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Introduction

• Forced alignment commonly used in phonetics and 
sometimes in speech recognition

• Automatic calculation of temporal boundaries of 
segments in speech

• Some notable challenges to overcome



Challenge 1: Segment separability

• A forced aligner’s acoustic model is designed to 
separate speech segments from each other

• Ladefoged & Broadbent (1957) found that a given 
stimulus can be assigned to different categories based 
on surrounding context

• Acoustic context can’t resolve confusable (Miller & 
Nicely, 1955) pairs like [f] and [θ] in fin and thin

• Segment separation may not be learnable



Challenge 2: Time sampling and 
boundaries
• Forced aligners often classify 25 ms windows of speech 

every 10 ms
• Maximum precision of 10 ms
• More precision requires

– Faster sampling (e.g., 1 ms in Kelley & Tucker, 2018)
– Error correction models (e.g., Stolcke et al., 2014)
– And/or some sort of interpolation



Proposed solutions

• To resolve segment separability: Relax crisp separability 
requirement
– Train network to treat segment categories as tags (e.g., “this 

sound has features of [f] and [v]”)
– He & Xia (2018) call this a “joint binary network”

• To resolve boundary precision: Use linear interpolation 
during alignment
– Treat Viterbi/dynamic time warping path as finite discrete 

approximation of smooth function



On crispness relaxation

• Unclear how to determine what segment categories 
should be assigned to a given sound
– Besides its original label in training data

• Using empirical approach
– Train the network as a normal segment classifier first, 

similar to Graves & Schmidhuber (2005)
– For each input, reassign targets as original segment 

category plus all categories that received more activation
• Result is a network with sparse instead of crisp output



Interpolation schematic



Data

• Mix of TIMIT (Garofalo, 1993) and Buckeye (Pitt et al., 
2005)

• Buckeye extracted as phrases based on silence periods
• Validation data held out as 5% from training data
• Some speakers held out from Buckeye for test set
• Standard TIMIT test set used



Network

• 3 bidirectional LSTM layers with 128 units each
• Dropout of 0.5 between layers during training
• Output 40 classes
• Batch size of 64
• Trained for 50 epochs and used model with best 

validation accuracy



Alignment results

• Relaxing crispness of 
predictions had little to no 
improvement

• Interpolation had a bigger 
effect
– Most notable on boundaries 

within 20 ms of target
• Best performance was crisp 

with interpolation



Comparison with off-the-shelf model

• Montreal Forced Aligner (MFA) is current state-of-the-art 
trainable aligner (McAuliffe et al., 2017)

• Trained MFA v1.0.1 on same data as neural network 
model
– Used train_and_align function
– Was able to align most but not all data in the training set



Comparison with Montreal Forced Aligner

• Crisp model better at lower 
end

• MFA has fewer large errors
• Some discrepancy could be 

due to some programming 
differences
– E.g., collapsing repeated 

phones like [d d] in red dog



TextGrid 
comparison: 
Buckeye



Discussion

• Numerical comparisons not very useful
• Interpolation yields qualitatively better boundaries
• Improving the acoustic model can only do so much
• Aligner’s performance depends on the quality of aligned 

transcriptions it is trained on



Future directions

• Complete validation and testing
• Train on more data
• Explore more sophisticated interpolation with splines or 

polynomials
• Evaluate aligner with behavioral tasks using trained 

phoneticians
• Give consideration to the feasibility of forced alignment 

as a task
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