value function fv∗, the objective score is set to the highest objective score
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in the trajectory after each particular search step. To generate the pseudo-

parallel labels for training Seq2seq model Ps2s, each search trajectory would

contribute exactly one training sample, consisting of only the original input

sentence x0 and the final output sentence xT from search.

4.2.3 Model Architecture and Tuning

Both of value function fv and max value function fv∗ adopt the pre-trained

bert-base-uncased model by directly adding an extra fully-connected regres-

sion layer to the pooled output of the [CLS] token, outputting a single scalar

prediction. The two models are both further fine-tuned by 50 epochs, with

batch size of 64. After tuning with the validation split of the Quora dataset,

we choose a scheduler that linearly warms the learning rate up to 1.5e−6 from

0 in 10 epochs, followed by a cosine decay period.

Our Transformer-based Seq2seq model has 3 layers, 8 heads, and 512 hid-

den units. The model is trained from scratch by 10 epochs with a batch size

of 64, using the same cosine learning rate scheduler as the value function and

max value function.

4.3 Evaluation Metrics

To set up a fair comparison with other state-of-the-art methods for unsuper-

vised paraphrase generation, we adopt the standard BLEU and iBLEU as

evaluation metrics. BLEU [33] measures length-penalized n-gram overlaps be-

tween the output and the ground-truth. iBLEU is a variant of BLEU that

explicitly discounts n-gram overlap between the input and output, to favor

lexical dissimilarity between input and output in the paraphrase generation

task [41]. Both BLEU and iBLEU take value between 0 and 1. A larger

BLEU or iBLEU score indicates higher n-gram similarity with the reference.

For iBLEU specifically, a higher score also corresponds to higher dissimilarity
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Reported in [26] BLEU iBLEU
VAE 13.96 8.16
CGMH 15.73 9.94
SA 18.21 12.03
Our implementations
UPSA 18.16 12.40
UPSA+Value 18.67 13.11
UPSA+MaxValue 18.81 13.12
UPSA+Seq2SeqProb 20.20 13.42

Table 4.1: Unsupervised paraphrasing results. BLEU and iBLEU scores are
presented in percentage format.

with the input sentence. In the case of a BLEU score of 1, that would mean

the generated output is identical to the reference. If the iBLEU is evaluated

to be 1, that means the generated output is identical to the reference, while

completely different from the input.

4.4 Results of Unsupervised Paraphrase Gen-

eration

Table 4.1 presents the result of automatic evaluation for unsupervised para-

phrase generation. Experimental results show that our implementation of

UPSA reproduces similar performance as reported in [26], verifying that our

implementation is correct and setting up the foundation for our study. More-

over, experimental results show that unsupervised paraphrasing by simulated

annealing outperforms variational sampling (VAE, [4]) and Metropolis-Hasting

sampling (CGMH, [30]) in both BLEU and iBLEU, showing that UPSA is a

competitive model for unsupervised paraphrase generation.

It can be seen from Table 4.1 that UPSA boosted by any of the three of our

methods consistently outperforms the original UPSA in terms of both BLEU

and iBLEU. This shows that our attempt to smoothen the heuristic objective

function indeed improved the search performance.

In particular, using the Seq2seq model’s probability achieves the best per-
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Figure 4.1: BLEU (upper) and iBLEU (lower) versus the relative weight k.

formance among all three of our approaches, yielding an improvement of 2.04

BLEU and 1.02 iBLEU over the original SA search. We attribute this im-

provement to the learned probability being heterogeneous from the original

heuristic objective function, thus providing the strongest smoothing effect.

We further show how the performance varies with the relative weight of the

learned models in the search objective in Figure 4.1. As seen, all of our models

exhibit a similar trend: the performance increases when the learned models

are combined with the objective function f by a small weight. This shows that

all of our proposed models are able to learn and model search dynamic to a

reasonable extent, and thus improving the search. More specifically, max value

function fv∗ outperforms value function fv when guiding the search, showing

our intuition of learning to sacrifice is indeed effective. However, performance

of all three of our models decrease when the learned models are weighted more

than the original objective function. Furthermore, if the original objective is
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ignored and search is guided only by any of the learn model only, performance

drastically decreases. This shows that our learned models are skewed from the

original objective function, rendering them inadequate for guiding the search

on their own. Note that when combining the learned models with original

objective function, weight k for all models and the scaling factor d for Seq2seq

are the only tunable hyperparameters. After training our models, they can

immediately boost search performance without excessive tuning. This shows

our idea of learning to model the search dynamic is effective.

4.5 Analysis

Besides the standard BLEU and iBLEU evaluation metrics, we also include

several qualitative and quantitative analyses to demonstrate the insight on

what our models learn and why they can improve the search-based text gen-

eration framework. These analyses are done by observing the difference in

search dynamics with and without the proposed models.

4.5.1 Correlation of Objective Function with Evalua-
tion Metrics

One of the key assumptions for the search-based framework to be feasible is

that the manually designed objective function correlates with the true mea-

sures of success, BLEU and iBLEU, on a population level. To investigate

whether this is indeed true, we measure the point-wise correlation between

the heuristic objective and BLEU or iBLEU. Note that our models aim to

smooth out the objective function, which intuitively should improve the cor-

relation due to the removal of noise. Hence, we also measure the correlation

between the measures of success (i.e., BLEU and iBLEU) and the new objec-

tive function given by our value function, max value function, and Seq2seq

model.
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To get an empirical estimate of the correlation, we randomly sampled 1000

sentence input to perform SA search with original objective function. Each

input would generate a search trajectory with multiple states visited. Then

each search step in trajectories is re-evaluated by the new objective function

given by our learned models. We adopt the Spearman correlation coefficient

ρ, which is a rank correlation metric assessing how well a monotonic function

can describe the relationship between two variables. This measure of correla-

tion is appropriate for our study since the acceptance probability of proposal

depends only on the absolute difference between old and new objective scores.

The Spearman correlation between objective scores and BLEU ρobj,BLEU is

computed as follows:

1. Given a set of search trajectories, we re-evaluate the objective scores

and BLEU/iBLEU for each state visited. We then compute the ranking

variable rgobj for each objective score, and the ranking variable rgBLEU

for each BLEU score.

2. Compute the Pearson correlation coefficient between rgobj and rgBLEU as

follows

ρobj,BLEU =
cov(rgobj, rgBLEU)

σrgobjσrgBLEU

(4.1)

where cov(rgobj, rgBLEU) is the covariance matrix of the rank variables,

and σrgobj , σrgBLEU
are standard deviations of the rank variables, respec-

tively.

3. ρobj,iBLEU can be computed similarly.

As seen, the Spearman correlation takes a real value in the range of [0, 1].

A higher value of ρ indicates more similar ranking between the two variables.
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Correlation between objective scores and BLEU
Learned model
weight

Seq2seq Value function Max value func-
tion

k=0 (original
score)

0.272229 0.272229 0.272229

k=0.1 0.369467 0.266385 0.272365
k=0.2 0.430051 0.259276 0.271866
k=0.3 0.498687 0.250833 0.270353
k=0.4 0.547690 0.240596 0.267475
k=0.5 0.586287 0.227615 0.262661
k=0.6 0.616134 0.210865 0.254570
k=0.7 0.647185 0.188805 0.241569
k=0.8 0.665456 0.159719 0.222038
k=0.9 0.696291 0.122843 0.193834
k=1 (learned
model only)

0.713200 0.077553 0.155707

Table 4.2: Correlation between objective scores and BLEU.

Correlation between objective scores and iBLEU
Learned model
weight

Seq2seq Value function Max value func-
tion

k=0 (original
score)

0.271930 0.271930 0.271930

k=0.1 0.359856 0.266143 0.272092
k=0.2 0.420080 0.259099 0.271619
k=0.3 0.488268 0.250733 0.270139
k=0.4 0.536743 0.240584 0.267302
k=0.5 0.574768 0.227697 0.262534
k=0.6 0.604170 0.211048 0.254493
k=0.7 0.635022 0.189097 0.241544
k=0.8 0.653477 0.160125 0.222065
k=0.9 0.685465 0.123363 0.193915
k=1 (learned
model only)

0.704542 0.078181 0.155833

Table 4.3: Correlation between objective scores and iBLEU.

53



Table 4.2 and 4.3 show the Spearman correlation coefficient of objective

function combined with three of our learned models, respectively. It can be

seen that in fact the rank correlation between the original objective function

and true measures of success is rather low. Moreover, due to the similar for-

mula of BLEU and iBLEU, the two tables present similar patterns: the learned

Seq2seq model combined with the original objective function increases correla-

tion with BLEU and iBLEU monotonically as the weight k increases. However,

this monotonic increase in correlation with BLEU and iBLEU does not exactly

correspond to increase in performance when the new objective function is used.

Instead, a small weight given to the learned Seq2seq probability yields the best

performance. This shows our Seq2seq model is able to smooth out some noise

in the original objective. However, the learned model is not exactly aligned

with the original objective function, leading to the completely degenerated per-

formance when it guides the search by itself. On the other hand, the objective

function combined with value function and max value function consistently

decrease the correlation between objective score and BLEU or iBLEU as the

weight k increases. The decline of such correlation does not show a consistent

relationship with changes in performance measured by BLEU and iBLEU.

This shows that our value function and max value function approaches do not

necessarily smooth out the objective function, even though they are still able

to improve search performance. However, due to the lack of smoothing effect,

such improvement is lower compared to that from the Seq2seq model.

Figure 4.2 presents visualization of the mapping between objective scores

and measure of success (BLEU and iBLEU). We can see that the Seq2seq

model smooth out the objective function by skewing the objective scores. How-

ever, the value function and max value function does not seem to have such

an effect. Specifically, from Figure 4.2a and Figure 4.2b we observe that the

Seq2seq model combined with the original objective function would pull the
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(a) BLEU with Seq2seq model (b) iBLEU with Seq2seq model

(c) BLEU with value function (d) iBLEU with value function

(e) BLEU with max value function (f) iBLEU with max value function

Figure 4.2: visualization of the mapping between objective scores (vertical
axes) and measure of success (BLEU and iBLEU, horizontal axes). Red plots
are the original score; green plots are score predicted by the value function, max
value function, or Seq2seq model; Blue dots are new objective score combined
with corresponding model.
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objective score down at the lower BLEU or iBLEU region, meaning that the

learned model effectively lowers the objective score of some falsely high scored

instances when the measure of success (BLEU and iBLEU) is in fact very

low. It can also be seen from Figure 4.2a and Figure 4.2b that the learned

Seq2seq model seems to skew the objective score towards a monotonically in-

creasing linear function between the objective score and measure of success

(BLEU and iBLEU), which is consistent with our previous conclusion that

the learned Seq2seq model increases the linear correlation of objective score

with BLEU and iBLEU. The value function and max value function, on the

other hand, both learn a more flat-tailed Gaussian-like mapping between the

objective score and the BLEU or iBLEU.

4.5.2 Acceptance Ratio

All three of our models play the role of “surrogate” objective function, which

governs the search by changing the acceptance probability of given proposals.

Hence, we investigate how the acceptance ratio changes with the new objective

function modified by our proposed models. Furthermore, we are interested in

whether there is a quantitative relationship between the acceptance ratio and

the measures of success (i.e., BLEU and iBLEU).

To measure the acceptance ratio, we randomly sampled 1000 input sentence

from the test set, then perform search with the objective function combined

with Seq2seq, value function, and max value function with various weight. An

empirical estimate of proposal acceptance ratio is done by counting the aver-

age number of accepted proposals out of 100 sampling steps for each model,

which is equivalent to the trajectory length given fixed sampling steps. Table

4.4 presents the trajectory length per 100 sampling steps for objective func-

tion combined with Seq2seq model, value function, and max value function,

respectively with varying weight.
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Trajectory length (per 100 sampling steps)
Learned model
weight

Seq2seq Value function Max value func-
tion

k=0 (original
score)

21.1071 21.1071 21.1071

k=0.1 21.2125 18.1641 18.1611
k=0.2 21.2688 17.4694 17.3814
k=0.3 21.3222 17.0991 17.2432
k=0.4 21.4179 17.4084 16.7757
k=0.5 21.6449 17.4724 16.3543
k=0.6 21.9042 17.7417 17.3984
k=0.7 22.2926 18.5505 18.1631
k=0.8 23.2326 20.006 20.3043
k=0.9 24.4818 22.028 23.5806
k=1 (learned
model only)

24.0088 21.9016 27.2828

Table 4.4: Trajectory length (per 100 sampling steps).

As seen, when searching towards the adjusted objective functions, increas-

ing the weight of Seq2seq model would increase the average acceptance ratio

consistently, indicating more edit operations are being realized leading to more

diverse output. Different from the Seq2seq model, both the value function and

max value function show patterns of decreasing acceptance ratio only when

given a small weight (k < 0.7), but acceptance ratio increases when weight is

large (k > 0.8). Note that for all three models the optimal weight k for the

best BLEU and iBLEU is in the range of [0.2, 0.3]. With a weight in this range

Seq2seq roughly preserve the same acceptance ratio of the original objective

function, while both value function and max value function decreases the ac-

ceptance ratio. This shows that the Seq2seq model when combined with the

original objective function does not blindly increase of decrease the acceptance

probability on average, but rather makes more informed selection when eval-

uating acceptance probability. The two regression models, on the other hand,

are keen on keeping the original content in the sentence.
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4.5.3 Chances of Escaping Local Minimum

One of the motivations behind our work is SA algorithm can only escape local

optimum by randomness at the initial high temperature stage. We speculate

smoothing the heuristic objective can improve search by eliminating the gaps

between nearby local optima in the original objective function. Moreover, the

max value function is designed to encourage sacrificing short term gain for

long term payoffs. This is done by assigning a high score for states that have a

low score, but would later on lead to high scoring states. Hence, we investigate

how our models change the frequency of escaping local optima that are in the

original objective function.

We first perform SA search with objective function modified by value func-

tion, max value function, and Seq2seq model, respectively. Then, the collected

search trajectories are re-evaluated by the original objective function to check

if any local optima are skipped. To identify escapes from local optimum, we

find all local minima in search trajectories by re-evaluating the original ob-

jective score for every three consecutive steps. A step with lower objective

score than its two neighbours is considered to be a local minimum. We are

specifically interested in whether the search algorithm can learn to sacrifice

by stepping into lower score state that later escape to higher score state than

even before the local minimum. Hence, only the escapes from local minima

that lead to higher score state would be counted.

Table 4.5 presents the number of escapes from local optima per 100 sam-

pling steps for all three proposed models with varying weights. It can be

seen that all three models consistently decreases number of escapes from local

minimum on average when the weight k increases, which is contrary to our in-

tuition. Perhaps a reasonable explanation would be the learned models learn

to identify local minima in the objective function, thus guiding the search
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Number of escapes from local optimum (per 100 steps)
Learned model
weight

Seq2seq Value function Max value func-
tion

k=0 (original
score)

3.5207 3.5207 3.5207

k=0.1 3.5132 3.3325 3.2544
k=0.2 3.5498 3.1663 3.1523
k=0.3 3.4494 3.1063 3.0562
k=0.4 3.4241 3.1653 2.8991
k=0.5 3.3561 3.1203 2.7539
k=0.6 3.2329 2.8180 2.7269
k=0.7 3.0843 2.7740 2.7329
k=0.8 2.6301 2.5537 2.2895
k=0.9 1.6184 2.1003 1.5397
k=1 (learned
model only)

0.6829 1.9566 1.3754

Table 4.5: Number of escapes from local optimum (per 100 steps).

algorithm away from even stepping into local minima.
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Chapter 5

Conclusion

Text generation has been an increasingly trending research area in the field of

natural language processing. Natural languages are diverse, complicated, and

oftentimes syntactically ambiguous, posing challenge for machines to model

natural languages over the years. The emergence of deep neural networks

have enabled computer systems to understand, process, and generate com-

plicated natural language. Typically, such deep neural network-based text

generation models are trained from parallel corpora by maximizing the likeli-

hood of generating the correct output given the input. Nonetheless, there are

numerous scenarios where parallel corpora is not available, calling for unsuper-

vised text generation approach that can generate natural language without the

need of parallel supervision. One trending approach to unsupervised text gen-

eration is by stochastic search towards a manually designed objective function,

which evaluates language fluency, semantic meaning, and other task specific

attributes. Such objective function is to be maximized by a local search algo-

rithm that navigates the solution space by starting from the input sentence,

then performing word-level or phrase-level edit operations including insertion,

replacement, and deletion. Search-based approaches have demonstrated their

capability in a variety of tasks, including paraphrase generation, text simplifi-

cation and keyword-to-text generation.
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One of the major drawbacks of search-based text generation models is

their performance largely depends on the design of the objective function.

Oftentimes, the objective function is heuristically designed to specify desired

attributes on a high abstraction level. Such design of objective function is

shown to correlate with the true measure of success (BLEU and iBLEU) on a

population level, but potentially lack granularity when it comes to each single

sentence. Moreover, due to the complex components in the objective func-

tion, the optimization landscape is likely to be not smooth, posing significant

challenge for the search algorithm to find the optimal solution.

In this dissertation, we address the research question of smoothing and

improving the objective function that guides the search. To accomplish this,

preliminary search is performed on a given task to collect sample search tra-

jectories. Then we propose three deep neural network-based models to learn

and model the search dynamic using the collected search trajectories. Finally,

the learned models would be combined with the original objective function to

guide a next iteration of search to generate final output.

Experimental results on unsupervised paraphrase generation task with

Quora question pairs dataset show all three of our proposed models are in-

deed capable of improving paraphrase generation performance by adjusting

only the objective function. More in-depth analyses show that our three mod-

els in fact lead to different search behavior, while all are able to improve the

performance in terms BLEU and iBLEU.

Based on what we observed and learned from our study, we identify the

follow directions to explore for future work:

Iterative Search and Learn: one direct increment from this dissertation

is to have a iterative bootstrapping update between searching and learning.

Specifically, one can generate and collect search trajectories using one of our

proposed models, which can be used to train a second iteration of value func-
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tion, max value function or Seq2seq model. The newly learned model can be

combined into the objective function again and the process goes on. Previ-

ous work [24] have shown that a similar bootstrapping alternation between

searching and learning using a Seq2seq model to generate new starting points

for search can indeed improve search performance over each iteration. It would

be interesting to find out if an iterative searching and learning of the search

dynamic can leads to improvement in search.

Adversarial Training: this idea would only be realistic if a learned model

itself suffices for guiding the search, which our models currently don’t. How-

ever, a sketch of adversarial learning would make sense if such fully learnable

objective function exists: the generator in the adversarial framework is simply

the search algorithm or the candidate generator, whose goal would be to gen-

erate good quality text (e.g. paraphrases); the discriminator plays the role of

objective function, whose goal is to differentiate if a search state is acceptable

(e.g. if the new state is a good paraphrase). However, the specific training

scheme needs to be deliberated to avoid both the generator and discriminator

drift too far away from the original objective.

Embedding Search: one major limitation of many search-based frame-

works is the primitive word-level edit operations: editing text in such a way

would require multiple steps to realize large structural modification. However,

this could be potentially hard to achieve since most local search algorithms

do not explicit retain a history of edits. Hence, if search is performed in the

embedding space, one would speculate the underlying sentence structure can

change more consistently. The potential challenge of embedding space search

is that a tiny shift in numerical embedding space may lead to unchanged dis-

crete text after mapping back to the word space. However, it is still tempting

to search by editing a more global representation of text.
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