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Abstract

Chemically heterogeneous feedstocks are being increasingly used in process industries due

to depletion of conventional feedstocks, to meet environmental demands and to recover

value added products from wastes. Chemical modeling of reactive transformations of such

complex feedstocks involves tracking the trajectories of multiple reactive species, typically

through spectroscopic sensor measurements, to obtain atom level knowledge of the react-

ing species and can be challenging, especially without any human insight. Interpretation

of spectroscopic signatures is an art and traditionally demands a level of domain expertise.

Reaction models developed using sensor measurements also require domain expertise and

are typically generated by suggesting model compounds for groups of substrates. Including

human insight, however, leads to bias in modeling and does not allow for efficient explo-

ration of the chemical space for all possible reactions in the system. Furthermore, updat-

ing these expert-guided models based on new operational data is quite cumbersome. This

thesis aims to explore the usage of spectroscopic sensor measurements for automation of

reaction and kinetic modeling of complex reaction systems by employing machine learning

and chemometric methods. The methodologies developed are presented on hydrothermal

liquefaction (HTL) of biomass as a case study by utilizing experimental Fourier Transform

Infrared (FTIR) and Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy.

Different methodologies for the identification of reaction networks from spectroscopic

data are presented in decreasing order of human intervention required. Spectroscopic curve

resolution techniques have been employed at different degrees of sensor data fusion to ob-

tain interpretable and structurally consistent latent features of the reaction system. Sig-
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nal level data fusion has been performed through Self Modeling Curve Resolution, while

a higher order Joint Non-Negative Tensorial Factorization scheme has been applied at a

contextual level to jointly analyze FTIR and 1H-NMR spectroscopic data. Expert knowl-

edge has been used in determination of reactive compounds and the subsequent reaction

networks. In a step towards automation, extraction of functional group signatures of the

reactive species has been performed through application of convolutional operations on the

resolved FTIR spectrum and partial molecular fingerprints for each reactive species have

been identified. A reaction network identification methodology that maps spectroscopic

signatures to candidatemolecules is presented. The network generation is constrained based

on the causal structure inferred using Bayesian structure learning and domain knowledge,

and employs algorithmically extracted reaction rules obtained through Atom-Atom Map-

ping (AAM) of reactions from a database. A one-shot molecular generation methodology

is presented as the next step in automation thus subverting the need for Bayesian struc-

ture learning and spectroscopic deconvolution. Employing a graph neural network based

hetero-autoencoder and generative adversarial networks, the molecular generation routine

generates molecules constrained by the FTIR spectrum. Localized reaction networks for

the process are identified by recursive application of reaction templates. The reaction net-

works identified have been found to be concordant with reactive transformations recorded

in the literature for HTL of biomass. Mathematical modeling of the kinetics of the sys-

tem based on temporal projection of latent features of the spectroscopic deconvolution has

been performed by employing chemical reaction neural networks constrained based on the

adjacency information obtained via Bayesian structure learning of the resolved spectrum.

Benchmarking studies comparing these neural Ordinary Differential Equations with con-

strained alternating least squares and basis reduction techniques such as SIND-y is also

presented for a synthetic system.
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எண்ெபாருள வாகச் ெசலச்ெசால்லித் தான்பிறர்வாய் நுண்ெபாருள் காண்ப தறிவு.

-Kural 424, 1st century BCE

’To speak so as that the meaning may easily enter the mind of the listener, and to discern

the subtlest thought which may lie hidden in the words of others, this is wisdom.’
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Chapter 1

Introduction

Modeling of chemically heterogeneous feed stocks is of concern in the course of optimiza-

tion of their transformation processes to meet environmental targets, product specifications

and market demands [1]. Distributed feed stocks such as biomass pose a problem of being

both physically and chemically heterogeneous and hence generating inferential mechanis-

tic models for such systems involves tracking of numerous reactive species across various

process conditions and requires complete information regarding all the species participat-

ing in the transformation process [2–4]. Measurements of the process from suitably placed

sensors provide valuable process data that can be utilized to develop models in such sce-

narios. Identifying physically realizable models for such systems, especially from sensor

measurements, proves to be challenging due to the following reasons:

(i) Multitude of variables under consideration. Sensor measurements provide infor-

mation pertaining to the reaction mixture as a whole and contain signals correspond-

ing to all measurable species present at the sampling instance. While delineating

signatures specific to each component is challenging, lumped signatures correspond-

ing to closely related species can be obtained. Developing a reaction network model

from the same heavily relies on human intervention and is typically performed by

defining model compounds for all major reactive species in the reaction mixture and

hence is restricted based on technical expertise of the modeler [5, 6] .

(ii) Lack of complete information in sensormeasurements.Typically, sensors are placed
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to measure a state of interest and cannot provide a comprehensive view of the pro-

cess without a model correlating unmeasured states to measured ones. In the context

of reaction systems, spectroscopic sensors provide molecular level information but

cannot represent all aspects of the reaction mixture [7]. Integrating information in a

meaningful manner from multiple sensors can provide a holistic view of the system.

In purely mathematical models, sensor noise can lead to causal mappings that are not

physically realizable.

In this thesis we tackle the aforementioned challenges by incorporating machine learn-

ing and chemoinformatic principles to spectroscopic sensor measurements with the goal of

reducing (if not eliminating) human intervention in modeling reactive systems.

The rest of this chapter is intended to provide an overview and lay ground for some

concepts that provide context for other chapters in the thesis. A more thorough review

of these concepts and the motivations for using the same are presented in each chapter

as required. The final part of this chapter motivates the rest of the thesis and details its

objectives.

1.1 Background

1.1.1 Multivariate curve resolution

Multivariate sensor measurements have allowed for efficient monitoring, control and op-

timization of processes where limited knowledge is available regarding the constituents a

priori [8]. From the perspective of process modeling of reactive systems, sensors capable of

tracking species level (atomic or molecular) transformations is essential. Spectroscopic sen-

sor measurements provide molecular level information and are useful in identifying atomic

or bond level signatures of the constituents of a reactionmixture [9]. These sensors typically

capture the effects of interactions between the reaction mixture with electromagnetic radia-

tion as in the case of infrared, UV-visible or Raman spectroscopy, or electrical or magnetic

fields such as Nuclear Magnetic Resonance (NMR) or mass spectroscopy. Spectroscopic
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sensor measurements have been widely used in characterization of reaction mixtures in

pharmaceutical, fertilizer and upgrading processes to name a few [7, 10, 11]. While spec-

troscopic sensor measurements can be informative, they come at the cost of being high-

dimensional, noisy and non-full rank.

The usage of spectroscopic sensors with multi-component systems such as reactors intro-

duces an added layer of complexity involving overlapping peaks and correlated signatures

of components evolving over time in the process [12]. The simplest way of dealing with the

multi-component issue has been to use linear combination techniques to resolve the spectro-

scopic data. Principal Component Analysis (PCA), for example, has been used in analyzing

anaerobic fermentation reactions and waste water treatment [13–15]. These linear combi-

nation methods (specifically PCA or Partial Least Squares (PLS)) aim to describe two-way

data (time-evolving spectroscopic profiles) through orthogonal latent variables built as lin-

ear combinations of the original feature bases. Imposing orthogonality constraints on the de-

composition results in projections that lack any physicochemical relevance and do not allow

for incorporation of any chemical or instrumental knowledge into the decomposition [16,

17]. Multivariate curve resolution based on the alternating least squares algorithm (MCR-

ALS)was developed to counteract this issue by imposing constraints such as non-negativity,

unimodality or even hard constraints such as specific kinetic models [18]. Invoking Beer-

Lambert’s law, MCR-ALS bi-linearly decomposes a two-way data array into concentration

and spectral profiles while incorporating additional instrumentational or physicochemical

constraints. The resolved profiles suffer issues of rotational and intensity ambiguity and

therefore require careful initialization. Evolving Factor Analysis (EFA) is typically used

as a precursor to MCR-ALS in identifying the concentration profiles of each species. EFA

performs singular value decomposition (SVD) along the temporal mode to identify the rise

and fall of eigenvalues (to be interpreted as unique species) in the data [19]. These trajecto-

ries are used as an initialization for the concentration profiles in the MCR-ALS algorithm.

Global optimization techniques have also been used in generating feasible initializations
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for concentration and spectral profiles.

Higher-order decompositions of the evolving spectral data have been used to overcome

rotational ambiguities. Parallel Factor Analysis (PARAFAC) has been used to perform tri-

linear decomposition of three-way data into a restricted Tucker-3 model [20]. PARAFAC

assumes a common latent hyper-cube onto which the resolved profiles (two-way arrays) are

projected to build the three dimensional data and preserves the inter-modal dependencies.

The quality of the decomposition in all these cases is dependent on the chemical rank (num-

ber of species) provided as a hyperparameter to the algorithm. The chemical rank is usually

identified through numerically computed metrics such as the Ratio of Derivatives [21] or

through identification of orthogonal basis in SVD-like decompositions. Core consistency

diagnostics [22] provides a high-order technique for chemical rank identification by analyz-

ing the structure of the hyper-cube obtained as a result of multiple Tucker decompositions.

Data fusion in the context of spectroscopic measurements provides multiple perspectives

of the reactive transformation and can be effectively used in developing molecular-level

models of the process [23]. Signal-level data fusion such as concatenation of multiple sen-

sor measurements enhances the feature space of the data at the cost of making it highly

correlated [24]. Joint analysis of spectral signatures from multiple sources such as hier-

archical clustering of peaks allows for better interpretation of the individual components

post resolution. Contextual fusion of spectroscopic measurements incorporates knowledge

specific to each type of sensor measurements such as instrumental constraints. Joint factor-

ization schemes such as Joint non-negative matrix factorization [25] and Joint non-negative

tensorial factorization [26] have been developed taking into account independence of fea-

tures across sensormeasurements while also constraining the decomposition to share factors

common to all sets of signals.
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1.1.2 Automated reaction outcome prediction

Prediction of reaction outcomes is an integral part in identifying models for a reactive sys-

tem. The task of exploring the chemical space for plausible reaction outcomes has been

approached in a multitude of ways. A common thread among these approaches is the rep-

resentation of a molecule in a machine-readable format that is informative enough for the

prediction task [27]. Automated reaction prediction methodologies can be broadly classi-

fied into i) rule-based approaches ii) Potential Energy Surface (PES) exploration and iii)

machine learning aided approaches.

Rule-based techniques prescribe a set of valid rules according to which reactions are

allowed to occur in the system. The molecules are typically represented as a molecular

graph with the rules describing the changes to the connectivity of the graph. In scenarios

where knowledge of the feasible reactions of a system is available a priori, reaction rules

or templates can be manually encoded to capture specific chemical transformations around

reaction centres [28, 29], but this comes at the cost of a limited library of reaction rules

and performing modifications to the library is cumbersome. Automated reaction templat-

ing is an approach that aims to identify reaction rules from a database of chemical reactions.

Atom-Atom Mapping (AAM) of reactions allows for tracking of reaction centres and tem-

plating reactions [30]. Regardless of their source, templates are applied recursively on the

molecules to generate a reaction network [31].

Exploring the PES of a reaction mixture in attempt to identify plausible reaction net-

works is computationally expensive and requires extensive knowledge regarding the sub-

strates. Typically a minima hopping approach is followed to identify routes connecting

potential energy wells in the PES with a search for transition states along the routes [32].

Ab-initio molecular dynamics have also been used for simpler systems in identifying re-

action events but still require knowledge of the system to identify reaction co-ordinates

to track [33]. Hybrid approaches combining quantum mechanical calculations with rule-

based methodologies are typically used to efficiently sample the PES with the rule-based
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predictions restricting the region of the PES to be evaluated for the quantum mechanical

simulations [34].

Machine learning models typically use neural networks as non-linear universal func-

tion approximators to learn mappings between substrates and products. The architecture of

the machine learning model chosen relies heavily on the molecular representation used.

Methodologies developed for natural language processing have been adapted to string-

based molecular representations such as Simplified Molecular Input-Line Entry System

(SMILES) and SELFIES. Neural network architectures capable of handling sequential in-

formation like recurrent neural networks (RNN) and transformers have been used in one

step ahead prediction of reaction outcome based on SMILES string and its variants [35,

36]. Seq2seq architectures developed for neural machine translation have also been em-

ployed in reaction outcome prediction. These models consist of an encoder and a decoder

where the encoder generates a context vector for the substrate by recurrently parsing the

SMILES string of the molecule. The context vector is then used as an initialization for

an RNN that token-wise predicts the outcome of the reaction. Molecular fingerprints and

other vectoral representations are used in combination with deep neural networks to learn

a probability distribution over a curated number of reaction classes. Another subclass of

techniques perform convolution operations across the molecular graph to identify potential

reaction outcomes. For example, a class of models perform repeated convolution opera-

tions on the molecular graphs of the reactants with an added global attention mechanism to

generate a latent embedding of substrates, which is then input to a series of neural network

layers to learn a reaction class distribution [37–39]. Machine learning models behave in a

template-free manner, thus allowing for flexibility in terms of evaluating an entire molecule

as well as being able to adapt to newer training information.
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1.1.3 Generative models for molecules

Molecular discovery has been at the forefront of materials design and drug design in recent

times. Conventionally, the task falls at the hands of chemists whose expert knowledge and

intuition guides targeted development of new molecules suited for a specific purpose [40].

Traditional discovery methods are only able to sample a small section of the chemical space

of theoretically feasible compounds and have higher resource requirements. Machine learn-

ing based generative models prove to be a suitable proxy for human intuition by learning

latent features over multiple molecular structures [41]. Target-specific drug discovery has

been a topic of interest, especially with the ability to machine learning algorithms to model

Quantitative Structure Activity/Property Relationships (QSAR/QSPR) [42].

Generative algorithms learn to mimic the distribution of molecules across the support of

the representation of the molecules supplied during their training phase. Learning the distri-

bution allows for sampling of newer molecules in the inference phase. The representation of

the molecule chosen allows for application of specific types of machine algorithms for the

generative algorithm. Sequential notation ofmolecules such as SMILES and SELFIES have

led to the adaptation of text-based models developed for language processing for molecu-

lar generation [43–45]. RNNs update their internal state one token at a time to generate an

encoding of the molecule in a continuous space which is transformed through non-linear ac-

tivations to predict tokens in the output sequence. The encodings are stochastically sampled

in the inference phase to generate new molecules. Large language models have also been

employed to this effect. Point cloud representation of molecules denote atoms as points in

a space based on their Cartesian co-ordinates [46]. This three dimensional representation

aids in capturing the effects of the different conformer states but can prove to be computa-

tionally challenging to obtain sufficient training samples. Graphical representations open

up the avenue for the use of Message Passing Neural Networks (MPNNs) to extract la-

tent encodings of the molecule [47, 48]. The direct generation of molecular graphs can be

challenging though and have been limited to smaller molecules or a subset of molecules
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containing a pre-defined set of atoms or bonds.

Generative models, initially developed for image generation, have been readily adapted

towards molecular generation. Variational Auto Encoders (VAEs) consist of a decoder that

aims to reconstruct the input from a latent embedding of it generated by an encoder [45,

49, 50]. A regularization term based on the Kullback-Leibler divergence (KL divergence)

is added to the loss function to shape the encodings into a standard normal distribution. A

closely related class of models are Generative Adversarial Networks (GANs), which gener-

ate a surrogate distribution for the distribution of training samples by setting the optimiza-

tion problem as a min-max game [47, 51, 52]. This adversarial training allows for a more

nuanced learning of the probability distribution and has been found to be more capable to

generating more realistic samples as compared to VAEs [53]. Normalizing flow models

generate invertible mappings of one random variable to another and can be used as a means

of stochastically sampling from a latent distribution [54, 55].

Unconstrained generative models are used for exploratory purposes to identify newer

sub-regions of the molecular space as well as add to training databases [56]. Evolutionary

algorithms, for example, have been used to randomly mutate parts of the molecular graph

to generate new molecules [57]. Constrained models have been built to deal with generat-

ing molecules that satisfy a particular threshold of property such as partition coefficient or

drug-likeness [45, 50, 58]. Optimization routines or reward maximizing approaches such as

reinforcement learning have been used to identify molecules with specific properties. Scaf-

fold or structural constraints can also be provided to generative algorithms to restrict the

search space to a particular section [59, 60]. In practice these models are built to improve

upon a particular scaffold provided as an initialization to a fine-tuning model.

1.1.4 Kinetic Modeling

Kinetic modeling of reaction systems is derived from the law of mass action and address-

ing closure of mass balance across the reactor system [61]. Pooled approaches such as
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the S-system formulation consider all influxes under one power law term and the effluxes

under another while generalized mass action models (GMA) consider each reaction term

individually [62]. The task of kinetic modeling can be broken down into identification of

the topology of the kinetic scheme,i.e, the reaction network structure and the estimation of

kinetic parameters. These tasks are cast as individual or joint optimization problems with

structure being inferred directly through power law coefficients or as separate variables us-

ing integer programming [63]. Under the S-system or GMA the kinetic equations can be

derived by constraining the parameter space with the reaction network topology to only

include terms with direct influence. A more simplified model can be obtained by moving

the equations to a logarithmic space followed by linearization around a specific operating

point [64]. Complexities arising from usage of non-linear dynamical models (S-system for

example) have been dealt with by describing the model as a weighted sum of linear polyno-

mial basis functions. The basis functions represent a set of elementary reactions identified

by model reduction [65]. Noisy process data can lead to multiple network models that re-

sult in the same temporal trajectory which is known as the fundamental dogma of kinetics

[66]. Uncertainty in parameter estimation has been dealt with through stochastic modeling

or through pruning of spurious network connections.

Progress of reactions for optimization and control is characterized through the concept

of extents. For homogeneous systems, the reactants entering are either converted to prod-

ucts, remain unconverted in the reactor or leave the reactor. A mass balance closure of

the reactor provides the extents and allows for identification of the reaction rates [67]. In

heterogeneous systems additional mass and heat transfer terms need to be accounted for

to achieve mass balance closure. The reaction rates can be deduced independently from

the extent of reaction, which is not just a pure function of species concentration or reaction

variants (except in a homogeneous batch reactor where reaction rates give true extents of re-

action) due to the additional dependence on the flow variants, mass transfer variants and the

invariant terms, because of which the species vector is transformed into a low-dimensional
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manifold of states to infer extent of reaction from concentration data [68]. Alternatively,

tendency models have been widely used for batch reactor optimization where the identi-

fied stoichiometry and kinetic models for a set of enumerated reactions are fit to a batch

of data followed by optimization and model update over the subsequent batch of data in an

iterative process over time [69]. Tendency models are a parsimonious approach to approx-

imate the kinetics of complex reaction systems [70] without prior mechanistic knowledge

of the system to predict the dynamic reaction tendencies in transient batch operations [71].

However, the extent-based approach of directly inferring reaction rates from species con-

centration data is not only agnostic to the canonical expressions for reaction kinetics or

mass transfer, but also generalizes well across different reactor configurations, is already a

reduced model as redundant states are eliminated prior to identification, and facilitates es-

timation of unmeasured species concentration by reconciling the measured concentrations

and inlet flowrates with the variant states transformed as extents; finally, integration of ex-

tents of reactions is a conducive approach to obtain model predicted concentrations that are

fit to the process data for kinetic parameter estimation, thereby overcoming the susceptibil-

ity to noise and sparsity while time differencing the measured concentrations for the same

[72, 73].

Inclusion of physical constraints on the data-driven inferential model subverts the need

for user-defined polynomial basis functions and narrows down the solution space. Use of

neural networks to learn non-linear dependencies between differentials of concentrations

and concentrations of multiple species has been well studied in the literature [74]. Net-

works have been modified to incorporate network topology constraints and other coupled

parameter functions such as the Arrhenius law identify kinetic parameters as theweights and

biases of their hidden layers [75]. Evolutionary algorithms have been employed to incre-

mentally build kinetic relationships between measured concentrations of multiple species

with no prior knowledge. The genetic algorithm identifies a causally interpretable model

for the data through functional forms generated (either mutated or retained) based on a lack
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of fit cost [76]. The actual parameters themselves are identified through a secondary opti-

mization task set. Stochastic block models and Markov chain models have also been used

in inferring kinetic models from process data [77, 78].

1.2 Motivation

The overarching theme of this thesis is to harness information available from spectroscopic

sensor measurements to generate physically realizable reaction models for complex reac-

tion systems. As mentioned in Sections 1.1.1 and 1.1.2, techniques involved in identifying

reaction networks typically involve complete or almost-complete information pertaining to

molecules participating in the reaction. Sensor measurements and human knowledge are

then used as a means of validating the automated prediction. From the perspective of pro-

cess monitoring, reverse engineering this workflow becomes pertinent and has not been

thoroughly investigated yet. A challenge in reversing this process is the lack of complete

information regarding molecular structures and the effect of noise in developing inferential

models.

Identification of reaction models from spectroscopic sensor measurements requires in-

terpretable (machine or human) mapping of signal peaks to reactive entities. The task of un-

raveling multiple overlapping peaks in spectroscopic measurements is a well-studied prob-

lem, as outlined in Section 1.1.1. The first work in this thesis stems from the question of

applicability of MCR techniques to complex reaction systems and the HTL of biomass is

chosen as a candidate system. Joint inference of multiple sensor measurements is explored

by a signal-level data fusion scheme and the extent of human intervention required in iden-

tifying reaction networks for the system is explored.

The task of generating reaction network hypotheses for complex feedstocks has always

involved a large amount of human expertise and hence is also subject to human knowledge

bias [7]. In complex systems, multiple reactive entites undergo simultaneous reactions and

a means of automatically identifying these transformations was found to be lacking. Futher-
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more, methodologies presented in literature have been developed for systems where at least

the initial substrates are known [28, 31, 37]. Though rich in information, spectroscopic

techniques chosen in this work (FTIR and 1H-NMR) do not provide information regarding

the complete molecular structure. A methodology dealing with partial information pro-

vided by spectroscopic measurements while concurrently leveraging domain knowledge of

the process was found to be lacking in the literature.

Process sensor measurements can be noisy which leads to multiplicity in deconvolution

of spectral peaks. Process noise was found to affect multiple steps of the network identifi-

cation process developed in Chapters 2 and 3 and hence an one-shot molecular prediction

routine that bypasses multiple modules in these workflows was required. Constrained gen-

erative models for molecules have been built to optimize a specific scalar or vector target

property [45, 57], but have not been developed for continuous and correlated conditions

such as spectroscopic measurements.

Developing kinetic models for complex systems has always been riddled with solution

multiplicity and inclusion of physical constraints have been found to restrict the solution

space. While chemical reaction networks provide a means of chemically modeling the sys-

tem, control and optimization of the process require a numerical (kinetic) model. Temporal

projections of deconvolution provide an interpretation of concentration, but inference of

kinetic parameters from the same can be onerous due to process noise and requires infusion

of process constraints to obtain causally interpretable kinetic models.

1.3 Objectives

The primary objective of this thesis is to explore the automation of identifying models for a

complex reaction system from sensor measurements. To this effect we employ techniques

of Multivariate Curve Resolution (MCR) in tandem with chemoinformatic and machine

learning on spectroscopic sensor measurements to identify potential reaction network hy-

potheses and generate a kinetic model for the system.Figure 1.1 depicts the different routes
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in which spectroscopic sensor measurements have been employed in this thesis. The fol-

lowing thesis objectives have been realized:

• Signal-level data fusion followed by MCR has been deployed to identify individual

reactive components in hydrothermal pyrolysis of biomass. Expert knowledge has

been used to develop a reaction network for the system and is used as a baseline for

comparison with more complicated methodologies that follow.

• Structure preserving tensorial factorization has been used to jointly analyze multiple

sensor measurements. An improved convolutional neural network has been trained to

identify functional groups present in FTIR spectroscopy data. A rule-based reaction

network generation scheme with in-built causal constraints has been developed as a

step towards automating the reaction network identification.

• In order to subvert the need for curve resolution and causal inference techniques, a

one-shot machine learning based generative model has been developed to propose

candidate molecules for a reaction mixture directly from spectroscopic sensor mea-

surements. Localized reaction networks for each operating condition have been iden-

tified in an automated fashion using a rule-based reaction prediction method.

• Projections of evolving spectroscopic data along the time mode have been utilized in

identifying a kinetic model for the system by harnessing backpropagation algorithms

used in neural network training. A structurally constrained neural ODE has been

trained and benchmarked against an ALS-type constrained optimization routine.

1.4 Datasets

All methodologies described in this thesis are presented using hydrothermal liquefaction of

biomass as a model system. A brief description of the experimental data acquisition and

the structure of the dataset used in each subsequent chapter are as follows.
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Figure 1.1: Usage of spectroscopic measurements of process in developingmodels for com-
plex systems

Moneterey pine biomass was subjected to hydrothermal liquefaction in a batch reactor

at temperatures of 150◦C, 200◦C and 250◦C for batch times of 15, 20 and 25 minutes un-

der acidic and alkaline conditions resulting in 27 process conditions. FTIR and 1H-NMR

measurements of the reactor effluent were obtained with water being the solvent medium.

In Chapter 2, data matrices of the shapes 27 × 1769 and 27 × 2084 were generated

for the FTIR and 1H-NMR measurements respectively by stacking spectra at each process

condition together.

In Chapter 3, three dimensional tensors of shapes 3×9×1769 and 3×9×2084 for FTIR

and 1H-NMR were generated by combining the data for different catalytic conditions along

the temperature mode. This 3-d tensors are a result of vertical stacking of 2-d matrices of

data from Chapter 2.

In Chapter 4, each sensor measurement is treated individually, resulting in 27 1× 1769

and 1× 2084 data vectors.
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Chapter 5 uses synthetically generated obtained by mixing spectra of compounds ex-

tracted from databases.

1.5 Thesis structure

The remainder of this thesis consists of five chapters arranged as follows:

Chapter 2 describes methodologies involved in identifying spectroscopic signatures of

individual reacting components and using human intuition to develop plausible reaction

networks for the HTL of biomass. The signal-level data fusion technique, Self-modeling

MCR and Bayesian structure learning are elaborated upon and the validity of the generated

reaction networks is described.

Chapter 3 details an automated workflow towards identifying reaction networks for a

complex system. Two key results are presented in this chapter. An improved convolution-

based functional group identifier is presented as means of automating reactive centre iden-

tification. This is followed by the description of a causally constrained rule-based reaction

network generation routine. Potential limitations and areas of improvement are also dis-

cussed.

Chapter 4 describes an one-shot candidate molecule identification scheme and its sub-

sequent use in reaction network generation. A hetero-autoencoder based on convolution

operations on graph structures is used in tandem with a Generative Adversarial Network to

generate molecules that conform to a given FTIR spectrum. Application of this generative

model towards reaction network generation is also presented.

Chapter 5 focuses on usage of temporal concentration data obtained from MCR towards

kinetic modeling of the system. A neural ODE solver constrained on the structure of the

reaction network is presented and benchmarked against a structure constrained ALS routine

towards kinetic parameter estimation. The effect of signal strength on deconvolution and

Bayesian network structure learning are discussed.

Chapter 6 serves a conclusionary piece that summarizes the findings of this thesis along
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with the limitations and includes potential avenues for exploration for further studies.
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Chapter 2

Data Fusion-Based Approach for the
Investigation of Reaction Networks in
Hydrous Pyrolysis of Biomass

2.1 Abstract

In this work, we present and validate a methodology for generating reaction networks from

spectroscopic data using data-driven methods by applying it to the hydrothermal liquefac-

tion (HTL) of Monterrey pine biomass and its constituents, viz., cellulose and lignin. This

work is presented as a step toward automated inference of chemistry of the hydrothermal

liquefaction process, thus limiting the need for human expertise. Bayesian hierarchical

clustering of spectra and self-modeling multivariate spectral curve resolution are used to

generate groups of chemically similar species, the reaction networks among which have

been developed using Bayesian networks. Fourier transform infrared spectroscopy and

proton nuclear magnetic resonance spectroscopy-based measurements are used as input

data. The data-driven reaction network includes pathways representing decomposition of

the biomass components, largemolecule hydrolysis, and reformation of producedmolecules

and is consistent with the literature. Furthermore, the comparison of the networks generated

for biomass and its components (levoglucosan, representing cellulose, and 2-phenoxy-ethyl

benzene, representing lignin) reveals the relationship between the biomass HTL reaction

network and the reaction networks of the components. The data-driven approach provides
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a diagnostic tool to identify the most probable reaction chemistry for complex biomass

feedstocks and can be used for process understanding, design, and control.

2.2 Introduction

Biomass is a cheap, sustainable, CO2 – neutral renewable resource which can prove to be

an effective substitute for conventional fuels [79]. The conversion of biomass to useful

products occurs through biochemical or thermochemical pathways. Pyrolysis, a thermal

conversion of biomass, generates bio-oil as a primary product with many uses, including

serving as a precursor for chemicals in biorefineries [80, 81]. The gases produced during

pyrolysis can be utilized in heat and power generation [82].

Hydrothermal liquefaction (HTL) is a conversion process that converts wet biomass to

bio-fuels and other value-added chemicals [83]. Water at critical conditions is an essential

reactant in the HTL process resulting in quick, homogenous and active reactions [84]. At

temperatures below 400°C, where the HTL is usually performed, hot condensed water is

used to produce biocrude with about 10-20% oxygen [85]. The product yield and physico-

chemical properties of the HTL are mainly affected by variability in feedstock, processing

conditions (temperature and reaction times) and the choice of catalyst[86].

Biomass can be characterized by the relative compositions of its three main constituents-

cellulose, hemicellulose and lignin. The pyrolysis of biomass generates products that are

equivalent to the total sum of the individual pyrolysis of the three constituents. Bio-oil is a

combination of hundreds of compounds that are produced from the depolymerization of cel-

lulose, hemicellulose and lignin. The oxygen and water composition of bio-oil ranges from

40-50% and 25-35%, respectively[87] and the chemical nature of bio-oil is firmly linked

to the ratio of the components in the biomass [88]. Consequently, it is vital to comprehend

the molecular composition of bio-oils to understand their properties and stability. Reac-

tion networks provide a way to describe the synergy among the constituents of the system,

providing a means for monitoring and control of the process. The development of reaction
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networks for such a physically and chemically heterogeneous system requires much human

expertise and is usually done through representative mixture models or through correlations

[88, 89]. The workflow described herein infers chemistry of the process directly from spec-

tral measurements of the feedstock, and unveils the causal information inherently present

in the reactive transformations, thus reducing human bias.

In this work, we develop a diagnostic tool for the reactions of biomass and use it to

describe the HTL process of Monterey pine whole biomass in the presence of water at dif-

ferent conditions. The diagnostic tool, which identifies the most probable chemistry, can

then be used to advance systems engineering applications by way of monitoring, optimiza-

tion and control of chemically reactive processes [90]. Importantly, the tool only needs

spectroscopic (or similar) data that is easily available on-line or at-line in a process, i.e., the

analytical or characterization requirements are not complex. It is also important to note that

we do not attempt to develop an optimized HTL process, but instead use HTL at different

operating conditions to elucidate the details of our approach and its diagnostic capabilities.

In this study, samples from theHTL process were studied and distinguished using Fourier

Transform Infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (1H-NMR)

spectroscopy. Spectroscopicmeasurements provide information at themolecular level along

with physical process parameters like temperature, pressure, flow rate and liquid level being

measured from other sensors [91]. A data fusion approach is subsequently used to combine

information from the two types of spectroscopic measurements when inferring the chem-

istry of the process. The essence of data fusion is to link the data from several sensors to

carry out deductions that cannot be acquired from a single sensor [92], as demonstrated

by jointly analyzing spectroscopic data to capture complementary information in reactive

systems [25, 26]. Input data from various sources might involve parametric data linked to

the object identity, thereby providing a holistic view of the reaction scheme incorporating

various distributed sources [93].

A major issue in computational fields like biology or chemical processes is the preva-
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lence of high dimensional datasets to study the network architecture of the variables accu-

rately [94, 95]. Functional connectivity is often illustrated in terms of statistical reliance,

and it is also seen as a practical theory that controls the discovery of a functional connec-

tion without interpretability on how that connection was made. It could also be illustrated

as a dependency test between two or more time series used to decline the null hypothesis of

statistical independence. This is similar to evaluating the collective information and exper-

imenting for critical departures from the null hypothesis [96]. The Granger causality tech-

nique and the Bayesian network inference technique are two procedures frequently used to

infer interactions among a set of elements [97, 98]. Several studies have been conducted on

the systematic and computationally intensive comparisons between the two techniques on

the synthesized and experimental data, and it was inferred that the Bayesian network (BN)

inference is more preferable to the Granger causality approach for small datasets [99]. This

research generated a high dimensional dataset for a limited number of experimental sam-

ples; thus, the BN approach was used. A BN is a probabilistic structure learningmethod that

represents the joint probability distribution among a set of random variable nodes as a prod-

uct of the distributions of the child nodes conditioned on its parents, such that the likelihood

score of the network structure, i.e. the Bayesian Information Criteria (BIC) is maximized.

The Tabu [100] and Hill-climbing [101] heuristic structure learning techniques and the hy-

brid method (Max-min Hill-climbing) [95] were used to learn the optimal network structure

that maximizes the BIC. Comparison of the reaction network generated by our method with

reactions described in literature about the HTL of biomass indicates the high fidelity of our

methodology. The transformation of cellulosic and hemi-cellulosic structures to furfural

and its derivatives, as well as carbonyl structures has been captured by our network. Sim-

ilarly, the decomposition of lignin type compounds to phenolic structures is represented in

the network generated.
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2.3 Materials and Methods

2.3.1 Materials and HTL

An overview of the entire workflow is described in Figure 1.

Figure 2.1: Flowchart of methods

The data used in this work was acquired from the experimental survey of hydrothermal

decomposition of Monterey pine whole biomass obtained from Sigma Aldrich Canada. The

refined biomass specimen was manufactured by thermal decomposition. A stainless-steel

micro batch reactor of 24 cm length and 2.1cm width was used and the solvent used was

subcritical water. The procedure for this experiment has been described in our previous

work [24]. Twenty-seven liquid samples were examined in this research. This study was

performed at different at temperatures of 150, 200 and 250°C, with reaction times of 15, 25

and 35 minutes for each temperature. The initial pressure was fixed at 0.1 MPa by shutting

off the pressure relief valve. Catalysts are essential for HTL because they influence the

rate of reaction and the structure of HTL products. Many homogeneous and heterogeneous
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catalysts have been analyzed by other researchers for the catalysis of biomass HTL, even

though the larger part of the work was centered around homogeneous catalysts (acid, alkali,

and metal salts) because they are quite affordable [102]. A typical feature of homogeneous

catalysts, also, is that they produce liquid products that are not affected by coking [103]. Due

to this, 0.05M of sulfuric acid and 1M of sodium hydroxide were used as catalysts for every

temperature-residence time combination in this work resulting in 27 process conditions.

The volume ratio of biomass to the medium was 1:10, and the end products were stored in

a glass beaker prior to analysis.

2.3.2 Spectroscopic analysis and data fusion

The use of FTIR and 1H-NMR spectroscopic measurements in this study is motivated by

the fact that inline spectroscopic measurements provide molecular level descriptions of the

system while also being fast, reliable and low cost [104]. FTIR spectrometers also allow for

the characterization of bio-oil specimen despite its high volatile component [105]. The IR

spectra of the fluid specimens were obtained using an ABB MB 3000 FTIR spectrometer.

The spectra were obtained at a resolution of 8 cm−1 in the normal spectra range of 4000-600

cm−1. All the spectra had a numerical mean of 120 scans. The measurement was conducted

on liquid samples with the aid of a pike miracle attenuated-total-reflectance attachment.

The spectroscopic results obtained are illustrated in Figure 2 and Figure 3. The handbook

of spectroscopic data was used to label the functional groups [106].

The hydrogen and carbon atoms in different functional groups in the reaction mixture

were identified using 1H-NMR spectroscopy. This was performed using a NMReady in-

strument at a frequency of 60MHz and a full width half maximum (FWHM) resolution <1.0

HZ (20 ppb). Multi-sensor measurements of the same process produce data from different

domains and capture multiple facets of the process that may not be uncovered with a sin-

gle measurement [107]. Data fusion is a productive means of combining such independent

measurements to reveal shared as well as distinct information. In this work, a signal-level
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Figure 2.2: FTIR spectra of HTL of biomass under 27 different conditions.

data fusion approach was followed [108] to concatenate measurements from the two spec-

troscopic devices [24, 109]. The data was scaled and normalized with respect to minimum

peak intensity prior to fusion, along with dimensional reduction (removal of uninforma-

tive variables/wave numbers) using Principal Component Analysis. The resultant signal

had a better signal to noise ratio compared to the raw data from the individual signals. A

key assumption considered in subsequent steps is that the FITR and 1H-NMR spectra are

informative enough and capture the dynamics of the transition between species. The infor-

mativeness of the data also depends on sufficient excitation of states (different reactions in

the process) by the manipulated variables (temperature and batch time).

2.3.3 Self-modeling multivariate curve resolution

SMCR is a method to bilinearly decompose a spectral data matrixD ∈ Rm×n comprising m

samples recorded across n spectral channels (wavenumbers for FTIR and chemical shifts for

1H-NMR, into the product of the concentration C ∈ Rm×r and pseudo-spectra S ∈ Rr×n
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Figure 2.3: 1H-NMR results of HTL of biomass.

of r components, assessed as the rank of the data matrix. The bilinear decomposition is

achieved by minimizing the losses in Eqns 2.1a and 2.1b in an alternating least squares rou-

tine with non-negativity constraints on the factor matrices, to facilitate their interpretability

according to the Beer Lambert’s law.

min
S≥0

||D − CST ||2F (2.1a)

min
C≥0

||D − CST ||2F (2.1b)

The rank r, of the decomposition is calculated using the ratio of derivatives (ROD) of the

empirical Malinowski’s indicator function that is a measure of the discarded variance in the

residual components after performing a PCA routine to stratify the systematic variations in

the data from noise [21]. For the optimal rank r, eigenvalues arranged in decreasing order

such that λ1 ≥ λ2 ≥ ... ≥ λr explain the primary variance but the (n-r) smallest eigenvalues

account for noise. In essence, the rank is calculated such that r is an integer taking values
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∈ {1,2.. min(n,m)} that minimizes the residual variance given in Eq (2.2)

min
r

√∑n
k=r+1 λk

m(n− r)
(2.2)

However, when dealing with noisy experimental data, the ratio of derivatives of the

above empirical metric was found to be more sensitive in gleaning the optimal rank, as

explained in our previous works [110, 111].

2.3.4 Bayesian hierarchical clustering (BHC)

Clustering is a non-supervised machine learning technique that combines or clusters data

points that are similar into a group based on a given similarity metric [112]. The Bayesian

technique offers a fundamental approach to data analysis and is fast gaining grounds in

other disciplines like economics, signal processing, computational biology and genetics

[113–115].

The BHC algorithm is a one-pass, bottom-up procedure that evaluates all the data points

in its cluster and consequently joins pairs of clusters. The algorithm utilizes the concept of

maximizing posterior probability to combine clusters [116]. The BHC algorithm enumer-

ates the probability of combining clusters using the Bayes rule while the priors are modeled

as a Dirichlet mixture model [117]. All wavenumbers are denoted as data points and are

grouped into K cluster nodes of sizes T1 ,T2…. TK such that Di points belong to node Ti

wherein the total data points
∑K

k=1 DK [118]. The initial point of clustering begins with

as many nodes as the number of data points. The pairwise merge of nodes Ti + Tj→Tk

is based on whether data points in the nodes Di and Dj giving Dk maximize the posterior

probability (γk) as given below: Null Hypothesis (H0): Data in nodes is generated from

same mixture component Alternate Hypothesis (Ha): Data in nodes are generated from dis-

tinct mixture components The likelihood of each of the hypotheses are evaluated as given

below
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LikelihoodH0 : P (Dk|H0) =
∑
θ

P (Dk|θ)Dir(θ) (2.3a)

LikelihoodHa : P (Dk|Ha) = P (Di|Ti)P (Dj|Tj) (2.3b)

γk =
P (Dk|H0)

P (Dk|H0) + P (Dk|Ha)
(2.3c)

Assuming that the data comprises random variables at the N nodes, each which has the

following multinomial distribution P (Xi = xi|θ) = θi; where i = 1, 2 ….N , enables

the likelihood P (Dk|θ) to be expressed as a product of the probabilities of the mutually

independent random variables. Here the parameters are θ = θ2, θ3….θN and θ1 = 1−
∑

θi

where θi are the parameters that have a Dirichlet prior.

2.3.5 Bayesian structure learning

Relational information between the different reactive species in the system is inferred by

learning directed acyclic graphical structures that best represent the dataset. The search

space for such a problem is huge and becomes computationally infeasible for datasets with

a large number of attributes. Therefore, the Bayesian formalism is used to determine the

graph structure [119]. One class of algorithms aims to capture the dependencies in the

data by applying a statistical hypothesis test, as seen with Bayesian clustering. In another

approach, the structure learning is cast as a score-based optimization problem that aims

to find a structure that maximizes the likelihood of conditional dependencies in the data

[120]. Almost all such learning techniques use standard heuristic search techniques, such

as greedy hill-climbing and simulated annealing, to locate high-scoring structures. The

aforementioned ”generic” search procedure does not use information concerning the antic-

ipated structure of the network to be studied. For instance, greedy hill-climbing and Tabu

search techniques analyze all the possible local changes in all the steps and utilize the one

that generates the largest improvement in the score. Max-min hill climbing is a hybrid

approach that uses concepts from both algorithms. The Bayesian Information Criterion is
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used as a scoring metric and the graph that maximizes this score is chosen. The details

about the implementation of Bayesian learning for HTL data have been described in detail

in our previous work [24, 109]. It is important to note here that the structure learning task

identifies a non-loopy graph structure which is directed therefore rejecting the reversibility

of transition (reaction) between species. Nonetheless, the approach is implemented as the

graph structure learnt depicts the more dominant transition between the components, i.e.,

the direction of the reaction with a larger rate constant.

2.4 Results and Discussions

2.4.1 Spectroscopic analysis and data fusion

Lignin, cellulose and hemicellulose – the major constituents of biomass – contain carbon,

hydrogen and oxygen. This is substantiated by the peaks observed in the FTIR spectra of

the reaction mixture in Figure 2. The absorbance peaks from 3000 to 3500 cm−1 and from

1000 to 1750 cm−1 indicate the presence of C=O, C=C, C-O, C-H andO-H bonds pertaining

to aldehyde, ketones, aromatics, acids, alcohols, ethers and aliphatic compounds, which is

consistent with results obtained from GC-MS in other works [121].

The 1H-NMR spectra of the bio-oil derived in the presence of NaOH and are shown

in Figure 3. Hydrogens attached to aliphatic carbons showed peaks between 0.5-1.5 ppm.

The presence of aromatic and olefinic groups was confirmed by the presence of peaks at

1.5 -3.0 ppm. The peaks in this region had the highest strength. The next portion of the

spectrum showed a peak at 4.0 ppm, corresponding to protons of alcohols and carbon atoms

next to aliphatic alcohols. The final peak in the spectrum was situated around 6.0-9.5 ppm

representing the carbonyl hydrogens. The peaks in the 1H-NMR spectrum were consistent

with the functional groups inferred from the FTIR spectra.

As mentioned earlier, a signal-level data fusion was performed with the datasets to infer

the reaction network for the HTL process. At this level of data fusion, it is important to

ensure similarity in the magnitude of the two signals, which was achieved by normalization
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of the FTIR and the 1H-NMR signals. The signals were normalized by normalizing the unit

length and highest peak intensity. The fused dataset was obtained by concatenating the two

spectra.

The final signal consists of two regions. The first part consists of the IR spectrum, while

the second part is the 1H-NMR spectrum, resulting in a total of 3665 variables. Principal

Component Analysis (PCA) [122] was performed to remove noise in the data through recon-

struction using MATLAB version 2018b and R version 3.5.1. PCA projects the dataset into

a lower dimensional hyperplane obtained as a linear combination of original variables while

retaining the maximum variance in the data. The first two principal components captured

95% of the total variance, and the data projected onto these components was reconstructed

to the original dimensions. The final dataset used for clustering is depicted in Figure 4.

Figure 2.4: Final fused spectra for bio-oil.
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2.4.2 Clustering and network generation

As mentioned earlier, the main constituents in the pyrolysis of biomass are alcohols, phe-

nols, aromatics, carbonyls, aliphatics and gases [123]. Hence, clustering was performed

with 3 to 6 clusters followed by Bayesian structure learning on the FTIR spectra of each

cluster to obtain the structure of the reaction network. A minimum of 3 clusters are es-

sential to generate a reaction network that does not lump multiple products into one node.

The upper bound of 6 was chosen to curb the dimensionality of the reaction network graph.

The Bayesian structure learning used Hill climbing, Tabu search and Max-Min hill climb-

ing algorithms with the Bayesian Information Criterion as the scoring function. Structure

learning revealed that the six-cluster network generated the reaction graph that was consis-

tent across the three algorithms used, and hence, further analysis was performed based on

this network. The wavenumbers placed in each cluster and the network structure are shown

in Figure 5. The arc strength for each edge in the reaction graph depicts the dependency of

one cluster on the other. Large negative values of arc strength represent a more favourable

transition from the parent to the child node. It can be seen that the edge from cluster 3

to cluster 4 has the highest arc strength, followed by the edge from cluster 4 to cluster 5.

Owing to the complex nature of biomass feedstock, numerous reaction mechanisms have

been reported in the literature to describe the pyrolysis process [124, 125].

In general, the various reaction pathways can be summarised as: a) depolymerization of

biomass into cellulose, lignin and hemicellulose, b) decarboxylation, decarbonylation, de-

hydration and decomposition of biomass monomers by cleavage, and c) recombination of

reactive remains [126]. From analysis of the pseudo-component spectra and the Bayesian

networks, this work proposes that the reaction mechanism for HTL of biomass will contain

the reactions depicted in Figure 6. The explanation provided below highlights the types of

conversions occurring between the components of the various clusters shown in Figure 4

and corroborates them with findings from the literature and from chemical reasoning. The

first phase of HTL is the disintegration of the feedstock into the major constituent, viz, cel-
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Figure 2.5: Six cluster Bayesian Network for HTL of biomass.

lulose, lignin and hemicellulose. This phase does not contribute to the actual pyrolysis but is

essential for reaction modelling. Cellulose and hemicelluloses are the most abundant carbo-

hydrates in lignocellulosic biomass. Various carbohydrates have different rates of hydrol-

ysis. Cellulose hydrolyzes slower than hemicellulose because of the crystalline structure

of cellulose. The different hydrolyzed products exist in the aqueous fraction derived after

hydrothermal liquefaction of biomass. Once carbohydrates are placed under hydrothermal

conditions, they undergo quick hydrolysis to form glucose and other saccharides. Alcohols

are rarely recorded in HTL studies because single alcohols are found in small amounts,

with vapor pressures corresponding with a meaningful fraction of the biocrude leading to

coelution [127]. Nevertheless, some alcohols and saccharides were discovered in the first

cluster in this study (1010, 1012, and 1019 cm−1). The most abundant alcohols were the

long straight chain and branched long chain alcohols produced as a result of the hydrolysis

reaction.
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Figure 2.6: Proposed reactions for HTL of biomass.

Hydrothermal liquefaction of lignin results in the hydrolysis and cleavage of the ether and

C-C bonds along with demethoxylation, alkylation and condensation along with counterac-

tion between the reactions [128]. Cleavage of the β-O-4 ether bond results in the breakdown

of lignin and its prototypical compounds, along with breaking the bond between Cα-Cβ [5].

However, the aromatic rings remain unchanged, resulting in biphenyl-type compounds in-

dicating higher stability under hydrothermal reactions. Less severe conditions, such as low

temperature and lesser reaction time, are required for the generation of phenolic monomers

and dimers from lignin. These occur through the preliminary cleavage of ether bond and

aliphatic C-C bond during hydrothermal liquefaction. An increase in temperature might

result in demethoxylation and alkylation of lignin derived phenolic compounds. Alkyl phe-

nols can also be obtained at high temperature [129]. Lin et al. discovered that during

lignin liquefaction, the reactions involving intermediates with aliphatic side chains exhib-

ited a huge reactivity and further combined with phenol or with themselves to change to the

multi-condensed product [130]. Phenols are highly abundant in HTL product of carbohy-

drates and lignin-rich feedstocks and are a potential source of oxygen in the final biofuels.

They are identified in cluster 2 (1099, 1100, and 1119 cm−1) [131].
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Wavenumbers in cluster 3 are linked to the oscillation of the benzene and the aromatic

skeleton (1223, 1254, 1279, and 1500 cm−1). The production of oxygenated aromatics

from lignocellulose refining is common. The three monolignols of lignin are the prototypes

of many aromatic compounds, together with the dehydration reactions of carbohydrates

[132]. In contrast to the monofunctional ketones, the oxygenated aromatics naturally ex-

hibit diversified functionalities resulting in complex compounds due to lignin’s complex

and heterogeneous arrangement. The monomers result from the thermal breakdown and

hydrolysis of ether bonds [133]. At higher temperatures, the decomposition and dehydro-

genation reaction of cyclic compounds from alkenes results in the production of aromatic

hydrocarbons [134]. Aromatic structures were identified from the absorption bands around

1600 cm−1 and absorption between 3000 and 3050 cm−1 in FTIR spectra.

Under subcritical conditions, alkaline water and carbohydrates are known to form car-

boxylic acids like acetic, propionic, formic, and lactic acid via retro-aldol reactions. They

can also be subjected to homogeneous and heterogeneous ketonic decarboxylation, gen-

erating a series of various ketones [133]. Figure 2 depicts carbonyl absorption at 1715

cm−1 and 1745 cm−1, showing six-membered and five-membered cyclic ketones, respec-

tively. Furthermore, compounds categorized in the first cluster can then further degrade

to produce several oxygenated hydrocarbons like formic acid, lactic acid, hydroxymethyl

furfural (HMF), and levullinic acid [135]. Carbonyls were found to be highly abundant in

most HTL biocrudes, with the most abundant carbonyls being indenones, acetophenones,

and a wide range of alkylated chromenones [136]. A recent study states that FTIR spectra

of bio-oil in the region of 1490–1850 cm−1 could provide comprehensive information on

several carbonyl groups in the bio-oil [137]. This work recorded the presence of ketones,

aldehydes, and carboxylic acids in cluster 4 (1695, 1710, 1723, 1745, and 1749 cm−1).

Short chained aliphatic hydrocarbons were identified in cluster 5 (1332, 1420, 1573, and

1665 cm−1), and indicate the occurrence of C-C bond cleavage reactions. Glycerol conver-

sion under near- and subcritical water conditions has been outlined to undergo C-C splitting
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via an ionic and a radical pathway [133]. These compounds result in decarboxylation and

decomposition reactions.

From a thermodynamic point of view, the thermochemical conversion of biomass, glu-

cose and other organic components will result in light constituents. CH4 and CO2 are

thermodynamically preferred products, with the CO and H2 yields remaining low [138].

The existence of these molecules can be traced to the last cluster (cluster 6) in the generated

BN.

Based on the reactions described above and in Figure 6, along with the reaction network

of Figure 5, a proposed mechanism of the HTL of biomass is illustrated in Figure 7 As an

Figure 2.7: Two-phase reaction mechanism for HTL of biomass.

alternative approach, additional analysis was performed on the dataset using self modelling

multivariate curve resolution (SMCR) [18]. The choice of the number of components, 3 in

this case, was determined using the Ratio of Derivatives (ROD) function [21], as mentioned

earlier.

The factorized spectral signatures for each component are shown in Figure 8. The con-

centration profile of each component obtained from SMCR was used in the determination

of a Bayesian network using algorithms described earlier. The resultant network structure

is depicted in Figure 9.

Component A1 contains the signatures of primary and secondary alcohols (1075-1010
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Figure 2.8: Resolved spectra for the pseudo components over the whole region (a) and the
resolved spectra for the pseudo components focusing on the major peaks (b–d).

cm−1) and ethers (1150-1070 cm−1). The spectrum for A2 illustrates the presence of phe-

nolic groups as indicated by broad absorbances between 3550-3200 cm−1. A3 indicates

the presence of carboxylic acids (3550-3500 cm−1), ketones (3550-3205 cm−1), and aryl

aldehydes (1715-1695 cm−1), as well as aromatic compounds due to the presence of C=C

vibrations with absorbance peaks from 1625-1575 cm−1 or C-C in-ring stretching at 1500-

1400 cm−1.

2.4.3 Discussion

Since all lignocellulosic biomass is largely composed of three basic independent structural

components (cellulose, hemicellulose, and lignin), any aggregative behavior of these com-

ponents during pyrolysis describes the behavior of any lignocellulosic feed [139]. Fur-

thermore, since biomass pyrolysis follows a complex network of reaction mechanisms, its

chemistry can be simplified by studying the independent pyrolysis reactions of each indi-
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Figure 2.9: BN obtained through SMCR-ALS for the pseudo-components

vidual component. If synergistic effects occur, predicting a biomass feedstock’s behavior

would be considerably more complex. In our previous work [24, 109], cellulose and lignin

independently underwent HTL conversion using their model components: levoglucosan

and 2-Phenoxyethyl benzene, respectively, and their most probable BNs were developed.

Figure 10 shows those networks along with the BN for the HTL of biomass developed in

this work.

Figure 2.10: BNs for (a) cellulose, (b) lignin, and (c) biomass (data provided by data fusion).
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After reviewing and comparing wave numbers in each cluster in each BN, it was inferred

that the right side of biomass conversion from cluster 1 mostly represents hydrocarbon (cel-

lulose or hemicellulose) conversion while the left side represents lignin conversion, though

both have the same final products: aromatics, carbonyl groups, aliphatic hydrocarbons, and

smaller molecules. In previous work, one of the major products identified from the HTL of

cellulose was formaldehyde, identified by FTIR, 1HNMR, and GC-MS. Interestingly, the

presence of formaldehyde was confirmed in the HTL of biomass by bands at 3308, 2982 and

2914 cm−1 for –CH stretch, a clear peak at 1636 cm−1 for –C=O for aldehyde, and bands

at 1429, 1271, 1103, 1019, and 989 cm−1. Following glycosidic bond cleavage, hydrogen

from the hydroxyl group of the carbon atom 6C is transferred to 5C. This is conveyed by

cleavage of the 5C–6C bond, resulting in formaldehyde formation. These conclusions are

consistent with the 2-phase reaction pathway proposed earlier. The SMCR framework re-

veals a similar reaction mechanism as represented by the network structure derived after

decomposition as depicted in Figure 11. The decomposition of cellulosic structures from

previous works [24, 109] is well described by the Bayesian network for biomass. The signa-

tures of alcohols, ethers and alkenes collected in SMCR analysis of levoglucosan are found

in A1 of the biomass network. Similarly, phenolic and aromatic components of lignin break-

down can be traced to A1 and A2 of the biomass network. Overall, similarities between

the final products were found in the last nodes of cellulose, lignin and biomass decomposi-

tion networks. The SMCR analysis was performed as an independent study to validate the

reaction networks obtained through the hierarchical clustering approach as it does not use

any information from the BHC approach. The SMCR – BN analysis is consistent with the

BHC-BN approach, but provides little additional insight on the pyrolytic process as both

methods yielded the results with similar levels of inference.
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Figure 2.11: BNs from the SMCR-ALSmethod for (a) cellulose, (b) lignin, and (c) biomass
conversion.

2.5 Conclusions

In this work, we present the validation of an approach for identifying reaction mechanisms

for the conversion of complex biomass feedstocks. The approach uses spectroscopic data

from multiple sources, data fusion, Bayesian clustering and Bayesian networks to identify

reaction networks, and was applied to the hydrothermal liquefaction (HTL) of biomass in

the temperature range from 150 -350°C. The pathway to biocrude identified from the reac-

tion network represents decomposition of the biomass components, large molecule hydrol-

ysis, and reformation of produced molecules. The reaction network hypothesized compares

well with mechanisms reported in literature [89]. Importantly, comparison with analyses for

the HTL of cellulose (represented by levoglucosan) and lignin (represented by 2 Phenoxy-

ethyl benzene) revealed that the network hypothesized for biomass breakdownwas a combi-

nation of the networks for individual decompositions of its components as A1 and A2 of the

biomass network corresponded to elements in the cellulose and lignin networks. Thus, this

work presents a data driven approach to infer reaction networks for complex reaction mix-

tures and relate them to the reaction networks for individual constituents of the feed, and can

potentially be used to develop reaction hypotheses, process designs and process monitoring

techniques [140] for biomass feedstocks of varying composition. The dominant reaction

network that is well represented through the spectroscopic profiles is captured through the

process. Intermediates with small lifetimes that do not show up in the measurements do not

37



surface in the reaction network. The kinetics of the decomposition process is not considered

explicitly in this work. However, in the context of online reaction monitoring, sophisticated

spectroscopic curve resolution algorithms [26] can be used to project realtime spectra onto

the temporal data collection mode, and the spectroscopic channels which in accordance

with Beer’s law, gain interpretability as the pseudo-component concentrations and pseudo-

component spectra, respectively. The kinetics of the underlying chemical transformations

can then be assessed from the temporal concentration projections to further facilitate con-

trol and optimization [141]. The automated mapping of the hypothesized reaction networks

to domain knowledge-based real chemistries [142], can aid the future development of an

interpretable end-to-end pipeline to identify species, reactions and kinetics from spectro-

scopic data. Prior knowledge about the process in tandem with the reactions and species

discovered through these methods can be applied towards experimental design in pinning

down the specifics of a reaction. Information obtained through our methods on the condi-

tions at which a particular transformation between species takes place can be looped back

to experimental design to recover more data with sufficient excitation of variables in the

region of interest to uncover more specific details of the chemistry.
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Chapter 3

Identification of reaction network
hypotheses for complex feedstocks from
spectroscopic measurements with
minimal human intervention

3.1 Abstract

In this work we detail an automated reaction network hypothesis generation protocol for

processes involving complex feedstocks where information about the species and reactions

involved is unknown. Our methodology is process agnostic and can be utilized in any reac-

tive process with spectroscopic measurements that provide information on the evolution of

the components in the mixture. We decompose the mixture spectra to obtain spectroscopic

signatures of the individual components and use a 1-d convolutional neural network to auto-

matically identify functional groups indicated by them. We employ atom-atom mapping to

automatically recover reaction rules that are applied on candidate molecules identified from

chemistry databases through fingerprint similarity. The method is tested on synthetic data

and on spectroscopic measurements of lab-scale batch Hydrothermal Liquefaction (HTL)

of biomass to determine the accuracy of prediction across datasets of varying complexities

. Our methodology is able to identify reaction network hypotheses containing reaction net-

works close to the ground truth in the case of synthetic data and we are also able to recover

candidate molecules and reaction networks close to the ones reported in previous literature
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studies for biomass pyrolysis.

3.2 Introduction

With growing environmental concerns and lack of access to traditional precursors for chem-

ical manufacturing, there has been a marked increase in attention towards alternative feed-

stocks for energy, fuel and chemical production [143–146]. The chemical complexity of

both traditional and alternative feedstocks prove to be a challenge for reliable model de-

velopment, monitoring and optimization of reactions underlying their thermal conversions.

Their heterogeneous nature in both physical and chemical properties, does not allow for

a straightforward analysis of the reactions these materials undergo in their upgrading or

transformation process.

From the perspective of optimization and reliable control of the process, definition of

a model that describes the various states of the system under different operating condi-

tions is critical. However, development of explanatory models with just the knowledge

available in literature, especially for complex systems, without concrete information on the

constituents is impractical and can result in suboptimal models. Traditionally, models (re-

action networks) for these complex systems are developed based on model compounds that

describe the reactions occurring in the system [5, 6, 147]. The choice of model compounds

used depends on the technical knowledge of the human expert describing the system and

thus allows for a greater degree of variability. The integration of process measurements in

the modeling process brings in more specific information indicative of the transformation

of different chemical species in the system.

Spectroscopic measurements are popularly used to obtain molecular-level information

in process industries owing to their relative swiftness, reliability and non-invasive nature

[9]. Infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy and Raman spec-

troscopy have found applications in various fields such as refining, pharmaceuticals and

drug discovery, [7, 10, 148] though they come at the cost of being high dimensional, not of
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full rank (i.e., the variables are dependent on each other) and noisy[104, 149]. While each

type of spectroscopy provides a different perspective of the process, a combined analysis of

distinctly different types of spectroscopic measurements can provide a holistic view of the

system especially for chemically complex mixtures such as those encountered in biomass

conversion.

Our previous works have demonstrated the use of Fourier Transform Infrared (FTIR)

spectroscopy measurements and Proton Nuclear Magnetic Resonance (1H- NMR) spec-

troscopy measurements in developing reaction models for these complex feedstocks [24–

26, 109, 111, 150]. In one approach, information from each type of spectroscopic measure-

ment was jointly decomposed in the temporal context of spectroscopic data collection, using

a Structure preserving Joint Non-Negative Tensor Factorization scheme to extract signals

of each component. This, in tandem with the usage of the Bayesian formalism to develop

a graphical model, provided the directionality of reactions upon which chemistry inferred

by human expertise was super-imposed to derive the reaction network for the system. In

this work we present a reaction network hypothesis generation methodology as a means of

identifying a set of reaction networks that correspond to the spectroscopic sensor measure-

ments with minimal human intervention. This is a challenging task, and is accomplished by

using an algorithmic approach to translate spectroscopic signatures of pseudo-components

to representative (real) chemical species.

Automating reaction prediction is performed more commonly in the retrosynthetic prob-

lem where the precursors required to generate a specific compound are identified [151–

155]. Broadly speaking, the automated reaction prediction task can be classified into i) Tem-

plate/rule based approaches ii) Quantum mechanical calculations and iii) Machine learning

approaches [156–158].

Rule-based network generation approaches use semantics that describe the transforma-

tion of the substrate into products encoded in a machine readable format. These semantics

or reaction rules and are either manually encoded or algorithmically extracted as Simpli-
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fied molecular-input line-entry system (SMILES) arbitrary target specification (SMARTS)

strings or edits in the atom connectivity matrix [28, 29, 159, 160]. Manually encoded reac-

tion rules are typically generated for a limited set of reactions pertinent to the system under

consideration. The complexity of adding new rules to an existing databank increases based

on the specificity of the rules. Algorithmically extracted rules typically employ the use of

atom-atom mapping (which will be discussed in detail in Section 3.4.2). Quantum mechan-

ical computation of the reaction network involves the exploration of the potential energy

surface (PES) of the reactionmixture. The core idea in such exploration techniques involves

a minima-hopping algorithm, where minima in the neighborhood of the initial equilibriated

structure of the mixture are identified through different techniques, and a path connecting

them that passes through a saddle point (transition state) is determined [32, 161–163]. Other

ab initio techniques involve solving the equation of motion for the system and tracking the

trajectory of the reactant molecule through the course of the simulation [29, 34, 164]. Due

to the intractable nature of conducting quantummechanical computations for reactions with

a large number of species, they are often combined with rule-based techniques to identify

reaction networks, [30, 165–167]. Machine learning (ML) algorithms aim to extract latent

features of reaction types that are then used to predict reaction outcomes. A class of al-

gorithms deal with ranking reactions or reaction rules under a specific context to identify

the most probable product [37, 38, 168]. Due to the lack of a motif-based framework as in

rule-based approaches, ML models present a more generalized approach towards solving

the reaction network generation problem. Development of graph convolutional neural net-

works to encode information over graph structures have spawned a class of ML methods

to retrosynthetically predict reaction networks [39, 169]. seq2seq, protocols typically used

in natural language processing, have also been employed for network prediction [35, 153].

A more thorough review of the various techniques in automating reaction networks can be

found in the literature [27, 141, 157, 170].

All themethods discussed above pertain to systemswhere the actual precursors/molecules
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are known, which is hardly the case in case of complex reaction mixtures. Characterization

of these mixtures in terms of relative compositions of various components does not provide

a specific molecule from which to interpret the reaction network. In this work, we aim to

develop the reaction network for these mixture systems with the partial information avail-

able from spectroscopic measurements. This fragmented information is used in generating

plausible candidate molecules and reaction network hypotheses that correlate with the ob-

served transformation of different components. We employ convolutional neural networks

for automated functional group detection followed by molecular fingerprint matching to

obtain candidate molecules. Reaction templates extracted through atom-atom mapping are

applied on these candidate molecules to generate the reaction network hypotheses.

The goal of this work is to explore the possibility of automating the reaction network

generation task for complex systems. It is vital to note that the network generation scheme

presented in this work is built to identify descriptive and lumped reaction pathways rather

than detailed elementary reaction mechanisms. This work is intended to be used as a hy-

pothesis generation scheme where multiple hypotheses for the reaction network based on

the spectroscopic sensor measurements are generated and is to be used a screening tool

aimed at identifying the chemical space encompassing the true reaction network of the sys-

tem. Further ranking or validation of these hypotheses through experimental or quantum

mechanical based simulations are necessary to converge on a single best network.

The rest of the chapter is arranged as follows. In Section 3.3 we provide a brief de-

scription of the datasets used in this study. Section 3.4 describes in detail the methodolgies

used in developing the reaction network followed by the results of this study and discussion

in Section 3.5. Practical and theoretical limitations of this study have been discussed in

Section 3.7
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3.3 Datasets

We demonstrate the reaction network generation methodology on three datasets of varying

availability of prior knowledge and complexity in this work. The first is synthetic data gen-

erated by mixing the FTIR spectra of four components (obtained from National Institute

of Standards and Technology) based on a known reaction network architecture with a ki-

netic scheme imposed on it (B.1). The network generation methodology is agnostic to the

dataset and generation pattern behind it; hence, using the synthetic data provides a means

of validating the methodology.

The second dataset consists of FTIR and 1H-NMR measurements for the hydothermal

liquefaction of phenoxyethylbenzene (PEB), a model compound for lignin conversion, in a

batch reactor.The data is obtained for batch time conditions of 15, 25 and 30 minutes.The

usage of the PEB dataset provides a known starting point for the network generation algo-

rithm, thereby providing another framework for validation. Additional details on the ex-

perimental procedure of the hydrothermal liquefaction can be found in our previous work.

[24, 109]

The final dataset consists of FTIR and 1H-NMR measurements for the hydothermal liq-

uefaction ofMonterey-pine biomass in a batch reactor. The three datasets encompass differ-

ent degrees of prior knowledge about the system. The synthetic and biomass-HTL datasets

assume minimal prior knowledge about the reaction system. The synthetic data is relatively

less noisy and the ground truth is available for validation. The PEB dataset includes prior

knowledge of the feedstock species and hence is used as a validation of the reaction template

application scheme.

3.4 Methods

Figure 3.1 provides an overview of the different methods employed in this work. The

spectroscopic sensor data contains multiple overlapping peaks corresponding to different
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Figure 3.1: A representative overview of our methods

pseudo-components (PCs). These peaks are deconvoluted using a tensorial decomposition

to obtain spectroscopic signatures of individual pseudo-components. A 1-d convolutional

neural network identifies the different functional groups in the PC spectra and a partial

molecular fingerprint is generated. Fingerprint similarity tests are conducted by matching

the partial fingerprint to the fingerprints of molecules in chemistry databases. Candidate

molecules are generated based on degree of similarity with some scaffolds of molecules

being rejected based on prior knowledge of the process. Reaction templates are automat-

ically extracted from a large number of reactions reported in literature through atom-atom

mapping. These extracted templates are recursively applied to the candidate molecules to

obtain reaction network hypotheses.

The tensorial decomposition and the formulation of the Bayesian network have been

discussed in detail in our previous work[26, 111, 150]. In brief, the joint non-negative

tensorial factorization (JNTF) algorithm jointly deconvolves two three-dimensional ten-

sors consisting of FTIR and 1H-NMR at different process conditions (temperature and res-

idence time), respectively. The resultant decomposition produces individual spectroscopic

signatures (FTIR and 1H-NMR) of the k unique pseudo-components (PCs) along with the

concentration profiles of each component along the residence time and temperature modes.
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The choice of the number of components in the decomposition was generated through core

consistency diagnostics [22]. The joint decomposition allows for constraints to be placed

on the concentration profiles in such a way that they are shared amongst the two tensors.

The variability in information between the two decompositions is restricted to occur only

in the spectral modes while also maintaining a non-negativity constraint on these modes.

A Bayesian network formalism was used to identify the structure for the reaction scheme

and provide a skeletal structure onto which the chemistry of the process would be super-

imposed. The network is a directed acyclic graph (DAG) indicating the root node and its

subsequent children. The structure learning task was performed using ’greedy’ search al-

gorithms such as Hill-climbing and Tabu search and the hybrid Max-Min Hill climbing

algorithm with the Bayesian Information Criterion as the scoring metric. The graph gener-

ated has nodes representing the PCs with arc strengths indicating the strength of connections

between them.

The tensorial factorization [26] and Bayesian network generation [111] aspects of the

pipeline have been studied in our previous works. This work aims to introduce the func-

tional group classification and reaction network generation routines and discuss the results

of the same.

3.4.1 Functional group identification

In the context of the proposed framework, evaluation of the deconvolved spectra to identify

the different functional groups present in each component is essential for identifying the

chemistry of the process. Typically, analysis of FTIR or 1H-NMR spectra is done through

use of expert knowledge along with lookup tables indicating the peak positions for different

functional groups. In-built programming in FTIR measurement devices also allow for au-

tomation in detection through comparison with a database of spectra for known molecules.

A similarity metric is used in determining the closeness of the spectrum of the sample to

the spectra in the database [171, 172]. Library search methods require extensive effort in
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compilation and pre-processing of candidate spectra and cannot extrapolate to spectra of

new components.

Another approach involves the use of machine learning models such as support vector

machines [173–175], k-nearest neighbors [176, 177] and Principal Component Analysis

(PCA) [177] to interpret the spectra. While these models perform well in identification,

they present a narrow scope with models being trained on a particular set of examples (eg.,

plastics) to solve a specific task. Applying these models in our case severely restricts the

search space, i.e, models trained on a specific set of molecules and their functional groups

will only be able to identify the spectroscopic signatures of functional groups in that context,

thus leading to ineffective network generation.

It is thus imperative to generate a classification scheme where the spectroscopic signa-

tures of a wide range of molecules are learnt in the context of the characteristic peaks of

functional groups present. Artificial neural networks (ANNs) are a class of MLmodels that

learn complex nonlinear information from the data by representing them as nested functions

of simpler functions known as activations.

In this work, we present a classification scheme using a Convolutional Neural Network

(CNN) [178]. Originally developed for image classification, the CNN extracts information

(called features) from a image by moving a filter of a pre-determined size across the data

and performing a convolution operation between the filter and the image. The convolution

operation identifies regions that match the filter. Through the course of training, the CNN

learns these features that best help the model in distinguishing between classes. The dimen-

sionality of the input data determines the number of directions in which the filters move and

consequently the dimension of the CNN. Previous studies have incorporated the use of 2-D

CNNs and feed-forward neural networks in individual classification of functional groups,

which allows for the extraction of the peak height characteristic along with the wavenumber

of the peak as features [179–181]. In this work, we employ a 1-D CNN that moves only

across the wavenumber axis to classify the functional groups. The advantage of using such
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a methodology is two-fold: i) it allows for a lower complexity in training the model, and ii)

it disregards the peak height information. The need for the classifier to be indifferent to the

peak height is due to the intensity ambiguity possible in the tensorial decomposition [26].

In the implementation, gas phase FTIR spectra of 11062 molecules were automatically

scraped from the NIST database. The International Chemical Identifier (InChI) for each

of molecule was used in generating the labels for classification. The label vector is a bit

vector of size 13 with each bit representing the presence or absence of a particular functional

group. This leads to a multi-label classification task that forces the CNN to jointly learn

features for the different functional groups in the presence of other groups. The number of

labels to be classified into was chosen based on the availability of the functional groups in

training dataset as well as domain expertise on plausible functional groups present in the

feedstock.

The spectra were filtered to include only absorbance values with wavenumbers in cm−1

within a range of 400 - 4000 cm−1. The resolution of the extracted spectra were down-

sampled to 4 cm−1 to match with the minimum resolution of the scraped spectra. This was

performed by groupingwavenumbers into sections of 4 cm−1with the absorbance taking the

average values across the grouped wavenumbers. Finally, spectra were rescaled between 0

and 1. Other pre-processing steps included baseline correction and the use of a Savitzky-

Golay filter of window length 19 and polynomial order 2 to remove noise and smoothen

the peaks. No derivative information was used in the filter. The training data consisted of

7743 such spectrum (input)-functional group (output) pairs and the testing dataset contained

3319 such samples.

The convolution layers consisted of 10 filters of size 10 along with rectified linear ac-

tivation. In order to avoid overfitting, the random node dropout with a dropout fraction of

0.2 was used at the end of the convolutional layers. Fully connected layers were used on

the representations learnt by the CNN to classify the spectrum. The binary cross entropy

(BCE) loss was applied on each label to train the model. The output of the CNN includes a
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Figure 3.2: Architecture of the neural network used in classification of functional groups

reconstruction branch in addition to the classification architecture. The features extracted

by the convolutions were used in reconstructing the input spectrum along with the classi-

fication of the functional groups. The spectrum was reconstructed as the sum of Cauchy

distributions. The choice of reconstruction using Cauchy distributions was motivated by

other works involving curve fitting of FTIR spectra, where parameters of the distribution

used to fit a spectrum were used in analysis of the spectrum.[182–184]. As is evident from

Figure 3.2, classification and reconstruction are performed based on the shared feature set

from the convolutional layers. The improvement in reconstruction allows for more explana-

tory and discriminatory features to be extracted by the CNN, thus enhancing classification.

Additionally, the weighting of the BCE loss was included based on the proportion of pos-

itive and negative samples available in the training dataset, which resulted in a weighted

BCE (WBCE) loss given as

WBCE = − 1

N

N∑
i=1

C∑
j=1

wj · [yi,j · log(p(yi,j)) + (1− yi,j · log(1− p(yi,j)))] (3.1)

whereN represents the total number of samples, C is the total number of classes (13 in this

case), wj is the weight associated with each class, yi,j is the binary label for the jth class in

the ith sample and p(yi,j) is the neural network prediction of the binary label for jth class

in the ith sample
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The Cauchy or Lorentzian distribution can be given as

f(x; x0, γ) =
1

πγ

[
1 +

(
x−x0

γ

)2] (3.2)

where x0 represents the position of the peak of the distribution and γ is the half-width at

half maximum. The modified architecture thus uses a custom built layer that reconstructs

the input spectrum as the weighted sum of 15 Lorentzians. If the output of the previous

layer of the neural network was y ∈ Rm×1 and weights and bias of the Lorentzian layer are

W ∈ R15×m and b ∈ R15×1, respectively, the Lorentzian layer computes the distribution as

f(x;W, y, b) =
15∑
i=1

βi ·
1

πb

[
1 +

(
x−Wi∗y

bi

)2] (3.3)

where Wi and bi are the ith row and the ith element of the W and b matrices respectively.

βi’s are the weights of the summation of the 15 Lorentzians and are learnt as parameters

of the neural network. The loss in reconstruction was computed as the Kullback-Leibler

divergence between the softmax of the input and the softmax of reconstructed spectra.

3.4.2 Reaction network generation

As mentioned earlier, automating reaction network generation consists of determining can-

didate molecules for each PC and the network propagation through application of reaction

rules. Identification of the functional groups in the spectra provides information on the

possible reaction centres in the PCs.

Determination of candidate molecules

The selection of candidate molecules for the network was done by comparing substructures

identified by the CNN with molecules present in chemistry databases. The database of

molecules was obtained from US patent literature from 1976-2013 [185][37]. The initial

pre-processing step to ensure that all the atoms had the correct valency was performed

through sanitization checks in RDKit [186]. The molecules were represented using their

SMILES strings, which indicate the connectivity of the atoms.
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The search for the most structurally similar candidate molecule was done by comparison

of molecular fingerprints [187–191]. Molecular fingerprints are a many-to-one mapping

of the connectivity and properties of atoms in a molecule, usually represented in a vector-

ized form, with each position in the vector being indicative of a specific property. Though

initially used in identification of isomeric structures, molecular fingerprints proved to be

effective in comparison of molecules and sub-structure detection. The notion of similarity

requires a distance metric that compares the ’closeness’ of two molecules. Identifiers of a

molecule such as its name, formula and Chemical abstracts service (CAS) ID, for example,

do not allow for direct computation of the distance metric. Fingerprints, on the other hand,

include bit-vector representation, thus allowing for mathematical computations of distance.

Structural fingerprints are bit-vectors with each bit corresponding to a particular sub-

structure. Turning ’on’ a bit corresponds to the presence of that particular substructure

within the molecule. The size of the vector allows for extensiveness in capturing all the

sub-structures in the molecule, though it does not allow for a one-to-one mapping between

molecules and fingerprints.

Another class of fingerprints takes the connectivity information of atoms into account.

The structural fingerprints lump groups of molecules into substructures while connectivity

fingerprints consider each atom in themolecule individually and represent the neighborhood

information of each atom in its bits. Morgan fingerprints iteratively update the identifiers

of each atom in a molecule based on the neighbors at different bond radii and hash them

into a fingerprint [192]. The information gleaned by explicit consideration of the neighbors

is important, especially when matching candidate molecules to then be used in reactions.

The reactivity of a molecule (or the reaction centres within a molecule) differs based on

its substituents. This modification in the reactivity is to be accounted for in the reaction

network generation to ensure its extrapolation for monitoring and control purposes.

In this work, the Molecular ACCess System (MACCS) keys and Morgan fingerprints

were used in determining the most structurally similar candidate molecule to be applied
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in the reaction network formulation. For each PC, the functional groups identified in the

previous step are converted into SMARTS strings that indicate information about fragments

of the molecule [181]. Determining the candidate molecule reduces to identification of the

scaffold structure and possible placement of the functional groups that best match the partial

information available from the spectra. The SMILES string is then converted into both

MACCS and Morgan fingerprints, which are then compared with the fingerprints of the

molecules from the database using the Tanimoto similarity coefficient. The molecules with

high degree of similarity were further filtered based on domain knowledge on the possible

scaffolds present in the system. The Tanimoto coefficient between fingerprint vectors A

and B is

Tanimoto similarity =
A ∩ B

A ∪ B
(3.4)

The coefficient is the ratio of number of common bits between the two fingerprints to the

total number of bits in both fingerprints. Themolecules that show a high degree of similarity

to the identified partial fingerprint are used in building the network.

The task of similarity detection between fingerprints of PCs and actual molecules is done

at multiple stages. The notion of similarity is invoked in identifying the starting point of

network generation (candidate molecule detection). The network generation then contin-

ues and the pruning of the network is done again through a similarity match between the

children nodes in the network and the partial fingerprint of the corresponding PC in the

Bayesian network. This allows for intelligent pruning of the reaction network graph to only

include pathways that are indicated by the spectra of the process. In a scenario with mul-

tiple candidate molecules being chosen for a particular species, the network generation is

performed with all candidates.
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Reaction templating and network generation

The reaction network generation is performed by consecutive application of reaction tem-

plates to molecules in each generation of a graph. Reaction templates or reaction rules

encode the transformation of substrate(s) into product(s). This usage of reaction templates

is widespread in retrosynthetic analysis where the requisite substrates for a target molecule

are identified through backwards propagation of the reaction template. The transmutative

information encoded in a template is restricted to the reacting atoms in a molecule. While

obvious for a human expert, computer-aided reaction network generation requires a math-

ematical formalism that helps in identification of these reaction centres. Previous works

have used template-free approaches where ANNs were used in classification of molecules

as electron donors or acceptors, thereby generating the product as combination of the sub-

strates at the electron transfer locations [193]. However, the more prevalent formalism

involves the description of molecules as molecular graphs [159]. In a molecular graph, the

nodes represent the atoms and the edges define the bonds between the atoms. Information

pertinent to the different atoms in the molecule, such as its type, charge, valency, etc. are

contained as features of the particular node. The information about the type of bond (sin-

gle, double, triple, ionic) are represented as weights of the graph’s edges. More extensive

information such as bond angle, bond length, shape of molecule, hybridization, etc, are not

incorporated in the rudimentary molecular graph, though such attributes can be encoded in

more complex models.

This representation allows for a straightforward definition of a reaction. In the context of

the molecular graph, a reaction is a change in the edge properties (eg, double bond to single

bond in saturation), or the adjacency matrix (breaking or formation of bonds), or a change

in the node attributes ( change in charge, etc). This definition allows for a straightforward

identification of the reacting atoms. The graph-based formalism does not incorporate or-

dinality; hence, finding the difference in connectivity between the reactant molecule and

product molecule involves computing the difference between the isomorphs of their re-
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spective molecular graphs. Therefore, atom-atom mapping is used to place ’name tags’

for each atom in both the reactant and product molecules [30, 151, 153, 194]. The atom

mapping number of a particular atom is the same in the both reactant and products. This

mapping constraints the graph to a particular sequence, thus allowing for the identification

of the reaction centre in a single iteration. For each mapped atom in the reactant, the atom

(node) with the same mapping number in the product is identified. If the attributes of that

node or the edges of the node change, then the atom is identified as a reaction centre.

Automation of the template generation protocol begins with a curated SMILES strings

of reactions in the US patent database [185]. In earlier work by Lowe [185], the US patent

office data was text-mined and data regarding reactions, solvents, yields, etc were curated

into a database. Atom-atom mapping of the reactions were performed in the previous work

using the Indigo Toolkit [195].This curated dataset was used in this work. The database con-

tained reactions commonly hypothesized to occur in HTL biomass such as decarboxylation,

dehydration, cracking, etc. While the reaction strings used in this study were atom mapped

already, automated atom mapping techniques exist that can be used to place tags on atoms.

The reaction centres for a particular reaction were identified using the aforementioned crite-

ria. The templates were then generated by considering the reacting atoms and their one bond

neighbours to incorporate the connectivity information of reaction centre and also to incor-

porate specificity in the templates. Based on the connectivity information, the templates

were encoded as SMIRKS strings [196]. SMIRKS string uses a SMARTS representation

for querying atoms that match a particular substructure, which is essential for the network

generation scheme [197]. The SMARTS string incorporates the connectivity between the

atoms and also places additional constraints on the type of atom (alipahtic/aromatic carbon,

primary/secondary alcohol, etc,). Furthermore, sanity checks based on charge, valency and

hybridization are placed on the extracted template to ensure feasibility of the reaction.

A reaction is ’performed’ by the application of a template to the substrate. The algorithm

first checks for a substructure match between the reactant part of the template and the sub-
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strate. This is done by solving the Ullman sub-graph isomorphism problem [198]. Once a

substructure match is found, the edits in the molecular graph of the reactant are performed

based on the template and products are generated. The network generation begins with the

root node on the DAG obtained as the Bayesian network. The candidate molecule identi-

fied through fingerprint similarity is used as the substrate. All the templates generated are

applied on the substrate to check for substructure matches. No filtering of template based

on conditions, kinetics or yields were performed. If a match occurs, the reaction is ’carried

out’ and products are generated. In certain scenarios, the candidate molecule can be one of

the substrates in a reaction. The reactant side of the template in such a case consists of mul-

tiple units, but, as the starting substrate is just a single molecule, a search of all templates

is carried out to identify reactions where the molecule under consideration matches one of

the reactant template units. In case of a match, the reaction is carried out by artificially

introducing the remaining substrates. The products generated then are used as substrates

for the next phase of the network generation with the templates being applied on them. The

network generation procedure is continued in a breadth-first fashion for a pre-determined

number of generations. At the end of the generation step, similarity tests are performed

between the functional groups of the other PCs and the elements of the network. This al-

lows for pruning of the network to discard pathways that do not match with the information

present in the spectroscopic sensor measurements. The graph structure of the Bayesian net-

work is enforced in such a way that the functional groups identified for the other PCs match

with the functional groups of the molecules obtained as products. It is to be noted that in

the case of the product being formed as a result of multi-step reaction, the intermediate

molecule is also included in the reaction network. Chemically valid pathways between the

different molecules that have not been identified by the Bayesian graph structure learning

algorithm are still included in the reaction network for completeness.

Other runs of the network generation steps are performed with the candidate molecules

for the other PCs as well. For a component that is only a child node in the Bayesian network,
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Figure 3.3: (a) FTIR spectrum of pseudo-component 1 (PC1), (b) FTIR spectrum of PC2,
(c) FTIR spectrum of PC3, (d) FTIR spectrum of PC4

i.e., only the product of a reaction, the same network generation protocol is followed but

with an inversion of the templates (similar to a retrosynthetic approach). For an interme-

diate node, both the forward and backward generation steps are followed. This generates

multiple viable hypotheses for the reaction network. Performing multiple trials of the net-

work generation with different starting points allows for a more exhaustive search while

also refining the network. For example, in a scenario where the network generated from

an intermediate molecule does not produce any products that match the fingerprints of its

children, a modification is performed to the candidate molecule based on the reaction net-

works obtained from the other PCs. Reversal of templates also results in detection of other

substrates necessary for the reaction that are not captured by the spectroscopic data.

3.5 Results and Discussion

3.5.1 Results

As mentioned in Section 3.3, synthetic data generated from known molecules and reactions

were used as one of the validation datasets. The deconvolved spectra for the synthetic data

are presented in Figure 3.3.

Evaluation of classifier performance

The 1H-NMR spectra was used in the study as means of constraining the tensorial factor-

ization.Though the factorization scheme generates individual 1H-NMR profiles for each
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component, the resolution of the signatures was not high enough to be informative. Hence

only FTIR measurements were used for classification by the CNN. The presence of func-

tional groups in each PC identified by the deconvolution was determined using a 1-d CNN.

The spectrum of each PC was rescaled to have absorbance between 0.0 and 1.0 along with

down-sampling tomatch the resolution of 4 cm−1. The predictive power of the CNN trained

with BCE loss across different functional groups is described in Table B.1 and Figure B.2.

On comparison, the accuracy, precision, recall, F1 score and specificity of the 1-d CNNwas

on par or better than architecture described in literature [199, 200]. The classification of al-

cohols showed the worst performance (F1 score of 0.88) in comparison to Wang et.al[199].

Weighing of the loss term for the less represented classes resulted in an improvement in

the F1 score to 0.90 with the recall improving to 0.915 in the case of alcohols though this

decreased the precision to 0.89. An overall increase in recall and decrease in precision was

noted with the use of WBCE loss. In order to account for the overall drop in precision, the

CNN trained on BCE loss was used for further inference. In this case of a prediction of 0

for the alkene, alkyne, alcohol, acid and aldehyde, the same spectrum was classified using

the CNN trained on WBCE loss to ensure that the functional group was actually absent and

in the case of a mismatch in classification by the two networks, the WBCE classification

was chosen for these cases. While this methodology introduces more false positives into

the classification, the detection of the presence of a functional group was deemed more vital

for reaction network generation.

Comparison of the molecular F1 score and molecular perfection rate (MPR) as intro-

duced by Fine et.al[181] in Table B.2 reveals that our model performs better in the recogniz-

ing all the functional groups indicated by the spectrum with the addition of reconstruction

drastically improving the MPR. Weighing of the classes improves the recall with a little

drop to the MPR (owing to misclassification of highly represented groups).
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Network generation for synthetic data

The classification of the decomposed spectra from the synthetic data is shown in Figure

3.4. The green entries in tables indicate the correct identification (presence or absence)

of a functional group in the PC while the red entries indicate a wrong classification (pres-

ence or absence) of a functional group. In the case of cyclohexanol (PC1), it can be seen

that both the networks trained on BCE and weighted BCE (WBCE) losses were able to

recover the correct functional groups indicated by the spectrum. In the case of cyclohex-

ene (PC2), the WBCE-network is able to detect the C=C, but not the BCE-network. The

BCE-network was able to identify the ester part of cyclohexyl formate (PC3), but it also

identified a C=C bond, while the WBCE-network did not identify the C=C bond and was

also able to identify the ester group. However, both networks identified an ether group,

which was not present in the molecule. Unfortunately, neither of the networks were able to

correctly identify formic acid. Analysis of the reason behind this failure revealed that the

deconvolution of the spectroscopic mixture resulted in the peak corresponding to the OH

group of the acid being assigned to PC1 (alcohol), while peaks of the ester corresponding

to the C-O bond of the ester were assigned to PC4, explaining the ether classification by the

BCE-network. Futhermore, since C=O and aromatic C=C stretches occur close together,

the WBCE-network assigns an aromatic functional group to the molecule. A comparison

of the original spectrum each component with the deconvoluted spectrum is presented in

Figure B.3.

The reaction network identified by our method for the synthetic data is presented in

Figure 3.5. The reaction networks shown have been filtered from all generated network

hypotheses based on domain knowledge (i.e., scaffold information of molecules) of the

process. As mentioned in Section 3.4, the partial-MACCS keys of each of the PCs were

generated based on the detected functional groups. A fingerprint similarity match with

molecules present in the database was performed to generate an initial candidate for each of

the PCs. As an initial pass to match multiple candidates, when aromatic rings have not been
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Figure 3.4: (a) Classification for cyclohexanol, (b) Classification for cyclohexene, (c) Clas-
sification for cyclohexyl formate, (d) Classification for formic acid

detected by the classifier, the functional groups detected were attached to both straight chain

and cyclic scaffolds with the cyclic scaffold being chosen based on prior knowledge of the

system. The degree of filtration brought about by including scaffold information is provided

in Table 3.1 The introduction scaffold information brings about a 4 to 10 fold reduction in

the number of molecules considered. But most of the filtering of the molecule occurs at the

functional group matching stage and during the enforcement of the graph constraint. There

is no distinction between label-based filtration and scaffold-based filtration for PC4 as the

aromatic scaffold has been incorporated into the functional group labels. It is also important

to note that the Bayesian network identified from the spectra forms a subset of the overall

chemical reaction network. Compounds in the chemical reaction network whose signatures

have not been indicated by the pseudocomponent spectra are still included if one of their

products (or subsequent products) are indicated by the spectroscopic data.

The templates were applied to the initial candidate molecule for the root node of the

Bayesian network and the resultant network generated is shown in Figure 3.5(c). The re-

action network developed from candidates for PC2 is shown in Figure 3.5(d). In this run

of network generation, the reaction templates were also applied in reverse to the molecule

to check for a molecule similar to PC1 being a precursor for the candidate molecule in
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Table 3.1: Filtering of molecules based on scaffold information for synthetic data
Total number of molecules : 1808254

Molecule Filtered based on
labels

Filtered by addi-
tion of scaffold

Filtered by graph-
constraint only
using labels

Filtered by
graph-constraint
using labels and
scaffold

Cyclohexanol 614 137 26 1

Cyclohexene 2096 203 34 1

Cyclohexyl formate 6420 995 107 1

Formic acid 79264 79264 0 0

question. It is interesting to note that even though formic acid was not identified correctly

by the CNN, the reversal of the template allowed for the discovery of formic acid as the

other node in the network. Similarly, reversed templates were applied to the candidate

molecule for PC3 and the network was propagated in the reverse direction upto PC1 (Fig-

ure 3.5(e)). The network generation algorithm in each case was run for 4 generations and

similarity tests were performed between fingerprints of the other PCs and products of the

network. The graph constraint was enforced in such a way that multiple step reactions were

also considered. Additional arcs identified by the network generation algorithm have also

been included in the reaction network showcase the ability of the algorithm in discovering

interactions that are not captured by the sensor measurements. Based on the information ob-

tained from classification of PC4, none of the networks generated with any initial molecule

for PC4 showed nodes similar to candidates for the other PCs and hence no viable network

was generated as seen in Figure 3.5(f)

Reaction network for a known starting molecule

The fidelity of the network generation algorithm in generating networks that are close to

the ones indicated in literature was tested out by applying the algorithm to a known starting

molecule and examining the resulting network structure. 2-Phenoxyethylbenzene (PEB),

a model compound often used to describe reactions of lignin-type compounds was used as
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Figure 3.5: (a) Ground truth network used in data generation, (b) Bayesian Network identi-
fied from spectra (c) Reaction network starting from candidate molecule for PC2, (d) Reac-
tion network starting from candidate molecule for PC3, (e) Reaction network starting from
candidate molecule for PC1, (f) Reaction network starting from candidate molecule for PC4

the starting molecule.

The network structure identified using Bayesian structure learning on the factorized spec-

troscopic data obtained from experiments indicated a 3 node graph with polycyclic aromatic

compounds converting into aromatic alcohols, carbonyls and alkenes (Figure 3.6(a)). The

reaction network obtained by using PEB as the starting point is depicted in Figure 3.6(b).

The network showcased the cleavage of the ether bond to produce alcohols (phenol). Oxi-

dation of the phenolic compounds generated carbonyls and acids. The cleavage of the ether

followed by dehydration of the alcohol also produced styrene-like molecules. Similar reac-

tions have been described in the literature: the end products of HTL of lignin components

of biomass consist of phenolic and carbonyl compounds [5, 24].

Validation of workflow for Biomass HTL

Having validated our methods with the ground truth for the synthetic data, the methods were

validated using the spectroscopic data for HTL of biomass. The results of the tensorial fac-

torization are presented in Figure 3.7. 4 components (excluding water) were identified by

core consistency diagnostics and the resultant projections of the data (except for water)
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Figure 3.6: (a) Bayesian network obtained for PEB hydrolysis, (b) Candidate reaction net-
work starting from PEB

along the residence time, process conditions and wavenumber/chemical shift modes are

shown in Figures 3.7(b), 3.7(c), 3.7(d), 3.7(e), respectively. Since the tensorial decompo-

sition assumes the data to be a linear combination of the component spectra, it is assumed

that PC1 to PC4 contain no water as water’s spectrum has been extracted separately. Only

spectra of PC1 to PC4 were used for further studies. Exclusion of water as a bystander/sol-

vent molecule is done based on knowledge of the process. The results of the decomposition

along including water is presented in Figure B.4. The factorized spectra were fed as inputs

to the CNN classifier to identify the functional groups present in each PC. From Figure 3.8,

it can be seen that PC1 consists of aromatics with ester groups. Visual inspection of the

spectrum also indicated peaks at 1040-1250 cm−1 indicating the presence of ethers as well

as peaks corresponding to aromatic C-H and C=C bends and stretches (3000-3200 cm−1

and 1420-1650 cm−1). PC2 consisted of aromatic alcohols, and PC 3 contained carbonyls

(aldehydes). PC4 consisted of simple aromatic compounds with alkane side chains. The

predictions of the classifier were also verified by visual inspection.

The Bayesian network structure along with the identified reaction networks are presented

in Figure 3.9. These networks are results of the iterative application of the templates on the

candidate molecules followed by similarity tests. This routine of template application and
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Figure 3.7: (a) FTIR and 1H-NMR spectra for HTL of Biomass, (b) Projection along resi-
dence time mode, (c) Projection along process condition mode, (d) Resolved FTIR spectra
of each PC, (e) Resolved 1H-NMR spectra of each PC

Figure 3.8: Classification of biomass PCs
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similarity test was performed for multiple epochs until structures were found that matched

with the connectivity information of the Bayesian network as well as the functional groups

detected. The network structure revealed a transformation of the ether group into alco-

hols and carbonyls, finally cleaving to form substituted aromatics. The reaction network

identified from the candidate for PC1 is depicted in Figure 3.9(b). The course of reactions

as seen in panel b followed the trends seen in pyrolysis of lignin components of biomass,

while panel c described the breakdown of the cellulosic structures. Scaffold information

used for the synthetic data only included information on polycyclic compounds for PC1

and mono-cyclic compounds for PC2, PC3 and PC4. No explicit information on actual

scaffold structure of molecule was provided.

Panels d, e and f depict the networks generated by applying templates in the forward

and reverse directions on the candidate molecules for PC2, PC3 and PC4, respectively. As

mentioned earlier, different runs of the network generation algorithm were conducted with

PC2, PC3 and PC4 as starting points. Based on their positions on the Bayesian network, the

reaction templates were applied only in the reverse direction (for PC2 and PC4) or in both

forward and reverse directions (PC3) to generate additional reaction network hypotheses.

It is important to note here that the networks presented in this work have been filtered from

all generated hypotheses based on domain knowledge of the process regarding molecular

scaffold information. These networks also seemed tomatchwith the general trend noticed in

hydrolysis of biomass [24, 89, 109]. It also interesting to note that the candidate molecules

identified in each step closely resemble model compounds presented in literature for the

thermal pyrolysis of biomass [6, 201].

3.5.2 Discussion

We have discussed the generation of a reaction network hypothesis for the HTL process

of biomass by incorporating human expertise in transforming the PC network to real-life

chemistries in our previous work [24, 109, 201]. In this work, we present methods to auto-
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Figure 3.9: (a) Bayesian network for biomass, (b) Reaction network starting from lignin-like
candidate molecules for PC1, (c) Reaction network starting from cellulose-like candidate
molecule for PC2, (d) Reaction network starting from candidate molecule for PC3, (e) Re-
action network starting from candidate molecule for PC4

mate these routines with some added human intuition by way of using 1-d CNNs as well as

reaction templating and fingerprinting schemes.

Human expertise in deciphering a FTIR spectrum consists of identification of the po-

sition and shape of peaks in the spectrum and assigning functional groups based on these

features. This contextual mapping of spectral peaks was what we sought to achieve in an au-

tomated fashion through the use of the CNN, and the analysis of the feature space learnt by

the neural network validated the same. As seen in Figure B.4, the CNN extracted informa-

tion about specific wavenumber regions showcased by the functional group. To understand

the peak shape information extracted by the CNN, the filters learnt during training were

inspected. From the visualization of the filters, it was evident that the different filters learnt

corresponded to different peak shapes (see Figure B.5). Each panel in Figure B.6 depicts

the filter learnt by the CNN (top and middle) and the activation map (output of the first con-

volutional layer) with respect to that filter (bottom) for methanol. This is important, since

different functional groups show up in the FTIR spectrum not just at different wavenumbers

but also as different shapes. Alcohols, for example, show a wider peak for their O-H bond
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than the sp3 C-H bond.

The reaction network identified for the synthetic data also included certain compounds

that were not included in data generation, such as cyclohexanone, which was identified as

a potential candidate for PC3. This was due to the fact that cyclohexanone also undergoes

reactions similar to what has been described about PC3 based on the data shown to the

network generation algorithm. The ability of our methodology to identify other potential

candidates for a certain PC its ability to effectively explore the chemical space. While the

networks presented in this work have been filtered to include reasonable scaffolds for can-

didate molecules, the reaction networks generated for different scaffolds only differ in the

base scaffold structure and not in the transformation between the species. A representative

image showcasing the inclusion of scaffold information in reaction network generation has

been presented in Figure 3.10 It is to note here that the synthetic was generated to ensure

kinetics of all the reactions considered were activated by the temperature profiles leading

easier deconvolution. While the focus of this work is not test the effectiveness of the decon-

volution technique, we do acknowledge that it plays an important role in determining the

reaction network. It is also important to note that each component in the synthetic data had

only one functional group. The molecular F1 score and MPR are known to decrease when

number of functional groups in a molecule increase[181] potentially leading to misidenti-

fication of functional groups indicated by the spectrum. With respect to HTL of biomass,

literature reports the breakdown of lignin-like compounds with the cleavage of the ether

and C-C bonds [202]. Phenols are found in abundance as products of HTL and are formed

through ether cleavage [202, 203]. Dehydration reactions have also been reported in lit-

erature resulting in alkenes [204]. Alkylated aromatic structures have also been proposed

as products of the thermal pyrolysis process [24]. The hydrous pyrolysis of carbohydrate-

like molecules typically results in various saccharides and glucose. Under the conditions of

this study (temperature, acidic/alkaline nature), carbohydrates has been known to undergo

oxidation to carboxylic acids via retro-aldol condensations which undergo decarboxylation
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Figure 3.10: A representative workflow of the reaction network generation algorithm show-
casing the incorporation of scaffold information.

reactions to form various carbonyls [133]. Furthermore, carbohydrates can degrade to form

oxygenated compounds such as hydroxymethyl furfural (HMF) and lactic acid [205]. These

concurrent reactions were captured by the reaction networks generated by our methods. As

seen in Figure 3.9, panels b and d described the breakdown of lignin-type compounds. It

is important to highlight here that phenols and alkylated aromatics, along with styrene-like

structures, has been correctly identified in the reaction network. Similarly, the breakdown

of carbohydrates have also been recovered in panels c,e and f of Figure 3.9. HMF is typ-

ically used as a model compound in describing reactions of biomass feedstocks [135] and

the presence of substituted furfural-type molecules in the automatically generated networks

points at its fidelity towards identifying reactions and compounds describing biomass con-

version.

3.6 Conclusions

In this work we present a methodology to automate the mapping of data-driven hypotheses

to candidate chemistry for reaction transformations in systems where accurate information

about the species and reactions are absent, which is a formidable task. The reaction network
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identified for biomass seems to fit well with the kinds of reactions and products described for

the HTL process in the literature. The CNN-classifier identified ethers, alcohols, aromatics

and carbonyls in the reactionmixture. Our method identified both the ligninic and cellulosic

aspects of the hydrothermal pyrolysis of biomass. In our previous , we showed that these

two pathways were the most significant reaction schemes occurring during the HTL process

and this work was able to extract networks that indicate these transformations.

Thoughwe present the application of our methods on the HTL process as a validation, the

deconvolution and functional group detection are process-agnostic and can be used in de-

veloping reaction networks for any process with spectroscopic measurements of the process

available. The tensorial factorization scheme could be applied to different types of spec-

troscopy measurements. The CNN is trained on FTIR spectroscopy measurements that are

informative about the functional groups. Other types of spectroscopic measurements that

provide a similar information could be used in training such that the molecular fingerprint

obtained is informative enough. The lack of scaffold information in FTIR spectroscopy

measurements forces a degree of human intervention as described in this work. With the

addition of scaffold information through other sensor measurements the routine can be truly

automated. The other steps of the methodology do not depend on any type of data and can

be readily adapted to other systems. Furthermore, the reaction networks can be modified

based on the operating conditions by introducing data points at the new operating range into

the network generation scheme.

Pruning of the reaction network is done at present based on similarity matches with

functional groups and with some human expertise on the system under consideration. In-

formation about recurrent sub-structures present in the reaction network provides a very

informative criterion on the branches to be included in the pruned network. Furthermore,

kinetic information about the different reactions can also provide a means of pruning the

network. Our other studies involve the estimation of kinetic parameters for the reactions

and extending it towards control and monitoring of the process [206].
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3.7 Limitations

1. Analyses performed in our other works[206] indicate that the results of the deconvo-

lution are influenced by the amount of noise present in the spectroscopic measure-

ment. Though not a theoretical limitation, this does a pose a practical limitation on

the validity of the deconvolution for samples with low signal-to-noise ratios.

2. The type of spectroscopic measurement provided to the system affects the expanse of

the networks generated. FTIR spectroscopy as discussed in this work does not pro-

vide information about the scaffold of the molecule and is limited to the functional

groups to be detected. This results in multiple candidate molecules (and hence reac-

tion networks) with similar reactions but differing in just the scaffold structure and

requires an additional layer of human input in filtering out these reaction networks

based on domain knowledge. It is important to note that this a limitation due to the

nature of information present in the sample itself and not necessarily of the workflow.

Other types of spectroscopic measurements can be readily incorporated into the de-

convolution information and classifiers built to jointly identify functional groups and

scaffolds can be incorporated. More specific candidate molecules can then be de-

ducted thus reducing the number of hypotheses generated. This forms a part of our

future work.

3. The number of functional group classes chosen for the study were restricted to 13 to

ensure sufficient training samples for each class. While this places a limit on the ex-

tensiveness of the chemical space search, the functional groups chosen do encompass

a majority the most frequently occurring functional groups in the database. Similarly,

extension of the classifier to aqueous phase is restricted by the lack of training data

and can lead to incorrect assignment of functional groups.
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Chapter 4

Spectrum-constrained deep generative
model for monitoring of complex
reaction systems

4.1 Abstract

Identifying molecular structures of components of a reaction mixture from spectroscopic

measurements is not a trivial task. Development of chemical models for complex reaction

mixtures is not straightforward owing to difficulties faced while interpreting sensor mea-

surements and the expanse of the chemical space. In this work we detail a molecular genera-

tive model that can be used for identification of the molecular structure of components in the

reaction mixture given the infrared spectrum of the reaction mixture. A generative adver-

sarial network conditioned on the spectrum of molecules is detailed in this work wherein

the generator generates latent representations of molecules pertaining to the given spec-

trum condition. The latent representation is decoded to generate a string representation of

the molecule using a pre-trained Long Short Term Memory(LSTM) decoder. The decoder

is trained to generate SMILES and SELFIES strings of molecules given their molecular

structure by encoding the structure using Message Passing Neural Networks (MPNNs).

We show that our Graph2SMILES encoder is able to populate the encoding space based

on molecular sub-structures and translates the molecular structure with an average BLEU

score of 0.91 with 82.7% validity of translation. The methodology is tested on experimen-
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tal data obtained from batch hydrothermal conversion of biomass and reaction networks for

the system under multiple operating condition are developed depicting the breakdown of

cellulosic structures.

4.2 Introduction

Optimizing the valorization of distributed feeds forms a key aspect in establishing an ef-

fective circular economy of chemical and biological products and wastes [1, 2]. Recovery

and upgrading techniques associated with such physically and chemically heterogeneous

feedstocks involve numerous reactions of multiple reactive species and developing a first-

principles based model is intractable due to the sheer number of variables in the system.

Traditional approaches to identifying the reactive species and the reactions in systems in-

volving complex feedstocks rely heavily on domain expertise and are based on handcrafted

model compounds for the system under consideration [5, 6]. The choice of model com-

pounds is subject to human bias and the modeling methodology does generalize well across

different classes of reaction systems.

An alternative is to utilize sensor measurements of the reaction to track the reaction

progress [9, 13]. In this regard, spectroscopic sensor measurements provide a quick and

reliable means of extracting chemical information in a process. For a well-defined system

(i.e., systems where both species and reactions are known) spectroscopic measurements

can track the relative change in chemical composition of the species across the operating

conditions. For systems where species and reactions are unknown a priori, spectroscopic

measurements can provide a means of identifying the different reactive species in the feed-

stock. Identification of the individual species in evolving spectroscopic data forms the key

aspect of multivariate curve resolution [18].

Our previous works have successfully employed spectroscopic measurements to identify

reaction networks in complex systems such as bitumen and biomass [26, 142]. Curve reso-

lution in these previous works was performed using non-negative tensorial factorization to
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identify spectroscopic signatures of individual reactive components. These signatures were

used as an input to a Bayesian structure learning algorithm to identify the structure of the

reaction network followed by identification of reactions and species through human exper-

tise or automated chemical database searches. An issue encountered with curve resolution,

especially for measurements with low signal-to-noise ratio, is that the resultant deconvolu-

tions of spectra do not necessarily correspond to the signatures of the actual molecules in

the reaction mixture. Similarly, the Bayesian structure identified as the reaction network

tends to be fully connected with spurious links between some species [206]. This requires

additional human expertise in removal of such spurious arcs or in weighting of regions of

interest in the deconvoluted spectra. In this work we aim to develop an one-shot generation

of molecules that represent the reaction mixture at a given process condition based on the

spectroscopic measurement of the process at that condition.

Machine learning-based molecule generation schemes employ Recurrent Neural Net-

works (RNNs) [207, 208], Variational Auto-Encoders (VAEs) [49, 50], Generative Adver-

sarial Networks (GANs) [47, 51, 52, 209], Transformers [210–213] and Reinforcement

learning [44, 214, 215]. The generative approach used varies based on the representation

of molecule being generated. RNNs are typically employed in sequential generation of

molecules represented as Simplified molecular-input line-entry system (SMILES) strings

or a sequence of graph edits to molecules represented as graphs [48, 216, 217]. VAEs

and GANs have been employed to molecules represented as strings, graphs or as molec-

ular fingerprints [47, 49, 51]. Typically, one-shot generation of the molecular graph is a

hard problem due to the permutation invariance of the adjacency matrix, but methodologies

have been developed for small molecule generation in the literature [47]. An easier ap-

proach is to generate a latent vector representation of the molecule, which is then decoded

by a hetero-decoder to generate a molecule.

Conditional molecular generation has been a topic of active research in drug discov-

ery and researchers have employed VAEs and GANs to generate drug-like molecules that
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match a prescribed condition (scaffold structure [59, 60, 218–220], ligand-binding proper-

ties [221–223], target genome expression [42, 224], etc). But from a process engineering

perspective, the task of identifying molecular entities from sensor measurements of the re-

action has not been explored in the literature. It is important to note that several studies

have been performed in the literature towards automated elucidation of molecular structure

from spectroscopic measurements of pure compounds [225, 226]. Most of these studies

require some knowledge such about the molecule whose structure is to be identified. It is

not uncommon to use the molecular formula to limit the structure elucidation to a space

of possible isomers to reduce the computational complexity of the problem. In the case

of structure identification for mixtures, existing methodologies require a list of possible

components in the mixture.

The focus of this work is to infer the reaction network of a complex reaction system at

different operating conditions solely from spectroscopic measurements of the reaction pro-

cess and without a priori knowledge of the species. To this effect, we employ a conditional

GAN-based molecular generation routine that incorporates the spectroscopic sensor mea-

surements to generate latent representations of molecules that are decoded using a RNN-

based decoder trained on encodings obtained from Graph Convolutional neural networks.

We identify the reactions occurring at a particular condition by applying algorithmically

extracted reaction templates.

4.3 Methods

The molecular generation routine is carried out using a GAN trained to generate latent

vector representation of molecules conditioned on the input spectrum. The latent vector is

decoded into a SMILES string using a pre-trained RNN-based decoder.
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4.3.1 Datasets and data preparation

Reaction smarts [197] from the US Patent Office database [185] were parsed to identify

individual molecules. The Atom Atom Mapping ids of the atoms were stripped and sanity

checks were performed using RDKit [186] to generate a database of SMILES. Infrared spec-

tra of molecules were obtained through web scraping from the National Institute of Stan-

dards and Technology Chemistry webbook. The spectra were pre-processed as mentioned

in Chapter 3 to fall between 400 cm−1 and 4000 cm−1 with absorbances scaled between 0

and 1. SMILES string of the molecules whose spectra were collected were concatenated to

database. Unique smiles were identified and any salts were removed. SMILES and Self-

Referencing Embedded Strings (SELFIES) [227] were generated for molecules in the list

and were tokenized using a regular expression [228] and in-built tokenizing functions, re-

spectively. The dataset generated 1.24million unique samples of SMILES/SELFIES strings

and 11062 IR spectra. Only tokens that had a frequency greater than 2000 were retained

with other tokens being represented by an identifier for unknown atom or unknown number

in the dataset. Experimental FTIR spectroscopic measurements from our previous studies

[201] were used as a test dataset to present our methods. More details regarding the dataset

are made available in Appendix C.1

4.3.2 Graph2SMILES translator

Agraph-based encoder-decoder architecture is employed in this work. The encoder consists

of multiple graph-convolutional layers with the molecular graph as the input. In the most

general form the convolutions update the state vector hv of each node at a step t based on

the message functionMt and an update function U as given by

mt+1
v =

∑
w∈N(v)

Mt(h
(t)
v , h(t)

w , evw) (4.1a)

h(t+1)
v = U(h(t)

v ,m(t+1)
v ) (4.1b)
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As can be seen from Equation 4.1, the message mt+1
v of node v depends on the states of

the node and its neighbors (N(v)) along with the with the edge-feature (evw) for the edge

connecting the nodes and the neighbors. In this work, we use a version of the graph con-

volution as defined by Gilmer et al. [229], which allows for a vector-valued edge-feature.

The states of all nodes in the graph are pooled to generate a context vector z which encodes

the characteristics of each node and edge of the molecular graph. More details regarding

the features used for nodes and edges can be found in Appendix C.2.

The context vector is used as an initialization of the states of a RNN-based decoder. This

formulation is similar to that of a seq2seq neural machine translation. The Long Short-Term

Memory (LSTM) formulation of the RNN is used as the decoder to predict the SMILES

string of the given molecular graph one character at a time. The decoder is trained without

any teacher forcing. The token-level prediction of SMILES is tasked as a multi-class clas-

sification problem with the decoder predicting the conditional probability of the next token

in the SMILES sequence given the previous tokens of the sequence. The frequency of oc-

currence of each token varies drastically across the training data and hence Focal loss [230]

is chosen as the loss function to be minimized as opposed to the traditional cross-entropy

loss. The Focal loss includes a modulating term that further penalizes incorrect predictions

across hard-to-classify samples and is given by

Focal loss = −αc(1− pc)
γlog(pc) (4.2)

where pc denotes the predicted probability of the sample belonging to class c, γ is the fo-

cusing parameter and αc is the weight associated with class c.

4.3.3 Spectrum constrained GAN

The spectrum-constrained GAN consists of two networks known as the Generator and

Critic, which are trained in an adversarial fashion. The Critic (D) assigns scores to its inputs

with a higher score for ’real’ samples or samples belonging to the training data distribution.

The Generator (G) generates samples intended at fooling the Critic, i.e, the Generator tries
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to produce ’fake’ samples that the Critic identifies as real (assigns a higher score). The con-

ditional GAN is trained to minimize the 1-Wasserstein distance between the distribution of

the training data and the distribution of the samples generated by the generator [231]. The

1-Lipschitz continuity of the function formulated as the Critic network is ensured by using

a gradient penalty scheme [232]. The Generator (LG) and Critic (LD) losses are given as

LD = Ez∼Preal,c∈C [−D(z, c)]+Ex∼N (0,1),C∈C [D(G(x, c), c)]+λ[∥∆x̂D(x̂)− 1∥22] (4.3a)

LG = Ex∼N (0,1),C∈C [−D(G(x, c), c)] + βf(z, c, l) (4.3b)

where c represents the conditioning spectrum and λ is the regularization weight of the

gradient penalty. The f term corresponds to the loss associated with the generated molecule

containing the functional groups indicated by the spectrum and is formulated as the cross-

entropy loss of a classifier trained on predicting functional groups based on the spectrum

and molecular latent vector z. This term of the loss is high when the Generator generates a

molecule that does not contain the functional groups indicated by the conditioning spectrum

c and β is the regularization term associated with this loss. Details on the structure of the

Generator, Critic and the functional group penalty classifier can be found in Appendix C.4.

The GAN generates latent representations of the molecule that matches the spectrum

condition given, which is then decoded using the pre-trained decoder mentioned in Sec-

tion 4.3.2. Figure 4.1(a) and Figure 4.1(b) depict schematics of the Graph2SMILES and

spectrum-constrained GAN, respectively.
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Figure 4.1: (a) Schematic of Graph2SMILES translator. (b) Schematic of spectrum con-
strained GAN

Identification of the reaction network at the operating condition is performed by appli-

cation of reaction templates to the molecule generated by the GAN. The reaction template

encodes reaction rules indicating the conversion substrate(s) into product(s). In this work

we employ algorithmically extracted reaction templates. Since the spectrum of the mixture

is provided as a conditioning input, the generated molecules contain motifs of all compo-

nents in the reaction mixture at the sampling instant. Substructure matching is performed

between the generated molecule and templates of reactants in the bank of reaction tem-

plates. If a substructure match occurs at any part of the molecule, a reaction is performed

at the location and products are generated. Further generations of the reaction network are

generated by recursive application of the templates on the products of the previous gen-

eration. Th reaction network developed at a process condition comprises of all possible

reactions occurring at the condition. Further details on the reaction template generation and
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the reaction network generation can be found in our previous work [142].

4.4 Results and discussions

4.4.1 Graph2SMILES translator

The Graph2SMILES translator was trained using teacher forcing to enhance speed of con-

vergence. A variant of theGraph2SMILES architecture was also trained to predict SELFIES

strings, which we refer to asGraph2SELFIES henceforth. BLEU score [233], used to com-

pute the effectiveness of text translation, was employed to check the accuracy of translation

between molecular structure and SMILES [234]. The SMILES-to-SMILES translator de-

veloped by Winter et al. (henceforth called the RNN-translator) [235] was used a baseline.

The average BLEU score of translation between the two architectures is given in Table 4.1.

Appendix C.2 shows the BLEU scores for different testing samples for bothGraph2SMILES

and Graph2SELFIES translators.

Model BLEU Score No.of
molecules
with BLEU
Score <1

No.of
molecules
with BLEU
Score <1 but
Tanimoto simi-
larity =1

Mean Tani-
moto similarity
of molecule
with BLEU
score < 1

RNN translator 1 0 - -

Graph2SMILES 0.91 259 135 0.944

Graph2SELFIES 0.859 351 131 0.821

Table 4.1: Comparison prediction capabilities of different translator based on BLEU score

BLEU score performs a character-levelmatch between the reference (ground truth SMILES)

and the hypothesis (predicted SMILES). In the case of SMILES, a strict adherence to a par-

ticular ordering rule is not necessary at all times. A molecule can have multiple equivalent

SMILES strings and hence a mismatch of tokens at a particular position does not always

imply an incorrect translation. Therefore, a test for the similarity between structures of the

ground truth string and the predicted (translated) string was performed by computing the
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Tanimoto coefficient of similarity between the MACCS fingerprints of the two strings. Ad-

ditionally, a test for the validity of the translated SMILES was performed. Validity in this

context is defined as the ability of the RDKit SMILES parser to generate a valid MolFile of

the input SMILES. The SMILES translation was found to have a validity of 82.7 % out of

124,600 samples tested. The mean Tanimoto coefficient between reference and predicted

SMILES across all valid predicted SMILES was found to be 0.95. The Graph2SELFIES

translation provided valid molecules 100% of the time. This is due to the inherent nature

of the string as SELFIES was developed with purpose of being an injective mapping, i.e,

every SELFIES string always produces a valid molecule. The mean Tanimoto similarity

was found to be 0.82.

In an attempt to understand some properties of the encoding dimension of the transla-

tors, studies were performed on encodings obtained from a subset of the testing dataset con-

taining 500 samples of varied lengths of SMILES strings. Nonlinear Principal Component

Analysis (PCA) with a radial basis function kernel was applied to the encodings from RNN-

translator, Graph2SMILES and Graph2SELFIES translators. The projections showed two

distinct cluster in the case of RNN andGraph2SELFIES translator and three clusters for the

Graph2SMILES translator. K-means clustering was performed on the lower dimensional

data followed by a test of inter-cluster and intra-cluster structural similarity of molecules.

The clustering is depicted in Figure 4.2(a), (b) and (c). The RNN-translator showed lower

intra-cluster similarity as compared to the Graph2SMILES and Graph2SELFIES transla-

tors, as seen in Figure 4.2 (d), (e) and (f). An analysis of the length of SMILES/SELFIES

sequences in each cluster was then performed. The distribution of sequence length across

the clusters is depicted in Figure 4.3. The sequence lengths were found to be fairly evenly

distributed across all clusters in the case of Graph2SMILES and Graph2SELFIES transla-

tors while RNN-translator showed a significant demarcation in the sequence length between

clusters. This lead to the conclusion that molecules whose SMILES strings had similar

lengths were placed together in the encoding space of the RNN-translator.
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Figure 4.2: (a) K-means clustering of RNN translator encodings (b) K-means clustering of
Graph2SMILES translator encodings (c) K-means clustering of Graph2SELFIES transla-
tor encodings (d) Mean intra-cluster Tanimoto similarity for RNN-translator encodings (e)
Mean intra-cluster Tanimoto similarity for Graph2SMILES translator encodings (f) Mean
intra-cluster Tanimoto similarity for Graph2SELFIES translator encodings

To further test this hypothesis, the t- Stochastic Neighbor Embedding(t-SNE) [236] plot

of the encodings from all translators were obtained as shown in Figure 4.4. The distribu-

tion of sequence length across the lower dimension manifold correlated well with the hy-

pothesis. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [237]

was performed as an alternative to K-means on the t-SNE manifold to identify density-

based clusters. Analysis of the intra-cluster similarity showcased that structurally similar

molecules were placed close to each other in the encoding space of all translators but se-

quence length distributions of each cluster again showed a clear demarcation in the case

of RNN translator as seen in Appendix C.3. The RNN-translator encodes molecules based

on the length of the SMILES string (Dimension 2 of t-SNE plot), with structurally simi-

lar molecules being placed together in the region corresponding to a sequence length range.

TheGraph2SMILES andGraph2SELFIES translators, on the other hand, encode molecules

only based on molecular structure with similar structures occupying a region of the encoder
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Figure 4.3: (a) Distribution of sequence length in each K means cluster of RNN-translator
encodings, (b) Distribution of sequence length in each K means cluster of Graph2SMILES
translator encodings, (c) Distribution of sequence length in each K means cluster of
Graph2SELFIES translator encodings

space.
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Figure 4.4: (a) DBSCAN clustering of RNN translator t-SNE encodings (b) DBSCAN
clustering of Graph2SMILES translator t-SNE encodings (c) DBSCAN clustering of
Graph2SELFIES translator t-SNE encodings (d) Mean intra-cluster Tanimoto similar-
ity for RNN translator t-SNE encodings (e) Mean intra-cluster Tanimoto similarity for
Graph2SMILES translator t-SNE encodings (f) Mean intra-cluster Tanimoto similarity for
Graph2SELFIES translator t-SNE encodings

4.4.2 Spectrum constrained GAN

The GAN was trained until saturation of the Generator and Critic. Initial training of the

GANwas performed based on the formulation provided in 4.3b with the β value set to zero,

i.e., no penalty was added for the functional group identification. In the inference phase,

ten thousand random vectors sampled from a normal distribution were provided as the input

to the generator along with one sample spectrum to generate hundred molecules for a given

spectrum. To understand the range of molecules generated for a given spectrum condition,

the Tanimoto similarity between the MACCS fingerprints of the generated molecules was

computed. The distribution of similarity with a set of generated molecules is shown in

Figure 4.5. The histogram reveals a good distribution across molecules with an average

similarity of 0.37 (Figure 4.5(a)). Analysis of the similarity between the molecule whose

IR spectrum (termed as ground truth) was provided as input and the generated molecules
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showcased poor match between the molecular structures as seen in Figure 4.5(b). A few

examples of generated molecules with the highest similarity to the ground truth are shown

in Figure 4.5(c). A mean similarity of 0.361 was found across the hundred molecules gen-

erated for each of the 256 spectra.

Figure 4.5: (a) Distribution of Tanimoto similarity between molecules generated for a given
condition, (b) Distribution of Tanimoto similarity between generated and molecule whose
spectrum was given as condition, (c) Few examples of molecules generated along with
ground truth. Tanimoto similarity is given below each generated molecule.

This mismatch in the structural similarity between the ground truth and the generated

molecules prompted the inclusion of the penalty term for a functional group classifier dur-

ing training. The hyperparameter β was maintained at a value of 10 across all epochs. The

histogram of the Tanimoto similarity for the same testing set is shown in Figure 4.6(a). Sim-

ilar to the previous case a hundred molecules were generated for each spectrum condition.

The histogram is skewed more towards the right, indicating a larger fraction of similar look-

ing molecules generated for a given spectral condition with a mean Tanimoto coefficient of

0.965. Though this indicates a lack of variability in the generation scheme, molecules cor-

responding to given IR spectrum tend to be similar in structure thereby explaining the skew

in the distribution. A test of similarity between the ground truth molecule and the gener-

ated molecules also reveals a greater degree of similarity as see in Figure 4.6(b). The mean

Tanimoto coefficient across all testing samples was found to be 0.724. A few examples of

molecules generated for different spectra conditions with the highest degree of similarity to

ground truth along with molecules generated without functional group penalty are show in

83



Figure 4.6(c).

Figure 4.6: (a) Distribution of Tanimoto similarity between molecules generated for a given
condition with functional group penalty, (b) Distribution of Tanimoto similarity between
generated and molecule whose spectrum was given as condition with functional group
penalty, (c) Few examples of molecules generated with functional group penalty, with-
out functional group penalty and the ground truth. Tanimoto similarity is given below each
generated molecule.

4.4.3 Biomass molecular generation

FTIR spectra at different operating conditions were used as inputs to the GAN and 10

molecules per spectrum were generated. Unique molecules generated for each batch oper-

ating condition are depicted in Figure 4.7. Hydroxyl groups are predominantly noted in all

structures, with some generated molecules also indicating amines. The amine groups were

found to be an artifact of larger weights provided to the amine classification by the func-

84



tional group penalizer. As amine groups are not frequently observed as products of HTL of

pine biomass, molecules containing only amine groups were excluded from further study.

At higher temperatures (250◦C), molecular scaffolds similar to those of furan rings were

generated. Furfural is commonly obtained as a product of biomass pyrolysis and is formed

through dehydration of pentose sugars. To investigate the reaction routes undertaken at each

Figure 4.7: Molecules generated at different batch process conditions for HTL of biomass.
Molecules shown in red have been generated without functional group penalty.

operating condition, reaction networks were generated by recursive application of reaction

templates extracted automatically from literature. The reaction templates were applied in

both forward and reverse directions to each generated molecule to construct a local reac-

tion network at that process condition. Molecular structural similarity tests were performed

between other generated molecules and the nodes of the reaction network to identify in-
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tersections between the networks. The networks generated from each unique molecule is

presented in Figure 4.8. The dashed arrows represent a retrosynthetic route obtained by ap-

plication of inverted templates. Ellipses are included to indicate products obtained as result

of multi-step reactions.

The networks generated from each molecule contain molecules whose structures match

with the other generated molecules. The networks generated tend to focus on the dehydra-

tion of alcohol groups along with ring opening mechanisms. No obvious routes depicting

the lignin pyrolysis were identified by the netowrk generation algorithm. In lignin pyroly-

sis, polyaromatic compounds cleave at β O-4 linkages to form phenolic compounds, side

chains oxidise to form acidic and carbonyl compounds [238, 239]. Aromatic scaffolds were

not generated by the generative model, hence the ligninic-phase of the pyrolysis was not

captured. Carbonyl groups were identified as a part of multiple networks. Furfural-like

molecules were generated by the GAN and also were identified as products in multiple

reaction networks capturing the cellulosic reactions of biomass [240, 241].

Figure 4.8: Reaction networks generated from each unique molecule generated at each
process condition. (a) 150 degC and 15 minutes, (b) 150 degC and 25 minutes, (c) 150
degC and 35 minutes,(d) 200 degC and 25 minutes, (e) 250 degC and 15 minutes, (f) 250
degC and 25 minutes, (g) 250 degC and 35 minutes
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4.5 Conclusion

This works presents a spectrum-constrained molecular generation methodology by training

a conditional GAN to predict latent representations of molecules. The latent representations

are obtained as context vectors from a molecular graph to SMILES/SELFIES generation

routine. Employing graph convolutions, the molecular graph is converted to latent repre-

sentation which is initialized as the hidden state for a LSTM-based decoder. The GAN

loss function is modified to incorporate a functional group penalty term which penalizes

generation of molecules with different functional groups than the ones indicated by the

FTIR spectrum provided as a constraint. The methodology is applied on experimental mea-

surements of HTL of biomass to infer reaction networks of the process. The graph-based

translator is able to achieve a performance close to benchmark translators in the literature

and is seen to populate the latent space based on structural similarity rather string length.

The dominant reactions captured by the spectroscopic information have been captured

by the network generation algorithm. Breakdown of the cellulosic structures is well repre-

sented in the reaction networks. The methodology bypasses the need for resolution tech-

niques and Bayesian structure learning algorithms, which are affected by noise, and can

prove to be a substitute for techniques mentioned in Chapters 2 and 3. The method is

affected by lack of scaffold information in the conditioning spectrum and thus generates

networks that representative of the reactions rather than the actual molecules themselves.

Nonetheless, the methodology is able to provide lumped characteristic reaction networks

that describe the progression of the HTL process and can be used as a initial hypothesis

generation mechanism for further detailed studies.
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Chapter 5

Benchmarking chemical neural ordinary
differential equations to obtain reaction
network-constrained kinetic models
from spectroscopic data

5.1 Abstract

Kinetic model identification relies on accurate concentration measurements and physical

constraints to limit solution multiplicity. Not having these measurements and prior knowl-

edge of species and reactions creates considerable challenges that are currently unresolved.

We address these by developing a data-driven framework using realtime spectroscopic data,

comprising: (i) multivariate curve resolution to deconvolve the spectra of the reacting mix-

ture into those of its pseudocomponents and their corresponding concentrations, which

enables species identification without prior information, (ii) Bayesian structure learning

among the pseudocomponent spectra enables hypothesizing reaction pathways, and (iii)

neural ordinary differential equations (ODE) that are physically constrained by the hypoth-

esized reaction network and the laws of mass action and temperature dependence are trained

to learn kinetic models from the temporal concentration projections of the realtime spectra.

The predictive performance of the constrained neural ODEs is limited by the accuracy of

spectral deconvolution in the presence of noise, and has been benchmarked against a con-

strained regression approach by varying signal/noise ratios in synthetic spectroscopic data
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of reacting mixtures. Although the hypothesized reaction network differs from the actual

reaction template, owing to noise, the network-constrained neural ODEs are seen to result

in a 75.2% and 68.15% decrease in the root mean squared error (RMSE) of the concentra-

tion profile predictions as compared to the constrained regression method, when trained on

time projected concentration data of the synthetic spectra generated at a signal to noise ratio

of 35 and 100, respectively

5.2 Introduction

Process intensification by rationalizing the design and optimization of processes involving

the conversion of complex reactive feedstocks, depends on modeling the underlying ki-

netic framework [242]. Developing kinetic models requires mechanistic knowledge of the

reactive species and the pathways detailing their conversion, following which the kinetic

parameters are estimated from experimental data [243]. However, it is daunting to develop

a kinetic framework for complex systems like bitumen/biomass that lack an exhaustive

enumeration of the underlying species, let alone the reaction mechanisms underlying their

conversion. This has prompted the use of reactors with spectroscopic sensors that pro-

vide molecular-level information of the reactive mixtures [244, 245], which is then used as

a basis for developing data-driven models for species identification and the generation of

plausible reaction hypotheses [110], thereby marking the contributions of systems engineer-

ing tools towards modeling reactive chemical processes [90] . Upon species identification,

reaction pathways can be deduced by perceiving chemistry as a series of graph transfor-

mations in the space of all possible reactions [194], wherein a molecular fingerprint at the

reactant node results in candidate fingerprints at the product nodes, a distribution across

which is learned via neural networks to rank the candidates[246]. Statistical models like

multivariate curve resolution have been extended to jointly resolve data frommultiple spec-

troscopic sensors in compliance with Beer’s law, so that the latent factor projections onto the

spectral channels and the temporal mode of data collection are physically interpreted as the
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pseudo-spectra of the reactive species and their corresponding concentrations, respectively

[25, 26]. Domain knowledge is used to identify species from their pseudo-component spec-

tra, while reaction pathways among them are devised by Bayesian structure learning among

the pseudo-component spectra. Once spectroscopic data of reacting systems has been used

to identify species and hypothesize pathways, the next step is to develop a kinetic model.

The kinetic model function described by ODEs, Markov processes and state space rep-

resentations using the law of mass action kinetics, S-system or polynomial models [247] is

characterized by a structure that is derived from the reaction pathways among the species

and a set of parameters (rate constants, stoichiometric coefficients, orders). Estimating the

parameters by fitting the model to experimental concentration data [248] is known as the

inverse problem in chemical kinetics and could lead to multiple solutions resulting from

the same reaction dynamics [66]. Attempts to use sparsity constraints are found not to

be reliable in recovering unique solutions, thereby pushing for the incorporation of addi-

tional knowledge about the system [249]. However, in the absence of prior knowledge

of the network topology, the structure is learned by virtue of kinetic parameter estima-

tion [250] resulting in larger degrees of freedom that challenge a unique solution owing

to the fundamental dogma of chemical kinetics [66]. Additionally, when it comes to the

inverse problem, obtaining measurements of non-equilibrium temporal concentrations of

the species is often challenging [251]. Also, the knowledge of physical laws such as mass

action and Arrhenius temperature dependence encapsulated in a system of coupled ODEs

represented by the kinetic model function are used to structurally constrain neural networks

that are trained as function approximators of the true kinetic model. This is believed to

be superior to cases where the reaction dynamics are modeled as a linear combination of

weighted polynomial basis functions representing individual reactions [252], and its sparse

variant with a curated library of vector-valued ansatz functions called ’reactive sparse iden-

tification of non-linear dynamics (SINDy)’ [253], where the parameters are estimated by

regressing against the temporal concentration data but lack interpretability in the context of
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the true kinetic model, as physical laws are not explicitly accounted for, and are limited in

their function approximation ability as compared to neural networks [254]. We shall now

proceed to review some works where neural networks have been used to model chemical

kinetics.

Solving kinetic models inmulti-dimensional vector fields of reactive flow problems from

direct numerical solution of stiff ODEs, owing to varied reaction time-scales, is seen to be

computationally expensive and scales with the number of species [255]. Instead of us-

ing simplifying assumptions like quasi-steady state, neural networks have been used for

thermokinetic modeling [256] by learning a functional mapping between the true kinetic

model (encompassing all mechanisms and transport limitations) and the time evolution of

species concentration [257]. Although these neural networks maps are computationally ef-

ficient in evaluating kinetic models, they come with a training overhead that requires data

obtained either by solving first principle ODEs if the system is known, or from experimen-

tal data in the absence of prior knowledge of the system. The training data overhead can

be reduced by using hybrid neural networks that are structured with prior knowledge of

physical laws, besides improving the generalizability of the function approximation [258].

A physics-informed neural network used to model chemical kinetics [259, 260], by map-

ping a discrete space of time points to species concentrations, encodes physical laws in

its training by minimizing the residual loss between the species conversion rates obtained

by automatic differentiation of the predicted concentrations, and the underlying physical

ODEs. There is evidence of using experimental data from gas chromatography and heat

flux calorimetry to train neural networks to fit kinetic models for complex reactions like

esterification and heterogeneous liquid-liquid mononitration [261], and also from reaction

colorimeter data for a heterogeneous oxidation process [262]. These outputs of neural net-

work models that learn a mapping between the input species concentrations and the rates

of the chemical state space modeled by the ODEs, when time integrated, are seen to di-

verge from the true species concentration profiles, thereby shifting focus to neural ODEs
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that integrate the outputs while training, leading to parameter gradients being backpropa-

gated across the ODE solver, while minimizing the difference between the neural network

predictions and the true ODE solution [263]. Neural ODEs have also shown promise in

learning model dynamics from temporal data obtained from stiff ODEs that are prevalent in

kinetic models of chemical and biological systems [264], and differ from physics-informed

neural networks in that they can model irregular and incompletely sampled time series data.

Neural ODEs where physical laws are enforced as structural constraints have been used

to autonomously infer reaction pathways from time series concentration data, by virtue of

kinetic parameter estimation, but rely on grid search to optimize the number of reactions

as hyperparameters [265]. There is evidence of using spectroscopic data to propose kinetic

models by way of the Deep kinetic spectroscopy network (DeepSKAN) that uses convolu-

tion neural networks to obtain time resolved features from the spectra in the affine space of

the data collection axes, namely, probe delay and wavenumbers [266]. The latent space of

probe delay reveals velocity constants of themechanisms underlying the photoinduced elec-

tronic excitation process, and is used to develop kinetic models, but lacks prior knowledge

of the potential reaction pathways.

Research initiatives in reaction monitoring of chemical systems is lacking in a data-

driven framework to estimate reaction network-constrained kinetics when prior knowledge

of the underlying species and reactions is unknown [141]. Even in reacting systems where

the species and reactions are identified a priori, the time scales of reactions make it difficult

for a measurement probe to obtain temporal concentrations of each reacting species, to later

fit a kinetic model. There is a significant knowledge gap due to the absence of an end to end

framework for identifying species, hypothesizing their reaction pathways, and developing

kinetics using readily available measurement data of the reacting mixture via molecular-

level spectral probes, even when directly measuring concentrations is challenging. The

present work seeks to bridge this gap by addressing the following objectives in this chapter:

1. Species are identified by way of their pseudocomponent spectra and corresponding
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concentrations that are obtained by deconvolving realtime Fourier transform infrared

(FTIR) spectra usingmultivariate curve resolution algorithms, followingwhichBayesian

structure learning among the pseudocomponent spectra is used to hypothesize reac-

tion pathways [25, 26].

2. Kinetic models are developed using the temporal concentrations of the pseudocom-

ponents obtained from spectral deconvolution by training chemical reaction neural

ODEs that are rightly called so because they are physically constrained by the reac-

tion network inferred from the structure of the Bayesian network, the laws of mass

action and temperature dependence.

The performance of the neural ODEs in modeling the kinetics is benchmarked against :(i)

a baseline model, by way of a simple feed forward neural network that is not physically

constrained, and (ii) a physically constrained regression model solved via the alternating

least squares (ALS) routine. The neural ODEs are assessed against their benchmarks for

their ability to predict concentration profiles when trained on time resolved projections of

noisy spectroscopic data, and when constrained by a hypothesized reaction network, whose

structure could differ from the true reaction template.

The synthetic data generation procedure using a reaction template from database, is out-

lined in Section 5.3.1. The details for constrained kinetic parameter estimation are described

in Section 5.3, comprising Section 5.3.2 and Section 5.3.3, that present methods used to ap-

proximate the kinetic model functions via the chemical reaction neural ODEs, and the con-

strained regression approach, respectively. Section 5.4 presents the results of recovering

pathway hypotheses, and kinetics from the spectroscopic data. A comparison of the predic-

tion results from both the methods, has been presented in the context of being constrained

by the reaction network hypotheses deciphered from latent features of noisy spectroscopic

data. Finally, Section 5.5 summarizes the findings of this chapter, and highlights its contri-

bution to advancing data-driven online monitoring of chemical process systems.
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5.3 Methods

The present work motivates a methodological framework that uses realtime spectroscopic

data to decipher categories of underlying species, the plausible reaction pathways among

them, followed by developing pseudokinetic models constrained by the hypothesized reac-

tion network structure, as a way to advance the online monitoring of chemical feedstocks in

the absence of prior knowledge of its underlying species, reactions or kinetics. The frame-

work has been demonstrated on temporally generated synthetic spectra by convolving the

pure component spectra of species from a known reaction template with a power law ki-

netic model, to generate spectra for the reacting mixture, comprising absorbances recorded

across time and the spectral channels (wavenumbers). Multivariate curve resolution is used

to obtain latent projections of the absorbances across the time and wavenumber axes, as de-

scribed in our previous works [25, 26, 110]. The number of components in the latent space

is determined using the mathematical notion of ’rank’ that indicates the number of latent

components that sufficiently capture the variance of the data in the original space. Since the

latent factorization constrains the projections to be non-negative, the latent components can

be interpreted as a chemical species, and their projections onto the axes of time and spectral

channels gain interpretability as the concentrations and pseudo-component spectra, respec-

tively. Bayesian network learning is then used to identify possible reactions (which are

causal relationships) between the pseudo-components. The pseudo-component spectra are

represented as random variables at the nodes, and are modeled using probability distribu-

tions to learn a directed acyclic graphical structure among the nodes via heuristic score-

search methods in order to maximize the Bayesian Information Criteria (BIC) [25, 26].

Multiple score-search methods (Hill climbing, Tabu search and maximum-minimum hill

climbing) are used to ensure that the most probable causal relationships are identified in the

directed acyclic graph that encodes the proposed reaction network. The adjacency matrix

deduced from the structure of the Bayesian networks inferred from the pseudo-component

spectra is used to constrain the development of kinetic models using their corresponding
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concentration profiles. The adjacency matrix of a finite graph indicates the connectivity of

the graph(i.e., whether pairs of vertices are adjacent or not in the graph), and in our case,

identifies the reactions between various pseudo-components. A detailed description of the

synthetic data generation process is outlined in Section 5.3.1.

5.3.1 Description of datasets

We seek to demonstrate our framework of deducing kinetics from spectroscopic deconvo-

lution and causal inference, by choosing a model system from a database where the pure

component spectra and the pathways among them are known a priori. Knowledge of the

ground truth enables us to verify the predictions from our framework, which would other-

wise be a non-trivial task for complex systems like biomass where the ground truth con-

cerning species enumeration, their reactions pathways and kinetics may not yet have been

ascertained exhaustively. Hence, in this work, synthetic spectroscopic data is generated

from the pure component FTIR profiles of species following a reaction template that has

been obtained from the National Institute of Standards and Technology (NIST) database

[267]. For a given system with NS species and NR reaction pathways from the database,

the kinetic model constrained by the reaction network adjacency and following the law of

mass action can be described by the following system of ODEs for concentration of the nth

species (Cn), where n ∈ {1, 2, · · ·NS} and m ∈ {1, 2, · · ·NR} indicate a specific species

and reaction, respectively.

dCn

dt
=

NR∑
m=1

1(Adjmn = 1)Km

NS∏
n=1

COn
n −

NR∑
m=1

1(Adjmn = −1)Km

NS∏
n=1

COn
n (5.1)

The ODEs in Equation 5.1 are parametrized by the kinetic parameters viz. the order of the

nth species (On), and the rate constant of the mth reaction pathway (Km) that are modeled

to account for their temperature dependence in accordance with the Arrhenius law:

Km = Km0e
−Ea
RT (5.2)
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The ODEs are also constrained by the adjacency matrix (Adj ∈ ReNR×NS ) using an indi-

cator function (1) as given in Equation 5.1, where NR and NS refer to the total number of

reaction pathways and total number of species, respectively. The adjacency matrix derives

its structure from the reaction pathway network, where each row corresponds to a certain

mth reaction, and comprises entries -1 or 1 for each of theNS species, indicating its partici-

pation in the said reaction, either as a reactant or product, respectively. A zero entry is used

for species that are non-participating in the reaction.

The reaction template that has been chosen for this study is shown in Figure 5.1a, and

is seen to have a total of NS = 4 species that are undergoing NR = 2 reactions, with rate

constantsK1 and K2 as shown below

A+B
K1−→ C

A+ C
K2−→ D (5.3)

For the above reaction template, the ODEs in Equation 5.1 are solved over a time interval

t ∈ [0, 100min] using a random choice of kinetic parameters and a multi-level pseudo-

random temperature signal in the interval T ∈ [200◦C, 400◦C] is used to perturb the system

dynamics via the rate constants, as modeled in Equation 5.2. The pure component spectra

of the species are then weighted by the concentration profiles from the ODE solutions, fol-

lowed by the addition of white Gaussian noise that mimics the effects of random processes

while generating synthetic spectra over the time interval t [268]. Illustrative samples of the

synthetic spectra at a select few points in the time interval are shown in Figure 5.1b.
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(a) Reaction network template from
database, with annotations for the pure
species at the nodes and directed edges
indicating reactive transformation to product
nodes (b) Synthetic FTIR spectra

Figure 5.1: Synthetic FTIR spectroscopic data generated from the reaction network tem-
plate for cyclohexane esterification with formic acid.

The general form of a kinetic model for the time evolution of n species is given by a

function parametrized by the kinetic parameters (θ), for a concentration vector C(t) =

[C1(t), C2(t), · · ·Cn(t)]
T

dC

dt
= fθ(t, T, C1(t), C2(t), · · · , Cn(t)) (5.4)

In this chapter, the kinetic model functions of Equation 5.4 are approximated using the

reaction network constrained power law model of Equation 5.1 that is solved via two meth-

ods that involve training: (i) chemical neural ODEs, and (ii) constrained regression models

for constrained kinetic parameter estimation, the underpinnings of which are described in

Section 5.3.2 and Section 5.3.3, going forward.

5.3.2 Chemical reaction neural ODEs

Let us consider the following reaction involving 4 species, typically represented as a chem-

ical reaction (Equation 5.5), with reactants on the left and products on the right, prefixed

by their respective stoichiometric coefficients [269]:

νAA+ νBB
k−→ νCC + νDD (5.5)

The rate r, of this reaction can be represented in terms of the time rate of change of con-

centrations of the species (ĊA, ĊB, ĊC , ĊD)and their respective stoichiometric coefficients
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(νA, νB, νC , νD) that indicate the number of moles of each of the species that participates in

the reaction, as indicated from the balanced chemical equation of the reaction [270].

r =
−1

νA

dCA

dt
=

−1

νB

dCB

dt
=

1

νC

dCC

dt
=

1

νD

dCD

dt
(5.6)

The kinetic rate expression based on the law of mass action [271] is as follows

r = kCa
AC

b
B (5.7)

In Equation 5.7, k is the rate constant, while a,b are the reactant orders that indicate the

degree to which the rate depends on the concentration of a specific reactant. The orders

are neither related nor identical to the stoichiometric coefficients, with the exception of ele-

mentary reactions. Since it is difficult to determine beforehand, whether or not a reaction is

elementary, we would like to proceed by assuming that the orders and stoichiometric coef-

ficients are not the same. Incorporating the temperature dependence of the rate constant as

outlined in Equation 5.2, the rate expression in Equation 5.7 can be expressed as an expo-

nential of the linear combination of the logarithm of the species concentrations, weighted

by their orders, and that of the negative reciprocal of the temperature, weighted by the ratio

of the activation energy and the universal gas constant (Ea/R) to which the logarithm of

the pre-exponential rate constant (k0) is added as a bias term.

r = exp
[
ln k0 −

Ea

RT
+ a lnCA + b lnCB

]
(5.8)

Building on this principle, the time rate of change of concentrations for species that

partake in multiple reactions indicated by the reaction template of Equation 5.3 that has

been used in this work, are given as follows:
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dCA

dt
= −ν

(1)
A r1 − ν

(2)
A r2

dCB

dt
= −ν

(1)
B r1

dCC

dt
= ν

(1)
C r1 − ν

(2)
C r2

dCD

dt
= ν

(2)
D r2 (5.9)

In Equation 5.9, ν(R)
S is the stoichiometric coefficient of the species S ∈ {A,B,C,D}

participating in a reaction R ∈ {1, 2}, the rates rR of which are as follows:

r1 = exp

[
ln k(1)

0 − E
(1)
a

RT
+ a(1) lnCA + b(1) lnCB

]

r2 = exp

[
ln k(2)

0 − E
(2)
a

RT
+ a(2) lnCA + c(2) lnCC

]
(5.10)

The activation energies and the pre-exponential rate constants of the reactions, are given

byE(R)
a and ln k(R)

0 , respectively, while the order of the species,O ∈ {a, b, c, d}with respect

to the reactions is indicated as O(R), in Equation 5.10.

Representing the rate in this manner enables the weights and biases to be interpreted

as kinetic parameters, and makes the choice of the non-linear activation domain-informed,

when neural networks are used as function approximators to learn the dynamics by mapping

time series concentrations to reaction rates. Inspired from neurobiology, neural networks

combine multiple inputs as their linear weighted sum translated by a bias term, the result of

which is non-linearly transformed by the choice of an activation function to result in hidden

features that are similarly combined to result in outputs that are trained to approximate

any function to arbitrary precision [272]. Neural networks where the computed hidden

features are re-used by similar weighted combination and non-linear activation to produce

a hierarchy of hidden features over subsequent layers are said to be deep, whereas those with

just one layer of hidden features are considered shallow. The number of hidden features in

each layer, referred to as the neurons, and the number of layers themselves comprise the
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hyperparameters (network topology) and guide the precision of the neural network as a

universal function approximator, parametrized by the weights and biases that are learned

by gradient descent optimization (backpropagation, i.e. the gradients of the loss function

computed at the output with respect to the parameters are propagated backwards through

the successive layers) [273]. Deep neural networks comprise more hyperparameters than

shallow neural networks, and thereby suffer from overfitting due to the model complexity

(and the associated extra degrees of freedom); this is sought to be handled by effective

regularization of the parameters, [274] and the reconciliation of domain knowledge into the

network structure [253, 275]. These approaches to limit the overfitting and improve the

generalizability of the neural networks also promote model interpretability and reduce the

requirement of large amounts of training data.

In this work, we demonstrate the use of a shallow neural ODE, a schematic of which has

been indicated in Figure 5.2. The neural network is seen to comprise i) an input layer con-

sisting of the logarithm of the temporal concentration of species obtained from multivariate

curve resolution of the synthetic spectra, and the negative of the reciprocal of time varying

temperature. Let us denote the input data at time t by a vector

Xt = [lnC1(t), lnC2(t), · · · lnCNS
(t),−1/T (t)]T (5.11)

such that Xt ∈ R(NS+1)×1 is the temporal vector fed into the network. ii) a single hidden

layer consisting of as many neurons as the number of reaction pathways. The features in

the hidden layer are denoted by a vector Ht ∈ RNR×1 that consists of the reaction rates

Ht = [r1(t), r2(t), · · · rNR
(t)]T . iii) an output layer with as many nodes as the number of

species, where each node corresponds to the predicted time rate of change of the species

concentration, given by a vector ̂̇Ct ∈ RNS×1. iv) an ODESolve function to integrate the

time rate of the species’ concentration over an interval to result in predictions of their cor-

responding concentration profiles in vector Ĉt ∈ RNS×1 given by
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Ĉt =
[
Ĉ1(t), Ĉ2(t), · · · ĈNS

(t)
]T

(5.12)

The parameters of the network denoted by θ comprise the weights of the first two layers, de-

noted byW (1) ∈ ReNR×(NS+1) andW (2) ∈ ReNS×NR , and the bias associated with the first

layer, denoted by b(1) ∈ ReNR×1. The weights of the two layers are interpreted as the order

and stoichiometric coefficients, respectively, while the bias points to the pre-exponential

rate constants, as can be seen from Equation 5.7 and Equation 5.8. The weights of the net-

work are regularized by the adjacencymatrixAdj ∈ ReNR×NS as illustrated in the following

set of equations in the forward pass of the neural ODE, where 1 is the indicator function,

while 1 is a notation for a vector of ones appended to the adjacency matrix to account for

the temperature term in the input, aside from the logarithm of the species concentrations.

Figure 5.2: Schematic representation of the chemical reaction neural ODE

Ht = exp
[(
W (1) ∗

[
1(Adj = −1)¦1NR×1

])
Xt + b(1)

]
(5.13)̂̇Ct =

(
W (2) ∗ 1(Adj ̸= 0)T

)
Ht (5.14)

Ĉt = Ĉt−1 +
∫ t

t−1
̂̇Ct−1 dt

= ODESolve(Ĉt−1,
̂̇Ct−1, [t− 1, t] , θ) (5.15)

101



The network is trained to not only reconcile the predicted concentration profiles with that

obtained from the deconvolution of synthetic spectra, but also to minimize the difference

between the predicted time rate of change of the species concentration and the numerically

computed values from finite differences of the temporal concentrations from the spectral

curve resolution across all time points, as indicated by the loss function given in Equation

5.16. Additionally, sparsity among the weights is enforced via the adjacency matrix de-

duced from the Bayesian network structure, penalized by the regularization weight α. All

of the weights not used in the forward pass computations, given in Equations 5.13-5.15 as

constrained by the adjacency matrix, are forced towards sparsity.

At this point, it is worthwhile to make a distinction between the following two kinds of

modeling frameworks that arise from coupling the universal function approximation power

of neural networks with differential equation modeling to account for the physics that gov-

erns the dynamics of the system being modeled: (i) neural ODEs use a neural network to

parametrize the continuous dynamics of states (species concentration in this chapter) as a

system of ODEs that are solved at the output by using a standalone differential equation

solver to minimize the solution difference from the (in)directly measured model states (de-

duced via latent projections from experimentally measured spectra in this chapter), so that

the neural network acts as a surrogate of the system dynamics [276], (ii)physics informed

neural networks on the other hand builds neural network surrogates for ODE/PDE solutions,

whereby automatic differentiation is used to compute derivatives of the neural network out-

puts with respect to its inputs and model parameters, the residual difference of which from

the ODE/PDE solutions at fixed collocation points, is minimized during training [277].

L(θ) =
∑
t

(
Ct − Ĉt

)2
+
∑
t

(
Ċt − ̂̇Ct

)2
+ α

(
W (1) ∗

[
1(Adj ̸= −1)¦0NR×1

])
+

W (2) ∗ 1(Adj = 0)T

(5.16)

This work proposes a neural ODE framework to learn a kinetic model from the concen-
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tration projections of species that have been deciphered from constrained latent factorization

of spectroscopic data of the reacting mixture by minimizing the loss function in Equation

5.16 that involves solving the ODE in the forward pass, and the continuous backpropaga-

tion of the gradient that requires solving the augmented ODE backwards in time [276], as it

involves computing the derivatives of the ODE solution with respect to the network param-

eters. This has been implemented using adjoint sensitivity analysis by framing a set of aux-

iliary ODEs, the solution of which is evaluated to provide the aforementioned derivatives,

while training the neural ODE. The PyTorch library, torchdiffeq [276, 278], encapsulates

code for the same, and has been used to train the neural ODE presented in this work. Its

performance has been compared against a baseline model comprising a simple feedforward

neural network (FFN) with the species concentrations and temperature supplied as inputs,

followed by a linear activation for the hidden layer with as many nodes as the number of

reactions, and finally an output layer that predicts the concentration rate change of all the

species ( ̂̇C). The FFN does not account for i) the physical constraints when it comes to ei-

ther the transformations applied to the data that is input, or the activation functions applied

to the hidden layer, and the ii) temporal nature of the data samples. The FFN is trained on

independent samples of species concentrations, and its predictions are temporally integrated

post facto, to obtain concentration predictions Ĉ of the species. The predictive power and

the interpretability of the chemical reaction neural ODE that results from accounting for

the complexities neglected herein by the FFN baseline, has been assessed to strengthen the

merit of the framework.

5.3.3 Constrained regression

Additionally, we present another method to infer the kinetic parameters while honouring the

topology of the reaction network. Under this approach, the parameter inference is formu-

lated as a matrix factorization problem, by representing the rate laws as a linear combination

of concentrations of the reacting species and temperature. Similar to the previous approach,
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a logarithmic transform is applied to the concentration profiles to represent the rate law in

a linear form as presented in Equation 5.8. The factorization of the rate law can be written

as:

ln
(
dCi

dt

)
=

[
lnC1, lnC2, · · · , lnCn,

1

T

] [
n1, n2, · · · , nn,

−Ea

R

]T
+ ln k0 (5.17)

This factorization is a natural product of the linearization of the rate law. The rate of

transformation of an ith species is written as the product of all n species in the reaction

mixture along with the temperature conditions, weighted by their reaction order and the ex-

ponential terms in an Arrhenius type rate law. The natural logarithm of the pre-exponential

factor is represented as an intercept in the concentration space of the n components.The

determination of kinetic parameters based on this factorization amounts to determination

of the second matrix in the decomposition and the intercept that best fits the experimental

rate. This is a classical linear regression and it is straightforward to obtain its solution.

As discussed earlier, this decomposition does not necessarily lead to an unique solution.

It therefore becomes essential to incorporate any a priori information available to ensure

an interpretable decomposition. The network topology derived from causal inference of

the component profiles provides additional constraints that can restrict the solution space.

The adjacency matrix of the reaction network can be used to incorporate this relational

information. Thus, computing the decomposition was set as an optimization problem aimed

at minimizing the error of reconstruction of the rates with additional penalty terms added to

incorporate the adjacency information. The objective function for one component is given

by

min
θ1,θ2

||r − exp(Xθ1 +
1

T
θ2 + ln(k0)||22 + λ1h(Crecon, C) + λ2g(Adj, θ1)

S.T. lb ≤ θ1, θ2 ≤ ub

(5.18)

X ∈ Rm×n represents a matrix consisting of the logarithm of the concentrations of each

species along its columns for m time points. θ1 ∈ Rn×1 represents the vector of orders
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associated with the reaction. θ2 represents the −Ea

R
parameter. The rate r of each species

is obtained through numerical differentiation of the concentration of each species. f and

g correspond to the penalty terms included to incorporate the error in reconstruction of the

concentration and the adjacency matrix(Adj), respectively, which are weighted by λ1 and

λ2.

Function g compares the values of θ1 with the row of the adjacency matrix correspond-

ing to the species under consideration, thus steering the decomposition towards a structure

that conforms to the network architecture. Function h computes the norm of the difference

between the concentrations reconstructed by solving the rate law ODEs based on the cal-

culated parameters and the actual concentration of the species. The ODEs in this case were

solved using the odeint function in the SciPy package of Python. The factorizations are

obtained for each component using an Alternating Least Squares (ALS)- type approach. In

the ALS approach a multi- objective optimization problem is solved by individually solv-

ing each objective function in turn and updating the inital guess for each problem based on

the solution of the preceding problems. The algorithm begins at the root node of the graph

and computes the kinetic parameters associated with it. It then moves in a breadth-first

approach, calculating the parameters for all species at the same level in the graph before

moving to the subsequent level. Parent nodes of a node N in a graph are all the nodes in the

immediate higher level that connected directly to N. Similarly, children of a node N are all

the nodes in the immediate lower level that are directly connected to N. It can be seen that

for nodes in intermediate levels in the reaction graph, the rate law is of the form,

ri = f(concentration of parent of ith species)− ki ∗ Cni
i

∏
j

C
nj

j (5.19)

where j corresponds to the other participants in the reactions in which the ith species

participates. f(Cparents) represents the rate of formation of the ith species dependent only

on the parents of the species. Since this form of the rate law is not linearly separable in

its logarithmic form, the logarithmic transform is applied to ri − f(Cparents), therefore
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estimating the parameters for the reaction in which i is the reactant. Hence, the optimization

problem is transformed into:

min
θ1,θ2

||y − exp(Xθ1 +
1

T
θ2 + ln(k0)||22 + λ1h(Crecon, C) + λ2g(Adj, θ1)

S.T. lb ≤ θ1, θ2 ≤ ub

(5.20)

where y = ri − f(Cparents). This protocol allows for lower transmission of error in

the optimization routine as the parameters in f(Cparents) have already been computed in

previous steps of the ALS routine. When a species is the substrate in multiple reactions, a

similar approach is followed where the parameters for each of those reaction is computed

iteratively by moving the other terms in the rate law to the LHS. The workflow of the

algorithm is depicted in Figure 5.3. From the flowchart choice of objective function to

minimize is based on whether it is strictly one of the root nodes,i.e., has no parents or an

intermediate node.
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Figure 5.3: Workflow of parameter estimation using the ALS approach.

As a baseline test for the regression method, a SINDy regression is performed using the

PySINDy [279, 280] package on Python. This technique evaluates the rate of change of a
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species as a minimal linear combination of the various function types present in the fea-

ture library. This allows for one to uncover a functional form for the ODE that describes

the transformation of the species without any prior knowledge on the reaction scheme. As

reaction kinetics are generally polynomial ODEs, the feature library was set to be all poly-

nomial functions up to an order of 4 ,i.e., the function library consists of terms such as

CA,CACB,C2
ACB,CCCA,CBC

2
D,etc along with a exponential functions to incorporate the

temperature dependency terms. The sparsity hyper-parameter to limit model complexity

was set between 0.01 and 0.005 to ensure that all ODEs have at least one functional form

associated with them.

5.4 Results and Discussion

A known reaction template from literature, for cyclohexanol production via the esterifica-

tion of cyclohexene with formic acid and the subsequent hydration of formic acid cyclo-

hexyl ester to form cyclohexanol, is considered [281]. Temporal concentration profiles are

obtained by solving the system of ODEs for the reaction template, as outlined in Section

5.3.1. A multi-level pseudorandom temperature signal as shown in Figure 5.4a was used to

perturb the the kinetic model of Equation 5.1. In this study, temporally generated synthetic

spectra for the reacting mixture is posed to be a signal of the pure component spectra of the

species (Figure 5.4b) combined in proportion to the species concentrations over time, and

is representative of spectra recorded for a reacting system in realtime, based on Beer’s law.

The ability to perfectly deconvolve the mixture spectra into those of its pure components

through curve resolution techniques (Section 5.3), is limited by the noise in the mixture

spectra. At the outset, neural ODE predictions and that from the constrained regression are

tested on the temporal concentration data of the species obtained from perfect deconvolution

of the mixture spectra, which in the noise-free case corresponds to the data obtained from

solving the ODEs of Section 5.3.1. The kinetic mechanism is seen to comprise 4 species

undergoing 2 reactions, as indicated by Equation 5.3. Random initial concentration values
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were used for the reacting species (A and B) to obtain concentration profiles using Equation

5.1 that are supplied to the chemical neural ODE constrained by the following adjacency

matrix deduced from the template structure:

Adj =

−1 −1 1 0

−1 0 −1 1


The concentration predictions from both the methods are compared against the profiles of

the temporal concentrations recovered from solving the ODEs, as shown in Figure 5.4c. The

root mean squared error (RMSE) between the data and predicted concentrations is used a

metric for comparison, and is calculated as follows:

RMSE =

√∑T
t=1(Ct − Ĉt)2

T
(5.21)

It can clearly be seen that constraints on the neural networks’ structure and parameters pre-

vent it from overfitting the data, while the regression method is able to more closely predict

the concentration profiles, registering a 52.17% decrease in the RMSE over the chemical

neural ODE (Table 5.1). Hence, in the future when the model is trained on synthetically

generated noisy data, the chemical reaction neural ODE is expected to run a low risk of fit-

ting the noise. Both the models are shown to perform better than their respective baselines

as shown in Figure D.4a of Appendix D.3. The chemical neural ODE and the constrained

regression ALS routine are seen to register an 84.11% and 94.23% decrease in the RMSE,

respectively (Table D.1).
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(a) (b)

(c)

Figure 5.4: (a) Multi-level pseudo random temperature signal, (b) Pure component spectra
from the database, (c) Predictions of the chemical reaction neural ODE and the constrained
regression model compared against the temporal concentration data obtained by solving a
known ODE system for kinetics.

On the above lines, we proceed to test the model performance in the presence of noise.

Two cases, one with Gaussian white noise at a signal to noise ratio (SNR) of 35, and another

at a SNR of 100 have been used for synthetic data generation. The impact of the noise

threshold in data on the spectral curve resolution, the subsequent identification of species

and inference of reaction pathways among the pseudo-component spectra, and thereafter the

pathway constrained kinetic model identification using temporal projections of the resolved

spectra, is investigated.

In the first case, white Gaussian noise at a signal to noise ratio of 35 is added to the syn-

thetically generated data as described in Section 5.3.1, before it undergoes spectral curve

resolution. The curve resolution with a rank of 4 is seen not to perfectly recover the pure

component spectra, as shown in the noise contaminated deconvolution results of Figure D.1
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of the D.1. The time resolved species concentrations in Figure D.1a are used to train ki-

netic models that are constrained by the hypothesized reaction network among the species,

presented in Figure D.1b, and has been inferred by Bayesian structure learning among the

pseudocomponent spectra in Figure D.1c obtained by deconvolving the reacting mixture

spectra. The similarity of the recovered pseudo-component spectra (Figure D.1c) with the

pure component spectra (Figure 5.4b) helps in identifying the species from the database tem-

plate that the pseudo-components map to. It can be seen that arriving at perfectly resolved

pseudo-component spectra is challenging in the presence of noise. Confounding patterns

are observed in the resolved peaks of pseudo-component 4 (PC4) and pseudo-component 2

(PC2) that correspond to compounds B and C from the database (Figure 5.1a), respectively.

Consequently, the causally inferred reaction network among the pseudo-components spec-

tra (Figure D.1b), when compared with the reaction template structure (Figure 5.1a), points

to the presence of an additional conversion pathway (A → B). This could largely be at-

tributed to the fact that a directed edge, PC3 (compound A)→ PC2 (compound C) in Figure

D.1b with the highest arc strength points to the conversion of compound A to compound

C. The directed arc strength between two nodes in a Bayesian network is the mutual in-

formation between the nodes conditioned on the joint distribution of all the other parent

nodes [25]. In the event that peaks in PC2, corresponding to compound C are confounded

with PC4, which corresponds to compound B, there exists a fair chance of observing an

additional directed arc from PC3 (compound A) to PC4 (compound B). The structure of the

adjacency matrix in this case assumes the following form:

Adj =


−1 −1 1 0

−1 0 −1 1

−1 1 0 0


The predictions of the chemical neural ODE with the above adjacency constraints are com-

pared against the reconstructed data from integration of the smoothed time derivative of the

noisy concentration profiles from spectral deconvolution as given in Figure D.2. The neural
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predictions are seen to capture trends in the noisy concentration profiles, without fitting the

noise, except for the profiles of PC2. Thereby, despite improper spectral deconvolution, it

has been demonstrated that fairly reliable kinetic models for most of the identified species

can be recovered, starting from noisy spectroscopic data.

However, the matrix factorization technique fails to recover meaningful parameters in

this case as seen in Figure D.2. It can be seen that the concentration profiles from the

spectral deconvolution in Figure D.1a is not congruent with the profiles expected from the

Bayesian network in Figure D.1b. The network indicates that PC3 is only a substrate in

the reaction scheme and is never generated, which implies that its concentration keeps de-

creasing through the course of time. However, the concentration profile for PC3 shows an

increase and a decrease. This mismatch between the reaction network and the concentration

profiles is not handled well by the constrained regression method. The ALS routine in tan-

dem with the penalty parameters imposes a stricter constraint on the optimization to follow

the adjacency matrix and hence fails to recover the kinetic parameters or even the trends

for PC3 and PC4, owing to which the neural ODE method is found to reduce the RMSE

by 75.2% as compared to the ALS regression (Table 5.1). Although the neural ODE out

performs its baseline, the ALS routine is seen to fall short of its baseline SINDy model that

better captures the noisy oscillations in the concentrations due to the inclusion of sinusoidal

terms in the basis function library, which are not physically relevant to the present reaction

scheme. The results are included in Figure D.4b and Figure D.1 of D.3.

In the second case, white Gaussian noise at a signal to noise ratio of 100 is added dur-

ing the synthetic data generation process. At relatively lower noise levels, the spectral

curve resolution is seen to result in cleaner temporal concentration profiles (Figure 5.5a)

and pseudo-component spectra (Figure 5.5b) where there are fewer confounding peaks in

the deconvolved spectral profiles that are found to be increasingly comparable with the pure

component spectra from the database (Figure 5.4b). The pseudo-components are mapped

to the pure components based on the similarity between their spectra, followed by inferring
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reaction pathways among them by causal structure learning as shown in Figure 5.5c. The

skeleton of the inferred network structure is exactly the same as the reaction template (Fig-

ure 5.1a), except for the reversal of the arc between the nodes of compoundA and compound

C. This is largely owing to the fact that greedy heuristic score search algorithms for causal

structure inference by maximizing the Bayesian Information Criteria (BIC) are faced with

a large number of locally optimal network structures [282]. In Bayesian structure learning,

the BIC is the log likelihood, computed as a difference between the mutual information and

entropy for a given graph structure among the nodes, penalized by the number of directed

edges constructed [25]. The solution multiplicity in the space of plausible graph structures

is verified by computing the arc strengths and the BIC score shown in Figure 5.5d, given the

directed edges among the compounds nodes from the reaction template network structure

of Figure 5.1a. The arc strengths and the BIC score, given the network structure from the

template in Figure 5.5d, are found to be comparable to those when the unknown network

structure is inferred by heuristic score-search algorithms as shown in Figure 5.5c. Hence,

the reversal of the arc between nodes A and C, in comparison with the original template,

can be rationalized as occurring due to multiple local optima in the search space of feasible

network structures during causal inference.
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(a) Temporal concentrations (b) Pseudo-component spectra

(c) Reaction network structure,arc
strengths and score inferred from the
pseudo-component spectra

(d) Reaction network arc
strengths and score inferred
from the reaction template

Figure 5.5: Spectral deconvolution and causal inference using noisy synthetic data at a
signal to noise ratio of 100.

The issue of local optima in structure learning can be circumvented by preferentially

weighting and even eliminating certain wavenumber absorption bands in the deconvolved

pseudo-component spectra, as shown in Figure D.3 of the D.2. Four absorption band re-

gions, viz. 786- 1310 cm−1, 1570-1898 cm−1, 2686- 3122 cm−1 and 3530-3806 cm−1 that

are predominantly seen to exhibit convoluted peaks, as seen in Figure 5.5b, are chosen. The

absorbances in these wavenumber bands are then preferentially weighted using a Gaussian

filter that is centered in each of the bands, with a standard deviation of 200, with weights

for the bands in the regions 1570-1898 cm−1 and 3530-3806 cm−1 being scaled by a fac-
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tor of 10 times as compared to the two other bands, in order to obtain a clear distinction

between the spectral profiles of formic acid and its derivatives (compounds B and C), and

those of cyclohexene and its derivatives (compounds A and D), as seen in Figure D.3a.

It can be seen that the arc strengths, score and network structure learned from the prefer-

entially weighted pseudo-component spectra, as shown in Figure D.3b concur with those,

given the reaction template structure, outlined in Figure D.3c. Hence, it can be seen that

the use of prior knowledge to preferentially weight certain absorption bands in the pseudo-

component spectra facilitates distinction of the identified species to overcome the limitation

of confounded peaks in the deconvolution. However, since the discussion in this chapter

focuses on limiting the use of prior knowledge-based heuristics in the end-to-end modeling

framework, proceeding further on these lines is out of the scope of the current work.

Therefore, the adjacency matrix, following from the causally inferred network structure

(Figure 5.5c), in the absence of any prior knowledge-based preferential weighting heuristics

of the pseudo-component spectra, is used to constrain the kinetic model identification as

follows:

Adj =


0 −1 1 0

1 0 −1 0

−1 0 −1 1


The predictions from the chemical neural ODE used to fit a kinetic model are compared

against the reconstructed data from integration of the smoothed time derivative of the tem-

poral concentration projections from spectral resolution (Figure 5.5a), as shown in Figure

5.6. It can be seen that the neural kinetic model predictions very closely capture the trends

in the resolved concentration profiles for all of the identified species, at a much lower noise

threshold (as compared to the case where a SNR of 35 was used), despite being constrained

by a network structure that differs slightly from the original reaction template.
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Table 5.1: Comparison of chemical neural ODEs to the constrained regression framework.

Root mean squared error (RMSE)

Type of data Neural ODE Constr. regression % Improvement over constr. regression

Without noise 0.0276 0.0132 -52.17%

SNR= 35 0.0278 0.1121 75.20%

SNR= 100 0.01 0.0314 68.15%

Figure 5.6: Comparison of the predictions from the chemical neural ODE and constrained
regression against the reconstructed data from integration of the smoothed time derivative
of temporal concentration obtained by the deconvolution of synthetic spectroscopic data, at
a signal to noise ratio of 100.

Since the higher SNR results in a network structure that conforms better to the reaction

profiles, the constrained regression approach is able to capture the trends in concentration

profile as seen in Figure 5.6. The most deviation in prediction is seen for PC1 and PC4. PC1

is the point of mismatch between the actual and reconstructed reaction networks as shown in

Figure 5.5c. Thus, a larger difference is noticed in the case of PC1. The mismatch in PC1 is

compensated in PC4, which is a direct descendent of PC1. Even in such a case, the method

still recovers the general trend in the profile. The variations of the predictions between

the constrained regression and the neural ODE, can therefore be attributed to the lack of

robustness of the former in reconciling the resolved temporal concentration profiles with

the reaction network structure inferred from noisy spectra of the reacting mixture, which is

bound to deviate from the actual structure of the ground truth reaction template.

The neural ODE is seen to achieve a 68.15% decrease in the RMSE as compared to
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the constrained regression method (Table 5.1), when it comes to quantifying the prediction

performances in Figure 5.6. Both themodels are seen to outperform their baselines as shown

in Figure D.4c and Figure D.1 of D.3, but it is interesting to note that in the absence of noise

and low noise (synthetic data with a SNR of 100), the RMSE decrease by the neural ODE

is > 80% as compared to its baseline concentration predictions. However, in the presence

of higher noise (synthetic data with SNR of 35), the neural ODE outperforms its baseline

only by∼ 35%, alluding to its ability to not fit noise owing to the incorporation of physical

constraints.

An important point to note is that the results provided do not depend significantly on

hyperparameter tuning, which means that the algorithm is robust. In general, the number

of neurons per layer and the number of layers in a neural ODE constitute its hyperparam-

eters, while the values assumed by the weights and biases of such a network constitute its

parameters. The loss regularizer weights are not parameters of the neural ODE, but are

used to tune the target for the neural ODEs to predict. The hyperparameters of the neural

ODE are guided by physics, in terms of the number of neurons being equal to the number

of species in the input and output layers, while the number of neurons in the single hidden

layer correspond to the number of reaction paths, meaning that they do not need to be tuned.

The initial values of the weights and biases come from Xavier initialization, and during the

process of training, the layer weights are regulated by the reaction adjacency matrix. The

choice of λ1 and λ2, i.e., the loss regularizer weights, are fixed a priori, and are not treated as

parameters of the neural ODE. Therefore, the exercise of parameter selection distils down

to trying out different initialization schemes other than Xavier to train the neural ODEs,

and comparing the results of the same to choose an optimal parameter combination. Even

then, it is not so much a parameter combination exercise, as it is an exercise in trying to

check whether the solution converges to the same predictions independent of the choice of

parameter initializations, which has been done.
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5.5 Conclusions

Wehave presented a chemically constrained neural ODE and constrained regressionmethod

to fit kinetic models to temporal concentration data. Latent factorization of spectroscopic

data that results in projections onto the temporal mode of data collection and the spectral

channels, gain interpretability as time varying concentrations and the associated pseudo-

component spectra of the underlying species, respectively. This overcomes the difficulty

in directly measuring species concentrations, more so in cases when the underlying species

lack enumeration. The adjacency matrix deduced from the Bayesian networks learned by

causal structure inference among the pseudo-component spectra is used to constrain the

weights of the neural ODE and also regularize the regression method. Both the methods

have been structured to incorporate the law of mass action and the Arrhenius law of temper-

ature dependence, to achieve a two-fold purpose: (i) facilitate interpretability of the models

that learns the system kinetics, (ii) limit the tendency of the models to fit process noise that

is ubiquitous when it comes to spectroscopic measurements. However, the accuracy of the

causally inferred Bayesian network structure is seen to be limited at the level of uncertainty

not only by way of the confounding peaks in two or more pseudo-component spectra, owing

to improper constrained latent deconvolution in the presence of noise beyond a particular

threshold, but also by way of multiple local optima faced by the heuristic structure learning

score-search algorithms. The constrained regression method seems to be heavily dependent

on the veracity of the computed network architecture. The method is challenged to recover

useful kinetic information from the data, when presented with a highly incongruous ad-

jacency matrix and concentration profiles, resulting from noisy reacting mixture spectra.

Nevertheless, the method is successful in recovering concentration profiles in the case of

minor mismatch between the trends in the species concentration profiles and the reaction

network by way of the adjacency matrix. Despite the above limitations, when chemical

reaction neural ODEs are used for kinetic modeling, the framework presented in this work

is shown to have the potential to reliably develop an end-to-end modeling framework for
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species, reaction pathway and kinetic model identification of reactive systems without re-

liance on prior knowledge, purely by using spectroscopic data, even in the presence of noise.

The predictions of the neural ODE are seen to achieve a 75.2% and 68.15% decrease in the

RMSE as compared to the constrained ALS regression, when the reacting mixture spectra is

contaminated with noise at SNR thresholds of 35 and 100, respectively. Also, when bench-

marked against the feedforward neural network as its baseline, the neural ODE is seen to

outperform by > 80% and ∼ 35% for cases of low/no noise, and high noise, respectively.

This indicates its ability to refrain from fitting noise and can be attributed to the incorpora-

tion of physical constraints by way of the hypothesized reaction network structure, and the

laws of mass action and temperature dependence.

The framework demonstrated in this chapter has the potential to advance the online

monitoring of reacting mixtures when prior knowledge of the underlying species, reac-

tion pathways and kinetics is lacking. The use of realtime spectroscopic measurements

that hold molecular-level insights of an obscure reacting system, supplemented by physical

constraints for spectral deconvolution, reaction pathway inference and kinetic modeling,

has been shown to provide a strong basis for data-driven species identification, generation

of reaction hypotheses and pseudokinetics, respectively. Future work seeks to extend this

framework to complex hydrocarbon systems such as biomass.
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Chapter 6

Conclusions & Future Work

Automated reaction network discovery has been a topic of interest in many fields such as

pharmaceuticals, oil and gas and waste recovery and the networks have been built based on

prior knowledge of the process and its components in most cases. Automatically identify-

ing models for reaction systems that reconcile with spectroscopic sensor measurements is a

formidable task riddled with challenges arising at algorithmic and instrumental levels. With

heavy reliance on human domain expertise, reaction networks developed based on model

compounds tend to be suited for a specific purpose and cannot be easily modified without

human intervention. Machine learning-based approaches, on the other hand, enable ex-

traction of non-linear features from process data thereby providing significant insight from

spectroscopic measurements but come at the cost of being non-interpretable. Furthermore,

partial information provided by spectroscopic measurements cannot be directly adapted to

methods available in literature. The aim of thesis was to explore the automation of chemical

reaction network discovery and the effects of incorporating network constraints in to kinetic

modeling of complex reaction systems directly from spectroscopic sensor measurements.

6.1 Summary

Chapter 2 aims to explore the use of spectroscopic sensor measurements of a complex trans-

formation process such as HTL of biomass to build a reaction network with heavy reliance

on human expertise in inferring information from spectra and mapping network topology to
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real-life chemistry. Self-Modeling Multivariate Curve Resolution was used to obtain FTIR

spectra of pseudo-components. The structure of the reaction network was learnt through

Bayesian structure learning algorithms applied to the deconvolved spectra. Expert knowl-

edge was applied to infer functional groups from spectral peaks and map network structure

to real-life chemistry. In Chapter 3, higher-order constrained tensorial factorization was

employed to jointly deconvolute FTIR and 1H-NMR data. Latent factorization projected

along wavenumber mode was inferred as pseudo-component spectra. Convolution opera-

tions on FTIR data was used to automatically infer functional groups and molecular finger-

printing techniques were used to identify candidate molecules from the literature. Network

structure constraints from Bayesian structure learning and reaction templates derived from

literature were jointly employed in generating reaction networks for both synthetic and real-

life process data. Minimal domain knowledge was provided to make the solution space

more compact and the methodology was able to recover lumped reaction networks for the

HTL of biomass. The effect of process noise in both network structure learning and spec-

tra deconvolution was found to be detrimental and hence a one-shot molecular generation

methodology to bypass them was developed in Chapter 4. Spectrum-constrained molec-

ular generation was introduced by employing adversarial training of neural networks to

model the distribution of molecular inputs. Low dimensional representation of molecular

structures were obtained using a hetero-autoencoder built using MPNNs. Evidence indi-

cated that graph convolutional encoders were capable to generating latent representations

focused onmolecular structure in contrast to string-based encodings which were found to be

reliant on length of the string representation. Candidate molecules representing a mixture

spectra at an operating condition were generated and reaction templates were applied to de-

velop chemical reaction networks. Projections of the tensorial data along the temporal mode

were used to identify kinetic parameters for a synthetic system in Chapter 5. The adjacency

matrix from the reaction network identified was utilized as a constraint on a neural ODE

network structured based on the law of mass action and Arrhenius law and trained using
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backpropagation. The chemical neural ODE was compared against an ALS-type optimiza-

tion scheme constrained on the adjacency information at the effectiveness each protocol in

inferring kinetic parameters was studied.

6.2 Future work

The work presented in this thesis aims to bridge the gap between expert developed and

purely data driven models for reaction systems identified from sensor measurements. Some

avenues for further research in this area are presented below.

(i) FT-IR spectroscopy used in this thesis provides rich information on functional groups

present in the reaction mixture and can identify reaction centres, but does not enable

identification of scaffold structures of molecules especially when peaks overlap. In-

clusion of other types of spectroscopic techniques such as a mass spectrometry or
13C-NMR, can provide information regarding scaffold structures of the molecules to

further remove human intervention required in reaction network prediction.

(ii) The reaction network generated in this thesis are hypotheses or the true reaction net-

work for the system. While attempts have been made to validate them to literature,

discovery of the true reaction network for the system requires fine tuning of the hy-

potheses through first principles based quantum mechanical calculations. Molecular

dynamics simulations of the hypothesised reactions can prove to be ameans of valida-

tion and can incorporate solvent effects and thermodynamic constraints on feasibility.

(iii) Models developed in this thesis provide both chemical and numerical perspective of

the reaction system and are well suited for product optimization and reactor control.

Reaction networks can be used in tandem with kinetic models to obtain estimates

for properties of interest such as boiling point or viscosity through machine learn-

ing predictions which allows for quantitative optimization of process parameters and

operating conditions.
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Appendix A: Chapter 2

A.1 Bayesian hierarchical clustering

Bayesian hierarchical clustering is applied as a pre-processing to the process spectroscopic

measurements to reduce the dimensionality of the data. The Bayesian hierarchical clus-

tering algorithm considers each wavenumber as an individual cluster with the probability

of combining to form a cluster being set equal to the α hyper-parameter of the Dirichlet

distribution. This prior of clustering is updated in a recursive fashion as the agglomerative

clustering combines more sub-trees to form larger clusters as ,

dk = αΓ(nk) + dleft,kdright,k (A.1a)

πk =
αΓ(nk)

dk
(A.1b)

nk indicates the number of data points in the kth cluster, dleft,k and dright,k represent the

d values associated with the left and right sub-trees in the dendrogram of the clustering as

depicted in Figure A.1.

The clustered wavenumber regions are assigned to functional groups through compar-

ison with standard handbooks for IR spectroscopy detection. The choice of number of

clusters is based on expert knowledge and is restricted to 6 to ensure enough resolution of

the individual functional groups.
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Figure A.1: Tree structure of Bayesian hierarchical clustering

A.2 Bayesian structure learning

The absorbance values of each cluster is used as the nodes of the Bayesian structure learning

algorithm. Only FTIR spectra were used for the structure learning task as the resolution

of the 1H-NMR data was insufficient for reliable determination of reaction network. The

Bayesian Information Score used in the structure determination can be given as,

scoreBIC = M
n∑

i=1

Ip(Xi;PaXi
)−M

n∑
i=1

H(Xi)− log
(
M

2
DIM(DAG)

)
(A.2)

where M is the number of samples, PaXi
represents the parents of Xi node, Ip is the

mutual information function and H is the entropy function. The BIC score quantifies the

Markov property of DAG generated with the first two terms and penalises for the graph

complexity in the last term.

In the case of SMCR, the absorbance of the entire pseudo-component spectra is used

for the structure determination. A flow sheet of the process for structure from Bayesian

hierarchical clustering and SMCR are given in Figure A.2a and A.2b respectively.
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(a)

(b)

Figure A.2: Flowchart of Bayesian network construction for a) Bayesian hierarchical clus-
tering b) SMCR
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Appendix B: Chapter 3

B.1 Synthetic data generation

Figure B.1: Scheme for synthetic data generation
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B.2 Comparison of classifier with literature

Table B.1: Comparison of classification metrics with Wang et.al [199]

Functional Group Accuracy Precision Recall F1 Score Specificity

1D-
CNN

Wang
et.al

1D-
CNN

Wang
et.al

1D-
CNN

Wang
et.al

1D-
CNN

Wang
et.al

1D-
CNN

Wang
et.al

Alkane 0.973 0.939 0.980 0.94 0.988 0.94 0.984 0.94 0.892 0.865

Alkene 0.970 0.954 0.904 0.854 0.864 0.791 0.884 0.822 0.986 0.989

Alkyne 0.996 0.993 0.945 0.934 0.877 0.875 0.909 0.904 0.999 0.999

Arene 0.968 0.974 0.975 0.978 0.971 0.976 0.973 0.977 0.964 0.97

Ketone 0.979 0.978 0.889 0.893 0.875 0.868 0.883 0.880 0.989 0.99

Aldehyde 0.996 0.997 0.943 0.973 0.879 0.900 0.910 0.935 0.999 0.999

Ester 0.984 0.983 0.932 0.933 0.931 0.913 0.932 0.923 0.991 0.992

Acid 0.990 0.989 0.953 0.923 0.903 0.928 0.927 0.925 0.997 0.994

Alcohol 0.989 0.975 0.919 0.956 0.844 0.951 0.881 0.953 0.996 0.984

Amine 0.973 0.966 0.897 0.91 0.900 0.871 0.898 0.890 0.984 0.982

Halide 0.972 0.912 0.901 0.853 0.850 0.828 0.875 0.840 0.988 0.945

Ether 0.966 0.963 0.932 0.879 0.932 0.862 0.932 0.870 0.978 0.98

Nitro 0.989 0.994 0.927 0.952 0.882 0.934 0.904 0.943 0.996 0.997

Table B.2: Comparison of overall classification metrics with Fine et.al [181]

Model Molecular
Precision

Molecular
Recall

Molecular
F1 score

Molecular
Perfection
Rate

MLP 0.9459 0.9392 0.943 0.815

CNN w/o recon 0.939 0.899 0.919 0.72

CNN w/ recon BCE 0.949 0.949 0.949 0.849

CNN w/ recon WBCE 0.9323 0.9533 0.943 0.83

Fine et.al - - 0.931 0.749
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Figure B.2: Comparison of classification metrics with Jung et.al[200]
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B.3 Deconvolution of Synthetic data

Figure B.3: Comparison of original and deconvoluted spectrum for synthetic data
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B.4 Deconvolution of biomass data with water

Figure B.4: Deconvolution of biomass HTL data: (a)Projection along residence time mode,
(b) Projection along process conditionmode, (c) Resolved FTIR spectra of each PC +Water,
(d) Resolved 1H-NMR spectra of each PC + Water
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B.5 Grad-CAM

In order to infer the wavenumbers responsible for classification into different functional

groups, saliency analysis, specifically, the computation of Grad-CAM (Class Activation

Maps) was performed on the neural network [283]. Grad-CAM uses the gradient of the

score of the output with respect to a certain class (or a combination of classes in this case)

in determining a localization map of the features responsible for classification into those

class(es). The global averaged value (for Z number of neurons (indexed by i) in the con-

volutional layer) of the gradient of the output (yc) labelled as a particular set of classes (c)

with respect to the kth activation (Ak) of the convolution layer provides a weighting matrix

αc
k which, when multiplied by the activations, generates the Grad-CAM for the particular

class.

αc
k =

1

Z

∑
i

∂yc
∂Ai

k

(B.1a)

Grad-CAM = ReLU

(∑
k

αc
kAk

)
(B.1b)

Typically used in image-classification problems, Grad-CAM can be applied to the 1-DCNN

problem as well to understand the importance of certain wavenumber regions in identifying

a particular functional group. The Grad-CAM values for a simple classification (methane)

and for classification of multiple functional groups (methanol, acetic acid) are presented

in Figure B.5. As seen from Panel (a), the wavenumber regions highlighted by Grad-

CAM in the classification of methane fall in the wavenumbers corresponding to the sp3

C-H stretch (2850-3000 cm−1) and peaks corresponding to sp3 C-H bend frequencies oc-

cur at 1380-1460 cm−1 . In the case of methanol, the O-H and C-O stretch frequencies fall

in wavenumber regions of 3400-3600 cm−1 and 1000-1260 cm−1, which are highlighted

by the saliency analysis along with the sp3 C-H bends and stretches. For the case of acetic

acid, the saliency map indicates that the CNN gives more importance to features (peaks)

corresponding to the C=O stretch (1700-1730 cm−1), O-H stretch (2400-3400 cm−1), and

160



Figure B.5: Saliency Analysis: (a) Grad-CAM for methane, (b) Grad-CAM for methanol,
(c) Grad-CAM for acetic acid

C-O stretch (1210-1320 cm−1)[284].
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B.6 CNN features

Figure B.6: Filters learnt by the CNN
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B.7 Distribution of training data

Figure B.7: Distribution of samples for CNN training
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Appendix C: Chapter 4

C.1 Dataset characteristics

C.1.1 Distribution of sequence length of training samples

Figure C.1: Histogram of distribution of sequence length across entire dataset
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C.1.2 Token frequency for strings used in prediction

Token Frequency

[C] 19799996

[=C] 6714258

[Ring1] 4220684

[Branch1] 3874419

[=Branch1] 2528569

[N] 2363501

[O] 2136863

[=O] 1505421

[Ring2] 1236100

[Branch2] 1033005

[=N] 928818

[F] 685692

[#Branch1] 554077

[S] 532575

[=Branch2] 529263

[#Branch2] 379404

[Cl] 334948

[#C] 275349

[P] 197259

[NH1] 126625

[=Ring1] 111307

[Br] 104477

[O-1] 82977

[N+1] 65032

[#N] 59262

[Si] 34220

[=Ring2] 29116

[=S] 21773

[I] 21480

[=N+1] 18460

[B] 10569

[=N-1] 4147

[N-1] 2347

(a) Frequency of tokens in SMILES

Token Frequency

c 12895831

C 9865284

( 5595427

) 5595427

O 3279613

1 3252674

2 2328722

= 1946997

N 1555030

n 1260670

3 1038570

F 685811

- 370405

4 335940

Cl 334964

S 239324

[nH] 126628

s 113713

# 111435

Br 104479

[O-] 82994

o 81561

[N+] 77774

5 74430

[Si] 34225

I 21526

P 13349

6 12782

B 10575

[N-] 6417

[n+] 6070

7 2160

(b) Frequency of tokens in SELFIES

Table C.1: Frequency of occurrence of tokens in SMILES and SELFIES strings
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C.1.3 Features used for MPNN

Node features

Atomic number

Degree of connectivity

Formal charge

Hybridization

Aromaticity

(a) Node features

Edge features

Bond type

Ring membership

Aromaticity

(b) Edge features

Table C.2: Node and edge features for MPNNs

C.2 BLEU Scores for testing data

Figure C.2: BLEU scores for samples (a) Graph2SMILES (b) Graph2SELFIES
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C.3 Characteristics of DBSCAN clusters

Figure C.3: Sequence length distribution across DBSCAN clusters for (a) RNN-translator
t-SNE encodings, (b) Graph2SMILES translator t-SNE encodings and (c)Graph2SELFIES
translator encodings.
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C.4 Details on spectrum-constrained GAN

Figure C.4: Architecture of (a) Generator and (b) Discriminator

Figure C.5: Plots of losses during training of GANs (a) without functional group penalty
and (b) with functional group penalty.
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Appendix D: Chapter 5

D.1 Model results for synthetic data with signal to noise
ratio of 35

(a) Temporal concentrations

(b) Reaction network structure, arc
strengths and score inferred from
the pseudo-component spectra

(c) Pseudo-component spectra

Figure D.1: Spectral deconvolution and causal inference using noisy synthetic data at a
signal to noise ratio of 35.
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Figure D.2: Comparison of the predictions from the chemical neural ODE and constrained
regression against the reconstructed data from integration of the smoothed time derivative
of temporal concentration obtained by the deconvolution of synthetic spectroscopic data, at
a signal to noise ratio of 35.
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D.2 Impact of preferentially weighting synthetic spectra
on the adjacency matrix

(a) Preferentially weighted pseudo-
component spectra after deconvolution

(b) Reaction network structure, arc strengths
and score inferred from the preferentially
weighted pseudo-component spectra

(c) Arc strengths and
score inferred from the
preferentially weighted
spectra, given the reac-
tion template

Figure D.3: Preferential weighting of the wavenumber absorption bands of the deconvolved
pseudo-component spectra followed by causal inference using noisy synthetic data at a sig-
nal to noise ratio of 100.
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D.3 Performance assessment of the proposed frameworks
against their baselines

(a) Predictions compared against the baselines for concentration profiles from latent factorization of
noise-free synthetic spectroscopic data.

(b) Predictions compared against the baselines for concentration profiles from latent factorization of
synthetic spectroscopic data at a SNR=35.

(c) Predictions compared against the baselines for concentration profiles from latent factorization of
synthetic spectroscopic data at a SNR=100.

Figure D.4: Predictions from the chemical neural ODE and the constrained regression by
ALS are compared against their baselines: a simple feed forward neural network (FFN) and
a SINDy with control input regression, respectively.
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Table D.1: Comparison of the performance of the neural ODE and constrained regression
frameworks against their respective unconstrained baseline models.

Root mean squared error (RMSE) % Improvement over baseline Root mean squared error (RMSE) % Improvement over baseline

Type of data Constr. regression SINDy with control input (baseline) Neural ODE FNN (baseline)

Without noise 0.0132 0.2289 94.23% 0.0276 0.1737 84.11%

SNR= 35 0.1121 0.042 -62.53% 0.0278 0.0427 34.89%

SNR= 100 0.0314 0.1473 78.68% 0.01 0.0772 87.05%
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