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Abstract

Large commercial buildings are complex cyber-physical systems containing

expensive and critical equipment that ensure the safety and comfort of their

numerous occupants. Yet occupant and visitor access to spaces and equipment

within these buildings are still managed through unsystematic, inefficient, and

human-intensive processes. As a standard practice, long-term building oc-

cupants are given access privileges to rooms and equipment based on their

organizational roles, while visitors have to be escorted by their hosts.

Existing methods use a centralized infrastructure to delegate access to

occupants, and sometimes visitors. A centralized technique is dependent on a

single authority and requires the authority to be online all the time. Also, this

technique is very vulnerable to failure as the whole system is compromised

if the central server is attacked. These shortcomings make the traditional

approach conservative and inflexible.

In this thesis, we describe a methodology that can flexibly and securely

manage building access privileges for long-term occupants and short-term vis-

itors alike, taking into account the risk associated with accessing each space

within the building. Our methodology relies on blockchain smart contracts to

describe, grant, audit, and revoke fine-grained permissions for building occu-

pants and visitors, in a decentralized fashion. Access for visitors is described

through smart contracts that use information of the event time, destination

location and privilege of the individuals. The accessible spaces are specified

through a process that leverages the information compiled from Brick and
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BOT models of the building. BOT representation of the building help plan

the spaces to which access should be provided to the visitor. To compute the

risk of permitting an individual to enter a space, Brick models are employed

to calculate sensitivity and security information of all the spaces.

We illustrate the proposed method through a typical application scenario

in the context of a real office building and argue that it can greatly reduce

the administration overhead, while, at the same time, providing fine-grained,

auditable access control. We design and implement a commercial building

simulator that imitates presence and movement of people in the building.

The data synthesized by the simulator is used to evaluate the performance

of the proposed system. We measure the delay in performing various access

management tasks to assess the efficiency of the access management system.

Scalability of the proposed solution is determined by calculating throughput

and latency of the transactions on the blockchain network. The evaluation

concludes that the most common type of requests made to the access manage-

ment system is to verify access for individuals to a space, which take 0.26 and

0.37 seconds with different loads and computation power, which is typically

within the acceptable range in real applications.
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Chapter 1

Introduction

Applications of Internet of Things (IoT) are fast increasing in industrial, com-

mercial and domestic environments. According to a study conducted by IHS

Markit, the number of connected IoT devices is likely to grow to 125 billion in

2030 [27]. Transportation, supply chain, retail, manufacturing and healthcare

are some of the many industries that utilize IoT devices and technology for

information transfer and analytics. Using sensors embedded in the vehicles, or

mobile devices, it is possible to offer services like optimized route suggestions,

collision prevention, and autonomous driving. In supply chain management,

IoT helps make connections between supply chain entities and processes to

track movement of products at each stage, providing complete information

during the entire life cycle of products. IoT provides accurate real-time vis-

ibility into flow of materials for retail manufacturing, warehousing and retail

delivery. IoT technology has also been widely utilized to complement and

strengthen existing healthcare services by interconnecting various medical re-

sources.

1.1 IoT in the Built Environment

Modern commercial buildings are complex cyber-physical systems. They are

increasingly being equipped with sensors and actuators, ranging from surveil-

lance cameras and card readers for security and access control, to thermostats

and air-quality sensors feeding into the Heating, Ventilation, and Air Condi-

tioning (HVAC) system, which controls the indoor environment while main-
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taining occupants comfort [18, 6]. These buildings represent substantial finan-

cial investments and the management of their security is even more critical

compared to older buildings.

The vast network of interconnected devices can monitor the surroundings

and control the physical world. Sensors are used in various devices like ther-

mostats, lighting systems, smart blinds and security systems in the built en-

vironment. These devices use sensor data in control loops to adjust ambient

temperature and lighting to meet occupant comfort requirements. The infor-

mation gathered by smart devices can be analyzed to understand occupant

presence and actions in the built environment.

The usage of IoT devices requires a lot of considerations for various chal-

lenges that they bring. The common challenges include security and privacy.

Physical objects, such as smart door locks or lamps in a smart building, are

being integrated into the Internet with networking and processing abilities.

This allows services and resources to be accessible via mobile devices anytime

and anywhere, making objects vulnerable to attacks and the collected data

to intrusive inferences. There have been tremendous efforts in recent years to

address security issues in the IoT. Some of these approaches target security

issues at a specific layer, whereas, other approaches aim at providing end-to-

end security for IoT [32]. Blockchain technology is now being adopted by the

industry and research community as a technology that could play a major role

in managing, controlling IoT devices and protecting the integrity of user data

in a decentralized fashion [21, 42, 63].

Another challenge is user’s access control in smart buildings. Traditional

methods depend on a central third party to manage access control to spaces

in buildings. A central authority once attacked compromises the whole ac-

cess management system, making this approach vulnerable. Secondly, long-

established methods of access delegation use swipe cards. For new or tem-

porary visitors, temporary access management becomes tedious for building

manager. A common protocol is that a visitor is escorted by someone (a long-

term occupant or a security personnel) with an access card at all times. This

issue of access control needs to be tackled in smart commercial buildings as
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well as smart homes.

Lastly, representation of IoT devices in a commercial building is done

through “labels” that represent the function, type, location and relationships

of the device in an abrupt naming convention. These are accessed through the

Building Management System (BMS) and lack consistency between buildings.

Hence, the challenge to use the BMS data for smart building application devel-

opment arises. This can be tackled by using a semantic data model that uses

uniform vocabulary to represent the devices, their function and relationships

[7].

1.2 The Problem: Access Management in Com-

mercial Buildings

Physical access control restricts access to physical spaces in a building, for

example, controlling who can access which parts of a commercial building or

how users can move within regulated spaces such as airports or hospitals. As

physical spaces are usually comprised of subspaces, such as rooms connected

by doors, a visitor needs to follow a path to arrive at the destined room, which

requires that the visitor should have access to each door on the path.

Commercial buildings are difficult to navigate for any new visitor, and can

be overwhelming if the person has to reach a particular room in the least

amount of time. For instance, Bob is a new employee in an organization and

has to reach a meeting room in his new office building. In order to manage

his time well, he would like to know the way from the entrance of the building

to the meeting room. He may also need to pass doors in the hallway that

require every employee to scan their card and thus, would require access to

such spaces a prior. Along with these, he should also be careful of not entering

sensitive and restricted spaces. Access-control requirements for physical spaces

are required to express constraints on the access paths through space and time.

In the example above, a requirement might be that Bob should be able to

access the office from 8am to 8pm from Monday through Friday until he leaves

the organization. Another very useful scenario where such path planning and
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access control is of utmost use is a hospital. Visitors in hospitals are in distress

and finding their way to the right location in the hospital building in case of

emergencies is an additional burden. The solution to avoid getting lost and

ending up in prohibited areas is path planning through the building. Building

ontologies like BOT [46] and BIM [25] that describe the physical structure of

the building can be employed for path planning. Determining the accessibility

and sensitivity of different spaces in the building can be achieved with another

ontology Brick[7], which defines functional elements and relationships in the

building. This is further discussed in Chapter 4.

Reasoning about and managing access to these buildings require different

access policies for different types of users. For example, as a standard practice,

long-term building occupants such as employees who work in the building are

given access privileges to their offices and shared spaces, based on their orga-

nizational roles; on the other hand, facilities-management personnel typically

have access to the more restricted spaces where equipment is installed and

also to the Building Management System (BMS) which enables them to mon-

itor and control the equipment settings. Occupants may access the sensing

and control devices, such as light switches and thermostats, in the spaces to

which they have physical access even though these devices may impact build-

ing areas beyond the room in which they are physically located; for example,

a thermostat located in a room can determine the temperature setpoint of

multiple adjacent rooms. Finally, visitors tend to have limited access, and are

frequently required to be escorted by building occupants to the meeting rooms

where their business is taking place; they might control equipment in these

rooms, but only for the duration of their meeting. In large commercial build-

ings, this approach implies substantial administrative overhead and exposes

the building infrastructure to various security threats.

Many existing authorization systems [62, 41, 49] rely on a trusted central

authority. However, if an attacker compromises this system, they can subvert

the authorization policy of the entire system which poses a fundamental threat.

The existing authorization method LDAP [62] uses Role-Based Access Control

(RBAC) with a single central authority.
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The work in [52] proposes another generic authorization Framework for the

Internet-of-Things. It supports fine-grained and flexible access control for any

constrained object with low power and memory resources. the methodology

is based on current Internet standards and access control solutions such as

XACML and Security Assertion Markup Language (SAML). However, it also

introduces a central third party authorization engine to handle access control.

Using smart contracts for authorization and delegation of trust was origi-

nally proposed in WAVE [3]. WAVE is an IoT identity management, authenti-

cation, and authorization service defined on the public Ethereum blockchain.

WAVE uses smart contracts deployed on the permissionless blockchain as a

global ledger for all authorizations, Delegation of Trust (DoT), and revoca-

tions, guaranteeing that all participants know the current state of all permis-

sions. BOSSWAVE [4] builds on WAVE to provide democratized access to

the physical resources in buildings. It explored the usage of blockchain to

enhance access control in building operating systems. A.Ouaddah et al. [44]

used blockchain to store and audit access control policies.

1.3 Smart Contracts for Access Management

based on Sensitivity of Indoor Paths

Ideally, an automated solution is needed to efficiently manage the access priv-

ileges of a building’s occupants. Traditional role-based access-control models

adopted in existing access control systems are unwieldy, in that they require

the specification of all roles and their relative authority, which is a challenge

in large buildings occupied by multiple organizations, each one with their own

different role hierarchy. The proposed methodology manages building access

control inspired by the concept of airline boarding-passes and the workflows

around them. At any point in time, the airport is used by numerous airlines

that manage their own flights at their corresponding gates and are responsi-

ble for issuing boarding passes to their passengers. Boarding passes become

available shortly before passengers travel, enabling passengers to go through

security, access their gate, and board their plane at the right time. Each
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boarding pass is associated with an individual traveler, and is valid only dur-

ing a short period before the flight departure. During this period, security

personnel are able to scan and verify the boarding pass. This methodology is

envisioned to be implemented independent of any pre-existing access control

delegation strategies, but still be co-existent with already implemented access

control systems.

This methodology can flexibly and securely manage building access priv-

ileges for long-term occupants and short-term visitors alike, addressing the

challenges and risks mentioned above. A set of services for fine-grained decen-

tralized management of people’s access privileges within a commercial building

are established. The term fine-grained means (a) person-centric instead of role-

based, (b) tailored to different space/system granularities, and (c) spanning

multiple timescales. The underlying intuition for the work presented in this

thesis is that if a person is authorized to have physical access to a particular

location in a building, then they also have access and opportunity to manip-

ulate the sensors and control points in this space. This is because, in most

cases, there is no additional access-control beyond placing the equipment be-

hind a locked door. Also by implication, if a person should not have access to

some control points, they should not be authorized to access the space where

this equipment is located.

The methodology relies on blockchain smart contracts to describe, grant,

audit, and revoke fine-grained permissions for building occupants and visi-

tors in a decentralized fashion [4]. The smart contracts are specified through

a process that leverages the information compiled from the BOT [46] and

Brick [7] models of the building’s spatial structure, equipment, and their rela-

tions. These models use Resource Description Framework (RDF), which is a

general-purpose language for representing information as a graph. RDF uses a

textual syntax called Turtle [9] in which RDF graphs are written in a compact

and natural text form.

The information from the building models enables our methodology to

grant an individual with just the right access privileges to let them reach

their destination within the building. This intuition is implemented in the
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form of smart contracts, through which space-access privileges are given to

(and revoked from) individuals using an API that can be invoked by different

software applications. The underlying access-control service is responsible for

accepting or rejecting individual access requests based on the currently valid

smart contracts and their implications regarding access to sensors and actu-

ators. We illustrate the proposed method through a typical use case in the

context of a real building and we argue that it can greatly reduce the admin-

istration overhead, while at the same time providing fine-grained, auditable

access control.

Simulations enable researchers to synthesize focused replications of impor-

tant activities and events under study. Rational simulations help generate a

lot of test data for evaluating various systems in the same environment. Syn-

thesized environments are easily modifiable and refinable allowing researchers

to experiment, analyze and fine-tune their models and associated algorithms

efficiently. Hence, a system designed on simulation studies would most likely

to be a robust and inclusive design. Also, a simulation model that mimics

an existing real world space is most likely to generate more data about the

environment and answer more questions than the target actual space. This

capability is an essential tool to use in establishment and deployment of smart

city projects [26].

To evaluate and show the usefulness of the proposed solution, a simulator

has been built to work on top of the services that provide path information and

manage access. Simulating the presence and movement of people in a com-

mercial building facilitates measuring the throughput of the proposed access

management solution. The proposed solution should be able to work under

high load, which is also assessed using the simulator.

The simulator is designed to synthesize movement of n number of people

in a building for a duration of d days. The simulator creates a set of meetings

during a day for a specific number of visitors and building occupants and then

generates calendar files for each meeting which include meeting times, loca-

tions and participant information. The information from these calendar files

is used to manage permissions for visitors and building occupants using our
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proposed service, the access control service, which runs on top of blockchain

to make transaction requests. The set of accessible spaces and subspaces for

each participant are extracted from building ontologies as described in Section

4.2. This helps illustrate a typical use case in the context of a real building

which shows that the proposed solution can greatly reduce the administra-

tion overhead, while at the same time providing fine-grained, auditable access

control.

An agent is formulated for each host and visitor to delegate access to spaces

in the building and to verify access to the spaces when the visitor tries to enter

them. The agents and the simulator work along with the services and the user

interface to perform access delegation, path planning and system evaluation.

The simulator utilizes stochastic processes to generate a meeting schedule and

returns calendar files for each meeting to the front end application called the

Calendar Application for smart buildings.

This application parses an iCalendar (ics) file the meeting host uploads,

extracts the meeting information for each meeting, like the date, start(ts) and

end (te) time of the meeting, the host and attendee email IDs and meeting

room number (rd). The application queries the path planning service, which

uses BOT and Brick to find paths between two locations (Section 4.2), to

get the paths and their sensitivity costs for all paths from entrances of the

building to the destination room. The meeting host (agent) is prompted to

select a path for each meeting, depending on the cost of the paths. Along

with this, the Calendar application also sends requests to the access control

service to check if the meeting participants are known to the system. The

selected path information is passed onto the access control services along with

the request for creation of access rules for each participant. In the real-time

scenario, a unique access QR code is generated for each participant which en-

codes the event unique ID extracted from the ics file, the host identity, and

the participant identity, which is emailed to the meeting participant. When

a meeting participant arrives in the building and scans their QR code at a

door on the selected pathway, the smart lock interacts with the calendar ap-

plication, which further checks the time-restricted access permission with the
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access-control service. However, for evaluation, the navigation of visitors is

synthesized by the simulator, which calls the access control service to check

if a user has access to a space at a given time. The details of the interaction

between different services and components is discussed later in Chapter 4.

1.4 Contributions

The contributions of this thesis are:

• We develop a smart-contract based solution to flexibly manage access

control for large commercial buildings. Distributed services are built on

top of the deployed smart contracts to manage multi-occupancy build-

ings. The access delegation is auditable with the usage of blockchain,

which is a scalable, trustless, peer-to-peer solution that operates trans-

parently.

• We build a simulator that generates data to synthesize movement of

people in a large commercial building. The simulator uses a unified

building model created by aligning BOT and Brick ontologies. This

model supports path planning and uses an external cost function to

prioritize paths. Building usage and access delegation data is generated

by the simulator for a specified duration of time.

• We evaluate the proposed access management solution using the simu-

lator.

In summary, this thesis talks about how traditional access management

methods can be improved using a decentralized system. We propose the use

of blockchain to make access control flexible, decentralized and auditable. To

show the usefulness of the proposed solution, we designed the simulator to

synthesize real scenarios of a commercial building. The simulator uses the

path planning service to find best paths to take in the building to reach a

designated room. The simulator helps evaluate the performance of the system

in the context of commercial buildings with multiple tenant organizations.
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1.5 Outline of the Thesis

The rest of this thesis is organized as follows: Chapter 2 provides an overview

of building modelling, current access control methodologies and discusses re-

lated work on authorization and access-control solutions developed for the

built environment. Chapter 3 describes the methodology in detail for smart-

building access control using blockchain smart contracts for managing access.

Chapter 4 presents the implementation of the simulator and the services that

use graph-based building ontologies for indoor path planning. Chapter 5 eval-

uates the performance of the proposed solution in terms of throughput and

delay. Chapter 6 concludes the thesis by summarizing the contributions, high-

lighting limitations of the work presented in this thesis, and presenting several

directions for future work in this area.
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Chapter 2

Background and Related
Research

In this Chapter, we discuss existing terminologies and methods for building

modelling and access control in the literature, followed by an introduction of

Blockchain and smart contracts. After this, we elaborate on various access

control methodologies proposed in the literature that use smart contracts and

how they differ from our proposed solution.

2.1 Building Modeling

The lack of a common representation for buildings has historically hindered

the development of portable building applications. To address this issue, sev-

eral standards for modelling building data have been conceived in recent years,

examples of which are Project Haystack [1] and Brick [7]. The Brick schema [7]

defines an ontology for describing the various building spaces and subsystems,

their components, and relationships between them. It defines three types of

entities: locations, equipment, and points. Locations are hierarchically orga-

nized, in terms of buildings, floors, and rooms. Equipment may be composed of

many parts and may be connected to other equipment with certain functional

relationships. They comprise complex building subsystems, such as HVAC,

lighting, and plumbing. Sensors and setpoints are two types of physical points

that can generate timeseries data and are used in control loops of different

equipment.
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traditionally represented using the Industry Foundation Classes (IFC) [8] data

model designed to facilitate interoperability in the building industry. The IFC

(Industry Foundation Classes) format is a worldwide standard (ISO 16739)

for BIM developed by BuildingSmart. In IFC, it is possible to store advanced

geometric and semantic information about building components. Entities in

IFC are symbolic of physical elements in a building. The 3D geometry of these

entities along with their attributes and characteristics are gathered in sets of

properties, called P-set. Spatial relations, aggregations and compositions of

these entities are also well defined in IFC.

Geospatial Information Systems (GIS) models such as CityGML[33] and

IndoorGML[37] embed precise geometric data in 3D and semantic data to iden-

tify the internal physical components of a building and their inter-relations.

CityGML and IndoorGML are both maintained by OGC (Open Geospatial

Consortium). CityGML is a Geospatial standard developed used for render-

ing, storing, and exchanging virtual 3D models of cities and outdoor facilities.

IndoorGML aims at delivering a common framework to represent the interior

of buildings and an exchange format for indoor spatial information. The con-

cept of cellular spaces is used in IndoorGML which are indoor spaces identified

as a set of cells and provide interpretations about the connectivity between

cells. IndoorGML is dedicated to indoor navigation applications and it is topo-

logically far richer than CityGML. However, the use of GIS standards is rather

limited compared to the IFC standard, as the geometric format of IFC makes

it possible to be converted into other formats.

BIM exhaustively describes composition of building subsystems, it leads to

unnecessary complexity when capturing information about a building. This

has motivated the Linked Building Data (LBD) Community Group1 to create

the Building Topology Ontology (BOT) [46]. BOT is a minimal ontology for

describing the spatial structure of a building. It defines three types of entities,

namely zones, elements, and interfaces, and captures relationships, such as

adjacency and containment between these entities. Zones are hierarchically

organized in terms of sites, buildings, storeys, and spaces, which are spatial

1https://www.w3.org/community/lbd/
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3D divisions used to model rooms. Elements are physical building components

such as doors and walls. An interface is the surface where two elements, two

zones, or an element and a zone meet. A subset of BOT entities and their

relationships are depicted in Figure 2.1 for an example building. Aligning BOT

with Brick allows for creating a unified RDF model of building’s structure and

equipment, thereby enabling the use of SPARQL to reason about the sequence

of doors and rooms that need to be traversed to go from one location to another

location in a building, and equipment that can be accessed in these rooms.

Several approaches have been proposed that use a BIM model to generate

an indoor navigation model to address the challenge of indoor path planning

in complex buildings. The path planning method described by Lin et al. [38]

extracts both geometric and semantic information about the building compo-

nents from the IFC data. This information is sampled and mapped into a

planar grid which then uses fast marching method(FMM) to find the shortest

path in the grid. However, this method requires that geometric and semantic

information defined in the IFC be imported into the specific virtual environ-

ment manually, which is time consuming and ineffective. Taneja et al. [59]

developed algorithms to automatically generate navigation models from IFC

data. However, these approaches lack the flexibility needed to be integrated

with access management systems as they do not consider sensitivity of spaces

on the path.

2.2 Traditional Access Control Methodologies

Access control regulates what resources users may use, based on their assigned

roles and privileges. In principle, there are three general mechanisms for rea-

soning about what permissions should be given to a user. Extensions to these

paradigms include risk-aware access control which associates a cost to provid-

ing access, and access control using building information models (BIMs) which

incorporates the knowledge of building structure and components into access

control.
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Role-based access control relies on an explicit, and fairly static, list of orga-

nization roles associated with privileges. In this model, each user is associated

with a role, which entitles them to a set of privileges corresponding to their

role(s) [51]. Commercial buildings usually host multiple organizations, each of

which defines its own role hierarchy which is relevant to the areas of the build-

ing that it occupies; as a result, there is no single role hierarchy that pertains

to the building as a whole. Furthermore, often times there is no single central

authority who can manage roles for all building spaces.

Risk-based access control is a model where users are granted access to re-

sources based on a scoring function that dynamically and contextually quan-

tifies the risk implicit in this privilege [31]. This approach to access control is

more relevant in dynamic environments, where the specific context of the ac-

cess request should inform whether the request may be honored or not. Build-

ings are not that dynamic and, in principle, a more explicit, less contextual,

access-control mechanism is desirable.

Attribute-based access control grants access rights to users through the

use of policies that combine together (with logical operators) different user,

resource, object, and environment attributes [60]. In our work, we adopt this

paradigm to develop a cost function that represents the sensitivity of building

spaces based on their function and equipment they contain. A room with

many control points, occupied by an employee in a position of authority in

the organization, is more sensitive (and is, therefore, associated with a higher

cost) than the building’s reception for example. In principle, this cost function

enables access-control policies to be defined based on sensitivity ranges. It also

enables one to reason about the relative sensitivity of spaces and rationalize

the access-granting process.

In risk-aware access control, a risk (defined by a cost function) is associated

to each user who wishes to access resources. It is then compared against a

predetermined threshold, before the user is granted access. This differs from

traditional access control models that have predefined policies set for granting

access and can be more permissive. The problem arises when “low-risk” users

are automatically granted access to resources that were never intended to be
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accessed by them. In this work, instead of associating risks to users, we adopt

a cost function to help develop access control policies where the acceptable

risk level can be defined a priori.

Several cost functions have been proposed for access control. Chen et

al. [16] propose cost functions for defining risk that incorporate the trustwor-

thiness of a user, the degree of competence of a user with respect to a particular

user-role assignment, and the degree of appropriateness of a permission-role

assignment for a given role. Salim et al. [50] consider the monetary value of a

resource or an inferred impact of misusing it (when monetary value is unavail-

able) as a basis for their cost function. Bijon et al. [11] propose a risk-based

access control framework that incorporates the quantified risk for granting

access and specific thresholds calculated based on attributes, purpose, and

situational factors. Inspired by these cost functions, we take semantics and

relationships of spaces and resources into account when defining the amount

of risk associated with accessing spaces and resources therein.

Access control policies for a building can be developed leveraging BIM.

Skandhakumar et al. [54] provide a review of spatio-temporal access control

models and propose an authorization framework that involves (a) modeling

of spatial data in BIM, (b) creation of access policies based on BIM, and

(c) authorization of these policies. In particular, the authors introduce ‘con-

tains’, ‘connected’, ‘adjacent’, and ‘accessible’ relationships between building

elements which are accounted for when reasoning about access policies. To

capture the relationships between spaces in a building, BIM is transferred to

a graph model in [55]. Despite the novelty of this model, it does not incorpo-

rate concepts such as sensors, actuators, and building subsystems which can

be affected by people who are given access to the building spaces. To specify

access control policies, the use of ‘eXtensible access control markup language’

(XACML) is proposed in [56]. XACML is a standard language for specifying

and evaluating access requests. The smart contract based solution proposed

in Chapter 3.1 is similar to XACML in that we separate authorization across

different services and provide a template smart contract to execute access re-

quests.
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Conventional methods for authentication, authorization, and revocation

rely on a trusted central authority. For example, the existing authorization

method LDAP [62] uses Role-Based Access Control (RBAC) with a single

central authority. Kerberos [41] and Jabber [48] are similar in that respect.

Several systems are also developed to eliminate the central authority, examples

of which are CCN [29] and the Web of Trust [13, 14]. They adopt a decentral-

ized peer-to-peer trust model in which a principal, denoted by a public key, can

publish a signature of another public key to denote trust. SmartTokens [20]

relies on a token-based access control system for NFC-enabled smartphones, in

which the delegation of access to other smartphone users can be accomplished

without a central authority. Although SmartTokens uses symmetric cryptog-

raphy, users need to present all delegated tokens through the delegation chain

in order to be verified. In recent work [36], a lightweight distributed autho-

rization protocol is proposed supporting delegation of access right to a smart

device in the form of a Bloom filter. This method of delegation uses secured

hashing to prevent the permission from being forged.

2.3 Blockchain and Smart Contracts

Blockchain is a distributed and shared ledger that serves as an irreversible and

incorruptible public repository [40]. It enables the occurrence of a particular

transaction without requiring a central authority. Compared to traditional

database systems, it offers three major advantages:

• As a distributed system, blockchain eliminates the need for a costly in-

frastructure that relies on prox cards for occupants and requires one of

these occupants (or dedicated security personnel) to escort visitors to

their meeting locations using their own prox cards.

• Blockchain does not require a trusted third party to certify transactions,

thanks to public-key cryptography and a consensus mechanism. This

allows digital transactions to occur between parties that do not have

pre-established trust relations, i.e., trustlessness.
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• The state stored in blockchain is immutable due to the use of crypto-

graphic hash functions.

Blockchain is analogous to a log whose records are group of transactions

that have a timestamp. Each block has a cryptographic hash and it refer-

ences the hash of the block that was created before it. Any node with access

to this series of blocks can read the global state of the data that was ex-

changed on the blockchain network. Blockchain is called a trustless network

because the parties involved can transact even without trusting each other,

which means faster reconciliation between the parties. This is due to a key

characteristic of blockchain networks, the use of cryptography. Users interact

with the blockchain using their private and public keys- being addressed using

their public key and using their private key to sign their own transactions.

The neighboring nodes validate and broadcast the transaction, spreading the

transaction to the entire network. The validated transactions are collected

into a timestamped candidate block, this process is called mining.

If any node can join the blockchain, then the network is called a public or

permission-less network, for instance Bitcoin, whereas if we have a whitelist

of nodes that can join, then it is a private or permissioned network, like

Ethereum. The type of blockchain being used decides the consensus mech-

anism of the network. Because of the Sybil attack [22], consensus in public

networks is costly and an monetary incentive, or cryptocurrency, is given to

the miners. Private networks are used in a supervised, regulated environment

and provide a higher throughput than a public network could offer. Since

the participants are restricted, costly consensus mechanisms are not needed as

the risk of a Sybil attack is ruled out, which means there is no requirement

for a monetary incentive for mining. Private blockchain mimics a distributed

database under a decentralized administration which provides improved trans-

parency and auditability across the involved nodes than in traditional dis-

tributed databases [53].

In order to avoid a Sybil attack and facilitate trust between nodes in a pub-

lic blockchain, consensus mechanism are made competitive and computation-
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ally expensive. Mining is made computationally expensive by making miner

node find the random number (nonce) in the block’s header, which generates

the proof-of-work (PoW) [39]. An alternative to PoW is called proof-of-stake,

which is not as expensive. For a miner node to choose the next block, it

should hold a value of stake (balance) which is proportional to the stake of the

network value that each node holds.

The absence of a central authority in blockchain could lead to conflicts in

the global state of transactions. For this, the nodes need to reach consensus on

which transaction is valid and conforms to the rules of the network. These rules

are defined for each blockchain network and are stored into each blockchain

client. The validity of the incoming transactions and whether it should be

communicated to the network or not is decided using these rules. There are

various distributed consensus protocols, a popular one being based on state-

machine replication with byzantine fault tolerance [15], which can function

successfully even in the presence of certain number of malicious or faulty nodes.

The smart contract concept was originally proposed by Szabo in 1994,

who states that “The general objectives of smart contract design are to sat-

isfy common contractual conditions, minimize exceptions both malicious and

accidental, and minimize the need for trusted intermediaries [58]”. Parties

can use smart contracts deployed on a blockchain network to perform trust-

less transactions without any intermediaries as the blockchain provides a great

infrastructure because its transactions are transparent and traceable. Smart

contracts are simple computer code written in a language supported by the

underlying blockchain platform. This code is automatically executed in ac-

cordance with the designated triggering conditions in the contracts, the con-

ditions being outcomes of transactions, external events or interactions with

other smart contracts.

The smart contract executes code on a blockchain to facilitate, execute, and

enforce the terms of an agreement between different parties, and are entirely

managed by the code, not subject to control of any central entity. It can

also be used to encode an arbitrary state-transition function. It executes

independently and automatically in a manner defined inside the contract on
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every node in the network, according to the data that was included with the

transaction triggering it. Once deployed on the blockchain, the contract is

immutable. The only way to mutate a deployed smart contract is to create

and deploy a new one with the consent of all transacting parties. The smart

contract is a deterministic piece of code, where the same input will always

return the same output and it has its own state and account in the blockchain.

Each contract is assigned a unique address. Users can send a transaction to

this address for execution. A callback function is executed when a transaction

execution request is received. If the transaction is successfully completed, the

contract’s state is updated. Otherwise, any changes made to the state are

reverted.

The development of smart contracts is supported by many blockchain plat-

forms, Ethereum [12] being the most well known and, perhaps, the most

broadly adopted one. Ethereum provides an abstract foundation layer for

smart-contract development: a blockchain with a built-in Turing-complete

programming language for the specification of smart contracts, with arbi-

trary rules for ownership, transaction formats and state-transition functions.

Ethereum has its own cryptocurrency called ether and an internal currency to

pay for computations and transaction fees called gas.

2.4 Access Control via Smart Contracts

Drawing on [3] that argues for democratized access to the physical resources in

buildings using a blockchain, we utilize a private Ethereum blockchain to store

the authorization graph of a specific building. Executing a transaction (e.g.,

for adding or revoking users’ accesses) leads to a state change and updates

this graph. The delegation of trust can be performed by any user without

communicating with a central authority. The state can be read from the

blockchain to verify access for any user at any time.

Our implementation uses a private Ethereum blockchain over a public

blockchain for performance and privacy reasons2. The private blockchain net-

2Private blockchains can achieve better scalability than public blockchains, thanks to
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work is comprised of several nodes representing different groups within an

organization or different organizations housed in the same commercial build-

ing. Compared to a centralized access control system which runs a private

server, it provides better transparency, availability, and robustness; there is

no single trusted entity and no single point of failure, the integrity of access-

related data is always maintained and tenant organizations can easily audit

transactions. Although privacy is easier to achieve in centralized systems, the

private blockchain helps preserve privacy to some extent as only specific nodes

within the organization are allowed to connect to the network. We note that

private permissioned blockchains, such as the Hyperledger Fabric, and hybrid

blockchains could provide advantages similar to a private Ethereum blockchain

and can be considered as alternative solutions.

To tackle the privacy issue, Kosba et al. [34] build a tool, called ‘Hawk’,

which helps developers create privacy-preserving smart contracts without the

need of cryptography. The tool is responsible for compiling smart-contract

code to a privacy-preserving version. Watanabe et al. [61] propose encrypt-

ing smart contracts before deploying them to the blockchain network so only

those participants who have the key can access the contract’s content (i.e.,

the state). Bernable et al. [10] provide a comprehensive review of privacy

preserving blockchain approaches.

RBAC-SC [17] performs role-based access control using blockchain and a

challenge-response protocol for authentication. FairAccess is a cryptocurrency

blockchain-based access control framework [43]. This work is different from

ours as a distinct smart contract is created for the access control policy of

every resource-requester pair. Furthermore, they include the IoT devices in the

blockchain, whereas there are IoT devices that do not have the capabilities to

run the blockchain on them. In another line of work, a distributed architecture

called ControlChain is proposed [45]. ControlChain enables the expression

of a wide variety of access control models, such as RBAC [23], OrBAC [30]

the limited number of participants they have, and can minimize privacy concerns since
only authorized users are allowed to connect and perform transactions. Furthermore, the
transaction cost can be less of a concern as it is not tied to the volatile cryptocurrency
market.
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and ABAC [28], deployed on IoT. This mapping is enabled due to the use of

a Decoder entity that automates the translation of access control model and

rules to their supported mechanisms. However, none of the these decentralized

systems addresses how building metadata can be linked with smart contracts

to extend access control to spaces and equipment in the building.

Wave uses the concept of entities, namespaces and delegation-of-trust (DOT)

to manage access of resources [3]. An entity is simply a key pair, identified

by its (public) verifying key, that may represent any participant: individu-

als, devices, services, applications, components of the system implementation,

and so on. A namespace is a hierarchy of resources that is identified as and

owned by its authorizing entity, which has full access to all resources within the

namespace. Each resource is identified by a path, like namespace/path, which

is rooted in the namespace identity. The kind of permissions an entity can

have include the ability to publish to a resource or subscribe to a collection of

resources in a namespace. In general, a sensor device publishes to the resource

that represents it; an actuator subscribes to a resource expression represent-

ing its interface. Delegating access to an entity can be done when it is offline,

which is not the case with conventional methods. When an entity publishes (or

subscribes) to a resource, it must present a proof of authorization consisting

of a valid DoT path in the permission graph from the authorizing entity of

the namespace to itself, encompassing the resource. The same transparency is

achieved by our work. WAVE also supports out-of-order and non-interactive

delegation, which is replicated in our smart contracts.

In [5], the authors’ experiments reveal that a Blockchain-based access con-

trol system will not scale to a global size. They state that Blockchain intro-

duces about a minute of latency when adding objects to Ethereum. However,

with a private blockchain for a small number of buildings, our solution works

well as described in our implementation since managing permissions is infre-

quent as compared to accessing permission data. Also, the calendar application

helps provide access well in advance, reducing the effect of latency. To address

the scalability issue that may arise in a large campus comprised of several com-

mercial buildings, other access control methods could be considered in future
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work.

BOSSWAVE [4] builds on WAVE and uses Ethereum as its foundation for

a public ledger to provide democratized access to the physical resources in

buildings. The read/write permissions are protected and can be accessed by

entities that received the delegation of trust. Our system is similar to WAVE in

that they both leverage blockchain technology. However, using smart contracts

for authorization to spaces and doorways apart from building subsystems and

equipment is novel in this work. We develop APIs to help interact with the

smart contracts; this will define fine-grained access control for any type of user.

In the next Chapter, we discuss how smart contracts deployed on a private

blockchain network are used for flexible access management. We elaborate on

the three smart contracts designed to facilitate different functions for access

control.
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Chapter 3

Flexible Access Management
Using Blockchain

In this chapter, we describe how access privileges are stored in a blockchain

using smart contracts and how access is verified when a visitor tries to access

a physical space through a locked door.

Consider a simple application scenario, where a group of individuals are

invited to a meeting that takes place in a specific room of an office building.

The process starts with a calendar invitation created by the meeting host,

listing the invitees using their email addresses, the room where the meeting is

to be held, and the time when it is to take place. The first step is to examine

whether the invited individuals are known to the access-control service: if not,

new entities need to be created to represent their credentials (Section 3.1.1).

Next, the possible paths in the building to reach the meeting room are com-

puted. We only consider the problem of indoor path planning, from a main

building entrance to a meeting room; nevertheless, our methodology can be

extended to the overall problem of planning a path from each individual’s loca-

tion, taking into account their route preferences and parking needs, as long as

the relevant information is captured by some geospatial model. Each of these

indoor paths is presented to the meeting host along with a cost that represents

the overall risk of giving the invited individuals access to the rooms located on

this path and the building elements (equipment, sensors, and setpoints) that

contribute to it. The host reviews the possible paths and selects the preferred

pathway, which is by default the path that has the lowest cost. The selected
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pathway is then transformed into a smart contract (Section 3.1.2), where the

meeting host delegates each invitee with the necessary privileges to access the

various doorways on the path, and a personalized QR code (akin to a boarding

pass) is generated to represent each contract. These QR codes are shared with

each participant in the calendar invitation.

Before the meeting occurs, each meeting participant arrives to the building

and scans their individual QR code to open doors on the path from the building

entrance to the designated meeting room. Each QR code scan invokes a request

to the Ethereum ledger (Section 3.2) to verify that the bearer is authorized

to access the corresponding door at the present time, given that they have

already opened some other doors in a the order pre-specified by the indoor

path selected by the meeting host. If the meeting host has access to these

rooms and had authorized the meeting participants to access these rooms

before the meeting, the access is verified and a control signal is sent to the

actuator, i.e., the electric door strike, to open the door. The process repeats

for each door along the path. We elaborate on these steps in the following.

Our access-control methodology involves granting, revoking, and verifying

user permissions to access rooms and equipment therein using smart contracts.

To achieve a thorough reasoning about sensitivity and security of the spaces to

which access needs to be delegated, we use the following three steps: (1) creat-

ing a unified RDF graph of a building by aligning the building’s BOT and Brick

models; (2) identifying all possible paths between two locations using a graph

traversal algorithm which is implemented by a sequence of SPARQL queries;

(3) determining the cost of each path by running a number of SPARQL queries;

The unified RDF graph of the building is created by identifying common syn-

tactic entities in the Brick and BOT model. These entities that represent the

same type are joined to form a new class of entities such that it relates to

elements in both the graphs. This is described in detail in Chapter 4. The

access management methodology stated above are implemented using three

services [18]:

• Building-Representation Service determines the cost of an indoor-
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path using information captured in the Brick model, described in Section

4.2.3.

• Path-Planning Service relies on the BOT model to find all possible

paths between two given locations. These paths are presented to the

user along with their costs, enabling the user to choose a desired path.

Path-Planning Service is described in Section 4.2.

• Access-Control Service specifies a smart contract, given a delegator,

a delegate, a path corresponding to a sequence of building spaces and

doors between them, and a time period during which the delegate should

be able to access the resources on this path. It also handles validation

of a delegate’s authority to access a door, at run-time.

3.1 Smart Contracts

In this section, we describe the prototype implementation of our access control

service that grants, revokes, and verifies user permissions through smart con-

tracts deployed on our own private blockchain using the Ethereum network.

Ethereum is a blockchain platform that includes a Turing complete scripting

language called Solidity [2] for building, deploying, and implementing smart

contracts. These contracts have no restrictions in terms of size and are stored

in the blockchain. Our methodology relies on three smart contracts, namely

Archives, Implications and Exclusions. They are defined as follows:

• The Archives contract manages and stores the entities and access rules

for each user. Any creation or deletion of entities or access rules leads

to a state change. The state of the Archives contract is read to verify

access.

• The Implications contract cross-verifies the validity of access rules and

processes the path resources that should be accessible to an entity for a

specific access rule. A state change takes place only when a new rule is

created.
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• The Exclusions contract is used when the delegator chooses to provide

a list of all the resources that the delegate is not allowed to access, even

though they are in spaces that the delegate is allowed to reach.

These smart contracts are compiled and deployed using scripts. For each

contract, a unique bytecode and contract address is created. The contract

address is used to make a transaction to a contract in the private blockchain

network, either from external functions or from another smart contract. An

API, illustrated in Figure 3.1, enables the client applications, such as our

meeting-planning example scenario, to interact with the deployed smart con-

tracts. The API exposes a number of operations, receiving (or producing)

JSON objects as input (or output).

3.1.1 Adding a New User

As shown in Figure 3.1a, the delegator, the meeting host, provides the calendar

invitation of the meeting to the Calendar application. The delegate here is the

meeting participant, who could be an external visitor or an existing occupant of

the building. The delegate’s email address can be used as the unique identifier

for the delegate’s entity. This address is used to verify if an entity exists already

for the delegate, or a new entity needs to be created by the Access-Control

Service1. The start and expiry times for the entity could be taken from the

calendar invitation or also be provided by the delegator. If no expiry time is

specified, the implication is that the contract is valid for the foreseeable future

until it is explicitly revoked. In our application scenario, meeting participants

should only have access to the building for a specific time period. Hence, the

expiry time must be provided.

In addition to the delegate’s address, and start and expiry times, the set

1Note that there are commercial solutions for decentralized identity management such
as Civic (https://www.civic.com/), Sovrin (https://sovrin.org/), and uPort (https:
//www.uport.me/). These solutions allow for users to manage their own identities, and
can be integrated with our system to eliminate the need for independently managing and
verifying the identity of building occupants and visitors. However, due to the commercial
nature of these solutions, we do not use them in our implementation. As a future direction,
it would be interesting to see the performance impacts of using a third-party decentralized
identity management service.
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of permissions that the delegator intends the delegate to possess must be pro-

vided as input to the API. These include read (for accessing sensor measure-

ments) and write (for changing the value of a setpoint) permissions for points

and equipment resources. The permissions set also includes a flag to indi-

cate whether the new delegate entity is allowed to further delegate access

to other users. The meeting-planning application interacts with the Access-

Control Service, providing the required information as depicted in Step 3 of

Figure 3.1a. This information is sent to the Archives contract to create a new

entity. The contract checks validity of the input and creates an entity for the

given delegate’s address.
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Figure 3.1: Three APIs for smart-contracts
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Once all the checks of the smart contract are successful, the delegator has

to sign the transaction using their private key. Any failure in the transaction

would revert all the changes made. If a valid response is not returned from

the smart contract, the entity is not created for the delegate. The API reads

the transaction hash received from the contract’s callback function and finds

out whether a valid entity was created for the delegate. Every entity created

has a unique address assigned to it.

3.1.2 Adding a New Access Rule

After creating a new entity for the delegate, the delegator can proceed to

create an access rule, based on the spaces and equipment resources that the

delegate is authorized to access. In our application scenario, the meeting

participants must be allowed to access all spaces they need to go through to

reach the meeting room, and all sensing and control points located in this

meeting room. This is exactly the information that the path-planning queries

Q1 and Q3 deliver (refer to the discussion in Section 4.2.3). If the delegate is

already known to the system and has previously had access to some resources

in the building, access must only be provided for the additional spaces that

are on the selected path.

The delegator has two options with respect to the various points located in

the destination room: (a) they may authorize the delegate to access all of them,

except an explicitly excluded set, or (b) they may include all of them in the

contract (default behaviour). The Exclusions contract is used to implement

the former. The permissions set mentioned in the previous section determines

if the delegate can read sensor measurements or write control setpoints in the

destination space.

The smart contract’s function requires information such as the delega-

tor’s and delegate’s addresses. The contract verifies the entities through these

addresses. In addition, the contract checks if the delegator’s entity has the

permission to grant access to new users.

For each access rule, the Path-Planning Service provides a list of resources

for the delegate to access as shown in Figure 3.1b. This list is generated when
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the delegator selects a path (likely the one that has the lowest sensitivity cost).

The associated list of path resources and inaccessible equipment (that could

be specified by the delegator) is stored with the Implications and Exclusions

contracts. These contracts identify a unique access rule using its hash. The

two contracts are called from the Archives contract when a new access rule is

being created to add the path resources and excluded equipment list. In our

application scenario, the Implications contract defines the order in which the

visitor should access the doors to reach the meeting room. But if access is

being granted for an occupant, there needs to be no restriction on the order of

the path that should be followed. This processing is also done by the contract

apart from storing the list.

Other parameters required by the contract’s function include the start and

expiry times for the access rule being created and the main or destination

resource, as in Step 5 of Figure 3.1b. All the fields are packaged into the request

in JSON format. The API runs a callback function to the smart contract to

create the new access rule with the provided fields. The access rule is uniquely

identified with a hash created using the delegator and delegate’s information.

The Archives contract is called to create the access rule. It verifies the entities,

checks the granting rights of the delegator, and also validates that such an

access rule was not defined earlier and is a new access rule for the delegate.

A valid access rule is created with the required fields as shown in Steps 6-7

the delegator signs the transaction using their private key. If the response

returned from the smart contract is not a “success” value then the new access

rule for the delegate is not created. The API reads the transaction hash

received from the callback function of the contract and responds if a valid

access rule was created for the delegate.

3.1.3 Verifying User’s Access Privileges

While accessing a resource, the existing entities and access rules are read from

the smart contract. It is important to note that the run-time verification of

the user’s credentials simply queries the private blockchain and does not cause

a state change. Thus, it does not require any “gas” (i.e., has zero transaction
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fee). However, creating a new entity for the delegate or adding new access

rules costs a specific amount of “gas” since they result in state changes on the

private blockchain.

When the meeting participant arrives to the building and tries to access a

specific resource, e.g., the meeting room, a request is sent to the API endpoint

to verify if they indeed are authorized to access this resource. As in Steps 1-2 of

Figure 3.1c, the API request requires the entity and access rule of the delegate,

the resource name, and the action to perform. The state of the smart contract

is read to retrieve the details of the entity and access rule for the delegate.

The functions of the smart contract check the validity of the entity and access

rule, and verify its start and expiry times. Next, the permission set is inferred

from the entity, the main resource, the implication and excluded resources are

found from the access rule. This process is described in the Figure 3.1c.

After receiving this data from the contract, the requested resource is looked

up in the implications and excluded resources. If it is not found, a query

is invoked (Q3 in Section 4.2.3) to identify all the resources related to the

main resource with the required type of relationship, shown in Steps 3-4 of

Figure 3.1c. If the requested resource is included in the returned resources,

then the delegate has access to the requested resource. Otherwise, the delegate

is not authorized to access the requested resource.

If the resource is equipment or a point in Brick, then the permissions from

the delegate’s entity are verified to see if they can read or write (control) the

requested resource. Once the validation process is completed, the API returns

a JSON response indicating whether the requested action is allowed or not.

Since these actions do not need to be mined, they are performed immediately

without any delay.

Similarly, whenever a visitor enters the building through the main door,

they have to follow the path to which the access was provided. Hence, the

delegate has to follow a sequence of doors in order to reach the destination

room. For this, the smart contract function reads the set of implications that

lead to the destination room. The implications are stored as in the order of

the path. This leads to verifying a sequence of access requests.
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A user pointer is used to store the current location of the delegate. When

a delegate tries to access a resource present in the set of implications, the

pointer’s current value and the requested resource are verified in the sequence

of the path. If the order of requested access matches the path, the delegate

is allowed to unlock the door through hardware control of the smart lock. If

there is a mismatch, it would imply that the delegate has either tried to enter

a wrong door or has skipped a door on the way. This method enforces that

the delegate follows the path he is supposed to and not get lost on his way to

the destination.

The time to access the implications should also be considered when spec-

ifying the start time. For instance, access could be provided to the delegate

30 minutes in advance so that they can come in early and reach the desig-

nated room. Requests invoked to check access for a user at different stages are

logged. It is also possible to add new smart contracts for tracking the number

of times the state of the contract is read to verify access to a certain zone, and

the users who requested access.

3.2 Deployment and Real-time Access Con-

trol

Smart contracts are programmed using Solidity, a specialized Turing-complete

language. The following code snippet shows the smart contract responsible for

adding a new entity resource in the system:

. . .
f unc t i on AddEntity ( bytes32 s id , u int expiry ,
bytes32 hash , u int permiss ion , bool grant ) pub l i c payable
{

i f ( En t i t i e s [ s i d ] . v a l i d i t y == Va l i d i t y . Void &&
exp i ry > block . timestamp ) {

En t i t i e s [ s i d ] . grantFlag=grant ;
i f ( pe rmis s i on == 0)

En t i t i e s [ s i d ] . pe rmi s s i on . push (Perms . Read ) ;
i f ( pe rmis s i on == 1)

En t i t i e s [ s i d ] . pe rmi s s i on . push (Perms . Edit ) ;
En t i t i e s [ s i d ] . v a l i d i t y = Va l i d i t y . Val id ;
En t i t i e s [ s i d ] . exp i ry = exp i ry ;
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En t i t i e s [ s i d ] . hash= hash ;
}
r e turn ;

}
. . .

The function follows the contract rules before adding a new entity into the

system. It checks whether the entity is known to the system before hand and

does not add a new entity if it already exists. It verifies the permissions and

access duration for the user being added to the system and then creates a new

unique entity if all conditions are satisfied. Each entity has a unique identity.

Similar functions exist to add unique access rules and to verify the entities and

access rules. Withdrawing access or making an entity void can also be done

by entities that have the permission to grant access to new users.

The infrastructure that the access control system uses is implemented on

servers running Ubuntu 18.04. Ethereum blockchain node is deployed on the

server by downloading and installing Ethereuem’s geth 1.5.8. All the smart

contracts are deployed on one node of the blockchain network. Some or all

of the nodes could be used as mining nodes of the blockchain network. The

interactions between the calendar application and the deployed smart contracts

are accomplished with HTTP requests made to the address of the deployed

contracts on the blockchain network. All of the queries are implemented via

web3.py and it communicates to the smart contract’s address through Flask

APIs. The Access-Control Service is packaged as a docker container which can

be downloaded from github2 and run on any client machine. This helps the

client to make calls to the smart contract’s state to verify entities and access

rules for meeting participants.

Upon selecting an indoor path that meeting participants can follow to reach

the meeting room, the smart contract is initiated by the Access-Control Service

to authorize the participants to open the required sequence of doors and access

certain spaces shortly before the meeting starts. Users who already have access

to (some of) the building’s systems and spaces can delegate access to other

individuals. This creates a tree-like structure of an authorization graph, as

2https://github.com/leepakshi9/SmartContractsAccessManagement
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depicted in Figure 2.1. This implies that the process has to be bootstrapped

with some original space manager(s), e.g., the Building Manager in Figure 2.1.

Traditionally, they might be the building-security personnel, or (some of) the

long-term building occupants.

In our application scenario, the meeting host (the delegator in Figure 2.1)

is assumed to have access to the whole floor (including Room 1-1-120 and

Room 1-1-121 ) and can thus delegate access to the spaces and doorways in the

path leading to the meeting room (i.e., Room 1-1-120 ). Hence, the delegator

grants the meeting participant (the delegate in Figure 2.1) access to all the

doors and rooms in the path they have selected, which implies that all the

rules mentioned in the smart contracts should be satisfied for the delegation

to succeed. To that end, the delegator first uses the smart contract to create

a new unique entity for the delegate, assuming that she is not already known

to the system (otherwise, the existing entity is used to add a new access rule).

Each entity is a node in the authorization graph, therefore creating a new node

for the delegate. The delegator provides the delegate’s address, which is the

public key of the delegate, along with the sequence of permissions implicit in

the chosen path and the period during which these permissions should be valid,

in effect, a period covering the meeting duration. If no failure is encountered

in the creation of entity and all the requirements of the contract are fulfilled,

a valid entity is created for the delegate.

Next, a new access rule has to be created, containing the delegator’s entity

(the meeting host) as the source, the delegate’s entity as the target, the expiry

time after which the access rule will become invalid, and the list of resources

that the delegate is allowed to access. This creates the relationship between

two nodes, the delegator and the delegate in Figure 2.1, i.e., the delegator and

the delegate, which describes the access rule. The list of resources received

from the Path-Planning Service are stored in the order they should be invoked,

starting from the building’s main entrance and concluding with the meeting

room. At run time, the in-order access of the list of locations and doors

is evaluated, which helps the delegate to navigate in the right path. The

destination and equipment that can be accessed by the delegate are also stored.
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Once all the requirements to create a new access rule in the smart contract

are fulfilled, a successful transaction is executed. A failure would revert any

changes that were made to the contract’s data.

An important advantage of smart contracts is the flexibility they afford in

the revocation process. Once a smart contract has been issued to authorize

a delegate with access to some spaces, it cannot be deleted; the blockchain

is immutable and anything stored on the blockchain as a transaction cannot

be deleted. To revoke this authorization, the access rule assigned to that user

must be made invalid. Similarly, to remove a user from accessing any system or

space in the building, for instance when an employee leaves the organization,

the entity belonging to that user is made invalid. This is enough to make sure

that this user can no longer access building spaces and equipment therein.

Once a rule or entity is made invalid, it can no longer be reused for the same

address of the delegate.

3.2.1 Checking Credentials at Run-Time

Upon arrival, when the delegate tries to access any space or equipment, the

data from smart contracts need to be read by the Access-Control Service to

validate whether the delegate’s credentials authorize them to access the spaces

they attempt to access. To that end, the access rule assigned to the delegate

is read from the blockchain. From this data, the duration and validity are

first checked. If the access rule is valid, the set of accessible resources assigned

for the delegate are checked and the permissions granted to the delegate, as

a part of the access rule, are verified. If the requested action is included

in the set of permissions and the requested resource is included in the set

of accessible resources, then the user will be allowed to access the requested

resource. Similar is the case for accessing points and equipment. To read

or modify the temperature setting in the room, the accessibility needs to be

checked and the smart contract decides if the requested action can be taken.
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3.3 Summary

In this chapter, we discussed how blockchain and smart contracts can be uti-

lized as a decentralized system for access management. We also described in

detail how Access-Control Service runs on top of blockchain to help delegators

and delegates transact with the smart contract and blockchain. In the next

chapter, we talk about a use case of an office building to describe how access

can be managed in a commercial building by simulating presence, movement

and occupancy of people in the example building.
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Chapter 4

Case Study: Access Control in
an Office Building

In this chapter, we use an example building to describe how access can be

managed in a real multi-tenant commercial building. The floor-plan of the

example building is illustrated in Figure 4.1. A more comprehensive solution is

needed so as to achieve the scenario of managing real buildings. This requires,

in addition to managing access rights, reasoning about what spaces should be

accessible to whom. In the following sections, we describe in detail how we

create a unified RDF graph of the example building by aligning the building’s

BOT and Brick models, identify all possible paths between two locations in

the building and determine the cost of each path.

4.1 Functional and Physical Modelling of an

Example Building

This section describes our methodology to create the BOT and Brick models

of the building (if they do not exist already) and align them to create a RDF

graph queryable via SPARQL. This RDF graph represents the relationships

defined in both Brick and BOT. It allows for identifying pathways in the

building using a graph traversal algorithm and quantifying the cost-sensitivity

of each pathway.

Figure 4.1 depicts the floor plan of an example commercial building occu-

pied by a single organization. We manually converted this floor plan into a
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sulting RDF graph: two rooms and a HVAC zone of type Location, a VAV

system of type Equipment, and a temperature sensor, a temperature set-

point, and a reheat command of type Point. The VAV system is connected

to the HVAC zone with the feeds relationship, as it supplies air to this zone.

The HVAC zone is comprised of the two rooms, so it is connected to them

with hasPart relationship. The temperature sensor and setpoint are located

in one of these rooms and are therefore connected to it via isLocationOf re-

lationship. The reheat command is computed based on the difference between

the measured and setpoint temperatures and is used to actuate the VAV sys-

tem; thus, the temperature sensor and setpoint are connected to the command

via controls relationship, and the VAV is connected to all three of them via

hasPoint relationship.

Once the Brick and BOT models are created, the next step is to align the

two models that is to ensure the entities corresponding to the same building

location (e.g., room) in Brick and BOT models are the same in both sets of

triples. Otherwise, it would be impossible to reason about which pathway

enables access to which equipment, which is necessary for establishing our

cost function as discussed in Section 4.2. To this end, we identify syntactic

entities that represent the same semantic entity in the two graphs and join

them to create a new entity. This new entity is a subclass of Location in

Brick and Space in BOT and therefore can be connected to entities defined in

both Brick and BOT. The borders around Room 1-1-120 and Room 1-1-121

in Figure 2.1 show the new entities created by merging respective entities in

Brick and BOT models.

4.2 Path Planning using Brick and BOT

In this section, we discuss how the Path-Planning Service identifies all pos-

sible paths between two locations using a graph traversal algorithm which is

implemented by a sequence of SPARQL queries. Further, we talk about deter-

mining the cost of each path by running a number of SPARQL queries. The

Path-Planning Service is packaged as a docker container and is available on
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github link provided in Section 3.2.

The issue of facility security is quite complex, especially when buildings

house expensive or sensitive equipment. Intuitively, the characterization of

the sensitivity of a space in terms of standard zones defined in Section 4.2.1

considers the activities taking place in the space and possibly the role of its

occupants, but it does not consider the equipment housed in, or accessible

through, the space. This is why, our access-control methodology proposes a

composite sensitivity function for each space that integrates information about

(a) equipment and subsystems a user may be able to potentially control by

accessing this space, (b) sensor readings a user may be able to read by accessing

this space, and (c) the security zone classification of this space according to

Table 4.1. Through this sensitivity quantification, we aim to help a delegator,

such as the meeting host in our example scenario, make informed decisions

about providing access to the building spaces.

The RDF model of the building can be used to annotate each building

location with its sensitivity level. We assume that there are some broadly

shared and agreed-upon principles for quantifying the sensitivity of locations.

This is a realistic assumption in this domain; in our work, we have adopted

the ‘Hierarchy of Zones’ as described in the ‘Operational Security Standard

on Physical Security’ of the Government of Canada2. We note that similar

specifications exist in several other countries, such as the United States3 and

New Zealand4.

4.2.1 Defining Sensitivity of Security Zones

The Canadian standard defines five zones, as seen in Table 4.1. Access to

public zones, such as the grounds surrounding the building, do not need to

be controlled. Reception areas may be inaccessible to visitors, except during

specific times of the day or for specific reasons. Access to operations zones

2https://www.tpsgc-pwgsc.gc.ca/esc-src/msi-ism/chap4-eng.html
3https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodm/522022M.

pdf
4https://www.protectivesecurity.govt.nz/physical-security/

understand-the-physical-security-lifecycle/design/apply-good-practices/

security/
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Table 4.1: Zones and their corresponding requirements

Requirements
Security Zones

Public (0) Reception (1) Operations (2) Security (3) High Security (4)
Monitoring × × × ×
Screening Required × × ×
Clearly Separated × ×

is limited to personnel who work there and to properly escorted visitors. Se-

curity areas are limited to authorized personnel and to authorized and prop-

erly escorted visitors. Finally, high-security areas are limited to authorized,

appropriately-screened personnel and authorized and properly-escorted visi-

tors. The standard advises that both security and high-security zones should

be monitored 24 hours a day, and that zone levels should be accessed in order,

i.e., a high-security zone can only be accessed from a security zone.

We use the Zone entity in BOT to model different security zones that exist

in a building. Consider for example the rooms 1-1-100, 1-1-101, 1-1-102, 1-

1-112, 1-1-114, 1-1-144, 1-1-150 in Appendix A.1.3. Rooms 1-1-102, 1-1-101,

1-1-100 are considered as reception zones, since they are the locations that

visitors can access when coming from a public zone without any credentials.

Room 1-1-112 is considered an operations zone, as only employees are allowed

to access the area with proper credentials. Connected to room 1-1-112 is room

1-1-114, which is considered to be a security zone, as it is physically restricted

from room 1-1-112 and additional credentials are required to access the area.

It should be noted that room 1-1-114 must be accessed from room 1-1-112, as

a security zone should only be accessed through an operations zone. Room

1-1-144 is an example of a high-security zone that must be accessed from room

1-1-150 which is classified as a security zone.

To quantify the sensitivity of the five security zones mentioned above, we

map them to an ordinal scale of 0 to 4, with 0 being a public zone, which is

not at all sensitive, and 4 being a high-security zone, where access should be

carefully controlled. We choose the ordinal scale because the order of security

zones signifies their relative importance (e.g., a high-security zone, labelled 4,

is more important than a public zone, labelled 3). Thus, each room/space in

the building is associated with the cost of its zone.
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SELECT ?entity ?x

WHERE {

?entity rdfs:subClassOf ?x .

?x rdfs:subClassOf brick:Point .

}

Figure 4.2: We obtain all the point types based on the following SPARQL
query which obtains the first sub-class of the brick point class in the graph
model

4.2.2 Defining Sensitivity of Equipment and Points

Building subsystems and points should have different sensitivity costs assigned

to them. This is because some subsystems may control more critical aspects

of a building (e.g., the lighting system is less critical than the HVAC system),

and some points in a subsystem may be more important than others (e.g.,

using the thermostat to adjust the temperature setpoint is more impactful to

the building occupants than simply reading the value of a temperature sensor).

To account for the fact that some equipment and points are more sensitive

than others, we used the Analytic Hierarchy Process (AHP) [47] to create a

suitable scheme for weighting the sensitivity of each type of equipment and

sensing/control points. AHP is a decision-making technique that can be used

to prioritize the attributes relevant to a decision-making task: by pairwise

comparing these attributes, it helps stakeholders decide on the importance of

each attribute relative to others. It has been used for a wide variety of appli-

cations, including assessing risk in operating pipelines [19] and quantifying the

overall quality of software systems [35]. In principle, this process should be

undertaken by facility-management personnel in collaboration with building

owners and occupants. For this work, we answered the questions specified in

Appendix A.2.1 on the scale defined in Appendix A.2.2 to develop a list of

weights for all types of points (sensors and setpoints) in our model. These

weights are shown in Table 4.2.

In addition to its type, the sensitivity cost of a particular piece of equip-

ment or a sensing/control point depends on what other, and how many, phys-

ical components they could impact. This intuition is illustrated in Figure 2.1.
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Table 4.2: Weights of the two types of points modeled: sensors and setpoints.

Sensors Weight
Temperature Sensor 0.347
Damper Position Sensor 0.204
Occupancy Sensor 0.246
Humidity Sensor 0.204
Setpoints
Temperature Setpoint 0.413
Humidity Setpoint 0.260
Air Flow Setpoint 0.328

In this figure, Temperature Setpoint 1-12 is a Point element of type Setpoint

and Temperature Sensor 1-12 is a Point element of type Temperature Sensor.

These are points of the VAV 1-12 Equipment and are both located in Room 1-

1-121. VAV 1-12 feeds fresh air into HVAC Zone 1-12 which is of type Loca-

tion. Room 1-1-120 and Room 1-1-121, which are also of type Location, are

parts of the HVAC Zone 1-12. In estimating the sensitivity of this room, we

argue that one would have to take into account the fact that VAV equipment

can be impacted by the actions of the room occupants, who may read the Tem-

perature Sensor 1-12 value and control the Temperature Setpoint 1-12. Thus,

Room 1-1-121 is more sensitive than Room 1-1-120 and occupants need to be

aware of this when granting permissions to other occupants and visitors.

4.2.3 Defining Sensitivity of an Indoor Path

Finally, the overall sensitivity cost of a potential indoor path is calculated as

the sum of all the costs of the rooms r it includes based on their security zone

classification, plus the costs of all points p located in the rooms r. The total

cost of each point p is initially assumed to be the value of 1, and increases with

the number of rooms r affected by point p. Furthermore, the cost is scaled by

weight(p), the sensitivity of the point as established through the AHP process
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and seen in Table 4.2. This intuition is captured by the following function:

cost(path) =
∑

r∈path

cost(r) (4.1)

=
∑

r∈path

(

sensitivity(r) +
∑

p hasLocation r

weight(p)× (1 + control(p))

)

,

(4.2)

where path is a sequence of rooms r, sensitivity(r) is the numerical value of

security zone classification for room r, p is a point (e.g., a setpoint or a sensor)

that is part of a subsystem, weight(p) is the weight given to point p (determined

by AHP), and control(p) is the number of locations or zones affected by point

p. For example, in Figure 2.1, we see that Temperature Setpoint 1-12 has

control(p) = 2 as ambient air temperature of two rooms would be affected by

adjusting this setpoint. A complete calculation for the costs of Pathway 1 and

Pathway 2 can be found in Appendix A.1.4.

It is important to explain here the role of the building model in computing

the path-sensitivity cost function above. We have developed a set of SPARQL

queries based on the building’s RDF model (see sub-graph in Appendix A.1.1)

to compute:

• the sequence of adjacent rooms leading from one location to another,

e.g., the main building door to the meeting room; and

• the set of points located in a room, their types, and the locations they

influence through control.

We seek to answer the following questions with SPARQL queries in the

namespaces found in Appendix A.1.2:

Q1 – what are the possible sequences of adjacent resources

(locations or doors), starting at main entrance and reaching a

specific meeting room?
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1 SELECT ?element

2 WHERE { ?element bot:adjacentElement <Resource>. }

3

4 SELECT ?element # reverse query of lines 1-2

5 WHERE { <Resource> bot:adjacentElement ?element. }

The two queries above are repeatedly invoked, starting with the building’s

main entrance as < Resource > to find an adjacent door or room ?element

using the query from lines 1-2. For each of the ?elements, if ?element is a

door, then the query from lines 3-4 is executed next using ?element as

< Resource > to find more doors or rooms. Otherwise, the query from lines

1-2 are repeated with the ?element as the new < Resource >. This process

is repeated until the destination meeting room < Resource > has been

reached. Note that when a query returns multiple rooms or doors, we need

to repeat this process for each of them separately. Using these two queries

allows the Path-Planning Service to perform a recursive depth-first search by

finding adjacent resources to each ‘Room’.

Q2 – what is the sensitivity of a location based on its security zone

classification?

1 SELECT ?seczone

2 WHERE {

3 ?seczone bot:hasSpace <location> .

4 }

This query helps to determine the sensitivity of < location > where

?seczone is subsequently translated into a number based on its ordinal

property described in Section 4.2.1.
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Q3 – what points are in a location? What kinds of points are they?

Can the points influence other locations through controls

relationship?

1 SELECT ?point ?subsubtype ?subtype

2 WHERE {

3 <location> bf:isLocationOf ?point .

4 ?point rdf:type ?type .

5 ?type rdfs:subClassOf* ?subsubtype .

6 ?subsubtype rdfs:subClassOf ?subtype .

7 ?subtype rdfs:subClassOf brick:Point .

8 }

9

10 SELECT ?point ?location

11 WHERE {

12 <location> bf:isLocationOf ?point .

13 ?point bf:controls ?command .

14 ?equipment bf:hasPoint ?command .

15 ?equipment bf:feeds ?zone .

16 ?zone bf:hasPart ?location .

17 }

The first query from lines 1-7 determines the points that are located in

< location > and their types (subsubtype = Temperature Setpoint and

subtype = Setpoint). The second query from lines 9-16 decides whether the

point influences any other locations by determining the equipment of the

command that the point controls and seeing if the equipment feeds any

locations. These queries are executed by the Building-Representation Service

to determine the cost of an indoor-path.
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4.3 Summary

In this chapter, we discussed the design and implementation of the commer-

cial building simulator. The interaction between the simulator, Path-planning

service and Access-control service were described along with a Calendar appli-

cation that serves as the user interface for meeting hosts. In the next chapter,

we talk about the usage of the simulator for evaluating the performance of the

proposed access control system.
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Chapter 5

Performance Evaluation
through Simulation

In this chapter, we describe in detail the various components of a building

occupancy simulator and their interactions with Path-Planning and Access-

Control services. The simulator synthesizes movement of people in a building

and interacts with these services in order to perform a comprehensive analysis

of the proposed solution. We then assess the performance of the proposed

access management system using the commercial building simulator. We com-

pare the latency of each kind of transaction which manage entities and access

rules in the smart contracts. To measure the scalability of the solution, we

compare the throughput of the Ethereum network as we increase the number

of miner nodes.

5.1 Simulating Occupant Presence and Move-

ments

The architecture in Figure 5.1 depicts the interaction of the simulator, services

and the user interface. As shown in this figure, the simulator takes a set of

input parameters from the initiating application which could be the front end

calendar application or a command line prompt. The set of inputs include the

number of days for which the occupant movements need to be simulated, the

duration of the meetings, the type of day (Busy, Average or Quiet) and a list of

meeting hosts and meeting participants. For instance, the simulator is asked
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Consider a stochastic process T = {Tn, n ≥ 1} which records the occurrence

time of the nth event in some experiment. For any interval [s, t) we define the

random variable

N([s, t)) =
∑

n≥1

1(Tn ∈ [s, t)) (5.1)

which represents the number of occurrences of the point process T in [s, t).

We say N([s, t)) is a Poisson process with rate λ for 0 ≤ s < t if

• τn = Tn+1− Tn is a collection of independent and identically distributed

(iid) random variables

• τn is exponentially distributed with rate λ > 0

Algorithm 1: Simulate meetings(type of day, sim length)

Result: (locn, sn, en, An, Dn)
λ←MeetingRate(type of day);
a, b←MeetingLength(type of day);
µ← ArrivalRate(type of day);
while τ < sim length do

sn ∼ Exp(λ);
τ ← τ + sn;
` ∼ U(a, b);
en ← `+ sn ;
locn ← rand(locations, sn, en) ;
An ← SimulateArrivalT imes(sn, µ) ;
Dn ← SimulateDepartureT imes(en, µ) ;
store(locn, sn, en, An, Dn) ;

end

Initially, we assume that the total number of meetings per day is a Possion

process. The meeting rate for this Possion process, λ, is dependant on the

type of day, which decides the load of the system (busy, average or quiet).

The start time of the next meeting is sampled from an exponential random

variable and is added to the start time of the previous meeting which was held

in any one of the conference rooms in the building. The duration of the next

meeting is sampled from a uniform distribution. The conference room for the
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next meeting is randomly selected from the available conference rooms. This

process is described in Algorithm 1.

We derive the duration of meetings from the function MeetingLength(type of day),

which uses a uniform distribution and samples the length of each meeting from

this distribution. We consider a window of 30 minutes before the meeting

starts and after it ends, and use a Poisson process to simulate arrivals and

departures in these two windows as described in Algorithm 2 and Algorithm

3. The number of participants are sampled from another uniform distribution,

which depends on the type of day. The rate of arrival, µ is computed by the

ArrivalRate(type of day) function in Algorithm 1. The inter-arrival times are

sampled from the exponential distribution with the mean being µ.

Algorithm 2: SimulateArrivalTimes(sn)

Result: Arrival times of participants in nth meeting
κ← sn − 30minutes;
while κ < sn do

an ∼ Exp(µ);
κ← κ+ an;
store(an);

end

Algorithm 3: SimulateDepartureTimes(en)

Result: Departure times of participants in nth meeting
κ← en + 30minutes;
while κ > en do

dn ∼ Exp(µ);
κ← κ− dn;
store(dn);

end

Once the meeting schedule is generated, the simulator returns the meeting

schedule, arrival and departure times of the participants for all the meetings to

the initiator (the Calendar application or the user). The ICS File Generator

component of the simulator in Figure 5.1 uses this schedule to generate ICS

Calendar files for each meeting. These files store information of the host,

attendees, meeting location, date and duration of the meeting. The next
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file of the building from a BIM Server. This file contains the physical layout

of the building and is rendered into a 3D floor plan using the Model renderer

component in Figure 5.2. The Viewer displays the 3D floor plan of the building

which helps the host interact with the model, as in Figure 5.3. If a meeting

location is detected inside the ics file it is stored as the destination location.

Otherwise, the Calendar application waits for the meeting host to select a

meeting location as the destination and a source location (any entrance of the

building for visitors and an office location in case of an occupant of the build-

ing). Upon receiving the source and destination, the Path-Planning Service

is requested to provide all the paths between these locations along with their

respective costs. The received paths are processed and displayed according to

their costs on the viewer for the meeting host, as in Figure 5.5 and Figure 5.6,

through which the best fit path for the meeting participants can be selected.

We explain how paths are selected in Section 4.2.

The rendered model can be used to view and reason about various sensors

and actuators present on the floor, for instance the relationship between an

actuator and its linked sensor along with their physical location on the floor.

The model can also show the points present inside a selected room and the

detailed information about each point that is highlighted, as in Figure 5.4. All

this is possible with the interaction between the Calendar application and the

Path-Planning Service, as described later in Section 4.2.

5.3 Simulation of meetings and people in the

building

We simulate a number of concurrent meetings in the example building depicted

in Figure 4.1 to evaluate the performance of the proposed system in realistic

scenarios. This building has five conference rooms that could be used to hold

meetings in parallel. To create different load levels, we consider 3 types of

days: busy, average, and quiet days as described in Chapter 4. We assume

that there are more concurrent meetings with more participants on a busy day

than an average day or a quiet day. For each type of day, we model the number
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of meetings held in each conference room by a Poisson process. Hence, the

intervals between successive meetings held in the same conference room are

exponentially distributed.

For example, we assume that n number of meetings take place on an av-

erage day. The value of n can be derived from a uniform distribution. The

meeting rate λ in Algorithm 1 is calculated by dividing the number of meetings

in a day by the duration over which these meetings can span. For a typical

commercial building, the working hours are between 8 to 9 hours. Now, con-

sider a meeting scheduled between 14:00 to 15:00 with 7 participants. We

assume that the duration of a meetings could span from 60 minutes to 150

minutes, which is assigned by the function MeetingLength(type of day). The

meeting length is sampled from a uniform distribution bound by 60 and 150

minutes.

The number of participants are sampled from a uniform distribution, in

this case there are 7 participants. These participants arrive any time 30 min-

utes before the meeting, thus the rate µ here is 7 participants divided by 30

minutes, which is µ = 7

30
. The inter-arrival times for this meeting are calcu-

lated in Algorithm 2 and Algorithm 3 which are sampled from the exponential

distribution with the mean being µ. The resultant arrival instances would be

between 13:30 and 14:00 and departure instances would be between 15:00 and

15:30.

Figure 5.7 shows example schedules for all meeting rooms in the 3 types

of days we considered. The color intensity depicts the number of participants

of each meeting; the darker the color is the more people attend the meeting.

Figure 5.8 shows the cumulative number of people in the building throughout

the day for the 3 types of days. We have a maximum of 70 meeting participants

on busy and average days, and a maximum of 30 meeting participants on quite

days. There are no occupants in the building before 08:00 and after 17:00.

When access is delegated to an attendee, the paths to these meeting rooms

are received from the path planning service. Accordingly, we calculate the

number of requests a participant makes to receive and verify access to attend

one meeting. The average number of requests is between 4.5 and 5.5 requests
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(a) Busy Day Occupancy

(b) Average Day Occupancy

(c) Quiet Day Occupancy

Figure 5.8: Occupants in the building during 3 different schedules
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5.4 Delay and cost analysis of Managing En-

tities and Access Rules

Performance evaluation is done on a private Ethereum network consisting of

2 mining nodes. The API sends simultaneous and parallel requests to these

nodes and transactions are executed by the miner nodes. We measure the

latency of transactions as perceived by the user, i.e., the time between the user

issuing a request to the access control service and receiving a response from

the service. As described in Section 2.2, the access control service interacts

with the blockchain mining nodes to issue transactions. Entities are created

and access rules are added in an offline fashion, usually well before the meeting

start time. Table 5.1 describes the average delay for adding a new entity for a

user unknown to the system and adding access rules for each participant of the

meetings to the blockchain. It also shows the cost associated with transactions

to add new entities and access rules. At the time of evaluation, one ether was

equal to approximately 143.68 USD.

Table 5.1: Summary of transaction delays and costs.

Type of day
avg. delay
of adding
entity

avg. delay of
adding access
rule

avg. cost
for adding
entity

avg. cost for
adding access
rule

Busy Day 0.76 seconds 17.3 seconds 0.019 USD 0.0044 USD
Average Day 1.2 seconds 14.3 seconds 0.019 USD 0.0045 USD
Quiet Day 1.16 seconds 12.8 seconds 0.019 USD 0.0044 USD

We now present the distribution of delays obtained for verifying user’s

access privileges, e.g., when meeting participants arrive to the building. Our

simulations indicate that this type of request is completed between the range

of 0.26 and 0.37 seconds for each type of day. Thus, we can expect a maximum

delay of 0.37 seconds to decide whether or not to grant an access request. This

delay is within the acceptable range in real applications.
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5.4.1 Throughput and Latency of Verifying Entities and
Access Rules

Lastly, we increase the number of mining nodes in the private blockchain net-

work from 1 up to 4. We consider two performance metrics, namely throughput

and average latency, and we measure performance as the system load (the total

number of transactions) increases in each case. We assume that transactions

are evenly distributed among the nodes in the network. Figure 5.9 shows the

performance evaluation results obtained from 5 independent runs for an aver-

age day schedule. It can be seen from the figure that (a) the average latency

decreases in most cases as we increase the offered load, and (b) throughput

increases linearly with the offered load until it reaches a maximum, which

depends on the number of nodes. When the load exceeds this threshold, per-

formance starts to fall apart. Observe that increasing the number of nodes

improves performance in terms of both throughput and latency in general.

With 4 nodes in the blockchain network, according to Figure 5.9, we can han-

dle around 2400 verification requests per minute with an average latency as

low as 30 milliseconds. From Table 5.1 and Figure 5.9, we can say that veri-

fying presence of entities and validity of access can be done much faster than

adding new entities and access rules.

5.4.2 Practical Considerations for Using The Blockchain

Privacy: Maintaining privacy on blockchain is a complicated issue because

transactions and user’s balances in a blockchain are open to public viewing.

There are several approaches to address privacy concerns in a blockchain based

solution. For example, secure multi-party computation splits the smart con-

tract between a number of parties with secret keys to compute parts of the

smart contract so that a complete picture of a smart contract is not given.

Zero-knowledge proofs can provide verification of smart contracts without re-

vealing any information except for the proof to be true; this process can be

quite costly. Commitment schemes allow for proofs to be verified with minimal

disclosure of secrets. Mixing is also an option where transactions are hidden by
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Figure 5.9: Comparison of throughput and latency for different numbers of
nodes and amounts of offered load

generating additional transactions to create noise and hide the original transac-

tion. Furthermore, user privacy can also be maintained in a hybrid blockchain

solution where identity is managed by an external public blockchain service,

while access smart contracts are maintained on a private blockchain. Our

proof-of-concept implementation uses a private Ethereum network which ad-

dresses privacy concerns to some extent as all participating nodes are within

the organization. Nevertheless, any of the above approaches can be imple-

mented on top of our access-control service when the meeting participants and

times are sensitive and must be protected from some nodes in the network.

Transaction fees: Cryptocurrency fees are a fundamental part of blockchain-

based software platforms. In some public ledgers there is a minimum fee

required for a transaction to be accepted, which helps avoid unwanted and

inappropriate transactions. In this work, the creation of entities and access

rules require a fee, which has to be paid by the entity initiating and signing

the transaction. However, checking access privileges does not cost transaction

fees, which constitute the most common type of operations. When a user tries

to access a resource, the API is called to query information from the smart
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contract and decide whether the requested access is allowed. This can be

done from any resource and does not incur any fee. It should also be noted

that with a private Ethereum network, the difficulty of the mining process

can be decided by the management, and ether could be mined and potentially

transferred to the accounts of participating nodes as needed.

Block time: Transactions take time to get accepted into the blockchain.

However, verifying access privileges does not need to execute transactions to

query information from the smart contract’s data. The information can be

retrieved immediately from the blockchain by the devices when the API is

called. Apart from this, the creation of new entities and access rules can have

long delays in execution. This implies that users may have to wait for some

time till their access privileges are granted, since this process requires the

execution of two transactions, namely (a) the creation of a new entity and (b)

the creation of a new access rule. To mitigate the potentially long wait times,

one might raise the transaction fees for the creation and revocation operations

to minimize the time spent adding or removing the entities and access rules

into the blockchain network [42].

5.5 Summary

In this chapter, we described how the commercial building simulator is used

for performance evaluation. With an example type of day, we described how

the rate of meetings and inter-arrival times are calculated to build a schedule

for one day. This schedule was used to make requests to the Access-control

service to evaluate the throughput and latency of the transactions made on the

private Ethereum network. Lastly, we discuss some measures to be considered

for good performance of the proposed system in practical scenarios.
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Chapter 6

Conclusion

In this thesis we proposed a methodology that supports reasoning about and

flexibly managing the access privileges of occupants and visitors in multi-

tenant commercial buildings. Controlling access to these areas and other

spaces within the building is a complex problem. Our method uses smart

contracts to manage the space and equipment access privileges of users, at

specific times and subject to specific constraints.

The current practice of using a centralized infrastructure relies on prox

cards for occupants and requires one of these occupants (or dedicated security

personnel) to escort visitors to their meeting locations using their own prox

cards. This process is onerous and costly, and in fact does not provide any

kind of real access to visitors.

A private blockchain uses distributed ledger technology enabling tenant

organizations to easily read, write, and audit transactions. Additionally, since

there is no single trusted entity and no single point of failure, our access control

solution (based on blockchain) has better availability and reliability compared

to a centralized solution running on a single server. Our solution introduces

time-restricted building passes and uses a decentralized access control system,

relying on building models, to reduce the cost of access control in a large

multi-tenant building and make it more flexible (allowing the update of passes)

and secure (by specifying a specific path that must be taken to the meeting

location). The operational cost of our access control solution is much lower

than the current best practice.
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Furthermore, our methodology combines the Brick and BOT models of

a building to plan an indoor path between two locations and to determine

the path’s “cost” in terms of the sensitivity of the spaces it goes through

and the equipment contained in these spaces. The unification of RDF graphs

that portray building metadata and smart contracts for authorization is done

through the use of API endpoints. We demonstrated through an example use

case that the proposed access-control methodology is suitable for managing

access privileges in large multi-tenant commercial buildings and can greatly

simplify the labor-intensive security protocol that is currently being followed

in such buildings. Through our simulations, we inferred that the request to

verify access for a person trying to unlock a door is completed between the

range of 0.26 and 0.37 seconds with just 2 mining nodes, which is typically

within the acceptable range in real applications.

To evaluate the overall performance of the proposed solution, we design and

implement a simulator that synthesizes occupant presence and movements in

the building using scheduled meetings fabricated by a Poisson arrival process.

We used the data generated by the simulator to perform load testing on the

blockchain network to assess its throughput and latency.

We believe that the proposed solution is suitable for access control in large

multi-tenant commercial buildings, greatly simplifies the labor-intensive se-

curity protocol that is currently being followed in such buildings, and offers

advantages over a centralized access control system in this context. However,

the blockchain-based access control solution which we proposed in this work

may not be better than a centralized solution for all types of buildings. De-

pending on the size of the building and the number of visitors that come to

the building on a day to day basis, the number of state-change transactions

would vary significantly, effecting the performance of the proposed solution.

We performed the cost analysis for busy, average and quiet days in our select

building using a proportional estimate of the number of transactions.

The computational requirements for the proposed solution are higher than

the centralized infrastructure as it requires multiple dedicated blockchain nodes.

On top of this, the Brick and BOT models for each building are required in
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order to use the proposed solution for any commercial building, limiting the

adaptability of this solution.

Future work would include investigating methods to reduce the cost (ether)

of using smart contracts. With small modifications to interact with the actual

building’s BMS, the system can be extended to enable real-world applications

without changing the authorizing smart contracts. A comparative study of

using data from BMS and smart contracts directly would be performed in

terms of cost and time.

Furthermore, incorporating the use of roles instead of individual users re-

ceiving access is another extension that can be made in future work. Using

role-based access control could help group similar types of users into one role

and provide them with identical access. For example, all the occupants of an

office room with multiple workstations should have access to the same set of

physical resources. This approach would be applicable in single-tenant build-

ings.

Apart from authorization, authentication, and revocation, it is possible

to build several other applications, like occupancy monitoring, localization,

or path planning using accessibility information of the building, on top of

the existing authorizing smart contracts and the building metadata schema,

thanks to adaptability and flexibility of the proposed solution.

To reiterate, the contributions of this thesis are:

• We develop a smart-contract based solution to flexibly manage access

control for large commercial buildings. Distributed services are built on

top of the deployed smart contracts to manage multi-occupancy build-

ings. The access delegation is auditable with the usage of blockchain,

which is a scalable, trustless, peer-to-peer solution that operates trans-

parently.

• We build a simulator that generates data to synthesize movement of

people in a large commercial building. The simulator uses a unified

building model created by aligning BOT and Brick ontologies. This

model supports path planning and uses an external cost function to
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prioritize paths. Building usage and access delegation data is generated

by the simulator for a specified duration of time.

• We evaluate the proposed access management solution using the simu-

lator.
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Appendices

A.1 Example Building

A.1.1 Building Graph Model

Below is a small sub-graph of the building’s model (in RDF syntax) that can
be queried using SPARQL as discussed in Section 4.2.3.

@prefix bf: <https://brickschema.org/schema/1.0.3/BrickFrame#> .

@prefix bot: <https://w3id.org/bot#> .

@prefix brick: <https://brickschema.org/schema/1.0.3/Brick#> .

@prefix building1: <http://building1.com#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

building1:AHU-1 a brick:AHU ;

bf:feeds brick:VAV-1-12 .

building1:HVAC-Zone-1-12 a brick:HVAC ;

bf:hasPart building1:Room-1-1-120,

building1:Room-1-1-121 .

building1:Operations-Zone a bot:Zone ;

bot:hasSpace building1:Room-1-1-120,

building1:Room-1-1-121 .

building1:Room-B-100 bf:isLocationOf brick:AHU .

building1:VAV-1-12 a brick:VAV ;

bf:feeds brick:HVAC-Zone-1-12 ;

bf:hasPoint building1:Reheat-Command-1-12,

building1:Temperature-Sensor-1-12,

building1:Temperature-Setpoint-1-12 .

building1:Temperature-Sensor-1-12 a brick:Temperature_Sensor ;

bf:controls building1:Reheat-Command-1-12 .

building1:Temperature-Setpoint-1-12 a brick:Temperature_Setpoint ;

bf:controls building1:Reheat-Command-1-12 .

building1:Door-1-1-12 a bot:Element .

building1:Room-1-1-120 a brick:Room,

bot:Space ;

bot:adjacentElement building1:Door-1-1-12 .

building1:Room-1-1-121 a brick:Room,

bot:Space ;

bf:isLocationOf brick:Temperature-Sensor-1-12,

brick:Temperature-Setpoint-1-12 ;
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cost(Room 1-1-102) = 1 + 0

cost(Room 1-1-101) = 1 + 0

cost(Room 1-1-100) = 1 + 0

cost(Room 1-1-112) = 3 + 0

cost(Room 1-1-114) = 3 + 0

cost(Room 1-1-178) = 3 + 0

cost(Room 1-1-184) = 3 + ((0.204× (1 + 5)) + (0.246× (1 + 5)) + (0.347× (1 + 5)) + (0.413× (1 + 5)))

cost(Room 1-1-152) = 3 + 0

cost(Room 1-1-150) = 3 + (0.413× (1 + 4))

cost(Room 1-1-144) = 4 + ((0.413× (1 + 20)) + (0.260× (1 + 20)) + (0.328× (1 + 20)))

cost(Pathway 1) = 55.35

Pathway 2

Below is the cost calculation for Pathway 2 from Figure 4.1 using the cost
function defined in Section 4.2.3.

Pathway 2 ≡ {Room 1-1-1ST3,Room 1-1-184,Room 1-1-150,Room 1-1-144}

cost(Room 1-1-1ST3) = 2 + 0

cost(Room 1-1-184) = 3 + ((0.204× (1 + 5)) + (0.246× (1 + 5)) + (0.347× (1 + 5)) + (0.413× (1 + 5)))

cost(Room 1-1-150) = 3 + (0.413× (1 + 4))

cost(Room 1-1-144) = 4 + ((0.413× (1 + 20)) + (0.260× (1 + 20)) + (0.328× (1 + 20)))

cost(Pathway 2) = 42.35

A.2 Analytic Hierarchy Process

A.2.1 Questions and Answers

We ask questions to compare the importance of different types of Points, e.g.,

sensors and setpoints. The sensors installed in our example building are tem-

perature, damper position, humidity, and occupancy sensors. The setpoints

available in our example building are temperature, humidity, and airflow set-

points. For each set of Points, we do a pairwise comparison of its elements

using questions, such as How important/critical is element x compared

to element y in the building? . We answer these questions using the rating
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scale described in Appendix A.2.2. Each set of questions achieve a consistency

ratio of less than 0.10 as recommended for the AHP process.
For the sensors, we achieve a consistency ratio of 0.024 answering the

following questions:

• How important is Temperature Sensor compared to Damper Sensor? 2

• How important is Temperature Sensor compared to Occupancy Sensor? 1

• How important is Temperature Sensor compared to Humidity Sensor? 2

• How important is Damper Sensor compared to Occupancy Sensor? 1

• How important is Damper Sensor compared to Humidity Sensor? 1

• How important is Occupancy Sensor compared to Humidity Sensor? 1

For the setpoints, we achieve a consistency ratio of 0.055 answering the
following questions:

• How important is Temperature Setpoint compared to Airflow Setpoint? 2

• How important is Temperature Setpoint compared to Humidity Setpoint? 1

• How important is Airflow Setpoint compared to Humidity Setpoint? 1

The resulting weights from answering these questions are shown in Ta-

ble 4.2.

A.2.2 Rating Scale

Table A1: This rating scale is taken from [47] and used to compare two el-
ements relative to each other in terms of their importance. Note that the
reciprocal can also be used to compare elements in the other direction.

Rating Definition
1 Equal importance
2 Equal to moderate importance of one over another
3 Moderate importance
4 Moderate to essential importance
5 Essential or strong importance
6 Essential to very strong importance
7 Very strong importance
8 Very strong to extreme importance
9 Extreme importance
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