
BioMed CentralBMC Structural Biology

ss
Open AcceResearch article
Computational identification of residues that modulate voltage 
sensitivity of voltage-gated potassium channels
Bin Li1,3 and Warren J Gallin*1,2

Address: 1Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9, 2Department of Cell Biology, University of 
Alberta, Edmonton, Alberta, Canada and 3Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13th 
Street 6th floor, Charlestown MA USA 02129

Email: Bin Li - bli4@partners.org; Warren J Gallin* - wgallin@ualberta.ca

* Corresponding author    

Abstract
Background: Studies of the structure-function relationship in proteins for which no 3D structure
is available are often based on inspection of multiple sequence alignments. Many functionally
important residues of proteins can be identified because they are conserved during evolution.
However, residues that vary can also be critically important if their variation is responsible for
diversity of protein function and improved phenotypes. If too few sequences are studied, the
support for hypotheses on the role of a given residue will be weak, but analysis of large multiple
alignments is too complex for simple inspection. When a large body of sequence and functional data
are available for a protein family, mature data mining tools, such as machine learning, can be applied
to extract information more easily, sensitively and reliably. We have undertaken such an analysis
of voltage-gated potassium channels, a transmembrane protein family whose members play
indispensable roles in electrically excitable cells.

Results: We applied different learning algorithms, combined in various implementations, to obtain
a model that predicts the half activation voltage of a voltage-gated potassium channel based on its
amino acid sequence. The best result was obtained with a k-nearest neighbor classifier combined
with a wrapper algorithm for feature selection, producing a mean absolute error of prediction of
7.0 mV. The predictor was validated by permutation test and evaluation of independent
experimental data. Feature selection identified a number of residues that are predicted to be
involved in the voltage sensitive conformation changes; these residues are good target candidates
for mutagenesis analysis.

Conclusion: Machine learning analysis can identify new testable hypotheses about the structure/
function relationship in the voltage-gated potassium channel family. This approach should be
applicable to any protein family if the number of training examples and the sequence diversity of
the training set that are necessary for robust prediction are empirically validated. The predictor
and datasets can be found at the VKCDB web site [1].
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Background
During the evolution of proteins there is interplay
between selection acting to keep some residue identities
constant, thus preserving protein function, and selection
acting to accept new sequence variants with altered prop-
erties that confer improved survival. Thus, when studying
the evolution of the structure-function relationship in a
family of proteins, identification of invariant residues
within the family identifies parts of the protein that are of
central importance to its function. This idea is central to
many comparative studies of protein structure/function
relationships, and the concept has been extended to stud-
ies of pairs of residues whose identities co-vary in an
apparently compensatory manner [2].

However, the converse idea, that varying residues are not
centrally important to the protein's function, is not neces-
sarily true. Although it is true that residues that do not
have a major impact on protein function will show exten-
sive variation over time, it is also true that residues that
contribute to the quantitative variation in a protein's
properties will also vary.

The problem that arises, then, is how to distinguish the
residues whose variation in identity is responsible for
functional variations in the protein from those residues
whose variation in identity is relatively immaterial to
function. These residues will not be detected by evaluating
the extent of variation in a given residue or in pairs of res-
idues. Rather, the residues will co-vary with the property
of the protein that they affect. To solve this problem it is
necessary to use techniques that can detect associations
between combinations of residue identities at any posi-
tion in the protein and the quantitative value of the
parameter of interest. We here report an analysis to detect
such an association between structure and function in
voltage-gated potassium channels (VKCs) using machine
learning techniques.

VKCs are membrane proteins that regulate the passage of
potassium ions through membranes [3]. When the volt-
age difference across a membrane reaches a threshold, the
probability that VKCs will open begins to become signifi-
cant, allowing increased potassium ion diffusion through
an ion-selective pore in the channel. This voltage-regu-
lated potassium ion permeability is critical in cellular
excitability. Mutations in VKC genes have been shown to
be associated with cardiac arrhythmias [4], episodic ataxia
[5], and other diseases [6,7]. Consequently, VKC proteins
have been considered good targets for drug design
directed at a number of diseases [8-10].

A functional VKC consists of four subunits, each contain-
ing six transmembrane regions, S1 through S6. S4 has
been shown to function as the main voltage-sensing

domain [3], acting by moving perpendicular to the plane
of the membrane upon depolarization [11,12]. This
movement causes a conformational change in the region
of the pore to open the "gate" and allow potassium ions
to pass through. There is currently heated dispute over
which of several mechanisms that have been proposed to
explain how the sensor movement changes the channel
conformation is correct [13].

Elements of the molecular basis of VKC function have
been elucidated through structural studies [11,14-18]. The
structures of several potassium channels of different types
have been determined crystallographically [11,15,17,19].
The structure of the ion selective pore is very similar in all
of the models; these studies have clearly identified many
aspects of the molecular dynamics of selective ion perme-
ability. Although the structure of one voltage-gated potas-
sium channel has been determined [11], the unusual
mobility of the voltage sensor region and the necessity of
using a bound antibody to stabilize the crystallized con-
formation raise serious questions of how similar that
determined structure is to the functional conformation of
the ion channel [20]. Extensive mutagenesis and biophys-
ical studies of different voltage-gated ion channels have
lead to several models of function that are quite different
from each other and from the model proposed based on
the KvAP crystal structure (KvAP structure ref). Thus,
although the molecular basis of ion selectivity and perme-
ability is well supported by the current structural knowl-
edge, the molecular basis of voltage sensing, and in
particular the molecular basis of the fine differences in
voltage sensitivity between channels, is not well defined
by structural studies.

In the absence of three-dimensional structures of various
VKCs that unambiguously show different opening/closing
stages, mutagenesis of individual residues of different
VKCs has been the main method for inferring the struc-
ture-function relationship of VKCs. However, it is prohib-
itively time-consuming and costly to do mutagenesis of all
residues individually and in combinations in different
VKCs. Computational tools, usually multiple sequence
alignment, have been used to identify conserved regions
of VKCs and limit the priority in mutagenesis experiments
to evolutionarily conserved residues [21-23]. Unfortu-
nately, details of the complex structure-function relation-
ship between individual residues and the
electrophysiological properties, which are mostly contin-
uous quantitative parameters [24], are too complicated to
understand by simple inspection of aligned VKC
sequences. With dozens of VKC sequences of a few hun-
dred residues each and continuous electrophysiological
variables, more mature data mining tools, such as
machine learning, are necessary.
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Machine learning generalizes an underlying data model
for a phenomenon by "learning" from existing data from
specific examples of that phenomenon, using various clas-
sification rules. It yields a mathematical or computational
model that can best describe the existing data and predict
classifications of new data [25]. Because of its ability to
extract complex models from large datasets, machine
learning has been successfully applied to many data-rich
problems such as marketing reports, weather prediction,
automatic genome annotation and microarray data anal-
ysis [26-29].

In this report we tested several learning algorithms, as
implemented in the WEKA program package [30]. Most of
these were categorical learners; they evaluate how features
can be used to assign each sequence to a pre-defined dis-
crete category. The OneR classifier identifies a set of rules
based on the identity of the amino acid residue at only
one of the various aligned amino acid positions that best
classifies each sequence in the training set. The Decision
Tree classifier identifies a minimal set of amino acid posi-
tions, and branching decisions based on residues at these
positions, that correctly classify the training data. The
Naïve Bayes classifier uses observed frequencies of resi-
dues at selected positions to apply Bayes' theorem to make
probabilistic predictions of the category to which a
sequence belongs. Kernel Density estimation estimates
the probability distribution for use in the Bayesian analy-
sis if a non-normal distribution is suspected. The K Near-
est Neighbour (KNN) classifier was used for both
categorical classification and for classification that treats
V50 as a continuously varying quantitative characteristic;
this method uses a distance measure to determine which
elements of the training set are closest in attribute space to
the example being evaluated and assigns the average of
the k examples that are most similar to the test example as
the predicted value.

Typically, a protein family comprises dozens of members
with hundreds of residues in each member. Such datasets
present a unique type of problem for machine learning.
First, a typical training dataset for machine learning con-
tains distinctively labelled "features" in every instance.
With protein sequence datasets, all sequences must be
aligned with each other to identify homologous residues
(features). Second, dozens of sequences with hundreds of
residues each create a dataset with very high dimensional-
ity, which compromises learning performance. Finally,
besides generating a classifier with high accuracy, it is per-
tinent to bench biologists to evaluate the biological
importance of individual residues (features) that contrib-
ute to a good learning performance during training, so it
is desirable to use learning methods that return the basis
for their prediction.

In this report, we have mined available VKC sequence and
electrophysiological data using machine learning and
related feature selection techniques, and derived a model
that predicts one of the central electrophysiological
parameters, half activation voltage (V50) [24], of a given
VKC, based on only its amino acid sequence. Our best
result was obtained using a k-nearest neighbor classifier (k
= 1) combined with feature selection using a wrapper
algorithm [31], yielding a mean absolute error (MAE)
between the predicted and published V50 values of 7.0 mV
in a repeated ten-fold cross validation. The prediction by
our final predictor was validated by permutation test and
by comparison of predictions to independently obtained
experimental results. The training process also provides a
rational basis for identifying residues potentially critical
to the activation of VKCs, and several identified key resi-
dues are located in regions that have been proposed to
modulate VKC activation.

The methods that we have applied to the study of VKCs
are general. With appropriate alignment, feature selection
and model validation, this analytical approach can be
used to generate biological hypotheses in other protein
families and these hypotheses can be practically tested
using site-directed mutagenesis.

Results
Learning without feature selection
A dataset consisting of 296 aligned positions from 58 VKC
sequences (Dataset 1) was initially used to train different
learning algorithms to predict the V50 value of a given VKC
sequence. Figure 1 illustrates schematically the process
that was used in developing the final predictor. V50 values
were divided into seven nominal classes for categorical
learning. The accuracy of the best categorical learning was
below 30% (Figure 2A). The MAE of the best numerical
prediction of V50 values with the KNN classifier (Figure
2B) was close to 18 mV. This analysis is equivalent to
assigning a predicted V50 to a channel based on the V50 of
the channel's nearest neighbor or neighbors in a distance-
based phylogenetic tree. Evidently, these learning algo-
rithms alone do not produce an accurate model for pre-
diction if they are trained with such a high dimensional
dataset of less than 60 instances. This is likely because a
relatively small number of residues affect the V50 of a
channel and the majority of residues affect other parame-
ters, which do not co-vary with V50, of the channels.

Learning with data filtering
To improve learning performance with this high dimen-
sional dataset, we added feature selection before learning,
using a filtering algorithm to decrease the dimensionality.
All residues (features) were ranked based on their infor-
mation gain scores [32,33]. Different numbers of top-
ranked residues were then used for learning. The best
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learning performance was obtained using only the top five
ranked features (residues), and the categorical accuracy
improved to 36%. The MAE of the numerical prediction
of V50 values with a KNN classifier was now reduced to 15
mV (Figure 2B). While dimension reduction by filtering to
select residues with high information gain did appear to
yield a better learning performance, the improvement is
marginal.

Learning with wrapper
We also applied a wrapper algorithm, a more learning per-
formance-driven feature selection method than filtering
[31]. From a large number of sets of residue (feature)
combinations, wrapper selected the residue set that
yielded the best learning performance. The prediction
accuracies with all categorical learning algorithms
improved, with the best classification of 60% accuracy
using the KNN classifier. When the KNN classifier (k = 1)
was combined with wrapper to predict a numerical V50
value based on a VKC sequence, the MAE of prediction
improved to 9.5 mV from 17.8 mV (Figure 2B). The best
prediction accuracy was obtained with six residues
(features).

Effect of scoring matrix choice and distance formula
We used an identity matrix (Formula 1.1) and trans-
formed BLOSUM62 and PAM100 amino acid matrices
(Formulas 1.0 and 1.2) for calculating distances in KNN

classification. The best MAEs were the same for all three
scoring matrices in repeated ten-fold cross validations.
The best predictors obtained with each scoring matrix
used 6 features (BLOSUM62), 8 features (PAM100) and 9
features (identity matrix). We performed the remainder of
our analyses using the BLOSUM62-based matrix because

Flow chart of procedures followed to develop the optimal V50 predictorFigure 1
Flow chart of procedures followed to develop the 
optimal V50 predictor. The data set was subjected to sev-
eral different learning algorithms, either alone or in combina-
tion with two types of feature selection. The KNN learning 
algorithm and the wrapper feature selection algorithm (high-
lighted in red) were found to yield the best results. These 
algorithms were then used to evaluate the effect of removing 
sequences as outliers to yield the data set used for construc-
tion of the final predictor. The individual processes that were 
used to construct the final predictor are highlighted in red.
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it yielded the best accuracy with the fewest features. Five
of the six features identified with the BLOSUM62-based
matrix were identified by analyses with at least one of the
other two scoring matrices (Table 1).

We also evaluated the result obtained by summing the
individual character distances (Manhattan distance) to
the result obtained using the Euclidian distance as
described in Materials and Methods, using the trans-
formed BLOSUM62 distance matrix. We obtained the
same MAE with the same six selected features, indicating
that the learning method is robust to the distance calcula-
tion method, at least with this data set.

Learning combined with outlier selection
Since the dataset has only 58 VKC sequences, a small
number of outliers, or incorrect class labels, might have
greatly affected the training process and thus led to poor
learning performance. We evaluated the effect of deleting
each sequence from the dataset, by training the KNN clas-
sifier with each of the 58 possible subsets of 57 sequences.
The top 50 subsets with 57 VKC sequences that produced
best learning performances using a repeated ten-fold cross
validation were kept and the pruning procedure was then
repeated with each of the 50 subsets as a starting point
(the flow diagram for this process is shown in Figure 3A).
The six-feature set that gives the best learning perform-
ances using Dataset 1 (MAE = 9.5 mV) was used during
outlier selection. In spite of the plateau in Round 1 and 3,
there were significant improvement of learning accuracies
in Round 2 and Round 4. After four pruning rounds the
improvement in accuracy significantly slowed down in
the following rounds (Figure 3B). Thus, we believe that
Round 1–4 represents informative gains in accuracy from
deleting true outliers, whereas the improvement in later
rounds is due to over fitting. This outlier selection
improves the MAE from 9.5 to 7.0 mV

During the pruning process, four VKC sequences, VKC8
(Kv1.3 mouse), VKC98 (Kv1.4 dog), VKC149 (Kv2
squid), and VKC171 (Kv4.3 mouse) [34], were consist-

ently selected as outliers from Rounds 1–4, although the
order by which they were deleted varied. We therefore cre-
ated a new dataset of 54 sequences (Dataset 2). The new
dataset was used to construct the KNN final classifier, for
which the best MAE improved to 7.0 mV (Figure 2B). We
also re-ran the complete training protocol using the wrap-
per algorithm with Dataset 2, and exactly the same feature
set was again selected, producing the best MAE of 7.0 mV.

We also evaluated two other measures of prediction qual-
ity, the R-squared value, which represents the percentage
of variance in the training set that is explained by the pre-
dictor, and the correlation between the actual and pre-
dicted V50 values. For Dataset 1 the R-squared value for all
characters is -0.18 and the correlation coefficient is 0.28;
the R-squared value for the selected six features is 0.64 and
the correlation coefficient is 0.79. For Dataset 2 the R-
squared value for all characters is -0.09 and the correlation
coefficient is 0.36; for the selected six features the R-
squared value is 0.77 and the correlation coefficient is
0.89.

Permutation tests
One hundred permuted datasets were generated by ran-
domly shuffling the V50 values among the VKC sequences
in the Dataset 2. With the same parameters and settings
with which we obtained the predictor, we applied KNN
classification combined with the wrapper algorithm for
feature selection to each one of these permuted datasets,
yielding 100 different predictors with different feature sets
and performance values. These 100 replicates provide an
estimate of the probability distribution of the MAEs for
the null hypothesis that there is no functional relation-
ship between the sequence and the V50 value. The MAEs
with the permuted datasets range from 9.9 mV to 15.4 mV
(mean = 13.4 mV, SD = 1.1 mV). The performance of the
predictor with the original dataset (MAE = 7.0 mV) is sig-
nificantly better (P < 10-10) than would be expected if
there were no connection between the sequence and V50
value.

Validation of predictor with independent experimental 
data
Thirteen wild type VKCs that were not part of the training
data were evaluated with the final predictor. The V50 val-
ues of these "new" VKCs had been determined independ-
ently in electrophysiological experiments [34,35]
(Salvador-Recala V, Gallin WJ, Abbruzzese J, Ruben PC,
Spencer AN: A Kv4 channel cloned from the heart of the
tunicate Ciona intestinalis and its modulation by a KChIP
subunit. Manuscript submitted). The MAE of these predic-
tions is 9.7 mV (See Additional file 2). Within this test set,
two VKCs are from species that are evolutionarily distant
from any of the other sequences in the training dataset,
Hirudo medicinalis and Ciona intestinalis [36,37], and the

Table 1: "Best" feature (residue) sets selected by wrapper with 
different distance matrices.

Distance matrices Selected residue sets

BLOSUM62 97, 100, 117, 125, 135, 154
PAM100 83, 95, 97, 100, 117, 131, 141, 154
Identity matrix 83, 92, 95, 100, 103, 123, 135, 154, 273

Wrapper feature selection identified different, but overlapping, sets of 
informative residues, depending on the distance matrix that was used. 
Residues that were selected with more than one matrix are underlid, 
and residue 100 and 154 (in bold) were selected with all three 
distance matrices.
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Schematic of the process of outlier selection, and the variations in MAEs during outlier selection using KNN classifierFigure 3
Schematic of the process of outlier selection, and the variations in MAEs during outlier selection using KNN 
classifier. A: Each sequence of Dataset 1 was individually deleted to select the resulting datasets that produce improved learn-
ing performances. The top 50 new subsets were kept at each round, and individual deletions were repeated. Due to computa-
tional complexity, the best feature set selected by wrapper as described in the paper was used in training. B: Variation of 
learning performance using KNN classifier during outlier selection. The mean absolute errors of prediction improved with 
selective removal of putative outlier instances. There was a significant improvement of learning accuracies at Round 2 and 4 
(thick lines). After Round 4, the improvement of learning performances slowed down significantly.
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prediction errors for these two VKC are both over 27 mV
(Table 2). When the most distant sequence (H. intestina-
lis) is removed, the MAE of the remaining twelve VKCs is
8.3 mV, and if both sequences are removed MAE = 6.6
mV, below the MAE we estimated using a repeated ten-
fold cross validation (7.0 mV).

We also evaluated the predictor by comparing the pre-
dicted V50 values of a number of VKC mutants with
experimental data from an alanine mutagenesis scan of rat
Kv2.1 by Li-Smerin et al [38]. The comparison is shown in
Table 2. The MAE between our predictions and data
obtained experimentally is 7.5 mV, which is reasonably
close to our estimated MAE of 7.0 mV using cross valida-
tion. Note that in five of the cases the predicted values for
V50 are the same; this is because none of the mutations to
alanine makes a new set of informative sites that is closer
to a new training sequence. In the two cases where one of
the informative residues was mutated to a residue that is
represented in one of the channels in the learning set (see

Table 2), the prediction improves significantly (MAE =
1.35 mV, n = 2) (Table 2).

Identification of informative features (residues)
The wrapper algorithm identifies a relatively small
number of residues that are the primary determinants of
accurate learning. With both Dataset 1 (58 instances) and
Dataset 2 (54 instances), six residues were consistently
selected to produce the best learning performances (Table
1), using a KNN classifier and a transformed BLOSUM62
scoring matrix. We reason that the residues that were iden-
tified as most informative in learning are more likely
involved in modulating the physical activation process of
VKCs. The selected residues were mapped onto a sche-
matic of the S1–S6 structure (Figure 4). All of them reside
in S1–S3, a region that likely plays a modulating role in
VKC functioning [39,40].

Independent evolution of character states in informative 
characters
A phylogenetic tree was inferred with MrBayes v3.0b4 [41]
using the 54 channel data set. The evolution of individual
characters was then inferred on this tree using maximum
parsimony criteria as implemented in MacClade [42]. In
the case of all six of the informative characters, at least one
of the character states has arisen multiple times during
channel evolution (Table 3). In all cases, the residue iden-
tities that have arisen independently during channel evo-
lution have large hydrophobic side chains (F, I, V, L).

Discussion
Learning with high dimensional data
Data with high dimensionality are a "curse" to learning
performance. As a rule of thumb, the number of instances
should be no less, and preferably more, than the number
of features to obtain a reasonable learning accuracy [31].
Even with a large number of instances, a large number of
irrelevant features can still compromise the learning per-
formance [31]. For biological data, however, enough
examples with relatively small dimension are not always

Table 2: Published mutant data and predicted V50 values.

Ala scan (Kv2.1) Published V50 (mV) Predicted V50 (mV) Wild type (mV)

L97A 0.6 -7.23 -4.9
*I100A -7.3 -7.23 -4.9
L117A -1.6 -7.23 -4.9

*V125A -4.6 -7.23 -4.9
L135A 1.5 -7.23 -4.9
A154Y 7 27.5 -4.9
MAE 7.5

The V50 predictions for a set of published alanine scanning mutants are compared to the published measured V50 values. The residues marked with 
* are residues in which an alanine exists at this position in at least one of the channels in the training dataset.

Table 3: Amino acid residues at the six positions selected as 
most informative in our dataset.

Position Residue (number of independent origins)

97 *C (1), F (2), I (4), L (A), V (5), *Y (1)
100 A (1), *F (1), *G (1), I (A), *L (1), *T (1), V (4)
117 H (1), I (4), L (A), V (1)
125 A (A), *C (1), *F (1), I (3), L (2), T (1), V (3)
135 I (4), L (A), *T (1), V (2)
154 A (1), *C (1), *F (1), I (A), L (2), *M (1), V (5)

The amino acid residues that are present at each of the six 
informative positions of the 56 channels used for construction of the 
final predictor are presented. Residues marked with an asterisk only 
occurred once at that position in the training data set. The number in 
brackets represents the number of independent origins of that 
residue, that is the minimum number of times that the residue evolved 
independently at that position. An A in brackets indicates that this is 
the inferred ancestral residue identity.
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achievable. Without feature selection or some other form
of dimension reduction prior to data analysis, learning
performance with high dimensional data is poor. Many
dimension reduction methods have thus been applied to
improve learning performance, including principle com-
ponent analysis and linear discriminant analysis [43,44].

We faced this problem in our analyses. There were less
than 60 VKC sequences with published V50 values, and
there are nearly 300 residues in each sequence alignment
after trimming poorly aligned regions. Most residues

likely have little or no role in determining V50 values, and
thus are "irrelevant features". Training without feature
selection using several machine learning algorithms
yielded categorical prediction accuracies consistently
lower than 30% (Figure 2A).

Application of a filtering analysis before learning
improved the accuracy marginally (Figure 2B). Filtering is
a pre-learning data processing method based on evalua-
tion of the information content of the dataset, and thus is
independent of the training process. It has been success-
fully used in other tasks to obtain better learning perform-
ance [32,33]. However, it may or may not select truly
relevant features, depending on the datasets and the selec-
tion criteria. Considering the number of features and
number of instances in our datasets, some irrelevant fea-
tures may well correlate with the final class labels by
chance and display a high information gain potential that
does not reflect a functional connection between
sequence and V50.

We then applied a wrapper algorithm to select features
during the learning process. Wrapper uses a heuristic
search to select the subset or subsets of features that yield
the best learning performance [31]. It "wraps" around the
learner and selects best feature sets based on learning
accuracies. In a heuristic search there is no formal guaran-
tee that the search will not become trapped in a local opti-
mum and miss the global optimum. To decrease the
chance of missing the global optimum without making
the analysis intractable, we selected the top 200 residue
combinations at each round and used them all as starting
points for the next round of searching. Best-first searching
was continued until learning performance stabilized. The
learning accuracies with wrapper increased greatly for all
learning algorithms we used. The best categorical result
was obtained with the KNN classifier (k = 1) with an accu-
racy of 60%. To generate a numerical predictor for V50, we
also trained the KNN classifier combined with wrapper for
numerical classification; the mean absolute error of pre-
diction improved to 9.5 mV from 17.8 mV (Figure 2B).

Since wrapper does not use an exhaustive search and does
not guarantee optimal feature selection, we applied "resi-
due swapping" to explore the possibility that one or more
residues would yield better results in the context of the
finally selected residue set than they would in the initial
search. However, residue swapping did not produce any
feature sets that yielded significantly better predictive per-
formance. Although, as an empirical operation, branch
swapping does not guarantee the global optimum in phy-
logenetic analysis [45], this process is a reasonable heuris-
tic approach for searching in the neighborhood of an
optimum for other, better, feature sets.

Residues selected as informative features by wrapper and mapped onto VKC structuresFigure 4
Residues selected as informative features by wrapper 
and mapped onto VKC structures. A. Schematic struc-
ture of the VKCs. Six transmembranehelices, labeled S1 
through S6, traverse the plasma membrane. The N-terminus 
and C-terminus are both cytoplasmic. The loop connecting 
S5 and S6 folds into the channel to form the ion-selective 
pore. The S4 region, in which every third residue is positively 
charged, is the central voltage-sensing element of the VKC. 
The six residues selected by the wrapper algorithm are 
approximately mapped onto the schematic diagram (black 
dots). Four highly conserved acidic residues are indicated by 
black stars. The numbers assigned to each marked residue 
are positions within the dataset alignment, not positions in 
any actual VKC protein sequence.B. Schematic end-on view 
of helices S1, S2 and S3 with the radial positions of conserved 
acidic residues (numbered in black) and four of the selected 
residues (numbered in red) indicated. Residue 117, 125, 135 
and 154 are each exactly two residues away from a highly 
conserved negatively charged residue, 115, 127, 137 and 152 
respectively.
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Outlier selection
Typically, with a sufficient amount of data, classification
using machine learning is expected to be insensitive to
outliers. However, a dataset with a low number of
instances relative to features of structural and functional
data increases susceptibility to outlier effects.

The V50 values in our dataset were obtained from publica-
tions from dozens of labs. We used averages for three V50
values in our datasets because different investigators have
published different V50 values for the same VKC
sequences. The difference in V50 values of same VKCs from
different labs sometimes for two of those channels
exceeds 15 mV [46-49]. Thus, it is almost certain that
some VKCs in our datasets compromise learning because
they are incorrectly labeled.

We evaluated the prediction accuracies with datasets from
which one sequence was pruned at each round of training
(Figure 3A). Based on the variations in learning perform-
ances, we stopped at Round 4 (Figure 3B). At both Round
2 and 4, learning performances displayed an improve-
ment of MAE of almost 1.5 mV (Figure 3B). The improve-
ment of learning performances after Round 4 decreased
significantly (Figure 3B).

One sequence was deleted in each round of pruning. Cre-
ating the best learning performance from the remaining
data, the top fifty such "remaining" sequence sets were all
used as starting points for the next round of searching.
Four sequences were consistently selected for "deletion"
in the first four rounds, although in different orders. The
best learning performance produced a MAE of 7.0 mV
with the new dataset of 54 VKC sequences (Figure 2B),
after deleting the four potential outliers; with the outliers
the MAE was 9.5 mV.

Outliers may arise from experimental errors, or the chan-
nels may be activated by different mechanisms so V50 val-
ues would be affected by a set of residues that is different
from those that affect the non-outliers. In the latter case,
the "deleted" outliers become interesting research targets
[50,51]. However, we could not rigorously exclude the
possibility that they were selected as outliers due to the
specific dataset we used and possible data over-fitting in
our training.

Among the deleted outliers, VKC149, a squid Kv2 chan-
nel, was shown to undergo extensive RNA editing, leading
to its functional diversity [52]. Its G-V curve, which was
used to obtain its V50 value, had to be fitted with two
Boltzmann functions, adding another layer of complexity
to its gating mechanism [52]. VKC171 (Kv4.3 mouse)
[50] is a fast inactivating channel. Its activation might

overlap its inactivation, which would make it difficult to
obtain an accurate V50 value [50].

We also tested the possibility channels with the most dis-
tant nearest neighbors might be outliers. We identified the
nine sequences that were most distant from their nearest
neighbors and sequentially removed them from the data-
set, evaluating the MAE of the resulting predictor after
each deletion using a 10 times 10-fold cross-validation.
None of the four channels mentioned above was among
this set. The MAEs of the first 8 deletion datasets were
greater than that for the full set of 58 sequences (9.5 mV);
after the ninth deletion the MAE was 9,2 mV. Thus, an a
priori assumption that the most distant sequences will
cause poor prediction performance is not valid in this
case.

The predictor performance was also evaluated using the R-
squared statistic and correlation coefficient of the pre-
dicted vs. the actual V50 values. Both of these measures
showed a significant improvement of prediction perform-
ance with feature selection and outlier removal. The 10-
times 10-fold cross validation of best predictor, using the
six selected characters and Dataset 2, yielded an R-squared
value of .77, indicating that the predictor was accounting
for approximately 77% of the variation on V50 between
channels. The linear correlation coefficient between the
predicted and actual V50 values was 0.89, which also indi-
cates that the predicted V50 values are well correlated with
the actual values for the channels.

Statistical evaluation using a permutation test
The machine learning approach that we have imple-
mented searches for an optimal value of MAE, so it will
always yield a model that associates the identity of some
residues with the V50 value, even if that association is spe-
cious. To evaluate whether the association of residue iden-
tity and V50 is significant, a statistical test of significance is
necessary.

A permutation test is a special case of randomization tests.
With a small sample of data, a permutation test generates
an approximate probability distribution for a null
hypothesis. Permutation tests have been widely used in
biomedical and other areas including microarray analysis,
SNP research, and clinical studies [53-55]. Compared
with other statistical analyses, a permutation test works
well with small sample sets and it does not require a nor-
mal distribution, which many small samples do not have.
Some researchers have even proposed that permutation
test should be used in all cases [56].

We evaluated whether there is significant information
linking the sequence of a VKC to its V50 value using one
hundred permutations of the original dataset, where V50
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values were randomly reassigned to sequences. One hun-
dred different computational models were generated with
one hundred different sets of features (residues). The best
and worst MAEs among these permutation learning are
9.9 mV and 15.4 mV, respectively, with a mean MAE of
13.4 mV and standard deviation of 1.1 mV. The mean
MAE, 13.4 mV, differs significantly from that of the pre-
dictor that was generated with the original, non-per-
muted, dataset, 7.0 mV (P < 10-10). Since both KNN
classification and the feature selection process were
involved in the permutation test, each test yielded a best
model that mathematically correlates a set of residues
with a permuted set of V50 values. The fact that the original
model significantly outperforms any of the "permuted"
models strongly supports the conclusion that the original
learning has detected a valid association between
sequence elements of VKCs and their V50 values.

Evaluation of predictor using independent experimental 
data
Due to the limited number of data, we did not retain a
portion of data as an independent test set when construct-
ing the predictor. Instead, we used a repeated ten fold
cross validation to estimate prediction errors on unseen
data. To obtain an independent objective assessment of
predictor performance, we located another thirteen VKCs
that have been functional characterized, including VKCs
that were recently cloned [36], as an independent test set.
Using the predictor, the MAE of predictions of all thirteen
new VKC instances is 9.7 mV (Additional file 2), which is
higher than what we estimated using a repeated ten-fold
cross validation (7.0 mV).

We also tested an alternative model, that the V50 could be
predicted by assigning the average V50 value of the sister
group of each channel on a phylogenetic tree that was
constructed based on the full set of 296 aligned amino
acid positions. We tested both a distance tree and a Baye-
sian maximum likelihood tree (Figure 6). The phylogeny-
based predictions were significantly poorer than those we
obtained with the fully optimized predictor (Additional
file 2).

The optimal predictor was built with a KNN classifier. In
KNN classification, a close "neighbor" from the training
set will be used as a template to classify a new instance. If
the training data are not evenly distributed in the instance
space, some areas contain fewer instances with larger
empty space than others, as is shown in the distance tree
of the training data (Figure 5). Evidently, instances that
are in these sparse areas will likely be less accurately clas-
sified, since they do not have close neighbors. In fact,
superposition of the test VKC data on the distance tree of
the training data clearly showed an unequal distribution
in the sequence space (Figure 5). Among the thirteen test

VKC data, all but two are from species that exist in the
training set. One VKC is from Hirudo medicinalis [37] and
the other is from Ciona intestinalis [36]. The difference
between the H. medicinalis channel sequence and its near-
est neighbor in the training set is much greater than for
any other sequence and its nearest neighbor. The predic-
tion errors of these two VKCs using the predictor are 27.3
mV and 27.4 mV, respectively. When the H. medicinalis
sequence is removed from the analysis the MAE for the
test set is 8.3 mV, and if both of these sequences are
removed the MAE is 6.6 mV. This analysis indicates that a
more phylogenetically diverse selection of channels in the
training set should improve prediction performance.

In the training set, all V50 values were determined from
channels expressed in Xenopus oocytes. In the test set,
however, we also included VKCs that have V50 values
determined in other cells, such as HEK293 and CHO cells
[35,57]. Although it is known that the experimental V50
values of VKCs can vary if they are measured in different
cells, the difference is often not significant, as shown by
experimental data of several VKCs that have been
characterized in both Xenopus oocytes and other cells.
Therefore, we believe that the test set serves as a valid inde-
pendent test set. In fact, it is likely that a better estimate
would be obtained if all test instances were measured in
Xenopus oocytes, which would remove variation due to
differences in expression systems.

We also compared experimental data from a mutagenesis
scanning study by Li-Smerin et al with predictions by our
predictor (Table 2) [38]. Despite using a test set compris-
ing results from VKC mutants, and the presumably drastic
difference between data distributions of the test set and
our training sets, prediction results are consistent with
results from the published mutagenesis study of VKCs
(Table 2). This result supports the conclusion that our
estimated prediction error is close to the true error.

Although all of the mutations have changed one of the six
informative residues, only two of them have mutated to
an amino acid that is represented at that position in one
of the training set sequences. The V50 predictions for these
two mutants, marked with asterisks, are much closer to
the observed V50 values than those for the other three
mutants. This suggests that as more channels are cloned
and characterized and the variety of the training set
increases the performance of this kind of machine learn-
ing and prediction will improve.

Little variation of voltage sensitivity from the wild type
(Kv2.1 rat) was predicted for most VKC mutants (Table 2).
These mutants were shown to have little impact on volt-
age sensitivity if they were mutated to Ala in Kv2.1 [38].
Consistently, these mutants were predicted to have a V50
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Bayesian maximum likelihood tree of training data and independent test dataFigure 6
Bayesian maximum likelihood tree of training data and independent test data. The set of 54 VKC sequences used 
for the final predictor and the 13 VKC sequences from the independent test set were aligned using MUSCLE [70] and the align-
ment was trimmed to 296 residues. This data set was used to generate a maximum likelihood tree using MrBayes [41], using a 
total of 500,000 cycles with a 250 cycle burn-in. The training set channels are labelled with their VKCDB identification number 
and their V50 value, the 13 test sequences are labelled with the name of the species and the channel, and were highlighted in red 
(Figure 6).
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value close to that of the wild type (Table 2). One mutant,
A154Y of Kv2.1 rat, displayed a large shift of V50 of over 10
mV [38], and our predictor also predicted a large positive
shift in V50 value (Table 2). Although this is the largest
margin between the predicted V50 and the experimental
data, the correct prediction of direction in V50 shift by our
predictor is encouraging.

Identification of biologically important residues (features)
One goal of building a model that can predict V50 value of
a given VKC sequence with reasonable accuracy is to iden-
tify residues that are involved in modulating voltage sen-
sitivity. In our analysis, different feature (residue) sets
were selected by wrapper and screened to identify the fea-
ture set that yielded the best learning performance. In a
forward selection approach, one feature (residue) was
added at each round. Although different features were
sequentially selected in different orders during the first
five rounds, the feature set that produced the best learning
performance converged to six residues. These six residues
are the best features in predicting the V50 value of VKCs
based on their amino acid sequences. The prediction was
also validated by independent experimental data (Addi-
tional file 2 and 2). Likely, these residues are central to set-
ting the voltage sensitivity of VKCs.

Some functionally important residues may not be identi-
fied using our approach. If a group of residues co-vary
because they interact with each other to affect V50 values
of VKCs, for example, after one residue is identified, the
addition of the other residues may not further improve
learning performances, and thus they would not be
selected. However, no feature co-varied precisely with the
six selected features in a covariation analysis (not shown).
Also, our datasets contain a tiny subset of all the VKCs in
nature that may not be an unbiased representation of all
VKCs, so the residues that are selected may be only perti-
nent to these specific datasets. The quality of the experi-
mental data are also a factor, indicated by the different V50
values obtained by different research labs for a same VKC
[46-49]. Outlier selection may have helped alleviate the
problem, but it is still a potential error source. Neverthe-
less, the combination of the selected residues should be a
good indication of potentially functionally important
structure elements.

The positions of the six features selected with a modified
BLOSUM62 matrix are shown mapped onto a schematic
of the VKC channel in the membrane in Figure 4A. All six
selected residues are on one of the transmembrane helices
S1, S2 or S3, none are found on the primary voltage sen-
sor, S4, or on the pore/gate complex S5–S6. Although the
S1–S3 region is not the primary voltage sensor, there is
extensive experimental evidence that interactions between
the S4 helix and the S1–S3 region are important in setting
the value of V50. Tiwari-Woodruff et al. [58,59] and
Papazian et al. [60] have demonstrated that three acidic
residues in S2 and S3 (E283, E293 and D316) interact
with basic residues in S4 during the process of voltage
response, and that altering these residues in the D. mela-
nogaster Shak channel will alter the value of V50 by more
than 40 mV [61]. Those results suggest that one face of
both S2 and S3 face the charged surface of S4 at least dur-

Distance tree of training data and independent test dataFigure 5
Distance tree of training data and independent test 
data. Distance tree illustrating the relative similarities of the 
54 sets of six selected informative residues from the training 
set and the corresponding residues in the 13 sequences that 
were used for independent testing of the prediction per-
formance. The names of the training set channels have been 
removed for clarity. Each of the four subfamilies form well 
supported clades, and are labeled as Kv1, Kv2, Kv3, and Kv4. 
The branches and names of the wild type VKC channels from 
the independent test set are in red. Most test VKC 
sequences are clustered closely with one or more channels 
from the training data. Two VKCs from Hirudo medicinalis 
(LeechKv1) and Ciona intestinalis (CionaKv4), have long 
branch lengths.
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ing the process of activation, and possibly constitutively.
There is also a highly conserved acidic residue at the C-ter-
minal limit of S1. Of the six residues that have been iden-
tified as relevant features in the current study, four are
exactly two residues before or after one of these highly
conserved acidic residues in the sequence. As illustrated in
Figure 4B, this spacing along an alpha helix places the var-
iable residues that we have identified approximately on
the opposite face of the helix from the charged residues
that have a demonstrable role in setting V50.

The variation of the six selected residues are mostly lim-
ited to nonpolar, hydrophobic residues including Ile, Leu,
Val, Phe, and Ala, although there are several incidences of
polar residues and one charged residue, the His at posi-
tion 117 of the data in all Kv3 (Shaw) channels)[62]
(Table 3). Thus, it appears that the observed variations in
these six residues are responsible for many of the small
energetic differences between channels that are responsi-
ble for differences in V50 values; whether these energy dif-
ferences involve intramolecular interactions between
several helices of a single channel protein or interactions
between the helices of the protein and the surrounding
hydrophobic layer of the lipid bilayer is unknown.

Many residues of VKCs that are responsible for voltage
sensing and selective ion permeation are charged or polar
amino acids, which generate relatively strong ionic
interactions [40]. Variation of residues involved in strong
ionic and bonding interactions often lead to, if not inac-
tive channels, drastic variation in function [40].
Hydrophobic interactions among nonpolar residues or
between nonpolar residues and lipids, on the other hand,
are often energetically of lower magnitude and thus varia-
tions in these interactions will cause quantitatively small
variations in functional parameters. These hydrophobic
interactions can yield a practically continuous range of
interaction energy magnitudes. Small variations in these
kinds of residues are less likely to cause functional disrup-
tion, but are more likely to play "secondary" roles in VKC
functioning and help tuning and shaping the sensitivity of
different functional properties. The nonpolar
hydrophobic features of the predicted voltage modulating
residues are consistent with a role in modulating the tar-
geted functional feature, the voltage sensitivity of VKCs.

The extant models for voltage sensing all focus on the
movement of the voltage sensing S4 transmembrane helix
and how it may alter the conformation of the pore and the
S5 and S6 helices to open and close the ion channel. In
most cases, the consequent movements of other parts of
the molecule are not explicitly addressed. The "paddle"
model based on the structure of the KvAp channel [11,63]
predicts that the C-terminal half of the S3 helix moves in
concert with the S4 helix during gating. However, both of

the informative residues in the S3 helix are in the N-termi-
nal half of S3 and so would not be directly involved in the
primary gating movement.

The results of the current study indicate that as the inter-
actions of S4 with the other transmembrane helices
change, the interactions of those helices with each other
or the lipid bilayer, or both, are also changing. These
changes in interaction are in turn responsible for the small
incremental differences in the V50 value for the channel.
This analysis neither confirms nor rejects any of the cur-
rent models of voltage response. It does predict that that
when these models are formulated more precisely, the
energy differences between the open and closed states
must take into account hydrophobic interaction energies.

One possible confounding effect in a comparative study is
the possibility of evolutionary hitchhiking, the possibility
that the residue identities are correlated with functional
variation by virtue of having been independently fixed in
an ancestral population at the same point as a voltage var-
iation evolved. However, if that were the case, then it
would be expected that evolutionary reconstruction of the
individual features would not show multiple independent
origins of specific residues. This is not the case for the fea-
tures selected in this analysis. Each of the six selected resi-
due positions has evolved independently to specific
residue identities (Table 3).

In a recent study pairs of residues that co-vary during evo-
lution and are presumably involved in the essential func-
tions of VKCs, were computationally identified. Most of
these residues are located in the so-called core functional
elements (S4–S6) [2], the pore region and the voltage sen-
sor. Our approach to structure/function analysis is aimed
at identifying structural elements that modulate the volt-
age sensitivity, not those that are essential for voltage sen-
sitivity. While S4 is considered the main voltage-sensing
unit, S1–S3 is thought to play a modulating role in the
voltage sensitivity of VKCs [39,40]. Consistent with their
modulating roles, all residues selected in our study are
indeed located in S1–S3 region (Figure 3). It is not surpris-
ing that other residues in the S1–S3 region that were not
selected in the present study have been shown to modu-
late the voltage sensitivity of VKCs [59,60]. Most of these
highly conserved residues appear to interact directly with
the positively charged key residues in the voltage sensor
(S4 helix) through charge interactions. These residues are
highly conserved among VKCs and so do not co-vary sig-
nificantly with V50 values in most channels.

Conclusion
Machine learning methods have been widely used in bio-
logical analyses because of their capacity for dealing with
data-rich tasks. Using a dataset of 58 VKC sequences with
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their V50 values, we built a predictor that predicts the V50
value of a given VKC based on its amino acid sequence.
Despite the limited number of training data, and the
uncertain quality, an MAE of prediction of 7.0 mV was
obtained using a KNN classifier combined with a wrapper
for feature selection (Figure 2D). The prediction accuracy
was evaluated by a repeated (ten times) ten-fold cross val-
idation. It is also validated by V50 prediction from
independent experimental data (Table 2 and Additional
file 2). As more data become available from ongoing iso-
lation and characterization of novel VKCs, better predic-
tion is expected. During training, four possible outliers
were singled out and removed from the training set to
improve the learning performance (Figure 3). Several res-
idues with potential biological implications were identi-
fied for further study (Figure 4).

The analysis presented in this report demonstrates how
machine learning methods can be productively applied to
structure-functional study with datasets of limited size.
These analyses can predict certain biological functions
with a reasonable accuracy and can identify potentially
functionally important residues for experimental testing
of specific hypotheses of the structure/function relation-
ship in a family of proteins.

Methods
Dataset
Data used in this project were drawn from VKCDB, a volt-
age-gated potassium channel database [34]. Although
VKCDB has over 350 channel sequence entries, only 58
VKC sequences have associated half activation voltage
(V50) values. Sequence and V50 values for these channels
were extracted from VKCDB; most of the sequences have
more than 500 amino acid residues. The published V50
values have been experimentally determined under simi-
lar experimental conditions, using a two-electrode voltage
clamp in Xenopus oocytes [24]. Averages were used for
those VKCs for which different V50 values have been pub-
lished by different groups [46-49].

All sequences were aligned with PepTool [64], followed
by manual adjustment. Because there is large sequence
variation at both termini and some loop regions of the
VKCs, only blocks of residues that contained relatively few
gaps were kept for analysis (Dataset 1, see Additional file
1).

Independent test dataset
Thirteen wild type VKCs with experimentally determined
V50 values were used to obtain an objective assessment of
the predictor (see Additional File 1). The V50 values of
these VKCs had been determined in several different cell
hosts including Xenopus oocytes, HEK293 cells, and CHO
cells [34-36]. Another six VKC mutants with V50 values

determined in an Ala-scanning mutagenesis experiment
[38] were also used to evaluate the predictor.

Problem formulation
To formulate our problem into a typical supervised learn-
ing task, the dataset was considered as a training set with
58 instances. Each of the alignment positions was taken as
one nominal attribute (feature), and all attributes were
assumed to be independent of each other. In numerical
prediction analyses, the classes were the real V50 numerical
values. In categorical prediction analyses, V50 values were
divided into seven nominal classes based on their values;
-50 > V50 ≥ -30 mV, -30 > V50 ≥ -20 mV, -20 > V50 ≥ -10 mV,
-10 > V50 ≥ 0 mV, 0 > V50 ≥ 10 mV, 10 > V50 ≥ 20 mV and
20 > V50 ≥ 65 mV. The goal is to extract the data model that
can best describe the relationship between the (attributes)
features and the labeled classes of these data, and correctly
predict the class or the numerical value of V50 of any given
VKC sequence.

Basic learning algorithms
The KNN (k-nearest neighbor) classifier was used in both
numerical prediction and categorical prediction analysis.
All KNN classifications were tested with k values of 1 to 5.
Decision Tree, Naïve Bayes Learner, Kernel Density Classi-
fier and OneR Classifier algorithms were also used in cat-
egorical predictions. The algorithms used are
implemented in the WEKA package 3.2.3 [30].

The prediction accuracies were used to evaluate the learn-
ing performance in categorical prediction. The mean
absolute errors (MAEs), the average absolute difference
between the predicted values and the published values,
were used to assess the numerical prediction. All learning
performances were evaluated using a repeated ten times
ten-fold cross validation.

Feature selection
Filtering and wrapper algorithms were used to select a
subset of features with the best prediction performance, to
decrease the dimensionality of the learning problem.

For filtering, features were ranked by information gain
[32,33,65], then different numbers of top-ranked features
were selected for learning, and the sets that produced the
best learning performance were considered the best fea-
ture sets using filter.

The wrapper approach to feature selection screens subsets
of features in a dataset and selects the "relevant" features
based on learning performances [31]. Forward selection
was used in this approach. In the first round of analysis
each individual residue was evaluated for its prediction
quality (lowest MAE in 10 times 10-fold cross validation)
and the 200 residues with best predictive performance
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were retained. In subsequent rounds additional features
(residues) were added at each round, the prediction qual-
ity of the resulting subsets of residues were evaluated, and
the 200 subsets with best prediction quality were retained
for the next round of feature addition. This process was
repeated until learning performances stopped improving
[31]. Despite the existence of redundant feature sets at
each round, the number of non-redundant feature sets
was well above 100 at each round. The search was contin-
ued for five rounds after the learning performance
stopped improving to ensure that performance had
reached a plateau.

Residue swapping
We also applied a "residue swap" heuristic, similar to the
branch-swapping step during the construction of phyloge-
netic trees [45], to try to further improve the prediction
accuracy. For the best feature set selected by the wrapper
algorithm, each residue was sequentially replaced with
every other residue that was not in the final set, and the
new feature combination was evaluated for prediction
accuracy using a repeated ten-fold cross validation.

Distance matrices in k-nearest neighbor classification 
(KNN)
A KNN classifier is a set of n-dimensional vectors (where
n = the number of features) to which new instances are
compared [25]. It classifies a new instance by evaluating
its distance from each of the classifier instances and
chooses the class label of the classifier instance that is clos-
est to the new instance as the predicted class of the new
instance. For more than one classifier instance with an
identical distance to the new instance, one of the class
labels of these classifier instances is randomly picked and
assigned in categorical predictions; averages of equidis-
tant classifier instances are calculated for numerical
prediction.

The Euclidean distance between any two vectors is
obtained by taking the sum of the square of the distances
between all pairs of attributes (dimensions), on the
assumption that the sites are independent and therefore
their dimensions are orthogonal. For nominal attributes,
such as amino acid residues, the KNN algorithm can sim-
ply takes 1 and 0 as the distance between a pair of differ-
ent and same residues, respectively. We also implemented
the KNN algorithm to incorporate PAM [66] and BLO-
SUM [67] matrices as a measure of distance between pairs
of features (residues) of two VKC sequences (Formulas 1.1
and 1.2). Since the scores in amino acid comparison
matrices go up when two amino acid residues are more
similar to each other, which is the opposite of distance
measurement in KNN classification, we converted amino
acid comparison scores accordingly (Formula 1.0). In all

cases any gap was scored as the maximum distance for the
relevant scoring matrix.

In BLOSUM62 or PAM100 matrix:

converted scorei = matrix_maximum_value -
original_scorei  (1.0)

D: Distance between two instances.

n: Number of features.

Other matrices: scorei = converted scorei from pairwise
comparison  (1.2)

Outlier selection
To minimize the effect of possible outliers, a best-first
search was performed. One VKC sequence was deleted
from the training set at each round, and the learning was
carried out with the remaining VKC sequences. The
deleted sequence was considered an outlier if the remain-
ing dataset yielded better learning performance than the
full dataset. The search stopped if the learning perform-
ance no longer improved after a further round of deletion.
Due to computational complexity, the outlier selection
was not combined with full feature selection of wrapper
[31]. Instead, the best feature set selected by the wrapper
algorithm was applied to outlier selection.

Permutation test
We randomly shuffled the classes of each instance in Data
Set 2 (the 54 sequences remaining after outlier selection)
to produce 100 permuted datasets. With each of these
datasets, training was repeated using KNN classification
combined with wrapper, with identical parameters and
settings as in the original training. This process was
repeated one hundred times and the MAE of each of the
predictors was collected.

Final predictor construction
After removal of four outliers from the original dataset,
the remaining 54 sequences formed a new dataset (Data-
set 2) that was used to develop the final predictor. During
the training process using Dataset 2, one best feature (res-
idue) set was selected by wrapper to predict the V50 values
with an MAE of 7.0 mV. One predictor was then con-
structed, using Dataset 2, the best feature set, the BLOSUM
62 scoring matrix and the KNN classification (k = 1).

f1:D= scorei
1

2

i

n

=
∑

Identity matrix: score =
1 if features of two instances are

i
  different

0 if features of two instances are the same 
(1.11)





Page 15 of 17
(page number not for citation purposes)



BMC Structural Biology 2005, 5:16 http://www.biomedcentral.com/1472-6807/5/16
To predict the V50 value of a new query sequence, the
query sequence is first aligned with the profile alignment
of Dataset 2 using ClustalW [68]. The residues at the
aligned selected positions are extracted to produce a data
file for V50 prediction.

Phylogenetic reconstruction and distance tree 
construction
The training data were used to construct a phylogenetic
tree using MrBayes v. 3 [41]. Reconstruction of the evolu-
tion of the character states in the six selected features was
then evaluated on this tree using maximum parsimony as
implemented in MacClade [42].

The relative distances of the 54 VKCs in the training set
(Dataset 2) and the 13 independently characterized test
sequences were evaluated by summing the distances for
each of the six selected features. A distance tree was then
constructed using PAUP*4 [69] (Figure 5). The names of
the 54 sequences in the training set are not shown, for
clarity. The branches connecting the 13 test sequences to
the tree formed by the training set are highlighted in red,
and the names of those 13 sequences are shown.
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