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Introduction

* Forced alignment commonly used in phonetics and

sometimes in speech recognition
« Automatic calculation of temporal boundaries of

segments in speech
« Some notable challenges to overcome
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Challenge 1: Segment separability

« Aforced aligner’s acoustic model is designed to
separate speech segments from each other

- Ladefoged & Broadbent (1957) found that a given
stimulus can be assigned to different categories based
on surrounding context

« Acoustic context can’t resolve confusable (Miller &
Nicely, 1955) pairs like [f] and [O] in fin and thin

« Segment separation may not be learnable
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Challenge 2: Time sampling and
boundaries

* Forced aligners often classify 25 ms windows of speech
every 10 ms
 Maximum precision of 10 ms

* More precision requires
— Faster sampling (e.g., 1 ms in Kelley & Tucker, 2018)
— Error correction models (e.g., Stolcke et al., 2014)
— And/or some sort of interpolation
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Proposed solutions

* To resolve segment separability: Relax crisp separability

requirement

— Train network to treat segment categories as tags (e.g., “this
sound has features of [f] and [v]")

— He & Xia (2018) call this a “joint binary network”

» To resolve boundary precision: Use linear interpolation

during alignment
— Treat Viterbi/dynamic time warping path as finite discrete

approximation of smooth function
APhL
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On crispness relaxation

* Unclear how to determine what segment categories
should be assigned to a given sound
— Besides its original label in training data
« Using empirical approach
— Train the network as a normal segment classifier first,
similar to Graves & Schmidhuber (2005)
— For each input, reassign targets as original segment
category plus all categories that received more activation

» Result is a network with sparse instead of crisp outs
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Data

« Mix of TIMIT (Garofalo, 1993) and Buckeye (Pitt et al.,
2005)

* Buckeye extracted as phrases based on silence periods

« Validation data held out as 5% from training data

« Some speakers held out from Buckeye for test set

« Standard TIMIT test set used
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Network

3 bidirectional LSTM layers with 128 units each
Dropout of 0.5 between layers during training
Output 40 classes

Batch size of 64

Trained for 50 epochs and used model with best
validation accuracy

APhL



Crisp network

Alignment results
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Comparison with off-the-shelf model

* Montreal Forced Aligner (MFA) is current state-of-the-art

trainable aligner (McAuliffe et al., 2017)
 Trained MFA v1.0.1 on same data as neural network

model
— Used train_and_align function
— Was able to align most but not all data in the training set
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Comparison with Montreal Forced Aligner

MFA comparison

» Crisp model better at lower
end

 MFA has fewer large errors

« Some discrepancy could be
due to some programming

— MFA
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Discussion

* Numerical comparisons not very useful

 Interpolation yields qualitatively better boundaries

* Improving the acoustic model can only do so much

» Aligner’s performance depends on the quality of aligned
transcriptions it is trained on
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Future directions

« Complete validation and testing

* Train on more data

» Explore more sophisticated interpolation with splines or
polynomials

« Evaluate aligner with behavioral tasks using trained
phoneticians

» Give consideration to the feasibility of forced alignment

as a task
APhL
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