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Abstract

Distributed computing systems have been widely used in recent years to handle mas-

sive computations required by newly emerged machine learning algorithms and signal

processing problems. Also, the use of error correction codes has been proposed to

mitigate the negative impact of slow workers by adding redundancy to the compu-

tational tasks. In practice, a distributed computing system often receives multiple

tasks each needs to be finished by a specific deadline. Furthermore, service providers

may offer different levels of service based on their users’ subscription tiers. In this

thesis, we first consider a scenario where multiple matrix-vector multiplication jobs

arrive in a distributed computing system. The main challenges in such a system are

random task arrivals and random execution times due to the slow workers. To address

these challenges, we present two algorithms to maximize the number of tasks com-

pleted before their deadlines. Then, we study a tiered time-constrained distributed

computing system, where there are multiple users with distinct subscription classes

and each with a time-sensitive computational job. We assume the system receives

rewards for finishing tasks prior to their deadlines and gives higher priority to tasks

associated with higher subscription tiers. To maximize the overall reward of the sys-

tem, we present a worker assignment scheme. In both studies, it is shown that our

proposed algorithms provide comparable performances to unachievable upper bounds

while exhibiting significantly lower complexity.
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Preface

The results and algorithms of Chapter 3 has been published in the IEEE Signal Pro-

cessing Letters under the title “Deadline-Aware Coded Computation Across Homo-

geneous Workers”. Also, the results of Chapter 4 were presented in the 31st Biennial

Symposium on Communications 2023 (IEEE BSC 2023).
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Chapter 1

Introduction

1.1 Motivation

The demand for massive computation has been steadily increasing in recent years.

As technology advances and new applications emerge, there is a growing need for

processing vast amounts of data and performing complex calculations at an unprece-

dented scale. Signal processing, machine learning [1], and data analytic problems

heavily rely on massive computation to extract valuable insights. Additionally, the

proliferation of connected devices, the Internet of Things (IoT) [2], and the advent of

5G networks [3] have led to an exponential growth in data generation, further fueling

the demand for powerful computing resources.

These applications involve processing large amounts of data and performing com-

plex calculations, which can overwhelm the capabilities of a single processing unit.

Figure 1.1: The growing demand for massive computations
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Client

Figure 1.2: An schematic of a general distributed computing system

Additionally, the time taken to complete these computations would be impractical

if performed sequentially on a single processing unit. Accordingly, a time-sensitive

computational task may not meet its deadline if it is performed in such a limited

unit [4]. Also, a single processing unit has a restricted memory capacity and lim-

ited processing power. Large-scale computations often require significant amounts of

memory to store and manipulate data efficiently [5, 6]. Hence, Single processing units

may not have the necessary resources to handle such demands. This has led to the

wide use of distributed computing for large-scale computations in recent years [7–9].

Distributed computing systems are a paradigm of computing that involve multiple

interconnected computers or processors working together to solve complex problems

or perform large-scale computations [10]. Instead of relying on a single central pro-

cessing unit (CPU), distributed computing systems distribute the workload across

multiple nodes, which can be individual machines, servers, or even clusters of com-

puters. By distributing the computation across these nodes, tasks can be executed

concurrently, reducing the processing time and enabling the system to handle massive

computational tasks effectively [11].

As depicted in Fig. 1.2, generally in distributed computing systems, a centralized

controller, namely the master, is responsible for handling the computational tasks
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Figure 1.3: Matrix-vector multiplication in a distributed computing system with N
workers

arrive at the system. In particular, the master divides the task into several sub-tasks.

Afterward, the sub-tasks that are generated are allocated to the available processing

units, known as worker nodes, within the system. By distributing the workload among

multiple workers in parallel, the overall execution time is significantly reduced.

An example of a computational task is illustrated in Fig. 1.3. The matrix-vector

multiplication Amxm arrives at the system. Then the master divides the matrix Am

into N sub-matrices. The generated sub-matrices, then are distributed among the N

workers available in the system. The master is able to recover the final result once it

receives the outcome of all sub-tasks from the workers.

Distributed computing systems offer several advantages. The use of computing

nodes with low-cost hardware and the possibility to easily add them, respectively,

make these systems economical and scalable[12]. Thus, distributed computing is

adopted in the computing services and real-life applications such as wireless sensor

networks [13], online games [14], video streaming [15], distributed database manage-

ment systems [16], and real-time process control [17].

Although, many advantages are offered by distributing computing, there are chal-

lenges such as time-sensitivity [18], slow workers [19] and heterogeneity of the com-

puting nodes that need to be addressed in practice. In particular, large number of
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computing nodes in a distributed computing system may have different storage ca-

pacity, computing power, and network resources. This emphasizes the importance

of proper resource allocation schemes in order to improve the performance of these

systems.

1.2 Related Work

Distributed computing systems strive to enhance computation speed by distributing

the workload across multiple worker nodes, resulting in accelerated computations.

The existence of straggling nodes [20] which experience unpredictable performance

failure or slowdown, however, may prolong computation time [21]. The straggling

problem can be attributed to various factors, including the sharing of resources, hard-

ware failures, and uneven distribution of workloads. [22].

To mitigate the negative impact of stragglers, some form of computation redun-

dancy is added. The traditional approach involves naive replication of tasks to mit-

igate the stragglers [23]. However, recent results regarded the coding theoretic tech-

nique as a promising solution to more effectively address the challenges in distributed

computing [24], [25]. The combination of coding and distributed computing is termed

coded distributed computing (CDC).

Besides mitigating stragglers’ effects, two important aspects to improve the perfor-

mance of distributed computing systems are task assignment and resource allocation

which have been the subject of many recent studies [26–32]. Load allocation is one

of the main challenges in distributed computing systems. Specifically, proper load

distribution among the workers can significantly affect the overall computation time.

Therefore, much research efforts have been dedicated to this matter.

Furthermore, it is reasonable to assume that computational tasks in commercial

distributed computing systems have time-sensitive characteristics. These tasks re-

quire timely execution and completion to ensure the system meets its objectives ef-

fectively. Failure to meet the time requirements of these tasks can result in degraded
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system performance and missed deadlines. To meet the time constraints, distributed

computing systems employ various techniques such as task scheduling and resource

allocation. For example [33–35] study deadline constrained task scheduling in cloud

computing systems.

1.3 Thesis Overview

In this thesis, we study two problems. First, we consider a task scheduling problem

in a homogeneous distributed computing system. In particular, we assume multiple

time-sensitive computational tasks arrive at the system at random time instances.

For this setup, we propose two task scheduling algorithms to maximize the number

of tasks completed before their deadlines. Furthermore, we apply a proper coding

scheme to alleviate the impact of stragglers.

Second, we focus on a tiered heterogeneous CDC system in which we design a

deadline-aware worker assignment scheme in order to maximize the system’s reward.

In particular, we consider a system that consists of multiple users and several workers,

each with different processing capabilities. The system is rewarded by users, for being

on-time, i.e. completing the task before its deadline, and also based on the priority of

the user’s task. For this system, we propose a worker assignment scheme to maximize

the total reward achieved by the system.

The key novelty of this thesis can be summarized as studying multi-user dead-

line constrained distributed computing systems. Our primary contributions involve

introducing task scheduling and worker assignment policies with low complexity in

these systems. In designing these policies, however, several difficulties arise. These

challenges are discussed throughout this work.

The remainder of this thesis is organized as follows. In Chapter 2, we provide the

required background on coding theory which forms the basis for understanding the

concept of coded distributed computing. Also, we conduct a comprehensive review of

the relevant literature pertaining to resource allocation in coded distributed comput-
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ing systems. In Chapter 3, we study the problem of task scheduling in a homogeneous

distributed computing system, where each task has its execution deadline. In Chap-

ter 4 we focus on the problem of worker assignment in a heterogeneous system, and

propose a worker assignment scheme to maximize the total reward of the system. Fi-

nally, in Chapter 5, we conclude this thesis and provide some possible future research

directions.
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Chapter 2

Background

2.1 Forward Error Correction Codes

Forward Error Correction (FEC) codes are an integral part of many communication

systems and data storage technologies. These codes are specifically designed to detect

and correct errors that may occur during data transmission or storage. By introducing

redundancy into the transmitted data, FEC codes enable the receiver to reconstruct

the original information even if some bits are corrupted or lost in the process.

To provide an illustration, let us consider an information block consists of k bits.

In the encoding process, n (n > k) symbols are generated from original k bits. This

process is known as encoding with an (n, k) code, where n represents the size and k

represents the dimension of the code. In the given code, the coding rate is defined

as r ≜ k
n
. Consequently, through the decoding process, the receiver can recover the

original k bits from the data block that may have been corrupted by errors. In coding

theory, we work with elements that are members of a finite field F .

Definition 1 (Finite Field Fq) A finite field Fq, also referred to as a Galois field

GF (q), is a finite set of q elements if (F,+,×) has the following properties:

1. F and “+” form an Abelian group with the additive identity element “0”.

2. F and “×” form an Abelian group with the multiplicative identity element “1”.

3. (a+ b)× c = a× c+ b× c, ∀a, b, c ∈ F

7



In a finite field F, a linear (n, k) code generates n > k symbols, through linear

operations on the original k symbols. These linear codes can be represented by a

generator matrix Gn×k, and the encoding process is described by the equation y = Gx,

where xk×1 represents the original data vector and yn×1 represents the resulting coded

block. Each coded block is referred to as a codeword, and there exist 2k different

codewords in total.

2.1.1 MDS codes

A significant characteristic of linear codes is their minimum distance, which represents

the minimum Hamming distance between any two codewords.

Definition 2 (Hamming weight and Hamming distance) Hamming weight refers

to the number of non-zero bits in a binary sequence. Assuming a is a binary vector,

wt(a) denotes Hamming weight of a. Accordingly, Hamming distance between two

vectors a and b, wt(a,b), is denoted as d(a,b).

A code with minimum distance d tolerates any d − 1 symbol erasures. Hence, in

case that d− 1 symbols of the coded block is missing, the original block can still be

recoverd.

Theorem 1 In an (n, k) code, the minimum distance d is bounded to

d ≤ n− k + 1 (2.1)

This bound is known as the Singleton bound [36]. The codes that achieve Singleton

bound with equality are called the maximum distance separable (MDS) codes. Since

the existence of at least n − (d − 1) symbols is necessary for recovering the original

block, k + n − (d − 1) redundant symbols are needed for decoding. As MDS codes

achieve the equality in (1), they can tolerate up to n− k erasures. This implies that

the decoding process will be successful with any combination of k coded symbols.

Hence, the decoding overhead is zero. This has resulted in MDS codes being widely

used as popular coding schemes in distributed computing systems [22, 31, 37, 38].
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Figure 2.1: Distributed computation with stragglers

2.2 Coded Distributed Computing (CDC)

As mentioned previously, one of the primary obstacles in distributed computing sys-

tems is the presence of stragglers. Even though distributed computing systems aim to

speed up computations, slow workers cause a bottleneck that prevents faster compu-

tations. Taking Fig. 2.1 as an illustration, suppose the computation completes once

all five sub-tasks are finished. Nevertheless, workers responsible for computing sub-

tasks A and D encounter an unusual delay in comparison to the other three workers.

As a result, the computation is prolonged because we must wait for the results from

those two workers to finalize the overall computation.

While trivial techniques such as work exchange [39] and repetition [40] have been

suggested to address the stragglers, these approaches involves inefficient redundancy

or coordination among nodes, which significantly increases communication costs and

computation loads [41]. This highlights the necessity for a novel technique that can
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more efficiently and comprehensively tackle the challenges posed by stragglers.

Similar to the application of coding theoretic techniques in communication systems

to address channel impairments, a similar approach can be employed in distributed

computing systems to alleviate the impact of stragglers. In essence, coding theo-

retic approaches are employed to incorporate redundant information into transmitted

messages, enabling the receiver to utilize it for error correction purposes. Likewise,

coding solutions have recently been suggested to overcome the challenges caused by

slow workers in distributed computing systems. Coded distributed computing (CDC)

is the term used as the combination of coding techniques and distributed computing.

CDC is a promising solution to mitigate the challenges in distributed computing

systems. Generally, in coded distributed computing systems a task is divided into k <

n sub-tasks, where n is the number of computing nodes, and introduces redundancy

by using error correction codes such that by completion of any fixed-cardinality subset

of the sub-tasks, referred as recovery threshold, the desired solution can be realized.

Referring back to the previous example in Fig. 2.1, let us assume the original task

is now divided into three sub-tasks instead of five. Then, using a (5, 3) code, five

coded sub-tasks are generated and sent to the workers. Consequently, the master

is now able to recover the final result upon collecting the results of three fastest

workers. Since it is not required to wait for the outputs of all computing nodes, CDC

significantly reduces the computation time. Therefore, different encoding schemes for

various conditions and computational jobs are proposed [22, 37, 42–55].

Matrix-vector multiplication is an illustrative example of a frequently performed

task in distributed computing systems. Matrix-vector multiplication is a fundamental

operation that forms the backbone of numerous data analytics applications such as

machine learning and signal processing. These applications often involve the process-

ing of enormous volumes of data, necessitating substantial computational and stor-

age resources that exceed the capabilities of a single processing unit. Consequently,

several algorithms have been developed to speed-up matrix-vector multiplication by

10
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Figure 2.2: Coded distributed matrix-vector multiplication over 3 workers

distributing the computational workload among multiple computing nodes [53, 56,

57].

Moreover, MDS codes have recently been utilized in distributed systems to ac-

celerate the computation of matrix-vector products [22, 42, 48]. An example of a

matrix-vector multiplication with MDS coding is illustrated in Fig. 2.2, where a (3, 2)

MDS code is employed to compute the multiplication of matrix A with vector x, in a

system with three workers [53]. First, the matrix A is horizontally divided into two

sub-matrices such that A = [AT
1A

T
2 ]

T
. Then the vector x and sub-matrices A1, A2

and A1+A2 are sent to the workers, respectively. Ax can be obtained upon collecting

the results of any two workers.

2.3 Resource Allocation

In distributed computing systems, optimizing the computational loads allocated to

workers is essential for improving overall system performance and efficiency. It is im-

portant to minimize the average execution time for tasks distributed among multiple

workers. To achieve this, load allocation algorithms have been proposed, aiming to

balance the workload among workers effectively.
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One of the main challenges in load allocation arises when workers have differ-

ent computational capabilities. Some workers may be more powerful and efficient

than others, capable of completing assigned sub-tasks faster. On the other hand,

weaker workers might take longer to finish the same computational job. As a result,

a proper load allocation becomes even more crucial in such heterogeneous environ-

ments.Various load allocation algorithms have been proposed to address this issue.

These algorithms take into account factors such as worker capabilities and computa-

tion workloads. The objective is to intelligently distribute tasks to workers in a way

that minimizes the average task execution time.

In [27], the authors find an optimal load allocation policy for a matrix-vector mul-

tiplication under a heterogeneous scenario where multiple worker nodes with varying

computational properties exist in the system. Similarly, optimal load allocation for

heterogeneous clusters is proposed in [30], where workers with similar computational

capacities form a cluster and several clusters exist. Hence, workers from different clus-

ters may have completely different parameters. In [27, 30] it is shown that optimal

load allocation can significantly reduce the execution time in distributed computing

systems.

Although [27] and [30] work on the load allocation problem for a single computa-

tional task, in practice workers may be assigned to multiple tasks. In that case, how

tasks arrive at the system affects the load allocation algorithm. One-shot task arrival,

where multiple tasks arrive at the master simultaneously, is considered in [31]. The

authors considered a joint worker assignment and load allocation problem in a hetero-

geneous network of workers. The objective in [31] is to minimize the communication

plus computation delay of tasks.

In contrast, [29] examines an alternative model for task arrival, where tasks arrive

at random times. Authors have considered an online task assignment problem in a

heterogeneous coded distributed computing system. To tackle the difficulty of finding

the optimal solution, they proposed an approximate online algorithm that relies on

12



convex optimization and time recursion.

Also, artificial intelligence solutions have been studied in the literature. For ex-

ample, [32] proposes a reinforcement learning based resource allocation scheme for a

hybrid environment, i.e. deals with a combination of time-critical and regular non-

time-critical applications. It has been shown that the proposed model can reduce both

missing deadline occurrences for time-critical applications and the average completion

delay for all jobs.

2.4 Task scheduling

Task scheduling is the process of allocating and managing resources to execute a set

of tasks in computing system. It involves determining the order in which tasks should

be executed and allocating appropriate resources to each task.

In a time-constrained environment, task scheduling is carried out with the objective

of maximizing the number of tasks that are finished before their deadlines. Thus,

through task scheduling, we are making decisions about which tasks should run, and

when they should run. Typically, the task scheduler maintains a queue of tasks

awaiting execution, known as the task queue. The scheduler selects tasks from this

queue and determines which task should be given access to system resources next.

An example of a task scheduling problem is illustrated in Fig. 2.3. We assume the

previous job is finished at Tcurrent, the current time of the system. In the meantime,

three jobs j1, j2 and j3 have arrived at the system at Tcurrent − 3, Tcurrent − 2 and

Tcurrent − 1, respectively. Their deadlines are Tcurrent + 5, Tcurrent + 6 and Tcurrent + 8.

Assuming execution time is deterministic, it will take 5, 2, and 3 units of time to

finish j1, j2, and j3, respectively. Based on the deadlines and computation times, it is

obvious that the system is able to finish at most two tasks before their deadlines. To

do so, two options are available: (1) compute j1, then j3. (2) compute j2, then j3. As

such, a task scheduling algorithm may choose option (1) or (2) as its final schedule.

Task scheduling in distributed computing refers to the process of allocating and

13



Task Scheduling

Schedule 1 Schedule 2

Figure 2.3: A toy model of application of task scheduling

managing tasks across multiple worker nodes in a distributed system. The task sched-

uler in a distributed system is responsible for determining which tasks should be

executed on which nodes, taking into account factors such as the computational ca-

pabilities of the workers and the time constraints associated with the tasks.

2.4.1 Shortest Job First (SJF)

One of the most commonly used task scheduling algorithms is Shortest Job First

(SFJ). The SJF algorithm, is a task scheduling algorithm that prioritizes tasks based

on their expected execution time, with the objective of minimizing the average waiting

time for each task until its execution is finished. In SJF, the task with the shortest

estimated duration is given the highest priority and scheduled for execution first.

The SJF algorithm assumes that the duration of each task is known or can be

accurately estimated in advance. It works by comparing the expected execution times

of the tasks in the task queue and selecting the task with the shortest execution time

to be executed next. If multiple tasks have the same expected execution time, the

algorithm may use additional criteria, such as task arrival time or priority, to break

14



the tie.

In general, two types of SJF exist: non-preemptive and preemptive. In non-

preemptive SJF scheduling, once a task starts executing, it is allowed to run until

completion without interruption. Alternatively, in preemptive SJF, a running task

may be interrupted or preempted if a new task arrives with a shorter expected exe-

cution time.

Let us consider a non-preemptive SJF scheduling in a deadline-aware system. The

arrival time, execution time and deadline of each task is presented in Table 2.1.

Table 2.1: Task Queue

Task Arrival Time Execution Time Deadline

A 2 3 6

B 1 4 7

C 6 3 9

D 0 4 5

E 8 2 11

At time = 0, task D arrives and starts execution. Tasks B and A arrive at time = 1

and time = 2, respectively, but D continues execution. At time = 4, D finishes its

execution. As task A has a shorter execution time than B, it starts execution. It

continues execution until time = 6. At time = 6, A reaches its deadline and has not

yet been completed, so it would be terminated. Also, at this time, task C arrives

and due to its shorter execution time than B, it starts execution. As a result, task B

would miss its deadline. At time = 8, task E arrives, but C still needs 1 unit of time

to complete. At time = 9, D is finished and E is executed. Finally, at time = 11, E

finishes its execution. Thus, tasks D, C and E are completed before their deadlines.
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Chapter 3

Deadline-Aware Coded
Computation Across Homogeneous
Workers

3.1 Introduction

As discussed, distributed computing systems have been the subject of many recent

studies. Numerous studies have been conducted with the goal of enhancing the perfor-

mance of distributed computing systems through the introduction of coding methods,

load allocation policies, and worker assignment schemes. While these existing works

(e.g., [29–31]) exclusively focus on tasks that are not time-sensitive, there are many

practical applications where the computation is successful only if the result is sent to

the user before a specific deadline [32–35].

In such scenarios, it is possible that the master may not be able to successfully

complete all the tasks within their respective deadlines. Consequently, the implemen-

tation of task scheduling algorithms becomes crucial. These algorithms aim to plan

the execution of tasks based on their workload and deadlines, maximizing the number

of tasks that can be successfully completed.

A task scheduling algorithm takes into consideration both the load of tasks and

their associated deadlines to make informed decisions. By prioritizing tasks with

earlier deadlines or adjusting the order of task execution, the algorithm can optimize
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the utilization of resources and increase the likelihood of meeting as many deadlines

as possible.

Additionally, an efficient task scheduling algorithm can contribute to reducing

wasteful operations. By identifying and avoiding tasks that are impossible to com-

plete before their respective deadlines, the algorithm can prevent unnecessary com-

putations and allocate resources more effectively. This optimization can significantly

enhance overall system efficiency and improve the overall success rate of completing

tasks within their prescribed time constraints.

In this chapter, we study task scheduling in a homogeneous coded distributed

system. In particular, we consider matrix-vector multiplication tasks with a random

task arrival model and aim at maximizing the number of tasks completed before

their deadlines. Our main challenge is the randomness in both task arrival and task

execution time, where the latter is due to straggling. We present two sub-optimal

greedy task scheduling algorithms, namely “simple greedy” and “farsighted greedy”.

To evaluate the performance of these two algorithms, we also consider a genie-aided

algorithm that knows the exact arrival time as well as the exact execution time of

all tasks. Using this knowledge, it finds the task scheduling with the maximum

number of finished tasks. Hence, the performance of this genie-aided algorithm can

be considered as an unachievable upper bound.

3.2 System Model

3.2.1 System architecture

We consider a homogeneous distributed computing system, where workers have sim-

ilar computational capacities, with N workers, as shown in Fig. 3.1. Each task jm,

arrives at the system at time tm, has a deadline dm and is a matrix-vector multipli-

cation Amxm, where Am ∈ Rlm×sm and xm ∈ Rsm . Thus, the total time available for

execution of task jm is dm − tm. We denote the computational job jm, with a tuple,
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Master

Task Scheduling

Figure 3.1: Illustration of a distributed computing system with multiple and time-
critical tasks

jm = (tm, dm, lm). Here, lm—the number of inner products of this task—represents

the job load. Furthermore, we define J = {(t1, d1, l1), (t2, d2, l2), ..., (tM , dM , lM)}, as

the set of jobs that have already arrived at the system and are awaiting scheduling

and execution. Please note that the arrival of a new task results in updating J.

To mitigate the straggler effect, we use maximum-distance separable (MDS) codes.

To this end, matrix Am is first horizontally divided into K sub-matrices, Am,k ∈

RLm
K

×Sm , k ∈ {1, 2, · · · , K}. Then, these K sub-matrices are encoded by an (N,K)

MDS code, where N is the number of workers. Worker n, n ∈ {1, 2, · · · , N}, is then

assigned Ãm,n ∈ RLm
K

×Sm to compute its sub-task ỹn = Ãm,nxm. Since the code is

MDS, the master is able to recover the final result y = Amxm upon collecting any K

completed sub-tasks from the workers. We assume that encoding delay is negligible
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compared to computation delay[27, 29, 30]. For instance, Am may represent a training

dataset which is encoded and available to workers ahead of computation.

3.2.2 Task execution model

We assume that the time that a worker needs to finish its assigned load is a random

variable Tcomp following a shifted exponential distribution [22, 27, 37, 55]. This model

accurately captures the random behaviour of the computation time[22]. Thus, if we

measure the computational load of a matrix-vector multiplication with the number

of inner products to be performed, l, [29, 31], the probability that a worker finishes

its allocated load before time t is given by

P (Tcomp ≤ t) =

{︄
1− e−

µ
l
(t−αl), t > αl,

0, otherwise,
(3.1)

where µ > 0 is a parameter for modeling the straggler effect, and α > 0 is the

time required for computing one inner product. Since we consider a homogeneous

environment, all workers have the same µ and the same α.

3.2.3 Task arrival model

In this chapter, we consider a random task arrival model. When tasks are initiated

from independent users, it is reasonable to assume that their arrival time are totally

random in time, meaning that an exponential distribution captures the time gap

between consecutive task arrivals. Hence, here, we use an exponential distribution

with parameter λ, where 1
λ
is the average time gap between consecutive task arrivals.

More specifically, assuming that the i-th task arrives at ti, the next arrival will be at

ti+1 = ti + τ , where τ is a random variable with the following distribution:

P (τ ≤ t) =

{︄
1− e−λt, t ≥ 0

0, otherwise,
(3.2)

A similar task arrival model is used to model file queries from cloud storage sys-

tems [58, 59].
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3.3 Problem Definition

Our objective is to develop task scheduling algorithms that maximize the number of

tasks completed before reaching their deadline. Let us assume there is no randomness

in the problem. That is, the exact arrival time of tasks are known in advance, and

execution times are deterministic. Such deterministic scenarios are studied in the

literature as they can properly model a master with a single user and dedicated

servers. For example, [60, 61] considered a system in which n jobs each with a release

time , deadline and processing time have to be scheduled onm identical machines. We

call the algorithms presented in such setups “genie-aided”. However, in a multi-user

scenario, where tasks are requested at random times by different users and servers are

subject to straggling (hence execution times are also random), the above assumptions

are no longer valid and the genie-aided algorithm is inapplicable.

Therefore, in this chapter, we consider the randomness in both arrival time and

execution time of the tasks and suggest two scheduling algorithms namely simple

greedy and farsighted greedy. While our proposed algorithms are not aware of upcom-

ing tasks, nor can they predict the exact run-time of tasks, they provide performances

close to a genie-aided algorithm.

To handle random execution times in our proposed solutions, we use the average

execution time to schedule tasks. In addition, since it is possible that during a task

execution, new tasks arrive at the system, our algorithms should update the schedule

after finishing each task.

Put it together, our proposed algorithms form a schedule based on the existing

tasks and their average execution time. Next, the first scheduled task is run. Upon

completion of the first task, the schedule is updated to make a new arrangement in

the order of the tasks, considering the actual time consumed by the first task and the

newly arrived tasks. This continues until all possible tasks are executed and there is

no newly arrived task.
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3.3.1 Average execution time

As briefly discussed above, for the purposes of scheduling, the average execution

time is used in all of our proposed algorithms. In order to compute the average

execution time, we use the task execution model introduced in Section 3.2.2. Since

the computation time of a sub-task at a worker is independent from the others, using

an (N,K) MDS code, the execution time of a task can be expressed as the Kth order

statistic of individual worker run-times [22, 53].

Thus, the average execution time of the matrix-vector multiplication Amxm is given

by

E[TMDS
comp |Am ∈ Rlm×sm ] =

lm
K

[︃
(HN −HN−K)

µ
+ α

]︃
(3.3)

Where Hn is the Harmonic number and defined as Hn ≜
∑︁n

i=1
1
i
. If n is large, we

can approximate Hn ≃ log(n) [22]:

E[TMDS
comp |Am ∈ Rlm×sm ] =

lm
K

[︃
1

µ
log

N

N −K
+ α

]︃
(3.4)

Hence, Denoting the rate of the MDS code with r ≜ K
N
, Eq. (3.4) can be written

as:

E[TMDS
comp |Am ∈ Rlm×sm ] =

lm
Nr

[︃
α− 1

µ
log(1− r)

]︃
(3.5)

3.4 Proposed Task Scheduling Algorithms

3.4.1 Simple greedy

The simple greedy algorithm only decides to compute a task based on the possibility

of finishing it on time. In particular, the master calculates the estimated completion

time of the most urgent task p (the task with the earliest deadline), using Eq. (3.5)

and compares it with the deadline of this task. Assuming Tcurrent is the current time
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Figure 3.2: An example of the simple greedy scheduling algorithm

in the system, if:

T̃ comp = Tcurrent +
Lp

Nr
[α− 1

µ
log(1− r)] (3.6)

is greater than dp, the master ignores p. Otherwise, it examines the number of

potential jobs finished before their deadlines in two scenarios: (i) p is dropped and

(ii) p is sent to workers to be computed. To do so, it applies Eq. (3.6) for each

existing task in these two scenarios. Now, only if the number of jobs (including p) in

the second case is larger than the first case, the master sends p to the workers to be

computed. Please note that since this algorithm only checks the most urgent task,

and makes a decision about its execution by examining all arrived tasks, M tasks, its

complexity is O(M logM).

In the following example, we will see how this algorithm works. Consider the

scheduling problem shown in Fig. 2.3. First, because j1 has the earliest deadline, the

master decides whether to compute it. Based on deadlines and computation times,

if the master decides to compute this task, j1 and j3 can be computed potentially.

Otherwise, if it decides to drop the task, j2 and j3 may be finished before their

deadlines. Hence, the master send j1 to the workers, and then it decides to compute

j3.

Now let us assume that at the time j2 was being computed, task j4 arrived at

the system at Tcurrent + 6 with an approximate computation time of 4 units of time.

22



Algorithm 1: Farsighted greedy

1: while |J | > 0 do
2: Sort J based on the deadline in descending order
3: Q = ∅, S = ∅
4: Approximate Tcomp for newly arrived jobs based on (3.5)
5: for i = m,m− 1, · · · , 1 do
6: if i == 1 then
7: T = di
8: else
9: T = di − di−1

10: end if
11: Q = Q+ {(ti, di, li)}
12: while T > 0 and Q ̸= ∅ do
13: j = Index of the job with the smallest Tcomp in Q

14: if T j
comp ≤ T then

15: T = T − T j
comp

16: S = S + {j}
17: Q = Q− {(tj , dj , lj)}
18: else
19: T j

comp = T j
comp − T

20: T = 0
21: end if

22: end while
23: end for
24: Sort S based on the deadline
25: If any new tasks arrive, update J .
26: end while

However, since the master finishes j3 at Tcurrent + 8, it does not have enough time to

finish j4 before its deadline, so this task is missed.

3.4.2 Farsighted greedy

In contrast to simple greedy algorithm that lacks comprehensive planning on all

arrived tasks, farsighted greedy does not focus solely on the most urgent task. In

particular, simple greedy makes sure not to sacrifice more than one job with a later

deadline when executing the most urgent task. However, farsighted greedy examines

all arrived jobs to ensure that executing each job with deadline dm in the final schedule

sacrifices at most one job with a later deadline.

23



Figure 3.3: An example of the farsighted greedy scheduling algorithm

Also, farsighted greedy takes computation times into account when scheduling

tasks. Hence, it makes its final schedule based on both deadline and computation

time of tasks. The details of farsighted greedy, with time complexity of O(M2), is

presented in Algorithm 1.

Considering the same example as in Section 3.4.1, we Assume there is a computa-

tion queue Q to which tasks are added in descending order based on their deadlines.

First, task j3 is added to Q. This algorithm determines what portion of j3 can poten-

tially be computed when the deadline of j2 has already passed, i.e. 6 ≤ T ′
current ≤ 8.

Next, j2 is added to Q and the algorithm compares the computation time of this task

with that of remained from j3. Since the computation time of remaining portion of

j3 (1 unit of time) is shorter than the computation of time j2 (2 units of time), the

master decides to prioritize the computation of the remaining portion of j3 in the

interval (d1, d2) = (5, 6). Since only one unit of time is available in that interval, the

master can only finish j3. Hence, task j3 is send to the final schedule S and removed

from Q. Then, j1 is added to Q. As j2 has a shorter computation time than j1,

the master prioritize the computation of j2 in the interval (Tcurrent, d1). Since after

computation of j2 there is only 3 units of time left to finish j1, the master decides to

drop task j1 and sends task j2 to the final schedule. Now the final schedule is sorted

based on the deadlines, and j2 and then j3 are sent to the workers.

As illustrated in Fig 3.3, task j4 arrives at the system at Tcurrent+6. Unlike simple
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greedy that finishes j3 at Tcurrent+6, since Farsighted greedy computes j2 rather than

j1 before j3, it will have enough time to finish task j4 before its deadline. Thus, in

this scenario Farsighted greedy computes tasks j2, j3 and j4, while Simple greedy

computes j1 and j3.

3.5 Simulation Results

In this section, we evaluate our proposed algorithms under various settings. We

compare our algorithms with the non-preemptive shortest job first (SJF) algorithm,

and SJF with dropping. In SJF with dropping, similar to the ordinary SJF algorithm,

arrived jobs are sorted based on their expected computation times. However, the

job with shortest computation time would be dropped if T̃ comp, calculated using

(3.5), is greater than the job’s deadline. We also use a genie-aided algorithm as

a benchmark to compare our algorithms against an optimal, yet unfeasible, task

scheduler. Assuming the total number of M ′ > M jobs received in one scheduling

simulation, the complexity of the genie-aided algorithm is O(M ′2).

We assume α = 1
µ
= 10−4[s] and N = 1000 workers are available. In each iteration,

the load of jobs are sampled uniformly from the interval [1×104, 2×104]. To generate

task deadlines for our simulations, we first approximate the execution time of each

task, using (3.5) with r = 0.5 and α = 1
µ
= 10−4[s], then multiply it by a value

greater than one. By doing so, it is ensured that regardless of the arrival of other

tasks and the way they affect the computation of one another, completion time of a

given task is not longer than its deadline. Otherwise, some tasks would be impossible

to complete. Note that r = 0.5 is solely used for generating task deadlines, while

workers may employ a different coding rate to execute tasks.

Also, the average time gap between each task arrival, 1
λ
(see (3.5)), is assumed to

be around 2.54 × 10−3[s]. This parameter, controls the frequency of job arrival in

the system. We run Monte Carlo simulation for 105 iterations and terminate each

iteration as soon as 10 computational jobs arrive at the system.
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Figure 3.4: Average number of completed jobs vs r.

Fig. 3.4 illustrates the average number of completed jobs vs different code rates.

The number of original sub-matrices K can be easily found as K = N × r, where

N = 1000. As seen simple greedy has completed more jobs than SJF which prioritizes

the shortest job instead of the most urgent one. However, as SJF with dropping does

not compute the shortest job at all costs, it supersedes simple greedy. Unlike simple

greedy and SJF variants which mainly focus on either deadlines or computation times,

farsighted greedy considers both the deadline and computation time of all arrived

tasks to create a schedule. Hence, it has completed more jobs than simple greedy

and SJF algorithms. Also, its performance is very close to the ultimate performance

possible, i.e., that of the genie-aided algorithm.

Fig. 3.5 demonstrates wasteful operations per each completed job vs different code

rates. We define an operation as the inner product of two vectors with a fixed num-
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Figure 3.5: Average number of wasteful operations per completed jobs vs r.

ber of elements. A wasteful operation is one performed by a worker that does not

contribute to the timely completion of the task. Specifically, when a worker does

not finish its sub-task by the deadline, we consider the portion of sub-task which

is finished before the deadline as wasteful operations. Also, when a task misses its

deadline, even the operations done by workers which finished their sub-task on-time

are considered wasteful, since they did not result in completion of the task before

the deadline. The genie-aided algorithm does not perform any wasteful operations

as expected. Furthermore, farsighted greedy has performed less wasteful operations

than simple greedy and SJF algorithms at all code rates.
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3.6 Conclusion

In this chapter, we considered the problem of task scheduling in a homogeneous dis-

tributed computing system, where each task has its execution deadline. MDS coding

was adopted to alleviate the straggler effect. We proposed two greedy algorithms to

maximize the number of completed tasks before their deadlines. Simulations showed

that our proposed algorithms, with no knowledge of the exact execution time of tasks

or the arrival time of future tasks, have a similar performance to a genie-aided algo-

rithm that has access to this information. Our results further demonstrated that our

algorithms have performed less number of wasteful operations compared to a simple

SJF algorithm which schedules the job with shortest computation time first.
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Chapter 4

Worker Assignment in
Deadline-aware Heterogeneous
Distributed Computing Systems

4.1 Introduction

In addition to time-critical computations, another significant aspect to be taken into

account in distributed computing systems is the incorporation of tiered services.

Cloud service providers sometimes offer different levels of services depending on their

users’ subscription tiers [62].

By offering a variety of service levels based on subscription tiers, these providers can

accommodate users with different requirements and budget constraints. For instance,

users seeking extensive storage capacity and significant processing power might opt

for a higher subscription tier, granting them access to more abundant resources and

enhanced performance. In such cases, these users expect expeditious responses and

seamless execution of their tasks.

In addition to providing differentiated service levels, service providers acknowledge

the significance of user satisfaction and strive to maintain a high level of customer

experience. When an unfortunate event occurs, such as system downtime or service

disruptions, and a subscriber’s expectations are not met, the provider is obligated to

address the issue. Depending on the user’s subscription level, appropriate compensa-
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time

Figure 4.1: Time-critical computational tasks with different subscription classes

tion should be offered to rectify the inconvenience caused.

The tiered subscription model offers a win-win situation, as it enables distributed

computing service providers to efficiently manage their resources while meeting the

unique demands of various user segments. Users, on the other hand, can select a

subscription tier that aligns with their specific needs and financial capabilities, making

the cloud computing environment highly customizable and cost-effective.

In this chapter, we consider a heterogeneous CDC system in which we design a

worker assignment scheme in order to maximize the reward the system receives. In

particular, we consider multiple workers with different computational and communi-

cation capabilities. Furthermore, we assume there are several users who access this

system at the same time. Each user has a matrix-vector multiplication task with

a specific deadline. Additionally, each user has a subscription class and expects a

certain level of service from the system according to its class. The system is rewarded

by the uses, for being on-time, i.e. completing the task before its deadline, and based

on the user’s subscription level. As a result, often the system has to choose between a
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Figure 4.2: Illustration of a tiered distributed computing system with multiple time-
critical tasks

task with a higher subscription level and one with an earlier deadline. To the best of

our knowledge, this is the first work that considers both subscription class and task

deadline in a CDC system.

To maximize the system reward, we present a greedy worker assignment algorithm,

namely “reward greedy”. Assuming M users are waiting for the result of their tasks

and there are N workers at the system, the complexity of our algorithm is O(MN).

We compare our algorithm with the ultimate upper bound, that is a brute-force al-

gorithm which exhaustively examines all possible worker assignment combinations.

Simulation results show that our proposed algorithm provides about the same per-

formance as the brute-force algorithm with much smaller complexity.

4.2 System Model

4.2.1 System architecture

As illustrated in Fig. 4.2 we consider a heterogeneous distributed computing system

with N workers andM users, denoted byN = {1, 2, · · · , N} andM = {1, 2, · · · ,M},
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respectively. Also, there is a central controller that collects the computation and

communication parameters of each worker along with information about deadlines,

classes, and workloads of the users. Each user has a matrix-vector multiplication task

Amxm with the deadline dm, where Am ∈ RLm×Sm and xm ∈ RSm . Thus, the task

load, the required number of inner products of the task of userm, is Lm. Furthermore,

we assume users are being served by different priorities. In particular, we define a

three-level subscription class, cm ∈ {1, 2, 3}. Each user belongs to one of the classes

and users with higher values of cm are prioritized for receiving services.

To reduce the straggler effect, we employ maximum-distance separable (MDS)

codes. To achieve this, each user applies a MDS code to the rows of Am to get its

coded version Ãm ∈ RL̃m×Sm , where L̃m ≥ Lm denotes the number of coded rows.

Then the encoded matrix Ãm is horizontally divided into N+1 disjoint sub-matrices,

Ãm,0, Ãm,1, · · · , Ãm,N , where Ãm,n ∈ Rlm,n×Sm . Note that lm,0 represents the local

computation workload at user m, while lm,n, ∀n ∈ N , denotes the m-th task assigned

to the n-th worker. If lm,n = 0, it indicates that the n-th worker is not assigned any

workload from user m.

Assuming that worker n is assigned to user m, after the task is encoded and

assigned to a group of workers, the user m sends the matrix Ãm,n to the worker n

through their communication channel. As the code is MDS, each user m can recover

its final result once it receives Lm inner products.

4.2.2 Computation and communication delay

We assume the communication delay largely arises from the delay in transmitting the

coded sub-matrices to each worker, and transmitting xm to the workers and the results

to the users have negligible delay [31]. This is because the size of xm and the result

vector are much smaller than that of Ãm,n. Hence, we consider the communication

delay of transmitting Ãm,n to worker n, T comm
m,n , follows an exponential distribution
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[31, 63, 64] with the cumulative distribution function (CDF) given by

P(T comm
m,n ≤ t) =

{︄
1− e

− γn
lm,n

t
, t ≥ 0,

0, otherwise,
(4.1)

where 1
γn

is the average delay of transmitting a single coded row to worker n from any

user. Note that T comm
m,0 = 0 as local computation dose not need any communication.

Similar to Sec. 3.2.2, it is assumed that the time required by the worker n to com-

pute l inner products is a shifted exponential random variable. Hence, the probability

that the worker n finishes the computing of the workload lm,n before time t is

P(T comp
m,n ≤ t) =

{︄
1− e

− un
lm,n

(t−αnlm,n), t ≥ αnlm,n,

0, otherwise.
(4.2)

In (4.2), αn is the shift parameter at worker n, and un models the straggling effect

at this worker.

Considering that T comp
m,n and T comm

m,n are two independent random variables, the total

amount of time that the user m should wait to receive the sub-task assigned to worker

n is Tm,n = T comp
m,n + T comm

m,n with the CDF as follows [31]:

• if γn ̸= un and t ≥ αnlm,n:

P(Tm,n ≤ t) = 1− γn
γn − un

e
− un

lm,n
(t−αnlm,n)

+
un

γn − un

e
− γn

lm,n
(t−αnlm,n)

(4.3)

• if γn = un and t ≥ αnlm,n:

P(Tm,n ≤ t) = 1−[︃
1 +

un

lm,n

(t− αnlm,n)

]︃
e
− un

lm,n
(t−αnlm,n) (4.4)

• In case t ≤ αnlm,n, then P(Tm,n ≤ t) = 0.

4.3 Problem Definition

Our goal is to design a joint worker assignment and load allocation policy that max-

imizes the system’s benefit while satisfying all the users. The system’s benefit is the
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total reward it collects from the subscribed users. The worker assignment policy as-

signs workers to the users based on the users subscription class, the task deadline and

the task load. Once the worker n is assigned to user m, it dedicates all its processing

power to that user. Thus, we define the binary variable km,n to indicate worker as-

signment. In particular, km,n = 1 indicates that worker n is assigned to user m and

km,n = 0 means worker n does not serve user m.

In the rest of this section we first present our reward function and then formalize

our optimization objective.

4.3.1 Task completion reward

As described in Section 4.2, each user m in the system has a specific deadline dm

for their task. However, the system does not necessarily drop a task if it exceeds

the deadline. To incentivize the system to complete tasks before their deadlines, we

introduce a penalty for unfinished computations that pass the deadline. Conversely,

the system is rewarded for completing tasks before their respective deadlines. It is

important to note that the reward for completing a task before the deadline is not

equivalent to the penalty for completing it after the deadline with the same time

offset. Our primary objective is to ensure timely completion of tasks rather than

emphasizing how quickly they are finished.

In addition to the deadline, the system’s reward is also influenced by the subscrip-

tion class of each user, cm. Specifically, completing a task for a user with a higher

subscription class yields significantly greater rewards.

To meet the aforementioned requirements, we model the reward received by the

system after completing task m in tm units of time as follows:

Rm(t) = 1− e−cm(dm−tm) (4.5)

Let us illustrate an example to visually explain Eq. 4.5. As shown in Fig. 4.3, there

are two tasks with the same deadline of 4 units of time. However, task 1, depicted as

34



0 1 2 3 4 5 6
CompletionDelay(tm)

8

6

4

2

0

2

Re
wa

rd
(R

m
)

c = 1, d = 4s
c = 2, d = 4s

Figure 4.3: Percentage of overdue tasks for each user

orange, belongs to a higher subscription class (c1 = 2) compared to task 2 (c2 = 1)

which is shown in blue. As depicted, the system is severely punished in case that

each task is completed after the deadline, which is shown as the vertical red dashed

line. Furthermore, the reward the system receives for completing task 1 before its

deadline is higher than the reward it receives for completing task 2. Likewise, when

task 1 is overdue, the system is penalized more than when task 2 is overdue.

4.3.2 Optimization objective

Our objective is to assign workers to the users and then optimally allocate workloads

lm,n to the assigned workers such that the overall reward received by the system is
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maximized. Hence, our optimization problem can be mathematically written as

P1 : max
{lm,n,km,n,tm}

M∑︂
m=1

Rm =
M∑︂

m=1

1− e−cm(dm−tm) (4.6a)

s.t. E[Xm(tm)] ≥ Lm, ∀m ∈ M, (4.6b)

lm,n ≥ 0, ∀n ∈ N, ∀m ∈ M, (4.6c)

km,n ∈ {0, 1}, ∀n ∈ N, ∀m ∈ M, (4.6d)

M∑︂
m=1

km,n = 1, ∀n ∈ N. (4.6e)

Constraint (4.6b) guarantees that the average number of coded rows collected from

workers until time tm, Xm(tm), is sufficient to recover the final result. Although in

practice the number of inner products assigned to each worker is an integer number,

in (4.6c) this condition is relaxed for the sake of simplicity, where the only necessary

condition for lm,n is to be a positive real number. The values obtained for lm,n will,

however, be rounded up to the nearest integer after solving the optimization problem.

Constraint (4.6d) simply suggests that whether worker n is serving user m. Also in

constraint (4.6e), we force each worker to serve one and only one user.

Since the workers computations are independent, E[Xm(tm)] can be written as [31]

E[Xm(tm)] =
N∑︂

n=1

lm,nP(Tm,n ≤ tm) (4.7)

Based on Eq. (4.3) and Eq. (4.4), it can be shown that P(Tm,n ≤ tm) is a non-convex

function. Therefore, using the Markov’s inequality we approximate E[Xm(tm)] as

P(Tm,n ≥ tm) ≤
E[tm]
tm

=
θnlm,n

tm
, (4.8)

where θn ≜ 1
un
+ 1

γn
+αn indicates the average delay in communicating a single coded

row to worker n and then computing the associated inner product at that worker.

Hence, θnlm,n is the average communication and computation delay of a sub-task with

the load lm,n. Furthermore, the lower bound for P(Tm,n ≤ tm) = 1 − P(Tm,n ≥ tm)
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can be written as

P(Tm,n ≤ tm) ≥ (1− θnlm,n

tm,n

). (4.9)

Considering (4.9), we transform P1 into

P2 : max
{lm,n,tm}

M∑︂
m=1

1− e−cm(dm−tm) (4.10a)

s.t.
N∑︂

n=1

lm,n(1−
θnlm,n

tm,n

) ≥ Lm, ∀m ∈ M (4.10b)

constraints (4.6c) and (4.6d) and (4.6e). (4.10c)

It can be simply verified that lm,n(1 − θnlm,n

tm,n
) in (4.10b) is a convex function for

each m ∈ M and n ∈ N . Hence, (4.10b) which is the summation of convex functions,

is convex itself. Nevertheless, due to the binary variable km,n, P2 is still a non-convex

optimization problem.

Using (4.9), the load allocation problem for a single task, however, is a convex

optimization problem. Assume the set of workers assigned to user m is already known

and is denoted by Ωm. Note that Ωm also includes user m itself as it contributes to

computation of its own task. The optimal load allocation policy for workers in Ωm,

which minimizes tm, can be found by solving the following optimization problem

P3 : min
{lm,n,tm}

tm (4.11a)

s.t.
N∑︂

n=1

lm,n(1−
θnlm,n

tm,n

) ≥ Lm, ∀m ∈ M, (4.11b)

lm,n > 0, ∀n ∈ Ωm, ∀m ∈ M. (4.11c)

By solving P3, the optimal load allocation l∗m,n and its corresponding computation

delay t∗m are found as [31]

l∗m,n =
Lm

θm,n

∑︁
n∈Ωm

1
2θm,n

, ∀n ∈ Ωm, ∀m ∈ M (4.12a)

t∗m =
Lm∑︁

n∈Ωm

1
4θm,n

, ∀m ∈ M. (4.12b)

The proof is provided in Appendix A.
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Note that in Eq. (4.12a) and Eq. (4.12b), θm,0 = 1
um

+ αm, where um and αm are

the computational properties of user m.

In the next section, we propose a greedy solution to P2, using Eq. (4.12a) and

Eq. (4.12b).

4.4 Proposed solution

Algorithm 2: Reward greedy

1: Input: N = {1, 2, · · · , N} and Ωm = {0}, ∀m ∈ M
2: while N ̸= ∅ do
3: n∗ = argminn∈N θn.
4: for m ∈ {1, 2, · · · ,M} do
5: Find Rm(t

∗
m; Ωm) = 1− e−cm(dm−t∗m)

6: Find R′
m(t

∗′
m; Ωm + {n∗}) = 1− e−cm(dm−t∗

′
m)

7: end for
8: m∗ = argmaxm∈M R′

m −Rm

9: Ωm∗ = Ωm∗ ∪ {n∗}, N = N − {n∗}
10: end while

In this section, we propose a solution called ”reward greedy” for our worker as-

signment problem. As the name implies, the reward greedy algorithm assigns the

best available worker to the user that would benefit the most from that worker, and

continues this process until all workers have been assigned.

The reward greedy algorithm, with a time complexity of O(MN), is presented

in Algorithm 2. Initially, all workers are unoccupied, and we assume Ωm = 0 for

all m ∈ M, indicating that users perform tasks on their own without any assigned

workers. The algorithm begins by identifying the best available worker n∗, which is

the worker with the smallest θn among the workers not yet assigned to any user.

For each user m, the algorithm calculates t∗m using Eq. (4.12b), which represents

the current set of workers for that user, and determines the corresponding reward

Rm. Next, assuming that worker n∗ is added to Ωm, the algorithm computes R′
m for

each user m.
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The user that would benefit the most from adding worker n∗ to its set of workers is

determined by finding the user with the largest difference between R′
m and Rm. This

user is denoted as m∗, and worker n∗ is assigned to it. These steps are repeated until

all workers have been allocated.

4.5 Simulation Results

In this section, we present simulation results of our proposed algorithm in a coded

distributed computing system. In order to evaluate our algorithm, we consider three

benchmarks:

• Uncoded computation with uniform worker assignment : Users are assigned equal

number of N
M

workers. Then each user m, equally divide Am to N
M

+ 1 sub-

matrices (N
M

workers and user m itself) and distributes them to its workers.

• Coded computation with uniform worker assignment : Users are assigned equal

number of N
M

workers. Then, the load allocated to each worker and to the user

itself is calculated using Eq. (4.12a).

• Brute-force search: In this algorithm, all possible worker assignments are ex-

haustively searched. By calculating the potential reward could be obtained in

each assignment, using Eq. (4.12a) and Eq. (4.12b), this algorithm chooses the

assignment which leads to the maximum overall reward. Assuming there are

M users and N workers, time complexity of this algorithm is O(MN), which

makes this method impractical for real applications.

We consider a scenario where there are M = 3 users and N = 7 workers. User

1, 2 and 3 belong to subscription classes c1 = 1, c2 = 2 and c3 = 3, respectively.

The shift parameter αn for each worker is randomly selected from {0.2, 0.25, 0.3}[ms].

Considering users have less computation power, their shift parameter is randomly

chosen from {0.4, 0.5}[ms]. The rate parameter un is assumed to be 1
αn
, for all workers
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and users [31]. We also assume the communication ratio γn of each worker is γn = 2un.

To fairly assign deadlines to tasks, we first calculate αaverage, uaverage and γaverage by

taking the average of these parameters for all workers. Using these average parameters

in Eq. (4.12b), we find the expected task completion delay for users assuming N
2

workers are assigned to each user. For each user, we assign the resulted time as the

deadline dm. Using the worker assignment schemes derived from the algorithms and

the corresponding load allocation policies, we then run Monte Carlo simulation for

105 iterations.

Fig. 4.4 illustrates the average task completion delay for each user. It is important

to note that the time complexity of algorithms is not taken into account in this figure.

The completion delay represents the sum of computation time and communication

time for each task. As depicted, both the reward greedy and brute-force algorithms

finish user 3’s tasks earlier compared to the other two users. This is because user 3

belongs to a higher subscription class than the other two users. However, the uncoded

and coded uniform assignment algorithms do not consider the tasks’ deadlines or their

classes when allocating an equal number of workers to each user.
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In Fig. 4.5, we utilize the run-times from Fig. 4.4 to calculate the reward obtained

by the system from each user. The reward greedy algorithm achieves a total reward

of 2.816 from the three users, which is approximately equal to that of the brute-force

search algorithm, 2.833. Although the total reward for the brute-force algorithm is

higher than that of other assignment schemes, it does not necessarily mean that it

receives more reward for each specific user.

For example, the uniform assignment schemes complete user 1’s task earlier than

both reward greedy and brute-force, resulting in a higher reward collected from user

1. However, the total reward they receive from all three users is still smaller com-

pared to brute-force and reward greedy. Notably, the total reward obtained from the

uncoded uniform worker assignment algorithm is significantly lower than the other

three algorithms, emphasizing the significance of both coding and a proper worker

assignment policy.

Fig. 4.6 shows the percentage of time that each user’s task is completed after its

deadline. As seen brute-force has completed user 1’s task after its deadline in more

than 20% of iterations. Uniform worker assignment schemes, however, have almost
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always completed this task before its deadline. In contrast, reward greedy and brute-

force perform better when it comes to tasks of users 2 and 3. In particular, performing

uncoded uniform worker assignment, in more than 50% of iterations, these two tasks

are completed after their deadlines.

4.6 Conclusion

We studied the problem of worker assignment in a heterogeneous coded distributed

computing system. We consider a system consists of multiple users where each user

belongs to a specific subscription class and has a time-sensitive matrix-vector multipli-

cation task. To mitigate the negative impact of stragglers, MDS coding was adopted.

We proposed a greedy worker assignment policy to maximize the total reward the sys-

tem receives from users. According to our simulation results, our algorithm achieves

a performance comparable to that of a brute-force search, but with significantly lower

time complexity. Also, our results showed that by employing a proper coding scheme

and a worker assignment policy the system reward significantly increases.
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Chapter 5

Conclusions and Future Work

5.1 Summary of contributions and results

In this thesis, we studied coded distributed computing systems. By focusing on

time-sensitive tasks, we aimed to address the practical needs of distributed comput-

ing environments, where timely and efficient execution is paramount. Furthermore,

stragglers and inefficient resource allocation can lead to missed deadlines, degraded

performance, and even system failures in these time-critical applications. Introduc-

ing time-sensitive tasks into the study allowed us to explore the impact of scheduling

and worker assignment strategies on meeting deadlines and optimizing overall system

performance.

The main contribution of our work lies in providing innovative and effective solu-

tions to the challenges of task scheduling and worker assignment in coded distributed

computing systems. Utilizing MDS coding and introducing greedy algorithms, we

improve timely task completion in time-constrained environments.

In Chapter 3, we focused on task scheduling in a homogeneous distributed comput-

ing system, where each task had a specific execution deadline. The main challenges

in such a system are random task arrivals and random execution times due to the

straggling effect. To address these challenges, we proposed two task scheduling algo-

rithms namely simple greedy and farsighted greedy and compared their performance

with the ultimate upper bound, i.e., a genie-aided algorithm that knows the exact
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arrival and execution times of all tasks.

In Chapter 4, we studied the worker assignment problem in a heterogeneous coded

distributed computing system. We considered a system with multiple users, each with

a time-critical task and belonging to a specific subscription class. Our objective was to

devise a worker assignment policy that maximizes the overall reward of the system.

To achieve this, we proposed a worker assignment policy called ”reward greedy.”

Through simulation results, we demonstrated that our proposed algorithm achieves

performance very close to that of a brute-force search while exhibiting significantly

lower complexity.

5.2 Future research directions

As part of potential future research, an interesting avenue to explore is the study of

fractional worker assignment policies. This approach involves allowing each worker to

serve multiple masters simultaneously, effectively dividing its computational capabil-

ity among different tasks. This opens up possibilities for more dynamic and flexible

task allocation, where workers can handle multiple tasks concurrently, considering

their capabilities and available resources.

Task scheduling in heterogeneous distributed computing environments presents

another promising research area. In such environments, the computing resources

available to the system exhibit significant diversity in terms of processing power,

memory capacity, and network bandwidth. As a result, efficient and intelligent task

scheduling becomes crucial to optimize the system’s overall performance and resource

utilization.

Another challenge arises when workers face memory constraints. Specifically, each

worker is constrained by a maximum memory capacity, which limits the computation

workload it can handle at any given time. In this practical scenario, the memory

capacity of workers becomes a critical factor in load allocation. Hence, existing load

allocation policies may no longer be applicable in such systems. One option is to de-
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velop memory-aware allocation policies that take into account the memory constraints

of workers and distribute computational loads accordingly.
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Appendix A: First Appendix

Since for x > 0 and y > 0, f(x, y) = x2

y
is convex, P3 is a convex optimization

problem. The Lagrangian of P3 is as follows:

L(lm,n, tm, λm) = tm + λm

[︄
Lm −

∑︂
n∈Ωm

(︃
lm,n −

θm,nl
2
m,n

tm

)︃]︄

λm represents the Lagrange multiplier corresponding to (4.11b). The derivatives

of L(lm,n, tm, λm) as follows:

∂L
∂lm,n

= −λm + λmθm,n
2lm,n

tm
(A.1a)

∂L
∂tm

= 1− λm

∑︂
n∈Ωm

θm,nl
2
m,n

t2m
(A.1b)

Also, the Karush-Kuhn-Tucker (KKT) conditions are as follows:

∂Lm

∂t∗m
= 0,

∂Lm

∂l∗m,n

= 0,∀n ∈ Ωm (A.2a)

λ∗
m

[︄
Lm −

∑︂
n∈Ωm

(︄
l∗m,n −

θm,nl
∗2
m,n

t∗m

)︄]︄
= 0 (A.2b)

λ∗
m ≥ 0, l∗m,n ≥ 0 (A.2c)

Upon solving the KKT conditions, we obtain the optimal load allocation and task

completion delay for P3, as demonstrated in Eq. (4.12a) and Eq. (4.12b).
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