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Abstract

Quantile regression supplements the ordinary least squares regression and

provides a complete view of a relationship between a response variable and a

set of covariates. The quantile regression model does not assume any particu-

lar error distribution. It is estimated by minimizing an asymmetric absolute

error loss function. Bayesian inference of quantile regression is based on the

likelihood function formed by independent asymmetric Laplace densities. The

asymmetric Laplace distribution is a natural choice for the error distribution

of the quantile regression model. However, the model based on the asymmet-

ric Laplace distribution solely focuses on estimation and does not describe the

underlying true model. Moreover, it assumes different models for estimating

parameters for different quantile levels.

In this project, we introduce a hierarchical quantile regression model that

removes ambiguities of the quantile regression model based on the asymmetric

Laplace distribution. The proposed hierarchical model treats the intercept and

the slope of the linear quantile regression model as random effects. The model

is estimated by the data cloning method which works in the Bayesian frame-

work exploiting the computational advantage of the Markov Chain Monte

Carlo (MCMC) algorithm, but gives the maximum likelihood estimates with

standard errors.

A simulation study with 50 repetitions has been performed to assess the

parameter estimates. We have compared our results to the regular quantile
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regression estimates for different quantile levels.

Our proposed hierarchical model gives a greater insight into the overall

quantile regression picture. The model is easily extendable to accommodate

more complex situations and provides room for further research.
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Chapter 1

Introduction

Regression (a term coined by Sir Francis Galton in 1885) analysis is one of

the most popular and useful tools of statistics. It models a variable (called

dependent or response variable) as a function of other variables (called inde-

pendent variables, explanatory variables or covariates) on which it depends. In

statistical words, regression analysis studies how the means of the conditional

distributions of a dependent variable change with covariates. It is often called

mean regression or regression of the conditional mean. However, the mean

is not only quantity one is interested in to describe a distribution. One may

also be interested in spread, skewness and kurtosis to get more insight into a

distribution. Moreover, the mean itself has its own limitations as a measure

of central tendency. As the mean does not provide a complete picture of a

distribution, the conditional mean regression does not give a complete picture

of a relationship between a dependent variable and a set of covariates. It may

happen that a relationship may not exist through the central part of the con-

ditional distributions, but it may exist through the upper or the lower tail, or

it may be different through the different parts of the conditional distributions.
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However, now, we may overcome such limitations of the usual conditional

mean regression with the advent of quantile regression.

Quantile regression, introduced by Koenker and Bassett in 1978, allows one

to study the relationship through different parts of the conditional distribu-

tions by modeling different quantiles. In recent years, quantile regression has

gained much popularity in applied research and has started to replace the con-

ditional mean regression in many applications. Despite its wide use in many

fields, the quantile regression model is still difficult to understand. Though

the estimation method is quite established in the semi-parametric (functional

form of the model is specified but the error distribution is left unspecified)

case, there is no sound parametric model available. In this project, we at-

tempt to make quantile regression clear and understandable. We address the

issue that the available parametric quantile regression model does not describe

the underlying process at all, rather concentrates on estimation. We introduce

a hierarchical quantile regression model that describes the underlying process

of quantile regression well.

We discuss the motivation to quantile regression, the quantile regression

model and its estimation in chapter 2. The philosophy of estimating the quan-

tile regression model is closely tied with the least squares method. Estimation

of quantile regression is based on the fact that quantiles can be estimated

through a simple minimization problem. The quantile regression model is es-

timated by minimizing an asymmetric absolute error loss function. This is

similar to the fact that the conventional mean regression is estimated by the

least squares method through minimizing the squared error loss function. In
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section 2.1, 2.2 and 2.3, we follow chapter 1 of Koenker (2005). In the same

chapter, we give a brief description of Bayesian quantile regression (Yu and

Moyeed, 2001) and the asymmetric Laplace distribution. Bayesian quantile

regression is based on the likelihood function of the asymmetric Laplace dis-

tribution. Minimizing the asymmetric absolute error loss function turns out

to be the same as maximizing a likelihood function formed by combining in-

dependent asymmetric Laplace densities.

In chapter 3, we discuss the issue that available parametric quantile regres-

sion model based on the asymmetric Laplace distribution does not provide the

true model of the data. In this chapter, we introduce a hierarchical quantile

regression model as an attempt to give a clear picture of the true model of

the data. Later on we discuss the estimation process of the proposed model

followed by simulation studies, results, discussion and limitations.

Finally, we talk about the possibilities of future research in this area and

conclude the report in chapter 4.

3



Chapter 2

Quantile Regression

2.1 Motivation to Quantile Regression

Consider a simple linear regression model,

yi|xi = β0 + β1xi + εi, (2.1)

where yi is the response of the ith individual, xi is the corresponding covariate,

and εi is independent and identically distributed (iid) error with mean zero.

Thus, the conditional mean of y given x is

E(yi|xi) = β0 + β1xi.

The least squares regression captures how the conditional mean of y given x

changes with x.

Figure 2.1 illustrates artificial data (size 100) generated from model (2.1)

with normal-distributed errors (where β0 = 2, β1 = 0.5). The line through the
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Figure 2.1: Conditional mean function

data points is the true conditional mean line.

Now, from model (2.1), the conditional quantile functions of y are

Qyi(τ |xi) = β0 + β1xi + F−1ε (τ) = {β0 + F−1ε (τ)}+ β1xi,

which can be written as

Qyi(τ |xi) = β0(τ) + β1xi, (2.2)

where, Qyi(τ |xi) is the τ th conditional quantile of y given x, Fε denotes cu-

mulative distribution function (cdf) of the error ε, hence, F−1ε (τ) is the τ th

quantile of the error, and β0(τ) = β0 + F−1ε (τ).

In the conditional quantile functions of (2.2), intercepts of the conditional
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quantile lines change with the quantile levels, however, slopes remain the same

for all quantiles.

Figure 2.2: Conditional quantile functions (homoscedastic case)

Figure 2.2 shows several true conditional quantile functions for the simu-

lated data from model (2.1). The lines, from top to bottom, are {0.05th, 0.25th,

0.5th, 0.75th, 0.95th} conditional quantile lines respectively. The conditional

median function (0.5th quantile) is the same as the conditional mean function

depicted by dashed line in the figure, because the mean and the median is the

same for symmetric distributions. All lines share the same slope, with only

the intercepts varying for different quantiles. Thus, the marginal change of the

conditional quantiles for the marginal change in x is the same for all quantiles.

In other words, the relationship between y and x is the same in all parts of the

conditional distribution of y given x. Thus, we do not need to study the rela-
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tionship between y and x for the entire conditional distribution. Hence, there

is a little need of quantile regression in the iid linear model case. The study

of the conditional mean by the least squares regression is sufficient in this case.

Now, we consider a heteroscedastic situation where the model takes the

following form.

yi|xi = β0 + β1xi + σ(xi)εi. (2.3)

We assume, σ(xi) = γ0 + γ1xi and εi are again iid with cdf Fε. Thus,

yi|xi = β0 + β1xi + (γ0 + γ1xi)εi. (2.4)

The conditional quantile functions of y are

Qyi(τ |xi) = β0 + β1xi + (γ0 + γ1xi)F
−1
ε (τ),

which can be rewritten as

Qyi(τ |xi) = {β0 + γ0F
−1
ε (τ)}+ {β1 + γ1F

−1
ε (τ)}xi,

that can be expressed as

Qyi(τ |xi) = β0(τ) + β1(τ)xi,

where β0(τ) = {β0 + γ0F
−1
ε (τ)}, and β1(τ) = {β1 + γ1F

−1
ε (τ)}.

That is, in the heteroscedastic situation, both the intercepts and slopes of the

conditional quantile lines depend on the quantile levels.

In Figure 2.3, we exhibit an artificial sample of size 100 generated from
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Figure 2.3: Conditional quantile functions (heteroscedastic case)

model (2.4) with normal-distributed error (where β0 = 2, β1 = 0.5, γ0 =

1, γ1 = 0.7) and quantile functions for different quantile levels. The lines

exhibited in Figure 2.3, from top to bottom, are {0.05th, 0.25th, 0.5th, 0.75th,

0.95th} conditional quantile functions respectively. As shown in Figure 2.3, the

relationship between y and x is different on the different parts of the conditional

distribution of y. For instance, the relationship is positive on the upper tail and

negative on the lower tail of the conditional distribution. In the heteroscedastic

case described by model (2.3), the least squares regression fails to capture

the overall relationship between the response variable and the covariate. The

dashed line in Figure 2.3 is the conditional mean line (which is the same for the

median (0.5th quantile) in this case) which shows a weak relationship between

the two variables. However, the relationship is very strong (and opposite to
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each other in sign) on either tail of the conditional distribution depicted by the

top (0.95th quantile) and the bottom (0.05th quantile) lines in the figure. So,

we need to study the relationship between y and x for the entire conditional

distribution in heteroscedastic case. We can do so by quantile regression.

It enables us to estimate conditional quantile functions for different quantile

levels, and thus gives a complete view of the relationship.

2.2 Quantile Regression Model

We first consider the least squares regression model,

yi|xi = E(yi|xi) + εi,

where yi is the response of the ith individual, xi is the corresponding covariate,

εi is assumed to be independently and identically distributed (iid) errors with

mean zero and constant variance.

For the simple linear regression model,

E(yi|xi) = β0 + β1xi.

Similarly, the quantile regression model for τ th quantile is constructed as

yi|xi, τ = Qyi(τ |xi) + ui(τ),

where ui(τ)’s are independently and identically distributed (iid) errors and its

τ th quantile is zero.
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For the linear quantile regression,

Qyi(τ |xi) = β0(τ) + β1(τ)xi.

Thus, the linear quantile model for the τ th quantile is

yi|xi, τ = β0(τ) + β1(τ)xi + ui(τ), (2.5)

where parameters are specified for the τ th quantile and they differ for different

quantile levels.

A special case of model (2.5) is model (2.4), where β0(τ) = {β0 + γ0F
−1
ε (τ)}

and β1(τ) = {β1 + γ1F
−1
ε (τ)}.

From model 2.4 and 2.5, we get

ui(τ) = εi − F−1ε (τ).

Hence, the τ th quantile of ui(τ) is zero.

2.3 Estimation

The least squares estimation technique of the conditional mean regression pro-

vides a framework for the estimation of quantile regression. Like the sample

mean, sample quantiles can be obtained through a simple minimization prob-

lem. This optimization problem replaces the problem of sorting observations

to find quantiles. This leads to a estimation technique similar to the least

squares method.
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We know the mean can be obtained by minimizing a squared error loss

function. Similarly, quantiles can be obtained by minimizing an asymmet-

ric version of the absolute error loss function. For the τ th quantile, the loss

function is defined as

ρτ (u) = u(τ − I{u<0}), (2.6)

where I{u<0} is an indicator function which takes value 1 when u < 0 and

value 0 otherwise. The loss function in (2.6) is a piecewise linear function.

This function is also known as check function. For τ = 0.5, that is median,

the check function becomes the symmetric absolute error loss function. The

check function is illustrated in Figure 2.4 for τ = 0.5 and τ = 0.75.

A motivation to use this asymmetric loss function to obtain quantiles is as

follows. Let X be a random variable with distribution function F(x). In order

to find x̂ to minimize the expected loss, we need to minimize

Eρτ (X − x̂) = (τ − 1)

∫ x̂

−∞
(x− x̂)dF (x) + τ

∫ ∞
x̂

(x− x̂)dF (x).

Taking derivative with respect to x̂ and setting it to 0, we have

(1− τ)

∫ x̂

−∞
dF (x)− τ

∫ ∞
x̂

dF (x) = 0,

⇒
∫ x̂

−∞
dF (x)− τ{

∫ x̂

−∞
dF (x) +

∫ ∞
x̂

dF (x)} = 0,

⇒ F (x̂)− τ = 0.

When the solution is unique, x̂ = F−1(τ),

where F−1(τ) = inf{x : F (x) ≥ τ}.
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Figure 2.4: Check function

Now, we start looking through the least squares regression to get an insight

into the estimation technique of the quantile regression.

As we know, the sample mean is obtained by solving

min
µ∈R

n∑
i=1

(yi − µ)2.
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If xTβ is the conditional mean of y given x, then the above knowledge leads

to estimate β by solving,

min
β∈Rp

n∑
i=1

(yi − xTi β)2.

As median is obtained by minimizing the absolute error loss function,

ρ(u) = |u|,

sample median may be obtained by solving

min
µ∈R

n∑
i=1

|yi − µ|.

As quantiles are estimated by minimizing the loss function,

ρτ (u) = u(τ − I{u<0}),

the τ th sample quantile may be obtained by solving

min
µ∈R

n∑
i=1

ρτ (yi − µ).

Now, if the τ th conditional quantile of y given x, Qy(τ |x) is expressed as

Qy(τ |x) = xTβ(τ),
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then, β(τ) may be estimated by solving the problem

min
β∈Rp

n∑
i=1

ρτ (yi − xTi β(τ)).

The above problem can be transformed into the linear programming problem,

min
β(τ),u,v

{τ1Tnu+ (1− τ)1Tnv|Xβ(τ) + u− v = y},

where X and y are n×p and n×1 matrices respectively, 1n denotes an n-vector

of 1, u and v correspond to the positive and negative parts of the residual vector

y−Xβ(τ) respectively. The estimate of β(τ) can be obtained through solving

the linear programming problem. We refer the reader to Koenker (2005) for

details.

2.4 Bayesian Quantile Regression

Unlike the conventional approach, Bayesian inference gives the entire distribu-

tion of the parameter of interest. One can use Markov Chain Monte Carlo

(MCMC) algorithm to obtain samples from a posterior distribution. The

MCMC algorithm makes Bayesian inference easier and attractive. When pos-

terior distribution contains high dimensional integral, one can avoid evaluating

such integral by using MCMC. Bayesian quantile regression employs a likeli-

hood function based on the asymmetric Laplace distribution. This idea is

proposed by Yu and Moyeed (2001). The asymmetric Laplace distribution is

a natural choice here as it is closely related to quantile regression.
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2.4.1 Asymmetric Laplace Distribution

The asymmetric Laplace distribution is closely related to the quantile regres-

sion in a sense that the minimization of the check function defined by (2.6)

is exactly the same as the maximization of a likelihood function formed by

combining independent asymmetric Laplace densities. The probability den-

sity function of the Asymmetric Laplace distribution with location parameter

µ ∈ (−∞,∞), scale parameter σ ∈ (0,∞) and skewness parameter τ ∈ (0, 1)

is defined as

f(x;µ, σ, τ) =
1

σ
τ(1− τ) exp{− 1

σ
ρτ (x− µ)},

where ρτ (u) is defined as

ρτ (u) = u(τ − I{u<0}),

where I{u<0} is an indicator function which takes value 1 when u < 0 and value

0 otherwise. ρτ (u) defined above is the same as asymmetric loss function de-

fined in (2.6). If a random variable X has an asymmetric Laplace distribution

with location parameter µ, scale parameter σ and skewness parameter τ , we

write X ∼ ALD(µ, σ, τ). For τ = 0.5, the asymmetric Laplace distribution

reduces to the symmetric Laplace distribution which is also known as the dou-

ble exponential distribution. For τ > 0.5, it is left skewed, and for τ < 0.5,

it is skewed to the right. Moreover, the τ th quantile of X is µ, which is also

the mode of the distribution. Figure 2.5 illustrates the density function of the

symmetric and the asymmetric Laplace distribution for τ = 0.5 and τ = 0.75

respectively.
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Figure 2.5: Asymmetric Laplace distribution

2.4.2 Asymmetric Laplace as a Mixture of Normal Dis-

tributions

The asymmetric Laplace distribution may be represented as a mixture of nor-

mal distributions (C. Reed and K. Yu, 2009) by the lemma given below. This

representation makes data generation from an asymmetric Laplace distribu-
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tion easier. We use this representation to simulate data from the asymmetric

Laplace distribution in this project.

Lemma:

Let zi be a standard normal variable, wi be an exponential variable with mean

σ and xi ∼ ALD(µ, σ, τ). Then one can represent xi as a scale mixture of

normal given by

xi
d
=

√
2wiσ

τ(1− τ)
zi +

1− 2τ

τ(1− τ)
wi + µ,

where,
d
= denotes equality in distribution.

Using the above lemma we may simulate data from the asymmetric Laplace

distribution by using the following two steps.

1. Generate a random variable wi from Exponential(σ).

2. Generate data from Normal( 1−2τ
τ(1−τ)wi + xTi β,

2wiσ
τ(1−τ)).

2.4.3 Bayesian Quantile Regression Using Hierarchical

Representation of the Asymmetric Laplace Dis-

tribution

By using the lemma given in section 2.4.2, one may express Bayesian qunatile

regression model as a hierarchical model.

Let, wi’s are latent weight independently and identically distributed as

wi|β, σ, τ ∼ Exponential(σ).

17



Then,

yi|wi, β, σ, τ ∼ Normal(
1− 2τ

τ(1− τ)
wi + xTi β,

2wiσ

τ(1− τ)
).

It can be seen that the marginal distribution of yi marginalized over the latent

weight is ALD(µ, σ, τ).

In the Bayesian quantile regression, posterior distribution is obtained by the

MCMC method. This method allows one to choose any prior.
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Chapter 3

Hierarchical Quantile

Regression

3.1 Likelihood Based Inference of Quantile Re-

gression

We recall from chapter 2, the linear quantile regression model is

yi|xi, τi = β0(τ) + β1(τ)xi + ui(τ),

where parameters are specified for τ th quantile and they differ for different

quantile levels. We may assume, ui(τ) ∼ ALD(0, σ, τ), i = 1, 2, ..., n are in-

dependent. Thus, ui(τ) has τ th quantile zero. Hence, yi conditional on xi,

for i = 1, 2, ..., n, are independently distributed as ALD(β0(τ) + β1(τ)xi, σ, τ).

The τ th quantile of the conditional distribution of yi is β0(τ) + β1(τ)xi, which

depends on τ . Thus, we actually assume different model for yi for different τ .
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Now, we consider the estimation of quantile regression based on the asym-

metric Laplace distribution. We usually seek to estimate parameters for dif-

ferent quantile levels. For estimating parameters for different quantile levels,

we assume different models for yi. For instance, for τ = 0.5, the distribution

of yi is symmetric and for τ = 0.95, it is very left skewed. In reality, we must

not have different model for yi.

Yu and Moyeed (2001) considered a likelihood based on the asymmetric

Laplace distribution to estimate quantile regression. They ignored the origi-

nal distribution of yi. Using Bayesian inference, they suggested that use of the

asymmetric Laplace distribution irrespective of the original distribution of the

data was quite satisfactory.

However, Yu and Moyeed and other papers on quantile regression do not

explicitly explain the data generation mechanism underneath quantile regres-

sion. The goal of this thesis is to clarify the data generation mechanism of

quantile regression through a hierarchical quantile regression model. We de-

scribe the hierarchical quantile regression model and its estimation procedure

in the next section.

3.2 Hierarchical Quantile Regression Model

As discussed in the last section, in the likelihood based inference, one assumes

different models for yi for different quantile levels. We introduce a hierarchical

quantile regression model that gives one a greater insight into quantile regres-

sion. The linear hierarchical quantile regression model is described by using

20



the following steps.

Step 1:

yi|xi, τi, σ, β0i, β1i = β0i + β1ixi + ui;ui ∼ ALD(0, σ, τi)

The error ui follows the asymmetric Laplace distribution with location 0, scale

σ and skewness parameter τi. The intercept, β0i and the slope, β1i are random.

Step 2:

β0i|τi, a1, b1, η1 ∼ Normal(a1 + b1τi, η
2
1)

β1i|τi, a2, b2, η2 ∼ Normal(a2 + b2τi, η
2
2)

We assume β0i and β1i are linearly related to quantiles with normally dis-

tributed errors.

Step 3:

τi ∼ Uniform(0, 1)

Finally, we assume the quantiles are uniformly distributed between 0 and 1.

One may assume other distributions that range from 0 to 1 for τi.

The above hierarchical model allows one to generate data from this model.

Whereas, the model assumed by Yu and Moyeed (2001) does not allow data

generation. It only provides estimation without much understanding about

the underlying model. In the next section, we discuss the estimation proce-

dure of the proposed hierarchical model.
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3.3 Estimation of the Hierarchical Quantile Re-

gression Model

The hierarchical quantile regression model defined in the previous section is

yi|xi, τi, σ, β0i, β1i = β0i + β1ixi + ui;ui ∼ ALD(0, σ, τi),

β0i|τi, a1, b1, η1 ∼ Normal(a1 + b1τi, η
2
1),

β1i|τi, a2, b2, η2 ∼ Normal(a2 + b2τi, η
2
2),

τi ∼ Uniform(0, 1).

(3.1)

We estimate the model by using data cloning. The data cloning method in-

troduced by Lele et al. (2007) is a very useful method for obtaining maximum

likelihood (ML) estimates and their standard errors for complex hierarchical

models. Using the Bayesian framework, the method utilizes Markov Chain

Monte Carlo (MCMC) algorithm to produce frequentist inferences. Data

cloning method removes the subjectivity of the Bayesian priors and it is com-

putationally simple because of the use of the MCMC algorithm. One needs to

construct a full Bayesian model with proper priors for the unknown parame-

ters. Instead of using the likelihood function for the observed data, the data

cloning method uses the likelihood function of the k copies (clones) of the data,

where k is large. The method assumes that the copies are independent of each

other. The posterior distribution is then obtained by MCMC. The mean of
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the posterior distribution equals the ML estimate of the unknown parameters

and the k times variance of the posterior distribution equals the asymptotic

variance of the ML estimate. We refer the reader to Lele et al. (2007, 2010)

for details on the data cloning algorithm.

Like the Bayesian framework of the quantile regression model discussed in

section 2.4.3, we use the representation of the asymmetric Laplace distribution

as scale mixtures of normal distributions. By using the lemma (section 2.4.2),

we can write the hierarchical quantile regression model (3.1) in the following

fashion:

yi|xi, τi, σ, β0i, β1i ∼ Normal( 1−2τ
τ(1−τ)wi + β0i + β1ixi,

2wiσ
τ(1−τ)),

wi|τi, σ, β0i, β1i ∼ Exponential(σ),

β0i|τi, a1, b1, η1 ∼ Normal(a1 + b1τi, η
2
1),

β1i|τi, a2, b2, η2 ∼ Normal(a2 + b2τi, η
2
2),

τi ∼ Uniform(0, 1).

(3.2)

In order to estimate the model by data cloning, we need to assume pri-

ors for unknown parameters a1, b1, a2, b2, η1, η2 and σ. As the data cloning

method does not depend on the choice of priors, we can make the priors mod-

erately informative to get faster convergence of the data cloning algorithm.
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3.4 Simulation Study and Results

We generated samples of size, n = 100 from the hierarchical quantile regression

model (3.2) with a1 = 1, a2 = 2, b1 = 3, b2 = 5, η1 = 0.5, η2 = 0.4, σ = 1

and x ∼ Uniform(0, 80). A scatter plot of y vs x from a simulated data set

is given in Figure 3.1.

The data cloning method is implemented in the statistical computing en-

vironment R using the package dclone. The following priors are used in the

estimation of the model by data cloning:

a1 ∼ Normal(0, 10),

a2 ∼ Normal(0, 10),

b1 ∼ Normal(0, 10),

b2 ∼ Normal(0, 10),

logη1 ∼ Normal(0, 0.5),

logη2 ∼ Normal(0, 0.5),

log(1/σ) ∼ Normal(0, 0.2).

As the parameter estimates obtained by the data cloning method are indepen-

dent of priors, priors are made informative to make MCMC chains converge.

We put prior on inverse-scale (1/σ) because the convergence for inverse-scale

(1/σ) is better than that of scale (σ). For most of the repetitions, we used

100,000 iterations and we discarded the first 11,000 observations. However,

for some repetitions, we used a few more iterations for the MCMC chains to
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Figure 3.1: A scatter plot from a simulated data set from the hierarchical
model

converge. We started with 2 clones. For the samples (repetitions) for which

MCMC chains did not converge, we gradually increased the number of clones

up to 10 to make the MCMC chains converge. Convergence of the MCMC

chains was assessed by Gelman and Rubin diagnostics. R̂ values for parame-

ters a1, a2, b1, b2 and η2 were less than 1.2 for all repetitions. However, R̂ value
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was more than 1.2 (1.6) for η1 for a repetition and R̂ values were between 1.2

and 1.6 for 1/σ for 11 repetitions.

Table 3.1 compares the average of the parameter estimates to the true val-

ues. It shows lower and upper limits of 95% confidence intervals averaged over

50 repetitions. The coverage of the confidence intervals was 100% for a1, b1

and 1/σ, 98% for b2, η1, and η2, and 96% for a2.

Apart from the parameter estimates, one is interested to assess the effect

of a covariate on the conditional quantiles of y. In the hierarchical quantile

regression model, E(β1i|τi) serves this purpose. Table 3.2 represents the es-

timates of the expected random slopes, E(β1i|τi) = a2 + b2τi, for different

quantile levels, τi, with their 95% confidence intervals. E(β1i|τi) is estimated

by ̂E(β1i|τi) = â2+b̂2τ , where â2 and b̂2 are the Maximum Likelihood estimates

(MLE) of a2 and b2 respectively obtained by the data cloning method. The

standard error of ̂E(β1i|τi) is obtained by using the covariance matrix, which

is provided by the data cloning method, of the model parameters. The entries

of the third, fourth and fifth columns of the Table 3.2 are the average values

over 50 samples (repetitions). The coverage of the 95% confidence intervals

was 100% for all the quantile levels.

Table 3.3 exhibits the estimates of the slopes of the regular linear quan-

tile regression model for different quantiles with their 95% confidence intervals.

We compare the slope estimates of the regular linear quantile regression model

to the expected value of the random slope, E(β1i|τi), of the hierarchical linear

quantile regression model for different quantiles. The entries of the tables are
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the average values over 50 samples (repetitions). The coverage of the 95% con-

fidence intervals was approximately 60% in the upper (0.8 and 0.9) and lower

(0.1 and 0.2) quantiles. It is approximately 80% between quantiles 0.3 and 0.7.

Table 3.1: Parameter Estimates by the Data Cloning Method (sample size,
n=100)
parameter true value mean(estimate) sd(estimate) lower

limit
upper
limit

a1 1 1.37 1.85 −3.70 6.44
b1 2 0.30 1.90 −7.86 8.47
a2 3 3.17 0.55 2.28 4.06
b2 5 4.73 1.03 3.07 6.38
η1 0.5 1.3 1.04 −1.28 3.90
η2 0.4 0.46 0.15 0.09 0.83
1/σ 1 1.17 0.54 −0.03 2.38

Table 3.2: Estimate of E(β1i|τi) at Different Quantiles by the Data Cloning
Method (sample size, n=100)
quantiles E(β1i|τi) estimate of E(β1i|τi) lower limit upper limit
0.1 3.5 3.64 2.91 4.38
0.2 4.0 4.12 3.53 4.70
0.3 4.5 4.59 4.14 5.04
0.4 5.0 5.06 4.73 5.39
0.5 5.5 5.54 5.27 5.80
0.6 6.0 6.01 5.67 6.34
0.7 6.5 6.48 6.03 6.93
0.8 7.0 6.95 6.36 7.54
0.9 7.5 7.43 6.69 8.16

It is important to have similar results with different priors in the data

cloning method. So, we repeated the study by using different priors. We used

Uniform(−5, 5) prior for a1, b1, a2 and b2, and Uniform(0, 1) prior for η1, η2

and 1/σ and got the similar results.
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Table 3.3: Regular Quantile Regression Estimates (sample size, n=100)
quantiles expected random

slopes of the
hierarchical model,
E(β1i|τi)

estimate of the slope
of regular quantile
regression model

lower
limit

upper
limit

0.1 3.5 3.76 3.46 4.24
0.2 4.0 4.14 3.86 4.54
0.3 4.5 4.62 4.22 5.03
0.4 5.0 5.06 4.62 5.48
0.5 5.5 5.50 5.09 5.93
0.6 6.0 5.92 5.53 6.28
0.7 6.5 6.44 6.03 6.80
0.8 7.0 6.83 6.44 7.13
0.9 7.5 7.27 6.71 7.55

We also tried to estimate model (3.1) by the Bayesian approach. We used

non-informative uniform priors. The MCMC chains does not converge well for

the non-informative priors. We found that the chains converged only for 30%

of the repetitions for most of the parameters. The convergence rate is worse

for non-informative normal and log-normal priors.

3.5 Discussion

Table 3.1 shows that the estimates of the parameters associated with the ran-

dom slope (a2, b2 and η2) are close to the corresponding true values. Their

confidence intervals are narrower compared to the intervals of the other pa-

rameters and coverage is very good. Convergence of the MCMC chains for

these three parameters are also good. However, the estimates of the parame-

ters associated with the random intercept (a1, b1 and η1) are not quite close

to their true values. Their confidence intervals are wider and contain zero.

The point estimate of the inverse-scale (1/σ ) is good, but its interval estimate
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is poor. There was convergence problem in some repetitions for 1/σ. Often

intercept of the linear model is not of scientific interest and may be treated as

a nuisance parameter. The scale parameter of the asymmetric Laplace distri-

bution in the hierarchical model may also be treated as nuisance. One focuses

on estimating the coefficients of covariates. The point and interval estimates

of all the parameters associated with the covariate by the data cloning method

are quite good. So, our proposed hierarchical quantile regression model works

well. However, the coverage of the confidence intervals are greater than the

expectation. This may be due to the use of small number of clones than re-

quired in the model fitting using the data cloning algorithm. Data cloning

diagnostics may be performed to determine the data cloning convergence and

the appropriate number of clones.

From Table 3.2, we see that the average values of the estimated E(β1i|τi)

over repetitions are quite close to the true E(β1i|τi) for different quantile levels.

However, the coverage of their 95% confidence intervals is 100% that indicates

large standard errors of the estimates.

We also compare the regular quantile regression estimates of the slope of

the usual linear quantile regression model to the true E(β1i|τi) for different

quantiles. Table 3.3 shows that the regular quantile regression estimates are

quite close to the corresponding values assumed by the hierarchical model on

an average. Hence, the regular semi parametric quantile regression estimates

the expected random slope of the hierarchical model. However, the confidence

intervals based on the regular quantile regression does not cover the corre-

sponding hierarchical model parameters well.
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In conclusion, we are able to obtain the Maximum Likelihood estimates

of all the important parameters of the hierarchical model by the data cloning

method. Hence, our proposed hierarchical quantile regression model is a suc-

cessful model. This model is a parametric quantile regression model that

describes the data well and is estimable, whereas the available parametric

quantile regression model focuses on the estimation ignoring the distribution

of the data totally. The proposed model clearly shows the data generation

mechanism in quantile regression.

3.6 Limitation

The major limitation of the proposed hierarchical model is that each addi-

tional covariate adds three more parameters in the model. So, the model may

become very complex with the large number of covariates. One should balance

between the complexity of the model and the information content in the data.

One may have problem with the convergence of the MCMC chains and

may need to play with the number of clones, number of iterations and burn-in

periods to make the chains converge. Data cloning diagnostics may be per-

formed to assess the data cloning convergence.
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Chapter 4

Future Research and Conclusion

4.1 Future Research

In this project, we make an effort to understand the quantile regression process.

Our model produces a different picture of quantile regression that requires

more attention and research. We propose a very simple hierarchical quantile

regression model that assumes a linear relationship of the random intercept

and slope with quantiles. One may modify the model assuming a non-linear

relationship between the random effects and quantiles. Although the data

cloning method does an excellent job in estimating the model, there is also a

room to use different estimation techniques to improve results. This model may

provide an excellent aid in measurement error problem in quantile regression.

Censoring may also be easily incorporated in the model.
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4.2 Conclusion

Quantile regression has emerged as a widely used method in many applications.

However, the quantile regression model is not easy to understand. Assumption

of the asymmetric Laplace distribution for the error term provides the like-

lihood based inference of quantile regression. Bayesian inference of quantile

regression is based on this assumption. This approach focuses on estimation

and completely fails to describe the underlying process of the quantile regres-

sion. However, a model should make an attempt to describe the true process.

Our proposed hierarchical quantile regression model provides a greater insight

into the quantile regression process. It also provides a tool for data generation

to test the performance of Bayesian quantile regression as one cannot generate

data under the Bayesian model.
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