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Abstract 
 
 
Natural attenuation refers to the observed reduction in contaminant concentration 

via natural processes as contaminants migrate from the source into environmental 

media. Assessment of the dimensions of contaminant plumes and prediction of 

their fate requires predictions of the rate of dissolution of contaminants from 

residual non-aqueous-phase liquids (NAPLs) into the aquifer and the rate of 

contaminant removal through biodegradation. The available techniques to 

estimate these parameters do not characterize their confidence intervals by 

accounting for their relationships to uncertainty in source geometry and hydraulic 

conductivity distribution. The central idea in this thesis is to develop a flexible 

modeling approach for characterization of uncertainty in residual NAPL 

dissolution rate and first-order biodegradation rate by tailoring the estimation of 

these parameters to distributions of uncertainty in source size and hydraulic 

conductivity field.  

 

The first development in this thesis is related to a distance function approach that 

characterizes the uncertainty in the areal limits of the source zones. 

Implementation of the approach for a given monitoring well arrangement results 

in a unique uncertainty band that meets the requirements of unbiasedness and 

fairness of the calibrated probabilities. The second development in this thesis is 

related to a probabilistic model for characterization of uncertainty in the 3D 

localized distribution of residual NAPL in a real site. A categorical variable is 



defined based on the available CPT-UVIF data, while secondary data based on 

soil texture and groundwater table elevation are also incorporated into the model. 

A cross-validation study shows the importance of incorporation of secondary data 

in improving the prediction of contaminated and uncontaminated locations. The 

third development in this thesis is related to the implementation of a Monte Carlo 

type inverse modeling to develop a screening model used to characterize the 

confidence intervals in the NAPL dissolution rate and first-order biodegradation 

rate. The development of the model is based on sequential self-calibration 

approach, distance-function approach and a gradient-based optimization. It is 

shown that tailoring the estimation of the transport parameters to joint realizations 

of source geometry and transmissivity field can effectively reduce the 

uncertainties in the predicted state variables.  
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CHAPTER 1 
 
INTRODUCTION   
 
 
Groundwater comprises about 98% of the available fresh water in the world. 

Therefore, protection and restoration of groundwater quality is of great global 

importance. The vulnerability of groundwater resources to soil and aquifer 

contamination caused by petroleum hydrocarbons (PHC) and organic chemicals is 

a widespread problem that is associated with significant technical and economical 

challenges. These are exacerbated by the difficulties associated with locating and 

removing the underground contamination by traditional extraction and excavation 

methods. Thus, application of cost-effective in situ remediation approaches such 

as Monitored Natural Attenuation (MNA) that utilizes the natural attenuation 

capacity of the subsurface has become widespread.  

 

Reduction in concentrations of the organic contaminants in the subsurface is due 

to combination of physical, geochemical and biochemical processes. MNA is 

defined as deliberate use of naturally occurring biodegradation, sorption, and 

dispersion processes to remediate contaminated groundwater systems. According 

to US EPA (1999a), MNA can be considered as an appropriate remediation 

strategy, providing that it meets site remediation objectives within a timeframe 

that is reasonable compared to that offered by other methods.  

 

Conceptually, estimating the length of time required for natural processes to 

remove a particular contaminant from a groundwater system is a simple mass-

balance problem, termed time-of-remediation (TOR). According to Chapelle et al. 
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(2003), a TOR can be defined as the time required for lowering contaminant mass 

below a given threshold (Mthreshold) and can be quantified by: 

NAthreshold0 ]/RM -[M  TOR =                                                                                 [1.1] 

where, M0 is the mass of initial contaminant to be lowered below a regulatory 

threshold by the rate of natural attenuation processes (RNA) in a groundwater 

system. According to Equation [1.1], one needs an estimate of the mass of the 

contaminants present as well as the rate of ongoing natural attenuation processes 

acting on the contaminants. As pointed out by Chapelle et al. (2003), the 

reliability of any remediation time estimates is directly affected by the reliability 

of these parameters.  

 

In real contamination scenarios, however, the estimation of the TOR is far more 

complex than what is indicated by Equation [1.1]. This is due to complexities and 

uncertainties associated with the rates of natural attenuation, which can be 

variable in space and time, as well as uncertainties associated with the load of 

existing contaminants in the aquifer, and uncertain source characteristics.  

 

The focus of this research is on the development of a simple and flexible 

screening level model that can be used to predict different components of a TOR 

problem with their uncertainty for groundwater contamination scenarios 

associated with petroleum hydrocarbons.     

 

 

 

 

 

 

 

 



 3

1.1 Statement of the problem 
 

In the context of groundwater contamination with petroleum hydrocarbons, a 

TOR problem can be conceptualized as three interactive components (Chapelle et 

al. 2003): (1) estimation of the length of the contaminant plume under semi-

steady-state condition, (2) estimation of the time needed for the non-aqueous-

phase-liquid (NAPL) source to dissolve, disperse and biodegrade, and (3) 

estimation of the time required for the plume to stabilize to a smaller size, upon 

reduction of the source. There is significant uncertainty associated with the 

solution of a TOR problem due to uncertainties associated with source properties 

and the uncertainties associated with contribution and efficiency of concentration-

reducing mechanisms.  

 

The important source properties are the source geometry and the dissolution rate 

of contaminant species into groundwater. The concentration-reducing 

mechanisms can be grouped into transport mechanisms, phase transfers and 

transformation mechanisms. The important transport mechanisms are advection, 

dispersion and dilution (recharge). The important phase transfer mechanisms are 

sorption and volatilization, and the important transformation mechanisms are 

aerobic and anaerobic biodegradation and chemical transformations.  

 

Aerobic and anaerobic biodegradation are the only mechanisms that are 

responsible for destructive removal of petroleum hydrocarbon contaminants 

(PHCs) in groundwater. Many biodegradation models that simulate rather 

complex kinetics and multi-component reactions have been developed. Examples 

of these techniques are instantaneous reaction kinetics (Borden and Bedient 1986) 

and Monod kinetics (Monod 1949 and Rifai et al. 2000). It is evident that many of 

the required kinetic parameters for these complex models can not be measured or 

estimated by routine natural attenuation protocols. Thus, utility of these models is 

often limited (Rifai and Rittaler 2005). Simpler approaches with limited number 
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of parameters are often preferred as they can be supported by the available data 

(Essaid et al. 2003).  

 

Application of first-order reaction models is quite common in natural attenuation 

studies, particularly at the screening level. Based on the concentrations measured 

at monitoring locations, the field-scale first-order rates are estimated by trial and 

error calibration (Borden et al. 1986, Chaing et al. 1989 and Lu et al. 1999), by 

inverse modeling techniques (Carrera and Medina 1996 among others) or by field 

approaches such as mass-flux (Borden et al. 1997, King et al. 1999, Peter et al. 

2004) and concentration-distance relationships with centerline and off-centerline 

measurements (Buscheck and Alcantar 1995, Chapelle et al. 1996, Wiedemeier et 

al. 1996, Zhang and Heathcoat 2003, Stenback et al. 2004). The parameter 

estimates by trial and error calibration techniques are modeler-dependent and a 

measure of uncertainty is not often available. Among the inverse modeling 

approaches (Reviewed in Chapter 2), to the author’s knowledge, none of them 

quantifies the non-linear confidence intervals in the estimated first-order rates 

under uncertainty of source properties (size, geometry and dissolution rate) and 

hydraulic conductivity distribution through generating multiple realizations and 

conditioning them to the observed concentrations. In the case of field estimation 

techniques (mass-flux and concentration-distance techniques), the estimated first-

order rates are affected by heterogeneity and uncertainty in hydrogeological and 

mass transport properties as well as the size of the source zone and may 

over/underestimate the true rate constant up to two-orders of magnitude (Bauer et 

al. 2006, Kubert and Finkel 2006, Beyer et al. 2007). In addition to the effects of 

heterogeneity and uncertainty in groundwater velocity and dispersivities, the field 

estimation approaches are also limited in that they do not account for rate-limited 

mass transfer between NAPL source and groundwater (Chapter 7).  

 



 5

Understanding of the NAPL source dissolution rate is another important factor 

when investigating different aspects of a TOR problem. A number of numerical 

(Dillard and Blunt 2000, and Dillard et al. 2001, Parker and Park 2004, Christ et 

al. 2006) and experimental (Imhoff et al. 1994, Powers et al. 1994, Nambi and 

Powers 2003) works have studied the rate of dissolution of NAPL into 

groundwater at pore and field scales. In these works, the estimated dissolution rate 

constants were determined either under controlled laboratory conditions or under 

simplified field conditions with local mass flux/concentration measurements. 

Many of the experimental studies in this area resulted in formulation of mass 

transfer correlations which relate dimensionless forms of the mass transfer 

coefficient (e.g. Sherwood number) to dimensionless forms of system properties 

(e.g. Reynolds number and Schmidt number) at a pore-scale. Dillard et al. (2001) 

applied the pore-scale model of Powers et al. (1994) to field-scale problems and 

derived a number of correlations between Peclet number (a function of 

groundwater velocity and particle size distribution) and the rate of mass transfer 

between NAPL and water. According to the results by Dillard et al. (2001), one-

order of magnitude variability exists in the value of dissolution rate for every 

given value of Peclet number. This variability is attributed to different degrees of 

saturation of NAPL. Given the uncertainties associated with groundwater 

velocity, residual NAPL saturation and particle-size distribution, few orders of 

magnitude uncertainty exists in the estimated dissolution rate constants based on 

the proposed correlations. Later studies (Essaid et al. 2003, Parker and Park 2004) 

showed that the dissolution rate constant estimates by the pore-scale correlations 

over-estimate the field-scale values for up to three orders of magnitude. In 

addition to pore-scale models, a number of upscaled screening models have also 

been proposed to incorporate the effects of spatial variations in NAPL saturations 

and flow by-passing to approximate field-scale dissolution (Parker and Park 2004, 

Zhu and Sykes 2004, among others). These upscaled models have been developed 

using explicit descriptions of pore networks and NAPL saturation distribution or 
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by fitting solutions of a simplified one-dimensional component mass balance 

equations to experimentally or numerically generated results, and they typically 

assume that the flow field is under steady-state condition. According to Christ et 

al. (2006), the parameterization of the upscaled models tend be more site-specific 

and depending on the specific source-zone scenario used for calibration of the 

upscaled models, the flux-weighted concentration predictions may over-estimate 

the true values by more than one order of magnitude. As a matter of fact, the rate 

of dissolution of NAPL into groundwater depends on a number of spatially and 

temporally variable factors: the interfacial area between the NAPL and water and 

wettability of porous media (Imhoff et al. 1994, Bradford et al. 1998), aquifer 

heterogeneity (Kueper and Frind 1991, Mayer and Miller 1996), the size and 

shape of NAPL blobs (Powers et al. 1994) and the groundwater velocity 

(Pfannkuch 1984). It is obvious that many of these factors as well as other 

chemical and biological  parameters that affect the dissolution of NAPL (Chu et 

al. 2007) can not be easily quantified or estimated by monitoring networks to be 

used by pore-scale or upscaled models in contaminant transport modeling studies. 

Thus, NAPL dissolution is often mathematically simulated with a lumped mass 

transfer rate coefficient that controls the rate-limited dissolution (Chapter 2). An 

option is to calibrate such mass transfer rate (or mass flux rate) to site-specific 

observations through trial and error calibration or by inverse modeling.  

 

In the hydrogeology literature, a number of inverse modeling techniques have 

been reported to delineate the sources of contaminants. Gorelick et al. (1983) 

formulated a simulation-optimization approach using linear programming and 

multiple regressions. Their work was developed for non-reactive contaminants, 

assuming no uncertainty in the aquifer properties. They used their models to 

identify pipe leak locations and discrete point sources. Wagner (1992) presented a 

maximum likelihood approach for a single species non-reactive contaminant, in 

which some potential disposal zones were initially considered and their associated 
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disposal fluxes were estimated simultaneously with aquifer properties. In a 

probabilistic framework, Wilson and Liu (1994) solved the advection-dispersion 

equation backward in time by keeping the dispersion part positive and reversing 

the advection part. They generated maps of ‘travel time probability’ and the 

‘location probability’. Snodgrass and Kitanidis (1997) presented a stochastic 

approach by combining Bayesian theory and geostatistical techniques. Their 

method, which was developed in one-dimension, incorporates uncertainty in 

contaminant source concentration, but the location of potential sources must be 

known a priori. An inverse method based on correlation coefficient optimization 

was presented by Sidauruk et al. (1998), where they estimated dispersion 

coefficients, flow velocities as well as the location and time origin of the pollutant 

based on analytical solutions. An inverse procedure was developed by Sciortino et 

al. (2000) based on a three-dimensional analytical transport model and a gradient 

based optimization approach to identify the source location and the geometry of a 

dense-non-aqueous-phase-liquid (DNAPL) pool. Aral et al. (2001) used an 

optimization approach based on genetic algorithms to infer the release history and 

source location of a contaminant. Mahar and Datta (2001) developed a staged 

approach to identify the source location and designed an optimized monitoring 

network under steady and transient conditions. First, they used an optimization 

approach to initially identify an unknown pollution source based on observation 

data. Then, they simulated different realizations of contaminant plume using 

perturbed sources. Ultimately, the optimized locations of monitoring wells and an 

improved estimation of the sources was obtained. More recently, Neupauer and 

Lin (2006) presented an approach to condition backward probability density 

functions (PDF) of source location to concentration data. Their work was an 

extension to the work of Neupauer and Wilson (2001) and was presented to 

characterize the uncertainty in location or release time of an instantaneous point 

source of contamination. Sun et al. (2006) formulated a constrained robust least 

squares estimator to characterize the uncertainty in source location and release 



 8

time of a non-reactive contaminant in an uncertain but homogenous transmissivity 

field. For a NAPL source zone, Newman et al. (2006) formulated an algorithm 

based on simulated annealing and minimum relative entropy to estimate non-

decaying flux through a vertical flux plane. Yeh et al. (2007) also have proposed 

an approach based on combination of simulated annealing and three-dimensional 

solute transport modeling. They considered a suspected source area and estimated 

the source location, release concentration and release period for homogenous and 

heterogeneous aquifers.  

 

None of the above inverse modeling techniques deals with characterization of 

source properties when the reaction rates of contaminants are unknown or 

uncertain. Therefore, the application of these approaches would be limited for the 

purpose of this study. Also, similar to the case of first-order biodegradation rate, 

to the author’s knowledge, none of the previous works gives a measure of non-

linear confidence interval for the dissolution rate constant through implementation 

of Monte Carlo type inverse modeling approaches under uncertainty of the source 

size and hydraulic conductivity.    

 

Simultaneous characterization of uncertainty in rate-limited dissolution and field-

scale biodegradation is important for development of an advanced screening tool 

for management of the TOR problems; but it is subject to potential numerical 

instabilities. For a real site with crude oil (BTEX) contamination and a simple 

representation of the source zone, Essiad et al. (2003) implemented inverse 

modeling in an ‘optimal’ sense to estimate NAPL dissolution rate and individual 

first-order biodegradation rates for BTEX compounds as well as other parameters 

such as the recharge rate, hydraulic conductivity, and transverse dispersivity. 

They only achieved convergence when they estimated a single dissolution rate for 

all BTEX compounds and coupled the simulation of BTEX compounds through 

simultaneous use of oxygen during aerobic biodegradation (crossover effect). In 
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other words, they failed to estimate individual dissolution rate and first-order 

biodegradation constants for each BTEX component due to high correlation 

between these parameters that results in parameter non-uniqueness. As pointed 

out by Carrera and Neuman (1986) and reviewed by Friedel (2005) and Carrera et 

al. (2005), the four primary reasons for parameter non-uniqueness are precision of 

numerical solution (e.g. round-off errors in calculation of sensitivities), numerical 

dispersion, local minima in parameter space and correlation among parameters. In 

the problem of simultaneous estimation of dissolution rate and biodegradation 

rate, non-uniqueness (uncertainty) of the parameter estimates is not only due to 

above-mentioned numerical instabilities (high correlation among parameters and 

existence of local minima), but also due to uncertainty in model structure and/or 

values of other hydrogeological or mass transport parameters. As discussed 

before, to the author’s knowledge, no previous work is reported to characterize 

the uncertainties in dissolution rate and first-order biodegradation rate due to 

uncertainties in model source geometry (size) and other parameters (hydraulic 

conductivity distribution) through implementation of Monte Carlo type inverse 

modeling. It is observed that (Chapter 5) the uncertainties (non-uniqueness 

problems) associated with numerical instability problems can be avoided by 

designing an appropriate monitoring network and defining the objective function 

in such a way that it adequately preserves the information contained in the zones 

well away from the source (edge of the plume). 

 

In addition to uncertainties associated with the location, size and rate of 

dissolution of residual NAPL sources, uncertainties exist in their localized 

distribution as well. A number of related analytical, numerical (reviewed in 

Chapter 3), and inverse modeling approaches (reviewed in the previous 

paragraphs) have been reported in the literature to delineate the distribution of 

NAPL sources and investigate the downstream impacts. Because the mechanisms 

that govern the distribution/re-distribution of residual NAPLs are quite complex 
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and site-specific (Chapter 3), development of probabilistic models using site-

specific data is deemed appropriate. A number of field investigation approaches 

have been proposed for collection of site-specific data in NAPL source zones. The 

ultra-violet-induced-fluorescence cone penetration testing or CPT-UVIF (Pepper 

et al. 2002, Kram et al. 2004) is an advanced technology that is commonly used 

for this purpose. The work of D’Affonseca et al. (2008) is the only work in the 

literature that uses the data collected by CPT-UVIF technology for 

characterization of a dense-non-aqueous-phase-liquid (DNAPL) for the purpose 

of subsequent fate and transport modeling. They developed their model by 

deterministically calibrating the lateral and vertical extent of the DNAPL source 

zone with medium to coarse grained sand strata. Although the deterministic model 

of D’Affonseca et al. (2008) has made use of high-resolution CPT-UVIF data to 

improve characterization of a DNAPL source zone, their model is limited because 

the deterministic calibration of areal and vertical extent of NAPL source to soil 

horizons underestimates the existing uncertainty associated with short-scale 

variability of residual NAPL distribution, unresolved heterogeneities of soil 

properties and possible impacts of groundwater surface fluctuations on 

distribution/redistribution of immiscible contaminants. 
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1.2 Research objectives 
 

The primary goal in this thesis is to develop a simple screening model that can be 

used to (1) simultaneously characterize the non-linear confidence intervals in the 

values of dissolution rate constant and first-order biodegradation rate under 

uncertain source geometry and hydraulic conductivity distribution and, (2) reduce 

the uncertainty in the TOR state variables being mass loaded into the aquifer and 

plume dimensions by stochastic inverse modeling. To achieve this goal, a number 

of objectives have been defined in the following paragraphs.  

 

The first objective in this thesis is to develop a boundary modeling approach to 

characterize the uncertainty in areal limits of the source zones based on the site-

specific well arrangement. These non-stationarity limits cannot be modeled by 

traditional geostatistical approaches such as trend-modeling, indicator simulation 

or object-based modeling. The approach should be simple and flexible, and based 

on the available arrangement of monitoring wells. The most important 

requirements for such boundary modeling approach are unbiasedness and fairness 

of the calibrated probabilities and the associated uncertainty band. The source 

zone geometry and its dimensions are important in virtually all contaminant 

transport modeling studies; however, to date no explicit modeling approach for 

delineation of uncertainty in the areal extent of the source based on the 

arrangement of monitoring wells has been presented.     

 

The second objective of this thesis is development of a probabilistic model for 

characterization of uncertainty in the 3D localized distribution of residual NAPL 

in a real PHC contaminated site, while accounting for the effects of soil 

heterogeneities and the distance to water table. The CPT-UVIF technology is a 

valuable tool in high-resolution data acquisition for mechanical properties of the 

soil and NAPL contamination; however, it has not been used in a geostatistical 
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inference framework for development of probabilistic models for (residual) 

NAPL contamination.  

 

The third objective of this thesis is to develop a mass transport simulator that is 

simple and flexible and can be used in subsequent parameter estimation studies. 

The primary reasons to develop the transport code rather than using 

commercial/open-source software are flexibility and ease of implementation and 

customization. A number of flexibilities include (1) simple GSLIB-like parameter 

files and Geo-EAS file formatting that can be executed in LINUX scripts for 

automating the processes; (2) flexible mass transfer mechanisms (e.g. rate-limited 

dissolution), and (3) simultaneous calculation of sensitivity coefficients as well as 

optimization for subsequent parameter estimation.   

 

The fourth objective of this thesis is to perform a simple Monte Carlo type inverse 

modeling to characterize the non-linear confidence intervals in important mass 

transport parameters and state variables under uncertainty of hydraulic 

conductivity field and source geometry, to study the possibility of reducing the 

uncertainties in the source size and to study the effects of observation errors on 

the outcomes. In multi-state nonlinear inverse problems associated with 

subsurface mass transport, three different approaches can be considered: (1) 

decoupled inverse process involving two separate inverse problems (flow and 

transport) to be solved (Strecker and Chu (1986), Mishra et al. 1989), (2) the flow 

and transport equations are loosely coupled by sequentially solving both inverse 

problems in every non-linear parameter estimation step (Medina and Carrera 

1996, Essiad et al. 2003), and (3) fully coupled inverse problems (Sun and Yeh, 

1990), where the governing equations of the forward problem are coupled by 

construction through their dependent variables. The primary motivation for 

coupling the flow and transport inverse problems is to take advantage of the 

crossover effect (calibrating the model parameters against multiple types of 
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observation data). In this work, however, a decoupled approach is adapted. The 

motivations for adapting a decoupled approach are (1) to avoid the computational 

burden associated with the calculation of sensitivity coefficients in a multi-state 

system (Sahuquillo et al. 1999) while the significance of incremental value of 

such coupling in improving the estimations of dissolution rate and first-order 

biodegradation rate is unknown; and (2) to avoid the potential adverse effects that 

perturbations of hydraulic conductivity field may have on potentially unstable 

problem of simultaneous estimation of the dissolution rate and biodegradation rate 

(as observed by Essaid et al. 2003 and in Chapter 5). As a secondary objective, 

the instability problems associated with simultaneous estimation of dissolution 

rate constant and first-order biodegradation rate constant are also investigated.  

 

The fifth and the last objective of this thesis is related to characterizing the 

uncertainty in the field-estimated first-order biodegradation rate constant under 

more realistic source conditions and due to uncertainty in the observed hydraulic 

heads, through a series of Monte Carlo simulations with simple 1D and 2D 

problem settings. It is well-known that the field estimated first-order rates by 

concentration-distance approaches are prone to uncertainty due to uncertainty in 

the estimated seepage velocity and longitudinal dispersivity, as well as missing 

the centerline of the plume in the heterogeneous aquifers (Bauer et al. 2006). The 

centerline approaches proposed in the literature are based on the assumption of 

constant concentration in the source area that affects the estimation of the true 

first-order biodegradation rate constant. The other unresolved issue associated 

with the centerline approaches is the effects of measurement errors in hydraulic 

heads on the layout of the centerline wells and estimation of first-order 

biodegradation rate by 1D concentration-distance relationships.        
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1.3 Thesis outline 
 

Chapter 2 reviews natural attenuation principles and modeling. Section 2.1 

reviews the dominant natural attenuation mechanisms including transport, phase 

transfer and chemical and biological transformation mechanisms. Section 2.2 

reviews the efficiency of natural attenuation in destructive removal of different 

organic contaminants. In Section 2.3, the guidelines and principles associated 

with application of monitored natural attenuation (MNA) as a remediation 

technique are explained. Section 2.4 reviews the analytical and numerical models 

that are typically used to simulate the natural attenuation of organic compounds. 

In Section 2.5, uncertainty management in natural attenuation is considered and a 

review of literature on stochastic modeling of natural attenuation and on inverse 

modeling and parameter estimation in groundwater flow and mass transport are 

implemented. The parameterization for modeling natural attenuation of PHCs that 

is used in all subsequent modeling work is presented in Section 2.6.    

 

In Chapter 3, geostatistical modeling with CPT-UVIF data is considered. Section 

3.1 presents a cases study where categorical and continuous variables are defined 

based on raw CPT data and geostatistical techniques are used to construct a 

probabilistic model for the geology of a real contaminated site. In section 3.2, an 

explicit boundary modeling approach (distance function approach) is developed 

and used together with geostatistical techniques to develop a probabilistic model 

for 3D distribution of residual NAPL characterized by high-resolution data-

acquisition instruments (CPT-UVIF). The effects of soil texture and distance to 

groundwater table (smear zone effect) are incorporated in the model through 

geostatistical data integration techniques. Finally, a cross-validation exercise is 

implemented to evaluate the performance of the geostatistical techniques and to 

assess the value of secondary data sources in improving the predictive ability for 

spatial distribution of residual NAPL.          

 



 15

Chapter 4 develops and verifies the groundwater flow and mass transport 

simulators that subsequently act as a transfer function for parameter estimation. In 

Section 4.1, development of a code for steady-state groundwater flow based on 

the finite volume approach with a conjugate gradient solver is presented and is 

verified by comparing its outcomes for to those of MODFLOW (McDonald and 

Harbaugh 1988). In Section 4.2, a particle tracking code based on semi-analytical 

method of Pollock (1988) is developed and is verified against the particle tracking 

package MODPATH. In Section 4.3, a reactive contaminant transport simulator is 

developed based on the Method of Characteristics (MOC) (Konikow and 

Bredehoef 1978). Rate-limited NAPL dissolution, advection, dispersion and first-

order biodegradation are the mechanisms that are incorporated in the governing 

equation and the subsequent numerical discretization. The code is verified against 

MT3DMS (Zheng and Wang 1999) for homogeneous and heterogeneous 

conditions.  

 

Chapter 5 implements stochastic parameter estimation to characterize the 

uncertainty in the first-order biodegradation rate constant and dissolution rate 

constant, under uncertain source geometry and hydraulic conductivity field. In 

order to avoid computational burden (while the value of coupling for estimation 

of the parameters is unknown) and potential instabilities, a decoupled inverse 

problem is adapted. As the first step of the decoupled inverse problem, the 

sequential self-calibration approach (Gomez-Hernandez et al. 1997) is reviewed 

and the relationship between the errors in hydraulic head observations and 

uncertainty in hydraulic conductivity realizations are studied (Section 5.1). A 

simple gradient-based inverse modeling approach is then developed in Section 5.2 

to simultaneously estimate the values of the parameters for joint realizations of 

source zone geometry and hydraulic conductivity field and a sensitivity analysis is 

performed. In Section 5.3, the stability of the inverse problem and the issues 
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associated with high correlations between the parameters and existence of local 

minima are studied.  

 

Chapter 6 presents a synthetic example to investigate the performance of the 

uncoupled Monte Carlo type inverse modeling approach in characterization of 

uncertainty in the dissolution rate and first-order biodegradation rate and state 

variables. The results of the decoupled approach are compared to those of a set of 

Monte Carlo simulations with uncertain parameter values derived from the 

literature (based on field estimation techniques). The effect of ranking and 

screening the calibrated realizations (based on the value of a modified form of 

objective function) in reducing the uncertainty in the source size and the state 

variables is also studied. Last, the effects of error in head and concentration 

observations and uncertainty about the time of release are investigated.   

 

In Chapter 7, the uncertainty in field-estimated first-order biodegradation rate 

constants by centerline approaches is investigated. In Section 7.1, three widely-

used field estimation techniques for first-order rate constants are reviewed. In 

Section 7.2, the effects of variability in the dissolution rate constant and error in 

head observations on the uncertainty of the estimated first-order rate is 

investigated in simple 1D and 2D examples.  

 

In Chapter 8, conclusions and recommendations for future research are presented.   

 

In Appendix A, the distance-based simulation (Scheidt et al. 2008 and Caers 

2008) is implemented to investigate the possibility of expanding the set of 

accepted realizations (Section 5.1) by the newly-developed approach.  

 

In Appendix B, the parameter files of the two codes that are developed for 

boundary modeling under uncertainty namely mlimit2d and ubcalib2d, as well as 
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the parameter estimation code optkna that is developed as an extension to the 

MOC mass transport simulator snasim are presented.      
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CHAPTER 2 
 
NATURAL ATTENUATION:  
                   FUNDAMENTALS & MODELING   
 
 
The extensive use of petroleum hydrocarbons (PHCs) and associated releases into 

the environment has resulted in widespread soil and groundwater contamination. 

Common sources of contamination are leaking underground storage tanks 

(LUST), pipelines, oil exploration activities, storage pits near production oil wells 

and refinery wastes. High costs of engineered clean-up systems and their 

disappointing performance has led to searches for alternative remediation 

strategies, and rethinking of remediation goals and time frames. The utilization of 

intrinsic attenuating capacity of soils to achieve clean-up goals has become a 

widely-accepted remediation scheme for PHC contaminants. This approach is 

quite often considered as a passive remediation scheme and is generally identified 

as Monitored Natural Attenuation (MNA).  

 

In essence, the term Monitored Natural Attenuation refers to “… reliance on 

natural processes to achieve site-specific remedial objectives. Where found to be 

a reliable remedy, monitored natural attenuation may be used within the context 

of carefully controlled and monitored site clean-up approach. To be considered 

an acceptable alternative, MNA would be expected to achieve site remedial 

objectives within a timeframe that is reasonable compared to that offered by other 

more active methods. MNA is always used in combination with ‘source control’ 

that is, removal of the source of the contamination as far as practicable …” (US 

EPA 1999a). Depending on hydrogeologic conditions, type of contaminants, and 
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extent and distribution of contaminants at a given site, MNA could be the 

preferred choice of remediation strategy.  

 

In general, target contaminants for natural attenuation are volatile organic carbons 

(VOCs), semi-volatile organic carbons (SVOCs) and fuel hydrocarbons. Fuels 

and halogenated VOCs are commonly evaluated for natural attenuation. Pesticides 

also can naturally attenuate, but the process may be less effective and may be 

applicable to only some compounds within this group. Natural attenuation may 

also be appropriate for some heavy metals, where natural attenuation processes 

result in a change in their valence state and immobilization (FRTR 1999).  

 

PHCs are among the most common contaminants in the environment and are 

present in both Non-Aqueous-Phase-Liquid (NAPL) and dissolved form. Under 

the right conditions, natural attenuation contributes considerably in the breakdown 

of the dissolved PHCs to other non-toxic end products, while the clean-up costs 

are much less comparing to implementation of active remediation schemes. 

However, natural attenuation is not expected to remediate NAPL (US EPA 

1999b).  

 

It should be noted that reliance on natural attenuation is not a ‘no-action’ 

approach to site clean-up. A careful study of the site conditions is necessary to 

estimate the effectiveness of natural processes in reducing contaminant 

concentrations over time. Data collection and analysis should be used in 

conjunction with risk assessment to verify the effectiveness of natural processes 

before it is perceived as the preferred remediation strategy (Ellis and Golder 

1997). In fact, evaluation of the viability of this remediation technique in site 

clean-ups involves determination of ongoing natural attenuation processes and 

estimation of results of the processes in the future. Thus, development of a long-

term monitoring plan is required for every contaminated site with MNA as its 
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remediation strategy. This monitoring plan is to be used to (1) decide on the 

effectiveness of the natural attenuation processes in achieving site clean-up goals, 

(2) record any changes in conditions affecting natural attenuation processes, and 

(3) trigger other active treatment technologies, if needed (US EPA 1999b). 

  

In this chapter, first, the most important mechanisms contributing to natural 

attenuation of organic contaminants are briefly reviewed. Next, natural 

attenuation of different organic contaminants is studied and the applicability of 

MNA as a remediation strategy is evaluated. Advantages and limitations of the 

MNA as a remediation strategy are then briefly discussed. A large number of 

studies related to modeling fate and transport of organic contaminants have been 

reported in the literature. These may be grouped into two major categories namely 

analytical and numerical approaches and both are subsequently reviewed in this 

chapter. The works related to uncertainty management for natural attenuation as 

well as parameter estimation techniques in general hydrogeology literature are 

reviewed next in this chapter. As stated in Chapter 1, the main objective of this 

thesis is the development of a better understanding of existing uncertainty in 

natural attenuation modeling by performing stochastic parameter estimation. 

Therefore, the parameterization that is used in subsequent parameter estimation is 

presented in the last section of this chapter. 
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2.1 Review of dominant mechanisms  
 
 
Reduction in concentration of organic contaminants in the subsurface is due to 

combination of transport mechanisms, phase transfers and transformation 

mechanisms. Figure 2-1 shows a conceptual illustration of some of the most 

important natural attenuation processes that affect the fate of PHCs in aquifers. 

Among transport mechanisms, advection, dilution, and hydrodynamic dispersion 

are the most important processes that affect PHC natural attenuation in nature. 

Sorption and volatilization are the most important phase transfer mechanisms. 

Chemical transformation and biodegradation are the important transformation 

mechanisms, which are the major processes in destructive removal of organic 

contaminants (Wiedemeier et al. 1999). The transport, phase transfer and 

transformation mechanisms are briefly reviewed in the subsequent paragraphs.  

 

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-1: Conceptual illustration of the most important natural attenuation 
processes associated with PHCs (after Bekins and Rittmann 2001) 
  

 

     NAPL 
Source zone 
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2.1.1. Transport mechanisms: Advection 
 
Movement of solutes by bulk groundwater movement is defined as advection. 

Advective transport of solutes can be illustrated by considering a solute that 

moves with the same velocity as groundwater and does not react chemically or 

biologically in the subsurface. The rate of movement of solutes through the 

subsurface is quantified by seepage velocity and depends on aquifer properties 

including hydraulic conductivity, effective porosity and hydraulic head gradient 

(Wiedemeier et al. 1995).  

 

2.1.2. Transport mechanisms: Dilution  
 
Dilution (recharge) is defined as infiltration of water into groundwater system via 

discharge from surface water bodies or precipitation. This additional water will 

dilute the contaminants and also may provide an influx of electron acceptors to 

the system, which will affect the geochemical balance and may increase the rate 

of biodegradation (Wiedemeier et al. 1995). Infiltration of precipitated water 

through the unsaturated zone may introduce additional electron acceptors as well 

as dissolved oxygen to the system, and also dissolved organic carbon as an 

electron donor. In the case of surface water, a similar scenario may be observed, 

and the water entering the groundwater will dilute the plume of contaminant, and 

add electron acceptors and possible electron donors to the groundwater system 

(Suthersan 2002). The simplistic approach adopted for contaminant attenuation 

through dilution assumes that dilution of the original contaminant mass will 

ultimately deliver the total pollutant load over some unidentified time interval.  

 
 
2.1.3. Transport mechanisms: Hydrodynamic dispersion  
 
Lateral spreading of the contaminant mass in groundwater is mainly due to 

hydrodynamic dispersion, which results in reduced contaminant concentrations. 

This lateral spread also introduces contaminants into previously pristine areas of 
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groundwater system. There are two components of hydrodynamic dispersion: 

mechanical dispersion and molecular diffusion (Fetter 1993).  

 

Mechanical dispersion occurs as a result of local variations in velocity and 

tortuous flow paths. Variations of rate and direction of transport velocities are due 

to aquifer characteristics, such as heterogeneities in small-scale hydraulic 

conductivity and porosity of surrounding soils. The component of hydrodynamic 

dispersion which is contributed by mechanical dispersion expressed as a function 

of seepage velocity. Molecular diffusion takes place as a result of the 

concentration gradients created within the zones of contamination (Suthersan 

2002). It is significant only when the groundwater velocities are low. The 

diffusive flux of a dissolved contaminant, at steady-state, can be described by 

Fick’s first law.  

 

2.1.4. Phase transfer mechanisms: Sorption 
 
The relevant contaminant phases in the subsurface include dissolved in 

groundwater, sorbed to soil grains, the immiscible phase, and the gas phase (for 

volatile compounds). Phase transfers can increase or decrease the contaminant 

concentration within the groundwater plume depending on the transfer 

mechanisms involved, the nature of contaminant and geochemistry of the aquifer 

system. Sorption is a result of attraction of an aqueous species to the surface of a 

solid. The underlying principle behind this attraction results from some form of 

bonding between the contaminant and adsorption receptor sites on the solid. The 

degree of sorption is dependent on the composition of the aquifer matrix including 

organic carbon content, clay mineral content, bulk density, specific surface area, 

and total porosity. Contaminant properties are also important, specifically 

solubility and the octanol-water partitioning coefficient (Wiedemeier et al. 1995).  
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Many contaminants, including chlorinated solvents, BTEX and dissolved metals, 

are removed from the solution by sorption onto the aquifer matrix, thus slowing 

the movement of contaminants. This slowing of contaminant transport is called 

retardation of the contaminant relative to the average seepage velocity of 

groundwater and results in a reduction in dissolved organic concentrations in 

groundwater (Bennett and Zheng 1995). Sorption can also influence the relative 

importance of volatilization and biodegradation. For example, as solute 

concentrations decrease due to other factors such as biodegradation and dilution, 

the amount of contaminant desorbing and reentering the solution will probably 

increase. However, for some compounds the rates of desorption may be so slow 

that the adsorbed mass may be considered as permanent residual within the time 

scale of interest (Suthersan 2002). If the sorption mechanisms do not permit easy 

desorption or removal of the sorbed pollutants, retention of the pollutants occurs 

(Yong and Mulligan 2004). If this is the case, decreasing in concentrations of 

contaminants occurs as transport of the pulse continues away from the source.      

 

2.1.5. Phase transfer mechanisms: Volatilization  
 
Volatilization is a non-reactive mechanism which removes contaminant mass 

from soil and groundwater. Volatilization of a contaminant into the gas phase 

depends on the contaminant vapor pressure and Henry’s law constant 

(Wiedemeier et al. 1999). Other factors affecting the volatilization of 

contaminants from groundwater include contaminant concentration, the change in 

concentration with depth, diffusion coefficient of the compound, temperature, and 

sorption. Volatilization itself does not destroy contaminant or permanently 

immobilize it (Suthersan 2002). Volatilized contaminants can biodegrade in some 

circumstances but also can re-dissolve in infiltrating groundwater or be 

transported to the surface, where they may be broken down by sunlight. BTEX 

has the highest volatility of aromatic hydrocarbons. The high solubility and 
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volatility of BTEX account for the mobility of these compounds and their ability 

to dissolve in groundwater.      

 
2.1.6. Transformation mechanisms: Chemical transformations  
 
Chemical transformations degrade contaminants without requiring the presence of 

microorganisms. However, only halogenated compounds undergo these reactions 

in groundwater.  

 

2.1.7. Transformation mechanisms: Biological transformations    
 
Biological transformation (biodegradation) is a process in which naturally 

occurring microorganisms break down target substances, such as fuels and 

chlorinated solvents, into often less toxic or non-toxic substances. Certain 

microorganisms degrade components of fuels or chlorinated solvents found in the 

subsurface. The ability of microorganisms to metabolize PHCs, or use nutrients 

depends on the redox state in the groundwater, and different microorganisms have 

evolved to take advantage of varying conditions. In most organisms, including 

bacteria, the metabolic process requires the exchange of oxygen and carbon. 

Biodegradation can occur in the presence of oxygen, aerobic conditions, or 

without oxygen, anaerobic conditions.  

 

Biodegradation is important because many significant components of petroleum 

hydrocarbons such as BTEX and some PAHs can be biodegraded by 

microorganisms indigenous to the subsurface. Commonly, PHC constituents 

mobile in the environment, except MTBE, are readily biodegradable. Under the 

right conditions, microorganisms can cause or assist chemical reactions that 

change the form of the contaminants so that little or no health risk remains. There 

are three biodegradation processes which change the form of contaminants. First, 

the contaminant is used by the microbe as the primary energy source. Second, the 

contaminant can be used to transfer energy in which case it is reduced; and third, 
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when biodegradation occurs in response to a secondary reaction between the 

contaminant and an enzyme produced during an unrelated action, which is termed 

cometabolism. For fuel hydrocarbons containing BTEX, the first process is 

dominant.  

 

In the context of the first biodegradation process, hydrocarbons such as BTEX are 

used as a substrate (food source) and are oxidized as an electron donor, while in a 

sequence of reactions, one or more of a series of electron acceptors are reduced. 

In this sequence, oxygen is readily consumed as an electron acceptor (aerobic 

metabolism), which generates the highest energy yield. Once oxygen is depleted, 

other electron acceptors are used in the following order of preference (anaerobic 

metabolism): nitrate, manganese (IV), iron (III), sulfate and carbon dioxide 

(Downey et al. 1999; Langmuir 1997).  

 

In the context of the second biodegradation process, the organic compound may 

also be used as an electron acceptor to aid respiration and transfer energy. 

Basically, all living organisms respire. That is, they use organic substances and 

other nutrients by breaking them down into simpler products. In the absence of 

oxygen, microorganisms often use chlorinated compounds to aid in respiration, 

not as a source of food. This is done through an electron transfer process (redox 

reaction). In the case where the carbon in the contaminant is the food source, the 

contaminant is an electron donor. In the case where the food is obtained from 

another source, the contaminant sometimes aids this transfer by accepting 

electrons that are released through respiration.  

 

The third biological process which may result in degradation of mainly 

chlorinated solvents is cometabolism. When a chlorinated solvent is biodegraded 

through co-metabolism, it does not serve as primary food source or an electron 

acceptor. Cometabolism is the process in which biodegradation takes place as a 
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result of a secondary reaction, initiated for example, by enzymes produced by the 

metabolism of methane. Cometabolism has only been documented under aerobic 

conditions (Strauss 1998).  In presence of organic substrate and dissolved oxygen, 

micro-organisms capable of aerobic metabolism will predominate over anaerobic 

forms. However, dissolved oxygen is rapidly consumed in the interior of 

contaminants plumes (Figure 2-2), converting these areas into anoxic (low 

oxygen) zones. Under these conditions anaerobic bacteria begin to utilize other 

electron acceptors to metabolize dissolved hydrocarbons. The main factors 

affecting the utilization of various electron acceptors include: (1) relative 

biochemical energy provided by the reaction, (2) availability of individual or 

specific electron acceptors at a particular site, and (3) kinetics of the microbial 

reaction associated with different electron acceptors (Rifai et al. 1997).    

 

The transfer of electrons during the redox reaction releases energy that is utilized 

for cell maintenance and growth. The biochemical energy associated with 

alternative degradation pathways can be represented by the redox potential of the 

alternative electron acceptors: the more positive the redox potential, the more 

energetically favorable is the reaction utilizing that electron acceptor. Figure 2-3 

presents the utilization sequence of aerobic and anaerobic electron acceptors 

during the biodegradation of fuel hydrocarbons. Based solely on thermodynamic 

considerations, the most energetically preferred reaction should proceed in the 

plume until all of the required electron acceptor is depleted. At that point, the next 

most-preferred reaction should begin and will continue until that electron acceptor 

is gone, leading to a pattern where preferred electron acceptors are consumed one 

at a time, in sequence (Langmuir 1997; Rifai et al. 1997; Rifai et al. 2000). 
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Figure 2-2: Schematic representation of terminal electron acceptors in advancing 
BTEX plume in a groundwater system (after Suthersan 2002) 
 

 

 

 

 

 

 

 

 

Figure 2-3: Sequential electron acceptors for BTEX (after Rifai et al. 2000) 

 

Microorganisms are most effective at degrading low to moderate concentrations 

of contaminants. High concentrations and very low concentrations of 

contaminants may not be biodegradable. Contaminants in the NAPL phase are not 

effectively degraded by microorganisms (US EPA 1999a). As contaminants 

biodegrade, the products of the degradation process may or may not be less 

harmful than the original contaminants. Therefore, it is important to investigate 
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the site processes carefully to be sure that biodegradation is making the site safer. 

Fortunately, petroleum hydrocarbons appear to degrade to less harmful products 

in almost all cases. Also, under some conditions, the microbial activity involved 

in degrading the contaminants could cause mobilization of certain materials such 

as manganese or arsenic which could cause environmental problems. Monitoring 

for these potential problems is necessary (US EPA 1999b). 
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2.2 Natural Attenuation of organic contaminants  
 
 
Application of natural attenuation as a remediation alternative for BTEX has 

recently increased dramatically. More recently, natural attenuation has been 

proposed for chlorinated solvents, heavy metals, radionuclides, and other 

contaminants for which the scientific understanding and field experience are 

much less robust (Bekins et al. 2001; NRC 2000). It is known that the components 

of PHCs are alkanes, cycloalkanes, aromatics, PAHs, asphaltenes and resins. In 

this section, applicability of MNA for various organic contaminants such as 

Aliphatics, BTEX, Chlorinated solvents, PAHs, MTBE, and Halogenated 

Aromatic Compounds (e.g. PCBs) is studied. 

   

2.2.1. Aliphatic compounds: Alkanes, Alkenes and Cycloalkanes 
 
Aliphatic compounds such as alkanes, alkenes and cycloalkanes are known by 

their branched straight chain molecular structure. Among these, low molecular-

weight alkanes are most easily degraded by micro-organisms. For these 

compounds, as the chain length increases solubility as well as biodegradation 

rates decreases. Most alkanes present in PHCs are branched, which are not as 

biodegradable as unbranched ones. In transformation of alkanes, alcohols, 

aldehydes and fatty acids are sequentially formed (Higgins and Gilbert 1978). 

 

Alkenes have not been extensively studied for biodegradation. For these 

compounds, it has been observed that having a double bond on the first carbon 

(namely 1-alkenes) may facilitate degradation rather than having the double bond 

at the other positions (Pitter and Chudoba 1990).  

 

Due to their cyclic structure, cycloalkanes are not as biodegradable as alkanes. 

Their biodegradability also decreases as the number of rings increases in their 
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molecular structure. Oxidation of these compounds results in formation of cyclic 

alcohol with a ketone as final product (Pitter and Chudoba 1990).   

 

2.2.2. Benzene, Toluene, Ethylbenzene and Xylenes (BTEX)   
 
Natural attenuation processes, and in particular biological degradation, are known 

to be best documented for PHCs at petroleum fuel spill sites. Under proper site 

conditions, PHCs such as BTEX may degrade by biological transformations and 

produce non-toxic end products (US EPA 1999a). BTEX compounds are volatile, 

highly mobile and known to have adverse health impacts. If microbial activity is 

rapid enough, the dissolved BTEX contaminant plume will stop expanding, and 

regulatory standards for concentrations in groundwater may be met (Yong and 

Mulligan 2004). After degradation of a dissolved BTEX plume, a residue 

consisting of heavier petroleum hydrocarbons of relatively low solubility and 

volatility will typically be left behind in the original source area. Although this 

residual contamination may have relatively low potential for further migration, it 

still may pose a threat to human health or the environment either from direct 

contact with soils in the source area or by continuing to slowly leach 

contaminants to groundwater (US EPA 1999a). Thus, design and implementation 

of source control measures is always necessary to be in conjunction with MNA as 

the remediation scheme.  

 

2.2.3. Chlorinated solvents 
   
The potential for anaerobic biotransformation of chlorinated aliphatic 

hydrocarbons was first demonstrated during the early 1980s (Bouner et al. 1981). 

Later studies have shown that these compounds, which are usually denser than 

water and are referred to as DNAPLs, can biotransform under a variety of 

environmental conditions in the absence of oxygen. DNAPLs tend to sink through 

the groundwater column toward the bottom of the aquifer; and usually they are 

difficult to locate, delineate, and remediate even with active measures. In the 
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subsurface, these compounds represent source materials that can continue to 

contaminate groundwater for decades or longer (US EPA 1999a). As mentioned 

before, the most common anaerobic process for degrading chlorinated compounds 

is an electron transfer process called reductive dechlorination (Strauss 1998). 

Where excess organic material is available to serve as an electron donor and 

biogeochemical conditions support a reducing environment, biodegradation of 

these compounds is likely to occur (Suthersan 2002).    

 

2.2.4. Polycyclic Aromatic Hydrocarbons (PAHs) 
   
PAHs are compounds that have multiple rings in their molecular structure. Their 

molecular structure is complex and their water solubility is low. Petroleum 

refining activity, coke production process and wood preservation industry are the 

main sources of PAHs, some of which are known to be carcinogenic. PAHs 

biodegrade very slowly and as the number of rings increases, the compound 

becomes more difficult to degrade, because of decrease in solubility and volatility 

and increased sorption (National Research Council 2000; Yong and Mulligan 

2004).  

 

2.2.5. MTBE 
   
MTBE (methyl tertiary-butyl ether) is a chemical compound that is manufactured 

by the chemical reaction of methanol and isobutylene. MTBE is produced in very 

large quantities and has been almost exclusively used as a fuel additive in motor 

gasoline. In the U.S., it is one of a group of chemicals commonly known as 

"oxygenates" because they raise the oxygen content of gasoline. At room 

temperature, MTBE is a volatile, flammable and colorless liquid that dissolves 

rather easily in water. MTBE leaking from Underground Storage Tanks may 

reach to and contaminate groundwater. MTBE contaminated groundwater is not 

drinkable, due to offensive taste and odor. MTBE is highly resistant to 
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biodegradation and there is also a dispute on the mechanism of its natural 

attenuation (Alvarez and Illman, 2006). 

  

2.2.5. Halogenated Aromatic Compounds 
   
PCBs, pesticides, plasticizers are examples of Halogenated Aromatic Compounds. 

These stable toxic compounds compose of benzene rings with halogen atoms 

attached to them and pose serious risks to the environment. The number and 

position of halogens affect the rate and mechanism of biodegradation. There are 

three major mechanisms for their transformation: hydrolysis, reductive 

dehalogenation, and oxidation (Yong and Mulligan 2004). Even though the use of 

Polychlorinated biphenyls (PCBs) is banned, in many cases these chemicals are 

present in sediments and aquatic environments. Similar to other halogenated 

aromatics, these compounds have high toxicity, stability and bioaccumulation 

potential. According to a number of studies, natural attenuation of PCBs in 

anaerobic sediments is catalyzed by bacteria in aquatic sediment and is taking 

place in high rates. This significant biodegradation rate is a result of 

dechlorination mechanisms, which converts the more highly chlorinated 

molecules to less chlorinated products, and results in formation of compounds 

with lower toxicity and lower accumulation potential (Suthersan 2002; Yong and 

Mulligan 2004).    
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2.3 MNA as a remediation scheme 
 
 
In general, it is a prerequisite to show whether or not remediation by natural 

attenuation is appropriate for a particular site. In other words, natural attenuation 

should not be considered as a presumptive remedy. An appropriate site 

characterization includes assessment of potential risk, evaluation of the essence of 

source area control, and evaluation of potential effectiveness of the chosen 

remediation technique. Implementation of MNA in a particular site also needs 

demonstration of remedial progress through monitoring and assessment of 

samples taken. Monitoring should be conducted until it has been demonstrated 

that natural attenuation meets the remedial goals. A number of steps that have to 

be taken when the MNA is considered as a remedial alternative are briefly 

reviewed in this section.    

 

2.3.1. Review of the available site-specific data and development of a 
site conceptual model (SCM) 
   
For natural attenuation to be effective at a particular site, site-specific 

hydrogeology, geochemistry and contaminant properties must be verified. There 

are a number of requirements that must be met for a particular site for natural 

attenuation to be successful. These include minimal risk of contaminants coming 

into contact with receptors and presence of enough microorganisms, nutrients and 

terminal electron acceptors. According to Wiedemeier et al (1995), information to 

be obtained during data review includes nature, extent and magnitude of 

contamination, geologic and hydrogeologic data and locations of potential 

receptors. If it can be shown that intrinsic remediation is a potential remedial 

option, all future site characterization activities should include collecting the data 

necessary to support this remedial alternative. In fact, an extensive review of the 

site data results in the development of preliminary site conceptual model (SCM). 

The preliminary SCM demonstrates direction and velocity of groundwater flow, 
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location and distribution of contaminants at the source zone as well as in the 

dissolved plume, natural processes which theoretically affect the contaminants, 

and potential receptors. It also helps to determine any data shortcomings and to 

allocate additional data collection points. Based on the preliminary SCM, it can be 

determined whether natural attenuation is a major component in clean-up or other 

remedial measures should be considered.  

 

Development of an appropriate SCM is an important step in verifying the viability 

of natural attenuation as a remedial alternative. It supports both the next step in 

site characterization and the subsequent modeling. Given the importance of 

development of a good SCM, a full chapter in this work (Chapter 3) is dedicated 

to development of a SCM for a PHC impacted contaminated site. The focus of the 

chapter will be in particular on characterization of soil texture and contaminant 

source distribution.     

 
 
2.3.2. Collecting additional data in support of MNA 
   
In case intrinsic remediation is deemed to be an effective option, further site 

characterization activities must be implemented to support this remedial option. In 

fact, to confirm that natural attenuation will continue to work, monitoring data 

must be obtained and linked to the conceptual model, and “footprints” of the 

mechanisms involved must be studied. These footprints include study of 

variations in concentration of contaminants, terminal electron acceptors, and 

donors, as well as products of biodegradation processes (such as Cl- or Fe2+) 

(Suthersan 2002). All these additional site characterizations help to evaluate the 

potential efficiency of MNA as a remedial option. In this regard, the rate of 

attenuation processes and the required time frame to achieve remediation goals 

must be estimated. In order to do such an evaluation, a three-tiered approach is 

usually practiced. According to US EPA’s Directive for use of MNA at Superfund 
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and Underground Storage Tank sites, these three are lines of evidence in support 

of natural attenuation for a particular site (US EPA 1999a).  

 

The first line of evidence is provided by historical groundwater and/or soil 

chemistry data that show reduction or stabilization in plume geometry and 

contaminant mass or concentration over time at appropriate sampling points. The 

second line of evidence involves recording hydrogeologic and geochemical data 

that can be used to demonstrate indirectly the type(s) of natural attenuation 

processes active at the site. This includes measuring the depletion of electron 

acceptors (dissolved oxygen, nitrate and sulfate), production of metabolic by-

products (Mn(II), Fe(II) and methane), and presence of biodegradation 

metabolites or intermediates. The third line of evidence is microbiological data 

from field or microcosm studies, which is optional and directly demonstrates the 

occurrence of a particular natural attenuation process at the site and its ability to 

degrade the contaminants of concern (US EPA 1999a).      

 

During the detailed site characterizations, there are often two objectives. The first 

is collection of data in support of ongoing natural attenuation processes. The 

second is collection of sufficient site-specific data, to be used in fate and transport 

modeling, to estimate future distribution and concentration of contaminants. 

According to Wiedemeier et al. (1995), in the context of detailed site 

characterizations in support of natural attenuation, the following parameters need 

to be determined:  

• Spatial distribution and type of contaminants in groundwater; 

• Delineation of contaminant source; 

• Geochemistry of the aquifer; 

• Regional hydrogeology: drinking water aquifers and regional confining 

units 
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• Site-specific hydrogeology, including local drinking water aquifers, 

location of water wells, patterns of current and future aquifer use, 

stratifications and preferential flow paths, grain size distribution, hydraulic 

conductivities, local surface water features, and local groundwater 

recharges and discharges; 

• Potential pathways and receptors; 

As mentioned above, site-specific studies, which directly demonstrate biological 

activity, may also be implemented. These studies may include techniques such as 

field dehydorgenase test or microcosm studies (Wiedemeier et al. 1995).  

 

2.3.3. Summarizing the available data and refining the SCM 
   
After implementation of detailed site characterization, the collected data should 

be incorporated into the SCM and should be used in quantifying advection, 

mechanical dispersion, dilution, sorption and biodegradation at the site. These 

calculations can give direct measures of intrinsic capacity of the groundwater 

system to attenuate the contaminants and support the conclusion that natural 

attenuation is actually taking place. These measures are also used in modeling 

natural attenuation over time (Wiedemeier et al. 1998).     

 

In the context of refinement of the SCM, newly collected data are used to update 

the conceptual model. As a result, the SCM will give an accurate demonstration 

of hydrogeology, and nature and extent of contamination. Conceptual model 

refinement includes providing geologic logs, hydrogeologic sections, contour 

maps of contamination, contour maps of concentrations of electron acceptors, etc 

(Wiedemeier et al. 1995; Wiedemeier et al. 1998).   
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2.3.4. Simulating natural attenuation using solute fate and transport 
models 
   
Natural attenuation models are typically applied for three different reasons (Rifai 

and Rittaler 2005):  

• To determine if a plume is going to get larger; 

• To determine how long will a plume be there; 

• To develop a better understanding of the important natural attenuation 

processes at a given site.  

As will be discussed later in further detail, both analytical and numerical models 

can be used to simulate the conditions at a contaminated site. Analytical models 

can give the exact solutions for very simplified scenarios. On the other hand, 

numerical models give approximate solutions; but they are able to handle 

complicated site hydrogeology. A key point in utilizing these models is 

incorporating the natural attenuation site data into the model to calibrate and 

validate the model for site-specific conditions.   

 

When using these models, there are a number of issues that should be taken into 

account (NRC 2000). The first issue is related to the site-specific data used in 

development of the model. In this regard, the present and future site conditions 

must be consistent with the parameters and boundary conditions used. The second 

issue arises from over-fitting the model to data collected from the site. Models 

should not be forced if they do not fit the data. Instead, modifications in site 

conceptual model must be made or other models with different underlying 

assumptions should be used. The third issue arises from overestimating ability of 

models and reliability of their end results. It should be noted that uncertainties in 

data collected together with uncertainties in assumptions made during the 

modeling process, methods of verification and validation, and complexity of the 

site will affect the end results.  
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Development of a well-established conceptual model, using high quality data 

collected from the site, is a key to natural attenuation modeling. There are various 

packages available for predictive modeling of natural attenuation. Some of the 

most recognized ones are BIOSCREEN (Newell et al. 1996), BIOCHLOR (Aziz 

et al. 1999), BIOPLUME (Rifai et al. 2000), SEAM3D (Waddill and Widdowson 

1998) and NAS (Mendez et al. 2004). Selection of a model to simulate natural 

attenuation at a site depends on underlying assumptions, limitations and site 

conditions such as hydrology and hydrogeology of the site. An exposure pathway 

analysis should also be implemented after performing predictive modeling. This is 

performed to support natural attenuation at the site, and includes identification 

and study of potential receptors at points of exposure under current and future 

conditions. Results of modeling efforts are core to this type of analysis (Carey et 

al. 1998).   

 

2.3.5. Long-term monitoring  
   
Long-term monitoring is necessary to demonstrate that contaminant 

concentrations continue to decrease at a rate sufficient to ensure that they will not 

become a health threat or violate regulatory criteria. In fact, the need to collect 

biogeochemical and groundwater quality data of the highest quality to predict the 

natural attenuation capacity of the system is the most important aspect of 

monitored natural attenuation at a site.  

 

A long-term monitoring plan consists of placement of monitoring wells and 

development of a program of sampling, testing and analyzing. It is developed 

based on the site characterization data, the results of solute fate and transport 

modeling, and the results of exposure pathway analysis (Wiedemeier et al. 1995). 

There are two types of monitoring wells in a long-term monitoring plan. 

Performance-monitoring wells (or long-term monitoring wells) are intended to 

monitor behavior of the plume. They are used to determine the effectiveness of 
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the natural attenuation processes. They also check the parameters affecting these 

processes. Point-of-compliance wells (or contingency wells) are intended to detect 

movements of plume outside its perimeter and to prompt an action to manage the 

risk associated with such expansion. Usually there are also numbers of ambient 

monitoring wells that are located upgradient of the plume. Final number and 

placement of performance monitoring wells are determined based on regulatory 

requirements, and are dependent on factors such as type of the pollutants and 

source location, size and features of existing plume, hydrogeology of the site and 

results of modeling (Yong and Mulligan 2004). Contingency wells should be 

located approximately 150 m downgradient of the edge of the plume or the 

distance traveled by groundwater in two years, whichever is greater. 

  

The frequency of monitoring should be enough to detect in a timely manner any 

changes in plume degradation and migration pattern. At a minimum, the 

monitoring program should be able to determine the attenuation rates and 

variations of attenuation rates in time (US EPA 1999b). It may be frequent at the 

beginning and then decreasing in frequency as the progress of natural attenuation 

becomes slower. But, it should be flexible to adjust to any changes that may 

occur. The sampling plan should be continued until the goals of the natural 

attenuation process have been safely met (Surampalli and Banerji 2002). In 

conjunction with well placements, a groundwater sampling scheme must be 

planned. As discussed before, in support of progress of natural attenuation in 

addition to decreases in concentration of organic chemical pollutants, other lines 

of evidence should also be demonstrated. Variations in concentrations of electron 

acceptors and carbon dioxide and methane production are these lines of evidence. 

(Wiedemeier et al. 1998).     
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2.4 Modeling natural attenuation 
 
 
MNA is appropriate to use as a remediation strategy when “… it will meet site 

remediation objectives within a timeframe that is reasonable compared to that 

offered by other methods” (U.S. EPA, 1999a). Thus, estimating the amount of 

time required for natural attenuation processes to lower contaminant 

concentrations to given regulatory goals is needed when assessing MNA as a 

remedial alternative. As pointed out by Chapelle et al. (2003) this ‘time-of-

remediation’ (TOR) problem is formulated as three interactive components: (1) 

estimation of the length of the contaminant plume, once it has achieved a steady-

state configuration from a source area of constant contaminant concentration 

(distance of stabilization or DOS), (2) estimating the time required for a plume to 

shrink to a smaller regulatory accepted configuration when source-area 

contaminant concentrations are lowered by engineered methods (time of 

stabilization or TOS), and (3) estimating the time needed for Non-Aqueous Phase 

Liquid (NAPL) contaminants to dissolve, disperse and biodegrade below 

predetermined levels in contaminant source areas (time of dissolution or TOD). 

Conceptualization of the TOR problem is shown in Figure 2-4. Estimation of 

DOS is also useful in determination of remediation goals in source area as well. In 

fact, concentrations in a source area that will preclude contaminant transport to 

nearby sensitive receptors can be estimated. The need for quantitative assessment 

of the TOR problem has necessitated the development of natural attenuation 

analytical and numerical models to simulate advection, dispersion, sorption, and 

biodegradation. Some of these models are briefly reviewed in this chapter.  

 

Most fate and transport models are based on mass balances that incorporate 

processes such as advection, dispersion, chemical reactions and biodegradation of 

target contaminants as a function of time. Such an expression can be represented 

in a compact form by:  
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where, C is the concentration of a dissolved contaminant at a given point in the 

aquifer at time t, Rf is the retardation factor for instantaneous, linear sorption, D is 

the hydrodynamic dispersion coefficient tensor, v is the groundwater velocity, λ is 

the first-order decay coefficient , and∇ is the divergence operator (Alvarez and 

Illman 2006). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-4: Conceptualization of the TOR problem (after Chapelle et al. 2003) 
 
 
Physically, this expression means that the change in contaminant concentration 

with time is a function of the amount of plume spreading in all directions 

(dispersive transport term), the amount of contaminant that migrates with 

groundwater in bulk flow (advective transport term), and the amount of 

contaminant that is degraded, and the amount of contaminant that is sorbed to soil 

grains. The decay coefficient λ represents the processes such as hydrolysis, 

chemical redox reactions, volatilization and biodegradation. However, most 

studies have shown that the decay coefficient for BTEX compounds, which are 

the focus of this study, is primarily due to biodegradation (Chiang et al. 1989, 

Rifai et al. 1995).    
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The solution to Equation [2.1] can be obtained through a variety of analytical and 

numerical techniques. However, regardless of the solution technique used, the 

material properties of the domain and the forcing functions consisting of initial 

and boundary conditions and sink and source terms must be specified to obtain a 

unique solution to a flow and transport problem. Of course, in a steady-state 

problem, an initial condition is not required. For transient problems initial 

conditions must be specified as well as boundary conditions. The initial condition 

is used to specify the initial distribution of a contaminant within the model 

domain and can be represented by:  

( ) ),,(0,,, 0 zyxCzyxC =           [2.2] 

which states that at time zero, the concentration of contaminant throughout the 

modeling domain has an initial concentration distribution of C0(x,y,z). 

 

Boundary conditions are used to specify fixed values of concentrations at 

boundary locations, the gradient at the physical boundaries or a mixed of the two. 

These three types of boundary conditions are formally known as Dirichlet, 

Neumann and Cauchy boundary conditions, respectively (Zheng and Bennett 

1995).  The Dirichlet boundary condition specifies the concentration along the 

boundary over a specific time period: 

( ) 0  for       on         ),,(,,, 11
>= tΓzyxCtzyxC Γ                 [2.3] 

where, ),,(
1

zyxCΓ  is the specified concentration along the boundary Γ 1. 

Neumann boundary condition specifies the concentration gradient normal to the 

boundary: 

0  for       on         ),,( 2 >=
∂
∂

− tΓzyxf
x
CD i

j
ij          [2.4] 

where, fi(x,y,z) is a function representing the (dispersive) flux normal to the 

boundary Γ 2. For the Cauchy boundary condition, both the concentration along 

the boundary and concentration gradient across the boundary are specified, which 
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implies that both the dispersive and advective fluxes across that boundary are 

specified:    

0  for       on         ),,( 3 >=+
∂
∂

− tΓzyxgCv
x
CD ii

j
ij         [2.5] 

where, gi(x,y,z) is a function representing the total flux (dispersive and advective) 

normal to the boundary Γ 3.  

     

Source and sink terms appear in both the governing flow and transport equations. 

For the flow problem, the source/sink term represents a mechanism in which 

water is added or removed from the system. The source and sink terms are 

broadly classified as point or areal. These terms in the governing transport 

equation represent solute mass that is dissolved in groundwater and is added to or 

removed from the system through source and sink terms appearing in the 

governing flow equation. Examples of point sources and sinks include wells that 

are recharging or discharging, buried drains, and localized recharge resulting from 

contaminant spill events. Examples of physical features that are modeled as areal 

sources or sinks include recharge that takes place over a large area due to 

precipitation or irrigation, evapotranspiration, impoundments of contaminants 

such as sewage lagoons and mill tailings ponds (Alvarez and Illman 2006). It has 

been shown that the source term is an important element in modeling natural 

attenuation and must be addressed appropriately (McNab and Dooher 1998, Ling 

and Rifai 2007, Miles et al. 2008). The parameterization used in this work is 

presented in Section 2.6 and in Chapter 3 to address source term in terms of 

source zone geometry and loading of contaminants to groundwater and associated 

uncertainty.  

 

The governing partial differential equation, the initial conditions and the boundary 

conditions form a “Boundary Value Problem”, which can be solved analytically 

or numerically. Analytical solutions are exact and are generally simple to 
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implement. Closed form solutions are usually available, which can be used readily 

to make preliminary predictions of fate and transport. However, they are generally 

limited to simple geometries and requires that aquifer and transport parameters be 

uniform throughout the modeled region. Numerical solutions on the other hand 

treat the boundary value problem as a system of algebraic equations or 

alternatively simulate transport by tracking a large number of particles in a known 

velocity field. The main advantage over analytical solutions is that they are 

flexible and can handle complex geometries. They can also incorporate spatial 

variation in the initial condition and both space and time variations in boundary 

conditions. However, numerical solutions can be prone to discretization and round 

off errors as well as numerical dispersion.  

 

In the reminder of this chapter, the widely-used analytical and numerical models 

are briefly reviewed; and a proposed parameterization for stochastic modeling of 

natural attenuation is presented. A more detailed description of governing 

equations and numerical discretization of the mass conservation equations will be 

presented in Chapter 4 in the context of development of a natural attenuation 

simulation code.    

 

2.4.1. Analytical models for natural attenuation  
   
The analytical solutions are generally limited to steady, uniform flow and should 

not be used for groundwater flow or solute transport problems in strongly 

anisotropic or heterogeneous aquifers. These models additionally should not be 

applied under non-uniform flow conditions. Although analytical solutions can be 

obtained only under restrictive assumptions, the simplicity of analytical solutions 

makes them valuable as screening tools. In addition, analytical solutions are the 

primary means for testing and benchmarking numerical codes. A large number of 

analytical solutions for solute transport are available. The solution by Domenico 

(1987) which is widely used was implemented in the analytical model 
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BIOSCREEN (Newell et al. 1996). The solution by Domenico (1987) is designed 

for multi-dimensional transport of a decaying contaminant species and is given 

by:   

( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
⋅

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡ +
−

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−⎟

⎠
⎞

⎜
⎝
⎛=

x
Zz

x
Zz

x
Yy

x
Yy

tv
v

tvx

v
xCtzyxC

zzyy

cx

c

x
c

c

x

x

αααα

α

λα
λα

α

2
2/erf

2
2/erf

2
2/erf

2
2/erf

2

41

erfc411
2

exp
8

,,, 0

     [2.6] 

where, C is contaminant concentration in space and time, C0 is initial contaminant 

concentration at the source, x is distance downgradient of the source, y is distance 

from the centerline of the source, z is vertical distance from the groundwater 

surface to the measurement point, Y is the source width, Z is the source depth, αx 

is longitudinal dispersivity, αy is horizontal transverse dispersivity, αz is vertical 

transverse dispersivity, λ is site-specific first-order decay coefficient, t is time, vc 

is contaminant velocity in groundwater, erf(x) is error function and erfc(x) is 

complimentary error function. The key assumptions in the model are (Newell et 

al. 1996):  

o The aquifer and the flow field are homogenous and isotropic; 

o Groundwater velocity is fast enough to ignore the molecular diffusion;  

o Adsorption is a reversible process represented by a linear isotherm. 

 

As stated above, The Dominico solution is for multi-dimensional transport from a 

finite, planar, continuous source of contamination under transient condition. This 

solution can be easily modified to model other situations such as steady-state 

condition, decaying source condition, etc. 

 

In BIOSCREEN, biodegradation is modeled by three different model types: solute 

transport without decay, solute transport with biodegradation modeled as a first-
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order decay process (lumped-parameter approach), and solute transport with 

biodegradation modeled as an instantaneous biodegradation reaction with multiple 

electron acceptors. BIOSCREEN considers a very simple geometry for both 

modeling domain and the contaminant source.  

 

BIOCHLOR (Aziz et al. 1999) is another analytical model that simulates 

remediation by natural attenuation of chlorinated solvents. Similar to 

BIOSCREEN, it has been programmed in Microsoft Excel spreadsheet 

environment and solves the Domenico analytical solute transport model. It can 

simulate 1D advection, 3D dispersion, linear sorption and biotransformation via 

reductive dechlorination (Section 2.2.3). Reductive dechlorination is assumed to 

occur under anaerobic conditions and dissolved solvent degradation is assumed to 

follow a sequential first-order decay process.    

 

Analytical solutions can be very useful tools to evaluate contaminant behavior in 

groundwater and to characterize potential exposure pathways in risk assessment 

efforts. However, there are often deviations from restrictive modeling 

assumptions. These are commonly due to heterogeneity of the aquifer material 

which causes spatial variability in model parameters such as hydraulic 

conductivity, porosity, sorption capacity and even biodegradation kinetics. 

Moreover, complexities such seasonal fluctuations in groundwater table and local 

variations in groundwater velocity can not be incorporated into analytical models. 

Therefore, analytical models should be used as screening tools in initial site 

characterization studies and their results should be interpreted with caution.         

 

2.4.2. Numerical models for natural attenuation  
   
Most numerical models for solving Equation [2.1] can be classified as Eulerian, 

Lagrangian, or mixed Eulerian-Lagrangian (Neuman 1984, Baptista 1987).  
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Eulerian methods solve the transport equations on a fixed spatial grid. Primary 

Eulerian methods are Finite Difference Method (FDM) and Finite Element 

Method (FEM). They are commonly used to solve flow problems. They were also 

among the first methods applied to solute transport problems. They are both 

accurate and efficient in solving the dispersion-dominated problems (Zheng and 

Bennett 1995). However, they are prone to excessive numerical dispersion and 

artificial oscillation, when applied to advection-dominated problems. Although 

these types of errors may be mitigated when using fine grid spacing and small 

time-step sizes, the required computational effort may become prohibitive.    

 

Lagrangian methods solve the transport equations in a deforming grid, or in 

deforming coordinates in a fixed grid. These methods are capable of solving 

transport problems with sharp concentration fronts both efficiently and accurately 

(Zheng and Bennett 1995). In contrast to Eulerian approaches, Lagrangian 

methods handle advection-dominated problems very well but have serious 

problems when dispersion must be solved together with advection. The random 

walk method (Ahlstrom et al. 1977, Prickett et al. 1981) is probably the most 

widely-used Lagrangian technique used in solute transport modeling. This 

approach handles the advection term by using a forward particle tracking 

technique, while associating a mass of the solute with each particle. The effect of 

dispersion is incorporated by adding a random displacement to the particle 

location after each advective movement. Sorption and decay are handled by 

adjusting the velocity of the particles and the mass carried by the particles (Zheng 

and Bennett 1995).  

 

Mixed Eulerian-Lagrangian methods have emerged to combine the advantages of 

both Eulerian and Lagrangian approaches by solving the advection term with a 

Lagrangian method and dispersion and other terms with an Eulerian method 

(Neuman 1981). The forward-tracking method of characteristics (MOC), the 
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backward tracking modified method of characteristics (MMOC), and a hybrid of 

these two methods (HMOC) are among the Lagrangian-Eulerian approaches.  

 

In the method of characteristics (MOC) (Garder et al. 1964, Konikow and 

Bredehoef 1978), a large number of particles are deterministically or randomly 

distributed across the whole modeling domain or in active areas of the modeling 

domain (when dynamic particles allocation is implemented). Unlike the random 

walk method, the particles in the MOC are not explicitly used to carry mass but 

used to represent the concentration field. Particles are tracked forward through the 

flow field using a particle tracking method to simulate the advection term. The 

concentrations carried by the particles are then redistributed over the FDM grid 

and the nodal values of cell concentrations (due to advection only) are calculated. 

The changes in cell concentrations due to dispersion, sink/source mixing and 

chemical reactions are then calculated by the standard FDM. The cell 

concentrations and subsequently particles concentrations are then updated to 

incorporate the concentration changes due to dispersion, sink/source mixing and 

chemical reactions, and the next step of the simulation is initiated. The MOC has 

been used in this work to develop a natural attenuation simulator. Implementation 

details of the approach are presented in Chapter 4 of this thesis. One of the most 

desirable features of the MOC technique is that it is virtually free of numerical 

dispersion caused by spatial truncation errors. The major drawback of this 

technique is that it can be slow and it requires a large amount of computer 

memory. The MOC can also lead to large mass balance discrepancies under 

certain situations because the discrete nature of particle tracking technique does 

not guarantee local mass conservation at a particular time-step. The computer 

memory requirement can be dramatically reduced by using a dynamic approach 

for particle distribution. The mass discrepancy problem can be mitigated by 

consistent velocity interpolation and using high-order particle tracking (Zheng 

and Wang 1999).    
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The modified method of characteristics (MMOC) (Russell and Wheeler 1983, 

Cheng et al. 1984) was originally developed to approximate the advection term 

accurately without sacrificing a great deal of computational efficiency. The 

MMOC is similar to MOC technique except in the treatment of the advection 

term. Unlike the MOC technique, which tracks a large number of moving 

particles forward in time and keeps track of the concentration and position of each 

particle, the MMOC technique places one fictitious particle at the nodal point of 

the fixed grid at each new time level. The particle is tracked backward to find its 

position at the old time level, the concentration associated with that position is 

used to approximate the concentration related to advection term at the new time 

level. The MMOC uses one particle for each finite difference cell. Therefore, the 

MMOC technique, used in conjunction with a simple lower-order interpolation 

scheme, is normally faster than the MOC technique and requires much less 

computer memory. The MMOC technique is also free of artificial oscillations if 

implemented with a lower-order interpolation scheme such as linear interpolation. 

However, with a lower-order interpolation scheme, the MMOC technique 

introduces considerable numerical dispersion, especially for advection-dominated 

problems. The intended use of the MMOC technique is where sharp fronts are not 

present. For advection-dominated problems with sharp fronts, the MOC approach 

is preferred (Zheng and Wang 1999). 

 

The choice of the MOC and MMOC depends on the nature of the concentration 

field being modeled and computing resources available. The HMOC attempts to 

combine the strengths of the MOC and MMOC approaches by using and 

automatic adaptive scheme (Neuman 1984, Zhang and Wang 1999). The 

fundamental idea behind this scheme is automatic adaptation of the solution 

process to the nature of concentration field. When sharp concentration fronts are 

present, the advection term is solved by the MOC technique through the use of 



 51

moving particles distributed dynamically around each front. Away from such 

fronts, the advection term is solved by the MMOC technique with fictitious 

particles placed at the nodal points tracked directly backward in time. By 

selecting an appropriate criterion for controlling the switch between the MOC and 

MMOC schemes, the adaptive procedure can provide accurate solutions to 

transport problems over the entire range of Peclet numbers. The choice of the 

adaptive criterion, however, may not be obvious and the adaptive procedure may 

not lead to the optimal solution (Zheng and Wang 1999). In the next paragraphs, 

some of the numerical models that are commonly used to evaluate natural 

attenuation are briefly reviewed.    

 

MT3D (Zheng 1990) is a modular 3D transport code used to simulate advection, 

dispersion and chemical reactions of one contaminant species at a time in 

groundwater. The flow-field for this model is explicitly generated by the widely 

used flow simulation code MODFLOW (McDonald and Harbaugh 1988). MT3D 

can simulate radioactive decay, biodegradation and linear and non-linear sorption. 

It contains four different solution methods: MOC, MMOC, HMOC, and FDM 

with forward difference scheme.  MT3DMS (Zheng and Wang 1999) is an 

expanded version of MT3D that can simulate transport of multiple contaminant 

species at one time and has some other advancements such as an improved 

advection solver, a non-equilibrium sorption  model, etc.  

 

RT3D (Clement 1997) is a generalized multi-species version of the MT3D code. 

It comprises a much more detailed modeling of reactive contaminant transport as 

compared to MT3DMS. As with MT3D, RT3D also requires the groundwater 

flow code MODFLOW for computing spatial and temporal variations in 

groundwater head distribution. The RT3D code includes an implicit reaction 

solver (with seven pre-programmed reaction modules used to simulate different 

types of reactive contaminants) that makes the code sufficiently flexible for 
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simulating various types of chemical and microbial reaction kinetics. Using the 

pre-programmed reaction packages, instantaneous hydrocarbon biodegradation 

using multiple electron acceptors, kinetically limited hydrocarbon biodegradation 

by multiple electron acceptors, kinetically limited reaction with bacterial 

transport, non-equilibrium sorption, etc. can be modeled by RT3D.  

 

The BIOPLUME III software package (Rifai et al. 1997) was developed based on 

the MOC approach. It models the sequential biodegradation beginning with 

oxygen as an electron acceptor and proceeding to nitrate, iron, sulfate and carbon 

dioxide based on the depletion of the preceding electron acceptor. In addition to 

aerobic and anaerobic biodegradation, other attenuating mechanisms such as 

advection, dispersion, sorption, and ion exchange are also modeled by 

BIOPLUME III. Three different kinetic expressions used to simulate 

biodegradation reactions are first-order decay, instantaneous reaction, and Monod 

kinetics.  

 

The SEAM3D model (Waddill and Widdowson 1998) simulates 3D transport and 

sequential electron acceptor-based bioremediation in groundwater. Hydrocarbon 

contaminants are simulated as electron donors for microbial growth with available 

electron acceptors depleted sequentially. Each hydrocarbon substrate can produce 

a single daughter product. Biodegradation of each substrate follows Monod 

kinetics, modified to include the effects of electron acceptors and nutrient 

availability. Microbial biomass is simulated as scattered micorcollonies attached 

to the porous medium. One of the unique features of SEAM3D is that it treats 

NAPL mass as being entirely residual (or trapped) in porous medium and 

simulates the dissolution of NAPL into groundwater based on a concentration 

gradient drive between the nonaqueous phase and aqueous phase. As discussed 

later in this chapter and in Chapter 4, a similar approach has been implemented in 

natural attenuation simulator developed in this work.  
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More recently, natural attenuation software (NAS) (Mendez et al. 2004) has been 

developed which consists of a combination of analytical and numerical solute 

transport models. NAS is designed for application to groundwater systems 

consisting of porous, relatively homogenous media, and assumes that 

groundwater flow is uniform and unidirectional. It models advection, dispersion, 

sorption, NAPL dissolution and biodegradation. It also determines redox 

zonation, and estimates and applies varied biodegradation rates from one redox 

zone to the next. The interested reader is referred to Mendez et al. (2004) for 

capabilities and details of NAS.      
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2.5 Uncertainty management and parameter estimation  
 
 
As discussed above, there are many studies on deterministic modeling of natural 

attenuation with analytical and numerical approaches; however, there are a 

number of works reported in the literature that deal with stochastic modeling and 

uncertainty management for natural attenuation of petroleum hydrocarbons.  

Uncertainty management related to natural attenuation has two aspects: (1) 

modeling uncertainty in response variables due to uncertain model parameters, 

and (2) characterizing the uncertainty in model parameters, using the observed 

response variables at a few locations. The first aspect is formally termed 

stochastic modeling and the second aspect is termed parameter estimation or 

inverse modeling. The uncertainty in the response variables due to uncertain 

model parameters can be quantified with the use of an analytical/numerical mass 

transport simulator and Monte Carlo Simulations, which is relatively straight 

forward. Parameter estimation (inverse modeling), however, is a challenging task 

that has been subject of much research in the recent years.  

 

The main focus in this thesis is parameter uncertainty. Two different aspects of 

parameter uncertainty related to natural attenuation of petroleum hydrocarbons 

are considered in this work: (1) Chapters 5 and 6 involve the quantification of 

uncertainty (non-linear confidence intervals) in first-order biodegradation rate 

constant and LNAPL dissolution rate under uncertain source geometry and 

aquifer transmissivity; and (2) Chapter 7 involves the quantification of uncertainty 

in field-measured biodegradation rates in the heterogeneous aquifers. In Section 

2.5.1, a few works related to stochastic modeling of natural attenuation are 

reviewed. In Section 2.5.2, the works related to inverse modeling for 

reactive/non-reactive mass transport in general hydrogeology literature are 

reviewed. In Section 2.5.3, the previous works related to the quantification of 

uncertainty in field-estimated biodegradation rate are presented. 
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2.5.1. Stochastic modeling of NA: Literature review 
   
The work of McNab and Dooher (1998) is an early work dealing with 

characterizing the uncertainty in natural attenuation response variables. They 

develop a screening model to quantify uncertainties involved in the impact of 

biodegradation on hydrocarbon plume behavior. The approach is based on Monte 

Carlo simulation using an analytical solution to the advective-dispersive solute 

transport equation, including a first-order biodegradation term, coupled with mass 

balance constraints on electron acceptor use. The model was applied to an 

existing PHC contaminated site and the degree of uncertainty associated with 

model-predicted hydrocarbon concentrations and geochemical indicators as well 

as the roles of various parameter uncertainties (e.g. average hydraulic 

conductivity, first-order biodegradation rate, source term) in influencing forecasts 

were investigated. Lu et al. (1999) conducted a series of Monte Carlo Simulations 

to study the effects of uncertain hydraulic conductivity on the natural attenuation 

of BTEX compounds through aerobic degradation, denitrification, iron and sulfate 

reduction, and methanogenesis. They first quantified the uncertainty in hydraulic 

conductivity field by multiple realizations of spatially correlated random fields. 

Their simulated BTEX plumes were then analyzed for mass distributions and the 

relationship among various factors such as dissolved BTEX mass, plume 

spreading, and depletions of electron acceptors. They also investigated how the 

model responds to varying degrees of heterogeneity in the hydraulic conductivity 

field. Additional hydraulic conductivity realizations were created with the same 

mean but different variances and correlation lengths. In another work, Thornton et 

al. (2001) presented a quantitative methodology for field-scale performance 

assessment of natural attenuation using plume-scale electron and carbon balances 

and evaluation of the associated uncertainty. Their work focused on the 

calculation of global mass balances, using mass inputs from the plume source, 

background groundwater, and plume residuals in a simplified box model. 



 56

Uncertainty in the model predictions and sensitivity to different parameter values 

was assessed by Monte Carlo simulation. They concluded that the source area and 

infiltration primarily account for uncertainty in forecasts of the plume electron 

donor input; and estimates of electron acceptor inputs to the plume are primarily 

dependent on the transverse mixing zone width and less dependent on aquifer 

hydraulic conductivity and hydraulic gradient. More recently, Christensen et al. 

(2004) presented a statistical methodology for estimation of the relative efficiency 

of natural attenuation mechanisms, being oxidation using oxygen, denitrification, 

iron reduction and sulfate reduction, and the associated measures of uncertainty. 

They concluded that sulfate is the main cause of hydrocarbon removal in their 

study site; and oxygen is preferentially depleted at the upstream edge of the 

plume.       

 

2.5.2. Inverse modeling and parameter estimation: Literature review 
        

An important aspect of parameter uncertainty is related to using the state variables 

to estimate the model parameters and their uncertainty. An accurate description of 

physical and chemical properties of an aquifer is a prerequisite for accurate 

predictions of contaminant transport in groundwater. In practice, the field 

measurements of distributed hydrogeologic and geochemical parameters are only 

performed at limited sparse locations leaving a large portion of the aquifer 

untested. For some other geochemical parameters, they can be only reliably 

estimated under controlled laboratory experiments (e.g. dissolution rate constant, 

biodegradation rate constant). Inability to adequately estimate these distributed 

and single-valued parameters motivates us to apply/develop inverse modeling 

techniques that use the worth of piezometric head/concentration measurements for 

this purpose. Inverse modeling is implemented in this thesis to quantify the 

uncertainty in LNAPL dissolution rate and first-order biodegradation rate under 

uncertain source geometry and transmissivity field. The ultimate goal of such 

techniques is to build realistic aquifer models that are conditioned to all static data 
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(e.g. hydraulic conductivities) and are able to reproduce all dynamic data (e.g. 

piezometric heads, concentrations) within their margin of error. Such conditioned 

models are then used for more reliable future predictions. 

 

Several inverse modeling techniques have been developed to incorporate 

piezometric head data into groundwater flow models. The linearized cokriging 

method (Kitanidis and Vomvoris 1983, Hoeksema and Kitanidis 1984 and 

Kitanidis and Lane 1985), the fast Fourier transform method (Gutjahr and Wilson 

1989, Robin et al. 1993 and Gutjahr et al. 1994), the linearized semi-analytical 

method (Dagan 1985, Rubin and Dagan 1987, Dagan and Rubin 1988), the fractal 

simulation method (Grindrod and Impey 1991), the pilot point method (RamaRao 

et al. 1995), the maximum-likelihood method (Carrera and Neumann 1986) and 

the sequential self-calibration (SSC) method (Gomez-Hernandez et al. 1997) are 

the some important classic approaches. A thorough review and comparison of 

these approaches is presented in McLaughlin and Townley (1996) and 

Zimmerman et al. (1998). Some of the other important more recent techniques are 

proposed by Hu (2000), Caers and Hoffman (2006) and Fu and Gomez-

Hernandez (2008). Hu (2000) adapted the gradual deformation approach for 

Gaussian fields with data conditioning, while preserving the correlation structure, 

Caers and Hoffman (2006) presented the probability perturbation approach for 

Gaussian and non-Gaussian fields, Fu and Gomez-Hernandez (2008) developed a 

new methodology based on the theory of blocking Markov-Chain Monte Carlo 

which uses a sampling algorithm for conditioning to piezometric heads (and travel 

times) instead of optimization. The SSC technique (Gomez-Hernandez et al. 

1997) is applied extensively throughout this thesis. The details of the approach are 

reviewed in Chapter 5.        

 

The integration of concentration data has been less widely studied. The works 

related to integration of concentration data can be grouped in three different 
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categories. The first group are the works that integrate the available information 

about the state variables (e.g. point measurements of concentration), and estimate 

the distribution of model parameters (e.g. transmissivity field, sorption) and state 

variables in an ‘optimal’ sense. An estimate of uncertainty may also be obtained 

as the conditional covariance of state variables (linear confidence intervals). The 

second group involves the works that do not update the transmissivity field as the 

main source of uncertainty in transport modeling. Instead, they parameterize the 

effects of unresolved heterogeneities through the estimation of first and second 

conditional moments of state variables. The third group involves the works that 

generate multiple realizations conditioned to point measurements of model 

parameters and the state variables. The generated realizations jointly represent the 

best estimate and uncertainty of model parameters and state variables in the 

context of Monte Carlo simulations.  

 

The first group of inverse modeling techniques with concentration data involves 

the approaches that give a best estimate for each model parameter and state 

variable. The first group of researchers to integrate concentration data to estimate 

dispersivities was Umari et al. (1979). Their objective functions were based on L1 

and L∞ norms in the residual space; and quasi-linearization was used to minimize 

the objective functions. Gorelick et al. (1983) estimated the location and 

magnitude of the source through linearizing the state equations. The coupled 

estimation of flow and transport parameters was performed by Strecker and Chu 

(1986). A two-step estimation procedure was developed, where, the transmissivity 

field was estimated using head data only in the first step, and in the dispersivities 

were estimated using concentrations and previously quantified transmissivities in 

the second step. A similar two-stage approach was adopted by Van Rooy et al. 

(1989) for an inhomogeneous aquifer. In the first step, they estimated 

transmissivity field by kriging. Then, they estimated the values of source and 

dispersivities using concentration data. The work of Keidser and Rosbjerg (1991) 
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was an extension to the work of Van Rooy et al. (1989) where they alternatively 

used head and concentration data to estimate transmissivities while treating the 

transport parameters as known. Then, they used the estimated transmissivities and 

the available concentration and head data to estimate the dispersivities. Using a 

least-square estimator and nonlinear regression, Wagner and Gorelick (1986) 

developed a coupled approach for estimation of flow and transport parameters and 

implemented that in a 1D example. Sun and Yeh (1990a) presented the adjoint-

state method for calculation of sensitivity coefficients for coupled flow and 

transport problems. In their second paper (Sun and Yeh 1990b), they addressed 

the issue of identifiably for the coupled problems. Medina et al. (1990) and 

Medina and Carrera (1996) presented a fully coupled inverse modeling approach 

for flow and transport. They used finite element method for spatial descretization 

and finite difference method for temporal descretization to solve the flow and 

transport equations in steady-state and transient conditions. The spatial variability 

was parameterized by zonation method and maximum-likelihood estimation was 

used to estimate multiple flow and transport parameters. Optimization of 

maximum-likelihood estimator was achieved by the Marquardt method and 

confidence intervals were presented for the estimated parameters. Wagner (1992) 

used a very similar approach to that of Medina et al. (1990) but estimated the 

source location as well as the flow and transport parameters and their confidence 

intervals (reviewed in Chapter 1). In an extension to the work of Keidser and 

Rosbjerg (1991), Sonnenborg et al. (1996) also developed a coupled approach 

based on the maximum-likelihood method and the method of characteristics. They 

applied their model to a real site in Denmark and tested multiple parameterization 

of transmissivity field with zonation approach. Another application of maximum 

likelihood method was presented by Mayer and Huang (1999). They solved the 

coupled inverse problem by optimizing the maximum likelihood objective 

function by genetic algorithm for a transmissivity field that was parameterized by 

kriging instead of zonation. The variogram parameters were treated as unknown 
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and estimated in the optimization process. Inverse modeling has also been used 

for hydrocarbon and dense nonaqueous phase liquid (DNAPL) source 

identification (Parker and Islam 2000, Sciortino et al. 2000), estimating 

biodegradation rates in batch experiments (Schirmer et al. 1999), and estimation 

of BTEX biodegradation rates and LNAPL dissolution rate at a the Bemidji crude 

oil spill site (Essaid et al. 2003). Parker and Islam (2000) presented two methods 

for estimating release timing of LNAPL and its uncertainty. First, they developed 

a simple analytical model for LNAPL plume migration that predicts LNAPL 

plume velocity as a function of basic soil and fluid properties. Then, they used the 

first-order method and a Monte Carlo simulation approach to estimate the release 

time uncertainty. Sciortino et al. (2000) developed an inverse modeling technique 

to identify the location and the dimensions of a single-component DNAPL pool in 

a saturated porous medium under steady-state conditions. A 3D analytical model 

was used to quantify the transport of solute from a dissolving DNAPL pool, the 

inverse modeling was formulated as a least squares minimization problem, and it 

was solved by Levenberg-Marquardt method. They concluded that the inverse 

problem is non-unique and non-convex even in the absence of observation errors. 

Essaid et al. (2003) developed an inverse modeling technique and applied it to a 

real site with crude oil contamination. They used historical data over a course of 

11 years and incorporated a multi-component transport and biodegradation model 

under steady-state condition for a homogenous aquifer. Their inverse modeling 

was successfully converged only when a single dissolution rate coefficient was 

estimated for all BTEX components. Assuming a stationary oil body with known 

geometry, they simulated the transport of dissolved oxygen as well as all BTEX 

components, and estimated a number of model parameters including the recharge 

rate, hydraulic conductivity, dissolution rate coefficient, individual first-order 

BTEX anaerobic biodegradation rates and transverse dispersivity. In this work, an 

estimation of parameter uncertainty was made through the definition of 

confidence intervals for each estimated parameter. The first group of inverse 
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modeling techniques gives optimal estimates of the model parameters. The 

parameterization (e.g. zonation) of the distributed parameters (e.g. transmissivity) 

is often too simple with an upper limit on the number of zones that can be 

estimated, while avoiding instability. Thus, the transmissivity realizations that are 

estimated using these approaches are too smooth and do not represent the true 

variability. It is also very important to note that the single valued parameters (e.g. 

single-species biodegradation rate constant) that are estimated by these 

approaches always correspond to a single optimal transmissivity field (and source 

geometry) and their true uncertainty can not be quantified.   

 

The second group of inverse modeling techniques includes some early works that 

tried to parameterize the effects of unresolved heterogeneities through the 

estimation of first and second conditional moments of state variables. In their first 

paper, Graham and McLaughlin (1989a) presented a methodology to calculate the 

non-conditional ensemble concentration mean, macro-dispersive flux, and 

covariance of the concentration at any time and location. They used a numerical 

method to solve the moment propagation equations. In their approach, 

transmissivity field was considered the only source of uncertainty and the 

methodology was developed based on a small perturbation assumption. In their 

second paper Graham and McLaughlin (1989b) presented an improved 

methodology by conditioning the ensemble moments on field observations of 

hydraulic conductivity, piezometric head and solute concentration. The 

conditional moments were updated using a combination of propagation equations 

and a Kalman filter approach at each time step. In a Lagrangian framework, 

Rubin (1991a) presented an approach for conditioning the concentration ensemble 

moments to the measurements of hydraulic conductivity, head and velocity. In 

this work, the steady-state flow equation was linearized and multi-Gaussian 

distributions for transmissivity, head, flow and concentration were assumed. In a 

second paper, Rubin (1991b) extended the previous methodology for conditioning 
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to concentration measurements. The spatial and temporal covariances of 

concentration field were obtained by tracking a large number of particles. The 

calculated covariances were then used in cokriging to interpolate the 

concentration residuals and obtain the concentration deviation at each location at 

space and time. The main limitation of the second group of inverse modeling 

techniques is due to the fact that they do not update the transmissivity field. Also, 

they do not account for large heterogeneity variances.  

 

The third group of inverse modeling techniques (also referred to as Monte Carlo 

methods) involves approaches that generate multiple realizations that are 

conditioned to observations of model parameters and state variables. A great 

advantage of these techniques is that they account for non-uniqueness in inverse 

modeling by generating multiple realizations. The classic examples of this group 

of inverse modeling techniques are the pilot point method (RamaRao et al. 1995) 

and the SSC approach (Gomez-Hernandez et al. 1997). In the pilot point method 

(RamaRao et al. 1995), first, multiple unconditional realizations are generated by 

turning bands method. Each of these unconditional realizations are then iteratively 

updated by addition of the estimated residuals by kriging. The kriging estimation 

of residuals is performed using the transmissivity deviations at the observation 

locations as well as deviations calculated at the pilot points in the calibration 

process. A sensitivity analysis and kriging are used to locate pilot points 

optimally. A least-square objective function and a gradient-based optimization 

algorithm were used to find the optimal deviations at the pilot points. LaVenue 

and de Marsily (2001) and Alcolea et al. (2006) presented the extensions of the 

pilot-point method for transient condition in fractured media and for use of prior 

information. The details of the SSC approach (Gomez-Hernandez et al. 1997) are 

given in Chapter 5. This technique was originally developed for a 2D steady-state 

condition with multi-Gaussian transmissivity distribution. Capilla et al. (1999) 

presented the extension of the method to non-Gaussian fields. The extension of 
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the SSC technique to transient flow condition by joint calibration of 

transmissivities and storativites was presented by Hendricks Franssen et al. 

(1999a). Hendricks Franssen et al. (1999b) developed the extension of the SSC to 

3D flow in fractured media. Wen et al. (2003) presented the extension of the SSC 

to two-phase flow under transient conditions. Finally, Hendricks Franssen et al. 

(2003) and Hendricks Franssen et al. (2008) presented the extension of the SSC to 

coupled inverse modeling of groundwater flow and mass transport and integration 

of remote sensing data in stochastic groundwater flow models, respectively. The 

coupled inversion of groundwater flow and mass transport was developed using a 

Eulerian flow and transport simulator and based on calculation of sensitivity 

coefficients by adjoint state method (Sahuquillo et al 1999), which is 

computationally intensive. According to the results of the synthetic study reported 

in Gomez-Hernandez et al. (2003) and Hendricks Franssen et al. (2003), 

conditioning to both head and concentration data improves the prediction of and 

reduces the uncertainty in the predicted concentration field. Also, conditioning to 

piezometric head data substantially improves the predictions of transmissivity 

field and head distribution and reduces their uncertainty. Based on the results of 

their study, however, incremental value of incorporation of concentration data (in 

addition to head data) into characterization of transmissivity and head fields was 

minimal. 

 

In addition to previous works developed to use the worth of concentration data 

into inverse modeling of groundwater flow and mass transport problems, there is 

a number of works that deal with incorporation of travel time data in inverse 

modeling. Harvey and Gorelick (1995) developed a cokriging method based on 

combining a linear estimator with numerical flow and transport simulations. 

Through first-order approximations of the governing flow and transport equations, 

the conditional covariances between the parameters (e.g. transmissivity) and the 

state variables (e.g. head and travel time) were updated sequentially. Their 
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methodology resulted in a transmissivity field that was conditioned to 

transmissivity, head and travel time data. Also, they concluded that the 

incorporation of solute travel time is crucial for identification of flow paths and 

flow barriers. Li and Yeh (1999) and Cirpka and Kitanidis (2000) presented 

similar cokriging approaches capable of incorporating travel time data. In both 

works, it was concluded that the head data are the most important observations 

that can improve the estimation of transmissivity field. Datta-Gupta et al. (1998) 

and Wen et al. (2002) presented Monte Carlo type approaches capable of 

incorporating travel time data, through the application of simulated annealing and 

semi-analytical quantification of sensitivity equations, respectively. Both works 

concluded that travel time data are important information in recognition of flow 

barriers and flow paths. Another recent work in this area includes the work of 

Huang et al. (2004). Huang et al. (2004) used travel time data in the context of the 

SSC approach to condition both transmissivity distribution and sorption 

distribution to head and travel time data.  

 

2.5.3. Uncertainty in field estimated first-order rate: Literature review 
   
Another aspect of parameter uncertainty (for natural attenuation) has been mainly 

studied in the context of characterizing the uncertainty in the biodegradation rate 

constant determined by some sort of field measurement methodology.  

 

As discussed in Chapter 1, commonly-used field estimation techniques for first-

order biodegradation rate constant include 1D and 2D concentration-distance 

approaches with centerline and off-centerline measurements (Buscheck and 

Alcantar 1995, Chapelle et al. 1996, Wiedemeier et al. 1996, Zhang and 

Heathcoat 2003, Stenback et al. 2003) and mass-flux techniques (Borden et al. 

1997, King et al. 1999, Peter et al. 2004). The major shortcomings associated with 

these approaches are (1) they give estimated values that over/underestimate the 

true rate constant up to two orders of magnitude and (2) they do not provide a 
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measure for uncertainty in the estimated rates under site-specific conditions. The 

potential uncertainties associated with these field estimation techniques are 

studied in a number of works presented below.   

  

Odencrantz et al. (2003) were the first group to point out the problems involving 

the estimation of biodegradation rate constant by calibrating the analytical models 

to field data and/or field measurement techniques. Using a 1D analytical model, 

they showed that uncertainty in field-scale flow velocity and dispersivity values 

translates into uncertainty in estimated first-order biodegradation rates. The 

requirement of sampling along the plume centerline in the majority of the existing 

field measurement techniques also may result in significant uncertainty (error) in 

the estimated first-order biodegradation rate constants. Bauer et al. (2006) 

evaluated measurement uncertainty of first-order degradation rates (estimated 

using centerline approaches) in heterogeneous aquifers. They first generated a 

number of synthetic heterogeneous aquifers with different heterogeneity levels. 

For each heterogeneity level and for each synthetic aquifer, they calculated the 

biodegradation rate constant with different centerline approaches and compared 

the results to the original values used in simulations. They showed that with 

increasing heterogeneity, the measured degradation rate constants become 

uncertain with a high variability (up to two orders of magnitude) around the true 

constant. They also conducted a series of sensitivity analyses to investigate the 

influences of source width, choice of dispersivity values and transport velocity. 

Beyer et al. (2006) performed a similar study to that of Bauer et al. (2006) but 

they adapted a slightly different degradation kinetics model, namely Michaels-

Menten (MM) to their model and kept the original first-order biodegradation 

model as well. In addition to uncertainty assessment for measured biodegradation, 

they also studied the resulted uncertainty in plume lengths and concluded that the 

calibrated MM model performs better in estimating the plume lengths in 

heterogeneous aquifers. Beyer et al. (2007) performed similar study to that of 
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Bauer et al (2006) but this time to take into account the ‘human factor’, the 

centerline of the synthetic plumes were estimated by a large number of 

professionals who were given a number of point head and concentration 

measurements and the approximate location of the source zone. They also utilized 

off-centerline concentration measurements by using the analytical model of 

Stenback (2004) and least-square estimation to find the value of first-order 

biodegradation rate constant. In both cases they showed that the true rate constant 

is overestimated by a few orders of magnitude. For wider plumes, however, fitting 

the analytical model can reduce the degree of overestimation. Recently, Ukankus 

and Unlu (2008) investigated the effects of the range of correlation structure on 

the relationship between the heterogeneity of the aquifer system and error in 

estimated first-order biodegradation rate.  

 

The uncertainties associated with mass-flux techniques have been investigated in 

a number of works including the work of Kubert and Finkel (2006), where they 

showed that the outcomes of the mass-flux techniques can be readily affected by 

heterogeneities in aquifer material and well spacing.  
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2.6 Parameterization for modeling NA of PHCs  
 
   
Natural attenuation response variables should be stated in terms of a number of 

model parameters in such a way that (1) all the important mechanisms 

contributing in natural attenuation of PHCs are simulated; (2) the model 

parameters and their uncertainty can be estimated using the available direct 

measurements of the parameters and observations of the response variables and 

(3) the model is not over-parameterized.   

 

Important natural attenuation mechanisms are explained in Section 2.1. If the 

concentration of the dissolved contaminants is the primary dependent variable, the 

most important transport mechanisms of dissolved contaminants can be 

represented by an expanded version of the advection-dispersion-reaction equation 

(Equation [2.1]) as given by Zheng and Wang (1999):  
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where, Cs represents the dissolved concentration of species s, θ is the porosity of 

the subsurface medium, t is time, xi is the distance along the respective Cartesian 

coordinate axis, Dij is the hydrodynamic dispersion coefficient tensor, vi is the 

seepage or pore water velocity, qsr is the volumetric flow rate per unit volume of 

aquifer representing fluid sources (or sinks), Csr is the concentration of the source 

(or sink) flux, and ∑ nR is the chemical reaction term:        

s
s

n C
t

CR λθρb −
∂

∂
−=∑            [2.8] 

in which, ρb is the bulk density of the subsurface medium, sC is the concentration 

of the contaminant species s sorbed on the subsurface solids, and λ is the first-

order reaction rate for the dissolved phase. The first term on the right hand side of 

Equation [2.7] represents the hydrodynamic dispersion of the solutes (including 
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molecular diffusion and mechanical dispersion). The second term represents 

advection of the solutes due to the bulk movement of groundwater in the pore 

spaces. The third and forth terms on the right hand side of Equation [2.7] 

represent the source/sink of dissolved contaminants with a pre-specified 

concentration and influx (or outflux), and chemical reactions, respectively. In the 

chemical reaction term, aqueous-solid surface reaction (sorption) and first-order 

rate reaction are represented by Equation [2.8].  

 

The governing transport equation is linked to the governing flow equation by the 

Darcy’s law:  
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where, ki represents the hydraulic conductivity in the direction of flow, and h is 

the hydraulic head that is obtained from the solution of governing equation for 

groundwater flow:    
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where, Ss is the specific storage coefficient of the porous medium, and the 

groundwater is assumed to be of uniform density (Zheng and Bennett 1995).  

 

The Equations [2.7] through [2.10] represent advection, dispersion, sorption and 

degradation of dissolved contaminants in a transient groundwater flow regime. 

The timeframe for occurrence of natural attenuation processes is large compared 

to seasonal stresses that bring the groundwater into a transient condition. Thus, in 

the context of parameterizing a model for natural attenuation and for 

simplification purposes, the groundwater is assumed to be in a steady-state 

condition. As a result, the simplified version of Equation [2.10] can be written by: 
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which represents the governing equation for groundwater flow in a steady-state 

condition. The source (sink) flux (qsr) in Equations [2.7] and [2.11] may represent 

addition or removal of water to or from the system by areal recharge or pumping 

activities. Although the effect of areal recharge on groundwater flow velocity and 

dilution and advection of contaminants can be pronounced (Anderson and 

Woessner 1992), the uncertainty in areal recharge has not been modeled in this 

work. The reason is that estimation of areal recharge is very site-specific, as it is a 

function of precipitation and evapotranspiration. Characterizing the uncertainty in 

site-specific precipitation and evapotranspiration is outside the scope of this work. 

The model and associated codes, however, are general and can deterministically 

simulate the effect of areal recharge for field applications.  

 

Sorption of dissolved PHCs to solid particles is a function of the organic fraction 

of soil (foc). Using an analytical model, Alvarez and Illman (2006) conducted a 

sensitivity analysis to evaluate to relative importance of different natural 

attenuation mechanisms (parameters). They varied different model parameters 

over the ranges prescribed in the literature. They concluded that uncertainty in 

biodegradation rate constant (λ) and groundwater velocity (vi) are the most 

important parameters that affect the length of contaminant plumes. They also 

observed that the variability in the organic fraction of soil (foc) has a minor impact 

on the plume length. Their results were in good agreement with the results 

previously obtained by McNab and Dooher (1998). In addition to numerical 

observations reported in the literature, there are some other reasons for excluding 

the sorption in the model developed in this work: (1) estimation of organic 

fraction and its uncertainty is very site-specific, and the choice of prior values for 

foc is quite subjective, which in turn may affect the overall quality of calibration 

and estimation of other more important model parameters (e.g. NAPL dissolution 

rate, Biodegradation rate constant); (2) as mentioned before, the time frame for 

natural attenuation of PHCs in the environment is often in the order of decades. In 
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this situation, the adsorption sites are already occupied by contaminants and the 

effect of variability in soil organic matter on the overall process of natural 

attenuation is considered small.  

 

The importance of the source term (source geometry and dissolution rate) in 

stochastic modeling and parameter uncertainty associated with natural attenuation 

has been discussed by previous researchers (McNab and Dooher 1998, Bauer et 

al. 2004, Ling and Rifai 2007, Miles et al. 2008). As pointed out by Waddill and 

Widdowson (1998) and Mendez et al. (2004), the source term can significantly 

affect the time of remediation (TOR) problem. It is common practice to set the 

contaminant concentrations to pre-specified values in the source areas. However, 

the rate of dissolution of NAPL into groundwater depends on the interfacial area 

between the NAPL and water, aquifer heterogeneity, the size and shape of NAPL 

blobs and the groundwater velocity (Pfannkuch 1984, Powers et al. 1994, Imhoff 

et al. 1994, Mayer and Miller 1996). Many of these factors can not be easily 

estimated under field condition; and as a result, the rate of dissolution of NAPL 

into groundwater usually involves large uncertainties under field conditions 

(Chapter 1).  

 

If transport processes occur at a high rate relative to the NAPL dissolution rate, 

the aqueous phase concentration (Cs) may remain lower than the equilibrium 

concentration (Cs
eq) of the contaminant species s. This effect may be described 

mathematically (Parker et al. 1991, Imhoff et al. 1994) by a mass transfer rate 

coefficient (kNAPL), such that the NAPL dissolution term for species s becomes: 

( )[ ]ss
NAPLNAPL

source CCkR −= eq,0max         [2.12]        

As stated by Parker et al. (1991), the equilibrium concentration (Cs
eq) of every 

contaminant species s can be written as: 

soleq f sss CC ⋅=            [2.13] 

where, fs is the mole fraction of the species s in the mixture of PHC contaminants, 
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and Cs
sol is solubility of pure substrate in water. The NAPL mass of substrate s per 

unit mass of dry soil (Ss
NAPL) decreases as the dissolution occurs. This process can 

be represented by:  

NAPL
s

NAPL
s R
t

S

bρ
θ

d
d

−=             [2.14] 

In other words, dissolution causes the NAPL concentration of species s to 

decrease as the aqueous phase concentration increases.  

 

As reviewed in Sections 2.1.7 and 2.4.2, many models that simulate rather 

complex kinetics and multi-component reactions have been developed. It is 

evident that many of the requisite kinetic parameters for these models can not be 

measured or estimated by routine natural attenuation protocols. Thus, utility of 

these models is generally limited to research (Rifai and Rittaler 2005). In a 

modeling context, simpler approaches with limited number of parameters are 

often preferred as they can be supported by site data and avoid over-

parameterization. In this work, biodegradation of PHC contaminants is 

represented by a first-order reaction model, which can be expressed by:  

( ) t
ss eCtC  0 λ−=              [2.15] 

where, ( )tCs is concentration at time t, 0
sC is concentration at time t = 0, and λ is 

first-order degradation rate. Incorporating first-order biodegradation and NAPL 

dissolution models and excluding the sorption model in Equation [2.7] results in 

the partial differential equation representing dissolution-advection-dispersion-

biodegradation of petroleum hydrocarbon contaminants in groundwater:  
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Equations [2.11] and [2.16] form the basis for all subsequent modeling work. 

According to these equations, a model of uncertainty for natural attenuation of 

PHCs in groundwater can be parameterized in terms of (1) exhaustive distribution 
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of hydraulic conductivities (transmissivities) over the modeling domain and its 

uncertainty, (2) site-specific first-order biodegradation rate constant and its 

uncertainty, (3) areal extent of residual NAPL source and its uncertainty, and (4) 

dissolution rate of NAPL into groundwater and its uncertainty. Uncertainty in the 

value of effective porosity is not modeled in this thesis, because variability in 

porosity and its impacts on the response variables are insignificant (Alvarez and 

Illman, 2006). The calculation of hydrodynamic dispersion tensor (Dij) in 

Equation [2.16]) will be affected by variability in velocity field. The local 

dispersivity values, however, are set to small known values. This is because the 

cell sizes are always smaller than the range of the variograms used in 

geostatistical simulation of transmissivity fields.  
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CHAPTER 3 
 
GEOSTATISTICAL MODELING WITH CPT-UVIF DATA   
 
 
In every groundwater modeling and remediation project, uncertainty exists at 

three different levels (Sun 1994): (1) uncertainty in the site conceptual model 

(SCM), (2) uncertainty in model structure, and (3) uncertainty in the values of the 

model parameters. The primary objective of this thesis is to focus on parameter 

uncertainty for natural attenuation of petroleum hydrocarbons; however, if the 

SCM and model structure are not representative, subsequent characterization of 

parameter uncertainty will be of little value. Thus, it is important to develop a 

plausible SCM in natural attenuation studies for contaminated sites.  

 

Geostatistical techniques can be applied to develop a conceptual model for 

geology, hydrogeology and contaminant source distribution for hydrocarbon 

impacted sites, using data collected by Ultra Violet Induced Fluorescence Cone 

Penetration Testing (CPT-UVIF) and piezometer readings. A few previous works 

have dealt with geostatistical modeling with cone penetration testing (CPT) data. 

In an early work, Yoon and O’Neill (1999) performed variogram analysis and 

applied ordinary kriging to map raw CPT data across the site. They used the 

mapped properties to compute ultimate pile capacities based on three different 

CPT design methods. Elkateb et al. (2001) performed geostatistical simulation 

using the CPT data (tip resistance) to quantify the effect of soil spatial variability 

on liquefaction susceptibility. They performed an explicit trend analysis and 

calculated and fitted the variograms for the residuals. Recently, Lenz and Baise 

(2007) defined an index for liquefaction potential based on raw CPT data and 

mapped the index to determine the spatial distribution of liquefaction potential. 

To the author’s knowledge, the work of D’Affonseca et al. (2008) is the only 
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work reported in the literature that makes use of CPT-UVIF data for 

characterization of spatial distribution of a NAPL source zone and its relationship 

with soil properties. In their work, D’Affonseca et al. (2008) deterministically 

calibrated the areal and vertical extent of NAPL source to soil horizons previously 

characterized by CPT data. The majority of the previous works related to 

geostatistical modeling with CPT data include the application of raw CPT 

attributes (e.g. cone resistance) within the context of studying the liquefaction 

potential. Also, no previous work related to geostatistical characterization of 

NAPL source by CPT-UVIF data has been reported. A number of soil behavior 

type (SBT) charts have been proposed to correlate the raw CPT attributes to soil 

types defined based on their mechanical properties. In this work, instead of using 

the raw CPT attributes, continuous and categorical variables based on the SBTs 

are defined and used in subsequent geostatistical modeling. The primary 

motivation for application of SBT-derived variables instead of CPT raw attributes 

is due to an existing relationship between the SBTs and hydraulic properties of 

the soil through definition of hydro-facies that can be mapped across the site. 

From the CORONA1 project, CPT-UVIF data and piezometer readings are 

available for a former flare pit site at west-central Alberta. In the first section of 

this chapter, a brief overview of the CPT device is presented and the CPT 

readings are used to define discrete (hydro-facies) and continuous variables 

correlated to the hydraulic properties of in-situ soil. In a case study, available 

geostatistical techniques are applied to develop a probabilistic model for ground 

conditions at the site. In the second section of this chapter, a distance function 

algorithm is developed to model uncertainty in areal limits. Then, the distance 

function approach is applied together with a number of widely used geostatistical 

techniques to develop a source zone modeling approach that accounts for 

important secondary sources of information such as distance to the point of 

release, soil texture and distance to water table elevation.       

                                                 
1 Consortium for Research on Natural Attenuation at the University of Alberta 
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3.1 Geostatistical Modeling of Ground Conditions 
 
3.1.1. CPT technology and soil profiling  
 

CPT technology is a method of providing ‘real time’ information about soil type 

and associated design parameters at a high resolution. It was initially developed in 

the 1950s at the Dutch Laboratory for Soil Mechanics in Delft to investigate soft 

soils. It consists of a steel cone that is hydraulically pushed into the ground at up 

to 40,000 pounds of pressure. There are sensors on the tip of the cone that collect 

data. Standard cone penetrometers collect data using sensors the measure cone-tip 

pressure and sleeve friction (Figure 3-1). It is generally applied to depths up to 45 

m, but in some occasions, it has been used as deep as 90 m. According to 

Robertson (1986), the CPT has three main applications in the site investigation 

process: 

• To determine sub-surface stratigraphy and identify materials present; 

• To estimate geotechnical parameters; and, 

• To provide results for direct geotechnical design. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Schematic representation showing the position of the tip, sleeve and 
seismometer on a CPT cone (USGS website – accessed 13/01/09) 
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One of the major applications of the CPT is for soil profiling and classification. 

Extensive experience exists that relates CPT results to soil type. Experience has 

shown that typically the cone penetration resistance, or tip resistance is high in 

sands and low in clays, and the friction ratio, the ratio of the sleeve friction to the 

tip resistance (Rf=fs / qc) is low in sands and high in clays. This observation has 

been incorporated into several soil classification charts such as charts by 

Robertson et al (1986) and Douglas and Olsen (1981) among others (Figures 3-2 

and 3-3). 

 

 

 

 

 

 

 

 

    

 

 

 

 

Figure 3-2: Soil behavior type classification chart (after Robertson et al. 1986) 
 

Douglas and Olsen (1981) claim that CPT classification charts can not be 

expected to provide accurate predictions of soil type based on grain size 

distribution but provide a guide to soil behavior type (SBT). The chart by 

Robertson et al. (1986) is one of the most commonly used CPT soil behavior type 

charts. It uses the basic parameters of cone (tip) resistance and friction ratio. The 

chart is global in nature and can provide reasonable predictions of soil behavior 

type for CPT soundings up to about 20 m in depth. The chart identifies general 

Zone Soil Behavior Type 

1 Sensitive fine grained 

2 Organic material 

3 Clay 

4 Silty clay to clay 

5 Clayey silt to silty clay 

6 Sandy silt to clayey silt 

7 Silty sand to sandy silt 

8 Sand to silty sand 

9 Sand 

10 Gravely sand to sand  

11 Very stiff fine grained (OC) 

12 Sand to clayey sand (OC) 
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trends in ground response such as increasing relative density (Dr) for sandy soils, 

increasing stress history (OCR), soil sensitivity (St) and void ratio (e) for cohesive 

soils (Figure 3-2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Soil behavior type classification chart (Douglas and Olsen 1981) 
 

As presented by Robertson et al. (1986), an approximate estimate of soil hydraulic 

conductivity, or permeability, can be made from an estimate of soil behavior type 

using the CPT classification charts. Table 3-1 provides estimates based on the 

chart shown in Figure 3-2. The discrete nature of soil classification charts makes 

it difficult to perform a statistical analysis on CPT soil classification results. Also, 

as it can be observed in Table 3-1 there is some overlap between the hydraulic 

properties of different SBTs.  
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There are generally three elementary factors controlling tip resistance (qc) and 

sleeve friction (fs) in cone penetration testing (Douglas and Olsen 1981): (1) 

equipment and procedure, (2) soil composition, and (3) environmental 

components (soil in-situ state). In the case that rigorous standardization on test 

equipment and test procedure is followed, qc and fs would be affected only by soil 

composition and soil in-situ state. This is illustrated in a typical soil classification 

chart as two basic tendencies that are almost orthogonal to each other: soil type 

changes in one direction and in-situ soil state (OCR, soil sensitivity, etc.) changes 

in the other. This observation can be mathematically depicted, and two 

independent indices representing the two primary factors can be defined (Zhang 

and Tumay 2003). A curvilineal coordinate system (Figure 3-4) is empirically 

established along the tendencies in the soil classification charts of Figures (3-2 

and 3-3). One of the curvilineal coordinates represents the soil type and the other 

corresponds to the soil-state. This curvilineal coordinate system is then 

transformed to a Cartesian coordinate system by conformal mapping as shown in 

Figure 3-4.  

 

The conformal transformation is accomplished by the following equations: 
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where, U and V represent Soil Classification Index (SCI) and Soil In-situ State 

Index (SISI), respectively. Rf is in % and qc is in units of 100 kilo-Pascal. The 

coefficients in Equations [3.1] are a1 = -11.345, a2 = -3.795, b1 = 15.202, b2 = 

5.085, c1 = -0.269, c2 = -0.759, d1 = -2.960, and d2 = 2.477.  
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Table 3-1: Estimation of soil permeability using SBT chart by Robertson et al. 
(1986) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-4: Curvilineal coordinate transformation by Zhang and Tumay (2003) 
 

Zone Soil Behavior Type Range of permeability (m/s) 

1 Sensitive fine grained 3 × 10-9 to 3 × 10-8 

2 Organic material 1 × 10-8 to 1 × 10-6 

3 Clay 1 × 10-10 to 1 × 10-9 

4 Silty clay to clay 1 × 10-9 to 1 × 10-8 

5 Clayey silt to silty clay 1 × 10-8 to 1 × 10-7 

6 Sandy silt to clayey silt 1 × 10-7 to 1 × 10-6 

7 Silty sand to sandy silt 1 × 10-6 to 1 × 10-5 

8 Sand to silty sand 1 × 10-5 to 1 × 10-4 

9 Sand 1 × 10-4 to 1 × 10-3 

10 Gravely sand to sand  1 × 10-3 to 1 

11 Very stiff fine grained soil(OC) 1 × 10-9 to 1 × 10-7 

12 Very stiff sand to clayey sand (OC)  3 × 10-8 to 3 × 10-6 
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3.1.2. Geostatistical modeling of soil stratigraphy using CPT data 
 

The study site is a former flare pit site (a CORONA site) located in west-central 

Alberta, Canada. Solid stem augering was used for initial drilling. Soil logs show 

a heterogeneous distribution of clay, silt and sandy units (Armstrong, et al. 2003). 

The location of the former flare pit is roughly known to be in the north of the site. 

The exact limits, however, are not known. The site slopes from north to south and 

the direction of groundwater is from northeast to southwest. According to initial 

soil sampling and groundwater analysis, small amount of free-phase hydrocarbon 

(mobile LNAPL) was suspected to remain at the site. The site is suspected to be 

primarily contaminated by residual hydrocarbon and it was characterized through 

logging and sampling 16 boreholes drilled using the solid stem auger method to 

approximately 5 m below ground surface. Based on these data, 18 CPT-UVIF 

cone holes were advanced in two phases and geo-mechanical properties of the soil 

were recorded in a high resolution fashion. The holes ranged in depth from 4 to 11 

m below ground surface. Figure 3-5 shows the locations of the CPT-UVIF cone 

holes (used in the geostatistical simulation) for former flare pit site (with and 

without detection of any residual NAPL at any depth) and the geostatistical 

modeling domain. The modeling domain is 60 m in east-west direction, 80 m in 

north-south direction, and 16 m in depth with a Cartesian grid with 120 × 160 × 

56 cells in each direction, respectively.  

 

In geostatistics, the decision of which data should be pooled together for 

subsequent analysis is the “decision of stationarity”. The decision of stationarity 

may be revised based on further data analysis. For instance, while observing a 

bimodal histogram for data, one might want to consider separating the data into 

two classes with distinct statistical and geological properties (Deutsch 2002). In 

fact, separating the data set into more homogenous geologic and hydrogeologic 

zones improves the accuracy of the estimates. Indicator kriging (simulation) 

offers a method for categorical data showing non-stationarity in its basic statistics. 
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Indicator kriging is used to calculate the probability of various ‘soil types’ or 

‘geological regions’ with distinct statistical and geological features. This practice 

improves data homogeneity and makes the decision of stationarity more 

appropriate (Dagdelen and Turner 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: Locations of CPT-UVIF cone holes at the former flare pit site. The 
solid red circles show the data locations with detected residual NAPL and the 
solid blue circles show the data locations without any residual NAPL observed.  
 

 
Figure 3-6-a shows the bimodal histogram of the soil classification index (SCI) 

for all data (after declustering) based on the data collected by 18 CPT holes across 

the site. By grouping SBTs together based on their hydraulic properties, we are 

able to define three hydro-facies with relatively distinct statistical (and hydraulic 
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properties). Figure 3-7 and Table 3-2 display the definition of three distinct facies, 

namely higher permeability unit (HP), medium permeability unit (MP) and lower 

permeability unit (LP) based on their hydraulic properties using CPT soil 

behavior type chart by Robertson et al. (1986) and their global proportions. The 

histograms of SCI attribute for the defined facies HP, MP and LP are shown in 

Figures 3-6-b, 3-6-c and 3-6-d, respectively.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-6: (a) The histogram of the SCI for all data – after declustering, and the 
histograms of the SCI for (b) HP facies, (c) MP facies and (d) LP facies.    
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fact that in geostatistical analysis the model is constructed on a Cartesian grid 

(Deutsch 2002). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7: (a) Grouping SBTs into three categories (HP, MP and LP) based on 
their estimated permeability values, (b) the cross-plot of cone (tip) resistance 
versus friction ratio values obtained from the set of 18 CPT holes across the 
modeling domain.    
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Higher Permeability facies 

Medium Permeability facies 
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Table 3-2: Global proportions and range of permeability values for HP, MP and 
LP facies; the ranges of permeability values are obtained based on the assumption 
of normally consolidated soil.   

 

Thus, prior to calculation of directional variograms for different 

categories, a vertical coordinate transformation must be performed, considering 

various common deposition-erosion scenarios. As a standard practice, horizontal 

experimental variograms are calculated after coordinate transformation and the 

scenario showing highest degree of correlation is retained and the rest of the 

geostatistical modeling is done in the new coordinate system. The final results are 

back-transformed to the original coordinate system. Four different scenarios are 

schematically shown in Figure 3-8. As shown in Figure 3-9, the resulting 

stratigraphic variograms for different scenarios closely resemble each other for 

different categories. However, for MP facies (with the highest global proportion), 

slightly higher correlation is observed in the original vertical coordinate before 

stratigraphic transformation (elevation scenario). Thus, no stratigraphic 

transformation is implemented for this site and the original coordinate system is 

used in the subsequent calculation of experimental variograms.  

 

Indicator kriging (IK) and simulation (Deutsch and Journel 1998) are used to 

directly estimate the distribution of uncertainty in categorical variables. The first 

step in indicator formalism is to code the data as indicator values: 

( ) { }
⎪⎩

⎪
⎨
⎧

==
otherwise,0

atpresentis typesoilif,1
present  typesoil; α

α

u
u

k
kProbzi k         [3.2] 

 
 

Facies Type Global Proportion (%) Range of permeability (m/s) 

LP 29.5 1 × 10-10 to 3 × 10-8 

MP 55 1 × 10-8 to 1 × 10-5 

HP 15.5 1 × 10-5 to 1 × 10-3 
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Figure 3-8: (a) A five layer geological structure with soil samples taken from 
Layer 3, (b) and four different stratigraphic transformation scenarios: elevation, 
proportional, truncated and erosion. The shaded composites represent horizontal 
variogram calculation pairs (after McLennan 2004).     
 
 
The stationary prior probabilities of different soil types ( ( ) 3,2,1, =kkp ) have 

been determined using the histogram of declustered data (Table 3-2). According 

to [3.2], residuals can be calculated as:  

( ) ( ) ( ) 3 2, 1,   andn    ..., 2, 1,  with                ;; ==−= kkpkizY k ααα uu          [3.3]    

Kriging of the residuals is used to derive the probability of occurrence of each soil 

type at each unsampled location. Thus, the model of uncertainty at every 

unsampled location u will be (Deutsch 2002):  

( ) ( ) ( ) ( ) 3 2, 1,           with;.;
1

=+= ∑
=

kkpzYkkp k

n

IK α
α

αλ uu                                [3.4]    

where, the subscript IK denotes indicator kriging, λα’s are kriging weights that are 

calculated by (simple) kriging equations and account for closeness to data 
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locations as well as overall uncertainty in data and redundancy in nearby data. 

The simple kriging equations are expressed by (Goovaerts 1997): 

( )
( )

( ) ( ) ( ) n ..., 1,h             wit;; ;
1

uuuuuu
u

=−=−∑
=

αλ αβα
β

β kIkI

n

k zCzCz          [3.5] 

where, CI(h; zk) is the covariance function of the indicator random function i(uα; 

zk). To solve the simple kriging system of equations, the covariance function must 

be calculated for different lags and in different directions. For this purpose, 

experimental indicator variogram calculation and indicator variogram modeling is 

performed. Figure 3-9 and Table 3-3 show the details of variogram calculation 

and modeling. As stated before, all variogram calculation and modeling is done in 

original coordinates system (elevation scenario). As shown in Table 3-3, spherical 

type variogram has been used in all the nested structures that are modeled for the 

directional indicator variograms. The spherical variogram is defined by: 
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⎞
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ah  if   ,  5.05.1.Sph.

3

c
a
h

a
hc

a
hchγ                                            [3.6]         

where, a is the range, and c represents a positive variance contribution or sill 

value. In the context of indicator kriging (or simulation) indicator variograms are 

calculated for each category separately, using the available site-specific data. The 

horizontal solid lines on the variograms show the sill, which represents maximum 

variability associated with each soil type in the modeling domain. It can be 

calculated by ( )pp −1  where ( )kzFp =  is the global proportion of indicator 

variable before declustering. The range of a variogram is the distance where the 

the variogram reaches the sill. As the range becomes larger, smaller variability is 

observed in nearby data. Comparing the ranges of vertical and horizontal 

variograms in Figure 3-10, the effect of stratification can be clearly observed, 

since the vertical range is much smaller than the horizontal range.  
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Figure 3-9: (a) Stratigraphic horizontal variograms for facies LP, (b) facies MP, 
and (c) facies HP. The blue, green, red and grey lines represent elevation, 
proportional, truncated and onlap scenarios.     
  
 
Sequential Indicator Simulation (SIS) (Journel and Gomez-Hernandez 1993) is a 

Monte Carlo simulation technique built on Indicator Kriging (IK) explained 

above. In order to populate the whole modeling domain with simulated values, 

grid nodes are visited sequentially in a random path. At each grid node the 

following procedure is repeated: (1) searching for nearby data and previously 

simulated values, (2) performing IK to build a distribution of uncertainty, and (3) 

drawing a simulated value from the distribution of uncertainty. 
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Figure 3-10: (a, b) Horizontal and vertical variograms for facies LP, (c, d) for 
facies MP and (e, f) for facies HP.  
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Category Nugget c1 NS1 ah1 av1 c2 NS2 ah2 av2 

LP 0.07 0.05 sph 5. 0.8 0.0891 sph 35. 4. 

MP 0.11 0.08 sph 15. 2.8 0.055 sph 40. 2.8 

HP 0.01 0.03 sph 10. 1.1 0.0818 sph 10. 2.8 

 
Table 3-3: Details of the variograms modeled for facies LP, MP and HP.   
 
 

It should be noted that the series of indicator-derived probability values must be 

non-negative and sum to one. This is not guaranteed by indicator kriging and an 

a-posteriori correction is applied by re-standardizing the conditional probabilities 

to sum to one. A large number of equi-probabale realizations of ‘soil-type’ are 

generated. These realizations reproduce the input data equally well. A number of 

checks should be done to validate the geostatistical model. These checks include 

reproduction of input statistics such as histogram and variograms, honoring input 

data, consistency with the available information about geology of the site and 

closeness of estimated probabilities to the true soil types. Four indicator 

realizations of soil-type are shown in Figure 3-11. The realizations are clipped by 

ground topography that is modeled by (ordinary) kriging with surface elevation 

data available at boreholes and CPT holes. The SIS realizations often show 

unrealistic short-scale variations. The other concern is that the facies proportions 

often depart from their target input proportions. Especially, facies types with 

relatively small proportions may be poorly matched. The main source of this 

discrepancy is the order-relations correction algorithms. Therefore, a maximum a-

posteriori selection (MAPS) technique (Deutsch and Journel 1998) was 

implemented to remove the unrealistic short-scale variations and to ensure the 

reproduction of input global proportions for all realizations.     
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Figure 3-11: Cross-sectional view of four SIS realizations of soil-type. It is 
common in all realizations to see the higher permeability facies (HP) to be present 
at the northern part of the site.  
 

The generated SIS realizations can be used for 3D stochastic contaminant 

transport simulation purposes by assigning average/calibrated hydraulic 

conductivity values (from Table 3-1) to each hydro-facies (as defined in Figure 3-

6-a), while avoiding the non-stationarity problems. Application of CPT data in 

construction of 3D statistical models for hydraulic conductivity distribution can 

be considered useful and is preferred to traditional techniques such as slug tests, 

as CPT data are collected in a high-resolution fashion and can provide detailed 

information about layering in the aquifer. Rigorous calibration of hydraulic 

conductivities of the hydro-facies is a preferred approach as compared to taking 
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the average values from the Table 3-1. Such calibration can be implemented 

locally using the average values obtained by traditional point measurement 

approaches as well as in the field-scale by calibration to head data. It is, however, 

out of the scope of this research.    

   

 A posterior probability map (E-Type mean) can also be created to give a better 

understanding of the site conceptual model in terms of its hydraulic response. By 

combining the understanding from the site geology with the understanding of 

hydrogeology of the site (obtained by the studying the recorded groundwater table 

elevations at boreholes and cone holes as well as the geostatistical analysis), a 

simple conceptual hydrogeological model can be developed for the site. As shown 

in Figure 3-12, the hydrogeological system of the site is composed of an 

unconfined aquifer, with some perched water tables in the unsaturated zone. The 

site is mainly composed of glacial till; however, a relatively large sandy unit is 

embedded in the unsaturated zone at the northern part of the site. As will be 

explained in Section 3.2, the large sandy unit at the north of the site has an 

observed correlation with presence of residual NAPL contaminants.        

 

 

 

 

 

 

 

 

 

Figure 3-12: Development of a hydrogeologic SCM for the study site. The 
geology of the site is mainly composed of glacial till with a large sandy unit at the 
north of the site. The groundwater system is an unconfined aquifer with some 
perched water tables in unsaturated zone.     
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As a summary, in Section 3.1 of this thesis, a case study was presented where soil 

behavior type (SBT) charts were used directly to define categorical and 

continuous variables to construct a probabilistic model for hydrogeological 

properties of a real aquifer. The definition of categorical variables (hydro-facies) 

based on CPT data and construction of the associated probabilistic model can be 

used directly in 3D Monte Carlo simulations of contaminant transport or as a prior 

model for calibration of groundwater models (similar to the work of Poeter and 

McKenna 1995). The definition of continuous variables based on CPT data will 

subsequently be used (Section 3.2) in calibration and prediction of 

presence/absence of NAPL contamination given soil texture as a secondary 

variable.      
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3.2 Geostatistical Modeling of Residual NAPL Source 
 
 
In contamination scenarios associated with petroleum hydrocarbons, a large 

portion of free phase hydrocarbon is recoverable using available technologies. It 

is very difficult, however, to recover residual NAPL with in-situ technologies and 

it usually becomes a long-term source of groundwater contamination. Despite 

several complex models proposed to quantify the rate of mass transfer between 

residual hydrocarbon and groundwater, less attention has been paid to the 

geometry of residual NAPL sources and their uncertainty in fate and transport 

modeling studies. In unconfined aquifers, distribution of residual LNAPL in the 

subsurface depends mostly on the distance to the point of release, soil texture and 

seasonal water table fluctuations.  

 

When oil LNAPL is accidentally released, it migrates vertically and laterally 

under the gravity and capillary forces. When the volume of the release is 

sufficient, the LNAPL will migrate through the unsaturated zone to the capillary 

fringe and the water table (Figure 3-13-a).  Due to capillary forces, some LNAPL 

is always retained in the soil pores as residual or immobile NAPL. In fact, 

LNAPL coexists with water (and air) in the soil pores. LNAPL saturations are 

always less than 100 percent but may range from as little as 5 percent to over 70 

percent (Figure 3-13-b). As the remaining mobile LNAPL continues to migrate 

through the subsurface, the volume of mobile product decreases as NAPL 

becomes trapped as isolated droplets within the soil pore network. Thus, LNAPL 

plumes are spatially self-limiting, unless continually supplied from an ongoing 

release (API 2004). While migrating through the subsurface, LNAPL is 

significantly affected by the heterogeneous nature of the soil strata: slight 

differences in soil texture may promote preferential pathways within the aquifer 

horizontally and vertically (Essaid et al. 1993). Also, LNAPL is significantly 

influenced by vertical fluctuations in the water table. These fluctuations enhance 
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the development of the residual LNAPL in the smear zone. The residual NAPL is 

almost impossible to be removed and creates a long-term source of pollution as it 

partitions slowly into the aqueous and vapor phases. 

 

 

 

 

 

 

 

 

Figure 3-13: (a) A schematic representation of LNAPL release in the subsurface, 
and (b) Representation of LNAPL saturations in the pore space of saturated zone 
(API 2004) 
 

A review of the literature shows a number of techniques are proposed to quantify 

the distribution of NAPL sources. They can be grouped into analytical techniques, 

numerical techniques and inverse modeling techniques (reviewed in Chapter 1).  

 

An analytical solution has been presented by Huntley and Beckett (2002) based 

on soil capillary equations of van Genuchten (1980) to quantify the vertical 

saturation profiles for the LNAPL/water/air system across the capillary fringe. 

They then estimated the groundwater flux through the source zone based on the 

relative permeabilities influenced by phase saturations, and calculated the 

emissions to the aqueous phase. Although such analytical approaches are 

relatively simple and easy to implement, they are limited because they can only be 

applied to very simple geometries of NAPL source zones. As discussed above, the 

effect of soil texture heterogeneities and NAPL redistribution by temporal 

groundwater table fluctuations result in NAPL source geometries that are far more 

complex than what is modeled by analytical techniques. Thus, alternatively, a 

(b)(a)
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number of numerical approaches have been proposed to simulate the LNAPL 

distribution and resulting contaminant emissions, whereby the geologic 

heterogeneity, transient flow conditions and dissolution factors can be considered. 

In multiphase flow modeling studies carried out at the site of a crude oil spill, 

Essaid et al. (1993) and Dillard et al. (1997) reproduced general large-scale 

features of the observed oil body. However, both studies had limited success in 

reproducing local oil saturations and highlighted the importance of accounting for 

the uncertainty in the hydrogeological parameter values. Essaid and Hess (1993) 

presented a stochastic modeling study of oil infiltration into a hypothetical glacial 

outwash aquifer by performing a series of Monte Carlo simulations with different 

spatial permeability distributions. They were able to reproduce the ensemble 

mean saturations by using the mean hydraulic properties. They, however, 

observed that localized oil saturations for individual realizations deviated 

considerably from those obtained using uniform mean properties as input. Similar 

observations have been reported by Kueper and Gerhard (1995). The works of 

Zhu (2001) and Chen et al. (2006) are among the other related works in this area.  

 

Given the fact that mechanisms that govern the distribution/re-distribution of 

residual NAPLs are quite complex and site-specific, development of probabilistic 

models using site-specific data is required. A number of field investigation 

approaches have been proposed for collection of site-specific data in NAPL 

source zones. The ultra-violet-induced-fluorescence cone penetration testing or 

CPT-UVIF (Pepper et al. 2002, Kram et al. 2004) is an advanced technology that 

is commonly used for this purpose. To the author’s knowledge, the work of 

D’Affonseca et al. (2008) is the only work that makes use of UVIF data for 

development of a model for DNAPL sources. Their work is deemed limited due to 

the fact that they perform a deterministic calibration between the UVIF response 

and soil properties. 
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As an alternative to previous approaches, a forward probabilistic model is 

proposed. The presented probabilistic model accounts for uncertainty in areal 

limits (through explicit boundary modeling) as well as the effects of soil texture 

and water table fluctuations (through geostatistical data integration). This work is 

particularly aimed at contamination by residual LNAPL, as the pools of residual 

LNAPL are quite consistent relative to the dynamics of groundwater flow and 

transport; and a static distribution can be reasonably assumed for residual LNAPL 

over a long period of time. It is also assumed that the approximate location of the 

source zone is roughly delineated by the observation wells. In other words, the 

proposed methodology gives a tool to evaluate the uncertainty in the areal extent 

and spatial distribution of a source zone whose existence is proven and its 

location is roughly known.  

 

In this section, boundary modeling approaches are briefly reviewed; and the 

development and application of the distance function (DF) algorithm for modeling 

the areal limits of source zones are explained. In the next section of this chapter, a 

categorical stationary random variable is defined using CPT-UVIF data to 

represent presence/absence of residual LNAPL contamination. Two different 

geostatistical data integration techniques, namely sequential indicator simulation 

with locally varying means (LVM) and Bayesian updating (BU), are used to 

simulate the stationary random variable within the areal extent of the residual 

LNAPL plume with soil texture and the distance to water table as secondary 

variables. Assumptions of full data independence and conditional independence 

are adopted to combine secondary data sources. Subsequently, cross-validation is 

implemented to show the value of secondary data in improving the predictive 

ability and compare the performance of the two geostatistical techniques used.  
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3.2.1. The Distance Function (DF) Algorithm: Introduction  
  
Geostatistical estimation and simulation techniques are applied with Stationary 

Random Functions (SRF) within geometric limits imposed by areal (or 

volumetric) bounding limits (or surfaces). There is often significant uncertainty in 

areal boundaries depending on the amount of data available. Thus, point 

measurements of soil NAPL concentrations may not be directly used in 

geostatistical modeling of contaminant source zone, unless the areal (volumetric) 

boundaries of the stationary domain is reasonably defined and its uncertainty is 

characterized. In fact, quantifying this uncertainty with probabilistic boundary 

models is an essential aspect of making a reasonable decision of stationarity.  

 

A number of boundary modeling approaches have been proposed which range 

from entirely deterministic techniques to entirely stochastic techniques. 

Deterministic Digitization for mining applications (Houlding, 1994), volume 

function (Cowan et al. 2003), object-based modeling (Bridge and Leeder, 1979), 

surface-based modeling (Pyrcz et al. 2005), and stochastic pixel-based techniques 

such as sequential indicator simulation (Journel and Gomez-Hernandez 1993) are 

among the relevant techniques. The volume function approach represents 

boundary surfaces indirectly and results in a smooth volume function within 

which a constant valued surface representation of the desired boundary exists. It is 

simple and flexible. However, it needs a large amount of hard data and there is no 

access to global uncertainty. The distance function algorithm is similar to the 

volume function approach. But, it has been modified to satisfy the condition of 

unbiasedness and to have direct access to the global uncertainty. All other 

techniques (object-based modeling, surface-based modeling and stochastic pixel-

based techniques) either require a large amount of hard and soft data that makes 

them limited when data is sparse, or require a-priori knowledge about the location 

of boundaries, or the possible shape of the object (source zone) being simulated, 

which are not readily available.  
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The definition of the DF is related to the notion of distance to an interface 

separating two distinct domains within which two different SRF will subsequently 

be developed for geostatistical modeling. Distance is measured to the nearest 

unlike data location. Distance can be positive or negative depending on direction 

from the inside or outside the source. Thus, a first guess for the bounding 

interface of interest would be the line corresponding to a constant value of DF=0. 

The DF smoothly varies between increasingly positive values inside and further 

away from the boundary interface to increasingly negative values outside and 

further away from the boundary interface.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-14: (a) Calculation of DF for sample points deemed inside and outside of 
the source zone and a first guess for the location of boundaries with tracing the 
line of DF = 0.0. (b) A boundary modeling example with an arbitrary number of 
control points (white circles) that are added at locations outside of the areal limits 
of interest. Red and grey circles show a layout of sample points deemed 
contaminated and uncontaminated, respectively.   
 

An initial binary coding of the available sample data in terms of ‘inside’ and 

‘outside’ the source zone is a prerequisite for constructing a DF. The DF is 

calculated for all sample points for subsequent interpolation. Figure 3-14 shows 

(a)

 (b) 
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(1) sampling locations and control points are coded for being inside and outside of 

the source zone, (2) DF calculated as the distance to the nearest unlike data 

location, and (3) an initial guess for the boundaries that traces the line 

corresponding to DF equal to zero.  

 

If sampling locations are sparse, an interpolation technique must be employed to 

define the boundary interface. The algorithm used to interpolate the DF values 

should produce realistic variations in the DF across the domain. Kriging and 

inverse distance are flexible geostatistical estimation algorithms that can generate 

suitably smooth DF estimates for realistic boundary interfaces. In this work, 

inverse distance interpolation is employed, as negative weights are avoided and, 

by definition, the DF attribute is not a stationary variable. An inverse distance 

estimate at an unsampled location u0, is a weighted linear combination of N 

surrounding distance function data, DF(ui), in a search neighborhood:    
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The weights, )( iuIDλ , are calculated by:  
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where, d(ui) is the Euclidian distance between the estimation location u0 and the 

sample data at location ui, ω is the distance exponent and c is a constant 

controlling short-scale variations. The exponentω controls the smoothness of the 

inverse distance estimates, which typically is between 0.5 and 2.0. The search 

neighborhood for inverse distance interpolation is often calibrated by cross-

validation to limit the number of data used in interpolation (Rojas-Avellaneda and 

Silvan-Cardenas, 2006). In the context of the DF algorithm, larger search 

neighborhoods can ensure smooth estimates. DF conditioning data are reproduced 

exactly. The continuous DF is represented discreetly on a Cartesian grid. As the 
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grid resolution increases, a smoother boundary interface is obtained. The DF is 

not a stationary random function, and traditional probabilistic approaches cannot 

be used for uncertainty assessment. In this work, an alternative novel approach is 

proposed by introducing the concept of an uncertainty band and its associated 

parameterization.     

 

3.2.2. The DF Algorithm: Quantification of global uncertainty – data 
conditioned estimation  

 
Kriging and inverse distance weights are typically dependent on the geometrical 

arrangement of data, and not on the actual data values. McLennan (2007) 

presented an estimation methodology with data-dependent weights in kriging or 

inverse distance interpolation. The modified form of inverse distance interpolation 

can be represented by:  
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* )()()()( uuuu λ                                                          [3.9] 

where, )( i
DCf u is the data conditioning factor that depends on the actual 

numerical values of the data (not their geometrical arrangement). It is set equal to 

1.0 in classical kriging and inverse distance.  All other terms have been defined 

previously. The choice of )( i
DCf u to DF data is crucial in this approach and 

corresponds to different positions of risk. As shown in Figure 3-15, dilated 

(larger) and eroded (smaller) boundaries can be generated with linear and 

quadratic parameterization. The negative sloping line gives gradually higher 

weight to DF samples that are more negative and gradually lower weights to DF 

samples that are more positive, producing a DF distribution from which eroded 

smaller boundary may be extracted. Virtually any amount of uncertainty can be 

tuned in with this approach. In the work of McLennan (2007), a linear 

parameterization was used and optimistic and pessimistic boundaries were 

identified by ‘selection’ of a number of different values for DCfmin . 
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Figure 3-15: (a) Linear and (b) quadratic parameterization of data conditioning 
factors for dilated (larger), intermediate and eroded (smaller) boundaries 
(McLennan, 2007). 
 

In this work, a more general parameterization scheme is used for data 

conditioning, which makes it possible to define a band of uncertainty and 

‘calibrate’ the data conditioning factors for a given well arrangement. The 

modified inverse distance interpolation with the proposed data conditioning is 

given by:    
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where, α and β are scaling and separation factors, respectively. All other terms 

have been defined previously. α can take any value greater than zero. Similar 

to )( i
DCf u , increasing or decreasing α  results in dilated or eroded boundary 

domains. The effect of changes in α on the location of the boundaries (DF = 0.0) 

for the given well arrangement in Figure 3-13, is illustrated in Figure 3-16. The 

separation factor, β, is closely related to the notion of the uncertainty band and 

can take any value greater than or equal to zero. For a given well arrangement, the 

uncertainty band (UB) is defined as a probabilistic areal interval that, with a 

specific level of confidence includes the unknown actual boundary. Figure 3-17 

shows an uncertainty band can be characterized by its width and centerline, and a 

uniform probability distribution. Other statistical distributions could be adopted.  

 

(a)  (b)
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Figure 3-16: Location of boundaries corresponding to different scaling factors: (a) 
α = 1.00, (b) α = 0.50 and (c) α = 1.50; with contaminated wells shown as black 
circles and uncontaminated wells shown as white circles.  
 
 
 

 

 

 

 

 

 

Figure 3-17: (a) Uncertainty band and (b) its conditional cumulative distribution 
function along A-A’ cross-section. 
 

As shown in Figure 3-18, α and β control the width (WUB) and the location of 

centerline (CUB) of the uncertainty band, and the uncertainty band is bounded by 

dilated and eroded boundaries. Figure 3-19 shows the uncertainty bands for 

different α and β values for the well arrangement shown Figure 3-13. As 

expected, the proposed data conditioning methodology results in wider 

uncertainty bands in areas where sample locations appear to be more distant. 

Control points can be added to locations which are known a-priori to be inside or 

outside of the contaminated area (Figure 3-14).  
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Figure 3-18: (a) The centerline and width of the uncertainty band, and data 
conditioning by α and β and (b) distance functions before and after data 
conditioning (α <1.0). 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-19: The centerline and width of uncertainty band, and data conditioning 
by α and β  
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3.2.3. The DF Algorithm: Quantification of global uncertainty - 
Calibration of the parameters 

 
The space of uncertainty for areal limits is parameterized by scaling and 

separation (α and β ) factors. An appropriate scaling factor, α, ensures the 

unbiasedness of the resulting uncertainty band and a proper separation factor, β, 

ensures the fairness of the probability distributions. In essence, α and β should be 

calibrated. In this work, a large number of synthetic limits are generated for the 

given well arrangement to calibrate scaling and separation factors. The generated 

synthetic boundaries are considered as ensemble of true boundaries for the given 

well configuration, and the α and β  factors that lead to unbiased estimation of the 

plume size and fair uncertainty assessment are determined. More details are given 

below. 

 
First, all observation wells and control points are coded as 1’s (contaminated 

wells) or 0’s (uncontaminated wells), and a directional search angle, θ, is 

specified. Then, for every contaminated well (coded as 1), a directional search is 

implemented and the directions that include a closest unlike (coded as 0) data 

location are identified as valid search directions and those include a closest like 

(coded as 1) data location are identified as null search directions (Figure 3-20). In 

order to generate a synthetic plume, for each contaminated well (coded as 1) a 

search direction is randomly selected. The selected search direction can be either 

a null search direction or a valid search direction. If a valid search direction is 

selected, a new imaginary well is added to the setting. This imaginary well is 

randomly located on a line that connects the original contaminated well to the 

closest unlike (uncontaminated) well location. The new imaginary well is 

randomly coded as either contaminated or uncontaminated. The DFs are then 

recalculated for the new setting and mapped by inverse distance interpolation. The 

line of DF = 0.0 is traced to create a new realization. The size of the search angle 

θ, its starting orientation and the size of the search neighborhood for interpolation 
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are important parameters in this process. Particularly, as θ decreases more short-

scale features appear in the generated synthetic plumes. In this work, a wide range 

of directional search angle and search radii have been used to create a total of 400 

realizations that represent the space of uncertainty associated with areal limits. 

Figure 3-21 shows nine synthetic realizations created for the given well 

configuration. The synthetic plumes resemble different possibilities (sizes and 

geometries) for the distribution of contaminants for the given well arrangement. 

This simple methodology generates realizations that represent different scenarios 

for the source zone distribution. Any other reasonable technique could be adapted 

and used to calibrate the α and β  factors.     

 
The α and β  factors should be simultaneously calibrated. The centerline of the 

uncertainty band is calibrated to ensure unbiasedness; and the width of 

uncertainty band is calibrated to ensure fair probability distribution. The α and β 

values are determined through minimization of the following objective-function:   

( ) ( )[ ]
2

*

1

,,,, ∑
=

−=
Mq

qj
jj RPPRS βαβα                                                                   [3.11] 

where, Pj ( j =q1, … , qM) are the true probabilities corresponding to quantiles q1, 

… , qM used in optimization. The calculated probabilities ( )RPj ,,* βα  are 

quantified as the proportion of synthetic plumes (R) that fall inside the q1, … , qM 

quantile (probability) maps. These quantile maps are derived from the uncertainty 

band calculated for a combination of α and β values. The larger the number of 

realizations used in calibration, the smoother the objective-function will be. 

However, increasing the number of quantiles and realizations will significantly 

increases the calculation time of the objective-function.  
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Figure 3-20: Generating multiple synthetic plumes by performing a directional 
search with a search angle (θ) and adding random wells (solid black circles) to the 
setting. (Red circles represent contaminated wells and white circles are 
uncontaminated wells) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-21: A few synthetic realizations created for the given well configuration. 
The hard coded data are honored in all realizations (Black circles represent 
contaminated wells and white circles are uncontaminated wells). 
 

Valid search direction 
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A downhill simplex algorithm (Nelder and Mead 1967) has been used to 

effectively reduce the required CPU time. The optimization algorithm results in 

calibrated values of α = 1.44 and β = 21.10 for the given well configuration. 400 

realizations of synthetic limits and q10, q30, q50, q70, q90 quantiles were used in the 

calibration process. Table 3-4 presents the calculated proportions corresponding 

to each quantile. There is a close match to the true probabilities. For illustration 

purposes, an exhaustive search on the values of α and β has been also 

implemented and the resulting objective-function surface is plotted in Figure 3-

22. The exhaustive search results in calibrated α and β values, close to those 

obtained from downhill simplex algorithm. Figure 3-23 shows the uncertainty 

band and the p10, p50 and p90 maps associated with calibrated values of α and β. 

Realizations can be drawn from the calibrated uncertainty band and used in Monte 

Carlo simulations to quantify the uncertainty in areal limits of the binary 

stationary random variable representing absence or presence of contaminants.  

 α = 1.441 , β = 21.1 
 P10 P30 P50 P70 P90 

True 0.1 0.3 0.5 0.7 0.9 
( )βα ,S  

Calculated 0.125 0.276 0.497 0.727 0.888 0.0021 

Table 3-4: Comparing calculated proportions with true probabilities for the 
calibrated uncertainty band with α = 1.44 and β = 21.1.   

 
 
 
 
 
 
 
 

 

 

 

Figure 3-22: The objective-function surface for the given well configuration.   
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Figure 3-23: (a) The calibrated uncertainty band and associated (b) p90, (c) p50, 
and (d) p10 maps for the boundary modeling example. 

 
3.2.4. Data Integration for characterization of distribution of residual 

NAPL 
 

The boundary modeling approach presented above can be used to quantify 

uncertainty in the areal limits of a residual NAPL plume for the former flare pit 

site shown in Figure 3-5 (based on the layout of the 18 CPT-UVIF wells). Figure 

3-24 shows the calibrated uncertainty band for the former flare pit site, which has 

been determined by assigning 56 control points at the boundaries of the modeling 

domain (one control point every 5 m). The associated calibrated scaling and 

separation factors are 1.19 and 38, respectively.   

 

In order to model small-scale variability within the areal limits, UVIF data 

collected at a hydrocarbon impacted site are used to build the model of 

uncertainty in TUVIF (the indicator variable that is defined based on UVIF readings 

and represents presence or absence of residual NAPL) across the modeling 

domain. Multiple realizations are then drawn from both the DF model and the 
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geostatistical model constructed for TUVIF. These realizations are combined to 

form the final model of uncertainty for distribution of residual NAPL at the 

hydrocarbon impacted site.     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-24: The calibrated uncertainty band for the given layout of CPT-UVIF 
cone holes. The associated scaling and separation factors are 1.19 and 38, 
respectively.  
 

CPT-UVIF has been frequently used in environmental site characterization to 

delineate soil texture as well as lateral and vertical hydrocarbon distribution. 

Commercially available CPT-UVIF is a standard CPT cone coupled with a 

module to detect ultra-violet-induced-fluorescence generated by aromatic 

hydrocarbons. The UVIF module consists of a high intensity UV light projected 

through a sapphire window into the surrounding soil, and a photo multiplier tube 

sensor to record fluorescence. UVIF response may be affected by the size of pores 

and pore throats (Alostaz et al. 2008). This effect can introduce an artifact in 

prediction of distribution of NAPL, if the UVIF response is directly related to 

NAPL concentration or saturation. This artifact can be avoided by considering a 
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threshold value on UVIF voltage and defining the binary stationary random 

variable (TUVIF) for presence/absence of NAPL contamination.   

 

As stated before, the available CPT-UVIF data used in this study are from a 

former flare pit site located at west-central Alberta, Canada. Figures 3-5 and 3-24 

show the locations of sampling points and the calibrated uncertainty band for the 

site, based on the layout of CPT-UVIF data. Site-specific data from multiple data 

sources such as soil texture and the distance to water table can be combined to 

create a 3D prior probability map for presence or absence of contamination. The 

conditional distribution of the binary random variable TUVIF is then combined with 

the prior probability map to build a 3D updated posterior probability distribution.  

 

3.2.5. Data Integration: Primary hard data 
 

The recorded UVIF data may be affected by the size of pores and pore throats. 

This could introduce a bias in the distribution of residual NAPL, if we assume 

there is a direct relationship between the UVIF readings and NAPL 

saturation/concentration. To avoid the bias, a threshold value is calibrated based 

on the UVIF response voltage and site-specific residual NAPL concentrations. 

The categorical variable TUVIF is defined as:   

( )
⎩
⎨
⎧

=
 otherwise   0,

 ulocation at present  is LNAPL if   1, α
αUVIF uT                                         [3.12] 

The global proportions for presence and absence of contamination within areal 

limits are 0.267 and 0.733, respectively. Table 3-5 shows the details of the 

modeled variogram for the categorical variable TUVIF. Based on the experimental 

variogram calculated for TUVIF, a vertical trend seemed to exist. This vertical trend 

is not explicitly modeled since the vertical distribution of residual NAPL (TUVIF) 

is closely related to and controlled by the distance to the groundwater table, which 

is considered as a secondary variable in this study.  
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3.2.6. Data Integration: Secondary soft data – soil texture 
 

One of the most important aquifer properties affecting residual NAPL distribution 

is heterogeneity in soil texture. Short range variability in soil properties may 

result in preferential flow paths. In a heterogeneous setting, the distribution of 

NAPL is generally correlated to the distribution of effective (connected) porosity. 

In this study, cone penetration testing (CPT) data have been used to model the 

geological structure. The CPT data logger records the mechanical responses of the 

soil (cone resistance and sleeve friction) at a high resolution. As explained earlier, 

a curvilineal coordinate system is empirically established along the tendencies in 

soil classification charts (Figure 3-6). Figure 3-25 shows the cumulative 

distribution function (CDF) of a continuous random variable ySCI defined based 

on the SCI data. The data for ySCI shows that an areal trend is present with higher 

ySCI values at the north-west of the site. Thus, to create a prior probability map for 

presence/absence of contamination based on SCI data, a six-step approach is 

followed: (1) the areal trend is explicitly modeled by (ordinary) kriging with a 

large search on a coarse grid (Figure 3-26-a), (2) the SCI data are de-trended and 

the residuals are determined (Figure 3-26-b), (3) sequential Gaussian simulation 

(SGS) (Deutsch and Journel 1998) is performed to simulate the residuals, (4) the 

areal trend is added back to each realization to create realizations of ySCI over the 

entire grid, (5) the calibrated probabilities of absence/presence of contamination is 

assigned to all grid nodes based on the nodal values of ySCI and the probabilities 

listed in Table 3-6, and (6) the E-Type mean of ensemble of realizations is 

computed and the conditional probabilities are standardized to give a prior 

probability map for presence/absence of residual NAPL based on the SCI data. 

The calibration in Table 3-6 is implemented based on the CDF of ySCI and ten 

classes defined by decile thresholds (Figure 3-25).  
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Variable Nugget c1 NS1 ah1 av1 

TUVIF 0.043 0.153 sph 16.0 6.0 

 
Table 3-5: Details of the variograms modeled for TUVIF.  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3-25: Cumulative histogram of SCI data with 10 classes defined by decile 
thresholds 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3-26: (a) The modeled areal trend and (b) the distribution of residuals of 
the SCI data after de-trending 
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3.2.7. Data Integration: Secondary soft data – distance to water table 
 

The vertical movement of the groundwater table affects the volume of mobile and 

residual LNAPL. Given some mobile LNAPL sitting on the groundwater surface, 

a rise in groundwater table elevation causes the hydrocarbon to migrate upward as 

groundwater partially displaces it from the pore space. As water fills the pore 

network, LNAPL becomes trapped in the form of small droplets. These isolated 

droplets remain suspended in the network until the water table elevation drops. 

Lowering the water table enables the LNAPL to drain from the pore network. 

During drainage, droplets of LNAPL may remain entrapped within the pore 

interfaces, leaving residual LNAPL within the unsaturated zone. The resultant 

vertical movement of the water table produces a smear zone of residual LNAPL 

within the saturated and unsaturated zones. To account for the effects of 

groundwater table fluctuations, the relative elevation is defined as the distance of 

UVIF sampling point to groundwater table at the same location:  

Zrel = ZUVIF - ZGW                                                                                              [3.13] 

where, Zrel is the ‘relative elevation’ at every data point, ZUVIF is the elevation of 

the data point in the global coordinate system, and ZGW is the elevation of 

groundwater table at the data location in global coordinate system. A continuous 

random variable yGW is defined based on Zrel data and mapped across the modeling 

domain by kriging. The presence/absence of contamination is calibrated against 

yGW data and conditional probabilities are calculated. For this purpose, ten classes 

are defined using decile thresholds on the cumulative distribution function of yGW, 

as shown in Figure 3-27. The resulting calibrated probabilities are presented in 

Table 3-7. The calibrated probabilities together with average groundwater surface 

mapped across the site by kriging give a three–dimensional map of prior 

probabilities for presence/absence of contamination based on relative elevations. 
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Table 3-6: Calibrated probabilities of absence/presence of contamination with 
respect to ySCI data. 
 

 

 

 

 

 

 

 

 

Table 3-7: Calibrated probabilities of absence/presence of contamination with 
respect to yGW data. 

 ( )SCIy1kp =
 

( )SCIy0kp =
 

[-2.14,-1.01] 0.093 0.907 
[-1.01,-0.8) 0.151 0.849 
[-0.8,-0.56) 0.200 0.800 
[-0.56,-0.39) 0.302 0.698 
[-0.39,-0.29) 0.213 0.787 
[-0.29,-0.16) 0.314 0.686 
[-0.16,0.04) 0.243 0.757 
[0.04,0.31) 0.333 0.667 
[0.31,1.11) 0.390 0.610 

SC
I –

 c
la

ss
 

(y
SC

I) 

[1.11,1.77) 0.421 0.579 

 ( )GWy1kp =
 

( )GWy0kp =
 

[-4.3m,-0.57m] 0.212 0.788 
[-0.57m , 0.38m) 0.294 0.706 
[0.38m ,0.987m ) 0.326 0.674 
[0.987m ,1.63m) 0.461 0.539 
[1.63m ,2.19m) 0.384 0.616 
[2.19m ,2.77m) 0.338 0.662 
[2.77m ,3.47m) 0.336 0.664 
[3.47m ,4.14m) 0.083 0.917 
[4.14m ,4.93m) 0.151 0.849 
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Figure 3-27: The CDF of Zrel 
data with 10 classes defined by 
decile thresholds 
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3.2.8. Data Integration: Combining the secondary data sources 
 

Bayes law permits the calculation of the conditional probability ( )GWSCIUVIF yyTp , : 

( ) ( ) ( ) ( )
( )GWSCI

SCIUVIFGWUVIFSCIUVIF
GWSCIUVIF yyp

yTypTypTp
yyTp

,
,

,
××

=                      [3.14] 

An easy way to combine the single event probabilities is to assume independence 

of the two data events. The assumption of data independence states that ySCI and 

yGW are independent ( ) ( ) ( )GWSCIGWSCI ypypyyp ×=, . An additional assumption to 

simplify equation [3.14] is based on the assumption of conditional independence 

of events ySCI and yGW given the primary data, that is 

( ) ( )UVIFGWSCIUVIFGW TypyTyp =,  and ( ) ( )UVIFSCIGWUVIFSCI TypyTyp =, . The 

equation for data integration with the assumption of full data independence can be 

obtained:  

( ) ( ) ( )
( )UVIF

GWUVIFSCIUVIF
GWSCIUVIF Tp

yTpyTp
yyTp

×
=,                                              [3.15] 

Assumption of full data independence is not robust in presence of significant 

spatial correlation. A more robust approach is to assume the data are conditionally 

independent given the primary data event. The expression for conditional 

probability of the primary data event TUVIF given the secondary data events ySCI 

and yGW is: 

( ) ( ) ( ) ( )
( )GWSCI

UVIFGWUVIFSCIUVIF
GWSCIUVIF yyp

TypTypTp
yyTp

,
,

××
=                              [3.16] 

where the joint probability ( )GWSCI yyp ,  is needed. According to Journel (2002) 

Bayesian analysis gets around this problem by considering ratios of updated 

probabilities of the type. This results in the expression for the permanence of 

ratios assumption:  
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( )
( )

( )
( )

( )
( )

( )
( )UVIF

UVIF

GWUVIF

GWUVIF

SCIUVIF

SCIUVIF

GWSCIUVIF

GWSCIUVIF

Tp
Tp

yTp
yTp

yTp
yTp

yyTp

yyTp

~

~

~
,

,~

=                                                                    [3.17] 

where, the event UVIFT~  represents the compliment of the primary data event UVIFT . 

Equation [3.17] results in the expression for the conditional probability based on 

the assumption of permanence of ratios (conditional independence):   

( )
( )
( )

( )
( )

( )
( )

( )
( )GWUVIF

GWUVIF

SCIUVIF

SCIUVIF

UVIF

UVIF

UVIF

UVIF

GWSCIUVIF

yTp
yTp

yTp
yTp

Tp
Tp

Tp
Tp

yyTp ~~~

~

,
⋅+

=                               [3.18] 

 

Two assumptions of full data independence and conditional independence are 

used in this study, and the associated conditional probabilities for 

presence/absence of contaminants are obtained. However, it is observed that the 

resulting conditional probabilities are very close due to a weak spatial correlation 

between the secondary data sources. Thus, the conditional probabilities obtained 

by the assumption of conditional independence (permanence of ratios) are only 

presented in this thesis.   

 

3.2.9. Data Integration: Combining the prior probability maps with 
conditional probabilities  

 

The calculated conditional probabilities are then combined with the prior 

probability map that is conditioned to indicator hard TUVIF data only. For this 

purpose, sequential indicator simulation with locally varying means (LVM) and 

Bayesian updating (BU) techniques were used (Deutsch 2002).  
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The conditional probabilities can be incorporated as the locally varying means for 

kriging. The expression for probability of presence or absence of contaminant can 

be written by (Deutsch 2006):  

( ) ( ) ( )GWSCIUVIF

n

UVIF

n

UVIFLVM yyTpTiTi ,1;;
11

* ⋅⎥
⎦

⎤
⎢
⎣

⎡
−+⋅= ∑∑

== α
αα

α
α λλ uu                     [3.18] 

where, ( )UVIFLVM Ti ;* u  are the estimated local probabilities of presence/absence of 

contamination, n is the number of local data, αλ , α = 1, …, n are the kriging 

weights, ( )UVIFTi ;αu  is the local indicator data, and ( )GWSCIUVIF yyTp ,  is the 

conditional probability obtained using secondary data ySCI and yGW.  

 

Bayesian updating is one of the simplest forms of indicator cokriging: at each 

location along the random path, indicator kriging is used to estimate the 

probability of presence/absence of contamination conditioned to local hard data 

alone. Bayesian updating then modifies or updates the probabilities by (Deutsch 

2006):  

( ) ( ) ( )
C

p
yyTp

TiTi
UVIFT

GWSCIUVIF
UVIFSKUVIFBU ⋅⋅=

,
;; ** uu                                               [3.18] 

where, ( )UVIFBU Ti ;* u  are the estimated local probabilities of presence/absence of 

contamination,
UVIFTp is the global probability of absence/presence of 

contamination, and C is the normalization constant to ensure that the sum of the 

final probabilities is 1.0.  

 

Expressions [3.17] and [3.18] are used to simulate the primary variable TUVIF over 

a stationary domain. As discussed previously, the areal boundaries of the 

stationary domain are uncertain, when modeling the distribution of residual 

NAPL. To account for uncertainty in the areal boundaries, geostatistical 

realizations of the stationary random variable TUVIF are explicitly clipped by 

independently drawn realizations of areal limits which are simulated using DF 
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approach explained earlier. Figure 3-28 shows planar slices of 3D binary 

realizations of presence/absence of contamination obtained by SIS-LVM and BU 

approaches clipped by independently drawn DF realizations.    

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-28: Planar slices (NXY=30) of two 3D realizations of presence/absence of 
contamination obtained using SIS-LVM (a and b), and BU (c and d) techniques 
with soil texture and distance to water table as secondary information. The 
uncertainty in areal limits is explicitly accounted for by clipping the geostatistical 
realizations of stationary random function with equi-probabale realizations of 
areal limits simulated by boundary modeling approach presented in Section 3.2.3.   

 

Easting (m) Easting (m)   60.0    0.0 

  80.0

   0.0 

N
or

th
in

g 
(m

) 

  60.0   0.0 

   0.0 

  80.0 

N
or

th
in

g 
(m

) 

N
or

th
in

g 
(m

) 

   0.0 

  80.0

Easting (m)    0.0   60.0 

N
or

th
in

g 
(m

) 

  80.0 

   0.0 

   0.0 

  80.0
 (c)



 119

3.2.10. Cross-validation 
 

Cross-validation methods are used to check the probabilistic prediction of the 

geostatistical modeling approach used in this work, and to investigate the value of 

secondary data sources in improving the predictive ability. Cross-validation is 

performed whereby each well is removed one at a time. A quantitative measure of 

‘closeness’ to true categories can be summarized by:    

( ){ }   true; UVIFUVIFT TTpEC
UVIF

== αu                                                                [3.19] 

which may be interpreted as the average predicted probability of the true 

categories. 

 

The closeness measure can be easily interpreted relative to the global proportions. 

With no primary or secondary data the closeness measures will equal the global 

proportions. Thus, the measure of ‘percent improvement’ over the no data case 

can be expressed by:  

 
UVIF

UVIFUVIF

UVIF
T

TTrel
T p

pC
C

−
=                                                                                       [3.20]    

The third measure used for cross-validation is the measure of ‘accuracy’. As the 

primary variable TUVIF is a binary variable, at every cross-validation location four 

cases can be considered in terms of prediction of the true categories: (1) the 

location is truly contaminated and correctly predicted, (2) the location is 

contaminated but predicted to be clean, (3) the location is uncontaminated and 

correctly predicated, and (4) the location is clean but predicted to be 

contaminated. Cases (1) and (3) are plausible and cases (2) and (4) are not. A 

measure of ‘accuracy’ of predictions can be defined as:       

 
1 R

Rrel

M
MMA

−
−

=                                                                                                [3.20] 

where M and MR are given by:  
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( )
N

pppp
M

N

i
iiii∑

=

−−+
= 1

01100011

           ,            010011 2 ppppppM R ⋅−⋅+⋅=  

where, N is the number of wells removed and replaced in the cross-validation, 11
ip , 

10
ip , 00

ip  and 01
ip  are proportions corresponding to the cases 1 to 4, 

respectively. 1p  and 0p are global proportions associated with TUVIF = 1 and TUVIF 

= 0, respectively. M is the global measure of plausibility. Its upper bound is 1.0, 

in the ideal case of correct prediction at all cross-validation locations. Its lower 

bound is RM , which corresponds to the no-data case. Table 3-8 shows the 

measures of closeness and percentage improvement over the global probabilities, 

using secondary data only. Considering secondary data (particularly distance to 

groundwater table data) considerably improves the prediction of contaminated 

locations, even before incorporating the primary TUVIF data. It is also observed 

that using both sources of secondary data (ySCI and yGW) improves the prediction 

ability and gives a higher degree of confidence. As mentioned earlier, the data 

integration schemes used in the study (with the assumptions of full data 

independence or conditional independence) seemed to give similar results.    

 

Tables 3-9, 3-10 and 3-11 show the cross-validation results, while the indicator 

hard data (TUVIF data) and secondary soft information (SCI data, groundwater 

elevation data and their combination with the assumption of permanence of ratios) 

are used. The results of indicator kriging (IK) with no secondary information 

show slight improvement in predictions over the global proportions. It is observed 

that inclusion of both sources of secondary data improves the predictive ability 

(Table 3-11) in prediction of contaminated locations. It is also observed that both 

SIS-LVM and Bayesian updating techniques overestimate the contaminated 

locations (conservative prediction). This overestimation is more serious in the 

case of Bayesian updating. In the case of SIS-LVM, this overestimation is only 
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observed when the distance to groundwater table is used as secondary 

information.  

 

 

 

 

 

 

 

 

Table 3-8: Measures of closeness 
UVIFTC and percentage improvement over the 

global proportions rel
TUVIF

C , using secondary data only (no primary data used). 
Secondary sources of information including soil classification index (SCI), 
distance to groundwater table (GW) and their combination with the assumption of 
permanence of ratios (PR) are used in the analysis.    
 

Table 3-9: Measure of closeness
UVIFTC , while indicator hard data and secondary 

data from different data sources are accounted for. Secondary data including soil 
classification index (SCI), distance to groundwater table (GW) and their 
combination with the assumption of permanence of ratios (PR) are used in the 
analysis.    
 
 
 
 
 
 

 
TUVIF = 0 TUVIF = 1 

UVIFTp = 0.733 
UVIFTp = 0.267 

 
UVIFTC  rel

TUVIF
C (%) UVIFTC  rel

TUVIF
C (%) 

SCI 0.7368 0.52 0.2828 5.92 
GW 0.7568 3.25 0.3256 21.94 
PR 0.7589 3.54 0.3441 28.88 

TUVIF = 0 TUVIF = 1 
UVIFTC  

IK LVM BU IK LVM BU 
no secondary data 0.7532 - - 0.2801 - - 

SCI - 0.755 0.657 - 0.298 0.398 
GW - 0.734 0.679 - 0.338 0.663 
PR - 0.763 0.693 - 0.389 0.687 
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Table 3-10: Measure of percentage improvement over global proportions rel
TUVIF

C , 
while indicator hard data and secondary data from different data sources are 
accounted for. Secondary data including soil classification index (SCI), distance 
to groundwater table (GW) and their combination with the assumption of 
permanence of ratios (PR) are used in the analysis.    
 

 

 

 

 

 

Table 3-11: Measure of accuracy relA , while indicator hard data and secondary 
data from different data sources are accounted for.  
 

The results of the LVM technique are more realistic in that it improves the 

predictive ability for prediction of both contaminated and uncontaminated 

locations. Similar results are obtained based on the measure of accuracy in Table 

3-11. The assumption of conditional independence provides results that are very 

close to what is obtained by the assumption of full data independence. It should 

be noted that the improvements in predictive ability that is achieved by integration 

of SCI data as a secondary data source represents an upper bound to such 

improvements. This is due to the fact that all CPT-UVIF data are used in the 

construction of conditional probability distribution, which may or may not be 

available, when the technique is used for predictions. It is worth mentioning that 

the observed correlation between presence/absence of contamination and the SCI 

 TUVIF = 0 TUVIF = 1 
rel
TUVIF

C (%) IK LVM BU IK LVM BU 

no secondary data 2.76 - - 4.86 - - 
SCI - 3.04 -10.35 - 11.81 49.40 
GW - 0.21 -7.32 - 26.90 148.45 
PR - 4.20 -5.42 - 45.99 157.60 

relA (%) IK LVM BU 
no secondary 

data 4.62 - - 

SCI - 6.28 -5.28 
GW - 5.14 16.94 
PR - 14.01 21.23 
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data and the fact that soil properties usually give better (with less uncertainty) 

horizontal variograms are good motivations for integration of SCI data in 

prediction of contaminated locations with NAPL. The distance to water table is 

less affected by the number wells used in the analysis and as a result provides a 

more robust secondary source of information that can be used in prediction of 

contaminated locations.  

 

In summary, in Section 3.2 of this thesis, first a boundary modeling technique was 

developed based on the concept of distance-function. The concept of uncertainty 

band was established and the calibration of uncertainty band against a large 

number of synthetic plumes was demonstrated.  The calibrated uncertainty band 

resulted in a good match with the target quantiles showing the convergence of the 

proposed technique based on the calibration approach applied. The proposed 

distance-function approach can be very useful (1) to model (with uncertainty) the 

areal limits of non-stationary continuous or categorical random variables and (2) 

to provide a prior probability map for source zone sizes that can be used in Monte 

Carlo simulations of contaminant transport and/or Monte Carlo type inverse 

modeling studies (Chapter 5). Also in Section 3.2, data integration approaches 

were employed to create a probabilistic model for absence/presence of 

contamination within the areal limits of a NAPL source zone for a real aquifer. 

Secondary data sources such as the distance to water table and soil texture were 

used in the data integration and resulted in some improvement in predictive 

ability. Two different data integration techniques namely, Bayesian updating and 

sequential indicator simulation with locally varying means were employed. 

According to the results of cross-validation, it seemed that the Bayesian updating 

approach over-estimates the contaminated locations (with smaller global 

proportion) and underestimates the uncontaminated locations. The SIS-LVM 

approach, however, seemed to improve the prediction of both contaminated and 

uncontaminated locations over the global proportions. Finally, it was observed 
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that: integration of secondary data sources show an overall improvement in 

predictive ability (over the global proportions), the distance to groundwater 

provides a more robust source of secondary data as it is less dependent on the 

number of wells and their spatial locations, and the improvements achieved by the 

inclusion of soil texture data in the analysis provides an upper bound to what can 

be achieved by the incorporation of soil data, since all the collocated CPT data are 

used in construction of the 3D map for conditional probabilities. Despite this fact, 

incorporation of soil texture data is still useful as more reliable variograms can be 

calculated for soil data, comparing to hard TUVIF data.    
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CHAPTER 4 
 
NUMERICAL SIMULATION OF  

                                  NATURAL ATTENUATION  
 
 
An indispensable component of any inverse modeling study is the development of 

a transfer function such as a numerical simulator that relates the model parameters 

(e.g. porosity, hydraulic conductivity, biodegradation rate constant, etc) and their 

uncertainty to response variables (e.g. pressure head distribution, contaminant 

concentration, etc) and their associated uncertainty. A numerical simulator can be 

developed and used to obtain an approximate solution to the boundary value 

problems defined for groundwater flow and solute transport. This is usually 

associated with solving some form of advection-dispersion-reaction equation 

(Equation 2.1) by assuming a constant groundwater velocity or a coupled 

groundwater flow-and-transport model. When the solute concentration obtained 

by solution of the transport equation causes negligible variation in water density, 

porosity, etc, the flow equation and solute transport equation can be solved 

independently, that is, the flow equation is solved prior to transport simulation 

yielding the flow velocity distribution for all time periods and used as input to the 

transport code. Such a decoupled approach is applied in this work, as it has been 

implemented in common numerical models such as MOC (Konikow and 

Bredehoeft 1978 and Konikow et al. 1996), MT3D (Zheng 1990 and Zheng and 

Wang 1999), and RT3D (Clement 1997).        

  

The main reason for constructing a numerical model for contaminant transport is 

to quantitatively analyze the natural attenuation processes at a given site and to 

predict contaminant concentrations at some locations and time. It is of great 

importance to recognize that all the transport and transformation mechanisms can 
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not be captured. The important aspect about correctly conceptualizing site 

processes is to make sure that the important mechanisms that affect contaminant 

transport in a significant way are captured and implemented correctly. Choosing 

the important processes depend heavily on the expert judgment. Nevertheless, 

previous studies (Chapter 2) have shown that source dissolution (and geometry), 

advection, dispersion, biodegradation and sorption can be considered as the most 

important mechanisms affecting natural attenuation of PHCs and can cause the 

largest uncertainties in the predicted concentrations. As discussed in Chapter 2, 

sorption of the dissolved PHCs to solid particles is a function of the organic 

fraction of soil (foc). Alvarez and Illman (2006) (among others) showed the 

variability in the organic fraction of soil has a minor impact on the plume length, 

when simulating natural attenuation of organic contaminants. Thus, for simplicity, 

the mechanism of sorption is not incorporated in the development of the mass 

transport simulator. Another simplifying assumption in this work is the 

assumption of steady-state groundwater flow. The timeframe for natural 

attenuation processes is large compared to that of seasonal stresses that bring the 

groundwater into transient condition, thus the assumption of steady-sate is 

reasonable.    

 

In Section 4.1 of this chapter, the governing equations, the numerical 

discretization and the iterative matrix solver (C.A. Mendoza – personal 

communication – 2005) used in the 2D finite volume groundwater flow simulator 

(flsim2d) are presented and the flow simulator is verified by comparing its 

modeling outcomes for synthetic homogenous and heterogeneous aquifers to the 

results obtained by a MODFLOW. In Section 4.2, the technical details of the 

particle tracking code (ptrack2d) developed to model advective transport are 

explained and verified by comparing to a widely used particle tracking program in 

synthetic homogenous and heterogeneous aquifers. In Section 4.3, the mass 

transport equations that are numerically solved in this work are explained, their 
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numerical discretization is discussed in detail and the mass transport simulator 

(snasim) developed based on the Method-of-Characteristics (MOC) (Konikow 

and Bredehoef 1978) is presented. The verification of the snasim code is 

implemented by comparing its results to those of a widely used solute transport 

program MT3D. 
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 4.1 Simulation of Steady-State Groundwater Flow 

 
 
A mathematical groundwater model for steady-state (transient) conditions consists 

of a governing equation and boundary (and initial) conditions that simulates the 

flow of groundwater in a particular problem domain. The volumetric rate of flow 

per unit area (q=Q / A) is given by Darcy’s law:  

i
ii x

hkq
∂
∂

−=              [4.1] 

where, ki represents a principal component of the hydraulic conductivity tensor, 

and h is the hydraulic head that is obtained from the solution of continuity 

equation for groundwater flow:    
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where, Ss is the specific storage coefficient of the porous medium, qsr represents 

the source/sink term (sink, if qsr > 0.). The groundwater is assumed to be of 

uniform density. Equation [4.2] is valid when Darcy’s law (Equation [4.1]) is 

considered to be valid, fluid (water) and the porous medium are assumed to be 

incompressible and the system is in saturated condition. Equations [4.1] and [4.2] 

also assume that the principal components of the hydraulic conductivity tensor are 

aligned with the global coordinate axes so that all non-principal components 

(cross terms) become zero. For steady-state groundwater flow, Equation [4.2] is 

simplified to:  
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Except for very simple systems, analytical solutions to Equation [4.3] are not 

possible, and numerical methods are employed to obtain approximate solutions. In 

the context of the finite volume approximation, the continuous system described 

by Equation [4.3] is replaced by a set of discrete volumes in space and time, and 
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the partial derivatives are replaced by terms calculated from the differences in 

head values at these points.  As shown in Figure 4-1, the value of the head at the 

cell represented by the indices (i, j) is h(i, j) and the values of heads at the 

adjacent cells are h(i-1, j), h(i+1, j), h(i, j-1), and h(i, j+1).  

 

  

 
 
 
 
 
 
 
 
 
Figure 4-1: Finite volume grid showing the index numbering convention  

 
4.1.1. Numerical discretization with finite volume method 
 
Using a finite volume approximation in a two-dimensional setting, we may 

integrate Equation [4.3] over the volume (with depth of unity) and apply Green’s 

Theorem, to obtain: 
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which is equivalent to: 

[ ] j) cell(i, of Area.j) (i, cell into fluxes srq=∑                                                   [4.5] 

For a depth of unity, the flux from the cell (i-1, j) into cell (i, j) can be 

approximated by: 
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where, kx(i-1/2,j) is the hydraulic conductivity at the cell interface. In this work, kx(i-

1/2,j) is calculated as the geometric average of cell hydraulic conductivities: 
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Similar to Equation [4.7], all other flux terms can be approximated and Equation 

[4.5] can be re-written by: 
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Rearranging the terms in equation [4.8]: 
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The equation [4.9] can be similarly written for all cells resulting in a system of 

linear equations that can be represented in matrix form:  

[ ]{ } { }qhA =                                                                                                       [4.10] 

where, [ ]A is a large N×N matrix of coefficients (N is the number of grid cells), 

{h} is the vector of unknown nodal pressure head values, and {q} is the right-

hand side (flux) vector that represents loading and boundary conditions. Matrix 

[ ]A N×N is a sparse matrix containing a large number of zero values that can be 

discarded by storing the components of the matrix using a band matrix.  

 

It is important to manipulate matrices [ ]A  and {b} in such a way that we can 

incorporate the boundary conditions. The different types of boundary conditions 
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are: (a) head is known for surfaces bounding the flow region (Dirichlet 

conditions); (b) flow is known across surfaces bounding the region (Neumann 

conditions); and (c) a head-dependent flux (or any other mix of (a) and (b)) is 

known across the surfaces bounding the region (Cauchy conditions) (Anderson 

and Woessner 1992).  

 

In this work, Dirichlet and Neumann conditions (and their combination) are 

considered and coded in the groundwater flow simulator flsim2d. The Dirichlet 

and Neumann boundary conditions are represented by the following equations, 

respectively:  

( ) Dssss Syxhtyxh ∈= ,      ,      ,, 0                                                                     [4.11]  

( ) Nssss Syxftyx
n
h

∈=
∂
∂ ,      ,   ,, 0                                                                    [4.12]   

where, h0 and f0  are the fixed head and flux, respectively; and n represents the 

vector normal to a boundary. In cases where there are some non-zero fluxes 

across the boundaries (Neumann boundary conditions), a common practice is to 

consider some fictitious cells outside the boundary and to impose the fixed flux 

into the modeling domain by assigning some (fixed) head values at these fictitious 

cells. In this work, however, we treat all the Neumann boundary conditions as 

zero flux (no-flow) boundary condition (no reference to any fictitious cells) and 

include all the non-zero fluxes as source/sink flux in the flux vector {q}. Fixed 

head (Dirichlet) boundary conditions are treated by a big number on the diagonal 

of the coefficients matrix [ ]A  for the row corresponding to Dirichlet boundary and 

the same big number multiplied by the value of the fixed-head (Dirichlet) 

boundary condition h0 in the flux vector {q}. As a result, the solution value will 

be equal to h0, as all other contributions in the row will be insignificant. The 

method is useful since the complex book keeping is avoided and the Dirichlet 

nodes may be easily changed.      
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4.1.2. Solution of system of linear equations 
 
In order to compute the distribution of pressure heads and flow rates across the 

modeling domain, the system of linear equations (Equation [4.10]) must be 

solved. The solver adapted in this work is similar to the solver provided in a 

simple 2D homogeneous single-phase flow code (Dr. Carl Mendoza – Personal 

communication – 2005). The details of the solver are provided in the next 

paragraphs. 

 

In choosing a solution method for the system of linear equations, there are a 

number of considerations: the memory requirement, the accuracy of the method, 

and the efficiency of the method. An iterative method consists of repeatedly 

performing steps to achieve better approximations to the solution of Equation 

[4.10]. Assuming {h}n is a given approximate solution at step n, we are after a 

better approximation {h}n+1 at step n + 1. For this purpose, a ‘preconditioning 

matrix’ [K] is defined to approximate the matrix [A] ([K] = [A] + [R]) in such a 

way that [K] is non-singular and easy to invert. Equation [4.10] can be re-written 

in an iterative mode by: 

[ ]{ } [ ] [ ]( ){ } { }qhAKhK +−=+ nn 1                                                                         [4.13] 

that results in: 

[ ]{ } { }nn rvK =+1                                                                                                  [4.14] 

where,  

{ } { } { }nnn hhv −= ++ 11       and      { } { } [ ]{ }nn hAqr −=                                          [4.15] 

The iterative algorithm in Equations [4.14] and [4.15] should be repeated until a 

convergence is achieved. For convergence, it is required that the spectral radius 

(the largest absolute value of eigenvalues) of matrix [K]-1[R] is less than one. 

This is achieved if [K] is non-singular and matrices [K]-1 and [R] are positive. 

Thus, the convergence of the algorithm is largely dependent on the choice of 

preconditioning matrix [K] and appropriate ‘preconditioning algorithms’ must be 
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employed. Later in this section, two different preconditioning algorithms are 

briefly explained and used in the flow simulator flsim2d. These methods are DKR 

incomplete LDU factorization (ILU) (Dupont et al. 1968) and modified 

incomplete factorization (MILU) (Gustafsson 1982).   

 

The iterative algorithm presented by Equations [4.14] and [4.15] tends to require a 

large number of iterations, even after preconditioning. Thus, some sort of 

‘acceleration method’ must be implemented (Letniowski 1989). The goal of an 

acceleration method is to decrease the number of iterations required in the basic 

iterative method presented above. The conjugate gradient (CG) algorithm  is a 

widely used acceleration method that aims at finding a better search direction by 

replacing { } { } { } 11 ++ += nnn vhh with{ } { } { }nnnn θhh ω+=+1 , where {θ}n and ω n are 

the new search direction and a scalar to minimize the error, respectively 

(Axelsson and Barker 1984). The vector {θ}n and scalar ω n can be calculated as 

presented in Equation [4.16]. The strategy of choosing a search direction is that 

all search directions are conjugate, that is, if {θ}i and {θ}j are search directions at 

any two different iterations of the method then the inner product of [A]{θ}i and 

{θ}j is equal to zero. It should be noted that the derivation of the CG method is 

well-established and the interested reader can refer to Shewchuk (1994) for the 

derivation and examples. The CG is an iterative algorithm and gives the solution 

at the nth step by: 
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The convergence of the CG algorithm is guaranteed for symmetric positive 

definite matrices, where the method converges to the correct solution much faster 

then the basic iterative solution (Shewchuk 1994).  
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The rate of convergence of CG type iterative approach can be accelerated by 

preconditioning or incomplete LU (ILU) decomposition. There are many ILU 

preconditioning methods available for general non-symmetric linear systems. 

Dupont, Kendall and Rachford’s (DKR) LDU factorization (Dupont et al. 1968) is 

a widely used technique that works well for accelerating CG algorithm. In a 

sparse matrix data format, the matrix [A] consists of a diagonal band labeled γi, 

and off-diagonal bands labeled aij‘s which are defined as the coefficient between 

the volumetric cell i and its adjacent cell j. The coefficients γi and aij‘s can be 

calculated from Equation [4.9] (It should be noted that the i, j notation is slightly 

different in Equation [4.9]). An incomplete factorization LDU uses the idea of 

Gaussian elimination to find a reasonable approximation to the original sparse 

matrix [A]: 

[ ][ ][ ] [ ] [ ]EAUDL +=..                                                                                         [4.17] 

where, [E] is the error matrix, and [L], [D] and [U] are lower triangular, diagonal 

and upper triangular matrices, respectively. The sum of [L] + [D] + [U] should 

have a sparse banded structure close to the structure of [A] to minimize the work 

per iteration. If the bands of the original system are labeled as first degree, then 

higher degree bands are formed by fill-in resulting from elimination. Given a 

matrix [A], the elements of [L], [D] and [U] can be calculated: the original bands 

aij‘s (matrix pattern) are retained in the factors (matrices [L] and [U]) and no more 

memory is required to store [L] and [U]. The diagonal bands of [L], [D] and [U], 

labeled di
-1, di, and di

-1, respectively, are constructed so that they combine to form 

the original diagonal band γi. Thus, only di needs to be solved: 

( )
n1,2,3,...,         1 =−= ∑
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− iadad jij

ij

ikj
ijii γ                                                         [4.18] 

where, index j is lower than i. Thus, Equation [4.18] can be solved by a marching 

procedure. It should be noted that in the ILU approach only di‘s are used and the 

higher degree bands (or shadow bands) are ignored. The error term [E] in 
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Equation [4.17] can be taken into account by using the modified ILU factorization 

(MILU), where the errors (or the values at the higher degree bands) are subtracted 

from the diagonal terms. This approach incorporates more information in the 

decomposition process; but at the same time it may cause problems. In fact, the 

problem may become less diagonally dominant as a larger number of higher 

degree bands are subtracted form the diagonal.   

 

When implementing any of the preconditioning approaches jointly with CG 

method, the preconditioned matrix [K] replaces the original matrix [A], and 

calculation of ωn and ζn  in the CG method will be slightly changed. The complete 

preconditioned CG algorithm is then given by (Letniowski 1989):  
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where, { } 1+nv and{ }nr  are given by Equation [4.15]. In the procedure presented in 

this work, the convergence is achieved when the max norm of the residual vector 

{ }nr is equal to or less than or equal to a pre-specified convergence tolerance.  
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4.1.3. The single phase steady-state flow simulator code: flsim2d  
 

A single-phase steady-state flow simulator for heterogeneous isotropic medium is 

programmed in the code flsim2d. Figure 4-2 shows the parameter file for this 

program.   

 

 

 

 

 

 

 

Figure 4-2: The parameter file for flsim2d code   

 

In Figure 4-2, the transmissivity data file (../data/Kxy.dat) contains isotropic 

transmissivity values (Ti,j = ki,j × bi,j, where bi,j represents the saturated thickness of 

aquifer at every grid cell) for all grid cells (loops on x fastest, then y) in natural 

logarithm units in a standard Geo-EAS format. The boundary condition data file 

(../data/BC.dat) contains the type and the value of specified head/flux boundary 

conditions for all cells. The first column in the file represents the type (0=no-flow, 

1=Dirichlet, and 2=Neumann) and the second column represents the value of the 

specified boundary condition. The discretization of the domain with a finite 

volume grid with rectangular but anisotropic cell sizes is specified by nx, xmn, 

xsiz, ny, ymn, and ysiz, which are the number of cells, the coordinate of the center 

of the first grid cell (in each direction) and the cell sizes in x and y directions, 

respectively. The choice of preconditioning is with factorization ID (0=ILU, 

1=MILU). The absolute convergence tolerance and maximum number of 

iterations also must be specified.  
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Figure 4-3: (a) The synthetic homogenous aquifer, and (b) the synthetic 
heterogeneous aquifer with fixed head boundary conditions at the north and south 
of the aquifers, no-flow (qn = 0.0) boundary conditions at the east and west of the 
aquifers, and the given pumping rates of 172,800 L/day and 103,680 L/day.   

 

4.1.4. Verification of the groundwater flow simulator code, flsim2d 
 

Verification of the code flsim2d is implemented by comparing the modeling 

outcomes of the code to the results obtained by MODFLOW (McDonald and 

Harbaugh 1988). For this purpose, a synthetic homogenous site and a synthetic 

heterogeneous (with a simple geometry) site are considered, as shown in Figure 4-

3. In Figure 4-3-a, the hydraulic conductivity of the homogenous aquifer is 

considered to be 4.53 × 10-5 m/s. In the case of the heterogeneous aquifer (Figure 

4-3-b), the site has been equally divided in four sections with different hydraulic 

conductivities: 3.33 × 10-4 m/s, 6.14 × 10-6 m/s, 4.53 × 10-5 m/s, and 8.31 × 10-7 

m/s. The pumping rate for the homogenous case is equal to 172,800 L/day, and 

for heterogeneous case is equal to 103,680 L/day. The boundary conditions for 

(a)  (b) 
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both sites are identical. Dirichlet boundary conditions are assigned at the north 

and south of the site, and no-flow boundary conditions are assigned at the east and 

west of the site.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4: The calculated distribution of hydraulic head for (a) homogenous case 
and (b) heterogeneous case, using the flsim2d code.    
  

Figure 4-4 shows the distribution of calculated heads for the given transmissivity 

distribution and boundary conditions using flsim2d code. Figures 4-5 and 4-6 

show the pressure head contours for the homogenous and heterogeneous sites 

obtained using Visual MODFLOW. 

 

Figures 4-7-a and 4-7-b show a direct comparison between the distribution of 

heads obtained by Visual MODFLOW, and the heads calculated for the same 

locations obtained by flsim2d. As observed in Figures 4-4, 4-5, 4-6 and 4-7, there 

is a very close agreement between the results of the flsim2d code and Visual 

MODFLOW.   
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Figure 4-5: Hydraulic head contours for the homogeneous case obtained by 

MODFLOW 
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Figure 4-6: Hydraulic head contours for the heterogeneous case obtained by 

MODFLOW 
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Figure 4-7: Cross-plots of heads obtained by MODFLOW and flsim2d for (a) 
homogeneous and (b) heterogeneous cases.  
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4.2 Simulation of Advective Transport  
 
 
The amount of solute mass that is being transported through advection is a 

function of the solute concentration and the groundwater flow rate or seepage 

velocity. As discussed in Chapter 2, the governing transport equation is linked to 

the governing flow equation through the definition of seepage velocity:  

i

i
i x

hkv
∂
∂

⋅−=
θ

           [4.20] 

where, θ represents the effective porosity. In an Eulerian context, the mass 

conservation laws result in the following expression for advective mass transport 

(Zheng and Bennett 1995):      

( )
t
CCqCv

x s
s

i
i ∂

∂
=+

∂
∂

−
θ

                                                                                  [4.21] 

where, qs represents the volumetric rate at which water is added to (or removed 

from) the system, and Cs represents the concentration of solute in the influx (or 

outflux). In this way, the term qsCs represents the net rate at which solute is added 

to (or removed from) the system. The velocity term in Equation [4.21] is derived 

from Equation [4.20] using the distribution of hydraulic heads calculated 

previously. Equation [4.21] can be solved by standard numerical techniques such 

as finite difference method (FDM) or finite element method (FEM). However, in 

advection dominated problems, the Eulerian techniques suffer from some known 

numerical problems: artificial oscillation and numerical dispersion. Numerical 

dispersion is defined as unrealistic smoothing effect (smearing) at the sharp fronts 

as seen in the breakthrough curves of advection dominated problems. It can be 

quite significant when the physical dispersion is insignificant. Peclet number is 

defined as the measure of advection domination (Zheng and Wang 1999): 

D
Lv

Pe =                                                                                                           [4.22] 
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where, |v| is the magnitude of the seepage velocity vector, L is a characteristic 

length (grid cell size in this case), and D is the dispersion coefficient.  

 

4.2.1. Simulation of advective transport by particle tracking 
 

To avoid numerical dispersion (and artificial oscillation), Lagrangian techniques 

can be alternatively used to solve for the advection term in solute transport 

problems. Zheng and Bennett (1995) showed that the rate of change in 

concentration (DC / Dt) identified with a particle or element of fluid that is 

moving along a pathline of the flow field can be derived using Equation [4.21] 

and calculated by: 

( )CCq
Dt
DC

s
s −=

θ
                                                                                             [4.23]                

where, the rate of change in concentration (DC / Dt) is defined as:                                                               

i
i x

Cv
t
C

Dt
DC

∂
∂

+
∂
∂

=                                                                                             [4.24] 

In purely advective mass transport, Cs and C are equal and the Equation [4.24] 

becomes:                                                   

0=
Dt
DC                                                                                                             [4.25] 

which means that the concentration associated with a fluid element does not 

change with time, while the fluid element travels along the flow pathline. Thus, 

solving for the advection term with a Lagrangian approach is a matter of tracking 

the individual particle pathlines in the flow field. In advective transport the 

pathlines of contaminants coincide with the pathlines of groundwater flows, 

providing that the fluid density is uniform. The location of a particle at an 

arbitrary time t is given by: 

( ) ( ) ( )dtttt
t

t
∫+=
0

,0 pvpp                                                                                      [4.26] 
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where, p(t0) is the particle location at time t0, and p and v are the position and 

seepage velocity vectors, respectively. The numerical solution of Equation [4.26] 

involves starting from an initial position for each fluid particle (element) and 

finding its subsequent locations along the flow path in an infinite number of time 

steps. Numerical solution of Equation [4.26] requires the velocity field to be 

known continuously over the simulation domain, which is not the case when the 

head distribution is calculated previously over a grid with discrete cells. Thus, a 

velocity interpolation scheme is needed.  

 

As discussed in Section 4.1, hydraulic heads can be calculated at the cell centers, 

using a block-centered finite volume (difference) method. As the first step in a 

velocity interpolation scheme, one can calculate the volumetric flow rates at the 

cell interfaces (Figure 4-8):      
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where, B is the aquifer thickness and all other terms are as defined previously. 

Using Equations [4.27], one can calculate the components of the seepage velocity 

as: 
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where, vx1, vx2, vy1 and vy2 are horizontal and vertical components of cell interface 

velocities in Figure 4-9. Given the cell interface velocities, one can calculate the 

seepage velocity components inside the cell by linear interpolation:                         
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where, vx and vy are the horizontal and vertical components of velocity for a point 

inside the cell, and x1 and y1 are the coordinates of the lower left corner of the cell 

(Figure 4-9). Zheng and Bennett (1995) showed that calculation of velocity 

components by linear interpolation is consistent with the FDM solution of flow 

equation and mass conservation principles.  

 
Figure 4-8: Schematic representation of volumetric flow rates on the cell 
interfaces (Modified from Zheng and Bennett (1995)) 
 

 
Figure 4-9: Schematic representation of calculation of seepage velocity 
components by interpolation (Modified from Zheng and Bennett 1995) 
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After the computation of seepage velocity components by interpolation, Equation 

[4.26] can be solved analytically. The ‘semi-analytical’ approach (Pollock 1988) 

to calculation of particle pathlines is based on numerical computation of velocities 

and analytical calculation of pathlines. In the context of the semi-analytical 

particle tracking approach, Pollock (1988) showed that the location of a fluid 

particle in a cell can be calculated at any arbitrary point in time (t2) based on its 

velocity at any previous point in time (t1) and the characteristics of the cell 

containing the particle: 

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]1112
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−Δ+=

−Δ+=

                                                               [4.30] 

In Equation [4.30], vx(t1) and vy(t1) are the velocity components at the point 

marking the particle location at time t1 calculated using Equations [4.29]. When 

computing the particle pathlines, we are often interested in the location of moving 

particles at the cell interfaces, that is, the points of entrance and exit of each 

particle in any given cell. Rewriting Equation [4.30] gives the coordinates of exit 

points of a fluid particles in any cell: 
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where, vxp and vyp are the velocity components of a particle located at point p (in 

many cases the point of entrance), and Δte is the travel time to the exit point e, 

which is calculated by: 

( ) ( ) ( )
y

ypy
y

x

xpx
xyxe A

vv
t

A
vv

tttt
/ln
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/ln

   with   ,min 22 =Δ=ΔΔΔ=Δ               [4.32] 

Where there is no need to calculate the location of intermediate points within the 

cells, points p and e are treated as entrance and exit points at the cell interfaces 

and Equations [4.31] and [4.32] can be used repeatedly to find particle pathline. 
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The formulation of the semi-analytical method is slightly different when a 

groundwater divide is present, when the velocity components at two cell 

interfaces are identical, or when a weak sink is present. Presentation of applicable 

formulation for these exceptional cases is out of scope of this work and the 

interested reader is referred to Zheng and Bennett (1995) and Zheng and Wang 

(1999) for more details. It should be noted that these exceptional features are 

considered and programmed in the particle tracking code ptrack2d developed in 

this research.    

                                                                             

4.2.2. The semi-analytical particle tracking code: ptrack2d 
 

The semi-analytical particle tracking approach (Pollock 1988) presented by 

Equations [4.30], [4.31] and [4.32] has been programmed in the code ptrack2d 

for a heterogeneous aquifer under steady-state condition. Figure 4-10 shows the 

parameter file for ptrack2d code.   

 

 

 

 

 

 

 

 

Figure 4-10: The parameter file for ptrack2d code   

 

In Figure 4-10, the particle location data file (../data/ptcl.dat) includes the 

coordinates for the initial locations of the particles in two dimensions. The head 

distribution data file (../data/heads.out) includes the calculated heads for every 

grid cell (in a block-centered grid) and can be computed using the code flsim2d 
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presented previously. All other inputs are either self-explanatory or explained 

previously.   

 

4.2.3. Verification of the particle tracking code, ptrack2d 
 

Verification of the code is implemented by comparing its results to the modeling 

outcomes of MODPATH (Blandford and Huyakorn 1991), which uses a different 

particle tracking technique (first-order Euler algorithm and forth-order Runge-

Kutta method). The model set-up is similar to the homogenous and/or 

heterogamous cases in Section 4.1.4 and Figure 4-3. Figures 4-11-a and 4-11-b 

show the particle paths for the homogeneous case (Figure 4-3-a) after 450 days 

obtained by ptrack2d and MODPATH, respectively. Figures 4-12-a and 4-12-b 

show the particle paths for the homogeneous case after 1850 days (when the 

system reaches steady-state) obtained by ptrack2d and MODPATH, respectively. 

Figures 4-13-a and 4-13-b show the particle paths for the heterogeneous case 

(Figure 4-3-b) after 500 days obtained by ptrack2d and MODPATH, 

respectively. Figures 4-13-a and 4-13-b show the particle paths for the 

heterogeneous case after 12500 days obtained by ptrack2d and MODPATH, 

respectively. 

 

As observed in Figures 4-11 to 4-14, there is a very close agreement between the 

simulations results for homogenous and heterogeneous cases obtained by the code 

developed in this work, ptrack2d, and MODPATH.  

 



 149

                                  

Figure 4-11: The particle paths in the homogenous case after 450 days calculated 
by (a) ptrack2d and (b) MODPATH.  

 

                    
Figure 4-12: The particle paths in the homogenous case after 1850 days calculated 
by (a) ptrack2d and (b) MODPATH.  
 

(a) (b)

(b)(a)
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Figure 4-13: The particle paths in the heterogeneous case after 500 days 
calculated by (a) ptrack2d and (b) MODPATH.  
 
 

                    
Figure 4-14: The particle paths in the heterogeneous case after 12500 days 
calculated by (a) ptrack2d and (b) MODPATH.  

(a) (b)

(a) (b)
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4.3 Simulation of Reactive Contaminant Transport  
 
 
As discussed in Chapter 2 (Section 2.6.3), the partial differential equation 

describing the dissolution, advection, dispersion and biodegradation of organic 

contaminants in groundwater is expressed by:      
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where, Cs is the concentration of the contaminant species s (e.g. benzene), θ is the 

effective porosity, Dij represents the dispersion tensor, λ is the first-order 

biodegradation rate constant, kNAPL is the dissolution rate constant and eq
sC is the 

equilibrium concentration of the contaminant species s, expressed by: 
soleq .f sss CC =                                                                                                       [4.34] 

where, sol
sC  is the solubility limit for pure substrate s in water, and fs is the mole 

fraction of the species s in the mixture of organic (and inert/non-biodegradable) 

materials and can be calculated by (Parker et al. 1991): 
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where, Ss
NAPL is the mass of substrate s per unit mass of dry soil, and Tt

NAPL 

represents the equivalent mass of all inert and non-biodegradable materials t per 

unit mass of dry soil, ωs is the molecular weight of substrate s, and ωt is the 

equivalent molecular weight of mixture of all non-biodegradable and inert 

(insoluble) materials. The fraction t
NAPL

tT ω/ can be calculated by:  
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where, NAPL
liI , NAPL

ltTR , ωli and ωlt represent each inert and tracer (non-

biodegradable) material and their associated molecular weights, respectively. The 

NAPL mass of substrate s per unit mass of dry soil (Ss
NAPL) decreases as the 
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dissolution occurs. This process can be represented by (Waddill and Widowson 

1998):  

NAPL
s

NAPL
s R
t

S

bρ
θ

d
d

−=                                                                                          [4.37] 

where, ρb is the bulk density of the porous medium and NAPL
sR  represents the mass 

transfer rate given by: 

( )[ ]ss
NAPLNAPL

s CCkR −= eq,0max                                                                       [4.38] 

Thus, due to dissolution of NAPL into groundwater, soil NAPL concentration 

decreases and aqueous concentration increases. In Equation [4.33], the only term 

on the left hand side that accounts for change in concentration with time (a 

transient problem); the first term on the right hand side represents the 

hydromechanical dispersion; the second term represents advection; the third term 

represents dissolution; and the fourth term represents first-order biodegradation. 

This equation should be solved numerically to find the distribution of dissolved 

species concentration in space and time. Eulerian approaches such as the FDM 

and FEM, or Lagrangian approaches such as random walk method can be used for 

this purpose. As discussed in Section 4.2, Eulerian approaches are subject to some 

numerical difficulties such as numerical dispersion and artificial oscillation. On 

the other hand, Lagrangian approaches are significantly affected by discrete 

nature of their concentration fields, which makes their results sensitive to the 

number of particles used. Also, Lagrangian methods become less reliable when 

the dispersive component of transport process becomes more important. As a 

robust alternative, the MOC (a Lagrangian-Eulerian approach) has been used in 

this work and programmed into the code snasim. A dynamic particle allocation 

scheme is used in the code to reduce the required memory and speed up the 

simulation process. In the next section of this chapter, the numerical 

descretization of non-advective terms in Equation [4.33] by the FDM will be 
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presented in detail, and the connection between the solutions to the advective and 

non-advective terms will be discussed.  

 

4.3.1. Numerical solution of the mass transport problem by the MOC 
 

The MOC uses a particle tracking approach to handle the advection term in 

Equation [4.33], and applies the FDM to solve for all other non-advective terms. 

To solve the mass transport problem by the MOC, the transport equation is 

written in Lagrangian form. This can be achieved by combining Equations [4.21], 

[4.24] and [4.33] to give: 
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The second term on the right hand side of Equation [4.39] ( θ/ssCq ) represents 

the effects of volumetric flow sources (or sinks) on the mass transport 

phenomena. The reactive mass transport simulator developed in this work does 

not account for external sink and sources (e.g. pumping wells) and influx of 

contaminants at the boundaries. These are not limiting assumptions in 

development of a stochastic model for natural attenuation of the PHCs. In fact, the 

goal is to study the behavior of non-engineered systems under naturally occurring 

attenuating mechanisms. Besides, the effect of influx (or outflux) of contaminants 

can be easily added to the stochastic natural attenuation simulator snasim. If these 

assumptions hold, and we assume that the effective porosity is constant across the 

modeling domain, Equation [4.40] can be re-written as: 
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The derivative on the left hand side of Equation [4.40] represents the rate of 

change in solute concentration along a characteristic curve of the velocity field. It 

can be approximated by finite difference as (Zheng and Wang 1999): 
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t
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Δ
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where, 1+n
mC  is the solute aqueous concentration at cell m at time step n+1; 

*n
mC  is 

the solute aqueous concentration at cell m at the intermediate time step n* due to 

advection alone; and Δt is the time increment from time step n to time step n+1. 

Combining Equations [4.40] and [4.41], one can calculate the solute concentration 

at the new time step by: 

RHStCC n
m

n
m ×Δ+=+ *1                                                                                      [4.42] 

where, RHS represents the finite difference approximation to terms on the right 

hand side of Equation [4.40].  

 

The solute concentration at the intermediate time step
*n

mC accounts for advection 

and is calculated by a Lagrangian approach. First, a number of moving particles 

are distributed across the flow domain at the beginning of the simulation. 

Depending on the modeler’s choice, the particles may be distributed in areas with 

concentrations above a threshold (dynamic particle allocation), or everywhere 

across the domain. The may also be distributed (in each active cell) on a fixed 

pattern or on a random pattern (Zheng and Wang 1999). The program snasim 

distributes the particles in active cells on a random pattern and implements 

dynamic particle allocation. After allocation of particles, appropriate 

concentration value is assigned to each particle (based on concentration of the cell 

containing each particle), and the position and concentration of the particles are 

recorded. Particles are then tracked forward through the flow field with a small 

time increment. In a grid with uniform cell sizes, the average concentration at cell 

m due to advection alone can be calculated by averaging the concentrations of the 

particles that are within the cell at the end of each time increment, and written by:      
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where, NPm is the number of particles within the cell m (NPm >0), and n
pC is the 

concentration of the pth particle at the previous time step n. In practice, however, 

the average concentration obtained by Equation [4.43] is not directly used in the 

finite difference approximation presented in Equation [4.42]. This is due to the 

fact that other transport mechanisms such as dispersion and biodegradation occur 

throughout the time increment not after finishing the advection. There is a 

standard approach to address this issue: a weighted concentration is defined based 

on 
*n

mC  and the concentration at the previous time step n
mC . Thus, Equation [4.42] 

can be re-written by: 

( )[ ]n
m

n
m

n
m

n
m CCRHStCC ωω −+×Δ+=+ 1

**1                                                        [4.44] 

where, ω is the weighting factor with a value between 0.5 and 1.0 (Zhang and 

Wang 1999). In the code snasim, the weighting factor ω is hard coded as 0.75.  

 

4.3.2. Implementation details of the MOC as used in development of 
snasim 
    

Equations [4.43] and [4.44] represent one step of the mass transport problem by 

the MOC. All mass transport simulators developed based on the MOC repeat 

these equations alternatively in successive transport steps until they reach the 

desired time. The implementation details of the approach as used in development 

of snasim are presented in this section. First, the details of dynamic particle 

allocation, used in the solution of advective transport, are presented. Then, 

numerical discretization of non-advective terms on a finite difference grid is 

presented to form the basis for solution of Equation [4.44]. Finally, the criteria for 

maximum time step size are discussed.      

 

As discussed above, dynamic allocation of particles can help reduce the amount 

of memory required throughout the simulation. The particle allocation technique 
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used in snasim is similar to what is implemented in the widely used solute 

transport program MT3D-MS (Zheng and Wang 1999). However, different 

particle tracking approaches are used. In the MT3D family of mass transport 

simulators, numerical particle tracking techniques are used: first-order Euler 

algorithm (Konikow and Bredehoef 1978) and forth-order Runge-Kutta method 

(Zheng 1989). Similar to the particle tracking code ptrack2d (Section 4.2.2), a 

semi-analytical particle tracking approach is used in snasim. The semi-analytical 

approach provides the exact solution to the particle tracking problem presented in 

Equation [4.26]. However, it is constrained by the assumption of linear velocity 

interpolation.  

 

In the context of dynamic particle allocation, the number of particles placed at 

each cell is normally set either at a high level (NPH) or at a low level (NPL). The 

criterion for switching between NPH and NPL is ‘relative cell concentration 

gradient’ (DCCELLi,j) given by: 

CMINCMAX
CMINCMAX

DCCELL jiji
ji −

−
= ,,

,                                                                   [4.45] 

where, CMINi,j and CMAXi,j are the minimum and maximum cell concentrations 

in the cells adjacent to the cell (i , j) in the current time step; and CMIN and 

CMAX are the minimum and maximum concentrations in the entire field at the 

current time step. Depending on the value of DCCELLi,j being smaller or greater 

than a threshold, namely DCEPS, either NPL or NPH number of particles are 

placed at each cell. The threshold DCEPS is usually set to a small value close to 

zero. This methodology ensures that enough particles are placed in the areas with 

elevated concentration gradients. As the cell concentrations change with time and 

as particles leave (accumulate in) the cells in the source (sink) areas, it may 

become necessary to insert or remove the particles from the system. This is 

important in heterogeneous aquifers where heterogeneity may cause the flow 

paths to converge in some areas and diverge in other areas. In this work, insertion 
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and removal of particles are controlled by minimum and maximum allowed 

number of particles per cell, NPMIN and NPMAX, respectively. If the number of 

cells becomes smaller than the specified NPMIN, up to NPL or NPH numbers of 

particles are inserted into the cell without affecting the existing particles; and if 

the number of particles in each cell exceeds the specified NPMAX, all particles are 

removed and NPH numbers of particles are inserted into the cell to maintain the 

mass balance.     

 

To solve Equation [4.42] at any desired time step, a finite difference 

approximation to the terms in the RHS is needed. The first term on the right hand 

side of Equation [4.40] represents the hydrodynamic dispersion. Its finite 

difference approximation can be written in an explicit (in time) form by: 
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where, Dxx, Dyy , Dxy and Dyx are the components of the dispersion tensor; and they 

may be approximated by: 
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where, ( )
2
1,

2
1

±± jiLα  and ( )
2
1,

2
1

±± jiTα  are longitudinal and transverse dispersivities at 

the cell interfaces and can be calculated by: 
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The second and third terms on the right hand side of Equation [4.40] represent the 

source dissolution and first-order decay. Their finite difference approximation can 

be written in an explicit (in time) form by: 

( )[ ] ( )[ ] n
ji

n
ji

eq
s

NAPL
ss

eq
s

NAPL CCCkCCCk ,,,0max,0max λλ −−≅−−                       [4.49] 

Substituting the expressions in Equations [4.43], [4.46], [4.47], [4.48] and [4.49] 

into Equation [4.44] gives the formulation for explicit time weighting in a finite 

difference approximation context. 
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In the context of solving the mass transport problem with the MOC, the size of the 

tracking time increment is controlled by an accuracy requirement:  

y
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≤Δ ,min                                                                                      [4.50] 

where, Cr is the Courant number that is given by: 

x
tvCr Δ

Δ
=                                                                                                           [4.51] 

where, v represents the magnitude of the velocity vector at the cell interfaces, and 

Δx represents the (directional) grid discretization. As an explicit time-weighting 

scheme has been implemented in finite difference approximation of RHS terms in 

Equation [4.44], other stability constraints will also apply: 
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Dissolution:            
NAPLk
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First-order decay:     
λ
0.1

≤Δt  

Similar to groundwater flow problems, three types of boundary conditions are 

possible in mass transport problems: (a) boundaries with given concentration 

(Dirichlet Condition), (b) boundaries with given concentration gradient (Neumann 

Condition), and (c) boundaries with given total (advective/dispersive) flux 

(Cauchy Condition). These boundary conditions are expressed by Equations 

[4.53] to [4.55], respectively: 

( ) ( ) 0.0  with on                ,,,, 1 >Γ= ttyxctyxCs                                              [4.53] 

( ) 0.0 with ton                ,,θ 2 >Γ=
∂
∂ tyxf
x
CD i

j
ij                                              [4.54] 
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( ) 0.0 with ton      ,,θ 3 >Γ=−
∂
∂ tyxgCq
x
CD ii

j
ij                                              [4.55]  

In impermeable boundaries both advective and dispersive fluxes are zero; and 

Equation [4.55] is set equal to zero. Assignment of zero dispersive flux boundary 

condition is commonly used (in Neumann and Cauchy boundaries), as the 

dispersive flux is often quite small and negligible, as compared to advective flux. 

An interesting case for boundary conditions is when an unknown advective flux 

exists at the boundaries, and its value is determined throughout the simulation. In 

this case, we may assign a Neumann boundary condition with zero dispersive flux 

and let the program calculate the advective flux internally.  

 
4.3.3. The reactive mass transport simulator: snasim 
 

A FORTRAN code, snasim, has been developed to simulate dissolution, 

advection, hydrodynamic dispersion, and first-order biodegradation of PHCs in 

groundwater, based on the MOC (presented in Sections 4.3.1 and 4.3.2). Figure 4-

15 shows the parameter file for snasim. In the parameter file of snasim, the input 

data file containing the initial conditions (in milligrams per liter) and the 

appropriate column number are entered in lines 1 and 2. Lines 3 and 4 involve the 

input file and the data column containing soil NAPL concentrations (in the source 

zone) in grams of NAPL per grams of soil. The trimming limits that are applied 

on all source data are entered in the line 5 of the parameter file. Lines 6, 7 and 8 

involve dry soil density (in grams per liter), total porosity, solubility limit of the 

solute (substrate), its mass fraction in the NAPL mixture, molecular weight of the 

solute (in grams per mole) and molecular weight of the non-biodegradable 

substances (in grams per liter). Line 9 contains the flag to specify the dissolution 

rate constant (kNAPL) as a constant value or to draw it as a random variable (in 

Monte Carlo Simulations). The specified constant value is entered in line 10. 

Lines 11 and 12 involve the statistical distribution and the associated parameters 
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for the dissolution rate constant, when specified as a random variable.  In lines 13 

and 14, the input file for transmissivity data (in natural logarithmic units) and the 

associated column number are specified. The effective porosity is entered in line 

15. Lines 16 and 17 contain the calculated steady-state heads (output of flsim2d) 

and its column number. The flow and transport boundary conditions data files and 

column numbers for type and value of the boundary conditions are entered in 

lines 18 to 21. The discretization of the simulation domain is specified in lines 22 

and 23. The simulation mode is selected in line 24. As observed at the end of the 

parameter file, three simulation modes are available: (1) source dissolution, 

advection and biodegradation, (2) source dissolution, advection, dispersion and 

biodegradation, and (3) source dissolution, advection and dispersion. The 

dynamic particle allocation parameters, NPL and NPH are specified in line 25. 

The random number seed is specified in line 26. The values of DCCELL, NPMIN 

and NPMAX are specified in lines 27 and 28. Line 29 involves the value of the 

grid Courant number. Longitudinal and transverse dispersivities are specified in 

line 30. Similar to the dissolution rate constant, the biodegradation rate constant 

can be considered as a specified constant value or as a random variable with 

specified statistical distribution. The information about the biodegradation rate 

constant is entered in lines 31 to 34. Temporal discretization is specified in line 

35. The program pauses if the size of time steps is larger than what is internally 

calculated as the maximum allowed time step size based on stability and accuracy 

constraints. The number of output events and the associated time steps are 

specified in lines 36 and 37. To speed up the simulation time and reduce the 

number of tracked particles, one can specify a minimum concentration threshold 

in milligrams per litre in line 38. All concentrations below this threshold are set 

equal to zero at the end of each time step. The file for debugging output and the 

debugging level are specified in lines 39 and 40.       
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Figure 4-15: The parameter file for snasim code 

The names of output file for simulated concentrations and the output file for 

average source concentrations are specified in lines 41 and 42. The output file is 

replicated (and pre-named by the event number) by the program based on the 

number of output events and the simulated results for each event are written in 

separate output files. 
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4.3.4. Verification of the reactive mass transport code, snasim 
 

Verification of the code snasim is performed by comparing modeling outcomes 

of the code with those of a widely used commercial code MT3DMS (Zheng and 

Wang 1999). Figure 4-16 shows the simulation domain and the input parameters 

for the sites with homogenous and heterogeneous hydraulic properties. For the 

homogenous case (Figure 4-16-a), transmissivity is equal to 4.53 × 10-5 m/s, 

longitudinal and transverse dispersivities are equal to 10.0 m and 1.0 m, and the 

first-order biodegradation rate constant is equal to 0.0075 day-1. The source zone 

is considered to be 200.0 m by 100.0 m involving Dirichlet boundary condition 

with a fixed concentration of 50 mg/L. The spatial discretization of the simulation 

domain is conducted by defining a 50 × 80 uniform grid with cell sizes of 10 m × 

10 m. The flow boundary conditions involve constant head boundary conditions at 

the north and south boundaries and no-flow boundary conditions at the west and 

east boundaries. The transport boundary conditions involve a Dirichlet boundary 

condition at the location of the source zone and a zero dispersive flux (Neumann) 

boundary condition at north, south, east and west boundaries. It should be noted 

that the assignment of a zero dispersive flux boundary condition at the borders 

result in calculation of unknown advective flux internally by the program, which 

ensures that the length of the plume is not restricted to length of the simulation 

domain. For the heterogamous case, the transmissivity distribution is shown in 

Figure 4-16-b, with four sections with hydraulic conductivities ranging from 8.31 

× 10-7 m/s to 3.33 × 10-4 m/s. The dispersivities, first-order biodegradation rate 

constant, the size and concentration of the source zone and boundary conditions 

are the same as those of the homogenous case.       
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Figure 4-16: (a) The synthetic homogenous aquifer, and (b) the synthetic 
heterogeneous aquifer with fixed head boundary conditions at the north and south 
of the aquifers, no-flow (qn = 0.0) boundary conditions at the east and west of the 
aquifers. The transport boundary condition involves a constant concentration 
boundary condition of 50 mg/L in the source area and zero-dispersive-flux 

( 0.0=
∂
∂

j
ij x

CD ) boundary conditions at the north, south, east and west boundaries.  

 
 
The simulations are conducted by snasim and MT3DMS (Zheng and Wang 1999) 

with similar dynamic particle allocation settings. The simulations results are 

recorded at time snapshots of one year, two years, five years and ten years.   
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Figure 4-17: Development of the dissolved plume in the homogenous aquifer 
simulated by snasim after (a) 1 year, (b) 2 years, (c) 5 years and (d) 10 years.   
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Figure 4-18: Development of the dissolved plume in the homogenous aquifer 
simulated by MT3DMS after (a) 1 year, (b) 2 years, (c) 5 years and (d) 10 years. 
The contour lines correspond to iso-concentration lines of 50, 5, 0.5, 0.05 and 
0.005 mg/L.  
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Figure 4-19: Cross-plots of concentrations obtained by MT3DMS and snasim 
after (a) 1 year, (b) 2 years, (c) 5 years and (d) 10 years.  
 

Figures 4-17, 4-18 and 4-19 show the development of the reactive contaminant 

plume at different time steps as simulated by snasim and MT3DMS, and 

comparing the modeling outcomes for the homogenous case. Figures 4-20, 4-21 

and 4-22 show the development of the reactive contaminant plume at different 

time steps, and comparing the results of snasim and MT3DMS for the 

heterogeneous case.   
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Figure 4-20: Development of the dissolved plume in the heterogeneous aquifer 
simulated by snasim after (a) 1 year, (b) 2 years, (c) 5 years and (d) 10 years.   
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Figure 4-21: Development of the dissolved plume in the heterogeneous aquifer 
simulated by MT3DMS after (a) 1 year, (b) 2 years, (c) 5 years and (d) 10 years. 
The contour lines correspond to iso-concentration lines of 50, 5, 0.5, 0.05 and 
0.005 mg/L. 
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Figure 4-22: Cross-plots of concentrations obtained by MT3DMS and snasim 
after (a) 1 year, (b) 2 years, (c) 5 years and (d) 10 years.  
 

Comparing Figure [4-17] to Figure [4-18], and Figure [4-20] to Figure [4-21], one 

can observe that the overall shape and size of the dissolved plumes simulated by 

snasim and MT3DMS are quite close for both homogenous and heterogeneous 

cases. According to the cross-plots presented in Figures [4-19] and [4-22], in 

general, there is a good agreement between the results of the mass transport 
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simulators. The discrepancy observed in the simulated concentrations is primarily 

observed at the edges of the plume, where concentrations are low. There are a few 

reasons for these relatively small inconsistencies: (1) The snasim program uses a 

semi-analytical particle tracking approach, while MT3DMS uses a numerical 

particle tracking scheme. As shown in Section 4.2.3, the inconsistency between 

the two particle tracking algorithms is negligible when the number of particles is 

small. In simulation with the MOC, however, there are a large number of particles 

(in the order of millions) and the difference between the outcomes of the two 

particle tracking approaches is more pronounced; (2) unlike snasim, MT3DMS 

uses an adaptive temporal discretization, that is, depending on the stability and 

accuracy criteria used, the time step size is adjusted throughout the simulation. In 

snasim, however, a constant temporal discretization scheme is used which 

satisfies the accuracy and stability criteria. This inconsistency between the 

temporal discretization in the two programs can be another reason for some 

inconsistency in the results; and (3) as explained in Section 4.3.2, there is an 

element of stochasticity in the dynamic particle allocation scheme used in the 

development of snasim program. The effect of selection of random number seed 

in execution of snasim is often small but it still may affect simulation results to 

some extent.  
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CHAPTER 5 
 
STOCHASTIC PARAMETER ESTIMATION   
 
 
An important aspect of uncertainty management for the contaminated sites time of 

remediation (TOR) problem is quantification of parameter uncertainty in the first-

order biodegradation rate constant and dissolution rate constant. As discussed in 

Chapters 1 and 2 and 7, available estimation techniques for the first-order 

biodegradation rate constant do not quantify the non-linear confidence intervals 

under uncertainty of source properties (source size and dissolution rate) and 

hydraulic conductivity field, and in the case of field measurement techniques may 

result in estimates that are erroneous for up to a few orders of magnitude (Bauer 

et al. 2006, Beyer et al. 2007). The over/under-estimation of the rate constants 

may result in significant over/under-estimation of the state variables (e.g. plume 

length) as observed by Beyer et al. (2006). The dissolution of LNAPLs into 

groundwater has been extensively studied under laboratory conditions (Imhoff et 

al. 1994, Powers et al. 1994, Nambi and Powers 2003) and in numerical studies 

(Dillard et al. 2001, Parker and Park 2004, Zhu and Sykes 2004, Christ et al. 

2006), where mass transfer correlations and upscaled dissolution models were 

proposed for field applications. It was observed that the upscaled models may be 

applied confidently only for the specific conditions under which the correlation 

parameters were developed and can over-predict or under-predict the flux-

weighted concentrations by more than one order of magnitude (Christ et al. 2006). 

According to Christ et al. (2006), the local-scale (pore-scale) mass transfer 

correlations (for dissolution of residual NAPL ganglia) proposed by Powers et al. 

(1994) and Imhoff et al. (1994) have demonstrated applicability for a wider range 

of porous media, flow and entrapment conditions. Application of the local-scale 
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models under field conditions requires an estimation of effective dissolution rate 

that is associated with uncertainty. According to the results presented by Dillard 

et al. (2001), there is about one order of magnitude uncertainty in the estimated 

dissolution rates for a given modified Peclet number (that is directly correlated to 

the steady groundwater velocity) and different residual saturation conditions, as 

discussed in Chapter 6. This variability may be up to a few orders of magnitude 

when the groundwater velocity is uncertain or variable.          

 

For groundwater management purposes at the field-scale, the value of monitoring 

data can be used to estimate these parameters through inverse modeling. These 

estimates, however, will be affected by uncertainty in model structure (source 

size) and other flow and transport parameters, such as distribution of hydraulic 

conductivity, dispersivities, etc. As pointed out in Chapter 1, Essiad et al. (2003) 

implemented inverse modeling to simultaneously estimate some of these 

parameters for a crude oil contaminated site. They simultaneously estimated the 

recharge rate, hydraulic conductivity value, dissolution rate constant (jointly for 

all BTEX compounds), first-order biodegradation rate (for each BTEX 

compound), and transverse dispersivity for a homogenous aquifer with a simple 

source geometry in an ‘optimal’ sense. They failed to estimate the individual 

dissolution rates for the BTEX compounds because of instability of the inverse 

problem that was stated to be due to a high correlation between the dissolution 

rate constant and biodegradation rate constant.  

 

In this Chapter, the distributions (non-linear confidence intervals) of first-order 

biodegradation rate constant and dissolution rate constant are estimated under 

uncertain source geometry (size) and aquifer transmissivity through a simple 

inverse modeling approach. Tailoring the estimation of dissolution rate and first-

order biodegradation rate to the distributions of uncertainty in the source 

geometry and transmissivity field through Monte Carlo type inverse modeling 
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helps to (1) characterize the inherent uncertainty in the values of these parameters, 

(2) reduce the uncertainty in the state variables and size and shape of the plume, 

and (3) possibly reduce the uncertainty in the source sizes by ranking the 

conditional realizations based on the values of the objective function.   

 

As discussed in Chapter 1, in multi-state nonlinear inverse problems associated 

with subsurface mass transport, three different approaches can be considered, that 

is, decoupled flow and transport inverse problems, loosely (sequentially) coupled 

inverse problems and fully coupled inverse problems. In this work, an decoupled 

inverse problem is adapted. There are two reasons for decoupling the flow and 

transport inverse problems. The first and primary reason is to avoid the 

computational burden associated with the calculation of sensitivity coefficients in 

a multi-state system (Sahuquillo et al. 1999, Gomez-Hernandez et al. 2003) while 

the significance of such coupling in improving the characterization of uncertainty 

in dissolution rate and first-order biodegradation rate and the associated state 

variables is unknown. The second reason above is because simultaneous 

estimation of dissolution rate constant and biodegradation rate constant is prone to 

parameter non-uniqueness problems (local minima and high correlation between 

the parameters), as will be discussed in Section 5.3. Under this circumstance, 

addition of multiple degrees of freedom (local perturbations of hydraulic 

conductivities at multiple master locations) will likely have an adverse impact on 

the overall stability of the inverse problem. The second reason is subject to further 

research. However, for the purpose of investigating the potential problem, in a 

simple 1D example the correlation between sensitivities with respect to local 

velocity perturbations and sensitivities with respect to each of the two transport 

parameters are studied in Section 5.3.1.  

 

In this Chapter, first, the sequential self calibration (SSC) approach (Gomez-

Hernandez et al. 1997) used in conditioning multiple realizations of hydraulic 
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conductivity field to head data is reviewed. The model of uncertainty for 

hydraulic conductivity and head fields are combined with realizations of source 

zone geometry (obtained by the DF approach as in Chapter 3), and the rate 

constants are simultaneously estimated for each realization through inverse 

modeling with concentration data. In this work, it is observed that the potential 

instability of the decoupled inverse problem can be avoided through designing an 

appropriate layout for the monitoring network (Section 5.3). 

 

In Section 5.1, the details of the SSC technique are presented and a post-

processing step through ranking the realizations based on the measure of fit is 

implemented. This post-processing step is implemented to appropriately choose 

the conditional realizations that support a particular level of error in head 

measurements. This ranking and screening the realizations are to be used in an 

analysis of error in Chapters 6 and 7. In Section 5.2, the details of the parameter 

estimation step for the transport parameters are explained; and in Section 5.3 the 

stability of the inverse problem is investigated. In Chapter 6, a synthetic example 

is presented, where the results of the presented inverse modeling are compared to 

a set of Monte Carlo simulations to investigate the performance of the decoupled 

approach.      
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5.1 Sequential self-calibration approach  
 
 
5.1.1. Some preliminary inverse modeling concepts 
 
The basic governing equation for 2D steady-state groundwater flow in saturated 

porous media is given by (rewritten from Chapter 4):   

( )( ) QhT =∇∇ u.                                                                                                   [5.1] 

where, T, h(u), and Q are transmissivity (hydraulic conductivity × saturated 

thickness), head and sink/source terms, respectively. Appropriate boundary (and 

initial) conditions are also defined for the system. Equation [5.1] represents the 

forward problem of finding the distribution of piezometric heads for a fully 

known transmissivity field and boundary conditions. Numerical discretization of 

Equation [5.1] by the finite volumes method results in the system of linear 

equations:  

[ ]{ } { }qhA =                                                                                                         [5.2] 

where, [ ]A is the matrix of coefficients, {h} is the vector of unknown nodal 

piezometric head values, and {q} is the flux vector that represents loading and 

boundary conditions. According to Sun (1994), the forward problem in Equations 

[5.1] and [5.2] is ‘well-posed’, as it satisfies the requirements of well-posedness:   

• Existence: There exists a function (T  h(u)) which satisfies the 

governing equations and boundary conditions 

• Uniqueness: There is no solution other than h(u) 

• Stability: The changes in solution h(u) are small for sufficiently small 

variations of input data. 

 

Simultaneous or sequential adjustment of model structure as well as model 

parameters for the purpose of making input-output relation of the model fit to any 

observed excitation-response of the real system is termed ‘model calibration’. If 

the model structure (e.g. zonation or spatial correlation) is assumed to be known, 
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the problem of determining model parameters (T in Equation [5.1]) from the 

observations of the model response (h(u) in Equation [5.1]) and other available 

information is called parameter estimation or inverse modeling. Inverse problems 

are almost always ‘ill-posed’, that is, their solutions are often non-unique and 

prone to instability problems: small variations in observations results in 

unacceptably large variations in the estimated model parameters. In other words, 

for any given problem many different sets of property estimates may provide 

satisfactory and indistinguishable data fits. Some of these parameter estimates can 

be grossly in error with respect to the actual properties and may result in 

erroneous predictions. To reduce this statistical uncertainty one must decrease the 

number of unknowns through ‘parameterization’ and/or utilize additional 

information through ‘regularization’.  

 

Parameterization is the technique used to simplify the structure of an N-

dimensional parameter space such that it can be represented approximately by an 

M-dimensional space (M<<N). According to Carrera et al. (2005), the most 

common parameterization approaches are zonation, point estimation and 

parameterization with pilot points (master points). In parameterization with 

zonation, the domain is partitioned in a set of zones. In point estimation, the 

model parameters are represented as random numbers with known distributions 

and parameterized by their statistical moments. In parameterization with pilot 

points, the aquifer properties are expressed as linear combination of some 

unknown model parameters and their direct measurements. The kriging weights 

are adopted as the weights in the linear combination.   

 

Regularization refers to supplementing extra information that is independent of 

the measurement of the state variables. This extra information may be in form of 

designated parameter values at some points, or by limiting the admissible range of 

the model parameters at some locations. This supplementary information is called 
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‘prior information’. As a classical approach, the inverse problem is transferred to 

an optimization problem by defining an objective function. The regularization 

terms (prior information) are either directly added to the objective function or 

considered as constrains in optimization of the objective function. In the context 

of groundwater flow problems, the regularized form of the objective function is 

expressed as:  

Th FFF λ+=                                                                                                      [5.3] 

where, Fh represents the weighted squared difference in simulated and observed 

state variables (e.g. piezometric heads) which is expressed as: 

( ) ( )** hhChh −−= −1
h

T
hF                                                                                   [5.4] 

where, h, *h  and 1−
hC  are the vector of simulated heads, the vector of observed 

heads, and the matrix of weights. FT in Equation [5.3] represents the plausibility 

term, and λ is the regularization coefficient. The plausibility term FT is expressed 

by:  

( ) ( )*1* YYCYY −−= −
T

T
TF                                                                                  [5.5]                       

where, Y, *Y are the vectors of point estimation and point measurements of the 

model parameters (Y={Yi, i=1, …, NT}={lnTi, i=1, …, NT}), NT is number of 

prior values (point measurements of transmissivity Ti) and 1−
TC is the matrix of 

weights. As explained previously, alternatively, regularization may be 

implemented through constrained optimization. In this case, only the first term on 

the right hand side of Equation [5.3] is retained and some limits are imposed on 

the changes on the point estimations of the parameters throughout the 

optimization process.   

 

Although appropriate parameterization of the model and regularization of the 

objective function crucially help reduce the instability and non-uniqueness 

problems, there still may not be a single set of parameters leading to a good 

representation of the reality. As a result, the inverse modeling techniques that 
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estimate the model parameters in an optimal sense, despite their computational 

efficiency, are not applied in this work. Instead, the Monte Carlo based 

(conditional simulation based) techniques such as SSC that generate multiple 

realizations conditioned to both piezometric head and hydraulic conductivity data 

are employed.   

 

5.1.2. Sequential self-calibration approach: theory and implementation 
 

The sequential self-calibration (SSC) approach was originally developed for a 2D 

steady-state condition with multi-Gaussian hydraulic conductivity distribution 

(Sahuquillo et al. 1999, Gomez-Hernandez et al. 1997). It was later extended for 

non-Gaussian distributions (through indicator simulation) (Capilla et al. 1999), for 

transient flow conditions (Hendricks Franssen et al. 1999a), for 3D flow in 

fractured media (Hendricks Franssen et al. 1999b), for two-phase fractional flow 

(Wen et al. 2003), for coupled flow and transport (Hendricks Franssen et al. 2003) 

and for integration of remote sensing data (Hendricks Franssen et al. 2008).  

 

The SSC technique is an iterative technique coupling geostatistics and 

optimization. First, multiple conditional realizations of hydraulic conductivity 

field are generated using standard geostatistical techniques such as sgsim in 

GSLIB (Deutsch and Journel 1998). By construction, all the generated 

realizations honor the static data as well as input statistics such as histogram and 

variogram. Throughout the SSC process, the hydraulic conductivity field (and 

boundary conditions) is modified repeatedly without changing the spatial 

correlation structure of hydraulic conductivity until the head observations are also 

honored. Figure 5-1 shows the flowchart of the SSC technique. The unique 

aspects of SSC are designation of master points that significantly reduces the CPU 

time, a propagation of perturbations by kriging which preserves the spatial 

correlation of perturbations, and a computationally efficient algorithm for 

calculating the sensitivity coefficients within a single flow simulation run. The 
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major assumptions and simplifications of the SSC technique are (1) the support of 

point measurements of hydraulic conductivity is the same as that of grid blocks, 

and (2) a prior estimate of log-hydraulic conductivity variogram is available.  

            

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-1: The flowchart of SSC technique (after Wen et al. 1999) 

 

After constructing multiple conditional hydraulic conductivity realizations by 

standard geostatistical techniques, the flow equation (Equation [5.1]) is solved for 

every realization using standard finite difference method (Equation [5.2]) and the 

distribution of piezometric head is calculated. The hydraulic conductivity and 
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head distributions for each realization are represented in vector form by Y = {Yi, 

i=1, …, N} = {lnTi, i=1, …, N}, and h = {hi, i=1, …, N}, respectively, where N is 

number of grid blocks. In the SSC approach, the reproduction of the measured 

piezometric heads is analyzed by evaluation of an objective function defined by 

(Gomez-Hernandez et al. 1997):  
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                                                                           [5.6] 

where, F is a generalized sum of squared differences between the measured heads 

{ }h
m
i nih ,...,1, =  and calculated heads; and wij represent the weights that can be set 

to the inverse of the head error covariance matrix. It is quite common to assume 

that the errors (the sum of estimation and measurement errors) are spatially 

uncorrelated and Equation [5.6] can be written in a simplified form: 
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In the SSC algorithm, regularization is implemented either by constraining the 

maximum departure of the updated field from the conditional expectation of log-

hydraulic conductivity as given by the ordinary kriging estimate from the log-

hydraulic conductivity data or by addition a plausibility term to the objective 

function (Gomez-Hernandez et al. 1997): 
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where, τ is a trade-off coefficient, νij are the coefficients of the inverse of the 

kriging estimation matrix, and ( )0
iY and ( )k

iY  are the values of log-hydraulic 

conductivity fields at the master locations for the seed field and for the updated 

field after k iterations. According to Gomez-Hernandez et al. (1997) and Wen et 

al. (1999), conditioning to head data is considered to be achieved when the value 

of the objective function (Equation [5.7] or [5.8]) is less than a user-defined small 

tolerance.  
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As discussed previously, parameterization of hydraulic conductivity field in the 

SSC approach is through considering an adequate number of master locations and 

defining the perturbations in all grid blocks of the seed fields as a linear 

combination of perturbations at this limited number of master locations. 

Mathematically, this statement can be expressed by:  

∑
=

Δ=Δ
Ym

k
k

k
ii YY

1
λ                                                                                                    [5.9] 

where, iYΔ  represents the perturbation at every grid cell, kYΔ  represents the 

perturbation at master locations, and k
iλ represents the ordinary kriging weights. 

Equation [5.9] ensures a smooth perturbation over entire field and minimal 

disturbance to the correlation structure of the seed fields. It should be noted that 

the set of master points include all hydraulic conductivity data locations as well as 

additional locations. Gomez-Hernandez et al. (1997) recommend that the master 

points should be located on a pseudo-regular grid with spacing in the order of 

one-third of the correlation range of the variogram used to construct the seed 

fields.  

 

The perturbations at the master locations are calculated through optimization 

(minimization) of the objective function defined by Equations [5.7] or [5.8]. In 

the original presentation of SSC method in Gomez-Hernandez et al. (1997), 

constrained minimization of Equation [5.7] was implemented through a gradient 

based optimization algorithm (the method of feasible directions). The 

optimization process requires (1) the piezometric heads to be expressed as explicit 

functions of the perturbations at master locations, and (2) the derivative of 

piezometric heads with respect to log-hydraulic conductivity perturbation at all 

master locations (sensitivity coefficients) to be calculated. The first requirement is 

met through linearizing the Equation [5.2] by Taylor series expansion around the 

vector of piezometric heads associated with the seed field {h(0)}. Thus, the linear 

approximation to the piezometric head field is given by:  
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where, the second term on the right hand side represents the approximate change 

in the head field due to small perturbations in hydraulic conductivity field (and 

boundary conditions).    

 

The second requirement is met through the solution to the ‘sensitivity equations’. 

Taking the derivative of Equation [5.2] and rearranging results in the set of 

sensitivity equations:    
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As pointed out by Gomez-Hernandez et al. (1997), the Equation [5.11] gives the 

full vector of sensitivity coefficients through solution of a set of N linear 

equations with the same matrix of coefficients as the original flow problem 

(Equation [5.2]). The derivatives of {Q} and [A] with respect to the parameters 

can be easily calculated. The reader is referred to Gomez-Hernandez et al. (1997) 

for the details on calculation of these derivatives as well as minimization of the 

object function defined in Equation [5.7].     

 

Regularization of the objective function can be performed either by adding a 

plausibility term to the objective function or by constrained minimization of the 

objective function. As explained before, in the original presentation of SSC 

method, constrained minimization of Equation [5.7] was implemented. The 

constraints imposed are in the form of limiting the departure of final updated log 

hydraulic conductivity field from the conditional expectation of log-hydraulic 

conductivities given by the ordinary kriging from the log hydraulic conductivity 

data. According to Gomez-Hernandez et al. (1997), these constraints can be 

expressed by:  
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where, krig,kY  is the ordinary kriging estimate at any master location and krigσ is the 

corresponding kriging standard deviation, and t is the proportionality parameter 

which is set to 2 (Gomez-Hernandez et al. 1997) or 3 (Wen et al. 1999). The 

criteria for stopping the iterations on minimization of the objective function 

include (1) iterations continue until the objective function is sufficiently close to 

zero, or (2) improvements in the model fit (decrease in the value of the objective 

function) in consecutive iterations is insignificant, or (3) the maximum number of 

outer iterations has been exceeded.  

 

As discussed before, a two-step decoupled approach has been applied in this 

thesis to characterize the uncertainty in dissolution and first-order biodegradation 

rates. In the first step of the proposed approach, the SSC technique is applied to 

generate hydraulic conductivity realizations conditioned to both hydraulic 

conductivity and head data. The SSC program used for this purpose is based on 

the source code presented by Wen et al. (1999). The original code was slightly 

modified and simplified for a steady-state groundwater application.  

 

5.1.3. Screening the conditional realizations 
 

As part of this research, the effect of error in head observations on subsequent 

estimation of dissolution rate and first order decay rate and predictions of the state 

variables will be investigated in Chapters 6 and 7. Thus, multiple realizations that 

support a given level of measurement errors are required. Some works in the 

literature investigate the relationship between the uncertainties in model 

parameters and measurement errors and/or predictive error variance. The work of 



                                                                                                              185

Vecchia and Cooley (1987) is one of the most important early works in this area. 

The works of Hendricks-Franssen and Gomez-Hernandez (2003), McKenna et al. 

(2003), Moore and Doherty (2005) and Tonkin et al. (2007) are among the recent 

works in this area for distributed systems. McKenna et al. (2003), Moore and 

Doherty (2005) and Tonkin et al. (2007) investigated the relationship between the 

predictive error variance (for transport) and uncertainty in the hydraulic 

conductivity fields. Moore and Doherty (2005) and Tonkin et al. (2007) use 

prediction error variance as an objective function for under-determined and over-

determined systems in the context of linear and non-linear regression. In both 

works, they minimized the predictive error variance for a solute travel time. 

McKenna et al. (2003) added a strong regularization constraint to the objective 

function to address the relationship between the non-uniqueness in the T fields 

and resulting transport calculations. Hendricks-Franssen and Gomez-Hernandez 

(2003) investigated the impact of measurement error in stochastic inverse 

modeling by the SSC method. In their work, they set the tolerance value (Jtol) for 

minimization of the object function (Equation [5.7]) equal to: 
2σnJtol =                                                                                                          [5.13] 

where, n is the number of head observations, and σ2 is the variance of head 

measurement error based on Gaussian noise. Throughout data conditioning, they 

evaluated the objective function for each updated log-hydraulic conductivity field. 

The log-hydraulic conductivity field was considered as to be successfully 

conditioned to head data if the value of the objective function was below the pre-

specified tolerance value (Equation [5.13]).  

 

As discussed in Section 5.1.2, the SSC calibration stops when the value of the 

objective function is below a pre-specified value, or the improvements in the 

model fit are insignificant in consecutive iterations, or the maximum number of 

outer iterations exceeds the maximum allowed. These stopping criteria result in 

conditional realizations that do not show the same level of mismatch to head data, 
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as will be investigated through a numerical experimentation. A ranking and 

screening ensures that the level of mismatch (or fitting) of the conditional 

realizations with the head observations is consistent with the observations errors. 

One can define a measure of fit denoted by s as: 

n
Fs =2                                                                                                               [5.14] 

where, F is the value of the objective function while weights in Equation [5.7] are 

set to the inverse of the head error covariance matrix and n is the number of 

observations. Similar to Equation [5.13] and the work of McKenna et al. (2003) 

(among others), for every realization subject to conditioning to head data, the 

value of s should be as close to one as possible to (1) ensure the convergence of 

the conditioning algorithm and (2) avoid fitting the noise in observations. This 

concept can be used in ranking and screening the realizations conditioned to head 

data by the SSC approach. To investigate the distribution of s for realizations 

conditioned to head data by the SSC, a numerical experimentation is performed as 

follows.  

 

Figure 5.2 shows a 2D reference log hydraulic conductivity field, the associated 

steady-state piezometric head response, and the locations of sampling points. The 

simulation domain is 250 m by 160 m and the squared shape grid blocks are 2.0 m 

by 2.0 m. The reference log hydraulic conductivity field has a mean of -10.1, 

standard deviation of 1.2 both in natural logarithm units (loge m/s) and a spatial 

correlation defined by a spherical variogram with a nugget effect equal to 0.1 and 

a range of 36.0 m. The boundary conditions for the flow field include fixed head 

boundary conditions at the north and south of the site with constant head values of 

4.5 m and 2.0 m, respectively; and no-flow boundary conditions at the west and 

east boundaries. There are 100 head observation locations (black circles) and 18 

permeability measurement locations (white circles). Three data sets for 

piezometric heads have been created by introducing three different levels of 

Gaussian noise (σ = 0.10m, 0.15m, 0.25m) to the piezometric head values 
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sampled from the reference head field shown in Figure 5-2-b. Three sets of 1000 

hydraulic conductivity realizations conditioned to hydraulic conductivity data 

only are generated by sequential Gaussian simulation program of GSLIB 

(Deutsch and Journel 1998). Figure 5-3 shows the histograms of the measure of fit 

s for the three sets of hydraulic conductivity realizations calculated based on 

different levels of error in the head observations, before conditioning to head data 

by the SSC. Figure 5-4 shows the histograms of the values of s for the three 

ensembles of realizations after conditioning to head data by the SSC. In the 

implementation of the SSC, a total of 126 master points are used (roughly two 

master points per correlation range in each direction), a maximum of 25 outer 

iterations are allowed, and the damping parameter and the minimum relative 

tolerance (normalized to the initial value of the objective function) are set to 0.2 

and 0.01, respectively. Also, the minimum difference of objective function in two 

consecutive iterations, and the maximum number of times that the difference of 

objective function is smaller than the pre-specified value are set to 0.005 and 10, 

respectively. The minimum relative tolerance has been intentionally set to a small 

number (0.01) to ensure that the optimization process searches for the best 

possible fit to the observed heads to investigate the effects of different levels of 

noise on the histograms of s. In Figures 5-3 and 5-4, it can be observed that: (1) 

when the standard deviation of measurement error is large (noisy data set), there 

may be some realizations that have their measure of fit close to one (Figure 5-3-c) 

and are therefore acceptable even before conditioning to head data; (2) when the 

standard deviation of measurement error is small, there may only be a small 

number of conditioned realizations (by the SSC) that satisfy the requirement of s 

close to one (Figure 5-4-a); and (3) setting the target value of the objective 

function to a very small value when the observed head data is too noisy may 

result in conditional realizations that have a good fit (over-fitted) to noisy data set 

but their value of s deviates from one.  
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Figure 5-2: (a) Reference hydraulic conductivity field, and (b) the associated 
piezometric head response. There are 100 head observation locations (black 
circles) and 18 hydraulic conductivity measurement locations (white circles).    
 

It should be noted that running the SSC program requires a large amount of CPU 

time. In the above example, the required CPU time for running the SSC algorithm 

for 1000 realizations under steady-state conditions (with known boundary 

conditions) was roughly equal to 62 hours on a Dell Precision PWS470 

workstation with Intel Xeon ™ 3.00GHz CPU. Under transient flow condition, 

the required CPU time can be significantly larger. Therefore, generating a very 

large number of realizations, conditioning them to head data by the SSC, and 

accept/reject them based on the closeness of measure of fit s to one can be quite 

time-consuming.  

 

In this work (Appendix A), an alternative way of generating multiple Gaussian 

realizations with their measure of fit s close to one has been examined. This 

alternative approach, termed distance-based simulation (Scheidt et al. 2008 and 

Caers 2008), builds on the concepts of multidimensional scaling (MDS), 

Karhunen-Loeve (KL) expansion, kernel principal component analysis (KPCA), 

and modeling and simulation in the metric and feature spaces. 
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Figure 5-3: Histogram of the measure of fit s for the ensembles of realizations 
before conditioning to head data for measurement error standard deviations of (a) 
σ = 0.10 m, (b) σ = 0.15 and (c) σ = 0.25. 
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Figure 5-4: Histogram of the measure of fit s for the ensembles of realizations 
after conditioning to head data for measurement error standard deviations of (a) σ 
= 0.10 m, (b) σ = 0.15 and (c) σ = 0.25. 
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Using distance-based simulation, one may choose a limited number of realizations 

that have a desired response and may expand the set of realizations that have 

similar responses while being conditioned to static data and reproduce (some of) 

the input statistics. As discussed in Appendix A, this technique needs a very 

careful post-processing of the realizations to ensure the reproduction of input 

histogram (especially standard deviation) by the expanded set of realizations. It is 

also observed that many of the generated realizations may closely resemble the 

input realizations. Thus, despite being extremely fast technique in generating 

realizations, it has not been extensively used in this thesis.     

 

As stated previously, ranking and screening the conditional realizations based on 

closeness of their measure of fit to one is used in Chapters 6 and 7 to create a 

subset of realizations that support a particular level of measurement error.  
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5.2 Stochastic parameter estimation for kdis and λ 
 
 
5.2.1. Formulation of the problem 
 
As reviewed in Chapter 2, several analytical and numerical models have been 

developed to obtain a solution to the TOR problem through simulation of 

advection, dispersion, sorption, and biodegradation (decay) of solute petroleum 

hydrocarbon contaminants in groundwater. The input parameters to these models 

usually include flow and transport parameters such as areal recharge, hydraulic 

conductivity, effective porosity, dispersivities, retardation factor and solute decay 

rates (or biodegradation rate constants), and sometimes include dissolution rate 

constants and reaction kinetics. The modeling outputs (state variables) almost 

always involve the spatial and temporal distribution of heads and concentrations 

across the modeling domain. The length of the plume and the mass loaded into the 

aquifers are then estimated based the simulated concentrations.  

 

In practice, estimates of the flow and transport parameters are obtained through 

field measurements, laboratory experiments, calibrating the models to site-

specific data (inverse modeling); or as a last resource literature prescribed values 

are used. In any case, the estimated parameters are often prone to uncertainty. 

Inverse modeling techniques (Essaid et al. 2003, Hendricks Franssen et al. 2003 

among others) have been used to estimate some of the flow and transport 

parameters. The distribution of hydraulic conductivity, the values of the decay 

rates (or biodegradation rate constants) of contaminant species and the parameters 

representing the source of contaminants (source geometry and dissolution rate) 

are the most important parameters with the most impact on the outcome of the 

TOR problem. It has been observed that simultaneous estimation of these 

parameters leads to potential instability problems (Essaid et al. 2003) in an 

inverse modeling context. The instability problems in joint estimation of first-
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order biodegradation rate constant and dissolution rate constant can be avoided 

through weighting the mismatch between simulated and observed concentrations 

in the objective function inverse proportional to simulated concentrations (as used 

by Anderman and Hill 1999) and designing an appropriate monitoring layout for 

sampling concentrations. Figure 5-5 shows the workflow for the decoupled 

inverse problem.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: The workflow for the decoupled inverse problem. 
 

First, joint realizations of source geometry and hydraulic conductivity field are 

constructed with the assumption of full statistical independence. The realizations 

of the hydraulic conductivity field are previously conditioned to head data by the 

SSC algorithm (Section 5.1). The values of the first-order biodegradation rate 
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constant, and dissolution rate constant are then estimated simultaneously for each 

of the joint realizations through inverse modeling. The mass transport simulator 

developed in Chapter 4 that numerically solves the Equations [4.33] to [4.38] as 

well as a modified Gauss-Newton optimization approach have been used to solve 

the inverse problem (Appendix B). The joint realizations with their optimized 

dissolution rates and first-order decay rates can then be used to make predictions 

with uncertainty. In Chapter 6, it is shown that tailoring the estimation of 

dissolution and first-order biodegradation rate constants to distributions of 

uncertainty in source geometry and transmissivity field characterizes the 

uncertainty in these parameters and effectively reduces the uncertainties in the 

prediction of state variables. The details for the implementation of inverse 

modeling for joint estimation of dissolution rate and first-order biodegradation 

rate are given in the next paragraphs. 

 

The objective function that quantifies the mismatch between the observed and 

calculated concentrations is represented by: 
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where, FC is the sum of squared differences between the measured concentrations 

{ }h
m
i niC ,...,1, =  and the calculated concentrations, wi represent the weights that 

show the relative importance of different observations, and icv represent the 

coefficient of variation associated with the observations. Following the work of 

Anderman and Hill (1999) and as the low values of the concentrations at the 

locations far from the source of contaminants are important in improving the well 

posedness of the problem, the weights in Equation [5.15] are calculated as the 

square of the inverse of the product of coefficient of variation and simulated 

concentrations. Using this product instead of the standard deviation of the error in 

observations has two advantages: (1) the concentration values usually vary over a 

few orders of magnitude and the suggested weighting ensures that the small 
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concentrations (at the edges of the plume) get large enough weights to avoid 

having their information content vanished throughout the optimization; and (2) 

the author’s experience with plotting the objective function surfaces showed that 

using simulated (rather than measured) concentrations and coefficient of variation 

leads into smoother objective function surfaces. This is also explained by 

Anderman and Hill (1999). In practice, there is often prior information available 

about the values of first-order biodegradation rate and the dissolution rate. As 

discussed before, these prior values are usually obtained through some sort of 

field/laboratory experiment or as literature prescribed values. The prior 

information can be used for regularization of the objective function (Equation 

[5.15]) or in constrained optimization. The regularized form of the objective 

function can be written by: 
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where, PR
disk , disk , PRλ  and λ  represent the prior value for the dissolution rate, the 

estimated value for the dissolution rate, the prior value for first-order 

biodegradation rate, and the estimated value for first-order biodegradation rate, 

respectively. The weights kw and λw are calculated as the inverse of the variance 

of the prior values: 
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where, klnσ and λσ ln are the standard deviations of prior values for dissolution rate 

and first-order biodegradation rate, respectively.  

 

Although the weighting scheme used in the definition of the objective function 

defined by Equation [5.15] effectively avoids vanishing the information content at 

the low concentration locations, at the same time it introduces an artifact to the 

value of objective function that makes it inappropriate for ranking the realizations 

based on the value of the objective function. In other words, the weighting 
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scheme in Equation [5.15] always gives lower weights to joint realizations with 

larger source zones that have larger average concentrations across the modeling 

domain. In the example presented in this work (Chapter 6), it is observed that 

multiplication of the objective function by the value of the quantile associated 

with the source zone realization (drawn from the band of uncertainty defined by 

the distance function approach) can provide a more appropriate measure for 

ranking the realizations based on their objective function value. Thus, the 

modified objective function is defined by: 

( ) 22
1

2
,

1         with 1

ii
i

n

i
i

m
iijjC Ccv

wCCwq
n

F
c

=−=′ ∑
=

                                            [5.18] 

where, jCF ,′ and qj represent the objective function and the source size quantile 

associated with the jth joint realization. In the synthetic example presented in 

Chapter 6, it is observed that by ranking based on the value of the modified 

objective function [Equation 5.18] and screening, one may reduce the uncertainty 

in the size of the source zone and reduce the bias in the predicted state variables.  

 

To estimate the values of kdis and λ, non-linear regression techniques (Cooley and 

Naff, 1990) are employed, where a gradient-based optimization algorithm is used 

iteratively to obtain an improved estimate of the set of parameters, until 

convergence achieved. In this work, the modified Gauss-Newton approach 

(Cooley and Naff 1990) is employed and the criteria for convergence are 

considered to be (1) the value of objective function (Equation [5.15]) is smaller 

than a pre-specified small value, or (2) the reduction in the value of the objective 

function is insignificant in a few consecutive iterations or (3) maximum number 

of iterations is reached (Appendix B). In each iteration of the Modified Gauss-

Newton approach, the vector of estimated parameters is updated by addition of an 

updating vector dr multiplied by a damping parameter ρr:  

rr1r bdb +=+ rρ                                                                                                 [5.19] 
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where, br and br+1 are the vectors of the estimated parameters in two consecutive 

iterations. The damping parameter ρr preserves the direction of dr and ensures 

that the changes in the parameters remain less than the maximum allowed change 

specified by the user and has a damping effect on likely oscillations that may 

occur due to opposite directions in consecutive updating vectors (dr and dr-1). In 

the modified Gauss-Newton method, the updating vector dr is calculated by: 

( ) ( )( )rr byyωXCdCICωXXC −=+ − T
r

T
rr

T
r

T m 1                                                 [5.20] 

where, I is the identity matrix, C is the diagonal scaling matrix, Xr is the matrix of 

sensitivities, ω is the matrix of weights, y is the vector of observed 

concentrations, y(br) is the vector of simulated concentrations, and mr is the 

Marquardt parameter. The expanded form of the vectors in Equation [5.20] can be 

presented by: 
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where, ND is the number of observations, and N equals ND + 2. The damping 

parameter always has a value less than one and can be calculated as the proportion 

of maximum allowed change to maximum calculated change. The maximum 

calculated change is obtained as the absolute value of the largest fractional change 

in the parameter values. The Marquardt parameter in Equation [5.20], which is 

used to change the direction of dr, has an initial value of zero and is updated in 

each step according to the following rule (Hill and Tiedeman, 2007): 
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 where, θ is the angle between the Gauss-Newton updating vector dr and the 

steepest descent vector which is calculated as the gradient of the objective 

function with respect to the estimated parameters. The components of the gradient 

vector can be calculated by: 
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where, Sα,i represents the sensitivity coefficient defined as the derivative of 

concentration at the ith observation location with respect to the estimated 

parameters, being either kdis or λ. The calculation of the sensitivity coefficients in 

Equations [5.20], [5.21] and [5.23] is a crucial step in finding the optimum values 

for the model parameters. A number of different approaches have been reported in 

the literature for calculation of sensitivity coefficients, most importantly 

perturbation method, the method of sensitivity equations and the adjoint state 

method (Carrera et al 1990).  

 

In this work, the method of sensitivity equations has been applied. Similar to the 

SSC algorithm, the sensitivity coefficients can be calculated simultaneously with 

calculation of simulated concentrations through solving the transport equations 

(Equations [4.33] to [4.38]). However, in the method of characteristics (used in 

Chapter 4 to develop the mass transport simulator code) the advection term is 
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handled through particle tracking and direct numerical differentiation of Equation 

[4.33] is not available. To overcome this problem, one may discretize the 

advection terms on the finite–difference grid and calculate the sensitivity 

coefficients at the same time as solving the mass transport equations to find the 

concentrations. This approach is very efficient. Taking the derivative of Equation 

[4.33] with respect to kdis and λ results in the sensitivity equations for these 

parameters:  
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where, α represents either kdis or λ, Sα represents the sensitivity coefficients with 

respect to either kdis or λ and Rs/n represents the sink/source term and the reaction 

term. The term on the right-hand side of Equation [5.24] can be expanded by:  
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where, Cs is the concentration of the contaminant species s (e.g. benzene), and 
eq
sC is the equilibrium concentration of the contaminant species s, calculated by 

Equation [4.34]. Similar to Equations [4.46] through [4.49], Equation [5.24] can 

be discretized by finite difference method with an explicit time weighting: 
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where, n and n+1 represent the current and next time steps, the terms Dxx, Dyy , Dxy 

and Dyx are the components of the dispersion tensor and they may be 

approximated by Equations [4.47] and [4.48], and the terms vx and vy are the 

velocity components at the cell interfaces which can be calculated by Equations 

[4.27] and [4.28].  

 

As discussed in Chapter 4, simulation of the advective term, together with all 

other terms in an Eulerian framework may result in advective fronts (plume 

edges) that look too smooth and unrealistic. To investigate the impact of this 

smoothing effect on calculation of sensitivity coefficients, one may compare the 

calculated sensitivities by sensitivity equations to the sensitivities calculated by 

perturbation approach. For this purpose, a synthetic study site has been created 

with known flow and transport properties and boundary conditions. Figure 5-6 

shows the synthetic study site that has a heterogeneous hydraulic conductivity 
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with a log-normal Gaussian distribution with a mean of -10.5 (loge m/s), standard 

deviation of 0.8 (loge m/s), and a spherical variogram with a nugget equal to 0.05 

and a range equal to 30 m. No-flow boundary conditions are assigned at the west 

and the east of the site and constant head boundary conditions equal to 3.6 m and 

2.0 m are assigned at the north and the south of the site, respectively. In terms of 

mass transport properties and boundary conditions, a rectangular NAPL source 

zone was considered at the north of the site with a uniform substrate (e.g. 

benzene) soil concentration equal to 100 mg/Kg, assuming that the initial mass 

fraction of the substrate in the NAPL is equal to 0.01. The substrate solubility, 

substrate and inert molecular weights are set equal to 0.00178 g/cm3, 78.1 and 101 

g/mole, respectively. Dry soil density, total porosity and effective porosity are set 

equal to 1.6 g/cm3, 0.35 and 0.3, respectively. The dissolution rate and first-order 

biodegradation rates are set equal to 0.0011day-1, and 0.0044day-1, respectively. 

Zero dispersive flux boundary conditions are assigned at all boundaries. The 

longitudinal and transverse dispersivities are set equal to 1.0m and 0.2m, 

respectively. Figure 5-7 shows a few snap-shots of the development of the plume, 

which has been simulated for 10 years.      

 
 
 
 
 
 
 
 
 
 
 
Figure 5-6: (a) Reference hydraulic conductivity field, and (b) the associated 
piezometric head response. The monitoring locations numbered 1 to 12 are used 
to record the simulated concentrations and plot the objective function surface in 
Section 5.2.3.    
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Figure 5-7: Six snap shots from the development of the dissolved contaminant 
plume after (a) 1 day, (b) 1 year, (c) 2 years, (d) 3 years (e) 7.5 years and (f) 10 
years.   

(f)(e)

(d)(c)

(b)

C
oncentration (m

g/L
) 

(a)



                                                                                                              203

 

 

 

 

     

 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
Figure 5-8: Comparison between the numerically (using sensitivity equations) and 
analytically (using perturbation approach) calculated sensitivity coefficients with 
respect to (a) kdis after 5 years, (b) kdis after 10 years, (c) λ after 5 years, and (d) λ 
after 10 years.  
 
Figure 5-8 shows cross-plots of the sensitivity coefficients calculated over the 

modeling domain using sensitivity equations versus the coefficients calculated by 

perturbation approach with respect to kdis and λ at two different time steps.   
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respect to the estimated parameters (high rank correlation between the attributes 

in all cases). There is a better agreement between the calculated sensitivities at the 

locations with higher concentrations (the areas within the plume). At the edges of 

the plume, however, the values of the calculated sensitivities may differ up to one 

order of magnitude. This can be due to and affected by particle insertion/deletion 

mechanism that is used in the method of characteristics and the size of 

perturbations used in the study. 

 

5.2.2. Sensitivity analysis 
 
In this work, a decoupled inverse problem has been parameterized in terms of 

distribution of hydraulic conductivity, geometry of the source zone, dissolution 

rate constant and biodegradation rate constant. In order to attain a better 

understanding of the relationships between the model parameters and the response 

variables, a simple sensitivity analysis has been performed. For this purpose, a 

160 m × 300 m synthetic study site has been created (Figure 5-9) with a Gaussian 

hydraulic conductivity distribution with a mean (in natural logarithmic unit) equal 

to -11.12 loge-m/s and two levels of heterogeneity with standard deviations of 1.0 

loge- m/s and 2.1 loge- m/s. A spherical variogram with a nugget effect equal to 

0.1 and a range of 25.0 m has been used to generate the reference hydraulic 

conductivity fields. The flow boundary conditions include fixed head boundaries 

at the north and the south of the site equal to 3.5 m and 2.0 m, respectively; and 

no-flow boundary conditions at the west and the east of the site. The uncertainty 

in the areal extent of the NAPL source zone was characterized by the distance-

function approach (Chapter 3). The uncertainty in dissolution and first order 

biodegradation rates are modeled by log-normal distributions, as shown in Figure 

5-9. The mean and log-normal standard deviation of kdis and λ are assumed to be 

0.035 day-1, 1.76 logeday-1, 0.0031 day-1 and 0.37 logeday-1, respectively. These 

values are selected to represent the variability in these parameters based on the 

values commonly found in the literature for benzene (Aronson and Howard 1997, 
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Waddill and Widowson 1998 and Christ et al. 2006). Zero-dispersive flux is 

assigned to all boundaries as the transport boundary conditions. All other 

transport parameters are set equal to those associated with Figure 5-6. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-9: (a) The reference hydraulic conductivity field and the uncertainty 
band for the areal extent of the source zone, (b) log-normal distribution for kdis 
with given p05, p50 and p95 quantiles and  (b) log-normal distribution for λ with 
given p05, p50 and p95 quantiles.  
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The simple sensitivity analysis involves running the mass transport simulator for 

30 years on the hydraulic conductivity fields with the two levels of heterogeneity 

(σT = 1.0 loge-m/s and σT = 2.1 loge-m/s) for each of p05, p50, and p95 quantiles for 

source geometry, dissolution rate and first-order biodegradation rate, while all 

other parameters are set to their base case values (p50 value). Figures 5-10 and 5-

11 show the variations of two important TOR state variables, namely the total 

mass loaded into a mildly heterogeneous aquifer (σT = 1.0 loge-m/s) and the 

plume length over a period of 30 years due to changes in the values of dissolution 

rate constant, biodegradation rate constant and the areal extent of the source zone. 

Figures 5-12 and 5-13 show the similar plots for a highly heterogeneous aquifer 

(σT = 2.1 loge-m/s). Looking at the Figures 5-10 through 5-13, one may observe 

that: (1) there is highly non-linear relationship between the dissolution rate and 

the state variables, that is, the state variables have larger sensitivities with respect 

to changes in dissolution rate when the value of the dissolution rate constant is 

relatively small (in the orders Christ et al. 2006 suggested for field applications); 

(2) the length of the plume is much more affected by changes in the 

biodegradation rate constant, compared to the impact of changes in the dissolution 

rate constant and source geometry (for the given levels of heterogeneity) have 

smaller effect on the length of the plume; however, this depends on the value of 

dissolution rate too; (3) the field-scale heterogeneity substantially affects the 

length of the plume and although it has smaller impact on the amount of mass 

loaded into the aquifer, it affects the sensitivity of the mass loaded into the aquifer 

with respect to the changes in the dissolution rate; (4) the sensitivity of the 

amount of mass loaded into the aquifer with respect to changes in the dissolution 

rate constant becomes smaller with time. It should be noted that the two standard 

deviation values for the hydraulic conductivity field used in the analysis 

correspond to the observed standard deviations reported by Binsariti (1980) for an 

alluvial basin aquifer (σT = 1.0 loge-m/s) and reported by Rehfeld et al. (1989) for 

a fluvial sand and gravel aquifer (σT = 2.1 loge-m/s).    



                                                                                                              207

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-10: Changes in the variations of total mass loaded into a mildly 
heterogeneous aquifer over time due to changes in (a) dissolution rate, (b) first-
order biodegradation rate and (c) the areal extent of the source zone.    
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Figure 5-11: The changes in the variations of the plume length over time in a 
mildly heterogeneous aquifer due to changes in the values of (a) dissolution rate 
constant, (b) first-order decay rate and (c) the areal extent of the source zone.    
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Figure 5-12: Changes in the variations of total mass loaded into a highly 
heterogeneous aquifer over time due to changes in (a) dissolution rate, (b) first-
order biodegradation rate and (c) the areal extent of the source zone.    
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Figure 5-13: The changes in the variations of the plume length over time in a 
highly heterogeneous aquifer due to changes in the values of (a) dissolution rate 
constant, (b) first-order decay rate and (c) the areal extent of the source zone. 
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5.3 Stability of the inverse problem 
 
The problem of simultaneous estimation of source dissolution rate and first-order 

biodegradation rate is a potentially unstable (prone to parameter non-uniqueness 

and local minima) inverse problem (Essaid et al. 2003). As pointed out originally 

by Carrera and Neuman (1986) and reviewed by Carrera et al. (2005) and Friedel 

(2005), the four potential reasons for parameter non-uniqueness are lack of 

numerical precision, numerical dispersion, global and local minima in the 

parameter space and correlation among model parameters. In the context of this 

thesis, the first two causes of parameter non-uniqueness are avoided by 

development and application of a Lagrangian mass transport simulator with 

appropriate precision (Chapter 4). The existence of local minima and high 

correlation among model parameters are potential problems associated with 

simultaneous estimation of dissolution rate and first-order biodegradation rate that 

are investigated in the following 1D and 2D examples. 

 
5.3.1. Correlation between the parameters: 1D case 
 
To investigate the correlations between the parameters, first, a 1D example is 

presented where the sensitivity of concentrations with respect to the changes in 

the dissolution rate and first-order biodegradation rate (
diskS and λS ) are calculated 

and their relationship is studied. For a one-dimensional case, Equation [4.33] can 

be re-written by: 
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where, only the velocity and dispersion coefficient in the x direction have been 

retained and the subscript s that represents solute species has been replaced by x 

to show that concentration is a function of space. Also, in Equation [5.27], the 

dispersion coefficient Dxx can be replaced by αL|vx|, where αL is longitudinal 
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dispersivity and vx is the local velocity. Differentiation of Equation [5.27] with 

respect to kdis and λ results in:  
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where, all terms have been defined previously. Also, one can differentiate the 

Equation [5.27] with respect to the local velocity vx. After rearranging, one can 

find the partial differential equation for the sensitivity of the local concentration 

with respect to the local velocity field (
xvS ): 
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where, all terms have been defined previously.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5-14: (a) The reference (a) transmissivity, (b) steady-state head and 
concentration (c) after 2 days, (d) after 732 days, and (e) after 2562 days. 
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Figure 5-15: The cross-plots between (a) λS and 
diskS away from the source, (b) 

λS and 
diskS in the source zone, (c) 

xvS and 
diskS away from the source, (d) 

xvS and 

diskS in the source zone, (e) 
xvS and λS away from the source, and (f) 

xvS and λS  in 
the source zone. The cross-plots show the correlation between the sensitivities at 
time step 2562 days for kdis and λ values equal to 0.0015 day-1 and 0.0044 day-1, 
respectively.  
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reaching to a semi-steady-state condition. The length of the 1D simulation domain 

is 300m, and the reference kdis and λ are 0.0015 day-1 and 0.0044 day-1. The flow 

and transport boundary conditions include fixed head boundaries of 8m and 2m, 

and zero dispersive flux boundaries at both ends. All other parameters are the 

same as the ones used in the synthetic example in Figure 5.7.   

 

Figures 5-15-a, b show (1) there exists a high correlation (for the given values of 

the parameters) between the sensitivities of the concentrations with respect to 

perturbations of dissolution rate and first-order biodegradation rate inside and 

outside of the source zone; and (2) the correlation between these parameters 

differs inside and outside of the source both in terms of magnitude of the 

sensitivities and in terms of the trends in the correlations (positive or negative). 

As shown in the subsequent 2D example, the observed changes in the correlations 

outside and inside of the source can be used to avoid instabilities in the inverse 

problem. In Figures 5-15-c, d, e, f, the cross-plots between the sensitivities of 

concentrations with respect to perturbations of local velocity field and the two 

transport parameters are presented. According to these figures, a very high 

correlation between these parameters is observed. Nevertheless, making any 

conclusive argument about requirement of decoupling the flow and transport 

inverse problems from this observation relies on the assumption of independency 

of local velocities at different locations, which is an invalid assumption. Thus, 

although one can not make a conclusive argument about decoupling of the inverse 

problems (subject to further research), the observations in Figures 5-15-c, d, e, 

and f show that when the observation locations are sparse and the range of spatial 

correlation of hydraulic conductivity is small, there may potentially be a high 

correlation between these parameters that may have an adverse effect on the 

stability of the coupled problem. This is subject for future research.              
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Figure 5-16: The cross-plots between the values of 

diskS and the absolute values 
of λS for (a) kdis=0.0011day-1 and T=5yrs, (b) kdis=0.0011day-1 and T=10yrs, (c) 
kdis=0.011day-1 and T=5yrs, (d) kdis= 0.011day-1 and T=10yrs, (e) kdis = 0.175day-1 
and T=5yrs, (f) kdis = 0.175day-1 and T=10yrs. The gray-scale color bar shows the 
location of the calculated sensitivity coefficients.  
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5.3.2. Correlation between the parameters and existence of local 
minima: 2D case 
 

The correlations between the parameters and existence of local minima can also 

be investigated using the example presented in Figures 5-7 and 5-8. Figure 5-16 

shows the cross-plots between the values of the 
diskS (always positive) and the 

absolute values of λS (always negative) in the 2D example (Figure 5-6) for 

different values of dissolution rate. In the cross-plots shown in Figure 5-16, the 

location of the calculated sensitivity coefficients is highlighted using a gray-scale 

color bar, where the black end represents the points closer to the source zone, and 

light-grey end represents the points more distant from the source zone. Similar to 

what is observed in Section 5.2.2, Figure 5-16 shows the value of
diskS strongly 

depends on the value of the dissolution rate, and as the value of dissolution rate 

becomes smaller, larger correlation is observed between the sensitivity 

coefficients inside and outside of the source. Both 
diskS and λS  sensitivities are also 

variable in time. The most important observations and conclusions related to 

Figures 5-16 are: (1) for large values of the dissolution rate, the correlation 

between the two parameters becomes smaller and parameter non-uniqueness 

becomes less of an issue. For this case, however, parameter insensitivity may 

become the problem; (2) for smaller values of dissolution rate (which are more 

feasible for real field applications according to Essaid et al. (2003) and Christ et 

al. 2006), a very high correlation exists between the two sensitivities. It is also 

observed that there are two different correlations between the two parameters 

depending on the location of the calculated sensitivities (similar to the 1D case). 

The fact that there exist two different correlations can be used together with 

definition of weights inverse proportional to the simulated concentration to 

improve the stability of the inverse problem (Equation [5.23]).     
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Figure 5-17: The objective function surfaces plotted based on observations in 
wells 1 to12, (a) without any prior information and (b) with prior information.  
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Figure 5-18: The objective function surfaces plotted based on observations in 
wells 1 to 4, and 9 to 12 (a) without any prior information and (b) with prior 
information.  
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Figure 5-19: The objective function surfaces plotted based on observations in 
wells 1 to 4 (a) without any prior information and (b) with prior information.  
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This can be achieved through designing the monitoring network in such a way 

that observation locations sample the locations close to the source zone as well as 

the locations well-away from the source, while the weighting scheme in the 

objective function has to be defined in such a way (Equation [5.15]) that the 

information contained in concentrations distant from the source zone should be 

preserved adequately. The fact that designing an appropriate layout for the 

monitoring network improves the stability of the inverse problem for small values 

of dissolution rate can be investigated through plotting the objective function 

surfaces (Figures 5-17, 5-18 and 5-19). The synthetic aquifer shown in Figure 5-6 

with 12 monitoring locations is used for this purpose. The monitoring data 

sampled from the synthetic plume are recorded when the plume is under a steady-

state condition at the time steps of 8 years, 8.5 years, 9 years, 9.5 years and 10 

years. As shown in Figures 5-18 to 5-20, the objective function surfaces have 

been plotted with and without prior information, using the equations [5.16] and 

[5.15], respectively. The true parameter values used to create the reference case 

include kdis = 0.0011 day-1 and λ = 0.0044 day-1. The prior information are 

included in calculation of the objective function using Equations [5.16] and 

[5.17]; and they are considered to have log-normal distributions with a mean 

( PR
disk ) of 0.001 day-1 and standard deviation ( klnσ ) of 1.0 logeday-1 for the 

dissolution rate and a mean ( PRλ ) of 0.0045 day-1 and standard deviation ( λσ ln ) of 

0.3 logeday-1 for the first-order biodegradation rate. In Figure 5-17, monitoring 

data includes samples from all 12 wells in Figure 5-6. In Figure 5-18 monitoring 

data includes samples from wells 1 to 4 at the upstream of the site and wells 9 to 

12 at the downstream of the site; and in Figure 5-17 monitoring data includes 

samples from wells 1 to 4 at the upstream of the site (in the source and close to 

the source zone).  It is evident from the Figures 5-17 to 5-19 that if the layout for 

the monitoring network is designed in such a way that the upstream (near the 

source zone) as well as downstream (near the edge of the plume) are sampled, the 

stability of the problem will significantly be improved. Comparing Figures 5-18 
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and 5-19, one may also observe that inclusion of the middle wells in calculation 

of the objective function has little effect on the improvement of the stability of the 

problem. It can also be observed that inclusion of prior information has a 

secondary effect on the stability of the inverse problem. In other words, although 

a good set of priori information are used to create the objective function surface in 

Figure 5-19-b, it has not avoided the problem of non-uniqueness that manifests 

itself as local minima in this case. Comparing Figure 5-17-b to Figure 5-17-a and 

Figure 5-18-b to Figure 5-18-a, one can observe that inclusion of good prior 

information only slightly improves the stability of the inverse problem.  

 

In summary, in this chapter, details of a Monte Carlo type decoupled inverse 

modeling was presented that can be used to characterize the uncertainty in the 

field-scale dissolution rate and first-order biodegradation rate. The inverse 

modeling presented uses sequential self calibration technique (Gomez-Hernandez 

et al. 1997) to condition the hydraulic conductivity to head observation data. 

Assuming full statistical independence, joint realizations of hydraulic 

conductivity and source geometry were constructed and a gradient-based 

optimization approach was implemented to simultaneously estimate the 

dissolution rate and first-order biodegradation rate. Simultaneous estimation of 

these parameters is subject to numerical instabilities, associated with parameter 

non-uniqueness. The potential instability problems were investigated and it was 

observed that creating a wide-spread monitoring network (with appropriate 

weighting scheme in the objective function based on Equation 5-23) can 

effectively help to mitigate the non-uniqueness problems associated with high 

correlation between the parameters. In Chapter 6, a synthetic example is presented 

to show the effects of tailoring the estimation of first-order biodegradation rate 

and dissolution rate in reducing the uncertainty in the prediction of the state 

variables.  
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CHAPTER 6 
 
PARAMETER ESTIMATION EXAMPLE    
 
 
A synthetic example is presented in this chapter to investigate the performance of 

the Monte Carlo type decoupled inverse modeling in characterization of 

uncertainty in the dissolution rate and first-order biodegradation rate and to study 

the effects of error in observed data on the modeling outcomes. In Section 6.1, 

three reference study sites with three different source zone sizes are created and 

the groundwater flow and mass transport are simulated. A synthetic hydraulic 

conductivity dataset, two different head observation datasets with two different 

levels of measurement error, and four concentration datasets are sampled from the 

reference study sites. Applying the SSC approach, the sampled hydraulic 

conductivity and head data are used to create multiple realizations of hydraulic 

conductivity field conditioned to both hydraulic conductivity and head 

measurements. The distance function approach, developed in Chapter 3, is used to 

create multiple realizations of areal extent of the source zone. In Section 6.2, 

inverse modeling is implemented to estimate the values of dissolution rate and 

first-order biodegradation rate constants for the sets of joint realizations of source 

geometry and hydraulic conductivity fields. The performance of the methodology 

is investigated through studying the distributions of the estimated parameters and 

source zone sizes and comparing the variations of the state variables (e.g. plume 

length and mass loaded into the aquifer) through time with those of the reference 

study sites. The simulated state variables are also compared to the results of a set 

of Monte Carlo simulations performed using kdis and λ distributions that represent 

the range of variability that may be observed under realistic field conditions. The 

effects of head and concentration measurement errors on the estimation of kdis and 

λ and the predictions of the state variables are also investigated.        
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6.1 The reference case and Monte Carlo simulations  
 
 
Figure 6-1 shows the reference study site with the sampling locations, the 

suspected source zone area, the reference hydraulic conductivity field and the 

associated head response. The reference hydraulic conductivity field shown in 

Figure 6-1-b has a Gaussian distribution in natural logarithmic units with a mean 

of -10.1 logem/s, standard deviation of 1.2logem/s, and a spatial correlation 

defined by a spherical variogram with a nugget effect equal to 0.1 and a range of 

32.0 m. The modeling domain is 250 m by 160 m, which is descritized by 2.0 m × 

2.0 m squared shape grid cells. The flow boundary conditions involve fixed head 

boundary conditions at the north and the south of the site equal to 4.0 m and 2.0 

m, respectively. At the east and west of the site, no-flow boundary conditions are 

assigned. As shown in Figure 6-1-a, there are a total of 40 observation wells 

where piezometric heads (steady-state) and concentrations are sampled. There are 

11 of these wells (shown by blue circles), with hydraulic conductivity 

measurements. The solid black wells indicate the observation wells where 

residual NAPL has been observed. Figure 6-2-a shows the calibrated uncertainty 

band for the given well arrangement and suspected source area. The associated 

optimal values of scaling factor α and separation factor β are 3.56 and 15.86, 

respectively. To investigate the performance of the methodology when the actual 

source size deviates from the average source size that is characterized by the 

distance function approach, three source sizes corresponding to lower quartile, 

median and upper quartile of the calibrated uncertainty band are considered as 

reference cases for source geometry. Figure 6-2-b shows the CDF of the source 

sizes associated with the calibrated uncertainty band in Figure 6-2-a and the 

selected quartiles. According to Figure 6-2-b, the reference source sizes (p25, p50 

and p75 quartiles) have areas equal to 643 m2, 938 m2, and 1395 m2.  Figures 6-3 

to 6-5 show the simulated plumes for the three reference source sizes.  
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Figure 6-1: (a) The reference study site with monitoring locations and suspected 
source zone area (dashed box), (b) the reference hydraulic conductivity field, and 
(d) the reference hydraulic head distribution. 
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Figure 6-2: (a) The calibrated band of uncertainty for the contaminant source 
zone, and (b) the CDF of the source size. 
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concentration) within the areal limits of the source zone is uniform. Following the 

work presented in Chapter 3, variability within areal limits can easily be 

incorporated. The uniform soil concentration of NAPL is set to 10g/Kg. The 

initial mass fraction of the substrate (e.g. Benzene) in NAPL is equal to 0.01.    
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Figure 6-3: (a) The smaller source zone size corresponding to p25 of the calibrated 
uncertainty band, (b) the simulated plume after 550 days, (c) the simulated plume 
after 1281 days, and (d) simulated plume after 2562 days. 
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m, 0.3 m, 0.0015 day-1 and 0.006 day-1, respectively. Zero dispersive flux 

boundary conditions are assigned at all boundaries. Two synthetic observed 

datasets for piezometric heads are created by sampling from the reference 

piezometric head distribution and subsequent addition of Gaussian noise. The first 

set of head observations is considered to be error-free (with standard deviation of 

head measurement error σnH equal to 0.0). The second head observation dataset is 

considered to be noisy by addition of Gaussian noise with a mean of zero and 

standard deviations of σnH =0.20 m.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
Figure 6-4: (a) The medium source zone size corresponding to p50 of the 
calibrated uncertainty band, (b) the simulated plume after 550 days, (c) the 
simulated plume after 1281 days, and (d) simulated plume after 2562 days. 
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Figure 6-5: (a) The larger source zone size corresponding to p75 of the calibrated 
uncertainty band, (b) the simulated plume after 550 days, (c) the simulated plume 
after 1281 days, and (d) simulated plume after 2562 days. 
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In terms of the synthetic concentration datasets, three error-free concentration 

datasets are sampled from the simulated plumes (a total of 520 samples at 40 

observation wells over a period of two years – from 1825 to 2555 days from the 

start of the simulations) for the reference cases shown in Figures 6-3 to 6-5. To 

investigate the effects of errors in measured concentrations on the modeling 

outcomes, Gaussian noise is added to the synthetic concentration dataset sampled 

from the first reference case with smaller source size. The added Gaussian noise 

has a coefficient of variation equal to cvnc =0.35.  

 

To study the importance of tailoring the estimation of first-order biodegradation 

rate constant and dissolution rate to realizations of source geometry and hydraulic 

conductivity, the results of the decoupled inverse modeling including the 

simulated state variables should be compared to the available field-scale 

parameter estimation techniques. Due to the fact that the proposed methodology is 

aimed to be an advanced screening tool for characterization of uncertainty in the 

field-scale parameters, its outcomes should be compared to the outcomes of 

similar screening tools commonly applied to the field. For this purpose, a set of 

Monte Carlo simulations (MCS) are performed with (1) realizations of hydraulic 

conductivity conditioned to conductivity and head data by SSC, (2) realizations of 

source extend characterized by the DF algorithm in Figure 6-2-a, (3) the values of 

first-order biodegradation rate drawn from a distribution reported by Bauer et al. 

(2006), and (4) the values drawn from a distribution of dissolution rate constant 

representing the uncertainty in a realistic field condition.  

 

Bauer et al. (2006) showed that the field-scale method of normalization to a 

recalcitrant co-contaminant (Wiedemeier et al. 1996) that corrects for the effects 

of uncertainty in the value of longitudinal dispersivity (reviewed in Chapter 7) 

gives the closest estimate to the true value of the first-order biodegradation rate 

constant. For an aquifer with a log-normal hydraulic conductivity distribution 
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with a mean of -9.54 logem/s and a standard deviation of 1.3 logem/s, Bauer et al. 

(2006) showed that the method of normalization to a recalcitrant co-contaminant 

overestimates the true first-order rate (on average) by a factor of two, while the 

standard deviation of the normalized rates is equal to 2. Similar results were found 

by Bauer et al. (2007) for the improved method of Stenback et al. (2003) with off-

centerline measurements. Figure 6-6-b shows a distribution of first-order 

biodegradation rate similar to the distribution observed by Bauer et al. (2006) 

based on normalization to a recalcitrant co-contaminant.  

 

As mentioned before, the field-scale distribution of dissolution rate constant is 

quite uncertain with no documented range in the literature that can be directly 

applied as prior distribution. Based on the work of Powers et al (1994) and a pore 

network model, the work of Dillard et al. (2001) gives a series of correlations for 

estimation of dissolution rate for field applications and gives an estimate of the 

dissolution rate constant using the modified Peclet number calculated by:  

m

avg

D
dv

eP 50=′                                                                                                       [6.1] 

where, vavg is the average groundwater velocity, d50 is the median grain size and 

Dm is the diffusion coefficient of the NAPL species. The average groundwater 

velocity for the reference site can be calculated by: 

vavg = KG.i                                                                                                           [6.2] 

where, KG and i are the geometric average of hydraulic conductivity 

measurements and the hydraulic gradient, respectively. Equation [6.2] results in 

the value of average groundwater velocity to be equal to 3.09 × 10-7 m/s.                  

Assuming the median grain size to be 2.5 × 10-3 m and the diffusion coefficient 

(for benzene) to be equal to 1.1 × 10-9 m2/s, the Peclet number is calculated to be 

equal to 0.7. According to Dillard et al. (2001), for a Peclet number equal to 0.7 

and assuming a low NAPL saturation, the range of dissolution rate constant 

obtained by the pore network model will be approximately between 0.8 and 8. 
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This range of values for kdis is unrealistic in field-scale conditions (Parker and 

Park 2004, Christ et al. 2006) and also results in insensitivity of the state variables 

to the changes in the dissolution rate constant (Section 5.3.2). Thus, to investigate 

the effect of variability in the dissolution rate, a uniform distribution with an order 

of magnitude variability (which seems to be a lower bound to variability in this 

parameter based on the observations in Dillard et al. 2001 and Christ et al. 2006) 

and a mean equal to 0.0066 day-1 (computed by Essaid et al. (2003) for Bemidji 

site) is considered (Figure 6-6-a). Figure 6-7 shows the variations of the mass 

loaded into the aquifer and the plume length in time for the reference case (Figure 

5-24) as well as the mean and quartiles of the state variables based on the results 

of the Monte Carlo simulations with 100 joint realizations of hydraulic 

conductivity field and source geometry and the values of kdis and λ drawn from 

the distributions in Figures 6-6-a and 6-6-b. Figure 6-8 shows the probability map 

for the concentrations to exceed a threshold value of 0.005 mg/L (water quality 

standard for benzene). Figures 6-7 and 6-8 show that the MCS result in large 

uncertainties in the dimensions of the simulated plume as well as the mass loaded 

into the aquifer. The distribution of the parameters shown in Figure 6-6 and the 

MCS results shown in Figures 6-7 and 6-8 will be compared to the results of the 

inverse modeling presented in the next section.  

 

 

 

 

 

 

 

 

 

Figure 6-6: The distribution of uncertainty in (a) the dissolution rate constant and 
(b) the first-order biodegradation rate constant, used in the subsequent MCS. 
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Figure 6-7: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of 
ensemble of realizations) and reference (p50 source size) (a) total mass loaded into 
the aquifer and (b) plume length based on the results of the MCS. The reference 
curve is associated with the median source size (Figure 5-24) 
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Figure 6-8: The probability of 
concentrations exceeding 0.005 
mg/L based on the results of the 
Monte Carlo simulations. 
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6.2 Inverse modeling results 
  
 
6.2.1. Error-free observations, without ranking 
 

Figures 6-9, 6-11, and 6-13 show the histograms of the estimated kdis and λ for 

three sets of 100 joint realizations that are calibrated to concentration 

measurements from the three reference cases. It has been assumed that the head 

and concentration measurements are error-free. Table 6-1 shows the summary 

statistics including non-linear confidence intervals. Figures 6-10, 6-12 and 6-14 

show the variations of the mass loaded into the aquifer and the plume length 

through time for three sets of 100 realizations corresponding to the three reference 

cases. Figure 6-15 shows the probability maps for concentrations to exceed a 

threshold value of 0.005 mg/L for the three reference cases. According to Figures 

6-9-a, 6-11-a and 6-13-a and Table 6-1, as expected, the dissolution rate constant 

is slightly under-estimated for the case with the smaller reference source zone and 

slightly over-estimated for the case with the larger reference source zone. In other 

words, there exists a negative correlation between the source size and the 

dissolution rate (Figure 6.17). For the case with the medium source zone size, the 

estimated kdis is very close to the reference value (0.0015 day-1). In all three cases, 

the approach on average slightly underestimates the value of λ. According to 

Figures 6-10, 6-12, and 6-14, the proposed approach significantly reduces the 

uncertainty in the state variables (comparing to the results of the Monte Carlo 

simulations in Figure 6-7). Although the ensemble of realizations on average 

over/under-estimates the reference values, in all three cases and for both state 

variables, the reference curve falls within the 90% non-linear confidence interval. 

Comparing Figure 6-15 to Figure 6-8, it is also evident that the estimation of 

dissolution rate and first-order biodegradation rate for joint realizations of 

hydraulic conductivity and source geometry using concentration data can 

significantly reduce the uncertainty in the dimensions of the plume.  
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Figure 6-9: The histograms of (a) kdis and (b) λ for the case with σnH = 0.0 m and 
cvn = 0.0 and the smaller reference source size. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-10: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of 
ensemble of realizations) and reference (a) total mass loaded into the aquifer and 
(b) plume length for the smaller reference source size. 
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Figure 6-11: The histograms of (a) kdis and (b) λ for the case with σnH = 0.0 m and 
cvn = 0.0 and the medium reference source size. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-12: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of 
ensemble of realizations) and reference (a) total mass loaded into the aquifer and 
(b) plume length for the medium reference source size. 
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Figure 6-13: The histograms of (a) kdis and (b) λ for the case with σnH = 0.0 m and 
cvn = 0.0 and the larger reference source size. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-14: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of 
ensemble of realizations) and reference (a) total mass loaded into the aquifer and 
(b) plume length for the larger reference source size. 
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Figure 6-15: The probability of concentrations exceeding 0.005 mg/L after 
conditioning to concentrations for (a) smaller source zone, (b) medium source 
zone, and (c) larger source zone. 
 

For both the estimated parameters and the state variables, larger uncertainties are 

observed for the reference case with the larger source zone. Nevertheless, for all 

three reference cases the estimated parameters and simulated state variables show 

a better match to reference values than the available field techniques (Beyer et al. 

2006, Beyer et al. 2007). 
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 Reference Source Size  

 Smaller Medium Larger 

Mean kdis (day-1) 0.00115 0.00154 0.00193 

Standard deviation kdis 0.636 0.651 0.738 

Median kdis (day-1) 0.00086 0.00108 0.00119 

p05 - kdis (day-1) 0.00040 0.00048 0.00055 

p95 - kdis (day-1) 0.00277 0.00372 0.00579 

Mean λ (day-1) 0.00537 0.00533 0.00478 

Standard deviation λ 0.171 0.129 0.318 

Median λ (day-1) 0.00530 0.00528 0.00485 

p05 - λ (day-1) 0.00424 0.00443 0.00313 

p95 - λ (day-1) 0.00662 0.00651 0.00615 

Table 6-1: The summary statistics including mean, standard deviation, median 
and p05 and p95 quantiles (representing 90% confidence interval) for the 
estimated transport parameters before ranking the realizations 
 

 Reference Source Size  

 Smaller Medium Larger 

Mean kdis (day-1) 0.00186 0.00156 0.00133 

Standard deviation kdis 0.586 0.701 0.575 

Median kdis (day-1) 0.00134 0.00112 0.00091 

p05 - kdis (day-1) 0.00071 0.00048 0.00055 

p95 - kdis (day-1) 0.00496 0.00616 0.00221 

Mean λ (day-1) 0.00551 0.00519 0.00509 

Standard deviation λ 0.121 0.115 0.128 

Median λ (day-1) 0.00539 0.00506 0.00498 

p05 - λ (day-1) 0.00452 0.00445 0.00405 

p95 - λ (day-1) 0.00664 0.00628 0.00620 
Table 6-2: The summary statistics including mean, standard deviation, median 
and p05 and p95 quantiles (representing 90% confidence interval) for the 
estimated transport parameters after ranking and screening the realizations 
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6.2.2. Error-free observations, with ranking 
 

The observed over-estimation and under-estimation of the state variables is 

partially due to unresolved uncertainties in the source size which can not be fully 

handled by adjusting the values of kdis and λ by the model. Thus, a ranking-based 

screening can be applied (Similar to the work of Poeter and McKenna 1995) to 

choose from the set of realizations based on the values of the modified objective 

function, and to decrease the uncertainty in the source zone sizes previously 

characterized by the distance-function approach (Figure 6-2-a). As discussed in 

Section 5.2.1, the objective functions defined by Equations [5.15] and [5.16] are 

not appropriate for ranking the realizations conditioned to concentration data. It is 

observed in this example that the modified objective function, presented in 

Equation [5.18], gives a more appropriate measure for ranking the realizations 

that can be used to decrease the uncertainty in source dimensions and result in 

better match to the reference parameter values and state variables. Due to the fact 

that the modified objective function is a dimensionless number, it can be 

considered a robust measure for ranking that is largely independent of overall 

level of concentrations in the field. To investigate the effectiveness of ranking on 

the reduction of uncertainty and to have enough realizations to explore the space 

of uncertainty, 300 joint realizations of hydraulic conductivity (conditioned to 

head data with σnH =0.0 m) and source geometry are constructed and the 

concentrations sampled from the three reference cases (with cvnc =0.0) are used to 

estimate the values of dissolution rate constant and first-order biodegradation rate 

for each realization. Figures 6-16-a, b and c show the CDF of the source sizes for 

100 realizations (out of 300 realizations) that have the smallest values of modified 

objective function defined by Equation [5.18] for the three reference cases. 
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Figure 6-16: The CDF of the source sizes of the 100 accepted realizations after 
ranking based on the modified objective function value for (a) smaller, (b) 
medium, (c) larger source. The arrows show the reference size for each case.    
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Comparing Figure 6-16 to Figure 6-2-b, one can observe that ranking and 

screening the realizations can effectively reduce the uncertainty in the source zone 

sizes for each reference case. To further investigate the effect of ranking, one may 

also look at Figure 6-17 where the cross-plots of dissolution rates and source size 

quantiles for the two reference cases with smaller and larger source sizes are 

shown. The color-scale represents the rank of each realization based on the value 

of the modified objective function (black shows lower values of the modified 

objective function, higher ranks and therefore accepted realizations). For this 

example, Figure 6-17-a, b show that (1) there is a negative correlation between 

the size of the source the estimated dissolution rate; and (2) ranking of the 

realizations can effectively identify the joint realizations that have not properly 

converged in optimization (solid circles) and the joint realizations that have 

source sizes that deviate from the reference source size (dashed circles). In 

Figures 6-17-a, b the reference source sizes correspond to p25 and p75 quantiles 

(0.25 and 0.75) on the horizontal axis, respectively. Figures 6-18 and 6-19 show 

the cross-plots between the dissolution rate and first-order biodegradation rate 

constant and the cross-plots between the source size quantile and first-order 

biodegradation rate (after ranking) for the smaller and larger reference source 

sizes. According to Figure 6-18, there exists a positive correlation between first-

order biodegradation rate and dissolution rate. Looking at Figure 6-19, one 

observes that there is little correlation between the values of source quantile and 

first-order biodegradation rate. The observations in Figures 6-17, 6-18 and 6-19 

justify the importance of simultaneous characterization of uncertainty in source 

areal extent, source dissolution rate and first-order biodegradation rate, that is, the 

dissolution rate is adjusted with respected to the source size to control the 

concentrations in the upstream portion of the plume, while biodegradation rate is 

adjusted with respect to dissolution rate to control the concentrations at the 

upstream as well as downstream of the site.  
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Figures 6-20 to 6-26 and Table 6-2 show the estimated parameters, the associated 

state variables and the probability maps after ranking and screening based on the 

values of the modified objective function. In these figures, one can observe that 

ranking and screening the realizations can effectively reduce the uncertainty and 

mitigate the bias in the estimated parameters and the predicted state variables. An 

important related issue is to investigate the effect of the number of accepted 

realizations on the distribution of the source zone sizes after screening. For this 

purpose, a sensitivity analysis is performed, where the best 50, 100 and 150 

realizations are selected (based on the value of modified objective function) and 

the CDF of the source sizes are compared in Figures 6-27, 6-28 and 6-29, where 

one can see ranking and screening any number of realizations reduces the 

uncertainty.  

 

According to Figures 6-16 to 6-29, one can conclude that (1) reduction in the 

uncertainty of the source zone sizes appears to be achievable by ranking and 

screening the realizations based on the values of the modified objective function 

(Equation [5.18]); (2)  for this purpose, an appropriate number of realizations 

should be selected; and (3) by reducing the uncertainty in the source zone sizes, 

there will be reductions in the associated uncertainty in the estimated parameters 

values and the state variables. Although the choice of the number of realizations 

seems to be problem-dependent, ranking the realizations based on the values of 

the modified objective function is considered to be effective in providing a 

general idea about the size of the source zone. As discussed above, although the 

Equation [5.18] represents a dimensionless number and seems to be a robust 

measure for ranking that is largely independent of overall level of concentrations 

at the site, future research in this area is needed.  
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Figure 6-17: The cross-plots between the source size quantiles and the estimated 
dissolution rate constant for the reference case with (a) smaller source size (p25), 
and (b) larger source size (p75). The solid circles show the realizations that are 
likely not converged and the dashed circles show the realizations that their source 
sizes significantly deviate from the reference source size. The color scale shows 
the rank of realizations based on their modified objective function value.  
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Figure 6-18: The cross-plots between the dissolution rate constant and firs-order 
biodegradation rate constant for the reference case with (a) smaller source size 
(p25) with a correlation coefficient equal to 0.438; and (b) larger source size (p75) 
with a correlation coefficient equal to 0.744 (after removing the outliers)  
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Figure 6-19: The cross-plots between the source size quantile and first-order 
biodegradation rate constant for the reference case with (a) smaller source size 
(p25), and (b) larger source size (p75) 
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Figure 6-20: The histograms of (a) kdis and (b) λ for the accepted realizations after 
ranking, based on the reference case with the smaller source size. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-21: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of 
ensemble of realizations) and reference (a) total mass loaded into the aquifer and 
(b) plume length for the smaller source size after ranking. 
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Figure 6-22: The histograms of (a) kdis and (b) λ for the accepted realizations after 
ranking, based on the reference case with the medium source size. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-23: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of 
ensemble of realizations) and reference (a) total mass loaded into the aquifer and 
(b) plume length for the medium source size after ranking. 
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Figure 6-24: The histograms of (a) kdis and (b) λ for the accepted realizations after 
ranking, based on the reference case with the larger source size. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-25: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of 
ensemble of realizations) and reference (a) total mass loaded into the aquifer and 
(b) plume length for the larger source size after ranking. 
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Figure 6-26: The probability of concentrations exceeding 0.005 mg/L after 
ranking for (a) smaller source zone, (b) medium source zone and (c) larger source 
zone 
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Figure 6-27: The CDF of the source sizes associated with the first (a) 50, (b) 100, 
and (c) 150 realizations after ranking based on the modified objective function 
value for the reference case with the smaller source size. The red arrows show the 
reference source size.   
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Figure 6-28: The CDF of the source sizes associated with the first (a) 50, (b) 100, 
and (c) 150 realizations after ranking based on the modified objective function 
value for the reference case with the medium source size. The red arrows show 
the reference source size.   
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Figure 6-29: The CDF of the source sizes associated with the first (a) 50, (b) 100, 
and (c) 150 realizations after ranking based on the modified objective function 
value for the reference case with the larger source size. The red arrows show the 
reference source size.   
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6.2.3. The effect of error in observations 
 

In practice, it is quite rare to consider the observation data as error-free. Due to 

the fact that the proposed methodology is a decoupled approach, one may 

generate hydraulic conductivity realizations honoring a particular level of error in 

head observations (measure of fit s close to one); and then estimate the rate 

constants for the joint realizations, while calibrating to concentrations with a 

particular level of error in the data values. In the subsequent analysis, Gaussian 

noise (with a relatively large standard deviation/coefficient of variation) has been 

added to the head observations and concentration measurements associated with 

the smaller reference case. It is assumed that (1) a good knowledge of magnitude 

of error exists in the observations, (2) the error in observations is Gaussian noise 

with a mean equal to zero (no systematic bias is introduced), and (3) errors at 

different locations and for heads and concentrations are independent of each 

other. As it can be observed in the following example, uncertainty in the 

estimated parameters and the predicted state variables increases with an increase 

in the measurement errors.  

 

Comparing Figures 6-30, 6-31 and 6-32 to Figures 6-9, 6-10 and 6-15-a, one can 

observe that introducing measurement errors to heads and concentrations results 

in (1) considerable increase in the standard deviation of the estimated parameters, 

(2) larger deviation of the average biodegradation rate constant from the reference 

value, (3) introducing more uncertainty and bias in the estimation of the length 

(and width) of the plume and (4) increasing the uncertainty in the estimation of 

mass loaded into the aquifer. Although introducing measurement errors (with 

relatively large standard deviations) can considerably increase the uncertainty in 

the response variables, the observed uncertainties are still smaller than the 

uncertainties observed in the Monte Carlo simulation results (Figures 6-7 and 6-

8).          
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Figure 6-30: The histograms of (a) kdis and (b) λ for the case with σnH = 0.2 m and 
cvn = 0.3 and the smaller reference source size. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-31: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of 
ensemble of realizations) and reference (a) total mass loaded into the aquifer and 
(b) plume length for the case with σnH = 0.2 m and cvn = 0.3 and the smaller 
reference source size.  
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Figure 6-32: The probability of concentrations exceeding 0.005 mg/L for the case 
with σnH = 0.2 m and cvn = 0.3 and the smaller reference source size.   
 

 

6.2.4. The effect of error in the time of release 
 

Up to this point, it has been assumed that a good knowledge of time of release (or 

the time that NAPL comes into contact with groundwater) exists in all the 

simulations. In the following example, it is shown that wrong estimates for the 

start of simulations has little impact on the modeling outcomes (prediction of 

current and future state of plume length and mass), as long as the concentration 

measurements are sampled when the plume is in steady-state condition. The 

existing concentration measurements (form the reference case with the smaller 

source) are sampled between 5 to 7 years from the start of simulations. In this 

example, it is assumed that the practitioner makes a wrong estimate of the release 

date to be 3 years earlier than the actual release date and uses the decoupled 

approach to characterize the uncertainty in the transport parameters and the state 

variables. Comparing Figures 6-33, 6-34 and 6-35 to Figures 6-9, 6-10 and 6-15-
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the prediction of uncertainty in the state variables and the probability map for the 

plume.    

 

In summary, in Chapter 6 a synthetic example was presented to investigate the 

performance of the Monte Carlo type decoupled inverse modeling presented in 

Chapter 5 in characterizing the uncertainty in the dissolution rate constant and 

first-order biodegradation rate. Three reference cases with different source sizes 

were considered and head and concentration data were sampled. The observed 

data were used to estimate the values of the parameters and simulate the state 

variables. The modeling outcomes were compared to the results of a set of Monte 

Carlo simulations, and observed that calibrating to concentration data can 

effectively reduce the uncertainties in the state variables. In all cases, the 

reference state variables fell within 90% confidence interval defined by the 

ensemble of realizations. The bias observed in the prediction of the state variables 

was deemed to be partially due to large variability in the source zone size. To 

reduce the uncertainty in the source size and mitigate the bias in the predictions, 

ranking and screening of the realizations based on the value of objective function 

was implemented. Finally, the effects of error in observations and starting time of 

simulations were also investigated.      

 

 

 

 

 

 

 

 

Figure 6-33: The histograms of (a) kdis and (b) λ for the case with σnH = 0.0 m and 
cvn = 0.0 and the smaller reference source size, when the start of simulations is 
misestimated for 3 years.  

λ (day-1) kdis (day-1) 

 (a)  (b)



                                                                                                              257

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-34: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of 
ensemble of realizations) and reference (a) total mass loaded into the aquifer and 
(b) plume length for the smaller reference source size, when the start of 
simulations is misestimated for 3 years. 
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Figure 6-35: The probability of 
concentrations exceeding 0.005 
mg/L for the smaller reference 
source size, when the start of 
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CHAPTER 7 
 
UNCERTAINTY IN FIELD-MEASURED 

BIODEGRADATION RATE CONSTANT   
 
 
The biodegradation rate constant of organic contaminants is particularly important 

for decision making and management of contaminated sites. Field approaches to 

estimate the rate constants by using concentration-distance relations along the 

plume centerline are commonly used; however, rate constants estimated in this 

manner are affected by heterogeneity in the hydraulic conductivity field, 

observation errors in hydraulic head measurements, uncertainty in field-scale 

dispersivities, uncertainty in source properties, as well as other environmental 

drivers including precipitation and the associated infiltration, temperature and 

variations in groundwater elevation.     

 

As detailed in Chapter 2, a number of previous works dealt with uncertainty in 

field-measured biodegradation rate constants. The most important works in this 

area include the works of Odencrantz et al. (2003), Stenback et al. (2003), Bauer 

et al. (2006), Beyer et al. (2007) and Ukankus and Unlu (2008). These researchers 

showed that the field estimated first-order biodegradation rate constant is prone to 

uncertainty due to (1) uncertainty in field dispersivities, (2) uncertainty in field-

scale groundwater velocity, and (3) heterogeneity and uncertainty in the 

transmissivity field that results in missing the plume centerline. They also showed 

that the level of uncertainty in the estimated first-order biodegradation rate can be 

up to a few orders of magnitude (overestimation) and depends on the degree of 

heterogeneity, the correlation range of transmissivity field, the width of the source 

zone and the level of uncertainty in average flow velocity and dispersivity values. 
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Stenback et al. (2003) and Beyer et al. (2007) showed that utilizing concentrations 

sampled off the centerline of the plume and calibrating a 2D analytical mass 

transport model against the sampled concentrations may or may not reduce the 

degree of over-estimation in the rate constants. This improvement, however, 

depends on the width of the plume.  

 

The work that is presented in this chapter follows a similar approach as that 

presented by Bauer et al. (2006), Beyer et al. (2007) and Ukankus and Unlu 

(2008), where a number of transmissivity realizations were generated to represent 

the heterogeneity and uncertainty in the transmissivity field. They then estimated 

the biodegradation rate constant (by one of the field approaches) for each 

realization and compared it to the reference value. In their works, they also 

assumed that the source zone maintains a constant concentration (fixed boundary 

condition) throughout the process.  

 

Almost all of the field estimation techniques (reviewed in the next paragraphs) for 

first-order biodegradation rate constant assume a constant source concentration. In 

reality, soil and aqueous concentration in the source zone area continuously 

change due to dissolution of NAPL into groundwater and transport of 

contaminants downstream of the source. The concentrations in the source zone 

area (and the downstream concentrations) depend on factors such as the size of 

the source zone, groundwater flow velocity within the source and dissolution rate 

of NAPL into groundwater. Thus, a more realistic approach for characterization 

of uncertainty in the field measured first-order rate constant must account for 

uncertainties in the dissolution rate constant as well as groundwater flow velocity 

within the source zone.  

 

Another issue associated with most of the previous works is the fact that the 

transmissivity realizations used in the studies are not conditioned to head 
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observations and therefore may not reproduce the observed head measurements at 

observation locations. In fact, the work of Beyer et al. (2007) is the only related 

work that avoids the need for explicit conditioning to head data by simulating the 

heads and concentrations for a limited number of realizations (20 realizations) and 

designing a different layout for monitoring networks for each of the generated 

realizations based on their associated head and concentration fields. Although, 

their work was capable of showing the effect of the “human factor” on the level of 

uncertainty in the estimated first-order biodegradation rates, the number of 

realizations that was used in their work was small. At a real site, the centerline of 

the plume is determined by professionals by reviewing head and concentration 

values at the observation locations and the wells along the plume centerline are 

laid out mostly based on the contours of groundwater surface and professional 

judgment. Thus, the extremely large uncertainties in the values of estimated first-

order biodegradation rate that are observed in the work of Bauer et al. (2006) is 

partially due to using realizations that are conditioned to point transmissivity 

measurements and unconditional to head data. 

 

Section 7.1 reviews three most commonly used centerline techniques for field 

estimation of first-order biodegradation rate constant. Section 7.2 investigates the 

uncertainties associated with the estimated rates in 1D and 2D synthetic examples. 

The synthetic examples investigate the uncertainty associated with concentration 

of dissolved contaminants in the source zone as well as the uncertainties 

associated with transmissivity and flow fields and their impacts on the estimated 

first-order biodegradation rate.      
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7.1 Field estimation of biodegradation rate constant  
 
 
There are several field approaches to determine the site-specific biodegradation 

rate coefficients. These methods include mass balances, the concentration-

distance approaches such as the technique of Buscheck and Alcantar (1995), 

normalization of contaminant concentrations to that of a recalcitrant contaminant 

present in the initial release and the use of in-situ microcosms.  

 

The method of Buscheck and Alcantar is based on an analytical solution to one-

dimensional, steady-state contaminant transport involving advection, longitudinal 

dispersion, sorption, and first-order biodegradation: 
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where, C(x) is concentration at a distance x downstream of the source, C0 is the 

point source concentration, λ is first-order biodegradation rate, αL is longitudinal 

dispersivity and vc is the contaminant velocity. Buscheck and Alcantar (1995) 

identified a trend according to which the contaminant concentration decreases. 

This trend is recognized to change exponentially along the plume centerline as a 

function of the distance from the source and it can be described by: 

( ) ⎟
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⎞

⎜
⎝
⎛−=

v
xkCxC exp0                                                                                          [7.2] 

where, k is the lumped decay coefficient incorporating dilution, sorption, 

biodegradation, etc; and v is the groundwater velocity. Combining Equations [7.1] 

and [7.2], Buscheck and Alcantar (1995) derived an equation for estimation of 

first-order biodegradation rate constant: 
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where, the term ln(C(x)/C0)/Δx is the slope of a line obtained from a log-linear 

plot of the concentration versus distance along the centerline of the plume, which 

is calculated for any number of concentration measurements by linear regression.  

 

Equation [7.3] shows that any estimate of λ by this method is directly affected by 

uncertainties in the values of longitudinal dispersivity and the average flow 

velocity. Also, Equation [7.3] has been derived under the assumption of existence 

of a point source. Thus, a good estimate of the location of the point source is 

another important factor in the accuracy of the approach. As will be discussed in 

Section 7.2, when there is uncertainty in the distribution of hydraulic 

conductivity, the estimated rate constants may also be affected by uncertainty in 

the value of dissolution rate constant. In this case, the dependency of the 

estimated rate constants to rate-limited dissolution of NAPL is indirect and 

manifests itself in slight variations in the slope of ln(C(x)/C0)/Δx line. If sorption 

is negligible and the biodegradation occurs solely in the aqueous phase, vc in 

Equations [7.1] and [7.3] can be replaced by groundwater seepage velocity, which 

can be determined based on Darcy’s law.       

 

Zhang and Heathcoat (2003) proposed a modified version of Buscheck and 

Alcantar approach which is based on the solution to Domenico’s analytical 

solution to the two-dimensional transport equation including first-order decay 

(Domenico 1987) and accounts for finite source width, longitudinal and 

transverse dispersion. In the modified approach, the biodegradation rate constant 

is calculated by: 



 263

( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

x
Werf

x
C

xC
v

T

S
L

L

c

α
β

β
α

α
λ

4
        with 1

ln
21

4

2

0              [7.4] 

where, WS is the source width perpendicular to the average flow direction, Δx is 

the average distance between the observation wells and αT is transverse 

dispersivity.  

 

Another popular technique is the method of normalization to a recalcitrant co-

contaminant proposed by Wiedemeier et al. (1996) and is calculated based on 

one-dimensional transport equation with a modification. In 1D, the steady state 

solution for the concentration profile (based on advection and first-order 

degradation only) can be rearranged to yield the first-order degradation rate 

constant as: 
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As pointed out by Newell et al. (2002), Equation [7.5] yields the attenuation rate 

rather than degradation rate constant as it does not account for dispersion, 

explicitly. Wiedemeier et al. (1996) proposed a modified approach based on 

Equation [7.5] with a correction factor based on the ratio of upgradient 

concentration to the downgradient concentration of a tracer at the same wells. 

This modification accounts for dispersion of the plume and ensures the calculated 

biodegradation is not affected by off-centerline measurements. The modified form 

of Equation [7.5] is calculated by: 
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where, 0C
)

and ( )xC
)

 are the source and downgradient concentration of the tracer.  
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The method of Buscheck and Alcantar based on its original 1D presentation 

(Buscheck and Alcantar 1995) is widely used in practice and therefore used in this 

chapter. In Section 7.2, the effect of uncertainty in the dissolution rate of NAPL 

and different magnitudes of error in observed head on the estimated first-order 

biodegradation rate constant is investigated. In the 1D example, the method of 

Buscheck and Alcantar (1995) is used to estimate the first-order rate constant 

under homogenous and heterogeneous conditions with a constant source 

concentration and variable rate-limited dissolution. In the 2D example, the same 

method is used with three different levels of heterogeneity in the aquifer 

transmissivity, two different magnitude of error in hydraulic head measurements, 

and with and without uncertainty in the dissolution rate constant.  
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7.2 Investigation scenario 
 
7.2.1. Uncertainty in the source concentration: 1D case   
 
As pointed out in the previous section, the method of Buscheck and Alcantar is 

developed based on the analytical solution to a 1D transport problem. In order to 

investigate the effects of uncertainties in the concentration of the source on the 

estimated rate constants, the hydraulic conductivity field and the dissolution rate 

constant on the estimated first-order biodegradation rate, two 1D contaminant 

transport problems with homogenous and heterogeneous hydraulic conductivity 

fields are created. Figure 7-1 shows the distributions of hydraulic conductivity 

and the associated concentration profiles under semi-steady-state conditions. The 

length of the 1D field is 300 m, and a hydraulic gradient equal to 0.01 is applied 

to the system through fixed-head boundary conditions to simulate the hydraulic 

head field.  

 
 
 
 
   

 
 
 
 
 
 
 
 
Figure 7-1: The hydraulic conductivity distribution for the 1D (a) homogenous 
and (b) heterogeneous cases and the associated concentration profiles under semi-
steady-state condition for (c) homogenous and (d) heterogeneous cases. 
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In the 1D example, the homogenous field has a uniform hydraulic conductivity of 

4.1 × 10-5 m/s and the heterogeneous case has a log-normal hydraulic conductivity 

distribution with the mean of 4.1 × 10-5 m/s, standard deviation of 1.2 in natural 

logarithmic units and a spatial correlation range of 32 m. To simulate the 

contaminant concentration profile, a 50 m long line source with constant 

concentration equal to 5 mg/L is considered for both homogenous and 

heterogeneous cases (Figure 7-1).  The development of the 1D plume is simulated 

for 7 years, when it becomes under semi-steady-state condition. The reference 

values for longitudinal dispersivity and biodegradation rate constant for both the 

homogenous and heterogeneous cases are 1.5 m and 0.0044 day-1, respectively. 

The reference cases (black curves) shown in Figures 7-2, 7-3 and 7-4 are the 

reference concentration profiles for the homogenous and heterogeneous cases 

under semi-steady-state condition. The other concentration profiles (realizations 1 

to 4) shown in Figure 7-2 are the first four realizations out of a total of 100 

generated realizations that are associated with different values of dissolution rate 

constant. Realizations 1 to 4 shown in Figure 7-3 are the first four realizations 

corresponding to different hydraulic conductivity distributions. The reference case 

shown in Figure 7-4 is the same as the reference case shown in Figure 7-3, and 

the realizations in Figure 7-4 are calculated for uncertain dissolution rate constant 

and uncertain hydraulic conductivity field. The uncertainty in the value of 

dissolution rate constant is simulated by assuming a log-normal distribution with 

a mean of 0.001 day-1 and standard deviation of 1.0 in natural logarithmic units.  

 

As stated above, good estimates of the values of seepage velocity, longitudinal 

dispersivity and the location of the point source are necessary for application of 

the method of Buscheck and Alcantar. In the 1D example presented in this 

section, the true values of seepage velocity and dispersivity are assumed to be 

known for the homogenous case. For the heterogeneous case however, these 

values must be estimated. An estimate for seepage velocity is obtained by 
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computing the effective hydraulic conductivity and known hydraulic gradient 

(equal to 0.01 for all cases). The effective hydraulic conductivity is calculated as 

the harmonic average of the reference hydraulic conductivity distribution. The 

reference hydraulic conductivity distribution is unknown in practice. However, it 

is considered known in this work to find an effective hydraulic conductivity value 

that is reasonable for all unconditional realizations. As a result, the estimated 

values for the effective hydraulic conductivity and the average seepage velocity 

for the heterogeneous case are 2.1 × 10-5 m/s and 6.05 × 10-2 m/day. The location 

of source is another important factor, when estimating the first-order rate by any 

center-line approach. It is however, prone to uncertainty. In this work, two 

different locations for the source are considered: the middle of the line source in 

Figure 7-1 and the downstream edge of the line source in Figure 7-1.        

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 7-2: The concentration profile for the reference homogenous case, as well 
as concentration profiles for four realizations with homogenous hydraulic 
conductivity and variable dissolution rate constants. The arrows show the 
locations of the two point sources used in the subsequent estimation of first-order 
biodegradation rate constants.  
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In Figure 7-2, it can be observed that changes in the dissolution rate constant has 

minor impact on the slope of ln(C(x)/C0)/Δx line in the homogenous case, and 

therefore does not affect the estimation of first-order rate constant by any of the 

centerline approaches. This observation is also depicted in Table 7-1, where the 

estimated (mean) values of first-order rate constant, the standard deviation and 

minimum and maximum values of the estimated rate constants for the ensemble 

of 100 realizations are presented for all different scenarios. Table 7-1 shows that 

the method of Buscheck and Alcantar can obtain an excellent estimate of the first-

order rate constant for the homogenous case with a known and/or uncertain value 

of the dissolution rate constant, and with the point source considered to be at the 

edge of the line source. As expected, considering the point source to be at the 

forward edge of the source may result in slight underestimation of the true rate 

constant.  

 

 

 

 

 

 

 

 

  

 

 

 
Figure 7-3: The concentration profile for the reference heterogeneous case, as 
well as concentration profiles for four realizations with heterogeneous hydraulic 
conductivity and constant source concentration. The arrows show the locations of 
the two point sources used in the subsequent estimation of first-order 
biodegradation rate constants.  
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Figure 7-4: The concentration profile for the reference heterogeneous case, as 
well as concentration profiles for four realizations with heterogeneous hydraulic 
conductivity and variable dissolution rate constants. The arrows show the 
locations of the two point sources used in the subsequent estimation of first-order 
biodegradation rate constants.  
 
 

Figure 7-3 shows that the uncertainty in the hydraulic conductivity field may 

result in a large amount of variability in the slope of the ln(C(x)/C0)/Δx line that 

translates into large uncertainties in the value of the estimated first-order rate 

(Table 7-1). This is an extreme case, as no conditioning data are used to generate 

the hydraulic conductivity fields. As the number of conditioning data increases, 

there will be a reduction in the uncertainty of the estimated rate constants. 

Nevertheless, this observation quantifies how heterogeneity in the hydraulic 

conductivity field translates into uncertainty in and over/underestimation of the 

estimated rate constants. This is due to inherent uncertainty in the estimation of 

effective hydraulic conductivity for the heterogeneous aquifers; and it is other 

than the notion of ‘missing the centerline of the plume’ that has been illustrated in 

the previous works in the literature (Wilson et al. 2004). 
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In Figure 7-4, the concentration profiles of the realizations with uncertain 

hydraulic conductivity and uncertain dissolution rate constant are illustrated. 

Unlike the homogenous case, uncertainty in the dissolution rate increases the 

uncertainty in the estimated first-order rate constants. According to Table 7-1, by 

introducing variability in the dissolution rate, the standard deviation of the 

ensemble of the estimated first-order rates increases from 0.242 to 0.271 which 

can be explained by variability in the pattern of source dissolution in 

heterogeneous hydraulic conductivity fields. Heterogeneity in the hydraulic 

conductivity, on average, results in overestimation of the true rate constant. 
 

Hydraulic  Source Source Estimated first-order degradation rate 
Conductivity  Location Concentration Mean S.D. Min Max 
Homogenous Edge Known-fixed 4.46 × 10-3 - - - 
Homogenous Center Known-fixed 3.93  × 10-3 - - - 
Homogenous Edge Uncertain  4.41  × 10-3 0.013 4.13 × 10-3 4.48 × 10-3 
Homogenous Center  Uncertain  3.76  × 10-3 0.014 3.50 × 10-3 3.80 × 10-3 

Heterogeneous Edge Known-fixed 6.02  × 10-3 0.242 1.80 × 10-3 6.85 × 10-3 
Heterogeneous Center Known-fixed 5.13 × 10-3 0.245 1.55 × 10-3 5.89 × 10-3 
Heterogeneous Edge Uncertain  5.55 × 10-3 0.271 1.82 × 10-3 7.91 × 10-3 
Heterogeneous Center  Uncertain  4.74 × 10-3 0.285 1.42 × 10-3 6.81 × 10-3 

 
Table 7-1: The estimated (mean) values of the first-order biodegradation rate 
constant as well as the standard deviation (in natural logarithmic units) and 
minimum and maximum of the rate constants estimated for different scenarios.  
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7.2.2. Uncertainty in the source concentration: 2D case   
 
The method of Buscheck and Alcantar (1995) has been developed based the 

solution to 1D mass transport problem. In practice, however, it is applied to real 

2D and 3D transport problems. As reviewed in Chapter 2 and at the beginning of 

this chapter, a few works reported in the literature deal with uncertainties 

associated with application of the method of Buscheck and Alcantar to 2D 

transport problems. A synthetic reactive transport problem is created in this work 

to investigate the impact of head measurement errors and uncertainty in the 

dissolution rate constant on the estimation of the first-order rate by the method of 

Buscheck and Alcantar for the heterogeneous aquifers.  

 

The synthetic aquifer developed for this work consists of a 2D heterogeneous 

aquifer with two different levels of heterogeneity and a NAPL source zone with 

known geometry located at the North of the site (Figure 7-5). The flow and 

transport boundary conditions are all assumed to be known and include no-flow 

boundary conditions at the East and West of the site, fixed head boundaries at the 

north and south of the site and fixed dispersive flux boundary conditions at the 

north and south of the site. As a result of the boundary conditions used, a 

hydraulic gradient equal to 0.005 is applied to the site. The distribution of 

hydraulic conductivity follows a log-normal distribution with a mean of 4.1 × 10-5 

m/s and standard deviations of 1.0, 1.5 and 2.0 (in natural logarithmic units) that 

represent three different levels of heterogeneity in the synthetic aquifer. The range 

of spatial correlation structure is defined by a spherical variogram with a nugget 

effect equal to 0.1 and a range of 25 m. As shown in Figure 6-5, a 30 m by 30 m 

NAPL source zone is considered to be located at the north of the site. The 

reference value for the dissolution rate constant is equal to 1.0 × 10-3 day-1. In 

order to investigate the effect of uncertainty in the dissolution rate constant on the 

estimated first order rates, two different scenarios are considered: (1) a constant 

concentration boundary condition equal to 5 mg/L over the source zone, and (2) a 
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source zone with soil NAPL concentration equal to 10g/Kg, the initial mass 

fraction of the substrate (e.g. BTEX) equal to 0.01, and a variable dissolution rate 

constant that follows a log-normal distribution with a mean of 0.001 day-1 and 

standard deviation of 1.0 in natural logarithmic units. Figure 7-6 shows the 

distribution of hydraulic head for the three different levels of heterogeneity in the 

hydraulic conductivity fields as well as the layout of the centerline and off-

centerline wells for each case. In practice, a representative design for the layout of 

the centerline wells is often obtained based on the location of the source zone and 

the contour lines of the hydraulic head distribution that is determined using 

piezometric heads observed at a number of wells in the appraisal stage. Therefore, 

it is expected that error in the head observations affects the locations of the 

centerline wells and may result in missing the centerline of the plume.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-5: The reference hydraulic conductivity field (the case with σlnK = 1.0), 
the location of the source zone and the types and values of the flow boundary 
conditions in the synthetic reactive contaminant transport problem. 
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To investigate the potential uncertainty in the estimated rate constants, 100 

realizations of the hydraulic conductivity field conditioned to both hydraulic 

conductivity and head measurements are generated with different levels of 

heterogeneity in hydraulic conductivity (σlnK =1.0, 1.5 and 2.0) and two different 

levels of error in head measurements (σH = 0.10 m and 0.15 m). Given the fact 

that there are two different scenarios for the source zone concentration (constant 

aqueous concentration and constant soil NAPL concentration with variable rate 

limited dissolution), a total of 12 scenarios are created (3 different levels of 

heterogeneity, 2 different levels of errors in the head measurements and 2 

different scenarios for source aqueous concentration). Figure 7-7 shows the 

plumes of the dissolved contaminants for the cases of σlnK = 1.0, σlnK = 1.5 and 

σlnK = 1.5. The plumes are simulated for 7 years and all of are under semi-steady-

state condition. It should be noted that the layout of the centerline wells has been 

designed separately for each specific case.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-6: The hydraulic head contours for the reference synthetic aquifers with 
log-normal hydraulic conductivity distributions with a mean equal to 4.1 × 10-5 
m/s and standard deviations equal to (a) σlnK =1.0, (b) σlnK =1.5 and (c) σlnK =2.0 
in natural logarithmic units. The centerline wells are depicted by black circles.   
 
 

(a) (b)  (c)
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Figure 7-7: The development of the dissolved plumes after 7 years, when reaching 
to a semi-steady-state condition for the reference synthetic aquifers with log-
normal hydraulic conductivity distributions with a mean equal to 4.1 × 10-5 m/s 
and standard deviations equal to (a) σlnK =1.0, (b) σlnK =1.5 and (c) σlnK =2.0 in 
natural logarithmic units.  
 
 

In practice, the contours of hydraulic heads are obtained by professionals either 

through hand contouring or by calibration of a numerical groundwater model to 

site-specific conditions. The calibration of numerical models to site-specific 

conditions is implemented by trial and error calibration or by automated 

approaches. The quality of calibration to the available head observations is always 

affected by the level of details that is incorporated in the model through 

parameterization as well as the calibration techniques used. In any case, as the 

true distribution of hydraulic conductivity is inaccessible, the level of precision 

and details in the head contour lines as shown in Figures 7-6 and 7-7 can never be 

achieved in practice. The layout of the centerline wells are, in turn, affected by 

errors in the head contours which translates into uncertainty in the first-order rate 

constants estimated by any centerline approach.  

 

Generally speaking, the magnitude of errors in the hydraulic head surface 

obtained by hand-contouring or simulated by a calibrated groundwater surface is 

 (c)(b)(a) 
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affected by a number of factors: (1) errors in piezometric head observations, (2) 

the number of piezometric head observations and (3) the quality of calibration to 

piezometric head observations, which is a function of the technique used and the 

level of parameterization details considered. In this work, only the effects of error 

in piezometric head observations are investigated; and it is assumed that the 

number of piezometric head data is adequate and calibration to the set of available 

piezometric head observations is consistent with the level error in observations. 

The erroneous head observation datasets that are used in this work are created by 

sampling hydraulic heads from the reference cases (Figure 7-7) and adding 

Gaussian noise. Table 7-2 shows the scenarios that are simulated in this work to 

evaluate the effects of error in head observations and source concentration. For 

each scenario, 100 realizations with measure of fit (s) close to one are created and 

used in the subsequent Monte Carlo simulations. For each realization, the 

development of the plume is numerically simulated and the first-order 

biodegradation rate constant is estimated through the method of Buscheck and 

Alcantar and by using the concentration measurements at the centerline wells. 

 

Scenario  σlnK σH 
Source  

concentration Scenario  σlnK σH 
Source  

concentration 

1 1.0 0.10 0C =5 mg/L 7 1.5 0.15 0C =5 mg/L 

2 1.0 0.10 diskσ = 1.0 8 1.5 0.15 diskσ = 1.0 

3 1.0 0.15 0C =5 mg/L 9 2.0 0.10 0C =5 mg/L 

4 1.0 0.15 diskσ = 1.0 10 2.0 0.10 diskσ = 1.0 

5 1.5 0.10 0C =5 mg/L 11 2.0 0.15 0C =5 mg/L 

6 1.5 0.10 diskσ = 1.0 12 2.0 0.15 diskσ = 1.0 

 
Table 7-2: The description of different scenarios that are studied to investigate the 
effects of head observation and source concentration errors on the estimated 
values of first-order biodegradation rate  
 
As stated above, to apply the method of Buscheck and Alcantar (1995), one must 

estimate the values of the seepage velocity and field-scale longitudinal 

dispersivity. Following a common practice in contaminant hydrogeology, the 
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value of longitudinal dispersivity is set to be 0.1 times the observed plume length 

that is calculated for each level of heterogeneity (because the plume lengths are 

different for different values of σlnK).  The value of the average seepage velocity 

is calculated as:   

l
hKv G

c Δ
Δ

=
θ

                                                                                                        [7.7] 

where, KG is the geometric average of hydraulic conductivity values sampled at 

the centerline wells, θ is effective porosity and Δh/Δl is hydraulic gradient. In this 

work, it is assumed that no uncertainty exists in the values of porosity and the 

value of hydraulic gradient. 

 

Table 7.3 shows the geometric average, standard deviation, p25, p50, p75 

quartiles and the width of 50% confidence interval for the normalized estimated 

first-order biodegradation rate constants (normalized to the reference value used 

in the simulations), based on the results of Monte Carlo simulations.  

 

 Normalized first-order rate constant  

Scenario Average 
Standard 
deviation p25 p50 p75 

width of 
50% C.I. 

1 2.30 0.471 1.73 2.09 2.45 0.72 
2 2.61 0.560 1.73 2.14 4.57 2.84 
3 2.46 0.499 1.82 2.17 2.6 0.78 
4 3.12 0.551 1.81 2.28 4.79 2.98 
5 3.53 0.687 2.44 2.95 3.71 1.27 
6 4.91 0.712 2.41 3.05 7.29 4.88 
7 3.81 0.630 2.51 3.4 5.68 3.17 
8 4.3 0.687 2.55 3.58 7.91 5.36 
9 4.42 0.686 2.68 3.92 5.57 2.89 

10 4.72 0.719 2.64 4.01 8.42 5.78 
11 4.64 0.693 2.76 4.16 6 3.24 
12 5.11 0.735 2.84 4.35 10.28 7.44 

Table 7-3: Average, standard deviation, p25, p50, p75 quartiles and the width of 
50% confidence interval of the distribution of normalized estimated first-order 
biodegradation rate constants for different scenarios. The values of the first-order 
rates are normalized to the reference value (0.0048 day-1).    
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In Table 7-3, first, it is observed that application of the method of Buscheck and 

Alcantar (1995) for heterogeneous aquifers often results in significant over-

estimation of the true rate constant, which is a result of missing the centerline of 

the plume and uncertainty in the values of average seepage velocity and 

longitudinal dispersivity. It is also observed that the average over-estimation of 

the true rate constant as well as the uncertainty about the true value increase as the 

level of heterogeneity increases in the aquifer.  

 

Similar to the 1D case, incorporating variability in the dissolution rate constant 

results in more uncertainty (larger standard deviation and considerably larger 

width of the 50% confidence interval) in the estimated first-order rate constants. 

This is due to variability in the dissolution pattern of the NAPL source zone under 

uncertain and heterogeneous distribution of hydraulic conductivity. Although the 

effects of variability in the dissolution rate constant is smaller for moderately 

heterogeneous aquifers, they become more significant for highly heterogeneous 

aquifers. This is important to note that the average overestimation also becomes 

larger when incorporating the variability in the source concentration. The range of 

correlation structure may also have an impact on the uncertainty of the estimated 

rate constant due to its impact on the dissolution pattern of the NAPL source. This 

is not, however, investigated in this thesis.   

 

Another important observation is related to the effects of uncertainty and error in 

head observations. It is evident that the error in head observations has an impact 

on the degree of over-estimation and the level of uncertainty in the estimated 

rates. In all cases, one can observe that (50% confidence intervals in Table 7-3) 

introducing Gaussian noise to the head observation data and/or variability in the 

source concentration may have a similar impact on the estimated first-order rates 

to that of additional heterogeneity in the aquifer material.  This shows the 

importance of calibrating the hydraulic conductivity realizations to good-quality 
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head data that can reduce the uncertainty in the estimated rate constants. Also, 

comparing the results in Table 7-3 to the results obtained by Bauer et al. (2006) 

shows that larger uncertainties (on average) reported are due to application of 

hydraulic conductivity realizations that are not conditioned to head data.   
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CHAPTER 8 
 
CONCLUSIONS AND FUTURE RESEARCH    
 
 
From a practical point of view, risk management for natural attenuation of 

petroleum hydrocarbon contaminants requires a sound understanding of the 

variability in the factors that control the influx of contaminants into the aquifer 

and the factors that control the destructive removal of contaminants from the 

aquifer. Estimation of these parameters using concentration measurements at 

sparse sampling locations involves uncertainties that are overlooked by the 

available field estimation techniques. Linking the estimation of these parameters 

to distributions of uncertainty in the source geometry and hydraulic conductivity 

can effectively characterize the uncertainty in these parameters and reduce the 

uncertainties in the state variables, being plume length and dissolved mass.  

 

The central idea in this thesis has been to tailor the estimation of dissolution rate 

and first-order biodegradation rate to joint realizations of source size and 

hydraulic conductivity and to develop a simple modeling approach that can be 

used as a screening tool for characterization of uncertainty (non-linear confidence 

intervals) in these parameters and the associated state variables.  

 

8.1 Summary and Conclusions  
 

In Chapter 2 of this thesis, natural attenuation mechanisms, principles and 

modeling approaches were reviewed. Then, a thorough literature review on 

stochastic modeling of natural attenuation, inverse modeling and parameter 

estimation was presented. In the last section of Chapter 2, the parameterization of 

natural attenuation of PHCs, as used in this thesis, was presented.  
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In the first part of Chapter 3, a case study was presented where CPT data and soil 

behavior type charts were used to define categorical and continuous variables to 

construct a probabilistic model for hydrogeological properties of a real aquifer. A 

hydrogeological conceptual model was then developed based on this probabilistic 

model. The definition of hydro-facies based on CPT data may potentially be used 

in Monte Carlo simulations and/or calibration of groundwater flow models. The 

definition of continuous variables based on CPT data was subsequently used in 

calibration and prediction of localized distribution of residual NAPL 

contamination given soil texture as a secondary data source. 

  

In the second part of Chapter 3, the concepts of distance-function and uncertainty 

band were introduced. Then, the uncertainty band was calibrated against a large 

number of synthetic plumes using a downhill simplex optimization. A close match 

between the calibrated probabilities and the target probabilities showed the 

convergence of the technique. The proposed distance function approach is 

deemed to be useful to model the areal limits of non-stationary continuous or 

categorical random variables and to provide a prior probability map for source 

zone sizes that can be used in Monte Carlo simulations of contaminant transport 

or subsequent inverse modeling studies.  

 

In the third part of Chapter 3, data integration approaches were employed to 

create a probabilistic model for localized distribution of residual NAPL within the 

areal limits of a source zone for a real aquifer. Secondary data sources such as the 

distance to water table and soil texture were defined using calibration tables and 

combined based on the assumptions of full data independence and conditional 

independence. Two different data integration techniques, namely Bayesian 

updating and sequential indicator simulation with locally varying means were 

employed to integrate primary hard data and the secondary data sources. A cross-
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validation study was then implemented to compare the performance of different 

techniques used. According to the results of cross-validation, inclusion of 

secondary data sources improved the prediction of both contaminated and 

uncontaminated locations. Improvements due to incorporation of distance to water 

elevation data seemed to be more significant compared to soil texture data. The 

results obtained based on the assumptions of full data independence and 

conditional independence appeared to provide almost identical results confirming 

that the two data sources are fully independent. After incorporation of hard data, it 

seemed that Bayesian updating approach over-estimated the contaminated 

locations (with smaller global proportions) and under-estimated the 

uncontaminated locations. The degree of overestimation of contaminated 

locations was smaller using SIS-LVM approach, as it improved the prediction of 

uncontaminated locations over global proportions as well. As a general 

conclusion, it should be noted that although the integration of secondary data 

sources showed an overall improvement in predictive ability, the distance to 

groundwater can be considered a more robust secondary data source as it is less 

dependent on the number of wells and their spatial arrangement. In fact, the 

improvements achieved by the inclusion of soil texture data in the analysis 

represent an upper bound to what can be achieved by the incorporation of soil 

data, since all the collected CPT data are used in construction of 3D map for 

conditional probabilities. In any case, inclusion of soil texture data can still be 

considered useful due to the fact that more reliable estimates of correlation 

structure (variogram) of soil texture data are often available comparing to 

presence/absence of contamination.  

 

Chapter 4 of this thesis presented the development and verification of simple and 

flexible 2D numerical flow and mass transport simulators that were subsequently 

used in the parameter estimation step. The 2D groundwater flow simulator was 

based on the finite volume approach, the particle tracking code was developed 
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based on 2D semi-analytical particle tracking, and the mass transport simulator 

was developed based on the method of characteristics. Rate-limited NAPL 

dissolution, advection, dispersion and first-order biodegradation were coded in the 

mass transport simulator. All the flow and mass transport codes were verified 

against commercial software under homogeneous and heterogeneous conditions.     

 

Chapter 5 presented simple Monte Carlo type decoupled inverse modeling for 

characterization of uncertainty (non-linear confidence interval) in dissolution rate 

and first-order biodegradation rate constants. The justification for the decoupled 

approach was due to avoiding the computational cost of calculation of sensitivity 

coefficients in a multi-state system (while the significance of incremental value of 

such coupling was unknown) and avoiding potential instability problems 

associated with simultaneous perturbations of hydraulic conductivity field, 

dissolution rate and first-order biodegradation rate. As the first step of the 

decoupled approach, the sequential-self calibration technique was reviewed and a 

case study was presented to compare the conditional realizations in terms of 

mismatch to head observations with measurement errors. As the second step of 

the decoupled approach, a gradient-based inverse modeling was implemented to 

apply concentration measurements for simultaneous estimation of dissolution rate 

and first-order biodegradation rate. Calculation of sensitivity coefficients and 

optimization of the objective function were based on sensitivity equations and the 

modified Gauss-Newton approach, respectively. In a sensitivity analysis, it was 

observed that the length of the plume is primarily affected by the value of first-

order biodegradation rate constant and the level of heterogeneity in the aquifer 

material. Size of the source and the dissolution rate of NAPL had smaller impacts 

on the length of the plume; however, this depends on the value of dissolution rate. 

Similarly it was observed that the sensitivity of the mass loaded into the aquifer to 

dissolution rate depends on the value of dissolution rate as well as heterogeneity 

of the aquifer material. The biodegradation rate constant and source geometry 
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showed profound impact on the loaded mass but this sensitivity was not affected 

by the heterogeneity of the aquifer material. The stability of the inverse problem 

was also studied in Chapter 5 through 1D and 2D examples. According to these 

examples, for large values of dissolution rate, the correlation between the two 

parameters (dissolution rate and first-order biodegradation rate) becomes smaller 

and parameter non-uniqueness becomes less of an issue. For this case, however, 

parameter insensitivity may become the problem. For smaller values of 

dissolution rate that are more feasible for real field applications (Essaid et al. 2003 

and Christ et al. 2006), a very high correlation exists between the two 

sensitivities. However, it was observed that correlation between the two 

parameters depends on the location of the calculated sensitivities. This can be 

used to improve the stability of the inverse problem through designing the 

monitoring network in such a way that observation network samples the locations 

close to the source zone as well as the locations well away from the source, while 

the weighting scheme in the objective function has to be defined inverse 

proportional to simulated concentrations to preserve the importance of the 

concentrations at the downstream as well as upstream edge of the plume. This 

observation was also validated through plotting the objective function surfaces.  

 

Chapter 6 presented a synthetic example to investigate the performance of the 

decoupled inverse modeling approach in characterizing the uncertainty in the 

dissolution rate and first-order biodegradation rate and reducing the uncertainty in 

the associated state variables. Three reference cases with three source sizes were 

considered. First, a set of Monte Carlo simulations were implemented whose 

results were subsequently compared to the results of the inverse modeling 

methodology. The Monte Carlo simulations were performed using realizations of 

hydraulic conductivity conditioned to head data, realizations of source geometry 

drawn from the calibrated uncertainty band, first-order biodegradation rate values 

drawn from a log-normal distribution similar to what was observed by Bauer et al. 
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(2006) using the approach of normalization to a recalcitrant co-contaminant, and 

dissolution rate constant values drawn from a uniform distribution with one-order 

of magnitude variability that seems to be a lower bound for the variability in this 

parameter based on the observations of Dillard et al. (2001) and Christ et al. 

(2006) for field applications of pore network models and upscaled models for 

NAPL dissolution. Comparing the results of the Monte Carlo simulations to the 

results of inverse modeling for each reference case, it was observed that tailoring 

the estimation of first-order biodegradation rate and dissolution rate to 

distributions of uncertainty in the source geometry and hydraulic conductivity 

field results in characterization of uncertainty in these parameters and significant 

reduction of uncertainty in the state variables, being mass loaded into the aquifer 

and the dimensions of the plume. Although the reference values always fell within 

90% confidence interval, a bias was observed in the prediction of the reference 

state variables by the ensemble of simulated realizations. This bias was deemed to 

be partially due to large variabilities in the size of the source zone which cannot 

be fully resolved by adjusting the values of dissolution rate and first-order 

biodegradation rate. In this work, it was observed that ranking and screening the 

conditional realizations based on the value of modified objective function 

(Chapter 5) can effectively reduce the uncertainties in the size of the source zone 

and uncertainty and bias in the prediction of the state variables. The value of the 

modified objective function is deemed to be independent of overall level of 

concentrations in the modeling domain due to the fact that it is a dimension-less 

number and a normalization that takes place by defining the weights inverse 

proportional to the value of simulated concentrations. On the other hand, the 

number of realizations that are kept after ranking and screening may be 

considered ‘problem dependent’ for a large part. Despite this apparent 

subjectivity, it was observed through a sensitivity analysis that ranking the 

realizations and keeping any number of realizations can still be useful as it can 

give a general idea about the size of the source, while reducing its uncertainty. 
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The importance of simultaneous characterization of uncertainty in the parameters 

was investigated through cross-plots of the parameters, where it was observed that 

a positive correlation exists between the values of dissolution rate and first-order 

biodegradation rate, a negative correlation exists between the values of 

dissolution rate and source size quantile and little correlation exists between first-

order biodegradation rate and source size quantile. To investigate the effects of 

errors in observation data on the modeling outcomes, relatively large levels of 

observation errors (Gaussian noise with a mean of zero and pre-specified standard 

deviation/coefficient of variation) were added to head and concentration 

observations and the transport parameters were estimated. According to the 

results, existence of Gaussian noise in the data resulted in an increase in the 

uncertainty and bias of the estimated parameters and the predicted state variables. 

Comparing these results to the results of Monte Carlo simulations indicated that 

even if the observed data are subject to a relatively large level of Gaussian noise, 

the uncertainty in the predicted state variables are still smaller than the results of 

Monte Carlo simulations. Finally, to investigate the effect of misestimation of 

starting time of simulations on the modeling outcomes, a three year lag was 

considered in the starting time of the simulations, while it was assumed that the 

data have been collected under steady-state condition. As it was expected, 

misestimation of the time of release had negligible impact on the modeling 

outcomes.        

 

In Chapter 7, a series of simple 1D and 2D Monte Carlo simulations were 

performed to investigate the effects of uncertainty in the source concentration and 

measurement error in head data on the estimates of first-order biodegradation rate 

constant obtained by a widely used concentration-distance relationship. The 

method of Buscheck and Alcantar (1995) has been developed based on an 

analytical solution to a one-dimensional transport equation. But, even in a 1D 

problem, the results show that this method may on average over-estimate the true 
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rate constant by 36% (with a standard deviation equal to 0.242) when the true 

source location and source concentration are known but the 1D domain is 

heterogeneous. This is mainly due to uncertainty in the value of groundwater 

velocity. Uncertainty in the value of source concentration can further increase the 

standard deviation (uncertainty) to 0.271. Similar to the 1D example, the objective 

of the 2D example was to show the effect of variability in source concentration on 

the uncertainty in the estimated first-order biodegradation rate constants. The 

effect of head observation error was also studied. For the purpose of this study, 

three levels of heterogeneity, two levels of head observation error and the effects 

of existence of uncertainty in source concentration were considered (a total of 12 

scenarios). The results showed that (1) depending on the level of heterogeneity, 

on average, the method of Buscheck and Alcantar may overestimate the true rate 

constant between a factor of 2 to 5 with standard deviations ranging from 0.47 to 

0.74 in natural logarithmic units; (2) introducing variability in the source 

concentration has a profound impact on the over-estimation of and the uncertainty 

in the estimated rate constants; (3) although error in head observations increase 

the uncertainty in the estimated rates, their impact seem to be smaller as compared 

to variability in the source concentration; and (4) comparing the results to the 

results obtained by Bauer et al. (2006) shows that larger uncertainties (on 

average) reported in their work are due to application of hydraulic conductivity 

realizations that are not conditioned to head data. The general conclusion for 

Chapter 7 is: application of concentration-distance relationships to heterogeneous 

aquifers may result in significant overestimation of the rate constants while this 

uncertainty is adversely affected by uncertainty in the value of source 

concentration; and this uncertainty/overestimation can be reduced by calibrating 

groundwater models to good quality head observation data in the appraisal stage.       
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8.1 Recommendations for Future Research 
 

In the development and implementation of the decoupled inverse problem, it has 

been assumed that the biodegradation of petroleum hydrocarbons in the reference 

cases is subject to first-order decay kinetics. The rate of such first-order model 

and its uncertainty were then estimated using the decoupled approach. It is well-

known that the use of first-order kinetics may be problematic in some situations 

as it can be a poor representation of processes occurring in contaminated aquifers 

(Bekins et al. 1998, Schafer et al. 2004). Thus, future research is needed to 

investigate (1) the performance of the simple model (based on first-order decay) 

presented in this thesis in prediction of the future behavior of the reference cases 

that are subject to more sophisticated biodegradation kinetics such as Michaelis-

Menten (Simkins and Alexander, 1984) and Monod kinetics, and (2) the 

performance of the presented approach in estimation of the parameters associated 

with such more sophisticated models (Michaelis-Menten). 

 

In this work, constant dissolution rate and constant first-order biodegradation rate 

were adopted due to the fact that the model was aimed to be a screening-level 

model for field-scale applications with small/average domain. These assumptions 

are valid for the sites with relatively smaller size. For larger sites (with large 

source areas), however, it is more appropriate to consider spatial (and/or 

temporal) variability in these parameters. As discussed in Chapter 5, joint 

estimation of these parameters is prone to instability problems. These instability 

problems are a major factor to be considered in parameterization of spatial 

variability. The other important factor is related to avoiding the over-

parameterization of the model. In fact, the number of perturbation locations and 

correlation length for variability in these parameters (especially first-order 

biodegradation rate) should be carefully selected to avoid any over-

parameterization. It should be noted that consideration of spatial variability in the 

first-order biodegradation rate constant through zonation can be also useful, as the 
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zonation can be designed based on approximate locations of zones associated with 

different electron acceptors for plumes under steady-state condition. One 

approach to select the number of zones (regardless of electron-acceptor 

distribution) is using residual analysis or other approaches such as Fisher’s 

information matrix as used by Medina and Carrera (1996).    

 

In Chapter 5 of this thesis inverse modeling was implemented to characterize the 

uncertainty in the dissolution rate and first-order biodegradation rate by 

combining sequential self-calibration approach, distance function approach and a 

gradient-based optimization technique. The motivation for decoupling the inverse 

modeling process was to (1) avoid the cumbersome task of calculating 

sensitivities in a multi-state system while the potential benefits of such coupling 

in parameter estimation are unknown; and (2) to avoid the adverse effects that this 

coupling may have on potentially unstable problem of simultaneous estimation of 

dissolution and first-order biodegradation rates, as observed by Essaid et al. 

(2003). The investigation of the potential value of coupling the estimation of flow 

and transport parameters in parameter uncertainty and prediction of the state 

variables is an area for future research. A closely related subject would be 

studying the potential instability problems (if any) of coupling the estimation of 

flow and transport parameters (dissolution rate and first-order biodegradation 

rate). The author expects that the stability of such coupled inverse problem is a 

function of (1) arrangement of monitoring locations, and (2) the correlation range 

of hydraulic conductivity field relative to the number of monitoring locations. It is 

expected that larger correlation range and larger number of monitoring locations 

improves the stability of the problem.  

 

The distance function approach presented in Chapter 3 is a simple and flexible 

approach in characterization of uncertainty in the areal limits of the stationary 
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variables. Extension of this approach to 3D applications and capability of 

integration of secondary data sources are other areas for future research. 

Finally, as a possible future research, the presented approach should be applied to 

a real aquifer to investigate the performance of the proposed model in real field 

applications.            
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Appendix A 
 
IMPLEMENTATION OF DISTANCE BASED SIMULATION  

 
 
An alternative way of generating multiple Gaussian realizations with their 

measure of fit s (as defined in Chapter 5) close to one would be to use ‘distance-

based’ simulation (Scheidt et al. 2008 and Caers 2008) that builds on the concepts 

of multidimensional scaling (MDS), Karhunen-Loeve (KL) expansion, kernel 

principal component analysis (KPCA), and modeling and simulation in the metric 

and feature spaces. According to Scheidt et al. (2008) and Caers (2008), using 

distance-based simulation, one may choose a limited number of realizations that 

have a desired response and expand the set of realizations with similar responses 

while being conditioned to static data and reproduce the histogram and variogram. 

The idea in this appendix is to examine the performance of this approach in 

expanding the set of acceptable realizations conditioned to head data by SSC.    

 

MDS is applied to reduce the dimensionality of the geostatistical realizations from 

N dimensional space to L dimensional space, where N and L are the number of 

grid nodes and number of realizations. KL expansion, which relies on eigen-value 

decomposition of the covariance matrix, can be used to generate new realizations 

in the metric space that is defined by pair-wise differences in the values of s 

(Chapter 5). When a non-Euclidean distance (e.g. the measure of fit s) is used as 

the measure of pair-wise difference between the realizations, KL expansion must 

be implemented in the feature space, where Gaussian/linear type modeling 

becomes more appropriate. KPCA is used to transform the set of realizations to 

the feature space. A back-transformation (pre-image problem) is then required to 

find the corresponding set of realizations in the Cartesian space.   
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In this work, the methodology proposed by Scheidt et al. (2008) and Caers (2008) 

is implemented in the context of using measure fit as the measure of distance 

(difference) between the realizations. The distance based simulation starts by 

generating multiple geostatistical realizations conditioned to all transmissivity and 

head observations with the values of measure of fit close to one. This can be 

achieved by conditioning a limited number of realizations to head data using the 

SSC algorithm, post-processing them, and select L realizations with desired 

response. Then, the pair-wise distance between the selected realizations is defined 

as the difference in the values of measure of fit for all realizations. Assuming D = 

[dij] to be the pair-wise distance matrix defined based on the measure of fit, the 

centered dot-product matrix B can be calculated by: 

HAHB =                                                                                                           [A.1] 

where, H is the centering matrix and A is the equivalent dot-product matrix whose 

values are calculated by:  

2

2
1

ijij da −=                                                                                                         [A.2] 

The centering matrix H in Equation [A.1] is defined by: 

[ ]1...111         with 1
=−= 111IH T

L
                                                     [A.3] 

In the next step, the realizations are mapped from a high dimensional space (N 

dimensions) into a lower dimensional space (up to L dimensions). For this 

purpose, eigenvalue decomposition of the dot product matrix is performed: 

B = (HX)(HX)T = VΛVT                                                                                   [A.4] 

where, X is an L × N matrix containing the original L realizations as its rows, V is 

the matrix containing the eigenvectors and Λ is the diagonal matrix of 

eigenvalues. After eigen-value decomposition of the dot-product matrix, the 

matrix of mapped realizations into a lower dimensional space ( dX̂ ) is calculated 

by Equation [A.5]. The overall process is termed multi-dimensional scaling. 
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2/1ˆ
ddd ΛVX =                                                                                                       [A.5] 

where, dΛ is the matrix containing the d largest eigenvalues and dV is the matrix of 

the corresponding eigenvectors. The subscript d varies between 1 and the number 

of realizations L. According to Caers (2008), if the Euclidean distance measure is 

used between realizations with Gaussian distributions, the duality between the 

dot-product matrix and covariance matrix can be used to generate new 

realizations as linear combinations of existing realizations through KL expansion:   

( ) yVHXmx
Ld

T 1
+=                                                                                     [A.6] 

where, y, m and x represent the vectors of standard Gaussian deviates, the mean 

of the Gaussian field and the vector of the new Gaussian field which has been 

calculated as a linear combination of the existing realizations, respectively. When 

non-Euclidean distance measures are used such as the measure of fit, it is 

observed that the problem becomes non-Gaussian and the new realizations 

generated by KL expansion do not reproduce the desired response being the 

measure of fit close to one. To overcome this problem, Scheidt et al. (2008) 

proposed (1) transforming the realizations into feature space using a radial basis 

function (RBF), (2) performing KL expansion in the feature space and (3) back 

transforming the realizations to Cartesian space by solving the pre-image 

problem.  

 

Transforming the realizations to the feature space ( ( )idid ,, ˆˆ xφx a ) is a complex 

problem, and according to Scheidt et al. (2008), involves a high dimensional 

multivariate function φ  whose determination is not easy. However, as shown in 

Equations [A.4], [A.5] and [A.6], to perform KL expansion, we only need 

eigenvalue decomposition of the matrix of dot-product in the feature space, which 

can be calculated by kernel RBF as: 
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where, σ is the tuning parameter. The Kij’s are collectively form the components 

of a matrix termed the Gram matrix K. In the feature space, new realizations can 

be generated based on the existing transformed realizations through KL 

expansion: 

( ) yΛVxφVΛVΦΦC 2/1
,,,,,       1
φφφφφφ CCnew

T
CCC

T

L
=⇒==                                    [A.8] 

where,Φ  is the matrix of unknown existing transformed realizations into the 

feature space, φC  represents the covariance matrix of the transformed 

realizations, φ,CV is the matrix that involves the eigenvectors for covariance 

matrix, and φ,CΛ  is the corresponding diagonal matrix of the eigenvalues. Similar 

to Equations [A.4], [A.5] and [A.6], the duality between the dot product matrix 

and the covariance matrix in the feature space can be used to derive the 

relationship between their eigenvalues and eigenvectors: 

     ,    1 2/1
,, φφφφφ ΛVΦVΛΛ TT

CC L
==                                                                   [A.9] 

where, φV is the matrix involving the eigenvectors for the dot-product matrix, and 

φΛ is the corresponding matrix of eigenvalues. Combining Equations [A.8] and 

[A.9], new realizations in the feature space can be expressed as linear 

combination of existing realizations also in the feature space: 

( ) αΦxφ Tnew =                                                                                                  [A.10] 

where, a represents the vector of coefficients whose components can be calculated 

by: 

LiLdvy
d

j
jiiii  ..., ,1    and    2      with  

1
,,

2/1
, =≤≤= ∑

=
φφλα  
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where, jiv ,,φ represents a component of the matrix of the eigenvectors for the dot-

product matrix, iy is a component of the vector of Gaussian deviates, and i,φλ is a 

component of diagonal matrix of eigenvalues for the dot-product matrix. The new 

set of realizations generated in the feature space must be back-transformed to 

Cartesian space. As the inverse of φ  is not explicitly known, this back-

transformation translates into an ill-posed inverse problem (also known as pre-

image problem) that is formulated as an optimization problem: 

( ) αΦxφx
x

T
newdnewd

newd

−= ,
ˆ

, ˆminargˆ
,

                                                                     [A.11] 

Following the recommendations by Schoelkopf and Smola (2002), the fixed-point 

method can be used to solve the pre-image problem. Implementation of the fixed 

point method results in the expression for back-transformation of the newly 

generated realizations from the feature space to the MDS space (up to L 

dimensions): 

( ) ( ) ( )
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where, k ′ is the derivative of the kernel RBF in Equation [A.7]. According to 

Scheidt et al. (2008), one can perform unconstrained optimization to find the 

newly generated realizations into the N dimensional Cartesian space. The 

unconstrained optimization is appropriate for Gaussian fields and is performed 

through using the same weights of Equation [A.12] to the realizations in the 

Cartesian space:  
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In Equations [A.12] and [A.13], the weights sum to one, which ensures the 

reproduction of conditioning static data at the data locations. Also, it is observed 

that the calculation of the weights depends on the new realizations (in the MDS 
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space) themselves. Thus, an iterative procedure is employed in this work to 

quantify the weights. To find the weights to generate a new realization, one can 

start from one of the existing realizations (mapped into the MDS space ( jd ,x̂ )) 

each time as an initial guess for newd ,x̂ , and calculate a new vector of weights β. 

The new vector of weights β is then used to find an updated newd ,x̂  using Equation 

[A.12]. This process is repeated until the difference in newd ,x̂  in consecutive 

iterations becomes small and the convergence is achieved. Then, the same 

weights are used in Equation [A.13] to find the desired number of output 

realizations, using a given number of input realizations in the Cartesian space. 

The methodology does not always result in governance, when calculating the 

weights. Also, some of the generated realizations may closely resemble the input 

realizations. So, a post-processing is almost always required. Despite these 

shortcomings, given the fact that the algorithm is significantly faster than 

conditioning new realizations to head data by inverse modeling, it can be 

considered a useful methodology. 

 

Figures A-1-a, b, c show the projection of the 1000 Gaussian realizations into a 

3D MDS space based on a Euclidean distance measure, measure of fit as the 

distance measure, and after transforming the non-Euclidean projection of the 

realizations into the feature space, respectively. It can be observed that the 

disorganized cloud of points in Figure A-1-b becomes close to linear, which is 

more appropriate for modeling (KL expansion), after transforming to the feature 

space.     
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Figure A-1: The 3D mapped realizations into the MDS space (a) based on 
Euclidean distance between the realizations, (b) based on non-Euclidean distance 
(difference in measure of fit), and (c) after transforming to the feature space by 
kernel RBF.  
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As pointed out previously, when the level of measurement error is small, there 

may be only a small number of realizations that are accepted by screening. 

However, a large number of realizations are often needed for subsequent Monte 

Carlo type analysis. Given the low acceptance rate of the realizations, obtaining a 

large number of realizations with measure of fit close to one through running the 

SSC algorithm can be extremely demanding in terms of the CPU time. A faster 

alternative would be the distance-based simulation (explained above) to expand 

the set of acceptable realizations. As an example, two sets of 50 realizations that 

their values of measure of fit are closest to one are selected among the realizations 

that are conditioned to head data (by SSC) with error standard deviations of 0.10 

m and 0.15 m. It should be noted that all the realizations conditioned to head data 

by SSC have Gaussian distributions. The sets of realizations are used as input for 

the distance based simulations, and the sets of acceptable realizations are 

expanded to 500 realizations. The difference in the values of measure of fit is 

applied as the non-Euclidean measure of distance. Figure A-2 shows the 

histograms of the values of the measure of fit for the expanded sets of 

realizations. Figure A-3 shows two example transmissivity realizations generated 

by distance based simulations, Figure A-4 shows the variogram reproduction 

check for 20 realizations generated by the SSC algorithm and distance based 

simulation in North-South direction. Comparing the realizations in Figure A-3 to 

Figure 5-3-a (Chapter 5), one can observe that the SSC algorithm and subsequent 

distance based simulation reproduce the overall structure of the reference 

transmissivity field.  

 

Although distance based simulation may be considered useful in expanding the 

set of acceptable realizations, there are some serious issues that must be taken into 

account. First, solving the pre-image problem by fixed point method is only 

acceptable when the realizations are Gaussian; and even Gaussian realizations do 

not ensure the convergence of the approach.    
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Figure A-2: The histograms of the values of measure of fit for the sets of 500 
realizations generated by distance based simulation for (a) standard deviation of 
error σ equal to 0.10m, and (b) standard deviation of error σ equal to 0.15m.  
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Figure A-3: Two example realizations generated by distance-based simulations 
for a standard deviation of error σ equal to 0.15m. 
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Figure A-4: The variogram reproduction check for (a) the first 20 realizations 
generated by the SSC algorithm and (b) the first 20 realizations generated by 
distance-based simulation. 
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Also, in terms of the reproduction of basic statistics, the generated realizations 

show a reasonable reproduction of variogram in most cases. The histogram 

reproduction, however, is not guaranteed. Although the Gaussian shape of the 

histogram and its mean are almost always reproduced, the standard deviation of 

output realizations may considerably over- or under-estimate the true standard 

deviation. It is also observed that many of the generated realizations may closely 

resemble a few of the input realizations. Due to these issues, and based on 

Author’s experience, the distance-based simulation (in the current level of 

development) should be used with care and post-processing (acceptance/rejection) 

of the generated realizations is needed.  
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Appendix B 
 
PARAMETER FILES FOR BOUNDARY SIMULATION AND 

PARAMETER ESTIMATION CODES   

 
 
This appendix presents the parameter files for two codes developed for boundary 

modeling under uncertainty namely mlimit2d and ubcalib2d as well as the 

parameter file for the parameter estimation code optkna.  

 

Figure B-1 shows the parameter file for milimit2d code that can be used to 

generate a large number of synthetic realizations to be applied in the subsequent 

calibration of uncertainty band as discussed in Chapter 3. Line 1 involves the 

name of the data file containing the location and status of the wells deemed inside 

and outside of the source zone. Line 2 involves the column numbers. Line 3 

involves the name of the data file including the location and status of the control 

points. Line 4 involves the associated column numbers. Lines 5 and 6 involve the 

discretization parameters for the 2D domain. The number of realizations to be 

generated is entered in line 7. Line 8 involves the random number seed. Line 9 

involves the starting angle as well as angle resolution for the directional search. 

The starting angle and in particular the angle resolution control the short-scale 

variations in the shape of the generated synthetic plumes. Line 10 involves the 

nugget and exponent for inverse distance interpolation. Line 11 gives the upper 

and lower bounds for the search radius. The optimum search radius is found 

within this range. Line 12 involves the number of increments for search radius. 

Lines 13 and 14 involve the file names for the debugging output and the output 

file. 
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Figure B-1: The parameter file for mlimit2d code  

 

Figure B-2 shows the parameter file for ubcalib2d code that uses multiple 

realizations of synthetic limits and calibrates the uncertainty band for the given 

well arrangement and the desired quintiles by a simplex optimization approach. 

Line 1 involves the name of the data file containing the location and status of the 

wells deemed inside and outside of the source zone. Line 2 involves the 

associated column numbers. Line 3 involves the name of the file with control 

points. The column numbers are entered in line 4. The name of the file with 

multiple synthetic limits (generated by mlimit2d code) is entered in line 5. Line 6 

involves the associated column number. The number of realizations to be used in 

optimization is entered in line 7. Lines 8 and 9 involve the discretization 

parameters. Line 10 involves the number of control points to be assigned at the 

boundaries. Line 11 involves the number of quantiles to be used in optimization. 

Line 12 involves a list of quantiles. The initial guesses for scaling and separation 

factors are given in line 13. Line 4 involves the characteristic length the maximum 

change in the separation factor in the first optimization iteration. Line 15 involves 

the random number seed. The optimization tolerance and the minimum relative 

improvements (in four consecutive iterations) are given in line 16. Line 17 

involves the maximum number of iterations for optimization. Line 18 involves the 

nugget and exponent for inverse distance interpolation. Lines 19 and 20 involve  

the maximum and minimum search radius and the number of increments for 
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search radius to be used in calibration of search radius. Lines 21 and 22 involve 

the name of the files for debugging file and the output file.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-2: The parameter file for ubcalib2d code  

 

Figure B-3 shows the parameter file for the parameter estimation code optkna 

that is used to jointly estimate the values of dissolution rate and first-order 

biodegradation rate. Line 1 involves the name of the file with observed 

concentrations. Line 2 involves the column numbers for coordinates, time step, 

solute concentration (in mg/L) and the associated coefficient of variation. Lines 3 

and 4 involve the file name for initial conditions and the associated solute 

concentration. Lines 5 and 6 involve the file name for source zone distribution 

and the soil concentration. The trimming limits are given in line 7. Line 8 

involves the values of dry soil density and total porosity. Lines 10 and 11 involve 

the substrate solubility and mass fraction as well as the molecular weights for the 

solute and the tracer. These parameters are used to control the dissolution of the 

substrate from the NAPL source. The initial guess as well as the prior value for 

the dissolution rate constant is given lines 11 and 12. The standard deviation 
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associated with the dissolution rate is given in line 13. Lines 14 and 15 involve 

the filename for the transmissivity data (in natural logarithmic units) and the 

associated column number. The value of effective porosity is given in line 16. 

Lines 17 and 18 involve the file with calculated heads and the associated column 

number. Lines 19 to 22 involve the names and column numbers for flow and 

transport boundary condition. Line 23 and 24 involve the discretization 

parameters. Line 25 involves the lower and higher number of random particles per 

cell (Chapter 4). Line 26 involves the random number seed. Lines 28 and 29 

involve the relative cell concentration gradient and the absolute minimum and 

maximum number of particles per cell, as well as the value of grid Courant 

number. Line 30 involves the longitudinal and transverse dispersivities. Lines 31, 

32 and 33 involve the initial guess for biodegradation rate constant, prior value for 

biodegradation rate constant and the associated standard deviation in natural 

logarithmic units. Line 34 involves the number of time steps and total simulation 

time (in days). Line 35 involves the flag to report the sensitivities. Line 36 

involves the output mode (in terms of being in arithmetic or logarithmic units). 

The output file name for sensitivities, the number of time steps and the time steps 

to report the sensitivities are given in lines 37, 38 and 39. The minimum value for 

concentration is given line 40. In every time step, all cells/particle with 

concentrations below this value are set to zero. Line 41 and 42 involves the file 

names for debugging output and the debugging level. Line 43 involves the 

filename for optimization results. The optimization parameters are entered in the 

lines 44 to 48. The maximum number of iterations is entered in line 44. The 

absolute minimum and maximum values of dissolution rate and first-order 

biodegradation rates are entered in lines 45 and 46. The maximum allowed 

change for each parameter is given in line 47 and the overall relative tolerance 

(relative to initial value of the objective function), minimum relative tolerance in 

consecutive iterations and minimum number of times to consecutive iterations are 

given in line 48.    
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An alternative way of generating multiple Gaussian realizations with their 

measure of fit s (as defined in Chapter 5) close to one would be to use ‘distance- 

 

 

 

 

 

 

 

 

 

 

 

Figure B-3: The parameter file for optkna code  
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