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Abstract

This dissertation shows that the iractability and efficiency of training particular
connectionist networks to implement certain classes of grammars can be formally
determined by applying principles and ideas that have been explored in the symbolic
grammatical induction paradigm. Furthermore, this formal analysis also allows networks
to be tailored to efficiently solve specific grammatical induction problems. Had the formal
work that is reported in this dissertation been done earlier, it is possible that connectionist
researchers would have been able to take a formal, rather than empirical, approach to
understanding the computational power of their nets for grammatical induction. As well,
our formal approach could have been applied to understand and develop techniques to
functionally increase the power of connectionist grammar induction systems. Instead,
these techniques are currently being discovered empirically. This dissertation, by
considering classical work done over the past three decades, gives a formai grounding to
these empirically discovered methods. In doing so, it also suggests a rationale for making
the design decisions which define every connectionist grammar induction system. This
allows new networks to be better suited to the problems to which they will be applied.
Finally, the dissertation provides insights into applying other refinement techniques that

connectionist researchers have yet to consider.
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Chapter 1 1

Chapter i:
Introduction

1.1 THE THESIS OF THIS DISSERTATION

We show that the tractability and efficiency of training particular connectionist
networks to implement certain classes of grammars can be formally determined by
applying principles and ideas that have been explored in the symbolic grammatical
induction paradigm. Furthermore, this formal analysis also allows networks to be tailored
to efficiently solve specific grammatical induction problems.

In particular, we examine the problem of grammatical inducticn as studied by Gold

(1967):

Definition: Grammatical induction is the process whereby a learning sysiem attempts to

identify a finite representation, called a grammar, for a potentially infinite set of strings
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of symbols, called a language, based on a finite set of example strings chosen from the

language (and possibly its complement).

We view the process of identifying the grammar for a language as a search through an
hypothesis space of candidate grammars. It has long béen known that this type of search
can be improved by functionally pruning the hypothesis space or ordering the sequence of
its exploration. Pruning and ordering techniques used for grammatical induction in
symbolic paradigms can be employed in connectionist paradigms as well. In fact, the
techniques that are being used by connectionist researchers today to improve the
performance of their grammar induction systems can be recognized as techniques that have

been formally analysed and explored in the symbolic domain.

1.2 OUTLINE

We establish and explore the implications of this thesis in the following ways:
First (in Chapter II), we propose a new taxonomy for characterizing connectionist
approaches to solving the grammatical induction problem. Our taxonomy differs from
previous ones in that it is based along the four fundamental design decisions which the
designer of any grammatical induction system must make. This design-decision approach
ensures that the scope of the taxonomy is broad enough to accommodate any current or
future connectionist grammatical induction system. We apply our taxonomy to the leading
connectionist approaches to grammaticai induction and describe their relation to each
other. In doing so, we unite networks with common features so that results which are
proven for one network can be readily applied to others. We are thus also able to predict
the performance of existing and proposed connectionist grammar induction systems

without implementing them and generating empirical test results.
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Second (in Chapter III), we provide a formal description of the grammatical
induction problem. We identify the inherent difficulties involved in identifying grammars
based on example strings as described in the theoretical induction work of Gold (1967).
By describing the induction problem in the context of a search through an hypothesis
space, we define two methods for overcoming the difﬁculties of the search: (1) pruning
the hypothesis space and (2) ordering the exploration of the hypothesis space.

Third (in Chapter IV), we offer formal proofs defining the hypothesis spaces of the
leading connectionist networks. Specifically, we identify, for the first time, the types of
grammars that can be implemented by window in time memories (Sejnowski and
Rosenberg, 1986; Lang, Waibel and Hinton, 1990; Lapedes and Farber, 1987; Waibel,
Itanazawa, Hinton Shikano and Lang, 1989). We also prove that single-layer first-order
context computation memories (Elman, 1990, 1991a; Pollack 1989, 1990, 1994; Maskara
and Noetzel, 1992; Williams and Zipser, '1989) can implement arbitrary finite state
automata and that they can do so using at most n-p nodes (where n is the number of states
in the automaton, and p is the number of input symbols). We further prove, that single-
layer second-order context computation memories (Giles, Chen, Miller, Chen, Sun and
Lee, 1991; Giles, Miller, Chen, Chen, Sun and Lee, 1992a; Giles, Miller Chen, Sun,
Chen and Lee, 1992b; Giles and Omlin, 1992; Goudreau, Giles, Chakradhar and Chen,
1994; Liu, Sun, Chen, Lee and Giles, 1990; Omlin and Giles, 1994a, in press; Shaw and
Mitchell, 1990; Sun, Chen, Giles, Lee and Chen, 1990b; Sun, Chen, Lee and Giles, 1991;
Watrous and Kuhn, 1992a, 1992b) are incapable of implementing arbitrary automata using
binary state encodings, and that locally recurrent state and input memories (Fahlman,
1991; Giles, Chen, Sun, Chen, Lee and Goudreau, 1995; Kremer, in press, 1995b, 1995¢)
are incapable of representing certain finite state automata whose state transitions form
cycles under cyclical input signals. Together, these results relate classes of networks to

the classes of grammars that can be represented. Conversely, the results also identify
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which networks are capable and, more importantly, which are incapable of solving specific
grammar induction problems. This transforms the task of selecting or designing the ideal
network for a given problem from an empirical task to one which can be made on the basis
of known theoretical results.

Chapter V then describes how the users of co;lnectionist grammatical induction
systems can prune and order hypothesis spaces beyond the restrictions imposed by the
choice of architecture. This is done by formalizing the relation between the initial or fixed
weights in a network and the hypothesis space of representable grammars. New proofs
are presented that show how initial weights can both order and restrict the hypothesis
space and how good a priori knowledge encoded in initial weights will limit the hypothesis
space much more than bad a priori knowledge. These results give the users of
connectionist grammar induction systems even more control over the exploration of the
space of potential grammars.

Fifth (in Chapter VI), the dissertation examines the use of a posteriori knowledge,
provided during training to guide a grammar induction system's exploration of the
hypothesis space. In particular, three different forms of a posteriori knowledge are
discussed: input ordering, automaton information, and string frequency information. All
three of these approaches have been used in symbolic grammar induction systems. We
prove that training techniques used in connectionist networks can be recognized as

implementations of input ordering, providing automaton information and stochastic

grammar induction.

1.3 IMPLICATIONS
Had the formal work that is reported in this dissertation been done earlier, it is
possible that connectionist researchers would have been able to take a formal, rather than

empirical, approach to understanding the computational power of their nets for
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grammatical induction. As well, our formal approach could have been applied to
understand techniques available to functionally increase the power of connectionist
grammar induction systems which are now being discovered empirically. This
dissertation, by considering classical work done over the past three decades, gives a formal
grounding to these empirically discovered methods.' In doing so, it also suggests a
rationale for making the design decisions which define every connectionist grammar
induction system. This allows new networks to be better suited to the problems to which
they will be applied. Finally, the dissertation provides insights into applying other

refinement techniques that connectionist researchers have yet to consider.
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Chapter I1:
Connectionist Networks for Grammar Induction

2.1 INTRODUCTION

This chapter describes a new type of taxonomy for spatio-temporal connectionist
networks (STCNs) based around a formal mathematical description of grammatical
induction. The new taxonomy is the only one developed around the fundamental design
decisions which must be addressed by any grammatical induction system. Because of this,
it has superior predictive power when used to compare and analyse how different STCNs
might perform on varic;us grammatical induction problems (the most common application
of STCNs, and the focus of this thesis). Additionally, the taxonomy is general enough to
accommodate all of the leading STCN designs described in the literature. In fact, the
exact categorization of each leading design is precisely specified. Furthermore, the fact

that the taxonomy is centred around the principles of grammatical induction systems,



Chapter 2 7

rather than specific existing STCN designs, implies that it will easily accommodate future
STCN designs as well.

In addition to surveying the field of connectionist grammar induction systems, this
chapter provides a simple way of applying the results of the analyses in the chapters which
foilow to many different STCN designs currently in usé as well as future STCN designs.
Since the taxonomy can be used to predict STCN performance for various problems, it can
serve as a tool for anyone needing to select or design a particular STCN to solve a given
problem.

This chapter is organized as follows: First, we define the notation and terminology
used. Second, we identify features of good taxonomies. Third, we examine the
characteristics and merits of several existing STCN categorization schemes. Fourth, we
develop a new taxonomy possessing the ideal features identified earlier. Fifth, we specify

how existing STCN designs fit into the new taxonomy. And sixth, we present some

conclusions.

2.2 TERMINOLOGY AND MATHEMATICAL PRELIMINARIES
2.2.1 Spatio-temporal Connectionist Networks (STCNs)

A spatio-temporal connectionist network can be defined as a parallel distributed
information prdcessing structure that is capable of dealing with input data that are
presented across time as well as space. One might argue that this definition is too informal
and describes too diverse a set of computational systems in order for any useful theorems
about STCNs to be proven. This is a valid observation. However, assigning a more
precise mathematical definition to STCNs would contradict the common use of the term
to describe a variety of very diverse architectures. Instead, in this chapter, we provide
precise mathematical descriptions of the most popular classes of STCNs and their

constituent components, as opposed to one definition for all STCNs. This will allow us
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to develop formal theorems about STCNs with specific properties, without unnaturally
restricting the definition of STCN in general. The following formalisms serve as a basis

for the subsequent description of specific STCN components.

2.2.2 Search States and Machine States

In this dissertation, we view the process of grammatical induction as a search for
a target grammar from a set of possible or candidate grammars. This type of search is
often referred to as a state-space search and each point in the space to be searched is
referred to as a state. However, in the context of formal grammars and automata, the
word "state" is also used to describe the internal state of a grammar or machine. This
creates an ambiguity when the word “state” is used in the context of grammatical
induciion, where a state-space search is conducted for a target state, which represents a
formal grammar or machine, whose internal state is used to determine the grammaticality
of sample sentences. As is convention in the grammatical induction literature, we resolve
this ambiguity by using the word "state” exclusively to refer to the internal state of a
formal computing machine or grammar while describing candidate grammars as

"hypotheses” and the space of candidate grammars as the "hypothesis space".

2.2.3 A Note About Notation

We begin by introducing the mathematical formalisms used to describe points along
our dimensions. It is convention in algebra to interpret a vector x = ( x,, x,, x;, ... ), a$

being equivalent to the column matrix:
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This allows us to rewrite the previous equation for the vector y* without the transpositions
as simply:

y = Wxx
Where x denotes the matrix product. Hence, each element, y,, of y is computed:

y, = WI‘ *Xx

1

In addition to frequent matrix-vector multiplications, we will frequently use vectors whose

1

elements consist of the elements of a series of smaller vectors. In order to simplify the
description of these vectors, we will use © to represent to represent a function mapping
two vectors, e.g. b and & in vectors spaces B and C, to a new vector @ in the vector
space defined by the Cartesian product of spaces, B and C, of the original vectors. The
operation is defined such that the representation of vector & is formed by concatenating

the representation of vectorb with the representation of vector ¢. Specifically, if

a = b D ¢ then:

b if i<d(b)

! if i>d(b)

cl »d(h-)

and

d(a@) =d(b) +d(c)
where d(a) represents the dimensionality of 4.

We will further require an inverse of this operator, capable of extracting a smaller
vector from a larger vector formed by ©. To do this, we define the use of square
parentheses in the expression d = &T[i.;/] such that vector d is equal to a vector whose
components are equal to components i through j of vector e. More precisely we require
that the K" component of vector d is equal to the (i+k-1)" component of &:

d, = € ;.
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and that the dimensionality of vector 4 is equal to the number of terms in the inclusive
sequence from i to j:
d(d) = j-i+l.

It is now possible to invert the & operator:

—

a=bd<
such that

b = a[l.lal~lel,
and

g = arlpli+1..1an.

2.2.4 Input Dimensions

Spatio-temporal connectionist networks (STCNs) are connectionist systems that are
capable of dealing with input and output patterns that vary across time as well as space.
For the purposes of simulation on digital computers, it is useful to discretize the temporal
dimensicn and consider a system in which time proceeds by intervals of Ar. We shall use
the symbol 7 to represent a particular point in time, where ¢ € { 0. Ar, 24A¢, 34, ... b
In this formulation Ar can be considered to be the unit of measure for the quantity 7, and
thus it is simplest to omit the units and expres: / simply as a member of the set of whole
numbers.

The dimension of time must be different from the spatial dimensions in
conventional connectionist networks. Components of an input pattern distributed across
space (i.e. across various input nodes) can all be accessed at the same time. However,
only the current component of patterns distributed across time is accessible at any given
instant. We assume that the observable world for a STCN at the instant  is described by

an input vector, #(r). This vector is supplied to the STCN at time r by setting the
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activation values of the input units of the STCN to the components of the vector. Thus,
the input vector can be considered a stimulus.

It is important to note the difference between information encoded across the input
vector x(r) and information encoded in different input vectors x(¢,), x(t,), ..., presented
to the network at different times. Values of the former can be accessed in parallel while
the latter must be accessed sequentially (in a forward direction). This difference is similar
to that between the random access memory of a computer disk system, and the sequential
access memory of a tape device. Both devices can be considered to encode different pieces
of information at different locations in space. However, the restricted access available to
the sequential access device has resulted in great differences in the uses of tape memory
as compared to disk memory. The disparity between the two input dimensions in the
connectionist system is even greater since the temporal tape can never be rewound and

reread (it is never possible to access input vectors in a backward direction).

2.2.5 Spatio-Temporal Connectionist Network Memory

Conventional connec:ionist models are equipped with memory in the form of
connection weights, denoted by the matrix W. This adjustable parameter is typically
updated after each training step and constitutes a memory of all previous training. In the
sense that this memory extends back to the first training step, we shall refer to the memory
in conventional connectionist models as long-term memory. Once a STCN has been
successfully trained, this long-term memory remains fixed during the operation of the
network.

The distinguishing characteristic of STCNss is that they also include a form of short-
term memory. It is this memory which allows these networks to deal with input and
output patterns that vary across time as well as space and thus defines them as STCNs.

Conventional connectionist networks compute the activation values of all nodes at time ¢
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based only on the input at time 7. By contrast, in STCNs the activations of some nodes
at time 7 are computed based on activations at time 7-1. These activations serve as a short-
term memory. We use the "state vector”, s(7), to represent the activations at time -1 of
those nodes that are used to compute the activations of other nodes at time . Unlike the
long-term memory which remains static once training is'compleled, the short-term memory
is continually recomputed with each new input vector (both during training and during
operation). This is due to the fact that long-term memory is stored in connection weights
(which are updated only during training) while short-term memory is represented by node

activations (which are computed with each time-step even after training).

2.2.6 Output, Teaching, and Error

Finally, it is necessary to specify a representation for the response of the network
to its stimuli. Like the traditional models, STCNs encode their response in the activations
of a special set of units called "output units”". Thus, we represent the output of a STCN
by a vector, y(r). Most connectionist architectures learn by computing the difference
between their response and a teacher-supplied desired (or ideal) response and adjusting
their long-term memory accordingly. We denote the desired response by another vector,
¥ "(t). The difference between the desired output vector and the actual output vector is the

error vector E(f) = y () -y(1) , and the total network error, &, is defined as one half of the

square of the magnitude of this vector:

e = X {LiEwr).

t:r,

2.3 FEATURES OF A GOOD TAXONOMY
Before presenting our taxonomy of STCNs for grammar induction, we briefly

discuss general properties of good tzxonomies. Later we evaluate our new taxonomy as
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well as Mozer's (1993), Tsoi and Back's (1994), and Horne and Giles' (1994) according
to these criteria. The first property which an effective taxonomy must possess is
descriptive adequacy. This means that it must exhaustively classify all objects in its
domain. A second important property is simplicity. It should be a relatively simple task
to classify and name any of the objects in the domain. The third, and most important,
quality of a good taxonomy is predictive power. That is, objects in the taxonomy with
similar classifications should posses similar properties, while objects in the taxonomy with
differing classifications should have differing properties.

A good taxonomy balances simplicity with predictive power while maintaining
descriptive adequacy. In other words, it must have a level of discrimination that is not so
low that it groups dissimilar objects together, nor so high that the number of groups
required to encompass all objects becomes unwieldy. This can best be accomplished if the
taxonomy describes features along multiple orthogonal dimensions rather than along one
single dimension. If multiple dimensions are available, then different yet similar objects
can be classified as having the same feature along one or more dimensions, while having
different features along other dimensions. By contrast, in a single-dimension taxonomy,

the two object must be classified as either “the same”, or “different”.

2.4 EXISTING TAXONOMIES
2.4.1 Mozer (1993)

Mozer (1993) has developed one taxonomy for STCNs which is illustrated in Table
2-1. It is based on the assumption that every STCN consists of two mechanisms: a short-
term memory and a predictor. The short-term memory computes the state of the STCN,
while the second mechanism, uses the state to compute output. Mozer characterizes the
operation of the short-term memory of STCNs along the dimensions of content and form

(which define how the short-term memory is computed), and adaptability (which defines
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how changes in the computation of the short term memory are made during the induction
process). Mozer notes that "the predictor component [of an STCN] will always be a
feedforward component of the net" (Mozer, 1993, p. 244). Table 2-1 illustrates Mozer's
taxonomy and the three dimensions (indicated in bold) used to describe STCNs. We now

discuss each dimension in turn.
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Short-Term Memory

Computation of Short-Term Memory

Content:
Input (I)
Transformed Input (T1)
Transformed Input and State (TIS)
Output (0O)
Transformed Output (TO)

Transformed Output and State (TOS)

Form:
Delay Line
Exponential Trace

Gamma

Changes in Computation of Short-Term Memory

Adaptability:
Static

Adaptive

Predictor

Feedforward Component of Net

Table 2-1: Mozer's (1993) taxonomy.
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Memory Content

Mozer breaks the computation of short-term memory. (). into two steps: a
content computation and a form computation. Both steps are essentially filtering
transformations of the available data into a simpler forms. The first step's transformation
calculates a new vector, x'(r), whose component‘ values are computed based on
information distributed in space across the input vector, x(s). In this sense, the
transformation constitutes a spatial filter. Mozer terms the result of this transformation,
x/(t), the memory content, and identifies six possibilities for the transformation: input,
transformed input, transformed input and state, output, transformed output, transformed
output and state (indicated in italics in Table 2-1).

The simplest possible spatial transformation is an identity transformation whereby
x(f) = x(t); Mozer calls this an input or I memory. A more sophisticated filter involves
computing a new vector whose components are the results of applying a squashing
function, o(x) to weighted sums of the input vector components. If we now let f( # )
represent the vector whose elements are the result of applying the function f(x) to each
element of i, then the advanced filter computes:

) = (W x 7@)).

Typical instantiations of f{x) are the sigmoid functica, o(x) = ——, and the hyperbolic
x 1re
tangent, tanh(x) = ——— . Mozer calls this a transformed input or TI memory. A third
e*+e ¥

filter is based on a transformation of not only the input vector, but also the state vector.
Using vector concatenation, it is possible to define a transformation:

iy = fCw < & D sw) ).
In this situation, the components of vector x/(r) represent squashed weighted sums of the
components of both the input, x(s), and state, s(r), vectors. Mozer calls this a

transformed input and state or TIS memory.
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The fourth, fifth and sixth filters in Mozer's classification scheme are obtained by
replacing the input vector, x(z), in all of the equations above by the previous output
vector, y(t-1). This is typically done for autopredictive tasks where input and previous
output are identical. Thus, the memory content for the / memory described above is
replaced by /() = y(¢), and a new memory which Mozer calls output or O is formed.
By performing similar replacements, Mozer also defines the transformed output, TO, and

transformed output and state, TOS, memories.

Memory Form

The second filtering step which is applied in the computation of short-term memory
calculates the short term memory vector, 5(¢), whose value is computed based on
information distributed across time in a series of content vectors,
{xn), x’t+1), (t+2), ...}. In this sense, the second transformation constitutes a
temporal filter. According to Mozer, this defines the "form" of memory. The short-term
memory vector, s(¢), is computed based on the temporal convolution of the memory
content, x'(t), with a kernel function, ¢(/):

[

S0 =Y E0-T) - £(D).
A variety of dif;';rent possible kernels are discussed by Mozer. These are summarized in
Table 2-2. The value of a given component, i, of the state vector at time ¢, §(r), is equal
to a weighted sum of previous values of the corresponding component of the memory
content vector, x,(t), over time, T. The kernel function defines the weight, or
importance, given to the content vector activation for each point in time. For example,
a delay line memory specifies that only one of the previous values of x/(t), namely

x(t-w,), is used for the state variable 5(r). That is:

S0 = £(t-w).
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L .=,

memory form kernel function

1 if =W,

delay line =
Y cn 0 otherwise

. - t
exponential trace c( = - pnm,

t W] W, .
(1 - p)' n if 12w,
gamma c\t) = w,

0 if <w,

Table 2-2: Forms of short-term memory (adapted from Mozer, 1993).

By contrast, in an exponential trace memory a large weight is given to the most recent
memory content component, and exponentially decaying weights are given to earlier
values. Other types of kernels operate in a similar fashion. For a more detailed

discussion of various kernel functions, the reader is referred to Mozer (1993).

Memory Adaptability

The third dimension used by Mozer to classify connectionist models is memory
adaptability. This term refers to the parameters (w,, p,, W) in the content and form
equations. Mozer uses the term static memory to indicate that these parameters are
constant during the training process. This means that memory state is a predetermined

function of the input sequence and cannot be trained to accommodate the peculiarities of
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a particular problem. The author uses the term adaptive memory to indicate that the
connectionist network can adjust memory parameters (typically by means of a gradient
descent algorithm) during the training phase. The memory parameters in both static and
adaptive memories always remain constant during the performance phase. Mozer also
notes that "the Elman SRN algorithm (Elman, 1990) liés somewhere between an adaptive
and static memory because of the training procedure—which amounts to back propagation
one step in time—is not as powerful as full blown back propagation through ume" (Mozer,

1993, p. 253).

Evaluation of Mozer's Taxonomy

Although Mozer's taxonomy is designed as a general system for STCNs, there are
two major limitations with using Mozer's framework. The first concerns sacrificing
predictive power for descriptive adequacy and simplicity. As noted above, Mozer's
taxonomy applies only to the short-term memory component of the network. He makes
no attempt to describe the predictor component beyond stating that it is a network. This
means that networks with different predictor components (e.g. multi-layer vs. single-layer
vs. no-layer, or first-order connections vs. second-order connections) are grouped in the
same category. Since it is well known that the number of layers and order of connections
greatly affects what a connectionist network can compute (see Lippmann, 1987), predictive
power is limited by not categorizing STCNs based on their predictor components.

The same argument applies to the short-term memory component. 771S memories
encompass a very broad range of connectionist netwerks (with varying layer numbers and
connectivity schemes), including Fahlman's recurrent cascade correlation networks and
Giles' second order networks, two approaches which are vastly different in both approach

and (as we shall see in Chapter IV) computational power.
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The final problem with the predictive power of Mozer's framework has to do with
the kernel representation of memory form. If memory form is calculated as:

4

s = Z &) - v
then this, in geltl;lral, requires that the values of x'(r) be available for all 7. But, the values
of the x'(¢+) depend directly on the input vectors x(r) . 'i‘his in effect changes the temporal
dimension to a spatial dimension of infinite size which does not reflect the true nature of
the encoding. The solution to this is, of course, to compute the same memory vector
defined by the convolution above, incrementally based on the previous memory vector
(which may require more memory for the state vector). While Mozer discusses this type
of state computation, his framework does not use it. This implies that it is difficult to
identify the time and memory complexity of the iterative computation which an
implemented network will actually use since it is "disguised” by the convolution operator.

The second major problem with Mozer's taxonomy is that it sacrifices too much
descriptive adequacy for simplicity and predictive power. Mozer himself identifies one
interesting type of STCN—which he calls the stzandard architecture (e.g. Elman, 1990;
Mozer, 1989)—that does not fit within his classification scheme. Although the standard
architecture is very similar to 7IS, there are differences between the two approaches.
These are illustrated in Figure 2-1. Note that the standard architecture is like T1S, eicept
that the first two hidden layers have been collapsed into a single layer. Nor doeé the

standard architecture fit anywhere else in the different possibilities for "memory contents”

discussed by Mozer.
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a) output b) output
A1) 52 0)
hidden 3 * hidden 3
hidden 2 . hidden 2 ~ temporal
0 F 0 ‘ delay
. temporal R
delay SR
hidden 1
A
input ' input

(0 x(1)

Figure 2-1: 7IS and the standard architecture. (a) A 7IS memory architecture. (b) The
standard architecture. (Adapted from Mozer, 1993.)

Another example of sacrificing descriptive adequacy concerns the networks of
Narendra and Parthasarathy (1990). These networks compute their outputs based on a
history of both input and output patterns. In this sense, these networks could be
considered as having inpur and output or IO memories. Yet, Mozer's taxonomy does not
include this type of memory content.

Additionally, Mozer's scheme does not adequately describe different systems of
memory adaptability. Elman's SRN algorithm, for example is described as lying
somewhere between static and adaptive. This seems strange, since Elman's system clearly
satisfies the criterion for adaptiveness ("the neural net can adjust memory parameters”

(Mozer, 1993, p.252)). Yet Elman's algorithm is clearly different (and perhaps less
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effective at adapting - see Servan-Schreiber. Cleeremans and McClelland, 1988) than the

conventional recurrent adaptation algorithms, because it uses a tru..cated version of
gradient descent. Fahlman has developed yet another adaption algorithm which does not
fit into Mozer's taxonomy. Fahlman's networks adapt not only parameters like weights.
but also the number of nodes in the network. This i§ an important distinction, since it
implies that Fahlman's networks are capabie of increasing their own memory capacity
which conventional STCNs are not. Clearly, this type of adaption will have a profound

impact on how these networks perform on grammar induction problems.

2.4.2 Horne and Giles (1994)

Horne and Giles (1994) have developed a different taxonomy for STCNs which is
illustrated in Table 2-3. Their approach focuses on partitioning the space of existing
STCN architectures. The first partition separates those networks whose state
representations are encoded in input and output u.:its only from those networks whose state
representations are encoded in hidden units. Horne and Giles refer to the former class as
networks with "Observable States" and the latter as networks with "Hidden Dynamics”.
Networks with "Observable States” include Narendra and Parthasarathy's (1990) networks,
Lang, Waibel, and Hinton's {1990) Time Delay Neural Networks (TDNN), and deVries
and Principe’s (1992) Gamma Networks. The class of networks with hidden dynamics is

further partitioned into single-layer, multi-layer, and local feedback networks.
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Observable States:
Narendra and Parthasarathy (1990)

TDNN (Lang, Waibel and Hinton, 1990)

Gamma Network (deVries and Principe, 1992)

Hidden Dynamics

Single-Layer:
First Order
High Order (Giles et al., 1992a)
Bilinear

Quadratic (Watrous and Kuhn, 1992b)

Multi-Layer:

Robinson and Fallside (1988)

Simple Recurrent Networks (Elman, 1990 & 1991a)

Local Feedback:

Back and Tsoi (1991)
Frasconi, Gori and Soda (1992)

Poddar and Unnikrishnan (1990)

Table 2-3: Horne and Giles' (1994) Taxonomy.
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Evaluation of Horne and Giles's Taxonomy

It should be noted that Horne and Giles' taxonomy is one-dimensional in the sense
that all categories are mutually exclusive. This can be a disadvantage in the sense that it
is difficult to propose new architectures by identifying points in the space described by the
taxonomy. In a multidimensional taxonomy, new .architectures can be defined by
identifying points along each of the dimensions that have not been explored in one
common STCN. When new types of networks are developed and added to a one-
dimensional taxonomy, they cannot be described in terms of combinations of existing
categories, but rather must be "lumped into" one existing category or be given an entirely
new categorization. This implies that Horne and Giles' taxonomy will tend to suffer from
either a lack of predictive power (in the former case), or a lack of simplicity (in the latter
case). Horne and Giles' taxonomy also lacks descriptive adequacy since it does not
describe some important classes of networks including Recurrent Cascade Correlation
(Fahlman, 1991), Recursive Auto-associative Memory (Pollack, 1989, 1990), Auto-
associative Recurrent Network (Maskara and Noetzel, 1992), Connectionist Pushdown
Automaton (Giles et al., 1990), Connectionist Turing Machine (Williams and Zipser,

1989), and Second Order Constructive Learning (Giles et. al., 1995).

2.4.3 Tsoi and Back (1994)

Tsoi and Back (1994) have developed a taxonomy designed specifically for locally
recurrent, globally feedforward networks. These are networks in which all connections
are feedforward with the exception of one temporal self-looping connection for each node.
Tsoi and Back base their taxonomy on the type delay incorporated in the recurrent
connections used, and which value is delayed. Tsoi and Back refer to these two
considerations as: "Synapse Type" and "Feedback Location" respectively (whereas Mozer

(1993) calls them, "kernel function” and "memory content"). For Synapse Type, they
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considey two types of kernel functions: a delay line with w;=1, which they call a "Simple
synapse”, and a complex linear transfer function with several adaptable poles and zeros,
which they call a "Dynamic synapse”. The "Feedback location” is subdivided along three
dimensions depending on which combination of the nodes’ previous activation values, the
nodes' previous net inputs, or the previous value are ﬁammitted by the synapse. Thus,
Tsoi and Back's taxonomy is composed of four dimensions: Synapse type (which can
assume a value of "Simple” or "Dynamic"), Synapse feedback (which can be "Yes" or
"No"), Activation feedback (which can be "Yes" or "No"), and Output feedback (which

can be "Yes" or "No"). These dimensions are illustrated in Figure 2-4.
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L
Synapse Type
Simple
Dynamic

Feedback Location

Synapse
Yes
No
Activaiion
Yes
No
Output
Yes
No

Table 2-4: Tsoi and Back’s (1994) taxonomy.

Evaluation of Tsoi and Back's Taxonomy

Tsoi and Back's (1994) taxonomy lacks the descriptive adequacy to classify ali
connectionist approaches to grammatical induction since it is only capable of dealing with
locally recurrent, globally feedforward networks, a small proportion of STCN grammar

induction systems. Furthermore, its simplicity is questionable since the authors use four
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dimensions to classify a total of four architectures. For these reasons, it too is unsuitable

for our needs.

2.4.4 Observations

When Mozer and Horne and Giles first developéd their classification schemes, they
provided simple, descriptively adequate and predictively powerful frameworks for
describing some of the leading STCN approaches of the time. Tsoi and Back also
developed a simple taxonomy addressing a popular subset of STCNs. The recent flurry
of activity in the field of STCN research, however, has contributed to the increasing
obsolescence of these ways of classifying networks. The problems that these three
taxonomies exhibit in the face of a rapidly expanding field, can all be traced to a common
cause: all three taxonomies are attempts to classify existing STCN designs. Since it is
impossible to predict future STCN developments, new designs are difficult to fit into the
categories ‘defined earlier. One solution to this problem is simply to omit the new STCN
designs from the taxonomy, however, this results in a lack of descriptive adequacy. An
alternative solution is to place new designs into the closest possible categories (even if they
do not fit well). This situation tends to degrade the descriptive adequacy of the taxonomy
since it will be more difficult to make predictions based on tenuous categorizations. The
final option is to add a new category for the new network design, but this tends to decrease

simplicity due to a proliferation of categories.

2.5 A NEW TAXONOMY FOR SPATIO-TEMPORAL
CONNECTIONIST NETWORKS

An alternative to attempting to classify existing STCNs based on their respective
properties, is to examine what all STCNs have in common. For the purposes of this

thesis, all STCNs are assumed to be applied to grammatical induction. Thus, we develop



Chapter 2 28

our taxonomy around the computational theory of grammatical induction (examining the
goals of computation), rather than around the representations and algorithms of STCNs.
This approach is related to Marr's (1982, Chapter 1) tri-level hypothesis which describes
information processing systems at three levels: (1) the computational theory level, which
describes the goal of the computation, (2) the represeﬁtation and algorithm level, which
describes how the computation can be implemented, and (3) the hardware implementation
level, which describes the physical realization of the computation. While other taxonomies
describe STCNs s at the representation and algorithm, level focussing on how computations
are implemented, we base our taxonomy around the computational theory level. By
focusing on the goals of grammatical induction, we can guarantee that future STCN
designs will be accommodated in our taxonomy as long as they are applied to grammatical
induction problems. At first, focussing “only” on grammatical induction may seem like
a serious limitation of the proposed taxonomy, however, as we shall see in the following
chapter, a wide variety of problems in artificial intelligence can be cast into a grammatical
induction framework.

Our taxonomy is based on the perspective of anyone wishing to develop a
grammatical induction system. Researchers in this position are forced to answer two basic
questions. The first is: how does the researcher select, limit and represent the set of
grammars which can be induced? This set of grammars is referred to as the hypothesis
space. The second question is: what algorithm is used to identify, from the hypothesis
space, the particular grammar which best suits the training data? This is the search
algorithm. By basing our taxonomy on these two fundamental questions which need to be
answered for any hypothesis space search, we can group STCNs into categories that are
predictive of performance and applicability to particular classes of induction problems.

We now break down the first question—how does one represent the hypothesis

space—into two components. For grammatical induction, a hypothesis represents a
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particular network with a specific set of weights or, equivalently, the formal computing
machine or grammar defined by the weights. Every formal computing machine can be
defined by two components. One component which computes the new internal state of the
machine based on the input and previous state, and one component which computes the
output of the machine based on the new state. Thus,‘ it is naturai to break the issue of
representing the hypothesis space along these lines, and to identify two new questions
which must be answered. The first is: how does one represent the possible computations
which could be performed in order to compute the system's state? The second is: how
does one represent the possible computations which could be performed in order to
compute the system's output? These two questions, together, are equivalent to the original
question (what is the hypothesis space?). This is because the representation of any
grammar mechanism can be broken into state and output components, and because these
two components completely define the grammar mechanism.

The second question—what is the search algorithm—can also be broken down into
two components. The search algorithm effectively defines operators for moving the
induction system from one point in the hypothesis space to another. Since every
hypothesis represents a specific connectionist network with (1) a specific set of connection
weights and (2) a specific number of hidden units, it is natural to break the question along
these lines, and identify two new questions. The first is: how does one search for a set
of connection weights. The second is: how does one search for an appropriate state
vector size. These two sub-questions are also equivalent to the original query (what is the

search algorithm?) since the performance of any connectionist network is defined by its

architecture and its weights.
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.

Question Dimension Function
How does one represent the possible how the state £ ste-1), x(0), W)
computations which could be vector is computed

performed in order to compute the
system's state?

How does one represent the possible how the output
computations which could be vector is computed
performed in order to compute the

system's output?

L s(1), W)

<N

How does one search for a set of how the change in Sawl E(0), W, () )
connection weights? weights is

computed
How does one search for an how the change in  ,  ( g£(p )
appropriate state vector size? state vector size is A

determined

- -
Table 2-5: The four basic questions which must be answered by any STCN, the

corresponding dimensions of the taxonomy, and the mathematical functions describing the
dimensions.

This leaves us with four fundamental questions that must be answered by any
STCN. These questions. which are illustrated in Table 2-6, form the basis-dimensions of
our taxonomy. Any grammatical induction system can be defined by its position in this
four dimensional space. Specific coordinates along each dimension represent specific
answers to the four questions. A set of four such coordinates completely defines an
induction system. The four dimensions are: (1) how the state vector is computed, (2) how
the output vector is computed, (3) how the change in weights is computed, and (4) how
the change in state vector size is determined. These dimensions are illustrated with their

corresponding questions in Table 2-5. Together, the dimensions account for the entire

operation of the STCN.
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Each dimension of the taxonomy can be described as a generic function and the
specific instantiation of each function will determine the behaviour of the STCN. The first
function, defines how the state vector, s(f), is computed, based on: the previous state
vector, 5(t-1), the current input vector, x(¢), and the weights in the STCN, W. This
function will be denoted f( s(t-1), x(¢), W ). The seéond function computes the output
vector, y(r), based on: the current state vector, 5(¢#), and the weights in the STCN, W.
It will be denoted L 5(t), w ). The third function computes the change in the weights
of the STCN, AW, in response to the error, E(7), the weights, W, and the input history,
x(-), of the STCN. It is denoted f,,( E(t), W, x(*) ). The fourth and final function
updates the size of the state vector. This function is denoted Saaf E@ ). These
functions are illustrated opposite their corresponding dimensions in Table 2-5. Note that
we have, as yet, made absolutely no assumptions about the computations performed each
of the four functions. In the following sections we will provide example instantiations of

the functions that correspond to the processing performed in a variety of popular STCNs.



Chapter 2 32

e

algorithm STCN

do {try different architectures}
initialize s§(0), t-0, W
do {try different weights)
increment t
determine input vector
S - £L50-1), (0, W) {compute state}
y(o) ~ fA s, W) {compute output}
E - 5°()-5() {compute error vector)
€ = E{%"Eﬂ"} {compute error scalar}
4
W - W + fAW(E,W,f(-)) {update weights}
while t<t,,, and e€>threshold
Ad(s) - Adi) + fM(ﬂ(E:) {update architecture}

while Esthreshold

Table 2-6: A generic algorithm for STCNs. Particular network designs differ only in
their instantiation of the four fundamental functions.

Using these four functions, it is now possible to describe the operation of any
STCN by a generic algorithm. This algorithm is described in Table 2-6. In a sense, the
algorithm can be thought of as a mathematical definition of STCN parallelling the informal
definition provided in Section 2.2.1. Note that, at this point, we have developed a general
framework that is applicable to any STCN. By specifying the instantiations of the four
functions described above, it is possible to precisely define points along the four

dimensions of the taxonomy and hence specific STCN induction systems.

2.5.1 Computing the State Vector
We begin by examining instantiations of the state vector function,
f{ s(t-1), x(t), w ) used in existing STCNs. In particular, we discuss seven popular

alternatives: Window In Time memories, Connectionist Infinite Impulse Response Filter
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memories, Sinzle-Layer First-Order Context Computation memories, Single-Layer
Seconi-Order Corizxt Computation memories, Connectionist Pushdown Automata
memories, Connectionist Turing Machine memories, and Locally Recurrent State and

Input memories.

Window In Time (WIT) Memory

The Window In Time (WIT) memory approach to computing the state vector is one
of the first types of short-term memory in spatio-temporal networks. Its best known
implementation is NETtalk (Sejnowski and Rosenberg, 1986), but it has also been used
by a variety of other authors including Lang et. al. (1990), Lapedes and Farber (1987),
and Waibet et. al. (1989). The short-term memory vector, s(?) , is always computed in the
same manner throughout the training process and represents a finite, so-called "window
in time" on the input symbols. Thus, if the input symbol at time ¢ is X(f), then a window
of size 7 time-steps at time 7 would consist of seven sequential symbols, e.g.: (X(), X(z-
1), X(1-2). X(t-3), X(t-4), X(z-5), X(1-6)).

Of course, in order to present these successive input symbols as inputs to the
network, it is necessary to represent each symbol as an activation vector across the input
units in the network. Thus, the series of input symbols becomes a series of input vectors:
( x(0), x(¢-1), x(1-2), x(+-3), x(1-4), x(t-5), x(¢t-6) ). The concatenation of these vectors
forms the short-term memory:

s(1) = x(1) D x(t-1) D x(1-2) D x(t-3) @ x(¢-4) D x(¢-5) D x(+-6)
However, since only one input vector is available to the network at any time, an STCN
using a WIT memory must compute each state based on the previous state and the current
input vector. Using the inverse concatenation operator (described in Section 2.2.1), we

can now truncate the right-most input vector. £(¢-6), from the previous state vector and
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Figure 2-2: Short term memory of WIT network.

prefix the current input vector to define a recurrent version of the state computation

function:

FL s, x(0), W) = x(t) D s¢e-1[1..6°1x(n

Figure 2-2 illusirates a WIT memory. Each input symbol is assumed to be encoded as a
four-dimensional vector represented by a rectangular box; the components of the vector
are illustrated as circles. At time 7, the input vector, x(f), which corresponds to the
current input symbol, is added to the left side of the state vector, s(¢). All other vectors
are shifted right. It is critical to note that the equation to compute the next state of the
STCN does not make use of either of the trainable parameters, W and isj;. This means
that the function remains completely static—the state vector is computed the same way
every time.

The equations above considered only a window of width seven. Certainly other
window widths could be used. If the width of the window is #, then the state of the STCN
is given by:

5() = x(t) D x(t-1) D - D x(t-n+1)

and the function to recursively compute state is defined as:
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A sa-1), 50, W) = x(0) © s-1)[1..(n-1)liF0)}]

For the case, n=7, these new equations reduce to the previous ones.

Connectionist Infinite Impulse Response Filter (CIIR) Memory

A variation on the Window in Time memory is 10 use two temporal windows. One
window on the input symbols (as in WIT memories) and a second on the output symbols
produced by the network. Because of its similarity to infinite impulse response filters
(IIRs), this type of memory has been called neural network IIR, but we shall prefer the
term connectionist IIR or CIIR, for short. Narendra and Parthasarathy (1990) have used

this type of short-term memory. The state in this type of network is equivalent to:

s = L x0) ® x¢-1) D - D x(t-n+1) }
D {yu-1) ® yu-2) D - P y-m) }

Clearly, the WIT memory described above is a special case of the CIIR memory where
m=0 (i.e., the size of the output window is zero). CIIR memory and WIT memories are
classified separately in this taxonomy because the more restrictive WIT memory has
important representational limitations which are not shared by CIIR memory (these
limitations will be discussed in the next chapter). The state function for the CIIR memory

can be defined as the recurrent function:

fLSUu-1), X0, W) = x(t) D se-1)[1..(n-1)5(DI]
@D y(e-1) D su-DI(n+1)I8O]..(n+m -1)-|x()|1]
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Figure 2-3: CIIR memory.

A CIIR memory with input window of length, n=7, and output window of length, m=7,
is illustrated in Figure 2-3. This figure assumes that input and output symbol are encoded
as four dimensional vectors, represented by rectangles containing four circles. The current
input symbol is encoded in x(r), while the previous output symbol is encoded in y(r-1).
At each time step the vectors are propagated to the right through the short-term memory.

The concatenation of all seven old input and seven output vectors forms the short-term

memory, s(¢).
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Figure 2-4: SLFOCC memory.

Single-Layer First-Order Context Computation (SLFOCC) Memory

Another approach to short-term memory, which has been widely used, is based on
computing the STCN's state using a single-layer first-order feedforward network
(Rumelhart, Hinton and Williams, 1986) which uses the previous state (also called context)
and the current input symbol as input. This approach, abbreviated SLFOCC memory is
used in Elman's (1990, 1991a) Simple Recurrent Networks (SRN), Pollack's (1989, 1990,
1994) Recurrent Auto-Associative Memory (RAAM), Maskara and Noetzel's (1992) Auto-
Associative Recurrent Network, and Williams and Zipser's (1989) Real Time Recurrent
Learning (RTRL) networks.

The SLFOCC short-term memory is stored in a set of hidden units whose
activations are computed based on the activations in a layer of input units and a layer of
context units, and on the weights from these two layers to the state units. By convention
(see Elman, 1990), the activations of the context units are initially set to 0.5, and
subsequently set to the activation values of the hidden units at the previous time step (the
number of context and hidden units must be equal). Specifically, the hidden unit activation

values are copied to the context units at each time step. Thus, at any given time, the
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hidden unit activations represent the current state, while the context unit activations

represent the previous state. Thus, the function used to compute the state vector is:
fL st-1), x(n), w ) = 8( w'<WBx(n)Dse-1)! )

where W' is a two-dimensional sub-matrix of W representing the weights of the

connections in the first layer. As in Section 2.4.1,3(x) represents the resuit of applying

the function o(x) =—

-x

) to each component of vector x'. The SLFOCC short-term memory
is depicted in Figur; 24.

Unlike WIT and CIIR memories, whose state vector is equivalent of a finite
number of previous input and output vectors, SLFOCC memories use states based on the

previous state vector and input vector. This implies that the state vector of this type of

memory can contain information not found in recent input and output vectors.

Single-Layer Second-Order Context Computation (SLSOCC) Memery

A variation on SLFOCC memory involves using a single-layer second-order
network to compute state based upon previous state and current input. Second-order
connections are connections which connect three nodes (rather than just two), and are a
restricted type of the Sigma-Pi units studied by Rumelhart, Hinton, Williams (1986). In
these connections, the activation of one of the nodes is modulated by that of another, and
transmitted as a signal to the third which computes a weighted sum of all of the products
and passes the value through a squashing fiznction. The processing performed by first-

order and second-order connections is illustrated in Figure 2-5.
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Figure 2-5: First order vs. second order connections. (a) Three first order connections
from nodes j, X, [, to node i. (b) Two second order connections from j & &, kK & /, to

node i. (c) Diagram of computation performed by first order connections. (d) Diagram
of computation performed by second order connections.

In the SLSOCC memory, every input unit is connected with every state unit to

every other state unit via a second order connection with a temporal delay of one time

step. In place of this complex recurrent network, it is simpler to consider an equivalent

feed-forward network similar in style to the SLFOCC memory memory, described earlier.

This simplified network consists of three layers: input units, state units, and context units.

The context units in this network operaie in a manner analogous to the SLFOCC
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memory—that is, their activation values are equal to the activation values of the
corresponding state units at the previous time step. In this network. second order

connections then connect every possible pair of one input and one context unit to every

state unit. Thus,
FAS@-1), x50, W) = 8( (W' x x()) x 5(t-1) )

where W' is a three-dimensional weight array component of W, and w 'xx(r) is a two

dimensional matrix, M, whose components M, are computed:
/I -
M, = Z WX, (1) -
k

Figure 2-6 depicts the SLSOCC short-term memory. Note that only the connections
leading to one of the state nodes are depicted here. The remaining 48 connections leading
into the other 3 state nodes in the diagram are not illustrated in the interest of clarity.
SLSOCC memories have been used extensively by Giles et. al. (1991, 1992a, 1992b,
1992c), Goudreau et. al. (1994), Liu et. al. (1990j, Miller and Giles (1993), Omlin et. al.

(1994a, in press), Shaw (1990), Sun et. al. (1990, 1991), and Watrous and Kuhn (1992a,
1992b).
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Connectionist Pushdown Automaton (CPA) Memory with Continuous Stack

Connectionist Pushdown Automaton (CPA) memories are radically different from
the STCN memories that have previously been discussed. This is because in addition to
storing state in the activations of nodes, these memories also store state on an external
continuous stack. In this sense, they are like classical Pushdown Automata (Hopcroft and
Ullman, 1979) whose state can be considered to be equivalent to the state of the finite
controller and the contents of an unbounded stack. Hopcroft and Ullman refer to this type
of extended state as an instantaneous description (ID).

While a conventional finite state corntroller can send three discrete signals to the
stack (pop, push, no-action), the stack of a CPA memory must respond to continuous
(numerical) signals received from the nodes in the connectionist controller. Similarly,
while a conventional finite state controller retrieves discrete symbols from its stack, the
connectionist controller of a CPA memory must be able to accept continuous values from

its stack. These are requirements of the gradient descent learning algorithms used in

STCNs which require a differentiable error function.
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), the stack controller in a CPA memory has two additional node classes
and read nodes) which are used to manipulate the external stack. There is
>n node which is used to send signals (bop a symbol, push a symbol, no
stack. The read nodes are used to encode the symbol at the top of the stack.
:s also use third order connections instead of second order connections.
'ed above, the stack used by the CPA memory must be continuous in order
dient descent learning. This is an indirect consequence of the fact that a
omaton only accepts input strings if, after presentation of the entire string,
mpty. Thus, the error function for a CPA memory must take into account
‘he stack for legal strings. Since the error function for any gradient descent
st be continuous, the stack length of a CPA memory must also be represented
us value. This continuity is achieved by giving each symbol in the stack a
1 and defining the stack length to be equal to the sum of the lengths of the
1€ stack. Symbols are pushed onto or popped off of the stack based on the
lue of the action node. This activation value can range from -1 to +1.
\Jues greater than a small constant € are interpreted as a signal to push the
symbol onto the stack, while activation values less than -€ are interpreted as
and intermediate values are interpreted as no éhange in stack content.
.a symbol (encoded as a vector) is pushed onto the stack, its length in the
ned to be equal to the activation value of the action node. When a pop
urs, the action node's activation value determines the length of stack which
ince symbol lengths in the stack can vary from € to 1, and deletions can vary

it is possible that the pop operation will only remove part of a symbol from

ducing the symbol’s length), an entire symbol from the stack, or multiple
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symbols from the stack. This seems odd, but is really only a consequence of the
mechanism used to permit gradient descent learning. After CPA memories have been
trained, push and pop operations typically become discretized.

The second additional node class consists of read nodes whose activation values are
equal to the symbol encoded at the top of the stack. If the symbol at the top of the stack
has a length of less than one, its activation vector is multiplied by its length and added to
subsequent symbol vectors to form the read node activation values until a total length of
1 is read. In the CPA memory, the read nodes are treated as input nodes, while the action
node is implemented as a special output node. Third order connections lead from every
triple, consisting of an Input. State, and Read node, to every Output unit as well as the
Action node.

For our purposes, the state vector s(r) will represent only the state of the stack
controller and not the stack itself, since it is external to the network. Thus,

FL S0-1), X(0, W) = 8( (W '*x())=s(t~1))xr(1) )
where 7(¢) is the vector representing the symbol read from the stack at time 7, W! is a four-
dimensional sub array of W corresponding to the connection weights to the state units.

Here, the multiplications are performed such that:
(W <ZO)SU-1)%AL) = DD D Wy x (1) s, (t=1) 7 ().
! k g

The CPA memory is illustrated in Figure 2-7. Note that only two of the (320) third order
connections are shown in order to simplify the illustration. CPA memories have been

studied by Das, Giles and Sun (1993), Giles, Sun, Chen, Lee and Chen (1990), Sun et.
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Figure 2-7: The CPA memory.

al. (1990a), Sun, Giles. Chen and Lee (1993), and Zeng, Goodman and Smyth (1994).

Connectionist Turing Machine (CTM) Memory

Williams and Zipser (1989) developed a Turing Machine connectionist memory
(CTM) by replacing the finite state controller of a classical Turing Machine by a SLFOCC
memory in order to design a STCN capable of universal computation. The connectionist
network controls the operations performed on a standard Turing Machine tape (move left,
no change, write “1”, write “0”, move right) based on the activations of five action
neurons and reads the current symbol at the tape head into its Read Nodes.

This network was never trained to learn the tape operations. Instead, the tape
operations were supplied to the network during training, so only the control mechanism
needed to be learned. For this reason a continuous version of a tape was not required.

The state vector for a CTM memory (which does not represent the external tape) is

defined:

fL5a-1), x50, W)=38(wx{1@®s5u-1)DFA!)
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Figure 2-8: The CTM memory.

A CTM memory is illustrated in Figure 2-8. Only the connections to one of the state

nodes are shown.

Locally Recurrent State and Input (LRSI) Memory

The Locally Recurrent State and Input (LRSI) memory is computed incrementally.
That is, each component of the state vector depends on all lower numbered components
for the same time step. The first components of the state vector are equivalent to the input
vector. Additionally, each node receives a recurrent connection from itself with time
delay of one unit. Since no node receives delayed connections from nodes other than
itself, this represents locai recurrence. It is the loca: »¢:srrence which introduces temporal
dependency. Note that unlike the SLFOCC and SLSCfCC memories, which have delayed
connections from other nodes, all temporal connections in an LRSI memory are strictly
locally recurrent.  This type of memory is used in Fahlman's Recurrent Cascade
Correlation (RCC) which has been studied by Fahlman {1991), Giles et al. (1995) and
Kremer (1995b; 1995c; in press).

Once again, we shall not show recurrent connections in our diagram, but rather an
additional set of Context Units whose activations are equai to the state units at the previous

time step. The computation of state vector in an LRSI memory is defined:
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FL s¢e-1), x(0, W )li]

x () Vi ||x]
6( W.f,x{1@5(:)[1..i—1]EBs‘°(:—1)[i]} ) otherwise

where W' represents a submatrix of W containing the connections to the state nodes. The
architecture which computes this state vector is depicted in Figure 2-9. Each component
of the state vector is computed based on the values of all lower numbered components at

the same time step and the value of the component itself at the previous time step.
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2.5.2 Computing the Output Vector
We now examine the instantiations of the output vector function, fA s, w). In
particular, we discuss the three leading alternatives: Zero Layer, One Layer, and Two

Layer output functions.

Zero Layer (0-Layer)

The simplest possible manner in which to compute the output of an STCN given
the state vector, is simply to use the state vector (or a portion thereof) as the output. For
simplicity we assume that the first few components of the state vector represent the output.

This simple way of computing STCN output can then be easily represented:

SL S, W) = SO0

This zero layer approach to output computation has been used by Giles et. al. (1991,
1992a, 1992b, 1992c), Goudreau et. al. (1994), Liu et. al. (1990), Miller and Giles
(1993a), Omlin and Giles (1994a, in press), Shaw (1990), Sun et. al. (1990b, 1991),
Watrous and Kuhn (1992a, 1992b), Das, et al. (1993), Giles et. al. (1990), Sun et. al.
(1990a, 1993), Zeng, et al. (1994) and Williams and Zipser (1989). It is illustrated in
Figure 2-10(a).
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Figure 2-10: Output functions of STCNs. (a) Zero Layer. (b) One Layer. (¢) Two
Layer.

One Layer (1-Layer)
The next output fi'nction, iicreasing in complexity, computes the output vector
using an additional layer of nodes. These nodes are massively parallelly ccnnected to all

the nodes that form the state vector, giving an output function defined by:

1]

L5, Wy = 6( wixliDs(ni ).

Where W2 is a matrix of connection weights between the state and output nodes (W’ is a
submatrix of W). This one layer approach to output computation has been used in Elman’s
SRNs (1988, 1990), Pollack's RAAM (1989, 1990), Maskara and Noetzel's AARNs
(1992) and Fahlman's RCC (1991), and is illustrated in Figure 2-10(b).

Two Layer (2-Layer)

Of course, the logical next step is to use a two layer system where:
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LS, W) = 8( WxG( Wxs(t) ) ),

and W? and W are submatrices of W representing the weights to the second and third
layers of connections respectively. This approach to computing output is employed by
NETtalk (Sejnowski and Rosenberg, 1986) and by Naréndra and Parthasarathy (1990), and
is illustrated in Figure 2-10(c).

Note that we assume here, that “end” symbols used to mark the end of sample
sentences durtw -Taining and operation, are part of the language. If STCNs are used to
render gra:i:-:i-0 ality judgements, and if end symbols are used, these network could be
interpreted as having an additional layer of processors in the output layer, since during
processing of the end symbol, the last symbol of the string goes through an extra step of
processing. For the remainder of this dissertation, we shall assume that end symbols, if

supplied, are part of the grammar which is to be induced.

2.57.3 Computing the Weight Change
All of the weight change functions described here and in the STCN literature are
based on the gradient descent algorithm: changes are made in proportion to the negative

of the error gradient in weight space according to the equation:
AW = -c-VE

where c is a smal!, real-valued constant, and e is the total network error defined in Section

2.2.6. Expanding e gives:

AW = -c‘V{E {%lli(r)liz}}.
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In conveat . nal connectionist learning tasks, it is computationally convenient to evaluate
this funcuon piecewise over time, by making weight changes after presenting each input
pattern. For grammatical induction problems, this type of evaluation becomes a necessity
since there are a potentially infinite number of sample strings, and hence it would be
impossible to wait until all had been presented before adjusting the weights. Thus, weight

changes are made according to the formula:
Aw =Y Aw),
4
where:
1 =
AW(@) = - V{—IEW)%}.
® = -eV{_iEwr

Note that, in the limit as ¢ approaches 1/, the two definitions for weight change are
equivalent. However, for larger values of ¢ the value of the gradient will change between
time steps and thus result in differences between the two definitions. The implications of
these differences will be described later (see Section 6.2.3). We now turn our atiention

to evaluating the gradient:

3
! ow,

viLiEor = X 1, y LY E 0.

2 1y 27
where I;; represents a matrix whose components are all 0 except for the (i /)" component
whose value is 1, and where W, ;and E, represent the (i /) and k" components of W and £

respectively. This equation can be simplified to:

OE (1)
oW,

k]

ViLiEn® =Y 1, Y
2 1 k

J
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and further to:

— . aV (t)
1 — ~ k
VI=EWI* = 4 - .

&

The weight change functions discussed below differ in ﬁow they compute the final gradient
in this equation.
Full Gradient Descent (FGD)

The calculation of the final gradient can be computed by expanding the numerator
to its maximum extent (using the function which computes state) and then computing the

gradient of the resulting expression:

Ay, (1) ) )
£ . S FLTLILTL oo L 5(0), X(0), W ) ...,

8WIJ 6W‘J

x(t-2), W), x(t-1), W), x(0), W), W), .

If the state function does not use the value of W (i.e. WIT memory) the computation of this
derivative is quite simple since it reduces to the computation of the weight gradient in
error space in a non-recurrent network.

If the state function does use the value W, then the computation of this derivative
is much more complicated due to its recurrent nature. A number of different algorithms
have been suggested to perform the computation in an efficient manner. Typically, the
approaches trade space complexity for time complexity. Since all of the different
algorithms compute the same result, and since we will not be doing a space or time
complexity analysis of the learning algorithms used by STCNs, we will not discuss
differences in implementations of full gradient descent and refer the interested reader to

Rumelhart, Hinton and Williams (1986) for a description of back-propagation through
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time (BPTT), Williams and Zipser (1988, 1989) for a description of real-time recurrent
learning (RTRL) and Schmidhuber (1992) for a BPTT/RTRL hybrid approach. Full
gradient descent has been used by Sejnowski and Rosenberg (1986), Giles et al. (1991,
1992a, 1992b, 1992c), Goudreau et al. (1994), Liu et al. (1990), Miller and Giles (1993),
Omlin et al. (1994a, in press), Shaw (1990), Sun et al. '(1990b. 1991), Watrous and Kuhn
(1992a, 1992b), Das, et al. (1993), Giles et al. (1990), Sun et al. (1990a, 1993), Zeng et
al. (1994) and Williams and Zipser (1989). The equation for weight change for full
gradient descent is:

o

fawl E@, W, 7)) = X I, 3 G ()-F(0) S A SLILSL
J k 1y

FL500), x(0), W) ... x(¢-2), W), x(t-1), W), x(1), W), W).

Teacher Forcing (TF)

If a STCN's state (or part thereof) is equivalent to the STCN's previous output,
then a simplification of full gradient descent, called teacher forcing, can be used. CIIR
memories use a state based on output. Also, any STCN which uses a zero-layer output
function uses part of the output vector as its state vector. In either of these cases, it is
possible to substitute the value of the desired output, y "(1), for the value of the actual
output, y(s), whenever the latter occurs in the state vecior’s computation. This can
eliminate a great deal of the recurrence in the equation and thus simplify computation.

The equation for teacher forced weight update is:

d

ow,,

e £ 5(0), 5(0), W POV Or
x(t-2), W )Iy‘(t 2y 2;

f(l“l), 1774 )%)7(! 1)y l)'

), W )|y'(t) y“(n’ W .

Fal E, W 5()) = 30 Ly X G650 —— L SLSL L
[N k
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Inwitively, this is equivalent to assuming that the network has already learned to produce
the desired output for all previous time-steps when computing the weight change for the
current time step. This approach has been used by Williams and Zipser (1989), and

Narendra and Parthasarathy (1990).
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Truncated Gradient Descent (TGD)

Another approach to simplifying the gradient computation is to not completely
expand the equation to compute output, prior to computing the derivative. This is referred
to as truncated gradient descent. In this method the current state is evaluated, but the

previous state is not. This results in the following weight update equation:

Tanl E@, W, 7)) = EJ: I, ga‘;(:)—y‘k«))g;,— SALLSU-1), A0, W), W ).
"

Since this equation is only an approximation to the true gradient, an STCN using this
technique is not guaranteed to follow the true gradient in its search for a local minimum.
Further, a local minimum in the error space defined by this function may not correspond
to a local minimum in the original error space. This form of weight adjustment has been
used by Elman (1988, 1991a), Cleeremans, Servan-Schreiber and McClelland (1989),
Servan-Schreiber, Cleeremans and McClelland (1988, 1989, 1991).

Auto-Associative Gradient Descent (AAGD)

By definition, the memory vector of an STCN must contain some information about
previous inputs. This implies that the weights in the network should be adapted to
preserve input information in the memory vector. One way of accomplishing this task is
to explicitly force the state to encode the input and the previous state by using an encoder
network. An encoder network is a non-recurrent network consisting of an input layer, a

hidden layer and an output layer. The input and output layers are of equal size while the
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Figure 2-11: An encoder network.

hidden layer is smaller (see Figure 2-11). The target vector for the output units is always
equivalent to the current input vector. By training the output layer to reproduce the input,
the smaller hidden layer adopts a compressed representation of the input.
Auto-associative gradient descent weight update works by creating an additional
set of "extraction” units. These units are connected to the state units and are trained to
reproduce the previous state. It is the difference between the activations of the
"extraction” units and the activations of the input units which defines the error which is
minimized by gradient descent. By training in this fashion, the state computation becomes
the first step of an encoder network and is thus trained to encode the previous state as a
compressed encoding of input and previous state. Once training is complete, the
extraction units can be removed, leaving a network which encodes state. If the vector z(r)

represents the activations of the "extraction units", then the weight update equation is:

fawl EWO, W, 7)) =

Y 1, Y Go-5m)
1y k

ow W oxfA fA Se-1), By, W), W ))’
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where W * is an additional matrix of weights which is simultaneously trained according

to the equation:

0 - G( W *xy(1) ).

ow,

AW = 3 I, Y (F,(0-5,0)
iy k
AAGD weight update is used by Maskara and Noetzel (1992), and Pollack (1989, 1990).

Stack Learning (SL)

Adjustment of weights in a STCN with a continuous stack (see Section 2.5.1 above)
can be accomplished by means of a full gradient descent procedure. In order to
incorporate the use of the stack an additional error term is added to the conventional
Euclidean error measure. This additional term is equal to the square of the stack length
at the end of a string, /, and is only added for legal strings. This implies that after
processing any legal string, the stack should be empty. The length of the stack is equal
to the sum of the activation values of the action node throughout the string, so it is

possible to minimize error, by back-propagating the error from the action node. Then,
— - 1 —
SawC E@, W, 30) ) = ——eVAEOF + 1%).

Stack Learning has been studied by Das et al. (1993), Giles et al. (1990), Sun et al.
(1990a, 1993), and Zeng et al. (1994).
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Other Work Describing Weight Change Functions
For an excellent discussion of weight update functions in the context of non-linear

adaptive filtering, the reader is referred to Nerrand, Roussel-Ragot, Personnaz, Dreyfus,

and Marcos (1993).

2.5.4 Computing the Change in State Vector Size

Finally, we turn our attention to the process which adjusts the size of the state

vector.

Manual Architecture Changes (MAC)

By far the most common zpproach to adjusting state vector size to a given problem
is a manual trial-and-error procedure. That is, some heuristic is used to guess a suitable
number of state nodes, and only if those nodes are unable to learn the given problem, are
more added. No attempt is made to find a minimal number of nodes. Note that thé new
architecture does not reuse any of the weight parameters of the previous architecture; all
weight values are re-initialized when the state vector size is changed. (In Chapter IV, we
will explore the relationship between the number of state nodes and the computational

power of a network. This will serve as a guide to choosing an initial network size.)

Automatically Incrementing Nodes (AIN)

The inadequacy of the trial-and-error method described led Fahlman (1991) and
Giles et al. (1995) to devise automatic incremental architecture adjustment techniques.
These techniques create new processing units in the network to represent memory as
required. If the network is unable to learn by weight adjustment, then new state nodes are
individually added. Each state node is connected to compute the desired state function

used by the STCN. Unlike the trial and error approach, existing weights are maintained,



Chapter 2 58

while new nodes to and from tiie new node are initialized to small values. In this sense,
the short-term memory is increased until it is large enough to solve the problem. Figure
2-12 illustrates the growth of the memory in a LRSI memory, growth in other types of

memory can be done similarly.
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Figure 2-12: Adding nodes to a LRSI Memory. (a) Before any nodes are added. (b)
After one node is added. (c) After two nodes are added. (d) After the addition of a third
node.

2.6 SPECIFIC DESIGNS

We have now developed a relatively simple taxonomy based on four dimensions:
(1) how the state vector is computed, f.( 5(r-1), x(1), W ), (2) how the output vector is
computed, j;( 5(1), W ), (3) how the change in weights is computed, £, ,.( f(t), W, x(*) ),
and (4) how the change in state vector size is determined, Saa( E(@t) ). We also identified
points along each of the dimensions. For the state vector computation, we presented seven
alternatives: Window In Time (WIT) memories, Connectionist Infinite Impulse Response
Filter (CIIR) memories, Single-Layer First-Order Context Computation (SLFOCC)
memories, Single-Layer Second-Order Context Computation (SLSOCC) memories,
Connectionist Pushdown Automata (CPA) memories, Connectionist Turing Machine
(CTM) memories, and Locally Recurrent State and Input (LRSI) memories. For the
output vector computation, we identified three specific functions: Zero Layer, One Layer,
and Two Layer. We also formally described five methods for updating the weights in a

STCN: Full Gradient Descent (FGD), Teacher Forcing (TF), Truncated Gradient Descent
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(TGD), Auto-Associative Gradient Descent (AAGD), Stack Learning (SL). Finally, we

identified two methods for computing the state vector size: Manual Architecture Changes
(MAC) and Automatically Incrementing Nodes (AIN).

Since the dimensions are independent, it is possible to impleiiient a STCN using
any one of the seven state vector functions, any one of the three output functions, any one
of the five weight update functions, and any one of the two state vector size functions.
This yields a total of (7 X3 X5X2) 210 possible STCN designs. Of these designs, eleven
have been reported in the literature. We now present these specific STCNs in a table
indicating where along each of the four dimensions they lie. The STCNs in the table
represent the leading approaches in the literature. There are clearly far more STCNs that
could be added to such a table, but our goal is not to enumerate all STCNs. Instead, we
present this table so that readers familiar with the more common architectures can quickly
identify their place in the taxonomy and thus become more familiar with the taxonomy
itself. If necessary any given STCN could be added to this table by answering the four
design decision questions described in Section 2.5.

Because of its ability to describe all leading STCN approaches to grammatical
induction, this taxonomy exhibits descriptive adequacy. Table 2-7 depicts the relationships
between a number of STCNs. Those STCNs which share points along one or more of the
dimensions answer one or more of the fundamental design decision questions in the same
manner. In the following chapters, we will discover that the answers to the design
decisions have important implications on the types of problems to which a grammatical
induction system can be applied. Thus, thosc STCNs having matching entires under each
of the dimension headings in the table will also have similar effectiveness for various
grammar induction tasks. In this sense, the new taxonomy exhibits predictive power.

Since only eleven of the 210 possible STCN designs have been studied so far, the

taxonomy also identifies 199 new STCNs which have not been previously proposed. By
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focusing the consequences of the four basic design decisions which must be made for any
grammatical induction system, the analysis in the following chapters provides insights into
how these as yet unimplemented designs might perform for various types of problems.
The ability to perform these types of formal analyses is another example of the predictive

power of the new taxonomy.
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2.7 CONCLUSIONS

In this chapter we described the architectures and operation of a wide variety of

spatio-temporal connectionist networks (STCNs). Rather than adopting an architecture-by-
architecture approach, we described the networks by developing a taxonomy describing
four fundamental design decisions. This permitted us to present many architectures more
efficiently since there is considerable overlap in design decisions across different networks.

Prior to developing the taxonomy we identified three properties that make
taxonomies effective. The properties are: descriptive adequacy, simplicity, and predictive
power. We examined three taxonomies developed by Mozer (1993), Horne and Giles
(1994), and Tsoi and Back (1994), and found that the recent flurry of research into STCNs
has made them obsolete in terms of both predictive power and descriptive adequacy.

In response, we developed a new taxonomy based on four dimensions: how the
state vector is computed, how the output vecior is computed, how the change in weights
is computed and how the change in state vector size is determined. These four dimensions
were chosen because they represent the fundamental design decisions that any STCN
grammatical indu—tion system must address.

Next we identified specific points along these four dimensions. Along the state-
vector dimension we identified: Window In Time (WIT) memories, Connectionist Infinite
Impulse Response filter (CIIR) memories, Single-Layer First-Order Context Computation
(SLFOCC) memo.ies, Single-Layer Second-Order context computation (SLSOCC)
risemories, Connectionist Pushdown Automaton (CPA) memories, Conneciionist Turing
Machine (CTM) memories and Locally Recurrent State and Input (LRSI) memories.
Along the output dimension we identified Zero Layer, One Layer and Two Layer
functions. On the weight-change dimeasion we defined Full Gradient Descent (FGD),
Teacher Forcing (TF), Truncated Gradient Descent (TGD), Auto-Associative Gradient

Descent (AAGD) and Stack Learning (SL). Finally, we described Manual Architecture
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Changes (MAC) and Automatically Incrementing Nodes (AIN) as points on the change-in-
state-vector-size dimension. With each point on each dimension we reterenced some of
the networks which employed each approach.

Finally, we presented a table summarizing where along each dimension the major
STCN approaches lie. Because the new taxonomy is the only one developed around the
fundamental design decisions which must be addressed by any grammatical induction
system, it has superior predictive power when used to compare and analyse how different
STCNs might perform on various grammatical induction problems. Furthermore, the fact
that the taxonomy is based around the principles of grammatical induction systems, rather
than specific existing STCN designs, implies that it will easily accommodate future STCN
designs as well. In the following chapters, we shall re-examine the points alohg the
dimensions of our taxonomy in relation to the problem domain of grammatical induction.
This will allow us to draw conclusions and make predictions about the performance of
many different existing networks as well as future designs on grammatical induction

problems based on their positions within the taxonomy.
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Chapter I1I:
The Problems of Grammatical Induction

3.1 INTRODUCTION

This chapter provides a formal description of the grammatical induction problem
from the perspective of a search through an hypothesis space. It defines much of the
terminology for the chapters which follow, and describes, in general, how STCNs can be
applied to grammaticai induction. Additionally, this chapter identifies the inherent
difficulties of the problem and the technignes which have been proposed to overcome these
difficulties. By providing a comprehensive survey of grammatical induction results
relevant to the design of new grammatical induction systems, this chapter identifies the
important issues that connectionist approaches to the problem must address. In the past,
the designers of connectionist grammar induction systems have typicaily relied on

empirical data to develop or select STCN for various problems. By contrast, this chapter
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identifies important theoretical principles which can be applied to connectionist grammar
induction systems to make the induction problem tractable and efficient.

This chapter is organized as follows. Section 3.2 examines grammatical induction
from the perspective of a search algorithm. Section 3.3 identifies the nature of the
algorithm’s search space by defining formal languages. grammars and computing
machines. Section 3.4 present’s Chomsky’s hierarchy of languages, grammars and
machines. Section 3.5 relates connectionist grammar induction systems to the symbolic
systems which the hierarchy was designed to classify. Section 3.6 compares the
hypothesis spaces of connectionist induction systems to their symbolic counterparts. And,

Section 3.7 examines the inherent difficulties of grammar induction.

3.2 GRAMMATICAL INDUCTION AS SEARCH

It has been argued that all of the problems of Artificial Intelligence (Al) can be
solved within a :zarch paradigm: “heuristic search, based on a sound understanding of the
underlying structure of the problem domain forms the core of A.l. programs™ (Rich,
1983). “Problem solving takes place by search in the problem space—i.c., by considering
one knowledge state after another until (if ihe search is successful) a desired state is
reached” (Newell and Simon, 1972, p.811). Under this interpretation. any task in Al can
be reduced to a three step process. First, define a hypothesis space containing all possible
configurations of the relevant <bjects. Second, identify a decision procedure for
determining whether an arbitrary point in the hypothesis space constitutes the goal of the
task. And, third, define a procedure for traversing the hypothesis space until a goal state
is discovered.

If one adopts this view, then the domain of Al commoniy referred to as game
playing becomes a search of the space of possible game moves for the optimal move, given

the current state of the board. Theorem proving becomes a search for a path from a set
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of axioms to a lemma which is to be proven. Planning becomes a search for a set of
actions that will transform the current state of the world into a desired state.

Grammatical induction can also be described in the context of search. However,
this task is complicated by the fact that evidence accumulates over time. That is,
throughout the induction process new information (typically strings labelled as either legal
or illegal) is continually supplied to a classification mechanism which in turn is continually
required to produce a "best guess" for the sou.ce grammar, consistent with the entire
history of information presentations.

When interpreting grammatical induction as search, the hypotrhesis space is the
class of all possible grammars which can be represented and therefore learned. In order
to be successful, a grammatical induction system should eventually converge to a single
grammar in this hypothesis space which is consistent with all input string presentations.
This single consiseis grasnmar represents the goal of the search. The traversal algorithm
takes the form :+* some wnsumeration process which explores possible grammars
seauentially umtil thic &l grammar is found. This defines the hypothesis space, goal
sw:ection procedure and space traversal algorithm for the grammatical induction problem.
5oid (1967) termed this task language identification in the limit.

Since this thesis uses spatio-temporal connectionist networks (STCNs) as an
implementation mechanism for grammars, when we view grammatical induction as search,
our hypothesis space is the set of connection weights which can be induced for a given
STCN. Ir *:ig chapter we show that the size of this space makes brute force search either
impossible or intractable for all interesting problems, "1t suggest two alternatives: (1)
reducing the size of the hypothesis space, and (2) adjusting the order in which the space
is traversed (this corresponds to an heuristic search). Techniques to effectively implement

both of these alternatives based on available a priori knowledge are presented and

discussed.
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3.3 LANGUAGES, GRAMMARS AND MACHINES

Before delving into the subject of grammatical induction in STCNs, we first

examine some important theoretical results which apply to both symbolic and connectionist
grammatical induction systems. Gold (1967) has shown that it is possible to perform some
preliminary analyses of the complexity of the induction problem by examining only
hypothesis spaces without discussing particular search algorithms. These analyses give
some insight into the overall difficuity of grammatical induction and provide motivation
for improved induction techniques which are the focus of this thesis. In order to
understand the complexity of grammatical induction by STCNs, we must first des .ibe
some hypothesis spaces used by important classical (symbolic) grammatical induction
algorithms. Then, we can compare the hypothesis spaces of STCNSs to those employed in
the symbolic paradigm. Having done this, it will then be possible to apply scme of the
conclusions reached by Gold to STCNs.

We adopt Hopcroft and Ullman’s (1979, p. 2) definition of a language:

An alphabet is a finite set of symbols. A (formal) language is a set of

strings ¢f symbols from some one alphabet.
The symbol X is cornmonly used to represent the alphabet. In the study of formal
languages it is common to consider the simplest possible alphabets: e.g. £ = {1} or X
= {0,1}. A simple language on ‘%¢ iatter alphabet might be the language of all strings of
even parity: L = { €, 0, 00, 11, v00, 011, 101, 110, 0000, 0011, 0101, 011G, 1001,
1010, 1100, 1111, ... }. Here € represents the null string. Note that this is an infinite
language. That is, there are an infinite number of strings of even parity.

Grammars can now be viewe¢ a; descriptions of languages. As ke {197 =
221) points out "it is a celebrated observation that natural and computer languages are

infinite, even though they are used by beings with finite memory. Therefore the languages
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must have some finite characterization, such as a recipe or program for specifying which
sentences are in a given language.” We shall thus use the following definition:

A grammar is a finite characterization of a potentially infinite language.
In particular, we shall wse Backus-Naur Form (BNF) to represent all grammars. As per
Hopcroft and Ullman (1979), a BNF grammar is a 4-tuple, G=(V, T, P, S). Here, V
represents a set of symbols, known as variables, which are used as intermediate results in
the derivation of grammatical strings. Similarly, T represents a set of symbols, called
terminals, which defines the alphabet of the language represented by the grammar. P is
a finite set of rules,-called productions, defining how strings of variables and terminals can
be rewritten as other strings of variables and terminals in the process of deriving a
grammatical string. Specifically, productions take the form a-p, where o and B are
strings of symbols from the Kleene closure of the union of variables and terminals:
(VUT)’. Lastly, S is a special variable called the start symbol.

The process of deriving a legal string for a given grammar can now be formalized:
First, the current string is initialized to be the start symbol. Second, strings of symbols
within the current string matching the left-hand-side of one of the productions are replaced
by the right-hand-side of the production. The second step is repeated until only terminal
symbols remain in the current string, at which point, the current string represents a legal
string. Formally, we define the rewrite operator, =, by asserting that yoa6=ypd if and
only if the production a—f3 is a member of P. This operator represents one application of
step two in the process above. Multiple applications can then be represented by the
retlexive-transitive rewrite operator, %, which is defined as the reflexive and transitive
closure of =. Applying the latter operator to the start symbol, the language described by
the grammar, G, is defined as:

LG) ={w | wisin T and S3w |}
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The parity language presented above could be characterized according to the tollowing re-

write rules:

S-4

A-¢€

A-04

A-1B

B - OB

B- 14

Having defined languages and grammars, we now define contputing machines as
follows:

A formal computing machine is a logical mechanism which partitions

strings of symbols from some alphabet into a finite number of categories.
For the parity example above, we can imagine a computational device with two states or
categories -which we shall call even and odd. The device shall start in the even state. As
a string is presented to the device, one symbol at a time, the device switches state each
time a 1 symbol is encountered, and remains in the same state each time a 0 symbol is
encountered. This is illustrated in Figure 3-1. Clearly, after presentiny the device with
a string from the language L it wili find itself in the even state, whereas for any string not
in L, it will find itself in the odd state. If we label the even state as an accepting state (and
the odd state as a rejecting state), then this device is an acceptor of the language L.
Similarly, any formal computing machine which classifies strings according to whether or
not they belong to a particular language, is said to be an acceptor for that language. Of
course other types of computing machines with categories other than grammatical and non-

grammatical are also possible.
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Start

1

Figure 3-1: A logical mechanism to compute the parity of a string of O's and 1's.

3.4 THE CHOMSKY HIERARCHY

The most influential person in the field of formal language theory has without a
doubt been Noam Chomsky. In attempting to describe natural languages, Chomsky has
suggested four broad classes of grammars. These are: the regular grammars (Chomsky
type-3), the context free grammars (Chomsky type-2), the context sensitive grammars
(Chomsky type-1) and the unrestricted grammars (Chomsky type-0). We now briefly
describe three of these classes of grammars, the languages they describe, and the machines
which act as acceptors for these languages. We omit the context sensitive grammars
~ (Chomsky type-1) since these play no important role in the discussions which follow. The
summary, here, is intended to serve as a brief introduction to the ideas and notation which
will be used throughout this chapter. Readers requiring a more detailed discussion of

automata theory, and formal grammars are referred to Hopcroft and Ullman (1979).

3.4.1 Regular Grammars, Regular Sets, Finite State Autcinata
The regular grammars represents the simplest class in the Chomsky hierarchy. All

grammars in this class can be written in terms of rewrite rules in the form:
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A-wB or A-w

where 4 and B are non-terminal symbols, and w is a (possibly empty) string of terminals.
The class of languages defined by regular grammars are called regular sets. A class of
formal computing machines, called finite state automata. accept exactly the regular sets.
A finite state automaton can be defined, in the notation of Hopcroft and Ullman (1979).
by a 5-tuple ({2, X, 8, g4, F). Here, Q is a finite set of states, X is the alphabet of the
language, & is a transition function mapping Q %X X to Q, q,£Q is the initial state and FcQ
is a set of accepting states. The automaton then renders grammaticality judgements as
follows: First, the current state is set to g,. Next, symbols are presented to the
automaton, one at a time. The automaton uses the current state and the current input
symbol as inputs to the transition function 8, and thus computes its next state. This
process repeats until all symbols have been presented. Finally, the membership of the
current state in the set of states, F, is determined. If the current state is in F, then the
string is accepted, otherwise it is rejected.

The parity language, presented earlier, is accepted by a finite state automaton

whose 5-tuple is given by the following values:

Q=1{40 49}
= =1{01)}

g, if (g29,/\s=0)V(g=q Ns=1)
8(g.s) = .

g, if(g=g,As=1)V(g=q,As=0)
F=1{q,}

Note that this automaton’s behaviour corresponds to that previously illustrated in Figure
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3.4.2 Context Free Grammars, Context Free Languages, Pushdown Automata

The next class of grammars in the Chomsky hierarchy is the context free graramars
(Hopcroft and Ullman, 1979). Giammars in this class can be represented by rewrite rules
of the form:

A-8
where A represents any single non-terminal and B represents any string of terminals and/or
non-terminals. Clearly this definition implies that aii r<gular grammars are context free
(but not vice-versa). The form of the rewrite rules implies that for all non-terminal
symbols, 4, the way in which A is rewritten does not depcad on any symbol occurring to
the left of A. The languages described by context free grammars are context free
languages. In order to accept or reject these languages, a more complicated device than
a finite state automaton must be used. One such device is ¢ Pushdown automaton.

A Pushdown automaton (Hopcroft and Ullman, 1979) :s a finite state machine with
an additional unbounded memory. This memory takes the form of a stack of symbols.
Access to the stack is in a last-in first-out (LIFO) order. Formally, the Pushdown
automaton can be represented by a 7-tuple: (Q, 2, I', 8, q,, Z,, F). Here, once again, Q
is a finite set of states, X is the alphabet of the language, q,=Q is the initial state, and F=zQ
is the set of accepting states. Additionaily, I' is the alphabet of symbols which are placed
on the stack, Z,eT is the sia: %'s ipitial symbol. Finally, & is a mapping from Q X (T U
{€}) x T tc finite subsets of @ x I,

The automaton then operates as follows: First, the current state is set to g, and the
stack contents are set to Z,. Then, the current state, g, the current input symbel, s, and
the current symbol at the top of the stack, vy, are used as the parameters of the function 8.
This function computes a set of state/stack-symbol-string pairs The automaton then
selects any one of these pairs. The selected pair's state becomes the automatons next state,

and the selected pair's stack-symbol-string is placel onto the stack (left-most symboil
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highest). Note that if the function & returns a non-empty set when € is used as the input
symbol, then the automaton can change state and add symbcls to the stack without
"consuming" input symbols. The computation of the function & continues in this manner
until all symbols have been used. Finally. the current state of the automaton is compared
to the set F. If F contains the current state and the stack is empty. then the string is
accepted.

Note that this is a non-deterministic process. The function 6 can provide n:ure than
one possible next state which is selected by tls. automaton. This implies that
grammatically judgements made by such a device v..v from application to application.
The overall grammaticality of a string is determiincd by examining whether or not the
Pushdown automaton ever accepts the string. As Hopcroft and Ullman (1979, p. 107)
point out, the equivalence of the languages accepted by Pushdown automata and defined
by context free grammars "is somewhat less satisfactory [than the equivalence of the
languages accepted by finite state automata and defined by regular grammars}, since the
pushdown automaton is a non-deterministic device, and the deterministic version accepts
only a subset of all CFL's".

As an example of a context-free language we consider the language of all strings
chosen from the alphabet {’(,")’}, in which the parenthesis are balanced: L = { €. (). (()).

00, (O, (MO, 00), 00O, ... }. This language could be characterized by the following

set of re-write rules:
S— A,
A-E€,
A - (A)A.
Note that, for all rules, the left-hand size is always a single non-terminal. It is also

possible to define a pushdown automaton which accepts exactly this exampie language:

0 = {99},
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z - e,
T =)

(qoaY,(/) if q l‘qo /\ S (;
(9,,8) if g=g, ANs=YY Ny="

8(g.5,Y) = -
(g,.8) if g=g, Ns=Y Ny-e
(q,,Y) if g=q,

Z, = €,

F = g,

This pushdown automaton works as follows: States g,. and ¢,, represents accepting
and rejecting states respectively (this is implied by the definitions of X, and F). The
automaton starts in an accepting state (this follows from the definition of F). Case otic of
the definition of the *ransfer function, &, implies that whenever an opening bracket is
presented to the automaton, it is pushed onto the stack above whatever symbol happens to
be there. Similarly, case two implies that whenever a closing bracket is presented, one
of the opening brackets already on the stack is popped. If there are no opening bracikets
available on the stack the automaton enters the rejecting state (this is case three). Once

in the rejecting state, the automaton never leaves it (casc four).

3.4.3 Unrestricted Grammars, Recursively Enumerable Languages, Turing Machines
The final class of grammars in the Chomsky hierarchy is the class of unrestri”2d
grammars (Hopcroft and Ullman, 1979). As the name implies, grammars in this class can
be represented by rewrite rules of the form:
a-B
where o and B are arbitrary strings of terminals and/or non-terminals with the only

provision being that e#€. This implies that regular grammars and context-free grammars
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are both subsets of the class of unrestricted grammars. The languages that are defined by
unrestricted grammars are called recursively enumerable, and can be accepted by Turing
machines (Turing, 1936). A Turing machine is a finite s*ate automaton with an additional
memory in the form of an infinitely long tape of connected cells into which symbols are
written. The tape has a left-most cell, but no right-most cell. Unlike the automata
previously discussed, the input symbols for a Turing machine are coded on the tape (as
opposed to being presented to the machine by a specific input mechanism). Formally, a
Turing machine can also be described by a 7-wple: (Q ,Z, T, 6, q,, B. F). Here, again,
Q is a finite set of states, X is a set of input symbols, g,€0 is the start state, and FcQ /
is a set of accepting states. For the Turing machine, T" is the set of allowable tape
symbols; £ must be a subset of I'.  The transition function 6 is a mapping from Q X I to
Q x T' x {L,R}. The special symbol, B, represents a blank symbol, BcI', BcX.

The Turing machine operates as fcllows. First, the current state of the machine
is set to equal g,. and the string whose grammaticality is to be judged is written on the tape
in consecutive cells starting with the left-most cell. The remaining infinity of cells on the
tape all contain the blank. B, symbol. The tape-head of the machine is placed over the
left-most cell. Then, the machine's current state and the symbol under the tape-head are
used as parameters for the function 8. The function returns a state, a tape symbol and
either an L or arn R. The state represents the next state of the machine. The tape symbol
is written into the cell under the tape-head (replacing the current symbol). Then, the tape
head is moved one cell left or right as indicated by the L and R respectively. The function
6 is continuously recomputed until the automaton enters an accepting state. This
formulation implies that, for any legal string, the Turing machine will halt in an accepting
state. Conversely, for illegal strings, the machine wili never halt.

According to the Church-Turing hypothesis, Turing machines are believed to

represent the ultimate in computational power. If this hypothesis is correct, then there can
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Grammar  regular grammar, context free grammar, unrestricted grammars,
Chomsky type-3 Chomsky type-2 Chomsky type-0

Rewrite all productions are of A-B, where Aisa  a-B. where a and 8 are

rule the form A-wB or single variable arbitrary strings of

description A-w where A and B grammar symbols with
are variables and w is a+€

a (possibly empty)
string of terminals

Language  regular sets context-free languages recursively enumerable
languages
Machine finite state automata Pushdown automata Turing Machines

Table 3-1: Grammars, languages and machines of the Chomsky hierarchy.

be no machines capable of rendering more powerful grammaticality judgements than a
Turing machine. As for an example of a Turing machine, the reader is referred to
Example 7.1 from Hopcroft and Ullman (1979). In the interest of brevity, we do not
reproduce this example here. We have thus described a set of three mutually inclusive

classes of grammars. These three girammars, their languages, and formal computing

machines are¢ summarized in Table 3-1.

3.4.4 Other Formalisms

It might seem strange that throughout this discussion, we have considered a
language to be merely a set of legal strings. Many would argue that there is more to
language than "mere"” syntactic validity. For example there is the matter of attaching
meaning to legal sentences. But, just like grouping strings as legal or illegal, attaching
meaning can also be viewed as a type of categorization. In fact, it is possible to design
a grammar in which only those strings with a certain meaning, say A4, are considered legal.
An automaton implementing this grammar would scive as an "A4 detector”. If such a

system were coupled with other automata to identify meaaings B, C, D, etc., then the
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result would be a system which assigns meaning to strings. Of course, rather than
relegating thesc individual categorizations to separate computing devices, it might be more
efficient to integrate them in the same device. This is the principle behind a Moore
machine.

A Moore machine is a device whose output is not limited to a binary signal
(accept/don't accept), but rather to an alphabet of output signals. Formally, a Moore
machine can be represented by a six-tuple (Q, I, A, &, A, g,). As usual, Q is a finite set
of states, X is the input alphabet, 6 is the transition function mapping Q X Z to Q, and
q, is the start state. Additionally, ‘A represents the output alphabet (or the categories into
which all strings are classified), and A is a mapping from Q to A which gives the output
associated with each state. It is apparent that the formulation of a Moore machine is
predicated upon the finite state automaton in the sense that both assume a finite number
of imernal states. It would of course be possible to similarly expand pushdown automata
and Turing machines to devices which use a more complex output alphabet.

Since a Moore machine is not restricted to a binary output, it can perform more
complex computations than the grammaticality judgements of acceprors. For example, a
Moore machine can generate legal strings based on an enumerating input. Such a device
is referred to as a generator by Gold (1967). Alternatively, a Moore machine is able to
implement a mapping from the sequence of input symbols seen up to a particular point in
time to an arbitrary output symbol at that time. Gold (1967) calls this type of device a
black box. The use of a connectionist equivalent to a Moore machine is discussed in
Section 6.4.

Another type of formal computing machine that uses an arbitrary output alphabet
is a Mealy machine. Unlike a Moore machine, which computes its output based solely on
its current state. a Mealy machine computes its output based on its previous state and the

input symbol. Hopcroft and Ullman (1979, Theorem 2.7) have shown the equivalence of
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Mealy and Mocre machines. For this reason, and in the interest &f consistency. we will
not discuss Mealy machines (focusing instead on Moore machines) for the remainder of
this thesis.

Another important class of computing machines which has not yet been discussed
is stochastic automata. We delay discussion of these untit Chapter VI where we will deal
with STCNs that capture frequency information. Finally, we should note that many other
types of formal computing devices have been proposed; we have discussed only a small

subset of computational formalisms, here. A comprehensive discussion would lie beyond

the scope of this dissertation.

3.5 SPATIO-TEMPORAL CONNECTIONIST NETWORKS AND
THE CHOMSKY HIERARCHY

Classical machine induction systems are typically based on the Chomsky hierarchy
in the sense that the hypothesis spaces searched by these systems represent grammatical
classes from the hierarchy. Having identified the hypothesis spaces of classical machine
induction systems, we must now consider how STCNs fir within the hierarchy of formal

machines proposed by Chomsky.

3.5.1 Finite State Automaton Equivalence

It has long been known (Kleene, 1956; McCulloch and Pitts, 1943; Minsky, 1967)
that networks of threshold units are capable of computing arbitrary boolean functions. If
connected recurrently with delays, networks of such units are thus able to implement
arbitrary finite state automata (and Moore machines). Since the logistic units used in
modern connectionist networks are able to approximate threshold units to arbitrary degrees
of precision, it must also be the case that STCNs are able to approximate finite state

automata (and Moore machines). (A more formal proof of the ability of STCNs to
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implement (rather than approximate) finite state automata (using a SLFOCC memory as
an example) can be found in Section 4.4.2.) Thus. STCNs can be considered at least as
powerful as finite state automata.

Note that, at this point, we are investigating only STCNs in general. Specific
network designs must, of course, conform to certain connectivity schemes and node
numbers. These restrictions can limit the computational powei of these networks to
subsets of finite state automata. The restrictions on particular network designs will be

examined in Chapter IV.

3.5.2 Unbounded Memory

The next question to ask is whether or not STCNs are more powerful than finite
state automata. The intuitive answer to this question is "no", since STCNs are simulated
using digital computers with finite memory resources and thus could never represent the
unbounded-length stack of a Pushdown automaton, or the unbounded-length tape of a
Turing machine. Of course, the same argument can be applied to any digital computer.
Yet. Hopcroft and Ullman (1979, p. 147) point out that "the Turing machine is equivalent
in computing power of the digital computer as we know it today” (Hopcroft and Ullman,
1979, p. 147). This apparent contradiction arrises due to the fact that the notion of a
digital computer does not place bounds on the amount of available memory (even though
individual digital computer all have limited memory). The difference in computational
power between a specific digital computer and digital computers, in general, represents
a competence/performance distinction.

In the same way that Turing machines can be viewed as equivalent in computing
power to the general class of digital computers, they can be also viewed as equivalent to
STCNs as well. In order to achieve the computational power of either a Turing machine,

or a Pushdown automaton, the system must posses some form of unbounded storage
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resource. In digital computers, this takes the form of memory circuits. In an STUN, there
are two forms of unbounded storage resources: state nodes and activation values. While
individual STCNs all require specific numbers of nodes and finite sets of activation values
that these nodes can assume, STCNs in general have no such limitations. Either or both
of these unbounded resources can be used to prove Turing machine equivalence.

Specifically, Franklin and Garzon (1988). and Sun et al. (1990b, 1991) have
proven that STCNs with infinite numbers of state nodes are (like digital computers infinite
amounts of memory) Turing machine equivalent. These approaches all use increasing state
node numbers as the unbounded resource; and it comes as no surprise that an infinite
number of nodes can provide unbounded memory. There is one important drawback to
implementing unbounded memory in this manner: when nodes are added to a network,
connections must also be added so that the new nodes can interact with the rest of the
network. The added connections, of course, must be carefully weighted in such a way as
to allow the new nodes to operate in a manner consistent with the existing nodes.

A less intuitive, but simpler way of providing STCNs with unbounded memory
resources is to increase the set of activation values that the state nodes can assume. Thus
far, we have assumed that the nodes in STCNs act as threshold elements. That is, they
compute their activation based on the weighted sum of connected node activations.  If the
sum is greater than a certain threshold, the nodes activation is 1 otherwise it is 0. While
units v.ith logistic activation functions are capable of operating in this fashion (i.¢. when
weight values are large), this is by no means their only mode of operation. The range of
the logistic activation functions encompasses all real numbers between O and 1. This
implies, that a single state node can encode far more than a simple boolean value. In fact,
if we assume that activation values are real numbers (and not just finite precision

approximations to real numbers), then a single node has the representational power of the



Chapter 3 32

infinite stack in a Pushdown automaton. In the foilowing section, we explore how this is

possible.

3.5.3 Implementing a Stack in a Connectionist Network

The stack of a Pushdown automaton (see Hopcroft and Uilman, 1979) can be
viewed as a potentially infinite sequence of symbols. Each symbol must be chosen from
a finite set of symbols, called the stack alphabet of the automaton, I'. If the alphabet size
is finite, then every symbol can be represented as a binary vector of finite width. For
example, consider the stack aiphabet: T’ = {a, b, c, d, e}. These five symbols can be
encoded as binary vectors of length 3. E.g.: 4=(0,0,0), $=(0,0,1), ¢=(0,1,0),
d=(0,1,1), e=(1,0,0). Having encoded ikie symbols in this fashion, the sequence of
symbols on the Pushdown automaton's stack can then be represented by a sequence of
binary vectors. Thus, if the symbols on the stack are, (b, a, 4, ¢, a, ¢, e, ...), then these
symbols would be encoded as: ((0,0,1), (0,0,0), (0,1,1), (0,1,0), (0,0,0), (0,1,0), (1,0,0),
... ). Note that these representations can be of unrestricted length. If the punctuation in
the previous binary sequence is removed, then the binary string,
001000011010000010100..., is formed. If we now precede the binary sequence with a
decimal point, e.g. 0.001000011010000010100..., then a real valued number in the range
[0.1) is created. Since nodes with sigmoidal activation functions are capable of
representing arbitrary numbers in this range, these nodes must also be able to represent
Pushdown automata stacks containing arbitrary numbers of symbols. Of course, the
premise here is that activation values are continuous.

The fact that a single node in a STCN is able to represent the contents of a
Pushdown automaton's stack by no means implies that STCNs ha ¢ the computational
power of a Pushdown automaton. In order to be Pushdown automaton equivalent, a STCN

must also have a control mechanism capable of popping symbols from, and pushing
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symbols onto the stack. This involves computing the next value of the state node
responsible for storing the stack contents based on the nodes previous value as well as the
STCN input vector. Since connectionist networks are known to be able to compute
functions in L, (the space of functions whose coordinate functions are square-integrable
on the unit cube) over the n-dimensional vector space [0,1]” to an arbitrary degree of
precision, and since L, contains all "discontinuous functions that are piecewise continuous
on a finite number of subsets of [0,1]"" (Hecht-Nielsen, 1990, p. 133), they can
approximate the function to update the stack node to an arbitrary degree of precision. This
implies that STCNs in general are as powerful as Pushdown automata. Of course, specific
network designs with limited (finite) node numbers are not capable of universal function
approximation and thus are not cayable of performing arbitrary pop and push operations
on the simulated stack. The @aerictions on particular network designs will be examined

in Section Chapter IV.

3.5.4 Turing Machine Equivalence

Having argued that STCNs are capable of representing the contents of Pushdown
automata stacks, we now turn our attention to the most powerful computing device in the
Chomsky hierarchy: the Turing machine. In order to represent the state of a Turing
machine, a STCN (which is not equipped with an external tape) must be able to represent
not only the infinite tape, but also the Turing machine's tape head's position on the tape.
Perhaps the easiest way to represent both is to use a two-stack machine. As noted by
Hopcroft and Ulkiman (1979), a two stack machine can simulate a Turing machine by using
one stack for the contents of each side of the tape relative to the tape head. If the tape
head moves left, then a symbol is popped from the ieft stack and pushed onto the right
stack. Similarly, if the tape head moves right, then a symbol is popped from the right

stack and pushed onto the left stack. Thus two stacks can be used to represent a Turing
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machine and its infinite tape. As noted above, one stack's contents can be represented by
one node in a STCN. Therefore, STCNs must also be capable of simulating Turing
machines. This was first shown by Pollack (1987).

We have now identified the overlap between the languages, grammars and
machines in the Chomsky hierarchy and those which can be implemented or approximated
by connectionist networks under various assumptions (e.g. fixed precision vs. real-valued
activation values, finite vs. infinite numbers of nodes). Specifically, we have seen that
STCNs with finite node numbers and node precisions are computationally as powerful (in
general) as finite state automata, and thus, can implement regular grammars and accept
regular set;. By contrast, STCNs with either unbounded node numbers or real-valued
node activations are Turing machine equivalent, being able to implement unrestricted
grammars and accept recursively enumerable languages. The inability of specific STCNs
to provide unbounded memory resources will cause us to focus primarily on the

relationship between STCNs and finite state automata, in the chapters which follow.

3.5.5 Hypothesis Spaces in Connectionist vs. Symbolic Systems

Despite the common representational powers of STCNs and classical computational
devices, there are important differences between the hypothesis spaces used in
connectionist grammatical induction systems as compared to symbolic ones. The
traditional search space for the grammatical induction task is discrete. That is, there exisi
a countable number of distinct machines which can be induced. This is due to the fact that
there are only a finite number of output symbols which can be generated, and only a
countable number of states which such a machine could assume. By contrast,
connectionist models use real numbers to represent output symbols and states. Since real
numbers are not countable, the set of all possible spatio-temporal connectionist systems

must also not be countable. Even if connection weights are represented using finite
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precision, the vast number of possible connectionist networks of a given size makes their
enumeration infeasible in practise.

This critical difference between traditional and connectionist systems results in
widely different methods for searching the hypothesis space ot STCNs. In the traditional
system, it is possible to systematically search the space, machine by machine, always
ruling out those machines which cannot produce the grammatical output strings and those
which can produce non-grammatical strings. Note that, as Gold (1967) has shown, this
systematic search procedure does not guarantee that the correct solution will be found after
a finite length of time.

In a STCN, a systematic search which explores all options is not possible due to
the uncountable number of possible STCNs. Instead, the space of inducible machines is
sampled at various points until a STCN which produces an crror less than a given
tolerance with respect to the grammatical and non-grammatical strings is found. For this

reason, enumerative hypothesis space exploration procedures cannot be applied to STCNs.

3.5.6 Training Networks and Grammatical Induction

Since the weights, W, of a STCN define the language that it can accept (or
generatz), they can be considered a grammar for that language in the sense that they
represent a finite characterization of a potentially infinite language. Similarly, an STCN
which performs a pattern classification based on a string of input symbols is a format
computing machine since it partitions strings of symbols into a finite number of categories.
We, thus view the process of adapting the weights of a network to suit some problem as
a type of grammatical induction.

We will not examine the issue of translating a grammar which is represented as a
set of weights into a grammar represented as, for example, rules of Backus-Naur form in

this dissertation. Nor will we examine how a given STCN might be translated to a formal
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computing device of the types described in Section 3.4. The translaiion of connectionist
representations of languages to traditional ones has been extensively studied by Das, Giles
and Sun (1993), Giles et al. (1921), Miller and Giles (1993), Omlin, Giles and Miller
(1992), Sun et al. 1993, and Watrous and Kuhn (1992), among others.

3.6 THE GRAMMAR INDUCTION PROBLEM
3.6.1 The Importance of Grammatical Induction

The term grammatical induction is easiiy associated with learning human
languages, but grammars can be used to describe far more than the intuitive notion of a
language. It is perhaps this rnisleading connotation that led King Sun Fu, one of the
foremost grammatical induction researchers in the classical paradigm, to use the term
"syntactic pattern recognition” to describe this field instead (Fu, 1982). We will continue
to use the words grammatical induction, but also point out that grammars can be used to
describe many different things.

Specifically, grammatical induction has been applied to: modelling natural
language learning, process control, signal processing, phonetic to acoustic mapping,
speech generation, robot navigation, nonlinear temporal prediction, system identification,
learning complex behaviours, motion planning, prediction of time ordered medical
parameters, and speech recognition, to name but a few. In fact, grammatical induction can
be used to induce anything that can be represented by a language. In this sense, it

represents a prototypical form of induction.

3.6.2 The Difficulty of Inducing Chomsky Grammars
Having identified scme fundamental hypothesis spaces for grammar induction in
the symbolic paradigm, and having shown that STCNs can use these same hypothesis

spaces, we now examine the consequences of using the Chomsky grammar classes as
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hypothesis spaces for grammatical induction. We begin by considering the types of
information available to guide the search. Gold (1967) has ideatitied two basic methods
of information presentation, "text" and "informant". A rext is a sequence of legal strings
containing every string of the language at least once. Typically, texts are presented one
symbol after another, one string after another. Since most interesting languages have an
infinite number of strings, the process of string presentation never terminates.  An
informant is a device which can tell the learner whether any particular string is in the
language. Typically the informant presents one symbol at a time, and upon a string's
termination supplies a grammaticality judgement.

Gold (1967) investigated the problens uf language identification in the limit. He
asked the question: Which classes of languages are learnable with respect to a particular
method of information presentation? A class of languages is learnable if there exists an
algorithm which repeatedly guesses languages from the class in response to example
strings. and "Given any language of the class. there is some finite time after which the
guesses will all be the same and will all be correct” (Gold 1967, p.447). The algorithm
does not keep guessing forever or, more precisely, it settles on a particular language and
that language is correct.

Gold showed that this is a surprisingly difficult task. For example, if the method
of information presentation is a fex?, then only finite cardinality language: can be learned.
Finite cardinality languages consist of a finite number of legal strings, and are a small
subset of the regular sets {(the smallest set in the Chomsky hierarchy). In other words,
none of the language classes in the Chomsky hierarchy are text learnabice.

The situation is somewhat more promising if both positive and negative examples
from the language are available. Under informant learning, the regular sets, and context-

free languages are both identifiable in the limit, however, the recursively enumerable

languages remain unlearnable.
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The fact that regular sets and context-free languages are learnable under the
informant learning paradigm by no means implies that such learning is practical. Pinker
points out that "in considering all the finite state grammars that use seven terminal symbols
and seven auxiliary symbols (states), which the learner must do before going on to more
compiex grammars, he must test over a googol (10'®) candidates” (Pinker 1979, p.227).
This reveals that even for tiny computational machines (seven states) the machine induction
problem is often intractable if no a priori knowledge is available to remove some of the
machines from consideration.

The conclusion which must be drawn from Gold and Pinker's observations is that
grammatical induction is an exceptionally complex task. So complex, in fact, that it
cannot be solved as originally posed by Gold. In this and the following chapters, v shall
present a number of modifications to the original probiem which overcome the inherent
difficuities implied by Gold and Pinker's conclusions and thus allow the problem to be

solved by tonnectionist networks.

3.6.3 Tractable Learning

The difficulty of any search depends on the size of the hypothesis space that must
be explored as well as any available evidence to narrow down that space (in addition to
the difficulty of generating and testing new hypotheses). In this chapter we focus on how
a priori knowledge about a particular problem can be used to make the search more
efficient. We begin by considering a simple example: Suppose you are unable to find
your car keys. We shall assume that the keys are somewhere in the house. A simple
search algorithm might involve searching the house from top to bottom—starting on the
upper floor and moving down to the basement. This represents an exhaustive brute-force
search. Now suppose you know for a fact that you have not been upstairs or downstairs

since you last used the keys. In this case, it would be sensible to reduce the search space
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from the entire house to just the ground floor. This would no doubt lead to a more

efficient search and you would expect to find your keys sooner. Thu.. rwsfucing the search
space increases search efficiency. Of course, there is a drawback i@ a re* wd search
space. Suppose you had forgotten that you had in fact travelled upstairs. and left the keys
there. Now your search of only the ground floor would be guaranteed to fail. A reduced
hypothesis space is useful only if does not exclude the goal.

Another way to speed search is to order or bias the hypothesis space based on some
heuristic. Suppose you are an habitual car key loser and that you keep track of where your
keys turn up after each search. The results of such record keeping might be something
like: coat pocket: 53 %, hallway shelf 27 %, kitchen table: 16%, beside telephone: 3%,
in refrigerator 1%. If you know that most of the time the missing key has been located
in your coat pocket, then it makes sense to begin your search there. That is, it is logical
to order your hypothesis space and bias it in favour of the coat pocket. But just like a bad
hypothesis space reduction can hinder search, a bad ordering can also impede an effective
search. For example, using the hypothesis ordering designed for your car keys to find a

pitcher of orange juice would clearly be very inefficient.

3.6.4 Reducing and Ordering in Grammatical Induction

Naturally, the techniques of hypothesis space reduction and ordering described in
the previous section are applicable to search in general—not just car key searches. As
such, they can be used to make the task of grammatical induction solvable or tractable.
The notiorn of hypothesis space reduction in the context of grammatical induction refers
to searching for a grammar consistent with the training data in a class which is smaller
than the class of unrestricted (Chomsky type-0) grammars. Symbolic grammar induction
systems have used the class of context-free grammars (Chomsky type-2) and the class of

regular grammars (Chomsky type-3) as reduced hypothesis spaces. However, the faci that
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Gold showed that even the smallest of these classes is not learnable based solely on rexr
training data, combined with the fact that most interesting grammars belong to the larger
classes, have made these restrictions unpopular techniques for hypothesis space reduction.

A more useful technique is to devise a class of grammars which lies tangential to
Chomsky's hierarchy. Such a tangential class contains some grammars which are not
regular, and some grammars which are not context-free but contains only a subset of the
unrestricted grammars. By using a class tangential to the Chomsky hierarchy as one's
hypothesis space it will be possible to represent some of the grammars which only fall into
the unrestricted class, while at the same time reducing the size of the hypothesis space so
as to identify members of the space based on input data more rapidly. Of course, as with
the car key example, it is critical to choose an hypothesis space which contains those
grammars which are to be learnable.

Restricted hypothesis spaces in symbolic grammatical induction systems are
typically described in terms of restrictions on the type of grammar rules they emvloy.
These restrictions on rules are similar in nature to those provided in Row 2 «f Table 3-1.
Figure 3-2 illustrates the Chomsky hierarchy of languages and a tangential class of
languages representing a reduced hypothesis space. Ovals and their contents represent
classes of languages.

This type of hypothesis restriction was first suggested by Chomsky (1965). While
working on the problem of human language acquisition, he proposed that only those
grammars possessing the basic properties of natural languages should be considered as
candidates for grammatical induction. By weighting the naturalness of languages based
on a specific set of properties, he proposed an induction algorithm which considered only

those languages which were both consistent with the training sample, and had a sufficiently
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Figure 3-2: The Chomsky hierarchy and a reduced hypothesis space.

high weight.

Another popular technigue for restricting the space is to employ the universal base
hypothesis. Under this hypothesis different grammars are defined by means of a two-step
process. First, a universal base grammar which all different grammars use is defined.
Then, a restricted class of rewrite rules are employed to translate from the symbols of the
universal base grammar to a variety of derived grammars. The grammars derived in this
fashion form a reduced hypothesis space which can then be used to define a grammatical
induction algorithm. This approach is furiamental to Wexler and Culicover's (1980)

model of human language learning and will be discussed in greater detail in Sections 4.2

and 4.3.
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Just as hypothesis space restriction can be used to simplify the search for a
grammar, hypothesis space ordering has also been applied to grammatical induction within
the symbolic paradigm. In this case, a working hypothesis about the grammar (from the
hypothesis space) is used as a starting point. Then, as new evidence about the grammar
is presented in the form of training data. a change to the hypothesis is made. The nature
of this change is defined by some heuristic. That is, certain types of hypothesis changes
will be favoured over other changes even if both are consistent with the training data. The
chosen hypothesis change results in a new working hypothesis, and the process is repeated.
Typically all of the possible hypothesis changes are evaluated and the resulting hypotheses
are evaluated according to some weighting scheme. Then only the highest valued new
hypothesis is selected as the new working hypothesis. This is analogous to a best first
search algorithm.

A weighting scheme could be based on complexity, for example, by assigning a
weight inversely proportional to the number of auxiliary symbols (states) used by each
grammar. This weighted selection process effectively orders the grammars of the
hypothesis space. While searching for a grammar which is consistent with the training
data, this ordering favours certain solutions over others. Ideally, good solutions to the
problem to which the grammatical induction system is applied, would be considered first,
and thus, learning would be speeded. We will give a specific example of a symbolic

weighting scheme in Section 6.4.4 and compare it to a similar connectionist hypothesis

space ordering scheme.

3.7 CONCLUSIONS
In this chapter we provided a description of the grammatical induction problem
from the perspective of a search through a space of candidate grammars called an

hypothesis space. In doing so, we have defined much of the terminology which will be
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used in the following chapters. Additionally, we have explored the inherent difficulties
of grammatical induction, and reviewed two broad solutions that Gold and others have
proposed to overcome them: hypothesis space reduction and hypothesis space ordering.
Since the difficulties of grammatical induction identified by Gold (1967) are theoretical.,
rather than implementation-specific, any connectionist solutions to the grammatical
induction problem must also address these issues. By identifying important theoretical
principles which can be applied to connectionist systems to make the induction problem
tractable and efficient, this chapter gives the designers of STCNs a new set of principles
around which to design their systems. The theoretical approach is particularly significant
since, in the past, many connectionist researchers have focussed on empirical performance
data to select or develop their networks. The following chapters apply the theoretical

principles identified here to specific network designs.
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Chapter 1IV:

A Priori Knowledge and the Selection of Appropriate
State and Output Functions

4.1 INTRODUCTION

While the previous chapter related formal languages and automata to STCNs in
general, this chapter examines the restrictions that particular STCN designs place on the
languages and automata which they can represent. This is a critically important issue since
an hypothesis space which is too small can rule out ideal solution grammars, while an
hypothesis space which is too large can easily make a problem unsolvable or at the least
intractable. Thus, a connectionist’s choice of STCN design directly influences inducticn
speed and success. In the past, most connectionist networks have been designed based on
principles like ease of implementation or extension from existing work, rather than on the

classes of languages and automata that they can induce.
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This chapter presents new formal proofs describing the representable languages and
automata for five of the seven possibie memory functions identified in Chapter I (for the
remaining two functions, previous results are applied to draw conclusions about
computational power). Specifically, we prove a new result describing the types of
languages implementable by window-in-time memories. Then, we prove that single-layer
first-order context computation memories can implement arbitrary finite state automata and
that they can do so using n-p nodes (where n is the number of states, and p is the number
of input symbols). We also prove that single-layer second-order context computation
memories are incapable of implementing arbitrary automata using binary state encodings.
Next, we prove that a locally recurrent state and input memory is incapable of representing
finite state automata whose state transitions form cycles of length greater than two under
an input signal consisting of two alternating symbols. We also prove that if the input
signal to a LRSI memory oscillates with period, n, then the LRSI memory can represent
only those finite state automata whose state transitions form cycles of length /, where
nmod!=0 if n is even and 2nmod/=0 if n is odd. Finally, we prove that a one-layer output
function, together with a single-layer first-order context computation memory can compute
output of any automaton.

In addition to discovering and proving these new results, this chapter presents a
table relating memory-types, output functions, formal-computing machines and number
of nodes. This is the first synthesis of this kind and caa serve as an essential guide to
anyone intending to use a STCN for grammatical induction. By using the table rather than
principles like ease of implementation or extension from existing work, researchers will
be able to choose and design networks based on the classes of languages and automata that
they wish their system to be able to learn (i.e. the hypothesis space of their search
algorithm). Since a judicious choice of hypothesis space can make an otherwise

unsolvable problem solvable or an otherwise intractable problem tractable, the
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relationships between STCN designs and representable languages is clearly essential to any
conneciionist grammar induction system.

Choosing a particular state function may seem like an unusual way of restricting
the hypothesis space. Perhaps this is because many authors use only one state function in
their research (often a function designed by themselves) and give little or no justification
for the choice. Yet as we shall see below, the choice of function critically influences the
representational power of the STCN and hence the hypothesis space available to the
learning algorithm. This chapter discusses the effect on hyposhesis space of each state and

output function presented in the taxonomy of the previous chapter.

4.2 WINDOW-IN-TIME (WIT) MEMORIES
4.2.1 WIT Machines

We begin with the Window in Time (WIT) memory function. The Window in
Time (WIT) approach constrains the machines which can be induced by using a state
vector which is fixed in the sense that it is always formed by the vector concatenation of
the current input symbol and the previous n-1 input symbols:

5() = x(1) D x@t-1) D - D 5s(-n+1)
Here, n represents the size of the temporal window on previous inputs. Tkis function is
very restrictive in the sense that the weights of the network cannot be adjusted to influence
the content of the state vector, s5(¢+). This state function is similar to the symbolic
approach which uses a fixed base grammar to generate non-terminals (described earlier).
Both define a fixed grammar which generates symbols (in this case, concatenated input
vectors) which represent the non-terminals of a base grammar.

More formally, let us assume that the machine uses p input symbols denoted by x,,

Xy, X2, ... » X5y, plus a blank symbol denoted b. In the notation of Hopcroft and Ullman

(1979), the input alphabet is:
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Z = {Xp X1y X, .0y Xp1, b }
Each of these input symbols is represented by a vector of input activations, in the STCN.
If the input vector at time, ¢, is denoted x(r), then the state of the WIT memory,

50 = x() P x¢t-1) D - O 5(¢t-n+1),
can be symbelically represented by labelling states with the strings of previous inputs. In
Hopcroft and Ullman's (1979) notation:

0 = { X(OX@E-1X(-2) ... X(t-n+1) | X(t')eZX }
where X(7) represents the input symbol at time . The state transition function, which is
fixed throughout training simply consists of right-shifting the previous state (X(£)X(¢-1)X(-
2) ... X(t-n+1)), and appending it to the new input symbol X(z+1)eX. This is represented
as:

S(X(MOX(-DX(-2) ... X@t-n+1), X(z+1)) = X+ 1DXOX(@-1)X(1-2) ... X(@-n+2)
This transition function is implemented by shifting the internal memory vector in the WIT
memory. Finally, the initial state of the WIT memory is simply the state whose string
representation consists of n blank symbols:

qo = bbb...b
The WIT memory is then simply a finite automaton represented as the four-tuple:

M=(Q,Z%,56,q)
We purposely omit any references to accepting states or cutput functions since these are
specified by the STCNs output function, not the memory function. The restrictions
presented here present a formal specifications of the types of machines which can be
implemented in a WIT memory. Giles, Horne and Lin (in press) were first to recognize
that Kohavi (1978) had previously called this subclass of finite state automata definite
machines. We have rewritten Kohavi’s formulation of definite machines in order to be

consistent with the notation of Hopcroft and Ullman (1979) used throughout this

dissertation.
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4.2.2 WIT Languages

We now consider the languages which an STCN with a WIT memory can accept.
Specifically, we will identify a set of restrictions on grammatical rewrite rules such that
the resulting language can be accepted by a WIT memory. Since we already know that
these memories are a subset of finite state automata, we can restrict ourselves to
grammatical rewrite rules of the form:

A -wB or A-w
where A4 and B are non-terminals and w is a (possibly empty) string of terminals. If the
input window is of width n, then it is possible to place the following additional restrictions
on the rewrite rules. We resirict ourselves to rules which satisfy one of the following two

forms:
(1) S - w, wis a string of at most n terminals.
(2) S - aS. where a is a single non-terminal symbol.
The restrictions on rewrite rules can be described by the logical formulae:
1y  v={s}
(2)  YweT (((S-w) € P) = (lwlsn))
3)  YweT (((S-wS) € P) = (Iwl=1))

@)  VpeP @ws.t. p=(S~w) V p=(S-wS) )

Together, these four rule restrictions guarantee that strings in the language have a temporal
dependence of at most n symbols. In other words, if a grammar satisfies all three rules

above, then it can be implemented by a WIT memory. We state the relation between the
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grammars representable by a WIT memory and the restrictions on their rewrite rules in

our first theorem:

Theorem 4-1: Any grammar, G=(V,T,P,S), satisfying the conditions, V = {S}, VweT"
( (S-w) € P) = (wl<n) ), YWeT ( ((S-wS = £ = (jw]|=1) ) and VpeP (Iw s.t.

p=(S-w) V p=(S5-wS) ) identifies a language which can be accepted by a STCN with a
WIT memory.

Proof: We prove this theorem by showing that any grammar satisfying the four criteria
must be implementable by a definite machine, and hence a network with a WIT memory.
This is done by noting that the second and third rules imply that the grammaticality of any
string depends only on (at most) the last n symbols of the string. Since (at most) the last
n symbols presented to a definite machine define its state, an appropriate function to map
state to output will always be able to accept exactly the set of grammatical strings specified

by a grammar conforming to the four rules. This proves Theorem 4-1.03

Conversely, any grammar defining a language accepted by a WIT memory can be

represented in such a way that it conforms to all four rules above. This is our second

theorem:

Theorem 4-2: For every language accepted by a STCN with a WIT memory, there exists
a grammar, G=(V,T,P,S), that describes the language and satisfies the conditions: V =
{S}, YWeT" ( ((S-w) € P) = (wl<n)), vYweT "(((S~wS) € P) = (jw|=1) ), and VpeP (Iw
s.t. p=(S-w) V p=(S-wS) ).
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Proof: Since the output function of a definite machine computes a grammaticality
judgement based on the value of its state, and since the state encodes the last n symbols
presented to the machine, it must be the case that the last i symbols in a string define its
grammaticality. If every set, w, of n symbols that can terminate a legal string is included
in a rule of the form S-w, and if rules of the form S-~aS are added for all symbols, a, in
the language, then the grammaticality of every string will depend only on its last n

symbols.[]

These two new proofs identify, the languages which networks with WIT memories can
accept.

For a finite state vector size, n, the WIT memory clearly places great restrictions
on the types of grammars which can be induced. Most importantly, a WIT memory is
incapable of classifying two input strings into different categories if they end in » identical
symbols. -An example of such a task might be to classify strings consisting of the digits
"0" and "1" according to parity (as originally described in Section 3.3). Since it is aiways
possible to devise two strings of length n+41 which differ only in their first symbol, no
window size will ever be adequate for this task. This reveals that, for any finite state
vector size, the WIT memory limits the types of grammars which can be induced. Of
course, reducing the size of the state vector further limits the types of state functions which
can be represented since state vector size dictates how far back in input history the
memory is allowed to look. Alternatively, if the number of state nodes in increased to
infinity, a WIT memory's representational power encompasses not only that of a finite

state automaton, but also that of a Turing Machine.
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4.3 CONNECTIONIST INFINITE IMPULSE RESPONSE FILTER
(CIIR) Memories

The connectionist infinite impulse response filter (CIIR) memory is more powerful

than the WIT memory since the latter is a special case of the former. The content of a
CIIR memory also constrains the classes of machines which can be induced by using a
state vector which is fixed. More formally, let us assume that the machine uses p input

symbols denoted by x;, x;, X, ..., X,;, plus a blank symbol denoted &. In the notation of

Hopcroft and Ullman (1979), the input alphabet is:

= {X0 X1, X2, ... X, b }

Each of these input symbols is represented by a vector of input activations, x, in the
STCN, with x(r) representing the input vector presented to the network at time, 7. Unlike
the simple WIT memory, however, the CIIR memory uses both previous input and
previous output symbols to compute its state. If there are g output symbols denoted y,,
then the output alphabet is:

A = { Yos Yis Y2r ooy Yy }

Each of these output symbols is represented by a vector of output node activations, y', with
y(t) representing the output vector presented to the network at time ¢. The state of the
CIIR memory:

§(t) = x(1) D x(t-1) D - D xt-n-1) B y-1) B j-2) D - P y(r-m)
can then be symbolically represented by labelling states by the strings of previous inputs
and outputs. In Hopcroft and Ullman's (1979) notation:

0= { XOX@-1)X(@-2) ... X(t-n-1)Y(t-1)Y(2-2)Y(t-3) ... Y(-m) | X(t')eX, Y(2')eA}
The state transition function, which is fixed throughout training simply consists of adding
the new input symbol to the previous z-1 input symbols which are added to the previous

m output symbols.. This is represented as:

SX(OHX(-1)X(2-2)... X(t-n-1)Y(t-1) Y(2-2) Y(1-3)... Y(t-m) X(1 + 1)) =
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X+ DX@OX(2-1)X(2-2).. . X(t-n-2)Y() Y(2-1) Y(1-2) Y(1-3).. . Y(t-m-1),

This transition function is implemented by right-shifting the internal memory vector in the
CIHIR memory. Finally, the initial state of the CIIR memory is simply the state whose
string representation consists of exactly n+m blank symbols:

go = bbb...b
The CIHIR memory is then simply a finite automaton represented as the five-tuple:

M=(Q,%,8,4,q)
The restriction presented here present a formal specifications of the types of machines
which can be implemented in a CIIR memory. Once again, Giles et al. (in press) were
first to recognize the relation between CIIR memories and what Kohavi (1978) has called
finite memory machines. We have rewritten Kohavi’s formulation in order to be consistent
with the notation of Hopcroft and Ullman (1979) used throughout this dissertation.

Finally, it should be noted that the WIT memory is a special case of a CIIR
memory where m=0. Thus, the conclusions about FSA and Turing Machine equivalence

as the number of nodes is increased to infinity apply.

4.4 SINGLE-LAYER FIRST-ORDER CONTEXT
COMPUTATION (SLFOCC) MEMORIES
4.4.1 SLFOCC Memories Cannot Compute Arbitrary State Functions

Single-Layer First-Order Context Computation memories are far more powerful
than CIIR memories. This is because the state update furction uses a matrix of weights
as a parameter. This weight matrix gives the state update function flexibility to compute
a wide variety of functions. The matrix, however, is not powerful enough to represent
arbitrary mappings from input and context to state. Goudreau et al. (1994) proved this by

considering the following example which we now present in a notation consistent with the

rest of this thesis.
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Suppose a SLFOCC memory is to switch between two states based on whether or
not strings of "0"s and "1"s presented to the memory have an even number of "1"s or an
odd number of "1"s. Without loss of generality, we let §;, and 5, represent the states
assumed by the SLFOCC memory in response to strings with even and odd numbers of
"1"s respectively. We also let x; and x, represent the vectors corresponding to input
symbols "0" and "1" respectively. Now, in order to compute its next state correctly, the
state function of the SLFOCC memory would have to be defined by:

fL 5o X W) = 5,

JL 5, x, W) =5,

JL 5, % W) =5,

L5, x. W) =5,

Combining these equations gives:

fL Sg Ko W) = fLA S 5, W)

fLSp X W) = fL5, X W)
But, since the state function is computed by multiplying the weight matrix by the
concatenation of the input and state vectors and passing the result through a monotonic
squashing function, the squashing function can be eliminated to give:

wx{1®Px, D5} = wxi1Dx, D5}

wx{1Px,Ds} = wx{1D5x,Ds,}

"

We now let W represent the left-most column of the matrix W (the part that is multiplied
by 1), W* represent the middle part of the matrix W (the part which is multiplied by
components of the vector x, and W* represent the remainder of the matrix. It is now
possible to express the two equations as:

Wikl + Wixxy + W5, = W'x1 + Wixx, + W*xs,,

W'ixl + W xx, + W*x5, = W'xl + W xx, + W*xs,.

Subtracting the second equation from the first yields:
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Wixx, - W xx' = W*xx, - W *xx,,

which implies:
W"xfo = W‘xf, .
Similarly, adding the equations results in:
W *xs, = W'xs,.
But, since
§, = O( W'x1+W <3 +W x5, ) = O( W'x1+W *xx +W *x5, ) = §,,
iL 1s impossible to distinguish between even and odd states. In this manner, Goudreau et

al. showed that no SLFOCC memory (regardless of state vector size) can assume one state

for all even strings and a different state for all odd strings.

4.4.2 SLFOCC Memories Can Represent Arbitrary Finite State Automata (Moore
Machines)

At first, the inability to compute arbitrary state functions might seem like a serious
drawback to SLFOCC memories, were it not for the fact more than one automaton can
compute a given state function. In other words, different automata can be functionally
equivalent. If a connectionist network design is to be as powerful as the class of finite
state automata, then only one automaton out of each set of equivalent automata must be
representable. Goudreau et al. (1994, have argued that, for every automaton that cannot
be directly implemented in a SLFOCC memory, there exists another automaton whose
behaviour is identical to the original, but which uses a different representation of internal
states and can thus be realized by a SLFOCC memory. They call this technique "state
splitting” because it assigns several states in the new automaton the same role that was

played by a single state in the original device.



Chapter 4 105
The Parity Problem Revisited

Goudrean et al. (1994) give an example of how “state splitting™ can be used to
solve the parity problem. We now present this result in a notation that is consistent with
the remainder of this chapter. It is possible to split the "odd" state 5, into two new "odd"
states according to whether or not the last symbol presented was a "0" ora "1". We shall
use 5, and 5|, to represent odd strings ending in "0" and "1" respectively. Then the state
function must compute:

JL5p X W) =5,

JL 55 X, W) =5,

SL Sip T W) =

JL 50 X1 W) = 5,

L5 X W) =5,

JL 5, X W) =5,

1] |
12 [J

|
[

Clearly there are many possible solutions to this set of equations. One solution is:

(3 5

+5 -2 -2 -2 +5
W=k
-1 42 +2 +2 -2

where k is a large constant.

Proof:

+5 -2 -2 -2 +5 1 0 +6k 1 -
(5,,%,, W) =0 k-( )*{1 =3 = =
S(50:X 0, W) =0( 1 42 +2 42 -2 69( 1)6% 1) ) ([ +k )) ( l) %o



' Chapter 4 106

- . +5 -2 -2 -2 45 1 1 _[ -1k o) .
PP G T T [ B

o __ +§ -2 -2 -2 +5§ 1) 0}, | +8k (1 -
ff(sw'xo’W)_o(k( -1 +2 +2 +2 —Z)X{IGB[ 0) ®[ 1)})—0(( —k )~\ 0 e
+§ -2 -2 -2 +5 ]\ 1 *k\ ( 1
(5%, W) =0 k'( ) f h=0 =)
j;(su)’xl W) ( -1 42 +2 +2 -2 x q 0) e% 0) ) (( +3k) ) \ 1 %o
I 6k(+5 2 -2 -2 +5) naf ) © by =5( +8k). (1) _-
- Flad's 1) = . x =0 = =
L= | 12 w2 1) \1 ~k /) o) P
+5 -2 -2 -2 4+5 0\ 1 +k ) (1
(5, .5, W) =0k i1 h=a = . |=5
j_"(s”,x, )=0( (_1 +2 +2 +2 —Z)X ®( 1)®[ 0) ) (( +3k)) \ 1 o

Thus, the given values for x,,, x,, §,, §,,, 5;,. and W satisfy the requirements placed on
the state equations for the parity problem, proving that the parity problem can be solved
by a SLFOCC memory.(J

Arbitrary Automata

Minsky (1967) argued that any finite state automaton could be implemented by this
type of state splitting approach in a recurrent network of threshold elements. In order for
a non-temporal connectionist network with continuous activation units to represent a
function operating on sets of discrete symbols, an encoding relating the discrete symbols
to points in the continuous vector space is required. Specifically, there must exist a
mapping from input symbols to input vectors, as well as a mapping from the output
vectors generated by the network to the output symbols generated by the function.

Similarly, for a STCN with logistic units to represent the state transition function
of a finite state automaton, there must exist two functions mapping: (1) the input symbols

to input vectors, and (2) the state vectors to a state symbols. Additionally, the state
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function, f., must correspond to automaton's state function. encoded according to the two

functions. Formally, we say that:

Definition: A SLFOCC memory, defined by the weight matrix W, "represents” the state
transition function 6 : Q X I - Q of an automaton, if there exists a function
f,.; : 1 — [0,1}”, mapping input symbols to input vectors, and if there exists a function
—"'

Jrg ® [0,1]" - O, mapping state vectors tc state symbols, whose inverse is denoted 7/,

such that &(q,)) = S UL S (@), S, (D), W) ).

We can now prove:

Theorem 4-3: A SLFOCC memory can represent the staie transition function of any finite

state automaton.

Proof: The proof relies on a state splitting technique based on input patterns. That is, if
a finite automaton has n states, q,, q;, g2 -.., 4,1, and p input symbols, iy, i,, i, ... iy,
then an equivalent automaton can be created with »-p states, which we shall label using
a pairing of one of the state symbols of the original automaton with one of the input
symbols, i.e. O={(qy, ip), (Go. i1), Qo i2), ... (Gos ix1)> (q1, i0). (@, 1)), (qy, 13), ... (q, iy,
1) (@25 io)s (G2s 1)s G20 2)s .. (G2 Ep)s oo Gty B0)s (Gnors E1)s (Goys B2)s o (G 1)} - AS
shown below, this state-split automaton can then be implemented by a SLFOCC memory.
The key to constructing this new automaton is to translate the state transition function of
the origiial automaton, d(gq,i), which computes the new state of the automaton based on
the old state and the current input symbol, to a new function: &'( (g.i”), i ) = (8(q,i),i)

which incorporates input with the state.
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The new automaton created in this fashion can now be considered equivalent to the
original automaton in so far as its state can be used to compute the same output function
as the original automaton. In order to do this, the output function must be capable of
recombining the split states. As we shall see in Section 4.9.1 below, a 1-Layer STCN
output function is capable of performing such a recombination. Of course, a 0-Layer
output function cannot.

It now remains to be proven that a SLFOCC memory is capable of implementing
the modified automaton. First, it will be necessary to chose a representation of the
automaton's states in the STCN's state vector and input symbols in the input vector. We
select the simplest possible representation for the input symbols, assigning the set of input
symbols to unit normal vectors coded in the activations of the input units. More
specifically, the K" component of the input vector used to represent input symbol i; is equal

to 1 if and only if k=j:

0  if j*k

@), =
Ts e 1 if j=k

Similarly, state symbols can be represented by unit normal vectors encoded in the
activations of state units. However, since the logistic functicn which computes the
components of the state vector only approaches the values of O and 1, an error tolerance,
€ <0.5, must be incorporated into the mapping between state symbols and state vectors.
Specifically, each component of the state vector, s , is mapped to one of the state symbols
(g;-iy) in the split-state automaton. If the state vector's (g;ip™ component is approximately
1, and all of its other components are approximately O, then the state vector represents
state symbol (g;,i;) of the split-state automaton. Since this state symbol can be further
mapped to state symbol g; in the original automaton, the function mapping state vectors

to state symbols (in the original automaton) is described by:
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g, if 3k st 5, >1-€ A Vi2(q,i,) 5;<€

undefined otherwise

Note that this defines a partial mapping from the vector space of the state unit activation
values since there are state vectors which have no state symbol interpretation. Also, note
that the inverse of this function, j PN is not a function, but rather a relation, since it maps
individual state symbols to regions in the state vector's space.

This encoding now implies that each component, (g,i), of the state vector § must be

computed according to the logical function:

Sgn) =EM A Vv V S nt=1 1

qlEQ X

where:

0 =1q'| dq'=q 1,
and £ denotes equality under the assumption that values in the range [0,€] are interpreted
as being equal to O, and values in the range [1-€,1] are interpreted as 1. In order to
compute the value of the appropriate state vector component, each node must thus be able
to compute the logical AND of the appropriate input node's activation and the value of the
logical OR of a number context unit activations.

We show that a single logistic node is capable of computing such a function.
Suppose that the weight of the connection from the input node to the state node is:

Wf,(l).:],,_,,(t) ¢
where c is a positive constant (to be computed later). And, suppose that the weights of the
connections from all of the context nodes Sig'H(1-1) are:

q9

[+4
W a0ie® = TArD
Sl /)(’ DSiqn(® "Q " P
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(recall that p represents the number of input symbols). And finally, suppose that the bias

value of the state node is:

1-€
74 = -c( +1 )
Ly n(0) 2|l 0 1 p

We assume that the weights of all other connections to the state node are zero. The three

equations then imply that the activation value of the state node is given by:

T = OO ¥ q)e:e Z iorp D " c'( ZillQ—Ile'p o ) ‘
We now evaluate this equation under three conditions: (1) the activaticn value of input
node i is less than or equal to € (i.e. £0), (2) the activation value of all state nodes (g',i')
is less than or equal to € (i.e. £0), and (3) the activation value of input node i is greater
than or equal to 1-€ (i.e. £1) and the activation value of at least one of the state nodes
(g',i') is greater than 1-e€ (i.e. £1). Mathematically, these three conditions can be

expressed as:

(C1) x(n<e,

(C2) Z Z Srnt—1) <€,
q'€p i’ IIQII '

1-€)
(C3) x(n=z(1-€) and E E roa(t-1) 2 —(———.
IIQII i) lol-p

We can now evaluate the function that computes the state node's activation value for all

three conditions:

- -1
(1) 5, () < o( cre + c‘( € ) ),
@) 2iQlp
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o < e (=),
2) s(q,.)(t) O( c€ +c 210l p )

3) 5. —ce - ( €1 )
3 SgaD 2 0( —cc€ - ¢ 21017 )

Recall that we wish to satisfy the equation:

@) 5,0 = 10) /\{ vV V .6'(‘,,.,,)(:-1)}

glep i’

Combining either equation (1) or (2) with equation (4) yields:

o( ce + c‘( €1 ) ) < € <05.
2igl-p

Solving this equation for € yields:

1

€ < —mMmMm—————.
2iglp + 1

And then solving the same equation for ¢ yields:

P )

2lel-p

where o°! is the inverse of the squashing function. Similarly, combining equation (3) with

equation (4) yields:

€-1

2lolp

o( —C'G-C'( ))21-€>0.5.
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Solving for € and c again gives:

1

€ < ——4mm————
2|Ql-p + 1

and
c’'(e)

g
2lQlp

By restricting the values of ¢ and € in this manner, we have constructed a SLFOCC

c 2

memory which computes the components of the state vector according to Equation (4).
This in turn implies that whenever the input symbol and state symbol of the state transition
function which is to be represented by the SLFOCC memory are encoded according to the
functions f, . and f, . respectively, the SLFOCC memory will compute a new state vector
which can be decoded using the function feg tO yield the same state as the original state
transition ‘function would compute. Thus, if constructed as detailed here, a SLFOCC
memory can represent the state transition function of any finite state automaton. This

proves Theorem 4-3.00

Automaton Complexity

It is important to recognize that the use of state splitting increases the number of
states required. Since the number of states determines the size of the state vector, which
in turn determines the number of state nodes required, state splitting increases the number
of nodes in the SLFOCC memory. Goudreau et. al. (1994) have pointed out that the state
splitting scheme used here can be inefficient. They use the parity example described above
to point out this inefficiency. If the parity automaton were to be implemented in a
SLFOCC memory using state splitting, it would require four state nodes. But in the

example above, we developed a SLFOCC memory which required only two state nodes.



Chapter 4 113

This leads one to ask the question: how many state nodes (how large a state
vector) are required to implement an automaton with n states? If we assume that state
units function as threshold elements, then the lower bound is clearly log,(n). Similarly,
our proof above pegs the upper bound at n-p where p represents the number of input
symbols.

Horne and Hush (1994a, 1994b) and Alon, Dewdney and Ott (1991) have both
examined how many neurons are required to compute worst-case state transition functions.
However, unlike our previous proof, these authors assumed that arbitrary numbers of
computing layers are available between the input and context nodes and the state nodes.
This is not the case for any of the memory functions discussed in this thesis other than
LRSI memories. None-the-less, since SLFOCC memories are a special case of the
arbitrary computing layer networks discussed by these authors implies that lower bounds
derived by these authors still apply.

In particular, Alon, Dewdney and Ott (1991) show that Q( (nlogn)'”? ) nodes are
required to implement the most complex n state automata. The authors proceed by
comparing the number of functionally different automata with n states, L(n), to the
number of functionally different automata which can be implemented by STCNs with m
nodes, U(m). Clearly, if an STCN is to be able to represent all n state machines, then it
riust be able to implement at least L(n) functionally different automata. Thus, U(m)zL(n)
which implies: m > U "'(L(m)). By deriving equations for L(n) and U(/m) the authors are
then able to compute a minimum number of nodes required to be able to implement
arbitrary automata with »n states. Specifically the authors prove:

U(m)<2" |

L(n)zznlogn
and conclude:

m 2Q({nlogn)'"?)
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This proves that the ideal case in which 72 states are implemented by a SLFOCC memory
with log,(n) nodes is not realizable using threshold nodes.

Combining Alon, Dewdney and Ott's (1991) result with that of Kremer (1995a),
implies that the state transition functions of all automata with n states can be implemented
by SLFOCC memories with m nodes where:

Q((nlogn)'®) < m < np
The exact value for the minimum size of SLFOCC memory required to be able implement

all automata with n states remains an open question.

4.4.3 Turing Machine Equivalence

To date, there are no results relating the computational power of a SLFOCC
memory to that of a Pushdown automaton. However, there are results regarding Turing
machine equivalence. We will consider only equivalence with finite numbers of units,
since equivalence with infinite numbers of processors is trivial for a network capable of
emulating a finitc siate automaton. Siegelmann and Sontag (1991) were the first to show
the existence of a finite connectionist network, made up of sigmoidal nodes which
simulates a universal Turing machine. Previous work had focussed only on higher-order
connections. However, Siegelmann and Sontag's proof used only first order connections
(thus making it applicable to SLFOCC memories). The authors use a simplified
"sigmoid", called a saturated linear function, as their transfer function. This function is

described by the following equation:
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0 if x<0
Ax) = §{x if Osx<l1

1 if x>1
The authors start by noting that any Turing machine can be simulated by a push-down
automaton with three unary stacks. They then proceed to prove that one unit can be used
to encode the value of each unary stack and that such a unit is capable of performing "pop"
and "push" operations on the simulated stack using only first order recurrent connections.
Lastly the authors prove that another node can "read” the value of the stack. Using these
constructions, Siegelmann and Sontag are able to place an upper bound on the number of
processors in a SLFOCC memory required in order to obtain the behaviour of a universal
Turing machine. This upper bound is N = 10°.

In a later paper (Siegelmann and Sontag, 1992), the authors extend their result to
smaller networks which represent the infinite tape by simulating two stacks using two
nodes in a SLFOCC memory (this representation is the same as that discussed in Section
3.5.4, above). Once again, only first order connections are used. However, in this proof,
the authors also show that the number of computational steps required by the SLFOCC
memory to compute an arbitrary computation is linear with respect to the number of steps
required by a Turing machine to perform the same computation. The authors further show
that a 2-stack machine can be implemented in a 125450 node SLFOCC memory, where
s is the number of states in the finite state stack controller. The authors further argue that
Minsky's well known (1967) 4-symbol, 7-control state universal Turing machine can be
simulated by a 2-symbol, two-stack, 84-state Pushdown automaton. This implies, that the
universal Turing machine can be implemented in a 1058 processor SLFOCC memory.
This order-of-magnitude difference from their previous result is due to a more efﬁcieni

encoding of the tape in the state units of the network. The authors also point out that the
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1058 processor network is also a conservative estimate on the number of units required
to implement a universal Turing machine, and that it is likely that there exists an even
better bound.

Both papers of Siegelmann and Sontag (1991, 1992) use a simplified sigmoid

function, the saturated linear function. The derivative of this function is given by:

0 if x<0
fix) = {1 if 0<x<l]
0 if x>1

but is undefined at x=0 and x=1. This makes the function unsuitable for the standard
gradient descent learning algorithm which requires an error function which is continuous
with respect to connection weights. All practical SLFOCC memories use a continuously
differentiable function instead. Recently, Kilian and Siegelmann (1993) have examined
SLFOCC memories using such a function. They provide a rather complex proof of the
universality of SLFOCC memories with, what the authors call, "valid sigmoids.” A
sketch of the proof follows: First, the authors show that SLFOCC memories are capable
of simulating alarm clock machines. Next, they show that alarm clock machines can
simulate adder machines which in turn are equivalent to counter automata. But, counter
automata have previously been shown to be Turing machine equivalent. Thus, SLFOCC
memories must also be Turing machine equivalent. (The details of the proof are omitted
here. The interested reader is referred to Kilian and Siegelmann (1993).) The results
presented by these authors indicate that "Turing universality is a relatively common
property of recurrent neural network modes"” (Kilian and Siegelmann, 1993, p. 137).
The computational equivalence of SLFOCC memories and Turing machines is a
mixed blessing. On one hand, one can rejoice in the fact the computational power of a
SLFOCC memo:y rivals that of any computing device. On the other hand. however,

Goid's (1967) results imply that it will be impossible to train a SLFOCC memory using
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only positive and negative example strings. As Horne and Hush (1994, p.2) point out,
"These results are significant since they show that basic convergence questions concerning

these architectures is undecidable even for fixed-size networks".

4.5 SINGLE-LAYER SECOND-ORDER CONTEXT
COMPUTATION
4.5.1 Single-Layer Second Order Context Computation Memories Can Encode Any
State Transition Function without State Splitting

Second order connections are more powerful than first order connections, so it
should come as no surprise that SLSOCC memories can represent state more easily than
SLFOCC memories. In particular, Goudreau et. al. (1994) have shown that if input
symbols and states are encoded using unit normal vectors, then any finite state automaton
can be encoded in a SLSOCC memory without state splitting. That is, an arbitrary finite
state automaton's inputs, i, i, i, ... i .can be represented by input vectors, (1,0,0,...,0),
(0.1.0,...,0), (0.0,1,...,0), ..., (0,0,0,...,1), respectively. The automaton'’s states, g,. g,.
q. -.. » g, can be represented by state vectors, (1,0,0,...,6), (0,1,0,...,0), (0,0,1,...,0),
... » (0,0,0,...,1), respectively. And it is possible to implement the automaton's state
transition function, 8(g,s) by setting ¢ach of the second order weights, w,,, connecting

input node i/ and context node j to state node k according to the function:

+c otherwise

W = {-c if é(qj,i,)=qk .

where c is a large constant. With these weights, the activation value of state node k will

approach 1 if:
Y W, A5 -1)>0,
|
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and will approach 0 otherwise. This implies that the state node will assume a value of one
if and only if:
Jij s.t. 8(q,i)=q,.

In other words, the state units of the SLSOCC memory will assume the value of the state
vector g, if and only if the previous state and current input are g; and i; respectively, and
there is a legal transition from the previous stzie to the new state under the given input
symbol. Thus, a SLSOCC memory is capable of implementing any finite state automaton
using a unit normal vector encoding scheme for input symbols and states. Furthermore,
this encoding of state is more efficient than the state splitting approach which must be used
in a SLFOCC memory, requiring a number of state nodes equal to the number of states
in the automaton. It should be noted, however, that this approach requires more weights

than a SLFOCC memory.

4.5.2 Single-Layer Second-Order Context Computation Memories Cannot Encode
Every State Transition Function with Binary Encoding
Ideally, of course, one would like to implement any 7 state automaton by a STCN

using log.n state nodes. We now prove, however, that this cannot be accomplished by a

SLSOCC memory:

Theorem 4-4: SLSOCC memories cannot encode all state transition functions using a

binary state encoding.

Proof: To see that this is the case we consider one specific automaton with two input

symbols and four states:
Z = {55}
Q=1{49-. 999}
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and a transition function defined as follows:

(g0 50) = q;
6(q,.50) = q;
6( g5 50) = q;
6( g5, 5) = qp

(g0, 5,) = q,
8(qg;, 5;) = q;
8(g2.5:) =q
6(q; 5;) = q,

In the ideal case an automaton with four states should be implementable in a STCN with

log,4=2 state nodes. If we assume binary state encodings then there must be a mapping

from the states in Q to the set of vectors { (0,0), (0,1), (1,0), (1.1) }. We now note that

the state transition function of this particular automaton implies that whenever the input

symbol remains constant, the states cycle with a period of four. There exist six possible

state vector cycles of length four which are illustrated in Figure 4-1.
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Figure 4-1: Possible cycles in a two-dimensional binary state space.
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The fact that the input symbol is constant throughout the cycles implies that the
input vector x(¢), regardless of how it is encoded, must also remain constant. This, in
turn, implies that the matrix product of the three-dimensional weight matrix and the input
vector is a constant two-dimensional matrix for all input vectors; i.e.:

W '=wxx(1)

We now consider the activation vector of the state nodes, s(r). Since we assume that the
new state does not depend on the input symbol:

S = AW '*5(e-1))

But, this equation is now the activation equation for a single-layer, first-order network.
And it is well known that such networks are not capable of computing functions which are
not linearly separable.

Our next step is to create a table for each of the six cycles illustrated in Figure 4-1.
These tables will relate the new state vector, 5(r), to the previous state vector, s(s+-1). By
examining these six tables it will then be possible to determine that four of the cycles in
Figure 4-1 cannot be implemented in a SLSOCC memory. The state transition tables for
the cycles in Figure 4-1 are presented in Table 4-1. In Table 4-1(a), the first component
of the next state vector forms a non-linearly separable pattern with respect to the two
components of the previous state vector. Similarly, in Tables 4-1(c) and 4-1(¢), the second
component of the new state vector forms a non-linearly separable pattern. Finally, in
Table 4-1(f), the first component of the new state vector is not linearly separable. Since
the SLSOCC memory can only compute linearly separable state transitions under a
constant input vector, neither of these four cycles can be used in the implementation of our
automaton. This leaves only cycles (b) and (d) for consideration.

Since there are two different cycles in the automaton which we wish to implement,

we must have two different cycles in the SLSOCC memory. Combining both of the
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s(t-1) 5 s(it-1) €3]
0,00 | ©,1) ©0,00 | O,
©0,1) | (1,0) ©,1) | 4,1
1,0 | 1,1 (1,00 | (0,0
1,1 | ©,0) 1,1 | (1,0

(@ (b)

s(t-1) s s@-1) )
0,00 | (1,0 0.9 | 1,0
©,1) | 4. ©.1) | 0.0
(1,0) | O,1) (1,0) | (1,1)
(1,1) | 0,0 (1,1) | ©0.1)

(© (d)

s@a-1) s(D s(i-1) s(0
0,0 | (1.1 ©.,0) | (1,H
0.1) | (1,0 0,1) | (0,0
(1L,O) | 0,0 1,0 | ©.1)
(1,1) | (0.,1; n | 1,0

(e) ®

Table 4-1: Transition tables for the cycles depicted in the previous figure.

remaining legal cycles in one SLSOCC memory results in an automaton with the following

transition function:
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6((0,0), x, ) = (O,1) 8( (0.0). 5, ) = (1.0)
6((0.,1), x, ) = (1,1) &( (0.1), ¥, ) = (0,0
6( (1,0), x, ) = (0.0) 5((1,0). x; ) = (1.1)
S((1,1), x, ) = (1,0 6( (1,1, x, ) = (0,1)

Clearly there exists no mapping from the states of the automaton we desire to implement,
{ 49,. 91, 92, q; }, to the states a SLSOCC memory can implement with two binary state
nodes, { (0,0), (0,1), (1,0), (1,1) }, which along with a mapping from the input symbols
of the automaton { s,, 5; } to the input vectors of the SLSOCC memory { x,, ¥, }.

preserves the original state transition function &(q,s). This proves Theorem 4-4.0]

Of course, it should be noted that while it is impossible, in general, for a SLSOCT
memory to implement a state function using log,n nodes, this does not preclude individual
automata implementations from achieving this level of efficiency. In general, however,

the upper bound of at least n state nodes remains, using the unit normal vector encoding

described above.

4.5.3 Turing Machine Equivalence

Finally, we turn our attention to SLSOCC memories and Turing machine
equivalence. Pollack (1987) has shown that it is a relatively simple task to create a
network which is Turing equivalent by using two units with continuous activation units
which act as two binary stacks. His implementation is very similar to that presented in
Section 3.5.4. Each stack node's activation value is computed by adding a decimal point
before a binary string representing the stack contents. Pollack's STCN Turing machine
relies on multiplicative (second-order) weights to gate the old value of each stack node
during the computation of its new value. When a symbol is popped from the stack, the

stack node's activation value must be doubled (after subtracting the symbol at the top of
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the stack). When a symbol is pushed onto the stack, the stack node's activation value must
be halved (after adding the new top symbol).

Thus, the stack node's old value must either be multiplied by 2 or by 2. Using
second order weights it is possible to connect two control nodes to two connections from
old stack node to new stack node. A "pop" node is connecied with the context node
containing the stack value to the state node containing the stack value with a weight of 2.
The "pop" node's activation value is multiplied by the context node’s value and by 2.
Thus, when the "pop" node's activation value is 1, the state node receives a signal equal
to twice the context node's activation. When the "pop" node's activation value is 0, the
state node receives a signal of 0. Similarly, a "push” node is used to gate one half of the
context node's activation value. Together, the "pop"” and "push” node are thus able to
perform any stack operations.

In the SLSOCC memory, the only second-order connections are from one context
node and one input node to one state node. Since the "pop” and "push” nodes in Pollack's
system must be context nodes, and since the stack node must be a context node, the
SLSOCC memory cannot implement a Turing machine in this fashion. No other results
regarding the computational power of SLSOCC memories of finite size have been
published. Thus, their universality remains an open question. It is possible that the proofs
in section 4.4.3 regarding the universality of SLFOCC memories could be adapted to
SLSOCC memories as well, but the fact that SLSOCC memories have no biases or first

order connections makes this translation non-trivial.
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4.6 CONNECTIONIST PUSH-DOWN AUTOMATA (CPA)
MEMORIES

4.6.1 Stack Limitations

Despite its name the CPA (connectionist Pushdown automaton) memory does not
automatically have the computational powers of a Pushdown automaton. This is due to
the fact that, as noted in Section 3.2.2, a Pushdown automaton is a non-deterministic
device whereas the CPA memory is deterministic. Deterministic Pushdown automata
(Hopcroft and Ullman, 1979) are computational devices whose power lies properly
between finite state automata and (non-deterministic) Pushdown automata. The languages
which can be represented by deterministic Pushdown automata are called deterministic
context-free languages and contain the regular sets while being contained within the set of
(non-deterministic) context-free languages. Deterministic context-free languages have
proven to be a more useful set of languages than (non-deterministic) context-free languages
for many applications. Virtually all computer languages belong to the set of deterministic
context-free languages.

The fact that CPA memories use the same alphabet for their input symbols as for
their stack does not limit their powers beyond the limitations of deterministic Pushdown
automata. This is due to the fact that it is possible to translate a deterministic pushdown
automaton M=(Q, X, T, 6, q,, Z,, F), to another deterministic automaton M'=(Q', =, I,
6', q', Z,’, F') which accepts the same strings, and has the property that I''=X.
However, as Das et al. (1993) point out, the fact that only the current input symbol can
be pushed onto the stack at any time, i.e.:

8(q.5.v) = (q'.9)
and the fact that there are no epsilon transitions does limit the power of CPA memories.
Thus, such a memory is limited to implementing the same classes of languages that can

be implemented by a deterministic Pushdown automaton which always pushes the same
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symbol onto the stack as the input symbol (whenever a push action is performed) and has
no epsilon transitions. To date, these languages have not been described in terms of

grammatical rewrite rules.

4.6.2 Controller Limitations

We must now consider whether the languages which a CPA memory can represent
are further restricted. The CPA memory consists of two components: a third-order
network and an external analog stack. The network is respensible for computing whether
a symbol should be popped from or pushed onto the stack as well as recomputing its own
internal state. Thus, in order to represent arbitrary languages ot the type which can be
accepted by the specialized automaton described above, the network control mechanism
must be able to issue arbitrary pop, push and no-operation instructions and make arbitrary

state transitions. We now prove that this is in fact the case:

Theorem 4-5: A CPA memory is capable of implementing any stack operations which can
be performed by a deterministic Pushdown automaton with no epsilon transitions and

which only pushes the current input symbol onto the stack during a push operation.

Proof: The controlling network in a CPA memory is very similar to a SLSOCC memory.
However, instead of using second order connections (connecting two nodes to a third), the
retwork uses third order connections (which connect three nodes to a fourth). In
particular, every input node is connected with every context node, and every read node
to every state node. Similarly, every input node is connected with every context node and
every read node to the action node. We assume that the deterministic Pushdown
automaton's inputs, i, i, kb, ... , i,, (and hence stack symbols) can be represented by

vectors that lie within € along each dimension of the unit normal vectors (1,0,0,...,0),
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©,1,0,...,0), (0,0,1,...,0), ... , (0,0,0,...,1), respectively. The controller's states, q,. q;.
q>, .-. . 4,, can be represented by state vectors that lie within € along each dimension of
the unit normal vectors (1,0,0,...,0), (0,1,0,...,0), (0.0.1....,0), ... . (0.0.0.....1),
respectively. And, it is possible to implement the automaton's state transition function.
6(q.5,Y) by setting the each of the third order weights, W,«. connecting input node i,

context node j, and read node k to every state node / according to the function:

v, - {+c if 3y st 8g,s, ) =(Y)

-c otherwise

where c is a large constant. With these weights, the activation value of state node / will

exceed or match 1-e if:

DIDIPIY IO CEPAOLLIIEDR
iy

and will lie below or at € if:
2; ; Zk: W X (D5 (- 17 (<so7'(€),.

This implies that the state node will assume a value of greater than or equal to 1-€ if and
only if:

Jij.k s.t. ﬁ(qj,ii,yk) =q, .
and if € is sufficiently small, and c is sufficiently large. In other words, the state units of
the CPA memory will assume the value of the state vector g, if and only if the previous
state, current input and symbol at the top of the stack are g, i;, v, respectively, and there

is a legal transition from the previous state to the new state under the given input and top
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of stack symbols. Thus, a CPA memory is capable of implementing any state transition
sequence using a unit normal vector encoding scheme for symbols and states.

The required restricticns on € and ¢ can be computed in a manner analogous to that
used in the proof of Theorem 4-3. We do not show the computation of these values, here,
as it does not provide any new information about the computational powers of a CPA
memory.

We now turn our attention to the values of the action units since they also must be
able to represent arbitrary stack operations (chosen from push, pop, and no-operation).
We assume that the weights to action node / are defined:

+e if 3q s.t. 8(gpi,Y) =g}
W, = - —c if 3g st 8(g,i,Y)=Ng.e)
0 otherwise
where c is a large constant. With these weights, the activation value of state node / will
match or exceed an arbitrary threshold 1-¢ if:

Z }I: 2’; W K5 -1)F(nz0"'(1-€),
and will lie on or below the threshold -1+¢€ if:

Z'_: Zj: Z,,: W WS 05 (- 1)F (=07 (-1 +€),
and will lie between -€ and +¢ if:

o ‘(-e)s}; 2,: Zk: W W E 05 (- 1)F (<07 (+€)
approach O otherwise. This implies that the state node will assume a value of one if and
only if:

ijk,g s.t. 0(g,i,Y,)=(g.i,Y,)
and e is sufficiently small, while c is suitably large. In other words, the action node of
the CPA me.nory will signal a' push operation if and only if the previous state, current

input and symbol at the top of the stack are g, i;, y, respectively, and a push operation is
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indicated for the given input, state and top of stack symbols. Similarly, the state node will
assume a value of negative one if and only if:

dij,k,q s.t. 5(qj.s,,‘Yk)=(q,€)
In other words, the action node of the CPA memory will signal a pop operation if and only
if the previous state, current input and symbol at the top of the stack are ¢ R
respectively, and a pop operation is indicated for the given input, state and top of stack

symbols. Again, precise bounds on € and ¢ can be computed as was done in the proof of

Theorem 4-3. This proves Theorem 4-5.03

While Das et al. (1993) recognized that a CPA memory is capable of implementing any
stack operations which can be performed by a deterministic Pushdown automaton with no
epsilon transitions and which only pushes the current input symbol onto the stack during

a push operation, they did not formally prove this result.

4.6.3 Turing Equivalence

Thus far, we have assumed that the CPA memory's external stack operates like the
stack of a conventional Pushdown automaton. While a CPA memory's stack certainly can
operate in this fashion (when all symbols on the stack are of length 1, for example), the
CPA memory's stack is a continuous stack. Although the use of a continuous stack is
strictly a consequence of the need for a differentiable error function, it is possible that, in
creating such a modified device, additional computational power becomes available. This
additional power could come from two sources. First, there is the fact that the CPA
memory can read more than one symbol from its stack during any time step. This is
possible because whenever the widths of the symbols on the stack are less than one, the
activations of the read nodes are computed based on a weighted average of vectors

corresponding to the first few symbols on the stack making a total width of one. The
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secor.d potential source of additional power is the fact that in addition to storing "just”
symbols, the stack also stores analog widths. It is possible that the widths themselves
could store some useful information which might be exploited by the CPA memory. These
two differences between the operation of the CPA memory's stack, and the operation of
the stack of a conventional Pushdown automaton are only potential advantages. To date,
the consequences of the continuous stack have not been properly examined. It is certainly
possible that they will offer no advantages.

Thus far, we have assumed that any power a CPA memory might have beyond that
of a traditional finite state automaton must be derived from CPA memory's external stack.
However, there is no known reason why a CPA memory could not exploit the continuous
nature of the activation values of its state units to provide additional power in the same
fashion as a SLFOCC memory can achieve Turing equivalence. Unfortunately, the fact
that the CPA memory has only third order connections makes any proofs of computationai
power for SLFOCC memories (e.g. Kilian and Siegelmann, 1993) not directly transferable
to this particular type of memory. It is possible that a translation of such a proof from
SLFOCC memories to SLSOCC memories might shed some light on further translations

to CPA memories.

4.7 CONNECTIONIST TURING MACHINE (CTM) MEMORIES
A CTM memory consists of a SLFOCC memory control mechanism connected to
a discrete infinite tape mechanism. In order to perform any computation which can be
performed by a Turing machine, the SLFOCC controller must be able to arbitrarily write
symbols to the tape as well as move the position of the tape head relative to the tape. A
SL.FOCC memory is known to be able to implement any finite state automaton (including
the one which properly controls the tape head for a given Turing machine), but only if

state splitting is used. This implies that further computation maybe required to re-join the
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split states. The extra computation can be performed using an extra time step. That is.
if tape head writes and movements only occur every othe: time step, then the extra time
step effectively provides an additional layer of state units which can be used to rejoin split

states. Thus, a CTM memory must be capable of implementing arbitrary Turing machines

using this two time step approach.

4.8 LOCALLY RECURRENT STATE AND INPUT
4.8.1 Constant Input

Although the LRSI memory has an adaptable state function like the SLFOCC and
SLSOCC memories, the types of automata which can be represented have some surprising
limitations resulting from the local-only recurrence and the monotonic activation function.
Giles et al. (1995) have proven that a LRSI memory is incapable of implementing automata
which have cycles of length greater than two under constant input. That is, given a
sequence of constant input symbols over time I(f) = I(t+1) = I¢+2) = ..., a LRSI
memory will always go through a sequence of states g(?), g(t+1), g(t+2), ... where:

vt g(n) = q@+2)
This conclusion follows from the fact that in an LRS! memory, whenever the input vectors
remain constant, x(¢) =x(z+1)=x(z+2) =... the state vectors can never go through a sequence
of values, s5(r), s(t+1), s(1+2), ... where:

Vit s{(0)=s(t+2)
Giles et al. (1995) prove this resuli inductively. We now present this result in a notation

consistent with the rest of this thesis. Specifically we prove:

Theorem 4-6: A LRSI memory is incapable of representing any FSA whose states cycle

with a period of greater than two under constant input.
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Proof: First, we consider the activation value of the first state node which is not an input
node, i=|x}l+1. This noac s activation values is computed (see Section 2.5.1):

S = o w..(i+DUUDsN1..i-11Ds¢ -1} )
Since the input vector is constant, we can let A=w[1..(lix] +1)][{]x{1Bx(r)}, and simplify
the activation equation to:

50 = L AW (e-1) )
We now consider the points at which this equation intersects the diagonal:

s(=s-1)
The points of intersection represent the fixed points of the state node's activation function.

There are three ways in which the equations can intersect. If W[i][i] >0, then the
straight line can intersect the curve at one point. We shall call this Case (a); it is depicted
in Figure 4-2(a). Alternately, still assuming W[i][i] >0, the straight line can intersect the
curve at three points. We shall call this Case (b); it is depicted in Figure 4-2(b). Finally,
if W[i}[i] <O, then the straight line must intersect the curve at one point. We call this Case

(c), depicted in Figure 4-2(c).
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) s(t=1)

s(t

© S(¢-1)

Figure 4-2: Intersections between node activation and diagonal functions. (a) For
WIil{Z]1 >0, and one point of intersection. (b) For W]i][i]>O0, and three points of
intersection. (c) For WJ[i]J[i]1<O0.
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In Case (a), f A+WI[illi}5s(t—-1) )>5,(t-1) to the left of the fixed point, while
R A+WI[il[i)-5(¢t-1) )<s(z-1) to the right of the fixed point. This, and the fact that the
function is monotonically increasing, implies that the sequence 5(¢), 5,(t+1), 5(¢+2), ...,
must converge monotonically towards the fixed point.

Similarly, for Case (b), A A+WI[il{i]-s(t-1) )>5(¢t-1) to the left of the first fixed
point and between the second and third fixed points, while { A+WI[il[i]'s(t—1) )<s(t-1)
between the first and second fixed points and to the right of the third fixed point. This,
and the fact that the function is monotonically increasing, implies that the sequence 5 (1),
§(t+1), §(1+2), ..., must converge monotonically towards the first fixed point whenever
§(0) lies to the left of the central fixed point. Similarly, the sequence must converge
monotonically towards the third fixed point whenever 5(r) lies to the right of the central
fixed point.

For Case (c), the sequence s(¢), s(t+1), §(t+2), ..., can oscillate as it cycles
around the single fixed point. This is due to the fact that, the curve is a monotonically
decreasing function and to the left of the fixed point { A+WI[i][i]-5,(t-1) )>5(¢t~1), while
to the right of the fixed point A A+W{il[i]'5,(t-1) )<5,(¢-1). In order to examine the
nature of these oscillations we must consider the fixed points of the equation:

S0 = AL A+WHILA A+WLHLFS(e-2) )

This function is monotonically increasing (even for negative W[il{i]). Thus, it can have
fixed points like to those illustrated in Figures 4-2(a) and 4-2(b). As argued above, this
implies that the sequence s(1), 5,(¢+2), 5(z+4), ..., (note the increments of two, this time)
must converge monotonically to a fixed point. Since the values of 5(r) converge to one
fixed point on even time steps, and converge to another fixed point on odd time steps, the
activation value of state node i will oscillate with period two.

We have now shown that the activation value of state node i=|x] +1 , under constant

input, can either converge tc a fixed value or oscillate with a period of two. The
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activation value can never oscillate with a period greater than two. We must now prove
that the same holds for all other state nodes, i>|x|+1. We do this by means of an
inductive proof. First, we use the case i=|x]|+1 as a basis. Next, we assume that all state
nodes, i, oscillate with a period of at most two as our inductive hypothesis. Finally, we
must prove that this implies that node i+1 oscillates with a period of at most two. This
node's activation value is computed (see Section 2.5.1):

5,0 = A Wi+ 1)E+11x600N..808s,,,¢-1) )
Using the inductive hypothesis, we let:

A

o = WIL..iJ[i+1]xs(»[1..i] for event
and

A

]

. wi1..illi+1]1xs(nN[1..i] for odd ¢
And simplify the state node's activation equation to:

5,0 = fLA+WEHIGH1TAA +WLi+11[i+1]5,,,(6.~2) ) ) for even ¢
Again, this is a monotonically increasing function (even for negative W{i][i]), so the
sequence s5,,,(8), 5,.,(¢t+2), 5, ,{t+4), ... for even ¢ must approach a fixed point. A similar
argument can be made for the same sequence for odd . Thus, the activation value of state

node i can cycle with period at most two. This completes our re-presentation of Giles et

al.’s proof of Theorem 4-6.03

Since none of the nodes in the state vector can oscillate with a period of greater
than two under const#sit input, the state vector s(¢), must also oscillate with a period of
at most two under these conditions. Clearly this imposes some strong restrictions on the
types of automata a LRSI memory can implement. Nonetheless, Giles et al. (1995)
discovered that there appear to be other automata, not accounted for by this theoretical
result, that LRSI memories appear unable to learn in practise. The authors noted that, in

numerical simulations, a LRSI memory was unable to learn a simple automaton which
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accepts strings defined over the alphabet of Os and 1s which have even parity. That is,
LRSI could not learn the automaton illustrated in Figure 3-1. The authors were careful
to note that their theorem about cycles of length greater than two does not apply to the
parity automaton, since it cycles through one state under constant "0" input, and through
two states under constant "1" input, but never through three, or more states under constant

input.

4.8.2 Oscillating Input'

Giles et al.’s (1995) observations lead to two possible conclusions. First, the
difficulty with parity could be caused by in practise limitations of the particular learning
algorithm used by the authors. That is, even though the hypothesis space of the LRSI
memory architecture contains a solution to the parity problem, the learning algorithm
which explores that space does not find it. Second, the LRSI memory architecture could
provide an in principle reason why this particular automaton cannot be represented. We
shall now prove the latter toc be the case. More specifically, we shall prove that there
exists another large class of automata (besides those already identified by Giles et al.)

which cannot be represented witliin the constraints of a LRSI memory.

Theorem 4-7: A LRSI memory is incapable of representing finite state automata whose

state transitions form cycles of length greater than two under oscillating input.

Proof: We use a proof by contradiction. First, we assume that there exist LRSI memories
capable of representing finite state automata whose state transitions form cycles of length

greater than two under oscillating input. We then prove that such a memory can be easily

A version of this section has been submitted for publication. Kremer 1995b.



Chapter 4 137

augmented to form a larger LRSI memory which oscillates with period of two under
constant input. Since such an LRSI memory cannot exist (Giles et al.'s (1995) proof), the
premise must be false, and hence the contradiction of the premise (the theorem above)
must be true.

We assume that the weights W[1..n][1..n] define a LRSI memory whose staie
vector, 5(1), oscillates with a period of greater than two, when the input vector, x(r), to
the memory oscillates with a period of two. Next we create a second LRSI memory, with

a constant input vector ¥/, whose weights W' are defined as follows:

1 if i<|’| and j>|x'|
-1 if xl<i<)x/|+)%) and i=j

WL =4y o if |€l<i<|€/)+}F] and i<ji<|E’) +|%]
wii-\c I -Ix1)  if i>|x’) and j>Ix') +I%] and i<j
undefined otherwise

Note that the definition of these weights does not violate any of the constraints on LRSI
memories. We now consider the operation of this constructed LRSI memory. First, we
consider state nodes in the range i<|x’|. Th:- .:ctivation values of these nodes are
computed:

s = %
and thus remain constant.

Next, we consider the activation values of state nodes, i, in the range
I ‘lI<i<|x’} +I%] . The activation values of these nodes are computed:

s = A W) x 5N .i-11Ps -1 )
Using the values of W' defined above, this equation can be simplified to:

SO = LA-5-1))
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where A = w[i][1..Ix'|]xx’. As described above, an activation equation of this form will
cause the node's activation to oscillate between two values. Thus, all state nodes, i, in the
range |x’||<i<|’}+|x] will oscillate with period two.

Finally, we turn our attention to state nodes, i, in the range ||xjj +|x]l<i. Based on
our construction of the matrix W' above, these state nodes will behave identicaily to the
state nodes in the original I.LRSI memory defined W when its inputs, x(r), are defined:

Xy = SOUE N1 05 +1%1]

But, we know (from the previous paragraph) that this input vector will oscillate with
period two. And, we also know (by the premise of our proof by negation) that the original
LRSI memory oscillates with a period of greater than two when presented with an input
vector which oscillates with a period of two. Thus, the constructed LRSI memory must
oscillate with a period of greater than two, under constant input. But, Giles et al. (1995)
already proved that no such LRSI memory can exist. This implies that our premise must
be incorrect, and hence that our original theorem must be true. In other words: A LRSI
memory is incapable of representing finite state automata whose state transitions form

cycles of length greater than two under oscillating input.(]

This new theoretical result applies, among many others, to the parity automaton
discussed by Giles et al.. While those authors were only able to show empirically that
Parity appears not the be learnable by a LRSI memory, we were able to prove that there
exist theoretical reasons which make it impossible for LRSI memories to implement
parity. Interestingly, our proof by negation uses their result concerning cycles under

constant input to show that a similar proof exists for cycles under oscillating input.
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4.8.3 Arbitrary Cycles!

Giles et al.’s (1995) proof can be viewed as defining the types of state cycles which
cannot be represented by a LRSI memory when the input oscillates with a period of one
(i.e. remains constant). The new proof in Section 4.8.2 can be viewed as defining the
types of state cycles which cannot be represented when the input oscillates with a period
of two. It is natural to ask whether further proofs for state cycles can be developed for
input cycles of greater than two. In particular, it would be desirable to define a function
mapping the period of the input signal to the types of automata cycles which can be

represented. We now develop such a generic proof. We begin by proving the following

Lemma:

Lemma 4-1: If A(r) oscillates with even period, n, or if W[i]{i]> 0, then state node i must

oscillate with a period /, where nmod/=0.

Proof: First, we define the activation equation for state node i as:
SO = LM + WLS(e-1) )
where:
A(t) = WIL.i-11[i1xs(0)[1..i-1]
we now assume that A(r) oscillates with a period of n. Thus, we can define:

A(t) = A, .,, and rewrite the activation equation of state node i as:

!A version of this section has been accepted for publication. Kremer, in press.
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‘;l(‘) = -/( A'll'noc:ln * W[i]['] ’
ﬂ )‘(l -1)modn + W[ Z] [i] :
SC Ay 2ymonn P LY

n A(l—nvl)modn+W[i][i].~;,-(t-n) ) - )))

If WLi}[{] >0, or if n is even, then §(¢) is monotonically increasing with respect to
§(t-n). This implies (as argued above) that the sequence 5(1), 5 (t+n), §(t+2n), ...,
converges to a single fixed point. Thus, 5(#) oscillates with period at most »n.
Furthermore, its period of oscillation must be a factor of n since every n™ value is the
same. Thus, 5(r) must oscillate with a period, /, where nmod/=0. This proves Lemma

4-1.00

Next ‘ve consider the case for A(?) oscillating with odd period. Specifically, we

prove:

Lemma 4-2: If A1) oscillates with odd period, n, and if W][i}[{] <O, then state node i/ must

oscillate with a period /, where 2nmod/=0.

Proof: 1f W[il[i] <O and n is odd, then we must expand the activation equation for state

node i further:

S0 = R A oqn WG
f( A‘(l-l)modn+W[i][i].
R A‘(I—Z)modn+W[i][i].

N A'(“z"‘l)mod,.*’W[i][i]";",(t-Zn) ) ~)))
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Under this expansion, s,(f) is monotonically increasing with respect to s(¢-2n). This
implies (as argued above) that the sequence 5,(¢), 5(1+2n), §(t+4n), ..., converges to a
single fixed point. Thus, 5(r) oscillates with period at most 2n. Furthermore, its period
of oscillation must be a factor of 2n since every (2n)" value is the same. Thus, 5(f) must

oscillate with a period, /, where 2nmod/=0. This proves Lemma 4-2.0]

Lemmas 4-1 and 4-2 relate the rate of oscillation of A(¢) to that of state node i.
However, we wish to know the relation between the rate of oscillation of the LRSI

memory's input signal and the entire state vector. To do this, we again consider both even

and odd cases, even first:

Lemma 4-3: If the input symbol to a LRSI memory oscillates with even period, n, then

the activation of all state nodes must oscillate with a period of /, where nmod/=0.

Proof: We use a proof by induction on the state node number. For state node i=|x]+1:
AW = WLALI=SO[1..i-1] = W1..i[i]1xx(0).

This implies that A(f) oscillates with a period of n, and, by Lemma 4-1, that §(r)

oscillates with a period of /, where nmod/=0. This forms the basis for our induction.

Next we assume that Lemma 4-3 holds for all state nodes less than i. This implies that

A(r) must oscillate with a period of exactly n (since the input vector is a component of

A(r)). Theorem 4-1 then implies that the activation value of state node i must oscillate

with a period of /, where nmod/=0, which completes the proof.[]

We now prove the following lemma for the odd case:
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Lemma 4-4: If the input symbol to a LRSI memory oscillates with odd period, n, then the

activation of all state nodes must oscillate with a period of /, where 2nmod/=0.

Proof: Again, we use a proof by induction on the state node number. For state node
i=|x)+1:
A() = WL..iJi1xs(o)[1..i-11 = W[I..i)[i]1=x@) .

This implies that A(r) oscillates with a period of n, and, by Lemma 4-2, that 5(r)
oscillates with a period of /, where 2nmod/=0. This forms the basis for our induction.
Next, we assume that Lemma 4-4 holds for all state nodes less than i. This implies that A(¢)
must oscillate with a period of either n or 2n. Lemma 4-1 then implies that the activation
value of state node i must oscillate with a period of /, where 2nmod/=0, since n is odd,

and 2n is even. This proves Lemma 4-4.(]

We can now combine Lemma's 4-3 and 4-4 to conclude:

Theorem 4-8: If the input signal to a LRSI memory oscillates with period, n, then the
LRSI memory can represent only those finite state automata whose state transitions form

e

cycles of length /, where nmod/=0 if n is even and /:<s:0dl=0 if n is odd.

Giles's original proof for input cycles of length n=1 (constant input) and the new
proof presented here for input cycles of length n#=2 can now be viewed as special cases
of this theorem. It is interesting to note that Fahlman's (1991) original empirical
experiments with LRSI memories did not reveal these important shortcomings of his STCN
design. This adds weight to the central argument of this thesis that formal analyses of
grammatical induction in a connectionist paradigm are important. Of course, Giles et al.'s

(1995) observations regarding the parity automaton precipitated the formal analyses that
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led to the proofs described here, but while these results only concerned a single
automaton, the new proofs cover an infinite number of classes of automata (for each cycle
size) each of which in turn contains an infinite number of individual automata that have

been proven unrepresentable in a LRSI memory.

4.9 OUTPUT FUNCTIONS

Having examined the types of states transitions which can be implemented by
various state functions, we now turn our attention to the output function. Showing that
a state function can implement arbitrary automata is of little use if one cannot also show
that a pzrticular STCN design is also capable of mapping the state to a desired output.
The latter task is implemented by the output function of the STCN. In the previous

chapter we defined three possible output functions: 0-Layer, 1-Layer and 2-Layer.

4.9.1 0-Layer Output Function

A O-Layer output function (see Section 2.5.2) is nothing more than a filter which
is applied to the state vector. Thus, any outputs computed by an STCN employing a
0-Layer output function must already be present in the state vector. For this reason, a O-
Layer output function lends itself to be used in conjunction with only the most
representationally powerful memory functions. In the previous sections we discovered that
only SLSOCC and CPA memories allow arbitrary finite state transitions to be represented
without state splitting. Goudreau et al. (1994) showed that a SLSOCC memory can be
given a special "output" node which can be used to render a grammaticzality judgement.
This node receives second order connections from the input and context nodes of the
STCN. If the input and context nodes use a unit normal vector encoding scheme, then the
output node can realize arbitrary mappings from input symbol and context to values 0 and

1 (ust as the state nodes can realize arbitrary mappings). Interestingly, the special
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"output” node can be one of the state nodes without violating any of the connectivity
constrains of the SLSOCC memory (assuming that all connections leading out from the
"output” node of the context units have a weight of zero).

Of course there is no reason why only one such output node can be employed. If
multiple output nodes are used, then output are no longer restricted to boolean
grammaticality judgements, but rather can implement the types of output functions of
Moore Machines (see Section 3.4.4). This implies that the state vectors of a SLSOCC
memory are not only able to compute arbitrary state transition functions, but also arbitrary
output functions. Therefore, it is possible to use a 0-Layer output function to extract the
activation values of the "output” nodes from the activation values of those state nodes
which actually represent state. An analogous argument can be made for CPA memories.

A O-Layer output function is also appropriate for LRSI memories (although in
practise 1-Layer output functions have been used—see Fahlman, 1991; Giles et al., 1995).
This is because the cascaded connectivity scheme of the state nodes in an LRSI memory
just like the non-recurrent version of RCC is capable of performing the same computations
as any other given network (regardless of node connectivity pattern. number of layers,

etc.). Thus, adding additional layers does not provide any advantage in computational

power.

4.9.2 1-Layer Output Function

STCNs employing less powerful memory functions must use more powerful output
functions in order to implemen: arbitrary automata. We have seen in Section 4.2 that
SLFOCC memories can only implement arbitrary state transitions if state splitting is

employed. This restriction makes the computation of arbitrary output functions much

more difficult. We shall first prove that:
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Theorem 4-9: A O-Layer output function cannot be used to compute arbitrary output

functions based on the states computed by a SLFOCC memory.

Proof: The proof relies on showing that it is impossible to add special state nodes (which
would be selected by the O-Layer output function) to a SLFOCC memory to compute
arbitrary output functions. We consider the example of the parity automaton discussed
in Section 4.4.2. This time we assume that the automaton is to output one symbol for all
even strings and a different symbol for all odd strings. Without loss of generality, we
assume that there exists one node, i, for which the output veciors differ. This implies that
node i must assume one value whenever the input signal is "0" and the state signal is in
an "even" state or whenever the input signal is "1" and the st:te signal is in an "odd" state
and node i must assume a different value for the other two cases. However, this relation
is a linearly inseparable function (OR). This implies that the monotonic activation function
employed by node i will not be powerful enough to compute the desired function, which
in turn implies that a 0-Layer output function will not be powerful enough to map the state

computed by a SLFOCC memory to an arbitrary output, which completes the proof.[]

We now prove that:

Theorem 4-10: A 1-Layer output function, together with a SLFOCC memory can emulate

any Moore Machine (and hence any finite state automaton).

Proof: Recall that a Moore Machine consists of a six-tuple (Q,X,A,6,4,9,). We assume
that whenever the Moore Machine which is to be emulated outputs symbol b, the output
vector y(¢) has all its components less than or equal to € with the exception of the k*

component whose value is at least 1-e (i.¢. we use a unit normal encoding scheme for the
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output vector, with a tolerance of €). We let F¢j) represent the set of states in the
automaton whose state have been split which correspond to state j of the original
automaton. Note that due to state splitting, more than one state in the split automaton may
be used to represent a single state in the original. In order to correctly compute the output
symbol the output function must compute the correct vector y(» for all state vectors s(¢).
Assuming unit normal encodings for states (after splitting) within €, this can be done by

computing the k” = «x;ponent of the output vector according to the equation:

O \/ V s()  where J={j|A(g)=b,},
Jed 1€EY)

where % denotes equality under the assumption that values in the range [0,€] are
interpreted as being equal to 0, and values in the range [1-€,1] are interpreted as 1. We
now assume that the weights from all the nodes in Z(j) to node k are all equal to a positive
constant ¢, and that the bias of the node is -c(1-e-|E()]l€)/2. There are to cases to
vonsider for the values of the state nodes: (1) the activation values of all state nodes in E(5)
are less than or equal to € and (2) at least one of the activation values of all state nodes in
Z()) is greater than or equal to 1-€. Incase 1, the activation of output node & is computed:

Y0 < 0( [EQ)|-ere- LB, 1]
while in case 2, it is computed

YO 2 o( (1 -€)- TN 2]

In order to conform with our encoding scheme, equation 1 must yield a value less than or

equal to €, whereas equation 2 must yield a value of greater than 1-€. Solving for € and

c under these conditions gives:

1
IEQ -1

€<

and:

20 (&)
T hEu)ce-1-€
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This implic: that a 1-Layer output function can compute the output of an arbitrary Moore

Machine given the state computed by a SLFOCC memory and proves Theorem 4-10.00

4.9.3 2-Layer Output Function

The rejnesentationally weakest STCN memory functions are WIT and CIIR, so it
should come as nc surprise that these functions require the most powerful of output
functions t0 maximize their descriptive adequacy. Since both of these memory functions
allow for no flexibility (other than adjusting window sizes) in defining what is computed
in the state vector, output functions used with these memories must be able to compute
arbitrary boolean functions in order to realize the automata and languages described in
Sections 4.2 and 4.3 as the limits of their computational power. Two layer networks (not
counting the input layer) are known to be universal function approximators and able to
implement arbitrary boolean functions with finite numbers of nodes. This implies that 2-

Layer output functions will be able to realize the maximum potential of WIT and CIIR

memories.

4.10 SUMMARY

In this chapter we have seen that choosing one particular type of memory for a
STCN rather than another influences the types of computational machines which can be
emulated and hence the types of formal languages which can be implemented. We have
also discovered that the representational capacity of a fixed size state vector is limited, and
depends on the particular memory design. It follows that a judicious choice of memory
system and state vector size can be used to limit the hypothesis space of a grammatical
induction task. We have also shown that the representation of state varies from memory

to memory and that certain types of output functions can maximize the representational

power of the resulting STCN.
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Table 4-2 summarizes the number of state nodes and the type of output function
required by each STCN memory function to implement each formal computing machine.
Question marks represent open research problems. This table can now be used to select
thc most appropriate memory function, and output function, for a given grammatical
induction problem, provided some knowledge of the classes of solutions which are
required is available. Furthermore, by relating the number of states in the automata which
are to be represented to the number of nodes in various STCN designs, the issue of
choosing a network size is simplified. This is especially useful to researchers using the
Manual Architecture Changes (MAC) method for computing the change in state vector size
(see Section 2.5.4) since it can be used to provide an educated guess as to the number of
nodes an STCN should have.

The results presented in the table follow from numerous old and new proofs
presented in this chapter. In particular, we proved a new result describing the types of
languages implementable by a window in time memory. We proved that a single layer
first-order context computation memory can implement arbitrary finite state automata and
that they can do so using n-p nodes (where n is the number of states, and p is the number
of input symbols). This chapter also presented a proof showing that single-layer second-
order context computation memories are incapable of implementing arbitrary automata
using binary state encodings, and two new proofs describing the limitaticns of LRSI
memories.

In the past, most connectionist networks have been designed based on principles
like ease of implementation or extension from existing work, rather than on the classes of
languages that can actually be implemented and hence irduced. By proving that
architectures designed in this way can have unexpected limitations, this chapter suggests
that a formal analysis of computational power may be a more sound method for making

decisions about STCN designs. Similarly, since efficient grammatical induction requires
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a search space which is as small as possible, it is also important to select an architecture
which is not too powerful. In the chapters which follow, we shall continue to examine
grammatical induction in a connectionist paradigm, but focus on more specific techniques

of restricting and ordering the hypothesis spaces of these systems.
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Chapter V:
Fixing and Initializing Weights

5.1 INTRODUCTION

In the previous chapter we have seen that the choice of a particular STCN memory
and output function can restrict the classes of computing machines which can be
implemented by a STCN. We have also seen that fixing the number of state nodes
restricts the size of the machines which can be realized. The types of restrictions imposed
in these manners are very general restrictions in the sense that they limit the overall size
or classes (in Chomsky hierarchy) of automaia that can be represented. Sometimes,
however, more specific information about the problem domain is available.

This chapter examines how specific knowledge about the classes of grammars to
be induced can be incorporated into connection weights in an STCN either by choosing

initial weights eor by hard-wiring (fixing weights and not allowing them to be trained) prior
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to training. This type of knowledge is called a priori knowledge. While numerous authors
have provided empirical evidence showing that chosen initial and hard-wired weights
improve the performance of their networks, this chapter focuses on explicating their results
by proving how chosen and hard-wired weights both limit and order the hypothesis space
of inducible grammars.

This chapter is organized as follows: Section 5.2 defines the notions of fixing and
choosing initial connection weights and their effects. Section 5.3 examines how fixing
weights in a STCN limits the space of grammars which a STCN can represent. Section
5.4 describes how choosing a network's initial weights affects the order in which the
hypothesis space is explored. Section 5.5 explains how the chosen initial weights can also
restrict the hypothesis space of STCNs. Section 5.6 addresses the issue of how specific
a priori knowledge can be mapped into the weights of connections in a STCN and gives
some example of the types of a priori knowledge other researchers have assumed might

be availabie. Section 5.7 summarizes the results of this chapter.

5.2 FIXING AND INITIALIZING CONNECTION WEIGHTS TO
RESTRICT AND ORDER HYPOTHESIS SPACES

The most natural way to incorporate specific a priori information about a problem
to be solved by a STCN is to encode it in the weights of the network, since it is the
weights that define the computation a network performs. We distinguish between two
fundamentally different approaches: fixing weights and choosing initial weights. Fixing
weights refers to keeping the weights of some of the connections in a network at a constant
pre-specified value throughout the training process. Choosing initial weights refers to
setting the weight values of some or all of the connections in a network to a pre-specified

value but allowing these weights to be adjusted during training.
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Note that choosing weights can be applied to all of a network's weights. whereas
fixing can only be applied to some weights. This is due to the fact that if all of the
weights in a network are fixed, the network is hard-wired and no learning can occur.
While hard-wiring networks may be an interesting problem, it does not constitute a
grammatical induction task, and hence lies beyond the scope of this thesis. Another
approach to incorporating a priori knowledge in networks is to selectively prune some of
the connections of the network before training. In the discussions which follow, we
consider pruning to be a special case of fixing weights since any weights which are fixed
at zero can effectively be considered pruned.

Since we are studying grammatical induction from the viewpoint of a search
through an hypothesis space, we examine the effects which fixing and choosing initial
weights can have on the size of the hypothesis space, and on the order in which it is
explored. Thus we have two "causes” (fixing weights and choosing initial weights) and
two possible "effects" (hypothesis space reduction and hypothesis space ordering). This
results in four possible combinations. Of these, only fixing weights and hypothesis space
ordering cannot be causally related. i.e. fixing the weights in a STCN does not affect the
order of the exploration of the (reduced) hypothesis space. In the following three sections,

we discuss each of the other three cause and effect combinations.

5.3 FIXING WEIGHTS TO LIMIT HYPOTHESIS SPACE

Perhaps, the most natural way to reduce the hypothesis space is to fix some of the
weights in the STCN. Clearly, choosing weight values for some of the connections in a
STCN and not allowing these connections to be trained, restricts the degrees of freedom
available to the learning algorithm. This restricts the formai computing machines which

can be represented, and hence the grammars which can be induced.
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Fixing weights, however, cannot guarantee that the supplied a priori knowledge
will actually be incorporated in the grammar induced by a STCN. This is due to the fact
the trained weights in the network can overpower or nullify the contributions of the fixed
weights. Suppose that the trained weights of the connections leading into node i in some
STCN are much larger than the fixed weights leading into the same node. Since the signal
transmitted though each connection are multiplied by the connection's weight and then
summed together by node i, the effect of the fixed weights will be negligible compared to
the effects of the larger trained weights. In this situation, the trained weights overpower
the fixed weights.

Now suppose that all the connections leading out of node j are trained and have a
very small weight after the training process. In this case any fixed weights leading into
node j will affect the activation value of the node, but this activation value will be ignored
by the rest of the STCN due to the small outgoing weights. In this sense, the trained
weights nullify the effect of the fixed weights.

Of course, a network which ignores a priori knowledge in either of these two ways
will further limit its representational capacity. That is, a STCN with n nodes will be able
to represent a large class of automata. An STCN of the same size which has some fixed
weights, and uses those fixed weights to compute its behaviour will be able to represent
a smaller class of automata. Finally, a STCN with n nodes which has some fixed weights,
but does not use these weights in its computation (either because they are overpowered,
or because they are nullified) will be able to represent the smallest class of automata.

Frasconi, Gori, Maggini, and Soda (1991, in press) have explored fixing network
weights based on a priori knowledge about an isolated word recognition task to be solved.
Specifically, they develop a network consisting of two separate SLFOCC memories and
a 1-Layer output function. One of the SLFOCC memories (called "K") consists entirely

of fixed weights whose values are assigned based on the available knowledge. Details
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concerning the types of available knowledge and how this knowledge is encoded in weights
will be discussed in Section 5.6.1. The other SLFOCC memory (called "L") has adaptive
weights whose values are learned based on training data. By using this modular approach,
these authors are able to prevent the trained weights from overpowering the fixed weights.
However, the output layer can still ignore the values of the state nodes in "K", by setting
all weights originating from the K-memory to small values. We defer the discussion of
the type of a priori knowledge used by the authors and how this knowledge is encoded into
connection weights to Section 5.6 which is devoted to the encoding issue.

Frasconi, Gori, Maggini, and Soda's (1991,1994) networks are able to achieve a
recognition rate as high as 92.3% in empirical performance tests. The authors indicate
that this is a significant achievement due to the fact that the task of isolated word
recognition is complicated by the fact that the words used are composed only of vowel and
nasal sounds. They further argue that their approach is more efficient that ones which do
not use a priori knowledge. Unfortunately, the authors do not provide any empirica! data

comparing networks with a priori data to networks without a priori data.

5.4 CHOOSING INITIAL WEIGHTS TO ORDER HYPOTHESIS
SPACE |

Just as fixing weights is the most intuitive way of limiting the hypothesis space of
a STCN, choosing initial weights is the most natural way to order it. Obviously the initial
weights define the first potential grammar which is explored by the induction algorithm.
The exploration of subsequent grammars is governed by the learning algorithm. When the
learning rate used by the gradient descent algorithm is small, each grammar considered
will lie close to the previous candidate grammar in the STCNs weight space. Since the
output and state of a STCN are governed by functions continuous- in the connection

weights of the network, a small change in a connection weight will tend to result in a small
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change in output and state. This means that the exploration of the hypothesis space will
proceed via similar grammars.

One advantage of using an ordering technique as opposed to a hypothesis space
restriction technique is that there is often some uncertainty associated with a priori
knowledge about a task. This implies that an irreversible decision, like eliminating certain
grammars from consideration, is less desirable than an approach which can eventually
ignore incorrect information. Setting the initial weights of a network can operate in this
fashion since even if the first weights are wrong, and the network updates weights in small
steps, the network will still be able to eventually explore other regions of the hypothesis
space. This conclusion has been empirically verified by Giles and Omlin (1993a). They
initialized the weights ¢f STCNs to implement one automaton, A, and then trained the
STCNs to represent another (different automaton), B. Despite the fact that this imposed
an ordering on the hypothesis space which caused the network to explore automaton A
first, the network was still able to eventually find and learn automaton B.

Specifically, Giles and Omlin (1993a) trained a STCN to implement a randomly
generated 10-state finite state automaton. Then, they initialized the weights of the
automaton to encode a different randomly generated 10-state automaton. The authors
discovered that, so long as the assigned weight values assigned were not too large (>2),
the networks were able to learn the correct automaton in spite of the "malicious”
information provided by weight initialization. Of course, the authors also found that
learning times were significantly longer for "malicious" information than for correct
information. Giles and Omlin’s results indicate that even if a priori knowledge is incorrect,

an ordering scheme such as initializing weights can sometimes still find the correct

solution.
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5.5 CHOOSING INITIAL WEIGHTS TO RESTRICT
HYPOTHESIS SPACE

While it is obvious that the initial weights used in a STCNM order the hypothesis

157

space, it is less apparent that initial weights can also restrict the space. To recognize the
latter fact, we must realize that the search of the hypothesis space in STCNs is governed
by a gradient descent algorithm. This implies that each candidate grammar considered
during the search must have a smaller error value than the previcus. But, since the initial
weights of a network define a grammar, and since that grammar is assigned an error value,
it must be the case that all grammars with higher error values than the initial grammar are
omitted from the search. Thus, the initialization of weights can serve to both order the
hypothesis space (as discussed in the previous section) and also to restrict the hypothesis
space by causing all grammars with higher error values to be rejected outright. Figure 5-1
illustrates an initial set of weights (i.e. a point in weight space), a fictional error function,

and those grammars which are not explored during the search algorithm.
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Figure 5-1: Initializing weights to limit space.

It is interesting to note that "good"” a priori knowledge will tend to significantly
reduce the hypothcsis space, while “bal" knowledge tends not to reduce the hypothesis
space as much. This is due to the fact that good a priori knowledge will tend to result in
a STCN having a small error vaiue. Since only those STCNs and grammars with even
smaller error values are explored, the hypothesis space will tend to be greatly reduced.
Conversely, bad a priori knowledge will tend to result in a STCN with a large error value.
In this case there will be many STCNs and grammars having smaller error values and
hence the hypothesis space will tend to remain large. This is an extremely useful property
since it implies that good informa*icn will tend to have a large (positive) effect while bad
informaticn will tend to have very little effect.

There is. however, one serious drawback to choosing initial weights to restrict the

hypothesis space: local minima in the error function. If the function mapping weight
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values to STCN error is non-monotonic, then it may be the case that to get to a smaller
error value one must first travel though a region (in weight space) of larger error. Since
the gradient descent algorithm travels only down the error gradient, such smaller error
values can never be achieved. That is, the initial weights do not limit the hypothesis space
to all STCNs with smaller error values, but rather to those STCNs lying within the current
basin of attraction. If the attractor at the bottom of this basin represents a local minimum
(as opposed to a global minimum), then the hypothesis space will be unduly restricted to

exclude the best solutions. This is illustrated in Figure 5-2.
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Figure 5-2: How initial weights can rc3uce the hypothesis space to exclude optimai
solutions.

5.6 ENCODING A PRIORI KNOWLEDGE (WIRING
NETWORKYS)

Thus far, we have examined only the effects of initializing or fixing weights in a
STCN. But in order to initialize and fix weights in a useful manner, it will be necessary
to translate a prio-i knowledge inte connection weights. Clearly, the encoding of
knowledge will depend greatly cn the particular architectuic used by a STCN as well as
the types of knowledge available. In particular, the nature of the memory function used
by a STCN determines the interpretation which can be given to a weight and hence the

types of a priori knowledge which can be encoded by fixing weights.



Chapter 5 161

5.6.1 Single Layer First-Order Context Computation Memories

In a SLFOCC memory"®, the weight W[i][j] reflects the correlation between node
i (which is either an input, or context node) and node j (which is a state node). If i<|ix] .
then i is an input node. In this situation, a large positive weight value indicates that input
i tends "push" the STCN into a state in which state node j has a high activation value.
Similarly, if the weight value is near zero, this indicates that input i does not significantly
influence whether or not the next state is represented by a vector whose / component is
high. Finally, if the weight value is large and negative then this implies that input i/ tends
to "push” the STCN into a state in which state node j has a low activation value.

If node i is a state node, then a large positive value for weight W]i][;j] indicates that
input states for which node i assumes a high value tend to have transitions to states for
which node j assumes a high activation value. At the same time, a weight value near zero
indicates that states for which node i assumes a high value may or may not have transitions
to nodes where the activation of node j is high, and a large negative weight value indicate
that states for which node i assumes a high value tend to have transitions to states for
which the activation of node j is low.

Of course, these are only general trends which can be violated by other large
weight values with contrary effects. As with most connectionist networks, the activation
value of any node depends on th: interaction of the activation values of all nodes
connected to it. This implies that many such systems do not implement hard rules, but

rather simultaneously consider numerous soft constraints.

'We begin wiih the SLFOCC memory and not the WIT or CIIR memory because
the latter two memories do not make use of the weight matrix in their computation of state.

Hence, fixing weight values has no effect on e state function for WIT and CIIR
memories.



Chapter 5 162

The disadvantage of interaction between encoded and learned weights is that it may
be difficult to pre-wire connections, since the encoded knowledge may never actually be
used by the final network. On the other hand, it alsc allows for uncertain a priori
information to be encoded in a safe manner. If the magnitude of a pre-wired connection
is small, then it will be relatively easy to override its effect (i.e. a small amount of training
will suffice), while if it is large, then it will be difficult or even impossible (i.e. large
amounts of training will be required). This implies that it will be useful to set connection
weight magnitudes in proportion to the certainty of the knowledge which they encode.
Of course, the degree to which it is possible to evaluate the certainty of knowledge
depends on the application to which a grammatical induction system is applied. That is,
iules which are very certain will be encoded with high connection weights (making them
hard to override). while rules which are not as certain will be encoded with low connection
weights (making them easy to override).

The interaction between wired and trained weights can also be avoided by
modularizing a network. Frasconi et al. (1991, 1994) have used modularity to incorporate
specific a priori knowledge into a STCN. They employ two separate SLFOCC memories:
one hard wired (called ‘K’), and the other adaptive (called ‘L’). All available input signal
are supplied to both networks and both compute their own states independently. The two
states are then passed through an output function which unifies them and computes a
common output signal. Using this approach, Frasconi et al. were able to show that a
priori knowledge made learning more efficient for a language recognition task.

Specifically, Frasconi et al. (1991,1994) used a STCN to perform isolated word
recognition. The input to their network consisted of phoneme vectors. Phoneme vectors
encode the likelihood that a set of phonemes is detected by an acoustic preprocessing
system. Each component of each vector indicates the certainty that one particular

phoneme has been detected. When supplied with a recording of individual spoken words
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from a dictionary of Italian, the preprocessor computes the likelihood of each phoneme
being present at a sampling rate of 8192Hz, and encodes these values as a sequence of
phoneme vectors. The phonemes detected were: /a/, /e/, /i/, /o/, /u/, /m/, and /n/.
Frasconi et al. used a separate STCN for each word that could be detected. It was
each network's task to induce a mapping from a string of phonemes to the actual word
which was spoken. In each case, the weights in the pre-wired component of the network
'K', were initialized to encoded a specific automaton, using a linear programming
algorithm. In each case the encoded automaton used was a chain graph representation of
the phonemes in the word. A chain graph is a graph with a tree structure but with an
additional loop from each vertex to itself. The non-recurrent arcs in this graph are
labelled with the phonemes of the word which is to be represented. Figure 5-3 illustrates
the chain graph which the authors constructed for the Italian word /Numa/; the recurrent
connections are n-x illustrated in this figure. The initial weights of the network 'K' were
initialized to encode the automaton represented by this graph. Frasconi et al. note that the

encoded automaton is capable of ignoring multiple occurrences of the same phoneme and

of dealing with phoneme skips.
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Figure 5-3: Automaton devoted to detect the Italian word /Numa/.

5.6.2 Single-Layer Sveand-0+3~ Context Computation Memories

In SLSOCC :aeinsrics, each weight connects three nodes. This allows for a
different type of maiaizsy . Suppose WEf1[k] is the weight connecting input node i and
ui-45.X0 node J to state node k. If this weight value is large and positive then input signal
¢ urring during a state when the j* node's activation value is high will tend to "push"”
.mie petwork into a state where the A" node's activation value is also high. If we assume
that states are encoded as unit normal vectors, then a large positive weight value will
indicate a transition from state j, to state k, under input symbol i. Furthermore, under the
unit normal vector assumption, all other weights must transmit a si;. 1l of zero.

Thi- .revents the type of interference discussed for the SLFOCC memory. It is
important to realize that this insulation is accomplished <.e to the faci that one single
w-:ight in the STCN uniquely defines one transition in the encoded automaton. In this
sense, each weight can be considcred a inodule. Omlin and Giles (1992, in press), Omlin,

Giles and Miller (1992), Giles and Omlin (1992c, 1993a, 1993b), have used this form of
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a priori knowledge encoding in SLSOCC memories and found that learning speed

increased by up to one order of magnitude.

Specifically, Giles and Omlin (1993a) trained networks to induce 10-state automata.
They encoded partial representations of the automata to be induced by initializing the
second order connections as described above. The partial representations included: the
target automaton with self-loops (from one state to itself) removed, the target automaton
with 4 states (an the associated connections) pruned, the state transitions for a subset of
the language implemented by the target automaton, several disjointed state transitions
selected from the target automaton, the state transitions for a single legal string, the siate
transitions for a sequence of symbols that do not form a complete string, and the state
tran~itions for two short strings. For each of these partial representations, the authors
observed performance improvements ranging from reducing the learning time by one half
to reducing the learning time by an order of magnitude (for more details, the reader is
referred to Giles and Omlin, 1993a). This shows that initializing weights can result in
significant performance improvements for grammatical induction tasks, even when
relatively little prior knowledge (e.g. a single legal string) is available. Similar encodings
can be performed in CPA memories and CTM memories in an analogous manner. Das

et al. (1993) examined the former case using similar partial knowledge and also found

increased learning speeds.

5.6.3 Locally Recurrent State and Input Memories

Fixing weights in LRSI memories has never been studied. Since LRSI uses first
order connections, results are expected to be similar to those for SLFOCC inen: lies. .3
interesting possibility would be to combine two heterogenous networks one hard wired,
and one adaptive (as described by Frasconi, Gori, Maggini & Soda, 1991}. If the hard

wired network is capable of representing automata with cycles, then the other component
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could be a LRSI memory. This would result in a LRSI memory hybrid which would not
be forced to suffer the inherent limitations of LRSI memories described in the previous

chapter.

5.6.4 Other Types of A Priori Knowledge

A final issue which should be considered in this discussion of fixing connection
weights is the type of a prieri information available to decide on appropriate values for the
fixed weights. The method used to hard wire the second order connections in a SLSOCC
memory relies on the assumption that a priori knowledge is in (or can be easily converted
into xnowledge in) the form of labelled state transitions. This may not always be the case.
To see that this is so, we consider a psychology experiment proposed by Reber (1967).
This author required human subjects to learn a simple grammar. He then created a new
grammar identical to the grammar learned by the subjects with a different, but
corresponding, set of terminal symbols. Reber found that subjects were able to learn the
second granimar more quickly than the original.

One way of interpreting this result is that there exists some a priori knowledge
which is applied to make learning the second grammar faster. This a priori knowledge is
gained during the learning of the original grammar. If one wanted to model the second
component of Reber's experiment, it would be necessary to encode information about the
transitions of the target automaton in a STCN. However, unlike the encodings discussed
earlicr which assume that labelled transitions are available, in this situation only the fact
that a transition exists and not the conditions under which such a such a transition would
occur can be encoded in the STCN. In a SI.SGCC memory it would be impossible to
encode this type of knowledge since each individual weight represents a labelled state

transition. and it is impossible to represent an unlabelled transition. This suggests that for
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certain types of knowledge (i.e. unlabelled transitions) a SLSOCC memory's granularity
may be too large.

We have indicated here that first order connection weights reflect general trends
regarding the relationship between states and/or inputs. At the same time, second order
conrection weights indicate specific transitions. In some cases the types of a priori
knowledge may not be specific enough to allow for its encoding in second order weights.
If the a priori knowledge is "fuzzy" it might be more amenable to a first-order encoding.
For example, if a probabilistic grammar which approximates the :'-terministic target
grammar is known, knowledge might take the form of fuzzy grammatical rules such as
"state A tends to be the predecessor to state B especially when input symbol s, is
presented”. Such a rule could readily be translated to large positive weights on the first-
order connections between the context node representing state 4 and the siate node

representing state B and between the input node representing symbol s, and the state node

representing state B.

5.7 CONCLUSIONS

In this chapter we have focused on how specific a priori knowledge about a
grammatical induction task can be used to order and reduce the hypothesis space of
inducible grammars. Specifically, we have stated that fixing some of the weights in a
STCN limits the hypothesis space. We also argued that initial weights can both order and
restrict the hypothesis space. An additional proof described how good a priori knowledge
encoded in initial weights tends to limit the hypothesis space much more than bad a priori
knowledge. While previous work in this area was empirical in nature, the results
presented here give theoretical reasons for previous observations. While this chapter
focused on prior knowledge about the grammar induction problem, in the next chapter we

examine the use of information that becomes available during the induction process.
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Chapter VI:
Using a Posteriori Knowledge to Find Target Grammars

6.1 INTRODUCTION

In the previous chapters, we examined how we could use prior knowledge about
the grammars to be induced to accelerate learning or make it tractable. In this chapter we
examine how a different type of knowledge can be used to achieve the same purpose. The
three techniques explored here all provide additional information to the learner during the
learning process rather than before induction begins. These techniques represent an
alternative to the performance improvements which can be gained according to the
previous chapters.

This chapter is divided into five Sections. Following this introduction, Section 6.2
describes how ordering the presentation of grammatical (and optionally non-grammatical)

strings can be used to convey additional knowledge to the induction system. It examines
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the use of input ordering by connectionists in STCNs. The ordering techniques used are
proven to be equivalent to ordering techniques used in a symbolic paradigm. Next we
present a theoretical explanation of how input ordering affects learning and accounts for
the empirical results observed in STCNs. Section 6.3 describes using speéiﬁc information
about the states of the automaton to be induced, provided to the learner during induction,
to guide the exploration of the hypothesis space. Section 6.4 discusses how the frequency
with which strings are presented can be used to induce a new type of grammar: a
stochastic grammar, and how stochastic grammar induction can overcome the limitations
suggested by Gold. Specifically, we present a new proof that shows that a popular training
scheme used for STCNs involves training these networks to identify the most probably
correct stochastic grammar for a given sample. The training scheme is also compared to
existing stochastic grammar induction algorithms in a symbolic paradigm. and the
advantages of the connectionist approach are discussed. Finally, Section 6.5 summarizes

the main results of the chapter and presents some conclusions.

6.2 INPUT ORDERING

One a posteriori t~ - ror making the grammar induction problem tractable and
more efficient is input orucring. In the traditional grammar inductibn paradigm, the
learner is required to identify a grammar based on a set of positive (and optionally a set
of negative) example strings. Under input ordering, the data available to the learner
consists not of a set of strings, but of a sequence of strings. That is, there is an order
associated with the input data. If input strings are presented in a non-random order, then
the position of a string within the sequence can represent an additional source of
information about the grammar to be induced.

For an input ordering to be advantageous, two criteria must be met: (1) The

p-esentation of a string s at time ¢ must encode some information other than the mere fact
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that the string is a member (or not a member) of the language. (2) The learning systern
must be informed of the import of this encoded information and use it to limit or order the
exploration of the remaining search space. Only when both of these criteria are met can
a computational advantage be realized.

In this section, we examine the possibilities o7 input ordering in training STCNs
for grammatical induction. Specifically, Subsection 5.2.1 presents some previous cases
of input ordering in a symbolic paradigm where learning +as improved. These serve as
examples of how input ordering works and what it can achieve. Subsection 6.2.2 explains
how the training regimens, used by various STCN researchers, encode additional
information in the form of string ordering. This satisfics the first criterion for a
performance-enhancing input ordering scheme. Subsection 6.2.3 explains why STCNs are
sensitive to the order in which their input is presented and how of their training regimens
exploit that sensitivity to improve performance. This satisfies :he second criterion for a
performance enhancing input ordering scheme. Subsection 6.2.4 concludes by noting that
STCN training regimens constitute input ordering, and are thus a form of a posteriori

performance enhancement.

6.2.1 Previous Results

We begin our discussio:® +f input ordering by examining how input ordering works,
and what it can achieve. Gold (1967) proposed two types of input string orderings which
can improve the classes of grammars that can be induced using only positive input strings
(text learning). The first ¢t Gold's ordering schemes uses indirect negative information
to learn languages which cannot be learned from positive information alore. This is done

by using the absence of a string at a particular point in a sequence to infer that the string

is illegal.
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Suppose an order on all possible strings (grammatical and ungrammatical) is known
to the learning system and this order defines how the environment provides the input data
(e.g. alphabetical order). Note that there is an important distinction between knowing the
order in which a sequence of strings are presented and the actual sequence of strings. An
ordering defines a relation between all possible strings for a given alphabet, i.e. £°, and
thus defines where each string should belong (if it were leyat), whereas the input sequence
generally consists of only a subset of X* and deiines the actual set of legal string::..

Now assume that the induction environment p:. «nis all the grammatical strings
to the learner according to the given order. Then, b v:nitting a string at the appropriate
time, the environment essentially informs the learning: mechanism that the given string is
ungrammatical. Since this implies that the saining set effectively contains both
grammatical and ungrammatical strings, it is equivalent to informant learning (as described
in Section 3.2.5). Since Gold has already shown that primitive recursive languages are
identifiable in the limit under informant learning, this class of languages must also be
learnable under ordered text learning. While this strict sense of ordering is obviously an
unrealistic idealization for practical grammar induction systems, Gold’s work does point
out the power that an ordering scheme can provide. Later in this section, we will explore
a less stringent, and thus more realistic ordering technique.

A second ordering technique proposed by Gold (1967) involves an even more
elaborate transfer of information from the environment to the learner. Gold proved that
if each sentence, s,, in the sequence of input strings, s, Sy, $», ... , 1S computed according
to a primitive recursive function on the sentence's position in the sequence, ¢, then it is
possible to learn any Turing machine which maps integers into strings chosen from any
arbitrary formal language L. Note that since only positive strings are presented, this is a
version of text learning which can learn any Turing machine. It is very important to note,

however, that the assumption that the ordering is computed according to a primitive
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recursive function, and that the learner knows this function is a very strong one. It is so
strong, in fact, that Gold concludes that this model of language learning "is of no practical
interest” (Gold, 1967, p.452). Nonetheless, it doss show that "restrictions on the order
of presentation of elements of the text can greatly increase the learnability power of this
method of information presentation” (Gold, 1967. p.453).

A third and less stringent ordering scheme has been proposed by Feldman (1972).
He showed that even an effective approximate ordering of the input strings could be used
to convey indirect negative information. If there exists a point in time by which every
grammatical sentence of a given length or less has appeared in the sample, then a learner
capable of computing this point in time can also compute which sentences are not in the
language (this could be the case in human language lezrning if children were spoken to in
short sentences). Once again this is equivalent to a learner which is provided with both
grammatical and non-grammatical strings, appropriately labelled.

The common thread to all three of these techniques is the fact that the learner reacts
differently to the same set of strings presented in differing crders. More specifically,
strings which are presented early cause the learner to make certain assumptions about
remaining strings which affects the order in which potential grammars are considered, or
the size of the hypothesis space which is explored. More efficient and tractable learning
can be accomplished by tailoring the learning zlgorithm and the input sequence to each
other.

While all three of these techniques are designed to allow context-free and arbitrary
grammars to be learnable in the limit given text input, input ordering can also be used to
improve the performance of a grammatical induction system. If the learner can infer that
certain strings are legal, or illegal, based on the order in which other strings are presented,

then less of the hypothesis space must be explored in order to identify a grammar. Thus,
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input ordering can be applied in both text and informant learning to improve the efficiency

of learning.

6.2.2 Input Ordering in STCN Training

Having seen some examples of input ordering in a symbolic paradigm, and having
examined the advantages thereir, we now turn our attention to connectionist grammar
induction systems. Recall that every input ordering system requires two components: an
environment that orders input strings, and a iearner which uses that order. We begin by
studying the first of these two components. More specifically, we focus on training
regimens for STCNs and examine whether or not additional information (beyond the
grammaticality of individual strings) is conveyed in their associated input orderings. We
identify four forms of input ordering used by STCN researchers: Lengthening Input Data,
Alphabetical Input Data, Multi-Phase Uniform Complete Input Data, and Multi-Phase

Non-Uniform Complete Input Data.

Lengthening Input Data

A simple ordering scheme which can be placed on strings is to sort them in order
of increasiny length. Das et al. (1993) have used a STCN training scheme whereby short
simple strings are presented first, and progressively longer strings are presented as
learning proceeds. They contend that "incremental learning is very useful when (a) the
data presented contains structure, and (b) the strings learned earlier embody simpler
versions of the task being learned" (Das et al., 1993, p.69), a well known concept in
machine learning theory. In this situation, the fact that short strings are presented early,
together with the fact that these strings embody simple versions of later strings, implies
that it is possible to use the strings which have already been presented to make certain

implicit logical inferences about strings which have not yet been presented. A grammar
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induction system can be designed to use these inferencas to dynamically reduce or re-order
the space grammars it can induce.

For example, when a string of length n is presented as input to Das et al.’s system,
it is possible to conclude that all strings which are shoiic r than 7 and have not yet been
presented must be ungrammatical. This implies that these shorter strings will not be
-presented at a later point in time. In this sense, additional information about future strings
(i.e. that they will not contain certain short strings) is transmitted by the ordered data. We

will see later how a STCN learning system could function in this fashion.

Alphabetical Input Data

Giles et al. (1991, 1992a, 1992b) and Miller and Giles (1993) have used another
simple ordering scheme: alphabetical ordering. If input strings are presented in strict
lexicographic order, then the presentation of a string, s, implies that all lexicographically
preceding strings which have not been presented must be ungrammatical, in the case of
text learning, and must be of irrelevant (don't care) grammaticallity, in the case of
information learning. In this sense, an alphabetical presentation order can convey
additional information (regarding the grammaticality of unpresented strings). Once again,
a learnisg system which is tuned to this type of ordering in the sense that it restricts or
orders the space of inducible grammars dynamically could perform better than a system
in which input is not ordered. (Empirical data describing Giles et al.’s and Miller and

Giles’ results will be provided in Section 6.2.3.)

Multi-Phase Uniform Complete Input Data
Both lengthening and alphabetical input orderings are very restrictive in the sense
that they precisely prescribe the order of presented strings. For practical applications, it

is often more desirable to use a less stringent ordering. Consider a case where input
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strings are presented in phases. In the first phase, all short strings, and only short strings,
are presented. In later phases other strings are presented. We shall refer to this type of
partial ordering as multi-phase uniform complete' since the strings presented in the first
phase are uniformly short and completely represenied. A multi-phase uniform complete
input ordering can provide additional information in the same sense that a tengthening
input ordering does, with the exception that assumptions about strings which have not been
presented can only be made at the end of a phase, as opposed to after each string. Giles
et al. (1990) have used a multi-phase uniform complete ordering to train STCNs.
A similar ordering technique has been used by Elman (1991a. 1991b) who used a
-- form of ordering to train his networks. While Elman considers his technique to be
different than ordering (he describes the techniques used by Gold—which include
ordering—and then states, “in this paper, I want to pursue what may be a third factor”
(Elman, 1991b, p.4)), we shall prove that it is actually a form of multi-phase uniform
complete ordering. Each phase consists of training a network on five passes through a

specific corpus. In Elman (1991a), the corpora are described as follows:

Phase 1: The first training set consisted exclusiveiy of simple
sentences. This was accomplished by eliminating all relative clauses. The
result was a corpus of 34,605 words forming 10,000 sentences (each
sentence included the terminal “.").

Phase 2: The network was then exposed to a second corpus of
10,000 sentences which consisted of 25% complex sentences and 75%

simple sentences (complex sentences were obtained by permitting relative

! The term uniform complete is based on Trakhtenbrot and Barzdin (1973) and
Angluin (1976) who discussed the complexity of learning subsets of languages containing
all strings not exceeding a given length and only those strings.
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clauses). Mean sentence length was 3.92 (minimum: 3 wwd, maximum:
13 words).

Phase 3: The third corpus increased the percentage of complex
sentences to 50% . with mean sentence length of 4.38 (minimum: 3 words,
maximum: 13 words).

Phase 4: The fourth consisted of 10,000 sentences, 75% complex,
25% simple. Mean sentence length was 6.02 {minimum: 3 words,

maximum: 16 words). (Elman, 1991a, p. 204)

In Elman (1991b), a fifth phase with 100% complex sentences is added.

We now prove that this training scheme corresponds to multi-phase uniform
complete ordering because there are only a finite number of simple sentences and it is
highly likely that all simple sentences are presented during the first pkase of training. In
fact, there are only 440 simple sentences in Elman's language. This is figure is computed
as follows: Table 6-1 depicts the grammar for simple sentences. It is based on the
grammar presented in Elman (1991a, p. 202), however, all relative clauses have been
eliminated to allow only simple sentences. Further, the two "Additional restrictions”
given in the original table have been incorporated directly into the grammatical rules. This
involved distinguishing between singular and plural cases for noun phrases, vert: phrases,
nouns and verbs (NP1 vs. NP2, VP1 vs. VP2, N1 vs. N2, VI1 vs. VI2, VT1 vs. VT2)
and distinguishing between intransitive and transitive verbs (VI1 vs. VT1, VI2 vs. VT2).
Note that these changes do not alter the set of sentences (i.e. the language) defined by the
grammar. They merely allow the representation of the language by BNF grammar rules
alone, as opposed to a representation using both BNF grammar ruies and "Additional

restrictions". This will greatly simplify the computation of the number of simple

sentences.
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M—

Rule Nurnber of Possible
Combinations
S - NP1 VP1 "." | NP2 VP2 "." 6%x44 + 4x44 = 440

VP1 - VI1 | VT1 NP1 | VTI NP2 4 +4X6 +4Xx4 =44
VP2 - VI2{ VT2 NP1 | VT2NP2 4 +4X6 +4%x4 =44

NP1 - PropN | N1 2+4=6
NP2 - N2 4 =4
N1 - boy | girl | cat | dog 4

N2 - boys | girls | cats | dogs
PropN - John | Mary

VI1 ~ sees | hears | walks | lives
VI2 ~ see | hear | walk | live

VT1 - chases | feeds | sees | hears
VT2 - chase | feed | see | hear

» Db H AN

H
Table 6-1: Grammar for simple sentences (adapted from Elman, 1991a, Table 1, p.202).

The computation of the number of simple sentences goes as follows: There are a
total of four singular nouns (N1), four plural nouns (N2), two proper nouns (PropN), four
intransitive singular verbs (VI1), four intransitive plural verbs (VI2), four tramnsitive
singular verbs (VT1), and four transitive plural verbs (VT2), as indicated in Table 6-1.
This implies that there are six singular noun phrases (NP1) and four plural noun phrases
(NP2). For singular/plural verb phrases (VP1/VP2), the singular/plural intransitive verbs
(VI1/VI2) are added to each combination of a singular/plural transitive verb (VT1/VT2)
with a noun (singular or plural) phrase (NP1/NP2), giving a total of 44 singular/plural
verb phrases (VP1/VP2). Sentences are formed by pairing singular/plural noun phrases
(NP1/NP2) with singular/plural verb phrases giving a total of 440 sentences (S).

If we assume that all sentences are generated independently with equal prcbability

(Elman does specify which probability distribution he uses), then the probability, P(s), of
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generating any one simple sentence, s, is 1/440. We now compute the experied nmnber
of samplings required to see all 440 sentences, E{(x). We break the computation into steps.
letting E(n)) represent the number of samples required before a new (unseen) sentence is
found. given that i sentences have already been seen. If /=0, then the first string sampled

is guaranteed to be a new string, so the expected number of samples required is exactly

one:

E(ny) = 1.
If i=1, then there is a 439/440 chance that the first string sampled is a new string. The
chance that the second string sampled is the first new string is equal to the chance that the
first string sampled is not new (1/440), multiplied by the chance that the second string
sampled is new (439/440). The chance that the third (etc.) string sampled is the first new
string can be computed in a similar fashion. Therefore, the expected number of samples

required before a new string is discovered, given that one of the 440 strings has already

been seen, is:

En,) - 439(1) , 439(2) L1 1439
440 440 440 440 440 440
— 439
=3 ===
j=1 440°

If i=2, then the chance of not sampling a new string the first time is 438/440. The chance
that the second string sampled is the first new string is equal to the chance that the first
string sampled is not new (2/440), multiplied by the chance that the second string sampled
is new (438/440). The chance that the third (etc.) string sampled is the first new string
can be computed in a similar fashion. Therefore, the expected number of samples required

before a new string is discovered, given that two of the 440 strings have already been

seen, is:

438 2 438 2 2 438
E(n,) = So(]) + ——m(2) * ———Zem(3) +

440 440 440 440 440 440
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20 h
= Z £ 438(j)
71 440/

It is now possible to generalize this pattern for all values of i, where i is the number of

already-seen strings. Specifically,

~

0 ")
E(n) = 3 ——(440-)(j).
71 440/

Rearranging gives:

(440 -i) ( )' )
E =
(n) = ‘2 5) O

i

Since the summation is now an arithmetic-geometric series of the form:

St -

(1-r?

with r=i/440. The equation can be rewritten as:

E(n) = (440-i)( i )( 440 )2
y i\ 440/\ 4a0-i/ "’

which is equivalent to:
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440

E(n) = .
440§

Recall that E(n,)) represents the expected number of samplings required to discover a new

string, given that / distinct strings have already been discovered. To discover all 440

strings, an expected

438

E(n) = 3 E(n)
i=0

samplings must be made. Substituting for E(n;) reveals that

439

440
E(n) = .
2 T

Solving this equation gives:

E(n) = 2933,
which implies that it will take an average of 2933 samples before all 440 simple strings
are discovered by random sampling. Recall that Elman (1991b), uses 10000 simple string
samples in his first phase of training.

Another interesting question to ask about Elman's multi-phase training regimen is:

What is the probability,

P(sl/\sz/\s3/\"'/\sn | samplings=10000 )
that all 440 simple strings have not been presented after the first phase? The probability

that one or more of the 440 strings will not be generated in 10000 samples is one minus

the probability that all 440 strings will be sampled:
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P(sl/\v;z/\ss/\m/\sn | samplings=10000 ) =
I-P(S,N2N3A°"Nn | samplings=10000 )

The latter probability, in turn, is equal to the probability that one of the 440 stings is

generated taken to the power of 440:
P(sl/bz/\sa/\'"/\s" | samplings=10000 ) = P(s, | samplings=1oooo)“°.

The probability of generating one string in 10000 samples is equal to one minus the

probability of not generating the string raised to the 10000* power:

—\10000
' .

P(s‘ | samplings=10000) = l-P(s

Combining all of these equations:

Pls As,As., AAs_ | samplings=10000 | = 1 - ( 1 - (439/440)1000 y*0,
1 2 3 n

Using the binomial approximation:

P(s;7s, e, " 1s,, | samplings=10000 ) < 1-(1-440(439/440)®) = 5.8%10*.

This clearly indicates that it is extremely unlikely that any of the 440 simple strings have
not been presented by the end of the first phase of training. Since it is very likely that no
new simple strings are presented after the first phase of learning, the data presented are

complete in addition to being uniform.
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o~

In addition to Giles et al. (1990) and Elman (1991a, 1991b), Stolcke (1990c¢) also
uses a muiti-phase training scheme but does not provide sufficient details to determine
whether or not the phases are uniform and complete. If strings are presented according
to multi-phase uniform complete input scheme, a learner that can infer that certain strings

are illegal after the first training phase would be able to gain a computational advantage

over a leainer which made no such assumptions.

Multi-Phase Non-Uniform Complete Input Data

It is interesting to ask what would occur if the sample size of Elman's first training
phase had been so small that not all of the simple strings could be included in the first
phase. Could input order still make learning easier? In this situation, it would take a
second (or third, etc.) phase before all simple strings were presented. The data presented
in the two (three, etc.) phases would be complete, because all simple strings are presented,
but non-uniform, because some complex strings are presented in the second (and higher)
phase. Complete non-uniform ordering has also been used by Sun et al. (1990b) who uses
a multi-phase training technique in which all short strings, and some mid-length strings
are presented during the first phase of training. Both of these presentation techniques
convey additional information because there exists a point in time at which all strings of
a cenain type have been presented (i.e. all short strings, or all simple strings). This is just
like Feldman's ordering, and once again, a learner tuned to this ordering can use this

additional information to make the learning process tractable or more efficient.

6.2.3 Input Order Sensitivity in STCNs
We have now seen that the training environments used for STCNs sometimes
contain additional implicit information (beyond the grammaticality of individual strings)

in the form of string ordering. This represents one of the two components required for
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a more efficient learning system. The second component is a learner which uses the
additional information. In this section we examine how input ordering affects the solutions
explored and found by STCNs, thereby addressing this second component. Specifically,

we examine two types of order sensitivity: engineered sensitivity and natural sensitivity.

Engineered Sensitivity

One way of ensuring that a learning system makes use of input ordering is to
specifically design an induction algorithm around an ordering scheme. Since every
symbolic algorithm "is equivalent to and can be ‘simulated’ by some neural ret" (Minsky,
1967, p.55) it is not at all surprising that it is possible to realize such a hand crafted
algorithm in the form of a conmecctionist network. As an example, Porat and Feldman
(1991) have designed a connectionist network which implements an algorithm which
induces FSA based on alphabetically-presented input strings. In order to implement the
algorithm; however, the connectionist network requires a extremely complex control
structure (compared to typical connectionist networks) and has both hardwired and mutable
connections. Thus, the resulting learning system seems more like a connectionist-iterative

learning hybrid than a purely connectionist architecture.

Natural Sensitivity

An alternative to designing the learning system to accommodate a particular input
order is to design the input order to accommodate the learning system. This is typically
done in STCNs, where network design is based on principles like simplicity, hofnogeneity,
local processing, etc.. Having designed the network according to these principles, the
researcher can only ensure cooperation between input order and learner by adjusting the
input order to suit the network's own natural sensitivities to this order. In a sense, the

researcher has assumed part of the burden of learning the language. It turns out that the
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order of pattern presentation affects STCN (and spatial-network) learning greatly. This
is due to the fact that initial weight changes in a4 network can draw solutions toward a
certain local minimum, from which the STCN cannot later escape. This phenomenon is
due the fact that STCNs do not perform true gradient descent.

Recall that, in order to efficiently approximate the gradient, weight adjustments,
AW(r), are made piecewise over time. This implies that the compouent of the gradient
caused by a pattern presented at time ¢ is computed after the weight adjustment caused by
the pattern at time #-1 has been made. This, in turn, means that successive weight
adjustments are not commutative. To better understand the implications of this fact, we
consider a simple example. Suppose we have a language consisting of only two training
strings. Suppose also that the network error, {; '!gf(r)’r} for each of these two strings is
given in Figure 6-1 parts a) and b), and the total error for both strings, €, is givena in part
c). Now suppose that the network's initial weights and corresponding errors are
represented by the point labelled "B" in all three graphs. Clearly if the network is first
trained only on the string whose error function is depicted in (a), then the network's
weights will move to the point labelled "C". Subsequent training with the second string
will keep the network's weights at "C" since it represents a loca! minimum in the second
string's error space. By contrast, if the network is first trained using only the second
string, (b), then the network will converge to point "A". Again, subsequent training will
not change the weights in the network. Thus, it is clear that the order of string
presentation during training limits the hypothesis space (range of weights) which is

corsidered in searching for an error minimizing solution during later string presentations.
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Figure 6-1: Error spaces for an STCN learning a two-string language. (a) Error spac
for string 1. (b) Error space for string 2. (c) Combined (total) error space.
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While it is easy to see that input ordering affects hypothesis space search during
learning, it is much more difficult to identify the ideal ordering scheme #0r 241 STCN. In
the example above, presenting the string (a) be‘ore string (b) will restrict th r~age of
weights to include the global minimum of the error space. By contrast, presenting string
(b, . -ior to string (a) also restricts the range of weights, but the restricted range does not
include the global minimum of the error space. Thus, in the simple example, it is
important to present string (a) first.

In more general terms, it is always best to present strings whose error functions
have local minima at the same points in weights space as the total error function has global
minima. Since the presentation of a string adjusts the weights of the network so that the
string's error is reduced, the network's weights will approach a local minimum in the
presented string's error function. Ideally, this local minimum in the string's error function
will correspond (or lie close to) a global minimum in the total error. Since the specific
strings satisfying this condition depend entirely on the language to be learned by the
STCN, we cannot identify a general ideal ordering scheme. Instead we turn to the
empirical evidence to show that the ordering schemes described above do in fact
correspond to the natural sensitivities to input order in STCNs.

Das et al. (1993) compared training STCNs with a lengthening input ordering to
training the same STCNs with a random ordering of strings. They observed a 50%
reduction in training time for the lengthening ordering scheme (see Das et al., 1993, Table
1, p. 68). Giles et al. (1992b) also observed an improvement in training times when they
presented strings in alphabetical order, and concluded that, "the sequence of strings
presented during training is very important and certainly gives a bias in learning” (Giles,
1992b, p.320) and that "training with alphabetical order ... is much faster and converges

more often than random order presentation” (Giles, 1992b, p.320).
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While the performance improvements realized by the ordering schemes of Das et
al. (1993) and Giles et al. (1992b) took the form of accelerated learning, Elman (1991a,
1991b) used ordering to learn an otherwise unlearnable grammar. In two learning
experiments, Elman’s multi-phase consistent complete ordering approach was used after
previous attempts to train the network on the entire data set (complex and simple
sentences) failed. In both cases, Elman found that, “when the network was permitted to
focus on the simpler data first, it was able to learn the task quickly and them move on
successfully to more complex patterns” (Elman 1991a, p. 204). This evidence clearly
shows that input ordering can be used in the connectionist domain (just as it has in the

symbolic paradigm) to improve learning efficiency and tractability.

6.2.4 Conclusions

In this section, we have reviewed how input ordering can be used to accelerate
learning as well as make it tractable. To do this, sample strings must be presented 1 an
order that conveys useful information to the learning system in the sense that the system
restricts or orders its hypothesis space based on the presentation order. It must also be the
case that the learner is tuned to the presentation order in the sense that it can extract the
information from it. While some authors have designed a learner to accommodate a
particular input ordering, grammatical induction by STCNs typically involves tailoring the
input scheme to suit the learner. Four input ordering schemes, lengthening, alphabetic,
multi-phase uniform complete, and multi-phase non-uniform complete, have been used.
Empirical evidence suggest that all of these ordering schemes exploit the natural
sensitivities to input order exhibited by gradient descent learners and result in

improvements in learning efficiency and tractability.
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Another approach to using additional information during the search for a target
grammar involves providing the learner, at certain points in time. with very specific, but
incomplete, knowledge about the automaton to be induced. This section explores STCN
approaches :0 providing automaton information. Subsection 6.3.1 explains how automaton
information can been used to learn an otherwise unlearnable grammars. Then, Subsection
6.3.2 describes how knowledge of dead states in the automaton can be used to accelerate
and simplify the problem of grammar induction in STCNs, while Subsection 6.3.3
describes an approach to !earning context-free grammars which requires knowledge of
when symbols are pushed and popped onto the stack of a pushdown automaton

implementing the grammar. Finally, Subsection 6.3.3 summarizes this section.

6.3.1 Using Automaton Information to Make Learning Tractable

It has been known since Gold (1967) that only finite cardinality languages can be
learned from text input. Yet, there are arguments that children do not receive direct
negative examples (or at least pay no head to them) and arguments (see Chomsky, 1956)
that natural languages are, at least, context-sensitive (if not arbitrary). Additionally, most
children are able to learn natural languages. This has led researchers to search for
explanations to reconcile this apparent paradox.

Ore of the most popular explanations is that only part of any given language is
learnt and the remainder of the language is available to the learner from other sources.
Two proposals have been offered. First, Chomsky proposed that there is an innate pre-
wiring to learn language. This is known as the “modularity” position. Alternatively, if
one rejects the modularists’ position, then. one believes that the context—including

semantic referents, goals, etc.—provides additional information about a language’s

structure.
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For our purposes, we do not take a position on this debate. Instead, we break both
proposed mechanisms into two components: the first provides additional knowledge (from
innate pre-wiring in the case of a modularist position, or context in the non-modularist
case), and the second, performs grammatical induction based upon both the presented
strings and the additional knowledge supplied by the former component. If we are
interested only in the “learning” component of a language learner, then only the content,
and not the source of the available knowledge about a language is important. Therefore,
we study only the second component, while making certain assumption about the
information content supplied by the first component.

Specifically, it is useful to assume that the knowledge about a language provided
takes the form of an underlying grammar whose terminal symbols are rewritten by a
learned grammar to represent the desired language. The underlying grammar is called a
“universal base”, because it is assumed that whatever language the learner eventually
learns is predicated on this base. The existence of a universal base grammar is called the
“universal base hypothesis”. If one accepts the universal base hypothesis, then language
learning can be reduced to learning a rewrite grammar which maps the universal base to
the desired language. Note that we have not made any assumptions about the source of
the information contained in the universal base—it could come from pre-wiring; or it could
come from context as has been suggested by Wexler and Culicover (1980).

Typically, there are relatively strong restrictions placed on the rewrite grammars
which can be induced. These restrictions can make the rewrite grammar easier to learn
than the combined grammar for the language, defined by applying rules from the rewrite
grammar to symbols generated by the base. For example, if the universal base is a context
sensitive (or unrestricted) grammar, and the rewrite grammar is a regular grammar, then
the combined grammar is context sensitive (or unrestricted). Yet, since only the rewrite

grammar component is learned, and since regular grammars can be induced from positive
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and negative example strings (as shown by Gold, 1967), the combined system will be
capable of inducing context sensitive (or unrestricted grammars). This is significant,
because Gold also showed that grammatical induction of context sensitive (unrestricted)
grammars cannot be induced based only on positive and negative example strings.

In the context of the induction mechanism, whose job it is to induce ar automaton
which implements a desired grammar, the universal base grammar translates to a universal
base automaton (e.g. a specific Turing machine) and the rewrite grammar translates to a
second (simpler) automaton which performs a mapping from the output of the universal
base to the output of the grammar learner. It is the job of the induction system to develop
a combined mechanism which can then implement the desired grammar.

For example, Wexler and Cullicover (1980) developed a model of human language
learning based on a non-modularist approach. In their model, the context in which sample
sentences are provided is represented by a context sensitive grammar. The terminal
symbols of this base grammar (base phrase markers) are then supplied to the learning
component of their system. This tells the learner about the state of the base automaton,
it must then learn only the rewrite automaton. Wexler and Cullicover showed that the
learner is capable of identifying, in the limit, an automaton combining of a pre-specified
component and an induced component, which is capable of implementing certain classes
of context free grammars. Since their theory is both complex (their entire book is devoted
to its development and explanation) and specific to natural languages, it will not be
reproduced here. Instead, we focus only on the highest level principle of their theory:
that intractable language learning tasks can be made tractable if specific information about

the operation of a part (i.e. the universal base) of the total machine is available to the

learner.
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6.3.2 When Strings Become Illegal

Providing base automaton information to the learner is also an approach which has
been used in a connectionist paradigm. One technique involves informing the learner, not
just that a string is illegal, but at what point the string became permanently illegal. The
manner in which this is related to base automaton informaticn will become clear shortly.
To make things more clear, we consider a simple example. Suppose we wish to teach a
STCN the language 170" (i.e. the language consisting of all strings having n 1s, foilowed
by n Os, for all n). This language can be described by the grammar: S-1S0. Rather than
presenting the string "111101011001" labelled illegal, we could inform the learner that the
string became permanently illegal upon presentation of the prefix "111101". This is
equivalent to telling the learner that after presentation of "111101", there are no suffixes
which can be applied to make the string "111101" conform to the grammatical rules of the
language to be induced. This effectively conveys more information than just labelling the
stings as illegal, because it identifies a whole class of illegal strings (i.e. all strings starting
with "111101"). Of course, this assumes that there exists a teacher or an oracle in the
training environment having the ability to identify precisely at what point the string
becomes illegal.

It is important to realize that any automaton for which it is possible to identify
strings with an illegal prefix string must have a "dead state” (a state which is non-
accepting, and has connections only to itself). In the example above, presentation of the
string "111101" would place the minimal automaton into the dead state since no further
input symbols can ever make the string legal again. By presenting strings along with
information regarding when the strings become ii}zgal, the learning system is told when
the automaton to be induced should be in the dead state. In a sense, than can be thought

of as proving information about the state of a base automaton upon which an isduced

automaton is built.
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Das et al. (1993) have used dead state information to train STCNs on grammatical
inductiori tasks. This is done by defining a dead state output-node and training this node
to assume a value of 1 if and only if the prefix string makes all strings starting with the
prefix illegal. While the use of dead states appears to have little effect on learning for
simple, context-free grammars, empirical results show that several more complex context-
free grammars proved to be unlearnable without dead state information, yet readily

learnable with this form of additional knowledge about the target grammar (automaton)

(Das et al., 1993, Table 2, p.68).

6.3.3 Push/Pop Information

We now describe another approach to using information about the automaton to
guide a grammatical induction system during learning. This approach is specific to
context-free grammar induction. It involves providing the learner with knowledge of when
the induced automaton should push and pop symbols onto and from the stack. In many
grammars, pushing and popping symbols from the stack corresponds to what we would
intuitively call the beginnings and ends of phrases respectively. More formally, these
operations correspond to entering and returning from recursive procedures.

For example, sentence fragments like “the bump on the log in the hole at the
bottom of the sea” are usually represented grammatically as recursive structures of the
form illustrated in Figure 6-2. In this figure, NP represents a noun phrase, Art an article,
N a noun, PP a prepositional phrase, and Prep a preposition. The structure depicted can

aiso be represented by the following context free grammar:

S~ NP
NP - Art N PP
PP - Prep PP
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NP
A N pP
Prep NP
| . Art N PP
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Prep NP
" At N PP
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sea
Figure 6-2: Recursive phrase structure.

When implemented in a pushdown automaton, such a grammar would result in one push
operation every time a new PP is rewritten and one pop operation after the rewrite is
completed. If this type of push and pop iiformation is supplied to a grammatical induction
system it will be able to identify when recursive phrases begin and end. In this sense, this
type of information is analogous to the base phrase markers used by Wexler and Culicover
(1980).

Das et al. (1993) have also used this approach to train STCNs on a difficult
grammatical induction task: learning the palindrome language for two symbols. This
language consists of all strings which consists of the same sequence of symbols when read
either forwards or backwards. Das et al. note that the palindrome grammar represents an
especially difficult language induction task because the automaton impismenting it must

precisely remember the first half of every string which is presented. Unfortunately, they
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do not present any empirical comparisons of learning with, versus learning without
push/pop information. It is clear, however, that this information represents important

additional knowledge about the computational machine that is the goal of the induction

process.

6.3.4 Conclusions

This section has shown that specific information about the automaton which is to
be induced can be indirectly presented to a learning system to simplify the learning task.
In effect, this involves presenting more information than the grammaticality of only one
string. Two approaches were discussed: dead state information and push/pop (phrase

structure) information. Empirical results confirm superior learning for both types of

information.

6.4 FREQUENCY CODED STRINGS

In this section we prove that the frequency with which training strings are
presented during grammatical induction can be used as an additiohal source of information
to induce a new type of grammar: a stochastic grammar. Further we explain why this
new learning scenario can offer a tractable solution to the problem of grammar induction
described by Geld (1967). In Subsection 6.4.1 we give a detailed description of the new
learning paradigm, including formal specifications of stochastic grammars, stochastic
languages, and stochastic automata. Subsections 6.4.2 and 6.4.3 examine some of the
complications involved with stochastic grammar induction by focusing on the
representations of solutions and in what sense they might be considered optimal.
Subsection 6.4.4 presents previous conclusions, made by Horning (1969), about the
tractability of grammar induction in the context of the new paradigm. And in Subsection

6.4.5 we prove that a common STCN training technique is an alternate implementation of
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stochastic grammar induction in the new learning paradigm. We are thereby able to
conclude in Section 6.4.6 that STCNs are able to exploit the advantages of stochastic
grammar induction to avoid the difficulties associated with deterministic grammar

induction as suggested by Gold.

6.4.1 Stochastic Grammars, Languages, and Automata

In previous chapters, we have considered languages simply as sets of grammatical
strings, und STCNs as systems which learn to render grammaticality judgements on
strings. The grammaticality judgement procedure executed by STCNs is strictly
deterministic. That is, for each sequence of input vectors, x(0), x(1), ..., x(¢) there exists
exactly one target vector y ‘() representing the ideal network response. While this
paradigm works well when networks are trained to render grammaticality judgements as
in Gold's acceptor yrobilem, it cannct be easily applied to Gold's generator problem.

Recall that in Gold's generator problem, the objective of learning is to be able to
generate grammatical strings (and not just recognize them). Any system doing this must
implicitly make a decision regarding the frequency with wiich respective strings are to be
generated. Previously we defined a (formal) language as a set of strings of symbols from
some one alphabet. In the context of string generation, this definition will no longer be

suitable. In its place, we use the following definition:

A (formal) stochastic language is a frequency distribution on strings of

symbols from some one alphabet.

Henceforth, we shall used the word language to refer only to non-stochastic languages and

the words stochastic language to refer to stochastic languages. As before, the symbol 2
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is used to represent the alphabet. Stochastic Grammars are viewed as descriptions of

stochastic languages. Formally:

A stochastic grammar is a finite characterization of a stochastic language.

Once again, we shall distinguish between (non-stochastic) grammars and stochastic
grammars. We use Backus-Naur Form (BNF) as a mta-grammar to describe stochastic
grammars. While Hopcroft and Ullman (1979) do not discuss probabilistic automata,
other authors (e.g. Salomaa, 1969; Huang and Fu, 1971) do. We choose, however, to
develop a new formalism to describe these devices in order to be consistent with the
previous notations (which were based on Hopcroft and Ullman).

Recall that a BNF grammar is a 4-tuple, G=(V,T,P,S) where: V represents the set
variables, T represents the set of terminals, P the set of productions, and S the start
symbol. Unlike for (non-stochastic) grammars, where productions took the form -3, for
stochastic grammars productions are described with an additional parameter, p,;: otp-""ﬁ,.
Here, p,; represents the probability of applying the rule i to sting o to generate a new
string B,. In this thesis, we assume that all stochastic grammars are normalized in the
sense that:

Y b, =1, Vis.t. peP.

This assu'mption implies that for any string, o, occurring on the left size of a production,
the probability of applying a production is unity.

The rules of a stochastic grammar are applied randomly according to the given
probabilities in order to generate a sample of strings from the language which the
stochastic grammar describes. An example of a Stochastic grammar is given in Table 6-2.
Note that this particular stochastic grammar is a regular stochastic grammar since all

rewrite rules satisfy the requirements for regular grammars given in Section 3.4.1.
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Rule Probability Rule Probability
S-tA 50% B-vD 50%
S-pB 50% C-xB 50%
A-sA 50% C-s 50%
A-xC 50% D-pC 50%
B-tB 50% D-v 50%

. _________________ . ___________________________/ ]
Table 6-2: Simple stochastic grammar.

While grarnmars are used to test whether or not a given string is a member of a particular
language, stochastic grammars can be used to generate sample strings of a stochastic
language. Since stochastic languages are frequency distributions, the strings generated by
stochastic grammars are sampled from the given distribution. This is done as follows:
First, the current string is initialized to be the start symbol. Second, the left-most non-
terminal symbol in the current string is matched to all production rules having the same
symbol on the left-hand side. Third, one of the production rules is selected according to
the rule probabilities and applied. Steps two and three are repeated until only terminal
symbols remain in the current string, at which point the current string represents a sample

string.
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String, Frequency, u(p) String, B Frequency, u(pB)
pvv 1/8 pttvy 1/32
txs 1/8 ptvps 1/32
ptvv 1/16 tSSXS 1/32
pVvps 1/16 tXxvv 1/32
tsxs 1/16

Table 6-3: Frequently generated strings and their probabilities.

We have assumed here that all production rules have only a single non-termina
symbol on the left-hand side. This applies only to regular and context-free grammars
Generation of strings from stochastic context-sensitive and stochastic unrestrictec
gramumars is a complex and only partially resolved issue which has been studied b
Sankoff (1978) and Labov (1969). We limit consideration to stochastic grammars that ar«
either regular or context free.

Formally, we define the stochastic rewrite operator, <3 by asserting tha
uAB=uc; B with probability p ,; if and only if the production Api'oc, is a member of P. Thi
operator represents one application of steps 2 and 3 in the string sampling process
Multiple applications can be represented by the stochastic reflexive-transitive rewrit
operator, & *, which is defined as the reflexive and transitive closure of the stochasti
rewrite operator. In the case that it is necessary to go though a sequence of direc
derivations before generating B from o, for example,

a X 1‘33 52’12_._‘1." "”::' B,
we say that B is derived from e with probability p,

a S* B,

where
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{5

8(q0.T.q,) = 0.5
8(q,.P.q;,) = 0.5
8(q,.5.9) = 0.5
6(q,;,X,q;) = 0.5

6(q,,.T.q,) = 0.5

6(¢,.V.qa) = 0.5
6(¢:.X.q)) = 0.5
6(¢5,8.95) = 0.5
5(g..P.g;) = 0.5

6(q4.V,q5) = 0.5

25O

Table 6-4: Transition function for a stochastic finite state machine.

p = nlfIlP, .
Finally, whelt:a represents the start symbol, S, and P is a string consisting entirely of
terminal symbols, then the probability, p, is the probability of generating string, . To
be miore specific, we say that strings are generated according to the probability law pn,

where u(B) is the probability of terminal-string B being generated from the start symbol.

Le.:

nP) = ﬁ p,
when .

shg gL g e,
Since all rewrite rules in the above example grammar all occur with probability 0.5 (this
need not be the case), the frequency of occurrence of each legal string is defined by the
number of steps in each string's derivation. The number of steps is equal to the strings
fength, {, so the frequency of occurrence of each string is governed by the formula: 2-.
Some of the more frequently generated strings, B, and their respective probabilities, p(B),
are illustrated in Table 6-3.

We now turn our attention to stochastic automata, specifically we define stochastic

generators to be automata which generate strings sampled from stochastic languages.
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Using the notations for finite state automata and Moore machines defined in Sections
3.4.1, and 3.4.4 respectively, we describe a stochastic finite generator by a five-tuple
(Q.A,5,90,97). Here, O represents a finite set of states, A=2X the output alphabet of the
autcmaton and the alphabet of the language, and g, the start state. In non-stochastic
automata, & was a function mapping current state and input symbol to nex: state. In
contrast, in stochastic finite generators, 8(q,a,g") is a function mapping the current state,
g, the output symbol, a, and the next state, ¢’, to the probability of entering state ¢’ from

state g while generating output symbol a. It is assumed that the function  is normalized

in the sense that:

Y 6(g.a9h =1,

q

for all states, g, except the firal state, g, for which:
z 5(q7.,a,q Y =o0.
q !

The stochastic finite generator operates as follows: First, the current state is set to g.
Then, the automaton's next state and output symbol are generated according to the current
state, and the probability function, 8. This step is repeated until the final state gy is

reached. The sequence of output symbols generated then represents a generated string.
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T

Figure 6-3: Stochastic finite generator automator. (adapted from Reber, 1967)

Our example grammar and language from above can be implemented by a 6-state
stochastic finite generator with alphabet, A={P,S,T,V,X}, and transition probability
function, 6, defined in Table 6-4. All values for & not explicitly defined are assumed to
equal zero. This stochastic finite generator is illustrated in Figure 6-3. An arrow from
state g to state g’ with the label a incicates that &(g,a,q’)=0.5. That is, all transitions
occur with S0% probability. Though not explicitly proven, it should be clear from this
example how any stochastic regular grammar can be mapped into a stochastic finite
generator.

Stochastic pushdown generators are defined similarly. Using the notations for
pushdown automata and Moore machines defined in Sections 3.4.2, and 3.4.4 respectively,
we describe a stochastic pushdown generator by a four-tuple (Q, A, T', 8, qo, 9. 4).

Here, Q represents a finite set of states, A=X the output alphabet of the automaton and
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the alphabet of the language, and g, the start state. For stochastic pushdown generators,
&(q.a,y.q’,y) is a function mapping the current state, q, the output symbo!, a, the current
stack symbol, y, the next state, g/, and the next stack symbol, ¥, to the probability of
entering state g’ from state ¢ when the stack symbol is y while simultaneously replacing

the stack symbol with y’/, generating symbol a. Normalization implics that:

Y d(q.a.v.9%YH =1,

g’y

for all states, g, except the final state, q,, for which:
Y dgpav.9'Y) = 0.
g’y

The stochastic pushdown generator operates as follows: First, the current state is set to
g, and the stack contents to Z,. Then, the automaton's next state, new stack contents, and
output symbol are generated according to the current state, stack symbol, and the
probability function, 8. This step is repeated until the final state g, is reached. The
sequence of output symbols generated then represents a generated string.

The stochastic automata presented in this section are but one example of formal
computing models of probabilistic processes. There are many others. Perhaps the most
note-worthy are hidden Markov models. While we have assumed that our devices do not
accept input, but rather generate strings, hidden Markov models are capable of producing
outputs in response to specific inputs. In this sense they are capable of representing
mappings from one (input) language to another (output) language in a similar fashion to
Moore machines. By contrast, the automata presented here “merely” represent the

contents of one language. Clearly, the relationship between Hidden Markov Models and
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the STCNs described in the following section represents an interesting and expansive area

to be explored in future work.

6.4.2 Stochastic Grammar Induction by Non-Stochastic Automata

The problem of stochastic grammar induction can now be described as the process
of using a finite sample of some stochastic language to develop a finite representation of
the entire language. More specifically, we assume that the sample of the stochastic
language is generated by some unknown stochastic automaton, and that the representation
of the language also takes the form of an induced automaton. This induced automaton
need not be stochastic, but it must be capable of representing the original language. In
particular, we shall assume that the automaton implements a function mapping partial
strings of symbols, denoted by the variable U, to the expected value of the next symbol
to be generated by the unknown automaton. If we further assume that the symbols in the
alphabet of the language, b,,b,,b,,....b,€A, are encoded as vectors, denoted by variable
Y, in general, and the vectors y,,y,.,.....7, » in particular, then the expected value for the
next symbol, given the partial string U, would be denoted: E(Y|U). The conditional
expectation is computed by summing the vector encodings, y,, of the output symbols
weighted by their respective a posteriori probabilities for the given string, p(b j| U), over
all output symbols , b,,b,.b;,...,b,€A, according to the formula:

n

E(TU) = X 7, p(5,|U).

J=1

If we assume a simple encoding scheme whereby each output symbol is encoded by a unit
normal vector, then

and
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EF.U) = 3 7, p5,|0).
7=1

In other words, the expected value of Y is equal to a vector whose components represent
the probabilities of generating each of the possible output symbols. For the example used
throughout this section, some sample (partial) input strings, U, and the probability
distribution vectors which the induced automaton would be required to compute are given
in Table 6-5.

We refer to an automaton which computes expected values for ¥ generated by
some specific stochastic automaton as that stochastic automaton's predictor. It is important
to notice that a predictor using a unit normal output vector encoding encodes just as much
information as the original stochastic automaton, only in a deterministic form. We have
now identified the goal of a stochastic grammar induction system: to find a predictor

automaton. The next section explains why this goal is harder to achieve than might be

expected.

6.4.3 Simplicity vs. Similarity

The degree of success of the induction process can be measured in terms of the
similarity between the grammars represented by the source automaton and the induced
automaton. Note that complete success cannot be suaranteed since there are always an
infinite number of potential unknown automata, anc the finite sample of sentences only
provides a limited amount of information about the unknown automaton. Instead, we
would like to develop an induction algorithm which identifies a language which has a
maximum likelihood of being the original stochastic automaton. In this sense, we are
searching for a "most probably" correct language.

Note that the approach presented here shares some common features with Valiant's

(1984) probably approximately correct (PAC) learning paradigm. The goal of PAC
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learning is to identify an object that lies reasonably close (according to some pre-specified
metric) to the ideal solution to a given problem. To be considered a PAC learning
algorithm, an induction procedure must achieve the given level of approximation with
reasonable certainty. Much of PAC learning theory is devoted to proving that PAC
learning algorithms can operate in pciynomial (as opposed to exponential time).

While Valiant's goal was to identify an object that lies reasonably close to the ideal
solution, the goal of probabilistic grammar induction is to identify the most probably
correct grammar (in a Bayesian sense). Since STCNs are typically trained to reduce the
mean squared error between output and target vectors to a given threshold, £, STCN
training can be viewed as a technique to find an approximately correct solution to a
problem. We do not compute the probability with which an STCN finds a solution with
a small error (i.e. the probability that an STCN convergence), nor do we examine the
complexity of the weight update procedure. The likelihood of convergence and the
complexity of weight adaption represent important open issues for connectionism and
cannot be properly discussed within the scope of this dissertation. For an introduction to
these issues, the interested reader is referred to MclInerney, Haines, Biafore and Hecht-
Nielsen (1989) and Judd (1991). If the probability of STCN convergence could be
calculated for polynomial running times, then the algorithm presented here could be

considered a PAC learning algorithm.

An Example

As an example, we randomly generate 100 strings based on the stochastic
automaton of Figure 6-3 or equivalently the stochastic grammar of Table 6-2 to illustrate
the difficulty of inducing a stochastic automaton based on a finite sample. Later, we shall
show that the same conclusions reached here can apply to larger sample sizes. The

frequencies of the strings which were generated are presented in Table 6-6. All strings
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not illustrated in this table occurred with frequency zero. Additionally, the probability of

generating each of these strings was calculated. When multiplied by the sample size (100),
this probability represents the expected frequency of occurrence of each string; this
frequency was rounded off to the nearest whole number.

Note that the observed frequencies and the expected frequencies are different; this
difference is a form of noise. The occurrence of this noise is a property of random
sampling from a binomial distribution and should come as no surprise. However, in the
context of stochastic grammar induction, this noise complicates the induction task. This
is because it is not possible to determine which components of the sample are due to noise
and which are due to the source automaton.

In our example, we generated 52 strings beginning with the letter “p™ and 48
strings beginning with “z”. We know from the description of the source automaton that
the probability of generating either a p, or a t as the first letter is exactly 50 per cent. A
learner which has no a priori knowledge of the source automaton, however, must
conclude, using Bayes’ theorem, that it is most likely that the source automaton generates
a p as the first symbol with probability 52 percent, and a g as the first symbol with
probability of 48 percent. This is because, of all possible stochastic automata, the ones
most likely to generate 52 strings beginning with p and 48 heginning with 7 are those with
have probabilities of 52 and 48 percent. While this small discrepancy may not seem very
significant in terms of the accuracy of the induced automaton and while it is also true that
the accuracy will increase with increasing sample size, the difference remains a serious
problem when it comes to minimizing the inducing automata. We illustrate this by

continuing to explore our example case.
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Partial Probability Distribution, Partial| Probability Distribution,
String y= String, y=

v P@), P(s), P(), P), P(v), Px)) v ®@E), PG), PO, Pu), P(v), P(x))
€ 0.5, 0.0, 0.5, 0.0, 0.0, 0.0) o 0.0, 00, 0.5, 00, 0.5, 0.0
p 0.0, 0.0, 0.5 00, 0.5 00 pttt (0.0, 0.0, 0.5, 0.0, 0.5, 0.0)
t 0.0, 0.5, 0.0, 00, 0.0, 0.5) prtv 0.5, 0.0, 0.0, 0.0, 0.5, 0.0)
pt 0.0, 00, 0.5, 00, 05, 0.0 ptvp 0.0, 0.5, 0.0, 0.0, 00, 0.5)
pv 0.5, 0.0, 0.0, 0.0, 0.5, 0.0) ptw 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
ts 0.0, 0.5, 0.0, 0.0, 00, 0.5 pvps 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
x 0.0, 0.5, 0.0, 0.0, 0.0, 0.5 pvpx 0.0, 0.0, 0.5, 0.0, 0.5, 0.0)
ptt 0.5, 0.0, 0.0, 0.0, 0.5, 0.0) ISSS 0.0, 0.5, 0.0, 0.0, 0.0, 0.5)
ptv 0.5, 0.0, 0.0, 0.0, 0.5, 0.0) IS5X 0.0, 0.5, 0.0, 0.0, 0.0, 0.5)
pvp 0.0, 0.5, 0.0, 0.0, 0.0, 0.5 1sXs 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
pw 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 1SXX 0.0, 0.0, 0.5, 0.0, 0.5, 0.0)
IsS 0.0, 0.5, 0.0, 0.0, 0.0, 0.5) ot (0.0, 0.0, 0.5, 0.0, 0.5, 0.0)
Isx (0.0, 0.5, 0.0, 0.0, 0.0, 0.5) xv (0.5, 0.0, 0.0, 0.0, 0.5, 0.0)
Ixs 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

Table 6-5: Deterministic representation of stochastic grammar.
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String Sample Expected String Sample Expected
Frequency Frequency Frequency Frequency
PIIVpXVpXItvps 1 0 Isssxxvy 2 0
pinvpxvps 2 0 155xS 1 3
puvpxvpxtivv 1 0 1ssxxteeesvpxevy 1 0
ptrvy 4 3 1SSXXIIVDPXVDS 1 0
pps 3 3 Issxxvps 1 0
prpxatvy 1 0 IssxXVV 1 1
piw 7 6 tsxs 4 6
pvps 7 6 ISXXIHIVPXITIVpXL- 1 0
pypxttvps 1 0 fvy
pvpxvps 1 0 1sxxitvy 2 0
pypxtvw 1 1 ISXXVpXItvps 1 §)
pvpxVps 1 1 ISXXVPXVPS 1 0
prpxipxvy 1 0 1sxxvv 1 2
pypxvy 1 2 Ixs 10 13
pw 20 13 bextivy 2 1
ISSSSSSSXXVPXVV 1 0 Ixxtvps 2 1
I555SSXXVV 1 0 bxxrvy 3 2
ISSSSXS 1 1 xxvps 2 2
1555XS 1 2 xXXvpxvps 1 0
ISSSXXIVV 3 0 IXXVpxVV 1 0
1S5SXXVPS 1 0 bocvy 2 3

Table 6-6: Sample strings generated by probabilistic grammar/automaton.
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Minimization of Stochastic Automata

We generated a tree whose arcs are labelled with the symbols from the strings in
Table 6-6 and their relative frequencies. This tree represents a stochastic generator for the
sample data and is illustrated in Figure 6-4. Note that the re-created generator is much
more complex that the source of Figure 6-3. However, just as FSA can be minimized, this
stochastic generator in Figure 6-4 can also be simplified.

The minimization algorithm for FSA (Hopcroft and Ullman, 1979) relies on
collapsing equivalent states into one single state. Two states p and g are considered
equivalent, =, if and only if, for every input string x, the automaton starting in state p
accepts the string if an only if the automaton starting in state g also accepts the string.
If &(g,w) is the state of the FSA after reading the string w starting in state g, then
equivalence can be mathematically expressed as:

p=q iff VxeX’ Sp.x)eF iff 8(g.x)eF.

We now develop a new minimization algorithm for stochastic automata. Here, the
situation is more complicated since two states, p and g, can only be considered equivalent
if their string generation probabilities are equal. That is, if the stochastic automaton in
state p can generate the string x with probability of S(p,x), then if state g is equivalent to
state p, it too must generate the string x with probability d(q.,x), exactly equal to dp.x).
Mathematically, this can be expressed as:

p=q iff VxeA’ S(p.x) =8(g.x),
where 8(q.w) is the probability of generating string w starting in state g.

A minimization algorithm can now be formulated as follows: First, since no
strings can be generated from a terminal state, gy, all leaf nodes, p, in the tree of Figure
6-4 must be equivalent and can be collapsed. Mathematically, it must be the case that:

VxeA® O(p,x)=8(g,.x)=0.
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Second, if any two nodes p and g have all links to the same nodes with the same
probabilities, they are equivalent and can be collapsed. Mathematically,

p=q iff Va€A, VreQ, &(p,a,r)=06(q,a.r)
Step 2 can be repeated until no further minimizations can be achieved. The resulting

automaton is minimal in terms of number of states.

Applying Minimization to the Example

This process was applied to the stochastic finite generator of Figure 6-4 to yield
the somewhat simplified automaton of Figure 6-5. Note that the simplification is fairly
insignificant in the sense that the automaton of Figure 6-5 is still far more complex than
that of Figure 6-4. It is also critical to note that this difference is not attributable to the
algorithm used to create the automaton of Figure 6-5, but rather to the random noise which
enters the system during the generation of the sample data. In fact, the automaton of 6-5
represents the sample data perfectly and minimally. This data, however, does not
completely specify the original automaton (language).

One might wonder if the fact that more states in the generator of Figure 6-5 cannot
be coltapsed is just an artifact of the small sample size (100 strings) used in the example.
While it is true that more data would drive the transition probabilities of the arcs in 6-4
closer to the values of the corresponding arcs in 6-3, it would also allow for a greater
resolution in probability scores. This would have the effect that while probabilities of
corresponding arcs would approach each other, they would also be less likely to be exactly
equal, which implies that their origin states could not be collapsed, and the stochastic
automaton could not be minimized. Furthermore, if more sample data were available then
new strings (not present in the original 100 string sample set) would have to be

incorporated into the automaton. Thus, more sample data would result in an even larger

minimized automaton.
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Specifically, let us assume that g; and g; represent two different states in a non-
minimized stochastic automaton like the one illustrated in Figure 6-4. Further, let us
assume that both g, and g; correspond to a single state in the original source automaton.
We would like to know the probability that the frequencies, f;, and f of the transitions
from g, and g; do not correspond, since this probability determines whether or not g; and
g; will be collapsable into a common state using our minimization algorithm.

If the number of strings generated from g; and g; are different, then the difference
in granularity of the possible frequencies than can be represented will preclude equal
transition frequencies. Specifically, if N; is the number of strings generated from g; and
if N; is the number of strings generated from g;, then the observed frequencies of symbols
generated from g; can achieve an accuracy of at most 1/2N,. Similarly, the observed
frequencies of symbols generated from g; will have an accuracy of at most 1/2N,. Thus
the accuracy of the frequency difference between the transitions from state g; and state g;

will be limited to 1/2N,+1/2N, or:

N*N,
2NN,
J

For this reason, the probability that states g; and g; can be collapsed is equal to:

P(Lf £ N'+N')
] |—].
"2NN,

We now prove:

Theorem 6-1: As N, and N, increase, the probability that the frequencies of the transitions

from states g; and g; will correspond, and hence that ¢ and ¢ can be collapsed into one

state decreases.
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Proof: We begin with the equation for the probability that the two states can be collapsed

and observe that since f-f; is symmetrical about the origin:

N,+N,
2NN,

N,+N,
- arfr i)

1772

P 1hsl

Rearranging the inequality gives:

(s N"+N’) P, - o)
~f> = -f - >0 .
‘2NN, "YO2NN

Since the values of f; and f; both assume binomial distributions, they can be approximated
by normal distributions as sample size is increased. Further, since the difference between
two normally distributed variables also assumes a normal distribution, the probability is
equivalent to that of a z-test, P(z>z,), where:

z, = (0-p)/o,
and p and o represent the mean and standard deviation, respectively, of the distribution

of:

_ _N1+N2

"O2NN,

Since the mean values of f; and f; are both zero,

- N *N,

2NN,

Furthermore, since f; and f; are both normally distributed and independent, their variances,

o2 and ojz, can be added to give the variance of:
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o T,
a/ 2NN,

Computing the square root of the combined variance gives the standard deviation:

2 2
o = ‘/o, +0, .

The variance of f; is given by:

= 1/4N,,
sO:
N, +N.
o = l' LIS 2
2\ NN,

This implies that:

N,*N, N,+N,

o ” 2N+N/ \J NN,

] J NN,
NN,

We now note that if N, and N, are both greater than 2, then the value of z, decreases as

either N, or N, or both increase. Further, since P(z>z,) increases as g, decreases we can

conclude that as N, and N; increase, the probability that the frequencies of the transitions

from states g; and g; will correspond, and hence that g; and g, can be collapsed into one

state, decreases. This proves Theorem 6-1. [0
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Figure 6-4: Recreated stochastic generator automaton.
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The lesson to be learned from this exercise is that an exact representation of the
sample data is unfeasible. Instead, a stochastic grammar induction algorithm must find a
balance between accuracy with respect to the sample data and simplicity of the induced
grammar (automaton); how this can be accomplished will be explained in the following
sections. Note that the issue of exact representation differs from the problem of
overtraining a network to the point at which it can no longer generalize for two reasons.
Flrst this technique applies not just to STCNs, but rather all stochastic grammar induction
systems. Second, the problem here does not concern misclassification of input patterns,

but rather the complexity of the internal representations developed.

6.4.4 Previous Results Concerning Stochastic Grammar Induction

Having defined stochastic grammar induction and identified its ultimate goal (to
find a simple stochastic grammar which has a high probability of matching the source), we
now turn our attention to previous work in this paradigm. This will give us some insight
into how stochastic grammar inducers operate and how well they perform. Horning
(1969) examined the difficulties of learning stochastic grammars. He developed a learning
algorithm based on Bayes's Theorem which states that the probability of a cause, c, given
an observed effect, e, is equal to the probability of the cause multiplied by the probability

of the effect given the cause, divided by the probability of the effect. Mathematically this

is expressed as:

P(c)P(e|c)

P(cle) = )

In the context of grammar induction, the cause can be interpreted as a stochastic grammar,
while the effect is a sample of strings generated from the grammar. Under this

interpretation, it is possible to compute the probability of a stochastic grammar, G, given
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a set of sample strings, S. This is done by multiplying the a priori probability of the
grammar, P( G ), by the probability that the grammar would generate the sample,
P( S | G), and dividing by the probability of the sample stings, P( S ). Mathematically

this is expressed as:

P(G)P(S|G)

P(G|S) = peS)

In this equation, the value of P(S|G) can be thought of as a measure of how well the
grammar, G, matches the sample. It is then natural to treat P(G) as the simplicity of the
grammar in order to give maximal values of P(G|S) to those grammars which both match
the sample and are relatively simple.

Horning assumes that various grammars have differing a priori probabilities
( P(G) ) according to their complexity. He then compares the grammars by computing
values of P(G)P(S|G) since the denominator in the equation for P(G|S) remains constant
for a given sample. The value of P(S|G) is easily computable by multiplying the
probabilities of generating the constituent strings of S, each of which, in turn, can be
computed by multiplying the probabilities of the rules of G used to generate the given
string (just as the probabilities for the strings in Table 6-6 were computed). Starting with
the grammar with highest a priori probability, Horning computes the value P(G)P(S|G)
until the a priori p:-- “Hility for the grammar drops below the greatest value of
P(Z)P(S| G) discovered so far, i.e. P(G)<P(G)P(S|G"). Since P(S|G)'s maximum value
is 1 (for ihe case of a grammar which always generates the same string), a grammar whose
a priori probability lies below the maximum value of P(G)P(S|G) can never produce a
higher P(G)P(S|G) value. In this manner, Horning's algorithm can converge on the most

probably correct grammar for any text.
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Recall that according to Gold (1967) the task of converging on the correct grammar

for a text which is drawn from a regular set is impossible. Thus, Horning's result is
somewhat surprising, and a promising solution to the difficulty of grammatical induction
identified by Gold. Unfortunately, Horning's algorithm has one important limitation: it
is erumerative. The algorithm functions by examining individual stochastic grammars in
a predetermined order. Enumerative induction algorithms work well for discrete search
spaces of limited size. Yet, the search space of stochastic grammars is continuous since
the rule probabilities are real values. Horning's algorithm can only explore an
infinitesimal portion of this space.

In practise, the effectiveness of the algorithm in selecting the most probable
grammar hinges on a good choice of a priori probability function. This is because the
probability function defines both how the continuous search space is discretized and the
order of the exploration of the space. It is important that the a priori probability function
be well chosen because it defines a discrete set of points in the continuous space of
stochastic grammars which will be searched by the algorithra. In this sense, the
probability function defines the quality of any solution which can be found. If there are
no points in Horning's discrete search space which lie close to the optimal grammar for
a given problem, then only poor solutions will result. Of course, without exact knowledge
of where appropriate solutions can lie no discrete search algorithm can function as well
as one designed find a solution in a continuous space.

The second important effect of the a priori probability function is that it determines
the order in which the space is explored and thus the volume of space which must be
examined before a solution can be found. Specifically, suppose that G, and G, are two
successive grammars in order of decreasing a priori probability, i.e.: P(G,)>P(G).
Since Horning's algorithm only terminates when P(G,)P(S|G)) >P(G,), it is desirable that
the inequality P(G,)P(S|G,) > P(G,) hold for as many successive grammars, G, and G,, as
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possible. In other words, under ideal conditions P(S|G,) should be greater than the ratio

of probabilities, for successive values of G, i.e.:

P(G,)
PG,

P(S|G,))>

In this situation, Horning's algorithm will converge on a most probable value of G after
considering only a small number of other values of G.

Probleins occur when P(S|G) is less than the relative rate of change in P(G). In
this case, successive values of G will have P(S|G))P(G,) <P(G,). This implies that the
algorithm used to find the most probable grammar for a given sample will never converge.
This worst case scenario will occur whenever P(S|G) is small or whenever P(G,)=P(G,)
(in which case P(G,)/P(G,) is maximized). When might these conditions be satisfied?

We first examine under what conditions P(S|G) is likely to be small. Recall that
P(S|G) is computed by multiplying the a posteriori probabilities of the constituent strings,

s, of the sample, S. This is expressed by the formula:

PSIG) = I_!P(SIG).
s€s
In this equation, P(S|G) will be minimized as ||S|| is increased and as the individual string
probabilities, P(s|G) are decreased. The former occurs for larger sample sets, while the
latter will occur for grammars, G, which are more complex in the sense that many diverse
sets of strings can be generated. We now consider the second condition under which
Horning's algorithm will perform poorly (in the sense that it takes a long time to
converge): i.e. when P(G,)=P(G,). This scenario is realized whenever there are many,
relatively equally probable a priori candidate grammars for the induction. In other words,

when there is no existing bias to favour one grammar over another independent of example
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strings. In summary Horning's algorithm cannot be expected to perform well when there
is a large set of sample strings, when the candidate grammars are complex, or when there
are many good candidates—in other words, when the problem is scaled up.

These theoretical predictions are supported by Horning's empirical results.
Horning implemented his algorithm and tested in on several very small (no more than 3
non-terminal symbols) regular grammars. The algorithm successfully induce grammars
with 2 non-terminals, but had to be halted before it was able to induce a 3 non-terminal
grammar. This. no doubt, was in large part due to the hardware available in 1969. An
implementation of his system on today's machines would surely be able to perform much
more successs:lly. Nonetheless, even Horning believed that his algorithms were too slow
to be of practical use, describing them as, "disappointing in terms of computational
efficiency, and it is not claimed that in their present form they are economically justifiable
for practical applications” (Horning, 1969, p.119). Horning also recognized that the
inefficiency of his induction algorithm was due to the enumerative nature of his technique,
stating that, "the enumerative problem is immense" (Horning, 1969, p.120) and, "Even
when restricted to reduced grammars, however, the procedure was rather slow, due to the
voluminous nature of the enumeration” (Horning, 1969, p.121).

It is vital to realize the difference between Horning's scaling and discretization
problems, and the problem of grammatical induction identified by Gold (1967). Gold
showed that, under text learning (positive training data only), it is impossible to ever
converge upon one grammar which remains constant for all subsequent example strings.
By contrast, Horning showed that it is possible to weaken Gold's learning criterion such
that for any given sample of stochastically generated strings (positive training data only),
and for a specific set of a priori grammar probabilities, a most probably correct grammar
can be identified. Unfortunately, the algorithm used by Horning to select the ideal

grammar for any weighted set of sample strings can only converge in reasonable time for
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small problems (small sets of sample strings, simple candidate grammars, and few a priori
good candidates) and is limited in the quality of solutions which can be found.

A different algorithm from the technique proposed by Horning could be used to
successfully converge on most probable grammars for given sets of strings. Such an
algorithm would ideally need to be able to explore any point in the continuous, stochastic-
grammar hypothesis-space and not in a pre-specified erumerative order. In the next
section we will discover that a popular STCN training technique implements precisely this

type of algorithm.

6.4.5 Predictor STCNs are Most Probably Correct Stochastic Grammars

We now extend White’s (1989) proof tc show that a popular training methodology
for STCNs minimizes the Euclidean difference between the output of the STCN and the
output of the predictor for the stockastic grammar which generated the training data. In
other words, by minimizing its error, the STCN learns the most probably correct
stochastic grammar. Furthermore, the STCN training algorithm does not involve an
enumerative process or a pre-specified discretization of the continuous hypothesis space.

While STCNs are sometimes trained to render grammatically judgements on input
strings, they can also be used in a predictive manner. The alphabet of the stochastic
language to be induced, A, is encoded as a set of unit vectors encoded in the activations
of the input and output units of the network. Sequences of input symbols are presented
to the network, one symbol at a time. For each input symbol presented, the target value
for the output nodes is the vector representing the next symbol in the input sequence.
Thus, the network is trained to predict the next symbol. This approach has been used by
Elman (1990, 1991a), Cleeremans, Servan-Schreiber, and McClelland (1989), Cleeremans

and McClelland (1991), and Servan-Schreiber, Cleeremans and McC*:lland (1988, 1989,
1991).
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We now develop a statistical interpretation of this training process. The derivation

loosely follows that of White (1989) who has proven a similar (though more extensive)
result for non-recurrent (spatial) networks and simple spatial input-output mappings. We
represent the partial input strings by the variable, U, and the predicted symbol by the
variable, Y. We next suppose that the partial sentences, U, are generated according to a
probability law, u, where the probability of partial sentence U is given by u(U). In effect,
u represents the training environment. Since there is no one correct predicted symbol Y
for each input U, the relation between the two variables must also be governed by a
probability law. Specifically, we say that the probability of a symbol, Y, being the correct
symbol for a specific input string u is y(Y|u). Here, y represents the stochastic
relationship between partial input strings and next output symbols.

If output symbols, Y, are encoded as unit normal vectors, ¥, then the expected
output for any string, U, can be defined as a function computing an expected vector:

EFIU) = [ 7 YO0 dy.

y

Similarly, we define the output vector of a network with weights, W, in response to any
input string, U, as ®(U,w). Here, the function ®(U,W) represents repeated applications
of the state function f(-), applied to the output function f;(-). Specifically:

BU,W) = fL fL ~ FASL 5O, 50), W), 51), 1), W) =, &0, W), W)
where U represents the input sequence x(0),x(1),x(2),...,x(¢). Ideally, we would like the
two equations E(¥|U) and ®(U,Ww), to always produce the same result. More
specifically, we would like the expected difference, between E(Y|U) and ®(U,W) to be

as small as possible. We define the difference, between the two vectors according to their

squared Euclidean difference:
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“E(i" |u) - (u, W) “z ,

and the expected difference as:

E{'IE(?[U)—&(U,W)“Z} = f “E(?lu)—&')(u,W)lr p(du) .

It is this value which should ideally be minimized. Note that, in order to minimize this
function, the probability laws y and u must be discovered by the learner.

Learning algorithms for STCNs are not specifically designed to approximate the
expected output function E(Y|S) or equivalently to discover the probability laws y and p.
Instead they are designed to perform acceptably well according to a predefined error

measure. In Section 2.5, we defined the error of a STCN as:

£ = Z{: {%“;7‘(0 —f(t)“’}

In the context of the training algorithm described above, this equation can be rewritten as

an expectation function:

£ = E( %“f—é(u, W)“z)
The process of adapting the weights in a STCN is designed to minimize this equation. We
now prove that it also minimizes the difference between the expected value of the output

vector, E(f" |«) , and the actual network output, <i5(u,W) , for a given string u:

Theorem 6-2: Minimizing E( %“f”—@(U,W)“Z) also minimizes E{llf(f | U)—@(U,W)"z}.
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Intuitively, this theorem can be expressed as: training the individual outputs of a network
to match the individr.al next-symbols automatically trains the output of the network to

match the best prediction for the next-symbol.

Proof:

The equation for the error of a network can be rewritten:

m
|

1 |7 8610+ &1 ]

i

-2 || Ecr1or-8wm]

%E( |7- o] « |fdio -#wm|

+2

o |7-awl) - 3o Jario - st )

- |7-EFo)]

E¥|)-®wW,w) || )
The final term in this equation can now be expanded:

o |7-5010]| 71 0r-8wm | )

= E( E{ ||}7—E(i"lU)““E(ﬂU)—@(U,W) | U })

= E( E{ “ f—i(ﬂU)“ U } E{ “E(ﬂU)—&(U,W) “ | U } )

- i {0} e{|Erir-ewm| i v })
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Therefore, the error is equal to:
£ = %E( “f"— E(Y|U) “Z ) + -;—E( “E(ﬂ Uy - dU,w) Ir ) )
This implies that minimizing the error of a STCN also minimizes:
E( ||1§(17|U) - ®WU, W) Ir ) ,

the expected difference between the expected output symbol and the actual output of the

network.[J
This result also allows us to address the issue of generalization:

Theorem 6-3: If W is a set of weights minimizing the network error €, then W
generalizes optimally by construction in the sense that: given an input string randomly
selected from the probability distribution, u, and a corresponding output randomly selected
from the conditional probability distribution, y, the network output, ®(U,w °), has the

best possible average performance; i.e. it generalizes optimally.

Note that Theorems 6-2 and 6-3 are based only on a specific error definition and
are independent of network architecture (e.g. state function and output function). They
can be applied equally effectively to first-order vs. second-order, recurrent vs. non-
recurrent, multi-layered vs. single layered networks. The only necessary criteria are that
the network is traimed to predict next symbols encoded as binary vectors (which is done
for Gold’s generator problem, but not for Gold’s acceptor problem), and that the error e

is minimized. Of course, the latter criterion may not be realized when local minima occur.
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6.4.6 A New Stochastic Grammar Induction Algorithm that is not New

Since training networks to predict subsequent symbols for partial strings has now
been formally proven to optimally induce stochastic automata, we can recognize this
technique as a new stochastic automata induction algorithm. That is, while the algorithm
is old, its identification as a stochastic automata induction algorithm is new. Recall that
we noted in Section 6.4.3 that a stochastic grammar induction algorithm should not only
attempt to fit its induced automata to the training data, but should also induce automata of
limited complexity. Training STCNs to predict subsequent symbols according to the
gradient descent techniques discussed in Chapter II, satisfies the latter constraint in the
sense that the complexity of the network is limited by the size of the weight matrix W.
The larger the matrix the larger the set of automata which can be represented. Chapter
IV has described classes of deterministic automata which can be implemented by networks
of various types and sizes. It would be similarly possible to describe specific types of
stochastic automata which can be implemented by networks of various sizes.

The key to this newly recognized algorithm's potential advantages over that
described by Horning lies in the fact that it does not use an exhaustive (iterative) search
algorithm to find a solution grammar. Instead, it samples the hypothesis space at various
points and "guesses" (based on the error gradient) where the most probably correct
grammar might lie. This selective sampling approach is clearly to be preferred in a
domain where the hypothesis space is continuous, and thus infinite. In a sense, the
algorithm simultaneously considers multiple solutions since the error gradient reveals
information about neighbouring points in the hypothesis space. By contrast, Horning's
symbolic approach can only consider one potential grammar at a time. The difference
between the two algorithms is similar to the difference between interior and exterior

techniques in linear programming—while Horning's algorithm follows the edges of a
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predefined simplex (whose corners represent the a priori probable grammars), the STCN
approach can explore the search spaces that embed the iarget space used by Horning.
Of course, Horning’s is not the only stochastic grammar induction algorithm. It
was chosen for this discussion because of the natural way in which it could be compared
and contrasted to the STCN error minimization technique. Future work should explore
the relationship between other symbolic stochastic grammar induction techniques and

STCN training.

6.4.7 Conclusions

In this section we have examined a different grammar induction paradigm. By
focusing on the generation of a language (as opposed to its recognition), we have defined
stochastic languages, grammars, and automata which define probabilities with which
strings occur. It is possible to describe these stochastic formalisms by means of predictor
automata which, for any string of symbols, predict the next symbol to be generated. It is
important to address the issue of similarity vs. simplicity when judging the automata
induced for various samples. If an automaton accurately represents a sample, it not only
represents the original grammar from which the sample was generated, but it also
represent the inherent noise in the generation of the sample. This can result in induced
automata which are far mor complex than the original source of the sample. Thus, it is
necessary to compromise between the similarity between the language represented by the
induced automaton as compared to the sample and the simplicity of the induced automaton.
Another complication of stochastic grammar induction results from the fact that it is
infeasible to sample the solution space at predefined points and expect to efficiently find
a reasonable solution grammar. We have seen how STCN grammar induction schemes
overcome these difficulties by adjusting their sampling according to the error gradient of

the current candidate grammar and the advantages that lie therein. Finally, we have
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proven that a popular STCN grammar induction algorithm actually computes the most

probably correct stochastic automaton for a given set of sample strings.

6.5 CONCLUSIONS

This chapter has examined the use of a posteriori knowledge for find target
grammars for the grammar induction problem. Unlike a priori knowledge, the knowledge
discussed in this chapter is provided to the learner throuzhout the learning process and
guides its path through the hypothesis space. We have examined three forms of a
posteriori knowledge: input ordering, automaton information, and frequency coding. We
have provided formal proofs confirming the validity of empirical observations regarding
the use of these forms of prior knowledge. Clearly, anyone working in the field of
grammar induction must consider these alternatives if they wish to develop effective and

efficient induction algorithms.
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Chapter VII:
Conclusions

7.1 A THEORY OF GRAMMATICAL INDUCTION IN THE
CONNECTIONIST PARADIGM

Over the past 30 years there has been a great deal of theoretical and experimental
work on symbolic grammatical induction in diverse fields, including artificial intelligence,
machine learning, computer science, psychology, linguistics, philosophy and cognitive
science. The theoretical work in these areas has led directly to better machine induction
systems and hence superior experimental results. Despite these successes, effective
grammatical induction systems remain a distant goal for many practical applications. In
the past decade, a new paradigm within artificial intelligence called "connectionism" has
been developed. Connectionism has shown itself most promising for those tasks that seem

effortless for humans (such as language and perception) but which have been extremely
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difficult to model within conventional computing systems. Recently, connectionist
networks have been applied to grammatical induction problems with some success. While
these efforts have provided significant empirical data on the applicability of connectionist
networks to grammatical induction problems, a formal theory of grammatical induction in
the connectionist paradigm was missing.

This dissertation represents the first attempt to develop a theory of grammatical
induction for this new paradigm. Like any scientific theory, ours should not only attempt
to account for existing empirical observations, but also make new predictions which can
be empirically verified. In so far as the predictions made by the theory relate to the
performance of connectionist grammar induction systems, the theory can be used to predict
the performance of existing systems as well as to evaluate that of proposed systems. In
this sense, a theory of grammatical induction in the connectionist paradigm can be used
to design superior connectionist grammar induction systems.

In the introductory chapter several important issues were introduced. In particular,
we claimed that the tractability and efficiency of training particular connectionist networks
to implement certain classes of grammars can be formally determined by applying
principles and ideas that have been explored in the symbolic grammatical induction
paradigm. Furthermore, we argued that this formal analysis also allows networks to be
tailored to efficiently solve specific grammatical induction problems. In this concje: i+
chapter we shall re-examine these claims. Before evaluating the validity of the.c

conjectures, however, we must review the results presented in this dissertation.

7.2 RESULTS
In Chapter II we described an new type of taxonomy for spatio-temporal
connectionist networks based on a formal mathematical description of grammatical

induction. The new taxonomy is the only one developed around the fundamental design
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decisions which must be addressed by any grammatical induction system. Because of this,
it has superior predictive power when used to compare and analyse how different STCNs
might perform on various grammatical induction problems. Additionally, the taxonomy
is general enough to accommodate all of the leading STCN designs described in the
literature. In fact, the exact categorization of each leading design is precisely specified.
Furthermore, the fact that the taxonomy is based on the principles of grammatical
induction systems rather than specific existing STCN designs implies that it will be able
to easily accommodate future STCN designs as well.

In addition to surveying the field of STCNs for grammatical induction, we provided
a simple way of applying the results of the following chapters to many different STCN
designs currently in use, as well as future STCN designs. By focusing on components of
the grammatical induction task which are implemented in the same manner in different
networks, the taxonomy complements the following chapters in allowing theoretical
conclusions based upon the implementations of the components to be directly applied to
multiple network designs. Furthermore, if future STCN designs embody the same
solutions to components of the induction task as existing systems, then predictions about
the performance of networks which have never been implemented can be made. In this
manner, the taxonomy can serve as a reference ;-3: anyone needing to select or design a
particular STCN to solve a given problem.

Chapter III provided a formal description of the problem of grammatical induction.
It defined much of the terminology for the chapters which followed and described, in
general, how STCNs can be applied to grammatical induction. Additionally, Chapter III
described the inherent difficulties of the problem and two broad techniques which have
been used to overcome them. By providing a comprehensive survey of grammatical
induction results relevant to the design of new grammatical induction systems, this chapter

identified the important issues that connectionist approaches to the problem must address.
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In the past, connectionist researchers have paid little attention to formal language

learnability results and to the approaches used by symbolic induction systems to make the
induction problem tractable and efficicnt. This chapter explained why these formal results
are critically important to the users of connectionist grammar induction systems.

The fourth chapter examined the restrictions that various STCN designs place on
the languages and automata which they can represent. A clear understanding of the
hypothesis space used by an induction system is vital since an hypothesis space which is
too large can easily make a problem unsolvable or at the least intractable, whereas an
hypothesis space which is too small may not include any acceptable solutions to the
problem. Thus, a connectionist researcher's choice of STCN design directly affects
induction speed and success. This observation is important because almost all
connectionist grammar induction systems have, in the past, been designed on the basis of
ease of implementation or expansion from existing networks.

In particular, Chapter IV presented new formal proofs describing the representable
languages and automata for five of the seven possible memory functions identified in
Chapter II. Specifically, we proved a new result describing the types of languages
implementable by window in time memories. Then, we proved that single-layer first-order
context computation memories can implement arbitrary finite state automata and that they
can do so using n-p nodes (where n is the number of states, and p is the number of input
symbols). We also proved, that single-layer second-order context computation memories
are incapable of implementing arbitrary automata using binary state encodings. Next, we
proved that a locally recurrent state and input memory is incapable of representing finite
state autornata whose state transitions form cycles of length greater than two under
oscillation input. We also proved another even more dramatic result regarding the
limitations of LRSI memories relating input cycles to state transitions cycles. Finally, we

proved that a 1-layer output function can compute all mappings from split state to output.
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In addition to discovering and proving these individual new results, Chapter IV
presented a table relating memory-types, output functions, formal-computing machines and
number of nodes. This is the first synthesis of this kind and can serve as a guide to
anyone intending to use a STCN for grammatical induction in their selection of a particular
STCN design and choice of size.

Chapter V described how the users of STCNs can reduce and order the space of
potential grammars to suit a particular problem. This is critical for the design of any
efficient grammar induction algorithm. We showed that fixing some of the weights in a
STCN limits the hypothesis space, and that initializing weights can both order and restrict
the hypothesis space. An additional proof described how good a priori knowledge,
encoded in initial weights, tends to limit the hypothesis space much more than bad a priori
knowledge. Previous work by connectionist researchers on encoding a priori knowledge
into their networks has been exclusively empirical. This chapter gave a formal grounding
to these empirical results.

Chapter VI examined the use of a posteriori knowledge, provided during training,
to guide a grammar induction system's exploration of the hypothesis space. In particular,
it related the work of connectionist researchers to known results for grammar induction.
We proved that Elman's multi-phase training algorithm only uses a small number (440)
of distinct simple strings during the first phase of training. This implies that it is highly
likely that all simple strings are presented during the first phase of training. This is
significant since it implies that Elman's presentation scheme corresponds to an input
ordering scheme (something that Eiman hixﬁself was unclear about) and in particular that
the presentation scheme is identical to one which has already been studied and proven
effective by Feldman. Another new result shown in Chapter VI was the fact that
presentation order can affect which local minimum's basin of attraction is descended in a

STCN. This was proven via a simple example.
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Finally, Chapter VI presented a proof that a popular training scheme used for
STCNs involves training these networks to identify the most probably correct stochastic
grammar for a given sample. We started with an illustration and a proof that an exact
representation of a stochastic training sample is undesirable and that stochastic grammar
induction must balance similarity to the training set with simplicity of the induced
automaton. Next we examined a popular approach to inducing stochastic grammars and
presented a new proof that the approach will perform very poorly for large data sets,
complex candidate grammars, or large numbers of candidate grammars. This theoretical
result confirmed the empirical evidence previously gathered by Horning. Having
motivated the search for a better stochastic grammar induction algorithm, we presented a
new proof that a STCN's error is minimized when the network encodes the most probably
correct stochastic grammar. This was a novel result because minimizing the average error
between network output and the actual next symbol in a string is not necessarily equivalent
to minimizing the average error between a network sutput and the expected next symbol
in a string. We thus also proved that by defining a STCN's error as the average Euclidean
difference between individual outputs and next symbols, we can ensure that minimizing
the error will result in a network which generalizes optimally for the given probability
laws: y:(y,u)~R and g:u-R. This result proved that a popular STCN training algorithm
is in fact an optimal stochastic grammar induction algorithm. We also discussed the

advantages of this newly recognized algorithm.
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7.3 CONCLUSIONS

Together the chapters of this dissertation represent a thorcugh theoretical study of

grammatical induction in a connectionist paradigm. The thesis has revealed, for the first
time, that many of the techniques developed to make grammar induction tractable and
efficient in a symbolic paradigm not only can be, but have been adapted for use in the
connectionist domain. Additionally, the thesis provides numerous new formal results that
form the basis of a first theory of grammatical induction in the connectionist paradigm.
It is hoped that this theory will guide future connectionist researchers to develop more
effective and more efficient induction systems.

In this dissertation, we have seen that grammatical induction is a very difficult
problem in the sense that it is intractable under the most natural assumptions.
Furthermore, the sheer numbers of grammars make brute force enumerative searches too
inefficient to be of practical use for all but the simplest induction problems. We have
shown that these observations made by researchers in the symbolic paradigm are just as
applicable to those working with connectionist systems. In order to overcome the
difficulties of grammatical induction in the symbolic paradigm, two broad approachcs have
been employed: (1) reducing the number of grammars which are considered, and (2)
selecting an order of exploration of the space of grammars which favours the most likely
candidates. Both of these approaches assume that there is some form of additional
knowledge about the task which can be used to make informed choices about the
ﬁypothesis space of candidate grammars.

We have shown by example that it is possible to identify the hypothesis space used
in connectionist systems and relate them to symbolic representations of languages. Further
we have seen how fixing and initializing weights can be used to further restrict and order
the hypothesis spaces used and thus change the tractability and efficiency of grammar

induction. Finally, we discovered that if information other than the grammaticallity of
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strings is available to a connectionist network, it too be used to help solve grammatical

induction problems. Thus, we have formally determined the tractability and efficiency of
training particular connectionist networks to implement certain classes of grammars, as we
set out to do in our introductory chapter. The conclusions reached also allow the users of
STCNs to select the various components of a STCN induction system in order to maximize
its effectiveness for some given purpose. In this sense, our formal analysis allows
networks to be tailored to efficiently solve specific grammatical induction problems. This

was the second goal we introduced in the first chapter.

7.4 LIMITATIONS AND FUTURE WORK

Like any other scientific theory, the predictions made here will have to be
empirically verified. No doubt such attempts at verification will inevitably result in the
discovery of faults and limitations in this work. In turn, new theories will be developed
to account for the shortcomings of this one, just as all scientific theories are continually
tested and revised in the process known as the scientific method. In particular, we can
identify a number of issues which future work will need to address.

The taxonomy presented in Chapter II incorporates the leading STCN designs for
grammatical induction. No doubt, other connectionist grammar induction systems will be
developed in the future. These systems should be analyzed according to the four basic
components of any grammar induction system and added to the taxonomy. If a new
system incorporates a different approach to one of the components, then a new point along
one of the four dimensions of the taxonomy will need to be added, and of course the
corresponding analyses for the following chapters.

Chapter 1V identified the representational powers of various STCN memory and
output functions. These results were summarized in Table 4-2. There are a number of

open problems indicated in this table. Perhaps the most interesting of these is the issue
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of whether or not Single-Layer Second-Order Context Computation memories are capable
of universal computation. Future work should attempt to fill these gaps.

Throughout this dissertation, we assumed that various kinds of information about
the grammatical problem to be solved is available. This information took the form of the
classes of grammars which needed to be represented, non-optimal solutions to the
problem, specific details about the automata to be induced, or information about the
frequencies with which sample sentences occur. The assumption that this type of
information is available is a necessity in the sense that without some additional source of
knowledge, the grammatical induction problem is unsolvable (except for languages of
finite size). We have not addressed whether or not the types of information assumed by
the algorithms proposed in this dissertation are actually available in practical applications.

Of course, the validity of assuming that a given form of information is available
depends entirely on the domain to which grammatical induction is applied. The problem
of grammatical induction applies to much more than the learning of what we would
normally call languages. In fact, it describes a process to learn relationships between
information scattered across space and time. Specifically, grammatical induction has been
applied to: modelling natural language learning, process control, signal processing,
phonetic to acoustic mapping, speech generation, robot navigation, nonlinear temporal
prediction, system identification, learning complex behaviours, motion planning,
prediction of time ordered medical parameters, and speech recognition, to name but a few.
Since this dissertation focuses only on general principles of grammatical induction (as
opposed to an application specific approach), its scope does not include an analysis of the
validity of assuming that certain types of information are actually available for a given

application. None-the-less, future work will need to address this issue.
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