
Online optimization for machine learning: parallelism, adaptivity,
and model selection

by

Pooria Joulani

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Statistical Machine Learning

Department of Computing Science

University of Alberta

c⃝ Pooria Joulani, 2019



Abstract

We study three problems in the application, design, and analysis of online optimization

algorithms for machine learning. First, we consider speeding-up the common task of k-fold

cross-validation of online algorithms, and provide TreeCV, an algorithm that reduces

the time penalty of k-fold cross-validation from k to log(k), and is easily adoptable to

parallel and distributed computing environments. Second, we consider algorithms for

online delayed-feedback distributed optimization, and provide Solid, a meta-algorithm

for deriving delay-tolerant versions of standard online optimization algorithms and their

analysis. We further apply Solid to obtain algorithms that adapt to the delay pattern

observed during optimization, solving an open problem from the literature. Third, we study

asynchronous online and stochastic optimization. We start by providing a unifying analysis

of standard serial online optimization algorithms. Then, we build on this analysis to design

and analyze two new asynchronous online optimization algorithms. The first algorithm,

AsynCADA, features the ability to handle generic convex constraints, proximal updates

and adaptive step-sizes. The second algorithm, HedgeHog, is the first asynchronous

variant of the Hedge algorithm. Both algorithms enjoy linear speed-up if the data is

sufficiently sparse, extending the scope of problem settings and algorithmic techniques

adoptable to asynchronous optimization. Underlying the analysis of AsynCADA and

HedgeHog is a generic framework for studying online optimization algorithms with

perturbed state, which is of independent interest.
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Chapter 1

Introduction

Online learning and online optimization algorithms play a central role in modern machine

learning. The goal of this thesis is to provide new theoretical and algorithmic tools

for creating, utilizing and analyzing online optimization algorithms. We consider three

different problems in the application, analysis and design of online algorithms.

1.1 Estimating performance by cross-validation

First, in Chapter 2, we look at a central, but computationally expensive, task in machine

learning: k-fold cross-validation (k-CV) for estimating the generalization performance and

parameter-tuning of algorithms.

We show that by exploiting the incremental nature of online algorithms, it is possible to

avoid the (k−1)-times re-training over the data that the standard k-CV estimation method

requires. In particular, we propose TreeCV, an algorithm that speeds up, exponentially

in k, the computation of the k-CV score for incremental algorithms. The core idea is

arranging the training and evaluation of the online algorithm in a tree structure, so that

the different k-CV folds can share what is learned from the data common to the folds.

We further show that TreeCV has another desirable property: it immediately extends

to parallel multi-threaded computing environments, as well as distributed computing

environments in which the data is spread over a network. In this way, TreeCV further

improves over the already parallelizable but rather wasteful standard k-CV algorithm.

We also study the theoretical properties of the cross-validation estimate computed

by TreeCV. We show that the TreeCV estimate is accurate, in the sense that it is

close to the standard k-CV estimate, as long as the underlying incremental algorithms are
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stable, in the sense of learning a model with low generalization error irrespectively of the

re-ordering of the data points they receive.

Finally, we evaluate TreeCV empirically on supervised learning tasks using two stan-

dard classification and regression algorithms, validating our theoretical results: TreeCV

considerably speeds up cross-validation, even for small values of k such as k = 5 or 10,

and even makes the calculation of leave-one-out estimates practical on the data-sets we

consider.

1.2 Adapting to delays in distributed online optimiza-
tion

Next, in Chapter 3, we focus on enabling sequential online learning algorithms to take better

advantage of the modern parallel and distributed computing environments. Specifically,

running online optimization algorithms in distributed environments introduces delay in

observing their feedback, breaking the sequential nature of these algorithms. We study the

problem of controlling the effect of such delays, and adapting to them, by properly tuning

the existing adaptive online optimization algorithms. This problem is especially important

in heterogeneous distributed environments (such as cloud-based systems) where the delays

can vary greatly over time, and adapting to delays can result in considerable performance

gains [66], [101]. Previously, McMahan and Streeter [66] had proposed an algorithm called

AdaptiveRevision, which used the special structure of an unconstrained online update

to adapt to the delays, and left open the problem of analyzing a wider range of algorithms

without relying on their rather restrictive assumptions.

To study this effect, we first take a step back, and analyze the effect of delays indepen-

dently of the specific mechanics of the algorithm. To that end, we present a meta-algorithm,

called Solid, that in a black-box manner enables sequential online optimization algorithms

to tolerate delay in their feedback. We show that this reduction preserves the sequential

performance of the online optimization algorithm, up to a penalty that depends on the

magnitude of delays and the algorithm’s stability (i.e., how fast the algorithm changes its

predictions).

Finally, we apply this meta-algorithm to two generic classes of adaptive online opti-

mization algorithms: Adaptive Mirror Descent (MD) and Adaptive Proximal Follow-the-
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Regularized-Leader (FTRL-Prox). We show that these two algorithm classes are stable,

and hence Solid results in concrete bounds on their performance. Using these bounds, we

can then tune the algorithms’ parameters to adapt to the observed delay pattern, solving

the aforementioned open problem.

1.3 Improving asynchronous online and stochastic op-
timization

The final question we study in this thesis is extending online optimization algorithms and

their convergence guarantees to asynchronous parallel computing. Given that much of the

existing computing power comes in the form of multi-core and multi-processor systems,

this question has received considerable attention in the past decade. Especially, there has

been much progress in designing and analyzing asynchronous algorithms for stochastic

optimization (a subset of the online optimization setting we consider).

Nevertheless, several problems in the design and analysis of asynchronous parallel online

and stochastic optimization remain open. In particular, there has been little progress

in a) asynchronous algorithms for generically-constrained composite online optimization,

especially when involving more complex constraint sets; b) analysis of asynchronous

optimization algorithms which don’t have a simple gradient descent (GD) type of update;

and c) asynchronous online optimization under more relaxed assumptions on the objective,

beyond the usual strongly-convex assumption or even beyond the stochastic optimization

settings. The first question is important since several successful machine learning methods

for sparse learning and classification are formulated as non-smooth composite optimization

problems, and scaling them as the data sets get larger is important. The second problem

is interesting since optimization algorithms such as the Exponentiated Gradient (EG)

algorithm are not instances of GD, yet they are the basis of widely applied algorithms in

online learning. In addition, more complex GD-style algorithms such as proximal-update

algorithms are practically important in serial optimization. The third problem is interesting

since the stochastic optimization problem is mainly concerned with the optimization of a

fixed function, whereas machine learning applications such as online advertising typically

fall into the more general framework of online learning.

To move toward a solution to the problems above, we provide the basis of a framework

3



for analyzing asynchronous online optimization algorithms, that is flexible enough to

capture a wide range of algorithms and problem settings, as well as common asynchrony

patterns of interest, such as those arising from parallel shared-memory optimization. We

develop this framework in two steps.

1.3.1 Step 1: Improving the analysis of serial online optimization
algorithms

To enable a simplified analysis of a larger class of asynchronous online optimization

algorithms, we first provide, in Chapter 4, a unifying analysis of the performance of

a large class of serial algorithms for composite online optimization, in particular, of

generalized adaptive MD and adaptive FTRL. Our goal is to provide a modular analysis

which decomposes the effects of different assumptions and algorithmic techniques, so that

this decomposition paves the way for studying the effect of asynchrony under each of these

assumptions.

To that end, we build on the existing analysis ideas in serial online learning, but

emphasize unifying the algorithms, analyzing the resulting generic algorithms under

minimal assumptions, and isolating the effect of each assumption or algorithmic technique.

This emphasis allows us to capture, and easily combine, different algorithmic ideas and

problem settings.

As a side-product of this refined analysis, we also develop new algorithms and conver-

gence results. In particular, we develop a new, more efficient optimistic MD update, which

unlike previous work, requires only one projection per step. Furthermore, we combine

the best features of several previous works to analyze a new scale-free algorithm for

adaptive optimistic composite-objective online optimization that learns faster in the face

of a slowly-changing environment. Finally, we show that these bounds can be effortlessly

extended to a family of practically-relevant non-convex optimization problems.

1.3.2 Step 2: Analyzing asynchronous online optimization

In Chapter 5, we build on the framework of Step 1 to analyze asynchronous online

optimization algorithms. Extending ideas from the asynchronous stochastic optimization

literature, we cast the effect of asynchrony as perturbation to the “state” (i.e., accumulated

information) of the online algorithm. Then, we extend the analysis of Step 1, and provide
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a flexible data-dependent convergence guarantee for generic adaptive FTRL algorithms

with perturbed state. This data-dependent guarantee enables us to design and analyze two

specific, new algorithm: AsynCADA with adaptive proximal updates for asynchronous

composite-objective optimization over generic convex constraint sets, and HedgeHog, an

asynchronous variant of the EG algorithm. The two algorithms enjoy linear speed-ups

when the data is sparse, and apply not only to stochastic optimization, but to the more

general setting of noisy online optimization, addressing the questions mentioned above.

We conclude by discussing future applications of the aforementioned results.
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Chapter 2

TreeCV: Fast Cross-Validation for
Incremental Algorithms
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Abstract

Cross-validation (CV) is one of the main tools for performance estimation and parameter

tuning in machine learning. The general recipe for computing a CV estimate is to run a

learning algorithm separately for each CV fold, a computationally expensive process. In

this paper, we propose a new approach to reduce the computational burden of CV-based

performance estimation. As opposed to all previous attempts, which are specific to a

particular learning model or problem domain, we propose a general method applicable

to a large class of incremental learning algorithms, which are uniquely fitted to big data

problems. In particular, our method applies to a wide range of supervised and unsupervised

learning tasks with different performance criteria, as long as the base learning algorithm

is incremental. We show that the running time of the algorithm scales logarithmically,

rather than linearly, in the number of CV folds. Furthermore, the algorithm has favorable

properties for parallel and distributed implementation. Experiments with state-of-the-art

incremental learning algorithms confirm the practicality of the proposed method.1

1 This chapter has been published as:

• P. Joulani et al., “Fast cross-validation for incremental learning,” in Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI-15), 2015.
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2.1 Introduction

Estimating generalization performance is a core task in machine learning. Often, such an

estimate is computed using k-fold cross-validation (k-CV): the dataset is partitioned into

k subsets of approximately equal size, and each subset is used to evaluate a model trained

on the k − 1 other subsets to produce a numerical score; the k-CV performance estimate

is then obtained as the average of the obtained scores.

A significant drawback of k-CV is its heavy computational cost. The standard method

for computing a k-CV estimate is to train k separate models independently, one for each fold,

requiring (roughly) k-times the work of training a single model. The extra computational

cost imposed by k-CV is especially high for leave-one-out CV (LOOCV), a popular variant,

where the number of folds equals the number of samples in the dataset. The increased

computational requirements may become a major problem, especially when CV is used

for tuning hyper-parameters of learning algorithms in a grid search, in which case one

k-CV session needs to be run for every combination of hyper-parameters, dramatically

increasing the computational cost even when the number of hyper parameters is small.2

To avoid the added cost, much previous research went into studying the efficient

calculation of the CV estimate (exact or approximate). However, previous work has been

concerned with special models and problems: With the exception of Izbicki [42], these

methods are typically limited to linear prediction with the squared loss and to kernel

methods with various loss functions, including twice-differentiable losses and the hinge loss

(see Section 2.1.1 for details). In these works, the training time of the underlying learning

algorithm is Θ(n3), where n is the size of the dataset, and the main result states that

the CV-estimate (including LOOCV estimates) is yet computable in O(n3) time. Finally,

Izbicki [42] gives a very efficient solution (with O(n+ k) computational complexity) for

the restrictive case when two models trained on any two datasets can be combined, in

constant time, into a single model that is trained on the union of the datasets.

Although these results are appealing, they are limited to methods and problems with

specific features. In particular, they are unsuitable for big data problems where the only

practical methods are incremental and run in linear, or even sub-linear time [20], [99]. In
2 For example, the semi-supervised anomaly detection method of Görnitz et al. [36] has four hyper-

parameters to tune. Thus, testing all possible combinations for, e.g., 10 possible values of each hyper-
parameter requires running CV 10000 times.
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this paper, we show that CV calculation can be done efficiently for incremental learning

algorithms. In Section 2.3, we present a method that, under mild, natural conditions,

speeds up the calculation of the k-CV estimate for incremental learning algorithms, in the

general learning setting explained in Section 2.2 (covering a wide range of supervised and

unsupervised learning problems), and for arbitrary performance measures. The proposed

method, TreeCV, exploits the fact that incremental learning algorithms do not need to

be fed the whole dataset at once, but instead learn from whatever data they are provided

with and later update their models when more data arrives, without the need to be trained

on the whole dataset from scratch. As we will show in Section 2.3.1, TreeCV computes

a guaranteed-precision approximation of the CV estimate when the algorithms produce

stable models. We present several implementation details and analyze the time and space

complexity of TreeCV in Section 2.4. In particular, we show that its computation time

is only O(log k)-times bigger than the time required to train a single model, which is a

major improvement compared to the k-times increase required for a naive computation of

the CV estimate. Finally, Section 2.5 presents experimental results, which confirm the

efficiency of the proposed algorithm.

2.1.1 Related Work

Various methods, often specialized to specific learning settings, have been proposed to speed

up the computation of the k-CV estimate. Most frequently, efficient k-CV computation

methods are specialized to the regularized least-squares (RLS) learning settings (with

squared-RKHS-norm regularization). In particular, the generalized cross-validation method

[34], [104] computes the LOOCV estimate in O(n2) time for a dataset of size n from the

solution of the RLS problem over the whole dataset; this is generalized to k-CV calculation

in O(n3/k) time by Pahikkala et al. [83]. In the special case of least-squares support vector

machines (LSSVMs), Cawley [14] shows that LOOCV can be computed in O(n) time using

a Cholesky factorization (again, after obtaining the solution of the RLS problem). It should

be noted that all of the aforementioned methods use the inverse (or some factorization)

of a special matrix (called the influence matrix ) in their calculation; the aforementioned

running times are therefore based on the assumption that this inverse is available (usually

9



as a by-product of solving the RLS problem, computed in Ω(n3) time).3

A related idea for approximating the LOOCV estimate is using the notion of influence

functions, which measure the effect of adding an infinitesimal single point of probability

mass to a distribution. Using this notion, Debruyne et al. [22] propose to approximate the

LOOCV estimate for kernel-based regression algorithms that use any twice-differentiable

loss function. Liu et al. [63] use Bouligand influence functions [19], a generalized notion

of influence functions for arbitrary distributions, in order to calculate the k-CV estimate

for kernel methods and twice-differentiable loss functions. Again, these methods need an

existing model trained on the whole dataset, and require Ω(n3) running time.

A notable exception to the square-loss/differentiable loss requirement is the work

of Cauwenberghs and Poggio [13]. They propose an incremental training method for

support-vector classification (with the hinge loss), and show how to revert the incremental

algorithm to “unlearn” data points and obtain the LOOCV estimate. The LOOCV estimate

is obtained in time similar to that of a single training by the same incremental algorithm,

which is Ω(n3) in the worst case.

Closest to our approach is the recent work of Izbicki [42]: assuming that two models

trained on any two separate datasets can be combined, in constant time, to a single model

that is exactly the same as if the model was trained on the union of the datasets, Izbicki

[42] can compute the k-CV estimate in O(n+ k) time. However his assumption is very

restrictive and applies only to simple methods, such as Bayesian classification.4 In contrast,

roughly, we only assume that a model can be updated efficiently with new data (as opposed

to combining the existing model and a model trained on the new data in constant time),

and we only require that models trained with permutations of the data be sufficiently

similar, not exactly the same.

Note that the CV estimate depends on the specific partitioning of the data on which it

is calculated. To reduce the variance due to different partitionings, the k-CV score can be

averaged over multiple random partitionings. For LSSVMs, An et al. [5] propose a method

to efficiently compute the CV score for multiple partitionings, resulting in a total running

time of O(L(n− b)3), where L is the number of different partitionings and b is the number
3In the absence of this assumption, stochastic trace estimators [32] or numerical approximation

techniques [33], [81] are used to avoid the costly inversion of the matrix.
4 The other methods considered by Izbicki [42] do not satisfy the theoretical assumptions of that paper.
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Setting X Y P ℓ(f(x), x, y)

Classification Rd {+1,−1} {+1,−1} I{f(x) ̸= y}

Regression Rd R R (f(x)− y)2

K-means clustering Rd {NoLabel} {c1, c2, . . . , cK} ⊂ Rd ∥x− f(x)∥2

Density estimation Rd {NoLabel} {f : f is a density} − log(f(x))

Table 2.1: Instances of the general learning problem considered in the paper. In K-means
clustering, cj denotes the center of the jth cluster.

of data points in each test set. In the case when all possible partitionings of the dataset

are used, the complete CV (CCV) score is obtained. Mullin and Sukthankar [73] study

efficient computation of CCV for nearest-neighbor-based methods; their method runs in

time O(n2k + n2 log(n)).

2.2 Problem Definition

We consider a general setting that encompasses a wide range of supervised and unsupervised

learning scenarios (see Table 2.1 for a few examples). In this setting, we are given a dataset

{z1, z2, . . . , zn},5 where each data point zi = (xi, yi) consists of an input xi ∈ X and an

outcome yi ∈ Y , for some given sets X and Y . For example, we might have X ⊂ Rd, d ≥ 1,

with Y = {+1,−1} in binary classification and Y ⊂ R in regression; for unsupervised

learning, Y is a singleton: Y = {NoLabel}. We define a model as a function6 f : X → P

that, given an input x ∈ X , makes a prediction, f(x) ∈ P , where P is a given set (for

example, P = {+1,−1} in binary classification: the model predicts which class the given

input belongs to). Note that the prediction set need not be the same as the outcome set,

particularly for unsupervised learning tasks. The quality of a prediction is assessed by a

performance measure (or loss function) ℓ : P × X × Y → R that assigns a scalar value

ℓ(p, x, y) to the prediction p for the pair (x, y); for example, ℓ(p, x, y) = I{p ̸= y} for the

prediction error (misclassification rate) in binary classification (where I{E} denotes the

indicator function of an event E).
5 Formally, we assume that this is a multi-set, so there might be multiple copies of the same data point.
6Without loss of generality, we only consider deterministic models: we may embed any randomness

required to make a prediction into the value of x, so that f(x) is a deterministic mapping from X to P.
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Next, we define the notion of an incremental learning algorithm. Informally, an

incremental learning algorithm is a procedure that, given a model learned from previous

data points and a new dataset, updates the model to accommodate the new dataset at the

fraction of the cost of training the model on the whole data from scratch. Formally, let

M⊆ {f : X → P} be a set of models, and define Z∗ to be the set of all possible datasets

of all possible sizes. Disregarding computation for now, an incremental learning algorithm

is a mapping L : (M∪ {∅}) × Z∗ → M that, given a model f from M (or ∅ when a

model does not exist yet) and a dataset Z ′ = (z′1, z
′
2, . . . , z

′
m), returns an “updated” model

f ′ = L(f, Z ′). To capture often needed internal states (e.g., to store learning rates), we

allow the “padding” of the models in M with extra information as necessary, while still

viewing the models as X → P maps when convenient. Above, f is usually the result of a

previous invocation of L on another dataset Z ∈ Z∗. In particular, L(∅, Z) learns a model

from scratch using the dataset Z. An important class of incremental algorithms are online

algorithms, which update the model one data point at a time: to update f with Z ′, these

algorithms make m consecutive calls to L, where each call updates the latest model with

the next remaining data point according to a random ordering of the points in Z ′.

In the rest of this paper, we consider an incremental learning algorithm L, and a fixed,

given partitioning of the dataset {z1, z2, . . . , zn} into k subsets (“chunks”) Z1, Z2, . . . , Zk.

We use fi = L(∅, Z \Zi) to denote the model learned from all the chunks except Zi. Thus,

the k-CV estimate of the generalization performance of L, denoted Rk-CV, is given by

Rk-CV =
1

k

k∑
i=1

Ri,

where Ri =
1

|Zi|
∑

(x,y)∈Zi
ℓ(fi(x), x, y), i = 1, 2, . . . , k, is the performance of the model fi

evaluated on Zi. The LOOCV estimate Rn-CV is obtained when k = n.

2.3 Recursive Cross-Validation

Our algorithm builds on the observation that for every i and j, 1 ≤ i < j ≤ k, the training

sets Z \ Zi and Z \ Zj are almost identical, except for the two chunks Zi and Zj that are

held out for testing from one set but not the other. The naive k-CV calculation method

ignores this fact, potentially wasting computational resources. When using an incremental

learning algorithm, we may be able to exploit this redundancy: we can first learn a model
12



Algorithm 1: The Tree-CV recursive procedure

1 Function TreeCV (s, e, f̂s..e):
Input: indices s and e, and the model f̂s..e trained so far.

2 if e = s then
3 R̂s ← 1

|Zs|
∑

(x,y)∈Zs
ℓ
(
f̂s..e(x), x, y

)
.

4 return 1
k
R̂s.

5 end if
6 else
7 Let m←

⌊
s+e
2

⌋
.

8 Update the model with the chunks Zm+1, . . . , Ze to get
f̂s..m = L(f̂s..e, Zm+1, . . . , Ze).

9 Let r ← TreeCV
(
s,m, f̂s..m

)
.

10 Update the model with the chunks Zs, . . . , Zm to get
f̂m+1..e = L(f̂s..e, Zs, . . . , Zm).

11 Let r ← r + TreeCV
(
m+ 1, e, f̂m+1..e

)
.

12 return r.
13 end if
14 end

only from the examples shared between the two training sets, and then “increment” the

differences into two different copies of the model learned. When the extra cost of saving

and restoring a model required by this approach is comparable to learning a model from

scratch, then this approach may result in a considerable speedup.

To exploit the aforementioned redundancy in training all k models at the same time,

we organize the k-CV computation process in a tree structure. The resulting recursive

procedure, TreeCV(s, e, f̂s..e), shown in Algorithm 1, receives two indices s and e, 1 ≤

s ≤ e ≤ k, and a model f̂s..e that is trained on all chunks except Zs, Zs+1, . . . , Ze, and

returns (1/k)
∑e

i=s R̂i, the normalized sum of the performance scores R̂i, i = s, . . . , e,

corresponding to testing f̂i..i, the model trained on Z \Zi, on the chunk Zi, for i = s, . . . , e.

TreeCV divides the hold-out chunks into two groups Zs, Zs+1, . . . , Zm and Zm+1, . . . Ze,

where m =
⌊
s+e
2

⌋
is the mid-point, and obtains the test performance scores for the two

groups separately by recursively calling itself. More precisely, TreeCV first updates

the model by training it on the second group of chunks, Zm+1, . . . , Ze, resulting in the

model f̂s..m, and makes a recursive call TreeCV(s,m, f̂s..m) to get (1/k)
∑m

i=s R̂i. Then, it

repeats the same procedure for the other group of chunks: starting from the original model
13



TreeCV (1, 4, ∅)
Learned: nothing.
Held out: z1, z2, z3, z4.

TreeCV
(
1, 2, f̂1..2

)
Learned: z3, z4.
Held out: z1, z2.

TreeCV
(
1, 1, f̂1

)
Learned: z3, z4, z2.
Held out: z1.

R̂1

Test on z1.

Add z2 to the model.

TreeCV
(
2, 2, f̂2

)
Learned: z3, z4, z1.
Held out: z2.

R̂2

Test on z2.

Add z1 to the model.

Train model f̂1..2 on z3, z4.

TreeCV
(
3, 4, f̂3..4

)
Learned: z1, z2.
Held out: z3, z4.

...

Train model f̂3..4 on z1, z2.

Figure 2.1: An example run of TreeCV on a dataset of size four, calculating the
LOOCV estimate.

f̂s..e it had received, it updates the model, this time using the first group of the remaining

chunks, Zs, . . . , Zm, that were previously held out, and calls TreeCV(m+1, e, f̂m+1..e) to

get (1/k)
∑e

i=m+1 R̂i (for the second group of chunks). The recursion stops when there is

only one hold-out chunk (s = e), in which case the performance score R̂s of the model f̂s..s
(which is now trained on all the chunks except for Zs) is directly calculated and returned.

Calling TreeCV(1, n, ∅) calculates R̂k-CV = 1
k

∑k
i=1 R̂i. Figure 2.1 shows an example of

the recursive call tree underlying a run of the algorithm calculating the LOOCV estimate

on a dataset of four data points. Note that the tree structure imposes a new order of

feeding the chunks to the learning algorithm, e.g., z3 and z4 are learned before z2 in the

first branch of the tree.

2.3.1 Accuracy of TreeCV

To simplify the analysis, in this section and the next, we assume that each chunk is of the

same size, that is n = kb for some integer b ≥ 1.

Note that the models f̂s..s used in computing R̂s are learned incrementally. If the

learning algorithm learns the same model no matter whether it is given the chunks all at

once or gradually, then f̂s..s is the same as the model fs used in the definition of Rk-CV,
14



and Rk-CV = R̂k-CV. If this assumption does not hold, then R̂k-CV is still close to Rk-CV as

long as the models f̂s..s are sufficiently similar to their corresponding models fs. In the

rest of this section, we formalize this assertion.

First, we define the notion of stability for an incremental learning algorithm. Intuitively,

an incremental learning algorithm is stable if the performance of the models are nearly the

same no matter whether they are learned incrementally or in batch. Formally, suppose that

a dataset {z1, . . . , zn} is partitioned into l+1 nonempty chunks Ztest and Ztrain
1 , . . . , Ztrain

l ,

and we are using Ztest as the test data and the chunks Ztrain
1 , . . . , Ztrain

l as the training

data. Let fbatch = L(∅, Ztrain
1 ∪ . . . ∪ Ztrain

l ) denote the model learned from the training

data when provided all at the same time, and let

f inc = L

(
L
(
. . .
(
L(∅, Ztrain

1 ), Ztrain
2

)
, . . . , Ztrain

l−1

)
, Ztrain

l

)
denote the model learned from the same chunks when they are provided incrementally to

L. Let Rtest(f) = 1
|Ztest|

∑
(x,y)∈Ztest ℓ (f(x), x, y) denote the performance of a model f on

the test data Ztest.

Definition 2.1 (Incremental stability). The algorithm L is g-incrementally stable for

a function g : N × N → R if, for any dataset {z1, z2, . . . , zn}, b < n, and partition

Ztest, Ztrain
1 , . . . , Ztrain

l with nonempty cells Ztrain
i , 1 ≤ i ≤ l and |Ztest| = b, the test

performance of the models fbatch and f inc defined above satisfy⏐⏐Rtest(f inc)−Rtest(fbatch)
⏐⏐ ≤ g (n− b, b) .

If the data {z1, . . . , zn} is drawn independently from the same distribution D over X × Y

and/or the learning algorithm L is randomized, we say that L is g-incrementally stable in

expectation if ⏐⏐E{Rtest(f inc)
}
− E

{
Rtest(fbatch)

}⏐⏐ ≤ g (n− b, b)

for all partitions selected independently of the data and the randomization of L.

The following statement is an immediate consequence of the above definition:

Theorem 2.1. Suppose n = bk for some integer b ≥ 1 and that algorithm L is g-

incrementally stable. Then, ⏐⏐⏐R̂k-CV −Rk-CV

⏐⏐⏐ ≤ g (n− b, b) .
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If L is g-incrementally stable in expectation then⏐⏐⏐E{R̂k-CV

}
− E{Rk-CV}

⏐⏐⏐ ≤ g (n− b, b) .

Proof. We prove the first statement only, the proof of the second part is essentially identical.

Recall that Zj, j = 1, 2, . . . , k denote the chunks used for cross-validation. Fix i and let

l = ⌈log k⌉. Let Ztest = Zi and Ztrain
j , j = 1 . . . l, denote the union of the chunks used for

training at depth j of the recursion branch ending with the computation of R̂i. Then, by

definition, R̂i = Rtest(f inc) and Ri = Rtest(fbatch). Therefore, |R̂i −Ri| ≤ g (n− b, b), and

the statement follows since R̂k-CV and Rk-CV are defined as the averages of the R̂i and Ri,

respectively.

It is then easy to see that incremental learning methods with a bound on their excess

risk are incrementally stable in expectation.

Theorem 2.2. Suppose the data {z1, . . . , zn} is drawn independently from the same

distribution D over X ×Y. Let (X, Y ) ∈ X ×Y be drawn from D independently of the data

and let f ∗ ∈ argminf∈M E{ℓ(f(X), X, Y )} denote a model in M with minimum expected

loss. Assume there exist upper bounds mbatch(n− b) and minc(n− b) on the excess risks of

fbatch and f inc, trained on n′ = n− b data points, such that

E
{
ℓ(fbatch(X), X, Y )− ℓ(f ∗(X), X, Y )

}
≤ mbatch(n′)

and

E
{
ℓ(f inc(X), X, Y )− ℓ(f ∗(X), X, Y )

}
≤ minc(n′)

for all n and for every partitioning of the dataset that is independent of the data, (X, Y ),

and the randomization of L. Then L is incrementally stable in expectation w.r.t. the loss

function ℓ, with g(n′, b) = max{mbatch(n′),minc(n′)}.

Proof. Since the data points in the sets Ztrain
1 , . . . , Ztrain

l and Ztest are independent, fbatch

and f inc are both independent of Ztest. Hence, E
{
Rtest(fbatch)

}
= E

{
ℓ
(
fbatch(X), X, Y

)}
and E

{
Rtest(f inc)

}
= E

{
ℓ
(
f inc
n (X), X, Y

)}
. Therefore,

E
{
Rtest(f inc)

}
− E

{
Rtest(fbatch)

}
= E

{
Rtest(f inc)

}
− E{ℓ(f ∗(X), X, Y )}
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+ E{ℓ(f ∗(X), X, Y )} − E
{
Rtest(fbatch)

}
≤ E

{
Rtest(f inc)

}
− E{ℓ(f ∗(X), X, Y )} ≤ minc(n′)

where we used the fact that f ∗ is optimal. Similarly, E
{
Rtest(fbatch)

}
− E

{
Rtest(f inc)

}
≤

mbatch(n′), finishing the proof.

In particular, for online learning algorithms satisfying some regret bound, standard

online-to-batch conversion results [15], [49] yield excess-risk bounds for independent and

identically distributed data. Similarly, excess-risk bounds are often available for stochastic

gradient descent (SGD) algorithms which scan the data once (see, e.g., [74]). For online

learning algorithms (including single-pass SGD), the batch version is usually defined by

running the algorithm using a random ordering of the data points or sampling from the

data points with replacement. Typically, this version also satisfies the same excess-risk

bounds. Thus, the previous theorem shows that these algorithms are incrementally stable

with g(n, b) being the excess-risk bound for n samples.

Note that this incremental stability is w.r.t. the loss function whose excess-risk is

bounded. For example, after visiting n data points, the regret of PEGASOS [99] with

bounded features is bounded by O(log(n)). Using the online-to-batch conversion of Kakade

and Tewari [49], this gives an excess risk bound m(n) = O(log(n)/n), and hence PEGASOS

is stable w.r.t. the regularized hinge loss with g(n, b) = m(n) = O(log(n)/n). Similarly,

SGD over a compact set with bounded features and a bounded convex loss is stable w.r.t.

that convex loss with g(n, b) = O(1/
√
n) [74]. Experiments with these algorithms are

shown in Section 2.5. Finally, we note that algorithms like PEGASOS or SGD could also

be used to scan the data multiple times. In such cases, these algorithms would not be

useful incremental algorithms, as it is not clear how one should add a new data point

without a major retraining over the previous points. Currently, our method does not apply

to such cases in a straightforward way.

2.4 Complexity Analysis

In this section, we analyze the running time and storage requirements of TreeCV, and

discuss some practical issues concerning its implementation, including parallelization.
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2.4.1 Memory Requirements

Efficient storage of and updates to the model are crucial for the efficiency of Algorithm 1:

Indeed, in any call of TreeCV(s, e, f̂s..e) that does not correspond to simply evaluating a

model on a chunk of data (i.e., s ̸= e), TreeCV has to update the original model f̂s..e
twice, once with Zs, . . . , Zm, and once with Zm+1, . . . , Ze. To do this, TreeCV can either

store f̂s..e, or revert to f̂s..e from f̂s..m. In general, for any type of model, if the model for

f̂s..e is modified in-place, then we need to create a copy of it before it is updated to the

model for f̂s..m, or, alternatively, keep track of the changes made to the model during the

update. Whether to use the copying or the save/revert strategy depends on the application

and the learning algorithm. For example, if the model state is compact, copying is a useful

strategy, whereas when the model undergoes few changes during an update, save/revert

might be preferred.

Compared to a single run of the learning algorithm L, TreeCV requires some extra

storage for saving and restoring the models it trains along the way. When no parallelization

is used in implementing TreeCV, we are in exactly one branch at every point during the

execution of the algorithm. Since the largest height of a recursion branch is of O(log k),

and one model (or the changes made to it) is saved in each level of the branch, the total

storage required by TreeCV is O(log(k))-times the storage needed for a single model.

TreeCV can be easily parallelized by dedicating one thread of computation to each of

the data groups used in updating f̂s..e in one call of TreeCV. In this case one typically

needs to copy the model since the two threads need to be able to run independently of

each other; thus, the total number of models TreeCV needs to store is O(k), since there

are 2k − 1 total nodes in the recursive call tree, with exactly one model stored per node.

Note that a standard parallelized CV calculation also needs to store O(k) models.

Finally, note that TreeCV is potentially useful in a distributed environment, where

each chunk of the data is stored on a different node in the network. Updating the model

on a given chunk can then be relegated to that computing node (the model is sent to the

processing node, trained and sent back, i.e., this is not using all the nodes at once), and

it is only the model (or the updates made to the model), not the data, that needs to be

communicated to the other nodes. Since at every level of the tree, each chunk is added to

exactly one model, the total communication cost of doing this is O(k log(k)).
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Running Time

Next, we analyze the time complexity of TreeCV when calculating the k-CV score for a

dataset of size n under our previous simplifying assumption that n = bk for some integer

b ≥ 1.

The running time of TreeCV is analyzed in terms of the running time of the learning

algorithm L and the time it takes to copy the models (or to save and then revert the

changes made to it while it is being updated by L). Throughout this subsection, we use the

following definitions and notations: for m = 0, 1, . . . , n, l = 1, . . . , n−m, and j = 1, . . . , k,

• tu(m, l) ≥ 0 denotes the time required to update a model, already trained on m data

points, with a set of l additional data points;

• ts(m, l) ≥ 0 is the time required to copy the model, (or save and revert the changes

made to it) when the model is already trained on m data points and is being updated

with l more data points;

• t(j) is the time spent in saving, restoring, and updating models in a call to

TreeCV
(
s, e, f̂s..e

)
with j = e − s + 1 hold-out chunks (and with f̂s..e trained

on k − j chunks);

• tℓ denotes the time required to test a model on one of the k chunks (where the model

is trained on the other k − 1 chunks);

• T (j) denotes the total running time of TreeCV(s, e, f̂s..e) when the number of

chunks held out is j = e− s+ 1, and f̂s..e is already trained with n− bj data points.

Note that T (k) is the total running time of TreeCV to calculate the k-CV score

for a dataset of size n.

By definition, for all j = 2 . . . k, we have

t(j) = tu(n− bj, b ⌊j/2⌋) + ts(n− bj, b ⌊j/2⌋)

+ tu(n− bj, b ⌈j/2⌉) + ts(n− bj, b ⌈j/2⌉) + tc,

where tc ≥ 0 accounts for the cost of the operations other than the recursive function calls.
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We will analyze the running time of TreeCV under the following natural assumptions:

First, we assume that L is not slower if data points are provided in batch rather than one

by one. That is,

tu(m, l) ≤
m+l−1∑
i=m

tu(i, 1), (2.1)

for all m = 0, . . . , n and l = 1, . . . , n −m.7 Second, we assume that updating a model

requires work comparable to saving it or reverting the changes made to it during the

update. This is a natural assumption since the update procedure is also writing those

changes. Formally, we assume that there is a constant c ≥ 0 (typically c < 1) such that

for all m = 0, . . . , n and l = 1, . . . , n−m,

ts(m, l) ≤ c tu(m, l). (2.2)

To get a quick estimate of the running time, assume for a moment the idealized case

that k = 2d, tu(m, l) = ltu(0, 1) for all m and l, and tc = 0. Since n2−j data points are

added to the models of a node at level j in the recursive call tree, the work required in

such a node is (1 + c)n2−jtu(0, 1). There are 2j such nodes, hence the cumulative running

time at level j nodes is (1 + c)ntu(0, 1), hence the total running time of the algorithm is

(1 + c)ntu(0, 1) log2 k, where log2 denotes base-2 logarithm.

The next theorem establishes a similar logarithmic penalty (compared to the running

time of feeding the algorithm with one data point at a time) in the general case.

Theorem 2.3. Assume (2.1) and (2.2) are satisfied. Then the total running time of

TreeCV can be bounded as

T (k) ≤ n(1 + c)t∗u log2(2k) + (k − 1)tc + ktℓ,

where t∗u = max0≤i≤n−1 tu(i, 1).

Proof. By (2.1), tu(n−bj, l) ≤
∑l−1

i=0 tu(n−bj+ i, 1) ≤ l t∗u for all l = 1, . . . , bj. Combining

with (2.2), for any 2 ≤ j ≤ k we obtain

t(j) ≤ (1 + c)tu(n− bj, b ⌊j/2⌋)
7If this is not the case, we would always input the data one by one even if there are more data points

available.
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+ (1 + c)tu(n− bj, b ⌈j/2⌉) + tc

≤ (1 + c)bt∗u (⌊j/2⌋+ ⌈j/2⌉) + tc

=
(1 + c)n

k
j t∗u + tc := aj + tc (2.3)

where a = (1 + c)nt∗u/k. Next we show by induction that for j ≥ 2 this implies

T (j) ≤ aj(log2(j − 1) + 1) + (j − 1)tc + jtℓ. (2.4)

Substituting j = k in (2.4) proves the theorem since log2(j − 1) + 1 ≤ log2(2j). By the

definition of TreeCV,

T (j) =

{
T
(⌊

j
2

⌋)
+ T

(⌈
j
2

⌉)
+ t(j), j ≥ 2;

tℓ, j = 1.

This implies that (2.4) holds for j = 2, 3. Assuming (2.4) holds for all 2 ≤ j′ < j,

4 ≤ j ≤ k, from (2.3) we get

T (j) = T (⌊j/2⌋) + T (⌈j/2⌉) + t(j)

≤ aj (log2(⌈j/2⌉ − 1) + 2) + tc(j − 1) + jtℓ

≤ aj(log2(j − 1) + 1) + tc(j − 1) + jtℓ

completing the proof of (2.4).

For fully incremental, linear-time learning algorithms (such as PEGASOS or single-pass

SGD), we obtain the following upper bound:

Corollary 2.1. Suppose that the learning algorithm L satisfies the property given by (2.2)

and tu(0,m) = mt∗u for some t∗u > 0 and all 1 ≤ m ≤ n. Then

T (k) ≤ (1 + c)TL log2(2k) + tc(k − 1) + ktℓ,

where TL = tu(0, n) is the running time of a single run of L.

2.5 Experiments

In this section we evaluate TreeCV and compare it with the standard (k-repetition)

CV calculation. We consider two incremental algorithms: linear PEGASOS [99] for
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Figure 2.2: Running time of TreeCV and standard k-CV for different values of k as
a function of the number of data points n, averaged over 100 independent repetitions,
with and without random permutation of data points. Top row: PEGASOS; middle row:
least-square SGD; bottom row: Leave-one-out.
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SVM classification, and least-square stochastic gradient descent (LSQSGD) for linear

least-squares regression (more precisely, LSQSGD is the robust stochastic approximation

algorithm of Nemirovski et al. [74] for the squared loss and parameter vectors constrained

in the unit l2-ball). Following the suggestions in the original papers, we take the last

hypothesis from PEGASOS and the average hypothesis from LSQSGD as our model. We

focus on the large-data regime in which the algorithms learn from the data in a single pass.

The algorithms were implemented in Python/Cython and Numpy. The tests were run

on a single core of a computer with an Intel Xeon E5430 processor and 20 GB of RAM.

We used datasets from the UCI repository [60], downloaded from the LibSVM website [17].

We tested PEGASOS on the UCI Covertype dataset (581,012 data points, 54 features,

7 classes), learning class “1” against the rest of the classes. The features were scaled to have

unit variance. The regularization parameter was set to λ = 10−6 following the suggestion

of Shalev-Shwartz et al. [99]. For LSQSGD, we used the UCI YearPredictionMSD dataset

(463,715 data points, 90 features) and, following the suggestion of Nemirovski et al. [74],

set the step-size to α = n−1/2. The target values where scaled to [0, 1].

Naturally, PEGASOS and LSQSGD are sensitive to the order in which data points

are provided (although they are incrementally stable as mentioned after Theorem 2.2). In

a vanilla implementation, the order of the data points is fixed in advance for the whole

CV computation. That is, there is a fixed ordering of the chunks and of the samples

within each chunk, and if we need to train a model with chunks Zi1 , . . . , Zij , the data

points are given to the training algorithm according to this hierarchical ordering. This

introduces certain dependence in the CV estimation procedure: for example, the model

trained on chunks Z1, . . . , Zk−1 has visited the data in a very similar order to the one

trained on Z1, . . . , Zk−2, Zk (except for the last n/k steps of the training). To eliminate

this dependence, we also implemented a randomized version in which the samples used in

a training phase are provided in a random order (that is, we take all the data points for

the chunks Zi1 , . . . , Zij to be used, and feed them to the training algorithm in a random

order).

Table 2.2 shows the values of the CV estimates computed under different scenarios.

It can be observed that the standard (k-repetition) CV method is quite sensitive to the

order of the points: the variance of the estimate does not really decay as the number of

folds k increases, while we see the expected decay for the randomized version. On the
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CV estimates for PEGASOS (misclassification rate ×100)
TreeCV Standard

fixed randomized fixed randomized
k = 5 30.682± 1.2127 30.839± 0.9899 30.825± 1.9248 30.768± 1.1243
k = 10 30.665± 0.8299 30.554± 0.7125 30.767± 1.7754 30.541± 0.7993
k = 100 30.677± 0.3040 30.634± 0.2104 30.636± 2.0019 30.624± 0.2337
k = n 30.640± 0.0564 30.637± 0.0592 N/A N/A

CV estimates for LSQSGD (squared error ×100)
TreeCV Standard

fixed randomized fixed randomized
k = 5 25.299± 0.0019 25.298± 0.0018 25.299± 0.0019 25.299± 0.0017
k = 10 25.297± 0.0016 25.297± 0.0015 25.297± 0.0016 25.297± 0.0016
k = 100 25.296± 0.0012 25.296± 0.0013 25.296± 0.0011 25.296± 0.0013
k = n 25.296± 0.0012 25.296± 0.0012 N/A N/A

Table 2.2: k-CV performance estimates averaged over 100 repetitions (and their standard
deviations), for the full datasets with and without data repermutation: PEGASOS (top)
and LSQSGD (bottom).

other hand, the non-randomized version of TreeCV does not show such a behavior, as

the automatic re-permutation that happens during TreeCV might have made the k folds

less correlated. However, randomizing the order of the training points typically reduces

the variance of the TreeCV-estimate, as well.

Figure 2.2 shows the running times of TreeCV and the standard CV method, as a

function of n, for PEGASOS (top row) and LSQSGD (middle row). The columns show

the running times for different values of k, with and without randomizing the order of the

data points (right and left column, resp.). The bottom row shows the the running time

(log-scale) for LOOCV calculations. TreeCV outperforms the standard method in all of

the cases. It is notable that TreeCV makes the calculation of LOOCV practical even for

n = 581,012, in a fraction of the time required by the standard method at n = 10,000:

for example, for PEGASOS, TreeCV takes around 20 seconds (46 when randomized)

for computing LOOCV at n = 581,012, while the standard method takes around 124

seconds (175 when randomized) at n = 10,000. Furthermore, one can see that the variance

reduction achieved by randomizing the data points comes at the price of a constant factor

bigger running time (the factor is around 1.5 for the standard method, and 2 for TreeCV).
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This comes from the fact that both the training time and the time of generating a random

perturbation is linear in the number of points (assuming generating a random number

uniformly from {1, . . . , n} can be done in constant time).

2.6 Conclusion

We presented a general method, TreeCV, to speed up cross-validation for incremental

learning algorithms. The method is applicable to a wide range of supervised and unsu-

pervised learning settings. We showed that, under mild conditions on the incremental

learning algorithm being used, TreeCV computes an accurate approximation of the k-CV

estimate, and its running time scales logarithmically in k (the number of CV folds), while

the running time of the standard method of training k separate models scales linearly with

k.

Experiments on classification and regression, using two well-known incremental learning

algorithms, PEGASOS and least-square SGD, confirmed the speedup and predicted

accuracy. When the model learned by the learning algorithm depends on whether the

data is provided incrementally or in batch (or on the order of the data, as in the case of

online algorithms), the CV estimate calculated by our method was still close to the CV

computed by the standard method, but with a lower variance.
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Chapter 3

Delay-Tolerant Online Convex
Optimization: Unified Analysis &
Adaptive Gradient Algorithms
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Abstract

We present a unified, black-box-style method for developing and analyzing online convex

optimization (OCO) algorithms for full-information online learning in delayed-feedback

environments. Our new, simplified analysis enables us to substantially improve upon

previous work and to solve a number of open problems from the literature. Specifically,

we develop and analyze asynchronous AdaGrad-style algorithms from the Follow-the-

Regularized-Leader (FTRL) and Mirror-Descent family that, unlike previous works, can

handle projections and adapt both to the gradients and the delays, without relying on

either strong convexity or smoothness of the objective function, or data sparsity. Our

unified framework builds on a natural reduction from delayed-feedback to standard (non-

delayed) online learning. This reduction, together with recent unification results for OCO

algorithms, allows us to analyze the regret of generic FTRL and Mirror-Descent algorithms

in the delayed-feedback setting in a unified manner using standard proof techniques. In

addition, the reduction is exact and can be used to obtain both upper and lower bounds

on the regret in the delayed-feedback setting.1

1 This chapter and the related appendices have been published as the following conference paper:

• P. Joulani et al., “Delay-tolerant online convex optimization: Unified analysis and adaptive-gradient
algorithms,” in Proceedings of the 30th Conference on Artificial Intelligence (AAAI-16), 2016.

27



3.1 Introduction

Online learning algorithms are at the heart of modern machine learning algorithms. The

sequential nature of these algorithms makes them ideal for learning from data that is too

large to be processed in a batch mode. However, their very sequential nature also suggests

that they may be unfit to be used in parallel and distributed processing environments.

To address this potential issue, several papers have studied asynchronous and distributed

versions of online learning and stochastic optimization algorithms in recent years (see

Section 3.3). These papers have shown that the ability to tolerate delays in receiving

feedback is a key for obtaining asynchronous online learning algorithms.

Depending on the specifics of a machine learning task, a user can choose from several

online learning algorithms (see, e.g., the book of Cesa-Bianchi and Lugosi [16]). Previous

work has typically focused on extending these algorithms to various delayed-feedback

scenarios on a case-by-case basis, and usually under the stochastic optimization setting.

However, many ideas and core challenges of delay-tolerant online learning are common

across different domains and algorithms. In this paper, we take a different approach:

we propose a unified theoretical framework for analyzing full-information online learning

algorithms under delayed feedback. This unified approach enables us to simultaneously

analyze various online convex optimization (OCO) methods (with linear losses or implicit

updates) in the delayed-feedback setting, without the need to resort to ad-hoc analysis

techniques.

The framework that we present is based on a natural reduction from the delayed-

feedback online learning problem to standard, non-delayed online learning, as well as

on recent unified analyses of OCO algorithms [26], [67]. In particular, our first main

result gives an easy-to-interpret identity relating the regret of an algorithm operated in

a delayed environment to the regret of the algorithm when operated in a non-delayed

environment. All of our subsequent results are then derived from this general identity. We

demonstrate the flexibility and power of our framework by solving several open problems

from the literature. In particular, we analyze general delay-adaptive AdaGrad-style

algorithms, both with and without projection, without relying on either strong convexity

or smoothness of the loss function, or data sparsity.

The rest of this paper is organized as follows. We start with the formal definition of
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the learning setting we consider (Section 3.2), followed by a summary of our results and

their connection to the previous work (Section 3.3). We present our general reduction

in Section 3.4 and the unified analysis of OCO algorithms in Section 3.5. Section 3.6

demonstrates the application of our framework in solving the aforementioned open problems.

We conclude the paper in Section 3.7 and discuss some potential future work.

3.1.1 Notation and definitions

We will work with a closed, convex, non-empty subset X of a Hilbert space X over the

reals. That is, X is a real vector space equipped with an inner product ⟨·, ·⟩ that is

complete with respect to (w.r.t.) the norm induced by ⟨·, ·⟩. For example, we might

have X = Rd where ⟨·, ·⟩ is the dot-product, or X = Rm×n, the set of m × n real

matrices, where ⟨A,B⟩ = tr
(
A⊤B

)
. Let R : S → R be a strictly convex, differentiable

function over a convex closed domain S ⊂ X with a non-empty interior S◦. Then,

the R-induced Bregman divergence between the points x ∈ S, y ∈ S◦ is defined as

BR(x, y) = R(x) − R(y) − ⟨∇R(y), x − y⟩ . The function R is α-strongly convex with

respect to a norm ∥·∥ on S if BR(x, y) ≥ (α/2)∥x−y∥2 for all x ∈ S, y ∈ S◦. The indicator

of an event E is denoted by I{E}. For any sequence ci, ci+1, . . . , cj, we use ci:j to denote

its sum, and we define ci:j = 0 when i > j. For any function f , we denote the set of all

sub-gradients of f at x by ∂f(x), and use f ′(x) to denote any member of ∂f(x).

3.2 Problem setting

We consider prediction under delayed feedback in an online convex optimization setting,

building on the delayed-feedback online learning framework of Joulani et al. [44].2 Let

F ⊂ {f : X → R} be a set of convex functions. The pair (X ,F) defines the sequential

prediction game shown in Figure 3.1. The game consists of a forecaster making predictions

against a fixed (but unknown) sequence of loss functions f1, f2, . . . , fn ∈ F , possibly chosen

in an adversarial manner before the game starts. In every round t = 1, 2, . . . , n of the

game, the forecaster makes a prediction xt ∈ X based on the feedback (specified below)

that it has observed in rounds 1, . . . , t − 1, and suffers the loss ft(xt). The goal of the
2Note, however, that the reduction in Section 3.4 applies more generally to full-information online

learning, not just OCO.
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forecaster is to minimize its total loss compared to the loss of the best constant prediction

x∗ ∈ X . More precisely, with the regret against an arbitrary prediction x ∈ X defined as

Rn(x) =
n∑
t=1

ft(xt)− ft(x) ,

the goal of the forecaster is to minimize Rn(x
∗), where x∗ = argminx∈X

∑n
t=1 ft(x) is the

best prediction in hindsight.

The feedback based on which the forecaster can make prediction xt is a subset of the loss

functions from the previous rounds, f1, f2, . . . , ft−1. In particular, in a non-delayed setting,

in each round s = 1, . . . , n, the forecaster always observes fs before the end of the round;

thus, the forecaster can make the prediction xt based on f1, f2, . . . , ft−1 (we will call an

algorithm non-delayed if it is designed for this setting). On the other hand, in the delayed-

feedback setting that we consider in this paper, the forecaster observes ft only after a delay of

(say) τt time steps, at the end of round t+τt, where we assume that the delays τ1, τ2, . . . , τn
are fixed (but unknown) non-negative integers. Hence, after predicting xt in time step

t, the forecaster in a delayed-feedback setting observes Ht = {fs : 1 ≤ s ≤ t, s+ τs = t},

the multi-set of loss functions from rounds 1, 2, . . . , t that arrive at the end of time step

t. As such, the prediction xt can be based only on the observed loss functions ∪t−1
s=1Hs,

i.e., based on the subset {fs : 1 ≤ s ≤ t − 1, s + τs < t} ⊂ {f1, f2, . . . , ft−1} of the loss

functions from rounds 1, 2, . . . , t− 1. Note that the non-delayed setting corresponds to

the special case when τt = 0 and Ht = {ft} for all t = 1, 2, . . . , n. Finally, note that the

delays can reorder the feedbacks, so that the feedback ft of the interaction at time step

t < t′ might arrive after feedback ft′ ; this can happen when t+ τt ≥ t′ + τt′ . Note that the

feedback does not include the index of the round the loss function corresponds to, i.e., the

feedback is not time-stamped.

3.3 Contributions and related work

Our first contribution is providing a unified framework for analyzing the regret of OCO

algorithms under delayed feedback. Our proof-technique has two main steps:

1- Black-box reduction: First, we show (Theorem 3.1) that when any deterministic

non-delayed full-information online learning algorithm is used (without modification) in a

delayed-feedback environment, the additional regret the algorithm suffers compared to
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The environment chooses a sequence of convex loss functions f1, . . . , fn ∈ F .
Repeat: for each time step t = 1, 2, . . . , n:

1. The forecaster makes a prediction xt ∈ X .

2. The forecaster incurs loss ft(xt) and receives the set of feedbacks Ht = {fs : s+ τs =
t}.

Goal: minimize supx∈X Rn(x).
Figure 3.1: Delayed-feedback Online Convex Optimization

running in a non-delayed environment depends on its “prediction drift”, a quantity that

roughly captures how fast the algorithm changes its predictions (Definition 3.1).

2- Unified bounds on the prediction drift: Next, we derive upper bounds (Propo-

sitions 3.1 and 3.2) on the prediction drift of two generic non-delayed OCO algorithms,

which we call FTRL-Prox and Ada-MD, and obtain general delayed-feedback regret

bounds (Theorem 3.4) for these algorithms by combining their drift bounds with the

reduction result of Theorem 3.1. These two algorithms generalize, respectively, the Follow-

The-Regularized-Leader and the Mirror-Descent classes of OCO algorithms and include

various AdaGrad-style algorithms as special cases.

Our second contribution is to develop, using the new framework mentioned above,

FTRL- and Mirror-Descent-based AdaGrad-style OCO methods (Section 3.6) that can

adapt both to the observed gradients and the observed delays and can handle projection.

These contributions solve a number of open problems in the literature, as follows:

Problem posed by McMahan and Streeter [66]: In a recent paper, McMahan and

Streeter [66] provide a delay-adaptive AdaGrad-style extension of unconstrained single-

coordinate Online Gradient Descent (OGD) for linear losses, through an indirect method

called AdaptiveRevision. Their analysis is specific to OGD, relies crucially on the absence

of projection, and assumes that the delays do not change the order the feedback is received

(i.e., fs is received before ft for all s < t; the so-called InOrder assumption). The authors

pose the question whether there exits a general analysis for algorithms of this type that

is less indirect, avoids the InOrder assumption, and allows to analyze algorithms with

projection and Dual Averaging methods. With the exception of Dual Averaging, the

current paper solves this open problem, and obtains simpler algorithms even in the special

case considered by McMahan and Streeter [66].
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Some problems posed by Mania et al. [65]: The recent paper by Mania et al. [65] casts

the effect of delays as noise on the gradients, and uses this “perturbed iterate” framework

to analyze the convergence rate of the sequence of iterates generated by asynchronous

unconstrained Stochastic Gradient Descent (SGD). Their analysis relies on strong convexity

of the objective function. If the objective function is also smooth and the gradients are

sparse and/or the delays satisfy specific bounds, they show that the effect of delays on

the rate of convergence of these iterates is asymptotically negligible. The authors pose

the question whether it is possible to obtain tight bounds for the function values (rather

than the iterates), and whether their framework can be generalized beyond the strong

convexity assumption to other learning settings, or to the analysis of AdaGrad-style

algorithms. The current paper answers these questions: our framework applies to online

convex optimization with linear losses or implicit updates and to function values rather

than iterates, and our main reduction result provides an identity, not just an upper bound,

for the delayed-feedback regret. Furthermore our framework applies to algorithms with

projection, does not rely on strong convexity or smoothness of the loss functions,3 and, as

mentioned above, allows us to analyze delay-adaptive AdaGrad-style algorithms.

To our knowledge, Mesterharm [71] was the first to observe, in a special, restricted

adversarial classification setting, that the additional regret due to delays depends on how

frequently an algorithm changes its predictions. The reduction we present can be considered

as a refined and generalized version of his reduction [71, Chapter 8, Algorithm ODB-2].

An advantage of this type of reduction to those in previous works [44], [108] is its resource-

efficiency: we use only one instance of a non-delayed online learning algorithm, while

previous work created multiple instances, potentially wasting storage and computational

resources.4

Several recent papers have studied delay-tolerant stochastic optimization [1], [61], [62],

[76], [92]; see also the references in the paper of Mania et al. [65]. These works typically

show that for a specific non-delayed algorithm, for separable objective functions and

under data sparsity (and usually assuming smoothness and strong convexity of the loss
3Note, however, that our reduction is for full-information online learning, and to be applied with

gradient-only information, we have to first linearize the losses. Hence, without full information, our regret
bounds apply to the linearized loss, which might not give a regret bound as tight as the original smooth
or strongly convex loss.

4 Joulani et al. [44] also provide another reduction using only a single instance under stochastic
feedback.
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function), the effect of delays on the excess risk is asymptotically negligible, i.e., the rate

of convergence is nearly the same as for the corresponding non-delayed algorithms, and

hence linear speed ups are possible in parallel processing. We are instead interested in a

more basic, unified analysis of the full-information online learning setting to uncover the

exact regret penalty due to delays. In addition, assumptions such as data sparsity can be

applied to our generic regret bounds to recover some of these results, without the need for

smoothness or strong convexity.5

An interesting work is the recent paper of Sra et al. [101], who consider adapting

a 2-norm-regularized Mirror-Descent algorithm to the observed delays in the stochastic

optimization setting with specific delay distributions. Compared to their work, we consider

a more general version of Mirror-Descent and support FTRL algorithms as well, in the

more general online learning setting. However, we would like to emphasize that currently

our framework does not contain their work as a special case, since their algorithm does

not maintain a non-decreasing regularizer.

Finally, the effect of delayed feedback has also been analyzed beyond the full-information

model we consider here. For this, we refer the readers to Joulani et al. [44] and the references

therein.

3.4 Single-instance black-box reduction

Consider any deterministic non-delayed online learning algorithm (call it Base). Suppose

that we use Base, without modification, in a delayed-feedback environment: we feed Base

with only the feedback that has arrived, and at each time step, we use the prediction

that Base has made after receiving the most recent feedback. This scheme, which we

call Solid (for “Single-instance Online Learning In Delayed environments”), is shown in

Algorithm 2. In this section, we analyze the regret of Solid in the delayed-feedback

setting.

Solid reduces delayed-feedback online learning back to the standard (non-delayed)

online learning problem. As we show below, we can express the regret of Solid under

delayed feedback in terms of the regret of Base in a non-delayed setting and what we call

the prediction drift of Base. We start with the definition of the latter.
5See, e.g., the comparison with Async-AdaGrad [27] made by McMahan and Streeter [66].
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Algorithm 2: Single-instance Online Learning In Delayed environments (Solid)
1 Set x← first prediction of Base.
2 foreach time step t = 1, 2, . . . do
3 Set xt ← x as the prediction for the current time step.
4 Receive the set of feedbacks Ht that arrive at the end of time step t.
5 foreach fs ∈ Ht do
6 Update Base with fs.
7 x← the next prediction of Base.
8 end foreach
9 end foreach

Definition 3.1 (Prediction drift). Consider a non-delayed algorithm Base that is run with

a sequence of loss functions f1, f2, . . . , fn in a non-delayed setting, and let xs, s = 1, 2, . . . , n,

denote the s-th prediction of Base. For every s = 1, 2, . . . , n and τ = 1, 2, . . . , s− 1, the

prediction drift of Base on fs from the previous τ time steps is defined as

Ds,τ = fs(xs−τ )− fs(xs) ,

the difference of the loss fs of predictions xs−τ and xs.

Next, we introduce some further notation that is needed for our regret bound. For

1 ≤ s ≤ n, let ρ(s) denote the time step whose feedback fρ(s) is the s-th feedback that

Solid gives to Base, and let f̃s = fρ(s). Let x̃1 be the first prediction of Base and

x̃s+1, s = 1, 2, . . . , n, denote the prediction that Base makes after receiving the s-th

feedback f̃s. Note that not all predictions of Base become predictions of Solid. Also

note that Base makes predictions against the losses f̃1, f̃2, . . . , f̃n sequentially without

delays, that is, x̃1, x̃2, . . . , x̃n are the predictions of Base in a non-delayed environment.

For t = 1, 2, . . . , n, let S(t) =
∑t−1

i=1 I{i+ τi < t} denote the number of feedbacks that

Solid has observed (and has given to Base) before making its t-th prediction xt. Let

τ̃s = s− 1− S(ρ(s)) be the number of feedbacks that Solid gives to Base while the s-th

feedback f̃s is outstanding, i.e., the number of feedbacks that Base receives between the

time ρ(s) when Solid makes the prediction xρ(s) and the time when the loss function

f̃s = fρ(s) is given to Base. For the analysis below, without loss of generality, we will

assume that for any 1 ≤ t ≤ n, t+ τt ≤ n, i.e., all feedbacks are received by the end of

round n. This does not restrict generality because the feedbacks that arrive in round n are

not used to make any predictions and hence cannot influence the regret of Solid. Note
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that under this assumption
∑n

s=1 τ̃s =
∑n

t=1 τt (both count over time the total number of

outstanding feedbacks), and (ρ(s))1≤s≤n is a permutation of the integers {1, . . . , n}.

Theorem 3.1. Let Base be any deterministic non-delayed forecaster. For every x ∈ X ,

the regret of Solid using Base satisfies

Rn(x) = R̃Base
n (x) +

n∑
s=1

D̃s,τ̃s , (3.1)

where R̃Base
n (x) =

∑n
s=1 f̃s(x̃s)−

∑n
s=1 f̃s(x) is the (non-delayed) regret of Base relative

to any x ∈ X for the sequence of losses f̃1, f̃2, . . . , f̃n, and D̃s,τ̃s = f̃s(x̃s−τ̃s)− f̃s(x̃s) is the

prediction drift of Base while feedback f̃s is outstanding.

Proof. By construction, for all time steps t = 1, 2, . . . , n, the prediction xt of Solid is

the latest prediction of Base, so we have xt = x̃S(t)+1, or, equivalently, xρ(s) = x̃s−τ̃s for

s = 1, 2, . . . , n. Furthermore, by definition, f̃s = fρ(s), so we have fρ(s)(xρ(s)) − f̃s(x̃s) =

f̃s(x̃s−τ̃s)− f̃s(x̃s) = D̃s,τ̃s . Hence,

Rn(x) =
n∑
t=1

ft(xt)−
n∑
t=1

ft(x)

=
n∑
s=1

fρ(s)(xρ(s))−
n∑
s=1

fρ(s)(x)

=
n∑
s=1

D̃s,τ̃s +
n∑
s=1

f̃s(x̃s)−
n∑
s=1

f̃s(x)

=
n∑
s=1

D̃s,τ̃s + R̃Base
n (x).

Note that this result is an identity : upper and lower bounds on the (worst-case) regret

and prediction drift of any algorithm Base can be used to obtain upper and lower bounds

on the delayed-feedback regret of Solid.

Theorem 3.1 shows, in particular, that stable algorithms, i.e., algorithms with small

prediction drifts, are likely to suffer a small additional regret in delayed environments.

While in general changing the predictions too slowly might reduce adaptivity and result in

a larger regret, Theorem 3.1 shows that in delayed environments the extra regret might be

worth the trade-off against the extra penalty from the prediction drift. This formalizes

the intuition that in delayed environments one should reduce the learning rate of the

algorithms, and helps us characterize the amount by which the learning rate should be

decreased.
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3.5 Stability of OCO algorithms

In this section, we prove upper-bounds on the prediction drift of a family of online convex

optimization algorithms including Follow-The-Regularized-Leader (FTRL), Mirror Descent,

and their adaptive variants such as the AdaGrad-style algorithms of McMahan and

Streeter [70] and Duchi et al. [26], both with and without projection. In particular, we

study FTRL-Prox and Ada-MD,6 which are defined as follows. Both of these algorithms

use a sequence of “regularizer functions” r0, . . . , rn : S → R, chosen by the algorithm

sequentially (possibly based on previous observations). We assume that S ⊂ X is convex

and X ⊂ S◦.7 The first prediction of both algorithms is

x1 = argmin
x∈X

r0(x). (3.2)

Then, for s > 1, FTRL-Prox predicts

xs = argmin
x∈X

f1:s−1(x) + r0:s−1(x), (3.3)

while the predictions of Ada-MD are given by

xs = argmin
x∈X

fs−1(x) + Br0:s−1(x, xs−1), (3.4)

where Br0:s−1(., .) is the Bregman-divergence induced by r0:s−1. For FTRL-Prox, we

assume that the regularizers rs are selected such that xs minimizes rs on X .

Note that these algorithms have been studied previously in the literature, e.g., by McMa-

han and Streeter [70], McMahan [67], and Duchi et al. [26]. To put our analysis into

context, first we state the existing non-delayed regret bounds for these algorithms. In

what follows, f ′
s(xs) denotes any sub-gradient of fs at xs, and x0 := x1.

Assumption 3.1. The loss functions fs, s = 1, 2, . . . , n, are convex, and for all s =

0, 1, 2, . . . , n, the regularizer rs is convex and non-negative. Furthermore, for FTRL-Prox

we assume that xs minimizes rs on X .

For FTRL-Prox, we have the following regret bound in the non-delayed setting

(Theorem 1 of McMahan [67]).
6The nomenclature here is somewhat inconsistent. Here we use Ada-MD to mean adaptive mirror

descent with implicit update [54] which contains the normal, linear mirror descent as a special case.
7By making more assumptions on ri, i.e., assuming that they are Legendre functions (see, e.g.,

Cesa-Bianchi and Lugosi [16]), this assumption on the domain of ri could be relaxed.
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Theorem 3.2 (Regret of FTRL-Prox). Suppose that Assumption 3.1 holds and that

f1:s + r0:s is 1-strongly convex on X w.r.t. some norm ∥.∥(s) for all s = 0, . . . , n. Then the

regret of FTRL-Prox is upper-bounded as

RFTRL-Prox
n (x∗) ≤ r0:n(x

∗) +
1

2

n∑
s=1

∥f ′
s(xs)∥2(s),∗, (3.5)

where ∥.∥(s),∗ is the dual norm of ∥.∥(s).

We also have the next regret bound for Ada-MD (following Proposition 3 of Duchi et

al. [26]):

Theorem 3.3 (Regret of Ada-MD). Suppose that Assumption 3.1 holds, and for all

s = 0, . . . , n, r0:s is differentiable and 1-strongly convex on X w.r.t. some norm ∥.∥(s).

Then, the regret of Ada-MD is upper-bounded as

RAda-MD
n (x∗) ≤

n∑
s=0

Brs(x∗, xs) +
1

2

n∑
s=1

∥f ′
s(xs)∥2(s),∗ . (3.6)

The next propositions bound the prediction drifts of FTRL-Prox and Ada-MD. The

proofs are short and use standard FTRL and Mirror-Descent techniques. Note that since

fs is convex for s = 1, 2, . . . , n, for any sequence of norms ∥.∥(j), j = 1, 2, . . . , n, and any

1 ≤ τ < s ≤ n,

Ds,τ =
s−1∑
j=s−τ

fs(xj)− fs(xj+1)

≤
s−1∑
j=s−τ

⟨f ′
s(xj), xj − xj+1⟩

≤
s−1∑
j=s−τ

∥f ′
s(xj)∥(j),∗ ∥xj − xj+1∥(j) , (3.7)

where the last step follows by Hölder’s inequality. We will use this inequality in our proofs

below.

Proposition 3.1 (Prediction drift of FTRL-Prox). Under the conditions of Theorem 3.2,

for every 1 ≤ τ < s ≤ n,

Ds,τ ≤
s−1∑
j=s−τ

∥f ′
s(xj)∥(j),∗∥f ′

j(xj)∥(j),∗ . (3.8)
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Proof. Starting from (3.7), it remains to bound ∥xj − xj+1∥(j). Define h0 = r0 and

hs = fs + rs for s = 1, 2, . . . , n. Then, by our assumptions, xs minimizes h0:s−1 over X ,

and h0:j is 1-strongly convex w.r.t. ∥.∥(j). Note that since xj minimizes rj over X , it also

minimizes ϕ1 = h0:j−1 + rj . Then, since xj+1 minimizes h0:j = h0:j−1 + rj + fj , Lemma 3.2

(in Appendix 3.A) with ϕ1 above and δ = fj gives

∥xj − xj+1∥(j) ≤ ∥f ′
j(xj)∥(j),∗.

Proposition 3.2 (Prediction drift of Ada-MD). Under the conditions of Theorem 3.3,

for every 1 ≤ τ < s ≤ n,

Ds,τ ≤
s−1∑
j=s−τ

∥f ′
s(xj)∥(j),∗∥f ′

j(xj+1)∥(j),∗ . (3.9)

Proof. As above, we start from (3.7) and bound ∥xj − xj+1∥(j). Recall that r0:j is differen-

tiable by assumption. By the strong convexity of r0:j,

∥xj − xj+1∥2(j) ≤ Br0:j(xj+1, xj) + Br0:j(xj, xj+1)

= ⟨r′0:j(xj+1)− r′0:j(xj), xj+1 − xj⟩.

Also, by the first-order optimality condition on xj+1,

⟨f ′
j(xj+1) + r′0:j(xj+1)− r′0:j(xj), xj − xj+1⟩ ≥ 0.

Combining the above,

∥xj − xj+1∥2(j) ≤ ⟨f ′
j(xj+1), xj − xj+1⟩

≤ ∥f ′
j(xj+1)∥(j),∗∥xj − xj+1∥(j).

The proposition follows by the non-negativity of norms.

Note that the proofs use only the standard FTRL-Prox and Ada-MD analysis

techniques. Combining the above bounds with Theorem 3.1, it is straightforward to

obtain regret guarantees for FTRL-Prox and Ada-MD in delayed-feedback environments.

Consider an algorithm Base which is used inside Solid in a delayed-feedback game. Recall

that Base receives the sequence of loss functions f̃1, f̃2, . . . , f̃n and makes predictions

x̃1, x̃2, . . . , x̃n. Also recall that τ̃n denoted the update delay, i.e., the number of updates

that Base performs from the time Solid selects xt in time step t until the time when

Base receives the corresponding loss function ft.
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Theorem 3.4. Suppose Assumption 3.1 holds, and we run Solid in a delayed-feedback

environment. Let r̃s, s = 0, 1, . . . , n, denote the regularizers that Base uses in its simulated

non-delayed run inside Solid, and let ∥.∥(s) denote the associated strong-convexity norms.

Let Rn denote the regret of Solid in its delayed-feedback environment.

(i) If Base is an FTRL-Prox algorithm and the conditions of Theorem 3.2 hold,

then

Rn ≤ r̃0:n(x
∗) +

1

2

n∑
s=1

∥f̃ ′
s(x̃s)∥2(s),∗+

n∑
s=1

s−1∑
j=s−τ̃s

∥f̃ ′
s(x̃j)∥(j),∗∥f̃ ′

j(x̃j)∥(j),∗ .

(ii) If Base is an Ada-MD algorithm and the conditions in Theorem 3.3 hold, then

Rn ≤
n∑
s=0

Br̃s(x∗, x̃s) +
1

2

n∑
s=1

∥f̃ ′
s(x̃s)∥2(s),∗

n∑
s=1

s−1∑
j=s−τ̃s

∥f̃ ′
s(x̃j)∥(j),∗∥f̃ ′

j(x̃j+1)∥(j),∗.

These bounds are still somewhat unwieldy. To get a more indicative result, suppose

that there exists a norm ∥.∥ such that for all s = 1, 2, . . . , n, we have ∥.∥(s) = 1√
ηs
∥.∥ for

some non-negative constant ηs (e.g., consider a single-coordinate AdaGrad algorithm).

Note that by the non-negativity of Bregman divergences, this condition implies that the

sequence (ηs) is non-increasing. Further suppose that there exists a constant G such that

∥f ′
s(x)∥ ≤ G for all s = 1, 2, . . . , n and x ∈ X , and a constant R such that ηnr̃0:n(x∗) ≤ 2R2

for FTRL-Prox or η̃n
∑n

s=0 Br̃s(x∗, xs) ≤ 2R2 for Ada-MD. Let τ ∗ = max1≤s≤n τ̃s be the

maximum delay. Theorems 3.2 and 3.3 give

Rn ≤
2R2

ηn
+
G2

2

n∑
s=1

ηs,

for FTRL-Prox and Ada-MD in the non-delayed setting, whereas Theorem 3.4 gives

Rn ≤
2R2

η̃n
+
G2

2

n∑
s=1

η̃s(1 + 2τ̃s),

for Solid in the delayed-feedback setting, where η̃s, s = 1, 2, . . . , n, denote the learning

rates used by Base inside Solid. Using a constant learning rate ηs set as a function of
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the cumulative delay T =
∑n

s=1 τ̃s =
∑n

s=1 τs (if available in advance), the regret becomes

O(
√
T + 2T ), while scaling down the non-delayed learning rates ηs by

√
1 + 2τ ∗, we get a

multiplicative regret penalty of
√
1 + 2τ ∗ compared to the non-delayed case.

While the above regret penalty matches (up to a constant factor) the worst-case lower

bound for delayed environments [71], [108], McMahan and Streeter [66] show that one can

tune the learning rates to adapt to the actual observed delays and past gradients. In the

next section, we considerably generalize their results and solve the open problems they

have posed.

3.6 Adaptive learning-rate tuning for linear loss func-
tions

In this section we restrict our attention to linear loss functions ft = ⟨gt, ·⟩. Consider the

setting of Theorem 3.4, and let g̃s denote the gradient of f̃s. Consider a norm ∥.∥, and for

s = 1, 2, . . . , n, define ĝs = ∥g̃s∥∗. The following result is a corollary of Theorem 3.4 that

generalizes the bound in Lemma 1 of McMahan and Streeter [66] to FTRL-Prox and

Ada-MD, either with or without projection. The proof is given in Appendix 3.B.

Corollary 3.1. Consider the case of linear losses and suppose that the conditions of

Theorem 3.4 hold. Suppose that r̃0:s, s = 0, 1, . . . , n, is (1/η̃s)-strongly convex w.r.t. the

norm ∥.∥. Then, the regret of Solid satisfies

Rn ≤
2R2

η̃n
+

1

2

n∑
j=1

η̃jĜ
fwd
j , (3.10)

where for j = 1, 2, . . . , n,

Ĝfwd
j = ĝ2j + 2ĝj

n∑
s=j+1

ĝsI{s− τ̃s ≤ j},

and R > 0 is a constant upper-bounding the regularizer terms, i.e., η̃nr̃0:n(x∗) ≤ 2R2 for

FTRL-Prox, or η̃n
∑n

s=0 Br̃s(x∗, x̃s) ≤ 2R2 for Ada-MD.

Note that in a non-delayed setting, the regret bound of these adaptive algorithms is of

the form

Rn ≤
2R2

ηn
+

1

2

n∑
s=1

ηs∥gs∥2∗.
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In such a case we would let ηs = O(1/
√∑s

j=1 ĝ
2
j ) and then use Lemma 3.3 (see Appendix

3.A) to get a regret bound of the form

Rn ≤ 2
√
2R2

√ n∑
s=1

∥gs∥2∗ .

Similarly, with η̃s = O(1/

√
Ĝfwd

1:s ), in a delayed-feedback setting we would achieve a regret

of the form

Rn ≤ 2
√
2R2

√
Ĝfwd

1:n . (3.11)

Unfortunately, this is not possible since Ĝfwd
s depends on future, unobserved gradients,

and hence the η̃s given above cannot be computed at time step s.

To work around this problem, McMahan and Streeter [66] define a quantity Ĝbck
s that

depends only on the observed gradients. The goal is to bound Ĝfwd
1:s from above and below

by a function of Ĝbck
j , j = 1, 2, . . . , s − 1, plus an additive term independent of s; then,

setting the learning rate based on that quantity results in a regret bound that is only an

additive term (independent of n) larger than the bound of (3.11). Similarly, in our setting

we define

Ĝbck
s = ĝ2s + 2ĝs

s−1∑
j=s−τ̃s

ĝj.

The next lemma bounds Ĝfwd
1:s from above and below using Ĝbck

1:s .

Lemma 3.1. Let G∗ = max1≤j≤n ĝj and τ∗ = max1≤s≤n τ̃s. For all t = 1, 2, . . . , n,

Ĝbck
1:t ≤ Ĝfwd

1:t ≤ Ĝbck
1:t + (τ 2∗ + τ∗)G

2
∗. (3.12)

In addition,

Ĝfwd
1:n = Ĝbck

1:n . (3.13)

Instead of using Ĝbck
1:s directly as in our Lemma 3.1, McMahan and Streeter [66] use

Ĝbck
1:o(s) for their bounds, where o(s) is the index of the largest outstanding gradient at

the time of update s. Their bounds need an extra In-Order assumption on the delays,

i.e., that the delays do not change the order of the updates. In addition, Ĝbck
1:o(s) is not
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efficiently computable in an online fashion (it requires keeping track of the outstanding

updates), and they use an indirect algorithm (called AdaptiveRevision) on top of this

learning rate schedule that “revises” the previous gradients and can be implemented in

practice. We do not require this indirect approach, since Ĝbck
s can be efficiently computed

in an online fashion (in fact, this is the quantity z that the AdaptiveRevision algorithm

of McMahan and Streeter [66] also needs and maintains, using the network as storage).

Based on Lemma 3.1, we can show that setting the learning rate, for some α > 0, as

η̃j = α

(√
Ĝbck

1:j + (τ 2∗ + τ∗)G2
∗

)−1

, (3.14)

results in only a constant additional regret compared to using the learning rate η̃j =

O

(
1/
√
Ĝfwd

1:j

)
. We prove this in the following theorem.

Theorem 3.5. Consider the conditions of Corollary 3.1. If α =
√
2R and η̃t is given by

(3.14), then the regret of Solid with FTRL-Prox or Ada-MD can be bounded as

Rn(x
∗) ≤ 2

√
2R

√
Ĝfwd

1:n +
√

2(τ 2∗ + τ∗)RG∗ .

This generalizes the bound

Rn(x
∗) ≤ 2

√
2R

√
max
1≤s≤n

Ĝfwd
1:s +O(τ ∗RG∗) (3.15)

obtained in Theorem 3 of McMahan and Streeter [66] for AdaptiveRevision. Note,

however, that in the case of AdaptiveRevision, the algorithm is applied to a single

coordinate, and the ĝ values are the actual (possibly negative) gradients, not their norms.

To refine our bound to the one-dimensional setting, one can define the step-size η̃j based

on the maximum Ĝbck
1:i for 1 ≤ i ≤ j (this is still efficiently computable at time j, and

corresponds to the quantity z′ in AdaptiveRevision). Then, a modified Lemma 3.1

together with Corollary 10 of McMahan and Streeter [66] gives a regret bound similar to

(3.15).

3.7 Conclusion and future work

We provided a unified framework for developing and analyzing online convex optimization

algorithms under delayed feedback. Based on a general reduction, we extended two generic
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adaptive online learning algorithms (an adaptive FTRL and an adaptive Mirror-Descent

algorithm) to the delayed feedback setting. Our analysis resulted in generalized delay-

tolerant AdaGrad-style algorithms that adapt both to the gradients and the delays,

solving a number of open problems posed by McMahan and Streeter [66] and Mania et al.

[65].

An interesting problem for future research is analyzing delay-tolerant adaptive Dual

Averaging algorithms using this framework. Deriving lower bounds for asynchronous

optimization using Theorem 3.1 is also of natural interest. Finally, it seems to be possible

to extend our framework to use gradients or higher-order information only, using a shifting

argument; this is also left for future work.
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Appendices

3.A Technical lemmas

A more general version of the following lemma has appeared before [67, Lemma 8]. Here

we provide a simpler version that is sufficient for our needs. The proof only uses basic

techniques. Another slight difference to the presentation of McMahan (2014) is that we

make the optimization domain explicit.

Lemma 3.2. Let ϕ1, δ : X → R be convex functions, ϕ2 = ϕ1 + δ, x1 = argminx∈X ϕ1(x)

and x2 = argminx∈X ϕ2(x). Assume further that ϕ2 is 1-strongly convex w.r.t. some norm

∥.∥, and let ∥.∥∗ denote its associated dual norm. Then, for any b ∈ ∂δ(x1), we have

∥x1 − x2∥ ≤ ∥b∥∗ . (3.16)

Proof. Define ϕ0(x) = ϕ1(x) + δ(x)− ⟨b, x⟩, and note that since x1 ∈ X , δ is convex, and

b is its sub-gradient at x1, x1 minimizes δ(x) − ⟨b, x⟩ over X . Hence, x1 also minimizes

ϕ0(x) over X . In addition, ϕ0 is 1-strongly convex w.r.t. the norm ∥.∥, since by definition

ϕ0(x) = ϕ2(x) − ⟨b, x⟩. Then, if b2 denotes any sub-gradient of ϕ2 at x2 and b0 denotes

any sub-gradient of ϕ0 at x1, the first order optimality conditions on ϕ2 and ϕ0 at x2 and

x1, respectively, imply that

⟨b0 − b2, x1 − x2⟩ ≤ 0. (3.17)

In addition, strong convexity of ϕ0 and ϕ2 implies:

ϕ2(x1)− ϕ2(x2)− ⟨b2, x1 − x2⟩ ≥
1

2
∥x1 − x2∥2,

and

ϕ0(x2)− ϕo(x1)− ⟨b0, x2 − x1⟩ ≥
1

2
∥x1 − x2∥2.
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Adding the two sides together and using (3.17),

∥x1 − x2∥2 ≤ ⟨b0 − b2, x1 − x2⟩+

ϕ2(x1)− ϕo(x1)+

ϕ0(x2)− ϕ2(x2)

≤ ⟨b, x1⟩ − ⟨b, x2⟩

≤ ∥b∥∗∥x1 − x2∥,

using Hölder’s inequality in the last step. Non-negativity of the norms completes the

proof.

The next lemma is due to McMahan (2014).

Lemma 3.3 (McMahan (2014, Lemma 9)). For any sequence of real numbers x1, x2, . . . , xn
such that x1:t > 0 for all t = 1, 2, . . . , n, we have

n∑
t=1

xt√
x1:t
≤ 2
√
x1:n .

3.B Missing proofs

Proof of Corollary 3.1. Note that r̃0:s is 1-strongly convex w.r.t. the norm
√

(1/η̃s)∥.∥,

the dual of which is given by
√
η̃s∥.∥∗. Hence, from Theorem 3.4,

Rn ≤
2R2

η̃n
+

1

2

n∑
s=1

η̃sĝ
2
s +

n∑
s=1

s−1∑
j=s−τ̃s

η̃j ĝsĝj

=
2R2

η̃n
+

1

2

n∑
j=1

η̃j ĝ
2
j +

n∑
j=1

n∑
s=j+1

η̃j ĝsĝj I{s− τ̃s ≤ j}

=
2R2

η̃n
+

1

2

n∑
j=1

η̃j

(
ĝ2j + 2ĝj

n∑
s=j+1

ĝsI{s− τ̃s ≤ j}

)
,

finishing the proof.

Proof of Lemma 3.1. From the definition,

Ĝbck
1:t =

t∑
s=1

Ĝbck
s =

t∑
s=1

ĝ2s + 2
t∑

s=1

s−1∑
j=s−τ̃s

ĝsĝj
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=
t∑

s=1

ĝ2s + 2
t∑

j=1

t∑
s=j+1

ĝsĝjI{s− τ̃s ≤ j}

=
t∑

j=1

ĝ2j + 2
t∑

j=1

ĝj

n∑
s=j+1

ĝsI{s− τ̃s ≤ j}

− 2
t∑

j=1

ĝj

n∑
s=t+1

ĝsI{s− τ̃s ≤ j}

=
t∑

j=1

Ĝfwd
j − 2

t∑
j=1

ĝj

n∑
s=t+1

ĝsI{s− τ̃s ≤ j}.

Given that the subtracted term is non-negative, we have Ĝbck
1:t ≤ Ĝfwd

1:t . Also, for t = n, the

subtracted term is zero, proving the last part of the lemma. Therefore, it remains to bound

the subtracted term by (τ 2∗ + τ∗)G
2
∗, or, equivalently, to bound

∑t
j=1

∑n
s=t+1 I{s− τ̃s ≤ j}

by 1
2
(τ 2∗ + τ∗). To that end, note that for j ≤ t− τ∗ and s > t, the indicator I{s− τ̃s ≤ j}

is always zero. Also, note that I{s− τ̃s ≤ j} = 0 for s > j + τ∗. Hence,

t∑
j=1

n∑
s=t+1

I{s− τ̃s ≤ j} =
t∑

j=t−τ∗+1

j+τ∗∑
s=t+1

I{s− τ̃s ≤ j}

≤
t∑

j=t−τ∗+1

(j + τ∗ − t)

=
τ∗∑
i=1

i =
1

2
τ∗(τ∗ + 1) ,

concluding the proof.

Proof of Theorem 3.5. By Corollary 3.1, it suffices to bound the two terms on the r.h.s.

of (3.10). Since
√
a+ b ≤

√
a+
√
b for any nonnegative numbers a and b,

2R2

η̃n
=
√
2R

√
Ĝbck

1:n + (τ 2∗ + τ∗)G2
∗

≤
√
2R

√
Ĝbck

1:n +
√

2(τ 2∗ + τ∗)RG∗

=
√
2R

√
Ĝfwd

1:n +
√

2(τ 2∗ + τ∗)RG∗,

using (3.13) in the last step. Also, from (3.12),

η̃j =
α√

Ĝbck
1:j + (τ 2∗ + τ∗)G2

∗

≤ α√
Ĝfwd

1:j

.
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Therefore, by Lemma 3.3,

1

2

n∑
j=1

η̃jĜ
fwd
j ≤ 1

2

n∑
j=1

α√
Ĝfwd

1:j

Ĝfwd
j

≤
√
2R

√
Ĝfwd

1:n .

Combining with (3.10) completes the proof.
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Chapter 4

A Unified Modular Analysis of Online
Optimization
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Abstract

Recently, much work has been done on extending the scope of online learning and incre-

mental stochastic optimization algorithms. In this paper we contribute to this effort in

two ways: First, based on a generalization of Bregman divergences and a generic regret

decomposition, we provide a self-contained, modular analysis of the two workhorses of

online learning: (general) adaptive versions of Mirror Descent (MD) and the Follow-the-

Regularized-Leader (FTRL) algorithms. The analysis is done with extra care so as not to

introduce assumptions not needed in the proofs and allows to combine, in a straightforward

way, different algorithmic ideas (e.g., adaptivity, optimism, implicit updates, variance

reduction) and learning settings (e.g., strongly convex or composite objectives). This way

we are able to reprove, extend and refine a large body of the literature, while keeping

the proofs concise. The second contribution is a by-product of this careful analysis: We

present algorithms with improved variational bounds for smooth, composite objectives,

including a new family of optimistic MD algorithms with only one projection step per

round. Furthermore, we provide a simple extension of adaptive regret bounds to a class of

practically relevant non-convex problem settings (namely, star-convex loss functions and

their extensions) with essentially no extra effort.1

1 This chapter and the related appendices are accepted for publication in the Theoretical Computer
Science (TCS) journal. An earlier version has been published as the following conference paper:

• P. Joulani et al., “A modular analysis of adaptive (non-) convex optimization: Optimism, composite
objectives, and variational bounds,” in Proceedings of Machine Learning Research (Algorithmic
Learning Theory 2017), 2017, pp. 681–720.
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4.1 Introduction

Online and stochastic optimization algorithms form the underlying machinery in much of

modern machine learning. Perhaps the most well-known example is Stochastic Gradient

Descent (SGD) and its adaptive variants, the so-called AdaGrad algorithms [26], [70].

Other special cases include multi-armed and linear bandit algorithms, as well as algorithms

for online control, tracking and prediction with expert advice [16], [38], [97].

There are numerous algorithmic variants in online and stochastic optimization, such as

adaptive [26], [70] and optimistic algorithms [18], [50], [72], [88], [90], implicit updates [52],

[54], composite objectives [25], [26], [109], or non-monotone regularization [101]. Each of

these variants has been analyzed under a specific set of assumptions on the problem, e.g.,

smooth [24], [48], [55], convex [38], [69], [82], [97], or strongly convex [40], [69], [82], [98]

objectives. However, a useful property is typically missing from the analyses: modularity.

It is typically not clear from the original analysis whether the algorithmic idea can be

mixed with other techniques, or whether the effect of the assumptions extend beyond

the specific setting considered. For example, based on the existing analyses it is very

much unclear to what extent AdaGrad techniques, or the effects of smoothness, or

variational bounds in online learning, extend to new learning settings. Thus, for every

new combination of algorithmic ideas, or under every new learning setting, the algorithms

are typically analyzed from scratch.

A special new learning setting is non-convex optimization. While the bulk of results in

online and stochastic optimization assume the convexity of the loss functions, online and

stochastic optimization algorithms have been successfully applied in settings where the

objectives are non-convex. In particular, highly popular deep learning techniques [35] are

based on the application of stochastic optimization algorithms to non-convex objectives.

In the face of this discrepancy between the state of the art in theory and practice, an

on-going thread of research attempts to generalize the analyses of stochastic optimization

to non-convex settings. In particular, certain non-convex problems have been shown to

actually admit efficient optimization methods, usually taking some form of a gradient

method (one such problem is matrix completion, see, e.g., [9], [31]).

The goal of this paper is to provide a flexible, modular analysis of online and stochastic

optimization algorithms that allows one to easily combine different algorithmic techniques
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and learning settings under as few assumptions as possible. We demonstrate the benefits of

such an analysis by combining and transferring algorithmic ideas to create new algorithms,

and by exploring the extent to which the convexity assumption can be relaxed in our

analysis.

4.1.1 Contributions

First, building on previous attempts to unify the analyses of online and stochastic opti-

mization [38], [69], [82], [97], we provide a unified analysis of a large family of optimization

algorithms in general Hilbert spaces. The analysis is crafted to exhibit modularity by

decoupling the contribution of each assumption or algorithmic idea from the analysis,

so as to enable us to combine different assumptions and techniques without analyzing

the algorithms from scratch. In particular, we rely on a generalized Bregman divergence

definition, followed by a careful decomposition of the optimization performance (opti-

mization error or regret) into two parts: the first part captures the generic performance

of the algorithm, whereas the second part connects the assumptions about the learning

setting to the information given to the algorithm. Lemma 4.1 in Section 4.2.1 provides

such a decomposition.2 Then, in Theorem 4.1, we bound the generic (first) part, using a

careful analysis of the linear regret of generalized adaptive Follow-The-Regularized-Leader

(FTRL) and Mirror Descent (MD) algorithms.

Second, we use this analysis framework to provide a concise summary of a large body

of previous results. Section 4.4 provides the basic results, and Sections 4.5 to 4.7 present

the relevant extensions and applications. A combination of our techniques with variance

reduction techniques is explored in Section 4.8.

Third, building on the aforementioned modularity, we analyze new learning algorithms.

In particular, in Section 4.7.4 we analyze a new adaptive, optimistic, composite-objective

FTRL algorithm with variational bounds for smooth convex loss functions, which combines

the best properties and avoids the limitations of the previous work. We also present a new

class of optimistic MD algorithms with only one MD update per round (Section 4.7.2).
2Our approach can be viewed as a refined version of the so-called “follow the leader/be the leader”-style

analysis. Previous work (e.g., [69], [97]) may give the impression that “follow-the-leader/be-the-leader”
analyses lose constant factors while other methods such as primal-dual analysis do not. This is not the
case about our analysis. In fact, we improve constants in optimistic online learning; see Section 4.7 for
details.
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Finally, we extend the previous results to special classes of non-convex optimization

problems in Section 4.9; as a result of relaxing the assumptions in our framework as much as

possible, these results come without any extra effort just by examining to what non-convex

problems our results generalize immediately. The family of non-convex functions we arrive

at generalizes a small, but practically important class of functions (the set of star-convex

functions) considered in previous work on non-convex optimization [37], [58], [79].

4.1.2 Notation and definitions

We work with a (possibly infinite-dimensional) Hilbert space H over the reals. That is, H

is a real vector space equipped with an inner product ⟨·, ·⟩ : H×H → R, such that H is

complete with respect to (w.r.t.) the norm induced by ⟨·, ·⟩. Examples include H = Rd

(for a positive integer d) where ⟨·, ·⟩ is the standard dot-product, or H = Rm×n, the set of

m× n real matrices, where ⟨A,B⟩ = tr
(
A⊤B

)
, or H = ℓ2(C), the set of square-integrable

real-valued functions on C ⊂ Rd, where ⟨f, g⟩ =
∫
C f(x)g(x)dx for any f, g ∈ H.

We denote the extended real line by R := R ∪ {−∞,+∞}, and work with functions of

the form f : H → R. Given a set C ⊂ H, the indicatrix of C is the function IC : H → R

given by IC(x) = 0 for x ∈ C and IC(x) = +∞ for x ̸∈ C. The effective domain of a

function f : H → R, denoted by dom(f), is the set {x ∈ H | f(x) < +∞} where f is less

than infinity; conversely, we identify any function f : C → R defined only on a set C ⊂ H

by the function f + IC . A function f is proper if dom(f) is non-empty and f(x) > −∞

for all x ∈ H.

Let f : H → R be proper. We denote the set of all sub-gradients of f at x ∈ H by

∂f(x), that is,

∂f(x) := { u ∈ H | ∀y ∈ H, ⟨u, y − x⟩+ f(x) ≤ f(y) } .

The function f is sub-differentiable at x if ∂f(x) ̸= ∅; we use f ′(x) to denote any member

of ∂f(x). Note ∂f(x) = ∅ when x ̸∈ dom(f).

Let x ∈ dom(f), assume that f(x) > −∞, and let z ∈ H. The directional derivative

of f at x in the direction z is defined as f ′(x; z) := limα↓0
f(x+αz)−f(x)

α
, provided that the

limit exists in [−∞,+∞]. The function f is differentiable at x if it has a gradient at x,

that is, a vector ∇f(x) ∈ H such that f ′(x; z) = ⟨∇f(x), z⟩ for all z ∈ H. The function f

is locally sub-differentiable at x if it has a local sub-gradient at x, that is, a vector gx ∈ H
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such that ⟨gx, z⟩ ≤ f ′(x; z) for all z ∈ H. We denote the set of local sub-gradients of f

at x by δf(x). Note that if f ′(x; z) exists for all z ∈ H, and f is sub-differentiable at

x, then it is also locally sub-differentiable with gx = u for any u ∈ ∂f(x). Similarly, if

f is differentiable at x, then it is also locally sub-differentiable, with gx = ∇f(x). The

function f is called directionally differentiable at x ∈ dom(f) if f(x) > −∞ and f ′(x; z)

exists in [−∞,+∞] for all z ∈ H; f is called directionally differentiable if it is directionally

differentiable at every x ∈ dom(f). Note that a directionally differentiable function is

proper.

Next, we define a generalized3 notion of Bregman divergence:

Definition 4.1 (Bregman divergence). Let f be directionally differentiable at x ∈ dom(f).

The f -induced Bregman divergence from x is the function from H → R, given by

Bf (y, x) :=

{
f(y)− f(x)− f ′(x; y − x) . if f(y) is finite;
+∞ otherwise .

(4.1)

A function f : H → R is convex if for all x, y ∈ dom(f) and all α ∈ (0, 1), αf(x) +

(1 − α)f(y) ≥ f (αx+ (1− α)y). We can show that a proper convex function is always

directionally differentiable, and the Bregman divergence it induces is always non-negative

(see Appendix 4.E). Let ∥.∥ denote a norm on H and let L, β > 0. A directionally

differentiable function f : H → R is β-strongly convex w.r.t. ∥.∥ iff Bf (x, y) ≥ β
2
∥x− y∥2

for all x, y ∈ dom(f). The function f is L-smooth w.r.t. ∥.∥ iff for all x, y ∈ dom(f),

|Bf (x, y)| ≤ L
2
∥x− y∥2.

We use {ct}jt=i to denote the sequence ci, ci+1, . . . , cj , and ci:j to denote the sum
∑j

t=i ct,

with ci:j := 0 for i > j.

4.2 Problem setting: online optimization

We study a general first-order iterative optimization setting that encompasses several

common optimization scenarios, including online, stochastic, and full-gradient optimiza-

tion. Consider a convex set X ⊂ H, a sequence of directionally differentiable functions
3If f is differentiable at x, then (4.1) matches the traditional definition of Bregman divergence. Previous

work also considered generalized Bregman divergences, e.g., the works of Kiwiel [53] and Telgarsky and
Dasgupta [103] and the references therein. However, our definition is not limited to convex functions,
allowing us to study convex and non-convex functions and regularizers under a unified theory; see, e.g.,
Sections 4.3 and 4.9.
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Input: convex set X ⊂ H; directionally differentiable functions f1, f2, . . . , fT from H to
R.

• The algorithm selects an initial point x1 ∈ X .

• For each time step t = 1, 2, . . . , T :

– The algorithm observes feedback gt ∈ H and selects the next point xt+1 ∈ X .

Goal: Minimize the regret RT (x
∗) (given by (4.2)) against any x∗ ∈ X .

Figure 4.1: Iterative optimization.

f1, f2, . . . , fT from H to R with X ⊂ dom(ft) for all t = 1, 2, . . . , T , and a first-order

iterative optimization algorithm. The algorithm starts with an initial point x1. Then,

in each iteration t = 1, 2, . . . , T , the algorithm suffers a loss ft(xt) from the latest point

xt, receives some feedback gt ∈ H, and selects the next point xt+1. Typically, ⟨gt, ·⟩ is

supposed to be an estimate or lower bound on the directional derivative of ft at xt. This

protocol is summarized in Figure 4.1.

Unlike online convex optimization (OCO), at this stage we do not assume that the ft
are convex4 or differentiable, nor do we assume that gt are gradients or sub-gradients. Our

goal is to minimize the regret RT (x
∗) against any x∗ ∈ X , defined as

RT (x
∗) =

T∑
t=1

(ft(xt)− ft(x∗)) . (4.2)

More precisely, we want to guarantee that supx∗∈X RT (x
∗) is small.

In this paper we are also concerned with the problem of stochastic optimization,

where the goal is to minimize a function f defined by f(x) := Eξ∼DF (x, ξ). That is, the

optimization algorithm has to find an estimate x̂T such that E{f(x̂T )} − f(x∗) is small,

given noisy gradient observations gt such that E{gt|xt} ∈ δf(xt). It is well-known (e.g.,

[97, Theorem 5.1]) that for any f , this equals E{RT (x
∗)/T} if x̂T is selected uniformly

at random from x1, . . . , xT . Also, if f is convex, E{f(x̂T )} − f(x∗) ≤ E{RT (x
∗)/T} if

x̂T is the average of x1, . . . , xT . Thus, the analysis of online algorithms that provide

guarantees on the regret RT (x
∗) can be used to provide performance bounds for iterative

stochastic optimization, and we will analyze stochastic optimization algorithms using this
4There is a long tradition of non-convex assumptions in the Stochastic Approximation (SA) literature,

see, e.g., the book of Bertsekas and Shreve [8]. Our results differ in that they apply to more recent
advances in online learning (e.g., AdaGrad algorithms), and we derive any-time regret bounds, rather
than asymptotic convergence results, for specific non-convex function classes.
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approach. Note that this sometimes comes with a sacrifice. For example, in strongly-convex

stochastic optimization, using suffix-averaging (averaging just the last αT iterates with

α < 1 instead of all T of them) [89], [100] or successive tuning and restarting [39] leads to

a slightly improved, optimal performance that is not available through the direct reduction

mentioned above [39]. The regret framework is also not directly applicable to explain

some refined notions, such as acceleration (see, e.g., [55]). Furthermore, in optimization

one often cares about the performance of the last iterate xT . Even in convex problems,

the analysis of the last iterate follows only indirectly from a regret analysis [89], [100].

Some of these problems can be addressed, for example, by considering a weighted regret

where the terms in RT (x
∗) have different weights (see, e.g., [105]) or by additional tricks

applied on top of the regret analysis (such as done by [39], [89], [100]), which is beyond the

scope of our paper. Finally, our analysis concerns global convergence, and hence applies

only to convex and a small class of non-convex problems, while there are several other

results in non-convex stochastic optimization that we do not recover (mostly about proving

convergence rates to local optima, e.g., [3], [110]).

4.2.1 Regret decomposition

Below, we provide a decomposition of RT (x
∗), which holds for any sequence of points

x1, x2, . . . , xT+1 and any x∗. The decomposition is in terms of the forward linear regret

R+
T (x

∗), defined as

R+
T (x

∗) :=
T∑
t=1

⟨gt, xt+1 − x∗⟩ .

Intuitively, R+
T is the regret (in linear losses) of the “cheating” algorithm that uses action

xt+1 at time t, and depends only on the choices of the algorithm and the feedback it

receives.

Lemma 4.1 (Regret decomposition). Let x∗, x1, x2, . . . , xT+1 be any sequence of points in

X . For t = 1, 2, . . . , T , let ft : H → R be directionally differentiable with X ⊂ dom(ft),

and let gt ∈ H. Then,

RT (x
∗) = R+

T (x
∗) +

T∑
t=1

⟨gt, xt − xt+1⟩ −
T∑
t=1

Bft(x∗, xt) +
T∑
t=1

δt , (4.3)

where δt = −f ′(xt;x
∗ − xt) + ⟨gt, x∗ − xt⟩.

55



Proof. By definition,

ft(xt)− ft(x∗) = −Bft(x∗, xt)− f ′(xt;x
∗ − xt)

= ⟨gt, xt − x∗⟩ − Bft(x∗, xt) + δt

= ⟨gt, xt+1 − x∗⟩+ ⟨gt, xt − xt+1⟩ − Bft(x∗, xt) + δt .

Summing over t completes the proof.

Intuitively, the second term captures the regret due to the algorithm’s inability to

look ahead into the future.5 The last two terms capture, respectively, the gain in regret

that is possible due to the curvature of ft , and the accuracy of the first-order (gradient)

information gt. In light of this lemma, controlling the regret reduces to controlling the

individual terms in (4.3). A similar use of the forward regret appears in [1], though their

analysis is limited to smooth loss functions.

Next, we provide upper bounds on R+
T (x

∗) for a large class of online algorithms.

4.3 The algorithms: Ada-FTRL and Ada-MD

In this section, we analyze Ada-FTRL and Ada-MD. These two algorithms generalize

the well-known core algorithms of online optimization: FTRL [38], [97] and MD [7], [25],

[75], [107]. In particular, Ada-FTRL and Ada-MD capture variants of FTRL and MD

such as Dual-Averaging [77], [109], AdaGrad [26], [70], composite-objective algorithms [25],

[26], [109], implicit-update MD [52], [54], strongly-convex and non-linearized FTRL [40],

[69], [82], [98], optimistic FTRL and MD [18], [50], [72], [88], [90], and even algorithms

like AdaDelay [101] that violate the common non-decreasing regularization assumption

existing in much of the previous work.6

4.3.1 Ada-FTRL: Generalized adaptive Follow-the-Regularized-
Leader

The Ada-FTRL algorithm works with two sequences of regularizers, p1, p2, . . . , pT and

q0, q1, q2, . . . , qT , where each pt and qt is a function from H to R. At time t = 0, 1, 2, . . . , T ,
5This is also related to the concept of “prediction drift”, which appears in learning with delayed feedback

[46], and to the role of stability in online algorithms [93].
6AdaDelay [101] is an algorithm for delayed-feedback distributed stochastic optimization. While this

setting is beyond the scope of the current paper and is left for future work, we discuss the potential
implications of our framework for AdaDelay in Section 4.10.
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having received (gs)
t
s=1, Ada-FTRL uses g1:t, p1:t and q0:t to compute the next point xt+1.

The regularizers pt and qt can be built by Ada-FTRL in an online adaptive manner

using the information generated up to the end of time step t (including gt and xt). In

particular, we use pt to distinguish the “proximal” part of this adaptive regularization: for

all t = 1, 2, . . . , T , we require that pt (but not necessarily qt) be minimized over X at xt,

that is7,

pt(xt) = inf
x∈X

pt(x) < +∞ . (4.4)

With the definitions above, for t = 0, 1, 2, . . . , T , Ada-FTRL selects xt+1 such that

xt+1 ∈ argmin
x∈X

⟨g1:t, x⟩+ p1:t(x) + q0:t(x) . (4.5)

In particular, this means that the initial point x1 satisfies8

x1 ∈ argmin
x∈X

q0(x) .

In addition, for notational convenience, we define rt := pt + qt−1, t = 1, 2, . . . , T , so that

xt+1 ∈ argmin
x∈X

⟨g1:t, x⟩+ qt(x) + r1:t(x) . (4.6)

Finally, we need to make a minimal assumption to ensure that Ada-FTRL is well-defined.

Assumption 4.1 (Well-posed Ada-FTRL). The functions q0 and pt, qt, t = 1, 2, . . . , T,

are proper. In addition, for all t = 0, 1, . . . , T , the argmin sets that define xt+1 in (4.5)

are non-empty, and their optimal values are finite. Finally, for all t = 1, 2, . . . , T , r1:t is

directionally differentiable, and pt satisfies (4.4).

Table 4.1 provides examples of several special cases of Ada-FTRL. In particular,

Ada-FTRL combines, unifies and considerably extends the two major types of FTRL

algorithms previously considered in the literature, that is, the so-called FTRL-Centered

and FTRL-Prox algorithms [69] and their variants, as discussed in the subsequent

sections.
7 Note that xt does not depend on pt, but is rather computed using only p1:t−1. Once xt is calculated,

pt can be chosen so that (4.4) holds (and then used in computing xt+1).
8 The case of an arbitrary x1 is equivalent to using, e.g., q0 ≡ 0 (and changing q1 correspondingly).
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Algorithm Regularization Notes, Conditions and Assumptions

Online Gradient
Descent (OGD)

q0 =
1
2η∥.∥

2
2

qt = pt = 0
X = Rd, η > 0
Update: xt+1 = xt − ηgt

Dual Averaging
(DA)

qt =
αt
2 ∥.∥

2
2

pt = 0
α0:t > 0, αt ≥ 0 (t ≥ 1)

AdaGrad – Dual
Averaging

q0:t =
1
2∥x∥

2
(t)

pt = 0

∥x∥2(t) :=
1
ηx

⊤(Q
1/2
0:t )x

Q0 = γI
Q1:t =

∑t
s=1 gsg

⊤
s (full-matrix update)

Q
(j,j)
1:t =

∑t
s=1 g

2
s,j (diagonal-matrix update)

FTRL-Prox
qt = 0
pt =

1
2∥x − xt∥

2
(t) −

1
2∥x− xt∥

2
(t−1)

Q0 = 0
Qt and ∥ · ∥(t) as in AdaGrad-DA

Composite-
Objective
Online Learning

q0 = q̃0
qt = ψt + q̃t
pt = p̃t

For adding composite-objective learning to
any instance of Ada-FTRL (see also Section 4.5)
xt+1 = argminX ⟨g1:t, x⟩+ψ1:t(x)+ p̃1:t(x)+ q̃0:t(x)

Table 4.1: Some special instances of Ada-FTRL; for more examples, see also the survey
of McMahan [69].

4.3.2 Ada-MD: Generalized adaptive Mirror-Descent

As in Ada-FTRL, the Ada-MD algorithm uses two sequences of regularizer functions

from H to R: r1, r2, . . . , rT and q0, q1, . . . , qT . Further, we assume that the domains of (rt)

are non-increasing, that is, dom(rt) ⊂ dom(rt−1) for t = 2, 3, . . . , T . Again, qt, rt can be

created using the information generated by the end of time step t. The initial point x1 of

Ada-MD satisfies9

x1 ∈ argmin
x∈X

q0(x) .

Furthermore, at time t = 1, 2, . . . , T , having observed (gs)
t
s=1, Ada-MD uses gt, qt and r1:t

to select the point xt+1 such that

xt+1 ∈ argmin
x∈X

⟨gt, x⟩+ qt(x) + Br1:t(x, xt) . (4.7)

In addition, similarly to Ada-FTRL, we define pt := rt − qt−1, t = 1, 2, . . . , T , though we

do not require pt to be minimized at xt in Ada-MD.10

9 The case of an arbitrary x1 is equivalent to using, e.g., q0 ≡ 0 (and changing r1 correspondingly).
10 We use the convention (+∞)− (+∞) = +∞ in defining pt.
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Finally, we present our assumption on the regularizers of Ada-MD. Compared to

Ada-FTRL, we require a stronger assumption to ensure that Ada-MD is well-defined,

and that the Bregman divergences in (4.7) have a controlled behavior.

Assumption 4.2 (Well-posed Ada-MD). The regularizers qt, rt, t = 1, 2, . . . , T , are

proper, and q0 is directionally differentiable. In addition, for all t = 0, 1, . . . , T , the argmin

sets that define xt+1 in (4.7) are non-empty, and their optimal values are finite. Finally,

for all t = 1, 2, . . . , T , qt, r1:t, and r1:t + qt are directionally differentiable, xt ∈ dom(r1:t),

and r′1:t(xt; ·) is linear in the directions inside dom(r1:t), that is, there is a vector in H,

denoted by ∇r1:t(xt), such that r′1:t(xt, x− xt) = ⟨∇r1:t(xt), x− xt⟩ for all x ∈ dom(r1:t).

Remark 4.1. Our results also hold under the weaker condition that r′1:t(xt; · − xt) is

concave11 (rather than linear) on dom(r1:t). However, in case of a convex r1:t, this weaker

condition would again translate into having a linear r′1:t, because a convex r1:t implies a

convex r′1:t [6, Proposition 17.2]. While we do not require that r1:t be convex, all of our

subsequent examples in the paper use convex r1:t. Thus, in the interest of readability, we

have made the stronger assumption of linear directional derivatives here.

Remark 4.2. Note that r′1:t needs to be linear only in the directions inside the domain of

r1:t. As such, we avoid the extra technical conditions required in previous work, e.g., that

r1:t be a Legendre function to ensure xt remains in the interior of dom(r1:t) and ∇r1:t(xt)

is well-defined.

4.3.3 Analysis of Ada-FTRL and Ada-MD

Next we present bounds on the forward regret of Ada-FTRL and Ada-MD, and discuss

their implications; the proof is provided in Appendix 4.F.

Theorem 4.1 (Forward regret of Ada-FTRL and Ada-MD). For any x∗ ∈ X and any

sequence of linear losses ⟨gt, ·⟩, t = 1, 2, . . . , T , the forward regret of Ada-FTRL under

Assumption 4.1 satisfies

R+
T (x

∗) ≤
T∑
t=0

(qt(x
∗)− qt(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt))−

T∑
t=1

Br1:t(xt+1, xt) , (4.8)

11 Without such assumptions, a Bregman divergence term in r′1:t appears in the regret bound of
Ada-MD. Concavity ensures that this term is not positive and can be dropped, greatly simplifying the
bounds.
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whereas the forward regret of Ada-MD under Assumption 4.2 satisfies

R+
T (x

∗) ≤
T∑
t=0

(qt(x
∗)− qt(xt+1)) +

T∑
t=1

Bpt(x∗, xt)−
T∑
t=1

Br1:t(xt+1, xt) . (4.9)

Remark 4.3. Theorem 4.1 does not require the regularizers to be non-negative or (even

non-strongly) convex.12 This opens up the possibility to accommodate a wide range of

non-standard algorithmic solutions, such as the application of non-monotonic learning

rates; see also Section 4.10 for a discussion.

Remark 4.4. In practice, Ada-FTRL and Ada-MD need to pick a specific xt+1 from the

possibly multiple optima of (4.5) and (4.7). The bounds of Theorem 4.1 apply irrespective

of the tie-breaking scheme.

In subsequent sections, we show that the generality of Ada-FTRL and Ada-MD,

together with the flexibility of Assumptions 4.1 and 4.2, considerably facilitates the

handling of various algorithmic ideas and problem settings, and allows us to combine them

without requiring a new analysis for each new combination.

4.4 Recoveries and extensions

Lemma 4.1 and Theorem 4.1 together immediately result in generic upper bounds on the

regret, given in (4.25) and (4.26) in Appendix 4.A. Under different assumptions on the

losses and regularizers, these generic bounds directly translate into concrete bounds for

specific learning settings. We explore these concrete bounds in the rest of this section.

First, we provide a list of the assumptions on the losses and the regularizers for different

learning settings.13 We consider two special cases of the setting of Section 4.2: Online

optimization and stochastic optimization. In online optimization, we make the following

assumption:

Assumption 4.3 (Online optimization setting). For t = 1, 2, . . . , T , ft is locally sub-

differentiable, and gt is a local sub-gradient of ft at xt.
12Nevertheless, such assumptions are useful when combining the theorem with Lemma 4.1.
13In fact, compared to previous work (e.g., the references listed in Section 4.1 and Section 4.3), these

are typically relaxed versions of the usual assumptions.
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Note that ft may be non-convex, and gt does not need to define a global lower-

bound (i.e., be a sub-gradient) of ft; see Section 4.1.2 for the formal definition of local

sub-gradients.

Recall that the stochastic optimization setting is concerned with minimizing a function

f , defined by f(x) := Eξ∼DF (x, ξ). In this case our performance metric is redefined to be

the expected stochastic regret, E{RT (x
∗)} = E

{∑T
t=1 (f(xt)− f(x∗))

}
(see Section 4.2).

Typically, if F is differentiable in x, then gt = ∇F (xt, ξt), where ξt is a random variable,

e.g., sampled independently from D. In parallel to Assumption 4.3, we summarize our

assumptions for this setting is as follows:

Assumption 4.4 (Stochastic optimization setting). The function f (defined above) is

locally sub-differentiable, ft = f for all t = 1, 2, . . . , T , and gt is, in expectation, a local

sub-gradient of f at xt: E{gt|xt} ∈ δf(xt).

Again, it is enough for gt to be an unbiased estimate of a local sub-gradient (Sec-

tion 4.1.2).

In both settings we will rely on the non-negativity of the loss divergences at x∗:

Assumption 4.5 (Non-negative loss-divergence). For the competitor point of interest x∗

(with respect to which we aim to bound RT (x
∗)), and for all t = 1, 2, . . . , T , Bft(x∗, xt) ≥ 0.

It is well known that this assumption is satisfied when each ft is convex. However,

as we shall see in Section 4.9, this condition also holds for certain classes of non-convex

functions (e.g., star-convex functions and more). In the stochastic optimization setting,

since ft = f , this condition boils down to Bf (x∗, xt) ≥ 0, t = 1, 2, . . . , T .

In both settings, the regret can be reduced when the losses are strongly convex.

Furthermore, in the stochastic optimization setting, the smoothness of the loss is also

helpful in decreasing the regret. The next two assumptions capture these conditions.

Assumption 4.6 (Loss smoothness). The function f is differentiable and 1-smooth w.r.t.

some norm ∥ · ∥.

Assumption 4.7 (Loss strong convexity). The losses are 1-strongly convex w.r.t. the

regularizers, that is, Bft(x∗, xt) ≥ Bpt(x∗, xt) for t = 1, 2, . . . , T .
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≤ −1
2‖xt+1 − xt‖2(t)

strongly convex r1:t

≤ +1
2‖xt+1 − xt‖2(t) +

1
2‖gt‖

2
(t),∗

Fenchel-Young inequality

Bpt(x∗, xt) ≤ Bft(x
∗, xt)

strongly convex loss ft

≤ 0
convex loss ft

= Bft(xt+1, xt)+〈gt −∇ft(xt), xt − xt+1〉

≤ −L
2‖xt+1 − xt‖2−1

2‖xt+1 − xt‖2(t)

+ft(xt)− ft(xt+1)

≤ +L
2‖xt+1 − xt‖2+1

2‖xt+1 − xt‖2(t) +
1
2‖gt −∇ft(xt)‖

2
(t),∗

Fenchel-Young inequalitysmooth loss ft

add L
2‖ · ‖

2 to q0

RT (x
∗) = R+

T (x
∗) +

T∑
t=1

︷ ︸︸ ︷
〈gt, xt − xt+1〉︸ ︷︷ ︸ ︷ ︸︸ ︷

−Bft(x
∗, xt)︸ ︷︷ ︸ ︷ ︸︸ ︷

−f ′t(xt; x∗ − xt) + 〈gt, x∗ − xt〉︸ ︷︷ ︸

Ada-Mirror-Descent

R+
T (x
∗) ≤

T∑
t=1
− Br1:t(xt+1, xt)︸ ︷︷ ︸+ T∑

t=1
Bpt(x

∗, xt)︸ ︷︷ ︸ + T∑
t=0

qt(x
∗)− qt(xt+1)

R+
T (x
∗) ≤

T∑
t=1

︷ ︸︸ ︷
− Br1:t(xt+1, xt) +

︷ ︸︸ ︷∑T
t=0qt(x

∗)− qt(xt+1) +
∑T

t=1pt(x
∗)− pt(xt)

Ada-Follow-The-Regularized-Leader

︷ ︸︸ ︷

≤ q0:T (x
∗) + p1:T (x

∗)
non-negative regularizers

gt local sub-gradient
≤ 0

0-expectation
SGD:

strongly convex regularizers

telescopes: ≤ f(x1)− f(x∗)

+L
2‖x
∗‖2

Lemma 2

Figure 4.2: A summary of the proof techniques that incorporate each of the assumptions
into regret bounds; see Corollaries 4.5–4.7 and Table 4.2. The identity in the middle is
from Lemma 4.1, whereas the top and bottom bounds on R+

T are due to Theorem 4.1.
Each arrow shows the transformation of one of the terms, using the stated assumption or
technique. The matching terms cancel, and the terms shown in red appear in the final
bounds.

Note that if pt, qt−1 are convex, then it suffices to have Brt in the condition (rather

than Bpt). Typically, if ft is strongly convex w.r.t. a norm ∥ · ∥(t), then pt (or rt) is set to

η∥ · ∥2(t) for some η > 0. Again, in stochastic optimization, Assumption 4.7 simplifies to

Bf (x∗, xt) ≥ Bpt(x∗, xt), t = 1, 2, . . . , T . Furthermore, if pt is convex, then Assumption 4.7

implies that ft is convex.

Finally, the results that we recover depend on the assumption that the total regulariza-

tion, in both Ada-FTRL and Ada-MD, is strongly convex:

Assumption 4.8 (Strong convexity of regularizers). For all t = 1, 2, . . . , T , r1:t is 1-

strongly convex w.r.t. some norm ∥ · ∥(t).

Table 4.2 provides a summary of the standard results, under different sub-sets of
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Setting / Algorithms Assumptions Regret / Expected Stochastic Regret Bound

OO/SO
Ada-FTRL

4.1, 4.3/4.4,
4.5, 4.8

∑T
t=0 (qt(x

∗)− qt(xt+1))

+
∑T

t=1 (pt(x
∗)− pt(xt)) +

∑T
t=1

1
2∥gt∥

2
(t),∗

OO/SO
Ada-MD

4.2, 4.3/4.4,
4.5, 4.8

∑T
t=0 (qt(x

∗)− qt(xt+1))

+
∑T

t=1 Bpt(x∗, xt) +
1
2∥gt∥

2
(t),∗

Strongly-convex OO/SO
Ada-MD

4.2, 4.3/4.4,
(4.5), 4.8, 4.7

∑T
t=0 (qt(x

∗)− qt(xt+1))

+
∑T

t=1
1
2∥gt∥

2
(t),∗

Smooth SO
Ada-FTRL

4.1, 4.4, 4.6,
4.5, 4.8’

∑T
t=0 (qt(x

∗)− qt(xt+1)) +D

+
∑T

t=1 (pt(x
∗)− pt(xt)) +

∑T
t=1

1
2∥σt∥

2
(t),∗

Smooth SO
Ada-MD

4.2, 4.4, 4.6,
4.5, 4.8’

∑T
t=0 (qt(x

∗)− qt(xt+1)) +D

+
∑T

t=1 Bpt(x∗, xt) +
1
2∥σt∥

2
(t),∗

Smooth & strongly-convex SO
Ada-MD

4.2, 4.4, 4.6,
(4.5), 4.8’, 4.7

1
2∥x

∗ − x1∥2 +
∑T

t=0 (qt(x
∗)− qt(xt+1))

+D +
∑T

t=1
1
2∥σt∥

2
(t),∗

Table 4.2: Recovered and generalized standard results for online optimization (OO) and
stochastic optimization (SO); see Corollaries 4.5–4.7. A number in parentheses indicates
that the assumption is not directly required, but is implied by the other assumptions. In
the bounds above, σt := gt −∇f(xt), D := f(x1)− infX f(x), and 4.8’ refers to a slightly
modified version of Assumption 4.8, as described in Corollary 4.7. Note that setting qT = 0
recovers the off-by-one property [69] in FTRL-Centered vs. FTRL-Prox; Ada-MD
exhibits a similar property. For composite-objective Ada-FTRL and Ada-MD, these
same bounds apply with q̃t in place of qt in the summation; see Table 4.1 and Section 4.5.

the assumptions above, that are recovered and generalized using our framework. The

derivations of these results are provided in the form of three corollaries in Appendix 4.A.

Note that the analysis is absolutely modular: each assumption is simply plugged into

(4.25) or (4.26) to obtain the final bounds, without the need for a separate analysis of

Ada-FTRL and Ada-MD for each individual setting. A schematic view of the (standard)

proof ideas is given in Figure 4.2. Finally, in Table 4.3, we provide examples of concrete

bounds for common special cases of Ada-FTRL and Ada-MD recovered by the generic

bounds in Table 4.2; see also Table 4.1.
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Algorithm / Regularizer Setting & Assumptions Regret / Expected Stochastic Bound

Online Gradient Descent
Ada-FTRL
q0 =

1
2η∥.∥

2
2, qt = pt = 0

Convex OO / SO
∥x∗∥2 ≤ R
E
{
∥gt∥22|xt

}
≤ G2

1
2ηR

2 + η
2TG

2

OO: RT ≤ RG
√
T for η = R

G
√
T

SO: RT ≤ RG/
√
T

Original bounds: Nemirovsky and Yudin [75], Warmuth and Jagota [107], and Zinkevich [111]
Optimality: Agarwal et al. [2]

Online Gradient Descent
Ada-MD
qt = 0, pt = β

2 ∥ · ∥
2
2

Strongly convex OO / SO
ft β-strongly-convex
E
{
∥gt∥22|xt

}
≤ G2

OO: RT ≤
∑T

t=1
G2

βt ≤
G2(1+log(T ))

β

SO: RT ≤ G2

βT (1 + log(T ))

Original bounds: Hazan and Kale [39] and Hazan et al. [40]
Optimality: Agarwal et al. [2]

Dual Averaging (DA)
Ada-FTRL
q0:t =

L+αt
2 ∥.∥

2
2

pt = 0

Convex smooth SO
f convex and L-smooth
E
{
∥σt∥22|xt

}
≤ σ2

∥x∗∥2 ≤ R

RT ≤ (L+αT−1)R
2

2 +D +
∑T

t=1
σ2

2αt−1

Using αt−1 =
σ
R

√
2t:

RT ≤ LR2+2D
2T +

√
2σR√
T

Original bound: Dekel et al. [24]
Suboptimality: Nemirovsky and Yudin [75]

AdaGrad - MD (diagonal)
p1:t =

1
2ηx

⊤(Q
1/2
1:t )x

Q
(j,j)
1:t =

∑t
s=1 g

2
s,j , qt = 0

Convex OO / SO
∥x− y∥∞ ≤ R, ∀x, y ∈ X

RT ≤ ( 1
2ηR

2 + η)
∑d

i=1

√∑T
t=1 g

2
t,i

Using η = R/
√
2:

RT ≤
√
2R
T E

{∑d
i=1 ∥g1:T,i∥2

}
Original bounds: Duchi et al. [26] and McMahan and Streeter [70]
Optimality: McMahan and Streeter [70]

AdaGrad - DA (full)
q0:t =

1
2ηx

⊤(Q
1/2
0:t )x

Q1:t =
∑t

s=1 gsg
⊤
s

Q0 = GI and pt = 0

Convex OO / SO
∥x∗∥2 ≤ R
∥gt∥2 ≤ G

RT ≤ G
η R

2 + ( 1ηR
2 + η)tr(Q1/2

1:T )
Using η = R:
RT ≤ GR

T + 2R
T E
{

tr(Q1/2
1:T )

}
Original bounds: Duchi et al. [26] and McMahan and Streeter [70]
Optimality: McMahan and Streeter [70]

Table 4.3: Concrete bounds for online optimization (OO) and stochastic optimization (SO)
derived from the generic bounds of Table 4.2; references are given to the original bounds
we recover, as well as to results showing their optimality or suboptimality. In all bounds
we assume H = Rd. For SO, x̂T is the average iterate x1:T or picked uniformly at random;
see the discussion before Section 4.2.1. For smooth optimization, D and σ are defined
as in Table 4.2, and RT := E{f(x̂T )− f(x∗)} denotes the stochastic optimization risk.
Derivations are straightforward, involving plugging in the parameters and/or applying
specific results. In particular, the second line uses the basic inequality

∑T
t=1(1/t) ≤

(1 + log(T )), the third line uses
∑T

t=1(1/
√
t) ≤ 2

√
T , and the fourth and fifth lines use,

respectively, Lemmas 4 and 10 of Duchi et al. [26].
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4.5 Composite-objective learning and optimization

Next, we consider the composite-objective online learning setting. In this setting, the

functions ft, from which the (local sub-)gradients gt are generated and fed to the algorithm,

comprise only part of the loss. Instead of RT (x
∗), we are interested in minimizing the

regret

R
(ℓ)
T (x∗) :=

T∑
t=1

ft(xt) + ψt(xt)− ft(x∗)− ψt(x∗) = RT (x
∗) +

T∑
t=1

ψt(xt)− ψt(x∗) ,

using the feedback gt ∈ δft(xt), where ψt : H → R are proper functions. The functions ψt
are not linearized, but are passed directly to the algorithm.

Naturally, one can use the qt regularizers to pass the ψt functions to Ada-FTRL and

Ada-MD. Then, we can obtain the exact same bounds as in Table 4.2 on the composite

regret R(ℓ)
T (x∗); this recovers and extends the corresponding bounds by Duchi et al. [25],

Duchi et al. [26], McMahan [69], and Xiao [109]. In particular, consider the following two

scenarios:

Setting 1: ψt is known before predicting xt. In this case, we run Ada-FTRL or

Ada-MD with qt = ψt+1 + q̃t, t = 0, 1, 2, . . . , T (where ψT+1 := 0). Thus, we have the

update

xt+1 ∈ argmin
x∈X

⟨g1:t, x⟩+ ψ1:t+1(x) + q̃0:t(x) + p1:t(x) , (4.10)

for Ada-FTRL, and

xt+1 ∈ argmin
x∈X

⟨gt, x⟩+ ψt+1(x) + q̃t(x) + Br1:t(x, xt) , (4.11)

for Ada-MD. Then, we have the following result.

Corollary 4.1. Suppose that the iterates x1, x2, . . . , xT+1 are given by the Ada-FTRL

update (4.10) or the Ada-MD update (4.11), and qt, pt, and rt satisfy Assumption 4.1 for

Ada-FTRL, or Assumption 4.2 for Ada-MD. Then, under the conditions of each section

of Corollaries 4.5 to 4.7, the composite regret R(ℓ)
T (x∗) enjoys the same bound as RT (x

∗),

but with
∑T

t=0 q̃t(x
∗)− q̃t(xt+1) in place of

∑T
t=0 qt(x

∗)− qt(xt+1).

Proof. By definition,
∑T

t=0 q̃t(x
∗) − q̃t(xt+1) − qt(x

∗) + qt(xt+1) =
∑T

t=1 ψt(xt) − ψt(x
∗).

Thus, R(ℓ)
T (x∗) = RT (x

∗) +
∑T

t=0 q̃t(x
∗) − q̃t(xt+1) − qt(x∗) + qt(xt+1). Upper-bounding

RT (x
∗) by the aforementioned corollaries completes the proof.
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Setting 2: ψt is revealed after predicting xt, together with gt. In this case, we

run Ada-FTRL and Ada-MD with functions q0 = q̃0, qt = ψt + q̃t, t = 1, 2, . . . , T , so that

xt+1 ∈ argmin
x∈X

⟨g1:t, x⟩+ ψ1:t(x) + q̃0:t(x) + p1:t(x) , (4.12)

for Ada-FTRL, and

xt+1 ∈ argmin
x∈X

⟨gt, x⟩+ ψt(x) + q̃t(x) + Br1:t(x, xt) , (4.13)

for Ada-MD. Then, we have the following result, proved in Appendix 4.B.

Corollary 4.2. Suppose that the iterates x1, x2, . . . , xT+1 are given by the Ada-FTRL

update (4.12) or the Ada-MD update (4.13), and qt, pt, and rt satisfy Assumption 4.1 for

Ada-FTRL, or Assumption 4.2 for Ada-MD. Also, assume that ψ1(x1) = 0 and the ψt
are non-negative. Finally, suppose that the ψt form a non-increasing sequence of functions,

that is, ψ1 ≥ ψ2 ≥ · · · ≥ ψT+1 := 0.14 Then, under the conditions of each section of

Corollaries 4.5 to 4.7, the composite regret R(ℓ)
T (x∗) enjoys the same bound as RT (x

∗), but

with
∑T

t=0 q̃t(x
∗)− q̃t(xt+1) in place of

∑T
t=0 qt(x

∗)− qt(xt+1).

Remark 4.5. In both settings, the functions ψt are passed as part of the regularizers qt.

Thus, if the ψt are strongly convex, less additional regularization is needed in Ada-FTRL

to ensure the strong convexity of r1:t because q0:t−1 will already have some strongly convex

components. In addition, in Ada-MD, when the ψt are convex, the Bpt terms in (4.9) will

be smaller than the Brt terms found in previous analyses of MD. This is especially useful

for implicit updates, as shown in the next section. This also demonstrates another benefit

of the generalized Bregman divergence: the ψt, and hence the pt, may be non-smooth in

general.

4.6 Implicit-update Ada-MD and non-linearized Ada-
FTRL

Other learning settings can be captured using the idea of passing information to the

algorithm using the qt functions. This information could include, for example, the curvature

of the loss. In particular, consider the composite-objective Ada-FTRL and Ada-MD, and
14This relaxes the assumption in the literature, e.g., by McMahan [69], that ψt = αtψ for some fixed,

non-negative ψ minimized at x1, and a non-increasing sequence αt > 0 (e.g., αt = 1); see also Setting 1.
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for t = 1, 2, . . . , T , let ℓt be a differentiable loss, ft = ⟨∇ℓt(xt), x−xt⟩, and ψt = Bℓt(·, xt).15

Then, ℓt = ft + ψt, gt = ∇ft(xt) = ∇ℓt(xt), and the composite-objective Ada-FTRL

update (4.12) is equivalent to

xt+1 ∈ argmin
x∈X

ℓ1:t(x) + q̃0:t(x) + p1:t(x) . (4.14)

Thus, non-linearized FTRL, studied by McMahan [69], is a special case of Ada-FTRL.

With the same ft, ψt, the composite-objective Ada-MD update (4.13) is equivalent to

xt+1 ∈ argmin
x∈X

ℓt(x) + q̃t(x) + Br1:t(x, xt) , (4.15)

so the implicit-update MD is also a special case of Ada-MD.

Again, combining Lemma 4.1 and Theorem 5.6 results in a compact analysis of these

algorithmic ideas. In particular, for both updates (4.14) and (4.15), the bounds of (4.25)

and (4.26) apply on the regret in ft. Then, moving the terms ψt(x∗) to the left turns each

bound to a bound on the regret in ℓt. Furthermore, the terms −ψt(xt+1) = −Bℓt(xt+1, xt)

that remained on the right-hand side can be merged with the −Br1:t(xt+1, xt) terms. Thus,

instead of r0:t, it is enough for r1:t + ℓt to be strongly convex w.r.t. the norm ∥ · ∥(t) (see

the proofs of Corollaries 4.5 to 4.7). This means that if ℓt are strongly convex, then no

further regularization is required: ℓ1:t is strongly convex, and we get back the well-known

logarithmic bounds for strongly-convex FTRL (Follow-The-Leader) and implicit-update

MD [40], [52], [54], [69], [82], [98]. In addition, as mentioned before, convexity of ℓt further

reduces the term Bpt in implicit-update MD.

Finally, note that multiple pieces of information can be passed to the algorithm through

qt. In particular, none of the above interfere with further use of another composite term

ϕt and obtaining regret bounds on ℓt + ϕt, as discussed in Section 4.5.

4.7 Adaptive optimistic learning & variational bounds

The goal of optimistic online learning algorithms [88], [90] is to obtain improved regret

bounds when playing against “easy” (i.e., predictable) sequences of losses. This includes

algorithms with regret rates that grow with the total “variation”, that is, the sum of the
15 For non-differentiable ℓt, let ft = ⟨gt, ·⟩ and ψt = Bℓt(·, xt) + ℓ′(xt; · − xt)− ⟨gt, ·⟩ to get the same

effect.
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norms of the differences between pairs of consecutive losses ft and ft+1 observed in the

loss sequence: the regret will be small if the loss sequence changes slowly [18].

Recently, Mohri and Yang [72] proposed an interesting comprehensive framework for

analyzing adaptive FTRL algorithms for predictable sequences. The framework has also

been extended to MD by Kamalaruban [50]. However, despite their generality, the regret

analyses of Mohri and Yang [72] and Kamalaruban [50] can be strengthened. Specifically,

the two analyses do not recover the variation-based results of Chiang et al. [18] for smooth

losses. In addition, their treatment of composite objectives introduces complications, e.g.,

only applies to Setting 1 of Section 4.5 where ψt is known before selecting xt.

The flexibility of the framework introduced in this paper allows us to alleviate these

and other limitations. In particular, we cast the Adaptive Optimistic FTRL (AO-FTRL)

algorithm of Mohri and Yang [72] as a special case of Ada-FTRL, and obtain a much

simpler form of Adaptive Optimistic MD (AO-MD) as a special case of Ada-MD. Then,

we strengthen and simplify the corresponding analyses, and recover and extend the results

of Chiang et al. [18]. Finally, building on the modularity of our framework, we obtain

an adaptive composite-objective algorithm with variational bounds that improves upon

the results of Chiang et al. [18], Kamalaruban [50], Mohri and Yang [72], Rakhlin and

Sridharan [88], and Rakhlin and Sridharan [90].

4.7.1 Adaptive optimistic FTRL

Consider the online optimization setting of Section 4.4 (Assumption 4.3). Suppose that

the losses f1, f2, . . . , fT satisfy Assumption 4.5 (e.g., they are convex), and the sequence of

points xt+1, t = 0, 1, 2, . . . , T is given by

xt+1 ∈ argmin
x∈X

⟨g1:t + g̃t+1, x⟩+ p1:t(x) + q̃0:t(x) ,

where g̃t, t = 1, 2, . . . , T + 1, is any sequence of vectors in H. That is, we run Ada-FTRL,

but we also incorporate g̃t+1 as a “guess” of the future loss gt+1 that the algorithm will

suffer. Mohri and Yang [72] refer to this algorithm as AO-FTRL.

It is easy to see that AO-FTRL is a special case of Ada-FTRL: Define g̃0 := 0,16 and
16 This is different from the restriction in Mohri and Yang [72] that g̃1 be 0; we do not require that

restriction. In particular, we allow x1 to depend on g̃1, which can be arbitrary.
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for t = 0, 1, . . . , T , let qt = q̃t + ⟨g̃t+1 − g̃t, ·⟩. Then, q0:t = q̃0:t + ⟨g̃t+1, ·⟩, so we have

xt+1 ∈ argmin
x∈X

⟨g1:t, x⟩+ p1:t(x) + q0:t(x) ,

which is the Ada-FTRL update with this specific choice of qt. Thus, the exact same

manipulations as in Corollary 4.5 give the following theorem, proved in Appendix 4.C:

Theorem 4.2. If the losses satisfy Assumption 4.5, and the regularizers q0 and pt, qt, t =

1, 2, . . . , T , satisfy Assumptions 4.1 and 4.8, then the regret of AO-FTRL is bounded as

RT (x
∗) ≤

T−1∑
t=0

(q̃t(x
∗)− q̃t(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt)) +

T∑
t=1

1

2
∥gt − g̃t∥2(t),∗ . (4.16)

This bound recovers Theorems 1 and 2 of Mohri and Yang [72]. Similarly, one could

prove parallels of Corollaries 4.6 and 4.7 for AO-FTRL. Then, the modularity property

allows us (as we do in Section 4.7.4) to apply the composite-objective technique of

Section 4.5 and recover Theorems 3-7 of Mohri and Yang [72] (and hence their corollaries).

Indeed, the resulting analysis simplifies and improves on the analysis of Mohri and Yang

[72] in several aspects: we do not need to separate the cases for FTRL-Prox and FTRL-

General, we naturally handle the composite objective case for Settings 1 and 2 while

avoiding any complications with proximal regularizers, and do not lose the constant 1/2

factor. Finally, Theorem 4.1 allows us to improve on the results of Chiang et al. [18], as

we show in Section 4.7.3.

4.7.2 Adaptive optimistic MD

Interestingly, we can use the exact same assignment qt = q̃t + ⟨g̃t+1 − g̃t, ·⟩ in Ada-MD.

This results in the update

xt+1 ∈ argmin
x∈X

⟨gt + g̃t+1 − g̃t, x⟩+ q̃t(x) + Br1:t(x, xt) .

Applying the same argument as in Theorem 4.2, one can show that this optimistic MD

algorithm enjoys the regret bound of (4.16) with the pt(x∗) − pt(xt) terms replaced by

Bpt(x∗, xt). This gives an optimistic MD algorithm with only one projection in each round;

all other formulations [18], [50], [88], [90] require two MD steps in each round. This

new formulation has the potential to greatly simplify the previous analyses of variants of

optimistic MD. In particular, handling implicit updates or composite terms is a matter of
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including them in q̃t. Especially, unlike Kamalaruban [50], we can handle Setting 2 in the

exact same way as we do in the AO-FTRL case (see Section 4.7.4). Further exploration of

the properties of this new class of algorithms is left for future work.

4.7.3 Variation-based bounds for online learning

Suppose that the losses ft are differentiable and convex, and define f0 := 0. For any norm

∥ · ∥, we define the total variation of the losses in ∥ · ∥2∗ as

D∥·∥ :=
T∑
t=1

sup
x∈X
∥∇ft(x)−∇ft−1(x)∥2∗ . (4.17)

Chiang et al. [18] use an optimistic MD algorithm to obtain regret bounds of order O(
√
D2),

where D2 = D∥·∥2 , for linear as well as smooth losses.

If the losses are linear, that is, ft = ⟨gt, ·⟩, then Theorem 4.2 immediately recovers

the result of Chiang et al. [18, Theorem 8]. In particular, let q̃0 = (1/2η)∥.∥22, and for

t = 1, 2, . . . , T , let pt = q̃t = 0, ∥.∥2(t) = η∥.∥22, and g̃t = gt−1. Then (4.16) gives the regret

bound (η/2)∥x∗∥22 + (1/(2η))D2. If ∥x∥2 ≤ 1 and we set η based on D2 (as Chiang et al.

assume), we obtain their O(
√
D2) bound.

If the losses are not linear but are L-smooth, then by the combination of Lemma 4.1

and Theorem 4.1, we still obtain
√
D∥·∥-bounds, as Chiang et al. [18, Theorem 10] also

obtain for D2. This is because, unlike the analysis of Mohri and Yang [72], we retain the

negative terms −Br1:t(xt+1, xt) (essentially having the same role as the Bt terms of [18])

in the regret bound. Combined with ideas from Lemma 13 of [18], this gives the desired

bounds in terms of D∥·∥, proved in Appendix 4.C:

Theorem 4.3. Consider the conditions of Theorem 4.2, and further suppose that the

losses ft are convex and L-smooth w.r.t. a norm ∥ · ∥. For t = 1, 2, . . . , T + 1, let ηt > 0,

and suppose that Assumption 4.8 holds with ∥ · ∥2(t) = ηt∥ · ∥2. Further assume that q0 ≥ 0,

pt, qt ≥ 0, t ≥ 1, and ηtηt+1 ≥ 8L2, t = 1, 2, . . . , T . Then, AO-FTRL with g̃t = gt−1 satisfies

RT (x
∗) ≤ q̃0:T (x

∗) + p1:T (x
∗) + 2

T∑
t=1

1

ηt
max
x∈X
∥∇ft(x)−∇ft−1(x)∥2∗ . (4.18)

Letting ηt = η =
√
D∥·∥, and q̃0 = η∥ · ∥2, q̃t, pt = 0, t ≥ 1, generalizes the O(

√
D2)

bound of Chiang et al. [18] to any norm (under the same assumption they make, that
70



D∥·∥ ≥ 8L2). In the next section, we provide an algorithm that does not need prior

knowledge of D∥·∥.

4.7.4 Adaptive optimistic composite-objective learning with vari-
ational bounds

Next, we provide a simple analysis of the composite-objective version of AO-FTRL, and

obtain variational bounds in terms of D∥·∥ for composite objectives with smooth ft. We

focus on Setting 2; similar results are immediate for Setting 1. Consider the update

xt+1 ∈ argmin
x∈X

⟨g1:t + g̃t+1, x⟩+ ψ1:t(x) + p1:t(x) + q̃0:t(x) , (4.19)

that is, the composite-objective AO-FTRL algorithm. Then we have the following corollary

of Theorem 4.2.

Corollary 4.3. Suppose that ψt, t = 1, 2, . . . , T , satisfy the conditions of Corollary 4.2, and

q̃0 and pt, q̃t, t ≥ 1, are non-negative. Let q0 = q̃0 + ⟨g̃1, ·⟩ and qt = q̃t + ψt + ⟨g̃t+1 − g̃t, ·⟩.

Suppose that q0, pt, qt, t ≥ 1 satisfy Assumptions 4.1 and 4.8, and ft, t ≥ 1 satisfy

Assumption 4.5. Then, composite-objective AO-FTRL (update (4.19)) satisfies

R
(ℓ)
T (x∗) ≤ q̃0:T−1(x

∗) + p1:T (x
∗) +

T∑
t=1

1

2
∥gt − g̃t∥2(t),∗ .

Proof. Starting as in Corollary 4.2, defining g̃0 = 0, and noting that 0 = q0 − q̃0 − ⟨g̃1, ·⟩,

R
(ℓ)
T (x∗) ≤ RT (x

∗) +
T∑
t=0

qt(xt+1)− q̃t(xt+1) + q̃t(x
∗)− qt(x∗)− ⟨g̃t+1 − g̃t, xt+1 − x∗⟩ .

Proceeding as in Theorem 4.2 completes the proof.

The bounds of Mohri and Yang [72] for Setting 2 correspond to the non-proximal FTRL

case. As such, one has to set the step-size sequences according to the Dual-Averaging

AdaGrad recipe (c.f. Table 4.1), which requires an additional regularization of q̃0 =
√
δ∥·∥22.

In contrast, in FTRL-Prox, q̃0 = 0. This δ value makes Dual-Averaging AdaGrad non-

scale-free, while FTRL-Prox is scale-free (i.e., the xt are independent of the scaling

of ft). Our analysis avoids this problem by the early separation of the proximal (pt)

and non-proximal regularizers (qt) in Ada-FTRL. In particular, pt, q̃t in Corollary 4.3

can be set as q̃t = 0 and pt =
ηt−ηt−1

2
∥x − xt∥2 with ηt = η

√∑t
s=1 ∥gs − g̃s∥2∗, η > 0 for
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t = 1, 2, . . . , T . This gives composite-objective AO-FTRL-Prox, a scale-free adaptive

optimistic algorithm for Setting 2.

In addition, using Theorem 4.3, we can obtain a variational bound for composite-

objective optimistic FTRL-Prox (proved in Appendix 4.C), which was not available

through the analysis of Mohri and Yang [72] even under Setting 1:

Corollary 4.4. Let ψt, t = 1, 2, . . . , T , be convex and satisfy the conditions of Corollary 4.2.

Further assume that ft are convex and L-smooth w.r.t. some norm ∥ · ∥. Suppose that

X is closed, and let R2 = supx,y∈X ∥x − y∥2 < +∞ be the diameter of X measured in

∥ · ∥. Define η = 2/R. Suppose we run composite-objective AO-FTRL (update (4.19))

with the following parameters: q̃0 = 0, and for t = 1, 2, . . . , T , g̃t = gt−1, q̃t = 0, and

pt =
ηt−ηt−1

2
∥x− xt∥2, where η0 = 0 and ηt = 4RL2 + η

√∑t
s=1 ∥gs − g̃s∥2∗ for t ≥ 1. Then,

R
(ℓ)
T (x∗) ≤ 2R3L2 +R + 2R

√
2D∥·∥ = O

(
R
√
D∥·∥

)
. (4.20)

Note that the learning rate ηt is bounded from below (by 4RL2), which is essential

in the algorithm to achieve a combination of the best properties of Mohri and Yang [72],

Chiang et al. [18], and Rakhlin and Sridharan [88] and Rakhlin and Sridharan [90]: First,

like Mohri and Yang [72], we allow the use of composite-objectives. Second, similarly to

Chiang et al. [18] (but unlike [72], [88], [90]) our bound applies to the variation of general

convex smooth functions, and is still optimal when L = 0 (e.g., Corollary 2 of [90]). Third,

we do not need the knowledge of D∥·∥ (required by [18]) to set the step-sizes, and avoid the

regret penalty of using a doubling trick (as done by Rakhlin and Sridharan [88]). Fourth,

in the practically interesting case of a composite L1 penalty (ψt = αt∥ · ∥1), FTRL-Prox,

which is the basis of our algorithm, gives sparser solutions [69] than MD, which is the

basis of the algorithms of Chiang et al. [18] and Rakhlin and Sridharan [90]. Fifth, when

L = 0, the algorithm is scale-free (unlike [72] and [88]). Finally, the results apply to the

variation measured in any norm. Table 4.4 provides a summary of this comparison.

4.8 Variance Reduction with Composite Objectives

In this section, we show that our methods are also directly applicable to stochastic

variance reduction methods with composite objectives. We provide new variance-reduced

algorithms for stochastic optimization, based on Ada-FTRL and Ada-MD. In contrast,
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Algorithm ψt ̸= 0
Non-linear
variations

Needs doubling trick
or knowledge of D∥·∥

Scale-free

Chiang et al. [18] MD No Yes Uses a bound on D∥·∥ Yes

Rakhlin and
Sridharan [88] FTRL No No Uses doubling trick No

Rakhlin and
Sridharan [90] MD No No Not needed No

Mohri and Yang [72] FTRL Yes No Not needed No

Kamalaruban [50] MD Yes No Not needed Yes

Corollary 4.4 FTRL Yes Yes Not needed Yes

Table 4.4: Comparison of the adaptive, optimistic and variational bounds obtained in this
paper vs previous work. "Non-linear variations" refers to whether the bounds are given in
terms of gradient variations only (linear) or in terms of D∥·∥.

to our knowledge, the algorithms in the literature have been limited to different variants

of (typically unconstrained) MD. In Section 4.2.1, however, we separated the effect of

the algorithm (Ada-FTRL vs. Ada-MD) from the effect of the gradient estimation

technique (variance-reduced estimates vs. the standard stochastic gradient). Hence, our

results directly provide Ada-MD and Ada-FTRL versions of SVRG and its variants,

also allowing constrained optimization (with projections). This is important in practice

because, as mentioned in Section 4.7.4, FTRL with a composite L1 penalty results in

sparser models than MD. Finally we present an error bound for our methods that covers

stochastic variance-reduced gradient methods such as SVRG [43] and SVRG++ [4].

Setting: We focus on the following composite-objective optimization problem:

find x∗ = argmin
x∈X

ℓ(x) := f(x) + ϕ(x) , (4.21)

where ϕ : X → R is a convex function, f = Eξ∼PΞ
[F (·, ξ)], and for all ξ ∈ Ξ, F (·, ξ) : H →

R is convex, differentiable and L-smooth w.r.t. the Hilbert-space norm, which we denote

by ∥ · ∥. In addition, we assume that we have access to two types of gradient oracles:

an exact oracle which returns f ′(x) at any point x ∈ X and a stochastic oracle which,

given a random element ξ ∼ PΞ independent of x, returns F ′(x, ξ) (where the derivative

is taken w.r.t. the first variable, x). An important special case, typically the focus of

previous work, is when f = 1
n

∑n
i=1 fi, where each fi(n) is differentiable and the exact and
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Algorithm 3: Generic SVRG
Input: Base: An instance of Ada-FTRL or Ada-MD; m1,m2, . . . : Epoch

lengths
1 x1 ← the first iterate of Base
2 x̃← x1.
3 for s← 1, 2, . . . do
4 for t← m1:s−1 + 1 . . .m1:s do
5 Sample ξt ∼ PΞ independently of xt, x̃
6 gt ← F ′(xt, ξt)− F ′(x̃, ξt) + f ′(x̃)
7 Feed Base with the gradient estimate gt
8 xt+1 ← the next iterate of Base
9 end for

10 Option I: x̃←
∑ms

j=1 xm1:s−1+j

11 Option II: Select x̃ from xm1:s−1+j, j = 1, 2, . . . ,ms, with equal probability
12 end for

stochastic oracles work, respectively, by calculating the gradient at x on all fi’s or on a

randomly selected fi.

In Algorithm 3, we provide an SVRG meta-algorithm, which receives an instance of

Ada-FTRL and Ada-MD as the base algorithm, and feeds it with variance-reduced

gradient estimates. That is, we run Ada-FTRL and Ada-MD, but feed them with the gt
given by Algorithm 3. Then, we can use the results of Section 4.4 to obtain a risk bound

for Algorithm 3.

In particular, suppose that the regularizers used by Base satisfy Assumption 4.8’ with

the norms ∥ · ∥(t) =
√
c∥ · ∥ for some c > 0 (recall that ∥ · ∥ is the Hilbert-space norm).

Given the setting of this section, Assumption 4.6 also holds with the norm
√
L∥ · ∥. Finally,

by construction and the tower rule for expectation, E{gt|xt} = f ′(xt). Thus, we are in

the “Stochastic Optimization” setting with smooth, convex objectives, and Corollary 4.7

applies. However, thanks to the special construction of gt, we can further bound the ∥σt∥2∗
terms in the corollary, where σt = gt − f ′(xt) is the error of the gradient estimate. This is

shown by the next lemma, which is standard in the variance-reduction literature (see, e.g,

Lemma A.2 of [4]).

Lemma 4.2. Consider Algorithm 3 in the optimization setting above. Let x∗ be defined

as in (4.21), and let x̃s denote the value of x̃ used in computing gt. Then,

E
{
∥σt∥2

}
≤ 4L E{ℓ(xt)− ℓ(x∗) + ℓ(x̃s)− ℓ(x∗)} .
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Using this lemma, we can prove the following performance guarantee for Algorithm 3

(the proof is relegated to Appendix 4.D).

Theorem 4.4 (Composite-objective variance reduction). Let Algorithm 3 be used with

epoch lengths m1, . . . ,mS, and let b > 0 be such that ms+1 ≤ bms for all s = 1, 2, . . . , S.

Let c > 2b+ 2 be arbitrary, and suppose that Base is either Ada-FTRL with regularizers

q0 = (1 + c)L
2
∥ · ∥2 and qt = ϕ, pt = 0 for t ≥ 1, or Ada-MD with regularizers q0 = 0,

p1 =
(1+c)L

2
∥ · ∥2, and qt = ϕ, pt+1 = 0 for t ≥ 1. Furthermore, let R be an upper bound

on 1
2
∥x1 − x∗∥2 for Ada-MD and on 1

2
∥x∗∥2 for Ada-FTRL. Then, after T = m1:S

iterations, the estimate x̄T = 1
T

∑T+1
t=2 xt satisfies

E{ℓ(x̄T )− ℓ(x∗)} ≤
2(1 + b+m1) (ℓ(x1)− ℓ(x∗)) + c(c+ 1)LR

T (c− 2b− 2)
.

Furthermore, letting c = 2b + 2, after S epochs, the estimate x̃′S = 1
mS

∑mS+1
j=2 xm1:s+j

satisfies

E{ℓ(x̃′S)− ℓ(x∗)} ≤
(1 + b+m1) (ℓ(x1)− ℓ(x∗)) + (2b2 + 5b+ 3)LR

b mS

.

Remark 4.6. This theorem recovers the convergence rates for vanilla SVRG (first part,

with ms = m), as well as SVRG++ (second part, with b = 2).

Remark 4.7. Instead of Lemma 4.2 for convex functions, one could use Lemma 5.2 of

Allen-Zhu and Yuan [4] to extend our results to strongly-convex sums of non-convex smooth

functions, and also to extend the results of Allen-Zhu and Yuan [4] for this family of

problems to FTRL(-Proximal) algorithms. The details are left for future work.

4.9 Application to non-convex optimization

In this section we examine how far our approach can lead in solving non-convex optimization

problem, and we identify some interesting classes of non-convex loss functions for which

we can obtain performance guarantees without any extra effort.

Central to this extension is the decomposition of assumptions in our analysis: we are

not using the convexity of ft in Lemma 4.1 or Theorem 4.1, but only at the very last stage

of the analysis, where convexity can ensure that Assumption 4.5 holds. Thus, the analysis

easily extends to non-convex optimization problems where Assumption 4.5 either holds
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or could be replaced by another technique at the final stage of the analysis. In the rest

of this section, we explore such classes of non-convex problems, which are also related to

the Polyak-Łojasiewicz (PL) condition used in the non-convex optimization and learning

community. For background and a summary of related work, consult Karimi et al. [51].

4.9.1 Stochastic optimization of star-convex functions

First, we explore the class of non-convex functions for which Assumption 4.5 directly

holds. As it turns out, this is a much larger class of functions than convex functions. In

particular, consider the so-called “star-convex” functions [79]:17

Definition 4.2 (Star-convex function). A function f is star-convex at a point x∗ if and

only if x∗ is a global minimizer of f , and for all α ∈ [0, 1] and all x ∈ dom(f):

f(αx∗ + (1− α)x) ≤ αf(x∗) + (1− α)f(x) . (4.22)

A function is said to be star-convex when it is star-convex at some of its global minimizers.

The name “star-convex” comes from the fact that the sub-level sets Lβ = {x : f(x) ≤ β}

of a function f that is star-convex at x∗ are star-shaped with center x∗ (recall that a set

U is star-convex with center x if for any y ∈ U , the segment between x and y is included

in U). However, note that there are functions whose sub-level sets are star-convex that

are themselves not star-convex. In particular, functions that are increasing along the

rays (IAR) started from their global minima have star-shaped sub-level sets and vice

versa, but some of these functions (e.g., f(x) =
√
|x|, x ∈ R) is clearly not star-convex.

Recall that quasi-convex functions are those whose sub-level sets are convex. In one

dimension a star-convex function is thus also necessarily quasi-convex. However, clearly,

there are star-convex functions (such as x ↦→ |x|I{|x| ≤ 1}+ 2|x|I{|x| > 1}, x ∈ R) that

are not convex and in multiple dimensions there are star-convex functions that are not

quasi-convex (e.g., x ↦→ ∥x∥2g( x
∥x∥22

) where g(u) is, say, the sine of the angle of u with the

unit vector e1).

Star-convex functions arise in various optimization settings, often related to sums of

squares [58], [79]. It is easy to see from the definitions that the set of star-convex functions
17We modify the definition so that it is relative to a given fixed global minimizer as this way we capture

a larger class of functions and this is all we need.
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Figure 4.3: Star-convex functions: (a) z defined on the unit circle and (b) its star-convex
extension to two dimensions. (c) The linear approximation of a star-convex function fitted
at any point is a lower bound at the minimum.

is closed under non-singular affine domain transformations, addition (of functions having

the same center) and multiplication by non-negative constants. Further, for x ∈ Rd,

x ↦→
∏

i |xi|pi is star-convex (at zero) whenever
∑

i pi ≥ 1. It is also easy to see that for

any positive function z defined on the unit sphere, ∥x∥z(x/∥x∥) is star-convex at 0 (see

Figure 4.3a,b). For further properties and examples see Lee and Valiant [58].

We can immediately see that Assumption 4.5 holds for star-convex functions:

Lemma 4.3 (Non-negative Bregman divergence for star-convex functions). Let f be a

directionally differentiable function with global optimum x∗. Then, f is star-convex at x∗

if and only if for all x ∈ H,

Bf (x∗, x) ≥ 0 .

The lemma essentially states that the linear approximation of a star-convex function f

at any point x is a lower bound of the function at x∗. This is illustrated in Figure 4.3c.

Proof. Both directions are routine. For illustration we provide the proof of the forward direc-

tion. Assume without loss of generality that x∗ = 0 and f(x∗) = 0. Then star-convexity at

x∗ is equivalent to having f(αx) ≤ αf(x) for any x and α ∈ [0, 1]. Further, Bf (x∗, x) ≥ 0

is equivalent to −f(x) − f ′(x;−x) ≥ 0. Now, f ′(x;−x) = limα↓0
f(x+α(−x))−f(x)

α
. Un-

der star-convexity, f(x + α(−x)) = f((1 − α)x) ≤ (1 − α)f(x). Hence, f ′(x;−x) ≤

limα↓0
(1−α)f(x)−f(x)

α
= −f(x).

Thus, Corollaries 4.6 and 4.7 apply to star-convex functions. In other words:
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• For stochastic optimization of directionally-differentiable star-convex functions in

Hilbert spaces, Ada-FTRL and Ada-MD converge to the global optimum with the

same rate as they converge for convex functions (including fast rates due to other

assumptions, e.g., smoothness).

Of course, a similar result holds for the online setting, too, but in this case the assumption

that each ft is star-convex w.r.t. the same center x∗ becomes restrictive.

Remark 4.8. Since the rate of regret depends on the norm of the gradients gt, to get fast

rates one needs to control these norms. This is trivial if f is Lipschitz-continuous. However,

some star-convex functions are not Lipschitz, even arbitrarily close to the optima (e.g.,

f(x, y) = (
√
|x|+

√
|y|)2). For such functions, Lee and Valiant [58] propose alternative

methods to gradient descent. However, it seems possible to control the norms in these

settings using additional regularization (as in the normalized gradient descent method);

see, e.g., the work of Hazan et al. [41], and the recent work of Levy [59]. Exploring this

idea is left for future work.

4.9.2 Beyond star-convex functions

Inspecting our proofs we may notice that Assumption 4.5 is unnecessarily restrictive: to

maintain the same rate of growth for regret, it suffices for the sum of Bregman divergences

to grow with the same rate as the rest of the bound, rather than being negative and

hence dropped. This extends all of our results to another interesting class of non-convex

functions which generalize star-convexity:

Definition 4.3 (τ -star-convexity, Hardt et al. [37]). Let f be a directionally differentiable

function f with global optimum x∗. Then f is τ -star-convex18 on a set X at x∗ ∈ H if

there is τ > 0 such that for all x ∈ X ∩ dom(f),

τ(f(x)− f(x∗)) ≤ −f ′(x;x∗ − x) . (4.23)

Note that by Lemma 4.3, star-convexity corresponds to the case when τ = 1. Hardt et

al. [37] demonstrated that an objective function that arises naturally in the identification of
18 Hardt et al. [37] define the same concept under τ -weakly-quasi-convexity. However, per our previous

discussion, it appears more appropriate to call this property τ -star-convexity. Especially since when τ = 1
we get back star-convexity, which, as we have seen is not a weakening of quasi-convexity.
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certain class of linear systems is τ -star-convex with some τ > 0. For differentiable functions,

(4.23) is equivalent to f(x)−f(x∗) ≤ 1
τ
⟨∇f(x), x−x∗⟩, so it is a simple generalization of the

linear upper bound one typically uses to reduce online convex optimization to online linear

optimization. Therefore, any regret bound that is proved via upper bounding linearized

losses automatically extends to τ -star-convex functions. However, in general, it may require

substantial work to identify what assumptions are used exactly in proving an upper bound

on the linearized loss (e.g., [37] reproved the convergence guarantees for smooth SGD). The

next lemma shows that our techniques can automatically separate the effects of different

assumptions and provide fast regret rates under appropriate circumstances.

Lemma 4.4 (Basic regret bound under τ -star-convexity). Let f be locally directionally

differentiable and τ -star-convex on a set X at x∗, f1 · · · = fT = f . Then, for all xt ∈

X ∩ dom(ft) and gt ∈ H (t = 1, 2, . . . , T ),

RT (x
∗) ≤ 1

τ

(
R+
T (x

∗) +
T∑
t=1

⟨gt, xt − xt+1⟩+ δt

)
.

Proof. The proof can be derived from the right-hand side of (4.3), but a shorter direct

proof is also available: Add and subtract ⟨gt, x∗ − xt⟩ to the right-hand side of (4.23).

Noticing that −f ′(xt;x
∗ − xt) + ⟨gt, x∗ − xt⟩ = δt, summing up and using the definition

R+
T (x

∗) =
∑

t⟨gt, xt+1 − x∗⟩ gives the result.

Now since the regret was bounded through the expression in the parentheses of the

previous display, Corollaries 4.6 and 4.7 apply. In other words:

• For stochastic optimization of directionally-differentiable τ -star-convex functions

in Hilbert spaces, Ada-FTRL and Ada-MD enjoy 1/τ -times the same regret as

when they are applied to linearized loss functions, including fast rates due to other

assumptions, e.g., smoothness.

In the convex case the strong convexity of the losses (Assumption 4.7) implied that

their Bregman divergences are non-negative (Assumption 4.5). The natural generalization

of this leads to the following definition:

Definition 4.4 (τ -star-strong-convexity). Let f , r be directionally differentiable and

let x∗ be a global minimum of f . Then, f is τ -star-strongly-convex w.r.t. r if S :=
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dom(f) ∩ dom(r) is non-empty and there exists τ > 0 such that for all x ∈ S and some

minimizer x∗ of f ,

τ(f(x)− f(x∗)) ≤ −f ′(x;x∗ − x)− Br(x∗, x) . (4.24)

Replacing τ -star-convexity with τ -star-strong-convexity gives the following analogue of

Lemma 4.4:

Lemma 4.5 (Basic regret bound under τ -star-strong-convexity). Let f , r be locally

directionally differentiable. Assume that f is τ -star-strongly-convex w.r.t. r at x∗ on a set

X . Then, for all xt ∈ X ∩ dom(ft) ∩ dom(r) and gt ∈ H (t = 1, 2, . . . , T ),

RT (x
∗) ≤ 1

τ

(
R+
T (x

∗) +
T∑
t=1

⟨gt, xt − xt+1⟩+ δt − Br(x∗, xt)

)
.

Proof. The proof follows the same step as that of Lemma 4.4, except that we need to use

(4.24) instead of (4.23).

It follows that the same manipulations as in Corollaries 4.6 and 4.7 imply:

• For stochastic optimization of directionally-differentiable τ -star-strongly-convex

functions in Hilbert spaces, Ada-FTRL and Ada-MD converge to the global

optimum with 1/τ -times the same rate as they converge for strongly convex functions.

It appears that τ -star-strong-convexity is related to the Polyak-Łojasiewicz (PL)

inequality. Recall that a differentiable function f satisfies the PL inequality with constant

µ > 0 if

µ(f(x)− f(x∗)) ≤ 1

2
∥∇f(x)∥22 ,

where x∗ is a global minimizer of f . Proposed independently and simultaneously by [87]

and [64], the PL inequality appears to play a fundamental role in the study of incremental

gradient algorithms (see [51] and the references therein). As star-convexity, the PL

inequality can also be satisfied by non-convex functions, partly explaining the prominent

role it plays in the analysis of gradient methods. We can see that τ -star-strong-convexity

implies the PL inequality when r is the squared Euclidean norm:
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Lemma 4.6 (PL is implied by star-strong-convexity). Let r(x) = 1
2
∥x∥22 and let f be

differentiable. If f is τ -star-strongly-convex w.r.t. r, then f also satisfies the PL inequality

with µ = τ .

Proof. Assume that f satisfies (4.24). We have

−f ′(x;x− x∗) = ⟨∇f(x), x∗ − x⟩ ≤ 1

2

(
∥∇f(x)∥2 + ∥x∗ − x∥2

)
,

where the second step follows from the Fenchel-Young inequality. As it is well known,

Br(x, y) =
1
2
∥x− y∥2. Thus, (4.24) implies that τ(f(x)− f(x∗)) ≤ 1

2
∥∇f(x)∥22.

Finally, note that the results can be combined with other algorithmic ideas, such as

implicit-update and non-linearized learning; the same extensions of Corollaries 4.6 and 4.7,

as discussed in Section 4.6, apply here as well. We can also do the same manipulations to

obtain results similar to Section 4.5 for composite-objective non-convex learning. Note,

however, that in this case, the star-convexity assumptions must hold with x∗ being the

minimizer of ℓ, not f , which makes them more restrictive than the non-composite case.

We leave it for future work to handle composite-objective learning of star-convex functions

in full generality.

We end this section by noting that there are interesting classes of non-convex problems

other than the PL class; see, e.g., Karimi et al. [51]. A direction for future work is to

explore whether these classes relate to specific conditions on Bregman divergences, and

whether similar convergence results for general adaptive optimization are also possible

under these function classes.

4.10 Discussion

In this section, we compare the results obtained in this paper to the previous attempts at

unified analysis of adaptive FTRL and MD. A starting point of our work was the unifying

treatment of online learning algorithms by McMahan [69], as well as the generalized

adaptive FTRL analysis of Orabona et al. [82].

4.10.1 Comparison to the analysis of McMahan [69]

McMahan [69] also studied a unified, modular analysis of MD and FTRL algorithms (albeit

with different modules), assuming that the regularizers pt, qt, rt are convex, non-negative,
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and satisfy Assumption 4.8. Ada-FTRL and Ada-MD encompass all of the algorithms

they considered. In particular, their Theorems 1 and 2 are special cases of Corollary 4.5

(recall that non-linearized FTRL, and in particular strongly-convex FTRL, are also special

cases of Ada-FTRL; see Section 4.6). In addition, our analysis applies more generally

to infinite-dimensional Hilbert spaces, our presentation of Ada-FTRL encompasses a

larger set of algorithms, the relaxed assumptions under which we analyzed Ada-FTRL

and Ada-MD remove certain practical limitations that existed in the work of McMahan

[69], and our analysis captures a wider range of learning settings. We discuss these

improvements below.

Importantly, McMahan [69] also provides a reduction from MD to a version of FTRL-

Prox. This, in particular, illuminates important differences between MD and FTRL in

composite-objective learning. We refer the reader to Section 6 of their paper. We decided

to keep the presentation of the two algorithms separate to facilitate the relaxation of the

assumptions on the regularizers; see Assumptions 4.1 and 4.2 and the discussion below.

Relaxing the assumptions on the regularizers

A central part of the modularity of our analysis comes from the flexibility of Assumptions 4.1

and 4.2 on the regularizers of Ada-FTRL and Ada-MD. In particular, unlike McMahan

[69], we do not assume that the individual regularizers pt, qt, rt are non-negative or convex.

This relaxation provides two benefits. First, with the non-negativity restriction removed,

we can add arbitrary, possibly linear, components to the regularizers. As we showed above,

this resulted in a simple recovery and analysis of optimistic FTRL and a new class of

optimistic MD algorithms (Section 4.7), as well as a straightforward recovery of implicit

and non-linearized updates, even for non-convex functions (Section 4.6).

Second, with the convexity assumption removed, Ada-FTRL and Ada-MD can

accommodate algorithmic ideas such as non-decreasing regularization. For example,

AdaDelay [101], an instance of Ada-MD for distributed delayed stochastic optimization,

uses r1:t = ηt∥ · ∥2, but ηt is not guaranteed to be non-decreasing, that is, rt could be

negative and non-convex (while r0:t still remains convex for all t). Now, note that MD and

FTRL-Prox are closely related. Particularly, if the pt are themselves Bregman divergences

(as in proximal AdaGrad), then FTRL-Prox and MD have identical regret bounds.

Therefore, the techniques of Sra et al. [101] for controlling the regularizer terms in the
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bound could be naturally applied, almost with no modification, to an FTRL-Prox version

of AdaDelay. This extension to FTRL-Prox is interesting since, as mentioned before,

composite FTRL-Prox with an L1 penalty tends to produce sparser results compared to

Ada-MD ([68], [69], Section 6.2). Thus, while this variant of FTRL-Prox is a special

case of Ada-FTRL (e.g., Corollary 4.5 applies), it was not clear how to analyze this

algorithm under the assumptions made by McMahan [69]. We leave the detailed study of

this extension for future work.

Finally, the choice to separate the proximal and non-proximal regularizers in Ada-

FTRL provides certain conveniences. In particular, the qt terms can take the role of

incorporating information (such as composite terms) into Ada-FTRL, while the proximal

part pt remains intact. This precludes the need to provide a separate analysis for FTRL-

Prox every time the structure of information changes (e.g., when implicit updates are

added). Thus, unlike Section 5 of McMahan [69], we did not need to provide a separate

analysis (their Theorem 10) for composite-objective FTRL-Prox. We also avoided the

complications with composite optimistic FTRL-Prox as in Mohri and Yang [72]; see

Section 4.7.

The regret decomposition and analysis of new learning settings

In comparison to McMahan [69], the analysis we provided exhibits much flexibility across

learning settings. In particular, the regret decomposition given by Lemma 4.1 enabled us

to accommodate a wide range of learning settings, and separate the effect of the learning

setting from the forward regret of the algorithm. Building on this, for example, we provided

a clean analysis of variational and variance-dependent bounds for smooth losses (and

generalized them to adaptive algorithms). In addition, by encapsulating the effect of loss

convexity into Assumption 4.5, we could generalize the analysis to certain non-convex

classes.

4.10.2 Comparison to the analysis of Orabona et al. [82]

Orabona et al. [82] study a special case of Ada-FTRL where Assumption 4.8 holds. The

main result of Orabona et al. [82], that is, their Lemma 1, can be thought of as playing

the same role as (4.25). We emphasize, however, that their Lemma 1 is a quite general

result. For example, with a few algebraic operations we could recover a special case of
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Theorem 4.1 (including also the case of pt ≠ 0) from their Lemma 1, by setting zt = 0 and

moving the linear components to their ft functions. Nevertheless, our analysis extends the

work of Orabona et al. [82] to infinite-dimensional Hilbert-spaces and, more importantly,

to Ada-MD. Furthermore, we demonstrated a principled way of mixing algorithmic ideas

and incorporating information from the learning setting into FTRL and MD using the qt
functions, which in turn led to the discovery of the single-projection optimistic MD family

of algorithms. Finally, the comments of Section 4.10.1 apply.

Importantly, the authors also provide a compact analysis of the Vovk-Azoury-Warmuth

algorithm, as well as online binary classification algorithms. These results are essentially

obtained from combining their Lemma 1 with interesting regret decompositions other

than the one we presented in Lemma 4.1. It seems possible to combine their regret

decompositions with our analysis to extend their result to Ada-MD algorithms, and to

obtain refined bounds for smooth losses. We leave this direction for future work.

4.11 Conclusion and future work

We provided a generalized, unified and modular framework for analyzing online and

stochastic optimization algorithms, and demonstrated its flexibility on several existing,

as well as new, algorithms and learning settings. Our framework can be used together

with other algorithmic ideas and learning settings, for example, adaptive delayed-feedback

algorithms like AdaDelay [101], but exploring these problems are out of the scope of this

work. There are many interesting questions related to non-convex optimization; while we

showed that our results extend to the so-called τ -star(-strongly)-convex functions, which

have already found some applications, it remains to be seen whether they also extend to

other settings, such as optimization of quasi-convex functions, or functions that satisfy the

Polyak-Łojasiewicz inequality. Exploring these and other applications of this framework is

left for future work.
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Appendices

4.A Formal statements and proofs for the standard re-
sults described in Table 4.2

Putting Lemma 4.1 and Theorem 4.1 together, for Ada-FTRL we obtain

RT (x
∗) ≤ −

T∑
t=1

Bft(x∗, xt) +
T∑
t=0

(qt(x
∗)− qt(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt))

−
T∑
t=1

Br1:t(xt+1, xt) +
T∑
t=1

⟨gt, xt − xt+1⟩+
T∑
t=1

δt , (4.25)

whereas for Ada-MD,

RT (x
∗) ≤ −

T∑
t=1

Bft(x∗, xt) +
T∑
t=0

(qt(x
∗)− qt(xt+1)) +

T∑
t=1

Bpt(x∗, xt)

−
T∑
t=1

Br1:t(xt+1, xt) +
T∑
t=1

⟨gt, xt − xt+1⟩+
T∑
t=1

δt . (4.26)

Next we prove the concrete regret bounds, given in Table 4.2, based on the above. A

schematic view of the proof ideas is given in Figure 4.2.

Corollary 4.5. Consider the “Online Optimization” setting (Assumption 4.3), using

Ada-FTRL (under Assumption 4.1) or Ada-MD (under Assumption 4.2). Suppose that

Assumptions 4.5 and 4.8 hold. Then,

(i) the regret of Ada-MD is bounded as

RT (x
∗) ≤

T∑
t=0

(qt(x
∗)− qt(xt+1)) +

T∑
t=1

Bpt(x∗, xt) +
T∑
t=1

1

2
∥gt∥2(t),∗ ;

(ii) the regret of Ada-FTRL is bounded as

RT (x
∗) ≤

T∑
t=0

(qt(x
∗)− qt(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt)) +

T∑
t=1

1

2
∥gt∥2(t),∗ ;
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(iii) under Assumption 4.7, the regret of Ada-MD is bounded as

RT (x
∗) ≤

T∑
t=0

(qt(x
∗)− qt(xt+1)) +

T∑
t=1

1

2
∥gt∥2(t),∗ .

Proof. Note that by Assumption 4.3, we have

δt ≤ 0 , (4.27)

for all t = 1, 2, . . . , T . In addition, by the Fenchel-Young inequality and Assumption 4.8,

⟨gt, xt − xt+1⟩ ≤
1

2
∥xt − xt+1∥2(t) +

1

2
∥gt∥2(t),∗

≤ Br1:t(xt+1, xt) +
1

2
∥gt∥2(t),∗ . (4.28)

Putting (4.27), (4.28), and Assumption 4.5 into (4.25) and (4.26) and cancelling out the

matching terms proves ((i)) and ((ii)). Finally, to prove ((iii)), we use Assumption 4.7

to cancel the Bft(x∗, xt) terms with the Bpt(x∗, xt) terms (rather than dropping them by

Assumption 4.5).

Corollary 4.6. Consider the “Stochastic Optimization” setting (Assumption 4.4), using

Ada-FTRL (under Assumption 4.1) or Ada-MD (under Assumption 4.2). Suppose that

Assumptions 4.5 and 4.8 hold. Then,

(i) the regret of Ada-MD is bounded as

E{RT (x
∗)} ≤ E

{
T∑
t=0

(qt(x
∗)− qt(xt+1)) +

T∑
t=1

Bpt(x∗, xt) +
T∑
t=1

1

2
∥gt∥2(t),∗

}
;

(ii) the regret of Ada-FTRL is bounded as

E{RT (x
∗)} ≤ E

{
T∑
t=0

(qt(x
∗)− qt(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt)) +

T∑
t=1

1

2
∥gt∥2(t),∗

}
;

(iii) under Assumption 4.7, the regret of Ada-MD is bounded as

E{RT (x
∗)} ≤ E

{
T∑
t=0

(qt(x
∗)− qt(xt+1)) +

T∑
t=1

1

2
∥gt∥2(t),∗

}
.
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Proof. Let ft = f in Lemma 4.1 (hence in (4.25) and (4.26)), and note that by Assump-

tion 4.4, we have

E{δt} = E{f ′(xt;x
∗ − xt)− ⟨E{gt|xt}, xt − x∗⟩} ≤ 0 , (4.29)

for all t = 1, 2, . . . , T . Similar to the proof of Corollary 4.5, putting (4.29), (4.28), and

Assumption 4.5 into (4.25) and (4.26) proves ((i)) and ((ii)). Finally, to prove ((iii)), one

can use Assumption 4.7 to cancel the Bf (x∗, xt) terms with the Bpt(x∗, xt) terms (rather

than dropping them by Assumption 4.5).

Corollary 4.7. Consider the “Stochastic Optimization” setting (Assumption 4.4), using

Ada-FTRL (under Assumption 4.1) or Ada-MD (under Assumption 4.2). Suppose

that Assumptions 4.5, 4.6 hold, and Assumption 4.8 holds with r1:t − ∥ · ∥2/2 in place

of r1:t.19 Let f ∗ := infx∈X f(x), and define D := f(x1) − f ∗ and σt := gt −∇f(xt). Let

Dt := qt(x
∗)− qt(xt+1). Then,

(i) the regret of Ada-MD is bounded as

E{RT (x
∗)} ≤ E

{
D0:T +

T∑
t=1

Bpt(x∗, xt) +
T∑
t=1

1

2
∥σt∥2(t),∗ +D

}
;

(ii) the regret of Ada-FTRL is bounded as

E{RT (x
∗)} ≤ E

{
D0:T +

T∑
t=1

(pt(x
∗)− pt(xt)) +

T∑
t=1

1

2
∥σt∥2(t),∗ +D

}
;

(iii) under Assumption 4.7, the regret of Ada-MD is bounded as

E{RT (x
∗)} ≤ E

{
1

2
∥x∗ − x1∥2 +D0:T +

T∑
t=1

1

2
∥σt∥2(t),∗ +D

}
.

Proof. Note that for all t = 1, 2, . . . , T , by Assumption 4.6 and the Fenchel-Young inequal-

ity,

⟨gt, xt − xt+1⟩ = f(xt)− f(xt+1) + Bf (xt+1, xt) + ⟨gt −∇f(xt), xt − xt+1⟩

≤ f(xt)− f(xt+1) +
1

2
∥xt − xt+1∥2 + ⟨σt, xt − xt+1⟩

19The modification to Assumption 4.8 is equivalent to adding an extra ∥x∥2/2 regularizer to Ada-FTRL
and Ada-MD.
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≤ f(xt)− f(xt+1) +
1

2
∥xt − xt+1∥2 +

1

2
∥σt∥2(t),∗ +

1

2
∥xt − xt+1∥2(t) (4.30)

Putting (4.29), (4.30), and Assumption 4.5 into (4.25) and (4.26), telescoping the f terms,

using f(xT+1) ≥ f ∗, and canceling out the matching terms gives ((i)) and ((ii)). Finally, to

prove ((iii)), one can use Assumption 4.7 to cancel the Bf (x∗, xt) terms with the Bpt(x∗, xt)

terms (rather than dropping them by Assumption 4.5).

4.B Proofs for Section 4.5

Proof of Corollary 4.2. Define ψ0 := ψ1. Then, using our assumptions on ψt, we have

R
(ℓ)
T (x∗) = RT (x

∗) +
T∑
t=1

(ψt(xt)− ψt(x∗))

= RT (x
∗) +

T∑
t=1

(ψt(xt+1)− ψt(x∗)) +
T∑
t=1

(ψt(xt)− ψt−1(xt))

+ ψ1(x1)− ψT (xT+1)

≤ RT (x
∗) +

T∑
t=1

(ψt(xt+1)− ψt(x∗))

= RT (x
∗) +

T∑
t=1

(
qt(xt+1)− q̃t(xt+1) + q̃t(x

∗)− qt(x∗)
)
.

The rest of the proof is as in Corollary 4.1, noting that q̃0 = q0.

4.C Proofs for Section 4.7

Proof of Theorem 4.2. Starting from inequality (4.25), by the exact same manipulations

as in Corollary 4.5:

RT (x
∗) ≤

T∑
t=0

(qt(x
∗)− qt(xt+1)) +

T∑
t=1

⟨gt, xt − xt+1⟩

+
T∑
t=1

(pt(x
∗)− pt(xt)) +

T∑
t=1

−Br1:t(xt+1, xt)

=
T∑
t=0

⟨g̃t+1 − g̃t, x∗ − xt+1⟩+
T∑
t=1

⟨gt, xt − xt+1⟩

+
T∑
t=0

(q̃t(x
∗)− q̃t(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt)) +

T∑
t=1

−Br1:t(xt+1, xt)
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= ⟨g̃T+1, x
∗⟩+

T∑
t=0

⟨g̃t+1,−xt+1⟩+
T∑
t=1

⟨g̃t, xt+1⟩+
T∑
t=1

⟨gt, xt − xt+1⟩

+
T∑
t=0

(q̃t(x
∗)− q̃t(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt)) +

T∑
t=1

−Br1:t(xt+1, xt)

= ⟨g̃T+1, x
∗ − xT+1⟩+

T∑
t=1

⟨gt − g̃t, xt − xt+1⟩

+
T∑
t=0

(q̃t(x
∗)− q̃t(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt)) +

T∑
t=1

−Br1:t(xt+1, xt) (4.31)

≤ ⟨g̃T+1, x
∗ − xT+1⟩+ q̃T (x

∗)− q̃T (xT+1)

+
T−1∑
t=0

(q̃t(x
∗)− q̃t(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt)) +

T∑
t=1

1

2
∥gt − g̃t∥2(t),∗ ,

using the Fenchel-Young for the second term, and Assumption 4.8 for the last term, in

the final step. Finally, note that the left-hand side is independent of q̃T and g̃T+1, and

without loss of generality, we can set them to zero, which makes the first two terms of the

right-hand side zero, hence finishing the proof.

Proof of Theorem 4.3. Define Gt = ∥gt − g̃t∥2∗, and let λt := ηt/2. Starting from (4.31),

and using the fact that setting g̃T+1 = 0 does not affect the value of RT (x
∗), we get

RT (x
∗) ≤

T∑
t=1

⟨gt − g̃t, xt − xt+1⟩+
T∑
t=1

−Br1:t(xt+1, xt)

+
T∑
t=0

(q̃t(x
∗)− q̃t(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt))

≤
T∑
t=0

(q̃t(x
∗)− q̃t(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt))

+
T∑
t=1

−ηt
2
∥xt − xt+1∥2 +

T∑
t=1

λt
2
∥xt − xt+1∥2 +

T∑
t=1

1

2λt
∥gt − g̃t∥2∗ ,

≤
T∑
t=0

(q̃t(x
∗)− q̃t(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt))

+
T∑
t=1

−ηt
4
∥xt − xt+1∥2 +

T∑
t=1

1

ηt
Gt

≤
T∑
t=0

(q̃t(x
∗)− q̃t(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt))
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+
T∑
t=1

−2L2

ηt+1

∥xt − xt+1∥2 +
T∑
t=1

1

ηt
Gt .

In the second inequality, we used Assumption 4.8 and the Fenchel-Young inequality. In

the last inequality, we used the assumption ηtηt+1 ≥ 8L2. Now, let x0 := x1 and f0 := 0,

so that g̃1 = g0 = ∇f0(x0). Then, using ideas from Lemma 12 of Chiang et al. [18],

T∑
t=1

1

ηt
Gt =

T∑
t=1

1

ηt
∥∇ft(xt)−∇ft−1(xt−1)∥2∗

≤
T∑
t=1

2
1

ηt
∥∇ft(xt)−∇ft−1(xt)∥2∗ +

T∑
t=1

2
1

ηt
∥∇ft−1(xt)−∇ft−1(xt−1)∥2∗

≤ 2
T∑
t=1

1

ηt
∥∇ft(xt)−∇ft−1(xt)∥2∗ +

T∑
t=2

2L2

ηt
∥xt − xt−1∥2

≤ 2
T∑
t=1

1

ηt
∥∇ft(xt)−∇ft−1(xt)∥2∗ +

T∑
t=1

2L2

ηt+1

∥xt+1 − xt∥2 .

Note that to get the first inequality, we used the fact that ∥ · ∥2 is convex for any norm,

together with Jensen’s inequality, so that ∥x+y∥2 = 4∥x/2+y/2∥2 ≤ 4(∥x∥2/2+∥y∥2/2) =

2∥x∥2 + 2∥y∥2. This completes the proof.

Proof of Corollary 4.4. First, note that since ψt is convex, by definition, the regularizer

r0:t =
∑t

t=1
ηt−ηt−1

2
∥ · −xt∥2 is ηt-strongly-convex w.r.t. the norm ∥ · ∥, satisfying As-

sumption 4.8. Furthermore, Assumption 4.5 is satisfied by the convexity of ft. Also, by

assumption, X is closed and R < +∞, so the objectives are always bounded below and

Assumption 4.1 holds.

Let Gt = ∥gt− g̃t∥2∗, and define C := ηt− η
√
G1:t = 4RL2. Starting as in Corollary 4.3,

and following the same steps as in the proof of Theorem 4.3, we have

R
(ℓ)
T (x∗) ≤

T∑
t=0

(q̃t(x
∗)− q̃t(xt+1)) +

T∑
t=1

(pt(x
∗)− pt(xt))−

T∑
t=1

ηt
4
∥xt − xt+1∥2 +

T∑
t=1

1

ηt
Gt

≤
T∑
t=1

1

2
(ηt − ηt−1)R

2 +
T∑
t=1

−ηt
4
∥xt − xt+1∥2 +

T∑
t=1

1

η
√
G1:t

Gt

≤ 1

2
ηTR

2 +
T∑
t=1

−C
4
∥xt − xt+1∥2 +

2

η

√
G1:T

≤ 1

2
CR2 +

(
2

η
+
η

2
R2

)√
G1:T +

T∑
t=1

−C
4
∥xt − xt+1∥2
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In the first line, we used, as in Theorem 4.3, the Fenchel-Young inequality with λt = ηt/2.

In the second line, we dropped the q̃t = 0 terms and used the definition of pt and R, and

the fact that ηt ≥ ηt−1, to get the first term, and obtained the last term using the fact that

ηt ≥ η
√
G1:t by definition. In the third inequality, we let the ηt in the first term telescope,

used the fact that ηt > C in the second term, and Lemma 4.7 to get the last term. In the

last line, we used the definition of ηT and grouped the
√
G1:T terms together.

Next, we use the inequalities
√
a+ b ≤

√
a +
√
b and

√
a ≤ 1

2
+ a (for a, b ≥ 0), as

well as Jensen’s inequality on ∥ · ∥2 (as in the proof of Theorem 4.3) to bound
√
G1:T with√

D∥·∥ :√ T∑
t=1

Gt =

√ T∑
t=1

∥∇ft(xt)−∇ft−1(xt−1)∥2∗

≤

√ T∑
t=1

2∥∇ft(xt)−∇ft−1(xt)∥2∗ +
T∑
t=1

2∥∇ft−1(xt)−∇ft−1(xt−1)∥2∗

≤

√2
T∑
t=1

∥∇ft(xt)−∇ft−1(xt)∥2∗ +
T∑
t=1

2L2∥xt − xt−1∥2

≤

√2
T∑
t=1

∥∇ft(xt)−∇ft−1(xt)∥2∗ +

√ T∑
t=1

2L2∥xt − xt−1∥2

≤

√2
T∑
t=1

∥∇ft(xt)−∇ft−1(xt)∥2∗ +
1

2
+

T∑
t=1

2L2∥xt − xt−1∥2 .

=

√2
T∑
t=1

∥∇ft(xt)−∇ft−1(xt)∥2∗ +
1

2
+

T∑
t=1

2L2∥xt+1 − xt∥2 ,

where the last line follows, as in the proof of Theorem 4.3, by defining x0 = x1 and adding

the extra positive term 2L2∥xT+1 − xT∥2. Putting back into the previous inequality,

R
(ℓ)
T (x∗) ≤ 1

2
CR2 +

T∑
t=1

−C
4
∥xt − xt+1∥2

+

(
2

η
+
η

2
R2

)(√
2D∥·∥ +

1

2
+

T∑
t=1

2L2∥xt+1 − xt∥2
)
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=
1

2
CR2 +

T∑
t=1

−C
4
∥xt − xt+1∥2

+ 2R
√
2D∥·∥ +R +

T∑
t=1

4RL2∥xt+1 − xt∥2

=
1

2
4R3L2 +R + 2R

√
2D∥·∥ .

In the first equality, we used η = 2/R while in the last one we used that C = 4RL2 by

definition. This completes the proof.

Lemma 4.7 (Lemma 4 of [69]). For any non-negative numbers a1, a2, . . . , aT with a1 > 0,

T∑
t=1

at√∑t
s=1 as

≤ 2

√ T∑
t=1

at .

4.D Proofs for Section 4.8

Proof of Theorem 4.4. As promised, we will use Corollary 4.7 to prove the theorem. First

notice that defining the norm in the corollary as
√
L∥ · ∥ and the norms ∥ · ∥(t) =

√
cL∥ · ∥

(with dual norm ∥ · ∥(t),∗ = 1√
cL
∥ · ∥), the conditions of the corollary are satisfied. Therefore,

by Corollary 4.7, after moving the composite ϕ terms and D to the left-hand side, we get

E

{
T∑
t=1

ℓ(xt+1)− ℓ(x∗)

}
≤ E

{
(1 + c)L

2
∥x∗ − x1∥2 +

T∑
t=1

1

2cL
∥σt∥2(t),∗

}
,

for Ada-MD, and

E

{
T∑
t=1

ℓ(xt+1)− ℓ(x∗)

}
≤ E

{
(1 + c)L

2
∥x∗∥2 +

T∑
t=1

1

2cL
∥σt∥2(t),∗

}
,

for Ada-FTRL. Let Rℓ
T :=

∑T
t=1 ℓ(xt+1)− ℓ(x∗). Then, by Lemma 4.2 and the definition

of the dual norm ∥ · ∥(t),∗,

E
{
Rℓ
T

}
≤ (1 + c)LR +

T∑
t=1

E
{
4L E{ℓ(xt)− ℓ(x∗) + ℓ(x̃s)− ℓ(x∗)}

2cL

}

= (1 + c)LR +
2

c
E
{
Rℓ
T

}
+

T∑
t=1

E
{
4L E{ℓ(xt)− ℓ(xt+1) + ℓ(x̃s)− ℓ(x∗)}

2cL

}
.

= (1 + c)LR +
2

c
E
{
Rℓ
T

}
+

2

c
E{ℓ(x1)− ℓ(xT+1)}+

2

c

T∑
t=1

E{ℓ(x̃s)− ℓ(x∗)} .
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Next, we bound the last summation above. Let Ts denote the set of indices t such that gt
is calculated in the s-th epoch, and let x̃s be the first iterate used (in gt) in epoch s. We

have:
T∑
t=1

E{ℓ(x̃s)− ℓ(x∗)} =
S∑
s=1

∑
t∈Ts

E{ℓ(x̃s)− ℓ(x∗)}

≤ m1 (ℓ(x1)− ℓ(x∗)) +
S∑
s=2

E

⎧⎨⎩ms

⎛⎝ 1

ms−1

∑
t∈Ts−1

(ℓ(xt)− ℓ(x∗))

⎞⎠⎫⎬⎭
= m1 (ℓ(x1)− ℓ(x∗)) +

S−1∑
s=1

E

{
ms+1

ms

∑
t∈Ts

(ℓ(xt)− ℓ(x∗))

}

≤ m1 (ℓ(x1)− ℓ(x∗)) +
S−1∑
s=1

E

{
b
∑
t∈Ts

(ℓ(xt)− ℓ(x∗))

}
(4.32)

≤ m1 (ℓ(x1)− ℓ(x∗)) + b
S∑
s=1

∑
t∈Ts

E{ℓ(xt)− ℓ(x∗)}

= m1 (ℓ(x1)− ℓ(x∗)) + b
T∑
t=1

E{ℓ(xt)− ℓ(x∗)}

= m1 (ℓ(x1)− ℓ(x∗)) + bE{ℓ(x1)− ℓ(xT+1)}+ bE
{
Rℓ
T

}
≤ (b+m1) (ℓ(x1)− ℓ(x∗)) + bE

{
Rℓ
T

}
.

Putting together,

E
{
Rℓ
T

}
≤ (1 + c)LR +

2 + 2b

c
E
{
Rℓ
T

}
+

2 + 2b+ 2m1

c

(
ℓ(x1)− ℓ(x∗)

)
.

Re-arranging and applying Jensen’s inequality proves the first part of the theorem. To

prove the second part, we start from (4.32):

m1 (ℓ(x1)− ℓ(x∗)) +
S−1∑
s=1

E

{
b
∑
t∈Ts

ℓ(xt)− ℓ(x∗)

}

≤ (m1 + b) (ℓ(x1)− ℓ(x∗)) + b

S−1∑
s=1

∑
t∈Ts

E{ℓ(xt+1)− ℓ(x∗)} .

Now, if c = 2 + 2b, we have 1− 2/c = 2b/c. Thus,(
1− 2

c

) S∑
s=1

∑
t∈Ts

E{ℓ(xt+1)− ℓ(x∗)}

=

(
1− 2

c

)
E
{
Rℓ
T

}
93



≤ (1 + c)LR +
2 + 2b+ 2m1

c

(
ℓ(x1)− ℓ(x∗)

)
+

2b

c

S−1∑
s=1

∑
t∈Ts

E{ℓ(xt+1)− ℓ(x∗)} .

Rearranging gives(
1− 2

c

)∑
t∈TS

E{ℓ(xt+1)− ℓ(x∗)} ≤ (1 + c)LR +
2 + 2b+ 2m1

c

(
ℓ(x1)− ℓ(x∗)

)
.

Dividing both sides by (1 − 2/c)mS and using Jensen’s inequality on ℓ completes the

proof.

4.E Technical results

In this appendix, we have gathered some technical results required in our proofs. The first

lemma states that the Bregman divergence is invariant under addition of affine functions.

Lemma 4.8. Let f : H → R be proper, and let x, y ∈ dom(f). Suppose that v ∈ H, and

w ∈ R, and let g : H → R be given by g(·) = f(·) + ⟨v, ·⟩+ w. Then,

(i) g is proper, with dom(g) = dom(f).

(ii) For any z ∈ H, the derivative g′(x; z) exists in [−∞,+∞] if and only if f ′(x; z)

exists in [−∞,+∞], in which case

g′(x; z) = f ′(x; z) + ⟨v, z⟩ .

(iii) If f ′(x; y − x) or g′(x; y − x) exist, then Bg(y, x) = Bf (y, x).

Proof. That g is proper and dom(f) = dom(g) is immediate since dom(⟨v, ·⟩) = H and

w ∈ R. Then x, y ∈ dom(g), and for any z ∈ H, if either of f ′(x; z) or g′(x; z) exist in

[−∞,+∞],

f ′(x; z) + ⟨v, z⟩ = lim
α↓0

f(x+ αz) + ⟨v, x+ αz⟩+ w − f(x)− ⟨v, x⟩ − w
α

= g′(x; v) ,

which proves the second part of the lemma. Letting z = y − x and using the definition of

Bg gives Bf (y, x) = Bg(y, x).

The next proposition gathers useful results based on Proposition 17.2 of Bauschke and

Combettes [6].
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Proposition 4.1. Let f be proper and convex, and let x, y ∈ dom(f) and z ∈ H. Then,

(i) f ′(x; z) exists in [−∞,+∞] and

f ′(x; z) = inf
α∈(0,+∞)

f(x+ αz)− f(x)
α

.

(ii) f ′(x; y − x) < +∞ .

(iii) Bf (y, x) ≥ 0 .

Proof. Part ((i)) is proved in Proposition 17.2(ii) of Bauschke and Combettes [6]. Also,

by their Proposition 17.2(iii),

f ′(x; y − x) + f(x) ≤ f(y) ,

proving part ((ii)) since f(y) and f(x) are both real numbers. Part ((iii)) then simply

follows from the same equation, with the Bregman divergence being real and non-negative

when f ′(x; y − x) is real-valued, and +∞ when f ′(x; y − x) = −∞.

The next lemma is useful for decomposing Bregman divergences.

Lemma 4.9. Let r : H → R and q : H → R be directionally differentiable (hence also

proper). Let S := dom(r)∩ dom(q), suppose S ̸= ∅, and let x, y ∈ S. Suppose that at least

one of the two limits q′(x; y − x) and r′(x; y − x) is finite. Then,

Br(y, x)− Bq(y, x) = Bp(y, x) ,

where p : H → R is given by

p(z) :=

{
r(z)− q(z) z ∈ dom(r) ∪ dom(q) ,

+∞ otherwise .

Proof. By the assumption that at least one of them is finite, we can take the difference of

the two limits q′(x; y − x) and r′(x; y − x) to obtain

−r′(x; y − x) + q′(x; y − x) = lim
α↓0

−r(x+ α(y − x)) + r(x)

α
+ lim

α↓0

q(x+ α(y − x))− q(x)
α

= lim
α↓0

−p(x+ α(y − x)) + p(x)

α
= −p′(x; y − x) . (4.33)

In the derivation above, we have used that at most one of r(x+α(y−x)) and q(x+α(y−x))

can remain infinite as α ↓ 0. Formally, there exists an ϵ > 0 such that for all α < ϵ, the
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summation −r(x+α(y−x))+q(x+α(y−x)) is well defined, and is equal, by definition, to

−p(x+α(y− x)). Adding the real-valued equation r(y)− r(x)− q(y) + q(x) = p(y)− p(x)

to (4.33) completes the proof.

Note that, in light of Proposition 4.1, the above lemma holds if both q and r are

proper convex functions, given the condition that at least one of the directional derivatives

is finite (i.e., not equal to −∞). The latter condition is needed even if p is also a

proper convex function (note that this requires that dom(r) ⊂ dom(q)). In this case,

Proposition 4.1 (ii) shows that the sum of the limits p′(x; y − x) and q′(x; y − x) is

well-defined for any x, y ∈ dom(p) ∩ dom(q), and is equal to r′(x; y − x). Therefore,

since the function values are finite, we get Bp(y, x) + Bq(y, x) = Br(y, x). On the other

hand, Br(y, x)− Bq(y, x) = Bp(y, x) only holds if the left-hand side is well-defined, which

happens exactly if at least one of the Bregman divergences (necessarily Bq(y, x)) is finite

(equivalently, at least one of the directional derivatives is finite). An example illustrating

this situation is when all functions are constant multiples of −
√
x I{x ≥ 0}+∞ I{x < 0},

defined over the reals, in which case the Bregman divergences become +∞ for x = 0 and

y > 0.

4.F Proof of Theorem 4.1

In this section, we provide a detailed proof of Theorem 4.1. First, we prove generalized

versions of two lemmas that have appeared in several previous work; see, e.g., the work of

Dekel et al. [24] and the references therein.

The first lemma is used for Ada-FTRL.

Lemma 4.10. Let g ∈ H and consider a proper, directionally differentiable function

r : H → R. Define S = dom(r), and let X ⊂ H be a convex set such that X ∩ S ̸=

∅. Further assume that argminx∈X ⟨g, x⟩ + r(x) is non-empty. Then, for any x+ ∈

argminx∈X ⟨g, x⟩+ r(x) and any x ∈ X ∩ S,

+∞ > ⟨g, x− x+⟩+ r(x)− r(x+) ≥ Br(x, x+) . (4.34)

Proof. Let h : H → R be given by h(·) = ⟨g, ·⟩ + r(·), so that x+ ∈ argminx∈X h(x).

Note that by Lemma 4.8, dom(h) = S and h is directionally differentiable with h′(x; z) =
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⟨g, z⟩+ r′(x; z) for all x ∈ S and z ∈ H. Also note that x+ ∈ X ∩ S by definition. Since

x, x+ ∈ X , and X is convex, for all α ∈ [0, 1], we have x+ + α(x − x+) ∈ X . Therefore,

the optimality of x+ over X implies that for all α ∈ (0, 1),

h(x+ + α(x− x+))− h(x+)
α

≥ 0 .

Thus, 0 ≤ h′(x+;x−x+) = ⟨g, x−x+⟩+ r′(x+;x−x+), and therefore +∞ > ⟨g, x−x+⟩ ≥

−r′(x+;x−x+). Adding the real number r(x)−r(x+) to the sides completes the proof.

The second lemma is used for Ada-MD.

Lemma 4.11. Let X , S, g and r be as in Lemma 4.10. Let y ∈ S ∩ X be such that

r′(y; · − y) is real-valued and concave on S, that is, for all x1, x2 ∈ S and all α ∈ [0, 1] for

which xα := x1 + α(x2 − x1) ∈ S,

+∞ > r′(y;xα − y) ≥ αr′(y;x2 − y) + (1− α)r′(y;x1 − y) > −∞ .

Let q : H → R be proper and directionally differentiable, with Sq := S ∩ X ∩ dom(q) ̸= ∅.

Assume that X+ := argminx∈X ⟨g, x⟩+ q(x) + Br(x, y) is non-empty, and the associated

optimal value is finite. Then, for any x+ ∈ X+ and any x ∈ Sq,

+∞ > ⟨g, x− x+⟩+ q(x)− q(x+) + Br(x, y)− Br(x+, y) ≥ Br+q(x, x+) . (4.35)

Proof. Let h : H → R be given by h(·) = ⟨g, ·⟩+ q+Br(·, y), so that x+ ∈ argminx∈X h(x).

Note that by assumption, h(x+) < +∞. In addition, dom(h) ⊂ S ∩ dom(q). Thus,

x+ ∈ Sq.

Now, fix α ∈ (0, 1), and let xα = x+ + α(x− x+). If xα ∈ Sq, then q(xα) and r(xα) are

real-valued, and by the optimality of x+ over X and the concavity of r′(y; · − y) over S,

0 ≤ h(xα)− h(x+) = q(xα)− q(x+) + ⟨g, x+ + α(x− x+)− x+⟩+ Br(xα, y)− Br(x+, y)

= q(xα)− q(x+) + α⟨g, x− x+⟩+ r(xα)− r(x+)

− r′(y;xα − y) + r′(y;x+ − y)

≤ q(xα)− q(x+) + α⟨g, x− x+⟩+ r(xα)− r(x+)

−
(
(1− α)r′(y;x+ − y) + αr′(y;x− y)

)
+ r′(y;x+ − y)

= q(xα)− q(x+) + α⟨g, x− x+⟩+ r(xα)− r(x+) + α
(
r′(y;x+ − y)− r′(y;x− y)

)
,
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Suppose, on the other hand, that xα ̸∈ Sq. Then, given that by the assumption of convexity

of X , xα ∈ X , we must have xα ̸∈ S ∩ dom(q), so that (r + q)(xα) = +∞. In addition,

r′(y; · − y) is real-valued over S and x, x+ ∈ S, so r′(y;x+− y)− r′(y;x− y) is real-valued.

Putting this together, we will again have that for xα ̸∈ Sq,

0 ≤ q(xα)− q(x+) + α⟨g, x− x+⟩+ r(xα)− r(x+) + α
(
r′(y;x+ − y)− r′(y;x− y)

)
,

Thus, dividing by the positive α, for all α ∈ (0, 1), we have

0 ≤ ⟨g, x− x+⟩+ q(xα)− q(x+) + r(xα)− r(x+)
α

− r′(y;x− y) + r′(y;x+ − y) .

Taking infimum over α, we obtain

0 ≤ ⟨g, x− x+⟩ − r′(y;x− y) + r′(y;x+ − y) + inf
α∈(0,1)

q(xα)− q(x+) + r(xα)− r(x+)
α

≤ ⟨g, x− x+⟩ − r′(y;x− y) + r′(y;x+ − y) + (r + q)′(x+;x− x+) ,

using directional differentiability of q+ r in the final step. Adding the real-valued equation

0 = q(x)− q(x+)+ r(x)− r(y)+ r(y)− r(x+)+(r+ q)(x+)− (r+ q)(x), using the definition

of Bregman divergence, and rearranging terms completes the proof.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. First consider Ada-FTRL. For t = 0, 1, . . . , T , let hftrl
t : H → R

be given by hftrl
t (·) := ⟨g1:t, ·⟩+ qt(·) + r1:t(·), recalling that ci:j ≡ 0 whenever i > j. Let

St = dom(r1:t). By Assumption 4.1, for t = 1, 2, . . . , T ,

−∞ < hftrl
t−1(xt) = ⟨g1:t−1, xt⟩+ qt−1(xt) + r1:t−1(xt) < +∞ .

Therefore, xt ∈ dom(r1:t−1 + qt−1). In addition, by (4.4), xt ∈ dom(pt). Thus, xt ∈

dom(r1:t−1 + qt−1 + pt), that is, xt ∈ dom(r1:t) = St. Furthermore, hftrl
t (xt+1) < +∞, so

xt+1 ∈ dom(qt) ∩ dom(r1:t). Thus, xt, xt+1 ∈ X ∩ St ⊂ ∩ts=1 (dom(qs−1) ∩ dom(ps)).

Now, for any t = 1, 2, . . . , T , since xt minimizes pt over X , if we add pt to the objective

of the optimization above, we will still have

xt ∈ argmin
x∈X

hftrl
t−1(x) + pt(x) = argmin

x∈X
⟨g1:t−1, x⟩+ r1:t(x) .
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By Assumption 4.1, r1:t is directionally differentiable. Therefore, for any t = 1, 2, . . . , T ,

we can apply Lemma 4.10 with g ← g1:t−1, r ← r1:t, x+ ← xt, and x← xt+1, to obtain

−∞ < ⟨g1:t−1, xt − xt+1⟩+ p1:t(xt)− p1:t(xt+1) + q0:t−1(xt)− q0:t−1(xt+1)

≤ −Br1:t(xt+1, xt) .

In the inequality above, the right-hand side cannot be equal to −∞ (by Lemma 4.10), and

all other terms are real-valued. Thus, we can sum up this inequality over t = 1, 2, . . . , T ,

to obtain

−
T∑
t=1

Br1:t(xt+1, xt)

≥
T∑
t=1

⟨g1:t−1, xt⟩ −
T∑
t=1

⟨g1:t−1, xt+1⟩+
T∑
t=1

p1:t(xt)−
T∑
t=1

p1:t(xt+1)

+
T∑
t=1

q0:t−1(xt)−
T∑
t=1

q0:t−1(xt+1)

=
T−1∑
t=0

⟨g1:t, xt+1⟩ −
T∑
t=1

⟨g1:t−1, xt+1⟩+
T∑
t=1

p1:t(xt)−
T+1∑
t=2

p1:t−1(xt)

+
T−1∑
t=0

q0:t(xt+1)−
T∑
t=0

q0:t−1(xt+1)

=
T−1∑
t=1

⟨g1:t, xt+1⟩ −
T∑
t=1

⟨g1:t−1, xt+1⟩+
T∑
t=1

p1:t(xt)−
T+1∑
t=1

p1:t−1(xt)

+
T−1∑
t=0

q0:t(xt+1)−
T∑
t=0

q0:t−1(xt+1)

= − ⟨g1:T , xT+1⟩+
T∑
t=1

⟨gt, xt+1⟩+
T∑
t=1

pt(xt)− p1:T (xT+1)− q0:T (xT+1) +
T∑
t=0

qt(xt+1)

=
T∑
t=1

⟨gt, xt+1⟩+
T∑
t=1

pt(xt) +
T∑
t=0

qt(xt+1)−
(
⟨g1:T , xT+1⟩+ p1:T (xT+1) + q0:T (xT+1)

)
≥

T∑
t=1

⟨gt, xt+1⟩+
T∑
t=1

pt(xt) +
T∑
t=0

qt(xt+1)−
(
⟨g1:T , x∗⟩+ p1:T (x

∗) + q0:T (x
∗)
)

= R+
T (x

∗) +
T∑
t=1

pt(xt) +
T∑
t=0

qt(xt+1)− p1:T (x∗)− q0:T (x∗) ,

using, in the last inequality, the optimality of xT+1 over X , as well as the fact that pt, qt
are proper and all terms on the right-hand side not involving x∗ are real-valued (hence
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the term in the parentheses involving x∗ is well-defined and can be added to the rest of

the expression). Now, if x∗ ̸∈ dom(p1:T + q0:T ), the bound of Theorem 4.1 holds trivially

(recalling that the Bregman divergences cannot be +∞). Otherwise, (p1:T + q0:T )(x
∗) is

real-valued, and rearranging completes the proof for Ada-FTRL.

For Ada-MD, we start by presenting the implications of Assumption 4.2.

To simplify notation, let x0 := g0 := 0, and define hmd
t := ⟨gt, x⟩+qt(x)+Br1:t(x, xt) and

St = dom(r1:t) for t = 0, 1, . . . , T (so that S0 = dom(r1:0) = H). Then, by Assumption 4.2,

hmd
t (xt+1) < +∞ for all t = 0, 1, . . . , T , so xt+1 ∈ X ∩ dom(qt) ∩ St. Thus, given that

r′1:t(xt; · − xt) is real-valued on St, and xt ∈ St by assumption, Br1:t(xt+1, xt) is also

real-valued.

Now, note that by the optimality of xT+1, and because hmd
T (xT+1) is finite, for all

x∗ ∈ X ,

⟨gT , xT+1 − x∗⟩ ≤ qT (x
∗)− qT (xT+1) + Br1:T (x∗, xT )− Br1:T (xT+1, xT ) . (4.36)

Next, fix t ∈ {0, 1, 2, . . . , T − 1} and suppose that pt+1(x
∗) is finite-valued. Then, by the

definition of pt+1, we have x∗ ∈ X ∩ dom(qt) and x∗ ∈ dom(rt+1) = dom(r1:t+1) ⊂ St.

Furthermore, by the argument above, xt+1 ∈ X ∩ St ∩ dom(qt) and xt ∈ St. Thus, for

all t = 0, 1, . . . , T − 1, we can apply Lemma 4.11 with g ← gt, r ← r1:t, q ← qt, y ← xt,

x+ ← xt+1, and x← x∗, to obtain

⟨gt, xt+1 − x∗⟩ ≤ qt(x
∗)− qt(xt+1) + Br1:t(x∗, xt)− Br1:t(xt+1, xt)

− Br1:t+qt(x∗, xt+1) . (4.37)

Note that this also implies that the right-hand side above cannot be −∞, and only the last

Bregman divergence term could be infinite. Now, since r′1:t+1(xt+1; · − xt+1) is real-valued

on St+1, r1:t + qt is directionally differentiable, and x∗ ∈ St+1, by Lemma 4.9 we have

Br1:t+1(x
∗, xt+1)− Br1:t+qt(x∗, xt+1) = Bpt+1(x

∗, xt+1) .

In particular, this implies that Bpt+1(x
∗, xt+1) cannot be −∞. Moving the (real-valued)

first term to the right-hand side, and substituting into (4.37), we have

⟨gt, xt+1 − x∗⟩ ≤ qt(x
∗)− qt(xt+1) + Br1:t(x∗, xt)− Br1:t(xt+1, xt) + Bpt+1(x

∗, xt+1)

− Br1:t+1(x
∗, xt+1) .
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In light of the above, if pt+1(x
∗) is finite-valued for all t = 0, 1, 2, . . . , T − 1, then

summing up the above inequality for all these ts and adding (4.36), we obtain

T∑
t=0

⟨gt, xt+1 − x∗⟩ ≤
T−1∑
t=0

(
qt(x

∗)− qt(xt+1)
)
+

T−1∑
t=0

Bpt+1(x
∗, xt+1)

+
T−1∑
t=0

Br1:t(x∗, xt)−
T−1∑
t=0

Br1:t+1(x
∗, xt+1)−

T−1∑
t=0

Br1:t(xt+1, xt)

+ qT (x
∗)− qT (xT+1) + Br1:T (x∗, xT )− Br1:T (xT+1, xT )

=
T∑
t=0

(
qt(x

∗)− qt(xt+1)
)
+

T−1∑
t=0

Bpt+1(x
∗, xt+1)

+
T∑
t=1

Br1:t(x∗, xt)−
T−1∑
t=0

Br1:t+1(x
∗, xt+1)−

T∑
t=1

Br1:t(xt+1, xt)

=
T∑
t=0

(
qt(x

∗)− qt(xt+1)
)
+

T∑
t=1

Bpt(x∗, xt)−
T∑
t=1

Br1:t(xt+1, xt) ,

and (4.9) holds.

On the other hand, if pt+1(x
∗) is infinite for at least one t in {0, 1, 2, . . . , T − 1}, then

Bpt+1(x
∗, xt+1) = +∞ by definition. Therefore, the right-hand side of (4.9) will be +∞,

given that by the argument above, Bpt+1(x
∗, xt+1) cannot be equal to −∞ if pt+1(x

∗) is

finite-valued. Thus, in this case as well, the bound of (4.9) holds trivially, completing the

proof.
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Chapter 5

Generically-Constrained Asynchronous
Composite Optimization
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Abstract

We present two new algorithms, AsynCADA and HedgeHog, for asynchronous sparse

online and stochastic optimization. AsynCADA is the first asynchronous stochastic

optimization algorithm with finite-time data-dependent convergence guarantees for generic

convex constraints that, in addition: (a) allows for proximal (i.e., composite-objective)

updates and adaptive step-sizes; (b) enjoys any-time convergence guarantees without

requiring an exact global clock; and (c) when the data is sufficiently sparse, its convergence

rate for (non-)smooth, (non-)strongly-convex, and even a limited class of non-convex

objectives matches the corresponding serial rate, implying a theoretical “linear speed-up”.

The second algorithm, HedgeHog, is an asynchronous parallel version of the Expo-

nentiated Gradient (EG) algorithm for optimization over the probability simplex (a.k.a.

Hedge in online learning), and the first asynchronous algorithm without SGD-style updates

enjoying linear speed-ups under sparsity.

Unlike previous work, AsynCADA and HedgeHog and their convergence and speed-

up analyses are not limited to individual coordinate-wise (i.e., “box-shaped”) constraints

or smooth and strongly-convex objectives. Underlying both results is a generic analysis

framework that is of independent interest and further applicable to distributed and delayed

feedback optimization.
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5.1 Introduction

Many modern machine learning methods are based on iteratively optimizing a regularized

objective. Given a convex, non-empty set of feasible model parameters X ⊂ Rd, a differ-

entiable loss function f : Rd → R, and a convex (possibly non-differentiable) regularizer

function ϕ : Rd → R, these methods seek the parameter vector x∗ ∈ X that minimizes

f + ϕ (assuming a minimizer exists):

x∗ = argmin
x∈X

f(x) + ϕ(x) , (5.1)

In particular, empirical risk minimization (ERM) methods such as (regularized) least-

squares, logistic regression, LASSO, and support vector machines solve an optimization

problem of form (5.1); in these cases, f(x) = 1
m

∑m
i=1 F (x, ξi) is the average of the loss

F (x, ξi) of the model parameter x on the given training data ξ1, ξ2, . . . , ξm and ϕ(x)

is a norm (or a combination of norms) on Rd (e.g., F (x, ξ) = log(1 + exp(x⊤ξ)) and

ϕ(x) = 1
2
∥x∥22 in linear logistic regression [30]).

To bring the power of modern parallel computing architectures to such optimization

problems, several papers in the past decade have studied parallel variants of the stochastic

optimization algorithms applied to these problems. Of particular interest are asynchronous

lock-free algorithms, starting with Recht et al. [92], who showed that if τ processes run

sothcastic gradient descent (SGD) and apply their updates to the same shared iterate

without locking, then the overall algorithm (called Hogwild!) converges after the same

amount of work (i.e., same number of updates) as serial SGD, up to a multiplicative factor

that increases with the number of concurrent processes and decreases with the sparsity

of the problem. Thus, if the problem is sparse enough, this penalty can be considered a

constant, and the algorithm achieves the same rate, but in 1/τ the time, as serial SGD;

this phenomenon is referred to as linear speed-up through parallelization. Several follow-up

work (see e.g., [10]–[12], [21], [27]–[29], [56], [57], [62], [65], [80], [85], [86], [91], [94]–[96],

[102], [106] and the references therein) have demonstrated linear speed-ups for methods

based on (block-)coordinate descent (BCD), as well as other variants of SGD such as

SVRG [43], SAGA [23], AdaGrad [26], [70], and SGD with a time-decaying step-size.

Despite the great advances, however, several problems remain open.1

1 In this paper, we do not further consider BCD-based methods, for two main reasons: a) in general, a
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First, the existing convergence guarantees concern SGD when the constraint set

X is box-shaped, that is, a Cartesian product of (block-)coordinate-wise constraints

X = ×di=1Xi. This leaves it unclear whether existing techniques apply to stochastic

optimization algorithms that operate on non-box-shaped constraints (such as projected

SGD working on the ℓ2 ball), or algorithms that use a non-Euclidean regularizer, such as

the Exponentiated Gradient (EG) algorithm working on the probability simplex (see, e.g.,

[38], [97]).

Second, with the exception of the works of Duchi et al. [27] and Pan et al. [84] (which

still require box-shaped constraints), the existing analyses demonstrating the fast speed-ups

are limited to strongly-convex (or Polyak-Łojasiewicz) objectives. Thus, so far it had

remained unclear whether a similar speed-up analysis is possible if the objective is simply

convex or smooth [65], or if we are in the closely-related online-learning setting where the

objective can change over time.

Third, with the exception of the work of Pedregosa et al. [85] (which still requires

box-shaped constraints, block-separable ϕ and strongly-convex f), the existing analyses

do not take advantage of the structure of problem (5.1). In particular, when ϕ is “simple

to optimize” over X (formally defined as having access to a proximal operator oracle, as

we make precise in the sequel), serial algorithms such as Proximal-SGD take advantage

of this property to achieve considerably faster convergence rates. Asynchronous variants

of the Proximal-SGD algorithm with such faster rates have so far been unavailable for

non-strongly-convex objectives and non-box constraints.

5.1.1 Contributions

In this paper we address the aforementioned problems and present algorithms that are

applicable to general convex constraint sets, not just box-shaped X , but still achieve

linear speed-ups (under sparsity) for non-smooth and non-strongly-convex (as well as

BCD update may unnecessarily slow down the convergence of the algorithm by focusing only on a single
coordinate of the gradient information, especially in the sparse-data problems we consider in this paper
(see, e.g., Pedregosa et al. [85, Appendix F]); and b) BCD algorithms typically apply only to box-shaped
constraints, which is what our algorithms are designed to be able to avoid. We would like to note, however,
that our stochastic gradient oracle set-up (Section 5.2) does allow for building an unbiased gradient
estimate using only one randomly-selected (block-)coordinate, as done in BCD methods. Nevertheless, the
literature on parallel asynchronous BCD algorithms is vast, including especially algorithms for proximal,
non-strongly-convex, and non-convex optimization; see, e.g., [10]–[12], [21], [28], [29], [62], [86], [91],
[94]–[96], [102], [106] and the references therein.
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Algorithm X Nonsmooth Smooth f Strongly-convex Smooth f + Strongly-convex

SGD / DA Rd [27], [84] ✓ [84] ✓ [84] ✓ [57], [65], [80], [84], [92] ✓

SGD □ [27], [84] [84] [84] [57], [65], [80], [84], [92]

DA ⃝ ✓ ✓ ✓ ✓

AG / DA □ [27], [84] ✓ [84] ✓ [84] ✓ [84] ✓

AG / DA ⃝ ✓ ✓ ✓ ✓

Prox-DA ⃝ ✓ ✓ ✓ ✓

Prox-AG ⃝ ✓ ✓ ✓ ✓

Hedge/EG △ ✓ ✓ ✓ ✓

Table 5.1: Convex / star-convex optimization settings under which sufficient sparsity results
in linear speed-up. Previous work appear under the algorithm / problem combinations
they cover. A ✓ indicates a setting covered by the results in this paper. The symbols
□, △, and ⃝ indicate, respectively, the case when the constraint set is box-shaped, the
probability simplex, or any convex constraint set with a projection oracle. AG stands for
AdaGrad and DA for dual-averaging, while Prox-AG and Prox-DA denote the variant of
the algorithm using the proximal operator of ϕ.

smooth or strongly convex) objectives, and even a specific class of non-convex problems.

This is achieved through our new asynchronous optimization algorithm, AsynCADA,

which generalizes the Async-AdaGrad (and Async-DA) algorithm of Duchi et al.

[27] to proximal updates and its data-dependent bound to arbitrary constraint sets.

Instantiations of AsynCADA under different settings are given in Table 5.1. Indeed,

the results are obtained by a more general analysis framework, built on the work of

Duchi et al. [27], that yields data-dependent convergence guarantees for a generic class of

adaptive, composite-objective online optimization algorithms undergoing perturbations

to their “state”. We further use this framework to derive the first asynchronous online

and stochastic optimization algorithm with non-box constraints that uses non-Euclidean

regularizers. In particular, we present and analyze HedgeHog, the parallel asynchronous

variant of the EG algorithm, also known as Hedge in online linear optimization [38], [97],

and show that it enjoys similar parallel speed-up regimes as AsynCADA. The results

are derived for the more general setting of noisy online optimization, and the generic

framework is of independent interest, in particular in the related settings of distributed

and delayed-feedback learning.
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5.1.2 Notation and definitions

We use τ∗ to denote a global upper bound on the number of concurrent updates in

AsynCADA and HedgeHog, such that each concurrent iteration of the algorithms

can overlap in time with at most τ∗ other iterations. We use [n] to denote the set

{1, 2, . . . , n}, I{E} for the indicator of an event E , and σ(H) to denote the sigma-field

generated by a set H of random variables. The j-th coordinate of a vector a ∈ Rd is

denoted a(j). For α ∈ Rd with positive entries, ∥ · ∥α denotes the α-weighted Euclidean

norm, given by ∥x∥2α = 1
2

∑d
j=1 α

(j)
(
x(j)
)2, and ∥ · ∥α,∗ its dual. We use (at)

j
t=i to denote a

sequence ai, ai+1, . . . , aj and ai:j to denote its sum
∑j

t=i at, with ai:j := 0 if i > j. Given a

differentiable function h : Rd → R, the Bregman divergence in h of y ∈ Rd from x ∈ Rd is

given by

Bh(y, x) := h(y)− h(x)− ⟨∇h(x), y − x⟩ .

It can be shown that a differentiable function is convex if and only if Bh(x, y) ≥ 0 for all

x, y ∈ Rd. The function h : Rd → R is µ-strongly convex w.r.t. a norm ∥.∥ on Rd if and

only if for all x, y ∈ Rd Bh(x, y) ≥ µ
2
∥x− y∥2, and smooth w.r.t. a norm ∥.∥ if and only if

for all x, y ∈ Rd, |Bh(x, y)| ≤ 1
2
∥x− y∥2. A differentiable function f is star-convex if and

only if there exists a global minimizer x∗ of f such that for all x ∈ Rd, Bf (x∗, x) ≥ 0.

5.2 Problem setting: noisy online optimization

We consider a generic iterative optimization setting that enables us to study both online

learning and stochastic composite optimization. The problem consists of a (known)

constraint set X and a (known) convex (possibly non-differentiable) function ϕ, as well

as differentiable functions f1, f2, . . . about which an algorithm learns iteratively. At each

iteration t = 1, 2, . . . , the algorithm picks an iterate xt ∈ X , and observes an unbiased

estimate gt ∈ Rd of the gradient ∇ft(xt): E{gt|xt} = ∇ft(xt). The goal is to minimize the

composite-objective online regret after T iterations, given by

R
(f+ϕ)
T =

T∑
t=1

(ft(xt) + ϕ(xt)− f(x∗T )− ϕ(x∗T )) ,

where x∗T = argminx∈X

{∑T
t=1(ft(x) + ϕ(x))

}
. In the absence of noise (i.e., when gt =

∇ft(xt)), this reduces to the (composite-objective) online (convex) optimization setting
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[38], [97].

Stochastic optimization, online regret, and iterate averaging. If ft = f for all

t = 1, 2, . . . , we recover the stochastic optimization setting, with the algorithm aiming to

minimize the composite objective f + ϕ over X while receiving noisy estimates of ∇f(x).

The algorithm’s online regret can then be used to control the optimization risk: Since

ft ≡ f , we have x∗T = x∗ = argminx∈X {f(x) + ϕ(x)}, and by Jensen’s inequality, if f is

convex and x̄T = 1
T
x1:T is the average iterate,

f(x̄T ) + ϕ(x̄T )− f(x∗)− ϕ(x∗) ≤
1

T
R

(f+ϕ)
T .

In addition, if f is non-convex but x̄T is selected uniformly at random from x1, . . . , xT ,

then the above bound holds in expectation. As such, in the rest of the paper we study the

optimization risk through the lens of online regret.

Stochastic first-order oracle. Throughout the paper, we assume that at time t, the

noisy gradient estimate gt is given by a randomized first-order oracle2 gt : Rd × Ξ→ Rd,

where Ξ is some space of random variables, and there exists a sequence (ξt)
T
t=1 of independent

elements from Ξ, with distribution PΞ, such that
∫
Ξ
gt(x, ξ)dPΞ(ξ) = ∇ft(x) for all x ∈ X .

For example, in the finite-sum stochastic optimization case when f =
∑N

i fi, selecting

one fi uniformly at random to estimate the gradient corresponds to PΞ being the uniform

distribution on Ξ = {1, 2, . . . , N} and gt(x, ξt) = ∇fξt(x), whereas selecting a mini-batch

of fi’s correponds to Ξ being the set of subsets (of a fixed or varying size) of {1, 2, . . . , N}

and gt(x, ξt) =
1
|ξt|
∑

i∈ξt ∇fi(x). This also covers variance-reduced gradient estimates as

formed, e.g., by SAGA and SVRG, in which case gt is built using information from the

previous rounds.3

2With a slight abuse of notation, gt(x, ξ) (with arguments x, ξ) is from now on used to denote the
oracle at time t evaluated at x, ξ, where as gt (without arguments) denotes the observed noisy gradient
gt(xt, ξt).

3 Note that in this case ξt remains an independent sequence, even though gt changes with the history.
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5.3 AsynCADA: Asynchronous Composite Adaptive
Dual Averaging

In this section, we introduce and analyze AsynCADA for asynchronous noisy online

optimization. AsynCADA consists of τ processes running in parallel (e.g., threads on

the same physical machine or computing nodes distributed over a network accessing a

shared data store). The processes can access a shared memory, consisting of a dual vector

z ∈ Rd to store the sum of observed gradient estimates gt, a step-size vector η ∈ Rd, and

an integer t, referred to as the clock, to track the number of iterations completed at each

point in time. The processes run copies of Algorithm 4 concurrently.
Algorithm 4: AsynCADA: Asynchronous Composite Adaptive Dual Averaging
1 repeat
2 η̂ ← a full (lock-free) read of the shared step-sizes η
3 ẑ ← a full (lock-free) read of the shared dual vector z
4 t← t+ 1 // atomic read-increment

5 t̂← t+ γ // denote ẑt−1 = ẑ, η̂t = η̂, t̂t = t̂

6 Receive ξt
7 Compute the next iterate: xt ← prox(t̂tϕ,−ẑt−1, η̂t) // prox defined in (5.2)
8 Obtain the noisy gradient estimate: gt ← gt(xt, ξt)

9 for j such that g(j)t ̸= 0 do z(j) ← z(j) + g
(j)
t // atomic update

10 Update the shared step-size vector η
11 until terminated

Inconsistent reads. The processes access the shared memory without necessarily ac-

quiring a lock: as in previous Hogwild!-style algorithms [56], [57], [65], [85], [92], we only

assume that operations on single coordinates of z and η, as well as on t′, are atomic. This

in particular means that the values of ẑ or η̂ read by a process may not correspond to an

actual state of z or η at any given point in time, as different processes can modify the

coordinates in parallel while the read is taking place.

Proximal operator oracle. We assume that there exists a generalized proximal operator

oracle prox over X , invoked in Line 7 of Algorithm 4, that given a function ψ and vectors

z and η, returns

prox(ψ, z, η) := argmin
x∈X

ψ(x) +
1

2

x− η−1 ⊙ z
2
η
, (5.2)
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where η−1 denotes the element-wise inverse of η and ⊙ denotes element-wise multiplication.

When η is the same for all coordinates (in which case we simply treat it as a scalar),

this reduces to proxψ(z, η) = argminx∈X ψ(x) +
η
2
∥x − z/η∥2, which is the standard

proximal operator; the generalized version (5.2) makes it possible to use coordinate-wise

step-sizes as in AdaGrad [26], [70]. Finally, at iteration t AsynCADA invokes prox

with ψ ← (t+ γ)ϕ. Similarly, serial proximal DA algorithms [109] call prox with ψ ← tϕ,

whereas the conventional Proximal-SGD algorithm (based on Mirror-Descent) invokes the

proximal operator with ψ ← ϕ irrespective of the iteration; see the paper of Xiao [109,

Sections 5 and 6] for a detailed discussion of this phenomenon.

The role of γ. AsynCADA uses an over-estimates t̂t of the current global clock t by

an additional γ. This over-estimation enables us to better handle the effect of asynchrony

when composite objectives are involved; see Section 5.3.1. AsynCADA can nevertheless

be run without γ (i.e., with γ = 0).4

Exact vs estimated clock. AsynCADA as given in Algorithm 4 maintains the global

clock t exactly. However, this option may not be desirable (or available) in certain

asynchronous computing scenarios. For example, if the processes are distributed over

a network, then maintaining an exact global clock amounts to changing the pattern of

asynchrony and delaying the computations by repeated calls over a network. To mitigate

this requirement, in Section 5.A we provide AsynCADA(ρ), a version of AsynCADA

in which the processes update the global clock only every ρ iterations. AsynCADA as

presented in Algorithm 4 is equivalent to AsynCADA(ρ) with ρ = 1, and both algorithms

enjoy the same rate of convergence and linear speed-up.

Obviously, when ϕ ≡ 0 and t is not used for setting the step-sizes η either, there is no

need to maintain t physically, and Line 4 can be omitted in Algorithm 4.

Updating the step-sizes η: In Line 10 of Algorithm 4, the step-size η has to be updated

based on the information received. The exact way this is done depends on the specific
4 The analysis is still possible, and straightforward, without the bias γ; however, it results in an extra

additive term of order O(τ2∗Φ) where Φ = supx,y∈X {ϕ(x)− ϕ(y)} is the diameter of X w.r.t. ϕ. This
term does not diminish with p∗ and may be unnecessarily large, affecting convergence in the early stages
of the optimization process.
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step-size schedule. In particular, we consider two situations: First, when the step-size is

either constant or a simple function of t (or t̂t in case of AsynCADA(ρ)), and second,

when diagonal AdaGrad step-sizes are used. In the first case, the vector η need not be

kept in the shared memory explicitly, and Lines 2 and 10 can be omitted. In the second

case, following [27], we store the sum of squared gradients in the shared η, i.e., Line 10 is

implemented as follows:

10* for j such that g(j)t ̸= 0 do
(
η(j)
)2 ← (

η(j)
)2

+
(
g
(j)
t

)2
// atomic update

Note that in this case, we are storing the square of η in the shared memory, so a square

root operation needs to be applied after reading the shared memory in Line 2 to retrieve η.

Forming the output x̄T for stochastic optimization: For stochastic optimization,

the algorithm needs to output the average (or randomized) iterate x̄T at the end. However,

this needs no further coordination between the processes. To form the average iterate,

it suffices for each process to keep a local running sum of the iterates it produces and

the number of updates it makes. At the end, x̄T is built from these sums and the total

number of updates. Alternatively, we can return a random iterate as x̄T by terminating

the algorithm, with probability 1/T , after calculating x in Line 7.

5.3.1 Analysis of AsynCADA

To analyze AsynCADA, we assume the sampling of ξt in Line 6 is independent of the

past:

Assumption 5.1 (Independence of ξt). For all t = 1, 2, . . . , T , the t-th sample ξt is

independent of the history Ĥt :=
{
(ξs, ẑs, η̂s+1)

t−1
s=1

}
.

This in turn implies that ξt is independent of xt as well as xs and ξs for all s < t.

For general (non-box-shaped) X , Assumption 5.1 is plausible, as AsynCADA needs

to read z (and η) completely and independently of ξt. If X is box-shaped and ϕ is

coordinate-separable, however, the values of x(j)t for different coordinates j can be calculated

independently. In this, case, the algorithm may first sample ξt, and then only read the

relevant coordinates j from z (and η) for which gt may be non-zero, as calculating other

values of x(j)t is unnecessary for calculating gt. As mentioned by Mania et al. [65], this

violates Assumption 5.1. This is because multiple other processes are updating z and η,
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and the updates that are included the value read for ẑt−1 (and η̂t) would then depend

on ξt. Previous papers either assume that this independence holds in their analysis, e.g.,

by enforcing a full read of z and η, [56], [57], [65], [85], or rely on the smoothness of the

objective to bound the effect of the possible change in the read values [65, Appendix A].

It seems possible to adapt the argument of Mania et al. [65, Appendix A] to AsynCADA

for box-shaped X , by comparing xt to the iterate that would have been created based

on the content of the shared memory right before the start of the execution of the t-th

iteration. This makes the analysis more complicated, and is not necessary when X is not

box-shaped; hence, we do not further pursue this construction in this paper.

Sparsity of the gradient estimates

For t ∈ [T ] and j ∈ [d], we use pt,j to denote the probability that the j-th coordinate of gt
is non-zero given the history Ĥt, that is,

pt,j = P
{
g
(j)
t ̸= 0

⏐⏐Ĥt

}
.

Let p∗ to denote an upper-bound on pt,j for all t ∈ [T ] and j ∈ [d]. We use p∗ as a measure

of the sparsity of the problem.5

Non-adaptive and time-decaying step-sizes

We start the convergence analysis of AsynCADA by first studying the case when ηt is

either a constant, or varies only as a function of the estimated iteration count t̂t. Recall

that each concurrent iteration of the algorithms can overlap in time with at most τ∗ other

iterations. The next theorem is proved in Section 5.B, where a similar result is also given

for AsynCADA(ρ) (Theorem 5.4).

Theorem 5.1. Suppose that either all ft, t ∈ [T ] are convex, or ϕ ≡ 0 and ft ≡ f for

some star-convex function f . Consider AsynCADA running under Assumption 5.1 for

T > τ 2∗ updates, using γ = 2τ 2∗ . Let η0 > 0. Then:
5 In stochastic optimization with a finite-sum objective f =

∑m
i=1 fi, where gt = ∇fξt(xt) and ξt ∈ [m]

is an index at time t sampled uniformly at random and independently of the history, one could measure
the sparsity of the problem through a “conflict graph” [57], [65], [85], [92], which is a bi-partite graph
with fi, i ∈ [m] on the left and coordinates j ∈ [d] on the right, and an edge between fi and coordinate
j if ∇fi(x)(j) can be non-zero for some x ∈ X . In this graph, let δj denote the degree of the node
corresponding to coordinate j and ∆r be the largest δj , j ∈ [d]. Then, it is straightforward to see that
pt,j ≤ δj/m. Thus, p∗ = ∆r/m is a valid upper-bound, and gives the sparsity measure used, e.g., by
Leblond et al. [57] and Pedregosa et al. [85].
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(i) If E{∥gt∥22} ≤ G2
∗ for all t ∈ [T ], then using a fixed ηt = η0

√
T or a time-varying

ηt = η0
√
t̂t,

1

T
E
{
R

(f+ϕ)
T

}
≤ 1√

T

(
η0∥x∗∥22 +

2(1 + p∗τ
2
∗ )

η0
G2

∗

)
. (5.3)

(ii) If f = Eξ∼PΞ
{F (x, ξ)} and there exists l ∈ Rd with positive entries such that for

all ξ ∈ Ξ, F (·, ξ) is convex and 1-smooth w.r.t. the norm ∥ · ∥l, then given a

constant c0 > 8(1 + p∗τ
2
∗ ) and using a fixed ηt,i = c0li + η0

√
T or a time-varying

ηt,i = c0li + η0
√
t̂t,

1

T
E
{
R

(f+ϕ)
T

}
≤ c0∥x∗∥2l

T
+

2√
T

(
η0∥x∗∥22 +

4(1 + p∗τ
2
∗ )

η0
σ2
∗

)
, (5.4)

where σ2
∗ = E{∥g(x∗, ·)∥22}.

(iii) If ϕ is µ-strongly-convex and E{∥gt∥22} ≤ G2
∗ for all t ∈ [T ], then using ηt ≡ 0 or,

equivalently, prox(t̂tϕ,−z, 0) := argminx∈X t̂tϕ(x) + ⟨z, x⟩ = ∇ϕ∗(−z/t̂t),

1

T
E
{
R

(f+ϕ)
T

}
≤ (1 + p∗τ

2
∗ )G

2
∗(1 + log(T ))

µT
, (5.5)

Remark 5.1. In all cases, the bounds with τ∗ = 0 are the same as the bounds in the serial

setting. Assuming c = p∗τ
2
∗ is constant, the bounds match, up to a constant factor, the

serial bounds for adaptive FTRL algorithms under the same settings [47], and we have a

theoretical linear speed-up.

Remark 5.2. Note that Eq. (5.5) holds for all time steps, and converges to zero as T

grows, without the knowledge of T or epoch-based updates. In case of AsynCADA(ρ),

the algorithm does not maintain an exact clock either. To our knowledge, this makes

AsynCADA(ρ) the first Hogwild!-style algorithm with an any-time guarantee without

maintaining a global clock.

Remark 5.3. The bound G∗ that we are assuming, in the strongly-convex case, is on

(f + ϕ) − 1/2∥ · ∥2, i.e., not on the whole objective but rather only on the non-strongly-

convex part. As such, like Nguyen et al. [80], our result does not rely on the incompatible

assumption that the objective is Lipschitz and strongly-convex at the same time. However,

unlike Nguyen et al. [80], AsynCADA(ρ) handles generic X and does not require an

exact global clock.
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AdaGrad step-sizes

In the case of AdaGrad step-size setting (as given by Line 10*), a data-dependent

bound can be derived which matches the bound for the serial AdaGrad algorithm [26]

up to the same constant factors and linear speed-up criteria as for Theorem 5.1. The

derivation depends on using Theorem 5.5 with rt being the non-perturbed, ideal (diagonal)

AdaGrad regularizer and r̂t being formed using the value of the shared vector η2 of

coordinate-wise squared gradients, while also over-estimating each coordinate of η2 by an

additional τ∗G2
∗ factor. In particular, the only difference to the proof of Theorem 5.1 is

bounding the ∆t/νt terms arising from Theorem 5.5. It is straightforward to show that

these terms enjoy a bound of the same order as the rest of the regret, and do not change

the rate of convergence. The proof is very similar to the derivations done by Duchi et al.

[27], in particular using the inequality
√
a+ b−

√
a ≤ b/(2

√
a) to bound ∆t, which we do

not repeat here.

5.4 HedgeHog: Hogwild-Style Hedge

Next, we present HedgeHog, the first asynchronous version of the EG algorithm. The

parallelization scheme is very similar to AsynCADA, the difference being that EG uses

multiplicative updates rather than additive SGD-style updates. We focus only on the

case of ϕ ≡ 0. Each processes runs Lines 3–10 of Algorithm 5 concurrently with the other

processes, sharing the dual vector z.

Algorithm 5: HedgeHog!: Asynchronous Stochastic Exponentiated Gradient.
Input: Step size η

1 Initialization
2 Let z ← 0 be the shared sum of observed gradient estimates
3 repeat in parallel by each process
4 ẑ ← a full lock-free read of the shared dual vector z // t← t+ 1, denote

ẑt−1 = ẑ

5 Receive ξt
6 Compute the next iterate: w(i)

t ← exp
(
−ẑ(i)t−1/η

)
, i = 1, 2, . . . , d

7 Normalize: xt ← wt/∥wt∥1
8 Obtain the noisy gradient estimate: gt ← gt(xt, ξt)

9 for j such that g(j)t ̸= 0 do z(j) ← z(j) + g
(j)
t // atomic update

10 until terminated
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As in AsynCADA(ρ), we index the iterations by the time they finish the reading of z

in Line 4 of HedgeHog (“after-read” labeling [56]). Similarly, we use Ĥt =
{
(ξs, ẑs)

t−1
s=1

}
to denote the history of HedgeHog at time t, and use Ĥt to define the sparsity measure

p∗ as in Section 5.3.1. Then, we have the following regret bound for HedgeHog.

Theorem 5.2. Let X be the probability simplex X = {x|x(j) > 0, ∥x∥1 = 1}, and suppose

that either ft are all convex, or ft ≡ f for a star-convex f . Assume that for all t ∈ [T ],

the sampling of ξt in Line 5 of HedgeHog is independent of the history Ĥt. Then, after

T updates, HedgeHog satisfies

E
{
R

(f)
T

}
≤ η log(d) +

T∑
t=1

E
{
1 +
√
p∗τ∗

2η
∥gt∥2∞

}
.

Remark 5.4. As in the case of AsynCADA, as long as √p∗τ∗ is a constant, the rate above

matches the worst-case rate of serial EG up to constant factors, implying a linear speed-up.

In particular, given an upper-bound G∗ on E{∥gt∥∞} and setting η = G∗/
√
T log(d), we

recover the well-known O(G∗
√
T log(d)) rate for EG [38], but in the parallel asynchronous

setting.

5.5 The framework: serial optimization with perturbed
state

In this section, we present the generic framework underlying the analysis of AsynCADA

and HedgeHog. The framework allows us to study the effect of perturbations in the

state of a (serial) dual-averaging algorithm on its regret.

Serial algorithm. We focus on a family of algorithms, known as Adaptive Follow-the-

Regularized-Leader (Ada-FTRL) [47], [69], [82], that generalize regularized dual-averaging

algorithms [109]. The Ada-FTRL algorithm uses a sequence of regularizer functions

r0, r1, r2, . . . . At time t = 1, 2, . . . , given the previous feedback gs ∈ Rd, s ∈ [t − 1],

Ada-FTRL selects the next point xt such that

xt ∈ argmin
x∈X

⟨zt−1, x⟩+ tϕ(x) + r0:t−1(x) , (5.6)

where zt−1 = g1:t−1 is the sum of the past feedback. We refer to (zt, t, r0:t) as the state of

the algorithm at time t, noting that apart from tie-breaking in (5.6), this state determines

xt.
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It is straightforward to verify that if η(i)t , i ∈ [d] are positive step-sizes (possibly

adaptively tuned as in AdaGrad [26], [70]), then Ada-FTRL with r0:t−1 = 1
2
∥ · ∥2ηt

reduces to xt = prox(tϕ,−zt−1, ηt), with prox given by (5.2). In addition, when ϕ = 0,

X is the probability simplex, and η > 0, Ada-FTRL with the negentropy regularizer

r0:t−1(x) = r0(x) = η
∑d

i=1 xi log(xi) recovers the update x(i)t = Ct exp(−z(i)t−1/η) of the EG

algorithm, where Ct = 1/
∑

j=1 exp(−z
(j)
t−1/η) is the constant normalizing xt to lie in X .

Other choices of rt recover algorithms such as the p-norm update; we refer to Hazan [38],

McMahan [69], Orabona et al. [82], and Shalev-Shwartz [97] for further examples.

Analysis of Ada-FTRL Ada-FTRL and its special cases have been extensively

studied in the literature [16], [38], [47], [69], [82], [97]. In particular, it has been shown

that under specific conditions on rt and ϕ, which we discuss in detail in Appendix 5.E,

Ada-FTRL enjoys the following bound.

Theorem 5.3 (Regret of Ada-FTRL). For any x∗ ∈ X and any sequence of vectors (gt)
T
t=1

in Rd, using any sequence of regularizers r0, r1, . . . , rT that are admissible (Definition 5.2

in Appendix 5.E) w.r.t. a sequence of norms ∥ · ∥(t), the iterates (xt)
T
t=1 generated by

Ada-FTRL satisfy

T∑
t=1

(⟨gt, xt − x∗⟩+ ϕ(xt)− ϕ(x∗)) ≤ r0:T (x
∗)−

T∑
t=0

rt(xt+1) +
T∑
t=1

1

2
∥gt∥2(t,∗) . (5.7)

Importantly, this bound holds for any feedback sequence gt irrespective of the way it

is generated, and serves as a solid basis to derive bounds under different assumptions on

f , ϕ, and rt [47], [82].

Perturbed Ada-FTRL. Next, we show that Theorem 5.3 also provides the basis to

analyze Ada-FTRL with perturbed states. Specifically, suppose that instead of (5.6), the

iterate xt is given by

xt ∈ argmin
x∈X

⟨ẑt−1, x⟩+ (t̂t)ϕ(x) + r̂0:t−1(x), t = 1, 2, . . . , (5.8)

where ẑt−1 denotes a perturbed version of the dual vector zt−1, t̂t denotes a perturbed

version of Ada-FTRL’s counter maintaining the number of iterations t, and r̂0:t−1 denotes
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a perturbed version of the regularizer r0:t−1. Then, we can analyze the regret of the

Perturbed-Ada-FTRL update (5.8) by comparing xt to the “ideal” iterate x̃t, given by

x̃t := argmin
x∈X

⟨zt−1, x⟩+ tϕ(x) + r0:t−1(x), t = 1, 2, . . . . (5.9)

Since (x̃t)
T
t=1 is given by a non-perturbed Ada-FTRL update, it enjoys the bound of

Theorem 5.3. The crucial observation of Duchi et al. [27] (who studied the special case of

(5.8) where ϕ = 0, X is box-shaped, and r̂t = rt) was that the regret of Perturbed-Ada-

FTRL is related to the linear regret of x̃t. When ϕ may be non-zero, we capture this

relation by the next lemma, proved in Section 5.D:

Lemma 5.1 (Perturbation penalty of Ada-FTRL). Consider any sequences (xt)
T
t=1 and

(x̃t)
T
t=1 in X , and any sequence (gt)

T
t=1 in Rd. Then, the regret R(f+ϕ)

T of the sequence

(xt)
T
t=1 satisfies

R
(f+ϕ)
T =

T∑
t=1

(⟨gt, x̃t − x∗⟩+ ϕ(x̃t)− ϕ(x∗)) + ϵ̃1:T + δ1:T − B1:T , (5.10)

where ϵ̃t = ⟨gt, xt − x̃t⟩+ ϕ(xt)− ϕ(x̃t), δt = ⟨∇ft(xt)− gt, xt − x∗⟩ and Bt = Bft(x∗, xt).

When gt is an unbiased estimate of ∇ft(xt) and ft are (star-)convex, the terms −B1:T

and δ1:T are non-positive in expectation (c.f. Theorem 5.5), and for x̃t given by (5.9), the

first summation is bounded by Theorem 5.3. As such, to bound the regret of Perturbed-

Ada-FTRL, it only remains to control the “perturbation penalty” terms ϵ̃t capturing

the difference in the composite linear loss ⟨gt, ·⟩+ ϕ between xt and x̃t. In Section 5.D,

we use the stability of Ada-FTRL algorithms (Lemma 5.4) to control ϵ̃1:T , under a

specific perturbation structure that captures the evolution of the state of asynchronous

dual-averaging algorithms like AsynCADA and HedgeHog. Unlike Duchi et al. [27], our

derivation applies to any convex constraint set X and, crucially, to Ada-FTRL updates

incorporating a non-zero ϕ and a perturbed counter t̂t.

5.6 Conclusion, limitations, and future work

We presented and analyzed AsynCADA, a parallel asynchronous online optimization

algorithm with composite, adaptive updates, and global convergence rates under generic

convex constraints and convex composite objectives which can be smooth, non-smooth,
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or non-strongly-convex. We also showed a similar global convergence for the so-called

“star-convex” class of non-convex functions. Under all of the aforementioned settings,

we showed that AsynCADA enjoys linear speed-ups when the data is sparse. We also

derived and analyzed HedgeHog, the first Hogwild-style asynchronous variant of the

Exponentiated Gradient algorithm working on the probability simplex, and showed that

HedgeHog enjoyed similar linear speed-ups. To derive and analyze AsynCADA and

HedgeHog, we showed that the idea of perturbed iterates, used previously in the analysis

of asynchronous SGD algorithms, naturally extends to generic dual-averaging algorithms,

in the form of a perturbation in the “state” of the algorithm. Then, building on the

previous work of Duchi et al. [27], we studied a unified framework for analyzing generic

adaptive dual-averaging algorithms for composite-objective noisy online optimization

(including AsynCADA and HedgeHog as special cases). Possible directions for future

research include applying the analysis to other problem settings, such as multi-armed

bandits. In addition, it remains an open problem whether such an analysis is obtainable

for constrained adaptive Mirror-Descent without further restrictions on the regularizers

rt (e.g., smoothness of the MD regularizer seems to help). Finally, the derivation of

such data-dependent bounds for the final (rather than the average) iterate in stochastic

optimization, without the usual strong-convexity and smoothness assumptions, remains

an interesting open problem.
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Appendices

5.A AsynCADA(ρ): AsynCADA with inexact clock

In this section, we present AsynCADA(ρ), a more general version of AsynCADA that

maintains the global clock sparsely. In the context of AsynCADA(ρ), we use t′ to denote

the clock variable in the shared memory, and use t to denote the virtual iteration index as

we specify below. The processes run copies of Algorithm 6 concurrently. Each process is

also equipped with an internal counter t′′ and a function MaintainClock to control the

updating of the global clock t′.

Similar notes as in AsynCADA apply regarding the maintenance of the step-size η and

the formation of the average iterate. Note, however, that unlike AsynCADA, step-sizes

changing with time need to use t̂t rather than t, since the latter is not available anymore.

As Theorem 5.4 in Section 5.B shows, this has a negligible effect on the convergence
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guarantees.
Algorithm 6: AsynCADA(ρ): AsynCADA with inexact clock
Input: clock update frequency ρ

1 Initialize internal local counter t′′ ← 0
2 repeat
3 η̂ ← a full (lock-free) read of the shared step-sizes η
4 ẑ ← a full (lock-free) read of the shared dual vector z
5 t̂← MaintainClock() // t← t+ 1, denote ẑt−1 = ẑ, η̂t = η̂, t̂t = t̂

6 Receive ξt
7 Compute the next iterate: xt ← prox(t̂tϕ,−ẑt−1, η̂t) // prox defined in (5.2)
8 Obtain the noisy gradient estimate: gt ← gt(xt, ξt)

9 for j such that g(j)t ̸= 0 do z(j) ← z(j) + g
(j)
t // atomic update

10 Update the shared step-size vector η
11 until terminated

Algorithm 7: Maintaining the local and global iteration counters
1 Function MaintainClock()
2 Let γ > t′′τ∗
3 t′′ ← t′′ + 1 // count number of iterations by this process
4 if t′′ ≥ ρ then // update global clock every ρ local iterations
5 t′′ ← 0
6 t′ ← t′ + ρ // atomic read-increment

7 end if
8 return t′ + γ // use the value of t′ read in Line 6 if executed; otherwise

read t′

9 end

Indexing the iterates Unlike AsynCADA, in AsynCADA(ρ) the iterates are not

physically indexed by the global clock t. As such, at each point in time we define a virtual

count of the number of iterations undertaken so far, and then come up with an actual

estimate of this virtual global clock. To that end, we use the “after-read” iteration indexing

proposed by Leblond et al. [57]: we define the t-th iteration to be the one corresponding to

the t-th completion of reading the shared memory (which happens by reading t′ in Line 6

or 8 of MaintainClock), before the execution of Line 6. This ensures that ẑt−1 contains

only updates made by processes s < t, which proves useful in the analysis.

Estimating the clock. In AsynCADA(ρ), the processes share share an integer t′ to

estimate the (virtual) iteration count t, which is updated by each process every ρ iterations.

In particular, in each iteration a process makes one call to the function MaintainClock
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(Algorithm 7), which increments its local counter t′′ of the number of updates made by

that process since it last updated the global clock; then, after every ρ local updates,

MaintainClock increments the shared global clock estimate t′ by ρ (and resets t′′ for that

process). Note that in this way, t′ is always an under-estimate of t, and AsynCADA

(Algorithm 4) is recovered when ρ = 1. Again, when ϕ ≡ 0 and t is not used for setting the

step-sizes η either, there is no need to maintain t′ physically, and the call to MaintainClock

can be omitted in Algorithm 6.

5.B Proofs for AsynCADA and AsynCADA(ρ)

We start the analysis by a lemma on the time estimates formed by AsynCADA(ρ).

Lemma 5.2 (Time estimate of AsynCADA(ρ)). Suppose AsynCADA(ρ) is run for T

iterations with any ρ ≥ 1, using γ ≥ ρτ∗+τ
2
∗ . Then, the estimated clock t̂t is non-increasing

with t, i.e., for all s, t ∈ [T ] with s < t, we have t̂s ≤ t̂t. In addition, for all t ∈ [T ], we

have t̂t > t+ τ 2∗ .

Proof. Fix s < t ∈ [T ], and note that the value of t′ read in MaintainClock in the s-th

iteration cannot be greater than the value of t′ read in the the t-th iteration. Specifically, t′

can only increase over (physical) time, and the iterations are indexed by the time they make

their last reading of the shared memory before the update in Line 7 of AsynCADA(ρ),

which is the reading (and possibly incrementing) of t′ in Line 8 (respectively, Line 6) of

MaintainClock. Thus, the reading of t′ in iteration s < t necessarily has happened before

that of t, leading to a smaller value of t′. As all the processes are adding the same fixed

value of γ to t′ to obtain t̂, this implies t̂s ≤ t̂t.

To see that t̂t > t, fix t and let t′ be the value of the global clock estimate at the end

of the call to MaintainClock in the t-th iteration. Then, we have t′ > t − ρτ ≥ t − ρτ∗
because by construction, there have been at most ρ updates in each of the τ processors

since the last update of t′ by each processor, and τ∗ ≥ τ by assumption (since the first τ

iterations overlap with each other in time). As such, t̂t = t′+γ ≥ t′+ρτ∗+ τ
2
∗ > t+ τ 2∗ .

Proof of Theorem 5.1. The theorem follows immediately from the convergence bound of

AsynCADA(ρ) with ρ = 1, given by Theorem 5.4 below.
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To analyze AsynCADA(ρ), we need to make a slightly modified version of Assump-

tion 5.1, since t̂t is now a non-deterministic part of the state of the algorithm:

Assumption 5.2 (Independence of ξt). For all t = 1, 2, . . . , T , the t-th sample ξt is

independent of the history Ĥt =
{(
ξs, ẑs, t̂s, η̂s+1

)t−1

s=1

}
.

Theorem 5.4. Suppose that either all ft, t ∈ [T ] are convex, or ϕ ≡ 0 and ft ≡ f for

some star-convex function f . Consider AsynCADA(ρ) running under Assumption 5.2

for T > τ 2∗ updates, using γ = 2τ 2∗ and any ρ ≤ τ∗ in MaintainClock. Let η0 > 0. Then:

(i) If E{∥gt∥22} ≤ G2
∗ for all t ∈ [T ], then using a fixed ηt = η0

√
T or a time-varying

ηt = η0
√
t̂t,

1

T
E
{
R

(f+ϕ)
T

}
≤ 1√

T

(
η0∥x∗∥22 +

2(1 + p∗τ
2
∗ )

η0
G2

∗

)
. (5.11)

(ii) If for all ξ ∈ Ξ, F (·, ξ) is convex and 1-smooth w.r.t. a norm ∥ · ∥l, then given a

constant c0 > 8(1 + p∗τ
2
∗ ) and using a fixed ηt,i = c0li + η0

√
T or a time-varying

ηt,i = c0li + η0
√
t̂t,

1

T
E
{
R

(f+ϕ)
T

}
≤ c0∥x∗∥2l

T
+

2√
T

(
η0∥x∗∥22 +

4(1 + p∗τ
2
∗ )

η0
σ2
∗

)
, (5.12)

where σ2
∗ = E{∥g(x∗, ·)∥22}.

(iii) If ϕ is µ-strongly-convex and E{∥gt∥22} ≤ G2
∗ for all t ∈ [T ], then using ηt ≡ 0 or,

equivalently, prox(t̂tϕ,−z, 0) := argminx∈X t̂tϕ(x) + ⟨z, x⟩ = ∇ϕ∗(−z/t̂t),

1

T
E
{
R

(f+ϕ)
T

}
≤ (1 + p∗τ

2
∗ )G

2
∗(1 + log(T ))

µT
, (5.13)

Proof. We cast AsynCADA(ρ) in the Perturbed-Ada-FTRL framework of Section 5.5:

(i) Thanks to the after-read time-indexing discussed above, ẑt in AsynCADA(ρ) cannot

include any coordinate updates from gs for s > t since by construction, the reading

of z in t has finished before calculating of gs is started. As such, ẑt−1 and zt−1 are

related to each other by (5.15) for all j ∈ [d] and t ∈ [T ].

(ii) In addition, letting r0:t = r̂0:t =
1
2
∥ · ∥ηt , it is easy to see that the AsynCADA(ρ)

update xt ← prox(t̂tϕ,−ẑt−1, η̂t) is equivalent to the perturbed Ada-FTRL update

(5.8).
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(iii) Furthermore, by Lemma 5.2, t̂t is non-decreasing with, and greater than, t. Thus, ηt
is also non-decreasing with t, and t̂t, r0:t and r̂0:t satisfy Assumption 5.3 with norms

∥ · ∥t = ∥ · ∥ηt .

(iv) Finally, Assumption 5.2 ensures that Assumption 5.4 holds.

Therefore, letting νt = t̂t − t, applying Theorem 5.5, and noting that ∆t = 0 by

construction, we get

E
{
R

(f+ϕ)
T (x∗)

}
≤ E

{
r0:T (x

∗) +
T∑
t=1

1 + p∗νt +
∑

s:t∈Os

τs
νs

2
∥gt∥2(t,∗) − B1:T

}
.

Next, the assumption that either ft is convex, or ft ≡ f for a star-convex f implies

Bf(x∗, xt) ≥ 0; hence, the B1:T terms can be dropped. Also, by construction, t̂t ≤ t+ γ,

as t′ always under-estimates t. Together with Lemma 5.2 and since γ = 2τ 2∗ , this implies

τ 2∗ < νt ≤ 2τ 2∗ , and we have

E
{
R

(f+ϕ)
T (x∗)

}
≤ E

{
r0:T (x

∗) +
T∑
t=1

1 + 2p∗τ
2
∗ + 1

2
∥gt∥2(t,∗)

}
. (5.14)

Using the definition of G∗, the fact that r0:T =

√
t̂T
2
∥ · ∥2 ≤

√
T+γ
2
∥ · ∥2 ≤

√
3T
2
∥ · ∥2, the

expansion ∥ · ∥2(t,∗) =
1
ηt
∥ · ∥2, and the well-known bound

∑T
t=1(
√
t)−1 ≤ 2

√
T [69], we get

(5.11).

To get (5.12), we continue from (5.14) but instead upper-bound ∥gt∥ as follows:

1

2
∥gt∥2(t,∗) ≤ ∥∇F (xt, ξt)−∇F (x∗, ξt)∥2(t,∗) + ∥∇F (x∗, ξt)∥2(t,∗)

1

c0
∥∇F (xt, ξt)−∇F (x∗, ξt)∥2l,∗ +

1

η0
√
t
∥∇F (x∗, ξt)∥2 ,

where the last step follows by the definition of ηt,i, which in particular implies ∥ · ∥2(t) ≥

c0∥ · ∥2l and ∥ · ∥2(t) ≥ η0
√
t̂t∥ · ∥2 ≥ η0

√
t∥ · ∥2 (similarly, in case of a fixed step size,

∥ · ∥2(t) ≥ η0
√
T∥ · ∥2 ≥ η0

√
t∥ · ∥2). Putting back into (5.14), we obtain

E
{
R

(f+ϕ)
T (x∗)

}
≤ E

{
c0
2
∥x∗∥l +

η0
√
3T

2
∥x∗∥2 +

T∑
t=1

2 + 2p∗τ
2
∗

η0
√
t
∥∇F (x∗, ξt)∥2

}

+ E

{
T∑
t=1

2 + 2p∗τ
2
∗

c0
∥∇F (xt, ξt)−∇F (x∗, ξt)∥2ℓ,∗

}
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≤ E

{
c0
2
∥x∗∥l +

η0
√
3T

2
∥x∗∥2 +

T∑
t=1

2 + 2p∗τ
2
∗

η0
√
t

σ2
∗

}

+ E

{
T∑
t=1

1

4
∥∇F (xt, ξt)−∇F (x∗, ξt)∥2l,∗

}

≤ E

{
c0
2
∥x∗∥l +

η0
√
3T

2
∥x∗∥2 + 2(2 + 2p∗τ

2
∗ )

η0
σ2
∗

√
T

}

+ E

{
T∑
t=1

1

2
(F (xt, ξt)− F (x∗, ξt)− ⟨∇F (x∗, ξt), xt − x∗⟩)

}

= E

{
c0
2
∥x∗∥l +

η0
√
3T

2
∥x∗∥2 + 4(1 + p∗τ

2
∗ )

η0
σ2
∗

√
T

}

+ E

{
T∑
t=1

1

2
(f(xt)− f(x∗)− ⟨∇f(x∗), xt − x∗⟩)

}

= E

{
c0
2
∥x∗∥l +

η0
√
3T

2
∥x∗∥2 + 4(1 + p∗τ

2
∗ )

η0
σ2
∗

√
T

}

+ E

{
T∑
t=1

1

2
(f(xt)− f(x∗)− ⟨ϕ′(x∗), x∗ − xt⟩)

}

= E

{
c0
2
∥x∗∥l +

η0
√
3T

2
∥x∗∥2 + 4(1 + p∗τ

2
∗ )

η0
σ2
∗

√
T

}

+ E

{
T∑
t=1

1

2
(f(xt)− f(x∗) + ϕ(xt)− ϕ(x∗))

}
.

Here, the first inequality follows by the definition of ∥ · ∥(t,∗) and the fact that ηT =

η0
√
t̂T ≤ η0

√
T + γ ≤ η0

√
3T , the second inequality follows by the definition of c0 and σ,

the third follows by smoothness of F [78] and the bound
∑T

t=1(
√
t)−1 ≤ 2

√
T [69], the

fourth by the independence of ξt from the history, the fifth by the optimality of x∗ (where

ϕ′(x∗) denotes the sub-gradient of ϕ for which ϕ′(x∗) + ∇f(x∗) = 0), and the last line

follows by convexity of ϕ. Moving the last term to the l.h.s. and multiplying the sides by

2 completes the proof of (5.12).

To prove (5.13), note that tϕ is tµ-strongly-convex by assumption, and thus the sequence

of regularizers rt = r̂t = 0 still satisfy Assumption 5.3 with the norms ∥ · ∥2(t,∗) = µt∥ · ∥2.

Thus, (5.14) implies

E
{
R

(f+ϕ)
T (x∗)

}
≤ E

{
T∑
t=1

2(1 + p∗τ
2
∗ )

2µt
∥gt∥2

}
124



≤ 2(1 + p∗τ
2
∗ )

2µ
G2

∗(1 + log(T )) ,

where in the last step we have used the bound
∑T

t=1(1/t) ≤ 1 + log(T ), completing the

proof.

5.C Proofs for HedgeHog

Proof of Theorem 5.2. As in the case of AsynCADA(ρ), the proof follows by casting

HedgeHog as Perturbed-Ada-FTRL. In particular, the same relation between ẑt−1 and

zt−1 holds, and it is easy to see that with the after-read time-indexing the HedgeHog

update corresponds to Perturbed-Ada-FTRL with the regularizer r0:t(x) = r(x) + η ln(d)

where r(x) = η
∑d

i=1 x
(i) log

(
x(i)
)
, which is 1-strongly-convex w.r.t. the ℓ1 norm [97].

Note also that we can assume any value for t̂t > t, including t̂t = t + νt for any νt > 0,

as we don’t use t̂t in the update and hence don’t need to be able to compute it. Then,

Assumption 5.3 is satisfied with ∥ ·∥t =
∑d

i=1 |x(i)| being the ℓ1 norm, with ∥ ·∥(t,∗) = ∥ ·∥∞.

Then, applying Theorem 5.5 and noting ϕ = 0,∆t = 0, B1:T ≥ 0, we have

E
{
R

(f)
T (x∗)

}
≤ r(x∗) + η log(d) +

T∑
t=1

E
{
1 + p∗νt +

∑
s:t∈Os

τs
νs

2
∥gt∥2(t,∗)

}
,

for any νt determined by Ĥt. In particular, letting νt = τ∗/
√
p∗, recalling that τs and

|{s : t ∈ Os}| cannot be larger than τ∗, and noting that r(x∗) ≤ 0 for any x∗ ∈ X completes

the proof.

5.D Proofs for the generic framework

Proof of Lemma 5.1. The proof follows in the same way as in the serial setting [47]. For

t ∈ [T ],

ft(xt)− ft(x∗) = ⟨∇ft(xt), xt − x∗⟩ − Bft(x∗, xt)

= ⟨gt, xt − x∗⟩+ ⟨∇ft(xt)− gt, xt − x∗⟩ − Bft(x∗, xt)

= ⟨gt, x̃t − x∗⟩+ ⟨gt, xt − x̃t⟩+ δt − Bt

= ⟨gt, x̃t − x∗⟩+ ϕ(x̃t)− ϕ(xt) + ϵ̃t + δt − Bt

Adding ϕ(xt)− ϕ(x∗) to both sides and summing over t completes the proof.
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Perturbation structure. We assume that the difference of ẑt−1 and zt−1 is that zero

or more coordinates g(j)s from the past feedback vectors gs, s ∈ [t− 1], can be missing from

(i.e., not added in) the perturbed dual vector ẑt−1. Formally, for all t ∈ [T ] and j ∈ [d],

ẑ
(j)
t−1 = g

(j)
1:t−1 −

∑
s∈Ot,j

g(j)s , (5.15)

where Ot,j is the subset of the past indices [t− 1] corresponding to the missing updates at

the j-th coordinate. Written in a more compact form,

ẑt−1 = g1:t−1 −
∑
s∈Ot

It,sgs , (5.16)

where Ot = ∪jOt,j is the set of all time steps with missing information at time t, and

It,s, s ∈ [t− 1], are diagonal d× d matrices with I(j,j)t,s = 1 if g(j)s is missing from ẑt−1 and 0

otherwise. We define τt,j = |Ot,j| and τt = |Ot| to denote, respectively, the total number of

missing updates to the j-th coordinate of ẑt−1, and to the whole vector ẑt−1. Similarly, we

assume that the time-counter t̂t may not be equal to t, and the cumulative regularizers r0:t
and r̂0:t, can be different, with the latter using only some of the past updates made to r0:t.

However, the exact perturbation in t̂t and r̂0:t depends on the specifics of the algorithm.

Our analysis isolates these perturbations in individual terms, which we can subsequently

study on a case-by-case basis. We make the following assumption on t̂t and the sequence

of actual regularizers (r̂t)
T
t=0 and ideal regularizers (rt)

T
t=0.

Assumption 5.3. The regularizers rt, r̂t, t = 0, 1, . . . , T, are admissible Ada-FTRL

regularizers (Definition 5.2) with the same sequence of norms ∥ · ∥(t), and the sequence

of norms is non-decreasing: ∥ · ∥(t) ≥ ∥ · ∥(t−1) for all t = 1, 2, . . . , T . Finally, rt ≥ 0, t =

0, 1, 2, . . . , T , and t̂t > t, t = 1, 2, . . . , T .

Intuitively, Assumption 5.3 states that the regularizers r̂t are not fundamentally different

from the regularizers rt as far as the basic properties of Ada-FTRL are concerned. In

particular, the assumption is satisfied if (rt)
T
t=0 is admissible with a non-decreasing sequence

of norms and the perturbation increases the curvature, that is, r̂0:t−1 − r0:t−1 is convex.

Finally, the assumption t̂t > t helps us in providing bounds for composite-objective learning,

as will become clear later.
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Independence assumption. Similarly to the standard serial setting, we will assume

that the outcome ξt at time t is independent of the history that determines xt. In the

case of perturbed Ada-FTRL, we define the history to depend on the actual states the

perturbed Ada-FTRL algorithm has gone through:

Definition 5.1 (History of the perturbed game). For t = 1, 2, . . . , T , the history of the

perturbed game up to time t is defined as

Ĥt =
{(
ξs, ẑs, t̂s, r̂0:s

)t−1

s=1

}
,

where ẑs, r̂0:s, t̂s are the dual vector, regularizer and time-counter used by the (s+ 1)-th

perturbed Ada-FTRL update.

We assume that the stochastic outcomes are independent of the history:

Assumption 5.4 (Independence of ξt). For all t = 1, 2, . . . , T , the t-th sample ξt is

independent of the history Ĥt.

This in turn means that ξt is independent of xt as well as xs and ξs for all s < t.

We call a norm ∥ · ∥ a weighted q-norm if there exists q > 0 and aj, j ∈ [d] such that

for all x ∈ Rd,

∥x∥ =

(
d∑
j=1

aj
⏐⏐x(j)⏐⏐q)1/q

. (5.17)

The next theorem describes a generic data-dependent bound on the regret of perturbed

Ada-FTRL. For the theorem, for all t ∈ [T ], we define ∆t := r0:t−1(xt) − r0:t−1(x̃t) +

r̂0:t−1(x̃t)− r̂0:t−1(xt), and let νt := t̂t − t with the t̂t used in the Perturbed-Ada-FTRL

update (5.8).

Theorem 5.5. Suppose that Perturbed-Ada-FTRL is run under Assumption 5.4, and

Assumption 5.3 holds such that for each t ∈ [T ], ∥ · ∥(t) is a weighted q-norm (Eq. (5.17))

with q = 1 or q = 2. Then, the regret of Perturbed-Ada-FTRL satisfies

E
{
R

(f+ϕ)
T

}
≤ E

{
r0:T (x

∗) +
T∑
t=1

(
1 + p∗νt +

∑
s:t∈Os

τs
νs

2
∥gt∥2(t,∗) +

∆t

νt

)
− B1:T

}
.
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5.D.1 Proof of Theorem 5.5

First, we upper-bound ϵ̃t in terms of the difference between x̃t and xt.

Lemma 5.3. Consider Perturbed-Ada-FTRL under the conditions of Theorem 5.5.

Let βt ∈ Rd be given by β
(j)
t = I

{
g
(j)
t ̸= 0

}
, and use ⊙ to denote element-wise vector

multiplication. Then,

• For any positive real number ct and any norm ∥ · ∥, we have

ϵ̃t + ϕ(x̃t)− ϕ(xt) ≤
ct
2
∥gt∥2∗ +

1

2ct
∥βt ⊙ (xt − x̃t)∥2 ,

• In the stochastic setting under Assumption 5.4, for any ct > 0 and any norm ∥ · ∥,

E{ϵ̃t + ϕ(x̃t)− ϕ(xt)} ≤ E
{
ct
2
∥∇ft(xt)∥2∗ +

1

2ct
∥xt − x̃t∥2

}
.

• Under Assumption 5.4, for any q ≥ 1, any weighted q-norm ∥ · ∥ determined by the

history Ĥt, and any positive scalar ct ∈ σ(Ĥt),

E{ϵ̃t + ϕ(x̃t)− ϕ(xt)} ≤ E
{ct
2
∥gt∥2∗

}
+ p(1/q)∗ E

{
1

2ct
∥(xt − x̃t)∥2

}
,

where p∗ is a global upper-bound on P
{
g
(j)
t ̸= 0|Ĥt

}
. In case of q = 2, the bound

still holds if p1/2∗ is replaced with p∗.

Proof of Lemma 5.3. To get the first inequality, note that gt = βt ⊙ gt by definition. The

bound then follows by the Fenchel-Young inequality.

To get the second bound, note that xt, x̃t ∈ σ(Ĥt) by construction, so by Assump-

tion 5.4,

E{⟨gt −∇ft(xt), xt − x̃t⟩} = E
{
⟨E
{
gt −∇ft(xt)|Ĥt

}
, xt − x̃t⟩

}
= 0 .

Thus, E{ϵ̃t + ϕ(x̃t)− ϕ(xt)} = E{⟨∇ft(xt), xt − x̃t⟩}, and the result follows by the Fenchel-

Young inequality.

To get the third bound, we first start with the simpler case of q = 2, using a ∈ σ(Ĥt) to

denote the associated weighting vector, then apply the first inequality and take expectation

of the terms ∥βt ⊙ (xt − x̃t)∥2. Note that by construction, xt, x̃t ∈ σ(Ĥt). Furthermore, by

assumption, ct, a ∈ σ(Ĥt). Hence,

E
{

1

2ct
∥βt ⊙ (xt − x̃t)∥2

}
= E

{
E
{

1

2ct
∥βt ⊙ (xt − x̃t)∥2

⏐⏐Ĥt

}}
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= E

{
d∑
j=1

E
{

1

2ct
a(j)β

(j)
t (x

(j)
t − x̃

(j)
t )2|Ĥt

}}

= E

{
d∑
j=1

E
{
I
{
g
(j)
t ̸= 0

}
|Ĥt

} 1

2ct
a(j)(x

(j)
t − x̃

(j)
t )2

}

= E

{
d∑
j=1

pt,j
1

2ct
a(j)(x

(j)
t − x̃

(j)
t )2

}

≤
(
max
j∈[d]

pt,j

)
E

{
1

2ct

d∑
j=1

a(j)(x
(j)
t − x̃

(j)
t )2

}
,

completing the proof.

To get the bound for any q ≥ 1, first note that when q ∈ [1,∞), the function

h : [0,∞) → R given by h(x) := x1/q (with h(0) := 0) is concave for all x > 0. Thus,

by Jensen’s inequality, E{h(X)} ≤ h(E{X}) for any non-negative random variable X.

Next, we let the q-norm in question be given by Eq. (5.17), with a ∈ σ(Ĥt) denoting the

associated weighting vector, and continue as in the case of q = 2 above:

E
{

1

2ct
∥βt ⊙ (xt − x̃t)∥2

}
= E

{
E
{

1

2ct
∥βt ⊙ (xt − x̃t)∥2

⏐⏐Ĥt

}}

= E

⎧⎨⎩ 1

2ct
E

⎧⎨⎩
(

d∑
j=1

a(j)β
(j)
t

⏐⏐⏐x(j)t − x̃(j)t ⏐⏐⏐q
)2/q ⏐⏐⏐⏐⏐Ĥt

⎫⎬⎭
⎫⎬⎭

≤ E

⎧⎪⎨⎪⎩ 1

2ct

⎛⎝E

⎧⎨⎩
(

d∑
j=1

a(j)β
(j)
t

⏐⏐⏐x(j)t − x̃(j)t ⏐⏐⏐q
)2 ⏐⏐⏐⏐⏐Ĥt

⎫⎬⎭
⎞⎠1/q

⎫⎪⎬⎪⎭ ,

where the last inequality follows since E
{
h(X)|Ĥt

}
≤ h

(
E
{
X|Ĥt

})
by the concavity of

h as argued above, where X =
(∑d

j=1 a
(j)β

(j)
t

⏐⏐⏐x(j)t − x̃(j)t ⏐⏐⏐q)2. On the other hand, since

h is also increasing, we can bound h
(
E
{
X|Ĥt

})
by first upper-bounding E

{
X|Ĥt

}
. In

particular,

E
{
X|Ĥt

}
= E

⎧⎨⎩
(

d∑
j=1

a(j)β
(j)
t

⏐⏐⏐x(j)t − x̃(j)t ⏐⏐⏐q
)2 ⏐⏐⏐⏐⏐Ĥt

⎫⎬⎭
= E

{
d∑
j=1

a(j)β
(j)
t

⏐⏐⏐x(j)t − x̃(j)t ⏐⏐⏐q
(

d∑
i=1

a(i)β
(i)
t

⏐⏐⏐x(i)t − x̃(i)t ⏐⏐⏐q
)⏐⏐⏐⏐⏐Ĥt

}

≤ E

{
d∑
j=1

a(j)β
(j)
t

⏐⏐⏐x(j)t − x̃(j)t ⏐⏐⏐q
(

d∑
i=1

a(i)
⏐⏐⏐x(i)t − x̃(i)t ⏐⏐⏐q

)⏐⏐⏐⏐⏐Ĥt

}
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=
d∑
j=1

a(j)E
{
β
(j)
t |Ĥt

} ⏐⏐⏐x(j)t − x̃(j)t ⏐⏐⏐q
(

d∑
i=1

a(i)
⏐⏐⏐x(i)t − x̃(i)t ⏐⏐⏐q

)

≤ p∗

d∑
j=1

a(j)
⏐⏐⏐x(j)t − x̃(j)t ⏐⏐⏐q

(
d∑
i=1

a(i)
⏐⏐⏐x(i)t − x̃(i)t ⏐⏐⏐q

)
= p∗∥xt − x̃t∥2q .

Thus, h
(
E
{
X|Ĥt

})
≤ h (p∗∥xt − x̃t∥2q) = p

1/q
∗ ∥xt − x̃t∥2. Thus,

E
{

1

2ct
∥βt ⊙ (xt − x̃t)∥2

}
≤ E

{
1

2ct
h
(
E
{
X|Ĥt

})}
≤ E

{
1

2ct
p1/q∗ ∥xt − x̃t∥2

}
,

completing the proof of the third bound.

Thus, controlling the regret in perturbed optimization reduces to picking a suitable

norm ∥ · ∥ and applying Lemma 5.3 at each time step t, and then controlling the differences

xt − x̃t. To that end, we use the stability of Ada-FTRL updates, that is, that the

difference of two Ada-FTRL iterates is controlled by the difference in the two states of

the algorithm resulting in the iterates. The following lemma provides this stability bound.

Lemma 5.4. Let (xt)
T
t=1 and (x̃t)

T
t=1 be given by updates (5.8) and (5.9), respectively, and

suppose that Assumption 5.3 holds. Define ∆t = r0:t−1(xt)−r0:t−1(x̃t)+r̂0:t−1(x̃t)−r̂0:t−1(xt)

for t = 1, 2, . . . , T . Then, for all t = 1, 2, . . . , T + 1,

1

2
∥xt − x̃t∥2(t) ≤

1

2

∑
s∈Ot

It,sgs


2

(t,∗)

+ (t− t̂t) (ϕ(xt)− ϕ(x̃t)) + ∆t . (5.18)

Proof of Lemma 5.4. Since both (rt)
T
t=1 and (r̂t)

T
t=1 are admissible, the Ada-FTRL margin

lemma [47, Lemma 24 (Appendix F)] applied to the update (5.8) implies that for all

t = 1, 2, . . . , T ,

⟨ẑt−1, x̃t − xt⟩+ t̂ (ϕ(x̃t)− ϕ(xt)) + r̂0:t−1(x̃t)− r̂0:t−1(xt) ≥ Bt̂ϕ+r̂0:t−1
(x̃t, xt) ,

while for update (5.9) we have

⟨zt−1, xt − x̃t⟩+ t (ϕ(xt)− ϕ(x̃t)) + r0:t−1(xt)− r0:t−1(x̃t) ≥ Btϕ+r0:t−1(xt, x̃t) .
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By the strong convexity of tϕ + r0:t−1 and tϕ + r̂0:t−1 w.r.t. ∥ · ∥(t), convexity of ϕ, and

the fact that t̂ > t > 0 (so that t̂tϕ+ r0:t−1 is also strongly-convex w.r.t. ∥ · ∥(t)), we have

Bt̂ϕ+r̂0:t−1
(x̃t, xt) ≥ 1

2
∥xt − x̃t∥2(t) and Btϕ+r0:t−1(xt, x̃t) ≥ 1

2
∥xt − x̃t∥2(t). Adding the above,

1

2
∥xt − x̃t∥2(t) ≤ −

1

2
∥xt − x̃t∥2(t) + ⟨zt−1 − ẑt−1, xt − x̃t⟩+ (t− t̂) (ϕ(xt)− ϕ(x̃t))

+ (r0:t−1(xt)− r̂0:t−1(xt))− (r0:t−1(x̃t)− r̂0:t−1(x̃t))

= −1

2
∥xt − x̃t∥2(t) + ⟨

∑
s∈Ot

It,sgs, xt − x̃t⟩+ (t− t̂) (ϕ(xt)− ϕ(x̃t)) + ∆t

≤ 1

2

∑
s∈Ot

It,sgs


2

(t,∗)

+ (t− t̂) (ϕ(xt)− ϕ(x̃t)) + ∆t , (5.19)

where in the last step we have used the Fenchel-Young inequality, completing the proof.

We can now prove the theorem.

Proof of Theorem 5.5. For t = 1, 2, . . . , T , recall that the imaginary iterate x̃t is defined

by Eq. (5.9)

x̃t = argmin
x∈X

⟨g1:t−1, x⟩+ (t+ 1)ϕ(x) + r0:t−1(x) ,

and note that in addition to the difference between r0:t−1 and r̂0:t−1, the actual iterate xt
and the imaginary iterate x̃t have a difference of νtϕ(x) in their regularization.

Starting from the regret decomposition, and using the linear regret of the imaginary

iterate x̃t, as well as the fact that rt are non-negative by Assumption 5.3, we have

R
(f+ϕ)
T (x∗) ≤

T∑
t=1

⟨gt, x̃t − x∗⟩+ ϵ̃1:T + δ1:T − B1:T +
T∑
t=1

(ϕ(x̃t)− ϕ(x∗))

≤ r0:T (x
∗)−

T∑
t=0

rt(x̃t+1) +
T∑
t=1

1

2
∥gt∥2(t,∗) + ϵ̃1:T + δ1:T − B1:T

≤ r0:T (x
∗) +

T∑
t=1

1

2
∥gt∥2(t,∗) + ϵ̃1:T + δ1:T − B1:T . (5.20)

In the above, the first inequality follows by Lemma 5.1. The second inequality follows by

bounding the linear regret
∑T

t=1⟨gt, x̃t− x∗⟩ using Theorem 5.3, and the third by dropping

the non-negative terms rt(x̃t+1).
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Next, we bound the penalty terms ϵ̃1:T . For each t = 1, 2, . . . , T , using the fact that

νt > 0 by Assumption 5.3 and νt ∈ σ(Ĥt) by definition, we have

E{ϵ̃t + ϕ(x̃t)− ϕ(xt)} ≤ E
{
p∗νt
2
∥gt∥2(t,∗) +

1

2νt
∥(xt − x̃t)∥2(t)

}
≤ E

{p∗νt
2
∥gt∥2(t,∗)

}
+ E

⎧⎨⎩ 1

2νt

⎛⎝∑
s∈Ot

It,sgs


2

(t,∗)

+ 2(νtϕ(x̃t)− νtϕ(xt) + ∆t)

⎞⎠⎫⎬⎭
≤ E

{
p∗νt
2
∥gt∥2(t,∗) +

∑
s∈Ot

τt
2νt
∥It,sgs∥2(t,∗) +

∆t

νt
+ ϕ(x̃t)− ϕ(xt)

}

≤ E

{
p∗νt
2
∥gt∥2(t,∗) +

∑
s∈Ot

τt
2νt
∥gs∥2(t,∗) +

∆t

νt
+ ϕ(x̃t)− ϕ(xt)

}

≤ E

{
p∗νt
2
∥gt∥2(t,∗) +

∑
s∈Ot

τt
2νt
∥gs∥2(s,∗) +

∆t

νt
+ ϕ(x̃t)− ϕ(xt)

}
.

(5.21)

The first inequality above uses Lemma 5.3 with ct = p∗νt (using the assumption of ∥ · ∥(t)
being a weighted q-norm with q = 1 or q = 2), the second follows by Lemma 5.4, the

third uses the convexity of the norms ∥ · ∥2(t,∗) and Jensen’s inequality, the forth follows

because It,s is a {0, 1}-valued diagonal matrix and ∥ · ∥(t) is a weighted q-norm, and

hence ∥It,sgs∥(t,∗) ≤ ∥gs∥(t,∗), and the last line follows because s ∈ Ot implies s ≤ t by

construction, and for s ≤ t, the dual norms satisfy ∥ · ∥(t,∗) ≤ ∥ · ∥(s,∗) by Assumption 5.3.

Summing the second term on the r.h.s. of (5.21), for t = 1, 2, . . . , T , we get

T∑
t=1

∑
s∈Ot

τt
2νt
∥gs∥2(s,∗) =

T∑
s=1

(∑
t:s∈Ot

τt
2νt

)
∥gs∥2(s,∗) , (5.22)

Thus, summing (5.21) over t, combining with (5.22), and noting that the terms ϕ(xt)−ϕ(x̃t)

cancel from the sides of the asyncrony penalty bounds (5.21), we get

E
{
R

(f+ϕ)
T (x∗)

}
≤ E

{
r0:T (x

∗) +
T∑
t=1

1 + p∗νt +
∑

s:t∈Os

τs
νs

2
∥gt∥2(t,∗) +

∆t

νt
+ δ1:T

}
.

Finally, noting that xt ∈ σ(Ht) by definition, by Assumption 5.4 it follows that E{δt|Ht} =

0 in the stochastic setting. This completes the proof.
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5.E Extra details for the analysis of serial Ada-FTRL

A typical proxy for bounding the regret of serial optimization algorithms is linearizing

the loss, and studying the linearized regret [16], [38], [97]. In particular, we define the

linearized forward regret

R+
T (x

∗) =
T∑
t=1

⟨gt, xt+1 − x∗⟩ ,

and carry out the analysis in two steps: a decomposition of the regret in terms of the

forward regret R+
T , followed by a bound on R+

T . To that end, we need the following

assumption.

Definition 5.2 (Admissible regularizers.). A sequence of regularizer functions (rt)
T
t=0

is “admissible” for Ada-FTRL if and only if all rt are defined on a common convex

domain S ⊂ Rd, the intersection X ∩S is non-empty, and there exists a sequence of norms(
∥ · ∥(t)

)T
t=1

such that for all t = 1, 2, . . . , T , the cumulative regularizer tϕ+ r0:t−1 : S → R

is lower-semi-continuous and 1-strongly-convex w.r.t. ∥ · ∥(t).

As shown by Lemma 5.5, admissible regularizers guarantee that the Ada-FTRL

updates (5.6) are well-defined, that is, there exists some xt+1 ∈ X that satisfies (5.6), and

the associated optimal value is finite.

Lemma 5.5 (Well-posed Ada-FTRL). For all t = 0, 1, . . . , T , the argmin sets that define

xt+1 in the Ada-FTRL updates (5.6) are non-empty, and their optimal values are finite.

Proof. Fix t ∈ [T ], and consider the extended-value function ht = ⟨zt−1, ·⟩ + r0:t−1 +

Ix∈S∩X , which is proper, l.s.c. and convex by construction. In addition, since r0:t−1 is

strongly-convex over S, then ht is l.s.c. and 1-strong-convex on Rd. The result then

follows by Proposition 17.26 of [6], noting that xt will be the corresponding minimizer by

definition.

Then, we have the following bound on the regret of Ada-FTRL.

Theorem 5.6 (Forward regret of Ada-FTRL, [47].). For any x∗ ∈ X and for any sequence

of linear losses ⟨gt, ·⟩, t = 1, 2, . . . , T , and using any sequence of admissible regularizers

r0, r1, . . . , rT , the forward regret of Ada-FTRL satisfies

R+
T (x

∗) ≤ r0:T (x
∗)−

T∑
t=0

rt(xt+1) +
T∑
t=1

(ϕ(x∗)− ϕ(xt))−
T∑
t=1

Br0:t−1(xt+1, xt) . (5.23)
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Theorem 5.3 follows as a direct consequence of the above theorem by using the strong

convexity of r0:t−1 and the Fenchel-Young inequality; see [47] for further details.
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Conclusion

We studied three problems in fast cross-validation, distributed optimization, and parallel

asynchronous optimization with online algorithms.

First, we studied fast cross-validation of online algorithms. We provided a novel

algorithm, TreeCV, that organized the computation in a tree-structure to avoid wasteful

re-training in k-fold CV.

Second, we studied online algorithms for adaptive distributed optimization. We provided

a generic meta-algorithm, Solid, to extend standard online optimization algorithms, and

their analysis, to the distributed setting, and used it to provide a delay-adaptive step-size

tuning scheme for AdaGrad algorithms.

Third, we provided a refined, modular analysis of online optimization algorithms,

derived new optimistic MD and adaptive composite-objective scale-free FTRL algorithms

with variational bounds, and extended generic online adaptive FTRL algorithms to

perturbed-feedback and asynchronous composite-objective optimization settings with arbi-

trary constraint sets. Based on this extension, we presented and analyzed AsynCADA, a

new asynchronous, generically-constrained composite optimization algorithm, and Hedge-

Hog, an asynchronous variant of the Hedge / Exponentiated-Gradient algorithm. For both

algorithms, we demonstrated linear speed-ups under a range of problem settings, expand-

ing the range of problem settings and algorithmic techniques adoptable to asynchronous

optimization.

An immediate direction for future research is applying the analysis framework presented

in Chapters 4 and 5 to saddle-point formulations of reinforcement-learning algorithms.

In that case, too, a straightforward regret-decomposition relates the dual gap of the

problem to the online regret [74], enabling us to extend the serial, parallel and distributed

algorithms discussed here to reinforcement learning.
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